
Richard Jones (Ed.)

 123

28th European Conference
Uppsala, Sweden, July 28 – August 1, 2014
Proceedings

ECOOP 2014 –
Object-Oriented
ProgrammingLN

CS
 8

58
6

AR
Co

SS

Lecture Notes in Computer Science 8586
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Richard Jones (Ed.)

ECOOP 2014 –
Object-Oriented
Programming

28th European Conference
Uppsala, Sweden, July 28 – August 1, 2014
Proceedings

13

Volume Editor

Richard Jones
School of Computing
University of Kent
Canterbury, Kent, CT2 7NF, UK
E-mail: r.e.jones@kent.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44201-2 e-ISBN 978-3-662-44202-9
DOI 10.1007/978-3-662-44202-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014943419

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is an honour and a pleasure to present the proceedings of the 28th European
Conference on Object-Oriented Programming (ECOOP), the premier European
conference on object-oriented programming and related theory and practice of
software development. As always, ECOOP is characterised by the strength of
its technical programme, and this year was no exception. As a change, ECOOP
2014 followed the model of many other leading computer science conferences to
use an External Review Committee (ERC) and Light Double-Blind Reviewing
(LDBR). So why did we do this?

The ERC was recruited to provide additional expertise and be the sole judge
of submissions from Programme Committee (PC) members. This makes the
process of judging PC papers transparent and also removes the awkwardness
in the PC meeting of working with those whose papers one has just judged.

We all have biases. Some are conscious, other unconscious. It is just human
nature. As reviewers we have a duty to do our best to prevent these biases
colouring our assessments of the papers we review. We want to judge whether
a paper should be accepted for publication on the basis of the paper alone. We
need systems that put us in the best possible position to do that, not only in
order to be fair to authors but to ensure that it is the best papers that are
accepted.

The evidence that non-blind assessments disadvantage is accepted in many
fields; examples can be found in Kathryn McKinley’s persuasive case [SIGPLAN
Notices 43(8), 2008] for double-blind reviewing. Why should computer science re-
viewing be any different? Richard Snodgrass’s analysis [SIGMOD Record 35(3),
2006] of single- v. double-blind reviewing concludes that Rebecca Blank’s 1991
summary [American Economic Review 81(5):10411067, 1991] remains true, “If
not fully convincing, however, there is at least a disturbing amount of evidence in
these studies that is consistent with the hypothesis of referee bias in single-blind
reviewing.”

Suppose I am reviewing a paper. I see from the front page that it is by Alan
Turing. I have tremendous respect for Alan’s previous work. Straight away I have
what psychologists call an ‘anchor point’. The Harvard Law School Program on
Negotiation defines anchoring as “a cognitive bias; it is the common human ten-
dency to rely too heavily on the first piece of information offered (the ‘anchor’)
when making decisions. Once an anchor is set, other judgments are made by
adjusting away from that anchor, and there is a bias toward interpreting other in-
formation around the anchor” [http://www.pon.harvard.edu/tag/anchor/]. Sup-
pose another paper on my pile is from an author and an institution neither
of which I recognise. Again, I have an anchor, this time a negative one. I have

VI Preface

no doubt that reviewers usually overcome these anchors to make a sound judge-
ments. But often this is at the cost of additional reviewing time. Before I conclude
that Alan’s paper is actually poor, I will probably have spent much longer than
normal to ensure that I really have understood it. Equally, because I fear that
I might be prejudiced against the unknown author, I am likely to spend extra
time bending over backwards to ensure that I am really being fair.

ECOOP 2014 used light double-blind reviewing, whereby authors’ names
were withheld from a reviewer until they have submitted their initial review.
At that point, the authors’ identities were revealed and the reviewer was free
to investigate their work further, update their review, etc. The prime aim of
LDBR is to remove the initial anchor point; it is not to strive for perfection. But
why not use fully blind reviewing, whereby authors identities are not revealed
at all during the review process? In his report [SIGPLAN Notices 47(4a), 2012]
as Programme Chair of POPL 2012, Mike Hicks argues that LDBR helps with
mistaken judgements based on identity, and avoids potential abuses such as
arguing for a friend’s paper. It also helps to check that any author-supplied
conflicts are valid.

ECOOP 2014 received 101 submissions, with authors from 29 countries;
11% of authors were women. Each paper was reviewed by at least 4 review-
ers; where necessary, further reviews were solicited from PC, ERC or external
reviewers. 411 reviews were produced. Authors were given an opportunity to re-
spond to reviews, after which there was an intensive period of discussion through
CyberChairPRO. The ERC met online to determine the fate of PC submissions
shortly before the PC meeting in Canterbury. The 27 papers accepted (only 1 PC
submission) were written by authors from 13 countries. 30% of accepted papers
included at least one female author (matching the 31% of submissions). The PC
made two distinguished paper awards to Safely Composable Type-Specific Lan-
guages by Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex
Potanin and Jonathan Aldrich; and Stream Processing with a Spreadsheet by
Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter and Martin
Hirzel.

The final programme included four keynote talks: two from the winners of
the 2014 Dahl-Nygaard Senior Award, Robert France and William Cook; one
from the winner of the 2014 Dahl-Nygaard Junior Award, Tudor Gı̂rba; and the
fourth from Luca Cardelli, who was invited by the PC.

Every conference depends on the quality of the research it presents. I would
like to thank all the authors who submitted their work to ECOOP 2014 (well, all
except the ‘author’ who submitted a paper generated by SCIgen). I would also
like to pay tribute to members of the PC and the ERC. I was truly impressed
with the care and time they put into producing reviews of very high quality,
and doing so on time. It was a honour to work with all of you. I would also

Preface VII

like to thank the ECOOP 2014 Organising Chair, Tobias Wrigstad; the Artifact
Evaluation Co-Chairs, Camil Demetrescu and Erik Ernst; and Richard van de
Stadt for his excellent support through CyberChairPRO.

May 2014 Richard Jones

Artifacts

This is the second year where Artifact Evaluation (AE) was part of the ECOOP
publication process, and similar processes are being adopted at several other
top conferences. AE is a process where artifacts associated with the published
papers—software, data, proofs, videos, etc.—are submitted, reviewed, and ac-
cepted or rejected by an Artifact Evaluation Committee (AEC). The long-term
goal is to foster a culture of reproducibility of experimental results by consid-
ering software artifacts as first-class citizens, a perspective that has long been
missing at software conferences. Following the AE tradition, the ECOOP 2014
AEC was entirely formed by junior outstanding researchers.

The ECOOP 2014 AE process introduced two novelties. First, authors were
invited to include in their papers a one-page appendix describing the artifact, its
goals, and the requirements for installing and running it. Second, accepted arti-
facts were collected as supplementary material on the publisher’s digital library
for permanent and durable storage.

The aim of artifact evaluation is to enhance and deepen the information
provided to the community about the research results described in the associated
papers, thus improving the perspectives for confirming those research results
under similar or different conditions, and for creating derived results. Artifacts
are reviewed and accepted even if they cannot be made available to the public,
e.g., because of confidentiality requirements or intellectual property difficulties,
but it is certainly the intention that they should be made available if possible.

The Artifact Evaluation process was similar in complexity to the paper re-
viewing process, but not identical. Each artifact was independently evaluated by
three AEC members. First, each reviewer would ‘kick the tires’ of the artifact
in order to check that it could be reviewed at all; this ruled out corrupt artifact
archive files and similar low-level problems that ought not cause a bad review for
the artifact and could easily be resolved. The approach used was to go through
the ‘Getting Started Guide’ for the artifact, which was a mandatory part of the
submission, and then get feedback from the artifact submitters to eliminate any
low-level problems.

In the second phase, the reviewers evaluated the artifact and wrote the re-
views. Each reviewer read the paper and wrote a summary providing a brief
characterization of the context for the artifact. In the artifact evaluation, re-
viewers focused on four key questions: (1) Is the artifact consistent with the pa-
per? (2) Is the artifact complete? (3) Is the artifact well documented? and (4) Is
the artifact easy to reuse? The AEC members decided on acceptance or rejec-
tion, and provided the review text itself, containing characterizations of strong
and weak sides of the artifact as well as advice about potential improvements.
Many updates were applied to the reviews, reflecting that the discussions gave
rise to new insights and changed evaluations. During the discussions, all AEC

X Artifacts

members not conflicted with each artifact could see all reviews and discussions,
thus allowing for a calibration of the reviews across different artifacts.

Among the 27 papers accepted at ECOOP 2014, we received 13 artifacts for
evaluation. Of those, the AEC accepted 11 and rejected 2. It should be noted that
a high acceptance rate is natural for the AE process, because it only included
artifacts related to papers that had already been accepted for publication at
the conference. The reason for having a firewall between paper acceptance and
artifact evaluation was that the latter was not supposed to influence the former.
As the AE process evolves, it is possible that this will change in the future, but
currently a strict separation is intended, and it was enforced by postponing the
entire AE process until decisions about paper acceptance had been reached.

The papers with accepted artifacts in this proceedings are marked with a
rosette representing the seal of approval by the AEC, and the table of contents
contains a similar but smaller mark on these papers. We were glad to note that
this year all accepted artifacts were collected on SpringerLink.

The AE process is currently under development, and we learned a lot
from former AE organizers. In particular, we relied on the guidelines by
Shriram Krishnamurthi, Matthias Hauswirth, Steve Blackburn, and Jan Vitek
published in the foundational on-line article Artifact Evaluation for Software
Conferences available at http://www.artifact-eval.org. The Artifact Evalu-
ation Artifact effort by Steve Blackburn and Matthias Hauswirth, available at
the address http://evaluate.inf.usi.ch/artifacts/aea, was also of inspira-
tion. A warm acknowledgement goes to Jan Vitek and to Shriram Krishnamurthi
for many useful suggestions and comments. We wish to thank the Programme
Committee Chair Richard Jones and the Organizing Chair Tobias Wrigstad for a
fruitful cooperation. We acknowledge Anna Kramer from Springer for endorsing
the idea of making artifacts available free of charge on the SpringerLink digi-
tal library and Stephan Brandauer for efficiently handling the AE pages of the
ECOOP 2014 Website. We are also indebted to Richard van de Stadt for his
help with the CyberChair conference management system, which was tailored
to support this year’s AE process. We warmly acknowledge the impressive ef-
fort of AEC members: they did the hardest part of the job with dedication and
enthusiasm. Finally, we deeply thank all authors for packaging and document-
ing their artifacts for ECOOP 2014 and for making them publicly available on
SpringerLink; we believe that this is an invaluable service to the community that
deserves to be commended.

We hope that readers will enjoy the published artifacts and will find them
useful for their future work.

May 2014 Camil Demetrescu
Erik Ernst

Organization

ECOOP 2014 was organized by Uppsala Universitet and the University of Kent,
under the auspices of AITO (Association Internationale pour les Technologies
Objets) and in cooperation with ACM SIGPLAN and ACM SIGSOFT.

In-Cooperation

Organising Chair

Tobias Wrigstad Uppsala Universitet, Sweden

Programme Chair

Richard Jones University of Kent, UK

Workshop Chair

Nate Nystrom University of Lugano, Switzerland

Poster and Demo Chair

Wolfgang Ahrendt Chalmers University of Technology, Sweden

Artifact Evaluation Chairs

Camil Demetrescu Sapienza University of Rome, Italy
Erik Ernst Aarhus University, Denmark

XII Organization

Publicity Chair

Werner Dietl University of Waterloo, Canada

Student Volunteer Chair

Jürgen Börstler Blekinge Institute of Technology, Sweden

Summer School Chairs

James Noble Victoria University of Wellington, New Zealand
Jan Vitek Purdue University, USA

Sponsor Chairs

Einar Broch Johnsen University of Oslo, Norway
Erik Ernst Aarhus University, Denmark

Local Organising Chairs

Johannes Borgström Uppsala University, Sweden
Kostis Sagonas Uppsala University, Sweden
Lars-Henrik Eriksson Uppsala University, Sweden

Professional Conference Organiser

Karin Hornay Akademikonferens, Sweden

Local Student Aid

Johan Östlund Uppsala University, Sweden
Stephan Brandauer Uppsala University, Sweden
Elias Castegren Uppsala University, Sweden

Webmaster

Stephan Brandauer Uppsala University, Sweden

Programme Committee

Davide Ancona DIBRIS, Università di Genova, Italy
Sven Apel University of Passau, Germany
Walter Binder University of Lugano, Switzerland
Steve Blackburn Australian National University, Australia

Organization XIII

Ana Cavalcanti University of York, UK
Satish Chandra Samsung Electronics, USA
Dave Clarke KU Leuven, Belgium; Uppsala University,

Sweden
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Isil Dillig University of Texas, USA
Amer Diwan Google, USA
Lieven Eeckhout Ghent University, Belgium
Robby Findler Northwestern University, USA
Irene Finocchi Sapienza University of Rome, Italy
Christian Hammer Saarland University, Germany
Laurie Hendren McGill University, Canada
Atsushi Igarashi Kyoto University, Japan
Tomas Kalibera Purdue University, USA
Doug Lea SUNY Oswego, USA
Yu David Liu SUNY Binghamton, USA
Cristina Lopes University of California, Irvine, USA
Ana Milanova Rensselaer Polytechnic Institute, USA
Nick Mitchell IBM Research, USA
Eliot Moss University of Massachusetts Amherst, USA
Jens Palsberg UCLA, USA
Matthew Parkinson Microsoft Research, UK
Arnd Poetzsch-Heffter University of Kaiserslautern, Germany
Dirk Riehle Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Yannis Smaragdakis University of Athens, Greece
Arie van Deursen Delft University of Technology,

The Netherlands
Hongseok Yang University of Oxford, UK

External Review Committee

Vikram Adve University of Illinois at Urbana-Champaign,
USA

Jonathan Aldrich Carnegie Mellon University, USA
Ioana Baldini IBM Research, USA
Eric Bodden Fraunhofer SIT and TU Darmstadt, Germany
Sebastian Burckhardt Microsoft Research, USA
Shigeru Chiba University of Tokyo, Japan
Ferruccio Damiani Università di Torino, Italy
Werner Dietl University of Waterloo, Canada
Sophia Drossopolou Imperial College London, UK
Erik Ernst Aarhus Universitet, Denmark
Matthew Flatt University of Utah, USA
Michael Franz University of California, Irvine, USA

XIV Organization

Kathryn E. Gray University of Cambridge, UK
Sam Guyer Tufts University, USA
Matthias Hauswirth University of Lugano, Switzerland
Einar Broch Johnsen University of Oslo, Norway
Christian Kästner Carnegie Mellon University, USA
Jörg Kienzle McGill University, Canada
Ondřej Lhoták University of Waterloo, Canada
Hidehiko Masuhara Tokyo Institute of Technology, Japan
Romain Robbes University of Chile, Chile
Sukyoung Ryu KAIST, South Korea
Mooly Sagiv Tel Aviv University, Israel
Ina Schaefer TU Braunschweig, Germany
Friedrich Steimann Fernuniversität in Hagen, Germany

Alexander J. Summers ETH Zurich, Switzerland
Frank Tip University of Waterloo, Canada
Laurence Tratt King’s College London, UK
Greta Yorsh Queen Mary University of London, UK

External Reviewers

George Balatsouras
Thomas Bartenstein
Abhishek Bichhawat
Stefan Brunthaler
Lubomir Bulej
Emilio Coppa
Andrea Corradi
Mariangola Dezani
Mike Dodds
Paolo Giarrusso

Will Harwood
Jaakko Järvi
George Kastrinis
Christoph Kerschbaumer
Giovanni Lagorio
Per Larsen
Klaus Ostermann
Gustavo Pinto
David Pfaff
Andrej Podzimek

Tillmann Rendel
Haris Ribic
Jeremy Siek
Suriya Subramaniam
Viktor Vafeiadis
Alex Villazon
Haitao Steve Zhu
Elena Zucca

Artifact Evaluation Committee

Adriana E. Chis University College Dublin, Ireland
Alberto Bacchelli Delft University of Technology,

The Netherlands
Carl Ritson University of Kent, UK
Dominic Orchard University of Cambridge, UK
Dominique Devriese KU Leuven, Belgium
Emilio Coppa Sapienza University of Rome, Italy
George Kastrinis University of Athens, Greece
Georgios Gousios Delft University of Technology,

The Netherlands
Ilya Sergey IMDEA Software Institute, Spain
Karim Ali University of Waterloo, Canada

Organization XV

Mahdi Eslamimehr Viewpoints Research Institute, USA
Mike Rainey INRIA-Rocquencourt, France
Oscar E.A. Callaú PLEIAD, University of Chile, Chile
Valentin Wüstholz ETH Zurich, Switzerland
Valerio Panzica La Manna Politecnico di Milano, Italy
Veselin Raychev ETH Zurich, Switzerland
Wei Huang Rensselaer Polytechnic Institute, USA

XVI Organization

Sponsors

Gold

Silver

RESEARCHRESEARCH AMERICAAMERICA

Bronze

Abstracts of Keynote Lectures

Molecular Programming

Luca Cardelli

Microsoft Research Cambridge, UK

University of Oxford, UK

Abstract. Nucleic acids (DNA/RNA) encode information digitally, and are cur-
rently the only truly ‘user-programmable’ entities at the molecular scale. They
can be used to manufacture nano-scale structures, to produce physical forces,
to act as sensors and actuators, and to do computation in between. Eventu-
ally we will be able to use them to produce nanomaterials at the bottom end of
Moore’s Law, and to interface them with biological machinery to detect and cure
diseases at the cellular level under program control. Recently, computational
schemes have been developed that are autonomous (run on their own power)
and involve only short, easily producible, DNA strands with no other complex
molecules. While simple in mechanism, these schemes are highly combinatorial
and concurrent.

Understanding and programming systems of this new kind requires new soft-
ware technologies. Computer science has developed a large body of techniques
for analyzing (modeling) and developing (engineering) complex programmable
systems. Many of those techniques have a degree of mathematical generality that
makes them suitable for applications to new domains. This is where we can make
critical contributions: in developing and applying programming techniques (in a
broad sense) that are unique to computing to other areas of science and engi-
neering, and in particular at the interface between biology and nanotechnology.

A View on the Past, Present and Future of

Objects

William R. Cook

University of Texas at Austin, USA

Abstract. Object-oriented programming has always been somewhat mysteri-
ous. It has been realized in a fairly pure form in several ways, in Smalltalk,
Beta, COM, and SELF. There are several theories (three in Pierce’s Types and
Programming Languages, and more given by Abadi & Cardelli, Bruce and oth-
ers). Many partial and failed theories have been published. Most programming
languages today are hybrids of objects with other styles of programming. Yet
many programming language researchers believe that objects are somehow evil.
And still we are experimenting with different forms and inventing new ideas
on top of objects. Objects have ‘won’ as far as I am concerned, or at least ob-
jects have won a place at the table. So where do we go from here? While there
are many low-level improvements that can be made, it is a reasonable time to
consider the big picture. One of the original views of objects was as a form of
modeling. Modeling has taken on a life of its own, but has not been as successful
as objects were. In this talk I will sketch out a path forward for objects and
modeling to work together.

How Do You Like Your Software Models?

Towards Empathetic Design of Software
Modeling Methods and Tools

Robert B. France

Colorado State University, USA
INRIA, France

Abstract. The terms Model Driven Development/Engineering (MDD/E) are
typically used to describe software development approaches in which models of
software systems play a pivotal role. In the past I have argued that good support
for software modeling is essential to bringing software development closer to an
engineering endeavor. As in other engineering disciplines, modeling should be
an integral part of software processes that tackle the very challenging problems
associated with the creation and evolution of complex software-based systems.
While MDD/E research targets important software development problems, the
results have not yet led to widespread effective use of software modeling prac-
tices. While the wicked problems associated with the development of complex
systems is a factor, another is a lack of attention to the issue of fitness-for-
purpose with respect to modeling methods and tools. The state-of-the-art leaves
some practitioners with the impression that modeling techniques add significant
accidental complexity to the software development process.

In this talk, I argue that there is a need to take a more empathetic approach
to the design of tools and methods. In empathetic design, methodologists and tool
developers actively consider and evaluate how their tools and methods fit with
how modeling practitioners across a wide skill spectrum (expert, average, novice
modelers) work. This should lead to methods and tools that are fit-for-purpose,
and open the door for more widespread use of software modeling techniques.

Software Environmentalism

Tudor Gı̂rba

CompuGroup Medical Schweiz AG
tudor@tudorgirba.com

Abstract. Software systems get larger and larger, and they are being created
at an ever increasing rate. While this might appear to be great, we are facing a
significant long run problem as we need to assess and recycle them.

In fact, the problem is already here: Engineers spend as much as half of
the effort on understanding software systems to figure out how to approach
subsequent evolutions and the percentage grows with the size and age of the
system. In essence, software engineering is more about dealing with existing
systems as it is about building systems.

Reverse engineering and program comprehension are established areas that
deal with the problem of approaching existing systems. However, in spite of sev-
eral decades of research and many proposed approaches, the state of practice still
shows that, to a large extent, engineers rely onmanual code reading as the preferred
means to understand the system. The main reason for it is that most existing ap-
proaches tend to be generic and ignore the context of systems. This situation does
not scale and it should not perpetuate given the large costs associated with it.

We cannot continue to let systems loose in the wild without any concern for
how we will deal with them at a later time. Two decades ago, Richard Gabriel
coined the idea of software habitability. Indeed, given that engineers spend a
significant part of their active life inside software systems, it is desirable for that
system to be suitable for humans to live there.

We go further and introduce the concept of software environmentalism as a
systematic discipline to pursue and achieve habitability.

Engineers have the right to build upon assessable systems and have the re-
sponsibility of producing assessable systems. For example, even if code has often
a text shape, it is not text. The same applies to logs and anything else related
to a software system. It’s all data, and data is best dealt with through tools. No
system should get away without dedicated tools that help us take it apart and
recycle it effectively. For example, every significant object in a system should be
allowed to have dedicated inspectors to reveal its various facets and interactions,
and every significant library should come with dedicated debugging possibilities.

Who should build those tools? Engineers. This implies that they have to be
empowered to do it, and that the cost of building those tools is manageable.

We need to go back to the drawing board to (1) construct moldable devel-
opment environments that help us drill into the context of systems effectively,
(2) reinvent our underlying languages and technologies so that we can build as-
sessable systems all the way down, and (3) reeducate our perception of what
software engineering is.

Table of Contents

Analysis

State-Sensitive Points-to Analysis for the Dynamic Behavior of
JavaScript Objects . 1

Shiyi Wei and Barbara G. Ryder

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Self-inferencing Reflection Resolution for Java . 27
Yue Li, Tian Tan, Yulei Sui, and Jingling Xue

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Constructing Call Graphs of Scala Programs . 54
Karim Ali, Marianna Rapoport, Ondřej Lhoták, Julian Dolby, and
Frank Tip

Finding Reference-Counting Errors in Python/C Programs with Affine
Analysis . 80

Siliang Li and Gang Tan

Design

Safely Composable Type-Specific Languages . 105
Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung,
Alex Potanin, and Jonathan Aldrich

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Graceful Dialects . 131
Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and
Andrew P. Black

Structuring Documentation to Support State Search: A Laboratory
Experiment about Protocol Programming . 157

Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich

Concurrency

Reusable Concurrent Data Types . 182
Vincent Gramoli and Rachid Guerraoui

TaDA: A Logic for Time and Data Abstraction . 207
Pedro da Rocha Pinto, Thomas Dinsdale-Young, and
Philippa Gardner

Infrastructure-Free Logging and Replay of Concurrent Execution on
Multiple Cores . 232

Kyu Hyung Lee, Dohyeong Kim, and Xiangyu Zhang

XXIV Table of Contents

Types

Understanding TypeScript . 257
Gavin Bierman, Mart́ın Abadi, and Mads Torgersen

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Sound and Complete Subtyping between Coinductive Types for
Object-Oriented Languages . 282

Davide Ancona and Andrea Corradi

Spores: A Type-Based Foundation for Closures in the Age of
Concurrency and Distribution . 308

Heather Miller, Philipp Haller, and Martin Odersky

Rely-Guarantee Protocols . 334
Filipe Militão, Jonathan Aldrich, and Lúıs Caires

Implementation

Stream Processing with a Spreadsheet . 360
Mandana Vaziri, Olivier Tardieu, Rodric Rabbah,
Philippe Suter, and Martin Hirzel

Implicit Staging of EDSL Expressions: A Bridge between Shallow and
Deep Embedding . 385

Maximilian Scherr and Shigeru Chiba

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Babelsberg/JS: A Browser-Based Implementation of an Object
Constraint Language . 411

Tim Felgentreff, Alan Borning, Robert Hirschfeld, Jens Lincke,
Yoshiki Ohshima, Bert Freudenberg, and Robert Krahn

Refactoring

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Automated Multi-Language Artifact Binding and Rename Refactoring
between Java and DSLs Used by Java Frameworks 437

Philip Mayer and Andreas Schroeder

Retargetting Legacy Browser Extensions to Modern Extension
Frameworks . 463

Rezwana Karim, Mohan Dhawan, and Vinod Ganapathy

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Capture-Avoiding and Hygienic Program Transformations 489
Sebastian Erdweg, Tijs van der Storm, and Yi Dai

Converting Parallel Code from Low-Level Abstractions to Higher-Level
Abstractions . 515

Semih Okur, Cansu Erdogan, and Danny Dig

Table of Contents XXV

JavaScript, PHP and Frameworks

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Portable and Efficient Run-Time Monitoring of JavaScript Applications
Using Virtual Machine Layering . 541

Erick Lavoie, Bruno Dufour, and Marc Feeley

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

An Executable Formal Semantics of PHP . 567
Daniele Filaretti and Sergio Maffeis

Identifying Mandatory Code for Framework Use via a Single
Application Trace . 593

Naoya Nitta, Izuru Kume, and Yasuhiro Takemura

Parallelism

Cooperative Scheduling of Parallel Tasks with General Synchronization
Patterns . 618

Shams Imam and Vivek Sarkar

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

MiCA: A Compositional Architecture for Gossip Protocols 644
Lonnie Princehouse, Rakesh Chenchu, Zhefu Jiang,
Kenneth P. Birman, Nate Foster, and Robert Soulé

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Semantics of (Resilient) X10 . 670
Silvia Crafa, David Cunningham, Vijay Saraswat,
Avraham Shinnar, and Olivier Tardieu

Author Index . 697

State-Sensitive Points-to Analysis for the

Dynamic Behavior of JavaScript Objects

Shiyi Wei and Barbara G. Ryder

Department of Computer Science,
Virginia Tech, Blacksburg, VA, USA

{wei,ryder}@cs.vt.edu

Abstract. JavaScript object behavior is dynamic and adheres to
prototype-based inheritance. The behavior of a JavaScript object can be
changed by adding and removing properties at runtime. Points-to analy-
sis calculates the set of values a reference property or variable may have
during execution. We present a novel, partially flow-sensitive, context-
sensitive points-to algorithm that accurately models dynamic changes
in object behavior. The algorithm represents objects by their creation
sites and local property names; it tracks property updates via a new
control-flow graph representation. The calling context comprises the re-
ceiver object, its local properties and prototype chain. We compare the
new points-to algorithm with an existing JavaScript points-to algorithm
in terms of their respective performance and accuracy on a client appli-
cation. The experimental results on real JavaScript websites show that
the new points-to analysis significantly improves precision, uniquely re-
solving on average 11% more property lookup statements.

Keywords: JavaScript, program analysis, points-to analysis.

1 Introduction

Dynamic programming languages, including JavaScript, Ruby and PHP, are
widely used in developing sophisticated software systems, especially Web ap-
plications. These languages share several dynamic features, including dynamic
code generation and dynamic typing, used in real-world programs [20]. For ex-
ample, JavaScript code can be generated at runtime using eval and JavaScript
functions can be variadic (i.e., functions can be called with different numbers of
arguments). Despite the popularity of these dynamic languages, there is insuf-
ficient tool support for developing and testing programs because their dynamic
features render many traditional analyses, and tools which depend on them,
ineffective.

In addition, instead of class-based inheritance JavaScript supports prototype-
based inheritance [16,27] that results in a JavaScript object inheriting properties
from a chain of (at least one) prototype objects. The model also allows the
properties of a JavaScript object to be added, updated, or deleted at runtime.
This means that JavaScript objects can exhibit different behaviors at different

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 1–26, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 S. Wei and B.G. Ryder

times during execution. Moreover, object constructors may be polymorphic so
that objects created by the same constructor may have distinct properties. These
aspects of JavaScript further complicate tool building.

Some tools have been developed to support JavaScript software development
(e.g., [19,22]). Points-to analysis is the enabling analysis for such tools. Re-
searchers have proposed several points-to analyses that handle different features
of JavaScript (e.g., [8,17,26]). Nevertheless, there are opportunities to signifi-
cantly improve the precision of points-to analysis through better modeling of
object property set changes.

In this paper, we present a novel points-to algorithm that can accurately
model JavaScript objects. Changes to object properties are tracked more accu-
rately to reflect object run-time behavior at different program points. A new
graph decomposition for control-flow graphs is used to better track object prop-
erty changes. Prototype-based inheritance is more accurately modeled to locate
delegated properties. The analysis identifies objects by their creation site as
well as their local property names upon construction, more accurately than the
per-creation-site representation. To distinguish polymorphic constructors, this
analysis can incorporate dynamic information collected at runtime (see Section
3.6). Technically, the analysis is partially flow-sensitive (on our new control-
flow graph structure) and context-sensitive, using a new form of object sensitiv-
ity [18].1 Rather than using the receiver object creation site as a calling context
in the analysis, we use an approximation of the receiver object and its properties
at the call site (i.e., obj-ref state).

In order to compare this algorithm with previous techniques, we instantiated
our new points-to analysis as the static component of the JavaScript Blended
Analysis Framework (JSBAF) [28]. Blended analysis collects run-time informa-
tion through instrumentation to define the calling structure used by a subse-
quent static analysis, and to capture dynamically generated code. It has been
demonstrated that blended analysis is practical and effective on JavaScript pro-
grams [28]. We measured the performance and accuracy of our new analysis on a
statement-level points-to client (REF analysis) that calculates how many objects
are returned by a property lookup (e.g., a read of x.p).

The major contributions of this work are:

– We have designed a novel state-sensitive points-to analysis that accurately
and safely handles dynamic changes in the behavior of JavaScript objects.
This algorithm presents a new program representation that enables par-
tially flow-sensitive analysis, a more accurate object representation, and an
expanded points-to graph that facilitates strong updates for the statements
changing object properties.

1 Informally, a flow-sensitive analysis follows the execution order of statements in a
program; a flow-sensitive analysis can perform strong updates, but a flow-insensitive
one cannot. A context-sensitive analysis distinguishes between different calling con-
texts of a method, producing different analysis results for each context [21,24]. A
context-insensitive analysis calculates one solution per method.

State-Sensitive Points-to Analysis 3

– Experimental results from our new analysis compared to a recent points-to
analysis [26], both implemented in JSBAF, showed that state-sensitive anal-
ysis significantly improved precision. On average over all the benchmarks
(i.e., 12 popular websites), 48% of the property lookup statements were re-
solved to a single object by our new analysis, while the existing analysis [26]
uniquely resolved only 37% of these statements. Although our analysis in-
curred a 127% time overhead on average to achieve the increased precision,
it was able to analyze each of the programs in the benchmarks in under 5
minutes, attesting to its scalability in practice.

Overview. Section 2 defines the notion of obj-ref state and then uses an example
to illustrate the sources of imprecision in JavaScript points-to analysis. Section
3 describes our new points-to analysis algorithm and implementation. Section
4 presents the REF analysis and the experimental results. Section 5 discusses
related work, and Section 6 offers conclusions and future work.

2 Definitions and Motivating Example

In this section we define key concepts and use an example to illustrate the sources
of imprecision in current points-to analyses for JavaScript.

2.1 JavaScript Object-Reference State

JavaScript is a dynamically typed programming language whose object behavior
can change as object properties are added or deleted at runtime. In strongly
typed programming languages, the notion of type is used to abstract the possible
behavior of an object (e.g., the class of an object in Java) [23]; however, in
dynamically typed languages, the type of an object can change during execution.
In order to avoid confusion, we call the type of a JavaScript object its obj-ref
state.2

Definition 1. The obj-ref state at a program point denotes all of its
accessible properties and their non-primitive values.

The accessible properties of an object conform to the property lookup mech-
anism implemented in JavaScript. Every JavaScript object includes an internal
reference to its prototype object from which it inherits non-local properties. A
JavaScript object may have a sequence of prototype objects (i.e., a prototype
chain) whose properties it can inherit. When reading a property p of an object o,
the JavaScript runtime checks the local properties of o to see if o has a property
named p. If not, the JavaScript runtime checks to see if the prototype object of
o has a property named p, continuing to check along the prototype chain from
object to object until the property is found (or not) [7].

2 This general notion can be used for other dynamic languages and is related to struc-
tured typing for strongly typed languages [23].

4 S. Wei and B.G. Ryder

Definition 2. State-update statements are: (1) property write statement
(i.e., x.p = y or x[′p′] = y), (2) property delete statement (i.e., delete x.p
or delete x[′p′]), and (3) an invocation that directly or indirectly results
in execution of (1) and/or (2).

The state-update statements are the set of statements in JavaScript that may
affect the obj-ref states. In Figure 1, we illustrate the obj-ref state with an ex-
ample that shows the objects connected to O1 at a program point. The local
properties of object O1 are named p1 and p2 and O4 is its prototype object.
O7 is visible from O1 by accessing O1.p4 while O6 is not visible from O1 by
accessing O1.p2 because a local property named p2 exists for O1. To sum up,
the shaded nodes (i.e., O6 and O9) are not accessible from O1 and the unshaded
nodes constitute O1’s reference state.

p1

p2

proto

p2

p4 _proto_ _proto_

p4 p4

Fig. 1. obj-ref state for O1. (Unshaded nodes only)

2.2 Imprecision of Points-to Analysis

A flow-insensitive analysis may produce imprecise results when obj-ref state
changes, because it must safely approximate points-to relations and it cannot do
strong updates. Existing context-sensitive analyses may produce imprecise re-
sults because they lack the power to distinguish between different obj-ref states
for the same JavaScript object. In Figure 2, we present a JavaScript example
to illustrate the sources of imprecision of a flow-insensitive, context-insensitive
points-to analysis resulting from several dynamic features of JavaScript. We also
demonstrate that an existing context-sensitive analysis using the same object
representation as [18] is ineffective at distinguishing the function calls in the
example.

Lines 2-6 show a constructor function X(). Objects created by X() may or
may not have the local property named p or q (lines 4 and 5) depending on
the value of its argument. The statement in line 12 updates the value of local
property p of an object pointed to by x if p exists; otherwise, the statement
adds the local property named p to the object. Figures 3(a) and 3(b) show the
points-to graphs that reflect the run-time behavior of this code. We use the line
number to represent the object created (e.g., the object created at line 7 (new
X) is O7). We focus on two program points in the execution, lines 10 and 15.
The nodes O7, O4, and O3 and O9 constitute the obj-ref state of O7 at line 10
and the nodes O7, O12, O3 and O14 constitute the obj-ref state of O7 at line 15.

State-Sensitive Points-to Analysis 5

1 function P(){ this.p = new Y1(); }

2 function X(b){

3 this.__proto__ = new P();

4 if(b) { this.p = new Y2(); }

5 else this.q = new Y3();

6 }

7 var x = new X(true);

8 x.bar = function(v, z){ v.f = z; }

9 var z1 = new Z();

10 x.bar(x.p, z1);

11 ...

12 x.p = new A();

13 ...

14 var z2 = new Z();

15 x.bar(x.p,z2);

Fig. 2. JavaScript example

Note that O1 is not visible from O7 at lines 10 or 15 because of the existence of
the local property named p. The obj-ref state of object O7 is different at these
two program points.

Constructor polymorphism (lines 2-6), object property change (line 12) and
function invocations (lines 10 and 15) in the example make precise static points-
to analysis hard to achieve with current techniques. Figure 3(c) shows a points-to
graph for the example built by a flow- and context-insensitive points-to analysis.
Dashed nodes and edges are imprecise points-to relations that cannot exist at
runtime.

There are several sources of imprecision. Line 7 creates an object pointed to by
variable x by invoking the polymorphic constructor X(). Not knowing the value
of b, static analysis conservatively builds all the points-to relations possible from
execution of X().3 When reading the property p of x (line 10), static analysis
returns objects O4 and O1 because a conservative analysis cannot distinguish
whether or not O4 actually exists. Furthermore, because of the imprecise result
of the read of x.p, invoking the bar() function results in imprecise property
reference from O1 to O9. Flow-insensitive points-to analysis simply adds O12 to
O7.p (line 12) because it cannot perform strong updates. Because the analysis
does not distinguish which objects v and z point to on different calls of bar(),
line 15 results in additional imprecision with respect to O4.f and O12.f .

Flow-sensitive analysis is not sufficient to resolve the imprecision in the exam-
ple without an appropriate context for call sites. First, indirect assignment state-
ments cannot be strongly updated in general. Second, assuming x.p is strongly
updated to point to O12 at line 12, a context-insensitive analysis does not remove
the imprecise edges (< O4, f >,O14) and (< O12, f >,O9) because calls to bar()
(lines 10 and 15) are not distinguished by calling contexts. Object sensitivity [18]

3 In this short example, constant propagation of parameters would help static analysis
precision but clearly this is not always possible.

6 S. Wei and B.G. Ryder

proto p p

f

p

(a)

proto p p

p

f

(b)

p

proto

p

f

pp

_

f

f

pp

pp

pppp

proto_ propp

f
f

f

ppp

f
f

fff

p

f

p

ff

q

(c)

Fig. 3. Imprecision of static points-to analysis. (a) Run-time points-to graph at line
10. (b) Run-time points-to graph at line 15. (c) Flow- and context-insensitive points-to
graph.

has been shown to perform better than call-string context sensitivity [24] for the
idioms used in object-oriented languages [15]. However, object-sensitive analy-
sis is not able to differentiate these two call sites because they have the same
receiver object O7, which has two different obj-ref states at these call sites. Our
new points-to analysis is designed to handle these constructs more accurately and
to address the challenges raised by obj-ref state updating and prototype-based
inheritance.

3 State-Sensitive Points-to Analysis

In this section we will present our state-sensitive points-to analysis for JavaScript.
We will explain key ideas used in the analysis, including the intra-procedural
program representation (i.e., the block-sensitive decomposition of control-flow
graphs), the solution space (i.e., the annotated points-to graph with access path
edges and in-construction nodes), the transfer functions of the state-update
statements as well as the state-preserving statements, state sensitivity (i.e., a
form of context sensitivity based on object sensitivity that captures changes
in object behavior during execution) and block sensitivity (i.e., a partial flow
sensitivity performed on the transformed CFG). Finally, we will discuss the im-
plementation details of our algorithm.

State-Sensitive Points-to Analysis 7

3.1 State-Preserving Block Graph

A flow-insensitive analysis ignores the control flow of a program while a flow-
sensitive analysis typically uses an intra-procedural control-flow graph (CFG).
Our analysis aims to provide a better model of a JavaScript object whose ref-
erence state exhibits flow-sensitive characteristics (e.g., allowing addition and
deletion of object properties at any program point). Cognizant of the possible
overhead introduced by a fully flow-sensitive analysis, we designed a partially
flow-sensitive analysis that only performs strong updates when possible on state-
update statements using a transformed CFG, called the State-Preserving Block
Graph (SPBG). Recall that the state-update statements, including the property
write (i.e., add or update a property) and delete (i.e., remove a property), di-
rectly change the obj-ref state in JavaScript; all other statements (e.g., property
read) are state-preserving statements.

Figure 4 shows an example SPBG (Figure 4(b)) compared to its original CFG
(Figure 4(a)). An SPBG is a transformed control-flow graph whose basic blocks
are aggregated into region nodes according to whether or not they contain a
state-update statement. The SPBG also contains state-update statements as
special singleton statement nodes (i.e., state-update nodes). An example of a
region node (i.e., state-preserving node) is 2-4-5-7 in Figure 4(b) whereas node x
= new A() is an example of a state-update node. Note that in creating singleton
nodes the algorithm breaks apart former basic blocks (e.g., 1 → {1’, x = new
A(), 1”}).

(a) (b)

Fig. 4. SPBG generation. (a) CFG. (b) SPBG.

We first split any basic blocks in the CFG that contain at least one state-
update statement (see Definition 2 in Section 2), obtaining a split-CFG. State-
update statements (1) and (2) can be detected syntactically and invocations that

8 S. Wei and B.G. Ryder

may result in an obj-ref state change (i.e., category (3)) are found by a linear
call graph traversal.4 We then use a variant of the standard CFG construction
algorithm [1] to build the split-CFG. The header nodes used include the stan-
dard headers [1] plus (i) any state-update statement is a region header of a
state-update node containing only that statement, and (ii) any state-preserving
statement that immediately follows a state-update statement is a region header
of a state-preserving node.

In an SPBG, state-preserving region nodes are formed based on grouping
nodes in the split-CFG that share the same control-flow relations with respect
to state-update nodes. The possible control-flow relations of node n1 and n2 in
a split-CFG include: (1) n1 is a successor of n2, (2) n1 is a predecessor of n2, (3)
n1 is both a successor and a predecessor of n2 (i.e., n1 and n2 exist in a loop)
and (4) n1 and n2 have no control-flow relation (e.g., n1 and n2 are present in
different branches). We label each node in a split-CFG with its relations to each
state-update node via depth-first searches. The set of labels form a signature
for that node. If nodes share the same signature it means that they have the
same control-flow relationship(s) to a (set of) state-update statement(s) so that
they can be collapsed to a state-preserving node in the SPBG. Figure 4(b) shows
the signatures of the state-preserving regions in the generated SPBG; a and b
represent the state-update statements x=new A() and delete x.p, respectively.
Basic blocks 2, 4, 5 and 7 are aggregated because they only appear as successors
of x=new A() and have no control-flow relation to delete x.p. The region node
2-4-5-7 is not further aggregated with basic block 9 because 9 is a successor of
delete x.p but 2-4-5-7 is not.

3.2 Points-to Graph Representation

Our points-to graph representation includes constructs that facilitate the han-
dling of strong updates by our analysis. Our algorithm design allows strong up-
dates when possible for state-update statements. In contrast, most flow-sensitive
Java analysis algorithms cannot perform strong updates for indirect assignment
statements (e.g., x.p = y) and few analyses consider property delete statements,
which are uncommon in object-oriented languages. Two existing techniques help
to enable strong updates for such statements in JavaScript: recency abstraction
and access path maps.

Recency abstraction [2,11] associates two memory-regions with each alloca-
tion site. The most-recently-allocated block, a concrete memory-region, allows
strong updates and the not-most-recently-allocated block is a summary memory-
region. We adapt the idea of recency abstraction to enable strong updates during
analysis of constructor functions.

De et al. [6] performed strong updates at indirect assignments by computing
the map from access paths (i.e., a variable followed a sequence of property ac-
cesses) to sets of abstract objects. This work demonstrated the validity of using
access path maps to perform strong updates for indirect write statements in

4 Our analysis requires a pre-computed call graph as input. See Section 3.6 for details.

State-Sensitive Points-to Analysis 9

Table 1. Expanded points-to graph with annotations

variable
v

node
abstract object

N o

in-construction
object @o

variable reference
points-to (v, φo)

graph edge
property reference

p

E (< φoi, p >,φoj)

G
access path

p

(< v, p >, φo)

d annotation
pd

annotation pd

A * annotation
p*

p∗

Java. We adapt this approach to points-to analysis for JavaScript by expanding
the points-to graph representation instead of using separate maps.

Table 1 lists the nodes, edges and annotations in our points-to graph. In
addition to variable nodes v and abstract object nodes o, our points-to graph
contains in-construction object nodes @o.5 Details of the in-construction objects
will be discussed in Section 3.3. For sake of simplicity, we use φo to represent
either kind of object node (i.e., o or @o).

There are three kinds of edges. Variable reference and property reference edges
exist in a traditional points-to graph. An access path edge, (< v, p >, φo), denotes
that the property p of variable v refers to object φo. < v, p > represents an access
path with length of 2 (i.e., a variable followed by one field access v.p).6

Our analysis calculates may pointer information, meaning that a points-to
edge in the graph may or may not exist at runtime. To better approximate the
obj-ref states of JavaScript objects, we introduce annotations on property refer-
ence edges as well as access path edges. The annotations help to calculate must
exist information for object property names. In our analysis, the d annotation
on a property name p (i.e., pd) denotes that the local property named p must
not exist. This annotation only applies to access path edges in our points-to
graph. The other annotation, ∗, applies to both property reference edges and

5 Similar to the recency abstraction, an in-construction object always describes exactly
one concrete object. In our analysis, it exists only during analysis of a constructor.

6 The length of an access path is one more than the number of field accesses [6].

10 S. Wei and B.G. Ryder

access path edges. p∗ denotes that the local property named p may not exist.
Property reference edges without annotation or access path edges without an-
notation represent must exist information for the property names. We use pφ to
represent any kind of pd, p∗ or p edge. These annotated edges help us perform a
more accurate property lookup (see Section 3.3).

Pt(x) denotes the points-to set of x and Pt(< φo, p >) denotes the points-to
set of the property p of φo. Pt(< v, p >) denotes the points-to set of access path
v.p. We also define the operation Alias(v) which returns the set of variables W
such that v and w ∈ W point to the same object. apset(v) denotes the set of all
access path edges of v (i.e., apset(v) = ∀q : {(< v, qφ >, φo)}).

In addition to the points-to graph, we use a mapping data structure to store
intermediate information in the analysis. The map M is used to record the list
of property names when an object is constructed. An abstract object (e.g., o) is
the key in M whose value is the set of local property names that exist when the
constructor function of the abstract object returns (e.g., {p1, p2, p3}).

3.3 Points-to Analysis Transfer Functions

In this section we describe the data-flow transfer functions for the statements
shown in Table 2.

Object creation (x = new X(a1, a2, ..., an)). In our analysis, an object cre-
ation statement (i.e., new statement) is modeled in three steps. x = new X
creates an in-construction object @oi. Then the invocation of the constructor
new X((a1, a2, ..., an)) is modeled as a function call on @oi. Upon the return of
the constructor (i.e., retX), the analysis removes the in-construction object from
the points-to graph and redirects all points-to relations from @oi to an abstract
object (i.e., remove(G, @oi)). If the local property set of the in-construction
object matches that of an existing abstract object with the same allocation site,
the in-construction object is merged into the abstract object; otherwise, a new
abstract object is created to replace the in-construction object. There is at most
one in-construction object for each creation site.7

The transfer function of the object creation statement ensures that abstract
objects are based on their allocation site as well as their constructed local prop-
erties (i.e., an approximation of actual obj-ref state); in other words, the objects
created at the same allocation site that contain the same set of local property
names share the same abstract object in our analysis. This object representation
is more precise than using one abstract object per creation site.

Property write (x.p = y). In general, strong updates cannot be performed on
the property write statement because an abstract object may summarize multiple

7 Recursive constructor calls involve the creation of an in-construction object when
the in-construction object for the same allocation site already exists (before it re-
solves into an abstract object). In our analysis, the existing in-construction object
is resolved into a special abstract object whose set of properties upon construction is
unknown. A fixed point calculation is done using the special abstract object.

State-Sensitive Points-to Analysis 11

T
a
b
le

2
.
T
ra
n
sf
er

fu
n
ct
io
n
s
o
f
p
ro
g
ra
m

st
a
te
m
en

ts

S
ta
te
m
en

t
T
ra
n
sf
er

fu
n
ct
io
n

s i
:
x
=

n
ew

X
(a

1
,a

2
,.
..
,a

n
)

(1
)
x
=

n
ew

X
:
(G

−
a
p
se
t(
x
))
⋃ (x

,@
o i
)

(2
)
n
ew

X
((
a
1
,a

2
,.
..
,a

n
))

:
G
⋃ {i

n
v
ok

e(
G
,X

,@
o i
,a

1
,a

2
,.
..
,a

n
)}

(3
)
re
t X

:
re
m
ov

e(
G
,@

o i
)

x
.p

=
y

(1
)
if

|P
t(
x
)|
=

1
a
n
d
{φ

o i
∈
@
O
|φ
o i

∈
P
t(
x
)}

:
G
−
{(
<

@
o i
,p

φ
>
,φ

o j
)|@

o i
∈
P
t(
x
)
∧
φ
o j

∈
P
t(
<

@
o i
,p

φ
>
)}
)
⋃ {(

<
@
o i
,p

>
,φ

o j
)|@

o i
∈
P
t(
x
)
∧
φ
o j

∈
P
t(
y
)}

(2
)
ot
h
er
w
is
e
:

(2
.1
)
(G

−
{(
<

x
,p

φ
>
,φ

o i
)|φ

o i
∈
P
t(
<

x
,p

φ
>
)}
)
⋃ {(

<
x
,p

>
,φ

o j
)|φ

o j
∈
P
t(
y
)}

(2
.2
)
G
⋃ {(

<
φ
o i
,p

∗
>
,φ

o j
)|φ

o i
∈
P
t(
x
)
∧
φ
o j

∈
P
t(
y
)}

(2
.3
)
G
⋃ {(

<
z
,p

∗
>
,φ

o i
)|z

∈
A
li
a
s(
x
)
∧
P
t(
z
,p

φ
)
�=

∅
∧
φ
o i

∈
P
t(
y
)}

d
el
et
e
x
.p

(1
)
if

|P
t(
x
)|
=

1
a
n
d
{φ

o i
∈
@
O
|φ
o i

∈
P
t(
x
)}

:

G
−
{(
<

@
o i
,p

φ
>
,φ

o j
)|@

o i
∈
P
t(
x
)
∧
φ
o j

∈
P
t(
<

@
o i
,p

φ
>
)}

(2
)
ot
h
er
w
is
e
:

(2
.1
)
(G

−
{(
<

x
,p

φ
>
,φ

o i
)|φ

o i
∈
P
t(
<

x
,p

φ
>
)}
)
⋃ {(

<
x
,p

d
>
,n

u
ll
)}

(2
.2
)
G
⋃ {(

<
φ
o i
,p

∗
>
,φ

o j
)|φ

o i
∈
P
t(
x
)
∧
φ
o j

∈
P
t(
<

φ
o i
,p

>
)}

−
{(
<

φ
o i
,p

>
,φ

o j
)|φ

o i
∈
P
t(
x
)
∧
φ
o j

∈
P
t(
<

φ
o i
,p

>
)}

(2
.3
)
G
⋃ {(

<
z
,p

∗
>
,φ

o i
)|z

∈
A
li
a
s(
x
)
∧
P
t(
z
,p
)
�=

∅
∧
φ
o i

∈
P
t(
<

z
,p

>
)}

−
{(
<

z
,p

>
,φ

o i
)|z

∈
A
li
a
s(
x
)
∧
P
t(
z
,p
)
�=

∅
∧
φ
o i

∈
P
t(
<

z
,p

>
)}

x
=

y
(G

−
a
p
se
t(
x
))
⋃ {(

x
,φ

o i
)|φ

o i
∈
P
t(
y
)}

x
=

y
.p

(G
−

a
p
se
t(
x
))
⋃ {(

<
x
,φ

o i
>
)|o

i
∈
lo
ok

u
p
(y
,p
)}

x
=

y
.m

(a
1
,a

2
,.
..
,a

n
)

(G
−

a
p
se
t(
x
))
⋃ {i

n
v
ok

e(
G
,M

,φ
o i
,a

1
,a

2
,.
..
,a

n
)|φ

o i
∈
P
t(
y
)
∧
M

∈
lo
ok

u
p
(y
,m

)}

12 S. Wei and B.G. Ryder

run-time objects; however, use of in-construction objects and access path edges
enable strong updates in our analysis. In the points-to graph G, if x only refers
to one object and the object is an in-construction object, we know that x refers
to a specific concrete object. The analysis then performs strong updates on the
property reference edges by removing the points-to edges in G denoting @oi.p
(if they exist) and adding the new edges implied by Pt(y). In other cases (i.e.,
the cardinality of Pt(x) is more than 1 or x refers to an abstract object), we
use access path edges to enable strong updates on property write statements.
First, the access path of x.p can be strongly updated by removing the access
path edges in G denoting x.p (if they exist) and adding the new edges (e.g.,
(< x, p >, oj) where oj is referred to by y). Second, the object(s) x points to are
weakly updated (e.g., the edge (< oi, p

∗ >, oj) is inserted if x points to oi and y
points to oj). The property reference edges are inserted with the ∗ annotation
because the property write statement may not affect all variables pointing to
the updated object. Last, the access path edges of the variables that have a may
alias relation to x need to be weakly updated. For example, (< z, p∗ >, oi) is
inserted to G if z may be an alias of x, and there exists at least an edge denoting
z.p (with or without annotation).

In Figure 5, we show an example of the effects of a property write statement
on the points-to graph. Figure 5(a) illustrates the input points-to graph for the
property write statement x.p = y. In Figure 5(b), our analysis performs a strong
update on the access path x.p (i.e., delete (< x, p >,O4) and add (< x, p >,O2),
(< x, p >,O3)) and inserts the edges (< O1, p

∗ >,O2), (< O1, p
∗ >,O3) (i.e.,

weak updates). The updated points-graph shows that the property p must exist
on x, while either (< x, p >,O2) or (< x, p >,O3) may exist.

p*

p

p

(a)

p*

p

p*

p*

p

p

(b)

Fig. 5. Property write example. (a) Input points-to graph. (b) Updated points-to
graph.

Property delete (delete x.p). The transfer function of the delete statement
is similar to the property write statement. Our analysis strongly updates the
access path edges by removing the existing edges and adding a new edge (i.e.,
(< x, pd >,null)) that denotes x must not have a local access path x.p. When
performing weak updates on the property reference edges of an object oi that is
referred to by x, all existing edges denoting oi.p should be annotated by ∗ because

State-Sensitive Points-to Analysis 13

the property named p may not exist locally for oi. The same rule applies when
updating the access path edges of the aliases of x.

Direct write (x = y). The effects of direct variable assignment on the points-
to graph are relatively straightforward. x = y creates points-to edges from x
to all objects pointed to by y. Note that we perform weak updates on direct
assignments. Although the analysis removes all the access path edges of x from
the points-to graph (i.e., G - apset(x)), soundness is ensured because lookups
through the abstract objects reflect less precise, yet safe approximations (see
Procedure 1). Also, the access path edges of y cannot be copied to x because
access path edges can only be added via strong updates.

Property read (x = y.p). JavaScript enforces an asymmetry between reading
and writing property values. When writing the value of a property or deleting a
property, JavaScript always uses the local property, ignoring the prototype ob-
ject. When reading a property of a variable (e.g., x = y.p), recall that JavaScript
supports prototype-based inheritance. In some existing points-to analyses for
JavaScript, when reading property p of an object, the property lookup mecha-
nism is modeled by reporting all properties named p in the prototype chain of
the object to ensure analysis safety.

Procedure 1. Optimized object property lookup: lookup(v, p)

Output: accessible objects v.p: P
1: if Pt(< v, p >) �= ∅ then
2: P ∪ Pt(< v, p >) ∪ Pt(< v, p∗ >)
3: return
4: else if Pt(< v, p∗ >) �= ∅ or Pt(< v, pd >) �= ∅ then
5: P ∪ Pt(< v, p∗ >)
6: for each object φo in lookup(v, proto) do
7: S.push(φo)
8: end for
9: else
10: for each object φo in Pt(v) do
11: S.push(φo)
12: end for
13: end if
14: while S is not empty do
15: φoi ← S.pop()
16: P ∪ Pt(< φoi, p >) ∪ Pt(< φoi, p

∗ >)
17: if |Pt(< φoi, p >)| = 0 and (Pt(< φoi, proto >) �= null or Pt(<

φoi, proto ∗ >) �= null) then
18: for each object φoj in Pt(< φoi, proto >) ∪ Pt(< φoi, proto ∗ >) do
19: S.push(φoj)
20: end for
21: end if
22: end while

14 S. Wei and B.G. Ryder

Procedure 1 illustrates our potentially more precise property lookup proce-
dure enabled by our edge types and their annotations. This worklist algorithm
iterates through all the accessible objects in the points-to graph when property p
of variable v is read. Intuitively, it favors the use of access path edges in property
lookup because they reflect the results of strong updates, before examining prop-
erty reference edges. Lines 1 to 12 initialize the algorithm upon three conditions.
(1) If there exist access path edges for v.p without annotation (i.e., property
p must exist locally), the objects in the Pt(< v, p >) and Pt(< v, p∗ >) are
considered to be accessible properties (line 2) and the algorithm returns (line 3).
(2) If there exist access path edges for v.p with either annotation, the algorithm
needs to lookup objects in the prototype chain. In this case, the objects in the
Pt(< v, p∗ >) (if v.p∗ exists) are considered to be accessible properties (line
5) and the algorithm pushes all the immediate prototype objects of v onto the
worklist (lines 6 to 8). (3) Otherwise (i.e., no access path edge for v.p exists),
only the abstract objects are used for looking up so that all the objects in the
Pt(v) are pushed onto the worklist (lines 10 to 12). Lines 14 to 22 iterate the
worklist. All the objects in Pt(< φo, p >) and Pt(< φo, p∗ >) are considered
to be accessible properties by our analysis (Line 16). Since an edge annotated
with ∗ means that the property may not exist locally, the algorithm will con-
tinue looking up the prototype chain, until it reaches at least one points-to edge
named p without annotation or the end of the prototype chain (Line 17 to 21).
Thus, instead of finding all the properties named p in the prototype chain (i.e.,
lookup all(v, p)), our algorithm can stop when it finds an existing property p
(i.e., a property named p without annotation).

This new property lookup algorithm lookup(v, p) mimics the run-time prop-
erty lookup mechanism of JavaScript while still assuring the safety of our anal-
ysis. For the example in Figure 5(b), lookup(z, p) results in O2 and O3 through
the access path while lookup(x, p) results in O2, O3, O4 and O5 through the
abstract object O1. In Table 2, the transfer function of the property read state-
ments refers to this optimized object property lookup algorithm. Because we
perform weak updates on the property read statements, similar to direct writes,
the analysis removes all the access path edges of x from the points-to graph to
ensure safety.

Method invocation (x = y.m(a1, a2, ..., an)). The method invocation (e.g.,
x = y.m(a1, a2, ..., an)) resolves for every receiver object pointed to by y.
The invoked methods are determined by reading the property y.m through our
optimized lookup algorithm. Upon the return of method invocation, x is weakly
updated by removing all its access path edges from G.

3.4 State Sensitivity

State sensitivity for JavaScript is a new form of context sensitivity derived
from the notion of object sensitivity for languages such as Java [18]. In ob-
ject sensitivity, each method is analyzed separately for each object on which it
may be invoked. For strongly typed languages like Java, often object sensitivity

State-Sensitive Points-to Analysis 15

identifies objects in the analysis by their creation sites. Calls of a method using
two different receiver objects (i.e., created at different sites) will result in two
separate analyses of the method, even if the calls originated from the same call
site. However, this is insufficient for JavaScript analysis, because object behavior
may change dynamically at any program point during execution.

proto

p1

p1
*

p2
*

p3

proto

p6

p5

proto

p7

(a)

proto

p1

p2
*

proto

(b)

Fig. 6. Approximate obj-ref state as a context. (a) obj-ref state of O1. (b) Approximate
obj-ref state of O1.

Ideally, state sensitivity would analyze each method separately for each obj-ref
state on which it may be invoked. However, the graph representation of obj-ref
state may contain many edges and nodes both locally and along prototype chains
(e.g., obj-ref state of O1 in Figure 6(a)), which would be prohibitively expensive
to use as a context. Therefore, we use an approximation of the obj-ref state of
the receiver object to differentiate calls that will be analyzed separately. Our
approximation consists of the object, its local properties and their object values
plus its chain of prototype objects. In Figure 6(b) we show the approximation
corresponding to the obj-ref state of object O1 in Figure 6(a). Note that the edges
with the same local property name (annotated and not annotated) in the points-
to graph are merged in the approximate obj-ref state (e.g., (< O1, p1 >,O2) and
(< O1, p

∗
1 >,O3) in Figure 6(a)). An object-sensitive analysis groups the calls

using a receiver object created at the same allocation site and our state-sensitive
analysis more accurately groups the calls where receiver objects have the same
approximate obj-ref state. We intend to study the effects of using different obj-ref
state approximations as calling contexts in future work.

3.5 Block-Sensitive Analysis

Our new points-to analysis algorithm is a fixed point calculation on the call
graph, initialized with an empty points-to graph on entry to the JavaScript pro-
gram, in which every constitutent SPBG is traversed in a flow-sensitive manner.
Essentially, we have designed the points-to algorithm to emphasize precision for
the obj-ref state information in the points-to graph and the SPBG to hide control
flow not relevant to reference state updates.

16 S. Wei and B.G. Ryder

Table 3. Union rules. (a) Access path edges union rules. (b) Property reference edges
union rules.

(a)⋃
∅ v.pd v.p∗ v.p

∅ ∅ ∅ ∅ ∅
v.pd ∅ v.pd v.p∗ v.p∗

v.p∗ ∅ v.p∗ v.p∗ v.p∗

v.p ∅ v.p∗ v.p∗ v.p

(b)⋃
∅ o.p∗ o.p

∅ ∅ o.p∗ o.p∗

o.p∗ o.p∗ o.p∗ o.p∗

o.p o.p∗ o.p∗ o.p

More specifically, our analysis solves for the points-to graph on exit of each
SPBG node. The transfer function for a node in the SPBG is one of two kinds:
(1) for a state-update node perform strong update of the changed property,
if possible (as in Table 2), or (2) for a state-preserving node perform a flow-
insensitive analysis of the statements in that node, using an initial points-to
graph (IN) and storing the fixed point reached in points-to graph OUT .

Normally in a points-to analysis, we would form IN as a union of the OUT
points-to graphs of predecessors of a node. In our algorithm, we need to maintain
the invariant of our annotated property edges, namely that a property name
without an annotation means that property exists and a property name with
the d annotation means that property must not exist.

Table 3 shows the union rules for the access path edges and property reference
edges when two points-to graphs are unioned. For the access path edges: (1) if
access path v.pφ does not exist in at least one predecessor, then v.pφ does not
exist after union; (2) if v.pd or v.p exists in both predecessors, then v.pd or v.p
respectively exists after union; (3) otherwise, v.p∗ exists after union. For the
property reference edges: (1) if o.p exists in both predecessors, then o.p exists
after union; (2) otherwise, if o.p or o.p∗ exists in at least one predecessor, then
o.p∗ exists after union. These rules ensure analysis safety when property lookup
is performed.

3.6 Implementation of State-Sensitive Analysis in JSBAF

Our new points-to analysis was implemented with a client as the static compo-
nent of the JavaScript Blended Analysis Framework (JSBAF), a general-purpose
analysis framework for JavaScript [28]. This framework was designed to strongly
couple dynamic and static analyses to account for the effects of the dynamic
features of JavaScript. We chose this implementation platform because blended
analysis has been demonstrated to be more efficient and effective in analyzing
real JavaScript programs.8

JSBAF can be applied to analyze a JavaScript program (i.e., JavaScript code
on a webpage) automatically in the presence of a good test suite. The dynamic
phase gathers run-time information by executing tests. A trace of each test

8 A static analysis was not able to finish analyzing most webpages in [28].

State-Sensitive Points-to Analysis 17

is collected, including call statements, object creations, variadic function calls
with parameters, and dynamically created code. The implementation separates
each trace into its constituent page traces. Each subtrace on a page is analyzed
separately in the static phase. Data-flow solutions from different page subtraces
are combined into a entire solution for that page.

Blended analysis uses only the observed calling structure as a basis to model
the JavaScript program. Knowledge of unexecuted calls or object creations can
be used to prune other unexecuted code sharing the same control dependence.
For example, knowing Y 3() is not called at line 5 in Figure 2, blended analysis
prunes this unexecuted statement so that the imprecise node O5 and its con-
nected edges will not be created. Thus, blended analysis is unsafe because not
all executions are explored, but sound on the observed executions.

Our points-to algorithm was implemented on the IBM T.J. Watson Libraries
for Analysis (WALA) open-source static analysis framework9 which contains
several existing static points-to analysis algorithms. WALA has been extended
to enable blended analysis by providing dynamic information (i.e., a run-time
collected call graph, dynamically generated code, object creation sites) [28].

Our algorithm takes as inputs the run-time collected calling structure (i.e., call
graph10) and source code including dynamically generated code. Code pruning
was performed on function bodies so that the code in polymorphic constructors
and variadic functions was specialized. Hence, constructor polymorphism was
handled by our improved object representation combined with dynamic infor-
mation (i.e., objects created at the same allocation site with different sets of
property names are represented as separate abstract objects).

proto p p

f*

p

ff* fff*

f

(a)

proto

p p

f*

p

p p
f*

p

p*

ff* fff*

f

f f

(b)

Fig. 7. Blended state-sensitive points-to analysis. (a) points-to graph at line 10. (b)
points-to graph at line 15.

Example. In comparison to the inaccurate points-to solution of a flow- and
context-insensitive analysis for the JavaScript code in Figure 2, we now

9 http://wala.sourceforge.net/
10 Each node in the call graph is associated with the object creations observed during

its execution.

http://wala.sourceforge.net/

18 S. Wei and B.G. Ryder

demonstrate the results of our state-sensitive points-to analysis in the context
of blended analysis. Figures 7(a) and 7(b) show the points-to graphs obtained
at lines 10 and 15, respectively. Because blended analysis executes the program
and does not observe an object created by the constructor Y3, the code at line 5
is pruned so that our analysis does not generate the inaccurate node O5 nor the
edge (< O7, q >,O5). For the call statement at line 10, our points-to analysis
calculates the obj-ref state approximation of O7, namely C1: {O7, p:O4, proto :
O3}. Also, when looking up x.p at line 10, our algorithm returns O4 because
there is no annotation on the property reference edge so that further lookup
through the prototype chain is not necessary. Note that the points-to graph in
Figure 7(a) is as precise as the run-time points-to graph (Figure 3(a)).

At line 12, x.p is strongly updated via the access path edge (< x, p >,O12).
For the call statement at line 15, our points-to analysis calculates the obj-ref
state approximation of O7, C2: {O7, p:[O4, O12], proto : O3}. Our points-to
algorithm distinguishes this call site from line 10 because O7 has a different obj-
ref state here. The lookup of x.p at line 15 follows the access path edge so that
the node O12 is returned. Thus, in this example our analysis results in none of
the inaccurate edges in the flow- and context-insensitive analysis (Figure 3(c))
and reflects the actual run-time behavior of JavaScript objects (Figure 3(b)).

4 Evaluation

In this section, we present experiments using JSBAF with our state-sensitive
points-to analysis compared to an existing points-to analysis [26], evaluating
both with a REF client.

4.1 Experimental Design

REF Analysis. To evaluate the precision and performance of our points-to
analysis, we implemented a JavaScript reference analysis (REF). The REF client
calculates the set of objects returned by property lookup at a property read
statement (i.e., x = y.p) or call statement (i.e., x = y.p(...)).11 For each of
these statements s in a function being analyzed in calling context c, we compute
REF (s, c), the set of objects returned by a property lookup for each o.p where
o is pointed to by y. The cardinality of the REF set depends on the precision
of the points-to graph and the property lookup operation; the smaller the set
returned, the more useful for program understanding, for example.

In Figure 2, assume we add the function property

x.foo = function(){var a = this.p; return a; }

Effectively, foo() returns the property lookup result for this.p. If x.foo() is called
at line 11 before the property update statement x.p=new A(), it will return O4.

11 All source code instances of property lookups (e.g., return y.p) occur as one of
these two statements in the WALA intermediate code.

State-Sensitive Points-to Analysis 19

If x.foo() is called at line 13 after x.p=new A(), it will return O12. For an
analysis that is flow-insensitive or that cannot distinguish these call sites by
calling context, the return value of each of these function calls will contain at
least two objects (i.e., O4 and O12).

Comparison with Points-to Analysis in [26]. We use the term Corr to refer
to a blended version of correlation-tracking points-to analysis [26] (see Section
5 for more details) and its REF client. To demonstrate the additional precision
of our analysis over Corr, we applied the correlation extraction transformation
to our JavaScript benchmarks before performing our points-to analysis. We use
the term CorrBSSS to refer to a blended version of this augmented new points-
to analysis and its REF client. For each algorithm, an object property lookup
returns a REF set whose cardinality |REF (s, c)| is calculated. For Corr, the
lookup all() approximate algorithm described in Section 3.3 is used. For CorrB-
SSS, we use our optimized lookup algorithm lookup() in Procedure 1.

Benchmarks. We conducted the experiments with the benchmarks collected
from 12 websites among the top 25 most popular sites on alexa, reusing website
traces originally used in [28]. The results in [28] showed that the collected traces
covered a large portion of the executable JavaScript code in those websites,
including dynamically generated code. Although the benchmarks we used cover
the most popular websites, it will require further investigation to determine how
representative these benchmarks are of other websites. The experimental results
were obtained on a 2.53GHz Intel Core 2 Duo MacBook Pro with 4GB memory
running the Mac OS X 10.5 operating system.

4.2 Experimental Results

Improved REF Precision. Table 4 shows the REF client results for the 12
websites. Columns 2-4 present the results for Corr and columns 5-7 present the
results for CorrBSSS. For each website, columns 2 & 5, 3 & 6, and 4 & 7 in
Table 4 correspond to the percentage of property lookup statements that return
1 object, 2-4 objects, and more than 4 objects, respectively. The result shown
for each website is averaged over the corresponding percentage numbers for all
the webpages in that domain; for example, the 38% entry for facebook.com in
column 2 is the average for Corr over the 27 webpages analyzed of the percentage
of property lookup statements returning only 1 object.

Comparing columns 2-4 with 5-7 in Table 4 for each website, we see the relative
precision improvement of CorrBSSS over Corr. For REF analysis, the best result
is that the lookup returns only one object and the property lookup is more precise
if the number of objects returned is smaller. On average over all the websites,
Corr reported 37% of the property lookup statements were resolved to a single
object, while CorrBSSS improved this metric to 48%, a significant improvement.
In addition, REF analysis results may become too approximate to be useful if
too many objects are returned. Although 15% of the statements on average
returned more than 4 objects for Corr, CorrBSSS reduced that number to 7%.

20 S. Wei and B.G. Ryder

Table 4. REF analysis precision

Website Corr CorrBSSS

1 2-4 ≥ 5 1 2-4 ≥5

facebook.com 38% 52% 10% 50% 47% 3%

google.com 32% 51% 17% 53% 42% 5%

youtube.com 41% 47% 12% 54% 41% 5%

yahoo.com 48% 46% 6% 52% 45% 3%

wikipedia.org 29% 45% 26% 43% 39% 18%

amazon.com 45% 52% 3% 46% 51% 3%

twitter.com 32% 53% 15% 39% 49% 12%

blogspot.com 35% 34% 31% 53% 36% 11%

linkedin.com 34% 49% 17% 44% 50% 6%

msn.com 40% 36% 24% 48% 37% 15%

ebay.com 30% 40% 30% 46% 40% 14%

bing.com 41% 34% 25% 54% 37% 9%

Geom. Mean 37% 44% 15% 48% 43% 7%

Table 5. REF analysis cost (in seconds) on average per webpage

Website Corr CorrBSSS overhead

facebook 17.4 45.9 163%

google 13.0 30.4 134%

youtube 31.2 75.3 141%

yahoo 28.5 54.1 90%

wiki 16.0 40.1 151%

amazon 15.1 24.2 61%

twitter 38.1 94.5 148%

blog 15.9 42.4 137%

linkedin 27.8 62.0 167%

msn 34.4 57.9 68%

ebay 8.3 27.2 227%

bing 22.1 50.4 128%

Geom. Mean 20.4 46.7 127%

These improved precision results indicate the potential for greater practical use
of state-sensitive points-to information by client analyses.

We also investigated the average number of objects returned by a property
lookup statement. For each website, we calculated the number of objects per
statement on average over all its webpages. Over all the benchmarks, Corr pro-
duced on average 2.8 objects and CorrBSSS only reported on average 2.3 ob-
jects. Intuitively, this means that on average fewer objects at each property
lookup statement must be examined to gain better understanding of the code.

State-Sensitive Points-to Analysis 21

REF Performance. An analysis approach is practical if it scales to real-world
programs, such as JavaScript code from actual websites. Because CorrBSSS
is partially flow-sensitive and context-sensitive, it is important to demonstrate
that this analysis is scalable. Table 5 shows the time performance of Corr versus
CorrBSSS.12 Columns 2 and 3 present the average webpage analysis time for each
website, averaging over all of its webpages. Both Corr and CorrBSSS completely
analyzed all the benchmark programs. On average over all the websites, Corr
completely analyzed a webpage in 20.4 seconds, while CorrBSSS did so in 46.7
seconds, incurring an 127% average time overhead per webpage, acceptable for
a research prototype implementation which has not been optimized.

Discussion.We collected data characterizing benchmark program structure and
complexity to relate these characteristics to observed analysis precision and per-
formance. The entries in Table 6 all represent averages per webpage that are
averaged over an entire website. Column 2 shows the average number of func-
tions in a JavaScript program. Column 3 shows the percentage of functions
containing at least one state-update statement. Column 4 shows the percentage
of statements that are state-update statements. Column 5 shows the number of
contexts produced by CorrBSSS as a multiplier for column 2. On average over
all the websites, 9% of the functions contained local state-update statement(s);
these averages ranged from 4% for yahoo.com to 18% for msn.com. This sug-
gests that the state-update statements are localized in a relatively small portion
of the JavaScript program (e.g., in constructor functions). Manual inspection of
several websites (i.e., facebook, google and youtube) revealed there were significant
object behavior changes in JavaScript code outside of constructors. On average
over all the websites, 8% of the statements were identified as state-update state-
ments. The relatively small number of state-update statements means that our
SPBG contained many fewer nodes than the corresponding CFGs; therefore the
flow-sensitive analysis was more practical in cost on the SPBGs.

Now we compare the analysis precision observed in Table 4 with the number
of contexts generated on average per function per page (column 5 in Table 6) to
observe the effect of state sensitivity. google, blog, and ebay were the websites for
which CorrBSSS improved precision the most, whereas amazon, yahooo, twit-
ter, and msn were the websites for which CorrBSSS produced similar results to
Corr. For the former websites, CorrBSSS generated the greatest number of con-
texts per function per webpage. For the latter websites, CorrBSSS generated the
fewest. We observe strong correlation between the precision gain and the number
of contexts generated by CorrBSSS, demonstrating that state sensitivity signif-
icantly increased analysis precision on these benchmarks, and suggesting that
state sensitivity will be an effective form of context sensitivity for JavaScript
analysis.

12 The time cost in Table 5 reflects the performance of the static phase of blended
analysis. In the experiments, the dynamic phase of Corr and CorrBSSS is the same
for both analyses. The work in [28] has demonstrated that the static phase dominates
the blended analysis cost.

22 S. Wei and B.G. Ryder

Table 6. Benchmark and context statistics. (Total contexts per website is approxi-
mately column 2 times column 5.)

Website No. of % of functions % of state- No. of
functions w/ update(s) update stmt contexts

facebook 2123 9% 8% 4.0

google 1002 17% 6% 6.7

youtube 1329 7% 6% 3.9

yahoo 3810 4% 4% 2.4

wiki 270 10% 19% 4.8

amazon 729 6% 6% 1.9

twitter 618 15% 5% 3.4

blog 583 14% 14% 6.1

linkedin 920 8% 11% 3.6

msn 1537 8% 8% 2.8

ebay 581 18% 13% 7.5

bing 1131 7% 11% 4.9

Geom. Mean 972 9% 8% 4.0

As shown in Table 5, the CorrBSSS time overhead differed significantly for dif-
ferent websites, from 61% (amazon.com) to 227%(ebay.com). We investigate sev-
eral program characteristics to reason about such differences. First, the SPBGs
created by CorrBSSS determine the efficiency of the flow-sensitive analysis. On
average over all the websites, an SPBG was comprised of about 6 nodes, explain-
ing why CorrBSSS scaled on real websites. Functions with large numbers of nodes
in their SPBG usually contained multiple state-update statements and complex
control flow. The largest number of nodes for an SPBG was 23 in linkedin.
Second, the websites with the least performance overhead from CorrBSSS were
amazon, msn and yahoo. These websites contained a relatively small percentage
of update statements (i.e., all below average) and CorrBSSS generated the low-
est number of contexts for them. The website that incurred the most overhead
(i.e., ebay) contained 13% update statements, (i.e., the third highest percentage
in our benchmarks), and the greatest number of contexts per function (i.e., 7.5)
generated by CorrBSSS. These results support the reasoning that more complex
block structure and more context comparisons contribute to the higher overhead
for CorrBSSS.

5 Related Work

Due to space limitations, we present only the work most closely related to our
state-sensitive points-to algorithm.

Related Analyses of JavaScript. Several approaches were proposed to an-
alyze JavaScript programs. Sridharan et al. presented a points-to analysis for
JavaScript that focused on handling correlated dynamic property accesses [26].

State-Sensitive Points-to Analysis 23

Correlated property accesses were identified and then extracted into a func-
tion. Using the property name as the calling context, points-to analysis tracking
correlation was shown to be more precise and efficient than a field-sensitive An-
dersen’s points-to analysis. In our experiments, CorrBSSS was augmented by
correlation analysis (i.e., Corr) demonstrating a significant improvement in the
analysis precision.

Jensen et al. presented a static analysis that can precisely model prototype
chains [12]. In their analysis, the absent set indicated potentially missing prop-
erties. The property edges annotated with * play a similar role in our analy-
sis. Jensen’s analysis is context-sensitive similar to 1-object-sensitivity used in
Java [18]. The static flow-sensitive analysis presented in [12] was not scalable on
large JavaScript programs, whereas our experiments showed the CorrBSSS was
practical for blended analysis of real-world websites.

Several points-to analyses were proposed to handle other important challenges
introduced by JavaScript. Guarnieri and Livshits designed a points-to analysis
to detect security and reliability issues in JavaScript widgets [8]. They used a
subset of JavaScript language, JavaScriptSAFE , that can be statically approx-
imated. Guarnieri et al. presented a static taint analysis based on a points-to
analysis finding security vulnerabilities in real-world websites [10]. The points-to
algorithm focused on addressing features of JavaScript including object creations
and accesses through constructed property names. In these analyses, prototyp-
ing was modeled as lookup all rather than our more accurate property lookup
algorithm lookup. The points-to analysis in [10] and our algorithm are both im-
plemented in WALA.

A hybrid analysis (i.e., a combination of static and dynamic analyses) is at-
tractive when analyzing JavaScript programs. Chugh et al. presented a staged
information flow analysis for JavaScript [4]. The approach analyzed the static
code and incrementally analyzed the dynamically generated code. A similar ap-
proach was proposed by Guarnieri and Livshits [9]; their experiments studied
the performance of the incremental analysis. In addition to collecting the dy-
namically generated/loaded code, blended analysis uses run-time information to
make the analysis more precise (e.g., polymorphic constructors are distinguished
via object initialization and some unexecuted code is pruned).

Several type-based points-to techniques have been proposed for JavaScript
that support dynamic features such as prototype-based inheritance (e.g., [3,5,14]).
It is difficult to compare our analysis with them as to practicality, because no
empirical evidence on large JavaScript programs was presented.

Software tools supporting large JavaScript software including libraries are de-
sirable. Schafer et al. provided an IDE support for JavaScript programming [22].
Points-to analysis was used to calculate code completion suggestions. Points-to
analysis precision is crucial to determine the effectiveness of the tool. Madsen
et al. presented a static analysis of JavaScript focusing on frameworks and li-
braries [17]. A novel use analysis was proposed to analyze libraries precisely
and a points-to analysis was used to find aliases in the program. Our work is

24 S. Wei and B.G. Ryder

complementary to these techniques, in that more precise points-to results would
make them more practical.

Context-Sensitive Analysis. Our state-sensitive analysis is inspired by object
sensitivity. Milanova et al. first introduced object sensitivity and implemented
an object-sensitive points-to analysis for Java using a receiver object represented
by its creation site as the calling context [18]. The experiments in [15] showed
object sensitivity is the better choice as a calling context when analyzing an
object-oriented language. Changes to object properties in JavaScript render ob-
ject creation sites insufficient to represent object behavior, whereas state sensi-
tivity captures object behavior changes better.

Smaragdakis et al. formalized object sensitivity, summarizing its variations
[25]. They introduced type sensitivity where object type was used as the
calling context. For dynamically-typed languages like JavaScript, type is a run-
time notion, encapsulated in the idea of obj-ref state used as a calling con-
text. Kastrinis et al. presented a hybrid context-sensitive analysis that combined
object-sensitivity and call-site-sensitivity [13]. Hybrid context-sensitive analysis
for JavaScript is planned for our future work.

6 Conclusion

JavaScript object behavior is difficult to analyze well because of prototype-based
inheritance and allowed changes to object properties during execution. In this
paper, we introduced a state-sensitive points-to analysis that models object be-
havior changes accurately by using a hierarchical program representation em-
phasizing state-update statements, by defining state sensitivity, a better context
sensitivity mechanism for a dynamic language, and by enhancing the points-to
graph representation for improving object property lookups. We implemented
our new points-to algorithm as the static phase of a blended analysis in JSBAF.
Experimental results on a REF client showed our analysis, CorrBSSS, signifi-
cantly improved the precision of a previous good JavaScript points-to analysis
Corr [26]. For example, 48% of property lookups were resolved to a single object
by our analysis versus 37% by Corr. Although our research prototype implemen-
tation incurred on average 127% overhead versus Corr on the popular website
benchmarks used, further optimization will improve the performance, which is
in the practical range.

In future work, we intend to investigate variations of state sensitivity, to study
the effects of different obj-ref state approximations on analyzing JavaScript pro-
grams. We are interested in exploring the capability of state-sensitive analysis
to support program understanding. We also plan to generalize the proposed
techniques to other dynamic programming languages.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison Wesley (1986)

State-Sensitive Points-to Analysis 25

2. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

3. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, pp. 587–606 (2012)

4. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
JavaScript. In: Proceedings of the 2009 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 50–62 (2009)

5. Chugh, R., Rondon, P.M., Jhala, R.: Nested refinements: a logic for duck typ-
ing. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 231–244 (2012)

6. De, A., D’Souza, D.: Scalable flow-sensitive pointer analysis for Java with strong
updates. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 665–687. Springer,
Heidelberg (2012)

7. Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly Media, Inc. (2006)
8. Guarnieri, S., Livshits, B.: Gatekeeper: mostly static enforcement of security and

reliability policies for JavaScript code. In: Proceedings of the 18th Conference on
USENIX Security Symposium, pp. 151–168 (2009)

9. Guarnieri, S., Livshits, B.: Gulfstream: staged static analysis for streaming
JavaScript applications. In: Proceedings of the 2010 USENIX Conference on Web
Application Development, p. 6 (2010)

10. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
world wide web from vulnerable JavaScript. In: Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, pp. 177–187 (2011)

11. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer, Heidel-
berg (2010)

12. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for javaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

13. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 423–434 (2013)

14. Lerner, B.S., Joe Gibbs, P., Guha, A., Shriram, K.: TeJaS: Retrofitting type sys-
tems for JavaScript. In: Proceedings of the 9th Symposium on Dynamic Languages
(2013)

15. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: Is it worth it? In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer,
Heidelberg (2006)

16. Lieberman, H.: Using prototypical objects to implement shared behavior in object-
oriented systems. In: Conference proceedings on Object-Oriented Programming
Systems, Languages and Applications, pp. 214–223 (1986)

17. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript ap-
plications in the presence of frameworks and libraries. In: Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, pp. 499–509 (2013)

18. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM TOSEM 14(1), 1–41 (2005)

19. Orion, http://www.eclipse.org/orion/
20. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior

of JavaScript programs. In: Proceedings of the 2010 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 1–12 (2010)

http://www.eclipse.org/orion/

26 S. Wei and B.G. Ryder

21. Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented pro-
gramming languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126–137.
Springer, Heidelberg (2003)

22. Schafer, M., Sridharan, M., Dolby, J., Tip, F.: Effective smart completion for
JavaScript. Technical Report RC25359, IBM (2013)

23. Sethi, R.: Programming Languages, Concepts & Constructs, 2nd edn. Addison
Wesley (1996)

24. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)

25. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: under-
standing object-sensitivity. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 17–30 (2011)

26. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking for
points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 435–458. Springer, Heidelberg (2012)

27. Wegner, P.: Dimensions of object-based language design. In: Conference Proceed-
ings on Object-Oriented Programming Systems, Languages and Applications, pp.
168–182 (1987)

28. Wei, S., Ryder, B.G.: Practical blended taint analysis for JavaScript. In: Proceed-
ings of the 2013 International Symposium on Software Testing and Analysis, pp.
336–346 (2013)

Self-inferencing Reflection Resolution for Java

Yue Li, Tian Tan, Yulei Sui, and Jingling Xue

School of Computer Science and Engineering, UNSW Australia
{yueli,tiantan,ysui,jingling}@cse.unsw.edu.au

Abstract. Reflection has always been an obstacle both for sound and
for effective under-approximate pointer analysis for Java applications. In
pointer analysis tools, reflection is either ignored or handled partially,
resulting in missed, important behaviors. In this paper, we present our
findings on reflection usage in Java benchmarks and applications. Guided
by these findings, we introduce a static reflection analysis, called Elf,
by exploiting a self-inferencing property inherent in many reflective calls.
Given a reflective call, the basic idea behind Elf is to automatically in-
fer its targets (methods or fields) based on the dynamic types of the
arguments of its target calls and the downcasts (if any) on their re-
turned values, if its targets cannot be already obtained from the Class,
Method or Field objects on which the reflective call is made. We evaluate
Elf against Doop’s state-of-the-art reflection analysis performed in the
same context-sensitive Andersen’s pointer analysis using all 11 DaCapo
benchmarks and two applications. Elf can make a disciplined tradeoff
among soundness, precision and scalability while also discovering usually
more reflective targets. Elf is useful for any pointer analysis, particularly
under-approximate techniques deployed for such clients as bug detection,
program understanding and speculative compiler optimization.

1 Introduction

Pointer analysis is an important enabling technology since it can improve the
precision and performance of many program analyses. However, reflection poses a
major obstacle to pointer analysis. Despite the large literature on whole-program
[1, 6, 7, 11, 15, 21] and demand-driven [10, 13, 14, 17] pointer analysis for Java,
almost all the analyses reported are unsound in the presence of reflection since it
is either ignored or handled partially. As a result, under-approximate or unsound
techniques represent an attractive alternative in cases where sound analysis is
not required [18] (e.g., for supporting bug detection, program understanding
and speculative compiler optimization). Even so, ignoring reflection often leads
to missed, important behaviors [18]. This explains why modern pointer analysis
tools for Java [4, 19–21] provide some forms of reflection handling.

As reflection is increasingly used in Java programs, the cost of imprecise re-
flection handling has increased dramatically. To improve the effectiveness of
a pointer analysis tool for Java, automatic techniques for handling reflection
by balancing soundness, precision and scalability are needed. Despite its im-
portance, this problem has received little attention. Some solutions include

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 27–53, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

28 Y. Li et al.

1 A a = new A();
2 String cName, mName, fName = ...;
3 Class clz = Class.forName(cName);
4 Object obj = clz.newInstance();
5 B b = (B)obj;
6 Method mtd = clz.getDeclaredMethod(mName,{A.class});
7 Object l = mtd.invoke(b, {a});
8 Field fld = clz.getField(fName);
9 X r = (X)fld.get(a);

10 fld.set(NULL, a);

Fig. 1. An example of reflection usage in Java

(1) dynamic analysis [2] for recording reflective (call) targets discovered during
input-dependent program runs and passing these annotations to a subsequent
pointer analysis, (2) online analysis [5] for discovering reflective targets at run
time and performing a pointer analysis to support JIT optimizations, and (3)
static analysis [4, 8, 20] for resolving reflective targets together with a pointer
analysis.

In this paper, we present a new static reflection analysis, called Elf, which is
integrated into Doop, a state-of-the-art Datalog-based pointer analysis tool [4]
for analyzing Java programs. Elf draws its inspirations from the two earlier
reflection analyses [4, 8] and benefits greatly from the open-source reflection
analysis implemented in Doop [4]. Livshits et al. [8] suggested resolving reflective
calls by tracking the flow of class/method/field names in the program. In the
code from Figure 1, this involves tracking the flow of cName into clz in line
3, mName into mtd in line 6, and fName into fld in line 8, if cName, mName and
fName are string constants. If cName is, say, read from a configuration file, they
suggested narrowing the types of reflectively-created objects, e.g., obj in line 4,
optimistically by using the downcast (B) available in line 5. Later, Doop [4]
handles reflection analogously, but context-sensitively, to obtain the full benefit
from the mutual increase in precision of both component analyses.

However, Elf goes beyond [4, 8] by taking advantage of a self-inferencing
property inherent in reflective code to strike a disciplined tradeoff among sound-
ness, precision and scalability. Our key observation (made from a reflection-usage
study described in Section 2) is that many reflective calls are self-inferenceable.
Consider r = (X)fld.get(a) in Figure 1. Its target fields accessed can often
be approximated based on the dynamic types (i.e., A) of argument a and the
downcast that post-dominates its return values, if fld represents a statically
unknown field named fName. In this case, the reflective call is resolved to all
possible field reads r = a.f. Here, f is a field of type T (where T is X or a
supertype or subtype of X), declared in a class C (where C is A or a supertype of
A). To the best of our knowledge, Elf is the first static reflection analysis that
exploits such self-inferencing property to resolve reflective calls.

Due to the intricacies and complexities of the Java reflection API, we will post-
pone a detailed comparison between Elf and the two state-of-the-art reflection
analyses [4, 8] later in Section 3 after we have introduced Elf in full.

Self-inferencing Reflection Resolution for Java 29

In summary, this paper makes the following main contributions:

– We report findings on a reflection-usage study using 14 representative Java
benchmarks and applications (Section 2). We expect these findings to be
useful in guiding the design and implementation of reflection analysis.

– We introduce a static reflection analysis, Elf, to improve the effectiveness of
pointer analysis tools for Java (Section 3). Elf adopts a new self-inferencing
mechanism for reflection resolution and handles a significant part of the Java
reflection API that was previously ignored or handled partially.

– We formulate Elf in Datalog consisting of 207 rules, covering the majority
of reflection methods frequently used in Java programs (Section 4).

– We have evaluated Elf against a state-of-the-art reflection analysis in Doop
(version r160113) under the same context-sensitive Andersen’s pointer anal-
ysis framework, using all 11 DaCapo benchmarks and two Java applications,
Eclipse4 and Javac (Section 5). Our results show that Elf can make a dis-
ciplined tradeoff among soundness, precision and scalability while resolving
usually more reflective call targets than Doop.

2 Understanding Reflection Usage

Section 2.1 provides a brief introduction to the Java reflection API. Section 2.2
reports our findings on reflection usage in Java benchmarks and applications.

2.1 Background

The Java reflection API provides metaobjects to allow programs to examine
themselves and make changes to their structure and behavior at run time. In
Figure 1, the metaobjects clz, mtd and fld are instances of the metaobject
classes Class, Method and Field, respectively. Constructor can be seen as
Method except that the method name “<init>” is implicit. Class provides ac-
cessor methods such as getDeclaredMethod() in line 6 and getField in line 8
to allow the other metaobjects (e.g., of Method and Field) related to a Class
object to be introspected. With dynamic invocation, a Method object can be
commanded to invoke the method that it represents (line 7) and a Field object
can be commanded to access the field that it represents (lines 9 and 10).

As far as pointer analysis is concerned, we can divide the pointer-affecting
methods in the Java reflection API into three categories: (1) entry methods,
e.g., forName() in line 3, for creating Class objects, (2) member-introspecting
methods, e.g., getDeclaredMethod() in line 6 and getField() in line 8, for
retrieving Method (Constructor) and Field objects from a Class object, and (3)
side-effect methods, e.g., newInstance(), invoke(), get() and set() in lines
4, 7, 9 and 10, that affect the pointer information in the program reflectively.

Class provides a number of accessor methods for introspecting methods, con-
structors and fields in a target class. Unlike [4, 8], Elf is the first to handle all
such accessor methods in reflection analysis. Let us recall the four on return-
ing Method objects. getDeclaredMethod(String, Class[]) returns a Method

30 Y. Li et al.

object that represents a declared method of the target Class object with the
name (formal parameter types) specified by the first (second) parameter (line
6 in Figure 1). getMethod(String, Class[]) is similar except that the re-
turned Method object is public (either declared or inherited). If the target Class
does not have a matching method, then its superclasses are searched first recur-
sively (bottom-up) before its interfaces (implemented). getDeclaredMethods()
returns an array of Method objects representing all the methods declared in the
target Class object. getMethods() is similar except that all the public methods
(either declared or inherited) in the target Class object are returned. Given a
Method object mtd, its target method can be called as shown in line 7 in Figure 1.

2.2 Empirical Study

The Java reflection API is rich and complex in details. We conduct an empirical
study to understand reflection usage in practice in order to guide the design and
implementation of a sophisticated reflection analysis.

We select 14 representative Java programs, including nine DaCapo bench-
marks (2006-10-MR2), three latest versions of popular desktop applications,
javac-1.7.0, jEdit-5.1.0 and Eclipse-4.2.2 (denoted Eclipse4), and two
latest versions of popular server applications, Jetty-9.0.5 and Tomcat-7.0.42.
Note that DaCapo consists of 11 benchmarks, including an older version of
Eclipse (version 3.1.2). We exclude bloat since its application code is reflection-
free. We consider lucene instead of luindex and lusearch separately since these
two benchmarks are derived from lucene with the same reflection usage.

We consider a total of 191 methods in the Java reflection API (version 1.5),
including the ones in java.lang.reflect and java.lang.Class, loadClass()
in java.lang.ClassLoader, and getClass() in java.lang.Object. We have
also considered A.class, which represents the Class object of a class A.

We use Soot [19] to pinpoint the calls to reflection methods in the byte-
code of a program. To understand reflection usage, we consider only the re-
flective calls found in the application classes and their dependent libraries
but exclude the standard Java libraries. To increase the code coverage for the
five applications considered, we include the jar files whose names contain the
names of these applications (e.g., *jetty*.jar for Jetty) and make them avail-
able under the process-dir option supported by Soot. For Eclipse4, we use
org.eclipse.core. runtime.adaptor.EclipseStarter to enable Soot to lo-
cate all the other jar files used. We manually inspect the reflection usage in a
program in a demand-driven manner, starting from its side-effect methods, as-
sisted by Open Call Hierarchy in Eclipse, by following their backward slices.
For a total of 609 side-effect callsites examined, 510 callsites for calling entry
methods and 304 callsites for calling member-introspecting methods are tracked
and analyzed.

Below we describe our five findings on reflection usage in our empirical study.

Side-Effect Methods. Table 1 lists a total of nine side-effect methods that can
possibly modify or use (as their side effects) the pointer information in a program.

Self-inferencing Reflection Resolution for Java 31

Table 1. Nine side-effect methods and their side effects, assuming that the target class
of clz and ctor is A and the target method (field) of mtd (fld) is m (f)

Simplified Method Calling Scenario Side Effect
Class::newInstance o = clz.newInstance() o = new A()

Constructor::newInstance o = ctor.newInstance({arg1 , ...}) o = new A(arg1, ...)
Method::invoke a = mtd.invoke(o, {arg1, ...}) a = o.m(arg1, ...)

Field::get a = fld.get(o) a = o.f
Field::set fld.set(o, a) o.f = a

Array::newInstance o = Array.newInstance(clz, size) o = new A[size]
Array::get a = Array.get(o, i) a = o[i]
Array::set Array.set(o, i, a) o[i] = a

Proxy::newProxyInstance o = Proxy.newProxyInstance(...) o = new Proxy$*(...)

Fig. 2. Side-effect methods Fig. 3. Entry methods

Figure 2 depicts their percentage frequency distribution in the 14 programs
studied. We can see that invoke() and Class::newInstance() are the two
most frequently used (32.7% and 35.3%, respectively, on average), which are
handled by prior pointer analysis tools [4, 20, 21]. However, Array-related side-
effect methods, which are also used in many programs, are previously ignored
but handled by Elf. Note that newProxyInstance() is used in jEdit only.

Entry Reflection Methods. Figure 3 shows the percentage frequency dis-
tribution of different types of entry methods used. The six as shown are the
only ones found in the first 12 programs. In the last two (Jetty and Tomcat),
“Others” stands for defineClass() in ClassLoader and getParameterTypes()
in Method only. “Unknown” is included since we failed to find the entry meth-
ods for some side-effect calls such as invoke() even by using Eclipse’s Open
Call Hierarchy tool. Finally, getComponentType() is usually used in the form
of getClass().getComponentType() for creating a Class object argument for
Array.newInstance(). On average, Class.forName() and .class are the top
two most frequently used entry methods (48.1% and 18.0%, respectively).

32 Y. Li et al.

(a) Calls to entry methods (b) Calls to member-introspecting methods

Fig. 4. Classification of the String arguments of two entry methods, forName()
and loadClass(), and four member-introspecting methods, getMethod(),
getDeclaredMethod(), getField() and getDeclaredField()

String Constants and String Manipulation. As shown in Figure 4, string
constants are commonly used when calling the two entry methods (34.7% on
average) and the four member-introspecting methods (63.1% on average). In the
presence of string manipulations, many class/method/field names are unknown
exactly. This is mainly because their static resolution requires precisely handling
of many different operations e.g., subString() and append(). Thus, Elf does
not handle string manipulations presently. As suggested in Section 5.3.2, how-
ever, incomplete information about class/method/field names can be exploited
in our self-inferencing framework, just like the cast and type information.

We also found that many string arguments are Unknown (55.3% for calling
entry methods and 25.1% for calling member-introspecting methods, on average).
These are the strings that may be read from, say, configuration files or command
lines. Finally, string constants are found to be more frequently used for calling
the four member-introspecting methods than the two entry methods: 146 calls
to getDeclaredMethod() and getMethod(), 27 calls to getDeclaredField()
and getField() in contrast with 98 calls to forName() and loadClass(). This
suggests that the analyses [4, 20] that ignore string constants flowing into some
of these member-introspecting methods may be imprecise (Table 2).

Self-inferenceable Reflective Calls. In real applications, many reflective
calls are self-inferenceable, as illustrated in Figures 8 – 10. Therefore, we
should try to find their targets by aggressively tracking the flow of con-
stant class/method/field names in the program. However, there are also many
input-dependent strings. For many input-dependent reflective calls, such as
factoryField.get(null) in Figure 8, field.set(null, value) in Figure 9
and method.invoke(target, parameters) in Figure 10, we can approximate
their targets reasonably accurately based on the dynamic types of the argu-
ments of their target calls and the downcasts (if any) on their returned values.
Elf will exploit such self-inferencing property inherent in reflective code during
its reflection analysis.

Self-inferencing Reflection Resolution for Java 33

r = (A) M .invoke(o, {...}) r = (A) F .get(o) F .set(o, a)

Method M = C .getMethod(mName, {...})

Class C = Class.forName(cName)

Field F = C .getField(fName)

r = (A) C .newInstance()

1

2

3

4 5

6

7

Fig. 5. Self-inferencing reflection analysis in Elf

Retrieving an Array of Method/Field/Constructor Objects. Class con-
tains a number of accessor methods for returning an array of such metaobjects
for the target Class object. In the two Eclipse programs, there are four invoke
callsites called on an array of Method objects returned from getMethods and 15
fld.get() and fld.set() callsites called on an array of Field objects returned
by getDeclaredFields(). Ignoring such methods as in prior work [4, 8, 21] may
lead to many missed methods in the call graph of a program.

3 Methodology

We start with a set of assumptions made. We then describe our self-inferencing
approach adopted by Elf. Finally, we compare Elf with the two prior reflection
analyses [4, 8] by summarizing their similarities and differences.

3.1 Assumptions

We adopt all the assumptions from [8]: (1) Closed World : only the classes reach-
able from the class path at analysis time can be used by the program at run
time, (2) Well-behaved Class Loaders : the name of the class returned by a call to
forName(cName) equals cName, and (3) Correct Casts: the downcasts operating
on the result of a call to newInstance() are correct. Due to (1), we will not con-
sider the side-effect method Proxy::newProxyInstance in Table 1 and the entry
method loadClass in Figure 3 as both may use custom class loaders. Finally,
we broaden Correct Casts by also including fld.get() and mtd.invoke().

3.2 Self-inferencing Reflection Resolution

Figure 5 depicts a typical reflection scenario and illustrates how Elf works.
In this scenario, a Class object C is first created for the target class named
cName. Then a Method (Field) object M (F) representing the target method
(field) named mName (fName) in the target class of C is created. Finally, at some

34 Y. Li et al.

reflective callsites, e.g., invoke(), get() and set(), the target method (field)
is invoked (accessed) on the target object o, with the arguments, {...} or a. In
the case of newInstance(), the default constructor “init()” called is implicit.

Elf works as part of a pointer analysis, with each being both the producer
and consumer of the other. It exploits a self-inferencing property inherent in
reflective code, by employing the following two component analyses (Figure 5):

Target Propagation (Marked by Solid Arrows). Elf resolves the targets
(methods or fields) of reflective calls, such as invoke(), get() and set(), by
propagating the names of the target classes and methods/fields (e.g., those
pointed by cName, mName and fName if statically known) along the solid
lines into the points symbolized by circles. Note that the second argument
of getMethod() is an array of type Class[]. It may not be beneficial to
analyze it to disambiguate overloaded methods, because (1) its size may be
statically unknown, (2) its components are collapsed by the pointer analysis,
and (3) its components may be Class objects with unknown class names.

Target Inference (Marked by Dashed Arrows). By using Target Propa-
gation alone, a target method/field name (blue circle) or its target class
type (red circle) at a reflective callsite may be missing, i.e., unknown, due to
the presence of input-dependent strings (Figure 4). If the target class type
(red circle) is missing, Elf will infer it from the dynamic type of the target
object o (obtained by pointer analysis) at invoke(), get() or set() (when
o != null) or the downcast (if any), such as (A), that post-dominantly op-
erates on the result of a call to newInstance(). If the target method/field
name (blue circle) is missing, Elf will infer it from (1) the dynamic types
of the arguments of the target call, e.g., {...} of invoke() and a of set(),
and/or (2) the downcast on the result of the call, such as (A) at invoke()
and get(). Just like getMethod, the second argument of invoke() is also an
array, which is also similarly hard to analyze statically. To improve precision,
we disambiguate overloaded target methods with a simple intraprocedural
analysis only when the array argument can be analyzed exactly element-wise.

To balance soundness, precision and scalability in a disciplined manner, Elf
adopts the following inference principle: a target method or field is resolved at a
reflective callsite if both its target class type (red circle) and its target method/-
field name (blue circle) can be resolved (i.e., statically discovered) during either
Target Propagation or Target Inference. As a result, the number of spurious tar-
gets introduced when analyzing a reflective call, invoke(), get() or set(), is
minimized due to the existence of two simultaneous constraints (the red and
blue circles). How to relax Elf in the presence of just one such a constraint will
be investigated in future work. Note that the cast operations on newInstance()
will still have to be handled heuristically as only one of the two constraints exists.
As Elf is unsound, so is the underlying pointer analysis. Therefore, a reflective
callsite is said to be resolved if at least one of its targets is resolved.

Let us illustrate Target Inference by considering r = (A) F.get(o) in Fig-
ure 5. If a target field name is known but its target class type (i.e., red circle)
is missing, we infer it by looking at the types of all pointed-to objects o′ by o.

Self-inferencing Reflection Resolution for Java 35

Table 2. Comparing Elf with the two closely-related reflection analyses [4, 8]

Side-Effect Methods Member-Introspecting [8] Doop [4] Elf

Methods

invoke

getMethod
√ √ √ √ √

getDeclaredMethod
√ √ √ √ √ √

getMethods n/a n/a
√

n/a
√ √

getDeclaredMethods n/a n/a
√

n/a
√ √

getField
√ √ √ √ √

get getDeclaredField
√ √ √ √ √ √

set getFields n/a n/a
√

n/a
√ √

getDeclaredFields n/a n/a
√

n/a
√ √

newInstance
√

n/a
√ √

n/a
√

n/a
√

n/a

If B is the type of o′, then a potential target class of o is B or any of its super-
types. If the target class type of F is B but a potential target field name (i.e.,
blue circle) is missing, we can deduce it from the downcast (A) to resolve the
call to r = o.f, where f is a member field in B whose type is A or a supertype
or subtype of A. A supertype is possible because a field of this supertype may
initially point to an object of type, say, A and then downcast to A.

In Figure 5, if getMethods() (getFields()) is called at Label 6 (Label 3)
instead, then an array of Method (Field) objects will be returned so that Target
Propagation from them is implicitly performed. All the other methods available
in Class for introspecting methods/fields/constructors are handled similarly.

3.3 Elf vs. Livshits et al.’s Analysis and Doop

Table 2 compares Elf with Livshits et al.’s and Doop’s analyses [4, 8] in terms
of how four representative side-effect reflective calls are resolved.

Target Propagation. Elf resolves a target method/field at a reflective callsite
by requiring both its target class type (red circle) and its target name (blue
circle) to be known. However, this is not the case in the other two analyses.
In the case of Livshits et al.’s analysis, the target class type is always ignored.
Therefore, the target methods/fields with a given name in all the classes in
the program are conservatively included. Doop suffers the opposite problem
by ignoring the target method/field names. As a result, all methods/fields in
the target class are included. Finally, of the three analyses, Elf is the only
one that can handle all the member-introspecting methods listed.

Target Inference. Of the three analyses, Elf is the only one to adopt a self-
inferencing principle to find the target classes and methods/fields at a reflec-
tive callsite. Livshits et al.’s analysis narrows the type of reflectively-created
objects at newInstance() in Figure 5, but Doop does not do this. However,
Doop is more sophisticated than Livshits et al.’s analysis in distinguishing
virtual, static and special calls and considering the modifiers of fields for
loads and stores. These are all handled by the Elf reflection analysis.

36 Y. Li et al.

4 Reflection Resolution

We specify the reflection resolution in Elf as a set of Datalog rules, i.e., mono-
tonic logical inferences (with no negation in a recursion cycle), following the
style of [6]. The main advantage is that the specification is close to the actual
implementation. Datalog has been the basis of several pointer analysis tools
[4, 6, 8, 21]. Our rules are declarative: the order of evaluation of rules or ex-
amination of their clauses do not affect the final results. Given a program to
be analyzed, these rules are repeatedly applied to infer more facts until a fixed
point is reached.

Elf works as part of a flow-insensitive Andersen’s pointer analysis context-
sensitively. However, all the Datalog rules are given here context-insensitively.

There are 207 Datalog rules. One set of rules handles all the 98 possible
scenarios (i.e., combinations) involving the methods listed in Table 2 (illustrated
in Figure 5), where 98 = 4 (four member-introspecting methods) × 3 (three
side-effect methods, invoke(), get() and set()) × 4 (four possible arrows in
Figure 5) × 2 (two types of side-effect methods each, instance or static) + 2
(newInstance() with a statically known or unknown type). This set of rules is
further divided into those for performing target propagation (involving 4×3×1×
2 + 1 = 25 scenarios) and those for performing target inference. The remaining
set of rules handles Constructor and arrays and performs bookkeeping duties.

Section 4.1 gives a set of domains and input/output relations used. Section 4.2
describes the seven target propagation scenarios corresponding to Labels 1 – 7 in
Figure 5. Section 4.3 describes four representative target inference scenarios. All
the other rules (available as an open-source tool) can be understood analogously.
Section 4.4 discusses briefly some properties about our analysis.

T : set of class types V : set of program variables
M : set of methods F : set of fields
H : set of heap abstractions I : set of invocation sites
N : set of natural numbers S : set of strings
Scall(invo:I, mtd:M) Vcall(invo:I, base:V, mtd:M)
ActualArg(invo:I, i:N, arg:V) ActualReturn(invo:I, var:V)
HeapType(heap:H, type:T) Assignable(toType:T, fromType:T)
ThisVar(mtd:M, this:V) LookUpMtd(type:T, mName:H, dp:S, mtd:M)
MtdString(mtd:M, str:S) StringToClass(strConst:H, type:T)
MtdDecl(type:T, mName:H, dp:S, mtd:M) FldDecl(type:T, fName:H, fType:T, fld:F)
PublicMtd(type:T, mName:H, mtd:M) PublicFld(type:T, fName:H, fld:F)
NewInstanceHeap(type:T, heap:H) Type-ClassHeap(type:T, clzHeap:H)
Mtd-MtdHeap(mtd:M, mtdHeap:H) Fld-FldHeap(fld:F, fldHeap:H)
VarPointsTo(var:V, heap:H) CallGraph(invo:I, mtd:M)
FldPointsTo(base:H, fld:F, heap:H) RefCallGraph(invo:I, mtd:M)

Fig. 6. Domains and input/output relations

4.1 Domains and Input/Output Relations

Figure 6 shows the eight domains used, 18 input relations and four output rela-
tions. Given a method mtd called at an invocation site I, as a static call (Scall)

Self-inferencing Reflection Resolution for Java 37

or a virtual call (Vcall), its i-th argument arg is identified by ActualArg and
its returned value is assigned to var as identified by ActualReturn.

HeapType describes the types of heap objects. Assignable is the usual sub-
typing relation. ThisVar correlates this to each method where it is declared.
MtdString specifies the signatures (in the form of strings) for all the meth-
ods, including also their containing class types and return types. StringTo-

Class records the class type information for all compile-time string names.
LookUpMtd matches a method mtd named mName with descriptor dp to its
definition in a class, type. For simplicity, mName is modeled as a heap object in
domain H rather than a string in S. We have done the same for method/field
names in MtdDecl, FldDecl, PublicMtd and PublicFld.

MtdDecl records all methods and their declaring classes and FldDecl

records all fields and their declaring classes. To find the metaobjects returned by
getMethod() and getField(), PublicMtd matches a public target method m
named mName in a class of type type, its superclasses or its interfaces searched
in that order (as discussed in Section 2.1) and PublicFld does the same for
fields except that type’s interfaces are searched before type’s superclasses.

The last four input relations record four different types of heap objects cre-
ated. NewInstanceHeap relates the heap objects created at newInstance() calls
with their class types. Type-ClassHeap, Mtd-MtdHeap and Fld-FldHeap re-
late all the classes, methods and fields in the (closed-world) program to their
metaobjects (i.e., Class, Method and Field objects), respectively.

When working with a pointer analysis, Elf both uses and modifies the four
output relations recording the results of the pointer analysis. VarPointsTo and
FldPointsTo maintain the points-to relations and CallGraph encodes the call
graph of the program. As in [4], RefCallGraph is used to record the potential
callees resolved from a call to invoke(). The second argument of invoke() is an
array containing the arguments of its target calls; special handling is needed to
assign these arguments to the corresponding parameters of its target methods.

4.2 Target Propagation
We give seven target propagation scenarios corresponding to Labels 1 – 7 in Fig-
ure 5 when both a target method/field name and its target class type are known.
These rules (used later in Section 4.3) are standard except for getField() and
getMethod(). These two methods are ignored by Doop [4] but handled conser-
vatively in [8], as shown in Table 2, with the target class of a target method/field
ignored, causing the targets in all the classes in the program to be included.

The syntax of a rule is easy to understand: “←” separates the inferred fact
(i.e., the head of the rule) from the preciously established facts (i.e., the body
of the rule). In Scenario P1, the rule for ForName says that among all static
invocation sites, record the calls to forName() in the ForName relation. The
rule for ResolvedClassType records the fact that all such invocation sites with
constant names are resolved. Note that const is a heap object representing “string
constant”. Meanwhile, the points-to and call-graph relations are updated. For
each resolved class, its static initialiser “<clinit>()”, at the callsite is discovered
in case the class has never been referenced in the program.

38 Y. Li et al.

In Scenario P2, a newInstance() call is analyzed for each statically known
class type pointed by clz. For such a type, a call to its default constructor
“<init> ()” is noted. In Scenario P3 for handling a getField() call, both the
statically known field and all the known target classes pointed by clz, i.e., fld-
Name (a heap object representing “string constant”) and type are considered.
Similarly, a getMethod() call is handled in Scenario P6. Note that its second
argument is ignored as discussed in Section 3.2. In Scenarios P4 and P5, calls to
get() and set() are analyzed, respectively. Finally, in Scenario P7, an invoke()
call is handled, identically as in Doop [4] but differently from [8], which approx-
imates its target methods by disregarding the target object obj, on which the
target methods are called.

Scenario P1: Class clz = Class.forName(“string constant”);
ForName(invo) ←

Scall(invo, mtd), MtdString(mtd,
“java.lang.Class: java.lang.Class forName(java.lang.String)”).

ResolvedClassType(invo, type) ←
ForName(invo), ActualArg(invo, 1, arg),
VarPointsTo(arg, const), StringToClass(const, type).

CallGraph(invo, clinit), VarPointsTo(clz, clzHeap) ←
ResolvedClassType(invo, type), Type-ClassHeap(type, clzHeap),
MtdString(clinit, type.toString()+“.<clinit>()”), ActualReturn(invo, clz).

Scenario P2: Object obj = clz.newInstance();
NewInstance(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd, “java.lang.Class: java.lang.Object newInstance()”).
CallGraph(invo, init), HeapType(heap, type),
VarPointsTo(this, heap), VarPointsTo(obj, heap) ←

NewInstance(invo, clz), VarPointsTo(clz, clzHeap), Type-ClassHeap(type, clzHeap),
NewInstanceHeap(type, heap), MtdString(init, type.toString()+“.<init>()”),
ThisVar(init, this), ActualReturn(invo, obj).

Scenario P3: Field f = clz.getField(“string constant”);
GetField(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd,
“java.lang.Class: java.lang.reflect.Field getField(java.lang.String)”).

ResolvedField(invo, fld) ←
GetField(invo, clz), VarPointsTo(clz, clzHeap),
Type-ClassHeap(type, clzHeap), ActualArg(invo, 1, arg),
VarPointsTo(arg, fldName), PublicFld(type, fldName, fld).

VarPointsTo(f, fldHeap) ←
ResolvedField(invo, fld), Fld-FldHeap(fld, fldHeap), ActualReturn(invo, f).

Scenario P4: Object to = f.get(obj);
Get(invo, f) ←

Vcall(invo, f, mtd), MtdString(mtd,
“java.lang.reflect.Field: java.lang.Object get(java.lang.Object)”).

VarPointsTo(to, valHeap) ←
Get(invo, f), VarPointsTo(f, fldHeap), Fld-FldHeap(fld, fldHeap),
ActualArg(invo, 1, obj), VarPointsTo(obj, baseHeap),
FldPointsTo(baseHeap, fld, valHeap), ActualReturn(invo, to).

Self-inferencing Reflection Resolution for Java 39

Scenario P5: f.set(obj, val);
Set(invo, f) ←

Vcall(invo, f, mtd), MtdString(mtd,
“java.lang.reflect.Field: void set(java.lang.Object, java.lang.Object)”).

FldPointsTo(baseHeap, fld, valHeap) ←
Set(invo, f), VarPointsTo(f, fldHeap), Fld-FldHeap(fld, fldHeap),
ActualArg(invo, 1, obj), VarPointsTo(obj, baseHeap),
ActualArg(invo, 2, val), VarPointsTo(val, valHeap).

Scenario P6: Method m = clz.getMethod(“string const”, {...});
GetMethod(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd,
“java.lang.Class: java.lang.reflect.Method getMethod(java.lang.String, java.lang.Class[])”).

ResolvedMethod(invo, mtd) ←
GetMethod(invo, clz), VarPointsTo(clz, clzHeap),
Type-ClassHeap(type, clzHeap), ActualArg(invo, 1, arg),
VarPointsTo(arg, mtdName), PublicMtd(type, mtdName, mtd).

VarPointsTo(m, mtdHeap) ←
ResolvedMethod(invo, mtd), Mtd-MtdHeap(mtd, mtdHeap), ActualReturn(invo, m).

Scenario P7: Object to = m.invoke(obj, {...});
Invoke(invo, m) ←

Vcall(invo, m, mtd), MtdSigString(mtd, “java.lang.reflect.Method:
java.lang.Object invoke(java.lang.Object, java.lang.Object[])”).

RefCallGraph(invo, virtualMtd), VarPointsTo(this, heap) ←
Invoke(invo, m), VarPointsTo(m, mtdHeap), Mtd-MtdHeap(mtd, mtdHeap),
ActualArg(invo, 1, obj), VarPointsTo(obj, heap), HeapType(heap, type),
MtdDecl(_, mtdName, mtdDescriptor, mtd), ThisVar(virtualMtd, this),
LookUpMethod(type, mtdName, mtdDescriptor, virtualMtd).

4.3 Target Inference

When a target method/field name or a target class type is unknown, Elf will in-
fer the missing information, symbolized by red and blue circles along the dashed
arrows in Figure 5. Below we give the Datalog rules for four representative sce-
narios (out of a total of 73 scenarios mentioned earlier for target inference).

Scenario I1: Class clz1 = Class.forName(?); A a = (A) clz2.newInstance().
The post-dominating cast (A) is used to infer the target class types of the
objects reflectively created and pointed to by a, where clz2 points to a Class
object of an unknown type that is initially pointed to by clz1.

Scenario I2: Field[] fs1=clz.getDeclaredFields(); f2=fs2[i];a=(A)f1.get(obj).
The post-dominating type (A) is used to infer the target fields reflectively
accessed at get() on the Field objects that are initially stored into fs1 and
later pointed to by f1. Note that clz is known in this case.

Scenario I3: Field[] fs1=clz.getDeclaredFields(); f2 = fs2[i]; f1.set(obj, val).
The dynamic types of val are used to infer the target fields modified.

Scenario I4: Method m1=clz.getMethod(?, params); a=m2.invoke(obj, args).
The dynamic types of args will be used to infer the target methods called
on the Method objects that are pointed to by m2 but initially created at a
call to m1=clz.getMethod(), where clz is known.

40 Y. Li et al.

Figure 7 gives a few new relations used for handling these four scenar-
ios. The first three are used to identify metaobjects with non-constant names
(called placeholder objects). ClassPh identifies all the invocation sites, e.g.,
Class.forName(?), where Class objects with unknown class names are cre-
ated. MemberPh identifies the invocation sites, e.g., calls to clz.getMethod(?,
...) (clz.getField(?)), where Method (Field) objects are created to represent
unknown method (field) names ‘?’ in a known class clz of type type. If clz is also
unknown, a different relation (not used here) is called for. Furthermore, Mem-

berPhArray identifies which placeholder objects represent arrays. For example,
a call to clz.getDeclaredFields() returns an array of Field objects.

ClassPh(invo:I, heap:H) MemberPh(invo:I, type:T, heap:H)
MemberPhArray(invo:I, array:H) NewInstanceCast(invo:I, castType:T)
GetCast(invo:I, castType:T) HierarchyType(castType:T, type:T)
ArrayPointsTo(arr:H, heap:H)

Fig. 7. Input and output relations for handling target inference

We leverage the type cast information in target inference. The NewInstance-

Cast and GetCast relations correlate each downcast with their post-dominated
invocation sites newInstance() and get(), respectively. HierarchyType(type,
castType) records all the types such that either Assignable(castType, type) or
Assignable(type, castType) holds. Finally, the output relation ArrayPointsTo

records the heap objects stored in an array heap object arr.
Below we describe the target inference rules for the four scenarios above. Note

that once a missing target name or a target class or both are inferred, some target
propagation rules that could not be applied earlier may be fired.

Scenario I1: Class clz1 = Class.forName(?); A a = (A) clz2.newInstance().
If the string argument strHeap marked by ‘?’ in Class.forName(?) is not con-
stant (i.e., if StringToClass does not hold), then clz1 points to a placeholder
object phHeap, indicating a Class object of an unknown type. Such pointer in-
formation is computed together with the pointer analysis used. If clz2 points to
a placeholder object, then a can be inferred to have a type type that is assignable
to the post-dominating cast castType, i.e., A. As type may not be initialized else-
where, a call to its “<clinit>()” is conservatively assumed. After this, the second
rule in Scenario P2 can be applied to the clz2.newInstance() call.

Scenario I1: Class clz1 = Class.forName(?); A a = (A) clz2.newInstance();
VarPointsTo(clz1, phHeap) ←

ForName(invo), ActualArg(invo, 1, arg), VarPointsTo(arg, strHeap),
¬StringToClass(strHeap, _), ClassPh(invo, phHeap), ActualReturn(invo, clz1).

CallGraph(invo, clinit), VarPointsTo(clz2, clzHeap) ←
NewInstance(invo, clz2), VarPointsTo(clz2, phHeap), ClassPh(_, phHeap),
NewInstanceCast(invo, castType), Assignable(castType, type),
Type-ClassHeap(type, clzHeap), MtdString(clinit, type.toString()+“.<clinit>()”).

Unlike [8], Elf does not use the cast (A) to further constrain the Class objects
that are created for clz1 and later passed to clz2, because the cast operation may
not necessarily post-dominate the corresponding forName() call.

Self-inferencing Reflection Resolution for Java 41

Scenario I2: Field[] fs1=clz.getDeclaredFields(); f2=fs2[i]; a=(A)
f1.get(obj). Let us first consider a real case in Figure 8. In line 1683,
factoryField is obtained as a Field object from an array of Field objects
created in line 1653 for all the fields in URLConnection. In line 1687, the object
returned from get() is cast to java.net.ContentHandlerFactory. By using
the cast information, we know that the call to get() may only access the static
fields of URLConnection with the type java.net.ContentHandlerFactory, its
supertypes or its subtypes. Otherwise, all the static fields in URLConnection
must be assumed. The reason why both the supertypes and subtypes must be
considered was explained in Section 3.2. These type relations are captured by
HierarchyType.

Application:Eclipse(v4.2.2):
Class:org.eclipse.osgi.framework.internal.core.Framework
1652 public static Field getField(Class clazz, ...) {
1653 Field[] fields = clazz.getDeclaredFields(); ...
1654 for(int i=0; i<fields.length; i++) { ...
1658 return fields[i]; }}
1682 private static void forceContentHandlerFactory(...) {
1683 Field factoryField = getField(URLConnection.class, ...);
1687 java.net.ContentHandlerFactory factory =

(java.net.ContentHandlerFactory) factoryField.get(null);...}

Fig. 8. Target field inference based on the type cast at get()

The same code pattern in Figure 8 also appears in five other places in
Eclipse4. The prior analyses [4, 8, 20] cannot resolve the call get() above since
getDeclaredFields() is ignored. Elf has succeeded in deducing that only two
out of a total of 13 static fields in URLConnection are accessed at the callsite.

Scenario I2: Field[] fs1 = clz.getDeclaredFields(); f2 = fs2[i]; a = (A) f1.get(obj);
GetDeclaredFields(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd,
“java.lang.Class: java.lang.reflect.Field[] getDeclaredFields()”).

ArrayPointsTo(phArray, phHeap), VarPointsTo(fs1, phArray) ←
GetDeclaredFields(invo, clz), VarPointsTo(clz, clzHeap), Type-ClassType(type, clzHeap)
MemberPhArray(invo, phArray),MemberPh(invo, type, phHeap),ActualReturn(invo, fs1).

VarPointsTo(f1, fldHeap) ←
Get(invo, f1), VarPointsTo(f1, phHeap),
MemberPh(getDecInvo, type, phHeap), GetDeclaredFields(getDecInvo, _),
GetCast(invo, castType), HierarchyType(castType, fldType),
FldDecl(type, _, fldType, fld), Fld-FldHeap(fld, fldHeap).

It is now easy to understand Scenario I2. The second rule processes each
call to getDeclaredFields(). For each class clz of a known type, type, fs1 is
made to point to phArray (a placeholder representing an array), which points to
phHeap (a placeholder representing implicitly all the fields obtained in the call
to getDeclaredFields()). When f2 = fs2[i] is analyzed by the pointer analysis
engine, f1 will point to whatever fs1 contains if the values of fs1 flow into fs2
and the values of f2 flow into f1. The last rule leverages the type cast information
to resolve f1 at a get() call to its potential target Field objects, fldHeap. As a
result, the second rule in Scenario P4 has now been enabled.

42 Y. Li et al.

Scenario I3: Field[] fs1=clz.getDeclaredFields(); f2=fs2[i]; f1.set(obj, val).
This is similar to Scenario I2, except that the dynamic types of val (e.g., the
dynamic type of value in line 290 in Figure 9 is java.lang.String) are used to
infer the target fields modified. Thus, the second rule in Scenario P5 is enabled.

Application:Eclipse(v4.2.2):
Class:org.eclipse.osgi.util.NLS
300 static void load(final String bundleName, Class<?> clazz) {
302 final Field[] fieldArray = clazz.getDeclaredFields();
336 computeMissingMessages(..., fieldArray, ...);...}
267 private static void computeMissingMessages(..., Field[] fieldArray, ...) {
272 for (int i = 0; i < numFields; i++) {
273 Field field = fieldArray[i];
284 String value = "NLS missing message: " + ...;
290 field.set(null, value);...}}

Fig. 9. Target field inference based on the dynamic type of value in set()

Note that the set() call that appears in line 290 in Figure 9 cannot be
handled by the prior analyses [4, 8, 20] since getDeclaredFields() is ignored.
This code pattern appears one more time in line 432 in the same class, i.e.,
org.eclipse.osgi.util.NLS. These two set() calls are used to initialize all
non-final static fields in four classes (by writing a total of 276 fields each time).
Based on target inference, Elf has found all the target fields accessed precisely.

Scenario I3: Field[] fs1 = clz.getDeclaredFields(); f2 = fs2[i]; f1.set(obj, val);
VarPointsTo(f1, fldHeap) ←

Set(invo, f1), VarPointsTo(f1, phHeap), MemberPh(getDecInvo, clzType, phHeap),
GetDeclaredFields(getDecInvo, _), ActualArg(invo, 2, val), VarPointsTo(val, valHeap),
HeapType(valHeap, type), Assignable(fldType, type),
FldDecl(clzType, _, fldType, fld), Fld-FldHeap(fld, fldHeap).

Scenario I4: Method m1=clz.getMethod(?, params); a=m2.invoke(obj, args).
Let us consider a real case from Eclipse4 in Figure 10. In line 174, the
Class objects on which getMethod() is invoked can be deduced from the
types of the objects pointed to by target but cmd is read from input. Thus,
in line 174, method is unknown even though its target class is known. Note
that parameters is explicitly initialized to {this} in line 155. As the type
FrameworkCommandInterpreter has not subtypes, we conclude that the cor-
responding parameter of each potential target method must have this type or
one of its supertypes.

Application:Eclipse(v4.2.2):
Class:org.eclipse.osgi.framework.internal.core.FrameworkCommandInterpreter
123 public Object execute(String cmd){...
155 Object[] parameters = new Object[]{this}; ...
167 for(int i=0; i<size; i++) {
174 method = target.getClass().getMethod("_"+cmd, parameterTypes);
175 retval = method.invoke(target, parameters); ...}}

Fig. 10. Target inference based on the dynamic types of parameters in invoke()

As explained in Section 3.2, we have relied on an intraprocedural analysis to
perform the inference when args can be analyzed exactly element-wise as is the

Self-inferencing Reflection Resolution for Java 43

case in Figure 10. The MatchArgs(args, mtd) relation over V ×M maintains
target methods mtd found from args this way.

Scenario I4: Method m1 = clz.getMethod(?, params); a = m2.invoke(obj, args);
VarPointsTo(m1, phHeap) ←

GetMethod(getInvo, clz), ActualArg(getInvo, 1, arg), VarPointsTo(arg, strHeap),
¬MtdDecl(_, strHeap, _, _), VarPointsTo(clz, clzHeap), Type-ClassHeap(type, clzHeap),
MemberPh(getInvo, type, phHeap), ActualReturn(getInvo, m1).

VarPointsTo(m2, mtdHeap) ←
Invoke(invo, m2), VarPointsTo(m2, phHeap), MemberPh(getInvo, type, phHeap),
GetMethod(getInvo, _), PublicMtd(type, _, mtd), ActualArg(invo, 2, args),
MatchArgs(args, mtd), Mtd-MtdHeap(mtd, mtdHeap).

Let us now look at the rules given in Scenario I4 where clz points to statically
known class, type, but the target methods at invoke() are unknown, just like
the the case illustrated in Figure 10. In the first rule applied to getMethod(),
MthDecl(_, strHeap, _, _) does not hold, since strHeap is not a constant. As
a result, m1 points to a placeholder Method object (indicating that its method
name is unknown). In the second rule, if m2 at the invoke() callsite points to a
placeholder object, PublicMtd will be used to find all the target methods from
the class type based on the ones inferred from args and stored in MatchArgs.

Once the Method objects at an invoke callsite are resolved, the second rule
in Scenario P7 can be applied to resolve the target methods.

Note that the invoke() call in Figure 10 cannot be resolved by the prior
analyses [4, 8] since getMethod() is either ignored [4] or cannot be handled due
to unknown method name [8]. Based on target inference, Elf has found 50 target
methods at this callsite, out of which 48 are real targets by manual inspection.

4.4 Properties

Like the prior reflection analyses [4, 8, 20], Elf is unsound. Firstly, Elf ignores
the part of the Java reflection API related to dynamic class loading. Second, Elf
infers a target at a reflective callsite if and only if both its target name and its
target class are known to strike a good tradeoff between soundness and precision.
However, Elf’s rules can soundly analyze a reflective callsite if all its targets
are known (by its target propagation) or inferred (by its target inference). These
properties follow directly from the Datalog rules formulated in this section.

5 Evaluation

The goal of this research is to produce an open-source reflection analysis to im-
prove the effectiveness of modern pointer analysis tools for Java applications.
We evaluate Elf against a state-of-the-art reflection analysis implemented in
Doop [4]. Being unsound, both analyses make different tradeoffs among sound-
ness, precision and scalability. Our evaluation has validated the following hy-
potheses about our self-inferencing approach in handling reflective code.

Soundness and Precision Tradeoffs. Elf can usually resolve more reflec-
tive call targets than Doop while avoiding many of its spurious targets.

44 Y. Li et al.

Target Propagation vs. Target Inference. Elf can resolve more reflective
call targets when target propagation fails, by inferring the missing target
information with target inference. This can be particularly effective for some
reflection idioms used in practice (as highlighted in Figures 8 – 10).

Effectiveness. When used as part of an under-approximate pointer analysis,
Elf is effective measured in terms of a few popular metrics used.

Scalability. Compared to Doop, Elf achieves the above results at small anal-
ysis time increases for a set of Java programs evaluated.

5.1 Implementation

We have implemented Elf with context sensitivity in Doop (r160113) [4], a
modern pointer analysis tool for Java. On top of Doop’s 64 Datalog rules for
reflection handling, we have added 207 rules. Elf is comprehensive in handling
the Java reflection API, by tackling significantly more methods than prior work
[4, 8, 9, 20]. Specifically, Elf handles the first eight side-effect methods listed
in Table 1, all member-introspecting methods in the reflection API, and four
out of the six entry methods, forName(), getClass(), getComponentType()
and .class, shown in Figure 3. For the three side-effect methods on Array,
Array::newInstance is handled similarly as Class::newInstance. We have
ignored Proxy::newProxyInstance(...) in Table 1 and loadClass() and
getProxyClass() in Figure 3 due to the closed-world assumption (Section 3.1).

We have modified the fact generator in Doop by using an intraprocedural
post-dominance algorithm in Soot [19] to generate the post-dominance facts,
e.g., NewInstanceCast and GetCast in Figure 7 (and InvokeCast not given).

5.2 Experimental Setup

Our setting uses the LogicBlox Datalog engine (v3.9.0), on a Xeon E5-2650 2GHz
machine with 64GB of RAM. We use all the 11 DaCapo benchmarks (v.2006-
10-MR2) and two real-world applications from our reflection-usage study,
Eclipse-4.2.2 and javac-1.7.0. We have excluded Tomcat, Jetty and jEdit,
since neither Doop nor Elf handles the custom class loaders used in the first
two applications and neither can terminate in three hours for the last one. We
have used recent (large) standard libraries: JDK 1.7.0_25 for Eclipse v4.2.2
and javac v1.7.0 and JDK 1.6.0_45 for the remaining programs. For the fop
benchmark from DaCapo, we added org.w3c.dom and org.w3c.css to enable it
to be analyzed. Since java.util.CurrencyData is only used reflectively, we have
made it available in the class path of the fact generator to make it analyzable.

We compare Elf with Doop’s reflection analysis, when both are performed
in the Doop’s pointer analysis framework. Both analyses for a program are
performed in the SSA form of the program generated by Soot, under 1-callsite
context sensitivity implemented in Doop. An array is treated as a whole.

Self-inferencing Reflection Resolution for Java 45

5.3 Results and Analysis

For each program analyzed, the results presented are obtained from all the an-
alyzed code, in both the application itself and the libraries used.

5.3.1 Soundness and Precision Tradeoffs

Elf and Doop are unsound in different ways. So either reflection analysis,
when working with the same pointer analysis, may resolve some true tar-
gets that are missed by the other, in general. Elf handles a significant part
of the Java reflection API that is ignored by Doop (Table 2). To elimi-
nate the impact of this aspect of Elf on its analysis results, we have de-
signed a configuration of Elf, called Elfd, that is restricted to the part
of the reflection API handled by Doop. These include three entry meth-
ods, forName(), getClass() and .class, two member-introspecting methods,
getDeclaredMethod() and getDeclaredField(), as well as four side-effect
methods, invoke(), set(), get() and newInstance() without using the cast
inference. Elfd behaves identically as Doop except for the following three dif-
ferences. First, Elfd applies target propagation since this is more precise than
Doop’s analysis in cases when both target method/field names and their target
class names are known. Second, Elfd uses target inference wherever target prop-
agation fails. Finally, Elfd handles m=clz.getDeclaredMethod(mName, ...)
(m=clz.getDeclaredField(fName)) identically as Doop for each known Class
object C pointed to by clz only when mName (fName) points to a target name
that cannot be resolved by either target propagation or target inference. In this
case, m is resolved to be the set of all declared targets in the target class C.

There are two caveats. First, a call to getDeclaredMethod("str-const") or
getDeclaredField("str-const") is ignored if str-const is absent in
the closed-world. Second, in its current release (r160113), Doop resolves
mtd.invoke(o,args) to calls to potential target methods unsoundly by using
B from the dynamic types B[] of the array objects obj pointed by args to help
filter out many objects passed from args to the corresponding parameters in
the target methods.1 We have modified two rules, LoadHeapArrayIndex in
reflective.logic and VarPointsTo in context-sensitive.logic, to make
this handling sound by using the dynamic types of the objects pointed to by
obj instead. Both Elfd and Doop handle all such interprocedural assignments
exactly this way.

Table 3 compares Elfd and Doop in terms of their soundness and precision
tradeoffs made when resolving invoke(), get() and set() calls. Both analyses
happen to resolve the same number of reflective callsites. For a program, Elfd
usually discovers the same target methods/fields while avoiding many spurious
ones introduced by Doop. We have carried out a recall experiment for all the 11
DaCapo benchmarks by using Tamiflex [2] under its three inputs (small, default
and large). We have excluded Eclipse4 and Javac since the former cannot be

1
Doop has recently fixed this unsound handling in its latest beta version (r5459247),
which also includes analyzing some reflective calls not handled in Table 2.

46 Y. Li et al.

Table 3. Comparing Elf
d and Doop on reflection resolution. According to this par-

ticular configuration of Elf, C denotes the same number of resolved side-effect callsites
in both analyses and T denotes the number of target methods/fields resolved by either.

antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan eclipse4 javac

in
vo

ke C 2 2 5 2 5 - 3 2 2 2 2 6 0

T Doop 77 77 1523 77 1730 - 897 77 77 77 77 78 0
Elf

d 3 3 11 3 11 - 15 3 3 3 3 8 0

se
t C 0 0 0 0 0 - 0 0 0 0 0 2 0

T Doop 0 0 0 0 0 - 0 0 0 0 0 31 0
Elf

d 0 0 0 0 0 - 0 0 0 0 0 2 0

ge
t C 9 9 9 9 9 - 10 9 9 9 9 2 2

T Doop 194 194 194 194 194 - 1292 194 194 194 194 132 3401
Elf

d 28 28 28 28 28 - 1094 28 28 28 28 21 23

analyzed by Tamiflex and the latter has no standard inputs. We found that the
set of true targets resolved by Elfd is always the same as the set of true targets
resolved by Doop for all the benchmarks except jython (analyzed below).

In jython, there is a call m=clz.getDeclaredMethod("typeSetup", ...)
in method PyType::addFromClass(), where clz points to a spurious Class
object representing the class builtin during the analysis. Elfd ignores
builtin since typeSetup is not one of its members. However, Doop resolves

m to be any of the declared methods in the class, including classDictInit(),
opportunistically. As a result, a spurious call edge to builtin ::
classDictInit() is added from an invoke() site in PyType::fillFromClass().
However, this target method turns out to be called from the (only) invoke site
contained in PyJavaClass ::initialize() on a Method object created at the
(only) getMethod call, which is also contained in initialize(). By analyzing
this target method, Doop eventually resolves five true target methods named
typeSetup at m=clz.getDeclaredMethod ("typeSetup", ...) and seven true
target fields at clz.getDeclareField ("exposed_" + name).get(null) in
PyType::exposed_decl_get_object(). These 12 targets are missed by Elfd.

In Elfd, the primary contributor for Elf’s precision improvement (overDoop)
is its target propagation component. It is significantly more beneficial to track
both constant class names and constant method/field names simultaneously
rather than either alone, as suggested earlier in Figure 4.

5.3.2 Target Propagation vs. Target Inference

To evaluate their individual contributions to the soundness and precision trade-
off made, we have included a version of Elf, named Elfp, in which only target
propagation is used. Table 4 is an analogue of Table 3 except that Elf and
Elfp are compared. By examining their results for a side-effect method across
the 13 programs, we find that both component analyses have their respective
roles to play. For most programs, Elf has added zero or a moderate number
of additional targets on top of Elfp. This has two implications. First, target
propagation can be quite effective for some programs if they exhibit many con-
stant class/method/field names (Figure 4). Second, target inference does not
introduce many spurious targets since Elf resolves a reflective target only when

Self-inferencing Reflection Resolution for Java 47

Table 4. Comparing Elf and Elf
p, where C and T are as defined in Table 3

antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan eclipse4 javac

in
vo

ke Elf
p C 2 2 9 5 9 6 7 2 2 2 15 15 4

T 3 3 30 20 30 53 58 3 3 3 31 91 25

Elf
C 2 2 10 8 10 8 7 2 2 2 16 26 4
T 3 3 37 94 37 228 58 3 3 3 36 227 25

se
t Elf

p C 0 0 0 0 0 0 0 0 0 0 0 2 0
T 0 0 0 0 0 0 0 0 0 0 0 2 0

Elf
C 0 0 0 2 0 0 0 0 0 0 0 4 0
T 0 0 0 580 0 0 0 0 0 0 0 555 0

ge
t Elf

p C 9 9 9 9 9 11 9 9 9 9 9 2 2
T 28 28 28 28 28 32 28 28 28 28 28 21 23

Elf
C 9 9 9 9 9 11 11 9 9 9 9 8 2
T 28 28 28 28 28 41 34 28 28 28 28 35 23

both its name and its target class are known (symbolized by the simultaneous
presence of two circles in Figure 5).

From the same recall experiment described earlier, Elf is found to resolve no
fewer true targets across the 11 DaCapo benchmarks except jython than Doop.
In jython, Elf has resolved all the true target methods resolved by Doop by
analyzing all member-introspecting methods. In the case of this afore-mentioned
call to clz.getDeclareField("exposed_" + name).get(null), Elf fails to
discover any target fields due to the absence of cast information. In contrast,
Doop has resolved 1098 target fields declared in all Class objects pointed to by
clz, with only 22 sharing exposed_ as the prefix in their names. In our recall
experiment, 21 of these 22 targets are accessed. Elf can be easily generalized
to infer the target fields accessed (the blue circle shown in Figure 5) at this
get() callsite in a disciplined manner. By also exploiting the partially known
information about target names (such as the common prefix exposed_), Elf will
only need to resolve the 22 target names starting with exposed_ at this callsite.

Target inference can often succeed where target propagation fails, by resolving
more reflective targets at some programs. Let us consider Eclipse4. The situa-
tion for Eclipse in DaCapo is similar. In Eclipse4, there are two set() callsites
with their usage pattern illustrated in Figure 9. Elfp discovers one target from
each callsite. However, Elf has discovered 553 more, one from one of the two
callsites and 552 true targets at the two callsites as discussed in Section 4.3. As
for get(), Elf has found 14 more targets than Elfp, with 12 true targets found
from the six code fragments (with their usage pattern given in Figure 8), con-
tributing two each, as explained in Section 4.3. Finally, there are two invoke()
callsites similar to the one illustrated in Figure 10. Elf has discovered a total
of 2 × 48 = 96 true target methods invoked at the two callsites. How to resolve
one such invoke() call is also discussed in Section 4.3.

When analyzing Java programs, a reflection analysis works together with a
pointer analysis. Each benefits from precision improvements from the other. If
the pointer analysis used from Doop is 2-callsite-sensitive+heap, then C = 5
and T = 22 for Elfp and C = 8 and T = 83 for Elf for hsqldb in Table 4.

48 Y. Li et al.

Table 5. Comparing Elf and Doop in terms of five pointer analysis precision met-
rics (smaller is better): the average size of points-to sets, the number of edges in the
computed call-graph (including regular and reflective call graph edges), the number of
virtual calls whose targets cannot be disambiguated, the number of casts that cannot
be statically shown safe, and the total points-to set size. The benchmarks for which
Elf produced larger numbers than Doop are highlighted in bold.

average
objects
per var

call graph edges
∼

reachable methods

poly v-calls
/

reachable v-calls

may-fail casts
/

reachable casts

size of var
points-to

(M)

antlr
Doop

b 29.26 61107∼8.9K 2000/33K 1040/1.8K 16.1
Doop 29.43 61701∼9.1K 2002/33K 1060/1.8K 16.3
Elf 29.02 61521∼9.0K 2001/33K 1051/1.8K 16.1

bloat
Doop

b 42.36 70661∼10.1K 2144/31K 1998/2.8K 32.7
Doop 42.29 71202∼10.3K 2146/31K 2016/2.8K 32.9
Elf 42.01 71075∼10.3K 2145/31K 2009/2.8K 32.7

chart
Doop

b 43.06 82148∼15.7K 2820/39K 2414/3.7K 47
Doop 43.55 85878∼16.3K 2928/40K 2534/3.9K 48.8
Elf 42.99 83872∼16.1K 2845/40K 2454/3.8K 48.1

eclipse
Doop

b 21.11 53738∼9.4K 1520/23K 1149/2.0K 12.3
Doop 21.31 54357∼9.6K 1521/23K 1169/2.0K 12.5
Elf 21.41 55885∼9.9K 1582/25K 1297/2.2K 12.8

fop
Doop

b 36.72 77052∼15.4K 2751/34K 2082/3.3K 39.7
Doop 37.3 80958∼16.1K 2871/35K 2177/3.5K 41.5
Elf 36.7 78758∼15.8K 2775/35K 2119/3.4K 40.7

hsqldb
Doop

b 23.79 73950∼13.2K 1888/36K 1765/2.8K 17.8
Doop — — — — —
Elf 34.4 78290∼13.7K 1939/37K 1825/2.9K 27.5

jython
Doop

b 28.31 57127∼9.8K 1652/24K 1305/2.2K 17.4
Doop 107.29 96200∼13.4K 2534/29K 2252/3.2K 89
Elf 112.09 93503∼12.9K 2478/28K 2291/3.2K 88.5

luindex
Doop

b 16.65 42130∼7.9K 1189/18K 829/1.5K 7.7
Doop 16.92 42724∼8.1K 1191/18K 849/1.5K 7.8
Elf 16.52 42544∼8.0K 1190/18K 840/1.5K 7.7

lusearch
Doop

b 17.57 45399∼8.5K 1368/19K 930/1.6K 8.6
Doop 17.82 45992∼8.7K 1370/20K 950/1.7K 8.7
Elf 17.43 45812∼8.7K 1369/19K 941/1.6K 8.6

pmd
Doop

b 18.9 49230∼9.3K 1258/21K 1265/2.0K 11.2
Doop 19.12 49825∼9.5K 1260/21K 1285/2.0K 11.4
Elf 18.76 49644∼9.5K 1259/21K 1276/2.0K 11.2

xalan
Doop

b 25.84 58356∼10.6K 1977/26K 1202/2.1K 15.5
Doop 25.95 58896∼10.8K 1979/26K 1220/2.1K 15.7
Elf 27.25 60260∼10.9K 2085/26K 1263/2.1K 16.7

eclipse4
Doop

b 30.48 57141∼10.1K 1634/25K 1223/2.2K 20.3
Doop 30.4 58060∼10.4K 1671/25K 1335/2.3K 20.4
Elf 33.01 61129∼10.8K 1733/27K 1410/2.4K 23.1

javac
Doop

b 48.99 84084∼13.1K 4102/35K 2925/4.0K 43.6
Doop 54.62 84425∼13.3K 4103/36K 2930/4.0K 45
Elf 55.56 84747∼13.4K 4105/36K 2934/4.0K 47.9

5.3.3 Effectiveness

Table 5 shows the effectiveness of Elf when it is used in an under-approximate
pointer analysis, which is usually regarded as being sound in the literature. In
addition to Doop, Doopb is its baseline version with reflection ignored except
that only calls to newInstance() are analyzed (precisely). As in [6], the same
five precision metrics are used, including two clients, poly v-calls and may-fail
casts (smaller is better). Elf distinguishes different constant class/method/field
names. As mentioned in an afore-mentioned caveat, Doop has been modified to
behave identically. However, Doopb distinguishes only different constant class

Self-inferencing Reflection Resolution for Java 49

Table 6. Comparing Elf and Doop in term of analysis times (secs)

antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan eclipse4 javac
Doop 171 299 503 151 442 - 730 103 112 167 215 262 563
Elf 211 309 538 193 804 475 3561 115 122 550 733 445 755

names as it ignores the first String parameter in calls to getDeclaredMethod()
or getDeclaredField(). As a result, Doopb represents all other string constants
(the ones which do not represent class names) with a single string object. To
ensure a fair comparison (and follow [6, 15]), we have post-processed the analysis
results from both Doop and Elf using the same string abstraction as in Doopb.
As Doop does not exploit the type cast for newInstance(), Elf does not do
it either. In addition, Elf’s capability for handling reflective code on Array is
turned off as Doop ignores it.

As all the three analyses are unsound, the results in Table 5 must be inter-
preted with caution. Having compared Elfd and Doop earlier, we expect these
results to provide a rough indication about the effectiveness of Elf (relative to
Doop) in reflection resolution. Despite the fact that Elf usually resolves more
true targets as explained earlier (Tables 3 and 4), Elf exhibits smaller numbers
in eight programs in terms of all the five metrics and slightly larger ones in the
remaining five programs (highlighted in bold font). Thus, these results suggest
that Elf appears to strike a good tradeoff between soundness and precision.

For jython, both Doop and Elf have significantly increased the code cover-
age of the underlying pointer analysis used. For the invoke() site in
PyType::fillFromClass(), both Doop and Elf have resolved 17 methods
named typeSetup residing in 17 classes, with five being resolved differently as
explained earlier. When each of these methods is executed (during our recall ex-
periment), 1 to 47 inner classes are exercised. So this benchmark demonstrates
once again the importance of reflection analysis, in practice.

5.3.4 Scalability

Table 6 compares Elf with Doop in terms of analysis time consumed. In the
case of hsqldb, Doop cannot run to completion in three hours. In prior work [6,
15], jython and hsqldb are often analyzed with reflection disabled and hsqldb
has its entry point set manually in a special harness. Note that if only target
method/field names are tracked as described in [8, 9], the resulting version of
Elf cannot terminate in three hours for these two benchmarks. As Elf handles
more reflection methods than Doop, by performing target propagation as well
as more elaborate and more time-consuming target inference, Elf exhibits a
slowdown of 1.9X on average with hsqldb disregarded.

6 Related Work

Static Analysis. In Section 3.3, we have compared Elf in great detail with
the two most-closely related static analyses [4, 8]. Briefly, Livshits et al. [8] in-
troduced the first static reflection analysis for Java, which has influenced the

50 Y. Li et al.

design and implementation of several pointer analysis tools [4, 20, 21]. They
suggested tracking the flow of string constants and leveraging the cast informa-
tion to narrow the types of objects created at newInstance(), and implemented
their analysis in bddbddb [21], a tool for specifying and querying program anal-
yses. However, Elf is the first to leverage the cast information to resolve targets
at other reflective calls, such as invoke(), get() and set().

Doop [4] includes a few pointer analyses for Java programs using the Datalog
language. Its reflection handling can be seen as analogous to adding a sophisti-
cated analysis similar as [8] but in conjunction with a context-sensitive pointer
analysis. In addition, Doop considers more Java features (such as distinguishing
instance from static field operations) when handling reflection.

Wala [20] is a tool from IBM Research designed for static analysis. Its reflec-
tion handling is similar to Doop’s (i.e., by considering only class types to resolve
reflective calls), but without handling Field-related methods.

In summary, existing solutions focus on target propagation by tracking the
flow of string constants representing either method/field names [8, 21] or class
names [4, 20] in a program. Elf takes a disciplined approach to balance sound-
ness, precision and scalability by exploiting a self-inferencing property inherent
in reflective code. As illustrated in Figure 5, Elf resolves a reflective target when
both its target class (red circle) and its target method/field name (blue circle)
are known, by performing target propagation (through tracking string constants)
and target inference (through type inference). In future work, we will improve
Elf to infer missing target method/field names based on some partial informa-
tion obtained from string manipulation operations and to handle the situations
when either a target method/field name or a target class type is missing.

Dynamic Analysis. Hirzel et al. [5] proposed an online pointer analysis for
handling various dynamic features of Java at run time. To tackle reflection, their
analysis instruments a program so that constraints are generated dynamically
when the injected code is triggered during program execution. Thus, pointer
information is incrementally updated when new constraints are gradually intro-
duced by reflection. This technique on reflection handling can be used in JIT
optimizations but may not be suitable for whole-program pointer analysis.

To facilitate (static) pointer analysis, Bodden et al. [2] suggested leveraging
the runtime information gathered for reflective calls. Their tool, TamiFlex,
records usage information of reflective calls in the program at run time, interprets
the logging information, and finally, transforms these reflective calls into regular
Java method calls. In addition, TamiFlex inserts runtime checks to warn the
user in cases that the program encounters reflective calls that diverge from the
recorded information of previous runs. Elf is complementary to TamiFlex by
resolving reflective calls statically rather than dynamically.

Soot [19] is a static analysis and optimization framework for Java. For reflec-
tive callsites found in the standard libraries, the Soot developers have discovered
a list of their possible targets manually. Soot has now a special built-in support
for TamiFlex [2], allowing some reflective call targets to be found dynamically.

Self-inferencing Reflection Resolution for Java 51

Others. Braux and Noyé [3] provided offline partial evaluation support for
reflection in order to perform aggressive compiler optimizations for Java ap-
plications. It transforms a program by compiling away the reflection code into
regular operations on objects according to their concrete types that are con-
strained manually. Elf can be viewed as a tool for inferring such constraints
automatically.

To increase code coverage, some static analysis tools [4, 21] allow the user
to provide ad hoc manual specifications about reflection usage in a program.
However, due to the diversity and complexity of applications, it is not yet clear
how to do so in a systematic manner. For framework-based web applications,
Sridharan et al. [16] introduced a framework that exploits domain knowledge
to automatically generate a specification of framework-related behaviours (e.g.,
reflection usage) by processing both application code and configuration files. Elf
may also utilize domain knowledge to analyze some particular configuration files,
but only for those reflective call sites that cannot be resolved effectively.

Finally, the dynamic analyses [2, 5] work in the presence of both dynamic
class loading and reflection. Nguyen, Potter and Xue [12, 22, 23] introduced an
interprocedural side-effect analysis for open-world Java programs (by allowing
dynamic class loading but disallowing reflection). Like other static reflection
analyses [4, 8, 20, 21], Elf can presently analyze closed-world Java programs
only.

7 Conclusion

Reflection analysis is difficult but increasingly important both for sound and for
under-approximate pointer analysis for Java applications, especially framework-
based applications. This paper advances the state-of-the art in reflection analysis
for Java, by (1) presenting some useful findings on reflection usage in Java bench-
marks and applications, (2) introducing a self-inferencing resolution approach,
(3) contributing an open-source implementation consisting of 207 Datalog rules,
and (4) demonstrating the effectiveness of our new reflection analysis.

Acknowledgements. The authors wish to thank the anonymous reviewers for
their valuable comments, the Doop team for making Doop available, and Log-
icBlox Inc. for providing us its Datalog engine. This work is supported by an
ARC grant, DP130101970.

References
1. Berndl, M., Lhoták, O., Qian, F., Hendren, L.J., Umanee, N.: Points-to analysis

using BDDs. In: PLDI 2003, pp. 103–114 (2003)
2. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:

Aiding static analysis in the presence of reflection and custom class loaders. In:
ICSE 2011, pp. 241–250 (2011)

3. Braux, M., Noyé, J.: Towards partially evaluating reflection in Java. In: PEPM
2000, pp. 2–11 (2000)

52 Y. Li et al.

4. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: OOPSLA 2009, pp. 243–262 (2009)

5. Hirzel, M., Dincklage, D.V., Diwan, A., Hind, M.: Fast online pointer analysis.
ACM Trans. Program. Lang. Syst. 29(2) (2007)

6. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: PLDI 2013, pp. 423–434 (2013)

7. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

8. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

9. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. Technical report,
Stanford University (2005)

10. Lu, Y., Shang, L., Xie, X., Xue, J.: An incremental points-to analysis with CFL-
reachability. In: Jhala, R., De Bosschere, K. (eds.) Compiler Construction. LNCS,
vol. 7791, pp. 61–81. Springer, Heidelberg (2013)

11. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1) (2005)

12. Nguyen, P.H., Xue, J.: Interprocedural side-effect analysis and optimisation in the
presence of dynamic class loading. In: ACSC 2005, pp. 9–18 (2005)

13. Shang, L., Lu, Y., Xue, J.: Fast and precise points-to analysis with incremental
CFL-reachability summarisation. In: ASE 2012, pp. 270–273 (2012)

14. Shang, L., Xie, X., Xue, J.: On-demand dynamic summary-based points-to analy-
sis. In: CGO 2012, pp. 264–274 (2012)

15. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understand-
ing object-sensitivity. In: POPL 2011, pp. 17–30 (2011)

16. Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S., Tripp, O., Berg, R.: F4F: Taint
analysis of framework-based web applications. In: OOPSLA 2011, pp. 1053–1068
(2011)

17. Sridharan, M., Bodík, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI 2006, pp. 387–400 (2006)

18. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Alias Analysis for
Object-Oriented Programs. In: Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in
Object-Oriented Programming. LNCS, vol. 7850, pp. 196–232. Springer, Heidelberg
(2013)

19. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a Java bytecode optimization framework. In: CASCON 1999 (1999)

20. WALA. T.J. Watson Libraries for Analysis, http://wala.sf.net.
21. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. In: PLDI 2004, pp. 131–144 (2004)
22. Xue, J., Nguyen, P.H.: Completeness analysis for incomplete object-oriented pro-

grams. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 271–286. Springer, Hei-
delberg (2005)

23. Xue, J., Nguyen, P.H., Potter, J.: Interprocedural side-effect analysis for incomplete
object-oriented software modules. Journal of Systems and Software 80(1), 92–105
(2007)

http://wala.sf.net

Self-inferencing Reflection Resolution for Java 53

A Artifact Description

Authors of the Artifact. Design: Yue Li, Tian Tan and Jingling Xue. Devel-
opers: Tian Tan and Yue Li.

Summary. The artifact includes all the four analyses evaluated in the paper,
namely Doop, Elf and two variations of Elf, Elfd and Elfp.

Content. The artifact package includes:

– an index.html file containing the detailed instructions for using the artifact
and for reproducing the experimental results in the paper;

– the four analysis tools, Doop, Elf, Elfd and Elfp;
– a modified version of the fact generator provided by Doop;
– a Python script exec.py (and some auxiliary scripts) for driving all the

provided analyses and formatting the output results;
– all the necessary JREs, applications and benchmarks analyzed.

Elf and its two variations, Elfd and Elfp, are all built on top of Doop (version
r160113).Elf presently consists of 207 rules (with about 1800 LOC). To simplify
repeatability of our experiments, we have provided these analysis configurations
directly instead of Doop patches.

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of our code is available at
http://www.cse.unsw.edu.au/~jingling/elf.

Tested Platforms. The artifact works on 64-bit Linux (Ubuntu 13.10 LTS in
our case) machine with at least 8 GB of RAM.

License. MIT license (http://opensource.org/license/MIT)

MD5 sum of the Artifact. 024b6fccc7c7bb2edc7dac443f457761

Size of the Artifact. 358M

h

Constructing Call Graphs of Scala Programs

Karim Ali1, Marianna Rapoport1, Ondřej Lhoták1,
Julian Dolby2, and Frank Tip1

1 University of Waterloo, Canada
{karim,mrapoport,olhotak,ftip}@uwaterloo.ca

2 IBM T.J. Watson Research Center, USA
dolby@us.ibm.com

Abstract. As Scala gains popularity, there is growing interest in pro-
gramming tools for it. Such tools often require call graphs. However, call
graph construction algorithms in the literature do not handle Scala fea-
tures, such as traits and abstract type members. Applying existing call
graph construction algorithms to the JVM bytecodes generated by the
Scala compiler produces very imprecise results due to type information
being lost during compilation. We adapt existing call graph construc-
tion algorithms, Name-Based Resolution (RA) and Rapid Type Analysis
(RTA), for Scala, and present a formalization based on Featherweight
Scala. We evaluate our algorithms on a collection of Scala programs. Our
results show that careful handling of complex Scala constructs greatly
helps precision and that our most precise analysis generates call graphs
with 1.1-3.7 times fewer nodes and 1.5-18.7 times fewer edges than a
bytecode-based RTA analysis.

1 Introduction

As Scala [20] gains popularity, the need grows for program analysis tools for
it that automate tasks such as refactoring, bug-finding, verification, security
analysis, and whole-program optimization. Such tools typically need call graphs
to approximate the behavior of method calls. Call graph construction has been
studied extensively [11,21]; algorithms vary primarily in how they handle indirect
function calls. Several Scala features such as traits, abstract type members, and
closures affect method call behavior. However, to our knowledge, no call graph
construction algorithms for Scala have yet been proposed or evaluated.

One could construct call graphs of Scala programs by compiling them to JVM
bytecode, and then using existing bytecode-based program analysis frameworks
such as WALA [15] or SOOT [29] on those generated bytecodes. However, as we
shall demonstrate, this approach is not viable because significant type informa-
tion is lost during the compilation of Scala programs, causing the resulting call
graphs to become extremely imprecise. Furthermore, the Scala compiler trans-
lates certain language features using hard-to-analyze reflection. While solutions
exist for analyzing programs that use reflection, such approaches tend to be com-
putationally expensive or they make very conservative assumptions that result
in a loss of precision.

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 54–79, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Constructing Call Graphs of Scala Programs 55

Therefore, we explore how to adapt existing call graph construction algorithms
for Scala, and we evaluate the effectiveness of such algorithms in practice. Our
focus is on adapting low-cost algorithms to Scala, in particular Name-Based Res-
olution (RA) [26], Class Hierarchy Analysis (CHA) [9], and Rapid Type Analysis
(RTA) [6]. We consider how key Scala features such as traits, abstract type mem-
bers, and closures can be accommodated, and present a family of successively
more precise algorithms. In a separate technical report [4], we formally define our
most precise algorithm for FSalg, the “Featherweight Scala” subset of Scala that

was previously defined by Cremet et al. [8], and prove its correctness by demon-
strating that for each execution of a method call in the operational semantics, a
corresponding edge exists in the constructed call graph.

Our new algorithms differ primarily in how they handle the two key challenges
of analyzing Scala: traits, which encapsulate a group of method and field defini-
tions so that they can be mixed into classes, and abstract type members, which
provide a flexible mechanism for declaring abstract types that are bound during
trait composition. We implement our algorithms in the Scala compiler, and com-
pare the number of nodes and edges in the call graphs computed for a collection
of publicly available Scala programs. In addition, we evaluate the effectiveness
of applying the RTA algorithm to the JVM bytecodes generated by the Scala
compiler. For each comparison, we investigate which Scala programming idioms
result in differences in cost and precision of the algorithms.

Our experimental results indicate that careful handling of complex Scala fea-
tures greatly improves call graph precision. We also found that call graphs con-
structed from the JVM bytecodes using the RTA algorithm are much less precise
than those constructed using our source-based algorithms, because significant
type information is lost due to the transformations and optimizations performed
by the Scala compiler.

In summary, this paper makes the following contributions:

1. We present variations on the RA [26] and RTA [6] algorithms for Scala. To
our knowledge, these are the first call graph construction algorithms designed
for Scala.

2. We evaluate these algorithms, comparing their relative cost and precision on
a set of publicly available Scala programs.

3. We evaluate the application of the RTA algorithm to the JVM bytecodes
produced by the Scala compiler, and show that such an approach is not
viable because it produces highly imprecise call graphs.

In addition, we have formalized our most precise algorithm and proven its cor-
rectness in a separate technical report [4].

The remainder of this paper is organized as follows. Section 2 reviews existing
call graph construction algorithms that serve as the inspiration for our work.
Section 3 presents a number of motivating examples that illustrate the challenges
associated with constructing call graphs of Scala programs. Section 4 presents
our algorithms. Section 5 presents the implementation in the context of the
Scala compiler. An evaluation of our algorithms is presented in Section 6. Lastly,
Section 7 concludes and briefly discusses directions for future work.

56 K. Ali et al.

2 Background

Algorithms for call graph construction [11] have been studied extensively in
the context of object-oriented programming languages such as Java [10, 17],
C++ [6] and Self [1], of functional programming languages such as Scheme [24]
and ML [12], and of scripting languages such as JavaScript [25]. Roughly speak-
ing, most call graph construction algorithms can be classified as being either
type-based or flow-based [7, 13, 14, 17, 18]. The former class of algorithms uses
only local information given by static types to determine possible call targets,
whereas the latter analyzes the program’s data flow.

We focus on type-based algorithms, so we will briefly review some important
type-based call graph construction algorithms for object-oriented languages upon
which our work is based. In the exposition of these algorithms, we use a con-
straint notation that is equivalent to that of [27], but that explicitly represents
call graph edges using a relation ‘�→’ between call sites and methods.

Name-Based Resolution (RA). The main challenge in constructing call graphs
of object-oriented programs is in approximating the behavior of dynamically
dispatched (virtual) method calls. Early work (see, e.g., [26]) simply assumed
that a virtual call e.m(· · ·) can invoke any method with the same name m. This
approach can be captured using the following constraints:

main ∈ R
RAmain

c �→M
M ∈ R

RAreachable

call c : e.m(. . .) occurs in method M
method M ′ has name m

M ∈ R

c �→M ′ RAcall

Intuitively, rule RAmain reads “the main method is reachable” by including
it in the set R of reachable methods. Rule RAcall states that “if a method is
reachable, and a call site c : e.m(. . .) occurs in its body, then every method with
name m is reachable from c.” Finally, rule RAreachable states that any method
M reachable from a call site c is contained in the set R of reachable methods.

Class Hierarchy Analysis (CHA). Obviously, Name-Based Resolution can be-
come very imprecise if a class hierarchy contains unrelated methods that happen
to have the same name. Class Hierarchy Analysis [9] improves upon name-based
resolution by using the static type of the receiver expression of a method call in
combination with class hierarchy information to determine what methods may
be invoked from a call site. Following the notation of [27], we use StaticType(e)
to denote the static type of an expression e, and StaticLookup(C,m) to denote
the method definition that is invoked when method m is invoked on an object
with run-time type C. Using these definitions, CHA is defined as follows:

main ∈ R
CHAmain

c �→M
M ∈ R

CHAreachable

call c : e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))
StaticLookup(C,m) = M ′

M ∈ R

c �→M ′ CHAcall

Constructing Call Graphs of Scala Programs 57

Rules CHAmain and CHAreachable are the same as their counterparts for RA.
Intuitively, rule CHAcall now reads: “if a method is reachable, and a call site
c : e.m(. . .) occurs in the body of that method, then every method with name
m that is inherited by a subtype of the static type of e is reachable from c.”

Rapid Type Analysis (RTA). Bacon and Sweeney [5, 6] observed that CHA pro-
duces very imprecise results when only a subset of the classes in an application is
instantiated. In such cases, CHA loses precision because, effectively, it assumes
for a method call e.m(· · ·) that all subtypes of the static type of e may arise
at run time. In order to mitigate this loss of precision, RTA maintains a set of
types Σ̂ that have been instantiated in reachable methods. This set is used to
approximate the types that a receiver expression may assume at run time. The
constraint formulation of RTA is as follows:

main ∈ R
RTAmain

“new C()” occurs in M
M ∈ R

C ∈ Σ̂
RTAnew

c �→M
M ∈ R

RTAreachable

call e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))
StaticLookup(C,m) = M ′

M ∈ R

C ∈ Σ̂

c �→M ′ RTAcall

Rules RTAmain and RTAreachable are again the same as before. Intuitively,
RTAcall refines CHAcall by requiring that C ∈ Σ̂, and rule RTAnew reads: “Σ̂
contains the classes that are instantiated in a reachable method.”

Sallenave and Ducourneau [22] recently presented an extension of RTA for
the C# language that determines the types with which parameterized classes
are instantiated by maintaining sets of type tuples for parameterized classes and
methods. They use their analysis to generate efficient CLI code for embedded ap-
plications that avoids expensive boxing/unboxing operations on primitive types,
while permitting a space-efficient shared representation for reference types.

3 Motivating Examples

Before presenting our algorithms in Section 4, we briefly review the Scala features
that pose the most significant challenges for call graph construction.

3.1 Traits

Traits are one of the cornerstone features of Scala. They provide a flexible mech-
anism for distributing the functionality of an object over multiple reusable com-
ponents. Traits are similar to Java’s abstract classes in the sense that they may
provide definitions of methods, and in that they cannot be instantiated by them-
selves. However, they resemble Java interfaces in the sense that a trait may
extend (“mix-in”) multiple super-traits.

58 K. Ali et al.

1 object Traits {
2 trait A {
3 def foo = println (”A.foo”)
4 def bar
5 }
6 trait B {
7 def foo
8 def bar = this . foo
9 }

10 trait C {
11 def foo = println (”C.foo”)
12 }
13

14 def main(args: Array[String]) =
15 { (new A with B).bar }
16 }

Fig. 1. A Scala program illustrating the use of traits

Figure 1 shows an example program that declares a trait A in which a concrete
method foo and an abstract method bar are defined. The program also declares
a trait B that defines a concrete method bar and an abstract method foo. Lastly,
trait C defines a concrete method foo. The program contains a main method that
creates an object by composing A and B, and then calls bar on that object.

Before turning our attention to call graph construction, we need to consider
how method calls are resolved in Scala. In Scala, the behavior of method calls
depends on the class linearization order of the receiver object [19, Section 5.1.2].
The linearization of a class C with parents C1 with · · · with Cn is defined as:

L(C) = C,L(Cn)
→
+ · · ·→+L(C1)

where
→
+ denotes concatenation where elements of the right operand replace

identical elements of the left one1. Scala defines the set of members of a class in
terms of its linearization. Ignoring a number of complicating factors detailed in
the Scala specification [19, §5.1.3 and §5.1.4], the members of a class C include
all members m declared in classes in L(C), except for those overridden in classes
that precede C in the linearization order. Given this notion of class membership,
the resolution of method calls is straightforward: a call x.m(· · ·) where x has
type C at run time dispatches to the unique member named m in C.

For the example of Figure 1, the linearization order of type new A with B

on line 15 is: X, B, A (here, we use X to denote the anonymous class that is
implicitly declared by the allocation expression new A with B). Following the
definitions above, the set of members of X is: { B.bar,A.foo }. Hence, the call to
bar on line 15 resolves to B.bar. Using a similar argument, the call to foo on line 8
resolves to A.foo. Therefore, executing the program will print “A.foo”.

Implications for call graph construction. The presence of traits complicates the
construction of call graphs because method calls that occur in a trait typically
cannot be resolved by consulting the class hierarchy alone. In the example of
Figure 1, B.bar contains a call this.foo on line 8. How should a call graph con-
struction algorithm approximate the behavior of this call, given that there is no
inheritance relation between A, B, and C?

1 The presence of an allocation expression such as new C with D is equivalent to a
declaration of a new empty class with parents C with D.

Constructing Call Graphs of Scala Programs 59

To reason about the behavior of method calls in traits, a call graph con-
struction algorithm needs to make certain assumptions about how traits are
combined. One very conservative approach would be to assume that a program
may combine each trait with any set of other traits in the program in any order2,
such that the resulting combination is syntactically correct3. Then, for each of
these combinations, one could compute the members contained in the resulting
type, and approximate the behavior of calls by determining the method that is
selected in each case. For the program of Figure 1, this approach would assume
that B is composed with either A or with C. In the former case, the call on line 8
is assumed to be invoked on an object of type A with B (or B with A), and would
dispatch to A.foo. In the latter, the call is assumed to be invoked on an object
of type C with B (or B with C), and would dispatch to C.foo. Hence, a call graph
would result in which both A.foo and C.foo are reachable from the call on line 8.

The conservative approach discussed above is likely to be imprecise and in-
efficient in cases where a program contains many traits that can be composed
with each other. For practical purposes, a better approach is to determine the
set of combinations of traits that actually occur in the program, and to use that
set of combinations of traits to resolve method calls. Returning to our example
program, we observe that the only combination of traits is A with B, on line 15.
If the call on line 8 is dispatched on an object of this type, it will dispatch to
A.foo, as previously discussed. Hence, this approach would create a smaller call
graph in which there is only one outgoing edge for the call on line 8.

This more precise approach requires that the set of all combinations of traits
in the program can be determined. The conservative approach could still have
merit in cases where this information is not available (e.g., libraries intended to
be extended with code that instantiates additional trait combinations).

3.2 Abstract Type Members

Scala supports a flexible mechanism for declaring abstract type members in traits
and classes. A type declaration [19, §4.3] defines a name for an abstract type,
along with upper and lower bounds that impose constraints on the concrete types
that it could be bound to. An abstract type is bound to a concrete type when
its declaring trait is composed with (or extended by) another trait that provides
a concrete definition in one of two ways: either it contains a class or trait with
the same name as the abstract type, or it declares a type alias [19, §4.3] that
explicitly binds the abstract type to some specified concrete type.

Figure 2 shows a program that declares traits X, Y, Z, and HasFoo. Traits X

and Y each declare a member class A that is a subclass of HasFoo. Traits Y and
Z each declare an abstract type member B and a field o, which is assigned a new

2 Note that an X with Y object may behave differently from a Y with X object in
certain situations because these objects have different linearization orders.

3 If multiple traits that provide concrete definitions of the same method are composed,
all but the last of these definitions in the linearization order must have the override
modifier in order for the composition to be syntactically correct [19, Section 5.1.4].

60 K. Ali et al.

17 object AbstractTypeMembers {
18 trait HasFoo {
19 def foo : Unit
20 }
21 trait X {
22 class A extends HasFoo {
23 def foo = println (”X.A.foo”)
24 }
25 }
26 trait Y {
27 class A extends HasFoo {
28 def foo = println (”Y.A.foo”)
29 }
30 ...

31 ...
32 type B = A
33 val o = new A
34 }
35 trait Z {
36 type B <: HasFoo
37 val o: B
38 def bar = o.foo
39 }
40

41 def main(args: Array[String]) =
42 { (new Y with Z {}).bar }
43 }

Fig. 2. A Scala program illustrating the use of abstract type members

A object in Y. Note that Y defines its B to be the same as Y.A. Observe that the
abstract member type B of Z has a bound HasFoo, and that o is declared to be of
type B. The presence of this bound means that we can call foo on o on line 38.

On line 42, the program creates an object by composing Y with Z, and calls
bar on it. Following Scala’s semantics for method calls, this call will dispatch to
Z.bar. To understand how the call o.foo on line 38 is resolved, we must understand
how abstract type members are bound to concrete types as a result of trait
composition. In this case, the composition of Y with Z means that the types Y.B

and Z.B are unified. Since Y.B was defined to be the same as Y.A, it follows that
the abstract type member Z.B is bound to the concrete type Y.A. Thus, executing
the call on line 38 dispatches to Y.A.foo, so the program prints “Y.A.foo”.

Implications for call graph construction. How could a call graph construction
algorithm approximate the behavior of calls such as o.foo in Figure 2, where the
receiver expression’s type is abstract? A conservative solution relies on the bound
of the abstract type as follows: For a call o.f(· · ·) where o is of an abstract type
T with bound B, one could assume the call to dispatch to definitions of f(· · ·)
in any subtype of B. This approach is implemented in our TCA

bounds algorithm
and identifies both X.A.foo and Y.A.foo as possible targets of the call on line 38.

However, the above approach may be imprecise if certain subtypes of the
bound are not instantiated. Our TCA

expand algorithm implements a more pre-
cise approach that considers how abstract type members are bound to concrete
types in observed combinations of traits, in the same spirit of the more precise
treatment of trait composition discussed above. In Figure 2, the program only
creates an object of type Y with Z, and Z.B is bound to Y.A in this particular
combination of traits. Therefore, the call on line 38 must dispatch to Y.A.foo.

Scala’s parameterized types [19, §3.2.4] resemble abstract type members and
are handled similarly. Similar issues arise in other languages with generics [22].

Constructing Call Graphs of Scala Programs 61

44 object Closures {
45 def bar1(y: () => A) = { y() }
46 def bar2(z: () => B) = { z() }
47

48 class A
49 class B

50 def main(args: Array[String]) = {
51 val foo1 = () => { new A }
52 val foo2 = () => { new B }
53 this .bar1(foo1)
54 this .bar2(foo2)
55 }
56 }

Fig. 3. A Scala program illustrating the use of closures

3.3 Closures

Scala allows functions to be bound to variables and passed as arguments to other
functions. Figure 3 illustrates this feature, commonly known as “closures”. On
line 51, the program creates a function and assigns it to a variable foo1. The
function’s declared type is () => A, indicating that it takes no parameters and
returns an object of type A. Likewise, line 52 assigns to foo2 a function that takes
no arguments and returns a B object.

Next, on line 53, bar1 is called with foo1 as an argument. Method bar1 (line 45)
binds this closure to its parameter y, which has declared type () => A, and then
calls the function bound to y. Similarly, on line 54 bar2 is called with foo2 as an
argument. On line 46, this closure is bound to a parameter z and then invoked.
From the simple data flow in this example, it is easy to see that the call y() on
line 45 always calls the function that was bound to foo1 on line 51, and that the
call z() on line 46 always calls the function that was bound to foo2 on line 52.

Implications for call graph construction. In principle, one could use the declared
types of function-valued expressions and the types of the closures that have
been created to determine if a given call site could invoke a given function. For
example, the type of y is () => A, and line 53 creates a closure that can be bound
to a variable of this type. Therefore, a call graph edge needs to be constructed
from the call site y() to the closure on line 53. By the same reasoning, a call
graph edge should be constructed from the call site z() to the closure on line 54.

Our implementation takes a different approach to handle closures. Rather than
performing the analysis at the source level, we apply it after the Scala compiler
has “desugared” the code by transforming closures into anonymous classes that
extend the appropriate scala.runtime.AbstractFunctionN. Each such class has an
apply() method containing the closure’s original code. Figure 4 shows a desugared
version of the program of Figure 3. After this transformation, closures can be
treated as ordinary parameterized Scala classes without loss of precision. This
has the advantage of keeping our implementation simple and uniform.

3.4 Calls on the Variable this

Figure 5 shows a program that declares a trait A with subclasses B and C. Trait A
declares an abstract method foo, which is overridden in B and C, and a concrete

62 K. Ali et al.

57 object Closures {
58 def bar1(y: () => A) = { y.apply() }
59 def bar2(z: () => B) = { z.apply() }
60

61 class A
62 class B
63

64 def main(args: Array[String]) = {
65 val foo1: () => A = {
66 class $anonfun extends
67 scala .runtime.AbstractFunction0[A] {
68 def apply (): A = { new A() }
69 };
70 new $anonfun()
71 };

72 val foo2: () => B = {
73 class $anonfun extends
74 scala .runtime.
75 AbstractFunction0[B] {
76 def apply (): B = {
77 new B()
78 }
79 };
80 new $anonfun()
81 };
82 this .bar1(foo1)
83 this .bar2(foo2)
84 }
85 }

Fig. 4. Desugared version of the program of Figure 3 (slightly simplified)

86 object This {
87 trait A {
88 def foo
89 // can only call B.foo
90 def bar = this .foo
91 }
92

93 class B extends A {
94 def foo = println (”B.foo”)
95 }

96 class C extends A {
97 def foo = println (”C.foo”)
98 override def bar = println (”C.bar”)
99 }

100

101 def main(args: Array[String]) = {
102 (new B).bar
103 (new C).bar
104 }
105 }

Fig. 5. A Scala program illustrating a call on this

method bar, which is overridden in C (but not in B). The program declares a
main method that calls bar on objects of type B and C (lines 102–103). Executing
the call to bar on line 102 dispatches to A.bar(). Executing the call this.foo() in
that method will then dispatch to B.foo(). Finally, executing the call to bar on
line 103 dispatches to C.bar, so the program prints “B.foo”, then “C.bar”.

Consider how a call graph construction algorithm would approximate the
behavior of the call this.foo() at line 90. The receiver expression’s type is A, so
CHA concludes that either B.foo or C.foo could be invoked, since B and C are
subtypes of A. However, note that this cannot have type C in A.bar because C

provides an overriding definition of bar. Stated informally, this cannot have type
C inside A.bar because then execution would not have arrived in A.bar in the
first place. The TCA

expand-this algorithm, presented in Section 4, exploits such
knowledge. Care must be taken in the presence of super-calls, as we will discuss.

Constructing Call Graphs of Scala Programs 63

3.5 Bytecode-Based Analysis

The above examples show that Scala’s traits and abstract type members pose
new challenges for call graph construction. Several other Scala features, such
as path-dependent types and structural types, introduce further complications,
and will be discussed in Section 5. At this point, the reader may wonder if all
these complications could be avoided by simply analyzing the JVM bytecodes
produced by the Scala compiler.

We experimentally determined that such an approach is not viable for two
reasons. First, the translation of Scala source code to JVM bytecode involves
significant code transformations that result in the loss of type information, caus-
ing the computed call graphs to become imprecise. Second, the Scala compiler
generates code containing hard-to analyze reflection for certain Scala idioms.

Loss of Precision. Consider Figure 6, which shows JVM bytecode produced by
the Scala compiler for the program of Figure 3. As can be seen in the figure, the
closures that were defined on lines 51 and 52 in Figure 3 have been translated into
classes Closures$$anonfun$1 (lines 128–138 in Figure 6) and Closures$$anonfun$2

(lines 140–150). These classes extend scala.runtime.AbstractFunction0<T>, which is
used for representing closures with no parameters at the bytecode level. Addition-
ally, these classes provide overriding definitions for the apply method inherited by
scala.runtime.AbstractFunction0<T> from its super-class scala.Function0<T>. This
apply method returns an object of type T. The issue to note here is that Clo-

sures$$anonfun$1 and Closures$$anonfun$2 each instantiate the type parameter T

with different types, Closures$A and Closures$B, respectively. Therefore, their apply
methods return objects of type Closures$A and Closures$B. However, at the byte-
code level, all type parameters are erased, so that we have a situation where:

– scala.Function0.apply has return type Object
– Closures$$anonfun$1.apply and Closures$$anonfun$2.apply each override

scala.Function0.apply and also have return type Object
– there are two calls to scala.Function0.apply on lines 118 and 123

Given this situation, the RTA algorithm creates edges to Clo-

sures$$anonfun$1.apply and Closures$$anonfun$2.apply from each of the calls
on lines 118 and 123. In other words, a bytecode-based RTA analysis creates 4
call graph edges for the closure-related calls, whereas the analysis of Section 3.3
only created 2 edges. In Section 6, we show that this scenario commonly arises
in practice, causing bytecode-based call graphs to become extremely imprecise.

Reflection in Generated Code. We detected several cases where the Scala com-
piler generates code that invokes methods using java.lang.reflect.Method.invoke().
In general, the use of reflection creates significant problems for static analysis,
because it must either make very conservative assumptions that have a detrimen-
tal effect on precision (e.g., assuming that calls to java.lang.reflect.Method.invoke()

may invoke any method in the application) or the analysis will become unsound.
Figure 7 shows a small example (taken from the ensime program, see Sec-

tion 6) for which the Scala compiler generates code containing reflection.

64 K. Ali et al.

106 public final class Closures$ {
107 public void main(java.lang . String []);
108 0: new Closures$$anonfun$1
109 ...
110 8: new Closures$$anonfun$2
111 ...
112 18: invokevirtual Closures$.bar1(scala .Function0) : void
113 ...
114 23: invokevirtual Closures$.bar2(scala .Function0) : void
115 26: return
116 public void bar1(scala .Function0);
117 0: aload 1
118 1: invokeinterface scala .Function0.apply() : java . lang.Object
119 6: pop
120 7: return
121 public void bar2(scala .Function0);
122 0: aload 1
123 1: invokeinterface scala .Function0.apply() : java . lang.Object
124 6: pop
125 7: return
126 }
127
128 public final class Closures$$anonfun$1 extends scala .runtime.AbstractFunction0 {
129 public final Closures$A apply ();
130 0: new Closures$A
131 3: dup
132 4: invokespecial Closures$A()
133 7: areturn
134 public final java . lang .Object apply ();
135 0: aload 0
136 1: invokevirtual Closures$$anonfun$1.apply() : Closures$A
137 4: areturn
138 }
139
140 public final class Closures$$anonfun$2 extends scala .runtime.AbstractFunction0 {
141 public final Closures$B apply ();
142 0: new Closures$B
143 3: dup
144 4: invokespecial Closures$B()
145 7: areturn
146 public final java . lang .Object apply ();
147 0: aload 0
148 1: invokevirtual Closures$$anonfun$2.apply() : Closures$B
149 4: areturn
150 }

Fig. 6. JVM bytecode produced by the Scala compiler for the program of Figure 3

151 trait ClassHandler
152

153 object LuceneIndex {
154 def buildStaticIndex (): Int = {
155 val handler = new ClassHandler {
156 var classCount = 0
157 var methodCount = 0
158 }
159 handler .classCount + handler.methodCount
160 }
161 }

Fig. 7. A Scala program for which the compiler generates code containing reflective
method calls (taken from the ensime program, see Section 6)

Constructing Call Graphs of Scala Programs 65

4 Algorithms

We present a family of call graph construction algorithms using generic inference
rules, in the same style that we used in Section 2. The algorithms presented
here are: TCA

names, a variant of RA that considers only types instantiated in
reachable code, TCA

bounds, a variant of RTA adapted to deal with Scala’s trait
composition and abstract type members, TCA

expand, which handles abstract
type members more precisely, and TCA

expand-this, which is more precise for call
sites where the receiver is this.

We use Figure 8 to illustrate differences between the algorithms. When exe-
cuted, the call site on line 172 calls method B.foo; our different algorithms resolve
this call site to various subsets of the foo methods in classes A, B, C, and D.

162 class A { def foo = ”A.foo” }
163 class B extends A { override def foo = ”B.foo” }
164 class C { def foo = ”C.foo” }
165 class D { def foo = ”D.foo” }
166 class CallSiteClass [T <: A](val receiver : T) {
167 def callsite = {
168 /∗ resolves to :

169 ∗ TCA
expand: { B.foo } , TCA

bounds: { B.foo,A.foo }
170 ∗ TCA

names: { B.foo,A.foo,C.foo } , RA: { B.foo,A.foo, C.foo,D.foo }
171 ∗/
172 receiver .foo
173 }
174 }
175 def main(args: Array[String]): Unit = {
176 new A
177 val receiver = new B
178 new C
179 val callSiteClass = new CallSiteClass[B](receiver);
180 callSiteClass . callsite
181 }

Fig. 8. A Scala program illustrating the varying precision of the analyses

4.1 TCAnames

The RA algorithm of Section 2 is sound for Scala because it resolves calls based
only on method names, and makes no use of types. However, it is imprecise
because it considers as possible call targets all methods that have the appropriate
name, even those in unreachable code. For Figure 8, RA resolves the call site as
possibly calling all four foo methods, even though D is never instantiated in code
reachable from main. Since RA already computes a set R of reachable methods,
we extend it to consider only classes and traits instantiated in reachable methods.

66 K. Ali et al.

We add rule RTAnew from RTA, which computes a set Σ̂ of types instantiated

in reachable methods. The CALL rule4 is adapted as follows to make use of Σ̂:

call c : e.m(. . .) occurs in method M
method M ′ has name m

method M ′ is a member of type C

M ∈ R C ∈ Σ̂

c �→ M ′ TCA
names
call

The resulting TCA
names analysis consists of the rule RTAnew and the rules

of RA, except that RAcall is replaced with TCA
names
call

. In TCA
names
call

, a method
is considered as a possible call target only if it is a member of some type C that
has been instantiated in a reachable method in R5.

For the program of Figure 8, TCA
names resolves the call site to A.foo, B.foo,

and C.foo, but not D.foo because D is never instantiated in reachable code.

4.2 TCAbounds

To improve precision, analyses such as RTA and CHA use the static type of the
receiver e to restrict its possible runtime types. Specifically, the runtime type C
of the receiver of the call must be a subtype of the static type of e.

A key difficulty when analyzing a language with traits is enumerating
all subtypes of a type, as both CHA and RTA do in the condition C ∈
SubTypes(StaticType(e)) in rules CHAcall and RTAcall of Section 2. Given a
trait T , any composition of traits containing T is a subtype of T . Therefore, enu-
merating possible subtypes of T requires enumerating all compositions of traits.
Since a trait composition is an ordered list of traits, the number of possible
compositions is exponential in the number of traits6.

In principle, an analysis could make the conservative assumption that all
compositions of traits are possible, and therefore that any method defined in
any trait can override any other method of the same name and signature in any
other trait (a concrete method overrides another method with the same name
and signature occurring later in the linearization of a trait composition). The
resulting analysis would have the same precision as the name-based algorithms
RA and TCA

names, though it would obviously be much less efficient.
Therefore, we consider only combinations of traits occurring in reachable

methods of the program. This set of combinations is used to approximate the

4 When we present an inference rule in this section, we use shading to highlight
which parts of the rule are modified relative to similar preceding rules.

5 Calls on super require special handling, as will be discussed in Section 5.
6 Although some trait compositions violate the well-formedness rules of Scala, such
violations are unlikely to substantially reduce the exponential number of possible
compositions. Moreover, the well-formedness rules are defined in terms of the mem-
bers of a specific composition, so it would be difficult to enumerate only well-formed
compositions without first examining all of them.

Constructing Call Graphs of Scala Programs 67

behavior of method calls. In essence, this is similar to the closed-world assump-
tion of RTA. Specifically, the TCA

bounds analysis includes the rule RTAnew to
collect the set Σ̂ of trait combinations occurring at reachable allocation sites.
The resulting set is used in the following call resolution rule:

call e.m(. . .) occurs in method M

C ∈ SubTypes(StaticType(e))

method M ′ has name m
method M ′ is a member of type C

M ∈ R C ∈ Σ̂

c �→ M ′ TCA
bounds
call

The added check C ∈ SubTypes(StaticType(e)) relies on the subtyping rela-
tion defined in the Scala language specification, which correctly handles com-
plexities of the Scala type system such as path-dependent types.

According to Scala’s definition of subtyping, abstract types do not have sub-
types, so TCA

bounds
call

does not apply. Such a definition of subtyping is necessary
because it cannot be determined locally, just from the abstract type, which ac-
tual types will be bound to it elsewhere in the program. However, every abstract
type in Scala has an upper bound (if it is not specified explicitly, scala.Any is
assumed), so an abstract type T can be approximated using its upper bound B:

call e.m(. . .) occurs in method M

StaticType(e) is an abstract type with upper bound B

C ∈ SubTypes(B)
method M ′ has name m

method M ′ is a member of type C

M ∈ R C ∈ Σ̂

c �→ M ′ TCA
bounds
abstract-call

For the program of Figure 8, TCA
bounds resolves the call site to A.foo and

B.foo, but not D.foo because D is never instantiated, and not C.foo, because C is
not a subtype of A, the upper bound of the static type T of the receiver.

4.3 TCAexpand

The TCA
bounds analysis is particularly imprecise for abstract types that do not

have a declared upper bound, since using the default upper bound of scala.Any
makes the bound-based analysis as imprecise as the name-based analysis.

It is more precise to consider only concrete types with which each abstract
type is instantiated, similar to the approach of [22]. To this end, we introduce
a mapping expand(), which maps each abstract type7 T to those concrete types
with which it has been instantiated:

7 Similar rules (not shown) are needed to handle the type parameters of generic types
and type-parametric methods. Our implementation fully supports these cases.

68 K. Ali et al.

C ∈ Σ̂
“type A = B” is a member of C

D is a supertype of C
“type A” is a member of D

B ∈ expand(D.A)
TCA

expand
expand-type

C ∈ Σ̂
“trait A { . . . }” is a member of C

D is a supertype of C
“type A” is a member of D

C.A ∈ expand(D.A)
TCA

expand
expand-trait

R ∈ expand(S)
S ∈ expand(T)

R ∈ expand(T)
TCA

expand
expand-trans

The TCA
bounds
call

rule is then updated to use the expand() mapping to determine
the concrete types bound to the abstract type of a receiver:

call e.m(. . .) occurs in method M
StaticType(e) is an abstract type T

C ∈ SubTypes(expand(T))

method M ′ has name m
method M ′ is a member of type C

M ∈ R C ∈ Σ̂

c �→ M ′ TCA
expand
abstract-call

Rule TCA
expand
expand-type handles situations such as the one where a type assign-

ment type A = B is a member of some instantiated trait composition C. Now, if
a supertype D of C declares an abstract type A, then B is a possible concrete
instantiation of the abstract type D.A, and this fact is recorded in the expand()

mapping by TCA
expand
expand-type. Rule TCA

expand
expand-trait handles a similar case where

an abstract type is instantiated by defining a member trait with the same name.
The right-hand-side of a type assignment might be abstract, so it is necessary to
compute the transitive closure of the expand() mapping (rule TCA

expand
expand-trans).

Cycles among type assignments may exist. In Scala, cyclic references between
abstract type members are a compile-time error. However, recursion in generic
types is allowed. For example, the parameter B in a generic type A[B] could be
instantiated with A[B] itself, leading to B representing an unbounded sequence
of types A[B], A[A[B]], This kind of recursion can be detected either by
limiting the size of expand(T) for each abstract type to some fixed bound, or by
checking for occurrences of T in the expansion expand(T). The current version of
our implementation limits the size of expand(T) to 1000 types. This bound was
never exceeded in our experimental evaluation, implying that recursive types
did not occur in the benchmark programs. The same issue also occurs in Java
and C#, and was previously noted by Sallenave and Ducourneau [22]. Their
implementation issues a warning when it detects the situation. Our algorithm
resolves the issue soundly: when a recursive type T is detected, the algorithm
falls back to using the upper bound of T to resolve calls on receivers of type T .

Constructing Call Graphs of Scala Programs 69

4.4 TCAexpand-this

In both Java and Scala, calls on the this reference are common. In some cases,
it is possible to resolve such calls more precisely by exploiting the knowledge
that the caller and the callee must be members of the same object. Care must
be taken in the presence of super-calls, as will be discussed in Section 5.1.

For example, at the call this.foo() on line 90 of Figure 5, the static type of
the receiver this is A, which has both B and C as subtypes. Since B and C are
both instantiated, all of the analyses described so far would resolve the call to
both B.foo (line 94) and C.foo (line 97). However, any object that has C.foo as a
member also has C.bar as a member, which overrides the method A.bar containing
the call site. Therefore, the call site at line 90 can never resolve to method C.foo.

This pattern is handled precisely by the following rule:

call D.this.m(. . .) occurs in method M

D is the declaring trait of M

C ∈ SubTypes(D)
method M ′ has name m

method M ′ is a member of type C

method M is a member of type C

M ∈ R C ∈ Σ̂

c �→ M ′ TCA
expand-this
this-call

The rule requires not only the callee M ′, but also the caller M to be members
of the same instantiated type C. The rule applies only when the receiver is the
special variable this. Because nested classes and traits are common in Scala, it
is possible that a particular occurrence of the special variable this is qualified
to refer to the enclosing object of some outer trait. Since it would be unsound
to apply TCA

expand-this
this-call in this case, we require that the receiver be the special

variable this of the innermost trait D that declares the caller method M .
After adding rule TCA

expand-this
this-call , we add a precondition to rule TCA

expand-this
call

so that it does not apply when TCA
expand-this
this-call should, i.e., when the receiver is

the special variable this of the declaring trait D of the caller method M .

4.5 Correctness

In a separate technical report [4], we provide a formalization of the inference rules
for TCA

expand-this based on the FSalg (“Featherweight Scala”) representation of

Cremet et al. [8]. We also prove the TCA
expand-this analysis correct with respect

to the operational semantics of FSalg by demonstrating that:

1. For any FSalg program P , the set of methods called in an execution trace

of P is a subset of the set R of reachable methods computed for P by
TCA

expand-this.
2. For any FSalg program P , if the execution trace of P contains a call from

call site c to a target method M , then TCA
expand-this applied to P derives

c �→M .

70 K. Ali et al.

5 Implementation

We implemented RA, TCA
names, TCA

bounds, TCA
expand, and TCA

expand-this

as a plugin for version 2.10.2 of the Scala compiler, and tested the implemen-
tation on a suite of programs exhibiting a wide range of Scala features. To the
best of our knowledge, our analyses soundly handle the entire Scala language,
but we assume that all code to be analyzed is available and we ignore reflection
and dynamic code generation. We also used the implementation of RTA in the
WALA framework to construct call graphs from JVM bytecode.

The analysis runs after the uncurry phase, which is the 12th of 30 compiler
phases. At this stage, most of the convenience features in Scala that are speci-
fied as syntactic sugar have been desugared. However, the compiler has not yet
transformed the program to be closer to JVM bytecode, and has not yet erased
any significant type information. In particular, closures have been turned into
function objects with apply methods, pattern matching has been desugared into
explicit tests and comparisons, and implicit calls and parameters have been made
explicit, so our analysis does not have to deal with these features explicitly.

Some Scala idioms, e.g., path-dependent types, structural types, singletons,
and generics, make the subtype testing in Scala complicated [19, §3.5]. For-
tunately, we can rely on the Scala compiler infrastructure to answer subtype
queries. Two issues, however, require special handling in the implementation:
super calls and incomplete programs.

5.1 Super Calls

Normally, when a method is called on some receiver object, the method is a
member of that object. Super calls violate this general rule: a call on super

invokes a method in a supertype of the receiver’s type. This method is generally
not a member of the receiver object, because some other method overrides it.

At a call on super, the analysis must determine the method actually invoked.
When the call site is in a class (not a trait), the call is resolved statically as
in Java. When the call site is in a trait, however, the target method is selected
using a dynamic dispatch mechanism depending on the runtime type of the
receiver [19, §6.5]. Our analysis resolves such calls using a similar procedure as
for ordinary dynamically dispatched calls. For each possible run-time type of the
receiver, the specified procedure is followed to find the actual call target.

The TCA
expand-this analysis requires that within any method M , the this vari-

able refers to an object of which M is a member. This premise is violated when
M is invoked using a super call. To restore soundness, we blacklist the signatures
of the targets of all reachable super calls. Within a method whose signature is
blacklisted, we fall back to the TCA

expand analysis instead of TCA
expand-this.

5.2 Incomplete Programs

Our analyses are defined for complete programs, but a practical implementa-
tion must deal with incomplete programs. A typical example of an incomplete
program is a situation where user code calls unanalyzed libraries.

Constructing Call Graphs of Scala Programs 71

Our implementation analyzes Scala source files presented to the compiler,
but not referenced classes provided only as bytecode such as the Scala and
Java standard libraries. The analysis soundly analyzes call sites occurring in the
provided Scala source files using a Scala analogue of the Separate Compilation
Assumption [2,3], which asserts that unanalyzed “library” classes do not directly
reference analyzed “application” classes. If application code passes the name of
one of its classes to the library and the library instantiates it by reflection,
then our analysis faces the same challenges as any Java analysis, and the same
solutions would apply.

If the declaring class of the static target of a call site is available for analysis,
then so are all its subtypes. In such cases, the analysis can soundly determine all
possible actual call targets. On the other hand, if the declaring class of the static
target of a call is in an unanalyzed class, it is impossible to determine all possible
actual target methods, because some targets may be in unanalyzed code or in
trait compositions that are only created in unanalyzed code. The implementation
records the existence of such call sites, but does not attempt to resolve them
soundly. However, such call sites, as well as those in unanalyzed code, may
call methods in analyzed code via call-backs. For soundness, the analysis must
treat such target methods as reachable. This is achieved by considering a method
reachable if it occurs in an instantiated type and if it overrides a method declared
in unanalyzed code. This is sound because in both cases (a call whose static
target is in unanalyzed code, or a call in unanalyzed code), the actual runtime
target method must override the static target of the call.

Determining the method overriding relationship is more difficult than in Java.
Two methods declared in two independent traits do not override each other
unless these traits are composed in the instantiation of some object. Therefore,
the overriding relation must be updated as new trait compositions are discovered.

6 Evaluation

We evaluated our implementation on publicly available Scala programs covering
a range of different application areas and programming styles.8 Table 1 shows,
for each program, the number of lines of Scala source code (excluding library
code), classes, objects, traits, trait compositions, methods, closures, call sites, call
sites on abstract types, and call sites on the variable this. argot is a command-
line argument parser for Scala. ensime is an Emacs plugin that provides an
enhanced Scala interactive mode, including a read-eval-print loop (REPL) and
many features commonly found in IDEs such as live error-checking, package/-
type browsing, and basic refactorings. fimpp is an interpreter for an imperative,

8 The benchmark source code is available from http://github.com/bmc/argot ,
http://github.com/aemoncannon/ensime, http://github.com/KarolS/fimpp,
http://code.google.com/p/kiama , http://github.com/colder/phantm ,
http://github.com/eed3si9n/scalaxb , http://github.com/Mononofu/Scalisp,
http://scee.sourceforge.net, http://github.com/max-l/Squeryl, and
http://github.com/nickknw/arbitrarily-sized-tic-tac-toe

http://github.com/bmc/argot
http://github.com/aemoncannon/ensime
http://github.com/KarolS/fimpp
http://code.google.com/p/kiama
http://github.com/colder/phantm
http://github.com/eed3si9n/scalaxb
http://github.com/Mononofu/Scalisp
http://scee.sourceforge.net
http://github.com/max-l/Squeryl
http://github.com/nickknw/arbitrarily-sized-tic-tac-toe

72 K. Ali et al.

Table 1. Various characteristics of our benchmark programs

L
O
C

#
c
la
ss
e
s

#
o
b
je
c
ts

#
tr
a
it
s

#
tr
a
it

c
o
m
p
o
si
ti
o
n
s

#
m
e
th

o
d
s

#
c
lo
su

re
s

#
c
a
ll

si
te

s

#
c
a
ll

si
te

s
o
n

a
b
st
ra

c
t
ty

p
e
s

#
c
a
ll

si
te

s
o
n

th
is

argot 1,074 18 4 6 185 485 168 2,543 2 276
ensime 7,832 223 172 36 984 4,878 532 19,555 23 3,195
fimpp 1,089 42 53 5 685 2,060 549 5,880 4 1,159
kiama 17,914 801 664 162 5,324 19,172 3,963 69,352 401 16,256
phantm 9,319 317 358 13 1,498 7,208 561 36,276 15 6,643
scalaxb 10,290 324 259 222 3,024 10,503 2,204 47,382 35 7,305
scalisp 795 20 14 0 125 428 115 2,313 23 293
see 4,311 130 151 17 415 2,280 262 9,566 11 1,449
squeryl 7,432 255 55 110 1,040 3,793 826 13,585 173 2,540
tictactoe 247 2 7 0 32 112 24 603 0 41

dynamically-typed language that supports integer arithmetic, console output,
dynamically growing arrays, and subroutines. kiama is a library for language
processing used to compile and execute several small languages. phantm is a tool
that uses a flow-sensitive static analysis to detect type errors in PHP code [16].
scalaxb is an XML data-binding tool for Scala. scalisp is a LISP interpreter
written in Scala. see is a simple engine for evaluating arithmetic expressions.
squeryl is a Scala library that provides Object-Relational mapping for SQL
databases. tictactoe is an implementation of the classic “tic-tac-toe” game
with a text-based user-interface. Both kiama and scalaxb are part of the Da-
Capo Scala Benchmarking project [23]. We did not use the other DaCapo Scala
benchmarks as they are not compatible with the latest version of Scala.

We ran all of our experiments on a machine with eight dual-core AMD Opteron
1.4 GHz CPUs (running in 64-bit mode) and capped the available memory for
the experiments to 16 GB of RAM.

6.1 Research Questions

Our evaluation aims to answer the following Research Questions:

RQ1. How precise are call graphs constructed for the JVM bytecode produced
by the Scala compiler compared to analyzing Scala source code?

RQ2. What is the impact on call graph precision of adopting subtype-based
call resolution instead of name-based call resolution?

RQ3. What is the impact on call graph precision of determining the set of
concrete types that may be bound to abstract type members instead of
using a bounds-based approximation?

RQ4. What is the impact of the special treatment of calls on this?

Constructing Call Graphs of Scala Programs 73

Table 2. Number of nodes and edges in the summarized version of call graphs com-
puted using the RA, TCA

names, TCA
bounds, TCA

expand, TCA
expand-this, and RTA

wala

R
A

T
C
A

n
a
m
e
s

T
C
A

bo
u
n
d
s

T
C
A

e
x
p
a
n
d

T
C
A

e
x
p
a
n
d
-t
h
is

R
T
A

w
a
la

argot
nodes 265 184 161 161 161 236
edges 3,516 1,538 442 442 440 648

ensime
nodes 3,491 3,018 2,967 2,966 2,965 4,525
edges 191,435 150,974 8,025 8,023 8,017 61,803

fimpp
nodes 870 773 771 771 771 1,381
edges 12,716 10,900 2,404 2,404 2,404 8,327

kiama
nodes 11,959 8,684 7,609 7,600 7,200 13,597
edges 1,555,533 845,120 35,288 34,062 32,494 609,255

phantm
nodes 5,945 5,207 4,798 4,587 4,587 5,157
edges 376,065 296,252 14,727 13,899 13,870 213,264

scalaxb
nodes 6,795 2,263 1,196 1,196 1,196 3,866
edges 1,832,473 322,499 5,819 5,819 5,818 48,966

scalisp
nodes 283 196 186 186 186 307
edges 3,807 2,380 526 526 526 908

see
nodes 1,869 1,711 1,645 1,572 1,572 2,016
edges 77,303 63,706 8,349 7,466 7,418 14,520

squeryl
nodes 2,484 1,488 408 408 408 1,507
edges 91,342 46,160 1,677 1,677 1,676 8,669

tictactoe
nodes 79 78 78 78 78 112
edges 524 523 170 170 170 327

RQ5. How does the running time of the analyses compare?
RQ6. For how many call sites can the algorithms find a single outgoing edge?

6.2 Results

Table 2 summarizes the precision of the call graphs computed by our analyses.
For each benchmark and analysis combination, the table shows the number of
reachable methods and call edges in the call graph. All call graphs presented in
this section include only the analyzed code of the benchmark itself, excluding
any library code. For RTA

wala, such “summarized call graphs” were obtained
by collapsing the parts of the call graph in the library into a single node.

74 K. Ali et al.

RQ1. To answer this question, we compare the call graphs from the TCA
bounds

and RTA
wala analyses. The call graphs constructed from bytecode have on av-

erage 1.7x as many reachable methods and 4.4x as many call edges as the call
graphs constructed by analyzing Scala source. In other words, analyzing gener-
ated bytecode incurs a very large loss in precision.

Investigating further, we found that the most significant cause of precision
loss is due to apply methods, which are generated from closures. These account
for, on average, 25% of the spurious call edges computed by RTA

wala but not
by TCA

bounds. The second-most significant cause of precision loss are toString

methods, which account for, on average, 13% of the spurious call edges.
The ensime program is an interesting special case because it uses Scala con-

structs that are translated into code that uses reflection (see Section 3.5). As a
result, the RTA

wala analysis makes conservative approximations that cause the
call graph to become extremely large and imprecise9. This further reaffirms that
a bytecode-based approach to call graph construction is highly problematic.

RQ2. To answer this question, we compare TCA
names and TCA

bounds and find
that name-based analysis incurs a very significant precision loss: The call graphs
generated by TCA

names have, on average, 10.9x as many call edges as those
generated by TCA

bounds. Investigating further, we found that, on average, 66%
of the spurious call edges computed by the name-based analysis were to apply

methods, which implement closures.

RQ3. To answer this question, we compare TCA
bounds and TCA

expand. On
the smaller benchmark programs that make little use of abstract types, the two
produce identical results. Since kiama, phantm, and see contain some call
sites on receivers with abstract types, TCA

expand computes more precise call
graphs for them. For scalaxb, scalisp, and squeryl, call graph precision is
not improved despite the presence of abstract types because the call sites on
abstract receivers occur in unreachable code.

RQ4. To answer the fourth research question, we compare the TCA
expand and

TCA
expand-this analyses. In general, we found that the precision benefit of the

special handling of this calls is small and limited to specific programs. In partic-
ular, we found that the number of call edges is reduced by 5% on kiama and by
1% on see, but that there is no significant difference on the other benchmarks.
The situation for kiama is interesting in that TCA

expand finds 3.7% more in-
stantiated types than TCA

expand-this. Those types are instantiated in methods
found unreachable by TCA

expand-this.
The two most common reasons why the more precise rule TCA

expand-this
this-call may

fail to rule out a given call graph edge are that the caller M actually is inherited

9 The summarized call graph computed by RTA
wala shown in Table 2 has 4,525 nodes

and 61,803 edges. However, the size of the call graph originally computed by RTA
wala

(before summarizing the library code) has 78,901 nodes and 7,835,170 edges. We
experimentally confirmed that nearly half of these edges are in parts of the libraries
related to the reflection API.

Constructing Call Graphs of Scala Programs 75

Table 3. The time (in seconds) taken by RA, TCA
names, TCA

bounds, TCA
expand,

TCA
expand-this, and RTA

wala to compute the call graphs

R
A

T
C
A

n
a
m
e
s

T
C
A

bo
u
n
d
s

T
C
A

e
x
p
a
n
d

T
C
A

e
x
p
a
n
d
-t
h
is

R
T
A

w
a
la

sc
a
la
c

argot 4 3.4 3.2 3.5 3.5 11.3 25.3
ensime 32.1 24.8 25 29 27.5 510.2 60.6
fimpp 5.5 4.9 7.4 7.5 8 14.3 36.1
kiama 286 83 125.6 132.9 115.3 66.9 104.1
phantm 55.4 43.2 51.1 54.3 52.5 26.8 70.2
scalaxb 113.4 16.3 10.9 11.5 12.7 21.1 85.9
scalisp 3 2.9 3 3.1 3.2 12.6 25.6
see 6.9 6.3 8.2 8.1 8.8 13.9 40
squeryl 21 11.5 5.6 6.3 6.8 20.9 61.6
tictactoe 1.7 1.7 1.9 2 2 9.9 16.3

into the run-time receiver type C, so the call can occur, or that the caller M

can be called through super, so using the rule would be unsound, as explained
in Section 5.1. Across all the benchmark programs, the rule failed to eliminate
a call edge at 80% of call sites on this due to the caller M being inherited into C,
and at 15% of call sites on this due to the caller M being called through super.

RQ5. The running times of the analyses are presented in Table 3. For compar-
ison, the last column of the table also shows the time required to compile each
benchmark using the unmodified Scala compiler. Although our implementation
has not been heavily tuned for performance, the analysis times are reasonable
compared to scalac compilation times. The high imprecision of the RA anal-
ysis generally makes it significantly slower than the other, more complicated
but more precise analyses. The TCA

names analysis is sometimes significantly
faster and sometimes significantly slower than the TCA

bounds analysis, since it
avoids the many expensive subtype tests, but is significantly less precise. The
TCA

expand and TCA
expand-this analyses have generally similar execution times

as the TCA
bounds analysis because abstract types and this calls are a relatively

small fraction of all call sites in the benchmark programs.
The long running time of nearly 500 seconds of RTAwala on ensime is because

the computed call graph becomes extremely large (see discussion of RQ1).

RQ6. Certain applications of call graphs require call sites to have a unique
outgoing edge. For example, whole-program optimization tools [28] may inline
such “monomorphic” call sites. It is therefore interesting to measure the abil-
ity of the different algorithms to resolve call sites to a unique target method.
Table 4 shows, for each benchmark program, the number of monomorphic and

76 K. Ali et al.

Table 4. Number of monomorphic and polymorphic reachable call sites in the sum-
marized version of call graphs computed using RA, and how many of them became
unreachable, monomorphic, or polymorphic in TCA

expand-this

TCAexpand-this

RA Unreachable Mono Poly

argot
Mono 1,200 459 741 -
Poly 1,296 575 687 34

ensime
Mono 10,901 398 10,503 -
Poly 8,433 430 7,545 458

fimpp
Mono 4,058 56 4,002 -
Poly 1,636 7 1,478 151

kiama
Mono 40,974 15,103 25,871 -
Poly 27,869 11,586 15,337 946

phantm
Mono 17,500 1,023 16,477 -
Poly 18,611 631 16,387 1,593

scalaxb
Mono 22,170 12,206 9,964 -
Poly 24,809 17,181 7,083 545

scalisp
Mono 1,163 143 1,020 -
Poly 1,106 154 890 62

see
Mono 5,327 258 5,069 -
Poly 4,126 321 2,998 807

squeryl
Mono 6,453 4,092 2,361 -
Poly 6,369 4,794 1,498 77

tictactoe
Mono 330 1 329 -
Poly 204 0 187 17

polymorphic call sites, as determined by the RA analysis. The table also shows
how these calls are resolved by the TCA

expand-this analysis. For example, for en-
sime, the RA analysis finds 10,901 monomorphic calls and 8,433 polymorphic
calls. Of the 10,901 calls that are identified as monomorphic by RA, 398 are
identified as unreachable by the more precise TCA

expand-this analysis and the
remaining 10,503 remain as monomorphic calls. More interestingly, of the 8,433
calls that RA identifies as polymorphic, 430 become unreachable, 7,545 become
monomorphic, and only 458 remain polymorphic according to TCA

expand-this.

7 Conclusions

We presented a family of low-cost algorithms for constructing call graphs of Scala
programs, in the spirit of Name-Based Resolution (RA) [26], Class Hierarchy
Analysis (CHA) [9] and Rapid Type Analysis (RTA) [6]. Our algorithms consider

Constructing Call Graphs of Scala Programs 77

how traits are combined in a Scala program to improve precision and handle the
full Scala language, including features such as abstract type members, closures,
and path-dependent types. Furthermore, we proposed a mechanism for resolving
calls on the this reference more precisely, by considering overriding definitions of
the method containing the call site.

We implemented the algorithms in the context of the Scala compiler, and
compared their precision and cost on a collection of Scala programs. We found
that TCA

names is significantly more precise than RA, indicating that main-
taining a set of instantiated trait combinations greatly improves precision. Fur-
thermore, TCA

bounds is significantly more precise than TCA
names, indicating

that subtyping-based call resolution is superior to name-based call resolution.
The improvements of TCA

expand over TCA
bounds occur on a few larger subjects

that make nontrivial use of abstract type members and type parameters. Simi-
larly, TCA

expand-this only did significantly better than TCA
expand on programs

that make nontrivial use of subtyping and method overriding.
Prior to our work, if one needed a call graph for a Scala program, the only

available method was to analyze the JVM bytecodes produced by the Scala com-
piler. Since significant type information is lost during the compilation process,
RTA call graphs constructed from the JVM bytecodes can be expected to be
much less precise than the call graphs constructed using our new algorithms, as
is confirmed by our experimental results.

While our research has focused on Scala, several aspects of the work are
broadly applicable to other statically typed object-oriented languages. In par-
ticular, the special handling of calls on this can be integrated with existing algo-
rithms such as CHA and RTA for languages such as Java, C#, and C++.

Acknowledgments. We are grateful to Max Schäfer and the anonymous
ECOOP reviewers for many invaluable comments and suggestions, and to Rob
Schluntz for assistance with testing. This research was supported by the Natural
Sciences and Engineering Research Council of Canada and the Ontario Ministry
of Research and Innovation.

References

1. Agesen, O.: Constraint-based Type Inference and Parametric Polymorphism. In:
LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 78–100. Springer, Heidelberg
(1994)

2. Ali, K., Lhoták, O.: Application-only Call Graph Construction. In: Noble, J. (ed.)
ECOOP 2012. LNCS, vol. 7313, pp. 688–712. Springer, Heidelberg (2012)

3. Ali, K., Lhoták, O.: averroes: Whole-program analysis without the whole pro-
gram. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 378–400. Springer,
Heidelberg (2013)

4. Ali, K., Rapoport, M., Lhoták, O., Dolby, J., Tip, F.: Constructing call graphs of
Scala programs. Tech. Rep. CS-2014-09, U. of Waterloo (2014)

5. Bacon, D.F.: Fast and Effective Optimization of Statically Typed Object-Oriented
Languages. PhD thesis, University of California, Berkeley (1997)

6. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
OOPSLA, pp. 324–341 (1996)

78 K. Ali et al.

7. Bravenboer, M., Smaragdakis, Y.: Strictly Declarative Specification of Sophisti-
cated Points-to Analyses. In: OOPSLA, pp. 243–262 (2009)

8. Cremet, V., Garillot, F., Lenglet, S., Odersky, M.: A core calculus for Scala type
checking. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
1–23. Springer, Heidelberg (2006)

9. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952,
pp. 77–101. Springer, Heidelberg (1995)

10. DeFouw, G., Grove, D., Chambers, C.: Fast Interprocedural Class Analysis. In:
POPL, pp. 222–236 (1998)

11. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst. 23(6), 685–746 (2001)

12. Heintze, N.: Set-Based Analysis of ML Programs. In: LISP and Functional Pro-
gramming, pp. 306–317 (1994)

13. Heintze, N., Tardieu, O.: Ultra-fast Aliasing Analysis using CLA: A Million Lines
of C Code in a Second. In: PLDI, pp. 254–263 (2001)

14. Henglein, F.: Dynamic Typing. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS,
vol. 582, pp. 233–253. Springer, Heidelberg (1992)

15. IBM. T.J. Watson Libraries for Analysis WALA (April 2013),
http://wala.sourceforge.net/

16. Kneuss, E., Suter, P., Kuncak, V.: Phantm: PHP analyzer for type mismatch. In:
SIGSOFT FSE, pp. 373–374 (2010)

17. Lhoták, O., Hendren, L.: Scaling Java Points-to Analysis Using SPARK. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

18. Lhoták, O., Hendren, L.: Context-Sensitive Points-to Analysis: Is It Worth It?
In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer,
Heidelberg (2006)

19. Odersky, M.: The Scala Language Specification version 2.9. Tech. rep., EPFL,
DRAFT (May 2011)

20. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima Press
(2012)

21. Ryder, B.: Constructing the call graph of a program. IEEE Transactions on Soft-
ware Engineering 5(3), 216–226 (1979)

22. Sallenave, O., Ducourneau, R.: Lightweight generics in embedded systems through
static analysis. In: LCTES, pp. 11–20 (2012)

23. Sewe, A., Mezini, M., Sarimbekov, A., Binder, W.: Da capo con scala: design and
analysis of a Scala benchmark suite for the Java virtual machine. In: OOPSLA,
pp. 657–676 (2011)

24. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU
(May 1991)

25. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation Tracking
for Points-To Analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS,
vol. 7313, pp. 435–458. Springer, Heidelberg (2012)

26. Srivastava, A.: Unreachable procedures in object oriented programming. ACM Let-
ters on Programming Languages and Systems 1(4), 355–364 (1992)

27. Tip, F., Palsberg, J.: OOPSLA, pp. 281–293 (2000)
28. Tip, F., Sweeney, P.F., Laffra, C., Eisma, A., Streeter, D.: Practical extraction

techniques for Java. ACM Trans. Program. Lang. Syst. 24(6), 625–666 (2002)
29. Vallée-Rai, R., Gagnon, E.M., Hendren, L., Lam, P., Pominville, P., Sundaresan,

V.: Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

http://wala.sourceforge.net/

Constructing Call Graphs of Scala Programs 79

A Artifact Description

Authors of the Artifact. Karim Ali, Marianna Rapoport, Ondřej Lhoták,
Julian Dolby, and Frank Tip

Summary. The artifact is based on the implementation of the Scala source-
level call graph construction algorithms we have discussed in this paper, RA,
TCA

names, TCA
bounds, TCA

expand, and TCA
expand-this. Additionally, the arti-

fact includes the implementation of the bytecode-based call graph construction
algorithm, RTAwala. The source-level algorithms are implemented as a Scala
compiler plugin. On the other hand, RTAwala is the state-of-the-art implemen-
tation of the RTA algorithm provided by the WALA framework. The provided
artifact package is designed to support the repeatability of the experiments of
the paper. In particular, it allows users to generate the call graphs for a variety
of benchmarks using one or more of the six algorithms. Instructions for the gen-
eral use of our Scala compiler call graph plugin “scalacg” with any Scala source
code are also provided.

Content. The artifact package includes:

– scalabench.tar.gz: all the necessary scripts, runnable JARs, required to
replicate our experiments.

– scalacg.tar.gz: the source code of our Scala compiler plugin.
– callgraph-plugin.jar: our Scala compiler plugin. Additionally, it contains

the ProBe tool to compare and visualize call graphs.
– walacg.jar: a runnable JAR for the implementation of RTAwala.
– index.html: detailed instructions for using the artifact.

We provide a VirtualBox appliance containing Ubuntu 13.10 (Saucy Salaman-
der), fully configured to simplify repeatability of our experiments. The image
includes the file scalabench.tar.gz on the desktop.

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of our code and runnable JAR files are avail-
able at: http://plg.uwaterloo.ca/~karim/projects/scalacg.

Tested Platforms. The artifact is known to work on any platform running Or-
acle VirtualBox version 4 (https://www.virtualbox.org/) with at least 8 GB
of free space on disk and at least 16 GB of free space in RAM. However, the Scala
compiler call graph plugin itself is known to work on any platform running Scala
2.10.2, though it has been only tested on Linux and Mac OS X environments.

License. EPL-1.0 (http://www.eclipse.org/legal/epl-v10.html), except
for any external packages, tools, sources (including benchmark sources) used in
the artifact, those respect their original licenses.

MD5 Sum of the Artifact. b92d617c9636a0022eac665595982386

Size of the Artifact. 5.3 GB

http://plg.uwaterloo.ca/~karim/projects/scalacg
https://www.virtualbox.org/
http://www.eclipse.org/legal/epl-v10.html

Finding Reference-Counting Errors in Python/C

Programs with Affine Analysis

Siliang Li and Gang Tan

Lehigh University, Bethlehem PA 18015, USA

Abstract. Python is a popular programming language that uses refer-
ence counting to manage heap objects. Python also has a Foreign Func-
tion Interface (FFI) that allows Python extension modules to be written
in native code such as C and C++. Native code, however, is outside
Python’s system of memory management; therefore extension program-
mers are responsible for making sure these objects are reference counted
correctly. This is an error prone process when code becomes complex. In
this paper, we propose Pungi, a system that statically checks whether
Python objects’ reference counts are adjusted correctly in Python/C in-
terface code. Pungi transforms Python/C interface code into affine pro-
grams with respect to our proposed abstractions of reference counts. Our
system performs static analysis on transformed affine programs and re-
ports possible reference counting errors. Our prototype implementation
found over 150 errors in a set of Python/C programs.

Keywords: Python/C, reference counting, affine programs, static
analysis.

1 Introduction

The Python programming language has become widely adopted in the software
development community over the years because of many appealing features of
the language itself and a robust ecosystem [1]. Similar to many other languages,
Python provides a Foreign Function Interface (FFI), called the Python/C inter-
face. The interface allows Python programs to interoperate with native modules
written in C/C++. Through the interface, Python programs can reuse legacy na-
tive libraries written in C/C++ or use native code to speed up their performance-
critical parts. Python provides a comprehensive set of Python/C API functions.
Through these functions, native modules can create Python objects, manipulate
objects, raise and handle Python exceptions, and perform other actions [2].

Another important feature of Python is its memory management. Python al-
locates objects on its heap. When objects are no longer in use, Python’s memory
manager garbage collects these objects from the heap. The standard implemen-
tation of Python uses the reference-counting algorithm. The representation of
every Python object has a reference-count field. When Python code is running,
the Python runtime automatically adjusts the reference counts during program
execution and maintains the invariant that an object’s reference count be the

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 80–104, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Finding Reference-Counting Errors in Python/C Programs 81

same as the number of references to the object. Specifically, the reference count
of an object is incremented when there is a new reference to the object or decre-
mented when a reference disappears. When an object’s reference count becomes
zero, its space is reclaimed from the heap by the garbage collector.

Native modules incorporated in a Python program, on the other hand, are
outside the control of Python’s garbage collector. When those native modules
manipulate Python objects through the Python/C interface, reference counts are
not adjusted automatically by the Python runtime and it is the native code’s
responsibility to adjust reference counts in a correct way (through Py INCREF

and Py DECREF, discussed later). This is an error-prone process. Incorrect ad-
justments of reference counts result in classic memory errors such as memory
leaks and use of dangling references.

In this paper, we describe a system called Pungi, which performs static anal-
ysis to identify reference-counting errors in native C modules of Python pro-
grams. Pungi abstracts a native module to an affine program, which models how
reference counts are changed in the native module. In an affine program, the
right-hand side of an assignment can only be an affine expression of the form
a0 +Σn

i=1aixi, where ai are constants and xi are program variables. A previous
theoretical study [3] has shown that an affine program is sufficient to model
reference-count changes in the case of shallow aliasing (which assumes multi-
level references to be non-aliases). That study, however, is mainly concerned with
computational complexity and does not consider many practical issues, including
function calls with parameter passing and references that escape objects’ scopes.
Furthermore, its proposed affine-abstraction step has not been implemented and
tested for effectiveness. In fact, its affine-abstraction step is non-intuitive by re-
quiring reversing the control flow of programs. Moreover, it does not describe
how to analyze the resulting affine program to identify reference-counting er-
rors. More detailed discussion of that work and its comparison with Pungi will
be presented when we discuss the design of Pungi.

Major contributions of Pungi are described as follows:

– We propose a set of ideas that make the affine-abstraction step more com-
plete and practical. In particular, we show how to perform affine abstraction
interprocedurally and how to accommodate escaping references. We further
show that the affine-abstraction step can be simplified by first performing a
Static-Single Assignment (SSA) transform on the input program.

– We propose to use path-sensitive, interprocedural static analysis on the re-
sulting affine programs to report possible reference-counting errors. We show
this step is precise and efficient.

– We have built a practical reference-count analysis system that analyzes
Python/C extension modules. Our system over 150 errors in 13 benchmark
programs, with a modest false-positive rate of 22%.

The main limitation of Pungi is the assumption of shallow aliasing, which
allows direct references to be aliases but multi-level references are assumed to
reference distinct objects. For instance, if a Python program has a reference to

82 S. Li and G. Tan

1 static PyObject* create_ntuple(PyObject *self, PyObject *args) {

2 int n, i, err;

3 PyObject *tup = NULL;

4 PyObject *item = NULL;

5 // parse args to get input number n

6 if (!PyArg_Parse(args, "(i)", &n)) return NULL;

7 tup = PyTuple_New(n);

8 if (tup == NULL) return NULL;

9 for (i=0; i<n; i++) {

10 item = PyInt_FromLong(i);

11 if (item == NULL) {Py_DECREF(tup); return NULL;}

12
13 err = PyTuple_SetItem(tup, i, item);

14 if (err) { // no need to dec-ref item

15 Py_DECREF(tup); return NULL;}

16 }

17 return tup;

18 }

Fig. 1. An example Python/C extension module called ntuple (its registration table
and module initializer code are omitted)

a list object, then all objects within the list are assumed to be distinct objects.
Pungi’s assumption of shallow aliasing and its other assumptions may cause it
to have false positives and false negatives. However, our experience shows that
Pungi remains an effective tool given that it can find many reference-counting
errors and its false-positive rate is moderate.

The rest of the paper is structured as follows. Sec. 2 includes the background
information about the Python/C interface and reference counting. Related work
is discussed in Section 3. In Sec. 4, we provide an overview of Pungi. The detailed
design of Pungi is presented in Sec. 5 and 6. Pungi’s implementation and a
summary of its limitations are in Sec. 7. Experimental results are discussed in
Sec. 8. We conclude in Sec. 9.

2 Background: The Python/C Interface and Reference
Counting

The Python/C interface allows a Python program to incorporate a native library
by developing a native extension module. The extension module provides a set of
native functions. Some of the native functions are registered to be entry native
functions, which can be imported and directly called by Python code; the rest
are helper functions. An entry native function takes Python objects as input,
uses Python/C API functions to create/manipulate objects, and possibly returns
a Python object as the result.

Fig. 1 presents a simple C extension module called ntuple. It implements one
function create ntuple, which takes an integer n and constructs a tuple

Finding Reference-Counting Errors in Python/C Programs 83

(0,1,...,n-1). In more detail, references to Python objects have type “PyObject
*”.1 Parameter args at line 1 is a list object, which contains the list of objects
passed from Python. The call to the API function PyArg Parse at line 6 decodes
args and puts the result into integer n; format string “(i)” specifies that there
should be exactly one argument, which must be an integer object. API function
PyTuple New creates a tuple with size n. The loop from line 9 to line 16 first creates
an integer object using PyInt FromLong and updates the tuple with the integer
object at the appropriate index. For brevity, we have omitted the extension mod-
ule’s code for registering entry native functions and for initialization.

After the ntuple extension module is compiled to a dynamically linked library,
it can be imported and used in Python, as shown below.

>>> import ntuple

>>> ntuple.create_ntuple(5)

(0, 1, 2, 3, 4)

2.1 Python/C Reference Counting and Its Complexities

As mentioned, native extension modules are outside the reach of Python’s garbage
collector. Native code must explicitly increment and decrement reference counts
(we abbreviate reference counts as refcounts hereafter). Specifically,

– Py INCREF(p) increments the refcount of the object referenced by p.
– Py DECREF(p) decrements the refcount of the object referenced by p. When

the refcount becomes zero, the object’s space is reclaimed and the refcounts
of all objects whose references are in object p get decremented.

Correct accounting of refcounts of objects, however, is a complex task. We
next discuss the major complexities.

Control flow. Correct reference counting must be performed in all control flow
paths, including those paths resulting from error conditions or interprocedural
control flows. Take code in Fig. 1 as an example. At line 10, an integer object
is allocated, but the allocation may fail. In the failure case, the code returns
immediately, but it is also important to perform Py DECREF on the previously
allocated tup object; forgetting it would cause a memory leak. Similarly, at line
15, a Py DECREF(tup) is necessary. Clearly, taking care of reference counts of all
objects in all control-flow paths is a daunting task for programmers.

Borrowed and stolen references. It is common in native code to use the concept
of borrowed references to save some reference-counting work. According to the
Python/C manual [2], when creating a new reference to an object in a variable,
“if we know that there is at least one other references to the object that lives at

1 The Python/C interface defines type PyObject and a set of subtypes that can be
used by extension code, such as PyIntObject and PyStringObject. Pungi does not
distinguish these types in its analysis and treats them as synonyms. Therefore, we
will just use PyObject in the rest of the paper.

84 S. Li and G. Tan

least as long as our variable, there is no need to increment the reference count
temporarily”.

For instance, if function foo calls bar and passes bar a reference to an object:

void foo () {

PyObject *p = PyInt_FromLong (...);

bar (p); }

void bar (PyObject *q) { ... }

Within the scope of bar, there is one more reference (namely, q) to the object
allocated in foo. However, it is safe not to increment the refcount of the object
inside bar. The reason is that, when the control is within bar, we know there is
at least one more reference in the caller and that reference outlives local reference
q. Therefore, it is safe to allow more references than the refcount of the object.
In this situation, the callee “borrows” the reference from the caller, meaning
that the callee creates a new reference without incrementing the refcount.

Moreover, certain Python/C API functions allow callers of those functions to
borrow references. For instance, PyList GetItem returns a reference to an item
in a list. Even though it returns a new reference to the list item, PyList GetItem

does not increment the refcount of the list item. This is safe when the list is not
mutated before the new reference is out of scope; in this case, the reference stored
in the list will outlive the new reference.2 The Python/C reference manual lists
the set of API functions with this behavior.

Dual to the situation that callers may borrow references from some API func-
tions, certain API functions can “steal” references from the callers. For instance,
in a call PyTuple SetItem(tuple,i,item), if tuple[i] contains an object,
the object’s refcount is decremented; then tuple[i] is set to item. Critically,
item’s refcount is not incremented even though a new reference is created in
the tuple. This practice is safe if we assume the item reference is never used
after the set-item operation, which is often the case. Another behavior is that
PyTuple SetItem(tuple,i,item) may fail, in which case Py DECREF(item) is
automatically performed by the API function. This is why at line 15 in Fig. 1
there is no need to decrement the refcount on item.

API reference-count semantics. We have already alluded to the fact that
Python/C API functions may have different effects on the refcounts of involved
objects. Certain functions borrow references and certain functions steal refer-
ences. Certain functions allocate objects. For instance, the calls to the API
functions PyTuple New and PyInt FromLong in Fig. 1 allocate objects and set
the refcounts of those objects to be one when allocation succeeds. And certain
functions do not affect the refcounts of objects. When programmers use those
API functions, they can often be confused by their effects on refcounts and make
mistakes.

2 If the list may be mutated, then the caller should increment the refcount of the
retrieved object after calling PyList GetItem.

Finding Reference-Counting Errors in Python/C Programs 85

All of the above factors make correct reference counting in native code extremely
difficult. As a result, reference-counting errors are common in Python/C native
extensions.

3 Related Work

Emmi et al. have used software model checking to find reference-counting errors
in an OS kernel and a file system [4]. Their system’s focus, assumptions, and
techniques are quite different from Pungi’s. The focus of their system is to find
reference-counting errors in the presence of multiple threads. It assumes there is
an array of reference-counted resources and assumes each resource in the array
is used uniformly by a thread. Therefore, their system can use a technique called
temporal case splitting to reduce the reference-counting verification of multiple
resources and multiple threads to the verification of a single resource and a
single thread. In the context of Python/C, however, objects passed from Python
are not used uniformly by native code: an object’s refcount may be adjusted
differently from how other objects’ refcounts are adjusted. Pungi uses an affine
program to capture the effects of reference counts on objects. Another note is
that the system by Emmi et al. assumes simple code for adjusting refcounts and
has not dealt with any aliasing situation (including shallow aliasing).

Malcom has constructed a practical tool called CPyChecker [5], which is a gcc
plug-in that can find a variety of errors in Python’s native extension modules,
including reference-counting errors. CPyChecker traverses a finite number of
paths in a function and reports errors on those paths. It does not perform inter-
procedural analysis and ignores loops, while Pungi covers both. CPyChecker
also produces wrong results when a variable is statically assigned multiple times,
while Pungi uses SSA to make variables assigned only once. Experimental com-
parison between Pungi and CPyChecker is presented in the evaluation section.

Python/C interface code can also be generated by tools such as SWIG [6]
and Cython [7]. They would reduce the number of reference-counting errors as
most of the interface code is automatically generated. However, these tools do
not cover all possible cases of code generation; in particular, they do not handle
every feature of C/C++. As a result, a lot of interface code is still written
manually in practice.

This work is an example of finding errors in Foreign Function Interface (FFI)
code. Errors occur often in FFI code [8–11] because writing interface code re-
quires resolving language differences such as memory management between two
languages. Past work on improving FFIs’ safety can be put into several cate-
gories. First, some systems use dynamic checking to catch errors (e.g., [12]), to
enforce atomicity [13], or to isolate errors in native code so that they do not
affect the host language’s safety and security [14, 15]. Second, some researchers
have designed new interface languages to help programmers write safer interface
code (e.g.,[16]). Finally, static analysis has been used to identify specific classes
of errors in FFI code, including type errors [8, 17] and exception-handling er-
rors [11, 18]. Pungi belongs to this category and finds reference-counting errors
in Python/C interface code.

86 S. Li and G. Tan

Fig. 2. An overview of Pungi

Pungi uses affine programs to abstract the reference-counting aspect of
Python/C programs and performs analysis on the resulting affine programs.
Affine analysis has been used in program verification in the past (e.g.,
[19–23]).

4 Pungi Overview

Fig. 2 shows the main steps in Pungi. It takes a Python/C extension module
as input and reports reference-counting errors. Pungi analyzes only C code, but
does not analyze Python code that invokes the C code.

The first step performed by Pungi is to separate interface code from library
code in the extension module. As observed by a previous static-analysis system
on the Java Native Interface [18], code in an FFI package can be divided into
interface and library code. The library code is part of the package that belongs
to a common native library. The interface code glues the host language such as
Python with the native library. A native function is part of the interface code if
1) it invokes a Python/C API function, or 2) it invokes another native function
that is part of the interface code. For example, the PyCrypto package has a
thin layer of interface code that links Python with the underlying cryptography
library. Typically, the size of interface code is much smaller than the size of
library code. Therefore, Pungi performs a static analysis to separate interface
code and library code so that the following steps can ignore the library code.
Pungi implements a simple worklist algorithm to find functions in the interface
code. If a native function does not belong to the interface code, then its execution
should not have any effect on Python objects’ refcounts.

After separation, affine abstraction converts the interface code to an affine
program. The conversion is performed in two steps: Static Single Assignment
(SSA) transform and affine translation. First, the SSA transform is applied on
the interface code. The SSA transform makes the following affine-translation
step easier to formulate; each variable is assigned only once, making it easy to
track the association between variables and Python objects. In affine translation,
the interface code in the SSA form is translated into an affine program. In the
affine program, variables are used to track properties of Python objects, such as

Finding Reference-Counting Errors in Python/C Programs 87

their refcounts. Statements are affine operations that model how properties such
as refcounts are changed in the interface code. Assertions about refcounts are
also inserted into affine programs; assertion failures suggest reference-counting
errors. Details of the process of affine abstraction are presented in Sec. 5.

After affine abstraction, Pungi performs an interprocedural and path-sensitive
analysis that analyzes the affine program and statically checks whether assertions
in the affine program hold. If an assertion might fail, a warning about a possible
reference-counting error is reported. Details of affine analysis are presented in
Sec. 6.

5 Affine Abstraction

For better understanding, we describe Pungi’s affine abstraction in two stages.
We will first present its design with the assumption that object references do not
escape their scopes. We will then relax this assumption and generalize the design
to allow escaping object references (e.g., via return values or via a memory write
to a heap data structure).

5.1 Bug Definition with Non-escaping References

One natural definition of a reference-counting error is as follows: at a program
location, there is an error if the refcount of an object is not the same as the
number of references to the object. However, this bug definition is too precise
and an analysis based on the definition would generate too many false positives
in real Python/C extension modules. This is due to the presence of borrowed
and stolen references we discussed. In both cases, it is safe to make the refcount
be different from the number of actual references.

Pungi’s reference-counting bug definition is based on a notion of object scopes
and the intuition that the expected refcount change of an object should be zero
at the end of the object’s scope (when references to the object do not escape its
scope). To define an object’s scope, we distinguish two kinds of objects:

– An object is a Natively Created (NC) object if it is created in a Python/C
extension module. In Fig. 1, objects referenced by tup and item are NC ob-
jects. An NC object’s scope is defined to be the immediate scope surrounding
the object’s creation site. For instance, the scope of the object referenced by
tup is the function scope of create ntuple.

– An object is a Python Created (PC) object when its reference is passed from
Python to an entry native function through parameter passing. Note that we
call objects whose references are passed to a native function parameter ob-
jects, but those parameter objects are PC objects only if that native function
is an entry function. In Fig. 1, the self and args objects are PC objects.
We define the scope of a PC object to be the function scope of the entry
native function that receives the reference to the PC object because Pungi
analyzes only native code,

88 S. Li and G. Tan

1 void buggy_foo () {

2 PyObject * pyo = PyInt_FromLong(10);

3 if (pyo == NULL) return;
4 return;
5 }

Fig. 3. A contrived example of a buggy Python/C function

Definition 1. In the case of non-escaping object references, there is a reference-
counting error if, at the end of the scope of an NC or PC object, its refcount
change is non-zero. If the change is greater than zero, we call it an error of
reference over-counting. If the change is less than zero, we call it an error of
reference under-counting.

We next justify the bug definition. In the discussion, we use rc to stand for
the refcount change of an object. Suppose the object is an NC object. If rc > 0,
it results in a memory leak at the end of the scope because (1) the refcount
remains positive and (2) the number of references to the object becomes zero (as
object references do not escape the scope). Take the contrived code in Fig. 3 as an
example. The object creation at line 2 may result in two cases. In the failure case,
the object is not created and PyInt FromLong returns NULL. In the successful
case, the object is created with refcount one; in this case, the net refcount change
to the object is one before returning, signaling a reference over-counting error.
The correct code should have Py DECREF(pyo) before line 4.

If rc < 0 for an NC object, then there is a use of a dangling reference because
at some point of the native function execution, the refcount of the object becomes
zero and the object is deallocated as a result; the next Py DECREF dereferences
the dangling reference.

Suppose the object is a PC object of an entry native function. We can safely
assume at the beginning of the function the object’s refcount is the same as the
number of references to the object because the object is passed from Python,
whose runtime manages refcounts automatically. If rc > 0 at the end of the entry
native function, then after the execution of the function the object’s refcount
must be greater than the number of references to the object (because object
references do not escape). This leads to a potential memory leak. If rc < 0, this
leads to a dangling reference when the native function is invoked with an object
whose refcount is one. Since Pungi analyzes only native code, not Python code;
it has to be conservative.

One limitation of the bug definition is that it misses some dangling-reference
errors that happen in the middle of native functions. For example, a native
function can first decrement the refcount of a PC object and then increment the
refcount. Although at the end the refcount change is zero, the object gets deal-
located after the decrement if the object’s original refcount is one; the following
increment would use a dangling reference. This is a limitation of Pungi and we
leave it to future work.

Finding Reference-Counting Errors in Python/C Programs 89

item2=φ(item, item1)

item

i<n
N

item1=PyInt FromLong(i)
Y

...

item1

Fig. 4. Part of the control-flow graph for the code in Fig. 1 after SSA

5.2 SSA Transform

Inspired by a previous theoretical study, Pungi uses an affine program to model
how refcounts are changed in the interface code of a Python/C extension mod-
ule. The previous study, however, requires reversing the control-flow graph: the
changes at a program location are computed based on changes that follow the
location in the control-flow graph (meaning that changes for program locations
later in the control-flow graph have to be computed first). The resulting affine
program’s control flow reverses the control flow of the original program. This pro-
cess is non-intuitive and it is also unclear how to generalize it to cover function
calls with parameter passing.

We observe that the fundamental reason why reversing the control-flow graph
is necessary is that variables may be assigned multiple times to reference different
objects. Based on this observation, Pungi simplifies the affine abstraction step
by first applying the Static Single Assignment (SSA) transform to the interface
code. The SSA transform inserts φ nodes into the program at control-flow join
points and renames variables so that they are statically assigned only once. As
we will show, the benefit is that Pungi does not need to reverse the control-flow
graph when performing the affine-translation step; further, we can also generalize
the affine translation to cover function calls with parameter passing.

Pungi’s SSA transform performs transformation on only variables of type
“PyObject *” because only Python objects are of interests to Pungi. Variables
of other types are not SSA transformed. For the example in Fig. 1, variable i is
not SSA transformed even though it is statically assigned twice. On the other
hand, the item variable is initialized at the beginning of the code and assigned in
the loop. Therefore, one φ node is inserted before the conditional test i < n and
the item variable is split to multiple ones. The critical parts of the control-flow
graph after the SSA transform are visualized in Fig. 4

5.3 Affine Translation

The affine-translation step translates C interface code in the SSA form to an
affine program that models the refcount changes of Python objects. We next

90 S. Li and G. Tan

explain the intuition behind the translation, before presenting the translation
algorithm.

Intuition about the affine translation. Let us assume a function takes n input
references: p1, p2, ..., pn, each of which is a reference to some Python object.
Shallow aliasing allows some of these references to be aliases. For instance, p1
and p2 may reference the same object, in which case the refcount of the object
can be changed via either p1 or p2.

With the assumption of shallow aliasing, Lal and Ramalingam [3] proved the
following key properties:

(i) the refcount change to an object is the sum of the amount of changes made
via references in p1, p2, ..., pn that point to the object.

(ii) the refcount change to an object via a reference is independent from the
initial aliasing situation and therefore can be computed assuming an initial
aliasing situation in which p1, p2, ..., pn are non-aliases.

We next illustrate via an example as follows:

p3 = p1;

Py_INCREF(p1);

Py_DECREF(p3);

Py_INCREF(p1);

Py_DECREF(p2);

Let us first assume p1, p2, and p3 reference distinct objects initially. Let rci
be the refcount change made by the program to the object that pi initially points
to. Since it is a simple program, we can easily see that rc1 = 1, rc2 = −1, rc3 = 0.
The reason why rc3 is zero is because p3 is updated to be p1 in the first statement;
so there is no refcount change to the object that p3 initially references.

Now suppose the program is actually run in an initial aliasing situation where
p1 and p2 are aliases referencing object a and p3 references a different object
b. In this case, according to the stated properties (i) and (ii), we can compute
that the refcount change to object a is rc1 + rc2, which is zero, and the refcount
change to object b is rc3, which is also zero.

The follow-up question is how to compute rci for an arbitrary program. The
computation is modeled by an affine program, which is discussed next.

Affine program syntax. The syntax of our affine programs is presented in Fig. 5.
In the syntax, we use meta-symbol x for variables and i for integer constants.
An affine program consists of a set of mutually recursive functions; we assume
the first function is the main function. A function declaration contains a name
and a body. The body contains the declaration of a list of local variables and a
block, which is a list of statements.

A statement in an affine program contains various forms of assignments,
of which the right-hand sides are affine expressions. The condition c in an if-
statement or a while-statement can be either a predicate, which compares a

Finding Reference-Counting Errors in Python/C Programs 91

(Program) Prog : : = f1; f2; ...; fn
(Function) f : : = fname(){locals x1, ..., xk; b}

(Block) b : : = s1; ...; sn
(Statement) s : : = x = i | x = x+ i | x = x+ y

| if c then {b1} else {b2} | while c do {b} | assert p
| (x1, ..., xn) = fname() | return (x1, ..., xn)

(Condition) c : : = p | ?
(Predicate) p : : = x == i | x �= i | x > i | x < i | x ≥ i | x ≤ i

Fig. 5. Syntax of affine programs

variable to a constant, or a question mark. The question mark introduces non-
determinism into an affine program and is used when translating an if-statement
or a while-statement with complex conditions in C code. The statement “assert p”
makes an assertion about predicate p. During affine translation, the translator
inserts assertions about objects’ refcount changes into the affine program.

There are also function-call and function-return statements. An affine function
takes zero parameters and returns a tuple. As we will discuss, a native C function
with n object-reference parameters is translated to an affine function that has
zero parameters and returns a tuple with n components, which are the refcount
changes of the n parameter objects.

Intraprocedural affine translation. The translation from C interface code into an
affine program is syntax directed, translating one function at a time. We next
explain how Pungi translates a C function.

Suppose the C function takes n parameters p1, ..., pn, each of which is a refer-
ence to a Python object. We assume unique numeric labels have been given to
parameter objects and object creation sites in the C function. Assume there are
m labels in total, ranging from 1 to m. Among those labels, the first n labels are
given to the n parameter objects and the rest to objects created in the function.

There are two important aspects about the affine translation. First, the trans-
lation maintains a variable-object map that maps from C variables to object
labels; it tracks which object a C variable references at a program location. Sec-
ond, for a Python object with label i, the affine program after translation uses a
set of affine variables to track properties of the object. The most important one
is the rci variable, which tracks the refcount change to the object. (Other affine
variables will be described later.)

Fig. 6 presents the translation rules for typical C constructs. The first column
of the table presents a C construct, the second column presents the updates to
the variable-object map, and the last column contains the translation result.

At the function entry, the variable-object map is initialized to map from pa-
rameters to labels of parameter objects. Recall that with shallow aliasing the
refcount change to an object is independent from the initial aliasing situation;
this is why initially parameters are mapped to unique labels, essentially assum-
ing they are non-aliases. In terms of translation for the function entry, refcount
changes for all objects are initialized to be zero.

92 S. Li and G. Tan

C construct map updates affine translation

function entry forall i ∈ [1..n] forall i ∈ [1..m] rci = 0
map(pi) = i

x = y map(x) = map(y) none

Py INCREF(x) rcmap(x) ++

Py DECREF(x) rcmap(x) −−
x = PyInt FromLongl(. . .) map(x) = l if ? then { rcl = 1; on l = 1 }

else { rcl = 0; onl = 0 }
if (x == NULL) if onmap(x) == 0
then s1 else s2 then { T (s1) } else { T (s2) }
return forall i ∈ OutScope([1..m])

assert (rci == 0)
return (rc1, . . . , rcn)

f(x1, . . . , xk) (tmp1, . . . , tmpk) = f();
rcmap(x1) += tmp1; . . . ;
rcmap(xk) += tmpk;

Fig. 6. Affine translation T (−) for typical C constructs

Reference assignment x = y results in an update to the variable-object map:
afterwards, x references the same object as y. Py INCREF(x) is translated to an
affine statement that increments the rc variable of the object that x currently
references. We use “rci + +” as an abbreviation for rci = rci + 1. Similarly,
Py DECREF(x) is translated to a decrement on the corresponding rc variable.

The translation also translates Python/C API function calls. Such a trans-
lation required us to carefully read the Python/C reference manual about the
refcount effects of API functions (and sometimes even required us to read the
source code of the Python interpreter when the manual is unclear). One com-
plication when translating API functions is the need to deal with error condi-
tions, which are common in the Python/C interface. In the example in Fig. 3
on page 88, PyInt FromLong is supposed to allocate an integer object, but the
allocation may fail. The subsequent code tests whether the object is null and
proceeds with two cases. Error conditions are typically signaled in the Python/C
interface by returning a null reference. To deal with error conditions, Pungi intro-
duces another affine variable for an object during translation: an object non-null
variable, called the on variable. It is one when the object is non-null and zero
when the object is null. Fig. 6 presents the translation of PyInt FromLong with
object label l. It is translated into a non-deterministic if-statement. In the case
of an allocation success, the rc variable is set to be one and the on variable is
also one (meaning it is non-null); in the failure case, both variables are set to be
zero.

Pungi translates an if-statement in C code in a heuristic way. It recognizes
a set of boolean conditions (testing for null, testing for nonnull, etc.) in the if-
statement and translates those conditions accurately. Fig. 6 presents one such
case when the condition is to test whether an object reference is null; the trans-
lated code tests the corresponding object’s on variable. For complex boolean
conditions, Pungi just translates them to question marks.

Finding Reference-Counting Errors in Python/C Programs 93

buggy_foo () {

locals rc1, on1;

rc1 = 0;

if (?) {rc1 = 1; on1 = 1} else {rc1 = 0; on1 = 0};

if (on1 == 0) { assert (rc1 == 0); return ();}

assert (rc1 == 0); return ();

}

Fig. 7. Translation of the example in Fig. 3

A return statement is translated to assertions about object refcount changes
followed by the returning of a tuple of refcount changes of the parameter objects.
We delay the discussion why the tuple of refcount changes is returned when we
discuss the interprocedural translation. An assertion is inserted for every object
that is about to go outside its scope. This is according to the bug definition we
discussed in Sec. 5.1. The auxiliary OutScope function returns a set of labels
whose corresponding objects are about to go outside their scopes. NC (Natively
Created) objects created in the function being translated belong to this set.
Parameter objects are also in this set if the function is an entry native function;
that is, when they are PC (Python Created) objects.

We present in Fig. 7 the translation result for the function in Fig. 3. Since
the original function takes no parameters, the resulting affine function returns
an empty tuple. From the affine function, we can see that the last assertion fails,
which implies a reference-counting error in the original function.

We note that the SSA transform makes the presented affine-translation pos-
sible. Without the SSA, the variable-object map would possibly be updated
differently in two different branches of a control-flow graph; then the translation
would face the issue of how to merge two maps at a control-flow join point. After
the SSA transform, an object-reference variable is statically assigned once and
conflicts in variable-object maps never arise. The previous study [3] addressed
the issue of variables being assigned multiple times by reversing the control flow
during the affine translation. By performing the SSA transform first, Pungi sim-
plifies the affine translation in the intraprocedural case and allows function calls
that pass parameters.

Interprocedural translation. As we have seen, the affine function translated from
a native function returns the refcount changes of parameter objects by assuming
those parameter objects are distinct. This assumption, however, may not be true
as the native function may be called with aliases and different call sites may have
different aliasing situations. Fortunately, because of property (ii) in Sec. 5.3 (on
page 89), it is possible to make post-function-call refcount adjustments according
to the aliasing situation of a specific call site. The last entry in Fig. 6 describes
how a function call is translated. First, the corresponding function is invoked
and it returns the refcount changes of the parameter objects assuming they are
distinct. After the function call, the rc variables of the parameter objects are
adjusted according to the variable-object map of the caller.

94 S. Li and G. Tan

void foo (PyObject *x1,

PyObject *x2) {

if (...) bar(x1,x1)

else bar(x2,x2);

return;
}

void bar (PyObject *p1,

PyObject *p2) {

Py_IncRef(p1); Py_DecRef(p2);

}

void foo () {

locals rc1,on1,rc2,on2,tmp1,tmp2;

rc1=0; rc2=0;

if (?) {

(tmp1,tmp2)=bar();

rc1+=tmp1; rc1+=tmp2;

} else {

(tmp1,tmp2)=bar();

rc2+=tmp1; rc2+=tmp2;

}

assert (rc1==0); assert (rc2==0);

return ();

}

bar () {

locals rc1,on1,rc2,on2;

rc1=0; rc2=0;

rc1++; rc2--;

return (rc1,rc2);

}

Fig. 8. An example of interprocedural affine translation

Fig. 8 presents an example. On the left is some Python/C interface code,
which has two functions. Function foo is assumed to be a native entry function.
It invokes bar at two places. On the right of Fig. 8 is the translated affine
program. Note that the post-function refcount adjustments are different for the
two call sites. For the first call f(x1,x1), the two refcounts are both added to
rc1; for the second call f(x2,x2), the two refcounts are both added to rc2.

Another note about the interprocedural translation is that, if the SSA form of
a native function has φ nodes, then the native function is translated to multiple
affine functions with one affine function created for one φ node. In particular, for
a φ node, the translation finds the set of nodes in the control-flow graph that are
dominated by the φ node and are reachable from the φ node without going through
other φ nodes. This set of nodes is then translated to become the body of the affine
function created for the φ node. Afterwards, the affine function is lifted to be a
function at the global scope (that is, lambda-lifting [24]). As an example, Pungi
translates the following function to exactly the same affine program on the right-
hand side of Fig. 8. This is because after the SSA transform, there is a φ node
inserted before line 4 and an additional affine function is created for that φ node.

1 void foo (PyObject *x1, PyObject *x2) {

2 PyObject *p1, *p2;

3 if (...) {p1=x1; p2=x1} else {p1=x2; p2=x2};

4 Py_IncRef(p1); Py_DecRef(p2);

5 return;
6 }

Finding Reference-Counting Errors in Python/C Programs 95

For the ntuple program in Fig. 1, since a φ node is inserted before the testing
for loop condition (see Fig. 4), an affine function is created for the loop body; it
makes a recursive call to itself because there is a control-flow edge back to the
φ node because of the loop.

5.4 Escaping References

References to an object may escape the object’s scope. In this case, the expected
refcount change to the object is greater than zero. Object references may escape
in several ways. A reference may escape via the return value of a function. The
left-hand side of Fig. 9 presents such an example. When the integer object is
successfully created, the function returns the pyo reference. In this case, the
refcount change to the integer object is one. A reference may also escape to the
heap. The code in Fig. 1 on page 82 contains such an example. At line 13,
The item reference escapes to the heap in the tuple object when the set-item
operation succeeds. In that case, the refcount change to the object created at
line 10 is also one.

To deal with escaping references, we revise the bug definition as follows:

Definition 2. There is a reference-counting error if, at the end of the scope of
an NC or PC object, its refcount change is not the same as the number of times
references to the object escape. If the refcount change is greater than the number
of escapes, we call it an error of reference over-counting. If the change is less
than the number of escapes, we call it an error of reference under-counting.

The previous bug definition with non-escaping references is a specialization of
the new definition when the number of escapes is zero. The new definition essen-
tially uses the number of escapes to approximate the number of new references
created outside the object’s scope. One limitation is that an object reference
may escape to the same heap location multiple times and a later escape may
overwrite the references created in earlier escapes. This would result in missed
errors, although this happens rarely in practice as suggested by our experience
with real Python/C extension modules.

Given the new bug definition, the affine-translation step is adjusted in the
following ways. First, an escape variable, ev , is introduced for each Python object
and records the number of escapes. It is initialized to be zero at the beginning of
a function. Second, the translator recognizes places where an object’s references
escape and increments the object’s escape variable in the affine program by
one. Third, assertions are changed to assert an objects’ refcount change be the
same as the number of escapes. Finally, a function not only returns the refcount
changes of its parameter objects, but also returns the numbers of escapes of the
parameter objects. The post-function-call adjustments adjust both the refcount
changes and the numbers of escapes of the arguments.

The right-hand side of Fig. 9 presents the translated result of the code on the
left. Variable ev1 is introduced to record the number of escapes for the integer
object created. This example also illustrates that the number of escapes may be
different on different control-flow paths.

96 S. Li and G. Tan

PyObject* foo () {

PyObject *pyo=PyInt_FromLong(10);

if (pyo==NULL) {

return NULL;

}

return pyo;

}

foo () {

locals rc1,ev1,on1;

rc1=0; ev1=0;

if (?) {rc1=1; on1=1}

else {rc1=0; on1=0};

if (on1==0) {

assert (rc1==ev1);

return;
}

if (on1==1) ev1++;

assert (rc1==ev1);

return (rc1,ev1);

}

Fig. 9. An example of escaping references

One final note is that in Pungi, with the assumption of shallow aliasing,
callers of functions that return a reference are assumed to get a reference to
a new object. That is, a function call that returns a reference is treated as an
object-creation site.

6 Affine Analysis and Bug Reporting

The final step of Pungi is to perform analysis on the generated affine program
and reports possible reference-counting errors. There are several possible analysis
algorithms on affine programs, such as random interpretation [19]. Pungi adapts
the ESP algorithm [25] to perform affine analysis. The major reason for choosing
ESP is that it is both path-sensitive and interprocedural. The analysis has to
be path sensitive to rule out impossible paths. The affine program in Fig. 9
shows a typical example. In the statement “if (on1==0) ...”, the analysis
must be able to remember the path condition on1==0 to rule out the impossible
case where rc1==1 and on1==1. Without that capability, the analysis would not
be able to see that the first assertion always holds. The analysis also must be
interprocedural as the affine program in Fig. 8 illustrates.

ESP symbolically evaluates the program being analyzed, tracks and updates
symbolic states. At every program location, it infers a set of possible symbolic
states of the following form:

{ 〈ps1, es1〉, . . . , 〈psn, esn〉 }

In ESP, a symbolic state consists of a property state ps and an execution state
es . The important thing about the split between property and execution states is
that ESP is designed so that it is path- and context-sensitive only to the property
states. Specifically, at a control-flow join point, symbolic states merge based on
the property state; the execution states of all states that have the same property

Finding Reference-Counting Errors in Python/C Programs 97

foo () {

locals rc1,ev1,on1;

rc1=0; ev1=0;

// {<[rc1=0,ev1=0], []>}

if (?) {

rc1=1; on1=1

// {<[rc1=1,ev1=0], [on1=1]>}

} else {

rc1=0; on1=0

// {<[rc1=0,ev1=0], [on1=0]>}

};

// {<[rc1=1,ev1=0], [on1=1]>, <[rc1=0,ev1=0], [on1=0]>}

if (on1==0) {

// {<[rc1=0,ev1=0], [on1=0]>}

assert (rc1==ev1);

return;
}

// {<[rc1=1,ev1=0], [on1=1]>}

if (on1==1) ev1++;

// {<[rc1=1,ev1=1], [on1=1]>}

assert (rc1==ev1);

return (rc1,ev1);

}

Fig. 10. An example of affine analysis

state are merged. By splitting property and execution states in different ways,
we can control the tradeoff between efficiency and precision of the algorithm.

A particular analysis needs to decide how to split between property and exe-
cution states in ESP. We next discuss how they are defined in Pungi but leave the
detailed algorithm to the ESP paper. When analyzing an affine program, Pungi’s
property state is the values of refcount-change variables and escape variables.
The execution state is the values of all other variables.

Fig. 10 presents the analysis result at key program locations for the affine
program in Fig. 9. As we can see, after the first if-statement, there are two
symbolic states, representing the two branches of the if-statement. Then path
sensitivity allows the analysis to eliminate impossible symbolic states after the
testing of on1==0 in the second if-statement.

We note that ESP was originally designed with a finite number of property
states, while values of refcount changes and escapes can be arbitrarily large. In
our implementation, we simply put a limit on those values (10 in our implemen-
tation) and used a top value when they go out of the limit.

7 Implementation and Limitations

We have built a prototype implementation of Pungi. The implementation is
written in OCaml within the framework of CIL [26], which is a tool that allows

98 S. Li and G. Tan

analysis and transformation of C source code. Pungi’s prototype implementation
cannot analyze C++ code because CIL can parse only C code. Passes are inserted
into CIL to perform the separation of interface code from library code, the SSA
transform, the affine translation, and the affine analysis. Our implementation of
the SSA transform follows the elegant algorithm by Aycock and Horspool [27].
The total size of the implementation is around 5,000 lines of OCaml code.

Pungi also needs to identify entry native functions because assertions about
parameter objects are inserted only to entry functions. Native extensions typi-
cally have a registration table to register entry functions to Python statically.
Pungi searches for the table and extracts information from the table to identify
entry functions. Since Python is a dynamically typed language, a native exten-
sion module can also dynamically register entry functions. Therefore, Pungi also
uses some heuristics to recognize entry functions. In particular, if a function uses
PyArg Parse (or several other similar functions) to decode arguments, then it is
treated as an entry function.

Limitations. Before we present the evaluation results of Pungi, we list its major
limitations. We will discuss our plan to address some of these limitations when
discussing future work. Some of these limitations have been discussed before,
but we include them below for completeness.

First, Pungi assumes shallow aliasing. Whenever an object reference is re-
trieved from a collection object such as a list, read from a field in a struct, or
returned from a function call, the reference is assumed to point to a distinct
object; such a site is treated as an object-creation site.

Second, Pungi reports errors assuming Python invokes entry native functions
with distinct objects. This is reflected by the fact that an assertion of the form
rc = ev is inserted for every parameter object of an entry native function. This
assumption can be relaxed straightforwardly and please see discussion in future
work.

Third, Pungi’s bug definition may cause it to miss some dangling reference
errors in the middle of functions, because assertions are inserted only at the end
of functions.

Finally, a native extension module can call back Python functions through
the Python/C API, resulting in a Ping-Pong behavior between Python and na-
tive code. An accurate analysis of such situations would require analyzing both
Python and C code. On the other hand, we have not encountered such code in
our experiments.

8 Evaluation

We selected 13 Python/C programs for our evaluation. These programs are com-
mon Python packages in Fedora OS and they use the Python/C interface to
invoke the underlying C libraries. For instance, PyCrypto is a Python cryptog-
raphy toolkit, which provides Python secure hash functions and various encryp-
tion algorithms including AES and RSA. One major reason we selected those

Finding Reference-Counting Errors in Python/C Programs 99

Table 1. Statistics about selected benchmark programs

Benchmark Total Interface code Time
(KLOC) (KLOC) (s)

krbV 7.0 3.7 0.78

pycrypto 16.6 7.0 1.32

pyxattr 1.0 1.0 0.09

rrdtool 31.4 0.6 0.01

dbus 93.1 7.0 0.66

gst 2.7 1.8 0.03

canto 0.3 0.2 0.001

duplicity 0.5 0.4 0.001

netifaces 1.1 1.0 0.09

pyaudio 2.9 2.7 0.03

pyOpenSSL 9.6 9.3 1.27

ldap 3.8 3.4 0.23

yum 3.0 2.4 0.20

TOTAL 173 40.5 4.7

programs for evaluation is that a previous tool, CPyChecker [5], has reported its
results on those programs and we wanted to compare Pungi’s results with CPy-
Checker’s. All evaluation was run on a Ubuntu 9.10 box with 512MB memory
and 2.8GHz CPU.

Table 1 lists the selected benchmarks, their sizes in terms of thousands of
lines of code (KLOC), sizes of their interface code (recall that the first step
Pungi performs is to separate interface from library code), and the amount of
time Pungi spent on analyzing their code for reference-counting errors. The time
is an average of ten runs. As we can see, Pungi is able to analyze a total of 173K
lines of code in a few seconds, partly thanks to the separation between interface
and library code.

The main objective in our evaluation is to know how effective our tool is in
identifying the reference-counting errors as defined. This includes the number of
bugs Pungi reports, the false positive rate, and the accuracy of our tool compared
to CPyChecker.

Errors Found. For a benchmark program, Table 2 shows the number of warn-
ings issued by Pungi, the numbers of true reference over- and under-counting
errors, and the number of false positives. For the 13 benchmark programs, Pungi
issued a total of 210 warnings, among which there are 142 true reference over-
counting errors and a total of 22 true reference under-counting errors. We man-
ually checked all true errors to the best of our ability via a two-person team.
Common errors reported by both CPyChecker and Pungi have been reported to
the developers by the CPyChecker author and some of those errors have been
fixed in later versions of the tested benchmarks. Most of the additional true
errors found by Pungi were easy to confirm manually.

100 S. Li and G. Tan

Table 2. All warnings reported by Pungi, which include true reference over- and
under-counting errors and false positives

Benchmark All Reference Reference False
Warnings Over-counting Under-counting Positives (%)

krbV 85 74 0 11 (13%)

pycrypto 10 6 1 3 (30%)

pyxattr 4 2 0 2 (50%)

rrdtool 0 0 0 0 (0%)

dbus 3 1 0 2 (67%)

gst 30 12 13 5 (17%)

canto 6 0 4 2 (33%)

duplicity 4 2 0 2 (50%)

netifaces 8 2 1 5 (63%)

pyaudio 35 28 2 5 (14%)

pyOpenSSL 9 3 1 5 (56%)

ldap 15 11 0 4 (27%)

yum 1 1 0 0 (0%)

TOTAL 210 142 22 46 (22%)

There are 46 false positives and the overall false-positive rate is moderate,
about 22%. We investigated those false positives and found most false positives
are because of the following reasons:

– Object references in structs. With the assumption of shallow aliasing, Pungi
treats the assignment of an object reference to a field in a struct as an escape
of the reference, and treats the reading an object reference from a field of a
struct as returning a reference to a new object. For example, in the following
code p and q would reference two distinct objects in Pungi’s analysis.

f->d = p;

q = f->d;

As a result, Pungi loses precision when tracking refcounts in such cases.
This may cause both false positives and false negatives and it contributes to
the majority (22 in total) of all the false positives seen in packages such as
pycrypto and ldap.

– Type casting. Pungi treats references of PyObject type (and its subtytpes
such as PyLongObject, PyIntObject, and PyStringObeject) as references
to Python objects. In some package code, a Python object reference is cast
into another type such as an integer and then escapes to the heap. Pungi’s
affine translation cannot model this casting and would incorrectly issue a
reference over-counting warning. 20 false positives in packages such as gst

and pyOpenSSL were caused by this reason.

Finding Reference-Counting Errors in Python/C Programs 101

Table 3. Comparison of errors found between Pungi and CPyChecker

Benchmark Pungi CPyChecker
Common MA Proc Loop Errors found

krbV 39 33 1 1 39

pycrypto 6 0 1 0 6

pyxattr 2 0 0 0 2

rrdtool 0 0 0 0 0

dbus 1 0 0 0 1

gst 21 2 0 2 21

canto 4 0 0 0 4

duplicity 2 0 0 0 2

netifaces 3 0 0 0 3

pyaudio 25 3 1 1 25

pyOpenSSL 1 3 0 0 1

ldap 8 3 0 0 8

yum 1 0 0 0 1

TOTAL 112 43 3 4 112

Comparison with CPyChecker. Table 3 shows the comparison of errors
found between Pungi and CPyChecker. We looked into the differences and found
that Pungi found all errors reported by CPyChecker. In addition, Pungi found
50 more errors than CPyChecker. The reason is because Pungi employs more
precise analysis that applies the SSA and analyzes loops as well as function calls.
CPyChecker’s analysis is intraprocedural and ignores loops. We categorize the
causes in the table. In the column Common, we put the number of errors that
are reported by both Pungi and CPyChecker. Column MA (Multiple Assign-
ments) shows the number of errors that Pungi found but missed by CPyChecker
because CPyChecker’s implementation cannot deal with the case when variables
are statically assigned multiple times with different object references; Pungi can
deal with this by the SSA transform. Column Proc shows the number of errors
Pungi found but missed by CPyChecker because it cannot perform interprocedu-
ral analysis. Column Loop shows the number of errors Pungi found but missed
by CPyChecker because it cannot analyze loops. The comparison shows that
Pungi compares favorably to CPyChecker.

9 Conclusions and Future Work

We have described Pungi, a static-analysis tool that identifies reference-counting
errors in Python/C extension modules. It translates extension code to an
affine program, which is analyzed for errors of reference counting. Pungi’s affine
abstraction is novel in that it applies the SSA transform to simplify affine

102 S. Li and G. Tan

translation and in that it can deal with the interprocedural case and escaping
references. The prototype implementation found over 150 bugs in over 170K
lines. We believe that Pungi makes a solid step toward statically analyzing code
that uses reference counting to manage resources.

As future work, we plan to generalize Pungi to relax some of its assumptions.
Pungi assumes shallow aliasing and assumes parameter objects to entry native
functions are distinct objects. One possibility is to report errors for any possible
aliasing situation, by adding nondeterminism into native functions. As one ex-
ample, suppose an entry native function takes two parameter objects referenced
by p1 and p2, respectively. Suppose the function can be called either with p1

and p2 referencing two distinct objects or with p1 and p2 referencing the same
object. We can insert the following code at the beginning of the native function
before translation: “if (?) {p1=p2}”, which nondeterministically initializes p1
and p2 for the two aliasing situations. As another example, after an object is
retrieved from a list, we can nondeterministically assume the object can be a
new object, or any existing object. This approach can be further improved if
Python and C code are analyzed together and some alias analysis is used to
eliminate impossible aliasing situations. Another possible approach to relax the
shallow aliasing assumption is to keep and maintain a set of finite access paths
to each Python object, as suggested by Shaham et al. [28].

Acknowledgement. We thank the anonymous reviewers whose comments and
suggestions have helped improve the paper. This research is supported by NSF
grants CCF-0915157 and CCF-1149211.

References

1. Meyerovich, L.A., Rabkin, A.S.: Empirical analysis of programming language adop-
tion. In: ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pp. 1–18 (2013)

2. Python/C API reference manual (2013),
http://docs.python.org/3.3/c-api/index.html

3. Lal, A., Ramalingam, G.: Reference count analysis with shallow aliasing. Informa-
tion Processing Letters 111(2), 57–63 (2010)

4. Emmi, M., Jhala, R., Kohler, E., Majumdar, R.: Verifying reference counting imple-
mentations. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 352–367. Springer, Heidelberg (2009)

5. Malcom, D.: Cpychecker,
https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html

6. Beazley, D.M.: SWIG Users Manual: Version 1.1 (June 1997)
7. Cython, http://cython.org/
8. Furr, M., Foster, J.S.: Polymorphic type inference for the JNI. In: Sestoft, P. (ed.)

ESOP 2006. LNCS, vol. 3924, pp. 309–324. Springer, Heidelberg (2006)

http://docs.python.org/3.3/c-api/index.html
https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html
http://cython.org/

Finding Reference-Counting Errors in Python/C Programs 103

9. Tan, G., Morrisett, G.: ILEA: Inter-language analysis across Java and C. In: ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pp. 39–56 (2007)

10. Kondoh, G., Onodera, T.: Finding bugs in Java Native Interface programs. In:
ISSTA 2008: Proceedings of the 2008 International Symposium on Software Testing
and Analysis, pp. 109–118. ACM, New York (2008)

11. Li, S., Tan, G.: Finding bugs in exceptional situations of JNI programs. In: 16th
ACM Conference on Computer and Communications Security (CCS), pp. 442–452
(2009)

12. Lee, B., Hirzel, M., Grimm, R., Wiedermann, B., McKinley, K.S.: Jinn: Synthesiz-
ing a dynamic bug detector for foreign language interfaces. In: ACM Conference
on Programming Language Design and Implementation (PLDI), pp. 36–49 (2010)

13. Li, S., Liu, Y.D., Tan, G.: Native code atomicity for Java. In: Jhala, R., Igarashi,
A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 2–17. Springer, Heidelberg (2012)

14. Siefers, J., Tan, G., Morrisett, G.: Robusta: Taming the native beast of the JVM.
In: 17th ACM Conference on Computer and Communications Security (CCS), pp.
201–211 (2010)

15. Tan, G., Appel, A., Chakradhar, S., Raghunathan, A., Ravi, S., Wang, D.: Safe
Java Native Interface. In: Proceedings of IEEE International Symposium on Secure
Software Engineering, pp. 97–106 (2006)

16. Hirzel, M., Grimm, R.: Jeannie: Granting Java Native Interface developers their
wishes. In: ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pp. 19–38 (2007)

17. Furr, M., Foster, J.: Checking type safety of foreign function calls. In: ACM Con-
ference on Programming Language Design and Implementation (PLDI), pp. 62–72
(2005)

18. Li, S., Tan, G.: JET: Exception checking in the Java Native Interface. In: ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pp. 345–358 (2011)

19. Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpreta-
tion. In: 30th ACM Symposium on Principles of Programming Languages (POPL),
pp. 74–84 (2003)

20. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: 31st ACM Symposium on Principles of Programming Languages (POPL), pp.
330–341 (2004)

21. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,
133–151 (1976)

22. Müller-Olm, M., Rüthing, O.: On the complexity of constant propagation. In:
Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 190–205. Springer, Heidelberg
(2001)

23. Elder, M., Lim, J., Sharma, T., Andersen, T., Reps, T.: Abstract domains of
affine relations. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 198–215.
Springer, Heidelberg (2011)

24. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations.
In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer,
Heidelberg (1985)

104 S. Li and G. Tan

25. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in poly-
nomial time. In: ACM Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 57–68 (2002)

26. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

27. Aycock, J.: Simple generation of static single-assignment form. In: Watt, D.A. (ed.)
CC 2000. LNCS, vol. 1781, pp. 110–124. Springer, Heidelberg (2000)

28. Shaham, R., Yahav, E., Kolodner, E.K., Sagiv, M.: Establishing local temporal
heap safety properties with applications to compile-time memory management. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 483–503. Springer, Heidelberg
(2003)

Safely Composable Type-Specific Languages

Cyrus Omar1, Darya Kurilova1, Ligia Nistor1, Benjamin Chung1,
Alex Potanin2, and Jonathan Aldrich1

1 Carnegie Mellon University, Pittsburgh, USA
2 Victoria University of Wellington, Wellington, New Zealand

{comar,darya,lnistor,bwchung,aldrich}@cs.cmu.edu,
alex@ecs.vuw.ac.nz

Abstract. Programming languages often include specialized syntax for
common datatypes (e.g. lists) and some also build in support for specific spe-
cialized datatypes (e.g. regular expressions), but user-defined types must use
general-purpose syntax. Frustration with this causes developers to use strings,
rather than structured data, with alarming frequency, leading to correctness, per-
formance, security, and usability issues. Allowing library providers to modularly
extend a language with new syntax could help address these issues. Unfortu-
nately, prior mechanisms either limit expressiveness or are not safely compos-
able: individually unambiguous extensions can still cause ambiguities when used
together. We introduce type-specific languages (TSLs): logic associated with a
type that determines how the bodies of generic literals, able to contain arbitrary
syntax, are parsed and elaborated, hygienically. The TSL for a type is invoked
only when a literal appears where a term of that type is expected, guaranteeing
non-interference. We give evidence supporting the applicability of this approach
and formally specify it with a bidirectionally typed elaboration semantics for the
Wyvern programming language.

Keywords: extensible languages, parsing, bidirectional typechecking, hygiene.

1 Motivation

Many data types can be seen, semantically, as modes of use of general purpose product
and sum types. For example, lists can be seen as recursive sums by observing that a
list can either be empty, or be broken down into a product of the head element and the
tail, another list. In an ML-like functional language, sums are exposed as datatypes and
products as tuples and records, so list types can be defined as follows:

datatype ’a list = Nil | Cons of ’a * ’a list

In class-based object-oriented language, objects can be seen as products of their in-
stance data and classes as the cases of a sum type [9]. In low-level languages, like C,
structs and unions expose products and sums, respectively.

By defining user-defined types in terms of these general purpose constructs, we im-
mediately benefit from powerful reasoning principles (e.g. induction), language support
(e.g. pattern matching) and compiler optimizations. But these semantic benefits often
come at a syntactic cost. For example, few would claim that writing a list of numbers
as a sequence of Cons cells is convenient:

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 105–130, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

106 C. Omar et al.

Cons(1, Cons(2, Cons(3, Cons(4, Nil))))

Lists are a common data structure, so many languages include literal syntax for
introducing them, e.g. [1, 2, 3, 4]. This syntax is semantically equivalent to the
general-purpose syntax shown above, but brings cognitive benefits both when writing
and reading code by focusing on the content of the list, rather than the nature of the
encoding. Using terminology from Green’s cognitive dimensions of notations [8], it
is more terse, visible and maps more closely to the intuitive notion of a list. Stoy, in
discussing the value of good notation, writes [31]:

A good notation thus conceals much of the inner workings behind suitable
abbreviations, while allowing us to consider it in more detail if we require:
matrix and tensor notations provide further good examples of this. It may be
summed up in the saying: “A notation is important for what it leaves out.”

Although list, number and string literals are nearly ubiquitous features of modern
languages, some languages provide specialized literal syntax for other common col-
lections (like maps, sets, vectors and matrices), external data formats (like XML and
JSON), query languages (like regular expressions and SQL), markup languages (like
HTML and Markdown) and many other types of data. For example, a language with
built-in notation for HTML and SQL, supporting type safe splicing via curly braces,
might define:

1 let webpage : HTML = <html><body><h1>Results for {keyword}</h1>
2 <ul id="results">{to_list_items(query(db,
3 SELECT title, snippet FROM products WHERE {keyword} in title))}
4 </body></html>

as shorthand for:

1 let webpage : HTML = HTMLElement(Dict.empty(), [BodyElement(Dict.empty(),
2 [H1Element(Dict.empty(), [TextNode("Results for " + keyword)]),
3 ULElement((Dict.add Dict.empty() ("id","results")), to_list_items(query(db,
4 SelectStmt(["title", "snippet"], "products",
5 [WhereClause(InPredicate(StringLit(keyword), "title"))]))))])])

When general-purpose notation like this is too cognitively demanding for comfort,
but a specialized notation as above is not available, developers turn to run-time mecha-
nisms to make constructing data structures more convenient. Among the most common
strategies in these situations, no matter the language paradigm, is to simply use a string
representation, parsing it at run-time:

1 let webpage : HTML = parse_html("<html><body><h1>Results for "+keyword+"</h1>
2 <ul id=\"results\">" + to_string(to_list_items(query(db, parse_sql(
3 "SELECT title, snippet FROM products WHERE ’"+keyword+"’ in title")))) +
4 "</body></html>")

Though recovering some of the notational convenience of the literal version, it is still
more awkward to write, requiring explicit conversions to and from structured represen-
tations (parse_html and to_string, respectively) and escaping when the syntax of the
data language interferes with the syntax of string literals (line 2). Such code also causes
a number of problems that go beyond cognitive load. Because parsing occurs at run-
time, syntax errors will not be discovered statically, causing potential run-time errors
in production scenarios. Run-time parsing also incurs performance overhead, particu-
larly relevant when code like this is executed often (as on a heavily-trafficked website).

Safely Composable Type-Specific Languages 107

But the most serious issue with this code is that it is highly insecure: it is vulnerable
to cross-site scripting attacks (line 1) and SQL injection attacks (line 3). For example,
if a user entered the keyword ’; DROP TABLE products --, the entire product database
could be erased. These attack vectors are considered to be two of the most serious secu-
rity threats on the web today [26]. Although developers are cautioned to sanitize their
input, it can be difficult to verify that this was done correctly throughout a codebase.
The best way to avoid these problems today is to avoid strings and other similar con-
veniences and insist on structured representations. Unfortunately, situations like this,
where maintaining strong correctness, performance and security guarantees entails sig-
nificant syntactic overhead, causing developers to turn to less structured solutions that
are more convenient, are quite common (as we will discuss in Sec. 5).

Adding new literal syntax into a language is generally considered to be the responsi-
bility of the language’s designers. This is largely for technical reasons: not all syntactic
forms can unambiguously coexist in the same grammar, so a designer is needed to
decide which syntactic forms are available, and what their semantics should be. For
example, conventional notations for sets and maps are both delimited by curly braces.
When Python introduced set literals, it chose to distinguish them based on whether the
literal contained only values (e.g. {3}), or key-value pairs ({"x": 3}). But this causes
an ambiguity with the syntactic form { } – should it mean an empty set or an empty
map (called a dictionary in Python)? The designers of Python avoided the ambiguity by
choosing the latter interpretation (in this case, for backwards compatibility reasons).

Were this power given to library providers in a decentralized, unconstrained manner,
the burden of resolving ambiguities would instead fall on developers who happened
to import conflicting extensions. Indeed, this is precisely the situation with SugarJ [6]
and other extensible languages generated by Sugar* [7], which allow library providers
to extend the base syntax of the host language with new forms in a relatively uncon-
strained manner. These new forms are imported transitively throughout a program. To
resolve syntactic ambiguities that arise, clients must manually augment the composed
grammar with new rules that allow them to choose the correct interpretation explic-
itly. This is both difficult to do, requiring a reasonably thorough understanding of the
underlying parser technology (in Sugar*, generalized LR parsing) and increases the
cognitive load of using the conflicting notations (e.g. both sets and maps) together be-
cause disambiguation tokens must be used. These kinds of conflicts occur in a variety
of circumstances: HTML and XML, different variants of SQL, JSON literals and maps,
or differing implementations (“desugarings”) of the same syntax (e.g. two regular ex-
pression engines). Code that uses these common abstractions together is very common
in practice [13].

In this work, we will describe an alternative parsing strategy that sidesteps these
problems by building into the language only a delimitation strategy, which ensures that
ambiguities do not occur. The parsing and elaboration of literal bodies occurs during
typechecking, rather than in the initial parsing phase. In particular, the typechecker
defers responsibility to library providers, by treating the body of the literal as a term of
the type-specific language (TSL) associated with the type it is being checked against.
The TSL definition is responsible for elaborating this term using only general-purpose
syntax. This strategy permits significant semantic flexibility – the meaning of a form

108 C. Omar et al.

like { } can differ depending on its type, so it is safe to use it for empty sets, maps and
JSON literals. This frees these common forms from being tied to the variant of a data
structure built into a language’s standard library, which may not provide the precise
semantics that a programmer needs (for example, Python dictionaries do not preserve
key insertion order).

We present our work as a variant of an emerging programming language called
Wyvern [22]. To allow us to focus on the essence of our proposal and provide the com-
munity with a minimal foundation for future work, the variant of Wyvern we develop
here is simpler than the variant we previously described: it is purely functional (there are
no effects other than non-termination) and it does not enforce a uniform access princi-
ple for objects (fields can be accessed directly), so objects are essentially just recursive
labeled products with simple methods. It also adds recursive sum types, which we call
case types, similar to those found in ML. One can refer to our version of the language
as TSL Wyvern when the variant being discussed is not clear. Our work substantially
extends and makes concrete a mechanism we sketched in a short workshop paper [23].

The paper is organized as a language design for TSL Wyvern:

– In Sec. 2, we introduce TSL Wyvern with a practical example. We introduce both
inline and forward referenced literal forms, splicing, case and object types and an
example of a TSL definition.

– In Sec. 3, we specify the layout-sensitive concrete syntax of TSL Wyvern with an
Adams grammar and introduce the abstract syntax of TSL Wyvern.

– In Sec. 4, we specify the static semantics of TSL Wyvern as a bidirectionally typed
elaboration semantics, which combines two key technical mechanisms:

1. Bidirectional Typechecking: By distinguishing locations where an expression
must synthesize a type from locations where an expression is being analyzed
against a known type, we precisely specify where generic literals can appear
and how dispatch to a TSL definition (an object with a parse method serving as
metadata of a type) occurs.

2. Hygienic Elaboration: Elaboration of literals must not cause the inadvertent
capture or shadowing of variables in the context where the literal appears. It
must, however, remain possible for the client to do so in those portions of the
literal body treated as spliced expressions. The language cannot know a priori
where these spliced portions will be. We give a clean type-theoretic formulation
that achieves of this notion of hygiene.

– In Sec. 5, we gather initial data on how broadly applicable our technique may be
by conducting a corpus analysis, finding that existing code often uses strings where
specialized syntax might be more appropriate.

– In Sec. 6, we briefly report on the current implementation status of our work.
– We discuss related work in Sec. 7 and conclude in Sec. 8 with a discussion of

present limitations and future research directions.

Safely Composable Type-Specific Languages 109

1 let imageBase : URL = <images.example.com>
2 let bgImage : URL = <%imageBase%/background.png>
3 new : SearchServer
4 def resultsFor(searchQuery, page)
5 serve(~) (* serve : HTML -> Unit *)
6 >html
7 >head
8 >title Search Results
9 >style ~

10 body { background-image: url(%bgImage%) }
11 #search { background-color: %darken(‘#aabbcc‘, 10pct)% }
12 >body
13 >h1 Results for <{HTML.Text(searchQuery)}:
14 >div[id="search"]
15 Search again: < SearchBox("Go!")
16 < (* fmt_results : DB * SQLQuery * Nat * Nat -> HTML *)
17 fmt_results(db, ~, 10, page)
18 SELECT * FROM products WHERE {searchQuery} in title

Fig. 1. Wyvern Example with Multiple TSLs

<literal body here, <inner angle brackets> must be balanced>
{literal body here, {inner braces} must be balanced}
[literal body here, [inner brackets] must be balanced]
‘literal body here, ‘‘inner backticks‘‘ must be doubled‘
’literal body here, ’’inner single quotes’’ must be doubled’
"literal body here, ""inner double quotes"" must be doubled"
12xyz (* no delimiters necessary for number literals; suffix optional *)

Fig. 2. Inline Generic Literal Forms

2 Type-Specific Languages in Wyvern

We begin with an example in Fig. 1 showing several different TSLs being used in a
fragment of a web application showing search results from a database. We will review
this example below to develop intuitions about TSLs in Wyvern; a formal and more
detailed description will follow. For clarity of presentation, we color each character by
the TSL it is governed by. Black is the base language and comments are in italics.

2.1 Inline Literals

Our first TSL appears on the right-hand side of the variable binding on line 1. The
variable imageBase is annotated with its type, URL. This is a named object type declaring
several fields representing the components of a URL: its protocol, domain name, port,
path and so on (below). We could have created a value of type URL using the general-
purpose introductory form new, which forward references an indented block of field and
method definitions beginning on the line after it appears:

1 objtype URL
2 val protocol : String
3 val subdomain : String
4 (* ... *)

1 let imageBase : URL = new
2 val protocol = "http"
3 val subdomain = "images"
4 (* ... *)

This is tedious. By associating a TSL with the URL type (we will show how later),
we can instead introduce precisely this value using conventional notation for URLs by
placing it in the body of a generic literal, <images.example.com>. Any other delimited

110 C. Omar et al.

form in Fig. 2 can equivalently be used when the constraints indicated can be obeyed.
The type annotation on imageBase (or equivalently, ascribed directly to the literal) im-
plies that this literal’s expected type is URL, so the body of the literal (the characters
between the angle brackets, in blue) will be governed by the URL TSL during the type-
checking phase. This TSL will parse the body (at compile-time) and produce an elabo-
ration: a Wyvern abstract syntax tree (AST) that explicitly instantiates a new object of
type URL using general-purpose forms only, as if the above had been written directly.

2.2 Splicing

In addition to supporting conventional notation for URLs, this TSL supports splicing
another Wyvern expression of type URL to form a larger URL. The spliced term is here
delimited by percent signs, as seen on line 2 of Fig. 1. The TSL chooses to parse code
between percent signs as a Wyvern expression, using its abstract syntax tree (AST) to
construct the overall elaboration. A string-based representation of the URL is never
constructed at run-time. Note that the delimiters used to go from Wyvern to a TSL are
controlled by Wyvern while the TSL controls how to return to Wyvern.

2.3 Layout-Delimited Literals

On line 5 of Fig. 1, we see a call to a function serve (not shown) which has type
HTML -> Unit. Here, HTML is a user-defined case type, having cases for each HTML tag as
well as some other structures, such as text nodes and sequencing. Declarations of some
of these cases can be seen on lines 2-6 of Fig. 3 (note that TSL Wyvern also includes
simple product types for convenience, written T1 * T2). We could again use Wyvern’s
general-purpose introductory form for case types, e.g. BodyElement((attrs, child)).
But, as discussed in the introduction, this can be cognitively demanding. Thus, we have
associated a TSL with HTML that provides a simplified notation for writing HTML, shown
being used on lines 6-18 of Fig. 1. This literal body is layout-delimited, rather than de-
limited by explicit tokens as in Fig. 2, and introduced by a form of forward reference,
written ~ (“tilde”), on the previous line. Because the forward reference occurs in a posi-
tion where the expected type is HTML, the literal body is governed by that type’s TSL. The
forward reference will be replaced by the general-purpose term, of type HTML, generated
by the TSL during typechecking. Because layout was used as a delimiter, there are no
syntactic constraints on the body, unlike with inline forms (Fig. 2). For HTML, this is
quite useful, as all of the inline forms impose constraints that would cause conflict with
some valid HTML, requiring awkward and error-prone escaping. It also avoids issues
with leading indentation in multi-line literals, as the parser strips these automatically
for layout-delimited literal bodies.

2.4 Implementing a TSL

Portions of the implementation of the TSL for HTML are shown on lines 8-15 of Fig. 3.
A TSL is associated with a named type using a general mechanism for associating a
statically-known value with a named type, called its metadata. Type metadata, in this

Safely Composable Type-Specific Languages 111

1 casetype HTML
2 Empty
3 Seq of HTML * HTML
4 Text of String
5 BodyElement of Attributes * HTML
6 StyleElement of Attributes * CSS
7 (* ... *)
8 metadata = new : HasTSL
9 val parser = ~

10 start <- ’>body’= attributes start>
11 fn (attrs, child) => Inj(‘BodyElement‘, Pair(attrs, child))
12 start <- ’>style’= attributes EXP>
13 fn (attrs, e) => ‘StyleElement((%attrs%, %e%))‘
14 start <- ’<’= EXP>
15 fn (e) => ‘%e% : HTML‘

Fig. 3. A Wyvern case type with an associated TSL

1 objtype HasTSL
2 val parser : Parser
3 objtype Parser
4 def parse(ps : ParseStream) : Result
5 metadata : HasTSL = new
6 val parser = (*parser generator*)
7 casetype Result
8 OK of Exp * ParseStream
9 Error of String * Location

10 casetype Exp
11 Var of ID
12 Lam of ID * Type * Exp
13 Ap of Exp * Exp
14 Inj of Id * Exp
15 ...
16 Spliced of ParseStream
17 metadata : HasTSL = new
18 val parser = (*quasiquotes*)

Fig. 4. Some of the types included in the Wyvern prelude

context, is comparable to class annotations in Java or class/type attributes in C#/F# and
internalizes the practice of writing metadata using comments, so that it can be checked
by the language and accessed programmatically more easily. This can be used for a
variety of purposes – to associate documentation with a type, to mark types as being
deprecated, and so on. Note that we allow programs to extract the metadata value of a
named type T programmatically using the form metadata[T].

For the purposes of this work, metadata values will always be of type HasTSL, an
object type that declares a single field, parser, of type Parser. The Parser type is an
object type declaring a single method, parse, that transforms a ParseStream extracted
from a literal body to a Wyvern AST. An AST is a value of type Exp, a case type that
encodes the abstract syntax of Wyvern expressions. Fig. 4 shows portions of the decla-
rations of these types, which live in the Wyvern prelude (a collection of types that are
automatically loaded before any other).

Notice, however, that the TSL for HTML is not provided as an explicit parse method
but instead as a declarative grammar. A grammar is specialized notation for defining
a parser, so we can implement a grammar-based parser generator as a TSL atop the
lower-level interface exposed by Parser. We do so using a layout-sensitive grammar
formalism developed by Adams [1]. Wyvern is itself layout-sensitive and has a grammar
that can be written down using this formalism, as we will discuss, so it is sensible to
expose it to TSL providers as well. Most aspects of this formalism are conventional.
Each non-terminal (e.g. the designated start non-terminal) is defined by a number of
disjunctive rules, each introduced using <-. Each rule defines a sequence of terminals
(e.g. ’>body’) and non-terminals (e.g. start, or one of the built-in non-terminals ID, EXP

112 C. Omar et al.

or TYPE, representing Wyvern identifiers, expressions and types, respectively). Unique
to Adams grammars is that each terminal and non-terminal in a rule can also have
an optional layout constraint associated with it. The layout constraints available are =

(meaning that the leftmost column of the annotated term must be aligned with that of
the parent term), > (the leftmost column must be indented further) and >= (the leftmost
column may be indented further). Note that the leftmost column is not simply the first
character, in the case of terms that span multiple lines. For example, the production
rule of the form A → B= C≥ D> approximately reads as: “Term B must be at the same
indentation level as term A, term C may be at the same or a greater indentation level as
term A, and term D must be at an indentation level greater than term A’s.” In particular,
if D contains a NEWLINE character, the next line must be indented past the position of the
left-most character of A (typically, though not always, constructed so that it must appear
at the beginning of a line). There are no constraints relating D to B or C other than the
standard sequencing constraint: the first character of D must be further along in the file
than the others. Using Adams grammars, the syntax of real-world languages like Python
and Haskell can be written declaratively.

Each rule is followed, in an indented block, by a spliced function that generates an
elaboration given the elaborations recursively generated by each of the n non-terminals
in the rule, ordered left-to-right. Elaborations are of type Exp, which is a case type
containing each form in the abstract syntax of Wyvern (as well as an additional case,
Spliced, that is used internally), which we will describe later. Here, we show how to
generate an elaboration using the general-purpose introductory form for case types (line
11, Inj corresponds to the introductory form for case types) as well as using quasiquotes
(line 13). Quasiquotes are expressions written in concrete syntax that are not evaluated
for their value, but rather evaluate to their corresponding syntax trees. We observe that
quasiquotes too fall into the pattern of “specialized notation associated with a type”:
quasiquotes for expressions, types and identifiers are simply TSLs associated with Exp,
Type and ID (Fig. 4). They support the Wyvern concrete syntax as well as an additional
delimited form, written with %s, that supports “unquoting”: splicing another AST into
the one being generated. Again, splicing is safe and structural, not string-based.

We can see how HTML splicing works on lines 12-15: we simply include the Wyvern
expression non-terminal EXP in our rule and insert it into our quoted result where appro-
priate. The type that the spliced Wyvern expression will be expected to have is deter-
mined by where it is placed. On line 13 it is known to be CSS by the declaration of HTML,
and on line 15, it is known to be HTML by the use of an explicit ascription.

3 Syntax

3.1 Concrete Syntax

We will begin our formal treatment by specifying the concrete syntax of Wyvern declar-
atively, using the same layout-sensitive formalism that we have introduced for TSL
grammars, developed recently by Adams [1]. Adams grammars are useful because they
allow us to implement layout-sensitive syntax, like that we’ve been describing, without
relying on context-sensitive lexers or parsers. Most existing layout-sensitive languages
(e.g. Python and Haskell) use hand-rolled context-sensitive lexers or parsers (keeping

Safely Composable Type-Specific Languages 113

1 (* programs *)

2 p → ’objtype’= ID> NEWLINE> objdecls> metadatadecl> NEWLINE> p=

3 p → ’casetype’= ID> NEWLINE> casedecls> metadatadecl> NEWLINE> p=

4 p → e=

5 metadatadecl → ε | ’metadata’= ’=’> e>

6 objdecls → ε

7 objdecls → ’val’= ID> ’:’> type NEWLINE> objdecls>

8 objdecls → ’def’= ID> ’(’> typelist> ’)’> ’:’> type> NEWLINE> objdecls>

9 casedecls → ε

10 casedecls → ID= (ε | ’of’> type>) NEWLINE> casedecls>

11

12 type → ID= | type= ’->’> type> | type= ’*’
> type>

13
14 e → e=

15 e → ẽ[’~’]= NEWLINE> chars>

16 e → ẽ[’new’]= NEWLINE> m>

17 e → ẽ[’case(’ e ’)’]= NEWLINE> r>

18
19 (* object definitions *)
20 m → ε

21 m → ’val’= ID> ’=’> e> NEWLINE> m=

22 m → ’def’= ID> ’(’> idlist> ’)’> ’=’> e> NEWLINE> d=

23
24 (* rules for case analysis (case types and products) *)
25 r → rc | rp

26 rc → ID= ’(’> ID> ’)’> ’=>’> e>

27 rc → ID= ’(’> ID> ’)’> ’=>’> e> NEWLINE> rc=

28 rp → ’(’= idlist> ’)’> ’=>’> e>

29
30 (* expressions containing zero forward references *)
31 e → ID=

32 e → e= ’:’> type>

33 e → ’let’= ID> (ε | ’:’> type>) ’=’> e> NEWLINE> e=

34 e → ’fn’= ’(’> idlist> ’)’> (ε | ’:’> type>) ’=>’> e>

35 e → e= ’(’> al> ’)’>

36 e → ’(’> al> ’)’>

37 e → e= ’.’> ID>

38 e → ’toast’= ’(’> e> ’)’>

39 e → ’metadata’= ’[’> ID> ’]’>

40 e → inlinelit=

41 al → ε | alnonempty
=

42 alnonempty → e= | e= ’,’> alnonempty
>

43 inlinelit → samedelims= | matcheddelims= | numlit=

44
45 (* expressions containing exactly one forward reference *)
46 ẽ[fwd] → fwd=

47 ẽ[fwd] → ẽ[fwd]= ’:’> type>

48 ẽ[fwd] → ’let’= ID> (ε | ’:’> type>) ’=’> e> NEWLINE> ẽ[fwd]=

49 ẽ[fwd] → ’let’= ID> (ε | ’:’> type>) ’=’> ẽ[fwd]> NEWLINE> e=

50 ẽ[fwd] → ’fn’= idlist> (ε | ’:’> type>) ’=>’> ẽ[fwd]>

51 ẽ[fwd] → ẽ[fwd]= ’(’> al> ’)’>

52 ẽ[fwd] → e= ’(’> ãl[fwd]> ’)’>

53 ẽ[fwd] → ’(’> ãl[fwd]> ’)’>

54 ẽ[fwd] → ẽ[fwd]= ’.’> ID>

55 ẽ[fwd] → ’toast’= ’(’> ẽ[fwd]> ’)’>

56 ãl[fwd] → ẽ[fwd]= | ẽ[fwd]= ’,’> alnonempty
> | e= ’,’> ãl[fwd]>

Fig. 5. Concrete syntax of TSL Wyvern specified as an Adams grammar. Some standard produc-
tions and precedence handling rules have been omitted for concision.

114 C. Omar et al.

1 objtype T
2 val y : HTML
3 let page : HTML->HTML = (fn(x) => ~)
4 >html
5 >body
6 <{x}
7 page(case(5 : Nat))
8 Z(_) => (new : T).y
9 val y = ~

10 >h1 Zero!
11 S(x) => ~
12 >h1 Successor!

objtype[T, (y[named[HTML]], ∅), ()]; ∅;
elet(easc[arrow[named[HTML],

named[HTML]]](elam(x.lit[>html
>body

<{x}])), page.
eap(page; ecase(easc[named[Nat]](lit[5])) {

erule[Z](_.eprj[y](easc[named[T](enew {
eval[y](lit[>h1 Zero!]); ∅})));

erule[S](x.lit[>h1 Sucessor!]); ∅
}))

Fig. 6. An example Wyvern program demonstrating all three forward referenced forms. The cor-
responding abstract syntax is on the right.

track of, for example, the indentation level using special INDENT and DEDENT tokens), but
these are more problematic because they could not be used to generate editor modes,
syntax highlighters and other tools automatically. In particular, we will show how the
forward references we have described can be correctly encoded without requiring a
context-sensitive parser or lexer using this formalism. It is also useful that the TSL for
Parser, above, uses the same parser technology as the host language, so that it can be
used to generate the quasiquote TSL for Exp more easily.

3.2 Program Structure

The concrete syntax of TSL Wyvern is shown in Fig 5. An example Wyvern program
showing several unique syntactic features of TSL Wyvern is shown in Fig. 6 (left).

The top level of a program (the p non-terminal) consists of a series of named type
declarations – object types using objtype or case types using casetype – followed by
an expression, e. Each named type declaration can also include a metadata declaration.
Metadata is simply an expression associated with the type, used to store TSL logic (and
in future work, other metadata). In the grammar, sequences of top-level declarations use
the form p= to signify that all the succeeding p terms must begin at the same indentation.
We do not specify separate compilation here, as this is an orthogonal issue.

3.3 Forward Referenced Blocks

Wyvern makes extensive use of forward referenced blocks to make its syntax clean.
In particular, layout-delimited TSLs, new expressions for introducing objects, and case

expressions for eliminating case types and tuples all make use of forward referenced
blocks. Fig. 6 shows these in use (assuming suitable definitions of Nat and HTML).

Each line in the concrete syntax can contain either zero or one forward references.
We distinguish these in the grammar by defining separate non-terminals e and ẽ[fwd],
where the parameter fwd is the particular forward reference form that occurs. Note
particularly the rule for let (which permits an expression to span multiple lines and so
can be used to support multiple forward references in a single expression).

Safely Composable Type-Specific Languages 115

ρ ::= θ; e
θ ::= ∅

| objtype[T, ω, e]; θ
| casetype[T, χ, e]; θ

τ ::= named[T] | arrow[τ, τ]

ω ::= ∅ | 	[τ];ω
χ ::= ∅ | C[τ];χ

e ::= x
| easc[τ](e)
| elet(e;x.e)
| elam(x.e)
| eap(e; e)
| enew {m}
| eprj[](e)
| einj[C](e)
| ecase(e) {r}
| etoast(e)
| emetadata[T]
| lit[body]

m ::= ∅
| eval[](e);m
| edef[](x.e);m

r ::= ∅
| erule[C](x.e); r

ê ::= x
| hasc[τ](ê)
| hlet(ê;x.ê)
| hlam(x.ê)
| hap(ê; ê)
| hnew {m̂}
| hprj[](ê)
| hinj[C](ê)
| hcase(ê) {r̂}
| htoast(ê)
| hmetadata[T]
| spliced[e]

m̂ ::= ∅
| hval[](ê); m̂
| hdef[](x.ê); m̂

r̂ ::= ∅
| hrule[C](x.ê); r̂

i ::= x
| iasc[τ](i)
| ilet(i;x.i)
| ilam(x.i)
| iap(i; i)
| inew {ṁ}
| iprj[](i)
| iinj[C](i)
| icase(i) {ṙ}
| itoast(i)

ṁ ::= ∅
| ival[](i); ṁ
| idef[](x.i); ṁ

ṙ ::= ∅
| irule[C](x.i); ṙ

Fig. 7. Abstract Syntax of TSL Wyvern programs (ρ), type declarations (θ), types (τ), external
terms (e), translational terms (ê) and internal terms (i) and auxiliary forms. Metavariable T ranges
over type names, 	 over object member (field and method) labels, C over case labels, x over
variables and body over literal bodies. Tuple types are a mode of use of object types, so they are
not included in the abstract syntax. For concision, we continue to write unit as () and pairs as
(i1, i2) in abstract syntax as needed.

3.4 Abstract Syntax

The concrete syntax of a Wyvern program, p, is parsed to a program in the abstract
syntax, ρ, shown in Fig. 7. Forward references are internalized. Note that all literal
forms are unified into the abstract literal form lit[body], including the layout-delimited
form and number literals. The body remains completely unparsed at this stage. The
abstract syntax for the example in Fig. 6 is shown to its right and demonstrates the key
rewriting done at this stage. Simple product types can be rewritten as object types in
this phase. We assume that this occurs so that we can avoid specifying them separately
in the remainder of the paper, though we continue to use tuple notation for concision.

4 Bidirectional Typechecking and Elaboration

We will now specify a type system for the abstract syntax in Fig. 7. Conventional type
systems are specified using a typing judgement written like Γ
Θ e : τ , where the
typing context, Γ , maps bound variables to types, and the named type context, Θ, maps
type names to their declarations. Such typing judgements do not fully specify whether,
when writing a typechecker, the type should be considered an input or an output. In

116 C. Omar et al.

some situations, a type propagates in from the surrounding syntactic context (e.g. when
the term appears as a function argument, or an explicit ascription has been provided),
so that we simply need to analyze e against it. In others, we need to synthesize a type
for e (e.g. when the term appears at the top-level). Here, this distinction is crucial:
a literal can only appear in an analytic context. Bidirectional type systems [28] make
this distinction explicit by specifying the type system instead using two simultaneously
defined typechecking judgements corresponding to these two situations.

To support TSLs, we need to also, simultaneously with this process, perform an
elaboration from external terms, which contain literals, to internal terms, i, the syntax
for which is shown on the right side of Fig. 7. Internal terms contain neither literals
nor the form for accessing the metadata of a named type explicitly (the elaboration
process inserts the statically known metadata value, tracked by the named type context,
directly). This manner of specifying a type-directed mapping from external terms to a
smaller collection of internal terms, which are the only terms that are given a dynamic
semantics, is related to the Harper-Stone elaboration semantics for Standard ML [10].
Note that both terms share a type system.

Our static semantics are thus formulated by combining these two ideas, forming a
bidirectionally typed elaboration semantics. The judgement Γ
Θ e � i ⇒ τ means
that under typing context Γ and named type context Θ, external term e elaborates to
internal term i and synthesizes type τ . The judgement Γ
Θ e � i ⇐ τ is analagous
but for situations where we are analyzing e against type τ .

4.1 Programs and Type Declarations

Before considering these judgements in detail, let us briefly discuss the steps leading
up to typechecking and elaboration of the top-level term, specified by the compilation
judgement, ρ ∼ Θ � i : τ , defined in Fig. 8. We first load the prelude, Θ0 (see Fig. 4),
then validate the provided user-defined type declarations, θ, to produce a corresponding
named typed context, Θ. During this process, we synthesize a type for the associated
metadata terms (under the empty typing context) and store their elaborations in the type
context Θ (we do not evaluate the elaboration to a value immediately here, though in
a language with effects, the choice of when to evaluate the term is important). Note
that type names must be unique (we plan to use a URI-based mechanism in practice).
Finally, the top-level external term must synthesize a type τ and produce an elaboration
i under an empty typing context and a named type context combining the prelude with
the named type context induced by the user-defined types, written Θ0Θ.

4.2 External Terms

The bidirectional typechecking and elaboration rules for external terms are specified
beginning in Fig. 9. Most of the rules are standard for a simply typed lambda calculus
with labeled sums and labeled products, and the elaborations are direct to a correspond-
ing internal form. We refer the reader to standard texts on type systems (e.g. [9]) to
understand the basic constructs, and to course material1 on bidirectional typechecking

1 http://www.cs.cmu.edu/~fp/courses/15312-f04/
handouts/15-bidirectional.pdf

http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf

Safely Composable Type-Specific Languages 117

ρ ∼ Θ � i : τ Θ ::= ∅ | Θ, T [δ, μ] δ ::= ? | ot[ω] | ct[χ] μ ::= ? | i : τ

�Θ0 θ ∼ Θ ∅ �Θ0Θ e � i ⇒ τ

θ; e ∼ Θ � i : τ
Compile

�Θ θ ∼ Θ

T /∈ dom(Θ) �Θ,T [?,?] ω ∅ �Θ,T [ot[ω],?] em � im ⇒ τm �Θ,T [ot[ω],im:τm] θ � Θ′

�Θ objtype[T, ω, em]; θ ∼ T [ot[ω], im : τm];Θ′ OT

T /∈ dom(Θ) �Θ,T [?,?] χ ∅ �Θ,T [ct[χ],?] em � im ⇒ τm �Θ,T [ct[χ],im:τm] θ � Θ′

�Θ casetype[T, χ, em]; θ ∼ T [ct[χ], im : τm];Θ′ CT

�Θ ω
	 /∈ dom(ω) �Θ τ �Θ ω

�Θ 	[τ];ω
M-decl �Θ χ

C /∈ dom(χ) �Θ τ �Θ χ

�Θ C[τ];χ
C-decl

�Θ τ
T [δ, μ] ∈ Θ

�Θ named[T]
Ty-named

�Θ τ1 �Θ τ2
�Θ arrow[τ1, τ2]

Ty-arrow

Fig. 8. Typechecking and elaboration of programs, ρ. Note that type declarations can only be
recursive, not mutually recursive, with these rules. The prelude Θ0 (see Fig. 4) defines mutually
recursive types, so we cannot write a θ0 corresponding to Θ0 given the rules above. For concision,
the rules to support mutual recursion as well as omitted rules for empty declarations are available
in a technical report [24].

for background. In our presentation, as in many simple formulations, all introductory
forms are analytic and all elimination forms are synthetic, though this can be relaxed in
practice to support some additional idioms.

The introductory form for object types, enew {m}, prevents the manual introduction
of parse streams (only the semantics can introduce parse streams, to permit us to enforce
hygiene, as we will discuss below). The auxiliary judgement Γ
TΘ m � ṁ ⇐ ω
analyzes the member definitions m against the member declarations ω while rewriting
them to the internal member definitions, ṁ. Method definitions involve a self-reference,
so the judgement keeps track of the type name, T . We implicitly assume that member
definitions and declarations are congruent up to reordering.

The introduction form for case types is written einj[C](e), where C is the case name
and e is the associated data. The type of the data associated with each case is stored in
the case type’s declaration, χ. Because the introductory form is analytic, multiple case
types can use the same case names (unlike in, for example, ML). The elimination form,
ecase(e) {r}, performs simple exhaustive case analysis (we leave support for nested
pattern matching as future work) using the auxiliary judgementΓ
Θ r � ṙ ⇐ χ⇒ τ ,
which checks that each case in χ appears in a rule in the rule sequence r, elaborating it
to the internal rule sequence ṙ. Every rule must synthesize the same type, τ .

The rule T-metadata shows how the appropriate metadata is extracted from the
named type context and inserted directly in the elaboration. We will return to the rule
T-toast when discussing hygiene.

118 C. Omar et al.

Γ �Θ e � i ⇒ τ Γ �Θ e � i ⇐ τ Γ ::= ∅ | Γ, x : τ

Γ �Θ e � i ⇒ τ

Γ �Θ e � i ⇐ τ
T-syn-to-ana

�Θ τ Γ �Θ e � i ⇐ τ

Γ �Θ easc[τ](e) � iasc[τ](i) ⇒ τ
T-asc

x : τ ∈ Γ
Γ �Θ x � x ⇒ τ

T-var
Γ �Θ e1 � i1 ⇒ τ1 Γ, x : τ1 �Θ e2 � i2 ⇒ τ

Γ �Θ elet(e1;x.e2) � ilet(i1;x.i2) ⇒ τ
T-let

Γ, x : τ1 �Θ e � i ⇐ τ2

Γ �Θ elam(x.e) � ilam(x.i) ⇐ arrow[τ1, τ2]
T-abs

Γ �Θ e1 � i1 ⇒ τ1 → τ2 Γ �Θ e2 � i2 ⇐ τ1
Γ �Θ eap(e1; e2) � iap(i1; i2) ⇒ τ2

T-ap

T �= ParseStream T [ot[ω], μ] ∈ Θ Γ �T
Θ m � ṁ ⇐ ω

Γ �Θ enew {m} � inew {ṁ} ⇐ named[T]
T-new

Γ �Θ e � i ⇒ named[T] T [ot[ω], μ] ∈ Θ 	[τ] ∈ ω

Γ �Θ eprj[](e) � iprj[](i) ⇒ τ
T-prj

T [ct[χ], μ] ∈ Θ C[τ] ∈ χ Γ �Θ e � i ⇐ τ

Γ �Θ einj[C](e) � iinj[C](i) ⇐ named[T]
T-inj

Γ �Θ e � i ⇒ named[T] T [ct[χ], μ] ∈ Θ Γ �Θ r � ṙ ⇐ χ ⇒ τ

Γ �Θ ecase(e) {r} � icase(i) {ṙ} ⇒ τ
T-case

Θ0 ⊂ Θ Γ �Θ e � i ⇒ τ

Γ �Θ etoast(e) � itoast(i) ⇒ named[Exp]
T-toast

T [δ, i : τ] ∈ Θ

Γ �Θ emetadata[T] � i ⇒ τ
T-metadata

Γ �T
Θ m � ṁ ⇐ ω

Γ �T
Θ ∅ � ∅ ⇐ ∅

T-unit

Γ �Θ e � i ⇐ τ Γ �T
Θ m � ṁ ⇐ ω

Γ �T
Θ eval[](e);m � ival[](i); ṁ ⇐ 	[τ];ω

T-val

Γ, x : named[T] �Θ e � i ⇐ τ Γ �T
Θ m � ṁ ⇐ ω

Γ �T
Θ edef[](x.e);m � idef[](x.i); ṁ ⇐ 	[τ];ω

T-def

Γ �Θ r � ṙ ⇐ χ ⇒ τ

Γ �Θ ∅ � ∅ ⇐ ∅ ⇒ τ
T-void

Γ, x : τ1 �Θ e � i ⇒ τ2 Γ �Θ r � ṙ ⇐ χ ⇒ τ2

Γ �Θ erule[C](x.e); r � irule[C](x.i); ṙ ⇐ C[τ1];χ ⇒ τ2
T-rule

Fig. 9. Statics for external terms, e. The rule for literals is shown in Fig. 10.

Safely Composable Type-Specific Languages 119

Θ0 ⊂ Θ T [δ, im : HasTSL] ∈ Θ parsestream(body) = ips
iap(iprj[parse](iprj[parser](im)); ips) ⇓ iinj[OK]((iast, i

′
ps))

iast ↑ ê Γ ; ∅ �Θ ê � i ⇐ named[T]

Γ �Θ lit[body] � i ⇐ named[T]
T-lit

Fig. 10. Statics for external terms, e, continued. This is the key rule (described below).

4.3 Literals

In the example in Fig. 3, we showed a TSL being defined using a parser generator based
an Adams grammars. As we noted, a parser generator can itself be seen as a TSL for
a parser, and a parser is the fundamental construct that becomes associated with a type
to form a TSL. The declaration for the prelude type Parser, shown in Fig. 4, shows
that it is an object type with a parse function taking in a ParseStream and producing a
Result, which is a case type that indicates either that parsing succeeded, in which case
an elaboration of type Exp is paired with the remaining parse stream (to allow one parser
to call another), or that parsing failed, in which case an error message and location is
provided. This function is called by the typechecker when analyzing the literal form,
as specified by the key rule of our system, T-lit, shown in Fig. 10. Note that we do
not explicitly handle failure in the specification, but in practice we would use the data
provided in the failure case to report the error to the user.

The rule T-lit operates as follows:

1. This rule requires that the prelude is available. For technical reasons, we include a
check that the prelude was actually included in the named type context.

2. The metadata of the type the literal is being checked against, which must be of type
HasTSL, is extracted from the named type context. Note that in a language with
subtyping or richer forms of type equality, which would be necessary for situations
where the metadata might serve other roles, the check that im defines a TSL would
perform this check explicitly (as an additional premise).

3. A parse stream, ips, which is an internal term of type named[ParseStream], is
generated from the body of the literal. This is an object that allows the TSL to read
the body and supports some additional conveniences, discussed further below.

4. The parse method is called with this parse stream. If it produces the appropriate
case containing a reified elaboration, iast (of type Exp) and the remaining parse
stream, i′ps, then parsing was successful. Note that we use shorthand for pairs in the
rule for concision, and the relation i ⇓ i′ defines evaluation to a value (the maximal
transitive closure, if it exists, of the small-step evaluation relation in Fig. 14).

5. The reified elaboration is dereified into a corresponding translational term, ê, as
specified in Fig. 11. The syntax for translational terms mirrors that of external
terms, but does not include literal forms. It adds the form spliced[e], representing
an external term spliced into a literal body.

The key rule is U-Spl. The only way to generate a translational term of this form
is by asking for (a portion of) a parse stream to be parsed as a Wyvern expression.
The reified form, unlike the translational form it corresponds to, does not contain

120 C. Omar et al.

i ↑ ê iid ↑ x

iinj[V ar](iid) ↑ x
U-Var

i1 ↑ τ i2 ↑ ê

iinj[Asc]((i1, i2)) ↑ hasc[τ](ê)
U-Asc

iid ↑ x i ↑ ê

iinj[Lam]((iid, i)) ↑ hlam(x.ê)
U-Lam

i1 ↑ ê1 i2 ↑ ê2

iinj[Ap]((i1, i2)) ↑ hap(ê1, ê2)
U-Ap

· · ·
body(ips)=body eparse(body)=e

iinj[Spliced](ips) ↑ spliced[e]
U-Spl

i ↑ τ
iid ↑ T

iinj[Named](iid) ↑ named[T]
U-N

i1 ↑ τ1 i2 ↑ τ2

iinj[Arrow]((i1, i2)) ↑ arrow[τ1, τ2]
U-A

Fig. 11. Dereification rules, used by rule T-
lit (above) to determine the translational
term encoded by the internal term of type
named[Exp]. We assume a bijection between
internal terms of type named[ID] (written iid)
and variables, type names and case and mem-
ber labels.

i ↓ i x ↓ iid

x ↓ iinj[V ar](iid)
R-Var

τ ↓ i1 i ↓ i2

iasc[τ](i) ↓ iinj[Asc]((i1, i2))
R-Asc

x ↓ iid i ↓ i′

ilam(x.i) ↓ iinj[Lam]((iid, i
′))

R-Lam

i1 ↓ i′1 i2 ↓ i′2
iap(i1; i2) ↓ iinj[Ap]((i′1, i2))

R-Ap

· · ·

τ ↓ i
T ↓ iid

named[T] ↓ iinj[Named](iid)
R-N

τ1 ↓ i1 τ2 ↓ i2

arrow[τ1, τ2] ↓ iinj[Arrow]((i1, i2))
R-A

Fig. 12. Reification rules, used by the
itoast (“to AST”) operator (Fig. 14) to per-
mit generating an internal term of type
named[Exp] corresponding to the value
of the argument (a form of serialization).

the expression itself, but rather just the portion of the parse stream that should be
treated as spliced. Because parse streams (and thus portions thereof) can originate
only metatheoretically (i.e. from the compiler), we know that e must be an external
term written concretely by the TSL client in the body of the literal being analyzed.
This is key to guaranteeing hygiene in the final step, below.

The convenience methods parse_exp and parse_id return a value having this
reified form corresponding to the first external term found in the parse stream (but,
as just described, not necessarily the term itself) paired with the remainder of the
parse stream. These methods themselves are not treated specially by the compiler
but, for convenience, are associated with ParseStream.

6. The final step is to typecheck and elaborate this translational term. This involves
the bidirectional typing judgements shown in Fig. 13. This judgement has a form
similar to that for external terms, but with the addition of an “outer typing context”,
written Γout in the rules. This holds the context that the literal appeared in, so that
the “main” typing context can be emptied to ensure that elaborations is hygienic,
as we will describe next. Each rule in Fig. 9 should be thought of as having a
corresponding rule in Fig. 13. Two examples are shown for concision.

Safely Composable Type-Specific Languages 121

Γ ;Γ �Θ ê � i ⇒ τ Γ ;Γ �Θ ê � i ⇐ τ

x : τ ∈ Γ
Γout;Γ �Θ x � x ⇒ τ

H-var
Γout;Γ, x : τ1 �Θ ê � i ⇐ τ2

Γout;Γ �Θ hlam(x.ê) � ilam(x.i) ⇐ arrow[τ1, τ2]
H-abs

· · ·
Γout �Θ e � i ⇐ τ

Γout;Γ �Θ spliced[e] � i ⇐ τ
H-spl-A

Γout �Θ e � i ⇒ τ

Γout;Γ �Θ spliced[e] � i ⇒ τ
H-spl-S

Fig. 13. Statics for translational terms, ê. Each rule in Fig. 9 corresponds to an analagous rule here
by threading the outer context through opaquely (e.g. the rules for variables and functions, shown
here). The outer context is only used by the rules for spliced[e], representing external terms that
were spliced into TSL bodies. Note that elaboration is implicitly capture-avoiding here (see Sec.
6).

i �−→ i · · ·
i �−→ i′

itoast(i) �−→ itoast(i′)
D-Toast-1

i val i ↓ i′

itoast(i) �−→ i′
D-Toast-2

Fig. 14. Dynamics for internal terms, i. Only internal terms have a dynamic semantics. Most
constructs in TSL Wyvern are standard and omitted, as our focus in this paper is on the statics.
The only novel internal form, itoast(i), extracts an AST (of type named[Exp]) from the value
of i, shown.

4.4 Hygiene

A concern with any term rewriting system is hygiene – how should variables in the
elaboration be bound? In particular, if the rewriting system generates an open term,
then it is making assumptions about the names of variables in scope at the site where
the TSL is being used, which is incorrect. Those variables should only be identifiable
up to alpha renaming. Only the user of a TSL knows which variables are in scope. The
strictest rule would simply reject all open terms, but this would then, given our setting,
prevent even spliced terms from referring to local variables. These are written by the
TSL client, who is aware of variable bindings at the use site, so this should be permitted.

Furthermore, the variables in spliced terms should be bound as the client expects.
The elaboration should not be able to surreptitiously or accidentally shadow variables
in spliced terms that may be otherwise bound at the use site (e.g. by introducing a
variable tmp outside a spliced term that “leaks” into the spliced term).

The solution to both of these issues, given what we have outlined above, is now quite
simple: we have constructed the system so that we know which sub-terms originate from
the TSL client, marking them as spliced[e]. These terms are permitted to refer only to
variables in the client’s context, Γout, as seen in the premises of the two rules pertaining
to this form (one for analysis, one for synthesis). The portions of the elaboration that
aren’t marked in this way were generated by the TSL provider, so they can refer only to
variables introduced earlier in the elaboration, tracked by the context Γ , initially empty.
The two are kept separate. If the TSL wishes to introduce values into spliced terms, it
must do so by via a function application (as in the TSL for Parser discussed earlier),
ensuring that the client has full control over variable binding.

122 C. Omar et al.

Γ �Θ i ⇒ τ Γ �Θ i ⇐ τ · · ·
T [ot[ω], μ] ∈ Θ Γ �T

Θ ṁ ⇐ ω

Γ �Θ inew {ṁ} ⇐ named[T]
IT-new

Fig. 15. Statics for internal terms, i. Each rule in Fig. 9 except T-metadata corresponds to an
analogous rule here by removing the elaboration portion. Only the rule for object introduction
differs, in that we no longer restrict the introduction of parse streams (internal terms are never
written directly by users of the language).

4.5 From Values to ASTs

By this formulation, elaborations containing free variables are always erroneous. In
some rewriting systems, a free variable is not an error, but are instead replaced with the
AST corresponding to the value of the variable at the generation site. We permit this
explicitly by including the form toast(e). This simply takes the value of e and reifies
it, producing a term of type Exp, as specified in Figs. 14 and Fig. 12. The rules for
reification, used here, and dereification, used in the literal rule above, are dual.

The TSL associated with Exp, implementing quasiquotes, can perform free variable
analysis and insert this form automatically, so they need not be inserted manually in
most cases. That is, Var(’x’) : Exp elaborates to x which is ill-typed in an empty con-
text, ’x’ : Exp produces the translational term htoast(spliced[x]), which will elaborate
to itoast(x) in the context where the quotation appears (i.e. in the TSL definition), thus
behaving as described without requiring that quotations are entirely implemented by
the language. This can be seen as a form of serialization and could be implemented as
a library using reflection or compile-time metaprogramming techniques (e.g. [20]).

4.6 Metatheory

The semantics we have defined constitute a type safe language. We will outline the key
theorems and lemmas here, referring the reader to an accompanying technical report for
fuller details [24]. The two key theorems are: internal type safety, and type preservation
of the elaboration process.

To prove internal type safety, we must define a bidirectional typing judgement for
the internal language, shown and described in Fig. 15 (by the external type preservation
theorem, we should never need to explicitly implement this, however). We must also
define a well-formedness judgement for named type contexts (not shown).

Theorem 1 (Internal Type Safety). If
 Θ and ∅
Θ i ⇐ τ or ∅
Θ i ⇒ τ , then
either i val or i �→ i′ such that ∅
Θ i′ ⇐ τ .

Proof. The dynamics, which we omit for concision, are standard, so the proof is by
a standard preservation and progress argument. The only interesting case of the proof
involves etoast(e), for which we need the following lemma.

Lemma 1 (Reification). If Θ0 ⊂ Θ and ∅
Θ i ⇐ τ then i ↓ i′ and ∅
Θ i′ ⇐
named[Exp].

Proof. The proof is by a straightforward induction. Analagous lemmas about reification
of identifiers and types are similarly straightforward. ��

Safely Composable Type-Specific Languages 123

If the elaboration of a closed, well-typed external term generates an internal term of the
same type, then internal type safety implies that evaluation will not go wrong, achieving
type safety. We generalize this argument to open terms by defining a well-formedness
judgement for contexts (not shown). The relevant theorem is below:

Theorem 2 (External Type Preservation). If
 Θ and
Θ Γ and Γ
Θ e � i ⇐ τ
or Γ
Θ e � i⇒ τ then Γ
Θ i⇐ τ .

Proof. We proceed by inducting over the the typing derivation. Nearly all the elabora-
tions are direct, so the proof is by straightforward applications of induction hypotheses
and lemmas about well-formed contexts. The only cases of note are:

– e = enew {m}. Here the corresponding rule for the elaboration is identical but
more permissive, so the induction hypothesis applies.

– e = emetadata[T]. Here, the elaboration generates the metadata value directly.
Well-formedness of Θ implies that the metadata term is of the type assigned.

– e = lit[body]. Here, we need to apply internal type safety as well as a mutually
defined type preservation lemma about translational terms, below.

Lemma 2 (Translational Type Preservation). If
 Θ and
Θ Γout and
Θ Γ and
dom(Γout)∩ dom(Γ) = ∅ (which we can assume implicitly due to alpha renaming) and
Γout;Γ
Θ ê � i⇐ τ or Γout;Γ
Θ ê � i⇒ τ then ΓoutΓ
Θ i⇐ τ .

Proof. The proof by induction over the typing derivation follows the same outline as
above for all the shared cases. The outer context is threaded through opaquely when
applying the inductive hypothesis. The only rules of note are the two for the spliced ex-
ternal terms, which require applying the external type preservation theorem recursively.
This is well-founded by a metric measuring the size of the spliced external term, written
in concrete syntax, since we know it was derived from a portion of the literal body. ��

Moving up to the level of programs, we can prove the correctness of compilation theo-
rem below. Together, this implies that derivation of the compilation judgement produces
an internal term that does not go wrong.

Theorem 3 (Compilation). If ρ ∼ Θ � i : τ then
 Θ and ∅
Θ i⇐ τ .

Proof. We simply need a lemma about checking type declarations and the result follows
straightforwardly.

Lemma 3 (Type Declaration). If
Θ0 θ ∼ Θ then
 Θ0Θ.

Proof. The proof is a simple induction using the definition of
 Θ (not shown).

4.7 Decidability

Because we are executing user-defined parsers during typechecking, we do not have a
straightforward statement of decidability (i.e. termination) of typechecking: the parser
might not terminate, because TSL Wyvern is not a total language (due to self-reference
in methods). Indecidability of typechecking is strictly for this reason. Typechecking

124 C. Omar et al.

of terms not containing literals is guaranteed to terminate. Termination of parsers and
parser generators has previously been studied (e.g. [15]) and the techniques can be ap-
plied to user-defined parsing code to increase confidence in termination. Few compilers,
even those with high demands for correctness (e.g. CompCert [17]), have made it a pri-
ority to fully verify and prove termination of the parser, because it is perceived that most
bugs in compilers arise due to incorrect optimization passes, not initial parsing.

5 Corpus Analysis

We performed a corpus analysis on existing Java code to assess how frequently there
are opportunities to use TSLs. As a lower bound for this metric, we examined String

arguments passed into Java constructors, for two reasons:

1. The String type may be used to represent a large variety of notations, many of
which may be expressed using TSLs.

2. We hypothesized that opportunities to use TSLs would often come when instanti-
ating an object.

Methodology. We ran our analysis on a recent version (20130901r) of the Qualitas
Corpus [33], consisting of 107 Java projects, and searched for constructors that used
Strings that could be substituted with TSLs. To perform the search, we used command
line tools, such as grep and sed, and a text editor features such as search and substitution.
After we found the constructors, we chose those that took at least one String as an
argument. Via a visual scan of the names of the constructors and their String arguments,
we inferred how the constructors and the arguments were intended to be used. Some
additional details are provided in the technical report [24].

Results. We found 124,873 constructors and that 19,288 (15%) of them could use TSLs.
Table 1 gives more details on types of String arguments we found that could be sub-
stituted with TSLs. The “Identifier” category comprises process IDs, user IDs, column
or row IDs, etc. that usually must be unique; the “Pattern” category includes regular
expressions, prefixes and suffixes, delimiters, format templates, etc.; the “Other” cate-
gory contains Strings used for ZIP codes, passwords, queries, IP addresses, versions,
HTML and XML code, etc.; and the “Directory path” and “URL/URI” categories are
self-explanatory.

Limitations. There are three limitations to our corpus analysis. First, the proxy that we
chose for finding how often TSLs could be used in existing Java code is imprecise. Our
corpus analysis focused exclusively on Java constructors and thus did not consider other
programming constructs, such as method calls, assignments, etc., that could possibly
use TSLs. We did not count types that themselves could have a TSL associated with
them (e.g. URL), only uses of Strings that we hypothesized might not have been Strings
had better syntax been available. Our search for constructors with the use of command
line tools and text editor features may not have identified every Java constructors present
in the corpus. Finally, the inference of the intended functionality of the constructor and

Safely Composable Type-Specific Languages 125

Table 1. Types of String arguments in Java constructors that could use TSLs

Type of String Number Percentage
Identifier 15,642 81%
Directory path 823 4%
Pattern 495 3%
URL/URI 396 2%
Other (ZIP code, password, query, 1,932 10%
HTML/XML, IP address, version, etc.)

Total: 19,288 100%

the passed in String argument was based on the authors’ programming experience and
was thus subjective.

Despite the limitations of our corpus analysis, it shows that there are many poten-
tial use cases where type-specific languages could be considered, given that numerous
String arguments appeared to specify a parseable format.

6 Implementation

Because Wyvern itself is an evolving language and we believe that the techniques herein
are broadly applicable, we have implemented the abstract syntax, typechecking and
elaboration rules precisely as specified in this paper, including the hygiene mechanism,
in Scala as a stable resource. We have also included a simple compiler from our rep-
resentation of internal terms, which includes explicit type information at each node,
to Scala source code. We represent both external terms and translational terms using
the same case classes, using traits to distinguish them when necessary. This code can
be used to better understand the implementation overhead of our mechanisms. The key
“trick” is to make sure that the typing context also maps each source variable to a unique
internal variable, so that elaboration of spliced terms is capture-avoiding. This code can
be found at http://github.com/wyvernlang/tslwyvern.

Wyvern itself also supports a variant of this mechanism. The Wyvern language is
an evolving effort involving a number of techniques other than TSLs, so the imple-
mentation does not precisely coincide with the specification presented herein. In par-
ticular, Wyvern’s object types and case types have substantially different semantics.
Moreover, Adams grammars do not presently have a robust implementation, so their
presentation here is merely expository. The top-level parser for Wyvern is instead pro-
duced by the Copper parser generator [36] which uses stateful LALR parsing to handle
whitespace. Forward references, such as the TSL tilde, the new keyword, and case ex-
pressions, are handled by inserting a special “signal” token into the parse stream at
the end of an expression containing a forward reference. When the parser subsequently
reads this signal token, it enters the appropriate state depending on the type of for-
ward reference encountered. TSL blocks are handled as if they were strings, preserving
all non-leading whitespace, and new and case expression bodies are parsed using their
respective grammars. Wyvern performs literal parsing during typechecking essentially

http://github.com/wyvernlang/tslwyvern

126 C. Omar et al.

as described, using a standard bidirectional type system. It does not enforce the con-
straints on parse streams and the hygiene mechanisms as of this writing. Some of the
API is implemented using a Java interoperability layer rather than directly in Wyvern.
This implementation does support some simpler examples fully, however (unlike the
implementation above, which does not have a concrete syntax at all). The code can be
found at http://github.com/wyvernlang/wyvern.

7 Related Work

Closely related to our approach of type-driven parsing is a concurrent paper by Ichikawa
et al. [11] that presents protean operators. The paper describes the ProteaJ language,
based on Java, which allows a programmer to define flexible operators annotated with
named types. Syntactic conflict is resolved by looking at the expected type. Conflicts
may still arise when the expected type matches two protean operators; in this case Pro-
teaJ allows the programmer to explicitly disambiguate, as in other systems. In contrast,
by associating parsers with types, our approach avoids all conflicts, achieving a stricter
notion of modularity at the cost of some expressiveness (we only consider delimited lit-
erals – these may define operators inside, but we cannot support custom operator syntax
directly at the top level). We also give a type theoretic foundation for our approach.

Another way to approach language extensibility is to go a level of abstraction above
parsing, as is done via metaprogramming and macro facilities, with Scheme and other
Lisp-style languages’ hygienic macros being the ’gold standard’ for hygiene. In those
languages, macros are written in the language itself and use its simple syntax – paren-
theses universally serve as expression delimiters (although proposals for whitespace as
a substitute for parentheses have been made [21]). Our work is inspired by this flex-
ibility, but aims to support richer syntax as well as maintain a static type discipline.
Wyvern’s use of types to trigger parsing avoids the overhead of invoking macros explic-
itly by name, and makes it easier to compose TSLs declaratively. Static macro systems
also exist. For instance, OJ (previously, OpenJava) [32] provides a macro system based
on a meta-object protocol, and Backstage Java [27], Template Haskell [30] and Con-
verge [34] also employ compile-time meta-programming, the latter with some support
for whitespace delimited blocks. Each of these systems provide macro-style rewriting
of source code, but they provide at most limited extension of language parsing. String
literals can be reinterpreted, but splicing is not hygienic if this is done.

Other systems aim at providing forms of syntax extension that change the host lan-
guage, as opposed to our whitespace-delimited approach. For example, Camlp4 [4] is a
preprocessor for OCaml that can be used to extend the concrete syntax of the language
with parsers and extensible grammars. SugarJ [6] supports syntactic extension of the
Java language by adding libraries. Wyvern differs from these approach in that the core
language is not extended directly, so conflicts cannot arise at link-time.

Scoping TSLs to expressions of a single type comes at the expense of some flexi-
bility, but we believe that many uses of domain-specific languages are of this form al-
ready. A previous approach has considered type-based disambiguation of parse forests
for supporting quotation and anti-quotation of arbitrary object languages [2]. Our work
is similar in spirit, but does not rely on generation of parse forests and associates gram-
mars with types, rather than types with grammar productions. This provides stronger

http://github.com/wyvernlang/wyvern

Safely Composable Type-Specific Languages 127

modularity guarantees and is arguably simpler. C# expression trees [19] are similar in
that, when the type of a term is, e.g., Expression<T->T’>, it is parsed as a quotation.
However, like the work just mentioned, this is specifically to support quotations. Our
work supports quotations as one use case amongst many.

Many approaches to syntax extension, such as XJ [3] are keyword-delimited in some
form. We believe that a type-directed approach is more seamless and natural, coinciding
with how one would build in language support directly. These approaches also differ in
that they either do not support hygienic expansion, or have not specified it in the simple
manner that we have.

In terms of work on safe language composition, Schwerdfeger and van Wyk [29] pro-
posed a solution that make strong safety guarantees provided that the languages comply
with certain grammar restrictions, concerning first and follow sets of the host language
and the added new languages. It also relied on strongly named entry tokens, as with key-
word delimited approaches. Our approach does not impose any such restrictions while
still making safety guarantees.

Domain-specific language frameworks and language workbenches, such as Spoofax
[14], Ensō [18] and others [35], also provide a possible solution for the language ex-
tension task. They provide support for generating new programming languages and
tooling in a modular manner. The Marco language [16] similarly provides macro defi-
nition at a level of abstraction that is largely independent of the target language. In these
approaches, each TSL is external relative to the host language; in contrast, Wyvern fo-
cuses on internal extensibility, improving interoperability and composability.

Ongoing work on projectional editors (e.g., [12,5]) uses a special graphical user in-
terface to allow the developer to implicitly mark where the extensions are placed in the
code, essentially directly specifying the underlying ASTs. This solution to the language
extension problem is of considerable interest to us, but remains relatively understudied
formally. It is likely that a type-oriented approach to projectional editing, inspired by
that described herein, could be fruitful.

We were informed by our previous work on Active Code Completion (ACC), which
associates code completion palettes with types [25], much as we associate parsers with
types. ACC palettes could be used for defining a TSL syntax for types in a comple-
mentary manner. In ACC that syntax is immediately translated to Java syntax at edit
time, while this work integrates with the language, so the syntax is retained with the
code. ACC supports more general interaction modes than just textual syntax, situated
between our approach and projectional editors.

8 Discussion

We have presented a minimal but complete language design that we believe is particu-
larly elegant, practical and theoretically well-motivated. The key to this is our organi-
zation of language extensions around types, rather than around grammar fragments.

128 C. Omar et al.

There are several directions that remain to be explored:

– TSL Wyvern does not support polymorphic types, like ’a list in our first example.
Were we to add support for them, we would expect that the type constructor (list)
would determine the syntax, not the particular type. Thus, we may fundamentally
be proposing type constructor specific languages.

– Similarly, TSL Wyvern does not support abstract types. It may be useful to include
the ability to associate metadata with an abstract type, much in the same way that
we associate metadata with a named type here.

– TSLs as described here allow one to give an alternative syntax for introductory term
forms, but elimination forms cannot be defined directly. There are two directions
we may wish to go to support this:
1. Pattern matching is a powerful feature supported by an increasing number of

languages. Pattern syntax is similar to term syntax. It may be possible for a
TSL definition to include parse functions for “literal-like” forms appearing in
patterns, elaborating them to pattern terms rather than expression terms.

2. Keywords are more useful when defining custom elimination forms (e.g. if
based on case). It may be possible to support “typed syntax macros” using the
same hygiene mechanisms we described here.

– We do not provide TSLs with the ability to diverge based on the type of a spliced
expression. This might be useful if, for example, our HTML TSL wanted to treat
spliced strings differently from other spliced HTML terms. For polymorphic types,
we might also wish to diverge based on the type index.

– We may wish to design less restrictive shadowing constraints, so that TSLs can
introduce variables directly into the scope of a spliced expression if they explicitly
wish to (bypassing the need for the client to provide a function for the TSL to call).
The community may wish to discuss whether this is worth the cost in terms of
difficulty of determining where a variable has been bound.

– We need to provide further empirical validation. This may benefit from the integra-
tion of TSLs into existing languages other than Wyvern.

– We need to consider broader IDE support – custom syntax benefits from custom
editor support, and it may be possible to design IDEs that dispatch to type metadata
in much the way the typechecker does in this paper. Our informal considerations of
existing IDE extension mechanisms suggests that this may be non-trivial.

Acknowledgements. We thank the anonymous reviewers, Joshua Sunshine, Filipe Mil-
itão and Eric Van Wyk for helpful comments and discussions, and acknowledge the
support of the United States Air Force Research Laboratory and the National Secu-
rity Agency lablet contract #H98230-14-C-0140, as well as the Royal Society of New
Zealand Marsden Fund. Cyrus Omar was supported by an NSF Graduate Research Fel-
lowship.

References

1. Adams, M.D.: Principled parsing for indentation-sensitive languages: Revisiting Landin’s
offside rule. In: Principles of Programming Languages (2013)

Safely Composable Type-Specific Languages 129

2. Bravenboer, M., Vermaas, R., Vinju, J.J., Visser, E.: Generalized type-based disambiguation
of meta programs with concrete object syntax. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 157–172. Springer, Heidelberg (2005)

3. Clark, T., Sammut, P., Willans, J.S.: Beyond annotations: A proposal for extensible Java (XJ).
In: Source Code Analysis and Manipulation (2008)

4. de Rauglaudre, D.: Camlp4 - Reference Manual (2003),
http://caml.inria.fr/pub/docs/manual-camlp4/

5. Diekmann, L., Tratt, L.: Parsing composed grammars with language boxes. In: Workshop on
Scalable Language Specification (2013)

6. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: SugarJ: library-based language extensi-
bility. In: Object-Oriented Programming Systems, Languages, and Applications (2011)

7. Erdweg, S., Rieger, F.: A framework for extensible languages. In: Generative Programming:
Concepts & Experiences (2013)

8. Green, T., Petre, M.: Usability analysis of visual programming environments: A ‘cognitive
dimensions’ framework. Journal of Visual Languages and Computing 7(2), 131–174 (1996)

9. Harper, R.: Practical Foundations for Programming Languages. Cambridge University Press
(2012)

10. Harper, R., Stone, C.: A Type-Theoretic Interpretation of Standard ML. In: Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press (2000)

11. Ichikawa, K., Chiba, S.: Composable user-defined operators that can express user-defined
literals. In: Modularity (2014)

12. JetBrains. JetBrains MPS – Meta Programming System,
http://www.jetbrains.com/mps/

13. Karakoidas, V.: On domain-specific languages usage (why DSLs really matter). Cross-
roads 20(3), 16–17 (2014)

14. Kats, L.C.L., Visser, E.: The Spoofax language workbench: Rules for declarative specifi-
cation of languages and IDEs. In: Object-Oriented Programming Systems, Languages, and
Applications (2010)

15. Krishnan, L., Van Wyk, E.: Termination analysis for higher-order attribute grammars. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 44–63. Springer, Heidelberg
(2013)

16. Lee, B., Grimm, R., Hirzel, M., McKinley, K.S.: Marco: Safe, expressive macros for any lan-
guage. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 589–613. Springer, Heidelberg
(2012)

17. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM (2009)
18. Loh, A., van der Storm, T., Cook, W.R.: Managed data: Modular strategies for data abstrac-

tion. In: Onward! (2012)
19. Microsoft Corporation. Expression Trees (C# and Visual Basic),

http://msdn.microsoft.com/en-us/library/bb397951.aspx
20. Miller, H., Haller, P., Burmako, E., Odersky, M.: Instant pickles: Generating object-oriented

pickler combinators for fast and extensible serialization. In: Object Oriented Programming
Systems, Languages & Applications (2013)

21. Möller, E.: SRFI-49: Indentation-sensitive syntax (2005),
http://srfi.schemers.org/srfi-49/srfi-49.html

22. Nistor, L., Kurilova, D., Balzer, S., Chung, B., Potanin, A., Aldrich, J.: Wyvern: A simple,
typed, and pure object-oriented language. In: MechAnisms for SPEcialization, Generaliza-
tion and Inheritance (2013)

23. Omar, C., Chung, B., Kurilova, D., Potanin, A., Aldrich, J.: Type-directed, whitespace-
delimited parsing for embedded DSLs. In: Globalization of Domain Specific Languages
(2013)

http://caml.inria.fr/pub/docs/manual-camlp4/
http://www.jetbrains.com/mps/
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://srfi.schemers.org/srfi-49/srfi-49.html

130 C. Omar et al.

24. Omar, C., Kurilova, D., Nistor, L., Chung, B., Potanin, A., Aldrich, J.: Safely Composable
Type-Specific Languages. Technical Report CMU-ISR-14-106, Carnegie Mellon University
(2014)

25. Omar, C., Yoon, Y., LaToza, T.D., Myers, B.A.: Active code completion. In: International
Conference on Software Engineering (2012)

26. OWASP. OWASP Top 10 2013 (2013),
https://www.owasp.org/index.php/Top_10_2013-Top_10

27. Palmer, Z., Smith, S.F.: Backstage Java: Making a Difference in Metaprogramming. In:
Object-Oriented Programming Systems, Languages, and Applications (2011)

28. Pierce, B.C., Turner, D.N.: Local type inference. ACM Trans. Program. Lang. Syst. 22(1),
1–44 (2000)

29. Schwerdfeger, A.C., Van Wyk, E.R.: Verifiable composition of deterministic grammars. In:
Programming Language Design and Implementation (2009)

30. Sheard, T., Jones, S.: Template meta-programming for Haskell. ACM SIGPLAN No-
tices 37(12), 60–75 (2002)

31. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, Cambridge (1977)

32. Tatsubori, M., Chiba, S., Killijian, M.-O., Itano, K.: OpenJava: A Class-based Macro System
for Java. In: Cazzola, W., Houmb, S.H., Tisato, F. (eds.) Reflection and Software Engineering.
LNCS, vol. 1826, pp. 117–133. Springer, Heidelberg (2000)

33. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.:
Qualitas corpus: A curated collection of Java code for empirical studies. In: Asia Pacific
Software Engineering Conference (2010)

34. Tratt, L.: Domain specific language implementation via compile-time meta-programming.
ACM Trans. Program. Lang. Syst. 30(6) (October 2008)

35. van den Brand, M.G.J.: Pregmatic: A Generator for Incremental Programming Environments.
PhD thesis, Katholieke Universiteit Nijmegen (1992)

36. Van Wyk, E.R., Schwerdfeger, A.C.: Context-aware scanning for parsing extensible lan-
guages. In: Generative Programming and Component Engineering (2007)

https://www.owasp.org/index.php/Top_10_2013-Top_10

Graceful Dialects

Michael Homer1, Timothy Jones1,
James Noble1, Kim B. Bruce2, and Andrew P. Black3

1 Victoria University of Wellington, Wellington, New Zealand
{mwh,tim,kjx}@ecs.vuw.ac.nz

2 Pomona College, Claremont, California, USA
kim@cs.pomona.edu

3 Portland State University, Portland, Oregon, USA
black@cs.pdx.edu

Abstract. Programming languages are enormously diverse, both in their essen-
tial concepts and in their accidental aspects. This creates a problem when teach-
ing programming. To let students experience the diversity of essential concepts,
the students must also be exposed to an overwhelming variety of accidental and
irrelevant detail: the accidental differences between the languages are likely to
obscure the teaching point.

The dialect system of the Grace programming language allows instructors to
tailor and vary the language to suit their courses, while staying within the same
stylistic, syntactic and semantic framework, as well as permitting authors to de-
fine advanced internal domain-specific languages. The dialect system achieves
this power though a combination of well-known language features: lexical nest-
ing, lambda expressions, multi-part method names, optional typing, and plug-
gable checkers. Grace’s approach to dialects is validated by a series of case
studies, including both extensions and restrictions of the base language.

Keywords: Grace, language variants, domain-specific languages, pluggable
checkers, graphical microworlds, error reporting, object-oriented programming.

1 Introduction

Grace is an imperative, gradually typed, object-oriented language designed for use in
education, particularly for introductory programming courses [3,4]. The goals of Grace
are similar to those of Pascal, of which Wirth wrote (in 1971!)

The development of the language . . . is based on two principal aims. The first
is to make available a language suitable to teach programming as a systematic
discipline based on certain fundamental concepts clearly and naturally reflected
by the language [27].

In the intervening forty-plus years, object-orientation has evolved into the dominant
style of programming, and thus one of the styles to which students should be exposed
if they are to receive a well-rounded education in computing. The design of Grace
was intended to take advantage of recent research in programming language design

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 131–156, 2014.
© Springer-Verlag Berlin Heidelberg 2014

132 M. Homer et al.

to create a syntactically and conceptually simple language that could be used to teach
the fundamental concepts of object-oriented programming. The focus of the language
design was on consolidation of known features, rather than on innovation.

Grace supports a variety of approaches to teaching programming, including objects-
early, objects-late, graphics-early, and functional-first. Grace makes it possible to teach
courses using dynamic types or static types, to start with dynamic typing and then grad-
ually move to static typing, or to do the reverse, without having to change to another
language with a different syntax, semantics, IDE, and libraries.

This paper describes Grace’s dialect system, which we introduced to support this
variety. A dialects is package of extensions to and restrictions on the core Grace lan-
guage that can be used for all or part of a program. A dialect can restrict access to some
language features, replace existing functionality, and create new constructs and control
structures. We show how we have built this system for dialects entirely out of existing
well-known features, found both in Grace and in other languages; both the semantics of
a dialect and the code that implements it are defined in core Grace.

In adding dialects to Grace, we intend to allow an instructor to use a succession of
language variants tailored to the students’ stage of learning and to the instructor’s course
design. The idea of a succession of teaching languages was introduced in SP/k [12], and
revived in DrScheme [8] (now Racket) as “language levels”. Language levels demon-
strated the benefits of limiting the student programming language to the concepts that
they have already learned, and excluding the features that they don’t yet know about.

Because we expect different courses using Grace to use different approaches to
teaching programming, we do not want to provide only a single sequence of dialects,
as in Racket. Rather, we envisage a directed graph of such dialects — indeed, we hope
that instructors, tutors, and course designers will be able to create custom dialects to
suit their individual approaches to teaching. To make this hope realistic, we took care
to ensure that defining a dialect requires nothing more than programming with ordinary
Grace constructs. Instructors do not have to learn a new macro language, or generate
code, or engage with the whole panoply of “professional” language building tools, like
lexers, parsers, typecheckers, interpreters, and compilers. To keep the Grace language
itself small and simple, we also tried to minimise both the number and the complexity
of the features that we added to support dialects. As a consequence, Grace’s dialect
mechanism is limited in power: Grace dialects cannot implement a language with a
completely different syntax or underlying semantic model. For our intended audience,
we see this as an advantage.

The contributions of this paper are a description (in Sect. 3) of Grace’s dialect mecha-
nism: a system that extends (through libraries) and restricts (using pluggable checkers)
the language available to a program module. The dialect system is made possible by
some key features of Grace — lexical nesting, lambda-expressions, multi-part method
names, and optional typing, which are described in Sect. 2. We demonstrate the power
of this approach to dialects by presenting a range of case studies: dialects that define
a graphical micro-world inspired by Logo (§ 4.1), implement assertions and design by
contract (§ 4.2), require explicit type annotations (§ 4.4), suggest fixes to students who
make simple errors (§ 4.6), support the writing of other dialects (§ 4.3), and perform
static type-checking (§ 4.5). Section 5 discusses alternatives and extensions to our de-
sign; Section 6 compares Graceful dialects to a range of related work.

Graceful Dialects 133

2 Grace in a Nutshell

This section introduces the core of the Grace programming language; it provided a basis
for Sect. 3, which describes the elements that we added to support dialects.

Objects. A Grace object is created using an object constructor expression; each time
the object constructor is executed, it creates a new object. Here is an example

object {
def name = "Fido"
var age := 2
method say(phrase : String) {

print "{name} says: {phrase}"
}
print "{name} has been born."

}

This object contains a method (say) and two fields; def name defines a constant
(using "="), while var age declares a variable, whose initial value is assigned with :=.
Variables can be re-assigned, also with :=. When an object constructor is executed, any
code inside its body is also executed, so the above object constructor will have the
side effect of printing “Fido has been born.” when the object is created. This example
also shows that strings can include expressions enclosed in braces: the expression is
evaluated, converted to a string, and inserted in place of the brace expression.

Of course, to be useful, the object created by executing an object constructor typ-
ically needs to be bound to an identifier, or returned from an enclosing method. For
example,

def fido = object {
... code from above example ...

}
fido.say "Hello"

will create an object and bind it to the name fido, and then request the say method on
that object. This will print “Fido was born.” and then “Fido says: Hello”. Grace uses the
term “method request” in preference to “message send”, because “sending a message”
might easily be misinterpreted as referring to a network message. We prefer “request”
over “call” to recognise that the receiver must cooperate in responding to the request.

Program Structure. Every file containing a Grace program is considered to be sur-
rounded by object { ... }. This means that top-level declarations actually declare fields
and methods in an anonymous object, which we call the module object. When a file
is run, it is the constructor of this module object that is executed; this has the effect
of running any code written at the top level of the file. Module objects have access to
Grace’s standard prelude, which defines the language’s basic objects (numbers, strings,
booleans, etc.), control structures, and methods.

134 M. Homer et al.

Object constructors can be nested inside other objects or methods. Method requests
without an explicit receiver are resolved in the lexical scope, finding a valid receiver in
one of the surrounding objects. In the case of ambiguity, the programmer must resolve
the receiver explicitly to self or outer. Classes in Grace are syntactic sugar for methods
that return the result of an object constructor; classes do not serve as types. We do not
use classes in this paper, and so we omit further details.

Visibility. By default, methods are publicly accessible. This default can be changed
using an annotation: a name attached to a declaration using the keyword is. If a method
is annotated confidential, it can be requested inside the object itself, and by any object
that inherits from it, but not from outside objects. In contrast, fields are confidential1

by default; they can be made public by an annotation. Regardless of visibility, code can
access names defined in any of the surrounding scopes. This includes not just requests
of methods and fields, but also parameters and temporaries. The implementation creates
closures when necessary.

When visible, a variable or constant can be requested using exactly the same syntax
as a parameterless method, as demanded by Ross’s Uniform Referent Principle [24]. A
variable can be assigned in a similar way, using a special request syntax that is syntac-
tically identical to an assignment. Thus, the clients of an object need not know whether
an attribute is implemented as a constant, as a variable, or as a method.

Types. Variables, definitions, method parameters and method return values can option-
ally be annotated with types. Grace supports a special annotation syntax for types, using
: for variables, definitions and parameters, and −> for method results, for example:

method square(n : Number) −> Number { n * n }

A type annotation is an assertion on the part of the programmer that no attempt will be
made to bind a value with a non-conforming type to the annotated program element —
in this case, the programmer is asserting that arguments and the return value of the
method square will conform to Number. The implementation will emit a warning or
error if a type assertion does not hold; sometimes the warning will be produced at
run time, and sometimes at compile time, depending on how the erroneous value is
generated and on how many type annotations are present.

Types in Grace are structural. A type is a set of methods, where each method is
decorated with the types of its parameters and the type of its result. Type a conforms to
type b if it obeys the usual contravariant rule: a must support all of the methods of b,
and for each common method m, the result type of m in a must conform to the result
type of m in b, and the arguments types of m in b must conform to the argument types
of m in a. Types can be given names for convenience, but the name of the type plays
no role in checking type conformance. Types and objects can have attributes that define
names for types.

1 Grace uses the term confidential rather than private or protected because Grace’s confidential
is incomparable with the meaning of private and protected in Java and C++.

Graceful Dialects 135

Grace supports gradual typing. Identifiers without type annotations are considered
to have type Unknown, which is compatible with all types, but which may allow type
errors at runtime.

Blocks. Grace blocks provide a concise syntax for lambda expressions (first-class func-
tions). Grace’s blocks are written between braces; if the block has parameters, the names
of the parameters are written after the opening brace, separated from the body of the
block by an arrow, so { x −> x + 1} defines the successor function. A block creates an
object with an apply method with the same number of parameters as the block; request-
ing that a block apply itself evaluates the body of the block, and returns the value of the
final expression in the body. Thus, { x −> x + 1}.apply(3) returns 4.

Patterns. Grace supports an object-oriented form of pattern matching [15]. A unary
block with a type annotation on its parameter can be interpreted as a partial function —
the block will execute if the argument matches the type annotation, otherwise the block
will fail to match. The following code will add one to obj if it is a numeric object, suffix
"one" to obj if it is a string object, and otherwise raise an error:

match (obj)
case { x : Number −> x + 1 }
case { s : String −> s ++ "one" }
case { _ −> Error.raise "no match: {o} is neither a Number nor a
String" }

In this example, the type acts as a pattern, but types are not the only patterns. In general,
any object that responds to a match request with a MatchResult can be used as a pattern.
For example, pattern.match(datum) tests if datum is matched by pattern. Type patterns
match when the argument object has the methods of the type, but user-defined patterns
can define their own criteria for matching. Primitive objects like numbers and strings
match when they are equal to their argument.

Exceptions. Grace supports exception handling through an extension of the pattern
system. Exceptions are raised using the raise method and caught by a special construct,
using the exception as a pattern.

try { IndexOutOfBounds.raise "index {i} exceeds upper bound {u}" }
catch { e : IndexOutOfBounds −> ... }
catch { e : RuntimeError −> ... }
finally { ... }

When an exception is raised, it is handled by the first block that matches the ex-
ception object. The raiseWith method permits the user to attach additional data to the
exception packet.

Multi-part Method Names. Grace method names may contain multiple parts, making
Grace method requests similar to Smalltalk message sends. For example, we can write

136 M. Homer et al.

2 < x < 5 as x.isBetween (2) and (5). The combination of blocks and multi-part names
allows control structures to be defined as methods:2

method if (cond : Boolean) then (body : Block) {
cond.ifTrue(body)

}
method while (cond : Block) do (body : Block) {

if (cond.apply) then {
body.apply
while (cond) do (body)

}
}
while { x > 0 } do {

print "{x} bottles of beer on the wall"
x := x − 1

}

Because “control structures” are method requests, the placement of braces and paren-
theses is not arbitrary. The condition of an if statement is parenthesised, because the if’s
condition is a boolean expression that is evaluated exactly once. In contrast, the condi-
tion in a while may be re-evaluated many times, and must therefore be a block, which
means that it is surrounded by braces. This is a departure from most other curly-brace
languages, but represents semantic consistency. Of course, these two condition argu-
ments have different types, so errors can be detected statically or dynamically.

Multi-part names do not cause a syntactic ambiguity like Algol 60’s “dangling else”
problem. This is because method arguments must always be delimited — either with
parentheses, or, in the case of string and block literals, by the literals’ own delimiters. A
Grace program’s layout must be consistent with its parse: a method request terminates
at the end of the line, unless the next line is indented to indicate a continuation.

We included multi-part method names, along with blocks, to allow objects that repre-
sent data structures to provide methods that implement internal iterators and other con-
trol structures to look much as they do in other “curly bracket” languages. Combined
with implicit receivers, multi-part names also make it easy to provide the “statements”
of a dialect, as we show in this paper.

Modules. Any file containing Grace code can be treated as a module [14]. To access
another module, the programmer uses an import statement, such as

import "examples/greeter" as doorman

The string that follows the import keyword must be a string literal (not an expression)
that identifies (in an implementation-dependent fashion) the module to be imported.
The effect of the import statement is to bind the name that follows as to the imported
module object.

As mentioned earlier, the code in every file is treated as the body of an object con-
structor. The module object — the object generated by this constructor — behaves like

2 Implementations may make these structures primitive for efficiency, as does our current pro-
totype. The code shown here illustrates how they could be defined in Grace.

Graceful Dialects 137

any other object. In particular, a module object may have types and methods as at-
tributes, and can have state. Here is a complete, if simple, module:

def person = "reader"
type Greeter = { greet(name : String)−>Done }
method greet(name) {

print "Hello, {name}!"
}
greet(person)

Executing this module will print “Hello, reader!” and construct a module object con-
taining the type Greeter and the method greet.

If we assume that "examples/greeter" refers to the module shown above, then
import "examples/greeter" as doorman introduces the name doorman into the lo-
cal scope, bound to the module object. Every import of the same string within a program
will access the same module object, although each import may bind it to a different
name.

Implementation. We added the dialect functionality to Minigrace, our prototype
Grace compiler. Minigrace is available from http://www.gracelang.org/ and in-
cludes the case studies described in this paper along with others. Minigrace is ex-
pected to function on POSIX-compatible systems with GCC. A web-based ver-
sion of the compiler, running in JavaScript in the client’s browser, is available at
http://ecs.vuw.ac.nz/~mwh/minigrace/js/. This version includes all of the case stud-
ies described in this paper as loadable samples.

3 Dialects

Dialects are modules that can both extend and restrict the standard Grace language. Di-
alects can not only make extra definitions available to their users; they can also restrict
the language by defining and reporting new kinds of errors, and can change the way in
which existing errors are reported. Dialects support the definition of language subsets
to aid novice programmers, and of domain-specific languages.

3.1 Structure

A module declares the dialect in which it is written with a dialect declaration, like
dialect "beginner", which loads the module named by the string, just as if it were
imported. However, unlike an import statement, the dialect declaration does not bind
the imported object to a name: instead, the dialect object is installed as the lexically-
surrounding scope of the module that uses it, as shown in Fig. 1. Any request in the
client module for a method defined in that outer scope — most often a receiverless re-
quest — will access a method of the dialect. This resolution rule is the same rule used for
any other receiverless request in a lexically nested scope. Thus, if diaMeth is a method
defined in the dialect, then, in a module (such as ModuleC) that is written in the dialect
and does not contain a new definition of diaMeth, a receiverless request for diaMeth will
invoke the method defined in the dialect.

http://www.gracelang.org/
http://ecs.vuw.ac.nz/~mwh/minigrace/js/

138 M. Homer et al.

SomeDialect

ModuleC

dialect

"SomeDialect"

...

diaMeth
...

DialectDialect

SomeDialect

dialect

"DialectDialect"

method

diaMeth {
...

}

Fig. 1. Object nesting with dialects. The declaration dialect "d" logically nests the current mod-
ule inside the module d. Notice that dialect use is not transitive: ModuleC is inside SomeDialect,
and SomeDialect is inside DialectDialect, but ModuleC is not in DialectDialect.

When no dialect is specified, the module is assumed to be written in the standard
Grace language, which uses the standard prelude as its dialect. The dialect mechanism
thus provides a coherent explanation of how Grace’s standard prelude works: a program
in standard Grace generates a module object nested inside the standard prelude object.
Because a dialect replaces this nesting, the author of a dialect can choose whether or not
to expose the standard prelude’s methods to their clients. If they wish, they can write

inherits StandardPrelude.methods

at the top of their dialect, and expose all of the methods of standard Grace.
A module that defines a dialect may itself be written in a dialect. This reveals a

difference between dialectical nesting and other kinds of lexical nesting: the dialect is
the outermost lexical scope, so dialectical nesting is not transitive, as shown in Fig. 1.
The reason for this design decision is that special-purpose dialects, particularly those
defining educational subsets, will commonly be less powerful than the language as a
whole. These dialects will thus typically be written in a dialect — such as standard
Grace — that provides the dialect writer with features that should not be exposed to
clients.

3.2 Pluggable Checkers

As well as providing new definitions, dialects may restrict access to particular features
of the language, or offer additional and more specific error and warning messages. The
latter are useful because novice students can benefit from error messages that are tai-
lored to the more restricted things that they are trying to do, compared to more advanced
programmers.

Restrictions and new error messages are implemented by the dialect module defining
a checker method, which is executed when modules written in the dialect are compiled.

Graceful Dialects 139

The checker method is passed as argument the abstract syntax tree of the module, and
typically traverses that tree using one or more visitors. The visitors cannot change the
tree, but can implement any checks the dialect needs, and can also indicate to the com-
piler whether it should proceed, or terminate with an error.

Checkers have the same ability to find and report errors as the compiler itself. They
can perform any analysis they require: for example, a dialect may wish to perform
a flow analysis to ensure that method parameters are used. If an error is found, the
checker can report that error to the user, including whatever information the dialect
author thinks is relevant, and either carry on to find more errors or stop at that point.
Several modules that provide varied degrees of checking can be used within the same
program, so a student’s code can be subjected to strict constraints, while still being able
to use a module provided by their instructor written in a more powerful dialect.

While a checker can examine the code of its client module using any technique the
programmer wishes, we provide two mechanisms to make dialect-creation easier. One is
support for the Visitor pattern [10] on the AST nodes, which we illustrate in Sect. 4.4;
the other is a dialect to support largely-declarative definitions of checkers, which is
presented in Sect. 4.3.

3.3 Run-Time Protocol

A dialect may wish to run code immediately before or after a module using it, perhaps
for logging, initialising data structures, or launching a user interface. To enable this, the
dialect protocol includes two further methods the dialect can define: atModuleStart and
atModuleEnd. The method atModuleStart is requested, if it exists, immediately before
the module written in the dialect is executed, and receives a single argument: a string
containing the name of the module using the dialect. In Fig. 1, the string "ModuleC

" would be provided to SomeDialect.atModuleStart(...). At this point in execution, the
module object does not yet exist, so it cannot be passed to the dialect. The method
atModuleEnd is requested immediately after the code of the module completes, and is
passed a reference to the module object itself. The dialect can use this reference in the
same way as any other object, including storing it for future use, requesting methods on
it, and passing it to other methods.

4 Case Studies of Dialects

To illustrate the power of our design, this section presents six case studies of dialects and
their implementations. Further case studies are reported in the first author’s thesis [13].
Sample code for the case studies is included in the downloadable implementation and
artifact, and is also accessible (and runnable) in the web-browser-based implementation.

4.1 Logo-Like Turtle Graphics

Our first case study is a simple dialect that supports procedural turtle graphics, inspired
by Logo. This dialect is designed to be used by beginning students to learn geometry
and basic control structures with as little overhead as possible — in particular, without

140 M. Homer et al.

Fig. 2. A simple program in our Logo-like dialect and its output

the syntactic and semantic overhead of a more object-oriented style. We define a dialect
giving access to simple movement primitives and presenting what amounts to a proce-
dural language. Figure 2 shows a simple program in this dialect, and its output, in the
web implementation.

This dialect is straightforward to implement. First, variables to hold the turtle’s state
can be declared at the top level of the dialect module:

var x : Number := 250
var y : Number := 250
var heading : Number := 270
var nib : Boolean := true

Then, the commands to move the turtle and draw can be written straightforwardly as
Grace methods, e.g:

import "simplegraphics" as sg
...
method left(deg : Number) −> Done { heading := (heading − deg) % 360 }
method right(deg : Number) −> Done { heading := (heading + deg) % 360 }
method forward(n : Number) {

def nx = x + math.cos(heading / 180 * π) * n
def ny = y + math.sin(heading / 180 * π) * n
if (nib) then {sg.drawLineFrom (x,y) to (nx,ny) in (ink)}
x := nx; y := ny

}

This is basically the same way turtle graphics would be implemented in any procedural
or scripting language. Note that the drawLineFrom()to()in() method is requested on the
sg object — this delegates drawing to Grace’s “simple graphics” library.

Grace’s support for blocks also allows us to implement new control structures as meth-
ods that take blocks as arguments. For example, the dialect can provide a Logo-style
repeat loop as a method that declares a counter variable and delegates to Grace’s while
()do() loop.

Graceful Dialects 141

method repeat (n : Number) times (b : Block) −> Done {
var counter := 1
while {counter <= n} do {

b.apply
counter := counter + 1 } }

4.2 Design by Contract

Courses taking a formal approach to software engineering may wish to teach program-
ming disciplines such as Design by Contract, using pre- and post-conditions, and loop
variants and invariants, as in Eiffel [19]. A dialect can provide these facilities in Grace.
Our approach here is reminiscent of Scala, but based on dialects rather than traits [20].

The simplest support is for assertions — for example, asserting that the arrays used
to store keys and values in a hash table have the same size:

assert {hashTable.keyArray.size == hashTable.valueArray.size}

This assert “statement” is defined in a dialect as a method that accepts a Predicate (a
parameterless block that returns a Boolean when evaluated). If the value of the predicate
is false, the assertion has failed, so we raise an appropriate exception:

method assert(condition : Predicate) {
if (! condition.apply) then { InvariantFailure.raise }

}

We can extend this technique to support pre- and post-conditions on methods, in-
spired by Eiffel’s “require”, “do”, and “ensure” clauses:

method setHours (hours' : Number) {
require { (0 <= hours') && (hours' <= 23) }

do { hours := hours'; hours }
ensure { result −> (result == hours') && (hours == hours') }

}

The identifier result in the ensure clause refers to the value returned by the method.
This construct can be defined straightforwardly in a dialect, using multi-part method

names for the syntax. As in Eiffel, pre- and post-conditions are checked dynamically.

method require(precondition : Predicate)
do (body : Block)
ensure (postcondition : Predicate) {

if (! precondition.apply)
then { InvariantFailure.raise "Precondition Failure" }

var result
try { result := body.apply }

catch { _ −> InvariantFailure.raise "Unexpected Exception" }
finally {

if (! postcondition.apply(result))
then { InvariantFailure.raise "Postcondition Failure" }

}
return result

}

142 M. Homer et al.

Going still further towards Eiffel, we can add support to the dialect for specifying
and checking loop variants and invariants:

loop {
print(letters[i])
i := i+1

}
invariant { i <= (letters.size + 1) }
until { i > letters.size }
variant { letters.size − i + 1 }

Once again, expressions defining variants and invariants, as well as the code for the
loop body and the termination condition, are supplied as blocks, which are evaluated as
required by the implementation of the loop()invariant(). . . method.

4.3 Dialect for Writing Dialects

Programmers writing different dialects tend to have similar needs. In particular, writ-
ing a checker requires inspecting the user’s code and determining whether or not it is
acceptable; the form of this inspection will be the same in many dialects. We have ab-
stracted these repeated tasks into a dialect of their own. Our dialect dialect makes it
easy to declare rules to test different parts of the source code and to report errors; these
rules are used in the static dialect described in Sect. 4.4. The dialect dialect can also
maintain state; we demonstrate how this is used for type checking in Sect. 4.5. The di-
alect dialect hides the details of the checking process and allows programmers to write
dialect definitions that are largely declarative.

Fundamentally, Grace checkers are methods that examine the nodes of the program’s
abstract syntax tree at compile time. A checker either accepts a node, or raises an ex-
ception to report an error. The AST nodes support the Visitor Pattern to assist in this
examination. Although quite efficient, this kind of code is too low-level to be written by
most instructors, who may nevertheless need to write dialects for use in their teaching.

The dialect for writing dialects simplifies the process of writing a checker by im-
plementing a generic visitor that applies rules defined by the dialect-writer. The dialect
maintains a list of rules to apply in a module-level object rules. The rule method takes
an ASTBlock (a block that accepts an AST node) as an argument, and adds it to the list
of rules.

method rule(block : ASTBlock) −> Done {
rules.push(block)

}

More complex kinds of rule, such as when()error() rules, are defined in terms of the
basic rule method:

method when(pred : UnaryPredicate) error(msg : String) {
rule { node −>

def matches = pred.match(node)
if (matches.andAlso {matches.result}) then { fail(msg) }

}
}

Graceful Dialects 143

The first argument to when()error() is a UnaryPredicate, that is, a block that takes a
single argument and returns a Boolean. The body of the method declares a primitive
rule that accepts an AST node, and then applies pred as a partial function to that node.
If the function is applicable, and the result of invoking the the predicate is true, then an
error is raised using fail.

The dialect dialect defines a single visitor over the AST, which runs all the rules over
every node:

method visitDefDec(node) −> Boolean {
runRules(node)

}

method visitVarDec(node) −> Boolean {
runRules(node)

}

It is sometimes useful to examine a node from a perspective that is different from the
way that the AST is defined. For example, parameters appear within method, block, and
class definition nodes, but the dialect-writer may wish to treat them all in the same way.
To simplify the matching of all parameters, regardless of their location in the AST, the
dialect constructs special parameter nodes against which to run the rules:

method visitMethod(node) −> Boolean {
runRules(node)

for(node.signature) do { part −>
for(part.params) do { param −>

runRules(aParameter.fromNode(param))
}

}

for(node.body) do { stmt −>
stmt.accept(self)

}

return false
}

The dialect also defines a pattern Parameter to match these nodes; this allows the di-
alect author to write a rule against all parameters, rather than having to write separate
rules to deal with each place in which a parameter may appear. The static dialect in
Sect. 4.4 uses this pattern to ensure that all parameters are annotated with types. Simi-
larly, specialised patterns While and For match while and for loops, common cases that
a dialect may want to examine. A dialect author can easily create similar patterns for
their own constructs using the aRequestPattern.forName(...) method provided by the
dialect dialect.

The pattern-matching approach trades off some efficiency for ease of programming,
but efficiency is not a primary goal of Grace. Moreover, we expect most programs,
especially in beginner dialects (which are likely to have the most additional checks) to
be quite small. A declarative approach allows checkers to be expressed concisely, and
to be understood without a deep understanding of the whole of the implementation.

144 M. Homer et al.

import "ast" as ast
def CheckerFailure = Exception.refine "CheckerFailure"
def staticVisitor = object {
inherits ast.baseVisitor
method visitDefDec(v) {

if (v.decType.value == "Unknown") then {
CheckerFailure.raiseWith("no type on '{v.name.value}'", v.name)

} }
method visitMethod(v) {

for (v.signature) do {s−>
for (s.params) do {p−>

if (p.decType.value == "Unknown") then {
CheckerFailure.raiseWith("no type on '{p.value}'", p)

} } }
if (v.returnType.value == "Unknown") then {
CheckerFailure.raiseWith("no return type on '{v.value.value}'", v.

value)
} }

}
method checker(code : List<ASTNode>) {

for (code) do {n −> n.accept(staticVisitor) }
}

Fig. 3. Requiring static types implemented as a Visitor. Similar code for var declarations and
blocks is omitted for space.

4.4 Requiring Explicit Type Annotations

An instructor can require that, for all or part of a course, all student code is fully an-
notated with types, so that no dynamically-typed code is permitted. The static dialect
allows access to all of the ordinary language features, while reporting compile-time er-
rors to students who omit the types on their declarations. The definition of this dialect is
relatively straightforward. We can use a visitor, as shown in Fig. 3, or the dialect-writing
dialect to express it more concisely:

dialect "dialect"
inherits StandardPrelude.methods
when { d : Def | Var −> d.decType.value == "Unknown" }

error "declarations must have a static type"
when { m : Method −> m.returnType.value == "Unknown" }

error "methods must have a static return type"
when { p : Parameter −> p.decType.value == "Unknown" }

error "parameters must have a static type"
method checker(code : Code) {

check(code)
}

The first two rules provide a particular error message to display, specify what kind of
node they care about — var, def, and method declarations — and what should trigger
the error message. Here, the error appears when the declaration type is Unknown (which

Graceful Dialects 145

is the type of an un-annotated declaration). The last when()error() clause matches against
the Parameter pattern from the dialect dialect, which was described in Sect. 4.3 The
checker method in the static dialect delegates to check from the dialect dialect; check
applies all of the declarative rules we have given.

4.5 Type Checking

Because dialects can perform checks over the whole of a module, various static checks
that would typically be built into the compiler can be moved into a dialect. The Min-
igrace compiler does not perform any compile-time type checking, instead deferring
type checks until runtime. However, if a module is written in the structural dialect, the
dialect will perform structural subtyping checks before the compiler generates code for
the module.

dialect "structural"
type Foo = { bar −> String }
method takesFoo(foo : Foo) {

print(foo.bar)
}
takesFoo("foo") // Fails: argument does not satisfy parameter type

Type checking is implemented by extending the dialect dialect with the typeOf
method, which takes an AST node and executes the rule defined for it, returning

the type of the execution. Rules written in the structural dialect ensure that the typ-
ing of a node is correct, and return the static type information of nodes that represent
expressions.

The dialect mechanisms are entirely agnostic to the nature of the type information
used, allowing different forms of type checking to be implemented in the same dialect.
The structural dialect includes several classes for describing types, providing a basis
for building and testing type information in the rules that follow. The anObjectType
class provides the isSubtypeOf method, which determines if one type is a subtype of

another. For instance, the type error generated above comes from the request typing rule,
given in Fig. 4, that ensures that the method exists in the receiver and the parameters

rule { req : Request −>
match(typeOf(req.in).getMethod(req.name))

case { _ : NoSuchMethod −> fail "no such method" }
case { mt : MethodType −>
for (mt.signature) and(req.with) do { s, w −>

for (s.params) and(w.args) do { p, a −>
if (!typeOf(a).isSubtypeOf(p.decType)) then {

fail "argument does not satify parameter type" }
} }
mt.returnType // A request for typeOf(req) will receive this value

} }

Fig. 4. Request typing rule in the structural dialect

146 M. Homer et al.

are correctly typed before producing a type for the result of the request. The nested
requests to the method for(aCollection)and(anotherCollection) do(aBinaryBlock) iterate
through the signature parts and parameters, testing that each argument is a subtype of
its corresponding parameter.

The extension to the dialect dialect also supplies tools for managing information
about what variables, methods and types are available in the current scope. Rules can
enter into new scopes, introduce new values, and retrieve them again with identifiers.
The two rules below ensure that a block like { x : Number −> x } produces the appropri-
ate type.

rule { blk : BlockLiteral −>
scope.enter {

for(blk.params) do { param −>
def pType = anObjectType.fromDecType(param.decType)
scope.variables.at(param.name) put(pType)

}
typeOf(blk.body.last) } }

rule { idnt : Identifier −> scope.variables.find(idnt.value) }

Although variables, methods, and types all inhabit the same namespace in Grace,
keeping them separated in the scope management makes it easier to distinguish be-
tween run-time and compile-time information. Essentially, every type declaration intro-
duces new type information and a new runtime object into the local scope bound to that
information.

Structural type checking is compatible with other checkers. To complete the imple-
mentation of a fully static variant of Grace, the structural and static dialects can be
combined.

import "static" as static
import "structural" as structural
inherits StandardPrelude.methods
method checker(code : Code) {

static.checker(code)
structural.checker(code)

}

Because two imports of the same module access the same module object, multiple
checkers written in the dialect dialect are able to share type information with one an-
other. This allows a checker to extend the typing of another by providing extra type
information, and type checking rules that operate in tandem with the existing rules. The
following dialect adds basic type inference to definitions. It uses the type information
provided by structural, and adds extra information into the type environments of the
shared scope object.

dialect "dialect"
import "structural" as structural
inherits StandardPrelude.methods
rule { d : Def −>

if (d.decType.value == "Unknown") then {
scope.at(d.name) put(typeOf(d.value))

} }
method checker(code : Code) { structural.checker(code) }

Graceful Dialects 147

4.6 Literal Blocks

Because control structures in Grace are simply methods with the same semantics as
other parts of the language, a programmer (particularly one familiar with other lan-
guages) may make mistakes that are not syntactically invalid, but lead to errors they
find difficult to understand. In particular, the condition of a while loop is a block, as
it may be executed repeatedly, and so is written in braces. If the programmer writes
the condition in parentheses instead, or writes some other expression in place of the
condition, they will receive a type error they may find difficult to understand.

This dialect ensures that the condition of a while loop is written in braces, as a literal
block, and will not permit passing a reference to a block defined elsewhere. The dialect
dialect provides checking rules and a special While pattern that allows us to write the
body of the dialect very briefly:

rule { req : While(cond, _) −>
if (cond.kind != "block") then {

reportWhile(req)
}

}
method reportWhile(req) {

// Report an explicit error to the user and suggest what they may have intended.
}

The reportWhile method uses the dialect dialect’s error-reporting and the compiler’s
suggestions infrastructure to tell the user what they did wrong, and what they might have
intended to write. In a simple case like the following, the error is reported as ranging
from the first parenthesis to the last, and the user will be prompted as follows:

literal_test.grace[4:7-14]: Syntax error: The condition of
a while loop must be written in {}.
3: var x := 0
4: while (x < 10) do {

-----------^^^^^^^^
5: print "Counted to {x}."

Did you mean:
4: while {x < 10} do {

A user interface can present this suggestion as an action to be taken, as the web-based
IDE does.

5 Discussion

We considered three major alternative approaches to dialects: inheritance, delegation,
and special-purpose macros. We rejected all of these in favour of the approach described
here, each for a different reason.

148 M. Homer et al.

5.1 Inheritance

With an inheritance-based approach, the module using a dialect inherits from the di-
alect, and dialectical methods can be invoked using a receiverless request, since they
would be available on self in the module scope, and through outer in any nested scopes.
The dialect’s methods could also be defined as confidential if required.

This approach was inspired by SIMULA, and envisaged in the early descriptions of
Grace. As the language developed, several problems with this approach revealed them-
selves. Most of these problems arise because inheritance in Grace (as in most other
languages) is transitive, so dialects implemented via inheritance would also be transi-
tive. What this means is that a module that inherits from a dialect will have all of the
dialect’s methods available on the module object itself. For example, if a dialect were
itself defined by a dialect (as in Sect. 4.3) then all the features of the dialect-defining
dialect would also be included in any module that uses that dialect. For these reasons
we discounted the inheritance approach.

5.2 Delegation

We also considered supporting dialects by delegation. In particular, we considered
translating a dialect statement into an import statement for the dialect module, along
with a set of local (re)declarations of methods, one for each of the public methods of
the dialect. Each of these local methods would forward to the corresponding method of
the dialect. In this way, encapsulation of the dialect module is preserved; the effect is
similar to unqualified imports in other languages. For example, given a dialect module
containing:

method for(i)do(b) is public { ... }
method helper is confidential { ... }

and a module using it, the dialect keyword would be translated into:
import "someDialect" as secret
method for(a1)do(a2) is confidential {

secret.for(a1) do(a2)
}

Only public dialect methods would get local forwarding methods, so local definitions of
the dialect would be hidden. The local forwarding methods would be marked
confidential, so that they would not be available to clients of the module. This approach
would again make the dialect methods available as requests on self in the module scope.

Many of the issues with the inheritance approach do not arise here. The dialect object
is used compositionally, but new methods are defined in the client module. The concept
of exposing only public methods seemed attractive, but did not allow for a method to be
exposed to a client written in the dialect without also exposing that method to all other
code.

There were two reasons why we rejected this design. The first is that it added another
mechanism — delegation — into the language. Grace already has three relationships be-
tween objects: simple references, inheritance, and lexical nesting: delegation would add
a fourth. The second reason is that the proposed semantics for delegation were very

Graceful Dialects 149

similar to the existing semantics for lexical nesting. Nesting makes outer objects’ meth-
ods available to the objects nested inside them, but not to those objects’ clients; those
methods can be involved via implicit requests, or explicitly via outer (rather than self);
self-requests in the outer object go to that object, not back to the original self. Given
these similarities, it seemed simpler overall to extend nesting to encompass dialects,
rather than introduce another separate mechanism.

5.3 Macros

The third option was to add macros, an additional language mechanism, allowing a
dialect to define their own syntax and semantics from scratch. This is the approach
taken in Racket [25], discussed in more detail in section 6.1 below. Macros provide
vastly more power than Grace’s dialects: they may reorder or prevent the evaluation of
arguments, introduce new bindings not mentioned in the source code, or transform the
program in arbitrary ways.

For example, an SQL-style select macro in Racket could share an iteration variable
across several expressions:

(for n (numbers)
(where (< n 5))
(select (* 3 n)))

In contrast, an equivalent form in Grace would make the sub-expressions (arguments to
where and select clauses) blocks, with the value of the current number being provided
as an argument to each block in turn:

for (numbers)
where { n −> n < 5 }
select { n −> n * 3 }

(C#’s lambdas have the same limitations as Grace’s blocks, which is why C# has a
built-in “macro” that re-writes its select statement into expression using multiple lamb-
das. [2]).

There are a number of reasons why we chose not to use macros to implement di-
alects in Grace. The first is that, without macros, dialects can’t introduce new syntactic
forms; this means that code written in a dialect remains readable without knowledge of
the dialect it is using. Thus, the parse of a Grace program does not depend on dialects,
types, or operator definitions: syntactically, there are only method requests. A novice
can understand that control passes to a given method on a given receiver, with the ar-
guments written in the source, without needing to understand what that method does or
how it does it.

The second reason is that, without macros, Grace code that implements a dialect
uses essentially the same language features as code that uses a dialect. Instructors do
not have to learn a powerful new feature (macros) to write dialects, and don’t have to
understand a new feature to be able to debug code using dialects.

The final reason is that macros are an additional feature that have not (so far) been
required in Grace. Because we want to keep Grace minimal, and hopefully easy to learn
and easy to use, we didn’t want to add complex and powerful additional features unless
we could not find any simpler alternatives.

150 M. Homer et al.

5.4 Local Dialects

In the current design, dialects are chosen for the whole of a module. Because dialects
rely on lexical scope, an obvious extension is to permit dialects to be applied to smaller
“local” lexical scopes, perhaps for the extent of a block, an object constructor, or a class.
For example, we could shift into the turtle graphics dialect in the middle of a for loop to
draw the bars of a histogram.

...
def histogram = source.getData
for (histogram) do { datum −>
dialect "turtle" do {

forward(datum * 10)
right(90); forward(10); right(90)
forward(datum * 10)
left(90); forward(10); left(90)

}
}

We have not pursued this extension for several reasons. Local dialects do not seem
to be necessary to support teaching — the primary purpose of Grace dialects. Local
lexically scoped dialects may indeed be useful for domain specific languages used to
support modelling, such as the relationship and finite state machine dialects described
in the thesis [13], but for pedagogical purposes, students will typically write a single
module in a single dialect.

The interaction of dialect scoping and ordinary lexical scoping needs careful thought.
In many cases, code in the new dialect may well want to access identifiers from else-
where in the module, but not from the outer dialect, while in other cases programmers
may want to augment the existing dialect on a temporary basis.

Pragmatically, we can generally do without lexical dialects at the cost of extra mod-
ules. The above code example could be refactored so that the body of the for loop be-
comes a method in a separate module that is written in the turtle dialect; the loop would
then request that method from the other module.

6 Related Work

6.1 Racket

Tobin-Hochstadt et al. [25] describe languages as libraries in Racket, a Scheme-based
language with an accompanying IDE designed for teaching. Racket supports multi-
ple language definitions through the use of avowedly “Advanced Macrology” [6] to
translate the input source text down to core Racket, adding new functionality, or even
replacing the language syntax and semantics along the way.

Racket (then DrScheme) reintroduced the concept of using multiple “language lev-
els” for teaching [8], originally from SP/k [12]: Grace’s dialects were inspired by
Racket’s language levels. Racket’s levels are intended to be moved through in sequence
with gradually increasing power: earlier levels restrict functionality that novices will
not need to use, and provide more informative error messages and suggestions based on
their knowledge of what the programmer can write.

Graceful Dialects 151

Racket languages are strictly more powerful than our dialects, because Racket macros
are full Scheme procedures that manipulate syntax trees. This is particularly useful
when creating new defining forms, allowing their arguments to span multiple scopes.

A Racket language also has the ability to provide information to the Racket inte-
grated development environment. This information can aid syntax highlighting and er-
ror reporting when the language has been modified. Because Grace dialects do not make
such modifications, this tight coupling with the editing environment is not required: all
programs are in standard Grace syntax. The dialect’s checker can provide error report-
ing to whatever level of detail is required.

Racket also offers significant support for defining new languages from scratch. A
Racket language definition can entirely replace the Racket “reader”, and parse the
source text itself, allowing arbitrary input. A Racket implementation of Algol-60 is in-
cluded in the Racket distribution, and programs need only declare #lang algol60
in order for the rest of the source to be treated as Algol. Our system does not support
this; while a dialect may, by the combination of multi-part methods, operators, and pre-
defined objects, present a language with a similar feel to another, programs written in
that dialect must still conform to the overarching Grace syntax. This limitation is both a
blessing and a curse. A programmer who already knows the other language may not be
immediately at home, but working within a single consistent syntax allows integrating
code from different paradigms and gradually moving from one to another.

Compared with Racket, the author of a Grace dialect does not need to embark upon
full-scale metaprogramming (nor do they have the opportunity). To define a dialect
without a checker, programmers define the methods, classes, variables, and types they
want to have available to users exactly as they would in any other program. To pro-
vide dialect checkers, programmers need to understand the visitor pattern, or use the
“dialect” dialect to write a largely declarative specification of a visitor, within Grace’s
standard syntax and semantics.

All Grace dialects have the same semantics as any other Grace program — method
requests with arguments passed by value. Grace’s parse depends only upon syntax, not
on types or other implicit operations, so programmers can always determine the flow
of execution from a program’s surface syntax. By avoiding macros we avoid code that
does not do what it appears to do: arguments are always evaluated before methods are
requested, new bindings are never introduced implicitly, and parse or type errors can
stem only from what was actually written in the input source code. A macro-based
system cannot guarantee any of these points.

6.2 Scala

Scala [21,23] includes several features supporting domain-specific languages. The lan-
guage syntax permits methods acting like built-in structures and operators with many
levels of precedence and associativity. Scala implicit parameters allow an argument
to be passed without naming it, determined by the type. In combination these allow
domain-specific languages that are aware of the context in which they are used. Scala’s
treatment of syntax and semantics is determined by the static type information it has
available. By contrast, Grace programs have the same semantics with or without type

152 M. Homer et al.

definitions, and Grace’s syntax, while flexible, does not admit ambiguities that need to
be resolved by static types.

Scala also includes powerful macro features [7,5] integrating the compiler and run-
time. There is no formal “dialect” system in Scala, although similar functionality can
be built using other constructs of the language. Scala mirrors have the ability to per-
form both run-time and compile-time reflection, and these can be used to implement
domain-specific languages with similar ability to those in Racket, including the ability
to defer some processing until run time, although with the same fundamental syntax.
Compile-time execution in Grace dialects is limited to reading and proscribing: they
cannot modify or specialise code, and the run-time behaviour of dialects is exactly
Grace method execution.

6.3 Ruby

In Ruby internal domain-specific languages (DSLs) are common, supported by partic-
ular language features [9]. Two common strategies for Ruby DSLs involve using the
language’s open classes, and using per-instance dynamically-bound evaluation.

Open classes permit modifying third-party classes — including built-in objects —
to add new methods, enabling users of the DSL to write, for example, 3.years.ago to
represent a time. These modifications are globally visible, and work only so long as
they don’t conflict with other modifications.

The second strategy depends on dynamically-bound block evaluation using the
method instance_eval. This method allows one to execute a block of code inside the
context of another object L as though the block were written inside L’s definition, and
thus with access to methods defined in L. The language syntax permits reasonably fluid
code to be written in this way. Moreover, different DSLs may be used at different points
by evaluating code inside different objects.

Grace’s dialects are more static than Ruby’s. Whereas Ruby uses dynamic metapro-
gramming to modify existing classes or modules, Grace uses nesting to make defini-
tions available where they are needed; in Grace, the bindings seen by a block depend
on where it is defined, and not on where it is evaluated.

6.4 Haskell

Haskell is also used to define domain specific languages [1,16]. Haskell DSLs typically
use the language’s type classes to embed themselves in the language. Existing functions
and operators become part of the language by defining type-class instances for the lan-
guage representation — whether that representation is the data the DSL consumes, or
a reflexive representation of the program itself. Static type information directs which
functions are actually executed for a particular expression, often based upon the calling
context (i.e. the expected return type). A programmer can temporarily enter the domain
of a DSL simply by declaring the return type of their function.

Static type information is crucial to the semantics of Haskell DSLs (as it is in Haskell
programs generally). A semantics relying on static types is undesirable for a gradually-
typed language like Grace. Haskell’s available syntax is more constrained than Grace’s

Graceful Dialects 153

dialects, and the scope for extension is more constrained by what already exists in the
language. A Haskell DSL will have difficulty relying on some subset of the functions
or operators from a Haskell type class, while Grace dialects may define exactly the
methods and operators they need.

6.5 Cedalion

Cedalion [17] is a language for defining domain-specific languages. Cedalion aims to
promote “language-oriented programming”, a programming style in which many DSLs
are used in combination, with a new language defined for each subdomain spanned by
the program. Lorenz and Rosenan, Cedalion’s designers, define four kinds of language-
oriented programming system: internal DSLs, where a DSL is implemented within a
host language (as in a Grace dialect), external DSLs, where the DSL is a separate
language with its own compiler or interpreter, language workbenches, which combine
tools and an IDE to present external DSLs as though they were internal, and language-
oriented programming languages, like Cedalion.

All Cedalion languages are interoperable because they share the same host language.
In this respect they resemble Grace dialects: within the same fundamental semantics,
many different variants may coexist simultaneously. On the other hand, Cedalion uses
a special “projectional editor” [26] to edit code: the abstract syntax tree is edited, rather
than textual source. A Cedalion language defines a display grammar for that syntax tree,
rather than a parsing grammar for text. This approach contrasts with Grace, where the
same surface syntax persists in every dialect, but where the syntax itself is quite flexible.
A reader of one Cedalion language has no more benefit in understanding another than
an outsider, while an author in the language needs not conform to any other overriding
syntax. In both cases, Cedalion takes the opposite position to Grace.

6.6 Pluggable Checkers

JavaCOP [18] is a framework for implementing pluggable type systems in Java. This
framework provides a declarative language for specifying new type rules and a system
for enforcing those rules during compilation. JavaCOP rules may enforce, for example,
that a parameter must not be null, or that a field is transitively read-only. A dialect can
enforce these rules as well, but is also able to enforce broader constraints by extending
or limiting the constructs available to the user of the dialect.

The Checker Framework [22] is a mature library that provides similar functionality
to JavaCOP, with better support for overloading and some other Java language features
in part by using an only-partially-declarative syntax. Imperative rules provide more
power to the Checker Framework than JavaCOP at the expense of concision. Our system
allows combining the two by building dialects specifically for the purpose of writing
other dialects and checkers, which may provide declarative syntax as well as allowing
flexible imperative tests.

154 M. Homer et al.

7 Conclusion

The language designer should be familiar with many alternative features
designed by others, and should have excellent judgment in choosing the best

— Tony Hoare,
Hints on Programming Language Design [11].

We have described how a novel combination of language features — lexically nested
objects, syntax for blocks and multi-part method names, optional typing, and pluggable
checkers — supports dialects in Grace. Because Grace’s dialects are based on these stan-
dard language features, programmers can write dialects much as they write any other
Grace program — by defining objects and methods — without having to learn additional
macro systems, define lexers, parsers, and semantic rules, or use metaprogramming to
modify class definitions on the fly. To illustrate the power of Grace’s dialect mechanism,
we have presented a number of case studies of dialects of varying complexity. These
range from a Logo-style turtle graphics microworld, through an Eiffel-style design by
contract dialect, to a dialect that ensures that programs are statically typed, and a dialect
that helps instructors to write dialects.

A more mature implementation (compiler and IDE) will enable us to begin empirical
evaluations of Grace in use in teaching. We hope to begin these evaluations in October
2014, and expect to refine Grace’s design based on this experience. Much work remains
to be completed with Grace in general and dialects in particular. Grace’s implemen-
tation, although sufficient to host the compiler, and to support small assignments in
programming-language classes, is still a proof-of-concept prototype.

Acknowledgements. We thank Matthias Felleisen and the other (anonymous) review-
ers for their comments on a previous versions of this paper.

References

1. Augustsson, L., Mansell, H., Sittampalam, G.: Paradise: a two-stage DSL embedded in
Haskell. In: ICFP 2008, pp. 225–228. ACM, New York (2008)

2. Bierman, G.M., Meijer, E., Torgersen, M.: Lost in translation: formalizing proposed exten-
sions to C#. In: OOPSLA (2007)

3. Black, A.P., Bruce, K.B., Homer, M., Noble, J.: Grace: the absence of (inessential) difficulty.
In: Onward!, pp. 85–98. ACM, New York (2012)

4. Black, A.P., Bruce, K.B., Homer, M., Noble, J., Ruskin, A., Yannow, R.: Seeking Grace: a
new object-oriented language for novices. In: SIGCSE (2013)

5. Burmako, E., Odersky, M., Vogt, C., Zeiger, S., Moors, A.: Scala macros (April 2012),
http://scalamacros.org

6. Culpepper, R., Tobin-Hochstadt, S., Flatt, M.: Advanced macrology and the implementation
of Typed Scheme. In: ICFP Workshop on Scheme and Functional Programming (2007)

7. EPFL: Environment, universes, and mirrors - Scala documentation (2013),
http://docs.scala-lang.org/overviews/reflection/
environment-universes-mirrors.html

http://scalamacros.org
http://docs.scala-lang.org/overviews/reflection/environment-universes-mirrors.html
http://docs.scala-lang.org/overviews/reflection/environment-universes-mirrors.html

Graceful Dialects 155

8. Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P., Felleisen,
M.: DrScheme: a programming environment for Scheme. J. Funct. Program. 12(2), 159–182
(2002)

9. Fowler, M.: Domain Specific Languages. AW (2011)
10. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. AW (1994)
11. Hoare, C.: Hints on programming language design. Tech. Rep. AIM-224, Stanford Artificial

Intelligence Laboratory (1973)
12. Holt, R.C., Wortman, D.B.: A sequence of structured subsets of PL/I. SIGCSE Bull. 6(1),

129–132 (1974), http://doi.acm.org/10.1145/953057.810456
13. Homer, M.: Graceful Language Features and Interfaces. Ph.D. thesis, Victoria University of

Wellington (2014)
14. Homer, M., Bruce, K.B., Noble, J., Black, A.P.: Modules as gradually-typed objects. In:

Proceedings of the 7th Workshop on Dynamic Languages and Applications, DYLA 2013,
pp. 1:1–1:8. ACM, New York (2013),
http://doi.acm.org/10.1145/2489798.2489799

15. Homer, M., Noble, J., Bruce, K.B., Black, A.P., Pearce, D.J.: Patterns as objects in Grace. In:
Dynamic Language Symposium. ACM, New York (2012)

16. Jones, M.P.: Experience report: playing the DSL card. In: ICFP (2008)
17. Lorenz, D.H., Rosenan, B.: Cedalion: a language for language oriented programming. In:

OOPSLA, vol. 46 (October 2011)
18. Markstrum, S., Marino, D., Esquivel, M., Millstein, T.D., Andreae, C., Noble, J.: JavaCOP:

Declarative pluggable types for Java. ACM Trans. Program. Lang. Syst. 32(2) (2010)
19. Meyer, B.: Eiffel: The Language. Prentice Hall (1992)
20. Odersky, M.: Contracts for scala. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund,

K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418,
pp. 51–57. Springer, Heidelberg (2010)

21. Odersky, M.: The Scala language specification. Tech. rep., Programming Methods Labora-
tory, EPFL (2011)

22. Papi, M.M., Ali, M., Correa, J. T.L., Perkins, J.H., Ernst, M.D.: Practical pluggable types for
Java. In: ISSTA (2008)

23. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to runtime code
generation and compiled DSLs. In: GPCE, New York, NY, USA, pp. 127–136 (2010)

24. Ross, D.T.: Uniform referents: An essential property for a software engineering language.
In: Tou, J.T. (ed.) Software Engineering, vol. 1, pp. 91–101. Academic Press (1970)

25. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Languages as
libraries. In: PLDI (2011)

26. Voelter, M.: Embedded software development with projectional language workbenches. In:
Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp.
32–46. Springer, Heidelberg (2010)

27. Wirth, N.: The programming language PASCAL. Acta Informatica 1(1) (1971)

http://doi.acm.org/10.1145/953057.810456
http://doi.acm.org/10.1145/2489798.2489799

156 M. Homer et al.

A Artifact Description

Authors of the Artifact. Core developer: Michael Homer. Dialect case studies: Michael
Homer, Timothy Jones, James Noble.

Summary. The artifact is based on Minigrace, a prototype compiler for Grace imple-
mented by the first author. Minigrace has been extended to include dialects, language
variants that extend or restrict the language available to the programmer. The artifact
includes several case studies exploring different areas of the dialect space, including
both extensional and restrictive dialects.

Content. The artifact package includes:

– a version of Minigrace including the dialect system described in the paper;
– twelve case study dialects: the six described in the paper (turtle graphics, design-

by-contract, dialect dialect, mandatory type annotations, structural subtyping, and
requiring literal blocks) and six others;

– detailed instructions for using the artifact, for rebuilding it from scratch, and for
obtaining the newest source code, provided as an index.html file.

To simplify experimenting with our case studies, we provide a VirtualBox disk image
containing our prototype fully installed and with all case study dialects immediately
available. The image contains Ubuntu 13.10, logs the user in by default, and includes
the minigrace tool in the path with all case studies in the initial directory. All depen-
dencies are preinstalled and the tool is ready to run.

We also include a tarball of the complete source code of the newest version of Mini-
grace, which includes our dialect changes. Minigrace compiles to both C and JavaScript,
and some dialects function only on one backend or the other; to that end, we include a
fully set-up version of the JavaScript backend including all case studies and instructions
for accessing it.

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Committee
is available free of charge as supplementary material of this paper on SpringerLink.
The latest version of our code is available from the Grace language website,
http://gracelang.org.

Tested Platforms. The virtual machine is known to work on any platform running
VirtualBox version 4 with at least 8 GB or free space on disk and at least 1 GB of
free space in RAM. Minigrace is known to work on most POSIX-compatible systems,
including Linux and Mac OS X. Installation instructions are included in the source
tarballs. The JavaScript interface of Minigrace is known to work on all current major
desktop browsers, including Firefox, Chrome, Safari, and Internet Explorer.

License. GPL 3 or later (https://www.gnu.org/licenses/gpl-3.0.html)

MD5 Sum of the artifact. 1995f3ef018c83de31dfe445c9cafd4b

Size of the Artifact. 1489950046 bytes (1.4 GB)

http://gracelang.org
https://www.gnu.org/licenses/gpl-3.0.html

Structuring Documentation to Support State
Search: A Laboratory Experiment about Protocol

Programming

Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich

Institute for Software Research, School of Computer Science
Carnegie Mellon University

{sunshine,jdh,aldrich}@cs.cmu.edu

Abstract. Application Programming Interfaces (APIs) often define ob-
ject protocols. Objects with protocols have a finite number of states and
in each state a different set of method calls is valid. Many researchers
have developed protocol verification tools because protocols are notori-
ously difficult to follow correctly. However, recent research suggests that
a major challenge for API protocol programmers is effectively search-
ing the state space. Verification is an ineffective guide for this kind of
search. In this paper we instead propose Plaiddoc, which is like Javadoc
except it organizes methods by state instead of by class and it includes
explicit state transitions, state-based type specifications, and rich state
relationships. We compare Plaiddoc to a Javadoc control in a between-
subjects laboratory experiment. We find that Plaiddoc participants com-
plete state search tasks in significantly less time and with significantly
fewer errors than Javadoc participants.

1 Introduction

Many Application Programming Interfaces (APIs) define object protocols, which
restrict the order of client calls to API methods. Objects with protocols have a
finite number of states and in each state a different set of method calls is valid.
Protocols also specify transitions between states that occur as part of some
method calls. A client of such a library must be aware of the protocol in order
to use it correctly. For example, a file may be in the open or closed state. In the
open state, one may read or write to a file, or one may close it, which causes
a state transition to the closed state. In the closed state, the only permitted
operation is to (re-)open the file.

Files provide a simple example of states, but there are many more examples.
Streams may be open or closed, iterators may have elements available or not,
collections may be empty or not, and even lowly exceptions can have their cause
set, or not. More than 8% of Java Standard Library classes and interfaces define
protocols, which is more than three times as many as define type parameters [1].

Protocols are implemented in mainstream languages like Java with low-level
constructs: the state of an object is tracked with boolean, integer, or enum fields;
violations are checked explicitly and cause runtime exceptions like IllegalState-
Exception; and constraints are specified in prose documentation. It is perhaps

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 157–181, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

158 J. Sunshine, J.D. Herbsleb, and J. Aldrich

unsurprising, therefore, that APIs with protocols are difficult to use. In a study
of problems developers experienced when using a portion of the ASP.NET frame-
work, three quarters of the issues identified involved temporal constraints [19].
Three recent security papers have identified serious vulnerabilities in widely used
security applications resulting from API protocol violations [14,4,28].

Many researchers have developed protocol checkers which are designed
to make it easier for programmers to correctly use APIs with protocols
(e.g. [3,10,13]). These tools require programmers to specify protocols using alias
and typestate annotations that are separate from code. To automate the annota-
tion process, several tools mine protocol specifications using dynamic analysis [8]
or static analysis [2,36]. A recent survey of automated API property inference
techniques described 35 inference techniques for ordering specifications [24].

However, the qualitative studies described in [31, ch.3] found that program-
mers using API protocols spend their time primarily on four types of searches of
the protocol state space. Protocol checker output is unlikely to help programmers
perform many of these searches.

Instead, in this paper we introduce a novel documentation generator called
Plaiddoc, which is like Javadoc except it organizes methods by state instead of by
class and it includes explicit state transitions, state-based type specifications, and
rich state relationships. Plaiddoc is extracted automatically from the standard
Javadoc annotations plus new Plaiddoc specifications. Plaiddoc is named for the
Plaid programming language [32], which embeds similar state-oriented features,
and from which Plaiddoc could, in principle, be automatically generated. We
evaluate Plaiddoc against a Javadoc control in a 20-participant between-subjects
laboratory experiment.

The experiment attempts to answer the following five research questions:

RQ1. Can programmers answer state search questions more efficiently using
Plaiddoc than Javadoc?

RQ2. Are programmers as effective answering non-state questions using Plaid-
doc as they are with Javadoc?

RQ3. Will programmers who use Plaiddoc answer state search questions more
correctly than programmers who use Javadoc?

RQ4. Will programmers get better at answering state search questions as they
get more practice?

RQ5. Are programmers who use Plaiddoc better than programmers who use
Javadoc at mapping general state concepts to API details?

All of the tasks performed by participants asked participants to answer a ques-
tion. We therefore use the words task and question interchangeably in the rest of
this paper. Most of these questions were instances of four state search categories
discovered in two earlier, qualitative studies [31]. Some of the questions were not
state related and were chosen to benefit Javadoc. Task ordering was alternated
to measure learning effects, and a post-study quiz was administered to gauge
concept understanding.

Participants using Plaiddoc completed state tasks in 46% of the time it took
Javadoc participants, but were approximately equally fast on non-state tasks.

Structuring Documentation to Support State Search 159

Plaiddoc participants were also 7.6x less likely to answer questions incorrectly
than Javadoc participants. Finally, Plaiddoc and Javadoc participants were ap-
proximately equally able to map state concepts to API details. Nevertheless, our
overall results suggest that Plaiddoc can provide a lightweight mechanism for
improving programmer performance on state-related tasks without negatively
impacting traditional tasks.

More broadly, the results of this study also provide indirect support for several
programming language design choices. This study provides quantitative evidence
for the productivity benefits of type annotations as documentation and state-
oriented language features.

2 Background and Related Work

The seminal paper entitled “Why a diagram is (sometimes) worth ten thousand
words,” [21] introduces a computational model of human cognition to compare
informationally equivalent diagrams and text. They demonstrate in this model
that solving math and physics problems with text-based information can require
many more steps than solving the same problems with diagrams. The most
important difference between the diagram steps and text steps is that much more
effort in text is spent searching for needed details. One particularly noteworthy
reason for the search difference is that diagrams often collocate details that are
needed together.

Larkin and Simon’s theory has been effectively applied to many other (non-
diagramatic) information contexts. For example, Chandler shows in a series of ex-
periments that integrated instructional material and the removal of non-essential
material can facilitate learning in a variety of educational settings [5] . There are
many more closely related examples: Green [15] develops cognitive dimensions
to evaluate visual programming languages, the GOMS [20] model has proven
effective at predicting user response to graphical user interfaces (GUIs), and
MCRpd [34] models physical representations of digital objects.

The results of two studies of API design choices are best understood through
Larkin and Simon’s search lens. It is easier for programmers to use construc-
tors to create instances than factory methods, because constructors are the de-
fault and are therefore the start of any search [11]. Methods that are located in
the class a programmer starts with are easier to find than methods in related
classes [30]. The impact of small design changes shown in these papers empha-
sizes the importance of information seeking on API usability, and suggests that
a similar impact may be possible with other small interventions.

All of this research suggests that there is an opportunity to modify an API
artifact to create an informationally equivalent alternative that will improve
programmer performance with protocol search. Which artifact? Which changes
will be most effective? To answer these questions it is useful to look at the
interventions that have proven effective with other complex APIs.

One effective way to learn to use an API is to find a related example. A
study of programmers using reusable Smalltalk GUI components and found that

160 J. Sunshine, J.D. Herbsleb, and J. Aldrich

participants “relied heavily on code in example applications that provided an
implicit specification for reuse of the target class.” The significance of examples
encouraged researchers to develop example repositories to enable programmers
to find examples easily [23,37]. Unfortunately, the effectiveness of these reposi-
tories was limited by the retrieval mechanism which required too much (and too
complex) input from programmers.

More recently, MAPO [38] and Strathcona [18] automatically retrieve exam-
ples from the structure of the program the programmer is writing. In a controlled
experiment, participants using MAPO produced code with fewer bugs than par-
ticipants in other conditions. This result is notable because it shows that API in-
terventions can produce higher quality responses, not just more rapid responses.

The eMoose IDE plugin has proven similarly useful to developers using com-
plex API specifications [9].The eMoose tool pushes directives—rules required to
use a method correctly—to the method invocation site. The concrete rules that
make up a protocol (e.g. one cannot call setDoInput on a connected URLCon-
nection) are examples of directives. Dekel’s evaluation of eMoose demonstrated
significant programmer performance improvements during library-usage tasks
(including one library with a protocol).

Unfortunately, examples and directives are labor intensive for API designers
to produce. In large complex APIs it is often impossible to generate examples
for every possible use case. Even after they are produced, it is hard to keep them
in sync with the API as it changes, because there is no mechanism to enforce
conformance. Examples can also serve as a crutch toward learning, and the most
effective students learn to generate their own examples [6].

The design of Plaiddoc is inspired by all of the research discussed in this
section. We modify Javadoc to produce an informationally equivalent documen-
tation format aimed at facilitating speedier state search. Plaiddoc is generated
from specifications whose conformance with code can be checked automatically.
Plaiddoc specifications, like eMoose directives, are co-located with each method.
The specifications themselves contain just the right state details so program-
mers can generate their own examples of correct API usage. The details of the
Plaiddoc design are discussed in the next section.

3 Plaiddoc

To follow the rest of this paper, it is important to understand the design of
Plaiddoc. To do so, it is necessary to first explain Javadoc. Javadoc is a tool for
generating HTML documentation for Java programs. The documentation is gen-
erated from Java source code annotated with “doc comments” which contain both
prose description and descriptive tags which tie the prose to specific program
features. For example, a doc comment on a method will describe the method in
general and then provide tags and associated comments for the parameters, the
return value, and/or any exception the method throws.

The webpage generated by Javadoc for a class has six parts. The top and
bottom contain navigation elements which allow the reader to quickly browse

Structuring Documentation to Support State Search 161

to related documentation. The class description appears below the navigation
elements at the top of the page. It states the name of the class and links to
superclasses and known subclasses. It then follows with an often long description
which can include: the purpose of the class, how it is used, examples of use, class-
level invariants, relationships to other classes, etc.

After the class description, the page includes four related elements: the field
summary, method summary, field details, and method details. The field summary
is a table containing the modifier, type, name, and short description of each
public field sorted in alphabetical order. The method summary is extremely
similar: it shows the modifier, return type, method name, type and name of all
parameters, and short method description in alphabetical order. The field and
method details show each field (or method) in the order they appear in the source
file with the full description including historical information and any tags.

The Plaiddoc generated webpage maintains all of the look and feel of the
Javadoc page. The fonts, colors, and visual layout are identical. However,
the method summary section is restructured and extra information is added
to the method details section. The full ResultSet page is available on the web.1
The screenshot shows the method summary for the top-level Result state and
the Open state.

As in Plaid, methods in the summary are organized by abstract state. In
Javadoc, there is one table containing all of the methods of a class, while in
Plaiddoc there is one table per abstract state. For example, the Disconnected
state of URLConnection has a table containing all of the methods available in
it, including setDoInput and connect.

One important rule we followed when designing Plaiddoc is that there is
exactly one Plaiddoc page per Javadoc page. This rule ensures that the any
observed differences between participants using Plaiddoc and Javadoc is a con-
sequence of Plaiddoc’s extra features and not the result of differences in page
switching. There are two consequences of this rule: 1) All of the possible states
of single Java class appear in the same Plaiddoc page.2 2) Multi-object proto-
cols appear in multiple Plaiddoc pages. Six of the tasks in this study involve
the Timer and TimerTask classes which impose a multi-object protocol. In these
tasks, Javadoc participants were given two pages and Plaiddoc participants were
given two pages.

An automatically generated diagram which shows all of the states of the
class and where the particular state fits in, appears above each state table. The
current state is bolded and italicized, while other states are displayed in the
standard font. This diagram is primitive; it does not contain extensive capa-
bilities like hyperlinks from state names to state tables, collapsing/expanding
children, transition arrows, or even a nice graphical look. The diagram is prim-
itive for three reasons: 1) Plaiddoc was designed for this experiment, and was
therefore not polished for use outside the laboratory. 2) More capabilities gives

1 http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/
PlaiddocResultSet.html

2 e.g. The “Open” and “Closed” states of ResultSet appear on a single page.

http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/PlaiddocResultSet.html
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/PlaiddocResultSet.html

162 J. Sunshine, J.D. Herbsleb, and J. Aldrich

participants more potential paths to solve tasks and thus introduces variation
into the study. 3) If one adds features it is harder to understand which par-
ticular features are important or unimportant. Plaiddoc was designed with the
minimum set of features we believed would be an effective group.

The Plaiddoc page also contains two new columns in the method details table.
These columns are state preconditions and postconditions. The only valid pred-
icates are state names, state names with a parameter, or combination of the two
separated by the AND or OR logical operators. For example, “Disconnected,”
“Scheduled task,” and “Updatable AND Scrollable” are valid preconditions or
postconditions but “value > 0” is not. The same information is added to the
method summary. The state to which a method belongs is an implicit precondi-
tion for that method. For example, the close method lists no preconditions, but
since it belongs to the Open state, the ResultSet must be in the Open state to
call the close method.

To generate a Plaiddoc class page, the Plaiddoc tool requires three inputs: the
class’s Javadoc page, a JSON file specifying the state relationships of the class,
and a JSON file containing preconditions and postconditions for each method
and mapping methods to states. Sample JSON files are available on the web.3

The JSON files are very simple. The state file must contain a single object
whose fields are states, each of which must contain either an “or-children” or “and-
children” field. These “children” fields are arrays containing state names, which
in turn must be defined in the same file. The methods file must contain an array
of method objects which contain four fields: “name” (including parameter types
to distinguish statically overloaded methods), “state” (which must map to a state
defined in the state file), “pre” for preconditions, and “post” for postconditions.

It is important to map the features of Plaiddoc just described to concepts, in
order to understand the implications of the experiment described here on other
research (e.g. the Plaid language itself). Plaiddoc organizes methods by state
instead of by class, by separating the method summary table by state. Plaiddoc
makes state transitions explicit when state postconditions differ from precondi-
tions. The Plaiddoc preconditions and postconditions make use of state-based
type specifications. Finally, rich state relationships are displayed to programmers
at the top of each method table. See e.g. the “State relationships" box.

4 State Search Categories

As we mentioned in Section 1, an earlier two-part qualitative study of the bar-
riers programmers face when using APIs with protocols feeds directly into the
methodology of the study in this paper [31, ch. 3]. In the first part of that study,
we mined the popular developer forum StackOverflow for problems developers
have using APIs with protocols. In the second part, they performed a think-
aloud observational study of professional programmers in which the programers
worked through exactly the problems uncovered in the first part.
3 http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_States.json and
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_Methods.json

http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_States.json
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_Methods.json

Structuring Documentation to Support State Search 163

In this second part, they analyzed each task, by assigning task time to partici-
pant questions or comments and performing open coding on the transcript. This
analysis showed that programmers in spent 71% of their total time answering
instances of four question categories. We list here each general category followed
by two specific instances of that category drawn from the study transcripts:

A What abstract state is an object in?
– “Is the TimerTask scheduled?”
– “Is [the ResultSet] x scannable?”
B What are the capabilities of an object in state X?
– “Can I schedule a scheduled TimerTask?”
– “What can I do on the insert row?”
C In what state(s) can I do operation Z?
– “When can I call doInput?”
– “Which ResultSets can I update?”
D How do I transition from state X to state Y?
– “How do I get off the insert row to the current row?”
– “Which method schedules the TimerTask?’

These search problems are all specific to protocols, and therefore the protocol
tasks are dominated by state search. Most of the tasks performed by participants
in this study are instances of these general categories.

5 Methodology

The experimental evaluation of Plaiddoc uses a standard two by two between-
subjects design, with five participants in each of the four conditions. The experi-
ment compares Plaiddoc to a Javadoc control and presents two task orderings to
measure learning effects. The recruitment, training, experimental design, tasks,
and post-experiment interview are presented in the following sections. All of the
study materials can be found in Appendix C [31].

5.1 Recruitment

All 20 participants were recruited on the Carnegie Mellon campus. Half of the
participants responded to posters displayed in the engineering and computer
science buildings. The other half were solicited in-person in a hallway outside
classrooms which typically contain technical classes. Participants were screened
for Java or C# knowledge and experience with standard API documentation.
Participants were paid $10 for 30-60 minutes of their time. The 20 participants
that made it past the screening all completed the study.

Twelve of the participants were undergraduate students, all of whom were ma-
joring in computer science, electrical and computer engineering, or information
systems. The other eight were masters students in information systems or com-
puter engineering programs. Eleven students had no professional programming
experience outside summer internships, five students had one year of full-time
professional experience, and four had more than one year of experience.

164 J. Sunshine, J.D. Herbsleb, and J. Aldrich

Fig. 1. Car state machine used for participant training

5.2 Training

After signing consent forms, participants were given approximately 10 minutes
of training. Every participant, regardless of experimental condition, received
exactly the same training. The training was read from a script to help ensure
uniformity.

All participants were familiar with Javadoc, but the training included an
explanation of both Javadoc and Plaiddoc to ensure baseline knowledge in both
formats. The goal of this study is to compare the impact of the documentation
formats on state search tasks, not the impact of training. Therefore, we kept
training consistent to avoid a confounding factor. All of the state concepts are
first taught via UML state machines, then Javadoc, then Plaiddoc.

The training materials introduce participants to the basic concepts of object
protocols and to the documentation formats used in the study. The training
makes concepts concrete using a Car API we constructed for the purpose. Re-
garding protocols, participants learn:

– that methods are available in some states and not others
– that some methods transition objects between states
– that states can be hierarchical
– that child states can be either or-children or and-children

These concepts were reinforced by asking participants simple, scripted ques-
tions about the Car API. The questions were designed to be answerable very
quickly by participants. We created a UML state machine (shown in Figure 1),
Javadoc documentation, and Plaiddoc documentation for the Car API and these
were printed and handed to participants.

The top-level state for Car objects (named “Car”) has three and-children,
each of which has two or more or-children: gear to represent the car’s manual

Structuring Documentation to Support State Search 165

transmission, brakes to represent whether the car is braking or not, and option
to represent whether the car has the “turbo” option or not. We used these states
to introduce state hierarchy, or-states, and and-states. We introduced transitions
via brakes. One can transition to the “Braking” state from the “NotBraking” state
by calling the “putFootDown” method. The openTrunk method, which does not
change the gear state, introduces state-dependent methods. In the example, like
in many real-world cars, one can only open the trunk when the car is in the
neutral gear.

Like all and-children, the car’s three substates are independent, in the sense
that changing the gear state has no effect on the braking or option states. How-
ever, one unique wrinkle in the example is that the turbo state enables a fifth
gear substate of gear that is not available otherwise. The toFifth method has
two preconditions — the car must be in the neutral gear and it must have the
turbo option. In the study tasks discussed later, some of the ResultSet methods
also have multiple preconditions.

5.3 Experimental Setup

Participants were asked 21 questions about three Java APIs: 1) Six questions
about java.util.Timer and java.util.TimerTask. We refer to these questions
as the Timer questions throughout the rest of this paper. 2) Ten questions about
java.sql.ResultSet. 3) Five questions about java.net.URLConnection. The
experimenter read each question aloud and handed the participant a piece of
paper with the same question written on it.

Participants were seated in front of a computer, and asked to answer the ques-
tion by looking at documentation on the computer screen. The experimenter
opened the documentation for the participant in a browser window. Both the
Javadoc and Plaiddoc documentation were opened from the local file system to
present a consistent URL and to prevent network-related problems. The com-
puter screen and audio (speech) were recorded with Camtasia.

Half of the participants were shown standard Javadoc documentation for all
questions and half Plaiddoc documentation. Participants were allowed to make
use of the browser’s text search (i.e. Control-F). However, they were not allowed
to use internet resources (e.g. Google, StackOverflow).

We chose a between-subjects design to control for cross-task contamination.
Many software engineering studies use within-subjects designs to reduce the
noise from individual variability. We guessed based on pilot data that individ-
ual variability in our study would be relatively low and we therefore opted for
the cleaner between-subjects design. As we will see in §6, the study was suffi-
ciently sensitive to distinguish between conditions so our guess turned out to be
accurate.

Questions were asked in batches — all of the questions related to a particular
API were asked without interruption from questions about another API. Within
each batch, each question was asked in the same order to every participant.
However, half of the participants were asked the Timer batch first and half
were asked the UrlConnection batch first. The ResultSet batch always appeared

166 J. Sunshine, J.D. Herbsleb, and J. Aldrich

second and the remaining batch appeared third. We wanted the Timer and
URLConnection batches to each appear last so we could measure the learning
effects on those batches. All other ordering was uniform across conditions to
avoid unnecessary confounding factors.

The study had a total of four between-subjects conditions: Plaiddoc with
Timer first (condition #1), Plaiddoc with URLConnection first (condition #2),
Javadoc with Timer first (condition #3), and Javadoc with URLConnection first
(condition #4). Participants were assigned to conditions based on the order they
appeared in the study. The nth participant was assigned to condition #n modulo
4. Using commonly accepted practice, participants were assigned to conditions
pseudorandomly, in the order they arrived. Therefore, there were exactly five
participants in each condition.

5.4 Tasks

The 21 questions asked of the participants are shown in Table 1. Sixteen of the
questions were instances of the four categories of state search enumerated in §4.
Since these questions are state specific, we refer to them as the state questions.
The remaining five questions were non-state questions, which were designed to
be just as easy or easier with Javadoc than Plaiddoc. These questions were
not about states or protocols, and we therefore refer to them as the non-state
questions.

We selected the state questions with a three-phase process. First, we gener-
ated all of the instances of the general categories we could think of for each API.
Second, since we did not want the answer or the process of answering one ques-
tion to affect others, we removed questions which were not independent. Some
additional non-independent questions were removed during piloting. Third, we
pruned the ResultSet questions to include two instances of each question cate-
gory by random selection. The study was too long with the full set of ResultSet
questions.

The final question set includes three instances of A) “What abstract state is
an object in?”, five instances of B) “What are the capabilities of an object in
state X?”, four instances of C)“In what state(s) can I do operation Z?’,’ and
four instances of D) “How do I transition from state X to state Y?” Participants
in all conditions were given a glossary listing all of the states of the API in
question with a short description of each. Participants were instructed to answer
questions in categories A and C with the name of a state from the glossary. In
other words, these questions were multiple choice.

The names of states in the glossary matched those in Plaiddoc. The names
themselves were taken from the Javadoc as much as possible. We did not want
to disadvantage Javadoc unnecessarily, so we tried to make it as easy as possi-
ble for participants to perform the mapping from the prose description in the
Javadoc to the state names in the glossary. In two cases there was no obvious
name to give the state from the Javadoc. First, we called a URLConnection that
has not yet connected “Disconnected,” which is a word that appears neither in
the Javadoc nor the Java source code. Second, we called a TimerTask that is

Structuring Documentation to Support State Search 167

Table 1. Category, identifier and question text for all of the questions asked of partici-
pants in the main part of the study. Questions with identifiers beginning with T involved
java.util.Timer and java.util.TimerTask, R involved java.sql.ResultSet, and U
involved java.net.URLConnection.

Cat. ID Question text
T T-1 How do I transition a Timer Task from the Virgin state to the Scheduled

state?
N T-2 What is the effect of calling the purge method on the behavior of the Timer?
C T-3 What methods can I call on a Scheduled TimerTask?
N T-4 What is the difference between schedule(TimerTask task, long delay, long

period) and scheduleAtFixedRate(TimerTask task, long delay, long period)?
O T-5 What state does a TimerTask need to be in to call scheduledExecution-

Time?
C T-6 Can I schedule a TimerTask that has already been scheduled?
N R-1 How is a ResultSet instance created?
C R-2 Can I call the getArray method when the cursor is on the insert row?
O R-3 What state does the ResultSet need to be in to call the wasNull method?
T R-4 How do I transition a ResultSet object from the ForwardOnly to the Scrol-

lable State?
O R-5 Which states does the ResultSet need to be in to call the updateInt method?
A R-6 What state is the ResultSet object if a call to the next method returns

false?
T R-7 How do I transition a ResultSet object from the CurrentRow to the In-

sertRow state?
N R-8 Why does getMetadata take no arguments and getArray take a int

columnIndex or String columnLabel as an argument?
C R-9 Can I call the isLast method on a forward only ResultSet?
A R-10 What states could the ResultSet object in when a call to the next method

throws a java.sql.SQLException because it is in the ResultSet is in the
wrong state?

A U-1 What state is the URLConnection in after successfully calling the getCon-
tent method?

C U-2 If the URLConnection is in the connected state can I call the setDoInput
method?

N U-3 How do I create a URLConnection instance?
O U-4 What state does the URLConnection need to be in to call the getInput-

Stream method?
T U-5 What method transitions the URLConnection from the Connected to the

Disconnected state?

Category definitions
A Instance of the “What abstract state is an object in?” question category.
C Instance of the “What are the capabilities of an object in state X?” question cate-

gory.
N Instance of the non-state question category.
T Instance of the “How do I transition from state X to state Y?” question category.
O Instance of the “In what state(s) can I do operation Z?” question category.

168 J. Sunshine, J.D. Herbsleb, and J. Aldrich

unscheduled, “Virgin” even though this word never appears in the Javadoc. In
this case we borrowed the word from the implementation code—the state of a
TimerTask is encoded with an integer, and the integer constant used for an un-
scheduled TimerTask is called VIRGIN. Finally, we wrote all of the descriptions
to succinctly explain the meaning of the state name.

All of the non-state questions require understanding a non-state detail of the
API or comparing two details. Since the Plaiddoc API documentation is larger
than the Javadoc documentation one might expect that it would be slightly eas-
ier to answer these questions with Javadoc. Two of the non-state question are in-
stances of “how do I create an instance of classX?”, two ask participants to compare
two methods (in one case the methods were in different states), and one asks par-
ticipants to understand non-state details of the behavior of an individual method.

Participants were instructed to “find the answer to each question in the doc-
umentation and tell the experimenter the answer as soon as you have found it.”
Whenever a participant answered a question for the first time, the experimenter
asked,“is that your final answer?” Participants were limited to ten minutes per
task. The experiment proceeded to the next task whenever a participant an-
swered a question and confirmed it or the time limit was reached. Participants
were not told whether their answer was correct and the experiment proceeded
regardless of answer correctness.

5.5 Post-experiment Interview

After completing the experiment participants were asked four questions to see
how well they could map the state concepts we trained them about before the
study (e.g. and-states, or-states, state hierarchy, impact of transitions on and-
states) to the particular APIs they saw in the study. For example, we asked
"What is an example of two ResultSet and-states?" Participants were also asked
to rate their affinity to the documentation they used, and if they used Plaiddoc
to compare Plaiddoc to Javadoc on a five point Likert scale. Then they were
asked “Which documentation format that you learned about before the study—
Javadoc, Plaiddoc, or UML state diagram—do you think would have been most
helpful to complete this study?” Finally, some individuals were also asked addi-
tional questions about their task performance at the experimenter’s discretion.

6 Results

In this section, we discuss the study results and try to give the best evidence to
answer the research questions presented in the introduction. We first compare
the task completion performance of Plaiddoc and Javadoc participants. Then
we compare the correctness of these responses provided by those same groups.
We follow with an evaluation of the learning effects of performing study tasks.
Finally we discuss the post-study interview and pilot results. Raw timing and
correctness data is available on the web.4
4 http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/
RawPlaiddocStudyData.pdf

http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/RawPlaiddocStudyData.pdf
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/RawPlaiddocStudyData.pdf

Structuring Documentation to Support State Search 169

JavaDoc PlaidDoc

10
15

20
25

30
35

(a) State related tasks

Documentation type

Ti
m

e
(m

in
ut

es
)

JavaDoc PlaidDoc

4
5

6
7

8
9

(b) Non-state related tasks

Documentation type

Ti
m

e
(m

in
ut

es
)

Fig. 2. Box plot comparing the completion time of Javadoc and Plaiddoc participants

6.1 Task Completion Time

In this subsection we discuss the results related to the task completion time out-
put variable. This output variable addresses RQ1 and RQ2 (Can programmers
answer state search questions more efficiently using Plaiddoc than Javadoc? and
Are programmers as effective answering non-state questions using Plaiddoc as
they are with Javadoc?) by comparing task completion times across conditions.

To determine completion time we analyzed the video and marked when we
finished reading the task question and when the participant confirmed his or her
“final answer.” The difference between these two marks was noted in the task
completion time.

The ten-minute task time limit was reached by many participants on question
R-4, but never on any other question. In fact, only two participants exceeded five
minutes while answering any other question, and they did so for only one question
each. Timeouts are not directly comparable to other timing data, and therefore
we evaluate question R-4 separately, and in detail, in §6.2. This subsection does
not include data from question R-4.

The total completion time for each of the Plaiddoc and Javadoc participants
on state questions is visualized by the box plot in Figure 2(a), and for non-state
question in Figure 2(b). A two-factor fixed-effects ANOVA revealed no significant
interaction between documentation type and task ordering (p=0.25) on total
task completion time. Therefore, we compare all 10 Plaiddoc participants against
their 10 Javadoc counterparts.

170 J. Sunshine, J.D. Herbsleb, and J. Aldrich

The mean total completion time of all state search tasks was 10.3 minutes
in the Plaiddoc condition, and 22.4 minutes in the Javadoc condition (2.17x
difference). An independent samples two-tailed t-test revealed that the difference
is statistically significant (p < 0.001). The difference between the means was 12.1
minutes, and 95-percent confidence interval was 6.38 to 17.8 minutes.

The mean completion time of non-state tasks was 5.77 minutes in the Plaid-
doc condition, and 5.95 minutes in the Javadoc condition. Unsurprisingly, this
difference is not statistically significant (p=0.802). The 95-percent confidence
interval of the difference is -1.32 to 1.68 minutes.

The four state search categories can be subdivided into two categories. In two
of the search categories, a participant begins his or her search at a state and
tries to find a method.5 In the other two search categories the participant starts
at a method or other detail (e.g. exception, instance creation), and tries to find
a state.6 Since methods are organized in Plaiddoc by state one would expect
that Plaiddoc would improve performance primarily for searches that proceed
from a state to a method. This hypothesis turns out to be correct — Plaiddoc
outperformed Javadoc in these categories by 2.41x. However, one might expect
that Plaiddoc would not be helpful in the method first categories, but Plaiddoc
outperformed Javadoc by 1.87x in these categories. Therefore, Plaiddoc appears
to be more helpful for state-first search than method-first search. We performed
two factor, fixed-effects ANOVA in which the two factors are documentation type
and search type and the output variable is time. The interaction term between
documentation type and search type is only marginally significant (p=0.089).

Demographics. We did not balance participants in conditions by any demo-
graphic factor. By random chance, six of nine students with experience and three
of four with more than one year of experience were assigned to the Javadoc con-
ditions. However, experience had no significant impact on the timing results. A
two-factor ANOVA where the two factors were experience and documentation
type showed no significant effects from experience (F=.058, df=1, p=.813) or the
experience by documentation type interaction term (F=1.34, df=1, p=.719).

Feature Comparison Discussion. Every participant used text-search (i.e.
CTRL-F in the browser window) to find method names. They then used the
location in a state box, pre-conditions, post-conditions, and state relationship
diagrams to answer the question efficiently. Plaiddoc is like Javadoc except it
organizes methods by state instead of by class and it includes explicit state
transitions, state-based type specifications, and rich state relationships. The dif-
ference in relative performance between the state categories allows us to (very
roughly) compare the benefits of state organization to the other three features.
Since the method based search does not benefit from the state-based organiza-
tion, all of the performance differences observed in the method based search tasks
5 What are the capabilities of an object in state X? How do I transition from state X

to state Y?
6 What abstract state is an object in? In what state(s) can I do operation Z?

Structuring Documentation to Support State Search 171

Table 2. Correctness results for each participant on the 16 state search questions

Paricipant # Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pdoc Jdoc

DocType P P J J P P J J P P J J P P J J P P J J P J
Correct 15 15 14 16 15 16 15 14 15 15 14 14 15 15 16 16 15 15 11 13 151 143
Incorrect 1 0 2 0 0 0 1 1 0 0 2 2 1 0 0 0 0 0 5 2 2 15
Timed-out 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 7 2

are likely to derive from explicit state transitions, state-based type specifications,
and rich state relationships. The extra performance of the state based search is
likely to derive from the state-based organization. We do not think it’s possible
to separate the benefits of the embedded state diagram from the preconditions
and postconditions. In one early pilot we did not include the state diagram and
the participant struggled to answer questions that required knowledge of state
relationships. Similarly, a state diagram without detailed information about the
requirements and impact of method calls would likely not be effective.

6.2 Correctness

Almost half of the participants provided at least one wrong “final” answer to
a state-search question. Among the 320 total answers provided to the 16 state
search questions 294 were correct, 17 incorrect, and nine were not provided
because the question timed out. In this subsection, we compare the correctness
of Plaiddoc answers to Javadoc answers (RQ3). The number of right, wrong,
and timed-out answers for each participant are shown in Table 2.

Only two of the 17 wrong answers were provided by Plaiddoc participants.
Plaiddoc participants answered 98.75% of the questions correctly, and Javadoc
participants answered 90.5% correctly. The odds ratio in the sample is 7.92.7 We
analyzed the contingency table of Javadoc vs. Plaiddoc and Correct vs. Incorrect
using a two-tailed Fisher’s exact test. The contingency table is shown in Table 2
in the rows labeled “Correct” and “Incorrect” and the columns labeled “Pdoc”
and “Jdoc”. The test revealed that the difference is very significant (p=0.002).
The 95-percent confidence interval of the odds ratio is 1.78 to 72.1.

Incorrect Responses. All of the wrong answers and time-outs were provided
to just five of the 16 state questions. No wrong answers were provided to any of
the non-state questions. It is worth discussing the content of the wrong answers
to provide insight into the types of problems programmers face when answering
state-related questions.

In response to question T-3, a Plaiddoc participant (#19) incorrectly sug-
gested that none of the TimerTask methods could be called on a scheduled

7 The odds ratio is a standard metric for quantifying association between two proper-
ties. In our example, it is the ratio of the odds of being correct when using Plaiddoc
to the odds of being correct when using Javadoc.

172 J. Sunshine, J.D. Herbsleb, and J. Aldrich

TimerTask because “the methods are called by the Timer.” This participant
correctly noted the main mode of usage, but incorrectly assumed this was the
exclusive mode of usage.

In response to question T-5, three8 Javadoc participants incorrectly suggested
that TimerTask scheduledExecutionTime can be called in any state when in fact
it can only be called in the executed state. Three of these wrong participants
noted correctly that scheduledExecutionTime does not throw an exception. Un-
fortunately, not every protocol violation results in an exception, a fact that was
noted in pre-test training.9 In this case, the protocol is documented in the de-
scription of the return value, which is described as “undefined if the task has
yet to commence its first execution.” In the post-experiment interview all three
incorrect participants said that they did not notice this return value description.

In response to T-6, two Javadoc participants incorrectly replied that one
can schedule an already-scheduled TimerTask. Participant #19 answered very
quickly (15 seconds) without thoroughly examining the documentation. Partici-
pant #8 read aloud from the documentation, noting that the method throws an
IllegalStateException “if task was already scheduled or cancelled, timer was can-
celled, or timer thread terminated.” However, #8 somehow skipped “scheduled
or” while reading.

Three Javadoc participants and one Plaiddoc participant incorrectly answered
U-5. The question asks, “What method transitions the URLConnection from
the Connected to the Disconnected state?” There is no such method, as 16
participants correctly noted. The three incorrect Javadoc participants suggested
one could transition the URLConnection to the Disconnected state by calling
its setConnectionTimeout method with 0 as the timeout value argument. This
method “sets a timeout value, to be used when opening a communications link to
the resource referenced by this URLConnection. If the timeout expires before the
connection can be established, a java.net.SocketTimeOutException is raised.”
Therefore, setConnectionTimeout has no impact at all on a URLConnection
instance that has already connected. Participant #1, a Plaiddoc participant,
incorrectly answered that the non-existent “disconnect” method could be used
to transition the URLConnection. This was the last question that participant
#1 answered, so perhaps #1 was ready to leave and so didn’t investigate this
question thoroughly.

Finally, R-4 produced the most varied responses. The question asks the par-
ticipant to transition a ResultSet object from the ForwardOnly to the Scrollable
state. However, no transition is possible since ForwardOnly and Scrollable are
type qualifiers and therefore are permanent after instance creation. Seven Plaid-
doc and two Javadoc participants never answered this question because they
timed out. One Plaiddoc and five Javadoc participants answered the question

8 Participant #19 also answered T-5 incorrectly because, as in question T-3, #19
thought all TimerTask “methods are called by the Timer” including scheduledAt-
FixedRate.

9 The openTrunk method’s protocol is documented by its description of the return
value Javadoc training materials.

Structuring Documentation to Support State Search 173

incorrectly. Many of the timed-out Plaiddoc participants considered but then
ultimately rejected the incorrect answers provided by the Javadoc respondents.
This suggests that the specifications provided by Plaiddoc participants can pro-
vide confidence that an answer is incorrect. The Plaiddoc participants likely
traded no-answers for incorrect answers.

Four Javadoc participants incorrectly answered that the setFetchDirection
method will transition a ResultSet object from the ForwardOnly to the Scrollable
state. Unfortunately, this method does no such thing, instead it "gives a hint as
to the direction in which the rows in this ResultSet object will be processed."
These four participants did skim the description, but it seems that they relied
primarily on the method name to make their determination.

One Javadoc and one Plaiddoc participant noticed the following sentences in
the class description: "A default ResultSet object is not updatable and has a
cursor that moves forward only ... It is possible to produce ResultSet objects
that are scrollable." which is immediately followed by a code example in which
the createStatement method is called on TYPE_SCROLL_INSENSITIVE as
an argument on a connection instance. Upon reading this, both participants
immediately answered that the createStatement method should be called on a
ResultSet instance. The Plaiddoc participant even suggested that the createS-
tatement was missing from the method details list because "Plaiddoc is just a
prototype."

Questions U-5 and R-4 both ask participants to find a method that does not
exist. These questions, like all state-search questions in the study, are derived
from the questions participants asked in the observational study discussed in
Sunshine [31, ch.3]. However, participants in empirical studies are well-known to
be compliant to experimenter demands. Therefore, some may therefore consider
them to be “trick” questions. If these questions are excluded, then Plaiddoc par-
ticipants answered 140 state-search questions correctly (100%) and 0 incorrectly
while Javadoc participants answered 133 correctly (95%) and 7 incorrectly. A
two-tailed Fisher’s exact test of this contingency table is statistically significant
(p=0.014). Since Plaiddoc participants in this sample answered every question
correctly, the odds ratio is infinite. The 95-percent confidence interval of the
odds ratio is 1.48 (the corresponding value is 1.78 when including every state-
search question) to infinity (7.92 when including state-search question). There-
fore, Plaiddoc participants were significantly more likely to respond correctly
than Javadoc participants even when excluding “trick” questions.

Discussion. Three themes emerge from the incorrect and timed-out answers
provided by participants. First, all of the time-outs occurred in question R-4
when participants were asked to find a non-existent method to transition between
two states. Therefore, to answer this question correctly, participants needed to
prove the absence of something to themselves.10 Some participants felt the need
to perform a brute force search of the method documentation to ensure that
10 In [31, ch.3] many forum questioners had similar problems with missing state tran-

sitions.

174 J. Sunshine, J.D. Herbsleb, and J. Aldrich

no methods were available that perfumed the transition. Of particular note,
Plaiddoc participants didn’t seem to trust that the ForwardOnly section of the
Plaiddoc contained all of the potential methods.

It is also worth noting that question U-5 is in the same category but resulted
in no time-outs. One possible explanation is that the ResultSet interface is much
larger than the the URLConnection class,so it is easier to be confident that no
such method exists. In addition, participants seemed to intuit that the URL-
Connection transition is missing, but not intuit that the ResultSet transition is
missing.

Second, the questions required the participants to digest a lot of text. Partic-
ipants commonly relied on heuristics and skimming to answer questions quickly.
For example, the five Javadoc participants who answered R-4 with setFetchDi-
rection matched the method name to the task and quickly confirmed the match
in the description, but did not fully digest the description text. The participant
who missed the word “scheduled” in the exception details was being similarly
hasty. This phenomenon may partially explain why Plaiddoc participants were
so much quicker than Javadoc participants, as we saw in §6.1. Plaiddoc presents
a natural heuristic to participants — when examining a method, look first at
the state it is defined in, then at its preconditions and postconditions.

Third, participants were tripped up by non-normal modes of use. We saw
that participant #19 thought only the Timer could call TimerTask methods be-
cause that is the normal mode of use. Similarly, most protocol violations throw
exceptions and are documented in the method or exception descriptions. How-
ever, scheduledExecutionTime somewhat abnormally documents the protocols in
the return value description which confused three participants. Finally, abstract
states normally map well to the primitive state of object instances. However, a
URLConnection that has been disconnected from the remote resource is not in
the Disconnected abstract state, as expected by three participants.

6.3 Learning

To answer RQ4, which asks whether state search performance improves with
practice, we alternated the order that question batches were asked of partici-
pants. As we describe in §5.3, half of the participants first received URLConnec-
tion questions and half first received Timer questions. The output variable we
discuss in this section is the ratio of total Timer batch completion time to total
URLConnection batch completion time (the "T/U ratio"). If learning occurs,
then the T/U ratio should be larger for participants who performed the Timer
batch first than for those who performed the URLConnection batch first.

In the Javadoc condition, the mean T/U ratio of the Timer first sub-condition
is 1.07 and .948 in the UrlConnection first sub-condition. This difference is not
statistically significant (p=0.695). On the other hand, in the Plaiddoc condition
the mean T/U ratio of the Timer first sub-condition is 1.50 and 0.743 in the Url-
Connection first sub-condition. An independent samples two-tailed t-test shows
that this difference is statistically significant (p=0.003).

Structuring Documentation to Support State Search 175

Table 3. Analysis of observed variance of T/U Ratio. The fixed-effects sources of
variation considered are documentation type and batch order.

Df Sum Sq Mean Sq F value Pr(>F)
DocType 1 0.06695 0.06695 0.4560 0.50914

BatchOrder 1 0.96519 0.96519 6.5737 0.02081
DocType:BatchOrder 1 0.51496 0.51496 3.5073 0.07949

We performed a two factor, fixed-effects ANOVA in which the two factors
are documentation type and batch order and the output variable is the T/U
ratio. The results are show in Table 3. This ANOVA reveals that there is a
marginally significant interaction between documentation type and batch order-
ing (p=0.079). This should be interpreted as weak evidence that task-completion
speed improved more for Plaiddoc participants than for Javadoc participants.
However, more data is needed to know for sure.

Discussion. The Plaiddoc participants performance improved significantly dur-
ing the study, which is perhaps unsurprising since Plaiddoc was new to all of the
participants. We would like to say with confidence that state-search performance
of programmers using Plaiddoc would improve over time relative to programmers
using Javadoc. However, the learning observed in the Plaiddoc condition was not
significantly stronger than the learning observed in the Javadoc condition.

6.4 State Concept Mapping

To investigate RQ5, we asked four questions to map the concepts they learned
about in training to the Timer, TimerTask, ResultSet, and URLConnection.
Plaiddoc participants responded correctly 23 of 40 times, while Javadoc partici-
pants answered correctly 25 times. This difference is not statistically significant.

Discussion. We hypothesized that Plaiddoc participant would be better at
mapping API specifics to general state concepts. We thought this because Plaid-
doc makes many state concepts more salient. There is no evidence for this hy-
pothesis in the data. Javadoc participants spent much more total time with the
documentation and they read much more of the detailed prose contained inside
the documentation. Perhaps this extra time and detail compensated for the state
salience of Plaiddoc.

We told all of the participants that timed out while trying to find a method
to transition the ResultSet from ForwardOnly to the Scrollable state, that the
method did not exist. We asked if they had any ideas about how to better
represent missing state transitions. Most didn’t give any suggestion, but one
suggested that methods that perform state transitions should be separated from
other methods so they’re easier to find. This suggestion is worthy of further
investigation.

176 J. Sunshine, J.D. Herbsleb, and J. Aldrich

6.5 Participant Preference

In the post-experiment interview we also gauged participant preferences. Nine of
ten Plaiddoc participants said that a different documentation format would have
been more helpful in performing the study. Seven selected UML state diagrams
and two selected Javadoc. The Javadoc participants also primarily selected UML
State diagrams (five of ten), followed by Javadoc (3), and Plaiddoc (2).

Discussion. The results in this study show that Plaiddoc participants outper-
formed Javadoc participants. Therefore participant preferences does not match
the measured outcome. Why do so many Plaiddoc participants prefer another
documentation format? The simplest explanation is that Plaiddoc is unfamiliar,
while Javadoc is familiar. In addition, one participant in the Plaiddoc condi-
tion who preferred Javadoc explained that he “felt lost” while using Plaiddoc. A
Plaiddoc page is divided into many more subsections (one for each state) than
a Javadoc page. Improved visual cues indicating the which state is being viewed
might alleviate this problem. Another possible reason, is that the Plaiddoc state
diagram is produced in ASCII and therefore looks old and amateurish. The state
diagram does not match well with the modern look of the rest of the page. Re-
gardless of the reason for the preference, this study’s results are a cautionary
tale for researchers who rely only on user preferences to evaluate tools.

7 Threats to Validity

In this section we discuss threats to validity of our causal claims. We divide
this section using the canonical categories of validity: construct validity, internal
validity, and external validity.

7.1 Construct Validity

We trained all participants equally, including training of Javadoc participants
to use Plaiddoc. There is some risk in this design that Javadoc participants
will be disappointed that they did not get to use Plaiddoc. They were famil-
iar with Javadoc so they may have preferred to try something new. Therefore,
Javadoc participants may have performed worse because they experienced what
Shadish [27, p. 80] calls “resentful demoralization.” Two facts suggest that de-
moralization had at most a small effect on the results: First, only two of 10
Javadoc participants said they would have preferred to use Plaiddoc in the post-
experiment interview. Second, both Javadoc and Plaiddoc are documentation
formats and neither is particularly exciting. The classic examples in which “re-
sentful demoralization” was measurable include much more severe differences
between the control group and the experimental group. Fetterman [12] describes
an experiment evaluating a job-training program in which the control group in-
cludes participants who were denied access to the training program. Walther [35]

Structuring Documentation to Support State Search 177

compared an experimental group that is paid a substantially higher participa-
tion reward to a control group paid much less. We would not expect to see
anywhere near as much demoralization in our study as in these studies, even for
participants who would have preferred to use Plaiddoc.

Although participants were never told explicitly, it is likely participants real-
ized that Plaiddoc was our design. Therefore, Plaiddoc participants may have
performed better and Javadoc participants worse because of “experimenter ex-
pectancies” [25, p. 224]. In other words, the very fact that we expected Plaiddoc
to outperform Javadoc and the participants could possibly infer this expectation,
may have impacted in the result in the direction we expected.

7.2 Internal Validity

The focus of this study’s design is internal validity. Participants were randomly
assigned, participants were isolated from outside events in equivalent settings, we
used a between-subjects design, and there was no attrition during the study. All
that being said, one threat to internal validity is worth mentioning. Participants
were assigned to conditions randomly, but it could be that the participants in the
Plaiddoc group were better equipped to answer the questions in the study. We
discussed the distribution of programming experience in §6.1 and showed that
it did not seem to have an effect on outcomes. However, it could be the groups
differ along another dimension—for example, programming skill, experience with
protocols, intelligence—that we did not measure and this impacted the results.

7.3 External Validity

Our earlier qualitative studies and the experiment discussed here have opposing
strengths and weaknesses. The qualitative studies emphasize external validity
with realistic tasks and professional participants, but cannot be used to draw
conclusions about causal relationships. The experiment in this paper focuses
on internal validity with a carefully controlled experimental design that allows
strong causal conclusions. However, the external validity of the experiment is
enhanced because participants performed tasks in which they were required to
tackle protocol programming barriers observed in the qualitative studies. There-
fore, the experimental results are likely to translate to real-world problems and
the processes that programmers use to solve them. All that being said, the threats
to external validity in those earlier studies extend into this study [31, §3.4].

The state search tasks are connected to our qualitative results—they use the
same APIs that were problematic for Stack Overflow questioners and they are
instances of the state search categories that were observed repeatedly in the
observational study. However, the non-state search tasks did not come from
developer forums or any other real-world programming resource. Instead they
were designed to simply not make use of Plaiddoc’s novel state features. In our
results, Plaiddoc participants did not perform worse on these tasks than Javadoc
participants. However, it could be that there are other important categories of
tasks for which Javadoc is better than Plaiddoc.

178 J. Sunshine, J.D. Herbsleb, and J. Aldrich

Another noteworthy external validity concern in the experiment here has to
do with the student population studied. None of the participants seem to have
struggled with the concept of preconditions and postconditions which are used
heavily by Plaiddoc. This may be because the concept as used in the study
is simple, but it may also be that the Carnegie Mellon student population we
studied is especially exposed to formal methods. The very first course in the
Carnegie Mellon undergraduate computer science sequence teaches students to
verify imperative programs with Hoare-style contracts.

8 Type Annotations as Documentation

Many research groups have developed specialized type-based annotation sys-
tems for particular domains. Prominent examples include information flow [26],
thread usage policies [33], and application partitioning [7]. In the vast majority
of these systems, including all of the examples just cited, the primary bene-
fit of the annotation systems touted by their creators is either verification or
automated code generation. The preconditions and postconditions that appear
next to methods in Plaiddoc are essentially state-based type annotations. There-
fore, this study provides indirect evidence that type based annotations can have
benefits as documentation.

In the last few years, there have been a flurry of studies comparing the benefits
of static and dynamic types [16,29,17]. This research suggests that dynamic
types have an advantage for small, greenfield tasks, while static types have an
advantage for larger, maintenance tasks.

The most closely related study [22], evaluated the benefits of type annota-
tions in undocumented software. The results were mixed—types were signifi-
cantly helpful in some tasks, and significantly harmful in others. One possible
interpretation of the results is that types were helpful in tasks that were more
complex (involved more classes) and harmful otherwise. Our results provide a
clearer picture — Plaiddoc provided benefits in every state-search category. In
their study, programmers performed programming tasks using two “structurally
identical,” synthetic, undocumented APIs. In our study, programmers answered
search questions with well-documented real-world APIs. One important con-
sequence of these differences, is that our study evaluates types only for their
documentation purpose, while theirs evaluates the collective value of both static-
checking and types as documentation.

9 Conclusion

In this study we demonstrate the effectiveness of Plaiddoc documentation rela-
tive to Javadoc documentation in answering state-related questions. The barrier
to entry for using the Plaiddoc tool are minimal—only 1-3 annotations are re-
quired per method. We annotated all three APIs in less than one day of work.
The main barrier to using Plaiddoc in production is training programmers to
consume the documentation effectively. Untrained participants in pilot studies

Structuring Documentation to Support State Search 179

were not able to use Plaiddoc effectively. Even basic protocol concepts were
foreign to our participants before training. That said, the training we provided
was very quick and required no specialized knowledge. Regardless, it seems clear
that any mainstream language that adopts first-class state constructs should
also adopt a Plaiddoc like documentation structure. More generally, our study
shows that state-based type annotations provide documentation-related bene-
fits even for well-documented code. Thus, our results open the door to future
work investigating the documentation-related productivity benefits of type-like
annotations in a broad range of domains.

Acknowledgements. This work was supported by supported by the U.S. Na-
tional Science Foundation under grants #CCF-1116907 and #IIS-1111750. Na-
tional Security Agency lablet contract #H98230-14-C-0140, and the Air Force
Research Laboratory.

References

1. Beckman, N.E., Kim, D., Aldrich, J.: An empirical study of object protocols in
the wild. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 2–26. Springer,
Heidelberg (2011)

2. Beckman, N.E., Nori, A.V.: Probabilistic, modular and scalable inference of types-
tate specifications. In: Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, pp. 211–221. ACM,
New York (2011)

3. Bierhoff, K., Beckman, N.E., Aldrich, J.: Practical API protocol checking with
access permissions. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
195–219. Springer, Heidelberg (2009)

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security, CCS 2010, pp. 260–269. ACM, New York
(2010)

5. Chandler, P., Sweller, J.: Cognitive load theory and the format of instruction.
Cognition and Instruction 8(4), 293–332 (1991)

6. Chi, M.T., Bassok, M., Lewis, M.W., Reimann, P., Glaser, R.: Self-explanations:
How students study and use examples in learning to solve problems. Cognitive
Science 13(2), 145–182 (1989)

7. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure
web applications via automatic partitioning. In: Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 31–44.
ACM, New York (2007)

8. de Caso, G., Braberman, V., Garbervetsky, D., Uchitel, S.: Program abstractions
for behaviour validation. In: Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, pp. 381–390. ACM, New York (2011)

9. Dekel, U., Herbsleb, J.D.: Improving API documentation usability with knowledge
pushing. In: Proceedings of the 31st International Conference on Software Engi-
neering, ICSE 2009, pp. 320–330 (2009)

10. Dwyer, M.B., Kinneer, A., Elbaum, S.: Adaptive online program analysis. In: Pro-
ceedings of the 29th international conference on Software Engineering, ICSE 2007,
pp. 220–229. IEEE Computer Society, Washington, DC (2007)

180 J. Sunshine, J.D. Herbsleb, and J. Aldrich

11. Ellis, B., Stylos, J., Myers, B.: The factory pattern in API design: A usability
evaluation. In: Proceedings of the 29th international conference on Software Engi-
neering, ICSE 2007, pp. 302–312 (2007)

12. Fetterman, D.M.: Ibsen’s baths: Reactivity and insensitivity (a misapplication of
the treatment-control design in a national evaluation). Educational Evaluation and
Policy Analysis 4(3), 261–279 (1982)

13. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, PLDI 2002, pp. 1–12. ACM, New York (2002)

14. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: Validating SSL certificates in non-browser soft-
ware. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS 2012, pp. 38–49. ACM, New York (2012)

15. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework. Journal of Visual Languages & Computing 7(2),
131–174 (1996)

16. Hanenberg, S.: An experiment about static and dynamic type systems: Doubts
about the positive impact of static type systems on development time. In: Pro-
ceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2010, pp. 22–35. ACM, New York
(2010)

17. Hanenberg, S., Kleinschmager, S., Robbes, R., Tanter, É., Stefik, A.: An empir-
ical study on the impact of static typing on software maintainability. Empirical
Software Engineering, 1–48 (2013)

18. Holmes, R., Walker, R.J., Murphy, G.C.: Strathcona example recommendation
tool. In: Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pp. 237–240. ACM, New York (2005)

19. Jaspan, C.N.: Proper Plugin Protocols. PhD thesis, Carnegie Mellon University.
Technical Report: CMU-ISR-11-116 (December 2011)

20. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Trans. Comput.-Hum. Interact. 3(4), 320–351
(1996)

21. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1), 65–100 (1987)

22. Mayer, C., Hanenberg, S., Robbes, R., Tanter, É., Stefik, A.: An empirical study of
the influence of static type systems on the usability of undocumented software. In:
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, pp. 683–702. ACM (2012)

23. Neal, L.R.: A system for example-based programming. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI 1989, pp.
63–68. ACM, New York (1989)

24. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Auto-
mated api property inference techniques. IEEE Transactions on Software Engi-
neering 39(5), 613–637 (2013)

25. Rosenthal, R., Rosnow, R.L.: Essential of Behavioiural Research: Methods and
Data Analysis, 3rd edn. McGraw-Hill Higher Education, New York (2008)

26. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

Structuring Documentation to Support State Search 181

27. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Wadsworth Cengage
Learning (2002)

28. Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., Jensen, M.: On breaking
SAML: Be whoever you want to be. In: Proceedings of the 21st USENIX Conference
on Security Symposium, Security, vol. 12, p. 21 (2012)

29. Stuchlik, A., Hanenberg, S.: Static vs. dynamic type systems: An empirical study
about the relationship between type casts and development time. In: Proceedings
of the 7th Symposium on Dynamic Languages, DLS 2011, pp. 97–106. ACM, New
York (2011)

30. Stylos, J., Myers, B.A.: The implications of method placement on API learnability.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, SIGSOFT 2008/FSE-16, pp. 105–112. ACM, New
York (2008)

31. Sunshine, J.: Protocol Programmability. PhD thesis, Carnegie Mellon University
(December 2013)

32. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, E.: First-class state change
in plaid. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA 2011, pp.
713–732. ACM, New York (2011)

33. Sutherland, D.F., Scherlis, W.L.: Composable thread coloring. In: Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP 2010, pp. 233–244. ACM, New York (2010)

34. Ullmer, B., Ishii, H.: Emerging frameworks for tangible user interfaces. IBM Sys-
tems Journal 39(3.4), 915–931 (2000)

35. Walther, B.J., Ross, A.S.: The effect on behavior of being in a control group. Basic
and Applied Social Psychology 3(4), 259–266 (1982)

36. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. In: Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2002, pp. 218–228. ACM,
New York (2002)

37. Ye, Y., Fischer, G., Reeves, B.: Integrating active information delivery and reuse
repository systems. In: Proceedings of the 8th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering: Twenty-first Century Applica-
tions, SIGSOFT 2000/FSE-8, pp. 60–68. ACM, New York (2000)

38. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending
API usage patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
318–343. Springer, Heidelberg (2009)

Reusable Concurrent Data Types

Vincent Gramoli1 and Rachid Guerraoui2

1 NICTA and University of Sydney
vincent.gramoli@sydney.edu.au

2 EPFL
rachid.guerraoui@epfl.ch

Abstract. This paper contributes to address the fundamental challenge of build-
ing Concurrent Data Types (CDT) that are reusable and scalable at the same time.
We do so by proposing the abstraction of Polymorphic Transactions (PT): a new
programming abstraction that offers different compatible transactions that can
run concurrently in the same application.

We outline the commonality of the problem in various object-oriented
languages and implement PT and a reusable package in Java. With PT, anno-
tating sequential ADTs guarantee novice programmers to obtain an atomic and
deadlock-free CDT and let an advanced programmer leverage the application se-
mantics to get higher performance.

We compare our polymorphic synchronization against transaction-based, lock-
based and lock-free synchronizations on SPARC and x86-64 architectures and
we integrate our methodology to a travel reservation benchmark. Although our
reusable CDTs are sometimes less efficient than non-composable handcrafted
CDTs from the JDK, they outperform all reusable Java CDTs.

1 Introduction

Abstract data types (ADTs) have shown to be instrumental in making sequential pro-
grams reusable [1]. ADTs promote (a) extensibility when an ADT is specialized through,
for example, inheritance by overriding or adding new methods, and (b) composability
when two ADTs are combined into another ADT whose methods invoke the original
ones. Key to this reusability is that there is no need to know the internals of an ADT
to reuse it: its interface suffices. With the latest technology development of multi-core
architectures many programs are expected to scale with a large number of cores: ADTs
need thus to be shared by many threads.

Unfortunately, most ADTs that export shared methods, often called Concurrent Data
Types (CDTs), are not reusable: the programmer can hardly build upon them. For ex-
ample, programmers cannot reuse the popular concurrent data types of C++, Java and
C# libraries. CDTs typically export a set of methods, guaranteeing that, even if invoked
concurrently, each of these methods always appears as if it was executed in sequence.
This property, known as atomicity (or linearizability [2]), lets the programmer reason
in terms of sequential accesses. However, atomicity is generally not preserved under
extension or composition, hence annihilating reusability.

Basically, CDTs are synchronized using either lock-based (i.e., mutual exclusion)
or lock-free primitives (e.g., compare-and-swap). On the one hand, CDTs that rely

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 182–206, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Reusable Concurrent Data Types 183

on locks have limited composability as a user could accidentally write two composite
methods that deadlock when calling in different order two existing methods that require
distinct locks. The same CDTs might not be extensible either as adding a new method
may require to know the lock granularity used by existing methods. On the other hand,
lock-free CDTs relying on hardware primitives can generally modify only one or two
memory words atomically, requiring the user to precisely identify these words before
obtaining a scalable and atomic composite method. Knowing these internals may, how-
ever, not even help extending lock-free CDTs as we will describe in Section 2.

Some synchronization schemes do enable reusability, yet their performance does
not scale with concurrency. Typically, Transactional Memory (TM) systems ensure that
within a sequence of shared memory reads/writes, all execute atomically (the transac-
tion commits) or none of them execute (the transaction aborts) [3,4]. One can exploit
TM to write an atomic CDT easily: it suffices to (a) write the bare sequential code of the
ADT and then (b) to encapsulate each of the methods of the resulting ADT into a trans-
action. Transactional methods commit only if their execution is equivalent to a serial
one. TMs typically provide composability [5] as a new composite operation encapsu-
lated in a transaction can invoke multiple existing methods from a (transactional) CDT.
Also, specific transactions facilitate extensibility by preventing anomalies when inherit-
ing from an existing CDT [6]. Nevertheless, classic transactions are overly conservative
and clearly hamper scalability simply because they cannot exploit the application se-
mantics [7,8,9,10,11,12].

In light of this lack of scalability, expert programmers would implement handcrafted
libraries whose semantics is difficult to understand to say the least: instead of being
simply equivalent to a sequential execution (or atomic), an iteration over a CDT would
typically return different results depending on the current status of concurrent updates
of the same CDT. This strategy clearly promotes scalability while preventing a program-
mer, who ignores the underlying implementation details, from reusing the abstraction.
Built-in C++ thread building block library, java.util.concurrent package and C# System
libraries all adopt this strategy, hence limiting the ability for novices to write concurrent
code in main object-oriented languages.

In this paper, we propose the Polymorphic Transaction (PT) methodology, which
helps write concurrent programs that are both scalable and reusable. Its main novelty
is not in providing a novel transaction semantics but in combining multiple of them to

Table 1. The use-cases in which we applied the PT methodology

Use-cases of the PT methodology Data structure Type Annotated Non-protected Total
methods methods

ReusableLinkedQueue Linked list Queue 13 2 15
ReusableVector Vector Collection 37 11 48
ReusableLinkedListSortedSet Linked list Set 11 4 15
ReusableHashMap Hash table Map 11 3 14
ReusableSkipListSet Skip list Set 11 4 15
Vacation Red-black trees Database 3 88 91
Total 86 112 198

184 V. Gramoli and R. Guerraoui

scale to high levels of parallelism as they let advanced programmers exploit the applica-
tion semantics. The PT methodology achieves better scalability than classic TM systems
because it ensures the atomicity of the CDT operations but not of their read/write se-
quences. It also retains the appealing simplicity of TM systems as novice programmers
obtain a safe (but less efficient) concurrent program if they ignore these semantics. In
summary, it gives a framework for all programmers to write software pieces that com-
bine with one another. To illustrate the performance potential of the PT methodology,
we implemented (a) the polymorphic software transactional memory (PSTM), (b) on
top of which we built a Java package of reusable CDTs that we use as a new TM bench-
mark suite on x86-64 and SPARC architectures, (c) we compared this library to the JDK
(incuding java.util.concurrent) and (d) we integrated our solution to the STAMP travel
reservation application, called vacation [13].

In contrast with lock-based and lock-free libraries, our library is reusable, thereby
simplifying the life of concurrent programmers. In fact, we prove that our semantics
combine with each other which translates into the composability and extensibility of
our library as opposed to mainstream Java, C++ and C# concurrent libraries. To write
an atomic (linearizable) CDT, the programmer writes a semantically equivalent bare
sequential ADT and annotates each of its methods with one of the existing transaction
forms without the need of altering the sequential code. To reuse existing CDTs, the
programmer can either (a) compose these CDTs by invoking their methods in a method
annotated with one existing transaction form or (b) extend these CDTs by inheriting
from them and adding new methods annotated with one of the transaction forms. If the
form of the annotation is omitted then the default form guarantees atomicity regardless
of the application semantics. The four forms of PSTM, detailed in Section 3, are as
follows:

– Hand-over-hand: A form of transaction that allows update methods to run con-
currently. It builds upon a locking technique where each accessed location remains
protected until the next location(s) within the same sequence gets protected. This
technique is known as chain-locking, lock-coupling, or hand-over-hand locking [14].
As opposed to hand-over-hand locking, a hand-over-hand transaction may abort and
release all its locks rather than blocking, thus being deadlock-free. (Hand-over-hand
transactions guarantee elastic-opacity [9].)

– Snapshot: A form of transaction that allows read-only methods to run concurrently
with updates. This form exploits multiversion concurrency control [15] to provide
snapshot isolation, a property of production database systems that allows reads to
execute at a different time from writes. Snapshot isolated transactions are prone to
the write-skew problem when they concurrently read a set of data and later update
disjoint subsets of these data, however, our form applies exclusively to read-only
methods and guarantees atomicity.

– Opacity: the default form of transaction. Similar to strict-serializability targeted
by database systems, opacity guarantees that transactions execute as if all their ac-
cesses were executed at some indivisible point in time (serializability) between the
time they are invoked and the time they return (strictness). In contrast with database
transactions, opaque transactions are guaranteed to never observe an inconsistent
state of the system (even transiently) be they doomed to abort or still pending [16].

Reusable Concurrent Data Types 185

– Irrevocability: The form of a transaction that never aborts [17]. This form can
be used to enforce that an atomic series of accesses executes exactly once. It is
typically useful for executing I/O operations or invoking legacy code that cannot
be rolled back, however, this form should be avoided when possible as it prevents
transactions from executing concurrently.

A novel aspect of this work is to allow several transactional forms in the same ap-
plication hence raising a new interesting compatibility challenge: guaranteeing that
methods synchronized with different semantics do not affect the semantics of each
other when accessing the same mutable data concurrently. For example, consider a
hand-over-hand transaction, th, reading x before a concurrent opaque transaction, to,
writes x. This write-after-read (WAR) conflict would typically be detected by to but ig-
nored by th. Upon writing and detecting the conflict, if to resolves the conflict by abort-
ing or delaying one of the two transactions, then concurrency would be suboptimal.
Conversely, if to ignores the conflict, it may violate its semantics by committing: if say
a later conflict on y requires that to be serialized before th. To cope with this, we prevent
a WAR conflict from being resolved eagerly by the transaction that conflicts by writing,
instead it is always resolved by the transaction that conflicts by reading (regardless of
its form). This is described in Section 4 along with the resolution of write-after-write
(WAW) and read-after-write (RAW) conflicts.

To integrate our methodology in the Java programming language, we extended
the Deuce [18] bytecode instrumentation framework, so that synchronizing a bare
sequential method simply consists of annotating it with either a hand-over-hand,
a snapshot, an opaque or an irrevocable transaction. As detailed in Section 5,
the produced bytecode is automatically instrumented so that shared reads/writes
get redirected to the transactional reads/writes of the appropriate form featured
by PSTM. We only annotated few methods in our benchmarks (cf. Table 1): all
methods they call are automatically instrumented. We compared our reusable pack-
age to the JDK packages. First, we devised reusable CDTs using specific but
restrictive techniques from the JDK like java.util.Collections.synchronizedSet or
java.util.concurrent.copyOnWriteArraySet. Note that we could have also used our own
implementation of a universal construction [19] to achieve similar results. Second, we
tested mainstream non-reusable CDTs like the lock-based java.util.Vector or the lock-
free java.util.concurrent.ConcurrentLinkedQueue [20].

While our implementation could benefit from recent speculative hardware instruc-
tions, even in its software form, the PT methodology helps improving significantly the
performance of existing reusable techniques from the JDK (2.4× speedup). We also
tested as a baseline the performance of non-reusable but well-engineered JDK CDTs
and we observed great differences: while our CDTs could, in some executions, speedup
the performance of the non-reusable JDK CDTs by 4×, our experiments also outline
circumstances where reusability comes at a cost. All these experimental results are re-
ported in Section 6.

Finally, we discuss the related work in Section 7 and conclude in Section 8.

186 V. Gramoli and R. Guerraoui

2 Overview

Most concurrent object-oriented libraries trade reusability off for efficiency. We distin-
guish their two reusability limitations, namely extensibility and composability issues,
and describe how the PT methodology addresses them.

2.1 Extensibility

Illustrating the issue. In Java, the ConcurrentLinkedQueue type of the JDK 7 exports
an inconsistent size method. The problem comes from the fact that this CDT aims at im-
plementing the lock-free algorithm from Michael and Scott designed to provide efficient
offer (i.e., push) and poll (i.e., pop) [20] but aims also at implementing the Collection
interface including a size method for a neat integration in the Java API. On the one
hand, a size method is useful to count the number of elements comprised in this col-
lection: although size remains optional, various Collection CDTs do provide it. On the
other hand, the algorithm of Michael and Scott was optimized to export deadlock-free
offer and poll without aiming at supporting a size method or allowing extensibility.

The problem of extending the Michael and Scott’s algorithm with a size, which
could access concurrently the same data as offer and poll, is far from being trivial,
precisely due to the way the algorithm was originally proposed. In short, the algorithm
was made deadlock-free by relying exclusively on compare-and-swap for synchroniza-
tion. Comparing-and-swapping versions of the data structure to compute the size would
annihilate effective concurrency while using locks to protect the data structure would
not prevent the offer and poll from concurrently updating the structure. This lack of
extensibility, which is inherent to the synchronization used, led expert programmers to
implement a non-atomic size method.

Specifically, this size consists of traversing the underlying linked list from the head
to the tail while elements are pushed at the head and popped at the tail. Assume that
some elements are moved from the tail to the head, one after the other, so that the size s
changes by±1. As the size method does not protect the head and the tail of the queue, it
simply ignores any of these moved elements and returns an incorrect value way smaller
than s−1. Precisely because predicting the outcomes of this size requires to understand
the implementation internals, the resulting CDT is not reusable.

We reported this ConcurrentLinkedQueue issue to the JSR166 expert group. Follow-
ing up our report, this unexpected behavior has been warned in the documentation of
the class ConcurrentLinkedQueue on the JSR166 site since revision 1.54 and the is-
sue is still present in the JDK 7. Since then other researchers unaware of this warning
observed the same problem [21]. This size problem simply illustrates the more general
lack of extensibility. One may think of using ArrayBlockingQueue to obtain a correct
size that returns the current value of a counter, however, such a size implementation
requires to modify all insertion and removal methods to make them adjust the counter.
Apart from the size example, a programmer would have similar problems as soon as she
tries to extend these CDTs with, for example, a sum method.

The PT solution. Figure 1 illustrates how to exploit the PT methodology to cope with
the ConcurrentLinkedQueue issue. It requires that the methods pop and push accessing

Reusable Concurrent Data Types 187

class ReusableLinkedQueue {
...
@Transactional(form= SNAPSHOT)
public int size() {
int count = 0;
for (Node<E> p=first(); p!=null;

p=p.getNext()) {
if (p.getItem() != null) {

if (++count == Integer.MAX_VALUE)
break;

}
}
return count;

}

Fig. 1. PT fixes the ConcurrentLinkedQueue.size() problem and allows extensibility

mutable shared variables use no explicit synchronizations besides annotations. In this
particular example, the size is added as a sequential size method annotated with a form
called snapshot denoted by @Transactional(form= SNAPSHOT).

The resulting implementation is inherently extensible. The snapshot transaction
form guarantees that all shared read accesses of the size method, including the one
to p.getNext(), return values present at a common point in time between the invocation
and the response of size. To this end, the implementation (detailed in Section 3) asso-
ciates a version to each value written by any transaction, a snapshot transaction records
the highest version upon start and identifies the correct value to return upon reading
based on the associated version. In particular, all updates to mutable shared variables
are tracked using metadata so that size can detect that a field of ReusableLinkedQueue
is being or has been overridden by a concurrent method (e.g., offer or poll) and choose
to return a preceding version of the field to bypass the conflict or to abort.

Note that one could have safely omitted the form parameter here (@Transactional)
hence adopting the default opaque semantics instead, however, it would limit concur-
rency by often aborting the size or its potential conflicting updates.

Related issues. Similarly, C# concurrent libraries trade reusability for efficiency. Con-
sider the System.Collections.ConcurrentDictionary CDT as another example. This
CDT cannot be easily extended with a correct size() or sum() method, in particular
one should not use the existing GetEnumerator() to count or sum-up the elements as
the resulting method would not be atomic.

Note that a subset of these problems arise upon inheritance and are thus referred to
as inheritance anomalies [22].

2.2 Composability

Illustrating the issue. In most languages, there is no clear way of ensuring that atom-
icity gets preserved under composition of methods into another (the new one invoking
the existing ones). This difficulty made it hard to identify bugs in basic Java CDTs,
like java.util.Vector. Similar bugs have been unveiled thanks to automated frame-
works helping researchers detect atomicity violations [23,24,25,26,27]. As noted ear-
lier [24,26], the version 1.4.2 of the JDK suffered from a critical issue related to one

188 V. Gramoli and R. Guerraoui

public ReusableOldVector(Collection c) {
init(c);

}

@Transactional(form=OPAQUE)
public void init(Collection c) {

elementCount = c.size();
elementData = new Object[(int)Math.min(

(elementCount*110L)/100,Integer.MAX_VALUE)];
c.toArray(elementData);

}

Fig. 2. PT fixes the Vector constructor problem and allows composability

of the constructors of java.util.Vector, a widely used abstraction that is supposed to be
thread-safe. Upon constructing a new Vector based on an existing Collection c of ob-
jects, an ArrayOutOfBoundsException could be raised. The reason is that between the
time the size of the collection c is computed and the time c gets converted into an array,
a concurrent update may modify the size of the collection c.

The PT solution. The java.util.Vector issue can be easily fixed using our PT method-
ology that instruments all transactional shared accesses (including to the Collection).
The obtainedReusableOldVector simply consists of the original constructor placed into
the init method that is annotated with a keyword @Transactional(form=OPAQUE)
as depicted in Figure 2. We actually copy-pasted the constructor into a transactional
init method simply because the instrumentation is automated for methods but not con-
structors. Note that we use the opaque form in this example as we motivate later in
Section 3.1.

We implemented a ReusableVector CDT by converting all the synchronized methods
of the java.util.Vector of the JDK 7 (hence the name ReusableOldVector for the fix of
the version 1.4.2) into sequential methods annotated using the opaque transactional
wrapper. An advantage of our transaction annotations is that each method, be it private
(e.g., ensureCapacityHelper) or public (e.g., ensureCapacity) can be annotated as a
transaction. In contrast, nesting of locks may be problematic leading to deadlocks when
a programmer encapsulates in a synchronized block a call to an external method already
using synchronized.

Related issues. In C#, the aforementioned ConcurrentDictionary CDT exposes
GetOrAdd(k,v) and AddOrUpdate(k,v′) that are not the (atomic) composition of get-
ting, adding and updating actions. Actually, we observed a lost update problem when
GetOrAdd(k,v) and AddOrUpdate(k,v′) run concurrently. Intuitively, any concurrent
execution of these two methods should always end up in a final state where k is present
and its associated value is v′: either GetOrAdd fails in adding if AddOrUpdate is lin-
earized first, or v is updated to v′ if AddOrUpdate is linearized second. The lost update
may lead, however, to an inconsistent final state in which k is present with value v. Pre-
cisely because its behavior is incorrect, such subtlety is not visible at the level of the
interface of this CDT.

Within the last two years, more than 300 bugs due to this lack of composability were
identified in real-world applications [28,27].

Reusable Concurrent Data Types 189

Table 2. Domain and states of the algorithm

Domain of the algorithm
X the set of references
V the set of values

T ⊆ N the set of versions
State of transaction t
form ∈ {opaque,hand-over- transaction form (initially opaque)
hand,snapshot, irrevocable}

wset⊂ X×V the write set (initially /0)
rset ⊂ X×T the read set (initially /0)

bkp ⊂ X×V ×T backup of value-version (init. /0)
lb ∈ N versions lower bound (initially 0)
ub ∈ N versions higher bound (initially 0)

3 Polymorphic Transactional Memory

We present a polymorphic software transactional memory (PSTM) that underlies our
PT methodology. The PSTM implementation has four distinct forms of transactions,
opaque, hand-over-hand, snapshot, and irrevocable, hence the name. A bytecode in-
strumentation phase automatically redirects all shared memory accesses of annotated
methods, including the accesses within their nested methods, to the proper transac-
tion form. (Details about nesting semantics are given in Section 5.3.) At run-time the
method starts by calling the tx-start passing the optional form as a parameter, invokes
tx-read/tx-write instead of directly accessing the shared memory and calls tx-commit
right before returning. If the corresponding transaction aborts it restarts and the method
returns after the transaction successfully commits.

The domain and transaction states of PSTM are depicted in Table 2, the revoca-
ble transactions code is depicted in Algorithm 1. Conflicts are detected at the level of
accesses to an object field to enable higher concurrency than object-based detection,
thus we say that PSTM is field-based. Each field reference is associated with a ver-
sioned lock that stores the version of the associated reference if unlocked, or its owner
if locked (�.owner = ⊥ indicates that the lock is not held). Each transaction consults a
global counter, clock (Line 2), and maintains version lower and upper bounds, resp. lb
and ub, that help checking whether an access is consistent. Like most time-based soft-
ware transactional memories (STMs) [29], all transactions update the memory lazily by
buffering writes into a write-set, wset, until it commits, and have invisible reads: none
of the read accesses from any transaction is visible from other transactions.

Our solution is deadlock-free because a transaction that cannot acquire a lock simply
releases all the previous locks it acquired (and aborts). Adapting more elaborate con-
tention managers [30] to obtain stronger progress guarantees, e.g., to avoid starvation,
is left to future work. For the sake of efficiency, only writes lock and reads do not lock,
however, the values read must be validated each time a read or a write occurs to make
sure that they have not been overridden by concurrent transactions.

We omitted the pseudocode of several helper functions. The function vervalver
(Lines 6) is a three-read process spinning until the value and versioned lock returned are

190 V. Gramoli and R. Guerraoui

guaranteed to be consistent (as if they were both read atomically). The truncate func-
tion (Line 20) discards the oldest entries from the read-set rset to keep the two most
recent ones. Finally, lock acquires a lock on a given reference and returns the previous
lock state or raises an exception if the lock is taken while unlock releases the lock on the
given reference, store reports changes in memory, set-ver associates a new version with
some value, get-ver/get-val return the versioned lock and the value of the reference,
respectively, and bkp.version/value returns the old (backup) version/value of the given
reference.

3.1 Opaque Transactions

The opaque semantics captures the intuitive single-global-lock semantics provided by
common monomorphic (i.e., non-polymorphic) STMs. It has the strongest semantics,
hence, it can be used to guarantee atomicity of any method. It clearly benefits the novice
programmers who ignore other forms, but in general it limits scalability when applied
to long methods. In our package, we used opaque transactions for the short methods
with few accesses, like head, first, firstEntry, firstKey and most of the ReusableVector
methods because their exploitable concurrency is limited.

Our implementation of opaque transactions follows the LSA algorithm [31]: it ac-
quires locations eagerly, upon write at Line 28. Upon reading a location with a lower
version than ub, the opaque transaction knows that this value has not been concurrently
overridden so it can safely read it and record the corresponding read entry for further
validation (Line 11). If the read location has a higher version than ub, then the opaque
transaction tries to increase its ub (Line 15): if the validation is successful then it up-
grades ub to the value the clock had at the time right before the validate was invoked.
This upgrade allows an opaque transaction that observes a value committed after it
started to be serialized after the conflicting transaction.

Upon writing, the transaction tries to lock the reference and aborts if it read the ref
before it got overridden (Line 30). Upon commit, the read set is revalidated (Line 46),
the value-version pair is copied (Line 48), the wset is reported to memory (Line 49)
with a higher version (Lines 44), and locks are released (Line 51).

3.2 Hand-over-Hand Transactions

Hand-over-hand transactions relax the opaque semantics to one that resembles hand-
over-hand locking [14]. More precisely, they guarantee elastic-opacity but their im-
plementation differ from E -STM elastic transactions [9] to be made compatible with
other transactions (e.g., hand-over-hand transactions record backup versions). Hand-
over-hand transactions are well-suited for ensuring atomicity of search structures that
are traversed in a specific order. These transactions speed up traversals looking for a
single location and possibly updating multiple ones. If used in other circumstances, like
for computing the size of a structure, the size method may return a semantically incor-
rect result (like most concurrent libraries do), hence the need for complementary forms.
In our package we used it for wrapping the methods contains, get, insert, insertAll, put,
remove, replace, removeAll, putIfAbsent and the like.

Reusable Concurrent Data Types 191

Algorithm 1. PSTM algorithm for revocable transaction t

1: tx-start(tx-form)t : � the form parameter
2: lb← ub← clock � versions lower-/upper-bound
3: if tx-form �=⊥ then form← tx-form � initialize tx form
4: else form← opaque � opaque by default

5: tx-read(ref)t : � transactional read
6: 〈�,v〉 ← vervalver(ref) � get lock and value copies atomically
7: if �.owner �∈ {t,⊥} then abort() � locked by other, conflict
8: if �.owner = t then � if locked by me
9: v← w.val : w ∈ wset∧w.ref = ref � return my written value

10: if �.owner =⊥ ∧ �.version≤ ub then � if no conflict
11: rset← rset ∪ {〈ref ,�.version〉} � record read entry
12: if �.owner =⊥ ∧ �.version > ub then � ref’s been written, conflict
13: if form = opaque then � if opaque tx
14: now← clock � record clock locally
15: if validate() then ub← now else abort() � upgrade upper bound
16: rset← rset ∪ {〈ref ,�.version〉} � record read entry
17: else if form = hand-over-hand then � if hand-over-hand tx
18: if ¬validate() then abort() � validate (potentially truncated) read-set
19: rset← rset ∪ {〈ref ,�.version〉} � record read entry
20: if wset = /0 then truncate(rset,2) � keep only last two entries
21: else if form = snapshot then � if snapshot tx
22: if (old = bkp.version(ref))≤ ub then � sufficiently old version
23: v← bkp.value(ref) � return old version
24: rset← rset ∪ {〈ref ,old〉} � record read entry
25: else abort() � old version is too recent
26: return v

27: tx-write(ref ,value)t : � transactional write
28: try �= lock(ref) catch-e abort() � acquire the lock and copy old lock state
29: if �.owner =⊥ ∧ �.version > ub then � ref’s been written, WAW conflict
30: if ref ∈ rset then abort() � cycle in precedence graph
31: if ¬validate() then abort() � validation of some of the conflicts
32: wset← wset ∪ {〈ref ,value〉} � buffer write entry
33: return ok

34: validate()t : � make sure read set has not changed
35: for all 〈r,ver〉 ∈ rset do � for any read entry...
36: �← get-ver(r) � reread its versioned lock
37: if ver �= �.version∨ �.owner �∈ {t,⊥} then � if has been overriden/locked
38: return false � validation fails (simplified)
39: return true

40: abort()t : � rollback before automatic restart
41: for all w ∈ wset do unlock(w.ref) � release all locks

42: tx-commit()t : � try to commit
43: if wset �= /0 then � if something to redo
44: ts← clock++ � fetch-and-increment global counter
45: if ts > lb+1 then � if concurrent update...
46: if ¬validate() then abort() � validate read set, check WAR conflicts
47: for all w ∈ wset do � apply writes and release locks
48: bkp← bkp ∪ {〈w.ref ,get-val(w.ref),get-ver(w.ref)〉} � backup
49: store(w.val,w.ref) � write in memory
50: set-ver(w.ref , ts) � upgrade version
51: unlock(w.ref) � release lock

A hand-over-hand transaction automatically ignores the old values read during its
read-only prefix (i.e., as long as wset = /0). When a hand-over-hand transaction still in
its read-only prefix reads a location, it creates a new read entry in its rset and discards

192 V. Gramoli and R. Guerraoui

all but the two last entries by truncation (Line 20). By contrast, the E -STM elastic
transactions [9] used to keep only one extra entry to ensure the atomicity of the list-
based set. This was made possible thanks to a marking trick used before re-allocating
the memory in unmanaged language. As we do not control memory reclamation in Java,
we could not use the same trick, which explains why a hand-over-hand transaction needs
to maintain up to two read entries to guarantee correctness of pointer-based structures.
Although keeping two entries is actually sufficient for multiple search structures (e.g.,
linked lists, skip lists, hash tables), more entries could be thought for other application
semantics. If the read location has a higher version than ub, the entries of its (potentially
truncated) read set get revalidated (Line 18) to make sure its read values are still up-
to-date. By exploiting the semantics of search structures, hand-over-hand transactions
enable higher concurrency than traditional transactions. In particular, a hand-over-hand
transaction that has traversed an ordered structure and that is updating its end would not
conflict with a concurrent transaction updating the beginning of the structure.

When a hand-over-hand transaction writes for the first time, it has to revalidate the
two entries of its rset. When a hand-over-hand transaction has already written (i.e., it is
no longer executing its read-only prefix) it behaves like an opaque transaction: it stops
truncating the rset. A hand-over-hand transaction commits as an opaque transaction
except that its validation may occur on a truncated read set (Line 46).

3.3 Snapshot Transactions

In contrast with opaque transactions, snapshot transactions are read-only and tolerate
concurrent updates by potentially returning values that can be slightly out-of-date at
the time it commits. Note that atomicity is ensured because all its read values are guar-
anteed to be up-to-date at a common point of the execution between the invocation
and the response of the transaction. In our package, snapshot transactions are used for
methods iterating over a collection of elements: descendingSet, headMap, headSet,
size, subMap, subSet, tailMap, toArray, toString and the like.

To exploit concurrency between updates and snapshots the implementation of a snap-
shot transaction builds upon multi-version concurrency control. Multi-version concur-
rency control has proved useful in software transactional memories, like JVSTM [32],
to guarantee either opacity or snapshot isolation but not to combine both. Maintaining
the minimum of versions per object that maximizes the variety of output histories comes
at a cost [33]: the proposed useless-prefix multi-version (UP MV) STM guarantees this
property but, as a drawback, does not support invisible reads. To avoid such constraints,
we chose to maintain two versions at each location. All update transactions create a
backup value-version pair before overriding them (Line 48). The snapshot transaction
has simply to detect that the location it aims to access has a higher version than its up-
per bound ub (Line 12) to try getting an older version (Line 22). The transaction has to
abort if the old version is too recent at Line 25 as there are no older versions.

3.4 Irrevocable Transactions

We provide irrevocable transactions that never abort. They are used to execute atom-
ically a series of statements in a pessimistic manner without speculation, similar to

Reusable Concurrent Data Types 193

critical sections, and are particularly useful for executing external actions like I/O. One
can delimit an irrevocable transaction using a dedicated Irrevocable annotation. We
omitted the pseudocode of irrevocable transactions, as they simply consist of (implicit)
mutual exclusion [34]. All regions annotated as irrevocable are identified by the un-
derlying Java agent, Deuce [18], and automatically wrapped in a critical section. In
contrast with other forms, an irrevocable transaction starts by trying to acquire a reader-
writer lock in exclusive mode that is held until the commit of the irrevocable transaction
is called. This strategy prevents an irrevocable transaction from running concurrently
with any other transaction but lets revocable transactions run concurrently. A revocable
transaction actually acquires a shared reader-writer lock to guarantee this. Hence, any
transaction trying to execute while an irrevocable transaction is running is blocked until
the irrevocable transaction commits.

4 Correctness

In this section, we discuss the correctness of PSTM. First, it is crucial that all transaction
forms be pairwise compatible, meaning that the semantics of each transaction form be
preserved despite concurrency. In particular, the semantics of some writing transaction
should not impact the semantics of another transaction accessing the written elements.
Second, a concurrent library should always be linearizable and reusable.

4.1 Invariants

The model is a concurrent environment where a set of threads execute transactional
methods on shared data types. The synchronization semantics of each method is given
by its transaction form that can be of the type opaque, hand-over-hand or snapshot but
we ignore the irrevocable form as it cannot run concurrently with others. A transaction
is the execution sequence of a method read and write accesses to the shared memory. It
completes either by committing, meaning that the corresponding method returns and all
its changes are visible from other transactions, or by aborting, meaning that no changes
are visible. Note that the system implicitly starts a new transaction executing the same
method if the preceding one aborted. A well-formed execution of this model is an exe-
cution where each transaction executed by one thread completes before the same thread
starts another: the nesting discussion is deferred to Section 5.3.

For the sake of compatibility our three revocable forms defer conflict resolution to
the same conflicting transaction and never ignore WAW conflicts.

Invariant 1. Let t1 and t2 be two transactions involved in a WAW conflict. At least one
of these two aborts.

For the sake of high concurrency, we adjust the conflict resolution strategy depending
on the transaction form. We differentiate the semantics of our forms in the way they
handle RAW and WAR conflicts. Reads are idempotent, as they do not affect the system
state; hence the decision taken by the reading transaction detecting a RAW conflict,
which depends on the semantics of this transaction, never affects the semantics of other
transactions. Specifically, reads can interchangeably return committed values or abort,
this result is invisible from the standpoint of concurrent transactions.

194 V. Gramoli and R. Guerraoui

Invariant 2. Let two transactions tr and tw be involved in a RAW conflict where tr
executes the conflicting read whereas tw executes the conflicting write. Transaction tr
either ignores the conflict by resuming or resolves it by aborting itself.

The problem of enhancing concurrency is more subtle upon WAR conflicts. If
a transaction tries to solve a WAR conflict upon detecting it by writing, then it
could either conservatively limit concurrency (e.g., by aborting while its semantics is
hand-over-hand) or it could violate the semantics of other transactions (e.g., committing
while the conflicting transaction is opaque and this conflict would induce a cycle in the
precedence graph observed by this transaction). This issue is addressed by forcing the
reading transaction to solve all WAR conflicts, which requires all reading transactions
to (re-)validate either at some later read, write or commit.

Invariant 3. Let two transactions tr and tw be involved in a WAR conflict where tr
executes the conflicting read whereas tw executes the conflicting write. Transaction tr
either ignores the conflict by resuming or resolves it by aborting itself.

4.2 Semantics Preservation

Opacity requires committed transactions to be strictly serializable and non-committed
ones to observe consistent states [16]. The semantics of opaque transactions is preserved
due to Invariant 1 and the fact that all transactions write values at commit time so that
the read operations cannot return transient values (Line 15). As opposed to other forms
of optimistic transactions [35,36], a snapshot transaction is not necessarily serialized
at its commit time as it only returns values that were present at its start time (Lines 10
and 22) to exploit multi-versioning while ensuring strict serializability. Finally, hand-
over-hand transactions prevent some read/write from being interleaved with conflicting
writes to ensure elastic opacity [9]. As they are not necessarily strictly serializable, they
allow to implement efficient linearizable CDTs.

4.3 Linearizability of the Data Type

One can easily deduce a linearization point for each operation of a transaction form,
at which the transaction of the corresponding form appears to execute instantaneously.
The opaque transaction always keep the locks until commit hence a valid linearization
point is the point at which it starts releasing its first lock (Line 51); a read-only opaque
transaction linearization point is at Line 6 of its last read. The snapshot transaction may
return values that have been overridden, hence its linearization point cannot be taken
from its commit phase, however, since it makes sure that all versions it observes falls
in its range upper bound, ub, a valid linearization point is the point where it sets its
timestamp to the global clock (Line 2). The hand-over-hand transaction is well-suited
for some data types but not all, and this is the responsibility of the expert to use it appro-
priately. For example, one cannot implement a data type exporting a putIfAbsent(x,y)
method synchronized with hand-over-hand transaction. The hand-over-hand transac-
tion may ignore conflicting writes, hence acting as if it was linearized after them: a
valid linearization point for an appropriate data type is when it grabs the lock of its first

Reusable Concurrent Data Types 195

write (Line 28) or at Line 6 of its last read (if read-only). Recall that linearizability is
ensured precisely because it is defined for arbitrary objects (or types) without requir-
ing that all low-level reads and writes of a method appear as if they were all executed
instantaneously [2].

4.4 Reusability

Extensibility is ensured by the fact that our transaction forms are compatible as dis-
cussed previously, hence adding a new method annotated with one of the proposed
forms guarantees that the semantics of existing methods will not be affected.

Composability is guaranteed by the fact that whatever forms protect original meth-
ods, the programmer always has the possibility to derive a composite annotated method
that will execute atomically. By default the semantics of the composite method would be
opaque which guarantees the atomicity of any method. In particular, while two traver-
sals may be originally annotated as hand-over-hand ignoring some conflicts for the sake
of concurrency, a new composite method annotated as opaque that reuses them switches
their semantics to opaque. The simplicity stems from the fact that the source code of
the original methods does not need to be available as the switch is transparently done
at the bytecode level. The nesting of different forms is discussed in Section 5. Note that
in addition to concurrent methods annotated with transactions, bare sequential meth-
ods (without annotation) can be composed into a composite concurrent method that is
annotated. This allows programmers to reuse existing sequential ADTs (in addition to
transactional CDTs) to produce CDTs that are themselves reusable.

5 Language Integration

We integrated the PT methodology to Java to simplify the development and reuse of
concurrent objects using annotations. We detail below how the bytecode gets automati-
cally instrumented, how exceptions are handled, how transactions nest within each other
and to which extend one can use legacy code.

5.1 Bytecode Instrumentation

Our implementation of the PT methodology extends the Deuce [18] bytecode instru-
mentation framework to support multiple forms of transactions. Figure 3 depicts the
process of the PT methodology: (1) The programmer first compiles the data types whose
methods accessing mutable shared variables are annotated with transaction forms—
these annotations persist in the bytecode. Then (2) the Java agent automatically pro-
duces a transactional version of all objects used to redirect all their shared accesses
invoked within a transaction to the tx-read/tx-write of the corresponding transaction
form of PSTM. (3) This outputs the bytecode of the corresponding reusable CDT that
can be run by any JVM.

196 V. Gramoli and R. Guerraoui

Class FileSystem {
 ...

 @Transaction(form1)
 void mv(n1, n2) {
 cp(n1, n2);
 rm(n1);
 }

 @Transaction(form2)
 void touch(n1) {
 ...
 }
 }

transaction
form1

transaction
form2

Reusable CDT
Annotated ADT

void mv_form1(n1, n2)
{
 cp_form1(n1, n2);
 rm_form1(n1);
 }

void touch_form2(n1) {
 ...
}

Polymorphic STM

1 2 3

Fig. 3. Our PT methodology relies on annotating manually a sequential (or transactional) type,
and producing a reusable CDT by automatically instrumenting methods using the transactional
wrappers of the underlying polymorphic transactional memory system (e.g., PSTM)

5.2 Exception Handling

Our framework supports exception handling within transactions. An exception raised
within a transaction provokes the transaction to commit and the exception gets propa-
gated outside the scope of the transaction similarly to synchronized blocks and as im-
plemented in Deuce. The advantage of this semantics is to guarantee that the cause of
the exception remains visible if the exception itself is visible. An alternative interesting
semantics is failure atomicity where an exception is considered a failure from which
the system recovers by rolling back to the most recent checkpoint. For a failure-atomic
exception handler in Java using STMs we refer the reader to the CXH compiler [37].

5.3 Nesting Semantics

For the sake of safety, we adopt a conservative flat nesting approach by imposing the
most restrictive (when comparable) form of the inner/outer transaction to always pre-
vail. In our form examples, opaque prevails over snapshot and hand-over-hand. To
motivate our choice take the following non-trivial example where Alice would like to
reuse Bob’s package. For efficiency purpose Bob’s package provides a hand-over-hand
contains(y) and a hand-over-hand put(x) methods. Alice would like to derive a new
data type by nesting these two methods into an opaque putIfAbsent(x,y) that inserts x
in a data structure only if y is absent. It is crucial that the contains(y) and put(x) inherit
the opaque semantics of its parent putIfAbsent(x,y) transaction to avoid a write-skew
problem if a putIfAbsent(y,x) happens to run concurrently. If the opaque semantics is
not inherited, then there exists an execution in which both contains(x) and contains(y)
executing concurrently return false and then both x and y get successfully inserted, lead-
ing to an inconsistent state where both x and y are present. Note that Alice has to be

Reusable Concurrent Data Types 197

an expert who understands the semantics of a transaction to use it. This is particularly
important for her to be aware that putIfAbsent cannot be executed as a hand-over-hand
transactions in her new data type.

5.4 Legacy Code

The PT methodology recommend not to use other forms of synchronization besides
transaction forms, however, legacy code can be invoked through irrevocable transac-
tions. In particular, the PT methodology does not guarantee compatibility between the
transaction forms and the explicit use of compare-and-swap and mutual exclusion as it
there is no clear semantics on conflicting accesses using these different synchronization
techniques. A potential risk is that non-transactional accesses would typically observe
transient states if they could access transactional CDTs as we do not provide strong
atomicity [38]. Note that requiring CDTs to be accessed transactionally can be enforced
in Java through the use of pre-existing setters and getters as, for example, when access-
ing ThreadLocal variables. Finally, the PT methodology can still be used to turn most
sequential ADTs into equivalent atomic CDT.

6 Evaluation

In this section, we evaluate our methodology in Java. We compare our reusable library
to lock-based and lock-free libraries from the JDK and STM-based libraries, on SPARC
and x86-64 architectures using Synchrobench and the Vacation application.

6.1 Settings

We used two 64-way machines with different architectures: an UltraSPARC T2 (Nia-
gara 2) 1.165GHz with 32GB of memory and a 2U server with 4 AMD Opteron 6378
2.4GHz 16-core processors with 128GB of memory. (All graphs except the last ones re-
port the results from SPARC.) Each data point of the graphs corresponds to the through-
put averaged over 3 runs of 13 seconds executed in separate JVM instances and where
the 10 first seconds of each run are used to warmup each JVM. (Each point of the graph
thus takes nearly 40 seconds to be computed and we carefully checked that the variance
was negligible enough for the results to be meaningful.) The JVM runs in server mode
with 2G of initial/maximum Java heap size.

6.2 PT Methodology vs JDK

First, we evaluate two techniques from the JDK 6 to construct reusable set CDTs: (1) the
copy-on-write wraps a set ADT into a java.util.concurrent.copyOnWriteArraySet
to obtain an array whose methods are guaranteed to be atomic and whose read-
only methods are wait-free (JDKCopyOnWrite), and (2) a lock-based one consist-
ing of wrapping a set ADT into a synchronizedSet (JDKLocks) to transparently
make its methods atomic. Second, we evaluate the PT methodology when based on
PSTM and when using four implementations of state-of-the-art (monomorphic) STMs:

198 V. Gramoli and R. Guerraoui

(a) 5% update, 210 elements (b) 5% update, 212 elements

(c) 10% update, 210 elts (d) 10% update, 212 elts

(e) 15% update, 210 elts (f) 15% update, 212 elts

(g) 20% update, 210 elts (h) 20% update, 212 elts

Fig. 4. Throughput (normalized over sequential) obtained when using polymorphic transactions
(PSTM), the lock-based synchronizedSet from the JDK, the copyOnWriteArraySet from the
JDK and the highest throughput we obtained from our four monomorphic STMs (LSA, TL2,
SwissTM, NOrec). Workloads include 10% of size, from 5% to 20% of updates (add or remove
with the same probability) and from 70% to 85% of contains.

Reusable Concurrent Data Types 199

LSA [31], TL2 [39], SwissTM [40] and NOrec [41]. For evaluating them on the
same ground, all these implementations are field-based and match the interface of
Deuce [18] (in particular, LSA, TL2, and NOrec are the standard versions provided
with Deuce). We tested all STMs including PSTM and observed that PSTM was more
efficient than other STMs on ReusableLinkedQueue, ReusableLinkedListSortedSet,
ReusableHashMap and the ReusableSkipListSet thus we only report the data from
the ReusableLinkedListSortedSet. This benchmark comprises add/remove (5–20%),
contains (70–85%) and size (10%) methods on a sorted linked list data structure, meth-
ods that are all provided by Java CDTs.

Figure 4 depicts the throughput of our PT methology (PSTM), of existing monomor-
phic STMs, and of existing copy-on-write and pessimistic lock-based solutions, all
normalized over the throughput of bare sequential code, on SPARC. About the
monomorphic STMs curve, we have chosen, for each single point, the maximum
throughput we obtained from LSA, TL2, SwissTM, and NOrec. The detailed speedup of
PSTM over each of these STMs is presented in Section 6.5. The overall performance of
PSTM is better than the synchronization alternatives. At low levels of contention, when
update ratio is 5% or at low number of threads, PSTM executes slower than a copy-on-
write and pessimistic lock-based alternatives. The reason is that PSTM suffers from the
overhead (due to wrapping each individual access) that is common to STM implemen-
tations including monomorphic ones. This overhead is however rapidly compensated as
PSTM scales well with contention whereas the copy-on-write solution scales badly and
the lock-based solution does not even scale. More precisely, PSTM speeds up the exist-
ing copy-on-write solution by 2.4× on average, and the existing pessimistic lock-based
solution by 4.7× on average at the highest level of parallelism we have at our disposal
(64 hardware threads).

(a) 210 elements (b) 212 elements

Fig. 5. Speedup of PSTM over each monomorphic STM: LSA, TL2, SwissTM and NOrec, from
1 to 64 threads (the throughput is identical when speedup has value 1)

200 V. Gramoli and R. Guerraoui

(a) 210 elements (b) 212 elements

Fig. 6. Speedup of PSTM over the variant that does not use snapshot transactions and the one
that does not use hand-over-hand transactions

6.3 Polymorphism vs Monomorphism

Figure 5 depicts the speedup of PSTM over monomorphic STMs, LSA, TL2, SwissTM,
NOrec, as the throughput of PSTM divided by the throughput of the corresponding
monomorphic STM (with 20% update) on SPARC.

These results show that PSTM scales better than other STMs. More precisely, PSTM
presents a slight overhead at low levels of parallelism, typically when running a sin-
gle thread but rapidly compensates this slight overhead in concurrent executions. This
overhead is caused by the fact that polymorphism adds some necessary checks at each
access to determine the type of the current transaction and that it records one ver-
sion at each write for multi-version concurrency control. At large levels of parallelism,
PSTM is significantly more efficient as its polymorphism exploits adequately concur-
rency whereas monomorphic STM executes a single form of transaction, which has a
fortiori the strongest semantics that also limits concurrency. More precisely, PSTM out-
performs the tested monomorphic STMs by up to a factor of 8.6× on 64 threads. This
improvement is specific to polymorphism as PSTM outperforms every single monomor-
phic STM by a mean factor of at least 4 on 64 threads.

6.4 Adding Forms Is Beneficial

We have also evaluated the advantage of combining three revocable transaction seman-
tics instead of only two. Figure 6 illustrates the speedup of using the three revocable
semantics (PSTM) over the use of only two of them at high level of concurrency (64
threads) for different update ratios on SPARC. “PSTM without Snapshot” indicates
the speedup of PSTM over a variant where all snapshot transactions have been re-
placed by opaque transactions. (All transactions of this variant are either opaque or
hand-over-hand.) “PSTM without Hand-over-hand” indicates the speedup of PSTM
over another variant where all hand-over-hand transactions have been replaced by
opaque transactions. (All transactions of this variant are either opaque or snapshot.)

Reusable Concurrent Data Types 201

(a) Read-only workload (b) Contended workload

Fig. 7. Comparison of our ReusableVector (PSTM Vector) against the java.util.Vector from the
JDK and the bare sequential Vector

The overall result is that exploiting the three revocable forms of PSTM is always ben-
eficial as the speedup is never below 1. In particular the speedup of PSTM over “PSTM
without hand-over-hand” speedup tends to grow with the update ratio. This result is not
surprising as we expected the combination of the three revocable semantics to be espe-
cially suited to limit the number of aborts, thus, it is natural for its gain to increase with
the contention. An interesting observation is that the speedup of PSTM over “PSTM
without snapshot” is generally low. This is explained in part by the implementation of
the latter being particularly lightweight: “PSTM without snapshot” has less overhead
because it does not backup values upon write as multiple versions are not needed. By
contrast, both PSTM and “PSTM without hand-over-hand” have snapshot transactions
and require one backup per write.

6.5 java.util.Vector vs ReusableVector

The vector benchmark comprises add, remove and contains and compare the per-
formance obtained with our ReusableVector against the lock-based java.util.Vector
from the JDK and against a bare sequential code version that is taken from the
java.util.Vector from which we removed all locks.

Figure 7 depicts the throughput for a read-only workload and a contented workload
(with 10% updates) on the java.util.Vector from the JDK 7 and on our ReusableVector
(on SPARC). Interestingly, the PT methodology does a better job in outperforming
sequential code when concurrency can be exploited. The reason is that our approach
differentiates automatically read and write accesses to object fields and enables read
sharing. By contrast, the java.util.Vector relies essentially on synchronized methods
that act as mutual exclusion independently from their access mode. Consequently, our
solution performs better than the java.util.Vector on the read-only workload by up to
4× (Figure 7(a)). However, we can observe the high overhead due to the bookkeep-
ing of TM wrappers at low levels of parallelism. When almost no concurrency can be
exploited (Figure 7(b)), our approach executes significantly slower.

202 V. Gramoli and R. Guerraoui

(a) STAMP Vacation (b) Reusable vs non-reusable queue

Fig. 8. STAMP Vacation results and comparison of our ReusableLinkedQueue (PSTM Queue)
against the j.u.c.ConcurrentLinkedQueue from the JDK

6.6 The Vacation Application

We evaluate our methodology with a Java version of STAMP vacation [13]. This appli-
cation is a typical transactional application in that it uses a travel reservation database
engine that organizes cars, rooms, flights and customers tables into four red-black trees.
Tables are accessed through three transactions to (a) check prices and reserve few items,
(b) delete customers and (c) add or remove items of a reservation. To evaluate the PT
methodology, we made the first transaction read-only by simply returning prices and
annotated it as snapshot, we annotated the two others as opaque (all transactions are
opaque when running the monomorphic STMs). We set the initial and maximum Java
heap size to 4G and use the recommended low contention parameters of vacation.

Figure 8(a) depicts the vacation performance as the inverted duration time on x86-
64. The performance of PSTM keeps scaling up to 64 threads at which point it becomes
19% faster than monomorphic alternatives. Although monomorphic STMs stop scal-
ing at 32 threads, they are more efficient than PSTM at lower levels of parallelism
confirming our observations on micro-benchmarks. In particular, TL2 achieves good
performance at 16 threads, which may be due to TL2’s code being optimized through
the use of metadata pools to reduce memory reclamation. This feature seems appealing
in more realistic benchmarks, like vacation, that tend to use more memory for longer
than our micro-benchmarks.

6.7 j.u.c.ConcurrentLinkedQueue vs ReusableQueue

We also evaluated the cost of reusability by comparing the performance of one of our
reusable CDT against a similar but non-reusable lock-free CDT on the x86-64 archi-
tecture (our SPARC results were similar). We compare the queue CDT of the JDK 7
as described in Section 2.1 to the ReusableLinkedQueue as they both rely on a linked
list implementation where elements are added to the head and the remove operation

Reusable Concurrent Data Types 203

searches for the given value by traversing the list. Figure 8 shows the performance of
our ReusableLinkedQueue against the ConcurrentLinkedQueue running 30% of size,
1% of updates (add/remove), 69% of contains on a 128-element queue. The perfor-
mance difference is quite substantial as the non-reusable queue speeds up the reusable
queue by up to 3×. We see two reasons: (a) some overhead is induced by the extra book-
keeping of our synchronizations that triggers the Java garbage collector more often, (b)
the atomicity of the reusable size and updates precludes a lot of non-atomic executions
allowed by the non-reusable skip list. Even though we may reduce the overhead using
hardware transactional memory opcodes, making sure that someone can reuse a concur-
rent library comes with a substantial cost. As opposed to transactional memories that
tend to scale badly [12], PSTM performance scales.

7 Related Work

There is a large body of work on concurrent object-oriented programming languages.
Some approaches rely on monitors, like Guava [42], that may restrict inter-method con-
currency. SCOOP allows to specify an object accessed by a different process as sep-
arate [43]. A client object must acquire an exclusive lock on a separate object before
invoking it through a routine. SCOOP was ported to Java [44] but is not inherently
deadlock-free [45]. Some recent lock-inference techniques are deadlock-free, yet they
require the programmer to provide a semantic description of methods [46].

One of the original motivations for transactional memory (TM) is to alleviate lock-
related problems like deadlocks [3]. Without deadlocks the program is guaranteed to
execute, and a simple exponential backoff strategy can manage contention so that the
program progresses. The first TM to handle concurrency in a dynamic control flow
redirects speculative accesses to Java object copies [47]. The back-end interface of this
TM implementation was later improved in a Java library supporting interchangeable
transactional factory [48]. Lightweight transactions were suggested to avoid copying
entire objects by using a mapping of addresses to word-sized ownership records [49]
before field-based instrumentation was proposed [18].

Exploiting highly concurrent transactions was extensively ex-
plored [7,50,51,52,8,35,53,54]. The aim of Galois [52], JANUS [53] and CSpec [54]
was not to simplify concurrent programming but to enhance optimistic concurrency
in complex scenarios; Galois requires explicit commutativity specifications, Janus
exploits an offline learning phase of commutative relations and CSpec converts already
concurrent code with annotations and locks.

Note that the PT methodology could potentially achieve similar concurrency results
as open nesting [7] and transactional boosting [8] as they all exploit the application-
level semantics. In contrast with our solution, both techniques acquire abstract locks
eagerly and need explicit abort handlers to compensate their actions upon roll-back.
Existing implementations of open nesting require to order transactions and to guaran-
tee that transactions are nested in this specific order to prevent an abort handler from
deadlocking [55]. Transactional boosting suggests to add timeouts to avoid deadlocks
when two transactions acquire abstract locks in different order [8]. Note that our current
implementation of the PT methodology needs annotated sequential code but does not

204 V. Gramoli and R. Guerraoui

use compensating actions. As it keeps all the locks it acquires until commit or abort
time, it is inherently deadlock-free.

8 Concluding Remarks

Concurrent programming would greatly be simplified if concurrent libraries were made
reusable: a programmer could build upon any CDT without having to understand its
synchronization internals. The PT methodology helps reaching this goal by allowing
collaborative development of scalable libraries any programmer can compose and ex-
tend, hence confirming our recent observation [11]. This new methodology promotes
a clear separation of the implementation of synchronization semantics, which requires
advanced programming skills, from the raw sequential code that describes the expected
behavior of an abstract data type.

The ease of use of this methodology is demonstrated using automatic instrumentation
of method bytecode. We confirmed using a novel Java library that reusability of CDTs
comes at a cost. However, we also observe that this cost can be rapidly compensated by
exploiting the high level of concurrency of existing multicore architectures. Actually,
one does not even have to sacrifice scalability for reusability.

Future work includes (a) formalizing a framework to derive incompatibilities of syn-
chronization semantics and (b) optimizing our current implementation through con-
current irrevocable transactions [56] or transactional instruction extensions with Java
opcodes to reduce overhead.

Acknowledgments. The Java port of SwissTM is from Mihai Letia. NICTA is funded
by the Australian Government through the Department of Communications and the
Australian Research Council through the ICT Centre of Excellence Program.

References

1. Meyer, B.: Reusability: The case for object-oriented design. IEEE Software 4(2), 50–64
(1987)

2. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

3. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

4. Shavit, N., Touitou, D.: Software transactional memory. In: PODC, pp. 204–213 (1995)
5. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:

PPoPP, pp. 48–60 (2005)
6. Wakita, K., Yonezawa, A.: Linguistic supports for development of distributed organiza-

tional information systems in object-oriented concurrent computation frameworks. SIGOIS
Bull. 12, 185–198 (1991)

7. Moss, J.E.B.: Open nested transactions: Semantics and support. In: Workshop on Memory
Performance Issues (February 2006)

8. Herlihy, M., Koskinen, E.: Transactional boosting: A methodology for highly-concurrent
transactional objects. In: PPoPP, pp. 207–216 (2008)

Reusable Concurrent Data Types 205

9. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)

10. Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the commutativity
lattice. In: PLDI, pp. 542–555 (2011)

11. Gramoli, V., Guerraoui, R.: Democratizing transactional programming. In: Kon, F., Kermar-
rec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 1–19. Springer, Heidelberg (2011)

12. Turon, A.: Reagents: expressing and composing fine-grained concurrency. In: PLDI, pp. 157–
168 (2012)

13. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional applica-
tions for multi-processing. In: IISWC (2008)

14. Bayer, R., Schkolnick, M.: Concurrency of operations on b-trees. In: Readings in Database
Systems, pp. 129–139 (1988)

15. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley (1987)

16. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: PPoPP, pp. 175–
184 (2008)

17. Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable transactions and their applications. In:
SPAA, pp. 285–296 (2008)

18. Korland, G., Shavit, N., Felber, P.: Deuce: Noninvasive software transactional memory.
Transactions on HiPEAC 5(2) (2010)

19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann Pub-
lishers Inc., San Francisco (2008)

20. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: PODC (1996)

21. Burnim, J., Necula, G., Sen, K.: Specifying and checking semantic atomicity for multi-
threaded programs. In: ASPLOS, pp. 79–90 (2011)

22. Matsuoka, S., Yonezawa, A.: Analysis of inheritance anomaly in object-oriented concurrent
programming languages. In: Research Directions in Concurrent Object-Oriented Program-
ming, pp. 107–150. MIT Press, Cambridge (1993)

23. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp. 338–349
(2003)

24. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs. IEEE
Trans. Softw. Eng. 32(2), 93–110 (2006)

25. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of concurrent
data types on relaxed memory models. In: PLDI, pp. 12–21 (2007)

26. Flanagan, C., Freund, S.N., Lifshin, M., Qadeer, S.: Types for atomicity: Static checking and
inference for Java. ACM Trans. Program. Lang. Syst. 30 (2008)

27. Lin, Y., Dig, D.: Check-then-act misuse of java concurrent collections. In: ICST, pp. 164–173
(2013)

28. Shacham, O., Bronson, N., Aiken, A., Sagiv, M., Vechev, M., Yahav, E.: Testing atomicity of
composed concurrent operations. In: OOPSLA, pp. 51–64 (2011)

29. Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional memory.
IEEE Trans. Parallel and Distributed Systems 21(12), 1793–1807 (2010)

30. Scherer, I.W.N., Scott, M.L.: Advanced contention management for dynamic software trans-
actional memory. In: PODC, pp. 240–248 (2005)

31. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev,
S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

32. Cachopo, J.A., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Sci.
Comput. Program. 63(2), 172–185 (2006)

33. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: PODC, pp.
16–25 (2010)

206 V. Gramoli and R. Guerraoui

34. Carlstrom, B.D., Chung, J., Chafi, H., McDonald, A., Cao Minh, C., Hammond, L.,
Kozyrakis, C., Olukotun, K.: Transactional execution of Java programs. In: SCOOL (2005)

35. Koskinen, E., Parkinson, M., Herlihy, M.: Coarse-grained transactions. In: POPL, pp. 19–30
(2010)

36. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In: PPoPP, pp.
387–388 (2014)

37. Harmanci, D., Gramoli, V., Felber, P.: Atomic boxes: Coordinated exception handling with
transactional memory. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 634–657.
Springer, Heidelberg (2011)

38. Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity semantics.
IEEE Comput. Archit. Lett. 5 (2006)

39. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

40. Dragojević, A., Guerraoui, R., Kapałka, M.: Stretching transactional memory. In: PLDI, pp.
155–165 (2009)

41. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing owner-
ship records. In: PPoPP, pp. 67–78 (2010)

42. Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a dialect of Java without data races. In: OOP-
SLA, pp. 382–400 (2000)

43. Meyer, B.: Systematic concurrent object-oriented programming. Commun. ACM 36(9), 56–
80 (1993)

44. Torshizi, F.A., Ostroff, J.S., Paige, R.F., Chechik, M.: The SCOOP concurrency model in
Java-like languages. In: CPA, pp. 7–24 (2009)

45. West, S., Nanz, S., Meyer, B.: A modular scheme for deadlock prevention in an object-
oriented programming model. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,
pp. 597–612. Springer, Heidelberg (2010)

46. Gueta, G.G., Ramalingam, G., Sagiv, M., Yahav, E.: Concurrent libraries with foresight. In:
PLDI, pp. 263–274 (2013)

47. Herlihy, M., Luchangco, V., Moir, M., Scherer, I.W.N.: Software transactional memory for
dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

48. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing software trans-
actional memory. In: OOPSLA, pp. 253–262 (2006)

49. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA, pp. 388–
402 (2003)

50. Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J., Minh, C.C., Kozyrakis, C., Olukotun,
K.: The atomos transactional programming language. In: PLDI, pp. 1–13 (2006)

51. Carlstrom, B.D., McDonald, A., Carbin, M., Kozyrakis, C., Olukotun, K.: Transactional col-
lection classes. In: PPoPP, pp. 56–67 (2007)

52. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Optimistic
parallelism requires abstractions. In: PLDI, pp. 211–222 (2007)

53. Tripp, O., Manevich, R., Field, J., Sagiv, M.: JANUS: exploiting parallelism via hindsight.
In: PLDI, pp. 145–156 (2012)

54. Xiang, L., Scott, M.L.: Compiler aided manual speculation for high performance concurrent
data structures. In: PPoPP, pp. 47–56 (2013)

55. Ni, Y., Menon, V., Abd-Tabatabai, A.R., Hosking, A.L., Hudson, R.L., Moss, J.E.B., Saha,
B., Shpeisman, T.: Open nesting in software transactional memory. In: PPoPP, pp. 68–78
(2007)

56. Spear, M.F., Silverman, M., Dalessandro, L., Michael, M.M., Scott, M.L.: Implementing and
exploiting inevitability in software transactional memory. In: ICPP, pp. 59–66 (2008)

TaDA: A Logic for Time and Data Abstraction

Pedro da Rocha Pinto1, Thomas Dinsdale-Young2, and Philippa Gardner1

1 Imperial College London
{pmd09,pg}@doc.ic.ac.uk

2 Aarhus University
tyoung@cs.au.dk

Abstract. To avoid data races, concurrent operations should either be
at distinct times or on distinct data. Atomicity is the abstraction that
an operation takes effect at a single, discrete instant in time, with lin-
earisability being a well-known correctness condition which asserts that
concurrent operations appear to behave atomically. Disjointness is the
abstraction that operations act on distinct data resource, with concur-
rent separation logics enabling reasoning about threads that appear to
operate independently on disjoint resources.

We present TaDA, a program logic that combines the benefits of ab-
stract atomicity and abstract disjointness. Our key contribution is the
introduction of atomic triples, which offer an expressive approach to spec-
ifying program modules. By building up examples, we show that TaDA
supports elegant modular reasoning in a way that was not previously
possible.

1 Introduction

The specification and verification of concurrent program modules is a difficult
problem. When concurrent threads work with shared data, the resulting be-
haviour can be complex. Two abstractions provide useful simplifications: that
operations effectively act at distinct times; and that operations effectively act
on disjoint resources. Programmers work with sophisticated combinations of the
time and data abstractions. In constrast, existing reasoning techniques tend to
be limited to one or the other abstraction.

Atomicity is the abstraction that an operation takes effect at a single, discrete
instant in time. The concurrent behaviour of atomic operations is equivalent to
some sequential interleaving of the operations. Linearisability [9] is a correct-
ness condition, which specifies that the operations of a concurrent module ap-
pear to behave atomically. For example, a set module might use a sophisticated
lock-free data structure to implement insert, remove and contains operations.
Linearisability allows a client to use these as if they were simple atomic oper-
ations, abstracting the implementation details. Various proof techniques have
been introduced and used to prove linearisability for concurrent modules such
as queues [9] and lists with fine-grained synchronisation [21].

With linearisability, each operation is given a sequential specification, and
the operations are asserted to behave atomically with respect to each other. Lin-
earisability is therefore a whole-module property: if we extend the set module

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 207–231, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

208 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

with an atomic insertBoth operation, we would have to redo the linearisability
proof to check that this new operation respects the atomicity of the others, and
vice versa. Moreover, all operations are required to be atomic, so we could not
specify a non-atomic insertBoth behaving like two consecutive atomic inserts.
It is also possible to add operations to a module that break the abstraction of
atomicity for existing operations. For example, if the set module were to expose
the low-level heap operations used in its implementation, a client could use them
to observe intermediate states in the underlying data structure. Consequently,
the fiction of atomicity is fragile.

The sequential specifications used for linearisability can be inadequate for ex-
pressing concurrent behaviours. In particular, we might wish to constrain which
operations a client can perform concurrently. For instance, a module might pro-
vide alternative update operations that only appear atomic if all other concurrent
operations are reads. Constraining the client in this way reduces the burden on
the implementation, which can be more efficient. However, a sequential specifica-
tion cannot express the distinction between the alternative and regular updates.

Disjointness is the abstraction that operations act on specific resources. When
threads operate on disjoint resources, they do not interfere with each other, and
so their overall effect is the combined effects of each. Concurrent separation log-
ics [12,3,17,16] embody this principle, by providing modular reasoning about
disjoint resource. Concurrent abstract predicates (CAP) [3], in particular, sup-
port reasoning about abstract disjoint resource, which can be used to specify
program modules. In the case of a set module, for instance, values may be seen
as resources, which may be independently in or out of the set. If concurrent
threads use disjoint values, reasoning about them is simple. CAP also supports
reasoning about shared regions, which can be used to implement abstract dis-
joint resources with shared resources. In this way, sophisticated concurrent im-
plementations can be verified against simple specifications. Such reasoning has
been applied to, for example, locks [3], sets [3] and concurrent indexes [14].

The CAP approach is, however, limited. With CAP, it is only possible to ac-
cess shared regions using primitive atomic operations. Yet operations provided
by concurrent modules are rarely primitive atomic. Consequently, the abstract
resources provided by a module are not easily shared and the nesting of mod-
ules is difficult. For example, the CAP specification of a set module [3] constrains
concurrent threads to operate on disjoint values. Two threads cannot remove the
same value: since remove is not primitive atomic, it cannot operate on shared
resources. It is possible to give a specification that has a finer resource gran-
ularity [14], which can support some form of shared concurrent removal. Such
specifications are complex and ad hoc, as they do not support general sharing.

Linearisability andCAP have complementary virtues andweaknesses. Linearis-
ability gives strong, whole-module specifications based on abstract atomicity; CAP
gives weaker, independent specifications based on abstract disjointness. Linearis-
ability supports nested modules, but whole-module specifications make it difficult
to extend modules; CAP supports the extension of modules, but the weak specifi-
cations make building up nested modules more difficult. Linearisability does not

TaDA: A Logic for Time and Data Abstraction 209

constrain the client, thus placing significant burden on the implementation; CAP
constrains the client to use specific disjoint resource, enabling more flexibility in
the implementation.

We propose a solution that combines the virtues of both approaches. Specifi-
cally, we introduce a new atomic triple judgement for specifying abstract atom-
icity in a program logic. The simplest form of atomic triple judgement is

〈
p
〉
C

〈
q
〉

where p and q are assertions in the style of separation logic and C is a program.
This judgement is read as “C atomically updates p to q”. The program may
actually take multiple steps, but each step before the atomic update from p to
q must preserve the assertion p. Before the atomic update occurs, the concur-
rent environment may also update the state, provided that the assertion p is
preserved. As soon as the atomic update has happened, the environment can do
what it likes; it is not constrained to preserve q. Meanwhile, the program C may
no longer have access to the resources in q.

The atomicity of C is only expressed with respect to the abstraction defined
by p. If the environment makes an observation at a lower level of abstraction,
it may perceive multiple updates rather than this single atomic update. For
example, suppose that a set module, which provides an atomic remove operation,
is implemented using a linked list. The implementation might first mark a node
as deleted, before removing it from the list. The environment can observe the
change from “marked” to “removed”. This low-level step does not change the
abstract set; the change already occurred when the node was marked.

Atomic triples are our key contribution, as they allow us to overcome limi-
tations of the linearisability and CAP approaches. Atomic triples can be used
to access shared resources concurrently, rather than relying on primitive atomic
operations to do so. This makes it easier to build modules on top of each other.
Atomic triples specify operations with respect to an abstraction, so they can be
proved independently. This makes it possible to extend modules at a later date,
and mix atomic and non-atomic operations as well as operations working at dif-
ferent levels of abstraction. Atomic triples can specify clear constraints on how
a client can use them. For instance, they can enforce that the unlock operation
on a lock should not be called by two threads at the same time (§2.1). Further-
more, atomic triples can specify the transfer of resources between a client and a
module. For instance, they can specify an operation that non-atomically stores
the result of an atomic read into a buffer provided by a client (§2.3).

Our other main contribution is TaDA, a program logic for Time and Data Ab-
straction, which extends CAP with rules for deriving and using atomic triples.
Using TaDA, we first specify an atomic lock module (§2.1). From this specifica-
tion, we then derive a resource-transferring CAP-style lock specification, which
illustrates the weakening of the atomic specification to a specific use case. We
also prove that a spin lock implementation satisfies the atomic lock specifica-
tion. We show how the logic supports vertical reasoning about modules, by ver-
ifying an implementation of multiple-compare-and-swap (MCAS) using the lock

210 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

specification (§2.2), and an implementation of a concurrent double-ended queue
(deque) using the MCAS specification (§4). We present the details of TaDA’s
proof rules in §3, and briefly describe their semantics and soundness in §5. We
thus demonstrate that TaDA combines the benefits of abstract atomicity and
abstract disjointness within a single program logic.

2 Motivating Examples

We introduce TaDA by showing how two simple concurrent interfaces can be
specified, implemented, and used: lock and multiple compare-and-swap.

2.1 Lock

We define a lock module with the operations lock(x) and unlock(x) and a
constructor makeLock().

Atomic Lock Specification. The lock operations are specified in terms of
abstract predicates [13] that represent the state of a lock: L(x) and U(x) assert
the existence of a lock, addressed by x, that is in the locked and unlocked state,
respectively. These predicates confer ownership of the lock: it is not possible to
have more than one L(x) or U(x) for the same value of x. This contrasts with
the style of specification given with CAP [3], but we shall see how the CAP
specification can be derived using the atomic specification given here.

The specification for the makeLock() operation is a simple Hoare triple:

{
emp

}
x := makeLock()

{
U(x)

}
The operation allocates a new lock, which is initially unlocked, and returns its
address. The specification says nothing about the granularity of the operation.
In fact, the granularity is hardly relevant, since no concurrent environment can
meaningfully observe the effects of makeLock until its return value is known —
that is, once the operation has completed.

The specification for the unlock(x) operation uses an atomic triple:

〈
L(x)

〉
unlock(x)

〈
U(x)

〉
Intuitively, this specification means that unlock(x) will atomically take the lock
x from the locked to unlocked state. This atomicity means that the resources in
the specification may be shared — that is, concurrently accessible by multiple
threads. Sharing in this way is not possible with ordinary Hoare triples, since
they make no guarantee that intermediate steps preserve invariants on the re-
sources. The atomic triple, by contrast, makes a strong guarantee: as long as the
concurrent environment guarantees that the (possibly) shared resource L(x) is
available, the unlock(x) operation will preserve L(x) until it transforms it into
U(x); after the transformation, the operation no longer requires U(x), and is

TaDA: A Logic for Time and Data Abstraction 211

consequently oblivious to subsequent transformations by the environment (such
as another thread acquiring the lock).

It is significant that the notion of atomicity is tied to the abstraction in the
specification. The predicate L(x) could abstract multiple underlying states in the
implementation. If we were to observe the underlying state, the operation might
no longer appear to be atomic.

Specifying lock(x) is more subtle. It can be called whether the lock is in the
locked or unlocked state, and always results in setting it to the locked state (if
it ever terminates). A first attempt at a specification might therefore be:

〈
L(x) ∨ U(x)

〉
lock(x)

〈
L(x)

〉
This specification has two significant flaws. Firstly, it allows lock(x) to do noth-
ing at all when the lock is already locked. This is contrary to what it should do,
which is wait for it to become unlocked and then (atomically) lock it. Secondly,
as the level of abstraction given by the precondition is L(x)∨U(x), an implemen-
tation could change the state of the lock arbitrarily without appearing to have
done anything. In particular, an implementation could transition between the
two states any number of times, so long as it is in the L(x) state when it finishes.

A second attempt to overcome these issues might be:

〈
L(x)

〉
lock(x)

〈
false

〉

〈
U(x)

〉
lock(x)

〈
L(x)

〉
In the left-hand triple, the lock is initially locked; the implementation may not
terminate, nor change the state of the lock. In the right-hand triple, the lock is
initially unlocked; the implementation may only make one atomic transformation
from unlocked to locked. These specifications also have a subtle flaw: they assume
that the environment will not change the state of the lock. This would prevent
us from having multiple threads competing to acquire the lock, which is the
essential purpose of a lock.

An equivalent specification makes use of a boolean logical variable:

∀l ∈ B.

〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉
lock(x)

〈
L(x) ∧ l

〉
The variable l records the state of the lock when the atomic operation takes
effect. In particular, it cannot take effect unless the lock is already unlocked.

These specifications do not express the subtlety that the interference permit-
ted before the atomic update is different for the environment and the operation.
The environment should be allowed to change the value of l (i.e. acquire and
release the lock) but the lock operation should not. The correct specification
expresses this by binding the variable l in a new way:

 A

l ∈ B.
〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉
lock(x)

〈
L(x) ∧ l

〉
The special role of l (indicated by the pseudo-quantifier

A

) is in distinguishing
the constraints on the environment and on the thread before the atomic opera-
tion takes effect. Specifically, the environment is at liberty to change the value
of l for which the precondition holds (that is, lock and unlock the lock), but the
thread executing the operation must preserve the value of l (that is, it cannot
lock or unlock the lock except by performing the atomic operation).

212 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

CAP Lock Specification. The atomic specification of the lock captures its
essence as a synchronisation primitive. In practice, a lock is often used to pro-
tect some resource.We demonstrate how a CAP-style lock specification [3], which
views the lock as a mechanism for protecting a resource invariant, can be de-
rived from the atomic specification. This illustrates a typical use of a TaDA
specification: first prove a strong abstract-atomic specification, then specialise
to whatever is required by the client.

The CAP specification is parametrised by an abstract predicate Inv, repre-
senting the resource invariant to be protected by the lock. The client can choose
how to instantiate this predicate.1 The specification provides two abstract pred-
icates itself: isLock(x), which is a non-exclusive resource that allows a thread to
compete for the lock; and Locked(x), which is an exclusive resource that repre-
sents that the thread has acquired the lock, and allows it to release the lock.
The lock is specified as follows (we omit makeLock for brevity):

{
Locked(x) ∗ Inv

}
unlock(x)

{
emp

}

{
isLock(x)

}
lock(x)

{
isLock(x) ∗ Locked(x) ∗ Inv

}
isLock(x) ⇐⇒ isLock(x) ∗ isLock(x)

Locked(x) ∗ Locked(x) =⇒ false

To implement this specification, we must provide an interpretation for the
abstract predicates isLock and Locked. For this, we need to introduce a shared
region. As in CAP, a shared region encapsulates some resource that is available
to multiple threads. In our example, this resource will be the predicates L(x),
U(x) and Inv, plus some additional guard resource (described below). A shared
region is associated with a protocol, which determines how its contents change
over time. Following iCAP [16], the state of a shared region is abstracted, and
protocols are expressed as transition systems over these abstract states. A thread
may only change the abstract state of a region when it has the guard resource
associated with the transition to be performed. An interpretation function as-
sociates each abstract state of a region with a concrete assertion. In summary,
to specify a region we must supply the guards for the region, an abstract state
transition system that is labelled by these guards, and a function interpreting
abstract states as assertions.

In CAP, guards consist of (parametrised) names, associated with fractional
permissions. In TaDA, we are more general, effectively allowing guards to be
taken from any separation algebra. This gives us more flexibility in specifying
complex usage patterns for regions. For the CAP lock, we need only a very simple
guard separation algebra: there is a single, indivisible guard named K (for ‘key’),
as well as the empty guard 0. As a separation algebra, guard resources must have
a partial composition operator that is associative and commutative. In this case,
0 • x = x = x • 0 for all x ∈ {0,K}, and K •K is undefined.

1 The restriction is that the predicate must be stable — i.e. invariant under interference
from the environment.

TaDA: A Logic for Time and Data Abstraction 213

The transition system for the region will have two states: 0 and 1, correspond-
ing to unlocked and locked states respectively. Intuitively, any thread should be
allowed to lock the lock, if it is unlocked, but only the thread holding the ‘key’
should be able to unlock it. This is specified by the labelled transition system:

0 : 0 � 1 K : 1 � 0

It remains to give an interpretation for the abstract states of the transition
system. To do so, we must have a name for the type of region we are defining;
we shall use CAPLock. It is possible for there to be multiple regions associated
with the same region type name. To distinguish them, each region has a unique
region identifier, which is typically annotated as a subscript. A region speci-
fication may take some parameters that are used in the interpretation. With
CAPLock, for instance, the address of the lock is such a parameter. We thus
specify the type name, region identifier, parameters and state of a region in the
form CAPLockr(x, s).

The region interpretation for CAPLock is given by:

I(CAPLockr(x, 0)) � U(x) ∗ [K]r ∗ Inv
I(CAPLockr(x, 1)) � L(x)

With this interpretation, the guard K and invariant Inv are in the region when
it is in the unlocked state. This means that, when a thread acquires the lock, it
takes ownership of the guard and the lock invariant by removing them from the
region. Having the guard K allows the thread to subsequently release the lock,
returning the guard and invariant to the region.

We can now give an interpretation to the predicates isLock(x) and Locked(x):

isLock(x) � ∃r. ∃s ∈ {0, 1} .CAPLockr(x, s)

Locked(x) � ∃r.CAPLockr(x, 1) ∗ [K]r

It remains to prove the specifications for the procedures and the axioms. The
key proof rule is “use atomic”. A simplified version of the rule is as follows:

∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

 A

x ∈ X.
〈
I(ta(x)) ∗ [G]a

〉
C

〈
I(ta(f(x))) ∗ q

〉

{
∃x ∈ X. ta(x) ∗ [G]a

}
C

{
∃x ∈ X. ta(f(x)) ∗ q

}
This rule allows a region a, with region type t, to be opened so that it may
be updated by C, from some state x ∈ X to state f(x). In order to do so, the
precondition must include a guard G that is sufficient to perform the update to
the region, in accordance with the labelled transition system— this is established
by the first premiss.

The proofs of the unlock and lock operations are given in Fig. 1. In the
unlock proof, note that the immediate postcondition of the “use atomic” is not
stable, since it is possible for the environment to acquire the lock. For illustrative

214 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

{
Locked(x) ∗ Inv

}
a
b
st
ra
ct
;
q
u
a
n
ti
fy

r

{
CAPLockr(x, 1) ∗ [K]r ∗ Inv

}
u
se

a
to
m
ic

〈
L(x) ∗ [K]r ∗ Inv

〉
fr
a
m
e:

[K
] r
∗
In
v 〈

L(x)
〉

unlock(x)〈
U(x)

〉
〈
U(x) ∗ [K]r ∗ Inv

〉{
CAPLockr(x, 0)

}
// weaken to stabilise{
∃s ∈ {0, 1} .CAPLockr(x, s)

}{
emp

}

{
isLock(x)

}

a
b
st
ra
ct
;
q
u
a
n
ti
fy

r

{
∃s ∈ {0, 1} .CAPLockr(x, s)

}

u
se

a
to
m
ic

A

s ∈ {0, 1} .〈
(L(x) ∧ s = 1) ∨
(U(x) ∗ [K]r ∗ Inv ∧ s = 0)

〉

fr
a
m
e:

s
=

0
→

[K
] r
∗
In
v 〈

(L(x) ∧ s = 1) ∨ (U(x) ∧ s = 0)
〉

l
:=

(s
=

0
)

A

l ∈ B.〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉
lock(x)〈
L(x) ∧ l

〉
〈
L(x) ∧ s = 0

〉
〈
L(x) ∗ [K]r ∗ Inv

〉{
CAPLockr(x, 1) ∗ [K]r ∗ Inv

}{
isLock(x) ∗ Locked(x)

}
Fig. 1. Derivation of CAP lock specifications

purposes, we weaken it minimally to a stable assertion, although it could be
weakened to emp directly.

The lock proof uses the

A

quantifier in the premiss of the “use atomic” to
account for the fact that, in the precondition, the lock could be in either state.
The proof uses the frame rule, with a frame that is conditional on the state of the
lock. It also uses the substitution rule to replace the boolean variable l, recording
the state of the lock when the atomic operation happens, with the variable s,
representing the state of CAPLock region. To derive the final postcondition,
we use the fact that region assertions, since they refer to shared resource, are
freely duplicable: i.e. CAPLockr(x, 1) ≡ CAPLockr(x, 1) ∗CAPLockr(x, 1).
The axiom isLock(x) ⇐⇒ isLock(x)∗ isLock(x) similarly follows from the dupli-
cability of region assertions. Finally, the axiom Locked(x) ∗ Locked(x) =⇒ false
follows from the fact that K •K is undefined.

Note that neither of the bad specifications for lock(x) could be used in this
derivation: the first because there would be no way to express that the frame
[K]r ∗ Inv is conditional on the state of the lock; and the second because we could
not combine both cases in a single derivation.

Spin Lock Implementation. We consider a spin lock implementation of the
atomic lock specification. The code is given in Fig. 2. We make use of three
atomic operations that manipulate the heap. The operation x := [y] reads the
value of the heap position y to the variable x. The operation [x] := y stores the
value y in the heap position x. Finally, CAS(x, v, w) checks if the value at heap
position x is v: if so, it replaces it with w and returns 1; if not, it returns 0.

TaDA: A Logic for Time and Data Abstraction 215

function makeLock() {
v := alloc(1);
[v] := 0;
return v;

}

function unlock(x) {
[x] := 0;

}

function lock(x) {
do {

b := CAS(x, 0, 1);
} while (b = 0);

}

Fig. 2. Lock operations

To verify this implementation against the atomic specification, we must give
a concrete interpretation of the abstract predicates. To do this, we introduce a
new region type, Lock. There is only one non-empty guard for a Lock region,
named G (for ‘guard’), much as for CAPLock. There are also two states for
a Lock region: 0 and 1, representing unlocked and locked respectively. A key
difference from CAPLock is that transitions in both directions are guarded by
G. The labelled transition system is as follows:

G : 0 � 1 G : 1 � 0

We also give an interpretation to each abstract state as follows:

I(Locka(x, 1)) � x �→ 1 I(Locka(x, 0)) � x �→ 0

We now define the interpretation of the predicates as follows:

L(x) � ∃a.Locka(x, 1) ∗ [G]a

U(x) � ∃a.Locka(x, 0) ∗ [G]a

The abstract predicate L(x) asserts there is a region with identifier a and the
region is in state 1. It also states that there is a guard [G]a which will be used
to update the region. U(x) analogously states that the region is in state 0.

To prove the implementations against our atomic specifications, we use Ta-
DA’s “make atomic” rule. A slightly simplified version of the rule is as follows:

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : x ∈ X � Q(x)

{
∃x ∈ X. ta(x)
∗ a �⇒ �

}
C

{
∃x ∈ X, y ∈ Q(x).

a �⇒ (x, y)

}

 A

x ∈ X.
〈
ta(x) ∗ [G]a

〉
C

〈
ta(Q(x)) ∗ [G]a

〉
This rule establishes that C atomically updates region a, from some state x ∈ X
to some state y ∈ Q(x). To do so, it requires the guard G for the region, which
must permit the update according to the transition system — this is established
by the first premiss.

The second premiss introduces two new notations. The first, a : x ∈ X �
Q(x), is called the atomicity context. The atomicity context records the abstract
atomic action that is to be performed. The second, a �⇒ −, is the atomic tracking
resource. The atomic tracking resource indicates whether the atomic update has
occurred (the a �⇒ � indicates it has not) and, if so, the state of the shared

216 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

A

l ∈ B.〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉

a
b
st
ra
ct
;
q
u
a
n
ti
fy

a

〈
(Locka(x, 1) ∗ [G]a ∧ ¬l) ∨ (Locka(x, 0) ∗ [G]a ∧ l)

〉

y
:=

if
l
th
en

0
el
se

1

A

y ∈ {0, 1} .〈
Locka(x, y) ∗ [G]a

〉

m
a
k
e
a
to
m
ic

a : y ∈ {0, 1} � 1 ∧ y = 0 �{
∃y ∈ {0, 1} .Locka(x, y) ∗ a �⇒ �

}
do {{

∃y ∈ {0, 1} .Locka(x, y) ∗ a �⇒ �
}

u
p
d
a
te

re
g
io
n A

n ∈ {0, 1} .〈
x �→ n

〉
b := CAS(x, 0, 1);〈
(x �→ 1 ∧ n = 0 ∧ b = 1) ∨
(x �→ n ∧ n �= 0 ∧ b = 0)

〉
{
∃y ∈ {0, 1} .Locka(x, y) ∗
(a �⇒ (0, 1) ∧ b = 1 ∨ a �⇒ � ∧ b = 0)

}
} while (b = 0);{
a �⇒ (0, 1) ∧ b = 1

}〈
Locka(x, 1) ∗ [G]a ∧ y = 0

〉〈
Locka(x, 1) ∗ [G]a ∧ l

〉〈
L(x) ∧ l

〉
Fig. 3. Proof of the lock(x) operation

region immediately before and after (the a �⇒ (x, y)). The resource a �⇒ � also
plays two special roles that are normally filled by guards. Firstly, it limits the
interference on region a: the environment may only update the state so long
as it remains in the set X , as specified by the atomicity context. Secondly, it
confers permission for the thread to update the region from state x ∈ X to any
state y ∈ Q(x); in doing so, the thread also updates a �⇒ � to a �⇒ (x, y). This
permission is expressed by the “update region” rule, and ensures that the atomic
update only happens once.

In essence, the second premiss is capturing the notion of atomicity (with re-
spect to the abstraction in the conclusion) and expressing it as a proof obligation.
Specifically, the region must be in state x for some x ∈ X , which may be changed
by the environment, until at some point the thread updates it to some y ∈ Q(x).
The atomic tracking resource bears witness to this.

The proof of the lock(x) implementation is given in Fig. 3. The proof first
massages the specification into a form where we can apply the “make atomic”
rule. The atomicity context allows the region a to be in either state, but insists
that it must have been in the unlocked state when the atomic operation takes
effect (Q(1) = ∅ while Q(0) = {1}). The “update region” rule conditionally
performs the atomic action — transitioning the region from state 0 to 1, and
recording this in the atomic tracking resource — if the atomic compare-and-swap
operation succeeds. The proofs for makeLock and unlock are simpler, and may
be found in the technical report [15].

TaDA: A Logic for Time and Data Abstraction 217

Remark 1. It is possible to prove the following alternative implementation of
unlock(x) with the same atomic specification:

〈
L(x)

〉
[x] := 1; [x] := 0

〈
U(x)

〉
The first write to x has no effect, since the specification asserts that the lock
must be locked initially. This code would clearly not be atomic in a different
context; it would not satisfy the specification

〈
L(x) ∨ U(x)

〉
unlock(x)

〈
U(x)

〉
,

for example. Since the specification constrains the client, it allows flexibility in
the implementation.

2.2 Multiple Compare-And-Swap (MCAS)

Abstract Specification. We look at an interface over the heap which provides
atomic double-compare-and-swap (dcas) and triple-compare-and-swap (3cas)
operations, in addition to the basic read, write and compare-and-swap opera-
tions. It makes use of two abstract predicates: MCL(l) to represent an instance
of the MCAS library with address l; and MCP(l, x, v) to represent the “MCAS
heap cell” at address x with value v, protected by instance l. There is an ab-
stract disjointness, as we can view each heap cell as disjoint from the others at
the abstract level, even if that is not the case with the implementation itself. The
specification for creating the interface, transferring memory cells to and from it
as well as manipulating it is given in Fig. 4.

Implementation. We give a straightforward coarse-grained implementation of
the MCAS specification. The operation makeMCL creates a lock which protects
updates to pointers under the control of the library. The other operations simply
acquire the lock, perform the appropriate reads and writes, and then release the
lock.

We interpret the abstract predicates using a single shared region, with type
nameMCAS. The abstract states of the region are partial heaps, which represent
the part of the heap that is protected by the module. For instance, the abstract
state x �→ v • y �→ w indicates that heap cells x and y are under the protection
of the module, with logical values v and w respectively. Note that the physical
values at x and y need not be the same as their logical values, specifically when
the lock has been acquired and they are being modified.

For the MCAS region, there are five kinds of guard. The Own(x) guard
confers ownership of the heap cell at address x under the control of the region.
This guard is used by all operations of the library that access the heap cell x. The
following implication ensures that there can only be one instance of Own(x):

[Own(x)]m ∗ [Own(x)]m =⇒ false

We amalgamate the Own guards for heap cells that are not currently under the
protection of the module into Owned(X), where X is the set of all cells that
are protected. We have the following equivalence:

[Owned(X)]m ⇐⇒ [Owned(X � {x})]m ∗ [Own(x)]m

218 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

�
{
emp

}
l := makeMCL()

{
MCL(l)

}
�
{
x �→ v ∗MCL(l)

}
makeMCP(l, x)

{
MCP(l, x, v) ∗MCL(l)

}
�
{
MCP(l, x, v)

}
unmakeMCP(l, x)

{
x �→ v

}
� A

v.
〈
MCP(l, x, v)

〉
y := read(l, x)

〈
y = v ∧MCP(l, x, v)

〉
� A

v.
〈
MCP(l, x, v)

〉
write(l, x, w)

〈
MCP(l, x, w)

〉
� A

v.

〈
MCP(l, x, v)

〉
b := cas(l, x, v1, v2)

〈
if v = v1 then b = 1 ∧MCP(l, x, v2)

else b = 0 ∧MCP(l, x, v)

〉

� A

v, w.
〈
MCP(l, x, v) ∗MCP(l, y, w)

〉
b := dcas(l, x, y, v1, w1, v2, w2)〈 if v = v1 ∧ w = w1

then b = 1 ∧MCP(l, x, v2) ∗MCP(l, y, w2)
else b = 0 ∧MCP(l, x, v) ∗MCP(l, y, w)

〉

� A

v, w, u.
〈
MCP(l, x, v) ∗MCP(l, y, w) ∗MCP(l, z, u)

〉
b := 3cas(l, x, y, z, v1, w1, u1, v2, w2, u2)〈 if v = v1 ∧ w = w1 ∧ u = u1

then b = 1 ∧MCP(l, x, v2) ∗MCP(l, y, w2) ∗MCP(l, z, u2)
else b = 0 ∧MCP(l, x, v) ∗MCP(l, y, w) ∗MCP(l, z, u)

〉

MCL(l) ⇐⇒ MCL(l) ∗MCL(l)

MCP(l, x, v) ∗MCP(l, x, w) =⇒ false

Fig. 4. The abstract specification for the MCAS module

Initially the set X will be empty. When we add an element x �→ v to the region,
we get a guard Own(x) that allows us to manipulate the abstract state for that
particular x. There can be only one Owned guard:

[Owned(X)]m ∗ [Owned(Y)]m =⇒ false

The remaining guards are effectively used as auxiliary state. When a thread
acquires the lock, it removes some heap cells from the shared region in order to
access them. The Locked(h) guard will be used to record that the heap cells in
h have been removed in this way. The thread that acquired the lock will have a
corresponding Key(h) guard. When it releases the lock, the two guards will be
reunited inside the region to form the Unlocked guard. This is expressed by
the following equivalence:

[Unlocked]m ⇐⇒ [Locked(h)]m ∗ [Key(h)]m

The transition system for the region is parametric in each heap cell. It allows
anyone to add the resource x �→ v to the region. (There is no need to guard

TaDA: A Logic for Time and Data Abstraction 219

this action, as the resource is unique and as such only one thread can do it for
a particular value of x.) It allows the value of x to be updated using the guard
Own(x). Finally, given the guard Own(x), x �→ v can be removed from the
region. We formally define the transition system as follows:

0 : ∀h, x, v. h � x �→ v • h
Own(x) : ∀h, v, w. x �→ v • h � x �→ w • h
Own(x) : ∀h, x, v. x �→ v • h � h

We define the interpretation of abstract states for the MCAS region:

I(MCASm(l, h)) � [Owned(dom(h))]m ∗ (U(l) ∗ h ∗ [Unlocked]m ∨
∃h1, h2. L(l) ∗ h1 ∗ [Locked(h2)]m ∧ h = h1 • h2)

Internally, the region may be in one of two states, indicated by the disjunction.
Either the lock l is unlocked, and the heap cells corresponding to the abstract
state of the region are actually in the region, as well as the Unlocked guard.
Or the lock l is locked, and some portion h1 of the abstract heap is in the region,
while the remainder h2 has been removed, together with the Key(h2) guard,
leaving behind the Locked(h2) guard. In both cases, theOwned(dom(h)) guard
belongs to the region, encapsulating the Own guards for heap addresses that
are not protected.

We now give an interpretation to the predicates as follows:

MCL(l) � ∃m,h.MCASm(l, h)

MCP(l, x, v) � ∃m,h.MCASm(l, x �→ v • h) ∗ [Own(x)]m

The predicate MCL(l) states the existence of the shared region, but makes no
assumptions about its state. The predicate MCP(l, x, v) states that there is x
with value v, which it owns, and possibly other heap cells in the region.

We can now prove that the specification is satisfied by the implementation.
For brevity, we only show the dcas command in Fig. 5. The other commands
have similar proofs.

2.3 Resource Transfer

Consider an addition to the MCAS library: the readTo operation takes an MCAS
heap cell and an ordinary heap cell and copies the value of the former into the
latter. Such an operation could be implemented as follows:

function readTo(l, x, y) { v := read(l, x); [y] := v; }

This implementation atomically reads the MCAS cell at x, then writes the value
to the cell at y. The overall effect is non-atomic in the sense that a concurrent
environment could update x and then witness y being updated to the old value

220 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

In the following, let hv,w = x �→ v • y �→ w and hv2,w2 = x �→ v2 • y �→ w2.

A

v, w.〈
MCP(l, x, v) ∗MCP(l, y, w)

〉
a
b
st
ra
ct
;
q
u
a
n
ti
fy

m

〈
∃h.MCASm(l, hv,w • h) ∗ [Own(x)]m ∗ [Own(y)]m

〉
m
a
k
e
a
to
m
ic

m : hv,w • h � if v = v1 ∧ w = w1 then hv2,w2 • h else hv,w • h �{
∃h, v, w.MCASm(l, hv,w • h) ∗m �⇒ �

}
o
p
en

re
g
io
n

A

h.〈⎛
⎝ U(l) ∗ h ∗ [Unlocked]m ∨

L(l) ∗ ∃h1, h2. h = (h1 • h2) ∧ h1

∗ [Locked(h2)]m

⎞
⎠ ∗ [Owned(dom(h))]m ∗m �⇒ �

〉

lock(l); // remove from the shared region the two heap cells〈
∃h1. L(l) ∗ h1 ∗ [Locked(hv,w)]m ∧ h = (h1 • hv,w) ∗
[Owned(dom(h))]m ∗m �⇒ � ∗ [Key(hv,w)]m ∗ hv,w

〉
{
∃h.MCASm(l, hv,w • h) ∗m �⇒ � ∗ [Key(hv,w)]m ∗ hv,w

}
v := [x]; w := [y]; // the environment cannot access either cell{
∃h.MCASm(l, hv,w • h) ∗m �⇒ � ∗ [Key(hv,w)]m ∗ hv,w ∧ v = v ∧ w = w

}
if (v = v1 and w = w1) { // perform conditional update on the heap cells

[x] := v2; [y] := w2; r := 1;
} else { r := 0; }{
∃h.MCASm(l, hv,w • h) ∗m �⇒ � ∗ [Key(hv,w)]m ∧ v = v ∧ w = w ∗
if v = v1 ∧ w = w1 then r = 1 ∧ hv2,w2 else r = 0 ∧ hv,w

}

u
p
d
a
te

re
g
io
n

A

h.〈∃h1. h = (h1 • hv,w) ∧ L(l) ∗ [Owned(dom(h))]m ∗
[Locked(hv,w)]m ∗ [Key(hv,w)]m ∗ h1∗
if v = v1 ∧ w = w1 then r = 1 ∧ hv2,w2 else r = 0 ∧ hv,w

〉

unlock(l); // put the heap cells in the shared region and update
// its abstract state if the heap cells were modified〈

U(l) ∗ [Owned(dom(h))]m ∗ [Unlocked]m ∗
if v = v1 ∧ w = w1 then h[x �→ v2, y �→ w2] else h

〉
{
∃h. if v = v1 ∧ w = w1 then m �⇒ (hv,w • h, hv2,w2 • h) ∗ r = 1

else m �⇒ (hv,w • h, hv,w • h) ∗ r = 0

}
return r;〈

(if v = v1 ∧ w = w1 then ret = 1 ∧ ∃h.MCASm(l, hv2,w2 • h)
else ret = 0 ∧ ∃h.MCASm(l, hv,w • h)) ∗ [Own(x)]m ∗ [Own(y)]m

〉
〈
if v = v1 ∧ w = w1 then ret = 1 ∧MCP(l, x, v2) ∗MCP(l, y, w2)

else ret = 0 ∧MCP(l, x, v) ∗MCP(l, y, w)

〉

Fig. 5. Proof of the dcas implementation

of x. However, if the environment’s interaction is confined to the MCAS cell, the
effect is atomic.

TaDA allows us to specify this kind of partial atomicity by splitting the pre-
and postcondition of an atomic judgement into a private and a public part. The
private part will contain resources that are particular to the thread — in this
example, the heap cell at y. When the atomic triple is used to update a region
(e.g. with the “use atomic” rule), these private resources cannot form part of
the region’s invariant. The public part will contain resources that can form part
of a region’s invariant — in this example, the MCAS cell at x.

TaDA: A Logic for Time and Data Abstraction 221

The generalised form of our atomic judgements is:

 A

x ∈ X.
〈
pp

∣∣ p(x)〉 C

E

y ∈ Y.
〈
qp(x,y)

∣∣ q(x,y)〉
Here, pp is the private precondition, p(x) is the public precondition, qp(x,y) is
the private postcondition, and q(x,y) is the public postcondition. The private
precondition is independent of x, since the environment can change x. The two
parts of the postcondition are linked by y, which is chosen arbitrarily by the
implementation when the atomic operation appears to take effect.

The readTo operation can be specified as follows:

 A

v, w.
〈
y �→ w

∣∣MCP(l, x, v)
〉
readTo(l, x, y)

〈
y �→ v

∣∣MCP(l, x, v)
〉

One way of understanding such specifications is in terms of ownership transfer
between a client and a module, as in [8]: ownership of the private precondition is
transferred from the client; ownership of the private postcondition is transferred
to the client. In this example, the same resources (albeit modified) are transferred
in and out, but this need not be the case in general. For instance, an operation
could allocate a fresh location in which to store the retrieved value, which is
then transferred to the client.

While it should be clear that this judgement generalises our original atomic
judgement, it is revealing that it also generalises the non-atomic judgement.
Indeed,

{
p
}
C

{
q
}
is equivalent to

〈
p
∣∣ true〉 C

〈
q
∣∣ true〉.

3 Logic

We give an overview of the key TaDA proof rules that deal with atomicity in
Fig. 6. Here, we do not formally define the syntax and semantics of our assertions,
although we describe how they are modelled in §5. These details are given in the
technical report [15].

We implicitly require the pre- and postcondition assertions in our judgements
to be stable: that is, they must account for any updates other threads could have
sufficient resources to perform.

Until now, we have elided a detail of the proof system: region levels. Each
judgement of TaDA includes a region level λ in the context. This level is simply
a number that indicates that only regions below level λ may be opened in the
derivation of the judgement. For this to be meaningful, each region is associated
with a level (indicated as a superscript) and rules that open regions require that
the level of the judgement is higher than the level of the region being opened.
The purpose of the levels is to ensure that a region can never be opened twice
in a single branch of the proof tree, which could unsoundly duplicate resources.
The rules that open regions enforce this by requiring the level of the conclusion
(λ + 1) to be above the level of the region (λ), which is also the level of the
premiss. For our examples, the level of each module’s regions just needs to be
greater than the levels of modules that it uses.

In all of our examples, the atomicity context describes an update to a single
region. In the logic, there is no need to restrict in this way, and an atomicity

222 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

Frame rule
λ;A � A

x ∈ X.
〈
pp

∣∣ p(x)〉 C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)〉
λ;A � A

x ∈ X.
〈
r′ ∗ pp

∣∣ r(x) ∗ p(x)〉 C

E

y ∈ Y.
〈
r′ ∗ qp(x, y)

∣∣ r(x) ∗ q(x, y)〉
Substitution rule

λ;A � A

x ∈ X.
〈
pp

∣∣ p(x)〉 C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)〉 f : X ′ → X

λ;A � A

x′ ∈ X ′.
〈
pp

∣∣ p(f(x′))
〉
C

E

y ∈ Y.
〈
qp(f(x

′), y)
∣∣ q(f(x′), y)

〉
Atomicity weakening rule

λ;A � A

x ∈ X.
〈
pp

∣∣ p′ ∗ p(x)〉 C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q′(x, y) ∗ q(x, y)〉
λ;A � A

x ∈ X.
〈
pp ∗ p′

∣∣ p(x)〉 C

E

y ∈ Y.
〈
qp(x, y) ∗ q′(x, y)

∣∣ q(x, y)〉
Open region rule

λ;A � A

x ∈ X.
〈
pp

∣∣ I(tλa(x)) ∗ p(x)〉 C

E

y ∈ Y.
〈
qp(x, y)

∣∣ I(tλa(x)) ∗ q(x, y)〉
λ+ 1;A � A

x ∈ X.
〈
pp

∣∣ tλa(x) ∗ p(x)〉 C

E

y ∈ Y.
〈
qp(x, y)

∣∣ tλa(x) ∗ q(x, y)〉
Use atomic rule

a /∈ A ∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

λ;A � A

x∈X.
〈
pp

∣∣ I(tλa(x)) ∗ p(x) ∗ [G]a
〉
C

E

y∈Y.
〈
qp(x, y)

∣∣ I(tλa(f(x))) ∗ q(x, y)〉
λ+ 1;A � A

x ∈ X.
〈
pp

∣∣ tλa(x) ∗ p(x) ∗ [G]a
〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ tλa(f(x)) ∗ q(x, y)〉
Update region rule

λ;A � A

x ∈ X.

〈
pp

∣∣∣∣ I(tλa(x)) ∗ p(x)
〉

C

E

y ∈ Y.

〈
qp(x, y)

∣∣∣∣ I(tλa(Q(x))) ∗ q1(x, y)
∨ I(tλa(x)) ∗ q2(x, y)

〉

λ+1; a : x∈X � Q(x),A �

A

x ∈ X.
〈
pp

∣∣ tλa(x) ∗ p(x) ∗ a �⇒ �
〉

C

E

y∈Y.

〈
qp(x, y)

∣∣∣∣∃z ∈ Q(x). tλa(z) ∗ q1(x, y) ∗ a �⇒ (x, z)

∨ tλa(x) ∗ q2(x, y) ∗ a �⇒ �

〉

Make atomic rule
a /∈ A {(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

λ′; a : x ∈ X � Q(x),A �

{
pp ∗ ∃x ∈ X. tλa(x) ∗ a �⇒ �

}
C

{∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a �⇒ (x, y)}
λ′;A � A

x ∈ X.
〈
pp

∣∣ tλa(x) ∗ [G]a
〉
C

E

y ∈ Q(x).
〈
qp(x, y)

∣∣ tλa(y) ∗ [G]a
〉

Fig. 6. Selected proof rules of TaDA

context A may describe updates to multiple regions (although only one update
to each). Both atomic and non-atomic judgements may have atomicity contexts.

The frame rule, as in separation logic, allows us to add the same resources to
the pre- and postcondition, which are untouched by the command. Our frame
rule separately adds to both the private and public parts. Note that the frame for
the public part may be parametrised by the

A

-bound variable x. (We exploited
this fact in deriving the CAP lock specification.)

TaDA: A Logic for Time and Data Abstraction 223

The substitution rule allows us to change the domain of

A

-bound variables.
A consequence of this rule is that we can instantiate

A

-variables much like uni-
versally quantified variables, simply by choosing X ′ to be a single-element set.

The atomicity weakening rule allows us to convert private state from the
conclusion into public state in the premiss.

The next three rules allow us to access the content of a shared region by using
an atomic command. With all of the rules, the update to the shared region must
be atomic, so its interpretation is in the public part in the premiss. (The region
is in the public part in the conclusion also, but may be moved by applying
atomicity weakening.)

The open region rule allows us to access the contents of a shared region without
updating its abstract state. The command may change the concrete state of the
region, so long as the abstract state is preserved. This is exemplified by its use
in the DCAS proof in Fig. 5, where concretely the lock becomes locked, but the
abstract state of the MCAS region is not affected.

The use atomic rule allows us to update the abstract state of a shared region.
To do so, it is necessary to have a guard for the region being updated, such that
the change in state is permitted by this guard according to the transition system
associated with the region. This rule takes a C which (abstractly) atomically
updates the region a from some state x ∈ X to the state f(x). It requires the
guard G for the region, which allows the update according to the transition
system, as established by one of the premisses. Another premiss states that the
command C performs the update described by the transition system of region
a in an atomic way. This allows us to conclude that the region a is updated
atomically by the command C. Note that the command is not operating at the
same level of abstraction as the region a. Instead it is working at a lower level of
abstraction, which means that if it is atomic at that level it will also be atomic
at the region a level.

The update region rule similarly allows us to update the abstract state of
a shared region, but this time the authority comes from the atomicity context
instead of a guard. In order to perform such an update, the atomic update to the
region must not already have happened, indicated by a �⇒ � in the precondition
of the conclusion. In the postcondition, there are two cases: either the appropriate
update happened, or no update happened. If it did happen, the new state of the
region is some z ∈ Q(x), and both x and z are recorded in the atomicity tracking
resource. If it did not, then both the region’s abstract state and the atomicity
tracking resource are unchanged. The premiss requires the command to make a
corresponding update to the concrete state of the region. The atomicity context
and tracking resource are not present in the premiss; their purpose is rather to
record information about the atomic update that is performed for use further
down the proof tree.

It is necessary for the update region rule to account for both the case where
the update occurs and where it does not. One might expect that the case
with no update could be dealt with by the open region rule, and the results
combined using a disjunction rule. However, a general disjunction rule is not

224 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

sound for atomic triples. (If we have 〈p1〉C 〈q〉 and 〈p2〉C 〈q〉, we may not have
〈p1 ∨ p2〉C 〈q〉 since C might rely on the environment not changing between p1
and p2.) The proof of the atomic specification for the spin lock uses the condi-
tional nature of the update region rule.

Finally, we revisit the make atomic rule, which elaborates on the version
presented in §2.1. As before, a guard in the conclusion must permit the update
in accordance with the transition system for the region. This is replaced in the
premiss by the atomicity context and atomicity tracking resource, which tracks
the occurrence of the update. One difference is the inclusion of the private state,
which is effectively preserved between the premiss and the conclusion. A second
difference is the

E

-binding of the resulting state of the atomic update. This allows
the private state to reflect the result of the update.

4 Case Study: Concurrent Deque

We show how to use TaDA to specify a double-ended queue (deque) and verify
a fine-grained implementation. A deque has operations that allow elements to
be inserted and removed from both ends of a list.

This example shows that TaDA can scale to multiple levels of abstraction:
the deque uses MCAS, which uses the lock, which is based on primitive atomic
heap operations. This proof development would not be possible with CAP, since
atomicity is central to the abstractions at each level. It would also not be possi-
ble using traditional approaches to linearisability, since separation of resources
between and within abstraction layers is also crucial.

4.1 Abstract Specification

We represent the deque state by the abstract predicate Deque(d, vs). It asserts
that there is a deque at address d with list of elements vs. The makeDeque()
operation creates an empty deque and returns its address. It has the following
specification:

λ

{
emp

}
d := makeDeque()

{
Deque(d, [])

}
The operations pushLeft(d, v) and popLeft(d) are specified to update the state
of the deque atomically:

λ
 A

vs.
〈
Deque(d, vs)

〉
pushLeft(d, v)

〈
Deque(d, v : vs)

〉
λ
 A

vs.
〈
Deque(d, vs)

〉
v := popLeft(d)〈

if vs = [] then v = 0 ∧ Deque(d, vs)
else vs = v : vs′ ∧ v = v ∧ Deque(d, vs′)

〉
The pushLeft(d, v) operation adds the value v to the left of the deque. The
popLeft(d) operation tries to remove an element from the left end of the deque.
However, if the deque is empty, then it returns 0 and does not change its state.

TaDA: A Logic for Time and Data Abstraction 225

?

a

2 9 3 ?

b

l̂ r̂

c

e

d
2

a

9 3 ?

b

l̂ r̂

c

e

d

Fig. 7. Examples of a deque before and after performing popLeft, which uses 3cas to
updated pointers c, d and e

Otherwise, it removes the element at the left, updating the state of the deque,
and returns the removed valued. The pushRight and popRight operations have
analogous specifications, operating on the right end of the deque.

4.2 The “Snark” Linked-List Deque Implementation

We consider an implementation that represents the deque as a doubly-linked list
of nodes, based on Snark [5]. An example of the shape of the data structure is
shown in Fig. 7. Each node consists of a left-link pointer, a right-link pointer,
and a value. There are two anchor variables, left hat and right hat (l̂ and r̂ in
the figure), that generally point to the leftmost node and the rightmost node
in the list, except when the deque is empty. When the deque is not empty, its
leftmost node’s left-link points to a so-called dead node — a node whose left- and
right-links point to itself (e.g. node a in the figure). Symmetrically, the rightmost
node’s right-link points to a dead node. When the deque is empty, then the left
hat and the right hat point to dead nodes.

We focus on the popLeft implementation. This implementation first reads the
left hat value to a local variable. It then reads the left-link of the node referenced
by that variable. If both values are the same, it means that the node is dead
and the list might be empty. It is necessary to recheck the left hat to confirm,
since the node might have died since the left hat was first read. If the deque is
indeed empty, the operation returns 0; otherwise it is restarted. If the left node
is not dead, it tries to atomically update the left hat to point to the node to its
right, and, at the same time, update the left node to be dead. (This could fail,
in which case the operation restarts.) An example of such update is shown in
Fig. 7. In order to update three pointers atomically, the implementation makes
use of the 3cas command described in §2.2.

To verify the popLeft, we introduce a new region type,Deque. The region has
two parameters, d standing for the deque address and L for the MCAS address.
There is only one non-empty guard for the region, named G. We represent the
abstract state by a tuple (ns, ds) where: ns is a list of pairs of node addresses
and values, the values representing the elements stored in the deque; and ds is
a set of pairs of nodes addresses and values that were part of the deque, but are
now dead. We maintain the set of dead nodes to guarantee that after a node
is removed from the deque, its value can still be read. In order to change the

226 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

abstract state of the deque, we require the guard G. The labelled transition
system is as follows:

G : ∀n, v, ns, ds. (ns, ds) � ((n, v) : ns, ds)
G : ∀n, v, ns, ds. (ns, ds) � (ns : (n, v), ds)
G : ∀n, v, ns, ds. ((n, v) : ns, ds) � (ns, ds � {(n, v)})
G : ∀n, v, ns, ds. (ns : (n, v), ds) � (ns, ds � {(n, v)})

In order to provide an interpretation for the abstract state, we first define a
number of auxiliary predicates. We use field notation: E.field is shorthand for
E+offset(field). Here, offset(left) = 0, offset(right) = 1, and offset(value) =
offset(mcl) = 2.

A node at address n in the deque will make use of the MCAS cells:

node(L, n, l, r, v) ≡ MCP(L, n.left, l) ∗MCP(L, n.right, r) ∗ n.value �→ v

Here l and r are the left- and right-link addresses. The L parameter is the
address of the MCAS lock. A dead node is defined as:

dead(L, n, v) ≡ node(L, n, n, n, v)

We also define a predicate to stand for the doubly-linked list that contains all
the elements in the list, (i.e. the shaded nodes in the figure).

dlseg(L, l, r, n,m, ns) ≡ ns = [] ∧ l = m ∧ r = n ∨
∃v, ns′, p. ns = (l, v) : ns′ ∧ node(L, l, n, p, v) ∗ dlseg(L, p, r, l,m, ns′)

We define a predicate to include the dead nodes (ds) as well as the doubly-linked
list:

dls(L, l, r, ns, ds) ≡
∃a, b. (a,−), (b,−) ∈ ds ∧ dlseg(L, l, r, a, b, ns) ∗ �

(n,v)∈ds
dead(L, n, v)

Note that there must be at least one dead node in ds.
Our last auxiliary predicate to represent the whole deque: the double linked

list; the anchors left hat and right hat; and the reference to the MCAS interface.

deque(d, L, ns, ds) ≡ ∃l, r. dls(L, l, r, ns, ds) ∗
MCP(L, d.left, l) ∗MCP(L, d.right, r) ∗ d.mcl �→ L ∗MCL(L)

We now define the interpretation of abstract states as follows:

I(Dequea(d, L, ns, ds)) � deque(d, L, ns, ds)

We define the interpretation of the Deque predicate as follows:

Deque(d, vs) � ∃a, L, ns, ds.Dequea(d, L, ns, ds) ∗ [G]a ∧ vs = snds(ns)

where snds(ns) maps the second projection over the list of pairs ns.
To prove the implementation against our atomic specifications, we use the

“make atomic” rule again. We show the proof of the popLeft operation in Fig. 8.
The remaining proofs are given in the technical report [15].

TaDA: A Logic for Time and Data Abstraction 227

A

vs.〈
Deque(d, vs)

〉
a
b
st
ra
ct
;
q
u
a
n
ti
fy

a
,
L
,
n
s,

d
s

〈
Dequea(d, L, ns, ds) ∗ [G]a ∧ vs = snds(ns)

〉
m
a
k
e
a
to
m
ic

a : (ns, ds) � if ns = [] then (ns, ds) else (ns′, (n, v) : ds) ∧ ns = (n, v) : ns′ �{
∃ns, ds.Dequea(d, L, ns, ds) ∗ a �⇒ �

}
L := [d.mcl];
while (true) {{

∃ns, ds.Dequea(d, L, ns, ds) ∗ a �⇒ � ∧ L = L
}

lh := read(L, l.left); lhR := read(L, lh.right); lhL := read(L, lh.left);⎧⎨
⎩

∃ns, ds.Dequea(d, L, ns, ds) ∗ a �⇒ � ∧ L = L ∧
if lh = lhL then (lh,−) ∈ ds

else {(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds

⎫⎬
⎭

if (lhL = lh) { // left hat seems dead{
∃ns, ds.Dequea(d, L, ns, ds) ∗ a �⇒ � ∧ L = L ∧ (lhL,−) ∈ ds

}

u
p
d
a
te

re
g
io
n A

ns, ds.〈
deque(d, L, ns, ds) ∧ L = L ∧ (lhL,−) ∈ ds

〉
lh2 := read(L, d.left);〈
deque(d, L, ns, ds) ∧ L = L ∧
(lh2 = lhL → ns = [])

〉
{
∃ns, ds.Dequea(d, L, ns, ds) ∧ L = L ∧
if lh2 = lhL then a �⇒ ([], ds), ([], ds) else a �⇒ �

}
if (lh2 = lhL) { // left hat confirmed dead

return 0;{
∃ds. ret = 0 ∗ a �⇒ ([], ds), ([], ds)

}
} // left hat not dead — try again
} else {{

∃ns, ds.Dequea(d, L, ns, ds) ∗ a �⇒ � ∧ L = L ∧
{(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds

}

u
p
d
a
te

re
g
io
n

A

ns, ds.〈
deque(d, L, ns, ds) ∧ L = L ∧
{(lh,−), (lhL,−), (lhR,−)} ∈ ns ++ ds

〉
b := 3cas(L, d.left, lh.right, lh.left, lh, lhR, lhL, lhR, lh, lh);〈
∃ns′, v. if b = 1 then

(
deque(d, L, ns′, (lh, v) : ds) ∧

L = L ∧ (lh, v) ∈ ds ∧ ns = (lh, v) : ns′

)
else deque(d, L, ns, ds) ∧ L = L

〉
⎧⎨
⎩∃ns, ds, v. if b = 1 then

(
a �⇒ ((lh, v) : ns, ds), (ns, (lh, v) : ds)

∧ L = L ∧ (lh, v) ∈ ds

)
else Dequea(d, L, ns, ds) ∗ a �⇒ � ∧ L = L

⎫⎬
⎭

if (b = 1) {
v := [lh.value]; return v;{
∃ns, ds. ret = v ∗ a �⇒ ((lh, v) : ns, ds), (ns, (lh, v) : ds)

}
} } }〈 if vs = [] then ret = 0 ∗Dequea(d, L, ns, ds) ∗ [G]a

else

(
∃ns′, v. ns = (n, v) : ns′ ∧ ret = v ∗

Dequea(d, L, ns
′, (n, v) : ds) ∗ [G]a ∧ vs′ = snds(ns′)

)〉
〈
if vs = [] then ret = 0 ∗ Deque(d, vs)

else ∃vs′, v. vs = v : vs′ ∧ ret = v ∗ Deque(d, vs′)

〉

Fig. 8. Proof of the popLeft implementation

228 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

5 Semantics

We briefly describe the model for TaDA and the intuition behind the soundness
proof. Details can be found in the technical report [15].

Assertions are modelled as sets of worlds. A world includes (partial) infor-
mation about the concrete heap state, as well as the instrumentation used by
the proof system. This instrumentation consists of the type and state of each
shared region, abstract predicate resources, and guard resources for each region.
Depending on the atomicity context, it may also include atomicity tracking re-
sources. Composition between worlds (which is lifted to sets to interpret ∗ in
assertions) requires that they agree on the type and state of all regions, and
that their resources (including heap resources) must be disjoint. Worlds are sub-
ject to interference, which is represented by a relation. This interference relation
expresses the conditions under which the environment may modify the shared re-
gions, which is dependent on guards and atomicity tracking resources. Assertions
must be stable — closed under the interference relation — and are consequently
views in the sense of the Views Framework [2], which we use as the basis for our
soundness proof.

The judgements of TaDA are interpreted with a semantic judgement:

λ;A � A

x ∈ X. 〈pp|p(x)〉 C

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉

The meaning of this judgement is expressed in terms of the steps that Cmay take
in the operational semantics. Each step may either leave p(x) intact, or update
it to q(x,y) for some value of y. Simultaneously, it may update its private state
pp arbitrarily, so long as any changes to shared regions are permitted by guards
that it owns, or atomic tracking resources. Once the update from p(x) to q(x,y)
occurs, the thread gives up access to q(x,y). From then, it can only update the
private state, and must ensure that qp(x,y) holds when it terminates.

The key result for establishing soundness is the following:

Theorem 1. If λ;A
 A

x ∈ X. 〈pp|p(x)〉 C

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉 is prov-
able in the logic, then λ;A � A

x ∈ X. 〈pp|p(x)〉 C

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉
holds semantically.

The proof of soundness demonstrates that the semantic judgement obeys all
of the syntactic proof rules. For the novel proof rules, such as “make atomic”,
the proof essentially establishes a simulation. Each step of the judgement in the
conclusion of the rule is shown to correspond to a step in the judgement of the
premiss. The technical report [15] gives the details.

6 Related Work

TaDA inherits from a family of logics deriving from concurrent separation lo-
gic [12]: RGSep [20], Deny-Guarantee [4], CAP [3], Higher-Order CAP (HO-
CAP) [17] and Impredicative CAP (iCAP) [16]. In particular, it makes use of
dynamic shared regions with capability resources (called guards in TaDA) that

TaDA: A Logic for Time and Data Abstraction 229

determine how the regions may be updated. Following iCAP, TaDA eschews the
use of boxed assertions to describe the state of shared regions and instead repre-
sents regions by abstract states. The protocol for updating the region is specified
as a transition system on these abstract states, labelled by guards. This use of
transition systems to describe protocols derives from previous work by Dreyer
et al. [6], and also appears in Turon et al. [19] as “local life stories”.

By treating the abstract state-space of a region as a separation algebra, it is
possible to localise updates on it, as in the MCAS example (§2.2). Such locality
is in the spirit of local life stories [19], and can be seen as an instance of Ley-Wild
and Nanevski’s “subjective auxiliary state” [11].

While HOCAP and iCAP do not support abstract atomic specifications, they
support an approach to atomicity introduced by Jacobs and Piessens [10] that
achieves similar effects. In their work, operations may be parametrised by an
update to auxiliary state that is performed when the abstract atomic operation
appears to take effect. This update is performed atomically by the implemen-
tation, and can therefore involve shared regions. This approach is inherently
higher-order, which has the disadvantage of leading to complex specifications.
TaDA takes a first-order approach, leading to simpler specifications.

There has been extensive work understanding and generalising linearisabil-
ity, especially in light of work on separation logic. Vafeiadis [20] has combined
the ownership given by his RGSep reasoning with linearisability. Gotsman and
Yang [8] have generalised linearisability to include ownership transfer of mem-
ory between a client and a module, which is also supported by our approach.
Filipovic et al. [7] have demonstrated that linearisability can be viewed as a
particular proof technique for contextual refinement. Turon et al. [18] have in-
troduced CaReSL, a logic that combines contextual refinement and Hoare-style
reasoning to prove higher-order concurrent programs. Like linearisability, con-
textual refinement requires a whole-module approach.

7 Conclusions

We have introduced a program logic, TaDA, which includes novel atomic triples
for specifying abstract atomicity, as well as separation-style Hoare triples for
specifying abstract disjointness. We have specified and verified several example
modules: an atomic lock module, which cannot be fully specified using linearis-
ability; an atomic MCAS module implemented using our lock module, a classic
linearisability example which cannot be done using concurrency abstract pred-
icates; and a double-ended queue module implemented using MCAS. With the
combination of abstract atomicity and abstract disjointness that TaDA provides,
we can specify and verify modules with atomic and non-atomic operations, po-
sisbly at different levels of abstraction. Moreover, we can easily extend modules
with new operations, and build new modules on top of existing ones.

230 P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner

7.1 Future Work

Helping. In some concurrent modules, one thread’s abstract atomic action may
actually be effected by another thread — a phenomenon termed helping. As
presented, TaDA does not support helping, since each abstract atomic operation
of a thread can be traced down to a concrete atomic action of that thread at
which it takes effect. By transforming the atomic tracking component into a
transferrable resource, it should be possible to support helping. However, this
will require a different semantic model.

Higher-order. iCAP [16] makes use of impredicative protocols for shared regions
— protocols that can reference arbitary protocols. This gives it the expressive
power to handle higher-order programs and reentrancy. It would be interesting to
combine TaDA with iCAP, which may be possible by proving the rules of TaDA
in the metatheory of iCAP. Iterators on concurrent collections, which can have
subtle specifications, could benefit from the expressive power of such a logic.

Weak Memory. Burkhardt et al. [1] have extended the concept of linearisability
to the total store order (TSO) memory model. TaDA already has some potential
to specify weak behaviours. For instance, the following three specifications for a
read operation are increasingly weak:

 A

v.
〈
x �→ v

〉
y := [x]

〈
x �→ v ∧ y = v

〉

〈
x �→ v

〉
y := [x]

〈
x �→ v ∧ y = v

〉

{
x �→ v

}
y := [x]

{
x �→ v ∧ y = v

}
The first of these specifications gives the usual atomic semantics; the second
prohibits concurrent updates; the third prohibits any concurrent access. An in-
teresting research direction would be to investigate extensions of TaDA that
can specify and verify programs that make use of weak memory models such as
TSO.

Acknowledgements. We thank Lars Birkedal, Daiva Naudžiūnienė, Matthew
Parkinson, Julian Sutherland, Kasper Svendsen, Aaron Turon, Adam Wright,
and the anonymous referees for discussions and useful feedback. This research
was supported by an EPSRC Programme Grants EP/H008373/1 (all authors)
and EP/K008528/1 (Dinsdale-Young, Gardner), and the ModuRes Sapere Aude
Advanced Grant from The Danish Council for Independent Research for the
Natural Sciences (Dinsdale-Young).

References

1. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

TaDA: A Logic for Time and Data Abstraction 231

2. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)

3. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

4. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-Guarantee Reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009)

5. Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin, P.A.,
Moir, M., Shavit, N., Steele, J. G.L.: DCAS is Not a Silver Bullet for Nonblocking
Algorithm Design. In: SPAA, pp. 216–224 (2004)

6. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. In: ICFP, pp. 143–156 (2010)

7. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for Concurrent Ob-
jects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 252–266. Springer,
Heidelberg (2009)

8. Gotsman, A., Yang, H.: Linearizability with ownership transfer. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 256–271. Springer, Hei-
delberg (2012)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

10. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: POPL, pp. 271–282 (2011)

11. Ley-Wild, R., Nanevski, A.: Subjective auxiliary state for coarse-grained concur-
rency. In: POPL, pp. 561–574 (2013)

12. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput.
Sci. 375(1-3), 271–307 (2007)

13. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–
258 (2005)

14. da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse, M.:
A simple abstraction for complex concurrent indexes. In: OOPSLA, pp. 845–864
(2011)

15. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A Logic for Time and
Data Abstraction. Tech. rep., Imperial College London (2014)

16. Svendsen, K., Birkedal, L.: Impredicative Concurrent Abstract Predicates. In:
Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer,
Heidelberg (2014)

17. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation
of concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) Programming
Languages and Systems. LNCS, vol. 7792, pp. 169–188. Springer, Heidelberg (2013)

18. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)

19. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: POPL, pp. 343–356 (2013)

20. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge, Computer Laboratory (2008)

21. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving Correctness of Highly-
concurrent Linearisable Objects. In: PPoPP, pp. 129–136 (2006)

Infrastructure-Free Logging and Replay of Concurrent
Execution on Multiple Cores

Kyu Hyung Lee, Dohyeong Kim, and Xiangyu Zhang

Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
{kyuhlee,kim1051,xyzhang}@cs.purdue.edu

Abstract. We develop a logging and replay technique for real concurrent exe-
cution on multiple cores. Our technique directly works on binaries and does not
require any hardware or complex software infrastructure support. We focus on
minimizing logging overhead as it only logs a subset of system calls and thread
spawns. Replay is on a single core. During replay, our technique first tries to fol-
low only the event order in the log. However, due to schedule differences, replay
may fail. An exploration process is then triggered to search for a schedule that
allows the replay to make progress. Exploration is performed within a window
preceding the point of replay failure. During exploration, our technique first tries
to reorder synchronized blocks. If that does not lead to progress, it further re-
orders shared variable accesses. The exploration is facilitated by a sophisticated
caching mechanism. Our experiments on real world programs and real workload
show that the proposed technique has very low logging overhead (2.6% on aver-
age) and fast schedule reconstruction.

Keywords: Software reliability, Debugging, Recording and Replay.

1 Introduction

Logging and replay of concurrent execution in multi-core environment is very mean-
ingful for debugging runtime failures and also very challenging. Much of the com-
plexity stems from non-determinism that arises from the true parallel evaluation; the
non-deterministic fine-grained interleavings are often difficult to precisely reproduce
when replaying an erroneous execution. The challenge is exacerbated in the context
of non-trivial production runs, in which a program may run for a while before a non-
deterministic failure occurs and complex hardware/software infrastructure support for
logging and replay is often not available.

Even though there have been a lot of recent efforts in testing, reproducing, diagnos-
ing, and repairing concurrency bugs, existing techniques fall short in logging and replay
of real concurrent production execution. Concurrency testing techniques [20,24,28] per-
form various guided searches of possible thread interleavings. They often assume that
the failure inducing inputs are provided so that they can repetitively execute the pro-
gram on these inputs. They do not log or replay the I/O interactions of the original
failing execution. However, for production runs, inputs are often very complex, involv-
ing network packets, signals, and relying on specific file system state, which requires
logging.

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 232–256, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 233

Another line of work is to record the order of instructions that access shared state,
when they are executed in parallel on different cores. However the entailed instruction-
level monitoring [5,8,31,21,19,33,11] is expensive and often requires hardware or com-
plex software infrastructure support, limiting its applicability.

PRES [25] is a technique that uses dynamic binary instrumentation framework called
PIN [18] to log different levels of runtime information of a failing run, such as system
calls, synchronizations, and even basic blocks. It then tries to reproduce the failure
on top of PIN using such information. If it fails, it switches to performing bounded
search of shared memory access schedule, supported by the log. However, the need of
infrastructure support such as PIN makes it difficult to be used for production runs and
causes high logging overhead. We have also found that the bounded search of shared
memory access schedule could be very expensive for long runs due to the large search
space.

In this paper, we aim to develop a logging and replay technique for execution on mul-
tiple cores, serving both software users and developers. It does not require any extended
hardware or complex software infrastructure, but rather operates directly on compiled
binaries. It features a very low logging overhead as it does not try to log the precise
non-deterministic access level interleavings. Replay is a cost-effective search process
that produces a deterministic schedule leading to the failure. The produced schedule
is for a single core, to allow easy application of follow-up heavy-weight analysis (e.g.
slicing [1]) to the failing execution, as most such analysis are for single core execution.
Users can easily apply our logging component to production runs of deployed soft-
ware. Logs can be submitted to developers for remote reproduction, saving the trouble
of manually crafting the failure inducing inputs. Users can also choose to reproduce the
schedule on their side before submitting a bug report, which would substantially lower
the burden of developers. It is very helpful during software development as well since
it can be used for in-house testing due to its low system requirement and low overhead.

In our technique, we log minimal information to replay an execution such as non-
deterministic system calls, signals and thread spawns in the multi-core logging phase.
In the replay phase, we combine I/O replay with schedule exploration to replay con-
currency failures on a single core. We leverage the observation by PRES [25] that a
lot of non-determinism in a concurrent execution is intentional and thus harmless. It
is hence not necessary to faithfully reproduce such non-determinism. Instead,we use
the I/O replay log as the validation of an acceptable schedule that may be different
from the original schedule and yet induces the same failure. The intuition is that if the
schedule becomes so different from the original schedule, the program state would dif-
fer as well so that variables may have different values and different control flows may
be taken. As a result, the replay log becomes invalid, e.g., an event is expected by the
replay but not present in the log or an event has different arguments from those recorded
in the log. If the replay fails to make progress, we start a process that explores differ-
ent sub-schedules within a window close to the point where the replay fails. We have
two layers of exploration, one at the synchronized block level and the other at the fine-
grained memory access level. Any new sub-schedule leading to some progress in replay
is admitted to the final schedule. If both explorations cannot find a valid schedule in the
current window, we continue to explore preceding windows until we make progress in

234 K.H. Lee, D. Kim, and X. Zhang

the replay. We also observe that for long production runs, replay often fails to make
progress at similar situations. We hence use caching to speedup exploration. The pro-
cess is iterative and terminates when the whole log, including the original failure, is
successfully replayed.
Our contributions are highlighted as follows.

• We develop a logging and replay technique that does not require infrastructure/kern-
el/compiler support. This makes it more applicable than existing techniques. We
also precisely formulate the technique.
• Our logging techinique focuses on minimizing overhead. We only log a subset of

system calls, signals and thread spawns. They constitute the minimal necessary
set of events to replay an execution. The logging overhead is negligible, 2.6% on
average and 3.84% on the worst case.
• We study the characteristics of replaying real concurrent executions of two large

subjects with different levels of thread contention and reveal insights about the
various reasons why replay fails, which provide critical guidance for our design.
• We propose the notion of window based on the happens-before relation of events.

When replay fails to make progress, we perform two layers of schedule exploration
only within the window. This strategy allows us substantially reduce the search
space.
• We have developed a caching mechanism that can avoid redundant schedule explo-

ration, which is very common in practice.
• We perform thorough evaluation of the technique on a set of real world benchmark

programs. The results show that our schedule reconstruction algorithm is very ef-
fective and efficient. It is 10.55 times faster than the PRES replay algorithm. We
have also demonstrated scalability using a 7-days long real workload.

2 Motivation

In this section, we present the overview of our technique through an example and ob-
servations from replaying two large scale multi-threaded applications.

2.1 Motivating Example

Consider the example in Fig. 1. The code snippet is executed by two threads. The exam-
ple simulates a real bug in the logging module of the Apache webserver. Apache logs
remote requests for administration purpose. We extend the buggy logic to better explain
our technique. Upon a request, the program increases the global request count at line
4. The access is protected by a lock. For every 16 requests (as suggested by line 6), an
administrative message is generated and supposed to be put in the log eventually. The
message is first stored in a thread local buffer and later copied to a global log buffer;
the length of the local buffer len is hence updated at line 8. Lines 11-14 copy the lo-
cal buffer to the global buffer. In particular, it first tests if appending the local buffer
would overflow the global buffer (with size 1024) at line 11. Variable buf len is the
current length of the global buffer. If not, it copies the message and increases the global
counter.

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 235

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15

int len=0;
syscall #1;
acquire(L);
req_cnt++;
release(L);

if (req_cnt & 0x1111 =0) {
 syscall #2;
 len+=strlen(…);
}
syscall #3;
if (len+buf_len <1024) {
 memcpy(buf+buf_len, ..., len);
 buf_len=buf_len+len;
}
syscall #4;

1
2

3
4
5
6
7
8
9
10
11

12

r=15

r=16

l=20
l=20

b=1000

int len=0;
syscall #1;

acquire(L);
req_cnt++;
release(L);
if (req_cnt & 0x1111 =0) {
 syscall #2;
 len+=strlen(…);
}
syscall #3;
if (len+buf_len <1024) {

 memcpy(buf+buf_len, ..., len);
 SEGFAULT!

b=1000

(a) Thread One (b) Thread Two (c) Event Log

22 syscall #1;
21 syscall #1;
71 syscall #2;
72 syscall #2;
101 syscall #3;
102 syscall #3;
122 segfault

Fig. 1. A segfault caused by concurrent execution on two cores. Different background colors
denote different threads. Important variable values are shown on the right of the threads with r, l,
b denoting req cnt, len, and buf len respectively. Symbol 32 denotes line 3 in thread 2.

b=1000, r=14 initially
syscall #1
syscall #1
acquire(L)
r=15
release(L)
if (r&0x1111==0)
syscall #3
INVALID REPLAY!

22

21

31

41

51

61

101

window

b=1000, r=14
syscall #1
syscall #1
acquire(L)
r=15
release(L)
* preempt to t2 *
acquire(L)
r=16
release(L)
if (r&0x1111==0)
 syscall #2
...

22

21

31

41

51

32

42

52

61

71

window

…
b=1000,l=20
syscall #3
if (l+b<1024) {
 memcpy (…)
 b=b+l
syscall #3
if (20+b<1024)
syscall #4

101

111

121

131

102

112

152

INVALID REPLAY!

…
b=1000,l=20
syscall #3
if (l+b<1024) {
 memcpy (…)
reverse 131 and 112
syscall #3
if (20+b<1024)
 b=b+20
 memcpy(buf+b,…)

101

111

121

102

112

131

122

SEGFAULT!

D

E

F
G

H

I

(a) Initial Attempt

A

B

C

(b) Coarse-grained Exploration (c) Second Replay Failure (d) Fine-grained Exploration

Fig. 2. The different phases of our single core replay scheme

Fig. 1 shows a concurrent execution on two cores. The vertical direction is the time
line. Observe that statements may be executed at the same time to simulate real concur-
rency. A few important happens-before are explicitly noted by arrows. We also show
the important variable values on the right. Note that both threads observe req cnt to be
16 at line 6. Hence, both threads have a local message of size 20 generated. The local
buffer size len is 20 in both threads. Because the current global buffer size is 1000, the
test at line 11 passes in both threads, allowing copying the messages to the global buffer.
However, the global buffer size is increased in thread one before the memory copy in
thread two, resulting in copying 20 bytes at the location of 1020 and thus a segfault.

Observe that the failure cannot be easily replayed as it requires two data races, one
is about variable req cnt at lines 4 and 6 and the other is about buf len at 11 and 13.
If we simply re-execute the program on a single core and assumes thread one executes
before thread 2, the message is not even generated in thread one as req cnt=15. As a
result, the execution terminates normally. Two preemptions are needed to mutate it to
the failing run. However, in production runs, a program usually operates for a long time
before a failure. Performing a 2-preemption schedule exploration using techniques like

236 K.H. Lee, D. Kim, and X. Zhang

CHESS [20] is prohibitively expensive. Furthermore, although logging happens-before
relations between shared variable accesses may allow easy reproduction, it induces very
high runtime overhead on production runs.

Our technique only logs system calls, signals and thread spawns in the original exe-
cution. This is the minimal set of information we need to replay a concurrent execution.
Fig. 1 (c) shows the generated log. A global order of these events is also recorded.

Initial Replay Attempt. Initially, our algorithm tries to replay only based on the global
order in the log. It keeps executing a thread. If a synchronization is encountered, e.g.
before a lock acquisition or after a release, or a system call is about to execute, the
algorithm checks to see if the next event in the log is for a different thread. If so, it
context switches to that thread. Fig. 2 (a) shows the initial replay of the log in Fig. 1
(c). According to the log, it starts by executing thread 2. At point A©, when thread 2
is about to execute the acquisition at line 3, it identifies that the next event in the log
belongs to thread 1. Hence, it context switches to thread 1. Points B© and C© are also
synchronization points, but no switches are needed. At the end, the replay encounters
syscall #3 in thread one while the log has syscall #2 as the next event. The root cause is
that schedule differences cause a different control flow path. The inconsistency indicates
that we should revise our schedule.

Coarse-Grained Exploration. Our algorithm then explores a different schedule within
a window. Intuitively, the execution in the current thread from the last consistent event
of the thread to the inconsistent event very likely has undesirable state differences.
Such differences could be caused by concurrent execution from other threads. Hence,
the window includes all such concurrent execution. The window for the previous in-
consistency is shown in Fig. 2 (a). The first phase is to reorder synchronized blocks in
the window. Particularly, we try to context-switch to a thread different from that spec-
ified by the log. We explore in a backward order, starting from the inconsistent event.
Going backward from syscall #3 in Fig. 2 (a), the first attempt would be a preemption
at point C©. It results in an execution shown in (b). Note that although the execution is
preempted to thread 2 at D©, it goes back to thread 1 at E© to respect the event order. As
a result, syscall #2 is correctly encountered. Hence, the preemption is admitted as part
of the final schedule.

However, the replay later fails another validity check at the segfault event, as shown
by Fig. 2 (c). That is, thread 2 is about to execute syscall #4 at line 15 but the log
indicates a segfault event. The root cause is that following the default replay strategy,
thread 1 is able to execute lines 10-13 without being interleaved. As a result, the second
data race critical to the failure does not occur such that line 11 in thread 2 takes the false
branch. The window is determined as shown in the figure (more details about window
identification will be disclosed in Section 4). Observe that there are no synchronizations
in the window. We hence resort to the fine-grained access level schedule exploration.

Fine-Grained Exploration. In this phase, we detect all data races only within the win-
dow, and try to reverse the order of the two accesses in a race. The search is also back-
ward. In the window in (c), the race closest to the inconsistent event is the write of
buf len at 131 (i.e. line 13 in thread 1) and the read at 112. Hence, our schedule is
enhanced to reverse the order of these two accesses, leading to the execution in (d). Ob-
serve that right before the write, at G©, the algorithm switches to thread 2. Right after the

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 237

read, at H©, it switches back to thread 1. At I©, when thread 1 is about to execute syscall
#4, it observes that the next event is in thread 2. It switches to thread 2. The segfault
occurs at the memory copy statement. The highlighted events and the preemptions in
(b) and (d) constitute the final schedule that allows a valid replay and generates the orig-
inal failure. Note that if both coarse-grained and fine-grained explorations cannot find
a schedule to make progress in the current window, we continue to explore preceding
windows until we find a valid schedule.

2.2 Observations

In order to motivate the idea, we perform a study on two large scale multi-threaded ap-
plications, namely Apache and MySQL, to understand the characteristics of replaying
real concurrency. We execute them on a quad core machine and log the system calls. For
MySQL, we use the input generated by the work-load emulation client, mysqlslap,
which is provided with the program. For Apache, we use httperf to generate 1,000
concurrent requests. We create 4 worker threads for both subjects. Although these are
benign executions, replaying them only with the system call logs is nonetheless chal-
lenging. Each time when replay fails to make progress due to deadlocks or unmatched
events, called a replay failure, we manually study its root cause, leveraging our im-
plementation of CHESS [20] in an interactive way. In particular, the implementation
allows us to search backward from the execution point where replay fails to look for
a number of preemptions at synchronizations or shared memory accesses that allow
us to get through the failure point. For each replay failure, we manually try different
configurations of the search (e.g. the distance to search backward and the number of
preemptions) until we succeed. We also simulate different levels of thread contention
by executing a configurable CPU-intensive threaded program in the background. We
have studied three setups: (1) no contention – the subject program owns 100% of the
CPU; (2) low – 66%; and (3) high – 50%.

Table 1. Replay failures

Applications Observed replay failures Root Cause CPU contention Need Within Distance (root cause→fail)
None Low High Fine-grained? Window? # of instructions # of calls

Apache-1 Unmatch(write,poll) Control flow 2 3 9 No Yes 4884 185
Apache-2 Unmatch(poll,write) Control flow 8 6 17 No Yes 94 8
Apache-3 Unmatch(argument) Value 0 1 2 Yes Yes 1044 15
Apache-4 Unmatch(gettimeofday, read) Control flow 4 5 14 No Yes 720 8
Apache-5 Unmatch(read,gettimeofday) Control flow 1 8 6 No Yes 834 10
Apache-6 Deadlock User lock 1 1 2 No Yes 21 3
Apache-7 Deadlock Sync order 2 7 11 No Yes 106 6
Apache-8 Unmatch(segfault,write) Value 0 0 1 Yes Yes 631 8
MySQL-1 Unmatch(sigtimedwait,alarm) Control flow 21 39 47 No Yes 2032 52
MySQL-2 Unmatch(sigtimedwait,time) Control flow 2 7 11 No Yes 33 3
MySQL-3 Unmatch(time,sigtimedwait) Control flow 12 28 34 No Yes 84 2
MySQL-4 Unmatch(time,open) Control flow 4 10 9 No Yes 952 31
MySQL-5 Unmatch(open,time) Control flow 9 36 24 No Yes 15 4
MySQL-6 Unmatch(select,time) Control flow 13 17 15 No Yes 412 19
MySQL-7 Deadlock Control flow 3 3 3 No Yes 102 11
MySQL-8 Deadlock User lock 31 45 42 No Yes 39 3
MySQL-9 Deadlock Sync order 4 3 5 No Yes 56 2

MySQL-10 Deadlock Control flow 0 0 4 No Yes 36 3

238 K.H. Lee, D. Kim, and X. Zhang

Table 1 presents our observations. Column 2 presents the unique replay failures we
have observed and column 3 shows the root cause of each failure. Columns 4-6 present
the number of occurrences of each replay failure at different contention levels. Column
7 shows if we need fine-grained exploration to get through the failure. Column 8 shows
if we could find a correct schedule in the exploration window (defined in Section 4).
Columns 9 and 10 present the distance from the root cause (i.e. the farthest preemption
needed) to the replay failure point, measured by the number of instructions and function
invocations.

Fig. 3. The root causes of the observed replay failures

First of all, we observe much fewer replay failures than expected, even with the high-
est contention level. It seems to indicate that the non-determinism caused by real con-
currency does not substantially affect system level behavior. We observe two kinds of
replay failure symptoms: unmatch and deadlock. The former means that replay can not
make progress because the event in the log does not match the expectation. In the table,
we also present the mismatched events observed. These symptoms are caused by five
possible reasons as demonstrated by the samples in Fig. 3. Circled numbers show the
order of execution. The replay order is presented on the bottom of each example. Note
that the replay is guided by the system call log in these examples. Upon each pthread
synchronization or system call, the replay tries to switch to the thread indicated by the
next event in the log. In (A), the replay fails at syscall#2 due to control flow difference.
This is the most common type. In (B), the system call arguments do not match between

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 239

the log and the replayed execution at 4©. In (C), T1 is waiting for a conditional variable
cond wait, which did not happen in the original run. The replay then switches to T2,
which cannot replay syscall#3 at 4© without T1 replaying syscall#2, and hence dead-
lock. In (D), the spin lock function is a program specific lock invisible to our analysis.
When T1 is about to execute 6©, the replay context switches to T2 to respect the log
order, but T2 cannot acquire the lock at 2©, and hence deadlock. In (E), T1 is waiting
for the conditional variable at 1©, and then the replay context switches to T3 (hinted by
the log order). T3 acquires lock L at 6© then it context switches to T2 before 7© because
T2 is the only available thread at this point, again instructed by the log. Now T2 sends
signal to T1 and it context switches to T1 at 8©. However the mutex is already held by
T3 and thus deadlock.

We also observe the following:

• Replay often fails during normal execution before it reaches the faulty point.
• Replay fails more often with higher contention.
• Replay tends to fail at the same failure repeatedly.
• Fine-grained exploration is rarely needed.
• Searching within the exploration window is sufficient for all cases we have seen.
• The distance between the root cause of replay failure and the symptom tends to be

short.
• We have further observed that the repetition of replay failure is not caused by the re-

occurrences of the same input. They are due to nondeterminism of low level shared
data structures (e.g. table structures in MySQL, buffered log in Apache) that have
little to do with input values. In other words, we believe the repetitive behavior will
always manifest, regardless of the input. This is supported by our experiment in
Section 7.

3 Language and Semantics

To facilitate discussion, we introduce a kernel language. The syntax of the language is
presented in Fig. 4. A method can be spawned as a thread. We model devices and I/O
with read() and write(). Failures are modeled as assertion violations. Variables may be
accessed by multiple threads.

KERNEL-LANGUAGE L

Program P ::= m(){s};
Dev d ::= stdin | stdout | f
Expr e ::= x� | c | e1 binop e2 | read�(d)
Stmt s ::= x :=� e | write�(d,e) | s1;s2 | spawn� m() |

acquire�(k) | release�(k) | skip | assert�(e) | fail
Method m, Var x, File f , Lock k ∈ Identi f ier Constant c ∈ Z

Fig. 4. Language Syntax

240 K.H. Lee, D. Kim, and X. Zhang

Store σ : Var→ Z
IOStore ι : Dev→ Z
LockState K : Lock→ Z+∪{⊥}
Log L ::= α
LogEntry α ::= READ〈i, t,d, �,c〉 | WRITE〈i, t,d, �,c〉 |

SPAWN〈i, t, �〉 | FAIL〈i, t, �〉
LogEntryId i ∈ Z+ T hreadId t ∈ Z+

Fig. 5. Definitions

3.1 Logging Semantics

Compared to other execution artifacts, logging I/O interactions with the environment is
necessary as they cannot be constructed by post-mortem analysis. Hence, we log system
calls with global timestamps.

Fig. 5 presents definitions for the logging semantics. The device store ι denotes the
state of device, which is a mapping from a device to a sequence of constant values. The
lock state K is a mapping from a lock to a thread id or a special value ⊥, denoting
the owner of the lock, or its availability for acquisition, respectively. The evaluation
generates a log L , which is a sequence of events. In the semantics, we model the read,
write, thread spawn, and assertion failure events. In our real implementation, we log
most system calls, thread spawns, and all exceptions such as segfaults. Note that syn-
chronizations or shared variable accesses are not logged in order to achieve the lowest
possible logging overhead.

Each log entry consists of a global id i serving as a timestamp, the thread id t, and a
label � indicating the program point at which the event happened. For reads and writes,
the value being read or written is also logged. Logging read values is to avoid accessing
the device during replay. Logging write values is to validate a replay.

The logging semantics are presented in Fig. 6. Expression evaluation is of the form
σ, ι,L : e

e−→t ι′,L ′,e′ , with σ the store, ι the device store, L the log, and e the expression.
The evaluation is carried out in thread t. Devices are modeled as streams. In particular,
one value is read at a time from the head of a stream; and a value can be written to the
tail of the stream. More I/O complexity is omitted to simplify the formal discussion.
Our implementation supports most system calls and signals. In the evaluation of a read
expression, a constant value c is removed from the head of the stream; a read event is ap-
pended to the log. Local statement evaluation evaluates program statements in a thread,
with the form σ, ι,K ,L : s

s−→t σ′, ι′,K ′,L ′,s′ with K the lock state and s the statement. For a
write statement, it appends the value c to the end of the stream and a write event to the
log. For a lock acquisition, if the lock is available or being held by the current thread, it
updates the lock state and allows evaluation to proceed. Note that the lack of an evalua-
tion rule when the lock is held by other threads means that the evaluation of the current
thread cannot proceed. The global evaluation will pick another thread to continue. For a
lock release, the state of the lock becomes available, which may allow some previously
blocked thread to proceed. For an assertion statement, if the assertion fails, a log entry is
appended and the whole evaluation terminates (through the fail statement). Otherwise,
it allows the evaluation to proceed, without adding a log entry.

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 241

E ::= E;s | [·]s | x := [·]e | write(d, [·]e) | assert([·]e) | [·]e binop e | c binop [·]e

EXPRESSION RULES σ, ι,L : e
e−→t ι′,L ′,e′ parameterized on the current thread id t

σ, ι,L : x
e−→t ι,L ,σ(x) σ, ι,L : c1 binop c2

e−→t ι,L ,c3 where c3 = c1 binop c2

σ, ι,L : read�(d)
e−→t ι[d �→ χ], L ·READ〈|L |, t,d,�,c〉, c where ι(d) = c ·χ

LOCAL STATEMENT RULES σ, ι,K ,L : s
s−→t σ′, ι′ ,K ′,L ′,s′ parameterized on thread id t.

σ, ι,K ,L : x :=� c
s−→t σ[x �→ c], ι, K ,L , skip

σ, ι,K ,L : write�(d,c) s−→t σ, ι[d �→ ι(d) · c], K , L ·WRITE〈|L |, t,d,�,c〉, skip
σ, ι,K ,L : skip;s

s−→t σ, ι, K , L , s
σ, ι,K ,L : acquire�(k) s−→t σ, ι, K [k �→ t], L , skip if K (k) =⊥ ∨ K (k) = t
σ, ι,K ,L : release�(k) s−→t σ, ι, K [k �→ ⊥], L , skip
σ, ι,K ,L : assert�(c) s−→t σ, ι, K , L ·FAIL〈|L |, t,�〉, fail if c = 0
σ, ι,K ,L : assert�(c) s−→t σ, ι, K , L , skip if c �= 0

GLOBAL RULES σ, ι, K , L , (s1, ...,sn) −→ σ′, ι′, K ′, L ′, (s′1, ...,s
′
n)

σ, ι,K ,L : s
s−→t σ′, ι′, K ′, L ′, s′

σ, ι, K , L , (s1, ...,s(t−1) , E[s]s, s(t+1), ...,sn) −→ σ′, ι′, K ′, L ′, (s1, ...,s(t−1) , E[s′]s, s(t+1), ...,sn)
[STMT-ANY-THRD]

L ′ = L ·SPAWN〈|L |, t,�〉 m(){sΔ} ∈ P
σ, ι, K , L , (s1, ...,s(t−1) , E[spawn� m()]s, s(t+1), ...,sn) −→ σ, ι, K , L ′, (s1, ...,s(t−1) , E[skip]s, s(t+1), ...,sn ,sΔ)

[SPAWN]

σ, ι,L : e
e−→t ι′,L ′,c

σ, ι, K , L , (s1, ...,s(t−1) , E[e]e, s(t+1), ...,sn) −→ σ, ι′, K , L ′, (s1, ...,s(t−1) , E[c]e, s(t+1), ...,sn)

[EXPR-ANY-THRD]

Fig. 6. Logging Semantics

Global rules σ, ι, K , L , (s1, ...,sn) −→ σ′, ι′, K ′, L ′, (s′1, ...,s
′
n) , denote the evaluation of

n threads with each thread i executing statement si. Each step corresponds to a change
in a single thread i, so ∀ j �= i,s j = s′j. The choice of which thread advances at any
given point is non-deterministic, modeling concurrent execution on multiple cores. Ter-
minated threads are left in the list with the skip statement. The whole evaluation termi-
nates normally if all threads terminate normally. Rule [SPAWN] spawns a method as a
thread, by expanding the list of threads.

In our implementation, each thread has its own log file to avoid contentions on a
single log file. The log entry id remains global.

3.2 Replay Semantics

Replay is driven by a log and a schedule. It is deterministic, modeling execution on
a single core. Our replay strategy is to evaluate the same thread as much as possible,
unless it is indicated by the replay log or the schedule that a context switch should be
performed. Initially, the schedule is empty. Replay is carried out following only the
replay log. If such basic replay does not succeed, an exploration process is triggered to
generate a schedule that can advance more during replay, until eventually all the events
in the replay log, including the failure event, are correctly replayed.

242 K.H. Lee, D. Kim, and X. Zhang

The replay log serves the following three purposes. (1) The global timestamps spec-
ify a global order. Replay must follow the same order. (2) The values stored in the read
events are used as inputs to drive the replay execution, avoiding accessing the devices.
(3) The log is also used as a validation of the replayed execution.

Replay is facilitated by a schedule generated by the schedule exploration process to
provide an additional harness. It specifies a set of preemptions that are at synchroniza-
tion primitives. We will extend it to include preemptions at shared variable accesses in
Section 4.3. The syntax of a schedule is presented in Fig. 7. It is a sequence of syn-
chronization points. An entry sync〈n, t〉 denotes that switching to thread t upon the nth
synchronization operation.

ADDITIONAL LANGUAGE SYNTAX

Preempt π ::= pevnt | psync
DynChk ω ::= chkEvnt(�) | chkWrt(�,e) | chkAssrt(�,e)
Expr e ::= ... | pevnt? read�(d) req. chkEvnt(�)
Stmt s ::= ... | invalid replay |

pevnt? write�(d,e) req. chkWrt(�,e) |
pevnt? spawn� m() req. chkEvnt(�) |
psync? acquire�(k) | release�(k) psync? |
pevnt? assert�(e) req. chkAssrt(�,e)

ADDITIONAL DEFINITIONS FOR EVALUATION

Schedule S ::= sync〈n, t〉
InstCnt n ∈ Z+

Fig. 7. Definitions for Replay Semantics

New definitions relevant to the replay semantics are presented in Fig. 7. Preemp-
tion π denotes a preemption test, which determines whether a preemption should be
performed, following the schedule or the log order. There are two kinds of preemption
tests for syscalls (pevnt) and synchronizations (psync), respectively. Dynamic check ω
denotes the runtime checks performed to validate a replay. There are three kinds of
dynamic checks: checking a write event (chkWrt), an assertion failure (chkAssrt), and
other events (chkEvnt).

The syntax of kernel language is extended. Statements and expressions that could
produce events in the logging phase are preceded with preemption tests and followed
by checks. Additionally, a preemption test precedes each lock acquisition and follows
each lock release. Given a program in the original language in Fig.4, one can consider
the corresponding program in the extended language is automatically generated.

We also introduce a special counter variable sync cnt to record the number of syn-
chronizations that have been evaluated. We use σ[sync cnt ↑c] to denote increasing the
counter.

The replay rules are presented in Fig. 8. The evaluation order is given on the top.
Observe that a preemption preceding an expression/statement is evaluated before the
expression/statement, suggesting that the evaluation may switch to a different thread
before evaluating the expression/statement. A check following an expression/statement

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 243

E ::= ... | [·]π e | e [·]ω | [·]π s | s [·]ω | [·]s π? | skip [·]π | chkWrt(�, [·]e) | chkAssrt(�, [·]e)

PREEMPTION RULES σ,S ,L , t : π π−→ σ′, S ′ , t ′ α.t denotes the t field of a relation α.

σ, S , α ·L , t : pevnt?
π−→ σ,S ,α.t σ, sync〈σ(sync cnt), t0〉 ·S , L , t : psync?

π−→ σ,S , t0 [P-SYNC-PRMPT]

σ, sync〈n0, t0〉 ·S , α ·L , t : psync?
π−→ σ[sync cnt ↑], S ,α.t if n0 �= σ(sync cnt) [P-SYNC-NOPRMPT]

DYNAMIC CHECK RULES L , t : ω ω−→ b type(α): return the type of a log entry α.

α ·L , t : chkEvnt(�)
ω−→ α.t = t ∧α.�= �

α ·L , t : chkWrt(�,c)
ω−→ type(α) = WRITE∧α.t = t ∧α.c = c∧α.�= �

α ·L , t : chkAssrt(�,c)
ω−→ (type(α) �= FAIL∧c �= 0) ∨ (type(α) = FAIL∧α.t = t ∧α.�= �∧c = 0)

EXPRESSION RULES σ,L : e
e−→ L ′,e′ σ, READ〈i, t,d, �,c〉 ·L : read�(d)

e−→ L ,c

LOCAL STATEMENT RULES σ,K ,L : s
s−→ σ′,K ′ ,L ′,s′

σ, K , WRITE〈i, t,d, �,c〉 ·L : x := write�(d,c) s−→ σ, K , L , skip
σ, K , FAIL〈i, t, �〉 ·L : assert�(0) s−→ σ, K , L , fail
σ,K ,L : assert�(c) s−→ σ, K , L , skip if c �= 0

GLOBAL RULES σ, K , L , S , t, (s1, ...,sn) −→ σ′, K ′, L ′, S ′ , t ′,(s′1, ...,s
′
n)

deterministic next thread(t,L) : deterministically selects the next thread given the current thread t and the log.

σ,K ,L : s
s−→ σ′ , K ′ , L ′, s′

σ, K , L , S , t, (s1, ...,s(t−1), E[s]s, s(t+1), ...,sn) −→ σ′, K ′ , L ′ ,S , t,(s1, ...,s(t−1), E[s′]s, s(t+1), ...,sn)

[R-SAME-THRD]

K (k) �=⊥ K (k) �= t t ′ = deterministic next thread(t,L)

σ, K , L , S , t, (s1, ...,s(t−1), E[acquire�(k)]s, s(t+1), ...,sn) −→ σ, K , L ,S , t ′,(s1, ...,s(t−1), E[acquire�(k)]s, s(t+1), ...,sn)

[R-LOCKFAIL]

σ,S ,L , t : π π−→ σ′,S ′, t ′

σ, K , L , S , t, (s1, ...,s(t−1), E[π]π, s(t+1), ...,sn) −→ σ′, K , L ,S ′, t ′,(s1, ...,s(t−1), E[]π, s(t+1), ...,sn)

[R-PREEMPT]

L , t : ω ω−→ true

σ, K , L , S , t, (s1, ...,s(t−1), E[ω]ω, s(t+1), ...,sn) −→ σ, K , L ,S , t,(s1, ...,s(t−1), E[]ω, s(t+1), ...,sn)

[R-CHK-PASS]

L , t : ω ω−→ false

σ, K , L , S , t, (s1, ...,s(t−1), E[ω]ω, s(t+1), ...,sn) −→ σ, K , L ,S , t,(s1, ...,s(t−1), invalid replay, s(t+1), ...,sn)

[R-CHK-FAIL]

Fig. 8. Replay Semantics. The subscripts in evaluation contexts denote the evaluation kind.

244 K.H. Lee, D. Kim, and X. Zhang

is also evaluated before the expression/statement. We have to perform the check first as
an expression/statement cannot be properly evaluated if there is any inconsistency. If a
preemption test follows a statement (as for the release statement), it is evaluated after
the statement evaluation.
Preemption Rules. They have the form σ,S ,L , t : π π−→ σ′, S ′, t ′ . Given store σ, schedule
S , replay log L and the current thread id t, a preemption test evaluates to a new thread
id t ′, together with the new store and schedule. A preemption is indicated by t ′ �= t.
For a preemption test regarding a log event (i.e. pevnt), the resulting thread id is the
one indicated by the next log event. For a synchronization (i.e. psync), if the value
of the synchronization counter, acquired by σ[sync cnt], equals to that specified in the
next preemption in the schedule S , it yields the thread id specified in S ([P-SYNC-
PRMPT]). Otherwise, it increases the synchronization count and continues evaluation
with the thread specified by the log (P-SYNC-NOPRMPT]).

Checking Rules. The second set of rules is to validate a replay. They are of the form

L , t : ω ω−→ b . A check ω evaluates to a boolean value b. We define replay validity as
follows.

Definition 1 (Replay Validity). Given a log L , a replay execution is valid if the exe-
cution must encounter the exact sequence of events as specified in L .

It dictates observable equivalence between the original and the replayed runs. Observe
that a valid replay must successfully reproduce the same failure as the failure event is
part of the log. According to the rules, checking events other than writes and assertions
(i.e. chkEvnt) is to test whether the program point of the syscall and the current thread
id are those specified in the log. To validate a write event (i.e. chkWrt), we additionally
check the equivalence of the parameter computed in the replay and that in the log. To
validate an assertion (i.e. chkAssrt), we ensure that if the assertion passes, there is not
a FAIL event in the log; and if the assertion fails, the appropriate failure event must be
present in the log.

Expression and Local Statement Rules. The configurations of expression and local
rules are similar to those in the logging semantics. The difference is that the device
state ι is not part of the configurations as devices are not accessed during replay. Inputs
are loaded from the log instead. The rules in Fig. 8 are not complete, showing only
those different from the logging semantics. In particular, a read expression reads the
value from the first entry in the log. Note that its preceding check ensures progress of
the evaluation. Statement rules are mainly removing the first log entry.

Global Rules. These rules model deterministic execution on a single core. In the config-
uration, we introduce a thread id t to explicitly constrain the thread where the evaluation
happens; the resulting thread t ′ may be different, indicating a context switch. Rule [R-
STMT-SAME-THRD] dictates that evaluation remains within the same thread as much
as possible, ensured by the same thread id before and after the evaluation. Rule [R-
LOCKFAIL] deterministically selects the next thread when it fails to acquire a lock. In
our implementation, we select the next available thread following the log order. Rule
[R-PREEMPT] switches to the thread t ′ indicated by the evaluation of a preemption
test. It is a no-op if t = t ′. Rules [R-CHK-FAIL] specifies that the evaluation terminates
with invalid replay if a check fails.

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 245

Example. Lets revisit the example in Section 2. In the initial replay in Fig. 2 (a), sched-
ule S = nil and the log is shown in Fig. 1 (c). It ends with an invalid replay. In Fig. 2
(b), schedule S = sync〈2,2〉, representing the preemption at D©, that is, switching to
thread 2 upon the 2nd synchronization.

4 Incremental Schedule Exploration

When replay fails to make progress, our technique starts to explore different
sub-schedules within a window close to the inconsistent event. The part of the schedule
that happens before the window is considered finalized. The goal of exploration is to ad-
vance the replay, that is, to be able to replay at least one more event. The sub-schedule
leading to advance is then admitted to the final schedule. The process is incremental
and demand-driven. Exploration could be at two levels: the coarse-grained level that
explores different orders of code blocks protected by synchronizations, and the fine-
grained level that explores different orders of memory accesses. The algorithm first
explores coarse-grained schedules, if it succeeds in advancing the replay, it will skip
the fine-grained exploration.

4.1 Exploration Window

An important concept in our technique is the exploration window, which defines the
scope of sub-schedule exploration. This allows us to avoid logging and reordering mem-
ory accesses for the whole execution as in PRES [25]. Intuitively, we consider that an
inconsistent event αx by state differences (compared with the original run) that occur
in between the preceding event αp in the same thread and αx. Note that we consider
the validity of the program state of the thread up to αp is endorsed by the valid replay
up to that event. The state between αp and αx could be affected by any parallel execu-
tion in other threads. Hence, the exploration window includes the execution durations
of all threads that could happen in parallel with the duration from αp to αx. We con-
sider two durations could happen in parallel if the happens-before relation between the
two cannot be inferred from the event log order. Next, we formally define the window
computation.

immPrec(αtt
x , t) = αt s.t.αt ≺ αtt

x ∧ � ∃ αt
0 αt ≺ αt

0 ≺ αtt
x

immSucc(αtt
x , t) = αt s.t.αtt

x ≺ αt∧ � ∃ αt
0 αtt

x ≺ αt
0 ≺ αt

We first define two auxiliary functions. Function immPrec(αtt
x , t) computes the imme-

diate preceding event in thread t regarding the given event αtt
x in thread tt. We use the

superscript to describe the thread where an event happens. We use operator≺ to denote
precedence in the log order. Similarly, function immSucc() computes the immediate suc-
ceeding event. Given the two functions, the exploration window of a thread t regarding
a given inconsistent event αtt

x is computed as follows.

window(αtt
x , t) = 〈immPrec(αtt

p , t), immSucc(αtt
x , t)〉

where αtt
p = immPrec(αtt

x , tt)

246 K.H. Lee, D. Kim, and X. Zhang

syscall #2
s1;
syscall #3
s2;
…
syscall #6
s3;
…
syscall #9

syscall #1
s11;

…

syscall #5
s13;
…
syscall #8

s21;
…

syscall #4
s22;
…
syscall #7

T1 T2 T3

inconsistent event

window
window

window

Fig. 9. Example for exploration window

In particular, αtt
p denotes the immediate preceding event of the inconsistent event in

the same thread tt. Hence, the window is delimited by an event in t that immediately
precedes αtt

p and an event in t that immediately succeeds αtt
x .

Example. Consider the example in Fig. 9. The syscall numbers represent their global
order. The inconsistent event is syscall #7 in thread 3, denoted as α3

7 for short.

immPrec(α3
7,3) = α3

4
window(α3

7,2)=〈immPrec(α3
4,2), immSucc(α3

7,2)〉=〈α2
1,α2

8〉

That is to say the window for thread T2 is from syscall #1 to syscall #8. Observe that

from the event order, we cannot tell the happens-before of statement s11 in T2 and s22
in T3. The window for thread T1 is similarly computed. Note that although α1

2 happens
after α2

1, it is not in the window while α2
1 is. In other words, an exploration window

is not a consecutive sequence of global evaluation steps, but rather the aggregation of
durations from all threads.

4.2 Coarse-Grained Exploration

The coarse-grained exploration aims to reorder the synchronized blocks within the win-
dow. Given a bound m, it tries to perform up to m preemptions. At each preemption, the
algorithm tries to switch to a thread selected based on the order of the threads’ first
events in the remaining log. The intuition is that a thread that appears later is less likely
to be part of the target interleaving. The exploration is backward: priority is given to
preemptions close to the end of the window. The intuition is that perturbing schedules
close to the inconsistent event is more likely to affect the event. Our implemetation
supports multiple preemptions, but we observe that m = 1 is sufficient in this work.

Algorithm 1 presents the backward search algorithm of one preemption. It takes the
inconsistent event as input and returns a new inconsistent event. It first collects the
synchronization trace within the window. The main loop in lines 2-10 enumerates each
synchronization in a backward fashion, and preempts at that point. For each preemption
point, lines 3 and 4 sort the threads based on their first events that happen after the

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 247

Algorithm 1. One preemption coarse-grained exploration.

In: αx: the inconsistent event;
Out: α′: the new inconsistent event;
Def: R: ordered list of all threads;

SyncTrace T ::= 〈n, �,α〉 with n the sync. counter, � the program point of the sync., and α the
first logged event that happens after the sync.;

syncTraceInWindow(αx): replay the execution and produce the sync trace within the explo-
ration window of αx;

replay (L ,S): replay and return the inconsistent event;
sortThreadByLog (L): sort all threads by the first event in L

CoarsegrainedExplore (αx)

1: T ← syncTraceInWindow (αx)
2: foreach 〈n, �,α〉 ∈ T in the backward order do
3: let Lp ·α ·Ls = L
4: R← sortThreadByLog(Ls)
5: foreach t ∈ R in the ascendent order do:
6: S ′ ← sync〈n, t〉
7: α′ ← replay(L ,S ·S ′);
8: if αx ≺ α′ then
9: S ← S ·S ′

10: return α′
11: return αx

synchronization precluding the first such event α, as the default replay order has already
followed the schedule inidicated by α. The loop in lines 5-10 tries the different target
threads of the preemption based on the sorted order. In lines 8-9, if the new schedule
leads to progress, it is appended to the final schedule to allow future replay.

Example. Consider the example in Fig. 9. Assume statement s22 in T3 is a selected
synchronization for preemption. Lines 3-4 sorts the threads to R1 = {t1, t2}, suggested
by syscall#6 and #8. Hence, the algorithm first preempts to t1. Note that the original
replay switches to T2 at s22 by default. �

For m > 1, we cannot simply enumerate an m subsequence of the synchronization
trace as a preemption may change the control flow such that the following synchroniza-
tion sequence is different. Hence, the implemented algorithm is a recursive version of
Algorithm 1. Essentially, it first tries the different options of the first preemption and
tentatively admits it to the final schedule and then recursively calls itself to look for the
second preemption, and so on. Details are elided as m= 1 is sufficient in our experience.

4.3 Fine-Grained Exploration

If the coarse-grained exploration fails to make progress, the algorithm resorts to re-
ordering shared variable accesses within the window. The idea is to first detect data
races within the window. Then the algorithm selects a subset of races and reverses the
order of the accesses in each race1. The size of the subset is limited by the preemption

1 Here, a race is defined as a pair of accesses in the window on the same shared variable from
different threads, with at least one being a write.

248 K.H. Lee, D. Kim, and X. Zhang

bound m. Reversing the order of a racy access pair is achieved by disabling the thread
right before the first access, and then enabling it right after the second access (in a dif-
ferent thread). We call the set of races to be reversed the memory schedule. The search
of memory schedule is also backward, giving priority to accesses close to the end of the
window.

Our technique can continue to explore the preceding window if we cannot find a
valid solution in the current window, although we haven’t experienced such cases.

5 Caching Replay Failures

According to our study in Section 2, the same replay failure tends to happen repetitively.
To avoid redundant schedule exploration, we develop a caching mechanism. We have
two caches, corresponding to the two possible replay failures, unmatched events and
deadlocks, respectively.

An unmatched event replay failure means that we expect to see an event αc during
replay but the next event αx in the log is different. Ideally, the unmatched event cache
Cevent should have the following signature.

Cevent : LogEntry×LogEntry→ T hreadId× InstCnt×T hreadId

Cevent(αc,αx) = 〈t0,n, t1〉means that upon a replay failure denoted by 〈αc,αx〉, the pre-
emption should be performed in thread t0 at the nth synchronization within the window
when counting backward2. Note that we cannot use the global count as it is unique for
each synchronization instance. The execution should switch to thread t1. However in
practice, it is not desirable to hard-code the thread id in the cache because it is very
common that the different occurrences of the same replay failure may involve different
sets of threads. For example, worker threads tend to execute the same piece of code,
such as in Apache and MySQL. It is very likely that a replay failure such as (A) in
Fig. 3 happens between worker threads T1 and T2 this time but T2 and T4 next time.
Hence, we use the label of the next statement to execute in a thread to denote the thread.
Therefore, in our design, Cevent(αc,αx) = 〈�0,n, �1〉 means that the preemption should
occur in a thread that is about to execute statement �0 and the target thread is a thread
that is about to execute �1.

For example, after the coarse-grained search succeeds in the example in Fig. 2 (a)-
(b). A cache entry Cevent(syscall#3,syscall#2) = 〈10,1,3〉 is added. Number 10 means
that we should preempt a thread that is about to execute statement 10, which is thread
one; 1 means the preemption point is the last synchronization in the window, i.e. C©; 3
means that the target thread is about to execute statement 3, i.e. thread two.

Note that our discussion limits to one preemption, extending the cache design to
support multiple preemptions is omitted.

A deadlock may involve multiple threads. A complex design is needed if we use all
the involved threads as the cache key. We have developed a much simpler design that is
very effective in practice. We use the label of the replay failure statement of the thread
of the next event in the log as the hash key. For example, in Fig. 3 (C), syscall#2 is the
next event to replay and its thread fails to make progress at the conditional wait. We use
the label of the wait as the key.

2 Our discussion is limited to coarse-grained schedule for brevity.

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 249

6 Implementation

In the following, we highlight some of our engineering efforts.

System Call Recording. Minimizing logging overhead is one of our design goals.
Therefore, we only log a subset of system calls which are necessary for replay. We cur-
rently intercept 84 out of 326 Linux system calls. Most of them are related to input, such
as file and socket inputs, select and gettimeofday. We do not intercept/record
output system calls.

Minimal Binary Rewriting. One of the important features of our technique is that it
is hardware/software infrastructure-free. It works directly on binaries. Therefore, our
technique intercepts syscalls by binary rewriting. In particular, it intercepts the dy-
namic linker interface. When an executable or a library is loaded, it scans the binary
image and replaces all the syscall instructions with calls to our functions that realize
the logging/replay functionalities. The binary rewriting component is adapted from that
in Jockey [27], a logging/replay tool that does not support concurrent execution. Note
that the rewriting is dynamic and very simple. It directly overwrites a small number of
instructions in the code segment.

Intercepting Shared Variable Accesses. Without compiler support, it requires non-
trivial efforts to intercept shared variable accesses, which is only needed during replay.
It is not optimal to use dynamic instrumentation infrastructures such as Pin or Valgrind,
due to their high cost. Our solution is to use memory protection to intercept memory
accesses. In fine-grained exploration, we start protecting all global and heap pages at
the beginning of the window. Upon a page fault (i.e. an access), we unprotect the page,
and set the trap register to trap the next instruction. The execution is thus trapped after
the access. We then log the access and re-protect the page. Observe that tracing is a one-
time cost and it happens only within a window. Once the trace is acquired, the algorithm
iteratively replays, reversing a set of races each time. In these replayed executions, only
the pages specified by the memory schedule are protected, causing very few page faults.
The majority of a replayed execution has no overhead.

Other Challenges. In the formal semantics, we use labels of syscall statements, which
can be considered as the program counters (PCs). However, syscalls are mostly within
libraries. We use stack-walk to identify the corresponding invocation in the user space
and use its PC as the label. Threads in real-world programs tend to use pipe and epoll
syscalls to communicate. They may send pointers through these syscalls. We cannot
simply log the content of these syscalls and restore it during replay. We choose not to
restore from the log but rather re-execute the relevant syscalls.

7 Evaluation

In this section, we evaluate the performance and the practicality of our technique. All
experiments in this section were conducted on a quad-core Intel Xeon 2.40GHz with
4GB of RAM running Linux-2.6.35.

In the first experiment, we evaluate the performance of our technique over a
set of real world bugs from 6 applications. Table 2 presents the programs and bugs.

250 K.H. Lee, D. Kim, and X. Zhang

Table 2. Application and Bug description.

Applications LOC Threads Bug description

Apache-2.0.48 157K 7
#1: Unprotected buffer
#2: Automicity violation (21287)

Apache-2.2.6 198K 7 #3: Automicity violation (45605)

MySQL-5.0.11 934K 14
#1: Atomicity violation (47761)
#2: Atomicity violation (12845)

Cherokee-0.9.4 43K 4 Automicity violation (326)
Transmission-1.4.2 59K 2 Null pointer access (1818)

PBZip2-0.9.4 1.5K 6 Lock destroyed before it is accesses
Gftp-2.0.19 38K 5 Crash (546035)

Table 3. Recording and replay performance. CG denotes coarse-grained schedule exploration.
FG denotes fine-grained schedule exploration.

Original Recording PRES-like Two-layer Exploration Two-layer Exploration with caching Replay
time(s) overhead FG Time CG Log FG Time Cache CG Log FG Time time(s)

(%) Rep. (sec) Rep. Mem Rep. (sec) Hit Rep. Mem Rep. (sec)
Apache #1 12.43 3.22 28 301.21 24 1 1 40.21 10 14 1 1 29.85 1.64
Apache #2 7.14 3.78 22 615.42 32 1 1 281.42 8 10 1 1 92.59 6.12
Apache #3 10.89 2.94 16 196.73 27 1 1 43.85 9 14 1 1 31.23 1.28
MySQL #1 5.21 3.84 62 1342.6 46 1 2 137.1 17 24 1 2 81.47 2.47
MySQL #2 4.27 3.51 59 1429.1 39 1 1 151.82 15 22 1 1 92.5 3.71
Cherokee 120.42 2.11 15 684.29 12 1 3 61.51 2 7 1 3 42.11 4.15

Transmission 1.58 0.63 2 4.61 3 - - 1.32 0 3 - - 1.32 0.43
PBZip2 9.87 1.11 8 1615.78 6 - - 201.42 0 6 - - 201.42 35.42

Gftp 131.12 2.61 2 115 2 - - 24.68 0 2 - - 24.68 13.41

Cherokee is a web server. Transmission is a BitTorrent client. PBZip2 is a par-
allel implementation of the bzip2 file compressor. Gftp is a multithreaded file transfer
client. We use test inputs provided with the programs if available or randomly generated
inputs otherwise and we weave these inputs with the failure inducing inputs to trigger
the bugs. For the UI program Gftp, the failures are induced by a sequence of user
actions.

In the experiment, we also compare our technique with PRES. Note that it is difficult
to compare the logging overhead of PRES with our technique as PRES was imple-
mented on PIN and it logs a lot more events than our technique. The comparison hence
focuses on the replay/schedule-reconstruction cost. We implemented PRES’s replay al-
gorithm according to the published paper [25]. We call it the PRES-like algorithm.
Since PRES has multiple strategies, leveraging various kinds of information with some
of them expensive to collect, we only adapted one of the strategies such that it operates
on our log, which mainly consists of system calls, signals and thread spawns. Upon re-
play failures, the PRES-like algorithm identifies and logs all shared memory accesses,
and then tries to reverse the order of the racy pairs.

Table 3 presents the results. Column 2 presents the original execution time without
our logging tool for each application and column 3 shows recording overhead.

Columns 4-5 show the number of schedule exploration attempts and the accumulated
time for the PRES-like approach. Columns 6-9 show the cost of two-layer exploration
without caching. Column 6 presents the number of tries for coarse-grained schedules,

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 251

column 7 shows the number of times of collecting shared-memory access trace within
the window. Column 8 shows the number of tries for fine-grained schedules and column
9 presents the accumulated time. Columns 10-14 show the cost of two-layer exploration
with caching. Column 10 shows the number of cache hits.

From the data, we make the following observations : (1) The logging overhead is
very low, with the maximum 3.84% and average 2.6%. (2) Replay does not fail often
compared to the total number of events in the log (see Column 2 in Table 4), showing
the effectiveness of the default replay strategy. (3) Fine-grained exploration is rarely
needed. (4) The caching mechanism is very effective in avoiding redundant exploration.
(5) Our technique is more efficient than the PRES-like algorithm. Our schedule explo-
ration with caching is an order of magnitude faster in most cases. This is mainly because
we have two layers of exploration, limit schedule exploration within a window, and use
caching.

Once we find a schedule to trigger a bug, we can replay the bug as many times as
we want. The last column shows the replay time when we have the correct schedule.
It is significantly less than the original run except for Apache#2 and PBZip2. This
results from the time saved by emulating all syscalls during replay - no waiting time is
incurred when replaying syscalls.

Table 4 presents the statistics about windows. Column 3 shows the average number
of coarse-grained schedules which we can explore within an event’s window. Column
4 shows the average number of data race pairs. For PBZip2, Transmission and
Gftp, the correct schedules can be found with coarse-grained exploration and hence
we do not need to detect data-races.

Table 4. Average window size

Bugs # of Window size
logs Coarse-grained Fine-grained

Apache #1 32,578 50.32 13.03
Apache #2 128,589 40.32 3.46
Apache #3 33,261 48.27 10.15
MySQL #1 95,974 20.24 2.01
MySQL #2 87,425 25.19 2.42

PBZip2 3,426 31.77 -
Transmission 36 0.25 -

Cherokee 36,841 30.17 0.15
Gftp 22,332 28.15 -

Practicality Study with Real Workload. In order to evaluate the practicality of our
technique, we acquired the high level web request log for our institution’s web-site for
one week. We wrote a script to regenerate the workloads for 1-7 days and fed them to the
Apache and Cherokee server programs. At the end of each workload, we supplied
the failure inducing requests to trigger the failure. The average logging overhead and
aggregated space overhead are presented in Fig. 10. Observe that the logging overhead

252 K.H. Lee, D. Kim, and X. Zhang

 0

 1

 2

 3

 4

 5

Day1 Day2 Day3 Day4 Day5 Day6 Day7

O
ve

rh
ea

d(
%

)
Apache

Cherokee

(a) Runtime overhead

 0
 20
 40
 60
 80

 100
 120
 140

Day1 Day2 Day3 Day4 Day5 Day6 Day7

A
cc

um
ul

at
ed

 lo
g

si
ze

 (M
B

)

Apache
Cherokee

(b) Space overhead

Fig. 10. Runtime and space overhead with real-world workload

Table 5. Performance with one day log. Number in braces indicates the number of times a mem-
ory access trace is collected.

Apps. Exploration w/o caching Exploration with caching
CG FG Time(s) Hit CG FG Time(s)

Apache 181 3(2) 13184.72 61 72 3(2) 5270.41
Cherokee 89 1(1) 6269.34 39 50 1(1) 3612.3

is more or less consistent and the space overhead is reasonable for a few day’s execution.
These results show the practicality of our logging technique.

Table 5 presents the replay cost with the real-world workload. Here we replay the
last day’s log only. The schedule exploration cost is high (2-4 hours without caching,
1-2 hours with caching), because we have to pay the cost of re-executing from the
beginning for each exploration. We expect checkpointing would help a lot in this case,
but we will leave it for our future work. The number of schedule explorations is not that
high compared to the long duration of the workload. Caching substantially improves
the performance. Note that a cache hit might save multiple exploration tries.

Synchronization Order Recording. If we have the global order of synchronization op-
erations in the log, we can narrow down the search space. However the logging overhead
increases. We measured the recording overhead including the global order of synchro-
nization functions. It shows that the logging overhead becomes 7.6% for Apache and
is increased by a factor of 2-3 for other benchmarks.

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 253

8 Related Work

The prior work most relevant to ours is PRES [25], which first tries to replay with
syscall, synchronization, or even basic block log. If none of these succeeds, it tries to
reverse shared memory access order. In comparison, PRES logs more information and
it relies on PIN [18], entailing higher logging overhead. Moreover, we introduce ex-
ploration window, two-layer exploration, and caching, which are critical for reducing
search space and improving replay performance. Our results show that our schedule
exploration/reconstruction algorithm is 10.55 times faster on average. We have also
formalized the technique and revealed in-depth observations about replaying real con-
current execution in general.

CLAP [12] presents a search-based deterministic replay system, which uses SMT
solver and thread-local profiling to achieve replay determinism and to reduce the record-
ing overhead. Compared to our technique, CLAP records more information such as
control-flow paths, causing higher recording overhead (up to 296%).

There are also software based replay systems that record individual memory accesses
and their happens-before relations [5,8]. Such systems entail substantial runtime over-
head. In [2], a constraint solver is used to reproduce concurrent failures from incom-
plete log. There has been substantial work on software-based recording and replay for
applications such as parallel and distributed system debugging [23,27,26,9,3,15,22,13].
These systems only perform coarse-grained logging at the level of system calls or con-
trol flow and hence are not sufficient for reproducing concurrency failures. We consider
these techniques complementary to ours.

Recently, it has been shown that with architectural support, concurrent execution
can be faithfully replayed [10,19,21,31,29]. While such techniques are highly effective,
they demand deployment of special hardware, which limits their applicability.

Lee et al. [16] propose an execution reduction technique that aims to faithfully replay
a failure with a reduced log. A key technique of their work is the unit-based loop anal-
ysis that reduces unnecessary iterations from the replay log. We consider this technique
complementary to ours.

In recent years, significant progress has been made in testing concurrent programs.
CHESS [20] is a stateless bounded model checker that performs systematic stress test-
ing to expose bugs in concurrent programs. It can be adopted to reproduce Heisenbugs.
CTrigger [24], PENELOPE [30] and PACER [6] are other concurrency testing tech-
niques that search for schedule perturbations to break usual patterns of shared variable
accesses to expose faults. Random schedule perturbations are also shown to be effec-
tive in debugging races and deadlocks [28,14]. These techniques do not log the original
runs. They usually assume the (simplified) failure inducing inputs are provided.

DoublePlay [32] proposes a time-slicing technique of execution that runs multiple
time intervals of a program on spare cores. Dthreads [17], PEREGRINE [7] and Core-
det [4] propose deterministic execution system for multi-threaded applications.

9 Conclusion

We have developed a logging and replay technique for real concurrent execution. The
technique is self-contained, does not require any infrastructure support. It features very

254 K.H. Lee, D. Kim, and X. Zhang

low logging overhead as it does not log any synchronization operations or shared mem-
ory accesses. Replay is an incremental and demand-driven process. The technique al-
ways tries to replay by the log, but it may fail due to schedule differences. Upon a replay
failure, an exploration process is triggered to search within a window for a schedule that
allows progress. We have developed two kinds of explorations: one is at the synchro-
nized block level and the other is at the shared memory access level. A sophisticated
caching mechanism is developed to leverage the reoccurrences of replay failures. Our
results show that the technique is effective and practical, and substantially improves the
state of the art.

Acknowledgment. We would like to thank the anonymous reviewers for their insight-
ful comments. This research is supported in part by the National Science Foundation
(NSF) under grants 0917007 and 0845870. Any opinions, findings, and conclusions or
recommendations in this paper are those of the authors and do not necessarily reflect
the views of NSF.

References

1. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proceedings of the ACM SIGPLAN
conference on Programming language design and implementation, PLDI 1990 (1990)

2. Altekar, G., Stoica, I.: Odr: output-deterministic replay for multicore debugging. In: Pro-
ceedings of the ACM SIGOPS Symposium on Operating Systems Principles, SOSP 2009
(2009)

3. Ayers, A., Schooler, R., Metcalf, C., Agarwal, A., Rhee, J., Witchel, E.: Traceback: first fault
diagnosis by reconstruction of distributed control flow. In: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2005
(2005)

4. Bergan, T., Anderson, O., Devietti, J., Ceze, L., Grossman, D.: Coredet: a compiler and run-
time system for deterministic multithreaded execution. In: Proceedings of the Fifteenth In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2010 (2010)

5. Bhansali, S., Chen, W.-K., de Jong, S., Edwards, A., Murray, R., Drinic, M., Mihocka, D.,
Chau, J.: Framework for instruction-level tracing and analysis of program executions. In:
Proceedings of the Second ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE 2006 (2006)

6. Bond, M.D., Coons, K.E., McKinley, K.S.: Pacer: proportional detection of data races. In:
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010 (2010)

7. Cui, H., Wu, J., Gallagher, J., Guo, H., Yang, J.: Efficient deterministic multithreading
through schedule relaxation. In: Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, SOSP 2011 (2011)

8. Dunlap, G.W., Lucchetti, D.G., Fetterman, M.A., Chen, P.M.: Execution replay of multipro-
cessor virtual machines. In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE 2008 (2008)

9. Guo, Z., Wang, X., Tang, J., Liu, X., Xu, Z., Wu, M., Kaashoek, M.F., Zhang, Z.: R2: an
application-level kernel for record and replay. In: Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI 2008 (2008)

Infrastructure-Free Logging and Replay of Concurrent Execution on Multiple Cores 255

10. Hower, D.R., Hill, M.D.: Rerun: Exploiting episodes for lightweight memory race recording.
In: Proceedings of the 35th International Symposium on Computer Architecture, ISCA 2008
(2008)

11. Huang, J., Liu, P., Zhang, C.: Leap: lightweight deterministic multi-processor replay of con-
current java programs. In: Proceedings of the Eighteenth ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2010 (2010)

12. Huang, J., Zhang, C., Dolby, J.: Clap: Recording local executions to reproduce concurrency
failures. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2013 (2013)

13. Hunt, N., Bergan, T., Ceze, L., Gribble, S.D.: Ddos: taming nondeterminism in distributed
systems. In: Proceedings of the Eighteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2013 (2013)

14. Joshi, P., Park, C.-S., Sen, K., Naik, M.: A randomized dynamic program analysis technique
for detecting real deadlocks. In: Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2009 (2009)

15. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-traveling
virtual machines. In: Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC 2005 (2005)

16. Lee, K.H., Zheng, Y., Sumner, N., Zhang, X.: Toward generating reducible replay logs. In:
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011 (2011)

17. Liu, T., Curtsinger, C., Berger, E.D.: Dthreads: efficient deterministic multithreading. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
2011 (2011)

18. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.,
Hazelwood, K.: Pin: building customized program analysis tools with dynamic instrumen-
tation. In: Proceedings of the 26rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2005 (2005)

19. Montesinos, P., Hicks, M., King, S.T., Torrellas, J.: Capo: a software-hardware interface
for practical deterministic multiprocessor replay. In: Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2009 (2009)

20. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded
programs. In: Proceedings of the 2007 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2007 (2007)

21. Narayanasamy, S., Pereira, C., Calder, B.: Recording shared memory dependencies using
strata. In: 12th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2006 (2006)

22. Netzer, R.H.B., Weaver, M.H.: Optimal tracing and incremental reexecution for debugging
long-running programs. In: Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation, PLDI 1994 (1994)

23. Pan, D.Z., Linton, M.A.: Supporting reverse execution for parallel programs. In: Proceedings
of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging,
PADD 1988 (1988)

24. Park, S., Lu, S., Zhou, Y.: Ctrigger: exposing atomicity violation bugs from their hiding
places. In: Proceeding of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2009 (2009)

25. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Pres, S.L.: probabilistic replay
with execution sketching on multiprocessors. In: Proceedings of the ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP 2009 (2009)

256 K.H. Lee, D. Kim, and X. Zhang

26. Ronsse, M., De Bosschere, K., Christiaens, M., de Kergommeaux, J.C., Kranzlmüller, D.:
Record/replay for nondeterministic program executions. Communcation of the ACM (2003)

27. Saito, Y.: Jockey: a user-space library for record-replay debugging. In: Proceedings of the
Automated and Algorithmic Debugging, AADEBUG 2005 (2005)

28. Sen, K.: Race directed random testing of concurrent programs. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2008
(2008)

29. Sheng, T., Vachharajani, N., Eranian, S., Hundt, R., Chen, W., Zheng, W.: Racez: a
lightweight and non-invasive race detection tool for production applications. In: Proceeding
of the 33rd International Conference on Software Engineering, ICSE 2011 (2011)

30. Sorrentino, F., Farzan, A., Madhusudan, P.: Penelope: weaving threads to expose atomicity
violations. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2010 (2010)

31. Srinivasan, S.M., Kandula, S., Andrews, C.R., Zhou, Y.: Flashback: a lightweight extension
for rollback and deterministic replay for software debugging. In: Proceedings of the USENIX
Annual Technical Conference 2004 on USENIX Annual Technical Conference, ATEC 2004
(2004)

32. Veeraraghavan, K., Lee, D., Wester, B., Ouyang, J., Chen, P.M., Flinn, J., Narayanasamy, S.:
Doubleplay: parallelizing sequential logging and replay. In: Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2011 (2011)

33. Zhang, W., Lim, J., Olichandran, R., Scherpelz, J., Jin, G., Lu, S., Reps, T.: Conseq: detecting
concurrency bugs through sequential errors. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2011 (2011)

Understanding TypeScript

Gavin Bierman1,�, Mart́ın Abadi2, and Mads Torgersen2

1 Oracle
Gavin.Bierman@oracle.com

2 Microsoft
{abadi,madst}@microsoft.com

Abstract. TypeScript is an extension of JavaScript intended to enable
easier development of large-scale JavaScript applications. While every
JavaScript program is a TypeScript program, TypeScript offers a mod-
ule system, classes, interfaces, and a rich gradual type system. The in-
tention is that TypeScript provides a smooth transition for JavaScript
programmers—well-established JavaScript programming idioms are sup-
ported without any major rewriting or annotations. One interesting con-
sequence is that the TypeScript type system is not statically sound by
design. The goal of this paper is to capture the essence of TypeScript by
giving a precise definition of this type system on a core set of constructs
of the language. Our main contribution, beyond the familiar advantages
of a robust, mathematical formalization, is a refactoring into a safe inner
fragment and an additional layer of unsafe rules.

1 Introduction

Despite its success, JavaScript remains a poor language for developing and
maintaining large applications. TypeScript is an extension of JavaScript in-
tended to address this deficiency. Syntactically, TypeScript is a superset of Ec-
maScript 5, so every JavaScript program is a TypeScript program. TypeScript
enriches JavaScript with a module system, classes, interfaces, and a static type
system. As TypeScript aims to provide lightweight assistance to programmers,
the module system and the type system are flexible and easy to use. In partic-
ular, they support many common JavaScript programming practices. They also
enable tooling and IDE experiences previously associated with languages such as
C� and Java. For instance, the types help catch mistakes statically, and enable
other support for program development (for example, suggesting what methods
might be called on an object). The support for classes is aligned with proposals
currently being standardized for EcmaScript 6.

The TypeScript compiler checks TypeScript programs and emits JavaScript, so
the programs can immediately run in a huge range of execution environments. The
compiler is used extensively in Microsoft to author significant JavaScript applica-
tions. For example, recently1 Microsoft gave details of two substantial TypeScript

� This work was done at Microsoft Research, Cambridge.
1 http://blogs.msdn.com/b/typescript/

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 257–281, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://blogs.msdn.com/b/typescript/

258 G. Bierman, M. Abadi, and M. Torgersen

projects: Monaco, an online code editor, which is around 225kloc, and XBox Mu-
sic, a music service, which is around 160kloc. Since its announcement in late 2012,
the compiler has also been used outside Microsoft, and it is open-source.

The TypeScript type system comprises a number of advanced constructs and
concepts. These include structural type equivalence (rather than by-name type
equivalence), types for object-based programming (as in object calculi), gradual
typing (in the style of Siek and Taha [14]), subtyping of recursive types, and type
operators. Collectively, these features should contribute greatly to a harmonious
programming experience. One may wonder, still, how they can be made to fit
with common JavaScript idioms and codebases. We regard the resolution of this
question as one of the main themes in the design of TypeScript.

Interestingly, the designers of TypeScript made a conscious decision not to
insist on static soundness. In other words, it is possible for a program, even one
with abundant type annotations, to pass the TypeScript typechecker but to fail
at run-time with a dynamic type error—generally a trapped error in ordinary
JavaScript execution environments. This decision stems from the widespread us-
age of TypeScript to ascribe types to existing JavaScript libraries and codebases,
not just code written from scratch in TypeScript. It is crucial to the usability of
the language that it allows for common patterns in popular APIs, even if that
means embracing unsoundness in specific places.

The TypeScript language is defined in a careful, clear, but informal docu-
ment [11]. Naturally, this document contains certain ambiguities. For example,
the language permits subtyping recursive types; the literature contains several
rules for subtyping recursive types, not all sound, and the document does not
say exactly which is employed. Therefore, it may be difficult to know exactly
what is the type system, and in what ways it is sound or unsound.

Nevertheless, the world of unsoundness is not a shapeless, unintelligible mess,
and unsound languages are not all equally bad (nor all equally good). In classical
logic, any two inconsistent theories are equivalent. In programming, on the other
hand, unsoundness can arise from a great variety of sins (and virtues). At a
minimum, we may wish to distinguish blunders from thoughtful compromises—
many language designers and compiler writers are capable of both.

The goal of this paper is to describe the essence of TypeScript by giving a
precise definition of its type system on a core set of constructs of the language.
This definition clarifies ambiguities of the informal language documentation. It
has led to the discovery of a number of unintended inconsistencies and mistakes
both in the language specification and in the compiler, which we have reported to
the TypeScript team; fortunately, these have been relatively minor and easy to
correct. It also helps distinguish sound and unsound aspects of the type system:
it provides a basis for partial soundness theorems, and it isolates and explains
the sources of unsoundness.

Specifically, in this paper, we identify various core calculi, define precisely their
typing rules and, where possible, prove properties of these rules, or discuss why we
cannot. The calculi correspondprecisely to TypeScript in that every valid program
in a given calculus is literally an executable TypeScript program. Since our work

Understanding TypeScript 259

took place before the release of TypeScript 1.0, we based it on earlier versions, in
particular TypeScript 0.9.5, which is almost identical to TypeScript 1.0 in most
respects; the main differences concern generics. As the design of generics evolved
until quite recently, in this paper we restrict attention to the non-generic fragment.
Fortunately, for the most part, generics are an orthogonal extension.

The rest of the paper is organized as follows: In §2 we give an informal overview
of the design goals of TypeScript. In §3 we give the syntax for a core, feather-
weight calculus, FTS. In §4 we define safeFTS, a safe, featherweight fragment
of TypeScript, by giving details of a type system. In §5 we give an operational
semantics for FTS and show how safeFTS satisfies a type soundness property.
In §6 we extend the type system of safeFTS obtaining a calculus we refer to as
‘production’ FTS, or prodFTS for short. This calculus should be thought of as the
featherweight fragment of the full TypeScript language, so it is not statically type
sound, by design. We characterize the unsound extensions to help understand
why the language designers added them. In §7 we give an alternative formula-
tion of the assignment compatibility relation for prodFTS that is analogous to
the consistent-subtyping relation of Siek and Taha [14]. We are able to prove
that this relation is equal to our original assignment compatibility relation. We
briefly review related work in §8 and conclude in §9.

2 The Design of TypeScript

The primary goal of TypeScript is to give a statically typed experience to
JavaScript development. A syntactic superset of JavaScript, it adds syntax for
declaring and expressing types, for annotating properties, variables, parameters
and return values with types, and for asserting the type of an expression. This
paper’s main aim is to formalize these type-system extensions.

TypeScript also adds a number of new language constructs, such as classes,
modules, and lambda expressions. The TypeScript compiler implements these
constructs by translation to JavaScript (EcmaScript 5). However, these con-
structs are essentially back-ports of upcoming (EcmaScript 6) JavaScript fea-
tures and, although they interact meaningfully with the type system, they do
not affect its fundamental characteristics.

The intention of TypeScript is not to be a new programming language in its
own right, but to enhance and support JavaScript development. Accordingly, a
key design goal of the type system is to support current JavaScript styles and
idioms, and to be applicable to the vast majority of the many existing—and
very popular—JavaScript libraries. This goal leads to a number of distinctive
properties of the type system:

Full erasure: The types of a TypeScript program leave no trace in the
JavaScript emitted by the compiler. There are no run-time representations of
types, and hence no run-time type checking. Current dynamic techniques for
“type checking” in JavaScript programs, such as checking for the presence of
certain properties, or the values of certain strings, may not be perfect, but
good enough.

260 G. Bierman, M. Abadi, and M. Torgersen

Structural types: The TypeScript type system is structural rather than nom-
inal. Whilst structural type systems are common in formal descriptions of
object-oriented languages [1], most industrial mainstream languages, such as
Java and C�, are nominal. However, structural typing may be the only rea-
sonable fit for JavaScript programming, where objects are often built from
scratch (not from classes), and used purely based on their expected shape.

Unified object types: In JavaScript, objects, functions, constructors, and ar-
rays are not separate kinds of values: a given object can simultaneously play
several of these roles. Therefore, object types in TypeScript can not only de-
scribe members but also contain call, constructor, and indexing signatures,
describing the different ways the object can be used. In Featherweight Type-
Script, for simplicity, we include only call signatures; constructor and index
signatures are broadly similar.

Type inference: TypeScript relies on type inference in order to minimize the
number of type annotations that programmers need to provide explicitly.
JavaScript is a pretty terse language, and the logic shouldn’t be obscured
by excessive new syntax. In practice, often only a small number of type
annotations need to be given to allow the compiler to infer meaningful type
signatures.

Gradual typing: TypeScript is an example of a gradual type system [14],
where parts of a program are statically typed, and others dynamically typed
through the use of a distinguished dynamic type, written any. Gradual typ-
ing is typically implemented using run-time casts, but that is not practical in
TypeScript, because of type erasure. As a result, typing errors not identified
statically may remain undetected at run-time.

The last point is particularly interesting: it follows from the view that an
unsound type system can still be extremely useful. The significant initial uptake
of TypeScript certainly suggests that this is the case. While the type system
can be wrong about the shape of run-time structures, the experience thus far
indicates that it usually won’t be. The type system may not be good enough
for applications that require precise guarantees (e.g., as a basis for performance
optimizations, or for security), but it is more than adequate for finding and pre-
venting many bugs, and, as importantly, for powering a comprehensive and reli-
able tooling experience of auto-completion, hover tips, navigation, exploration,
and refactoring.

In addition to gradual typing, a few other design decisions deliberately lead
to type holes and contribute to the unsoundness of the TypeScript type system.

Downcasting: The ability to explicitly downcast expressions is common in
most typed object-oriented languages. However, in these languages, a down-
cast is compiled to a dynamic check. In TypeScript, this is not the case, as no
trace of the type system is left in the emitted code. So incorrect downcasts
are not detected, and may lead to (trapped) run-time errors.

Covariance: TypeScript allows unsafe covariance of property types (despite
their mutability) and parameter types (in addition to the contravariance that
is the safe choice). Given the ridicule that other languages have endured for

Understanding TypeScript 261

this decision, it may seem like an odd choice, but there are significant and
sensible JavaScript patterns that just cannot be typed without covariance.

Indexing: A peculiar fact of JavaScript is that member access through dot
notation is just syntactic sugar for indexing with the member name as a
string. Full TypeScript permits specifying indexing signatures, but (in their
absence) allows indexing with any string. If the string is a literal that corre-
sponds to a property known to the type system, then the result will have the
type of that member (as usual with the dot notation). On the other hand, if
the string is not a literal, or does not correspond to a known member, then
the access is still allowed, and typed as any. Again, this aspect of TypeScript
corresponds to common JavaScript usage, and results in another hole in the
type system.

One further source of unsoundness may be the treatment of recursive definitions
of generic type operators. Deciding type equivalence and subtyping in a struc-
tural type system with such definitions is notoriously difficult. Some versions
of these problems are equivalent to the equivalence problem for deterministic
pushdown automata [16], which was proved decidable relatively recently [13],
and which remains a challenging research subject. We do not discuss these points
further because we focus on the non-generic fragment of TypeScript, as explained
above.

3 Featherweight TypeScript

In this section we define the syntax of a core calculus, Featherweight TypeScript
(FTS). As mentioned in the introduction, this core calculus covers the non-
generic part of TypeScript. To elucidate the design of TypeScript we will refactor
the type system into two parts, which we then add to FTS and consider the results
as two separate calculi: a ‘safe’ calculus containing none of the type holes, safeFTS
and a complete, ‘production’ calculus, prodFTS.

Analogously to Featherweight Java [10], our calculi are small and there is a
direct correspondence between our calculi and TypeScript: every safeFTS and
prodFTS program is literally an executable TypeScript program. (We also make
extensive use of the Featherweight Java ‘overbar’ notation.) However, our calculi
are considerably more expressive than Featherweight Java as we retain many
impure features that we view as essential to TypeScript programming, such as
assignments, variables, and statements.

In this section we define the syntax of our core calculus. The safeFTS type
system is defined in §4 and the prodFTS type system is defined in §6.

FTS expressions:

e, f ::= Expressions
x Identifier
l Literal
{ ā } Object literal
e=f Assignment operator

262 G. Bierman, M. Abadi, and M. Torgersen

e⊕ f Binary operator
e.n Property access
e[f] Computed property access
e(f̄) Function call

<T>e Type assertion
function c { s̄ } Function expression

a ::= n: e Property assignment
c ::= Call signature

(p̄) Parameter list

(p̄): T Parameter list with return type

p ::= Parameter
x Identifier

x:T Typed identifier

As TypeScript includes JavaScript as a sublanguage, thus Featherweight Type-
Script contains what can be thought of as Featherweight JavaScript.We highlight
in grey the constructs that are new to TypeScript and not part of JavaScript.

FTS expressions include literals, l, which can be a number n, a string s, or
one of the constants true, false, null, or undefined.2 We assume a number of
built-in binary operators, such as ===, >, <, and +. In the grammar we use ⊕
to range over all the binary operators, and do not specify them further as their
meaning is clear. We assume that x, y, and z range over valid identifiers and n

ranges over property names. We also assume that the set of identifiers includes
the distinguished identifier this which cannot be used as a formal parameter or
declared as a local.

FTS supports both property access and computed property access. Function
expressions extend those of JavaScript by optionally including parameter and re-
turn type annotations on call signatures. (TypeScript also features a more com-
pact ‘arrow’ form for function expressions; for example one can write (x) => x+1

instead of the more verbose function (x) { return x + 1; }.)

FTS statements:

s, t ::= Statement
e; Expression statement
if (e) {s̄} else {t̄} If statement
return; Return statement
return e; Return value statement
v; Variable statement

u, v ::= Variable declaration

var x:T Uninitialized typed variable declaration

var x:T = e Initialized typed variable declaration
var x Uninitialized variable declaration
var x = e Initialized variable declaration

2 JavaScript somewhat confusingly supports two primitive values: null (an object) and
undefined which, for example, is returned when accessing a non-existent property.

Understanding TypeScript 263

For the sake of compactness, we support conditional statements but not condi-
tional expressions. Variable declarations are extended from JavaScript to include
optional type annotations.

FTS types:

R, S, T ::= Type
any Any type
P Primitive type
O Object type

P ::= Primitive type
number Number
string String
boolean Boolean type
void Void type
Null Null type
Undefined Undefined type

O ::= Object type
I Interface type
L Literal type

L ::= { M̄ } Object type literal
M, N ::= Type member

n:T Property
(x̄: S̄): T Call signature

FTS types fall into three categories: primitive types, object types, and a dis-
tinguished type, written any.

The primitive types include the run-time primitive types of JavaScript: number
for 64 bit IEEE 754 floating point numbers, string for Unicode UTF-16 strings,
and boolean to denote the boolean values. The void type denotes an absence of
a value, which arises from running a function that simply returns without giving
a result. There are no values of this type. There are two further types, Null and
Undefined, that are expressible but not denotable; we write them in italics to
further emphasize their special status. In other words, these two types cannot
be referenced in valid TypeScript programs, but they arise within the typing
process.

FTS object types consist of interface types and literal types. For compactness,
we do not support classes in FTS. At the level of the type system, classes are
secondary, and do not add any significant new issues, but complicate the formal-
ization of the language and the operational semantics. For that reason we omit
them, but do keep interfaces. Similarly we drop array, function, and constructor
type literals. FTS supports object type literals, whose type members can include
properties and call signatures. The inclusion of call signature properties enable
us to encode function literal types; for example the type (x:S) => T can be en-
coded as the type {(x:S): T}. We refer to an object type literal that contains a
call signature as a callable type, and we assume a predicate callable that returns

264 G. Bierman, M. Abadi, and M. Torgersen

true if the type contains a call signature.3 It is important to note that the type
{ } (i.e., the empty object type literal) is a valid type. In addition, TypeScript
has a number of predefined interfaces that are always in scope in TypeScript
programs. For the purposes of this paper, these interfaces are Object, Function,
String, Number, and Boolean.

FTS declaration:

D ::= Interface declaration

interface I { M̄ }

interface I extends Ī { M̄ } (Ī non-empty)

FTS supports only one form of declaration: an interface. An interface allows a
name to be associated with an object type. Thus, a declaration interface I { M̄ }

associates with the name I the object type literal { M̄ }. However, a couple
of subtleties arise. First, interfaces can be recursive; and indeed a collection of
interface declarations can be mutually recursive. Also, interfaces can inherit from
zero or more base types (which, in the case of FTS must be interfaces). In this
case an interface has all the members defined in its immediate declaration and
furthermore all the members of the base types.

In TypeScript this process of inheritance is further complicated by the notion
of an interface hiding members of its base types, but for FTS we shall make the
simplifying assumption that no hiding is possible. We do not model the notion
of private members; in FTS all members are public.

An interface table Σ is a map from an interface name I to an interface decla-
ration D. A program is then a pair (Σ, s̄) of an interface table and a sequence of
statements. In order to reduce notational overload, we assume a single fixed inter-
face table Σ. The interface table induces relationships between types (subtyping
and assignment compatibility); these relations are defined in later sections.

The given interface table must satisfy some familiar sanity conditions:

1. Σ(I) = interface I . . . for every I ∈ dom(Σ);
2. for every interface name I appearing anywhere in Σ, it is the case that

I ∈ dom(Σ); and
3. there are no cycles in the dependency graph induced by the extends clauses

of the interface declarations defined in Σ.

This last point rules out declarations such as the following:

// Error: Self-cyclic extends clause

interface I extends I { ... }

// Error: Cyclic extends clauses

interface J extends K { ... }

interface K extends J { ... }

3 In FTS we do not support functions with multiple call signatures and thus we ignore
the process of overloading resolution in TypeScript.

Understanding TypeScript 265

Throughout the rest of the paper, we write Γ to denote a type environment,
which is a function from identifiers to types. We write Γ, x : T to denote the
extension of the type environment Γ with the mapping of identifier x to type T.
This extension is defined only if x �∈ dom(Γ). In some cases we need to override
a function mapping; we write Γ � x : T to denote the function that maps x to T,
and otherwise maps an identifier y �= x to Γ (y).

4 Safe Featherweight TypeScript (safeFTS)

In this section we define the safeFTS calculus which adds a type system to the
FTS calculus defined in the previous section. As suggested by its name, this type
system, although a subsystem of the full TypeScript type system, has familiar
safety properties. (These properties are treated in §5.)

Our first step is to define an important type relation in TypeScript: assignment
compatibility [11, §3.8.3]. This relation is written S � T and captures the intuition
that a value of type S can be assigned to a value of type T. However, the presence
of interfaces immediately makes this relation a little tricky to define. For example,
consider the following interface declaration.

interface I {

a : number,

(x: string): I

}

As TypeScript has a structural type system, this actually defines a type I which
is described by the following equation.

I = { a : number, (x: string): I }

A value of type I is an object with a property a of type number, and a function
that maps strings to values of type I. Clearly this is equivalent to an object
with a property a of type number, and a function that maps strings to objects
with a property a of type number, and a function that maps strings to values of
type I, and so on, ad infinitum. The language specification notes this potential
infinite expansion [11, §3.8.1] but gives few details about how it is to be dealt
with. (Indeed, the discussion of types excludes any mention of interface names,
which are assumed to have been replaced by their definitions.)

Fortunately, this equi-recursive treatment of recursive types has a pleasant,
but slightly less well-known formalization that views types as (finite or infinite)
trees, uses greatest fixed points to define type relationships, and coinduction as
a proof technique. We give only the basic definitions but the excellent survey
article [6] offers further details.

We represent types as possibly infinite trees, with nodes labelled by a sym-
bol from the set O = {any, null, undefined, boolean, number, string, {},→}. The
branches are labelled with a name taken from the set B = X ∪ N ∪ {ret, cs},
where X is the set of FTS identifiers, N is the set of FTS property names, and
ret �∈ X and cs�∈ N are distinguished names (used to signify a return type and
a call signature). We write B� for the set of sequences of elements b ∈ B. The

266 G. Bierman, M. Abadi, and M. Torgersen

empty sequence is written •, and if π and π′ are sequences, then we write π · π′

for the concatenation of π and π′.

Definition 1. A tree type is a partial function T : B� ⇀ O such that:

– T(•) is defined.
– If T(π · σ) is defined then T(π) is defined.
– If T(π) = {} then ∃P ⊆ (N∪{cs}).P = {n1, . . . , np} such that T(π·n1), . . . , T(π·

np) are defined and ∀b ∈ B.b �∈ P implies T(π · b) is undefined.
– If T(π) =→ then ∃X ⊆ X.X = {x1, . . . , xp} such that T(π · x1), . . . , T(π · xp)

and T(π · ret) are defined and ∀b ∈ B.b �∈ X implies T(π · b) is undefined.
– If T(π) ∈ {any, Null, Undefined, boolean, number, string} then ∀b ∈ B.T(π ·b)

is undefined.

The set of all tree types is written T . For notational convenience, we write any for
the tree T with T(•) = any, and likewise for the other nullary type constructors.
If T1 and T2 are types, then we write {n1:T1,n2:T2} for the tree type T such
that T(•) = {}, T(n1) = T1, and T(n2) = T2. Similarly, if T1 and T2 are types,
then we write {(x:T1): T2} for the tree type T such that T(•) = {}, T(cs) =→,
T(cs · x) = T1 and T(cs · ret) = T2. We restrict our attention to finitely branching
trees, but trees may well still be infinite.

Definition 2. Two tree types S and T are assignment compatible if the pair (S, T)
is in the greatest fixed point of the following function A : P(T ×T)→ P(T ×T).

A(R) = {(S, S) | S
 $} ∪ {(S, any) | S
 $} ∪ {(Undefined, T) | T
 $}
∪ {(Null, T) | T
 $ and T �= Undefined} ∪ {(P, T) | (I(P), T) ∈ R}
∪ {({ M̄0, M̄1 }, { M̄2 }) | { M̄0, M̄1 }
 $ and M̄1 ∼ M̄2}

where n1:T1 ∼ n2:T2 if n1 ≡ n2 and T1 ≡ T2

(x̄:S̄):R0 ∼ (ȳ:T̄):R1 if (T̄, S̄) ∈ R, R1 �= void and (R0, R1) ∈ R
(x̄:S̄):R ∼ (ȳ:T̄):void if (T̄, S̄) ∈ R

In this definition we make use of a wellformedness predicate on types, written
S
 $, whose simple definition we omit for lack of space. We also make use of a
helper function, I, to replace a primitive type (boolean, number, string) with its
associated interface type (Boolean, Number, String, respectively).

We can also define assignment compatibility using a familiar collection of
inference rules, but it should be noted this is a coinductively defined relation.
We use double horizontal lines to emphasize this distinction.

safeFTS assignment compatibility: S � T and M0 � M1

S
 $
S � S
==== [A-Refl]

S
 $
S � any
======= [A-AnyR]

T
 $
Undefined � T
============== [A-Undef]

T
 $ T �= Undefined

Null � T
======================= [A-Null]

I(P) � T

P � T
======== [A-Prim]

Understanding TypeScript 267

{ M̄0,M̄1 }
 $ M̄1 � M̄2

{ M̄0,M̄1 } � { M̄2 }
======================== [A-Object]

n:T � n:T [A-Prop]

T̄ � S̄ R1 �= void R0 � R1

(x̄:S̄):R0 � (ȳ:T̄):R1
============================== [A-CS]

T̄ � S̄ R
 $
(x̄:S̄):R � (ȳ:T̄):void
==================== [A-CS-Void]

Rule [A-Refl] states that any type can be assigned to itself, and rule [A-AnyR]
that any type can be assigned to any. In rule [A-Undef] the type Undefined

can be assigned to any type; and in rule [A-Null] the type Null can be assigned
to any type except Undefined. The effect of these rules is that, when viewing
assignment compatibility as an order, Undefined is the least type, Null is be-
low any user-defined type, and that all types are below any, which is the top
type. Rule [A-Prop] states that assignment compatibility is invariant on prop-
erty members, and rules [A-CS] and [A-CS-Void] capture the fact that assignment
compatibility is contra-/co-variant on call signatures.

Note that there is no explicit transitivity rule for assignment compatibility,
but for safeFTS it is derivable.

Lemma 1 (Transitivity derived rule)

1. If S � T and T � U then S � U

2. If M0 � M1 and M1 � M2 then M0 � M2

The proof of this lemma is analogous to that of Gapeyev et al.’s Theorem 4.7 [6].
The type system for TypeScript, and hence safeFTS, consists of two inter-

defined typing relations: one where type information is inferred and one where
some type context is taken into account when a type is inferred. In this respect,
TypeScript is reminiscent of local type inference systems [12], but the detail is
different. The first relation is written Γ
 e : T and is read “given type environ-
ment Γ , the expression e has type T.” The second relation, written Γ
 e ↓ S : T,
is read “given type environment Γ , the expression e in the context of type S

has type T.” This relation is called ‘contextual typing’ in the language specifica-
tion [11, §4.18].
Expression typing: Γ � e : T

[I-Id]
Γ, x : T � x : T

[I-Number]
Γ � n : number

[I-String]
Γ � s : string

[I-Bool]
Γ � true, false : boolean

[I-Null]
Γ � null : Null

[I-Undefined]
Γ � undefined : Undefined

[I-ObLit] Γ � ē : T̄
Γ � { n̄: ē } : { n̄: T̄ }

[I-Assign]
Γ � e : S Γ � f ↓ S : T T � S

Γ � e = f : T

[I-Op]
Γ � e : S0 Γ � f : S1 S0 ⊕ S1 = T

Γ � e⊕ f : T

268 G. Bierman, M. Abadi, and M. Torgersen

[I-Prop]
Γ � e : S lookup(S, n) = T

Γ � e.n : T

[I-CompProp]
Γ � e : S S � Object Γ � f : string

Γ � e[f] : any

[I-Call]
Γ � e : { (x̄: S̄): R } Γ � f̄ ↓ S̄ : T̄ T̄ � S̄

Γ � e(f̄) : R

[I-Assert]
Γ � e : S S � T

Γ � <T>e : T

[I-Func1]
Γ1, this : any, |p̄| � getVars(s̄) � Γ2 Γ2 � s̄ ↓ T : R̄

Γ1 � function (p̄): T { s̄ } : { (|p̄|): return(R̄) }

[I-Func2]
Γ1, this : any, |p̄| � getVars(s̄) � Γ2 Γ2 � s̄ : R̄

Γ1 � function (p̄) { s̄ } : { (|p̄|): return(R̄) }

On the whole, these rules are routine. In rule [I-Assign], the expression e = f

has type T, if the subexpression e has some type S and the subexpression f in the
context of S has type T. We also check that type T is assignment compatible with
type S(for reasons that should become clearer once contextual typing is defined).

In rule [I-Op], when typing the use of a built-in binary operator ⊕, we overload
notation and use a binary (partial) function ⊕ to calculate the return type given
the types of the two arguments. Interestingly, the current language specification
states that certain combinations of types should be considered both an error and
yield the return type any. The exact details of these type functions [11, §4.15] are
omitted from this paper as they are somewhat orthogonal to our main concerns.

Rule [I-Prop] details typing for property access. It makes use of an auxiliary,
partial function lookup(S, n) that returns the type of property n, if it exists, of
a type S. This process is a little subtle as TypeScript allows primitive types to
have properties, and all object types inherit properties from the Object interface.
The auxiliary function is defined for safeFTS as follows:4

lookup(S, n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lookup(Number, n) if S = number

lookup(Boolean, n) if S = boolean

lookup(String, n) if S = string

T if S = { M̄0,n:T,M̄1 }

lookup(Object, n) if S = { M̄ } and n /∈ M̄

In rule [I-CompProp] a computed property expression e[f] has type any if
subexpression e has type S (which must be assignable to the type Object) and
subexpression f has type string.

In rule [I-Call] a function call e(f̄) has type R if the subexpression e has the call
signature type { (x̄: S̄): R }. We also check that the arguments f̄ in the context

4 TypeScript also allows all callable object types to inherit properties from the
Function interface.

Understanding TypeScript 269

of types S̄ have types T̄, and that types T̄ are assignment compatible with types
S̄.

In rule [I-Assert] a type assertion <T>e has type T if subexpression e has type S

where type S is assignable to T. In safeFTS the only asserts permitted are those
that are known to be correct.

Rules [I-Func1] and [I-Func2] address typing a function expression. Both rules
assume that the type of this in a function expression is any. Both rules also
make use of an auxiliary function | · | to extract types from the parameters in a
call signature. If a parameter does not have a type annotation, then TypeScript
assumes that it is of type any. One consequence of this design is that TypeScript
does not try to infer types for the parameters of a function expression.

var fact = function (x) {

if (x == 0) { return 1; }

else { return x * fact(x - 1); }

}; // infers type { (x:any): number }

Both rules run into an “awful” feature (using the terminology of Crockford [5])
inherited from JavaScript: all variables declared in a function body are in scope
regardless of nesting levels, order, or even how many times they are declared.
The whole function body (except for functions nested inside it) is treated as a
flat declaration space. In other words, JavaScript does not have block scoping.
Thus the following (buggy) JavaScript code:

var scope = function (p) {

var y = 1;

var a = [y, x, z];

var x = 2;

if (test(p)) { var z = 3; }

else { var z = 4; var w = 5; }

return w + a[2];

};

is treated as if it had instead been written as follows.

var scope = function (p) {

var y = 1;

var x; var z; var w; // implicit

var a = [y, x, z];

var x = 2;

if (test(p)) { var z = 3; }

else { var z = 4; var w = 5; }

return w + a[2];

};

At the level of typing this means that when typing a function expression, we
need two phases: first, we find the types of all the local variables declared in
the function body; and second, we then type the function body using the type
environment extended with the types determined from the first phase.

There is a further complication as TypeScript also infers types of local vari-
ables with initializers. Furthermore, TypeScript, again following JavaScript, sup-
ports mutually recursive variable declarations. We assume a function getVars(s̄)

270 G. Bierman, M. Abadi, and M. Torgersen

that returns the variable declarations in the scope of the sequence of statements
s̄. This function needs to deal with the problem of a collection of untyped ini-
tialized variable declarations that depend on each other. In the case where such
a collection is cyclic, the language specification states that they should all be
treated as if they were explicitly typed as any. A non-cyclic collection of untyped
variable declarations are reordered in reverse dependency order.

Given this sequence of variable declarations, we define a judgement written
Γ1
 v̄ � Γ2 to extend a given type environment Γ1 with the type information
contained in the variable declarations v̄ yielding a new type environment Γ2.
The chief concern is dealing with repeated variable declarations. Such repetition
is permitted in TypeScript provided that the multiple declarations associate the
same type with the variable [11, §5.1].
Environment extension: Γ1 � v̄ � Γ2

Γ � • � Γ

dupOK (Γ1, x : T) Γ1 � (x : T) � v̄ � Γ2

Γ1 � var x: T; v̄ � Γ2

dupOK (Γ1, x : any) Γ1 � (x : any) � v̄ � Γ2

Γ1 � var x; v̄ � Γ2

dupOK (Γ1, x : T) Γ1 � (x : T) � v̄ � Γ2

Γ1 � var x: T = e; v̄ � Γ2

Γ1 � e : T dupOK (Γ1, x : T) Γ1 � (x : T) � v̄ � Γ2

Γ1 � var x = e; v̄ � Γ2

We use the following predicate to detect duplicates:

dupOK (Γ, x : T) =

{
true if x �∈ dom(Γ) or Γ (x) = T

false otherwise

Returning to the typing rules [I-Func1] and [I-Func2] we use an auxiliary func-
tion return(R̄) to calculate the overall return type given the types R̄ inferred from
the return statements in the body of the function. This function is defined as
follows.

return(R̄) =

{
void if R̄ = •
widen(S) if S = bct(R̄)

In calculating the return type we make use of two important functions on
types. The first function, widen(T), calculates the widened form [11, §3.9] of a
type T. This is the type T with all occurrences of the expressible but not denotable
types, Null and Undefined, replaced by the type any.

The second function bct(S̄) calculates the best common type [11, §3.10] of a
sequence of types S̄ and is defined to be a type taken from the sequence S̄ such
that all the other types in the sequence can be assigned to it. For example, the
best common type of the primitive type number and the empty object type { }

is the empty object type; whereas the types number and string have no best
common type.

Understanding TypeScript 271

In a small number of situations, more precision can be gained by using ex-
plicit type information when typing expressions. For example, in TypeScript the
expression function(s) { return s.length; } has type {(s: any): any}. But, in
the context of the explicitly typed declaration

var f: (s:string) => number;

within the assignment expression f = function(s) { return s.length; } we
should type the function knowing that the parameter s has the type string.
Moreover, the information flow can be more than one-way. Thus given the dec-
laration

var g: (s:string) => any;

the assignment expression g = function(s) { return s.length; } actually has
the type (s:string) => number.

As mentioned earlier, the contextual typing relation is written Γ
 e ↓ S : T,
and defined as follows.

Expression contextual typing Γ � e ↓ S : T and Γ � a ↓ L : M

[C-ObLit]
Γ � ā ↓ L : M̄

Γ � { ā } ↓ L : { M̄ }

[C-PA1]
(x: S) ∈ M̄ Γ � e ↓ S : T

Γ � (x: e) ↓ { M̄ } : (x: T)
[C-PA2]

(x: S) �∈ M̄ Γ � e : T

Γ � (x: e) ↓ { M̄ } : (x: T)

[C-Func]
Γ, x̄ : S̄, this:any � s̄ ↓ T : R̄ R = return(R̄)

Γ � function (x̄) {s̄} ↓ { (ȳ: S̄): T } : { (ȳ: S̄): R }

[C-Inf] Γ � e : T
Γ � e ↓ S : T

In rule [C-ObLit], in order to contextually type the the object literal { ā },
we contextually type the property assignments ā. In rule [C-PA1] the property
assignment x: e in the context of the object type literal { M̄ } (which supports
property x at type S) has type x: T where the subexpression e has type T in the
context of type S. Rule [C-PA2] covers the case where the contextual type does not
support the property x. In this case the type is inferred from the subexpression e.

In rule [C-Func] the function expression function (x̄) {s̄} in the context of the
type { (ȳ: S̄): T } (where the length of the sequences x̄, ȳ and S̄ are equal) has
the type { (ȳ: S̄): R } if the function body s̄ has the types R̄ in the context of
type T̄ and R is the result of the calculating the return type from the sequence of
types R̄. Rule [C-Inf] applies only if the expression e is not a function expression
or an object literal, and asserts that expression e in the context of type S has
type T simply if e has type T; the contextual type is ignored.

Thus contextual typing is highly (and to the authors’ minds, uncomfortably)
syntax dependent. For example, a misplaced pair of brackets can affect the con-
textual typing of a TypeScript expression [11, §4.18].

272 G. Bierman, M. Abadi, and M. Torgersen

var t1: (s: string) => any;

var t2 = (t1 = function (s) { return s.length; });

// Contextual typing! Infers { (s: string): number }

var t3 = (t1 = (function (s) { return s.length; }));

// No contextual typing. Infers { (s: any): any }

The typing judgements for safeFTS have the pleasant property of unicity of
typing; in other words, they define functions not relations.

Lemma 2 (Unicity of typing)

1. If Γ
 e : T1 and Γ
 e : T2 then T1 = T2.
2. If Γ
 e ↓ S : T1 and Γ
 e ↓ S : T2 then T1 = T2.

The proof of this lemma is by induction on typing derivations.
In safeFTS there are two typing relations for statements. We find it convenient

to treat sequences of statements rather than single statements. The first typing
relation, written Γ
 s̄ : R̄, is read “given type environment Γ , the sequence of
statements s̄ has (return) types R̄.” The intention is that this judgement asserts
both that the statements s̄ are well-typed and that the types R̄ are the types
inferred for any return statements in the sequence (so the length of the type
sequence R̄ is always less than or equal to the length of the statement sequence
s̄). In line with the earlier discussion of scoping in JavaScript, it is assumed that
when typing a sequence of statements s̄ the type environment contains types for
all the identifiers declared in s̄.

Statement sequence typing: Γ � s̄ : R̄

[I-EmpSeq]
Γ � • : • [I-ExpSt] Γ � e : S Γ � s̄ : R̄

Γ � e; s̄ : R̄

[I-If]
Γ � e : S Γ � t̄1 : T̄1 Γ � t̄2 : T̄2 Γ � s̄ : R̄

Γ � if (e) {t̄1} else {t̄2} s̄ : T̄1, T̄2, R̄

[I-Return] Γ � s̄ : R̄
Γ � return; s̄ : void, R̄

[I-ReturnVal] Γ � e : T Γ � s̄ : R̄
Γ � return e; s̄ : T, R̄

[I-UTVarDec]
Γ (x) = S Γ � s̄ : R̄

Γ � var x:S; s̄ : R̄

[I-ITVarDec]
Γ (x) = S Γ � e ↓ S : T T � S Γ � s̄ : R̄

Γ � var x:S = e; s̄ : R̄

[I-UVarDec]
Γ (x) = any Γ � s̄ : R̄

Γ � var x; s̄ : R̄

[I-IVarDec]
x ∈ dom(Γ) Γ � e : S Γ � x:widen(S) � s̄ : R̄

Γ � var x = e; s̄ : R̄

Rule [I-EmpSeq] asserts that the empty sequence is well typed. The rest of
the rules are defined by the form of the first statement in the statement se-
quence; they are routine, so we just describe the typing of return statements.

Understanding TypeScript 273

In rule [I-Return] a return statement with no expression is well typed and has
return type void. In rule [I-ReturnVal] a return statement return e is well typed
and has the return type T if the expression e is of type T.

The second type relation for statement sequences is the analogue of contextual
typing for expressions. It is written Γ
 s̄ ↓ T : R̄ and is read “given type environ-
ment Γ , the sequence of statements s̄ in the context of type T has (return) types
R̄.” The intention is that this judgement captures both that the statements s̄ are
well typed and that the types R̄ are the types inferred in the context of type T

for any return statements in the sequence.

Statement sequence contextual typing: Γ � s̄ ↓ T : R̄

[C-EmpSeq]
Γ � • ↓ T : • [C-ExpSt]

Γ � e : S Γ � s̄ ↓ T : R̄

Γ � e; s̄ ↓ T : R̄

[C-If]
Γ � e : S Γ � t̄1 ↓ T : R̄1 Γ � t̄2 ↓ T : R̄2 Γ � s̄ ↓ T : R̄3

Γ � if (e) {t̄1} else {t̄2} s̄ ↓ T : R̄1, R̄2, R̄3

[C-Ret]
Γ � s̄ ↓ T : R̄

Γ � return; s̄ ↓ T : R̄
[C-RetVal]

Γ � e ↓ T : S S � T Γ � s̄ ↓ T : R̄

Γ � return e; s̄ ↓ T : S, R̄

[C-UTVarDec]
Γ (x) = S Γ � s̄ ↓ T : R̄

Γ � var x:S; s̄ ↓ T : R̄

[C-ITVarDec]
Γ (x) = S Γ � e ↓ S : S1 S1 � S Γ � s̄ ↓ T : R̄

Γ � var x:S = e; s̄ ↓ T : R̄

[C-UVarDec]
Γ (x) = any Γ � s̄ ↓ T : R̄

Γ � var x; s̄ ↓ T : R̄

[C-IVarDec]
Γ (x) = any Γ � e : S Γ � x:widen(S) � s̄ ↓ T : R̄

Γ � var x = e; s̄ ↓ T : R̄

Most of these rules are routine; the two important rules involve return state-
ments. In rule [C-Ret] we capture the fact that JavaScript permits functions
that return values to also contain return statements with no expressions. In
rule [C-RetVal] a return statement return e is well typed and has return type S

in the context of type T if the expression e in the context of type T has type S

and that type S is assignable to type T.

5 Operational Semantics

As explained in the introduction, the TypeScript compiler emits JavaScript code
with no trace of the type system in the emitted code. So, the operational be-
haviour of TypeScript is just the behaviour of the underlying JavaScript im-
plementation. However, in order to show that the safeFTS type system has the

274 G. Bierman, M. Abadi, and M. Torgersen

desired safety properties we will give an operational semantics for TypeScript
directly. We take as our starting point the operational semantics of Gardner et
al. [7], although we make a number of simplifications.

A heap, H , is a partial function that maps a location l to a heap object o.
We assume a distinguished location null, which is not permitted to be in the
domain of a heap. A heap object o is either an object map (a partial function
from variables to values, representing an object literal) or a closure. A variable x
is either a program variable x, a property name n or the internal property name
@this. A value v is either a location l or a literal l. A closure is a pair consisting
of a lambda expression (where we abbreviate function (x̄) { s̄ } as λx̄.{ s̄ }) and
a scope chain L (defined below).

We denote the empty heap by emp, a heap cell by l �→ o, the union of two
disjoint heaps by H1 ∗H2, and a heap lookup by H(l, x). We write heap update
as H [l �→ o], and where o is an object map, we use the shorthand H [(l, x) �→ v]
to denote an update/extension to the x element of the object map o.

JavaScript’s dynamic semantics is complicated by the treatment of variables,
which are not stored in an environment, but instead are resolved dynamically
against an implicit scope object. A scope chain, L, is a list of locations of the
scope objects, where we write l : L for the list resulting from concatenating l to
the scope chain L. As safeFTS does not support new expressions, for simplicity,
we do not model prototype lists. Function calls cause fresh local scope objects
to be placed at the beginning of a scope chain and removed when the function
body has been evaluated. All programs are evaluated with respect to a default
scope chain [lg] where lg is the location of the global JavaScript object.

The lookup function σ returns the location of the first scope object in the
scope chain to define a given variable:

σ(H, l : L, x)
def
=

{
l if H(l, x) ↓
σ(H,L, x) otherwise

A result r can be either a value or a reference, which is a pair of a location
and a variable; we make use of a function γ where γ(H, r) returns r if r is a
value, and if it is a reference (l, x) then it returns H(l, x) if defined, or undefined
if not.

The evaluation relation for FTS is written 〈H1, L, e〉 ⇓ 〈H2, r〉, which can be
read “given initial heap H1 and scope chain L, the expression e evaluates to a
modified heap H2 and a result r.” We sometimes wish to dereference the result
of evaluation, so we use the following shorthand 〈H1, L, e〉 ⇓v 〈H2, v〉 to mean
that there exists a reference r such that 〈H1, L, e〉 ⇓ 〈H2, r〉 and γ(H2, r) = v.

Expression evaluation: 〈H1, L, e〉 ⇓ 〈H2, r〉

[E-Id]
σ(H,L, x) = l

〈H,L, x〉 ⇓ 〈H, (l, x)〉
[E-Lit]

〈H,L, l〉 ⇓ 〈H,l〉

Understanding TypeScript 275

[E-this]
σ(H,L,@this) = l1 H(l1,@this) = l

〈H,L, this〉 ⇓ 〈H, l〉

[E-ObLit]

H1 = H0 ∗ [l �→ new()]
〈H1, L, e1〉 ⇓v 〈H ′

1, v1〉 H2 = H ′
1[(l, n1) �→ v1]

· · · 〈Hm, L, em〉 ⇓v 〈H ′
m, vm〉 H = H ′

m[(l, nm) �→ vm]

〈H0, L, { n1:e1, . . . ,nm:em }〉 ⇓ 〈H, l〉

[E-AssignExp]
〈H0, L, e1〉 ⇓ 〈H1, (l, x)〉 〈H1, L, e2〉 ⇓v 〈H2, v〉

〈H0, L, e1 = e2〉 ⇓ 〈H2[(l, x) �→ v], v〉

[E-Op]
〈H0, L, e1〉 ⇓v 〈H1, l1〉 〈H1, L, e2〉 ⇓v 〈H2, l2〉

〈H0, L, e1 ⊕ e2〉 ⇓ 〈H2, l1 ⊕ l2〉

[E-Prop]
〈H0, L, e〉 ⇓v 〈H1, l〉 l �= null

〈H0, L, e.n〉 ⇓ 〈H1, (l, n)〉

[E-Prop’]
〈H0, L, e〉 ⇓v 〈H1, l〉 H2 = H1 ∗ [l �→ box (l)]

〈H0, L, e.n〉 ⇓ 〈H2, (l, n)〉

[E-CompProp]
〈H0, L, e〉 ⇓v 〈H1, l〉 l �= null 〈H1, L, f〉 ⇓v 〈H2, �n�〉

〈H0, L, e[f]〉 ⇓ 〈H2, (l, n)〉

[E-CompProp’]

〈H0, L, e〉 ⇓v 〈H1, l〉 H2 = H1 ∗ [l �→ box (l)]
〈H2, L, f〉 ⇓v 〈H3, �n�〉

〈H0, L, e[f]〉 ⇓ 〈H3, (l, n)〉

[E-Call]

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx̄.{s̄}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 · · · 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x̄, v̄, {s̄}, l2) 〈H ′, l : L1, s̄〉 ⇓ 〈H ′′, return v;〉

〈H0, L0, e(e1, . . . ,en)〉 ⇓ 〈H ′′, v〉

[E-CallUndef]

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx̄.{s̄}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 · · · 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x̄, v̄, {s̄}, l2) 〈H ′, l : L1, s̄〉 ⇓ 〈H ′′, return;〉

〈H0, L0, e(e1, . . . ,en)〉 ⇓ 〈H ′′, undefined〉

[E-Func]
H1 = H0 ∗ [l �→ 〈λx̄.{ s̄ }, L〉]

〈H0, L, function (x̄) { s̄ }〉 ⇓ 〈H1, l〉

[E-TypeAssert]
〈H0, L, e〉 ⇓ 〈H1, r1〉

〈H0, L, <T>e〉 ⇓ 〈H1, r1〉

Most of these rules are routine; Gardner et al. [7] give extensive details. We
restrict our attention to just a few of the more important rules. In rule [E-ObLit]
we create at fresh location l a new object map (using an auxiliary function
new) and update its elements in order. In rule [E-CompProp] we require that the

276 G. Bierman, M. Abadi, and M. Torgersen

property subexpression f evaluates to a string that denotes a name n; this string
we write as �n�. In rules [E-Prop’] and [E-CompProp’] we cover the case where
properties are accessed on primitive values (which are implicitly boxed, using an
auxiliary function box). In rule [E-Call] the important step is that we create a
fresh local scope object (stored at location l′) with which we evaluate the body
of the function. We make use of an auxiliary function This (taken from [7, §3.3])
that captures the behaviour of the this keyword, and an auxiliary function act
that builds the new scope object.

This(H, (l, x))
def
= l if H(l,@this) ↓; and This(H,v)

def
= lg otherwise

act(l, x̄, v̄, s̄, l′) def
= l �→ ({x̄ �→ v̄,@this �→ l′} ∗ defs(x̄, l, s̄))

The auxiliary function defs searches the statements s̄ for all the declared vari-
ables and makes them in scope in the current local scope object; this is the
operational counterpart to the “awful” feature of JavaScript scoping described
in §4. Rule [E-CallUndef] reflects the JavaScript semantics that functions that
do not specify a return value actually return the undefined value.

The evaluation relation for statement sequences is of the form 〈H0, L, s̄0〉 ⇓
〈H1, s〉 where s is a statement result, which is a statement of the form return;,
return v;, or ;. The rules for evaluating statements are routine and omitted.

In order to prove type soundness, we need to extend the notion of typing to the
operational semantics (in the style of [1,3]). A heap type Σ is a partial function
from locations to types (which are either function types or object literal types).
The statement of subject reduction then relies on a number of new judgements.
First, we need a well-formedness relation for a heap H , written H |= $. We also
need a judgement that a heap H and scope chain L are compatible, written
H,L |= $, which essentially means that all the scope objects in the scope chain
exist in the heap. We use a judgement written Σ |= H that captures that a
heap H is compatible with a heap type Σ. We also make use of a function
context(Σ,L) that builds a typing judgement corresponding to the variables in
the scope chain L, using their types stored in Σ. Using these judgements, we can
then write Σ |= 〈H,L, e〉 : T to mean Σ |= H , H,L |= $ and context(Σ,L)
 e : T.
Similarly we can define judgements Σ |= 〈H,L, e〉 ↓ S : T, Σ |= 〈H,L, s̄〉 : T̄
and Σ |= 〈H,L, s̄〉 ↓ S : T̄. Finally, we can define two judgements on results of
evaluation, written Σ |= 〈H, r〉 : T and Σ |= 〈H, r〉 ↓ S : T (along with variants
for statement results). We write Σ ⊆ Σ′ to mean that Σ′ is an extension of Σ
in the usual sense.

Theorem 1 (Subject reduction)

1. If Σ |= 〈H,L, e〉 : T and 〈H,L, e〉 ⇓ 〈H ′, r〉 then ∃Σ′, T′ such that Σ ⊆ Σ′, Σ′ |=
〈H ′, r〉 : T′ and T′ � T.

2. If Σ |= 〈H,L, e〉 ↓ S : T and 〈H,L, e〉 ⇓ 〈H ′, r〉 then ∃Σ′, T′ such that Σ ⊆ Σ′,
Σ′ |= 〈H ′, r〉 ↓ S : T′ and T′ � T.

3. If Σ |= 〈H,L, s̄〉 : T̄ and 〈H,L, s̄〉 ⇓ 〈H ′, s〉 then ∃Σ′, T′ such that Σ ⊆ Σ′, Σ′ |=
〈H ′, s〉 : T′ and T′ � return(T̄).

4. If Σ |= 〈H,L, s̄〉 ↓ S : T̄ and 〈H,L, s̄〉 ⇓ 〈H ′, s〉 then ∃Σ′, T′ such that Σ ⊆ Σ′,
Σ′ |= 〈H ′, s〉 ↓ S : T′ and T′ � return(T̄).

Understanding TypeScript 277

6 Production Featherweight TypeScript (prodFTS)

In this section we define prodFTS which can be viewed as the core calculus of the
full TypeScript language. We define it as a series of extensions to the type system
of safeFTS. Each of these extensions is unsound. We organize them according to
the source of unsoundness, along the lines suggested in §2.

6.1 Unchecked Downcasts

In addition to the upcasts allowed in safeFTS, prodFTS also supports downcasts.

Γ � e : S T � S

Γ � <T>e : T

Unlike in languages such as Java and C�, these downcasts are not automati-
cally checked at runtime, because all type information is erased by the compiler.
The following example illustrates this issue:

interface Shape { ... }

interface Circle extends Shape { ... }

interface Triangle extends Shape { ... }

function createShape(kind: string): Shape {

if (kind === "circle") return buildCircle();

if (kind === "triangle") return buildTriangle();

... }

var circle = <Circle> createShape("circle");

Here, the TypeScript type system will rely on the fact that, after the type asser-
tion, circle is of type Circle. The responsibility of guarding against erroneous
creation of, for example a Triangle, remains with the programmer. Should run-
time checks be needed, the TypeScript programmer would have to simulate them
using JavaScript’s introspection capabilities.

6.2 Unchecked Gradual Typing (and Unchecked Indexing)

TypeScript has a gradual type system in the style of Siek and Taha [14]. However,
unlike most languages with gradual type systems, dynamic checks are not made
to ensure safety (again, because types are removed by the compiler).

The key to gradual type systems is that the any type is treated specially. This
type serves as the boundary between the statically typed world (code typed
without reference to any) and the dynamically typed world. The fundamental
feature of any is that any type can be implicitly converted to any and any can be
implicitly converted to any other type. The former of these conversions is allowed
in safeFTS via the rule [A-AnyR]. prodFTS includes the following additional rule
in order to support conversions in the opposite direction:

T
 $
any � T
=======

278 G. Bierman, M. Abadi, and M. Torgersen

This extension to assignment compatibility is quite drastic. In particular, as-
signment compatibility is no longer transitive! For example, we now have that
string � any and any � boolean but not that string � boolean. Moreover, this
extension implies that assignment compatibility is not a good basis for deter-
mining best common types or for overloading resolution. Therefore, TypeScript
introduces a new type relation, called subtyping. In contrast to the definition
of assignment compatibility, it is not the case that any is a subtype of any
other type. In all other respects, however, subtyping is defined identically to as-
signment compatibility [11, §3.8.2]. Accordingly, in prodFTS, subtyping replaces
assignment compatibility in the definitions of best common types and for over-
loading resolution.

Furthermore, TypeScript allows the liberal use of subexpressions of type any.
(Such use is how gradual type systems permit the mixing of dynamic and
statically-typed code.) In particular, those subexpressions may be used for po-
tentially unsafe indexing. We capture this aspect of TypeScript by including the
following extra typing rules in prodFTS:

Γ � e : any

Γ � e.n : any

Γ � e : any Γ � f̄ : S̄

Γ � e(f̄) : any

Γ � e : any Γ � f : string

Γ � e[f] : any

Γ � e : T Γ � f : any

Γ � e[f] : any

Siek and Taha employ occurrences of these rules in order to inject runtime
checks into code, with the goal of ensuring that the code satisfies type contracts.
Once more, as TypeScript removes all type information, analogous checks are
not made in TypeScript, so runtime type errors are possible.

6.3 Unchecked Covariance

As mentioned in the introduction, TypeScript was designed as a language to
which existing JavaScript programmers could migrate in a seamless way. In par-
ticular, existing libraries and codebases can be given type signatures without
disturbing the source code. (An alternative approach would be to require pro-
grammers to restructure their code so particular features of some new type sys-
tem could be used to greater effect.) Therefore, common programming idioms
must be supported directly at the type level. One such idiom that occurs ex-
tensively in JavaScript codebases and thus is supported directly is covariance of
property and parameter types in function signatures. Although this idiom is not
in general safe, dynamic programmers frequently make safe use of it. For instance
(much as in [1]), consider a program that uses the types Person and Vegetarian.
In Person, a member eat takes arguments of type any; in Vegetarian, it takes ar-
guments of a type Vegetables, which is also the type of another member myLunch.
Covariance allows Vegetarian to be assignable to Person, and errors won’t arise
as long as objects of type Vegetarian are fed the contents of myLunch.

In prodFTS, we capture covariance via a revised notion of assignment compat-
ibility of members, with the following rules:

Understanding TypeScript 279

S � T

n:S � n:T
=========

S̄ ∼= T̄ R1 �= void R0 � R1

(x̄:S̄):R0 � (ȳ:T̄):R1
==============================

S̄ ∼= T̄ R
 $
(x̄:S̄):R � (ȳ:T̄):void
====================

The first rule permits covariance on member typing. The others permit call
signatures to be bivariant (either covariant or contravariant) in their argument

types and covariant in their result types (where S ∼= T
def
= S � T or T � S).

7 Connection to Gradual Typing

In this section, we aim to give precise substance to our claim that TypeScript
is a gradual type system in the style of Siek and Taha [14]. Specifically, we
define a notion of consistent-subtyping for TypeScript types, and prove that it is
equivalent to the notion of assignment compatibility in prodFTS, defined in the
previous section.

Our first step is to define a restriction operator on types and members. Basi-
cally, S|T masks off the parts of S that are unknown (i.e., any) in T.

S|T
def
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

any if T ≡ any

{ M̄0|M̄1
} if S ≡ { M̄0 } and T ≡ { M̄1,M̄2 }

{ M̄0|¯M2
,M̄1 } if S ≡ { M̄0,M̄1 } and T ≡ { M̄2 }

S otherwise

M0|M1

def
=

{
n : S|T if M0 ≡ n:S and M1 ≡ n:T

(x̄:S̄0|S̄1
):T0|T1

if M0 ≡ (x̄:S̄0):T0 and M1 ≡ (x̄:S̄1):T1

Next we introduce a simple subtyping relation. This relation, written S <: T
(and M0 <: M1 on members), gives no special status to the type any. It is covariant
in members and, for call signatures, bivariant in argument types and covariant
in return types. (We write S <:> T to mean either S <: T or T <: S.)

S � �
S <: S
=====

T � �
Undefined <: T
==============

T � � T �= Undefined

Null <: T
=======================

I(P) <: T

P <: T
========

{ M̄0,M̄1 } � � M̄1 <: M̄2

{ M̄0,M̄1 } <: { M̄2 }
=========================

S <: T

n:S <: n:T
==========

S̄ <:> T̄ R1 �= void R0 <: R1

(x̄:S̄):R0 <: (ȳ:T̄):R1
=====================================

S̄ <:> T̄ R � �
(x̄:S̄):R <: (ȳ:T̄):void
======================

Then, following Siek and Taha, we define consistent-subtyping, written S 	 T,
as S|T <: T|S. The following theorem expresses the equivalence of consistent-
subtyping and assignment compatibility. Its proof, which we omit, relies on
coinduction.

Theorem 2. S 	 T if and only if S � T.

280 G. Bierman, M. Abadi, and M. Torgersen

8 Related Work

Since JavaScript’s recent rise to prominence, there has been considerable work
on providing a suitable type system for the language. Here we can only mention
a subset of that work. Various research efforts have explored sound approaches
to this problem. Thiemann [17] proposed an early type system that uses single-
ton types and first-class record labels, and in the same year Anderson et al. [2]
proposed another type system with a focus on type inference. A number of oth-
ers have proposed systems of increasing complexity to deal with the complicated
programming patterns found in JavaScript; for example, Chugh et al. [4] em-
ployed nested refinements and heap types in DJS, and Guha et al. [9] proposed
a combination of a type system and a flow analysis.

Others have emphasized support for development at scale. In particular, like
TypeScript, the Dart language [8] relaxes soundness in order to support dynamic
programming. Dart is closely related to JavaScript, and can also compile directly
to JavaScript in such a way that all traces of the type system are removed.
However, unlike TypeScript, Dart is an entirely new language.

Whilst TypeScript favours convenience over soundness, our work can be used
as the basis for defining safe variants of TypeScript. Bhargavan et al. [15] ex-
tend a similar safe fragment with a new type to denote values from untrusted
JavaScript code and employ runtime type information instead of type erasure,
focusing on using type-driven wrappers to ensure important security properties.

Further afield, various dynamic languages have been extended with type sys-
tems. For instance, Typed Scheme [18] adds a type system to Scheme. It in-
troduces a notion of occurrence typing and combines a number of type system
features such as recursive types, union types, and polymorphism.

9 Conclusion

This paper describes and analyses the core of the TypeScript language, and in
particular its type system. The work that it represents has been useful in resolv-
ing ambiguities in the language definition, and in identifying minor unintended
inconsistencies and mistakes in the language implementation. It provides a ba-
sis for partial soundness theorems, and it isolates and accounts for sources of
unsoundness in the type system.

Beyond the details of this work (which are specific to TypeScript, and which
may perhaps change, as TypeScript develops further), we hope that our results
will contribute to the principled study of deliberate unsoundness. In this di-
rection, we believe that there are various opportunities for intriguing further
research. In particular, to the extent that any type system expresses program-
mer intent, we would expect that it could be useful in debugging, despite its
unsoundness. Research on blame, e.g., [19], might be helpful in this respect. It
may also be worthwhile to codify programmer guidance that would, over time,
reduce the reliance on dangerous typing rules. Static analysis tools may support
this guidance and complement a type system. These and related projects would

Understanding TypeScript 281

aim to look beyond sound language fragments: the principles of programming
languages may also help us understand and live with unsoundness.

References

1. Abadi, M., Cardelli, L.: A theory of objects. Springer (1996)
2. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for javaScript.

In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452. Springer, Hei-
delberg (2005)

3. Bierman, G., Parkinson, M., Pitts, A.: MJ: An imperative core calculus for Java
and Java with effects. Technical Report 563, University of Cambridge Computer
Laboratory (2003)

4. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proceedings
of OOSLA (2012)

5. Crockford, D.: JavaScript: The good parts. O’Reilly (2008)
6. Gapeyev, V., Levin, M., Pierce, B.: Recursive subtyping revealed. JFP 12(6), 511–

548 (2002)
7. Gardner, P., Maffeis, S., Smith, G.: Towards a program logic for JavaScript. In:

Proceedings of POPL (2013)
8. Google. Dart programming language, http://www.dartlang.org
9. Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing local control and state using flow

analysis. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 256–275. Springer,
Heidelberg (2011)

10. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

11. Microsoft Corporation. TypeScript Language Specification, 0.9.5 edn. (2014),
http://typescriptlang.org

12. Pierce, B., Turner, D.: Local type inference. In: Proceedings of POPL (1998)
13. Sénizergues, G.: The equivalence problem for deterministic pushdown automata

is decidable. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP
1997. LNCS, vol. 1256, pp. 671–681. Springer, Heidelberg (1997)

14. Siek, J.G., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007)

15. Swamy, N., Fournet, C., Rastogi, A., Bhargavan, K., Chen, J., Strub, P.-Y., Bier-
man, G.: Gradual typing embedded securely in JavaScript. In: Proceedings of
POPL (2014)

16. Solomon, M.H.: Type definitions with parameters. In: Proceedings of POPL (1978)
17. Thiemann, P.: Towards a type system for analyzing javaScript programs. In: Sagiv,

M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)
18. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed

Scheme. In: Proceedings of POPL (2008)
19. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.

(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009)

http://www.dartlang.org
http://typescriptlang.org

Sound and Complete Subtyping between

Coinductive Types for Object-Oriented
Languages�

Davide Ancona and Andrea Corradi

DIBRIS, Università di Genova, Italy
davide.ancona@unige.it, andrea.corradi@dibris.unige.it

Abstract. Structural subtyping is an important notion for effective
static type analysis; it can be defined either axiomatically by a collection
of subtyping rules, or by means of set inclusion between type interpre-
tations, following the more intuitive approach of semantic subtyping,
which allows simpler proofs of the expected properties of the subtyping
relation.

In object-oriented programming, recursive types are typically inter-
preted inductively; however, cyclic objects can be represented more pre-
cisely by coinductive types.

We study semantic subtyping between coinductive types with records
and unions, which are particularly interesting for object-oriented pro-
gramming, and develop and implement a sound and complete top-down
direct and effective algorithm for deciding it. To our knowledge, this is
the first proposal for a sound and complete top-down direct algorithm
for semantic subtyping between coinductive types.

1 Introduction

Subtyping between structural types is an essential notion for effective static type
analysis of object-oriented languages, and, in particular, of dynamically typed
languages like JavaScript and Python.

In most cases the subtyping relation is defined axiomatically, then algorithms
have to be defined and proved to be (at least) sound and complete (if the relation
is decidable) w.r.t. the given axioms. Such approaches have some drawbacks:
since the relation is specified in an axiomatic way, it may fail to convey the right
intuition behind it, or it may not be completely clear whether the definition fully
captures such an intuition (that is, if the axiomatization is sound and complete
w.r.t. some intended model); furthermore, proving even simple properties, like
transitivity, may be quite hard.

Semantic subtyping has been proposed as a possible solution to these problems
for XDuce [13] and �Duce [12], two statically typed domain specific languages
expressly designed for type safe manipulation of XML documents. In semantic

� Partly funded by the project MIUR CINA - Compositionality, Interaction, Negoti-
ation, Autonomicity for the future ICT society.

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 282–307, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Sound and Complete Subtyping between Coinductive Types 283

subtyping types are interpreted as sets of values, following the intuition that a
type specifies all possible values that an expression of that type may denote; con-
sequently, subtyping corresponds to set inclusion between type interpretations.
In this way, the definition of subtyping is more intuitive, and several properties
can be easily deduced (for instance, transitivity always holds trivially). Semantic
subtyping is particularly suited to naturally supports Boolean type constructors;
for instance, in terms of type interpretation Boolean disjunction and conjunction
correspond to union and intersection on sets of values. Boolean type constructors
(in particular union types) allow types and type analysis to be more precise, but
their expressive power makes the definition of a sound and complete decision
procedure for subtyping more challenging.

Another feature that complicates subtyping (but that is also indispensable)
is type recursion; syntactically, a recursive type corresponds to a regular (a.k.a.
rational) tree defined by a finite set of guarded syntactic equations. In the se-
mantic subtyping approach, semantic interpretation of recursive types requires
to consider the syntactic equations defining a type as semantics equations spec-
ifying sets of values; such equations can be interpreted either inductively or
coinductively. Let us consider, for instance, the recursive type τ defined by

τ = null ∨ 〈el:int , nx:τ 〉.

The type is the union of null , denoting the null reference, and 〈el:int , nx:τ〉, de-
noting all records equipped at least with the two fields el and nx having type int
and τ , respectively (that is, τ corresponds to a simple implementation of linked
lists of integer values). When we turn to consider the semantic interpretation of
τ , denoted by �τ�, because the Boolean type constructor ∨ corresponds to union
of values, we get the following recursive equation:

�τ� = {null} ∪ �〈el:int , nx:τ〉�
which is equivalent to the equation

�τ� = {null} ∪ {〈el �→ vel, nx �→ vnx, . . .〉 | vel ∈ �int� , vnx ∈ �τ�}
where 〈el �→ vel, nx �→ vnx, . . .〉 denotes a record value with fields el and nx asso-
ciated with values vel and vnx, and with possibly other fields. If such an equation
is interpreted inductively (hence, τ is the least solution), then all values v in
�τ� are inductive, and the operation v.nx.nx.nx is defined only for a finite
number of consecutive selections of field nx. If the equation is interpreted coin-
ductively (hence, τ is the greatest solution), then �τ� contains also coinductive
values v for which the operation v.nx.nx.nx is defined also for an infinite
number of consecutive selections of field nx; in other words, �τ� contains also
cyclic values.

To better outline the difference between the inductive and coinductive inter-
pretation of recursive types, let us consider the recursive type τ ′ defined by

τ ′ = 〈el:int , nx:τ ′〉.

284 D. Ancona and A. Corradi

In this case we get the equation

�τ� = {〈el �→ vel, nx �→ vnx, . . .〉 | vel ∈ �int� , vnx ∈ �τ�}.
In this case the least solution of the equation is �τ� = ∅ (inductive interpreta-
tion), whereas the greatest solution is �τ� = V , with V �= ∅; more precisely, V is
the set of all integer lists for which the operation v.nx.nx.nx is always correct
for an infinite number of consecutive selections of field nx. Therefore, whereas
τ ′ is not very useful if interpreted inductively, when interpreted coinductively it
specifies an interesting property that is verified by all cyclic lists.

As explained in the next section, the ability of representing cyclic values
(hence, to interpret recursive types coinductively) allow more precise type analy-
sis in all those situations where type correctness depends on the fact that objects
(or, more in generally, values) are cyclic. Furthermore, since termination cannot
be usually guaranteed through type analysis, and coinductive interpretations of
types contain both inductive and coinductive values, coinductive interpretation
of types leads to more expressive type systems.

Subtyping on coinductive types has been initially proposed by Amadio and
Cardelli [1] in the context of functional programming; subsequently, an equiva-
lent but more concise definition has been proposed by Brandt and Henglein [10].
In both approaches the subtyping relation is defined axiomatically (no semantic
subtyping) and Boolean type constructors are not considered.

Semantic subtyping has been extensively studied in the context of the lan-
guages XDuce and �Duce [13,12], but recursive types are interpreted inductively,
because values in those languages correspond to XML documents, hence they
cannot be cyclic. For XDuce the decision problem for the subtype relation re-
duces to the inclusion problem between tree automata, which is known to be
EXPTIME-complete [14]. Despite this negative result, it is still possible to de-
fine practical top-down algorithms which work directly on types, and are not
based on determinization of tree automata [14].

More recently, sound but not complete subtyping rules have been proposed
for coinductive types with records and unions [4,5] in the context of abstract
compilation. Subsequently, the problem of semantic subtyping has been proved
to reduce to the inclusion problem between tree automata also for the coinductive
case [9]; such a result has been generalized in the framework of coalgebras.
However, to our knowledge, no practical sound and complete algorithm has been
proposed for deciding semantic subtyping of coinductive types with Boolean type
constructors.

The main contribution of this paper is the definition of a practical top-down
algorithm for deciding semantic subtyping for coinductively interpreted types
in the presence of record and union types. Such an algorithm is derived by a
set of subtyping rules that is proved to be sound and complete w.r.t. semantic
subtyping. To do that we propose and use a new proof technique that can be
fruitfully used for proving soundness results for coinductively defined judgments
(or, dually, for proving completeness results for inductively defined judgments).
A prototype implementation of the algorithm has been developed and has been
made available.

Sound and Complete Subtyping between Coinductive Types 285

The rest of the paper is structured in the following way. Section 2 shows
how coinductive types allow more precise type analysis in the presence of cyclic
objects. Section 3 introduces basic definitions and results that are used in the
rest of the paper. Section 4 defines semantic subtyping for coinductive record and
union types, whereas subtyping rules and proofs of soundness and completeness
can be found in Section 5. Finally, Section 6 presents the algorithm derived from
the subtyping rules, and its prototype implementation, while Section 7 draws
conclusion and proposes directions for future work.

2 A Motivating Example

In this section we present an example which shows how coinductive types allow
more precise type analysis in the presence of cyclic objects. Let us consider the
Python code in Figure 1 implementing circular linked lists (with dummy header).

Let us focus on the definition of the private method getNode of class Node, and
try to find which type could be assigned to self for correctly type checking the
body of the method (in Python the first argument of a method, conventionally
called self, corresponds to this in Java).

Let us consider first the following possible candidate types:

τ1 = null ∨ 〈elem:τe, next:τ1〉
τ2 = 〈 〉 ∨ 〈elem:τe, next:τ2〉
τ3 = 〈elem:τe〉 ∨ 〈elem:τe, next:τ3〉

Since for this example we are not particularly interested in the specific type of
the elements of the lists, we assume that field elem has a certain unspecified
type τe.

Types τ1, τ2 and τ3 only differ for the base case: in τ1 and τ2 a sequence of
nodes is terminated by null, and by the empty record, respectively, whereas in
τ3 terminal nodes are represented by the record type 〈elem:τe〉.

Independently of their interpretation (either inductive, or coinductive), all
types do not allow correct typechecking of the body of getNode, because if
we assume that self, and, hence, the local variable n, has one of the tree types
defined above, then the statement n = n.next is not type correct, because access
of field next is not defined for the types null , 〈 〉, and 〈elem:τe〉.

Note that if we consider the analogous code for languages with nominal types
like Java, then the body of the method is correctly typechecked since this has
type Node, but in fact the code is not type safe, because in Java reference types
always include the null reference, and the type system does not check access to
the null reference (hence, well-typed code can throw the NullPointerException
exception).

Let us now consider the following type τ :

τ = 〈elem:τe, next:τ 〉

If self (and, hence, n) has type τ , then the body of getNode typechecks, because
now the statement n = n.next is type safe.

286 D. Ancona and A. Corradi

class Node:
def __init__ (self ,elem):

self.elem = elem
self.next = self

def getNode (self ,index):
n = self
for i in range(0,index):

n = n.next
return n

class CircularList:
def __init__ (self):

self.head = Node(None)
self.size = 0

def __checkBounds(self ,index ,limit):
i f index < 0 or index >= limit:

raise IndexError("list index out of range")

def add(self ,index ,elem):
self.__checkBounds(index ,self.size+1)
n = self.head.getNode (index)
tmp = Node(elem)
tmp.next = n.next
n.next = tmp;
self.size+=1

def get(self ,index):
self.__checkBounds(index ,self.size)
return self.head.getNode (index +1).elem

Fig. 1. Implementation of circular linked lists in Python

This result is independent of the interpretation of τ ; however, as already
observed in the introduction, if τ is interpreted inductively, then we get �τ� = ∅;
but if the type of self is empty, then method getNode is useless, since no value
can be passed to it. Indeed, since �τ� = ∅, by semantic subtyping we have that
τ is subtype of any type, therefore any well-typed expression that can possibly
return a value, cannot have type τ , otherwise the type system would be unsound.

For instance, the return type of method __init__ of class Node (this is
similar to a Java constructor) cannot be τ , because, otherwise the expression
Node(elem) in method add would have the empty type τ , and this would not
be sound. As a consequence, class Node and CircularList could not be typed
if τ is interpreted inductively. On the contrary, if τ is interpreted coinductively,
then �τ� �= ∅, and both classes can be successfully typechecked.

We conclude this section by observing that if self has type τ1, τ2 or τ3
as defined above, then method getNode can typecheck successfully if both the
following items are verified:

1. the statement n = n.next is guarded by a suitable test; for instance, if
self has type τ1, then n = n.next should be replaced by the statement
if(n != None): n = n.next (None is the equivalent of Java null);

2. type analysis has to be flow sensitive, and the type of n has to be narrowed
in the then branch of the if statement we introduced.

Sound and Complete Subtyping between Coinductive Types 287

Item 1 makes the code less efficient by adding a superfluous check that can be
avoided if we know that class Node is only used by class CircularList. Item
2 requires a more sophisticated type analysis; flow sensitive typing and type
narrowing are challenging tasks, especially in the presence of aliasing.

If self is assigned type τ (interpreted coinductively), then neither of the items
above are required.

3 Background

In this section we define record and union coinductive types and present defini-
tions and general results that will be used in the rest of the paper.

3.1 Types and Tree

In the rest of the paper we will deal with finitely branching trees which are al-
lowed to contain infinite paths. A formalization of such infinite trees has been
given by Courcelle [11]. In the rest of the paper by term we mean a finitely
branching trees which are allowed to contain infinite paths, where nodes corre-
spond to constructors, and the number of children of a node correspond to its
arity.

These trees will represent, either types, or proof trees.
The following proposition states a well-known property of regular terms [11,16].
A system of guarded equations is a finite set of syntactic equations of shape

X = e, where X is a variable, and e may contains variables, such that there
exist no subsets of equations having shape X0 = X1, . . . , Xn = X0.

A solution to a set of guarded equations is a substitution to all variables
contained in the equations that satisfies all syntactic equations.

Definition 1. A regular tree is a possibly infinite tree containing a finite set of
subtrees. A type is regular if it is a term that corresponds to a regular tree, that
is, it has a finite set of subterms.

Proposition 1. Every regular tree t can be represented by a system of guarded
equations.

We define types as all regular terms coinductively defined as follows:

τ ::= 0 | int | null | 〈f1:τ1, . . . , fn:τn〉 | τ1 ∨ τ2

A record type 〈f1: τ1 . . . fn:τn〉 is a finite map from field names to types,
therefore we implicitly assume that field names are distinct and their order is
immaterial. If τ is a record type, then dom(τ) denotes the set of its fields, τ(f)
the type associated with f (if f ∈ dom(τ)), and τ [f :τ ′] the update of record τ
with the association of field f to type τ ′.

Union type τ1 ∨ τ2 intuitively represents the union of the value of τ1 and
τ2 [8,15]. Type 0 is the empty type, and int represents the set �, and null
denotes the singleton set containing the null reference.

288 D. Ancona and A. Corradi

Example 1. The type of all cyclic or non-cyclic integer lists can be defined by
the following guarded equation:

T = 〈elm:int , next:T 〉 ∨ null

The type is regular and has only the following four subterms:

T 〈elm:int , next:T 〉 int null

Example 2. Let us consider the terms Ti for all natural numbers i, defined by
the following system of infinite guarded equations:

T0 = null
Ti+1 = 〈pred: Ti〉 (for all i ≥ 0)

The type T0 ∨ T1 ∨ . . . ∨ Tn ∨ Tn+1 . . . is not a regular type.

We now introduce the notion of contractive type, which allows us to reject all
those types whose interpretation is not well-defined (see the example at the end
of Section 4 for the details).

Definition 2. A type is contractive if it does not contain infinite paths whose
nodes are all labeled by union types.

Example 3. The type T = T ∨ int is not contractive, because there exists an
infinite path whose nodes are all labeled by the union type T ∨ int .

∨
∨

∨
int

int

int

Example 4. The type T = 〈f : T ∨ int〉 is contractive because all infinite paths
have nodes that are alternatively labeled by a record and a union type.

〈f : 〉 ∨
〈f : 〉 ∨

〈f : 〉

int

int

In the rest of the paper all types are restricted to be regular and contractive.

Sound and Complete Subtyping between Coinductive Types 289

3.2 Principle of Induction and Coinduction

Let U denotes a set universe, and P(U) the powerset of U . Given a set of rules
defining a subset of U , the immediate consequence operator F is the endofunction
on the parts of U , that given a set of premises X , returns the set of consequences
immediately derivable from the rules.

Definition 3. Let X be a set in P(U). X is F-closed if F (X) ⊆ X; X is F-
consistent if X ⊆ F (X); X is a fixed point of F if X = F (X).

Theorem 1 (Tarski-Knaster)
Let F :P(U)→ P(U) be monotone.

– The least fixed point (lfp) of F is the intersection of all F-closed sets.
– The greatest fixed point (gfp) of F is the union of all F-consistent sets.

We denote as lfp(F) the least fixed point of F and as gfp(F) the greatest fixed
point of F.

From the previous theorem the following induction and coinduction principles
can be derived.

Induction principle. Let p and q be two predicates over P(U), and let p be
inductively defined by a set of rules whose immediate consequence is F. If the
rules for p are closed w.r.t. predicate q, then ∀x ∈ U p(x) ⇒ q(x) holds. This
comes from the fact that by definition a rule is closed w.r.t. q iff the following
implication holds: if the premises satisfy q, then the conclusion satisfies q. Indeed,
this is equivalent to F ({x | q(x)}) ⊆ {x | q(x)}, which implies {x | p(x)} ⊆ {x |
q(x)} for the previous theorem.

Coinduction principle. Let p and q be two predicates over P(U), and let q be
coinductively defined by a set of rules whose immediate consequence is F. Let
us assume that the following property holds:
for all x ∈ U , if p(x) holds, then there exists a rule for q that can be applied to
a set of premises satisfying p to derive the consequence x. Then ∀x ∈ U p(x)⇒
q(x) holds. This comes from the fact that the condition above is equivalent to
{x | p(x)} ⊆ F ({x | p(x)}), which implies {x | p(x)} ⊆ {x | q(x)} for the
previous theorem.

In the rest of the paper we will use the following convention: rules that have to
be interpreted inductively use thin lines, while rules that have to be interpreted
coinductively use thick lines.

4 Semantic Subtyping between Coinductive Types

We interpret types as sets of values. Values are all finite and infinite (but regular)
terms coinductively defined as follows (where i ∈ �):

v ::= i | null | 〈f1 �→ v1, . . . , fn �→ vn〉

290 D. Ancona and A. Corradi

Analogously to record types, record values are finite maps from field names
to values, therefore we implicitly assume that field names are distinct and their
order is immaterial. The interpretation of types is coinductively defined by the
rules in Figure 2.

Thicker lines indicate that rules are interpreted coinductively, that is, also
infinite proof trees are considered; this is equivalent to considering the greatest
fixed-point of the function induced by the rules and corresponding to one step
of inference [16].

Note that a record value can belong to a record type with fewer fields, the
right-hand-side ellipsis in the record value indicates that the value is allowed to
contain more fields.

(null ∈)

null ∈ null
(int ∈)

i ∈ int
i∈� (l-or ∈)

v ∈ τ1

v ∈ τ1 ∨ τ2
(r-or ∈)

v ∈ τ2

v ∈ τ1 ∨ τ2

(rec ∈)

v1 ∈ τ1, . . . , vn ∈ τn

〈f1 �→ v1, . . . , fn �→ vn, . . .〉 ∈ 〈f1:τ1, . . . , fn:τn〉

Fig. 2. Value membership

For instance, the following tree is a proof for 〈f �→ 1〉 ∈ int ∨ 〈f :int〉.

(r-or ∈)

(rec ∈)

(int ∈)

1 ∈ int

〈f �→ 1〉 ∈ 〈f :int〉

〈f �→ 1〉 ∈ int ∨ 〈f :int〉

The following derivation for a non-contractive type motivates the definition
of contractivity introduced in the previous section (see Def. 2); consider the
regular type τ s.t. τ = τ ∨ int , and the following infinite proof containing just
applications of rules (l-or ∈):

(l-or ∈)

(l-or ∈)

...

null ∈ τ

null ∈ τ

Here we have a non-sound derivation as null ∈ τ derived above: τ corresponds
to an infinite union of int , and therefore its interpretation cannot contain the null
type. Non-contractive types can be correctly handled by introducing the notion
of contractive proof tree [4]. Since from contractive types only contractive proofs
can be derived, and non contractive types do not extend the expressive power1

of types, it is more convenient to restrict types to contractive ones.

1 Indeed, for any non contractive type there exists an equivalent contractive one.

Sound and Complete Subtyping between Coinductive Types 291

Definition 4. The interpretation of τ , is defined by �τ� = {v | v ∈ τ holds}.

Lemma 1. If τ = 0 then �τ� = ∅, that is, v �∈ 0.

Proof. By definitions of membership rules we can not create a derivation for
v ∈ 0 then by Def. 4 �τ� = ∅.
Lemma 2. If τ = τ1 ∨ τ2 then �τ� = ∅ iff �τi� = ∅ ∀i ∈ 1..2, that is, v �∈ τi ∀i ∈
1..2.

Proof.
⇒ By Def. 4 and by definitions of membership rules (�v .v ∈ τi holds) ∀τi ∈ 1..n,
that is, by Def. 4 �τi� = ∅ ∀ti ∈ τ .
⇐ By Def. 4 we have (�v .v ∈ τi holds) ∀τi ∈ τ , that is, by definitions of
membership rules we can not create a derivation for v ∈ τ then by Def. 4
�τ� = ∅.
Lemma 3. If τ = 〈f1:τ1, . . . , fn:τn〉 then �τ� = ∅ iff ∃i ∈ 1..n �τi� = ∅, that is,
∃i ∈ 1..n vi �∈ τi.

Proof.
⇒ By Def. 4 and by definitions of membership rules ∃i ∈ 1..n. (�v .v ∈ τi holds),
that is, by Def. 4 ∃i ∈ 1..n �τi� = ∅.
⇐ By Def. 4 we have ∃i ∈ 1..n. (�v .v ∈ τi holds), that is, by definitions of
membership rules we can not create a derivation for v ∈ τ then by Def. 4
�τ� = ∅.

Given a type τ , and a set of types Ξ, the restriction of τ w.r.t. Ξ, denoted by
τ|Ξ , is coinductively defined as follows:

– τ|Ξ = τ , if τ ∈ {0, null , int};
– (τ1 ∨ τ2)|Ξ = τ1|Ξ ∨ τ2|Ξ , if τ1, τ2 �∈ Ξ;

– (τ1 ∨ τ2)|Ξ = null , if τ1 ∈ Ξ or τ2 ∈ Ξ;

– 〈f1:τ1, . . . , fn:τn〉|Ξ = 〈fi:τi|Ξ | 1 ≤ i ≤ n, τi �∈ Ξ〉.

The restriction τ|Ξ removes from τ all types contained in Ξ; intuitively, if τ|Ξ
returns a type whose interpretation is empty, then it means that the emptiness
of τ can be proved without assuming any assumption on the types in Ξ (that
is, those types no longer need to be inspected; see Lemma 6). For this reason,
if either τ1 or τ2 are contained in Ξ, then τ1 ∨ τ2 cannot be proved empty, and,
therefore, the restriction (τ1 ∨ τ2)|Ξ returns a non empty type (for simplicity,
the null type is returned, but any other non empty type could be returned as
well). A similar reasoning applies to the case of record types.

In the following we show some examples of application of the restriction op-
erator.

For all types τ , τ|∅ = τ .
If τ1 is the type s.t. τ1 = 〈f :τ2〉, τ2 = 〈g:τ1, h:0〉, then τ1|{τ1} = 〈f :〈h:0〉〉,

τ2|{τ1} = 〈h:0〉, and τ1|{τ2} = 〈〉.
If τ3 is the type s.t. τ3 = τ4 ∨ 0, τ4 = 〈f :τ3〉, then τ3|{τ3} = 〈〉 ∨ 0, and

τ4|{τ3} = 〈〉.

292 D. Ancona and A. Corradi

Lemma 4. If
�
τ|Ξ

�
= ∅, then

�
τ|Ξ∪{τ}

�
= ∅.

Proof. It is sufficient to prove that if v ∈ τ|Ξ∪{τ}, then there exists v′ ∈ τ|Ξ . The
value v′ corresponds to ext(v, τ, Ξ, τ, v), where ext(v, τ, Ξ, τ ′, v′) is coinductively
defined as follows:

– ext(v, τ, Ξ, τ ′, v′) = v, if τ ∈ {null , int};
– ext(v, τ1 ∨ τ2, Ξ, τ, v′) = ext(v, τ1, Ξ, τ, v′), if τ1, τ2 �∈ Ξ, v ∈ τ1|Ξ∪{τ}
– ext(v, τ1 ∨ τ2, Ξ, τ, v′) = ext(v, τ2, Ξ, τ, v′), if τ1, τ2 �∈ Ξ, not v ∈ τ1|Ξ∪{τ},

and v ∈ τ2|Ξ∪{τ}
– ext(v, τ1 ∨ τ2, Ξ, τ, v′) = null if τ1 ∈ Ξ or τ2 ∈ Ξ
– ext(v, 〈f1:τ1, . . . , fn:τn〉, Ξ, τ, v′) =
〈fi �→ ext(v.fi, τi, Ξ, τ, v′) | 1 ≤ i ≤ n, τi �∈ Ξ ∪ {τ}〉∪
〈fi �→ ext(v′, τ, Ξ, τ, v′) | 1 ≤ i ≤ n, τi = τ 〉

The proof can be concluded by proving by coinduction on the definition of
value membership that if v ∈ τ|Ξ∪τ ′ and v′ ∈ τ ′|Ξ∪τ ′ , then ext(v, τ, Ξ, τ ′, v′) ∈
τ|Ξ .

5 A Sound and Complete Inference System

In this section we define a system of coinductive subtyping rules and prove that
it is sound and complete with respect to the definition of semantic subtyping
given in Section 4.

Remark : Unless explicitly stated, in the rest of the section we only consider
regular and contractive types.

5.1 Type Normalization

The problem of defining a decision procedure for subtyping becomes simpler if
types are first normalized; such a normalization simplifies empty types, and is
driven by the following laws:

τ ∨ 0 = 0 ∨ τ = τ 〈. . . f :0 . . .〉 = 0

This normalization needs to be performed only once, before deciding subtyp-
ing; the subtyping rules, and the derived subtyping algorithm preserve this type
normalization, hence no further normalization steps are required.

We use the notation τ1 � τ2 to indicate that type τ1 is normalized to type
τ2; for instance, the judgment (int ∨ 0) ∨ (0 ∨ int) � int ∨ int holds. To see a
more involved example, let us consider the regular type defined by τ = 0 ∨
〈f :τ, g:0 ∨ 0〉; then, τ � 0 holds.

Normalization requires a decision procedure for testing emptiness of types;
non-emptiness is naturally specified by the coinductive rules in Figure 3.

Clearly, the primitive types int and null are not empty. A union type τ1 ∨ τ2
is not empty if at least one between τ1 and τ2 is not empty. A record type is

Sound and Complete Subtyping between Coinductive Types 293

int �∼= ∅ null �∼= ∅

τi �∼= ∅

τ1 ∨ τ2 �∼= ∅
i ∈ 1..2

τ1 �∼= ∅, . . . , τn �∼= ∅

〈f :τ1, . . . , fn:τn〉 �∼= ∅

Fig. 3. Non-emptiness of types

not empty if all types of its fields are not empty. Note that the rules must be
interpreted coinductively because in some cases infinite proof trees are required.
Consider for instance the type defined by τ = 〈f :τ 〉; if v = 〈f �→ v〉, then v ∈ τ ,
therefore τ �∼= ∅ must hold. This can be proved by an infinite proof tree obtained
by repeatedly applying the rule for records.

Soundness and Completeness of the Judgment τ �∼= ∅. Before proving
that the judgment τ �∼= ∅ is sound and complete w.r.t. the predicate �τ� �= ∅, we
illustrate the new proof technique we propose and use; this is the same technique
that will be adopted for proving soundness and completeness of the subtyping
rules.

Soundness and completeness are expressed by the implications τ �∼= ∅ ⇒ �τ� �=
∅, and �τ� �= ∅ ⇒ τ �∼= ∅, respectively.

Since τ �∼= ∅ is defined coinductively, completeness can be proved in a standard
way by coinduction on the rules defining τ �∼= ∅, as explained in Section 3.
Unfortunately, the same technique cannot be adopted for proving soundness
(hence, for coinductive systems the difficult direction to prove is soundness,
whereas for inductive systems is completeness).

To prove soundness we first consider the equivalent implication (�τ� = ∅ ⇒
τ �∼= ∅ does not hold) corresponding to a proof by contradiction; then we observe
that this implication can be proved if we split the implication in the following
two:

�τ� = ∅ ⇒ τ ∼= ∅ ⇒ (τ �∼= ∅ does not hold) (1)

where τ ∼= ∅ is the complement judgment of τ �∼= ∅ corresponding to testing type
emptiness. Now it seems we get stuck because if τ ∼= ∅ is defined inductively,
then the implication on the left hand side cannot be proved easily, whereas if
τ ∼= ∅ is defined coinductively, the same consideration applies for the implication
on the right hand side.

However, we still can have the cake and eat it too if we are able to define
the judgment τ �∼= ∅ with an inference system whose inductive and coinductive
interpretation coincide (hence, there exists a unique fixed point which is both
the least and the greatest). A sufficient condition for this is that all proof trees
of the inference system are finite.

The complement judgment we are looking for is defined in Figure 4. We use
thin lines in the rules because it is sufficient to interpret the system inductively
to define the judgment, however if we interpret the rules coinductively we get
the same definition of emptiness for regular and contractive types.

Note that the only role of the set of types Ξ is to force the inductive and coin-
ductive interpretation of the rules in Figure 4 to coincide, as proved in Lemma 5.

294 D. Ancona and A. Corradi

Ξ � 0 ∼= ∅
Ξ � τ1 ∼= ∅ Ξ � τ2 ∼= ∅

Ξ � τ1 ∨ τ2 ∼= ∅
Ξ ∪ {τ} � τi ∼= ∅

Ξ � τ ∼= ∅
τ = 〈f :τ1, . . . , fn:τn〉
τ ∈ Ξ
i ∈ {1, . . . , n}

Fig. 4. Emptiness of types

To distinguish between the two interpretations we use the notations Ξ
 τ ∼= ∅
and Ξ
 τ ∼= ∅ to indicate judgments corresponding to the inductive and coin-
ductive interpretation of the rules, respectively.

Lemma 5. Ξ
 τ ∼= ∅ implies Ξ
 τ ∼= ∅.

Proof. A direct consequence of the fact that τ is regular (hence Ξ cannot grow
indefinitely) and contractive (hence the rule for union can be applied consecu-
tively only a finite number of times).

We can now prove the two implications in (1) on the left and right side,
respectively. The following two lemmas with Lemma 5 prove the soundness of
τ �∼= ∅.

In Lemma 6 two different hypotheses are needed to ensure that the claim
holds. For instance, �〈f :0〉� = ∅, but {〈f :0〉}
 〈f :0〉 ∼= ∅ does not hold because
of the side condition of the rule for record types; in this case the hypothesis
τ �∈ Ξ is not verified, but

�
τ|Ξ

�
= ∅ holds. As another example, if τ is s.t.

τ = 〈f :〈g:τ, h:0〉〉, then �τ� = ∅, but {〈g:τ, h:0〉}
 τ ∼= ∅ does not hold (again,
because of the side condition of the rule for record types). In this case the
hypothesis τ �∈ Ξ is verified, but

�
τ|Ξ

�
= ∅ does not hold.

Lemma 6. If τ �∈ Ξ, and
�
τ|Ξ

�
= ∅, then Ξ
 τ ∼= ∅.

Proof. By coinduction on the rules for Ξ
 τ ∼= ∅. We only show the interesting
case for τ = 〈f1:τ1, . . . , fn:τn〉. By Lemma 4

�
τ|Ξ

�
= ∅ implies

�
τ|Ξ∪{τ}

�
= ∅.

Furthermore, if
�
τ|Ξ∪{τ}

�
= ∅, then by Lemma 3 and definition of τ|Ξ∪{τ}

when τ is a record type, there exists i ∈ {1, . . . , n} s.t.
�
τi|Ξ∪{τ}

�
= ∅, and

τi �∈ Ξ ∪ {τ}. Since τ �∈ Ξ by hypothesis, we can conclude by coinduction and
by using rule for record types.

Lemma 7. If Ξ
 τ ∼= ∅, then τ �∼= ∅ does not hold.

Proof. Easy induction on the rules defining Ξ
 τ ∼= ∅.

Completeness of τ �∼= ∅ can be easily proved by coinduction, as expected.

Lemma 8. �τ� �= ∅ implies τ �∼= ∅.

Proof. By coinduction on the rules for τ �∼= ∅.

The following corollary simply derives the equivalence of �τ� �= ∅ and τ �∼= ∅
from the lemmas above; as a byproduct, we also get the equivalence of �τ� = ∅
and τ ∼= ∅.

Sound and Complete Subtyping between Coinductive Types 295

Corollary 1

1. τ �∼= ∅ if and only if �τ� �= ∅.
2. ∅
 τ ∼= ∅ if and only if �τ� = ∅.
Proof

1. soundness: Lemma 6 + Lemma 5 + Lemma 7; completeness: Lemma 8.
2. soundness: Lemma 8 + Lemma 7; completeness: Lemma 6 + Lemma 5 .

We are now ready to define type normalization. This is defined by the coin-
ductive rules in Figure 5.

(prim)
τ � τ

τ∈{0,null,int} (or)

τ1 � τ
′
1 τ2 � τ

′
2

τ1 ∨ τ2 � τ ′
1 ∨ τ ′

2

τ1 ∼= ∅
τ2 ∼= ∅

(r-or)

τ1 � τ
′
1

τ1 ∨ τ2 � τ ′
1

∅�τ2∼=∅ (l-or)

τ2 � τ
′
2

τ1 ∨ τ2 � τ ′
2

∅�τ1∼=∅

(rec)

τ1 � τ
′
1, . . . , τn � τ ′

n

〈f1:τ1, . . . , fn:τn〉 � 〈f1:τ ′
1, . . . , fn:τ

′
n〉

〈f1:τ1,...,fn:τn〉
∼=∅

(e-rec)

〈f1:τ1, . . . , fn:τn〉 � 0
∅�〈f1:τ1,...,fn:τn〉∼=∅

Fig. 5. Type normalization

The empty and primitive types normalize to themselves, whereas normalizing
a union type corresponds to coinductively normalizing its two subtypes, if they
are both non-empty, or just one in case the other is empty. For record types two
cases have to be distinguished: if 〈f1:τ1, . . . , fn:τn〉 �∼= ∅ holds (that is, τi �∼= ∅
holds for all i ∈ {1, . . . , n}), then each subtype can be coinductively normalized
to get the final type 〈f1:τ ′1, . . . , fn:τ ′n〉. Otherwise the type normalizes to the
empty set.

The following claims show that the normalization relation � is actually a
total function, and that it preserves type interpretation.

Lemma 9. If τ �∼= ∅ does not hold, then τ � 0.

Proof. See the extended version [2].

Theorem 2. For all τ there exists a unique type τ ′ such that τ � τ ′.

Proof. The proof uses Lemma 9 and Proposition 1. See the extended version [2].

Lemma 10. If τ � τ ′, and τ ′ ∈ {0, null , int}, then �τ� = �τ ′�.

296 D. Ancona and A. Corradi

Proof. The proof uses Corollary 1. See the extended version [2].

Lemma 11. If τ � τ ′1 ∨ τ ′2, and v ∈ τ , then there exist τ1, τ2 s.t. τ = τ1 ∨ τ2,
and (τ1 � τ

′
1, and v ∈ τ1, or τ2 � τ

′
2, and v ∈ τ2).

Proof. The proof uses Corollary 1. See the extended version [2].

Theorem 3. For all τ , τ ′, if τ � τ ′, then �τ� = �τ ′�.
Proof. The proof uses Lemma 10 and Lemma 11. See the extended version [2].

Corollary 2. τ � 0 if and only if �τ� = ∅.
Proof. τ � 0 ⇒ �τ� = ∅ can be derived directly from Theorem 3. For the other
direction, if �τ� = ∅, then τ �∼= ∅ does not hold by Corollary 1, therefore we can
derive τ � 0 directly from Lemma 9.

5.2 Subtyping Rules

In this section we define the rules for subtyping. In the rest of the paper we
assume that all types are normalized (besides being regular and contractive).
Subtyping rules are based on the identity between sets A ⊆ B∪C ⇔ A\B ⊆ C.

For instance, if one would like to prove that

〈f :null ∨ int〉 ≤ 〈f :null〉 ∨ 〈f :int〉 ∨ int

holds, then one can prove that 〈f :null ∨ int〉 \ 〈f :null〉 ≤ 〈f :int〉 ∨ int holds,
which in turn holds if (〈f :null ∨ int〉 \ 〈f :null〉) \ 〈f :int〉 ≤ int holds.

Now 〈f :null ∨ int〉 \ 〈f :null〉 = 〈f :(null ∨ int) \ null〉 = 〈f :int〉, and 〈f :int〉 \
〈f :int〉 = 0, hence we can conclude the proof because trivially 0 ≤ int holds.

Unfortunately, types are not closed w.r.t. complement. Even though this could
be formally proved2, for space reasons we only provides an informal argumenta-
tion.

Let us consider the two types τ and τ ′ introduced in Section 1:

τ = null ∨ 〈el:int , nx:τ 〉 τ ′ = 〈el:int , nx:τ ′〉

Since �τ� contains all values corresponding to either finite or infinite lists, while
�τ ′� contains all values corresponding just to infinite lists, we deduce that �τ� \
�τ ′� is the set of all values corresponding just to finite lists. If we assume that
types are closed w.r.t. complement, then there must exist a regular and contrac-
tive type τ ′′ s.t. �τ ′′� = �τ� \ �τ ′�, but no regular contractive type can have a
coinductive interpretation corresponding to the set of all values corresponding
to finite lists, because such a set is not a complete metric space for the standard
metric on infinite trees.

2 The proof relies on the property that for all regular and contractive types τ , �τ� is
a complete metric space for the standard metric on infinite trees.

Sound and Complete Subtyping between Coinductive Types 297

Given this negative result, we have to compute complement lazily, and extend
the syntax of types to introduce the complement3 type constructor, denoted by
−. Note that while − is a type constructor, \ denotes an operation that given
two types τ1 and τ2, returns a new type.

For instance int \ int = 0, and int \ 〈f :int〉 = int . However, when both types
are records the type returned by the complement is in general a extended type
containing the type constructor −. For instance, if we assume that fields f , g,
and h are all distinct, then 〈f :τ1, g:τ2〉 \ 〈f :τ3, h:τ4〉 returns the extended type

〈f :τ1 − τ3, g:τ2〉 ∨ 〈f :τ1, g:τ2, h?:− τ4〉

where h? denotes an optional field: record type 〈h?:− τ4〉 contains record values
which either do not have field h, or have field h with a value v s.t. v �∈ �τ4�.

The reader can verify that

�〈f :τ1, g:τ2〉� \ �〈f :τ3, h:τ4〉� = �〈f :τ1 − τ3, g:τ2〉 ∨ 〈f :τ1, g:τ2, h?:− τ4〉� .
Indeed v ∈ �〈f :τ1, g:τ2〉� and v �∈ �〈f :τ3, h:τ4〉� if and only if v has the two fields f
and g, where g is always associated with a value in �τ2�, whereas f is associated
either with a value in �τ1�, but not in �τ3�, or with a value in �τ1�, but then
either v does not have field h, or it has field h associated with a value not in
�τ4�. The definition of \ for record types is the generalization of the following
identity between sets:

(A1 × . . .×An) \ (B1 × . . .×Bn) =
(A1 \B1)×A2 × . . .×An ∪ . . . ∪ A1 × . . .×An−1 × (An \Bn).

Extended types are defined in Figure 6; note that the two definitions are strat-
ified: first types are defined coinductively, then extended types are inductively
defined on top of types.

π ::= τ | 〈f1:ρ1, . . . , fn:ρn, f ′
1?:�1, . . . , fk?:�k〉 | π1 ∨ π2

ς ::= ρ | � ρ ::= τ | ρ− τ � ::= −τ | �− τ

Fig. 6. Extended types

The meta-variable ρ corresponds to an extended type that can be associated
with a non optional field of an extended record type, and has shape ((τ0− τ1)−
. . . τk), while the meta-variable � corresponds to an extended type that can be
associated with an optional field of an extended record type, and has shape
((−τ0 − τ1) − . . . τk); finally, the meta-variables ς has been introduced just for
practical reasons to avoid useless duplication for all cases where the expected
type can be either ρ or �.

Interpretation of extended types is defined in Figure 7 by a corresponding
extended judgment for membership v ∈e π and v ∈e ς (note that values are not

3 The constructor is overloaded since it denotes both unary absolute complement, and
binary relative complement.

298 D. Ancona and A. Corradi

extended); as happens for extended types, the definitions of v ∈e π and v ∈e ς
are stratified over the definition of v ∈ τ : first v ∈ τ is defined coinductively,
then v ∈e π and v ∈e ς are inductively defined on top of v ∈ τ .

(emb ∈e)
v ∈e τ

v∈τ (l-or ∈e)
v ∈e π1

v ∈e π1 ∨ π2
ext(π1∨π2) (r-or ∈e)

v ∈e π2

v ∈e π1 ∨ π2
ext(π1∨π2)

(rec ∈e)

v(fi) ∈e ρi ∀ i ∈ {1, . . . , n}
f ′
j ∈ dom(v) ⇒ v(f ′

j) ∈e �j ∀ j ∈ {1, . . . , k}
v ∈e π

π = 〈f1:ρ1, . . . , fn:ρn,
f ′
1?:�1, . . . , f

′
k?:�k〉

ext(π)
{f1, . . . , fn} ⊆ dom(v)

(comp)
v ∈e ς

v ∈e ς − τ
v
∈τ (a-comp)

v ∈e −τ
v
∈τ

Fig. 7. Value membership for extended types

Rules defining v ∈e π are straightforward. We use the auxiliary predicate ext
on extended types s.t. ext(π) holds if and only if π is a proper extended type,
that is, there is no type τ s.t. τ = π. Such a predicate is used to avoid rule (emb
∈e) to overlap the other rules.

The complement operator is defined in Figure 8.

τ \ τ = 0 π \ 0 = π 0 \ τ = 0

τ \ τ ′ = τ if τ �= τ ′, τ ∈ {int ,null} and τ ′ �= τ1 ∨ τ2

π \ τ = π if π = 〈. . .〉 and τ ∈ {int ,null}
π \ τ = (

∨
f∈dom(π)∩dom(τ) π −f τ)

∨
(
∨

f∈dom(τ)\dom(π) π ∼f τ) if π, τ = 〈. . .〉

where π −f τ = π[f :ρ− τ ′] if π = 〈. . . f :ρ . . .〉 τ = 〈. . . f :τ ′ . . .〉
π −f τ = π[f?:�− τ ′] if π = 〈. . . f?:� . . .〉 τ = 〈. . . f :τ ′ . . .〉
π ∼f τ = π[f?:− τ ′] if τ = 〈. . . f :τ ′ . . .〉

Fig. 8. Complement operator

The complement needs to be computed between an extended type π and a type
τ ; furthermore, both types cannot be union types except for the two corner cases
τ \ τ and 0 \ τ (anyway, as we will see, two subtyping rules allow elimination of
union types by splitting them, so that the complement operator can eventually
be used). All cases are straightforward, except for the last case involving two
record types which has been already explained by an example. In this case, the
type returned by π\τ is always a union of records, where the number n of records
equals the number of fields contained in τ . Note that if n = 0, then the returned
type is 0; for instance, 〈f :int〉\〈 〉 = 0. If n = 1, then a single record is returned:
for instance 〈 〉 \ 〈f :int〉 = 〈f?:− int〉, or 〈f :null〉 \ 〈f :int〉 = 〈f :null − int〉.

Sound and Complete Subtyping between Coinductive Types 299

Recall that the notation π[f :ρ−τ ′] (and, equivalently, π[f?:�−τ ′] and π[f?:−
τ ′]) denotes the record type updated by the association f :ρ − τ ′ (or f?:� − τ ′

and f?:− τ ′, respectively); note that in the sole case of the definition of π ∼f τ ,
this update is actually an addition since by definition f �∈ dom(π).

The following lemmas are instrumental to prove the soundness and complete-
ness of the subtyping rules.

Lemma 12. If π \ τ = π′, then �π� \ �τ� = �π′�.
Proof. Routine verification.

Lemma 13. π is a record type s.t. �π� = ∅ if and only if there exist f , ρ, and τ
s.t. π has shape 〈. . . f :ρ− τ . . .〉, and �ρ− τ� = ∅.
Proof. It suffices to notice that by definition of the complement operator of
Figure 8, all types τ (hence, not extended) occurring in π comes from non-
extended record types which have been normalized, hence cannot be empty by
Corollary 2; furthermore, a record type π cannot be empty because of an optional
field f , since π can always contain all record values that do not have field f .

The subtyping rules are defined in Figure 9.

(empty ≤)

0 ≤ Ξ
(left-or ≤)

π1 ≤ Ξ π2 ≤ Ξ

π1 ∨ π2 ≤ Ξ
(r-or ≤)

π ≤ Ξ ∪ {τ1, τ2}

π ≤ Ξ ∪ {τ1 ∨ τ2}
τ1∨τ2
∈Ξ

(comp ≤)

π′ ≤ Ξ

π ≤ Ξ ∪ {τ}
τ ∈ Ξ
π \ τ = π′ (rec ≤)

τ ′ ≤ Ξ

〈. . . f :ρ− τ . . .〉 ≤ ∅
ρ−τ�τ ′−Ξ

Fig. 9. Subtyping rules

The subtyping judgment has shape π ≤ Ξ, where π is an extended type, and
Ξ is a finite set of non-extended types {τ1, . . . , τn} corresponding to the union
τ1 ∨ . . . ∨ τn (which collapses to 0 when n = 0, and to τ1 when n = 1). The
set Ξ is required for ensuring termination: union types in Ξ are lazily split and
reinserted in Ξ to avoid unbounded growth of union types with duplicate types.

Rules (left-or ≤) and (r-or ≤) are applied for splitting and eliminating union
types on both sides (this can always achieved with a finite number of applications
of the rules by virtue of contractivity); then rule (comp ≤) removes types from
the set Ξ. When finally the set Ξ is empty we get the judgment π ≤ ∅: if π = 0,
then we can conclude by rule (empty ≤); if π ∈ {null , int}, then no rule can be
applied and the judgment fails as expected; if π is a record type, then rule (rec
≤) tries to find a non optional field of type ρ− τ , and to check whether such a
type is empty.

The side condition in rule (rec ≤) is needed for normalizing the types of non
optional fields having shape ρ− τ : it transforms the type (. . . (τ − τ1) . . .)− τn)

300 D. Ancona and A. Corradi

in the pair τ − ({τ1} ∪ . . . {τn}) (see the straightforward inductive definition in
Figure 10). This is essential for avoiding unbounded growth of union types (and,
consequently of types having shape ρ − τ) which may have duplicate types; for
instance, this would happen for the judgment τ1 ≤ {τ2}, where τ1 = 〈f :τ1, g:int〉
and τ2 = 〈f :τ2 ∨ τ2〉.

Splitting is performed lazily for two reasons: by running our prototype im-
plementation on numerous tests, we have realized that splitting all union types
contained in τ1 and τ2 before deciding τ1 ≤ τ2 (eager strategy) is less efficient
than a lazy strategy; anyway, when the eager strategy is followed, splitting has
to be performed repeatedly on the types π \ τ generated by rule (comp ≤).

ρ− τ � τ ′′ − Ξ

(ρ− τ)− τ ′ � τ ′′ − (Ξ ∪ {τ ′}) τ − τ ′ � τ − {τ ′}

Fig. 10. Normalization of ρ− τ

The following two lemmas are instrumental to the proofs of soundness and
completeness of the subtyping rules, and can be easily proved by induction on
the types ρ− τ .

Lemma 14. For all ρ, τ , there exist unique τ ′, Ξ s.t. ρ− τ � τ ′ − Ξ holds.

Lemma 15. If ρ− τ � τ ′ − {τ1, . . . , τn}, then �ρ− τ� = �τ ′ − (τ1 ∨ . . . ∨ τn)�.

Proofs of Soundness and Completeness of the Subtyping Rules. We
adopt the same technique used for proving the soundness of the judgment τ �∼= ∅.
Therefore first we have to define the complement judgment (see Figure 11).

As for the case of the negation of the τ �∼= ∅ judgment, the standard interpre-
tation of the rules is inductive (thin lines), but Lemma 16 shows that the use
of the set Ψ of extended types forces the inductive (judgment Ψ
 π �≤ Ξ) and
coinductive (judgment Ψ
 π �≤ Ξ) interpretation of the rules to coincide (when
we restrict judgments Ψ
 τ �≤ Ξ to finite sets Ξ).

Lemma 16. For all finite sets Ξ, Ψ
 τ �≤ Ξ implies Ψ
 τ �≤ Ξ.

Proof. It suffices to prove that any proof tree for Ψ
 π �≤ Ξ must be finite. To do
that, we first observe that, given π and Ξ, the cardinality of Ψ in the judgments
of the proof tree for Ψ
 π �≤ Ξ must be bounded. This can be proved by firstly
observing that Ψ contains only the record types that appear in the left-hand-side
of �≤ in the judgments, that such record types have fields ranging over a finite set
(since we assume that initially τ and all types in Ξ are regular, and the set Ξ
is finite), and that for all types of shape ((τ0 − τ1)− . . . τk) associated with non
optional fields and generated by rule (comp �≤), τ0 corresponds to a subterm of
the initial type π, whereas τ1, . . . , τk correspond to subterms of types contained
in the initial set Ξ.

Sound and Complete Subtyping between Coinductive Types 301

(prim
≤)
Ψ � τ �≤ ∅ τ∈{null,int} (l-l-or
≤)

Ψ � π1 �≤ Ξ

Ψ � π1 ∨ π2 �≤ Ξ
(r-l-or
≤)

Ψ � π2 �≤ Ξ

Ψ � π1 ∨ π2 �≤ Ξ

(comp
≤)
Ψ � π′ �≤ Ξ

Ψ � π �≤ Ξ ∪ {τ}
τ ∈ Ξ
π \ τ = π′ (r-or
≤)

Ψ � π �≤ Ξ ∪ {τ1, τ2}
Ψ � π �≤ Ξ ∪ {τ1 ∨ τ2}

τ1∨τ2
∈Ξ

(rec
≤)
∀ f ∈ dom(π) π(f) = ρ− τ � τ ′ −Ξ ⇒ Ψ ∪ {π} � τ ′ �≤ Ξ

Ψ � π �≤ ∅
π = 〈. . .〉
π ∈ Ψ

Fig. 11. Negation of subtyping

To prove that all proof trees are finite, we introduce the following measure
on the judgments of shape Ψ
 π �≤ Ξ defined on a Noetherian order, and show
that for every rule of Figure 11 the measure of its premises is always strictly less
than the measure of its consequence.

If B denotes an upper bound of the size of Ψ , then the measure of the judgment
Ψ
 π �≤ Ξ is defined by the quadruple (B−|Ψ |,max∨(Ξ),|Ξ|,max∨(π)), where | |
denotes cardinality, max∨(π) returns the length of the maximum path from the
root of π containing only union type constructors (this is always well-defined by
contractivity), and max∨(Ξ) =

∑
τ∈Ξ max∨(τ). If we consider the standard lexi-

cographic order (where the leftmost value is the most significant one) on quadru-
ples, then we obtain a Noetherian order, since trivially max∨(Ξ) ≥ 0,|Ξ| ≥ 0,
max∨(π) ≥ 0 and B − |Ψ | > 0 by virtue of the boundedness of Ψ sets.

We now prove that the measure of the premises of every rule is always strictly
less than the measure of its consequence.

Rule (comp �≤): let (n1, n2, n3, n4) be the measure value for the consequence,
then the value for the premise is (n1, n2, n3 − 1, n′

4), and (n1, n2, n3 − 1, n′
4) <

(n1, n2, n3, n4);
Rules (l-l-or �≤) and (r-l-or �≤): let (n1, n2, n3, n4) be the measure value for

the consequence, then the value for the premise is (n1, n2, n3, n4 − 1), and
(n1, n2, n3, n4 − 1) < (n1, n2, n3, n4);

Rule (r-or �≤): let (n1, n2, n3, n4) be the measure value for the consequence,
then the value for the premise is (n1, n2 − 1, n′

3, n4), and (n1, n2 − 1, n′
3, n4) <

(n1, n2, n3, n4);
Rule (rec �≤): let (n1, n2, n3, n4) be the measure value for the consequence,

then the value for any premise is (n1 − 1, n′
2, n

′
3, n

′
4), and (n1 − 1, n′

2, n
′
3, n

′
4) <

(n1, n2, n3, n4).

Soundness is split into two implications, the first proved by coinduction, the
second by induction.

Lemma 17. Let Ψ be a set of extended types s.t. for all π′ ∈ Ψ , π′ is a record
type having shape 〈. . . f :ρ− τ . . .〉. Then π �∈ Ψ and �π� �⊆ �τ1 ∨ . . . ∨ τn� imply
Ψ
 π �≤ {τ1, . . . , τn}.

Proof. By coinduction on the rules of Figure 11 and case analysis on π.
If π = 0, then �π� �⊆ �τ1 ∨ . . . ∨ τn� does not hold, therefore the implication

vacuously holds.

302 D. Ancona and A. Corradi

If π = π1 ∨ π2, then �π� = �π1� ∪ �π2�, therefore if �π� �⊆ �τ1 ∨ . . . ∨ τn�, then
either �π1� �⊆ �τ1 ∨ . . . ∨ τn� or �π2� �⊆ �τ1 ∨ . . . ∨ τn�, hence by coinduction we
can apply either rule (l-l-or �≤) or (r-l-or �≤) and conclude.

For the remaining cases we distinguish two subcases: either Ξ �= ∅ or Ξ = ∅.
If Ξ �= ∅ and π ∈ {null , int , 〈. . .〉}, then, by coinduction, rule (r-or �≤) can be

applied if τn = τ ′ ∨ τ ′′, because �τ1 ∨ . . . ∨ (τ ′ ∨ τ ′′)� = �τ1 ∨ . . . ∨ τ ′ ∨ τ ′′�; if τn
is not a union type, then, by coinduction, rule (comp �≤) can be applied because
there exists τ ′ s.t. π \ τn = τ ′ (π and τn are not union), �τ ′� = �π� \ �τn� by
Lemma 12, and �π� �⊆ �τ1 ∨ . . . ∨ τn� implies �π� \ �τn� �⊆ �τ1 ∨ . . . ∨ τn−1�.

If Ξ = ∅ and π ∈ {null , int}, then we can easily conclude by coinduction and
rule (prim �≤).

If Ξ = ∅ and π is a record type s.t. �π� �⊆ ∅; if there is no f , ρ, and τ ,
s.t. π has shape 〈. . . f :ρ− τ . . .〉, then we can conclude by coinduction and by
applying rule (rec �≤) with no premises (note that the side condition π �∈ Ψ
holds by hypothesis). Otherwise, by Lemma 13, for all f , ρ, and τ s.t. π has
shape 〈. . . f :ρ− τ . . .〉, we know that �ρ− τ� �= ∅. Furthermore, by Lemma 14
there exist unique τ ′, Ξ s.t. ρ − τ � τ ′ − Ξ holds, and by Lemma 15, if Ξ =
{τ ′1, . . . , τ ′k}, then �ρ− τ� = �τ ′ − (τ ′1 ∨ . . . ∨ τ ′k)�, hence �τ ′ − (τ ′1 ∨ . . . ∨ τ ′k)� �=
∅ which implies �τ ′� �⊆ �τ ′1 ∨ . . . ∨ τ ′k�. Finally, if for all π′ ∈ Ψ , π′ is a record type
having shape 〈. . . f ′:ρ′ − τ ′′ . . .〉, then the same property holds for Ψ ∪ {π}, and
τ ′ �∈ Ψ ∪ {π} holds because τ ′ is not an extended type. Hence we can conclude
by coinduction and rule (rec �≤).
Lemma 18. If Ψ
 π �≤ Ξ, then π ≤ Ξ does not hold.

Proof. By induction on the rules defining Ψ
 π �≤ Ξ. We detail the proof only
for the most involved rule (rec �≤). If π is a record, then the only applicable rule
for proving π ≤ ∅ is (rec ≤). If rule (rec �≤) has no premises, then there is no
field having type of shape ρ− τ , hence rule (rec ≤) is not applicable. If rule (rec
�≤) has premises, then for all fields of type ρ − τ we know that by Lemma 14
there exist exist unique τ ′, Ξ s.t. ρ − τ � τ ′ − Ξ, therefore by induction we
deduce that τ ′ ≤ Ξ does not hold, therefore rule (rec ≤) can never be applied,
and, hence, π ≤ ∅ does not hold.

Soundness trivially derives from the three previous lemmas.

Corollary 3 (Soundness). If π ≤ {τ1, . . . , τn}, then �π� ⊆ �τ1 ∨ . . . ∨ τn�.
Proof. It suffices to show that �π� �⊆ �τ1 ∨ . . . ∨ τn� implies that π ≤ {τ1, . . . , τn}
does not hold. This can be proved directly by applying Lemma 17, Lemma 16,
and Lemma 18.

Completeness throws no surprise and can be proved with a standard proof by
coinduction on the subtyping rules.

Theorem 4 (Completeness). If �π� ⊆ �τ1 ∨ . . . ∨ τn�, then π ≤ {τ1, . . . , τn}
holds.

Proof. The proof uses Lemma 12, Lemma 13, Lemma 14 and Lemma 15. See
the extended version [2].

Sound and Complete Subtyping between Coinductive Types 303

6 A Sound and Complete Algorithm

We have proved that the subtyping rules in Figure 9 are sound and complete
w.r.t. the definition of semantic subtyping; however, such rules do not directly
specify an algorithm for deciding semantic subtyping between coinductive types.
In this section we show how it is possible to define a sound and complete algo-
rithm implementing such rules.

The algorithm is specified by the following recursive function subtype, which
is assumed to be invoked over normalized types; we omit the normalization
function that can be derived from the Figure 5 (the interested reader can refer
to the prototype implementation).

In order to decide whether π1 is a subtype of π2, function subtype must be
called with Ψ = ∅, π = π1, and Ξ = {τ2}.
// pre - condition: π and all types in Ξ are normalized
boolean subtype (Set <Pair <ExtType ,Set <Type >>> Ψ , ExtType π,Set<Type > Ξ) {

// rule (empty ≤)
i f (π==0)

return true
// termination condition

i f (∃ (π′, Ξ′) ∈ Ψ s.t. π′==π && Ξ′ ⊆ Ξ)
return true

// rule (right -or ≤)
while(∃ τ1, τ2 s.t. τ1 ∨ τ2 ∈ Ξ)

Ξ=(Ξ \ τ1 ∨ τ2) ∪ {τ1, τ2}
// rule (left -or ≤)
i f (∃π1, π2 s.t. π==π1 ∨ π2)

return subtype (Ψ , π1, Ξ) && subtype (Ψ , π2, Ξ)
// rule (comp ≤)
else i f (∃ τ ∈ Ξ) {

π′=π \ τ

Ξ′=Ξ \ {τ}
return subtype (Ψ ∪ {(π, {τ})},π′,∅) ||

Ξ′!=∅ && subtype (Ψ ∪ {(π,Ξ)},π′,Ξ′)
}

// rule (rec ≤)
else i f (π==〈. . .〉){

foreach f ∈ dom(π)
i f (∃ ρ, τ s.t. π(f)==ρ − τ) {

ρ − τ � τ ′ − Ξ′

i f (subtype (Ψ ,τ ′,Ξ′))
return true

}
return false

}
else

// int ≤ ∅ and null ≤ ∅ do not hold
return false

}

The algorithm is derived from the rules in Figure 9, but also from the proof of
soundness; in particular, Lemma 17, and Lemma 16 show that if Ξ = {τ1, . . . , τn},
τ = τ1∨ . . .∨τn, and �π� �⊆ �τ�, then failure of π ≤ Ξ is always finite (indeed, all
proofs for ∅
 π �≤ Ξ are finite), whereas if �π� ⊆ �τ� holds, then the proof tree
for π ≤ Ξ could be infinite; however, Lemma 16 shows that such a proof tree is
always regular, hence we can use the complement of the side-condition π �∈ Ψ of
rule (rec �≤) to ensure termination for π ≤ Ξ.

304 D. Ancona and A. Corradi

However, the presented algorithm differs from the inference system of Figure 9
for several details:

Order of rule application: as expected, the order in which rules can be applied
has been made deterministic. Rule (empty ≤) overlaps with (right-or ≤), and
(comp ≤), and is tried first, for obvious efficiency reasons. Rule (right-or ≤)
overlaps (besides (empty ≤)) only with (left-or ≤) (recall that π \ τ is only
defined when both π and τ are not union types, hence rule (comp ≤) does
not overlap with rules (right-or ≤) and (left-or ≤)), and it is applied first for
efficiency reasons: were rule (left-or ≤) be applied first, the applications of rule
(right-or ≤) would be uselessly duplicated for the two premises of (left-or ≤).
Rules (left-or ≤), (comp ≤), and (rec ≤) do not overlap, therefore the order in
which are considered is immaterial.

Termination condition: the termination condition used by the algorithm is an
improvement of that used in rule (right-or �≤) for the definition of the judgment
Ψ
 π �≤ Ξ (obviously the termination condition has to be complemented). First,
such a termination condition is used for all rules defining π ≤ Ξ (except (empty
≤)), and not just for rule (rec ≤). When function subtype has to check whether
π ≤ Ξ holds, it first verifies (unless π = 0) whether the set Ψ already contains a
pair (π,Ξ ′) such that Ξ ′ ⊆ Ξ; this means that the algorithm is already checking
whether π ≤ Ξ ′ holds (that is, there is a corresponding call to subtype on the
stack) and if π ≤ Ξ ′ holds, then π ≤ Ξ holds as well; therefore, true can be
returned. If π ≤ Ξ does not hold, then π ≤ Ξ ′ does not hold as well, therefore
the corresponding call to subtype will eventually find a counter-example and
return false as expected.

Finally, new pairs are inserted in Ψ when rule (comp ≤) is applied; this is the
point where new types can be generated through the computation of π \ τ that
can contain extended record types with fields having types of shape ρ− τ ′; only
in this case the application of rule (rec ≤) can lead to a potentially infinite loop,
as shown by the proof of Lemma 16 (recall that if π is a record that does not
contain any field having type of shape ρ− τ ′, then rule (rec ≤) has no premises).
In this way, we give the algorithm more chances to prune the proof tree, and,
thus, to avoid combinatorial explosion, but we avoid indiscriminate insertion in
Ψ of all pairs corresponding to a call to subtype.

Optimization of rule (comp ≤): besides all optimizations explained above, we
have also implemented a more refined version of rule (comp ≤): before checking
that π \ τ ≤ Ξ \ {τ} holds, we verify whether π \ τ is already empty (thus,
π \ τ ≤ ∅ holds), to avoid useless applications of rule (comp ≤).

7 Conclusion

In this paper we have tackled the problem of defining a practical top-down
algorithm for deciding semantic subtyping for coinductively interpreted types in
the presence of record and union types.

Sound and Complete Subtyping between Coinductive Types 305

We have defined a set of coinductive subtyping rules, and proved that such a
set is sound and complete w.r.t. semantic subtyping; from such rules an algorithm
has been derived and implemented by a prototype written in Prolog.

As a byproduct, we have proposed and used a new proof technique that can be
fruitfully used for proving soundness results for coinductively defined judgments
(or, dually, for proving completeness results for inductively defined judgments).

We have shown with an example in Python how coinductive types allow more
precise type analysis in the presence of cyclic objects; furthermore, a complete
procedure for deciding subtyping makes the analysis even more precise. This
work can be directly applied to our previous work on abstract compilation for
object-oriented languages [4,3,6,7] to perform static global type analysis; the
types employed by abstract compilation are essentially the same studied here,
with the difference that the previously defined subtyping rules were sound but
not complete [5]. Actually, our prototype implementation supports the same
types as defined in our first work on coinductive types [4].

There are several directions for further research on this topic. To simplify the
technical details, in this paper we have considered non updatable records (that
is, record subtyping is covariant in the types of the fields), but for effectively
using our result in object-oriented languages, the subtyping algorithm has to be
extended to updatable records (that is, record subtyping is invariant in the types
of the updatable fields).

Besides updatable records there are other interesting extensions to the type
system and to the subtyping algorithm to obtain more precise type analysis;
in particular, the addition of polymorphic types would require a non trivial
extension of the subtyping algorithm to handle set of subtyping constraints with
type variables.

References

1. Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems 15(4), 575–631 (1993)

2. Ancona, D., Corradi, A.: Sound and complete subtyping between coinductive types
for object-oriented languages. Technical report, DIBRIS - Università di Genova,
Italy (2014), ftp://ftp.disi.unige.it/person/AnconaD/
CompleteCoinductiveSubtyping.pdf

3. Ancona, D., Corradi, A., Lagorio, G., Damiani, F.: Abstract compilation of object-
oriented languages into coinductive CLP(X): can type inference meet verification?
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 31–45.
Springer, Heidelberg (2011)

4. Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer,
Heidelberg (2009)

5. Ancona, D., Lagorio, G.: Coinductive subtyping for abstract compilation of object-
oriented languages into Horn formulas. In: Montanari, A., Napoli, M., Parente,
M. (eds.) Proceedings of GandALF 2010. Electronic Proceedings in Theoretical
Computer Science, vol. 25, pp. 214–223 (2010)

ftp://ftp.disi.unige.it/person/AnconaD/CompleteCoinductiveSubtyping.pdf
ftp://ftp.disi.unige.it/person/AnconaD/CompleteCoinductiveSubtyping.pdf

306 D. Ancona and A. Corradi

6. Ancona, D., Lagorio, G.: Idealized coinductive type systems for imperative object-
oriented programs. RAIRO - Theor. Inf. and Applic. 45(1), 3–33 (2011)

7. Ancona, D., Lagorio, G.: Static single information form for abstract compilation.
In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp.
10–27. Springer, Heidelberg (2012)

8. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Intersection and union
types: Syntax and semantics. Information and Computation 119(2), 202–230 (1995)

9. Bonsangue, M., Rot, J., Ancona, D., de Boer, F., Rutten, J.: A coalgebraic founda-
tion for coinductive union types. In: 41st International Colloquium on Automata,
Languages and Programming, ICALP 2014 (to appear, 2014)

10. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality
and subtyping. Fundam. Inform. 33(4), 309–338 (1998)

11. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25, 95–169 (1983)

12. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. J. ACM 55(4)
(2008)

13. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Trans. Internet Techn. 3(2), 117–148 (2003)

14. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM
Trans. Program. Lang. Syst. 27(1), 46–90 (2005)

15. Igarashi, A., Nagira, H.: Union types for object-oriented programming. Journ. of
Object Technology 6(2), 47–68 (2007)

16. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and
Computation 207, 284–304 (2009)

Sound and Complete Subtyping between Coinductive Types 307

A Artifact Description

Authors of the Artifact. Davide Ancona and Andrea Corradi.

Summary. We have developed a prototype implementation of the presented
algorithm in SWI Prolog; besides allowing rapid prototyping and conciseness,
Prolog has the advantage of offering native support for regular terms and uni-
fication, which is very useful for defining coinductively defined functions which
returns regular terms (consider for instance the problem of implementing type
normalization as defined in Figure 5.

Although the prototype has been developed as a proof of concept, and more
optimizations and an implementation in a more efficient programming language
should be considered, the numerous tests show that the algorithm is usable in
practice.

As an example of the performed tests, let us consider the following two types
τL, τEL, and τOL defined by the following equations:

τL = 〈el:int , nx:τL〉 ∨ null
τEL = 〈el:int , nx:〈el:int , nx:τEL〉〉 ∨ null
τOL = 〈el:int , nx:〈el:int , nx:τOL〉〉 ∨ 〈el:int , nx:null〉

Type τL corresponds to all integer lists, whereas τEL and τOL represent all
integer lists whose length (when finite) is even and odd, respectively. As expected,
the tests τEL ∨ τOL ≤ τL and τL ≤ τEL ∨ τOL succeed, whereas τL ≤ τEL and
τL ≤ τOL fail.

Content. The artifact package includes:

– README.txt: explanation of how the artifact works and how to use it.
– results.pdf: experimental results.
– src/contractive.pl: contractivity check.
– src/normalization.pl: type normalization as defined in the paper.
– src/plunit.pl: unit testing framework.
– src/subtype.pl: implementation of the main predicate subtype/2.
– src/tests.pl: tests for the subtype predicate and code to run the bench-

marks.

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of our code is available on
ftp://ftp.disi.unige.it/person/AnconaD/ECOOP14artifact.zip.

Tested Platforms. The artifact is known to work on any platform running
SWI Prolog (http://swi-prolog.org/) version 6.6.

License. GPL-2.0
(https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt)

MD5 Sum of the Artifact. fac97ebe56df60b35de45fe7a32ebd6f

Size of the Artifact. 162 KB

ftp://ftp.disi.unige.it/person/AnconaD/ECOOP14artifact.zip
http://swi-prolog.org/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

Spores: A Type-Based Foundation for Closures
in the Age of Concurrency and Distribution

Heather Miller1, Philipp Haller2, and Martin Odersky1

1 EPFL
{heather.miller,martin.odersky}@epfl.ch

2 Typesafe, Inc.
philipp.haller@typesafe.com

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 308–333, 2014.
© Springer-Verlag Berlin Heidelberg 2014

 Spores 309

310 H. Miller, P. Haller, and M. Odersky

 Spores 311

312 H. Miller, P. Haller, and M. Odersky

spore header

closure/spore body

}
}

 Spores 313

314 H. Miller, P. Haller, and M. Odersky

 Spores 315

316 H. Miller, P. Haller, and M. Odersky

 Spores 317

Excluded
Captured

.type

318 H. Miller, P. Haller, and M. Odersky

Captured(res.type) = Captured(s1.type), Captured(s2.type)
Excluded(res.type) = {T ∈ Excluded(s1.type) ∪ Excluded(s2.type) | T /∈
Captured(s1.type), Captured(s2.type)}

 Spores 319

t ::= x
| (x : T) ⇒ t
| t t
| x = t t

| {l = t}
| t.l
| { x : T = t ; pn; (x : T) ⇒ t }
| pn t
| t t

v ::= (x : T) ⇒ t

| {l = v}
| { x : T = v ; pn; (x : T) ⇒ t }

T ::= T ⇒ T

| {l : T}
| S

S ::= T ⇒ T { C = T ; pn }
| T ⇒ T { C ; pn }

P ∈ pn → T
T ∈ P(T)

Γ ::= x : T
Δ ::= pn

320 H. Miller, P. Haller, and M. Odersky

M1 = M2

M2 = C

C

l′ ⊆ l li = l′i → Ti <: T ′
i ∧ T ′

i <: Ti

{l : T} <: {l′ : T ′}
T2 <: T1 R1 <: R2

T1 ⇒ R1 <: T2 ⇒ R2

T2 <: T1 R1 <: R2 pn′ ⊆ pn M1 = M2 ∨M2 = C
T1 ⇒ R1 { M1 ; pn } <: T2 ⇒ R2 { M2 ; pn′ }

T1 ⇒ R1 { M ; pn } <: T1 ⇒ R1

Γ;Δ
 t : T
Γ Δ

t

P
pn T

P

T <: T ′ T ′ ∈ P (pn)
T ∈ P (pn)

Δ

 Spores 321

x : T ∈ Γ

Γ;Δ � x : T

Γ;Δ � t : T ′ T ′ <: T

Γ;Δ � t : T

Γ, x : T1; Δ � t : T2

Γ;Δ � (x : T1) ⇒ t : T1 ⇒ T2

Γ;Δ � t1 : T1 ⇒ T2 Γ;Δ � t2 : T1

Γ;Δ � (t1 t2) : T2

Γ;Δ � t1 : T1 Γ, x : T1; Δ � t2 : T2

Γ;Δ � x = t1 t2 : T2

Γ;Δ � t : T

Γ;Δ � {l = t} : {l : T}
Γ;Δ � t : {l : T}
Γ;Δ � t.li : Ti

Γ;Δ, pn � t : T

Γ;Δ � pn t : T

∀si ∈ s. Γ;Δ � si : Si y : S, x : T1;Δ � t2 : T2 ∀pn ∈ Δ,Δ′. S ⊆ P (pn)

Γ;Δ � { y : S = s ; Δ′; (x : T1) ⇒ t2 } : T1 ⇒ T2 { C = S ; Δ,Δ′ }

Γ;Δ � t1 : T1 ⇒ T2 { C = S ; Δ1 } Γ;Δ � t2 : U1 ⇒ T1 { C = R ; Δ2 }
Δ′ = {pn ∈ Δ1 ∪Δ2 | S ⊆ P (pn) ∧R ⊆ P (pn)}

Γ;Δ � t1 t2 : U1 ⇒ T2 { C = S,R ; Δ′ }

pn
t

Γ;Δ t2

Δ
Δ′

Δ Δ′

S R
Δ

322 H. Miller, P. Haller, and M. Odersky

∀pn ∈ pn. T ⊆ P (pn)

{ x : T = v; pn; (x′ : T) ⇒ t }v′ → [x �→ v][x′ �→ v′]t

tk → t′k
{ x : T = v, xk : Tk = tk, x′ : T ′ = t′ ; (x : T) ⇒ t } →
{ x : T = v, xk : Tk = t′k, x′ : T ′ = t′ ; (x : T) ⇒ t }

pn t → insert(pn, t)
t1 → t′1

t1 t2 → t′1 t2

t2 → t′2
v1 t2 → v1 t′2

Δ = {p | p ∈ pn, qn. T ⊆ P (p) ∧ S ⊆ P (p)}
{ x : T = v; pn; (x′ : T ′) ⇒ t } { y : S = w; qn; (y′ : S′) ⇒ t′ } →

{ x : T = v, y : S = w; Δ; (y′ : S′) ⇒ z′ = t′ [x′ �→ z′]t}

∀ti ∈ t. insert(pn, ti) = t′i insert(pn, t) = t′

insert(pn, { x : T = t; pn; (x′ : T) ⇒ t }) =
{ x : T = t′; pn, pn; (x′ : T) ⇒ t′ }

insert(pn, t) = t′

insert(pn, { x : T = v; pn; (x′ : T) ⇒ t }) =
{ x : T = v; pn, pn; (x′ : T) ⇒ t′ }

insert(pn, t1 t2) = insert(pn, t1) insert(pn, t2) insert(pn, t.l) = insert(pn, t).l

insert

pn
t insert

 Spores 323

t
 t : T
T t t′ t→ t′

 t : T

Γ;Δ, pn
 t : T Γ;Δ

insert(pn, t) : T

Γ;Δ, pn
 t : T

Γ, x : S; Δ
 t : T Γ;Δ

s : S Γ;Δ
 [x �→ s]t : T

Γ, x : S; Δ
 t : T

Γ;Δ
 t : T x /∈ dom(Γ) Γ, x : S; Δ
 t : T

Γ;Δ
 t : T

Γ;Δ
 t : T t→ t′ Γ;Δ
 t′ : T

Γ;Δ
 t : T

pn
pn P (pn)

324 H. Miller, P. Haller, and M. Odersky

t ::= ...

| { x : T = t ;T ; pn; (x : T) ⇒ t }

v ::= ...

| { x : T = v ;T ; pn; (x : T) ⇒ t }

S ::= T ⇒ T { C = T ; E = T ; pn }
| T ⇒ T { C ; E = T ; pn }

T2 <: T1 R1 <: R2

pn′ ⊆ pn M1 = M2 ∨M2 = C ∀T ′ ∈ U ′. ∃T ∈ U. T ′ <: T

T1 ⇒ R1 { M1 ; E = U ; pn } <: T2 ⇒ R2 { M2 ; E = U ′ ; pn′ }

T1 ⇒ R1 { M ; E ; pn } <: T1 ⇒ R1

∀pn ∈ pn. T ⊆ P (pn) ∀Ti ∈ T . Ti /∈ U

{ x : T = v ; U ; pn ; (x′ : T) ⇒ t } v′ → [x �→ v][x′ �→ v′]t

Δ = {p | p ∈ pn, qn. T ⊆ P (p) ∧ S ⊆ P (p)} V = (U \ S) ∪ (U ′ \ T)
{ x : T = v ; U ; pn ; (x′ : T ′) ⇒ t }

{ y : S = w ; U ′ ; qn ; (y′ : S′) ⇒ t′ } → { x : T = v, y : S = w ; V ; Δ ;
(y′ : S′) ⇒ z′ = t′ [x′ �→ z′]t }

E = T

T ′

T T ′ <: T T
T ′

T
U

S
U

 Spores 325

∀si ∈ s. Γ;Δ � si : Si y : S, x : T1;Δ � t2 : T2

∀pn ∈ Δ,Δ′. S ⊆ P (pn) ∀Si ∈ S. ∀Uj ∈ U. ¬(Si <: Uj)

Γ;Δ � { y : S = s ;U ; Δ′; (x : T1) ⇒ t2 } :

T1 ⇒ T2 { C = S ; E = U ; Δ,Δ′ }

Γ;Δ � t1 : T1 ⇒ T2 { C = S ; E = U ; Δ1 }
Γ;Δ � t2 : U1 ⇒ T1 { C = R ; E = U ′ ; Δ2 }

Δ′ = {pn ∈ Δ1 ∪Δ2 | S ⊆ P (pn) ∧R ⊆ P (pn)} V = (U \R) ∪ (U ′ \ S)
Γ;Δ � t1 t2 : U1 ⇒ T2 { C = S,R ; E = V ; Δ′ }

V
t1 t2

326 H. Miller, P. Haller, and M. Odersky

MOOC

Parallel Collections

Spark

}
}
}

 Spores 327

LOC

LOC

LOC

LOC

LOC

LOC

LOC

LOC

328 H. Miller, P. Haller, and M. Odersky

 Spores 329

330 H. Miller, P. Haller, and M. Odersky

 Spores 331

Acknowledgements. We would like to thank the anonymous ECOOP 2014 referees
for their thorough reviews and helpful suggestions which greatly improved the quality
of the paper. Heather Miller was supported by a US National Science Foundation
Graduate Research Fellowship.

References

1. Budimli , Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg, J.,
Peixotto, D., Sarkar, V., Schlimbach, F.: et al. Concurrent collections. Scientific
Programming 18(3) (2010)

2. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.: Data
Parallel Haskell: A status report. In: Proc. DAMP Workshop, pp. 10–18. ACM (2007)

3. Collins, A., Grewe, D., Grover, V., Lee, S., Susnea, A.: NOVA: A functional language for
data parallelism. Technical Report NVR-2013-002, NVIDIA Corporation (July 2013)

332 H. Miller, P. Haller, and M. Odersky

4. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Epstein, J., Black, A.P., Peyton-Jones, S.: Towards Haskell in the cloud. In: Proc. Haskell
Symposium, pp. 118–129. ACM (2011)

6. Germain, G.: Concurrency oriented programming in Termite Scheme. In: Erlang
Workshop, p. 20. ACM (2006)

7. Goetz, B.: JSR 335: Lambda expressions for the Java programming language (2013),
https://jcp.org/en/jsr/detail?id=335

8. Herhut, S., Hudson, R.L., Shpeisman, T., Sreeram, J.: River trail: a path to parallelism in
JavaScript. In: OOPSLA, pp. 729–744 (2013)

9. International Standard ISO/IEC 14882:2011. Programming Languages – C++.
International Organization for Standards (2011)

10. Lewis, J.R., Launchbury, J., Meijer, E., Shields, M.: Implicit parameters: Dynamic scoping
with static types. In: POPL, pp. 108–118 (2000)

11. Maier, P., Trinder, P.: Implementing a high-level distributed-memory parallel Haskell in
Haskell. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 35–50. Springer,
Heidelberg (2012)

12. Marlow, S., Newton, R., Peyton Jones, S.: A monad for deterministic parallelism. In: Proc.
Haskell Symposium, pp. 71–82. ACM (2011)

13. Matsakis, N.: Fn types in Rust, take 3 (2013), http://smallcultfollowing.com/
babysteps/blog/2013/10/10/fn-types-in-rust

14. Matsakis, N.D.: Parallel closures: a new twist on an old idea. In: HotPar. USENIX (2012)
15. McKerns, M.M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.A.: Building a framework

for predictive science. In: Proc. of the 10th Python in Science Conf. (2011)
16. Meijer, E.: Confessions of a used programming language salesman. In: OOPSLA (2007)
17. Meyerovich, L.A., Rabkin, A.S.: Empirical analysis of programming language adoption.

In: OOPSLA (2013)
18. Miller, H., Haller, P.: Spores, formally. Technical Report EPFL-REPORT-191240,

Department of Computer Science, EPFL, Lausanne, Switzerland (December 2013)
19. Miller, H., Haller, P., Burmako, E., Odersky, M.: Instant pickles: Generating object-

oriented pickler combinators for fast and extensible serialization. In: OOPSLA, pp. 183–
202 (2013)

20. Miller, H., Haller, P., Rytz, L., Odersky, M.: Functional programming for all! Scaling a
MOOC for students and professionals alike. In: ICSE, pp. 265–263 (2014)

21. Morrisett, J.G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. ACM Trans. Program. Lang. Syst 21(3), 527–568 (1999)

22. Murphy VII, T., Crary, K., Harper, R.: Type-safe distributed programming with ML5. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 108–123. Springer,
Heidelberg (2008)

23. Odersky, M.: The Scala language specification (2013)
24. Pierce, B.C.: Types and programming languages. MIT Press (2002)
25. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A generic parallel collection

framework. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II. LNCS,
vol. 6853, pp. 136–147. Springer, Heidelberg (2011)

26. Prokopec, A., Miller, H., Schlatter, T., Haller, P., Odersky, M.: FlowPools: A lock-free
deterministic concurrent dataflow abstraction. In: Kasahara, H., Kimura, K. (eds.) LCPC
2012. LNCS, vol. 7760, pp. 158–173. Springer, Heidelberg (2013)

27. Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-transform. In: ICFP, pp. 317–328. ACM (2009)

 Spores 333

28. Schwendner, A.: Distributed functional programming in Scheme. Master’s thesis,
Massachusetts Institute of Technology (2009)

29. Typesafe. Akka (2009), http://akka.io/
30. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput. 115(1),

38–94 (1994)
31. Zaharia, M., Chowdhury, M., Das, T., Dave, A., McCauley, M., Franklin, M., Shenker, S.,

Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In: NSDI. USENIX (2012)

32. Zibin, Y., Potanin, A., Li, P., Ali, M., Ernst, M.D.: Ownership and immutability in generic
java. In: OOPSLA, pp. 598–617. ACM (2010)

Rely-Guarantee Protocols

Filipe Militão1,2, Jonathan Aldrich1, and Luı́s Caires2

1 Carnegie Mellon University, Pittsburgh, USA
2 Universidade Nova de Lisboa, Lisboa, Portugal

{filipe.militao,jonathan.aldrich}@cs.cmu.edu, lcaires@fct.unl.pt

Abstract. The use of shared mutable state, commonly seen in object-oriented
systems, is often problematic due to the potential conflicting interactions between
aliases to the same state. We present a substructural type system outfitted with a
novel lightweight interference control mechanism, rely-guarantee protocols, that
enables controlled aliasing of shared resources. By assigning each alias sepa-
rate roles, encoded in a novel protocol abstraction in the spirit of rely-guarantee
reasoning, our type system ensures that challenging uses of shared state will
never interfere in an unsafe fashion. In particular, rely-guarantee protocols ensure
that each alias will never observe an unexpected value, or type, when inspecting
shared memory regardless of how the changes to that shared state (originating
from potentially unknown program contexts) are interleaved at run-time.

1 Introduction

Shared, mutable state can be useful in certain algorithms, in modeling stateful systems,
and in structuring programs. However, it can also make reasoning about a program
more difficult, potentially resulting in run-time errors. If two pieces of code have ref-
erences to the same location in memory, and one of them updates the contents of that
cell, the update may destructively interfere by breaking the other piece of code’s as-
sumptions about the properties of the value contained in that cell—which may cause
the program to compute the wrong result, or even to abruptly terminate. In order to mit-
igate this problem, static type systems conservatively associate an invariant type with
each location, and ensure that every store to the location preserves this type. While
this approach can ensure basic memory safety, it cannot check higher-level protocol
properties [1, 4, 5, 13, 20] that are vital to the correctness of many programs [3].

For example, consider a Pipe abstraction that is used to communicate between two
parts of the program. A pipe is open while the communication is ongoing, but when
the pipe is no longer needed it is closed. Pipes include shared, mutable state in the
form of an internal buffer, and abstractions such as Java’s PipedInputStream also
dynamically track whether they are in the open or closed state. The state of the pipe
determines what operations may be performed, and invoking an inappropriate operation
is an error: for example, writing to a closed pipe in Java results in a run-time exception.

Static approaches to reason about such state protocols (of which we follow the type-
state [7, 22, 28, 29] approach) have two advantages: errors such as writing to a closed
pipe can be avoided on the one hand, and defensive run-time tests of the state of an
object can become superfluous on the other hand. In typestate systems, abstractions ex-
pose a more refined type that models a set of abstract states representing the internal,

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 334–359, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Rely-Guarantee Protocols 335

changing, type of the state (such as the two states above, open and closed) enabling the
static modular manipulation of stateful objects. However, sharing (such as by aliasing)
these resources must be carefully controlled to avoid potentially destructive interfer-
ence that may result from mixing incompatible changes to apparently unrelated objects
that, in reality, are connected to the same underlying run-time object. This work aims to
provide an intuitive and general-purpose extension to the typestate model by exploiting
(coordination) protocols at the shared state level to allow fine-grained and flexible uses
of aliased state. Therefore, by modeling the interactions of aliases of some shared state
in a protocol abstraction, we enable complex uses of sharing to safely occur through
benign interference, interference that the other aliases expect and/or require to occur.

Consider once more the pipe example. The next two code blocks implement simpli-
fied versions of the pipe’s put and tryTake functions. Although each function operates
independently of the other, internally they share nodes of the same underlying buffer:

// protocol: Empty⇒ Filled; none
put = fun(v : Value).

// Empty shared node, oldlast, to be filled with node
// containing tagged (#) empty record, {}, as ‘Empty’
let last = new Empty#{} in
let oldlast = !buffer.tail in // is Empty

// tags pair of ‘v’ and ‘last’ as ‘Filled’
oldlast := Filled#{ v , last };
buffer.tail := last

end // last cell is now reachable from head&tail
end // oldlast cell unreachable from tail

// rec X.(Empty⇒ Empty; X ⊕ Filled⇒ none)
tryTake = fun().
let first = !buffer.head in
case !first of
Empty#_ → NoResult#{}

| Filled#[v , next] → // does not return
delete first; // ownership to the protocol
buffer.head := next;
Result#v

end
end

By distributing these functions between two aliases, we are able to create independent
producer and consumer components of the pipe that share a common buffer (modeled
as a singly-linked list). Observe how the interaction, that occurs through aliases of the
buffer’s nodes, obeys a well-defined protocol: the producer alias (through the put func-
tion) inserts an element into the last (empty) node of the buffer and then immediately
forfeits that cell (i.e. it is no longer used by that alias); while the consumer alias (using
tryTake) proceeds by testing the first node and, when it detects it has been Filled

(thus, when the other alias is sure to no longer use it), recovers ownership of that node,
which enables the alias to safely delete that cell (first) since it is no longer shared.

1.1 Approach in a Nutshell

Interference due to aliasing is analogous to the interference caused by thread interleav-
ing [15,33]. This occurs because mutable state may be shared by aliases in unknown or
non-local program contexts. Such boundary effectively negates the use of static mecha-
nisms to track exactly which other variables alias some state. Therefore, we are unable
to know precisely if the shared state aliased by a local variable will be used when the
execution jumps off (e.g. through a function call) to non-local program contexts. How-
ever, if that state is used, then the aliases may change the state in ways that invalidate
the local alias’ assumptions on the current contents of the shared state. This interfer-
ence caused by “alias interleaving” occurs even without concurrency, but is analogous
to how thread interleaving may affect shared state. Consequently, techniques to reason
about thread interference (such as rely-guarantee reasoning [17]) can be useful to rea-
son about aliasing even in our sequential setting. The core principle of rely-guarantee
reasoning that we adapt is its mechanism to make strong local assumptions in the face

336 F. Militão, J. Aldrich, and L. Caires

of interference. To handle such interference, each alias has its actions constrained to fit
within a guarantee type and at the same time is free to assume that the changes done by
other aliases of that state must fit within a rely type. The duality between what aliases
can rely on and must guarantee among themselves yields significant flexibility in the
use of shared state, when compared for instance to invariant-based sharing.

We employ rely-guarantee in a novel protocol abstraction that captures a partial view
of the use of the shared state, as seen from the perspective of an alias. Therefore, each
protocol models the constraints on the actions of that alias and is only aware of the re-
sulting effects (“interference”) that may appear in the shared state due to the interleaved
uses of that shared state as done by other aliases. A rely-guarantee protocol is formed by
a sequence of rely-guarantee steps. Each step contains a rely type, stating what an alias
currently assumes the shared state contains; and a guarantee type, a promise that the
changes done by that alias will fit within this type. Using these small building blocks,
our technique allows strong local assumption on how the shared state may change,
while not knowing when or if other aliases to that shared state will be used—only how
they will interact with the shared state, if used. Since each step in a protocol can have
distinct rely and guarantee types, a protocol is not frozen in time and can model differ-
ent “temporal” uses of the shared state directly. A protocol is, therefore, an abstracted
perspective on the actions done by each individual alias to the shared state, and that is
only aware of the potential resulting effects of all the other aliases of that shared state.
A protocol conformance mechanism ensures the sound composition of all protocols to
the same shared state, at the moment of their creation. From there on, each protocol is
stable (i.e. immune to unexpected/destructive interference) since conformance attested
that each protocol, in isolation, is aware of all observable effects that may occur from
all possible “alias interleaving” originated from the remaining aliases.

Our main contribution is a novel type-based protocol abstraction to reason about
shared mutable state, rely-guarantee protocols, that captures the following features:

1. Each protocol provides a local type so that an alias need not know the actions that
other aliases are doing, only their resulting (observable) effect on the shared state;

2. Sharing can be done asymmetrically so that the role of each alias in the interaction
with the shared state may be distinct from the rest;

3. Our protocol paradigm is able to scale by modeling sharing interactions both at
the reference level and also at the abstract state level. Therefore, sharing does not
need to be embedded in an ADT [18], but can also work at the ADT level without
requiring a wrapper reference [15];

4. State can be shared individually or simultaneously in groups of state. By enabling
sharing to occur underneath a layer of apparently disjoint state, we naturally support
the notion of fictional disjointness [9, 16, 18];

5. Our protocol abstraction is able to model complex interactions that occur through
the shared state. These include invariant, monotonic and other coordinated uses.
Moreover, they enable both ownership transfer of state between non-local pro-
gram contexts and ownership recovery. Therefore, shared state can return to be
non-shared, even allowing it to be later shared again and in such a way that is com-
pletely unrelated to its previous sharing phases;

6. Although protocol conformance is checked in pairs, arbitrary aliasing is possible
(if safe) by further sharing a protocol in ways that do not conflict with the initial

Rely-Guarantee Protocols 337

sharing. Therefore, global conformance in the use of the shared state by multiple
aliases is assured by the combination of individual binary protocol splits, with each
split sharing the state without breaking what was previously assumed on that state;

7. We allow temporary inconsistencies, so that the shared state may undergo inter-
mediate (private) states that cannot be seen by other aliases. Using an idea similar
to (static) mutual exclusion, we ensure that the same shared state cannot be in-
spected while it is inconsistent. Such kind of critical section (that does not incur in
any run-time overhead) is sufficiently flexible to support multiple simultaneously
inconsistent states, when they are sure to not be aliasing the same shared state.

With this technique we are able to model challenging uses of aliasing in a lightweight
substructural type system, where all sharing is centered on a simple and intuitive pro-
tocol abstraction. We believe that by specializing our system to typestate and alias-
ing [1, 27] properties we can offer a useful intermediate point that is simpler than the
full functional verification embodied in separation logic [6,25] yet more expressive than
conventional type systems. Our proofs of soundness use standard progress and preser-
vation theorems. We show that all allowed interference is benign (i.e. that all changes
to the shared state are expected by each alias) by ensuring that a program cannot get
stuck, while still allowing the shared state to be legally used in complex ways. Besides
expressing the programmer’s intent in the types, our technique also enables a program
to be free of errors related to destructive interference. For instance, the programmer
will not be able to wrongly attempt to use a shared cell as if it were no longer shared,
or leave values in that shared cell that are not expected by the other aliases of that cell.

Section 2 introduces the language but leaves its sharing mechanisms to Section 4,
after an overview of the type system. Section 5 discusses technical results, and Section
6 additional examples. The paper ends with Sections for related work and conclusions.

2 Pipe Example

Our language is based on the polymorphic λ-calculus with mutable references, im-
mutable records, tagged sums and recursive types. Technically, we build on [22] (a
variant of L3 [1] adapted for usability) by supporting sharing of mutable state through
rely-guarantee protocols. As in L3, a cell is decomposed in two components: a pure ref-
erence (that can be freely copied), and a linear [14] capability used to track the contents
of that cell. Unlike L3, by extending [22] our language implicitly threads capabilities
through the code, reducing syntactic overhead. To support this separation of references
and capabilities, our language uses location-dependent types to relate a reference to its
respective capability. Therefore, a reference has a type “ref t” to mean a reference to
a location t, where the information about the contents of that location is stored in the
capability for t. Our capabilities follow the format “rw t A” meaning a read-write capa-
bility to location t which, currently, has contents of type A stored in it. The permission
to access, such as by dereference, the contents of a cell requires both the reference and
the capability to be available. Capabilities are typing artifacts that do not exist at run-
time and are moved implicitly through the code. Locations (such as t) must be managed
explicitly, leading to constructs dedicated to abstracting and opening locations.

338 F. Militão, J. Aldrich, and L. Caires

Pipes are used to support a consumer-producer style of interaction (using a shared
internal buffer as mediator), often used in a concurrent program but here used in a
single-threaded environment. The shared internal buffer is implemented as a shared
singly-linked list where the consumer keeps a pointer to the head of the list and the
producer to its tail. By partitioning the pipe’s functions (where the consumer alias uses
tryTake, and the producer both put and close), clients of the pipe can work inde-
pendently of one another, provided that the functions’ implementation is aware of the
potential interference caused by the actions of the other alias. It is on specifying and
verifying this interference that our rely-guarantee protocols will be used.

1 let newPipe = fun(_ : []). Γ = : [] | Δ = ·
2 open <n,node> = new Empty#{} in Γ = : [], node : ref n, n : loc | Δ = rw n Empty#[]
3 share (rw n Empty#[]) as H[n] || T[n]; Γ = ... | Δ = T[n],H[n]
4 open <h,head> = new <n, node::H[n]> in

Γ = ...,head : ref h, h : loc | Δ = T[n], rw h ∃p.(ref p :: H[p])
5 open <t,tail> = new <n, node::T[n]> in

Γ = ...,tail : ref t, t : loc | Δ = rw t ∃p.(ref p :: T[p]), ...
6 < rw h exists p.(ref p :: H[p]), // packs a type, the capability to location ’h’
7 < rw t exists p.(ref p :: T[p]), // packs a type, the capability to location ’t’
8 { // creates labeled record with ’put’, ’close’ and ’tryTake’ as members
9 put = fun(e : int :: rw t exists p.(ref p :: T[p]))./∗...shown in Section 4...∗/,

19 close = fun(_ : [] :: rw t exists p.(ref p :: T[p]))./∗...∗/,
26 tryTake = fun(_ : [] :: rw h exists p.(ref p :: H[p]))./∗...∗/
47 } :: (rw h exists p.(ref p :: H[p]) * rw t exists p.(ref p :: T[p])) > >
48 end
49 end
50 end

The function creates a pipe by allocating an initial node for the internal buffer, a
cell to be shared by the head and tail pointers. The newly allocated cell (line 2)
contains a tagged (as Empty) empty record ({}). In our language, aliasing information
is correlated through static names, locations, such that multiple references to the same
location must imply that these references are aliases of the same cell. Consequently,
the new construct (line 2) must be assigned a type that abstracts the concrete location
that was created, ∃t.(ref t :: rw t Empty#[]), which means that there exists some fresh
location t, and the new expression evaluates to a reference to t (“ref t”). We associate
this reference with a capability to access it, using a stacking operator ::. In this case the
capability is rw t Empty#[], representing a read and write capability to the location t,
which currently contains a value of type Empty#[] as initially mentioned. On the same
line, we then open the existential by giving it a location variable n and a regular variable
node to refer that reference. From there on, the capability (a typing artifact which has
no actual value) is automatically unstacked and moved implicitly as needed through the
program. For clarity, we will manually stack capabilities (such as on line 4, using the
construct e :: A where A is the stacked capability), although the type system does not
require it. On line 3, the type system initially carries the following assumptions:

Γ = : [] , node : ref n , n : loc | Δ = rw n Empty#[]

where Γ is the lexical environment (of persistent/pure resources), and Δ is a linear typ-
ing environment that contains all linear resources (such as capabilities). Each linear
capability must either be used up or passed on through the program (e.g. by returning
it from a function). The contents of the reference node are known statically by looking
up the capability for the location n to which node refers (i.e. “rw n Empty#[]”).

Rely-Guarantee Protocols 339

Capabilities are linear (cannot be duplicated), but aliasing in local contexts is still
possible by copying references. All copies link back to the same capability using the
location contained in the reference. However, when aliases operate in non-local con-
texts, this location-based link is lost. Thus, if we were to pack node’s capability before
sharing it, it would become unavailable to other aliases of that location. For instance,
by writing 〈n, node :: rw n Empty#[]〉we pack the location n by abstracting it in an ex-
istential type for that location. The packed type now refers a fresh location, unrelated
to its old version. Instead, we share that capability (line 3) by splitting it in two rely-
guarantee protocols, H and T1. Each protocol is then assigned to the head and tail

pointers (lines 4 and 5, respectively), since they encode the specific uses of each of
those aliases. The protocols and sharing mechanisms will be introduced in Section 4.

The type of newPipe is a linear function (�) that, since it does not capture any
enclosing linear resource, can be marked as pure (!) so that the type can be used without
the linear restriction. On line 6 we pack the inner state of the pipe (so as to abstract the
capability for t as P, and the one for h as C), resulting in newPipe having the type:

newPipe : !([]� ∃C.∃P.(![...] :: C ∗ P))

where the separate capabilities for the Consumer and Producer are stacked together in a
commutative group (∗). In this type, C abstracts the capability rw h ∃p.(ref p :: H[p]),
and P abstracts rw t ∃p.(ref p :: T[p]). Finally, although we have not yet shown the
implementation, the type of the elided record ([...]) contains function types that should
be unsurprising noting that each argument and return type has the respective capabilities
for the head/tail cells stacked on top (similarly to pre/post conditions, but directly
expressed in the types). Therefore, those functions are closures that use the knowledge
about the reference to the head/tail pointers from the surrounding context, but do not
capture the capability to those cells and instead require them to be supplied as argument.

[put : !(int :: P� [] :: P),
close : !([] :: P� []),
tryTake : !([] :: C� NoResult#([] :: C) + Result#(int :: C) + Depleted#[])]

Therefore, put preserves the producer’s capability, but close destroys it; while the
result of tryTake is a sum type of either Result or NoResult depending on whether
the still open pipe has or not contents available, or Depleted to signal that the pipe was
closed (and therefore that the capability to C vanished). Observe that the state that the
functions depend on is, apparently, disjoint although underneath this layer the state is
actually shared (but coordinated through a protocol) so that (benign) interference must
occur for the pipe to work properly—i.e. it is fictionally disjoint [9, 16, 18].

3 Type System Overview

We now present the type system. Non-essential details are relegated to [21, 22]. For
consistency, we include all sharing mechanisms but leave their discussion to Section 4.

1 As a brief glimpse, T is “rw n Empty#[] ⇒ (rw n Node#R ⊕ rw n Closed#[]); none”
which relies on n containing Empty#[], ensures n then contains either Node#R or Closed#[],
and then loses access to n. Both “⇒” and “;” (and R) will be discussed in detail in Section 4.

340 F. Militão, J. Aldrich, and L. Caires

ρ ∈ Location Constants (Addresses) t ∈ Location Variables p ::= ρ | t
l ∈ Labels (Tags) f ∈ Fields x ∈ Variables X ∈ Type Variables

v ::= ρ (address)
| x (variable)
| fun(x : A).e (function)
| 〈t〉 e (universal location)
| 〈X〉 e (universal type)
| 〈p, v〉 (pack location)
| 〈A, v〉 (pack type)
| {f = v} (record)
| l#v (tagged value)

e ::= v (value)
| v[p] (location application)
| v[A] (type application)

| v.f (field)
| v v (application)
| let x = e in e end (let)
| open 〈t, x〉 = v in e end (open location)
| open 〈X, x〉 = v in e end (open type)
| new v (cell creation)
| delete v (cell deletion)
| !v (dereference)
| v := v (assign)
| case v of l#x→ e end (case)
| share A0 as A1 || A2 (share)
| focus A (focus)
| defocus (defocus)

Note: ρ is not source-level. Z for a possibly empty sequence of Z. Tuples, recursion, etc. are encoded as idioms, see [22].

Fig. 1. Values (v) and expressions (e)

The (let-expanded [26]) grammar is shown in Fig. 1. The main deviations from stan-
dard λ-calculus are the inclusion of location-related constructs, and the sharing con-
structs (share, focus and defocus).

We use a flat type grammar (Fig. 2) where both capabilities (i.e. typing artifacts
without values, which includes our rely-guarantee protocols) and standard types (used
to type values) coexist. Our design does not need to make a syntactic distinction be-
tween the two kinds since the type system ensures the proper separation in their use.
We now overview the basic types, leaving the rely and guarantee types to be presented
in the following Section together with the discussion on sharing. Pure types !A enable a
linear type to be used multiple times. A� A′ describes a linear function of argument A
and result A′. The stacking operation A :: A′ stacks A′ (a capability, or abstracted capa-
bility) on top of A. This stacking is not commutative since it stacks a single type on the
right of ::. Therefore, ∗ enables multiple types to be grouped together that, when later
stacked, allow that type to list a commutative group of capabilities2. Both ∀ and ∃ offer
the standard quantification, over location and type kinds, together with the respective
location/type variables. [f : A] are used to described labeled records of arbitrary length.
A ref p type is a reference for location p noting that the contents of such a reference are
tracked by the capability to that location and not immediately stored in the reference
type. recursive types, that are automatically folded/unfolded through subtyping rules
(see Fig. 4 and (t:Subsumption) on Fig. 3), are also supported. Sum types use the form
tag#A to tag type A with tag. Alternatives (⊕) model imprecision in the knowledge of
the type by listing different possible states it may be in. none is the empty capability,

2 Note that while A0 :: (A1 :: A2) and A0 :: (A2 :: A1) are not (necessarily) subtypes, capability
commutation is always possible with ∗ such that A0 :: (A1 ∗ A2) <:> A0 :: (A2 ∗ A1).

Rely-Guarantee Protocols 341

A ::= !A (pure/persistent)
| A� A (linear function)
| A :: A (stacking)
| A ∗ A (separation)
| [f : A] (record)
| X (type variable)
| ∀X.A (universal type quantification)
| ∃X.A (existential type quantification)
| ∀t.A (universal location quantification)
| ∃t.A (existential location quantification)

| ref p (reference type)
| rec X.A (recursive type)
|
∑

i li#Ai (tagged sum)
| A ⊕ A (alternative)
| A & A (intersection)
| rw p A (read-write capability to p)
| none (empty capability)
| A⇒ A (rely)
| A; A (guarantee)

Note:
∑

i li#Ai denotes a single tagged type or a sequence of tagged types separated by +, such as “t#A + u#B + v#C”.

Separation, sum, alternative and intersection types are assumed commutative, i.e. without respective subtyping rules.

Fig. 2. Types and capabilities

while rw p A is the read-write capability to location p (a memory cell currently con-
taining a value of type A). Finally, an A&A′ type means that the client can choose to use
either type A or type A′ but not both simultaneously.

Our typing rules use typing judgments of the form: Γ | Δ0 e : A � Δ1 stating that
with lexical environment Γ and linear resources Δ0 we assign the expression e a type A
and produce effects that result in Δ1. The typing environments are as follows:

Γ ::= · (empty)
| Γ, x : A (variable binding)
| Γ, p : loc (location variable assertion)
| Γ, X : type (type assertion)

Δ ::= · (empty)
| Δ, x : A (linear binding)
| Δ, A (capability/protocol)
| ΔG, A0; A1 � Δ (defocus-guarantee)

where ΔG syntactically restricts Δ to not include a defocus-guarantee (a sharing feature,
see Section 4.3). Suffices to note that this restriction ensures that defocus-guarantees are
nested on the right of � and that, at each level, there exists only one pending defocus-
guarantee. ΔG is also used to forbid capture of defocus-guarantees by functions and
other constructs that can keep part of the linear typing environment for themselves.

The main typing rules are shown in Fig. 3, but the last four typing rules are only dis-
cussed in Section 4. All values (which includes functions, tagged values, etc.) have no
resulting effect (·) since, operationally, they have no pending computations. Allocating
a new cell results in a type, ∃t.(ref t :: rw t A), that abstracts the fresh location that
was created (t), and includes both a reference to that location and the capability to that
location. To associate a value (such as ref t) with some capability (such as the capabil-
ity to access location t), we use a stacking operator ::. Naturally, to be able to use the
existential location, we must first open that abstraction by giving it a location variable
to refer the abstracted location, besides the usual variable to refer the contents of the
existential type. Reading the content of a cell can be either destructive or not, depending
on whether its content is pure (!). If it is linear, then to preserve linearity we must leave
the unit type ([]) behind to avoid duplication. By banging the type of a variable binding,
we can move it to the linear context which enables the function’s typing rule to ini-
tially consider all arguments as linear even if they are pure. Functions can only capture

342 F. Militão, J. Aldrich, and L. Caires

Γ | Δ0 e : A � Δ1 Typing rules, (t:*)

(t:Ref)

Γ, ρ : loc | · ρ : ref ρ � ·

(t:Unit)

Γ | · v : [] � ·

(t:Pure-Read)

Γ, x : A | · x : !A � ·

(t:Linear-Read)

Γ | x : A x : A � ·

(t:Pure)
Γ | · v : A � ·
Γ | · v : !A � ·

(t:Pure-Elim)
Γ, x : A0 | Δ0 e : A1 � Δ1

Γ | Δ0, x : !A0 e : A1 � Δ1

(t:Tag)
Γ | Δ v : A � ·

Γ | Δ l#v : l#A � ·

(t:Loc-Pack)
Γ | Δ v : A{p/t} � ·
Γ | Δ 〈p, v〉 : ∃t.A � ·

(t:New)
Γ | Δ0 v : A � Δ1

Γ | Δ0 new v : ∃t.(ref t :: rw t A) � Δ1

(t:Delete)
Γ | Δ0 v : ∃t.(ref t :: rw t A) � Δ1

Γ | Δ0 delete v : ∃t.A � Δ1

(t:Function)
Γ | ΔG , x : A0 e : A1 � ·

Γ | ΔG fun(x : A0).e : A0 � A1 � ·

(t:Application)
Γ | Δ0 v0 : A0 � A1 � Δ1 Γ | Δ1 v1 : A0 � Δ2

Γ | Δ0 v0 v1 : A1 � Δ2

(t:Dereference-Pure)
Γ | Δ0 v : ref p � Δ1 , rw p !A

Γ | Δ0 !v : !A � Δ1, rw p !A

(t:Dereference-Linear)
Γ | Δ0 v : ref p � Δ1, rw p A

Γ | Δ0 !v : A � Δ1, rw p []

(t:Assign)
Γ | Δ0 v1 : A0 � Δ1

Γ | Δ1 v0 : ref p � Δ2, rw p A1

Γ | Δ0 v0 := v1 : A1 � Δ2, rw p A0

(t:Alternative-Left)
Γ | Δ0,A0 e : A2 � Δ1
Γ | Δ0,A1 e : A2 � Δ1

Γ | Δ0,A0 ⊕ A1 e : A2 � Δ1

(t:Intersection-Right)
Γ | Δ0 e : A0 � Δ1,A1
Γ | Δ0 e : A0 � Δ1,A2

Γ | Δ0 e : A0 � Δ1, A1&A2

(t:Case)
Γ | Δ0 v :

∑
i li#Ai � Δ1

Γ | Δ1, xi : Ai ei : A � Δ2 i ≤ j

Γ | Δ0 case v of l j#x j → e j end : A � Δ2

(t:Loc-App)
p : loc ∈ Γ

Γ | Δ0 v : ∀t.A � Δ1

Γ | Δ0 v[p] : A{p/t} � Δ1

(t:Forall-Loc)
Γ, t : loc | ΔG e : A � ·
Γ | ΔG 〈t〉 e : ∀t.A � ·

(t:Loc-Open)
Γ | Δ0 v : ∃t.A0 � Δ1

Γ, t : loc | Δ1, x : A0 e : A1 � Δ2

Γ | Δ0 open 〈t, x〉 = v in e end : A1 � Δ2

(t:Let)
Γ | Δ0 e0 : A0 � Δ1

Γ | Δ1, x : A0 e1 : A1 � Δ2

Γ | Δ0 let x = e0 in e1 end : A1 � Δ2

(t:Subsumption)
Δ0 <: Δ1 Γ | Δ1 e : A0 � Δ2

A0 <: A1 Δ2 <: Δ3

Γ | Δ0 e : A1 � Δ3

(t:Cap-Elim)
Γ | Δ0, x : A0, A1 e : A2 � Δ1

Γ | Δ0, x : A0 :: A1 e : A2 � Δ1

(t:Cap-Stack)
Γ | Δ0 e : A0 � Δ1,A1

Γ | Δ0 e : A0 :: A1 � Δ1

(t:Cap-Unstack)
Γ | Δ0 e : A0 :: A1 � Δ1

Γ | Δ0 e : A0 � Δ1,A1

(t:Focus-Rely)
A0 ∈ A

Γ | A0 ⇒ A1 focus A : [] � A0,A1 � ·

(t:Defocus-Guarantee)

Γ | Δ0,A0,A0; A1 � Δ1 defocus : [] � Δ0,A1, Δ1

(t:Frame)
Γ | Δ0 e : A � Δ1

Γ | Δ0 �− Δ2 e : A � Δ1 �− Δ2

(t:Share)
A0 � A1 || A2

Γ | Δ,A0 share A0 as A1 || A2 : [] � Δ,A1,A2

Note: all bounded variables of a construct must be fresh in the respective rule’s conclusion.

Fig. 3. Static semantics (selected typing rules, see [21] for the rest)

Rely-Guarantee Protocols 343

A0 <: A1 Subtyping on types, (st:*)

(st:ToLinear)

!A <: A

(st:Unfold)

rec X.A <: A{rec X.A/X}

(st:Fold)

A{X/rec X.A} <: rec X.A

(st:Rec)
A0 <: A1

rec X.A0 <: rec X.A1

(st:Sum)
∑

i li#Ai <: l′#A′ +
∑

i li#Ai

(st:Alternative)

A0 <: A0 ⊕ A1

(st:Intersection)

A0&A1 <: A0

Δ0 <: Δ1 Subtyping on deltas, (sd:*)

(sd:Star)

Δ, A0, A1 <:> Δ, A0 ∗ A1

(sd:Var)
Δ0 <: Δ1 A0 <: A1

Δ0, x : A0 <: Δ1, x : A1

(sd:Type)
Δ0 <: Δ1 A0 <: A1

Δ0, A0 <: Δ1, A1

(sd:None)

Δ <:> Δ,none

Fig. 4. Subtyping rules (selected, see [21] for the rest)

a ΔG linear environment to ensure that they will not hide a pending defocus-guarantee
(and similarly on ∀ abstractions), since our types do not express such pending opera-
tion. Stacking, done through (t:Cap-Elim), (t:Cap-Stack) and (t:Cap-Unstack) enables
the type system to manage capabilities in a non-syntax directed way, since they have no
value nor associated identifier. The (t:Case) rule allows the set of tags of the value that is
to be case analyzed (v) to be smaller than those listed in the branches of the case (i ≤ j).
This conditions is safe because it amounts to ignoring the effects of those branches, in-
stead of being overly conservative and having to consider them all. These branches are
not necessarily useless since, for instance, they may still be relevant on alternative pro-
gram states (⊕). (t:Alternative-Left) expresses that if an expression types with both
assumptions, A0 and A1, then it works with both alternatives. (t:Intersection-Right) is
similar but on the resulting effect of that expression.

Finally, (t:Subsumption) enables expressions to rely on weaker assumptions while
ensuring a stronger result than needed. This rule is supported by subtyping rules (a
selection is shown in Fig. 4) that follow the form A0 <: A1 stating that A0 is a subtype
of A1, meaning that A0 can be used wherever A1 is expected. Similar meaning is used for
subtyping on linear typing environments,Δ0 <: Δ1. Among other operations, these rules
enable automatic fold/unfold of recursive types, as well as grouping (∗) of resources.

4 Sharing Mutable State

The goal is to enable reads and writes to a cell through multiple aliases, without re-
quiring the type system to precisely track the link between aliased variables. In other
words, the type system is aware that a variable is aliased, but does not know exactly
which other variables alias that same state. In this scenario, it is no longer possible to
implicitly move capabilities between aliases. Instead, we split the original capability
into multiple protocol capabilities to that same location, and ensure that these multiple

344 F. Militão, J. Aldrich, and L. Caires

protocols cannot interact in ways that destructively interfere with each other. Such rely-
guarantee protocol accounts for the effects of other protocols (the rely), and limits the
actions of this protocol to guarantee that they do not contradict the assumptions relied
on by other aliases. This allows independent, but constrained, actions on the different
protocols to the same shared state without destructive interference. However, it also
requires us to leverage additional type mechanisms to ensure safety, namely:

(a) Hide Intermediate States. A rely-guarantee protocol restricts how aliases can use
the shared state. However, we allow such specification to be temporarily broken pro-
vided that all unexpected changes are private, invisible to other aliases. Therefore, the
type system ensures a kind of static mutual exclusion, a mechanism that provides a
“critical section” with the desired level of isolation from other aliases to that same
state. Consequently, other shared state that may overlap with the one being inspected
simply becomes unavailable while that cell is undergoing private changes. Although
this solution is necessarily conservative, we avoid any run-time overhead while pre-
serving many relevant usages. To achieve this, we build on the concept of focus [11]
(in a non-lexically scoped style, so that there is also a defocus) clearly delimiting the
boundary in the code of where shared state is being inspected. Thus, on focus, all other
types that may directly or indirectly see inconsistencies must be temporarily concealed
only to reappear when those inconsistencies have been fixed, on defocus.

(b) Ensure That Each Individual Step of the Protocol Is Obeyed. In our system,
sharing properties are encoded in a protocol composed of several rely-guarantee steps.
As discussed in the previous paragraph, each step must be guarded by focus since pri-
vate states should not be visible to other aliases. Consequently, the focus construct
serves not only to safeguard from interference by other aliases, but also to move the
protocol forward through each of its individual steps. At each such step, the code can
assume on entry (focus) that the shared state will be in a given well-defined rely state,
and must ensure on exit (defocus) that the shared state satisfies a given well-defined
guarantee state. By characterizing the sequence of actions of each alias with an appro-
priate protocol, one can make strong local assumptions about how the shared state is
used without any explicit dependence on how accesses to other aliases of that shared
state are interleaved. This feature is crucial since we cannot know precisely if that same
shared state was used between two focus-defocus operations.

4.1 Specifying Rely-Guarantee Protocols

We now detail our rely and guarantee types that are the building blocks of our protocols.
To clarify the type structure of our protocols, we define the following sub-grammar of
our types syntax (Fig. 2) with the types that may appear in a protocol, P.

P ::= rec X.P | X | P ⊕ P | P & P | A⇒ P | A; P | none

A rely-guarantee protocol is a type of capability (i.e. has no value) consisting of
potentially many steps, each of the form AC ⇒ AP. Each such step states that it is
safe for the current client to assume that the shared state satisfies AC and is required
to obey the guarantee AP, usually of the form A′C; A′P which in turn requires the client

Rely-Guarantee Protocols 345

to establish (guarantee) that the shared state satisfies A′C before allowing the protocol to
continue to be used as A′P. Note that our design constrains the syntactical structure of
these protocols through protocol conformance (Section 4.2), not in the grammar.

Pipe’s Protocols. We can now define the protocols for the shared list nodes of the pipe’s
buffer. Each node follows a rely-guarantee protocol that includes three possible tagged
states: Node, which indicates that a list cell contains some useful data; Empty, which
indicates that the node will be filled with data by the producer (but does not yet have any
data); and finally Closed, which indicates that the producer has sent all data through
the pipe and no more data will be added (thus, it is the last node of the list).

Remember that the producer component of the pipe has an alias to the tail node of
the internal list. Because it is the producer, it can rely on that shared node still being
Empty (as created) since the consumer component will never be allowed to change that
state. The rely-guarantee protocol for the tail alias (for some location p) is as follows:

rw p Empty#[]⇒ (rw p Node#R ⊕ rw p Closed#[]); none

This protocol expresses that the client code can safely assume (on focus) a capability
stating that location p initially holds type Empty#[]. It then requires the code that uses
such state to leave it (on defocus) in one of two possible alternatives (⊕) depending on
whether the producer chooses to close the pipe or insert a new element to the buffer. To
signal that the node is the last element of the pipe, the producer can just assign it a value
of type Closed#[]. Insertions are slightly more complicated because that action implies
that the tail element of the list will be changed. Therefore, after creating the new node,
the producer component will keep an alias of the new tail for itself while leaving the
old tail with a type that is to be used by the consumer. In this case, the node is assigned
a value of type Node#R, where R denotes the type [int , ∃p.(ref p :: H[p])] (a pair
of an integer and a reference to the next shared node of the buffer, as seen from the head
pointer). Regardless of its action, the producer then forfeits any ownership of that state
which is modeled by the empty capability (none)3 to signal protocol termination.

We now present the abbreviations H and T, the rely-guarantee protocols that govern
the use of the shared state of the pipe as seen by the head and tail aliases, respectively.
Note that since we intend to apply the same protocol over different locations, we use
“Q � ∀p.A” as a type definition (Q) where we can apply a location without requiring ∀
to be a value, such as location q in Q[q]. The T and H types are defined as follows:

T � ∀p.(E⇒ (N ⊕ C))
H � ∀p.(rec X.(N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X))

where N is an abbreviation for a capability that contains a node “rw p Node#R”, C is
“rw p Closed#[]” and E is “rw p Empty#[]”. The T type was presented in the para-
graph above, so we can now look in more detail to H. Such a protocol contains three
alternatives, each with a different action on the state. If the state is found with an E
type (i.e. still Empty) the consumer is not to modify such state (i.e., just reestablish
E), and can retry again later to check if changes occurred. Observe that the remaining
two alternatives have a none guarantee. This models the recovery of ownership of that

3 We frequently omit the trailing “; none” for conciseness.

346 F. Militão, J. Aldrich, and L. Caires

〈A, P〉 → 〈A′, P′〉 Step, (step:*)

(step:None)

〈A,none〉 → 〈A,none〉

(step:Step)

〈A0, A0 ⇒ A1; P〉 → 〈A1, P〉

(step:Alternative-P)
〈A0, P0〉 → 〈A1, P2〉

〈A0, P0 ⊕ P1〉 → 〈A1, P2〉

(step:Alternative-S)
〈A0, P0〉 → 〈A2, P1〉 〈A1, P0〉 → 〈A2, P1〉

〈A0 ⊕ A1, P0〉 → 〈A2, P1〉
(step:Subsumption)
A0 <: A1 P0 <: P1 〈A1, P1〉 → 〈A2, P2〉 A2 <: A3 P2 <: P3

〈A0, P0〉 → 〈A3, P3〉

Fig. 5. Protocol stepping rules

particular node. Since the client is not required to reestablish the capability it relied on,
that capability can remain available in that context even after defocus.

Each protocol describes a partial view of the complete use of the shared state. Conse-
quently, ensuring their safety cannot be done alone. In our system, protocols are intro-
duced explicitly through the share construct that declares that a type (in practice limited
to capabilities, including protocols) is to be split in two new rely-guarantee protocols.
Safety is checked by simulating their actions in order to ensure that they preserve the
overall consistency in the use of the shared state, no matter how their actions may be
interleaved. Since a rely-guarantee protocol can subsequently continue to be split, this
technique does not limit the number of aliases provided that the protocols conform.

4.2 Checking Protocol Splitting

The key principle of ensuring a correct protocol split is to verify that both protocols
consider all visible states that are reachable by stepping, ensuring a form of progress.
Protocols are not required to always terminate and may be used indefinitely, for instance
when modeling invariant-based sharing. However, regardless of interleaving or of how
many times a shared alias is (consecutively) used, no unexpected state can ever appear
in well-formed protocols. Thus, the type information contained in a protocol is valid
regardless of all interference that may occur, i.e. it is stable [17, 32].

Technically, the correctness of protocol splitting is ensured by two key components:
1) a stepping relation, that simulates a single use of the shared state through one focus-
defocus block; and 2) a protocol conformance definition, that ensures full coverage of
all reachable states by considering all possible interleaved uses of those steps. Thus,
even as the rely and guarantee conditions evolve through the protocol’s lifetime, pro-
tocol conformance ensures each protocol will never get “stuck” because the protocol
must be aware of all possible “alias interleaving” that may occur for that state.

The stepping relation (Fig. 5) uses steps of the form 〈A, P〉 → 〈A′, P′〉 expressing
that, assuming shared state A, the protocol P can take a step to shared state A′ with resid-
ual protocol P′. Due to the use of ⊕ and & types in the protocols, there may be multiple

Rely-Guarantee Protocols 347

different steps that may be valid at a given point in that protocol. Therefore, protocol
conformance must account for all those different transitions that may be picked.

We define protocol conformance as splitting an existing protocol (or capability) in
two, although it can also be interpreted as merging two protocols. Regardless of the
direction, the actions of the original protocol(s) must be fully contained in the resulting
protocol(s). This leads to the three stepping conditions of the definition below.

Definition 1 (Protocol Conformance). Given an initial state A0 and a protocol γ0, such
protocol can be split in two new protocols α0 and β0 if their combined actions conform
with those of the original protocol γ0, noted 〈A0 , γ0 �� α0 || β0〉. This means that
there is a set S of configurations 〈A , γ �� α || β〉 closed under the conditions:

1. The initial configuration is in S: 〈A0 , γ0 �� α0 || β0〉 ∈ S
2. All configurations take a step, and the result is also in S.

Therefore, if 〈A , γ �� α || β〉 ∈ S then:
(a) exists A′, α′ such that 〈A, α〉 → 〈A′, α′〉, and for all A′, α′, 〈A, α〉 → 〈A′, α′〉

implies 〈A, γ〉 → 〈A′, γ′〉 and 〈A′ , γ′ �� α′ || β〉 ∈ S.
(b) exists A′, β′ such that 〈A, β〉 → 〈A′, β′〉, and for all A′, β′, 〈A, β〉 → 〈A′, β′〉

implies 〈A, γ〉 → 〈A′, γ′〉 and 〈A′ , γ′ �� α || β′〉 ∈ S.
(c) exists A′, γ′ such that 〈A, γ〉 → 〈A′, γ′〉, and

for all A′, γ′, 〈A, γ〉 → 〈A′, γ′〉 implies either:
– 〈A, α〉 → 〈A′, α′〉 and 〈A′ , γ′ �� α′ || β〉 ∈ S, or;
– 〈A, β〉 → 〈A′, β′〉 and 〈A′ , γ′ �� α || β′〉 ∈ S.

The definition yields that all configurations must step (i.e. never get stuck) and that
a step in one of the protocols (α or β) must also step the original protocol (γ) such that
the result itself still conforms. Conformance ensures that all interleavings are coherent.
This also means that each protocol “view” of the shared state can work independently in
a safe way — even when the other aliases to that shared state are never used. Ownership
recovery does not require any special treatment since it just expresses that the focused
capability is not returned back to the protocol, enabling it to remain in the local context.

We now apply protocol conformance to our running example, as follows:

A : E
γ : rec X.(E ⇒ E; X & (E ⇒ N ⊕C ; (N ⇒ none ⊕ C ⇒ none)))
α : E ⇒ N ⊕C (Tail protocol)
β : rec X.(E ⇒ E; X ⊕ N ⇒ none ⊕ C ⇒ none) (Head protocol)

Therefore, applying the definition yields the following set of configurations, S:

〈E , rec X.(E ⇒ E; X & (E ⇒ N ⊕C; (N ⇒ none ⊕ C ⇒ none))) ��
E ⇒ C ⊕ N || rec X.(E ⇒ E; X ⊕ N ⇒ none ⊕ C ⇒ none)〉 (1)

The initial configuration.
by step on γ (subtyping for &) with E ⇒ E; X and same with β, using (step:Alternative-P).

〈N ⊕C , N ⇒ none ⊕ C ⇒ none ��
none || rec X.(E ⇒ E; X ⊕ N ⇒ none ⊕C ⇒ none)〉 (2)

by step on (1) with γ (subtyping for &) with E ⇒ N ⊕C; ... and similarly using α.
〈none , none �� none || none〉 (3)

by step on (2) with γ and β using (step:Alternative-S).
S is closed (up to subtyping, including unfolding of recursive types).

348 F. Militão, J. Aldrich, and L. Caires

Regardless of how the use of the state is interleaved at run-time, the shared state
cannot reach an unexpected (by the protocols) state. Thus, conformance ensures the
stability of the type information contained in a protocol in the face of all possible “alias
interleaving”. There exists only a finite number of possible (relevant) states, meaning
that it suffices for protocol conformance to consider the smallest set of configurations
that obeys the conditions above. Since there is also a finite number of possible inter-
leavings resulting from mixing the steps of the two protocols, there are also a finite
number of distinct (relevant) steps. Effectively, protocol conformance resembles a form
of bisimulation or model checking (where each protocol is modeled using a graph) with
a finite number of states, ensuring such process remains tractable.

In the following text we use a simplified notation, of the form A � A′ || A′′, as
an idiom (defined in [21]) that applies protocol conformance uniformly regardless of
whether A is a state (for an initial split) or a rely-guarantee protocol (to be re-split and
perhaps extended). The missing type is inferred by this idiom.

Example. We illustrate these concepts by going back to the pipe’s protocols. We intro-
duced the protocols for the head and tail aliases through the share construct:

3 share (rw n Empty#[]) as H[n] || T[n];

which is checked by the (t:Share) typing rule, using protocol conformance, as follows:

A0 � A1 || A2

Γ | Δ, A0 share A0 as A1 || A2 : [] � Δ, A1, A2
(t:Share)

With it we share a capability (A0) by splitting it in two protocols (A1 and A2) whose
individual roles in the interactions with that state conform (�). Consequently, the con-
clusion states that, if the splitting is correct, then in some linear typing environment
initially consisting of a type A0 and Δ, the share construct produces effects that replace
A0 with A1 and A2 but leave Δ unmodified (i.e. it is just threaded through).

The next examples show conformance in a simplified way, with only the state and
the two resulting protocols of a configuration. Remember that E is the abbreviation for
rw q Empty#[] that, just like the abbreviations C and N, were defined above. Thus, the
use of the share construct on line 3 yields the following set of configurations, S:

〈E � rec X.(N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X) || E⇒ (N ⊕ C)〉 (1)
〈N ⊕ C � rec X.(N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X) || none〉 (2)
〈none � none || none〉 (3)

The definition is only respected if E is the state to be shared by the protocols. If
instead we had shared, for instance, C we would get the next set of configurations:

〈C � rec X.(N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X) || E⇒ (N ⊕ C)〉 (1)
〈none � none || E⇒ (N ⊕ C)〉 (2)

The set above does not satisfy our conformance definition. Both the state in config-
uration (1) and none in (2) are not expected by the right protocol. Thus, those con-
figurations are “stuck” and cannot take a step. Although splittings are checked from a

Rely-Guarantee Protocols 349

high-level and abstracted perspective, their consequences link back to concrete invalid
program states that could occur if such invalid splittings were allowed. For instance, in
(2), it would imply that the alias that used the right protocol would assume E on focus
long after the ownership of that state was recovered by some other alias of that cell.
Consequently, such behavior could allow unexpected changes to be observed by that
alias, potentially resulting in a program stuck on some unexpected value.

4.3 Using Shared State

Using shared state is centered on two constructs: focus (that exposes the shared state of
a protocol) and defocus (that returns the exposed state to the protocol), combined with
our version of the frame rule (Section 4.4). We now describe how focus is checked:

A0 ∈ A

Γ | A0 ⇒ A1 focus A : [] � A0, A1 � ·
(t:Focus-Rely)

In general, focus may be applied over a disjunction (⊕) of program states and expected
to work on any of those alternatives. By using A, the programmer can list the types that
may become available after focus, nominating what they expect to gain by focus.

focus results in a typing environment where the step of the protocol that was focused
on (A0 ⇒ A1) now has its rely type (A0) available to use. However, it is not enough
to just make that capability available, we must also hide all other linear resources that
may use that same shared state (directly or indirectly) in order to avoid interference
due to the inspection of private states. To express this form of hiding, the linear typing
environments may include a defocus-guarantee. This element, written as A � Δ, means
that we are hiding the typing environmentΔ until A is satisfied. Therefore, in our system,
the only meaningful type for A is a guarantee type of the form A′; A′′ that is satisfied
when A′ is offered and enables the protocol to continue to be use as A′′. Although the
typing rule shown above only includes a single element in the initial typing environment
(and, consequently, the defocus-guarantee contains the empty typing environment, ·),
this is not a limitation. In fact, the full potential of (t:Focus-Rely) is only realized when
combined with (t:Frame). Together they allow for the non-lexically scoped framing of
potentially shared state, where the addition of resources that may conflict with focused
state will be automatically nested inside the defocus-guarantee (�). Operationally share,
focus, and defocus are no-ops which results in those expressions having type unit ([]).

Γ | Δ0, A′, A′; A′′ � Δ1 defocus : [] � Δ0, A′′, Δ1
(t:Defocus-Guarantee)

The complementary operation, defocus, simply checks that the required guarantee type
(A′) is present. In that situation, the typing environment (Δ1) that was hidden on the
right of � can now safely be made available once again. At the same time, the step of the
protocol is concluded leaving the remainder protocol (A′′) in the typing environment.
Nesting of defocus-guarantees is possible, but is only allowed to occur on the right of �.
Note that defocus-guarantees can never be captured (such as by functions, see Fig. 3 of
Section 3) and, therefore, pending defocus operations cannot be forgotten or ignored.

350 F. Militão, J. Aldrich, and L. Caires

Example. We now look at the implementation of the put and close functions to exem-
plify the use of focus and defocus. Both functions are closures that capture an enclosing
Γ where t is a known location such that tail has type ref t. T was defined above as:
∀p.(rw p Empty#[]⇒ rw p Node#R ⊕ rw p Closed#[]) where R is a pair of an inte-
ger and a protocol for the head, H (whose definition, given above, is not important here).

9 put = fun(e : int :: rw t exists p.(ref p :: T[p])).

Γ = ...,tail : ref t, t : loc, e : int | Δ = rw t ∃p.(ref p :: T[p])
10 open <l,last> = new Empty#{} in Γ = ...,last : ref l, l : loc | Δ = ..., rw l Empty#[]
11 open <o,oldlast> = !tail in Γ = ..., oldlast : ref o | Δ = rw t [], rw l Empty#[], T[o]
12 focus (rw o Empty#[]); Δ = ..., rw o Empty#[], (rw o Node#R) ⊕ (rw o Closed#[]); none � ·
13 share (rw l Empty#[]) as H[l] || T[l]; Δ = ...,T[l],H[l], ...
14 oldlast := Node#{ e, <l,last::H[l]> }; Δ = ...,rw o Node#R, ...
15 defocus; Δ = rw t [], T[l], none
16 tail := <l, last::T[l]> Δ = rw t ∃p.(ref p :: T[p])
17 end
18 end,
19 close = fun(_ : [] :: rw t exists p.(ref p :: T[p])).

Γ = ...,tail : ref t, t : loc, : [] | Δ = rw t ∃p.(ref p :: T[p])
20 open <l,last> = !tail in Γ = ...,last : ref l, l : loc | Δ = rw t [], T[l]
21 delete tail; Δ = T[l]
22 focus (rw l Empty#[]); Δ = rw l Empty#[], (rw l Node#R) ⊕ (rw l Closed#[]); none � ·
23 last := Closed#{}; Δ = rw l Closed#[], (rw l Node#R) ⊕ (rw l Closed#[]); none � ·
24 defocus Δ = ·
25 end,

The put function takes an integer stacked with a capability for t. The capability is
automatically unstacked to Δ. Since we are inserting a new element at the end of the
buffer, we create a new node that will serve as the new last node of that list. On line
11, the oldlast node is read from the tail cell by opening the abstracted location it
contains. Such location refers a protocol type, for which we must use focus (line 12) to
gain access to the state that it shares. Afterwards, we modify the contents of that cell by
assigning it the new node. This node contains the alias for the new tail as will be used
by the head alias. The T component of that split (line 13) is stored in the tail. The
defocus of line 15 completes the protocol for that cell, meaning that the alias will no
longer be usable through there. Carefully note that the share of line 13 takes place after
focus. If this were reversed, then the type system would conservatively hide the two
newly created protocols making it impossible to use them until defocus. By exploiting
the fact that such capability is not shared, we can allow it to not be hidden inside � since
it cannot interfere with shared state. close should be straightforward to understand.

4.4 Framing State

On its own, (t:Focus-Rely) is very restrictive since it requires a single rely-guarantee
protocol to be the exclusive member of the linear typing environment. This happens
because more complex applications of focus are meant to be combined with our version
of the frame rule. Together they enable a kind of mutual exclusion that also ensures that
the addition of any potentially interfering resources will forcefully be on the right of �
(thus making them inaccessible until defocus). The typing rule is as follows:

Rely-Guarantee Protocols 351

Γ | Δ0 e : A � Δ1

Γ | Δ0 �− Δ2 e : A � Δ1 �− Δ2
(t:Frame)

Framing serves the purpose of hiding (“frame away”) parts of the footprint (Δ2) that
are not relevant to typecheck a given expression (e), or can also be seen as enabling
extensions to the current footprint. In our system, such operation is slightly more com-
plex than traditional framing since we must also ensure that any such extension will not
enable destructive interference. Therefore, types that may refer (directly or
indirectly) values that access shared cells that are currently inconsistent due to pend-
ing defocus cannot be accessible and must be placed “inside” (on the right of �) the
defocus-guarantee. However, statically, we can only make such distinction conserva-
tively by only allowing types that are non-shared (and therefore that are known to
never conflict with other shared state) to not be placed inside the defocus-guarantee.
The formal definition of non-shared is in [21], but for this presentation it is sufficient
to consider it as pure types, or capabilities (rw p A) that are not rely-guarantee protocols
and that whose contents are also non-shared. This means that all other linear types (even
abstracted capabilities and linear functions) must be assumed to be potential sources of
conflicting interference. For instance, these types could be abstracting or capturing a
rely-guarantee protocol that could then result in a re-entrant inspection of the shared
state.

To build the extended typing environment, we define an environment extension (�−)
operation that takes into account frame defocus-guarantees up to a certain depth. This
means that one can always consider extensions of the current footprint as long as any
added shared state is hidden from all focused state. By conservatively hiding it behind
a defocus-guarantee, we ensure that such state cannot be touched. This enables locality
on focus: if a protocol is available, then it can safely be focused on.

Definition 2 (Environment Extension). Given environments Δ and Δ′ we define en-
vironment extension, noted Δ �− Δ′, as follows. Let Δ = Δn, Δs where n-indexed envi-
ronments only contains non-shared elements and s-indexed environments contain the
remaining elements (i.e. all those that may, potentially, include sharing). Identically,
assume Δ′ = Δ′n, Δ

′
s. Extending Δ with Δ′ corresponds to Δ �− Δ′ = Δn, Δ

′
n, Δ
′′
s where:

(a) Δ′′s = Δs0 , A � (Δs1 �− Δ′s) if Δs = Δs0 , A � Δs1

(b) Δ′′s = Δs, Δ
′
s otherwise.

that either (a) further nests the shared part of Δ′ deeper in Δs1 ; or (b) simply composes
Δ′ if the left typing environment (Δ) does not carry a defocus-guarantee.

Although the definition appears complex, it works just like regular environment com-
position when Δ′ does not contain a defocus-guarantee, i.e. the (b) case. The complexity
of the definition arises from the need to nest these structures when they do exist, which
results in the inductive definition above. In that situation, we must ensure that any po-
tentially interfering shared state is placed deep inside all previously existing defocus-
guarantees, so as to remain inaccessible. This definition is compatible with the basic
notion of disjoint separation, but (from a framing perspective) allows us to frame-away

352 F. Militão, J. Aldrich, and L. Caires

defocus-guarantees beyond a certain depth. Such state can be safely hidden if the un-
derlying expression will not reach it (by defocusing).

The definition allows a (limited) form of multi-focus. For instance, while a defocus
is pending we can create a new cell and share it through two new protocols. Then,
by framing the remaining part of the typing environment, we can now focus on one
of the new protocols. The old defocus-guarantee is then nested inside the new defocus-
guarantee that resulted from the last focus. This produces a “list” of pending guarantees
in the reverse order on which they were created through focus. Through framing we can
hide part of that “list” after a certain depth, while preserving its purpose.

Example. We now look back at the focus of line 12. To better illustrate framing, we
consider an extra linear type (that is not non-shared), S , to show how it will become
hidden (on the right of �) after focus. We also abbreviate the two non-shared capabilities
(“rw t []” and “rw l Empty#[]”)4 as A0 and A1, and abbreviate the protocol so that it does
not show the type application of location o. With this, we get the following derivation:

E ∈ E

Γ | E⇒ (N ⊕ C) focus E : [] � E, (N ⊕ C); none � ·
(3)

Γ | (E⇒ (N ⊕ C)) �− S , A0, A1 focus E : [] � (E, (N ⊕ C); none � ·) �− S , A0, A1

(2)

Γ | E⇒ (N ⊕ C), S , A0, A1 focus E : [] � E, ((N ⊕ C); none � S),A0, A1

(1)

where (1) - (Environment Extension), (2) - (t:Frame), and (3) - (t:Focus-Rely).
Note that frame may add elements to the typing environment that cannot be instanti-

ated into valid heaps. That is, the conclusion of the frame rule states that an hypothesis
with the extended environment typechecks the expression with the same type and result-
ing effects. Not all such extensions obey store typing just like such typing rule enables
adding multiple capabilities to one same location that can never be realized in an actual,
correct, heap. However, our preservation theorem ensures that starting from a correct
(stored typed) heap and typing environment, we cannot reach an incorrect heap state.

4.5 Consumer Code

We now show the last function of the pipe example, tryTake:

26 tryTake = fun(_ [] :: rw h exists p.(ref p :: H[p])). Δ = rw h ∃p.(ref p :: H[p])
27 open <f,first> = !head in Δ = rw h [] , (N[f]⇒ none) ⊕ (C[f]⇒ none) ⊕ (E[f] ⇒ E[f] ; ...)

[a] Δ = rw h [], N[f] ⇒ none [b] Δ = rw h [], C[f]⇒ none [c] Δ = rw h [], E[f]⇒ E[f] ; ...
28 focus C[f], E[f], N[f]; // same abbreviations that were defined above

[a] Δ = ..., N[f], none; none � · [b] Δ = ..., C[f], none; none � · [c] Δ = ..., E[f], E[f] ; ... � ·
29 case !first of

30 Empty#_ → [c] Δ = rw h [] , rw f [] , rw f Empty#[]; ... � ·
31 first := Empty#{}; // restore linear type

[c] Δ = rw h [] , rw f Empty#[] , rw f Empty#[]; ... � ·
32 defocus; // the next assignment must occur after defocus and just on this branch

[c] Δ = rw h [] , H[f]
33 head := <f,first::H[f]>; [c] Δ = rw h ∃p.(ref p :: H[p])
34 NoResult#{} : NoResult#([] :: rw h ∃p.(ref p :: H[p])) //assume auto stacked [c] Δ = ·
35 | Closed#_ → [b] Δ = rw h [] , rw f [] , none; none � ·

4 Note that the content of each capability can be made non-shared by subtyping rules.

Rely-Guarantee Protocols 353

36 delete first; [b] Δ = rw h [] , none; none � ·
37 delete head; [b] Δ = none; none � ·
38 defocus; [b] Δ = ·
39 Depleted#{} : Depleted#[] [b] Δ = ·
40 | Node#[element,n] → //opens pair

[a] Δ = rw h [] , rw f [] , n : ∃p.(ref p :: H[p]) , none; none � ·
41 delete first; [a] Δ = rw h [] , n : ∃p.(ref p :: H[p]) , none; none � ·
42 head := n; [a] Δ = rw h ∃p.(ref p :: H[p]) , none; none � ·
43 defocus; [a] Δ = rw h ∃p.(ref p :: H[p])
44 Result#element : Result#(int :: rw h ∃p.(ref p :: H[p])) // assume auto stacked [a] Δ = ·
45 end
46 end

The code should be straightforward up to the use of alternative program states (⊕).
This imprecise state means that we have one of several different alternative capabilities
and, consequently, the expression must consider all of those cases separately. On line
28, to use each individual alternative of the protocol, we check the expression sepa-
rately on each alternative (marked as [a], [b], and [c] in the typing environments), cf.
(t:Alternative-Left) in Fig. 3. Our case gains precision by ignoring branches that are
statically known to not be used. On line 29, when the type checker is case analyzing the
contents of first on alternative [b] it obtains type Closed#[]. Therefore, for that al-
ternative, type checking only examines the Closed tag and the respective case branch.
This feature enables the case to obey different alternative program states simultane-
ously, although the effects/guarantee that each branch fulfills are incompatible.

5 Technical Results

Our soundness results (details in [21]) use the next progress and preservation theorems:

Theorem 1 (Progress). If e0 is a closed expression (and where Γ and Δ are also closed)
such that Γ | Δ0 e0 : A � Δ1 then either:

– e0 is a value, or;
– if exists H0 such that Γ | Δ0 H0 then 〈 H0 || e0 〉 �→ 〈 H1 || e1 〉.

The progress statement ensures that all well-typed expressions are either values or, if
there is a heap that obeys the typing assumptions, the expression can step to some other
program state — i.e. a well-typed program never gets stuck, although it may diverge.

Theorem 2 (Preservation). If e0 is a closed expression such that:

Γ0 | Δ0 e0 : A � Δ Γ0 | Δ0 �− Δ2 H0 〈 H0 || e0 〉 �→ 〈 H1 || e1 〉

then, for some Δ1 and Γ1 we have: Γ0, Γ1 | Δ1 �− Δ2 H1 Γ0, Γ1 | Δ1 e1 : A � Δ

The theorem above requires the initial expression e0 to be closed so that it is ready
for evaluation. The preservation statement ensures that the resulting effects (Δ) and type
(A) of the expression remains the same throughout the execution. Therefore, the initial
typing is preserved by the dynamics of the language, regardless of possible environment
extensions (�− Δ2). This formulation respects the intuition that the heap used to evaluate
an expression may include other parts (Δ2) that are not relevant to check that expression.

354 F. Militão, J. Aldrich, and L. Caires

We define store typing (see [21]), noted Γ | Δ H, in a linear way so that each heap
location must be matched by some capability in Δ or potentially many rely-guarantee
protocols. Thus, no instrumentation is necessary to show these theorems.

Destructive interference occurs when an alias assumes a type that is incompatible
with the real value stored in the shared state, potentially causing the program to become
stuck. However, we proved that any well-typed program in our language cannot become
stuck. Thus, although our protocols enable a diverse set of uses of shared state, these
theorems show that when rely-guarantee protocols are respected those usages are safe.

6 Additional Examples

We now exemplify some sharing idioms captured by our rely-guarantee protocols.

6.1 Sharing a Linear ADT

Our protocols are capable of modeling monotonic [12,24] uses of shared state. To illus-
trate this, we use the linear stack ADT from [22] where the stack object has two possible
typestates: Empty and Non-Empty. The object, with an initial typestate E(mpty), is ac-
cessible through closures returned by the following “constructor” function:

!(∀T. []� ∃E.∃NE. ![push : T :: E ⊕ NE � [] :: NE,
pop : [] :: NE� T :: E ⊕ NE,

isEmpty : [] :: E ⊕ NE� Empty#([] :: E) + NonEmpty#([] :: NE),
del : [] :: E� []] :: E)

Although the capability to that stack is linear, we can use protocols to share it. This
enables multiple aliases to that same object to coexist and use it simultaneously from
unknown contexts. The following protocol converges the stack to a non-empty types-
tate, starting from an imprecise alternative that also includes the empty typestate.

(NE ⊕ E)⇒ NE ; rec X.(NE⇒ NE ; X)

Monotonicity means that the type becomes successively more precise, although each
alias does not know when those changes occurred. Note that, due to focus, the object
can undergo intermediate states that are not compatible with the required NE guarantee.
However, on defocus, clients must provide NE such as by pushing some element to the
stack. The protocol itself can be repeatedly shared in equal protocols. Since each copy
will produce the same effects as the original protocol, their existence is not observable.

6.2 Capturing Local Knowledge

Although our types cannot express the same amount of detail on local knowledge as
prior work [4, 18], they are expressive enough to capture the underlying principle that
enables us to keep increased precision on the shared state between steps of a protocol.

For this example, we use a simple two-states counter. In it, N encodes a number that
may be zero and P some positive number, with the following relation between states:

Rely-Guarantee Protocols 355

N � Z#[] + NZ#int P � NZ#int (note that: P <: N, vital to show conformance)

We now share this cell in two asymmetric roles: IncOnly, that limits the actions of the
alias to only increment the counter (in a protocol that can be shared repeatedly); and
Any, an alias that relies on the restriction imposed by the previous protocol to be able
to capture a stronger rely property in a step of its own protocol. Assuming an initial
capability of rw p N, this cell can be shared using the following two protocols:

IncOnly � rec X.(rw p N⇒ rw p P ; X)
Any � rec Y.(rw p N⇒ rw p P ; rw p P⇒ rw p N ; Y)

Thus, by constraining the actions of IncOnly we can rely on the assumption that Any
remains positive on its second step, even when the state is manipulated in some other
unknown program context. Therefore, on the second step of Any, the case analysis can
be sure that the value of the shared state must have remained with the NZ tag between
focuses. Note that the actions of that alias allow for it to change the state back to Z.

6.3 Iteratively Sharing State

Our technique is able to match an arbitrary number of aliases by splitting an existing
protocol. Such split can also extend the original uses of the shared state by appending
additional steps, if those uses do not destructively interfere with the old assumptions.

This example shows such a feature by encoding a form of delegation through shared
state that models a kind of “server-like process”. Although single-threaded, such a sys-
tem could be implemented using co-routines or collaborative multi-tasking. The overall
computation is split between three individual workers (for instance by each using a
private list containing cells with pending, shared, jobs) each with a specific task. A
Receiver uses a Free job cell and stores some Raw element in it. A Compressor pro-
cesses a Raw element into a Done state. Finally, the Storer removes the cells in order to
store them elsewhere. In real implementations, each worker would be used by separate
handlers/threads, triggered in unpredictable orders, to handle such jobs.

We also show how we can share multiple locations together, bundled using ∗, by each
job being kept in a container cell while the f lag (used to communicate the information
on the kind of content stored in the container) is in a separate cell. The raw value is
typed with A and the processed value has type B. The types and protocols are:

F � rw f Free#[] ∗ rw c [] R � rw f Raw#[] ∗ rw c A D � rw f Done#[] ∗ rw c B

Receiver � F⇒ R
Compressor � rec X.(F ⇒ F; X ⊕ R⇒ D)

Storer � rec X.(F ⇒ F; X ⊕ rec Y.(R⇒ R; Y ⊕ D⇒ none))

The protocol for the Receiver is straightforward since it just processes a free cell
by assigning it a raw value. Similarly, Compressor and Storer follow analogous ideas
by using a kind of “waiting” steps until the cell is placed with the desired type for the
actions that they are to take (note how Storer keeps a more precise context when the
state is not F, even though it is not allowed to publicly modify the state). To obtain these

356 F. Militão, J. Aldrich, and L. Caires

protocols through binary splits, we need an intermediate protocol that will be split to
create the Compressor and Storer protocols. The initial split (of F) is as follows:

F � Receiver || rec X.(F⇒ F; X ⊕ R⇒ none)

The protocol on the right is then further split, and its ownership recovery step further
extended with additional steps, to match the two new desired protocols:

rec X.(F ⇒ F; X ⊕ rec Y.(R⇒ R; Y & R⇒ D; D⇒ none)) � Compressor || Storer

The Receiver alias never needs to see how the other two aliases use the shared state.
Although the second split is independent from the initial one, protocol conformance
ensures that it cannot cause interference by breaking what Receiver initially relied on.

7 Related Work

We now discuss other works that offer flexible sharing mechanisms. Although there are
other interesting works [1, 2, 4, 5, 7, 31] in the area, they limit sharing to an invariant.

In Chalice [19], programmer-supplied permissions and predicates are used to show
that a program is free of data races and deadlocks. A limited form of rely-guarantee
is used to reason about changes to the shared state that may occur between atomic
sections. All changes from other threads must be expressed in auxiliary variables and
be constrained to a two-state invariant that relates the current with the previous state,
and where all rely and guarantee conditions are the same for all threads.

Several recent approaches that use advanced program logics [9,10,23,30,32] employ
rely-guarantee reasoning to verify inter-thread interference. Although our approach is
type-based rather than logic-based, there are several underlying similarities. Concurrent
abstract predicates [9] extend the concept of abstract predicates [23] to express how
state is manipulated, supporting internally aliased state through a fiction of disjointness
(also present in [16,18]) that is based on rely-guarantee principles and has similarities to
our own abstractions. Their use of rely-guarantee also allows intermediate states within
a critical section, which are immediately weakened (made stable) to account for possi-
ble interference when that critical section is left. Although our use of rely-guarantee is
tied to state (be it references or abstracted state), not threads, our protocols capture an
identical notion of stability through a simpler constraint that ensures all visible states
are considered during protocol conformance. Another modeling distinction is that our
interference specification lists the resulting states (from interference), not the actions
that can (or cannot [10]) occur from external/unknown sources.

Monotonic [12, 24] based sharing enables unrestricted aliasing that cannot interfere
since the changes converge to narrower, more precise, states. Our protocols are able
to express monotonicity. However, since the rely and guarantee types of a step in the
protocol must describe a finite number of states, we lack the type expressiveness of [24].
We believe this concern is orthogonal to our core sharing concepts, and is left as future
work. We are also capable of expressing more than just monotonicity. For instance, due
to ownership recovery, a cell can oscillate between shared and non-shared states during
its lifetime, and with each sharing phase completely unrelated to previous uses.

Rely-Guarantee Protocols 357

Gordon et al. [15] propose a type system where references carry three additional
type components: a predicate (for local knowledge), a guarantee relation, and a rely
relation. They handle an unknown number of aliases by constraining the writes to a
cell to fit within the alias’ declared guarantee, similarly to how rely-guarantee is used
in program logics to handle thread-based interference. Although they support a limited
form of protocol (and their technique can generally be considered as a two-state proto-
col), their system effectively limits the actions allowed by each new alias to be strictly
decreasing since their guarantee must fit within the original alias’ guarantee. Since we
support ownership recovery of shared state, a cell can be shared and return to non-shared
without such restriction. Unlike ours, their work does not allow intermediate inconsis-
tent states since all updates are publicly visible. In addition, their work requires proof
obligations for, among other things, guarantee satisfaction while we use a more straight-
forward definition of protocol conformance that is not dependent on theorem-proving.
However, their use of dependent refinement types adds expressiveness (e.g. their pred-
icates capture an infinite state space, while our state space is finite) but increases the
challenges in automation, as typechecking requires manual assistance in Coq.

Krishnaswami et al. [18] define a generic sharing rule based on the use of frame-
preserving operations over a commutative monoid (later shown to be able to encode
rely-guarantee [8]). The core principle is centered on splitting the internal resources of
an ADT such that all aliases obey an invariant that is shared, while also keeping some
knowledge about the locally-owned shared state. By applying a frame condition over
its specification, their shared resources ensure that any interference between clients is
benign since it preserves the fiction of disjointness. Thus, local assumptions can interact
with the shared state without being affected by the actions done through other aliases
of that shared state. The richness of their specification language means that although
it might not always be an obvious, simple or direct encoding, protocols are likely en-
codable through the use of auxiliary variables. However, our use of a protocol paradigm
presents a significant conceptual distinction since we do not need sharing to be anchored
to an ADT. Therefore, we can share individual references directly without requiring an
intermediary module to indirectly offer access to the shared state, but we also allow
such uses to exist. Similarly, although both models allow ownership recovery, our pro-
tocols are typing artifacts which means that we do not need an ADT layer to enable
this recovery and the state of that protocol can be switched to participate in completely
unrelated protocols, later on. Their abstractions are also shared symmetrically, while
our protocols can restrict the available operations of each alias asymmetrically. Addi-
tionally, after the initial split, our shared state may continue to be split in new ways.
Finally, we use focus to statically forbids re-entrant uses of shared state, while they use
dynamic checks that diverge the execution when such operation is wrongly attempted.

8 Conclusions

We introduced a new flexible and lightweight interference control mechanism, rely-
guarantee protocols. By constraining the actions of an alias and expressing the effects
of the remaining aliases, our protocols ensure that only benign interference can occur
when using shared state. We showed how these protocols capture many challenging

358 F. Militão, J. Aldrich, and L. Caires

and complex aliasing idioms, while still fitting within a relatively simple protocol ab-
straction. Our model departs from prior work by, instead of splitting shared resources
encoded as monoids, offering an alternative paradigm of “temporal” splits that model
the coordinated interactions between aliases. A prototype implementation, which uses a
few additional annotations to ensure typechecking is decidable, is currently underway5.

Acknowledgments. This work was partially supported by Fundação para a Ciência e
Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie
Mellon Portugal Program under grant SFRH / BD / 33765 / 2009 and the Information
and Communication Technology Institute at CMU, CITI PEst-OE / EEI / UI0527 /
2011, the U.S. National Science Foundation under grant #CCF-1116907, “Foundations
of Permission-Based Object-Oriented Languages,” and the U.S. Air Force Research
Laboratory. We thank the Plaid (at CMU) and the PLASTIC (at UNL) research groups,
and the anonymous reviewers for their helpful comments.

References

1. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Fundam. Inf.
(2007)

2. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks and type-
state. In: OOPSLA (2008)

3. Beckman, N.E., Kim, D., Aldrich, J.: An empirical study of object protocols in the wild. In:
Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 2–26. Springer, Heidelberg (2011)

4. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOPSLA (2007)
5. Caires, L., Seco, J.A.C.: The type discipline of behavioral separation. In: POPL (2013)
6. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic. In: Proc.

Logic in Computer Science (2007)
7. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP 2004.

LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)
8. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views: compositional

reasoning for concurrent programs. In: POPL (2013)
9. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Concurrent

abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 504–528.
Springer, Heidelberg (2010)

10. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg (2009)

11. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for imperative pro-
gramming. In: PLDI (2002)

12. Fähndrich, M., Leino, K.R.M.: Heap monotonic typestate. In: IWACO (2003)
13. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular session types

for distributed object-oriented programming. In: POPL (2010)
14. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. (1987)
15. Gordon, C.S., Ernst, M.D., Grossman, D.: Rely-guarantee references for refinement types

over aliased mutable data. In: PLDI (2013)
16. Jensen, J.B., Birkedal, L.: Fictional separation logic. In: Seidl, H. (ed.) Programming Lan-

guages and Systems. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg (2012)

5 Available at: https://code.google.com/p/deaf-parrot/

https://code.google.com/p/deaf-parrot/

Rely-Guarantee Protocols 359

17. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst. (1983)

18. Krishnaswami, N.R., Turon, A., Dreyer, D., Garg, D.: Superficially substructural types. In:
ICFP (2012)

19. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg (2009)

20. Mandelbaum, Y., Walker, D., Harper, R.: An effective theory of type refinements. In: ICFP
(2003)

21. Militão, F., Aldrich, J., Caires, L.: Rely-guarantee protocols (technical report). CMU-CS-14-
107 (2014)

22. Militão, F., Aldrich, J., Caires, L.: Substructural typestates. In: PLPV (2014)
23. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL (2005)
24. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: TLDI (2011)
25. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. Logic

in Computer Science (2002)
26. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. In: Proc.

LISP and Functional Programming (1992)
27. Smith, F., Walker, D.W., Morrisett, G.: Alias types. In: Smolka, G. (ed.) ESOP 2000. LNCS,

vol. 1782, pp. 366–381. Springer, Heidelberg (2000)
28. Strom, R.E.: Mechanisms for compile-time enforcement of security. In: POPL (1983)
29. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing software

reliability. IEEE Trans. Software Eng. (1986)
30. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation of concurrent

data structures. In: Felleisen, M., Gardner, P. (eds.) Programming Languages and Systems.
LNCS, vol. 7792, pp. 169–188. Springer, Heidelberg (2013)

31. Tov, J.A., Pucella, R.: Practical affine types. In: POPL (2011)
32. Vafeiadis, V., Parkinson, M.: A marriage of rely/Guarantee and separation logic. In: Caires,

L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Hei-
delberg (2007)

33. Yorsh, G., Skidanov, A., Reps, T., Sagiv, M.: Automatic assume/guarantee reasoning for
heap-manipulating programs. Electron. Notes Theor. Comput. Sci. (2005)

Stream Processing with a Spreadsheet

Mandana Vaziri, Olivier Tardieu, Rodric Rabbah,
Philippe Suter, and Martin Hirzel

IBM T.J. Watson Research Center, Yorktown Height, NY, USA
{mvaziri,tardieu,rabbah,psuter,hirzel}@us.ibm.com

Abstract. Continuous data streams are ubiquitous and represent such
a high volume of data that they cannot be stored to disk, yet it is of-
ten crucial for them to be analyzed in real-time. Stream processing is
a programming paradigm that processes these immediately, and enables
continuous analytics. Our objective is to make it easier for analysts, with
little programming experience, to develop continuous analytics applica-
tions directly. We propose enhancing a spreadsheet, a pervasive tool, to
obtain a programming platform for stream processing. We present the
design and implementation of an enhanced spreadsheet that enables vi-
sualizing live streams, live programming to compute new streams, and
exporting computations to be run on a server where they can be shared
with other users, and persisted beyond the life of the spreadsheet. We
formalize our core language, and present case studies that cover a range
of stream processing applications.

1 Introduction

Continuous data streams are ubiquitous: they arise in telecommunications, fi-
nance, health care, and transportation among other domains. They represent
such a high volume of data that they cannot be stored to disk in raw form,
and it is often crucial for the data to be analyzed right away. Stream processing
is a programming paradigm that processes sequences of data immediately, and
enables what is called continuous analytics.

In organizations that require stream processing, domain experts may have
limited programming experience to directly implement their desired solutions.
As a result, they rely on developers for the actual implementation. Our objec-
tive is to make it easier for these end-users to directly prototype and perform
computations on live data. We believe this is an important facilitator for rapid
turnaround and lower development costs that may otherwise hinder streaming
data analysis.

This paper proposes the use of spreadsheets as a stream programming plat-
form. The choice of spreadsheets stems from the fact that they are a pervasive
tool used in many different domains, and are familiar to non-programmers1.

1 There are 9 million Java developers
(http://oracle.com.edgesuite.net/timeline/java/),
and an order of magnitude more Microsoft Excel users.
(http://blog.ventanaresearch.com/tag/microsoft-excel/)

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 360–384, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://oracle.com.edgesuite.net/timeline/java/
http://blog.ventanaresearch.com/tag/microsoft-excel/

Stream Processing with a Spreadsheet 361

Spreadsheets offer a variety of visualization possibilities, and the ability to ana-
lyze, process, or augment source data by entering formulas in cells. They provide
a unique interface where data is in the foreground and the code that produced
it can be viewed in the same place. This is unlike common integrated develop-
ment environments (IDEs) where code appears in a dedicated editor, and data
visualization plays a subordinate and often orthogonal role.

Although spreadsheets are used for many different applications, they do not
readily support online stream processing, which we believe requires the following
essential features:

– Live data in cells: for online processing, one must have the ability to import
live data into cells. Further, as the live data changes, the value of the cell
must change contemporaneously.

– Segmenting streams into windows: some streaming operations are applied
over aggregates of values (e.g., reductions). In spreadsheets, aggregates are
groups of rows and columns called ranges. For online stream processing, an
analogue between spreadsheet ranges and windows over streams is needed.

– Stateful cells: spreadsheets are functional by nature and do not readily sup-
port state or cyclic cell references. However, many stream processing applica-
tions need state to compute summaries or decisions via finite state machines.

This paper presents ActiveSheets, a programming platform for stream pro-
cessing that is based on Microsoft Excel with enhancements to meet the chal-
lenges described above. It provides a language that an end-user can use to easily
populate ranges of cells in a spreadsheet with the desired shape of data, a win-
dowing mechanism that allows computations over windows of streaming data,
and the ability to perform stateful computations by treating stateful and state-
less cells uniformly.ActiveSheets retains and interoperates with familiar Excel
features (e.g., built-in functions and macros, or visualizing live data) but also en-
hances Excel’s native capabilities such that they operate correctly on live data.
An example is the Excel pivot function which classically operates on a snapshot
of cells (i.e., if the cells change, the filtered results do not). In ActiveSheets,
it is possible to continuously pivot as the input cells change.

ActiveSheets is a client-server architecture in which the server publishes
streams and the client, namely the spreadsheet, allows the user to subscribe to
streams and operate on the live data; operations include visualization of streams
and generation of new streams (Fig. 1). The client provides an export feature,
making it possible to share the results with other users, as well as persisting the
computation on the server, beyond the life of the spreadsheet.

We present formal semantics for the core language captured by our user in-
terface, which we call the spreadsheet calculus. This is a reactive programming
model that represents the spreadsheet computation as a combinatorial circuit
derived from cell dependencies and formulas contained within the cells. As input
cells change over time, any dependent cells are automatically recomputed and
updated. Cells that must retain state can be viewed as circuits with latches. This
model hides many common concerns from the programmer, because it offers a
fixed control structure and manages cell updates automatically based on data

362 M. Vaziri et al.

4

A B C

1

2

3

Live spreadsheet

Domain expert Live visualization

Exported computation

Live input data
… …

Live exported data
… … 1.

2. 3.

4.

5.

Fig. 1. ActiveSheets Overview: 1. The server publishes lives streams. 2. The domain
expert subscribes to these streams and prototypes the computation in a spreadsheet.
3. Spreadsheet functionality is readily available, including visualization. 4. Data com-
puted in the spreadsheet may be exported as its own stream. 5. The entire spreadsheet
may be exported to the server, where the computation outlives client shutdown.

dependencies. As a result, the domain expert can focus on the data transforma-
tions they wish to compute.

A spreadsheet enables a live programming platform, meaning that code can
be modified during the execution of the program. This is an essential feature,
because streaming analytics applications cannot be stopped and restarted eas-
ily. The user has to be able to quickly modify computations without stopping
data sources. This feature creates challenges, especially in the face of stateful
computations, and we define its semantics formally in the spreadsheet calculus.
Finally, our extensions to the spreadsheet must preserve its highly interactive
nature, meaning that on every update to a cell, there can only be a bounded
amount of computation and memory usage. We prove this property for our core
language, and show that it is also deterministic, meaning that for any given set
of inputs, the spreadsheet computation always yields the same result.

This paper makes the following contributions:

– A reactive programming model for stream processing based on spreadsheets
and a uniform treatment of stateless and stateful cells.

– Formal semantics for our core language using a new spreadsheet calculus.

– Exporting spreadsheet computation to the server for sharing or persistence.

– A prototype implementation using Microsoft Excel, and case studies covering
a range of stream processing applications.

Stream Processing with a Spreadsheet 363

2 Overview

This section presents an overview of how ActiveSheets works, using a stream-
ing stock bargain calculator as a running example. The bargain calculator takes
two input streams: Trades and Quotes. A stream is an infinite sequence of tuples,
which are sequences of attribute/value pairs. A feed is the infinite sequence of
values corresponding to a single attribute of a stream. Thus a stream is com-
prised of a collection of feeds whose values update synchronously.

The tuples of the Trades stream represent actual trades that have been made,
using attributes sym (a stock symbol), ts (a timestamp), price, and vol. Each of
these attributes defines a feed of values. The bargain calculator first computes
the Volume Weighted Average Price (VWAP). Given a window of prices Pi and
volumes Vi, the VWAP is defined as:

VWAP =

∑
i Pi × Vi∑

i Vi

After computing the VWAP over the Trades stream, the bargain calcula-
tor determines whether or not each price in the Quotes stream is less than the
VWAP. If yes, it outputs a bargain. Various streaming languages are well-suited
to writing this program, such as CQL [4] or SPL [15]. However, end-users are
typically unfamiliar with programming languages, let alone special-purpose lan-
guages such as CQL or SPL. Our objective is to bring stream programming to
the end-user by enhancing the spreadsheet, a tool that is pervasive and familiar.

ActiveSheets is based on Microsoft Excel enhanced with controls for ma-
nipulating live streams as shown in Fig. 2.

Fig. 2. ActiveSheets Controls. Buttons from left to right: connect to and disconnect
from the server, add a stream (‘+’ icon), pause a stream (pause symbol), disconnect
from a stream (‘−’ icon), export data back to the server (flash symbol), stop data
export (crossed out flash symbol), export computation (movie symbol), and lastly,
debug mode (light bulb), used to debug the implementation of ActiveSheets.

Fig. 3 shows the bargain calculator program in ActiveSheets. We now ex-
plain how the user can obtain this program step by step.

Connecting to the server. To start using ActiveSheets, the user first clicks
on the connect button. This prompts for the address to the server and connects
to it. The server publishes several streams that the client may subscribe to,
visualize, and work with. Depending on the server’s installation, these streams
could come from existing stream processing programs, live feeds, static data that
is streamed, or exported streams from other ActiveSheets clients. In the case
of this example, the server publishes the two input streams Trades and Quotes.

364 M. Vaziri et al.

Fig. 3. Bargain Calculator in ActiveSheets

Subscribing to a stream. The next step is to subscribe to a stream. To do this, the
user first chooses a window in the spreadsheet, then presses the subscribe button
(‘+’), and enters the stream name at the prompt. The selected stream is then
displayed in the window that the user selected with one column per attribute
(feed), and the values scroll from bottom to top. A visual indicator comes on if
the user did not select a wide enough range of cells. At any given moment in time,
the user sees a window of data that gets updated continuously. In the example,
the user first subscribes to the Trades input stream. Fig. 4 shows the Trades

input streaming into the spreadsheet in columns A through D over a window of
size 20. The data fills the window from bottom to top and continues scrolling.
The chosen window size not only specifies how much of the stream is shown at
any given moment in time, it also determines the window of data over which the
VWAP will be computed. The user may pause a stream by choosing a cell in it,
and pressing the pause button. This causes all the feeds in that stream to stop
until the user presses pause again to resume, which causes ActiveSheets to
display the latest live data.

Adding new feeds. The user can create new data by entering formulas in cells
directly, which creates new feeds. Fig. 5 shows how the user enters a standard
Excel formula to compute the price times the volume in cell G3. Notice that, in
this figure, the timestamp column has been deleted because it is not needed. The
user then copies and pastes the formula in the rest of column G with familiar
Excel gestures. Even though familiar controls are used to populate column G, the
result is live in ActiveSheets: as the values of price and volume are updated,
their product is recomputed. Fig. 5 further shows how the user can compute
the sum for the volume and price-times-volume columns (cells C24 and G24),

Stream Processing with a Spreadsheet 365

Fig. 4. The Trades input streaming in

and enter a formula for the VWAP (cell I3). Each feed in ActiveSheets gets
updated at specific points in time, which we call its tick. For example, the sum
of two cells gets updated whenever either of the cells are updated.

Adding new streams. In addition to entering formulas in cells one at a time,
the user can also populate a range of cells with a stream (synchronous feeds)
using ActiveSheets’ query language. This language is relational in flavor,
and includes operators for projection, selection, deduplication, sorting, pivoting,
and aggregation. It also supports a simple mechanism for stateful computation.
Queries are entered by selecting a window in the spreadsheet and pressing the
‘+’ icon. The simplest query is giving the name of a stream to display all of its
attributes. The user may use a selection to filter tuples in Trades with a price
greater than a certain value

select(Trades, price > 200)

which would populate a range of cells with formulas to produce the desired re-
sult: a stream with all the attributes of Trades but with tuples having a price
greater than 200.

Bargain computation. Notice that the output of a query can still be a single feed:
a projection, for example, can be used to view a single attribute of a stream. In
cell E3 of Fig. 3, the user has added the Quotes input stream, using a query that
only shows the price attribute:

project(Quotes, price = Quotes.price)

This query takes the Quotes stream and produces a new stream that has a single
attribute named price. The new stream ticks synchronously with Quotes. Finally,
the user enters an Excel conditional to determine whether or not the quoted price
is a bargain (cell I7 in Fig. 3).

366 M. Vaziri et al.

Fig. 5. Computing VWAPs

Exporting data. The user may want to export data back to the server. This can
be accomplished by selecting the quoted price and whether or not it is a bargain
(cells I3 and I6), and pressing the flash button. ActiveSheets will prompt for
a name for this new stream (e.g., Bargains), and will start sending this data
to the server. The tick of the new stream is the union of the ticks of the feeds
that comprise it: i.e., whenever one of the feeds is updated, a new tuple with
all the data is sent to the server. Other ActiveSheets users will then be able
to subscribe to it. Since the data is computed in the spreadsheet, when the
spreadsheet is closed, the stream will no longer be published to the server.

Exporting computation. When the user is ready to deploy the application, he or
she can export the computation by pressing the movie button. This feature takes
a snapshot of all formulas in the entire spreadsheet and sends it to the server.
Each spreadsheet has a single output stream (visible to other users). During
export, the user selects the cells that comprise attributes of the output stream.
Multiple exports result in separate snapshots on the server. Once computation
is exported, it runs at the server side, and exists even after the user closes
the spreadsheet. There is a trade-off between data and computation export. In
data export, the user may compute new data locally using custom macros and
libraries, but the computation disappears when the spreadsheet is closed. In
computation export, only a subset of Excel built-in features are supported (at
the server), but the computation persists beyond the life of the spreadsheet.

Working with state. In this example, the user wants to keep count of the number
of quotes that are bargains. Fig. 6 illustrates how this works. Cell I11 is set to 1
if there is a bargain, and 0 otherwise. Cell I14 is set to the old bargain count

Stream Processing with a Spreadsheet 367

Fig. 6. Stateful computation using PRE

plus cell I11, so it increments iff there is a bargain. And Cell I19 obtains the old
bargain count by using the PRE function. Function PRE(v, t, v0) is formalized
later in this paper; intuitively, it obtains the previous value of v, using the tick
of t, and using value v0 as the default when v is not yet defined. Note that the
bargain count computation is cyclic (the new count depends on the old count and
vice versa). As we shall see, this is well defined as long as every cycle contains a
call to PRE.

Discussion. Fig. 7 shows the VWAP calculation in IBM’s Streams Processing
Language (SPL) [15]. The Aggregate operator invocation in Lines 6-10 consumes
stream Trades and produces stream PreVwaps. Just like the ActiveSheets ver-
sion, it uses a window of 20 tuples that slide at granularity 1. It sets attribute
priceVol to

∑
i Pi × Vi and attribute vol to

∑
i Vi. The Functor operator in-

vocation in Lines 11-13 consumes stream PreVwaps and produces stream Vwaps.
It sets attribute vwap to priceVol / vol. Whereas ActiveSheets users always
have concrete data to look at, developing code in a streaming language like SPL
feels more decoupled from the data. Furthermore, writing code in a language
like SPL requires familiarity with programming, which is arguably beyond the
reach of an end-user.

Compared to the code in Fig. 7, the ActiveSheets experience makes com-
puting with streams accessible to the end-user. It provides a reactive program-
ming model with a fixed control structure: new tuples cause dependent cells
to be recomputed and refreshed. The user is freed to focus on the data and
its transformations without having to think about unfamiliar programming lan-
guage syntax. The interface makes it easy to express computations on a window
of data from the same stream, and allows computation export for deployment.

368 M. Vaziri et al.

type
Trade = tuple<rstring sym, timestamp ts, float64 price, float64 vol>;
PreVwap = tuple<rstring sym, float64 priceVol, float64 vol>;
Vwap = tuple<rstring sym, float64 vwap>;

graph
stream<PreVwap> PreVwaps = Aggregate(Trades) {

window Trades: sliding, count(20), count(1);
output PreVwaps: priceVol = Sum(price * vol),

vol = Sum(vol);
}
stream<Vwap> Vwaps = Functor(PreVwaps) {

output Vwaps: vwap = priceVol / vol;
}

Aggregate

Functor

Trades

PreVwaps

Vwaps

Fig. 7. VWAP in SPL

The spreadsheet also provides a variety of visualization possibilities. In the ex-
ample, the user can create a line chart for the price as shown in Fig. 3, and the
chart is live as well.

3 Spreadsheet Calculus

This section formalizes a core calculus to support our programming model. It
first specifies the constructs and semantics of a minimal client spreadsheet—a
collection of cells and formulas—connected to a server providing real-time data
feeds. The constructs let us compute over recent feed histories and build stateful
spreadsheets. The semantics define when and how cell values are computed. We
prove that the resulting executions are well-defined, reactive, and determinis-
tic provided the client spreadsheet is free from immediate cyclic dependencies
(Section 3.1).

Clients compute over potentially infinite data feeds. Our programming model
is intended to favor real-time analytics and prevent users from engaging into
expensive querying of feed histories. A client for example can compute the av-
erage of a data feed over time (since the beginning of time), but it must do so
incrementally as the live data flows through the client. We formally establish
that executions in our model can be computed incrementally over time, using a
bounded amount of computation per update (i.e., incoming data packet) and a
bounded amount of memory to keep track of the execution state—the “past”—of
size proportional to the client itself (Section 3.2).

The end-user can change formulas in the spreadsheet while real-time feeds
are being processed. To support this form of live programming, we extend our
semantics so that cells no longer contain static formulas, but feeds of formulas
that change over time (Section 3.3). Our core calculus is not intended as an
actual programming interface for the end-user. To bridge this gap, we specify a
stream calculus by reduction to our core calculus. It supports richer notions of
data streams—sequences of tuples with named attributes—and formulas (Sec-
tion 3.4). Finally, we specify a query language that provides familiar relational
operators on data streams such as projection and selection (Section 3.5).

Stream Processing with a Spreadsheet 369

3.1 Core Calculus

We start with the definitions, then establish key properties of our core calculus.

Ticks. Let a tick T be a possibly empty, at most countable, strictly increas-
ing series of non-negative real numbers {t0, t1, t2, ··} representing a sequence of
arrival times. We require that T is unbounded if infinite.

We write T � t for the tick T up to time t that is formally the series T ∩ [0, t],
which is always a finite tick. A non-empty finite tick T always admits a maximal
element max(T). Given a finite tick T with at least two elements, we define
the second-to-max element prev(T) as max(T \max(T)). We write (t0, t1) ∈ T
if t0 and t1 are two consecutive arrival times in T , that is, if t1 ∈ T and t0 =
prev(T � t1).

Feeds. Let a feed φ be a map from a tick to values. We write dom(φ) for the tick
of φ. We say that φ ticks at time t iff t ∈ dom(φ). As a convenience, we overload
the notation φ(t) as follows. If t ∈ dom(φ), then φ(t) is the usual function
application. Otherwise, if dom(φ)�t �= ∅, then φ(t) is defined as φ(max(dom(φ)�
t)). Otherwise, φ(t) is undefined and we write φ(t) = ⊥ using ⊥ to denote the
absence of a value. In short, φ(t) is always the most recent value of φ at time t.

Servers. Let a server S be a finite collection of feeds. We define the server tick
N of S as the tick

⋃
φ∈S dom(φ). Because of the required properties of ticks, it

makes sense to think of N as N or a subset of N if it helps the reader. While
ticks are intended to model real-time arrival times, our semantics really think
of arrival times as logical instants. The order matters, but the time difference
between two instants does not.

Clients, cells, and formulas. Let a client C be a finite collection of cells. Each
cell has a unique name c and contains a formula f . We write c ≡ f iff c con-
tains formula f . The syntax of formulas is defined as follows, where f denotes a
formula, c a cell name, φ a server feed, and op a family of operators on values
(such as division /, greater-than >, or Excel’s IF function).

f ::= φ | op(c1, ··, cn) | c0@c1 | latch(c0, c1)

For simplicity, our core calculus does not permit nesting constructs. The
stream calculus of Section 3.4 lifts this restriction.

We do not explicitly model constant formulas as these can be obtained by
means of constant server feeds. Observe that our semantics will distinguish con-
stant feeds with the same value but distinct ticks.

Our core calculus is untyped. We assume all op operators are total functions.
For simplicity, we do not consider “eager” operators capable of producing values
even if not all operands are defined, but such operators could be added easily.

370 M. Vaziri et al.

The calculus has two constructs to manipulate time: @ and latch. The @ con-
struct makes it possible to sample a feed according to a Boolean condition (a feed
with Boolean values): c0@c1 ticks when c1 does and evaluates to true, returning
the current value of c0. The latch construct provides a general mechanism to
delay a feed so that a feed value that is not the most recent can be accessed:
latch(c0, c1) ticks when c1 does returning the value of c0 at the previous tick
of c1. We illustrate the two constructs below as we specify their semantics. In
Section 3.4, we show how PRE can be defined using latch.

Well-formedness. We define the set of immediate dependencies deps(c) of a cell
c as follows.

deps(c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if c ≡ φ

{c1, ··, cn} if c ≡ op(c1, ··, cn)
{c0, c1} if c ≡ c0@c1

{c1} if c ≡ latch(c0, c1)

In essence, our semantics are such that if c ≡ latch(c0, c1) then c only depends
on the past of c0, hence c does not immediately depend on c0. Reciprocally, if
c immediately depends on c0 then the semantics of c at time t will potentially
be derived from the semantics of c0 at time t. We therefore need immediate
dependencies to be acyclic. We say that a client is well-formed iff the directed
graph G of immediate dependencies is acyclic, where the vertices of G are the
cell names and there exists an edge (c, c′) in G iff c′ ∈ deps(c). If a client is not
well-formed, we can identify a cycle and notify the user.

Semantics. We now specify the semantics of well-formed clients by recursion.
Lemma 1 will establish that this recursion is well-founded.

We define by mutual recursion the tick T (c) of a cell c of a well-formed client
C and the value E(c, t) of c at time t ∈ [0,∞) as follows, starting with T (c).

T (c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dom(φ) if c ≡ φ

{t ∈
⋃n

i=1 T (ci)|∀i ∈ {1, ··, n} : T (ci) � t �= ∅} if c ≡ op(c1, ··, cn)
{t ∈ T (c1)|E(c1, t) = true, T (c0) � t �= ∅} if c ≡ c0@c1

T (c1) if c ≡ latch(c0, c1)

In contrast with typical synchronous programming models [8], our core cal-
culus does not require the operands of an operator op to be synchronous (share
the same tick). Instead, an operator op ticks each time an operand does (once all
operands are defined). Once c0 is defined, c0@c1 ticks when c1 does and evaluates
to true. The tick of latch(c0, c1) is simply the tick of the second argument c1.

Stream Processing with a Spreadsheet 371

We now consider the definition of E(c, t).

E(c, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if c ≡ φ

op(E(c1, t), ··, E(cn, t)) if c ≡ op(c1, ··, cn) and ∀i : E(ci, t) �= ⊥
E(c0,max(T (c) � t)) if c ≡ c0@c1 and T (c) � t �= ∅
E(c0, prev(T (c1) � t)) if c ≡ latch(c0, c1) and |T (c1) � t| ≥ 2

and T (c0) � prev(T (c1) � t) �= ∅
E(c1, t) if c ≡ latch(c0, c1) and |T (c1) � t| ≥ 2

and T (c0) � prev(T (c1) � t) = ∅
E(c1, t) if c ≡ latch(c0, c1) and |T (c1) � t| = 1

⊥ otherwise

The semantics of operators lifts an operator from values to feeds by simply
invoking the operator on the most recent value of each feed.

The formula c0@c1 samples the value of c0 when it ticks. For instance, if
a ≡ nat and b ≡ isEven(a) and c = a@b where nat is a server feed producing the
natural integers and isEven a unary operator with the obvious semantics, then
c only produces even integers. The arrival time of each integer in c is the same
as the arrival time of the same integer in nat.

The formula latch(c0, c1) provides for each tick of c1 the value of c0 recorded
at the previous tick of c1. But it defaults to the value of c1 instead, if either this
is the first tick of c1 or c0 was not yet defined when c1 last ticked.

The latch construct serves a double purpose: it makes stateful clients possible
and it enables clients to reason about windows of data. For an example of a
stateful computation, suppose zero is the unary constant operator with value 0,
add is the binary addition, and 1 is a sever feed with tick {0} and value 1. The cell
d in client {a ≡ feed, b ≡ zero(a), c ≡ 1, d ≡ add(c, e), e ≡ latch(d, b)} counts the
number of ticks in the server feed feed. Observe that b hence e and d tick exactly
when feed does. Moreover, the initial value of d is 1 and each subsequent value
of d is obtained by incrementing the previous value of d by one. For a window
example, suppose neq is a binary inequality test operator. The cell c in client
{a ≡ feed, b ≡ latch(a, a), c ≡ neq(a, b)} ticks when the server feed feed does and
evaluates to true iff the current value of feed is different from the previous value.
In general, windows into feed histories can be obtained by chaining latches, e.g.,
{a ≡ feed, b ≡ latch(a, a), c ≡ latch(b, b), d ≡ latch(c, c)}. Cell a provides the
current value of feed, b the previous value, c the value before that, etc.

Observe that in the stateful example, the latch is used to form a cycle of cells,
whereas in the window examples, there is no such cycle. In the latter, the two
arguments to latch can be the same. But well-formedness forbids cyclic uses of
latch (via its second argument) as in the ill-formed client {a ≡ latch(a, a)}.

We now prove that the recursive definition of T and E is well-founded for
well-formed clients. In the sequel, we require all clients to be well-formed.

Lemma 1 (Soundness). For a cell c of a well-formed client C and a time t,
the value E(c, t) of c at time t and the tick T (c) � t of c up to time t are defined
via a well-founded recursion.

372 M. Vaziri et al.

Proof. Let depth(c) be the length of the longest path in G with source c. For a
cell c ∈ C and time t ∈ [0,∞) we define σ(c, t) ∈ N×N as (max(N�t), depth(c)).
The lexicographic order ≤ of N × N is well-founded, since C is well-formed.

We can rewrite the definition of T (c) as a definition of T (c) � t so that every
tick instance of the right-hand side is only needed up to time t. In the definition
of E(c0@c1, t), we can expand T (c) � t into its definition. We now establish that
the recursive co-definition of T (c) � t and E(c, t) is well-founded using (σ,≤) to
order the tuples (c, t) ∈ C × [0,∞).

In all induction cases except for the definition of E(latch(c0, c1), t), the terms
of the right-hand side are only concerned with time up to t and cells of strictly
lower depth. Moreover, the tick up to t and value at t of the cell c with formula
c ≡ latch(c0, c1) are defined using T (c1) � t and E(c1, t) (same time, strictly
lower depth) and possibly T (c0) � t0 and E(c0, t0) with t0 = prev(T (c1) � t) such
that max(N � t0) < max(N � t). ��

Our calculus is therefore deterministic: the tick and values of a cell of a well-
formed client are unambiguously defined at all times. Our calculus is also reactive
in the sense that everything happens in reaction to the ticks of the server feeds.

Lemma 2 (Reactivity). The tick of a cell c of a well-formed client C is a
subset of the server tick N . The value of c at a time t is equal to the value of c
at the most recent arrival time of c if any or undefined if none.

Proof. The tick of c0@c1 is a subset of T (c1). The tick of op(c1, ··, cn) is a subset
of

⋃n
i=1 T (ci). By induction over the depth of the cell. ��

3.2 Boundedness

Because of latch, the values of the cell at time t are defined using past values of
cells and feeds. But a careful look at the definitions shows that the dependency
on past values is bounded. Concretely, c ≡ latch(c0, c1) only needs to retain one
value of c0 at a time (in addition to the current value of c). Formally, for all
c ∈ C and t ∈ N we define:

H(c, t) =
{
E(c0,max(T (c1) � t)) if c ≡ latch(c0, c1) and |T (c1) � t| > 0

⊥ otherwise

Lemma 3 (Boundedness). For all (t0, t) ∈ N , the values of H and E at time
t for each c ∈ C can be computed as a function of H and E at time t0 and the
ticks and values of the server feeds at time t.

Proof. We observe that we can rewrite the semantics of the core calculus as
follows.

t ∈ T (c)⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t ∈ dom(φ) if c ≡ φ

(∃i : t ∈ T (ci)) ∧ (∀i : E(ci, t) �= ⊥) if c ≡ op(c1, ··, cn)
t ∈ T (c1) ∧ E(c1, t) = true ∧ E(c0, t) �= ⊥ if c ≡ c0@c1

t ∈ T (c1) if c ≡ latch(c0, c1)

Stream Processing with a Spreadsheet 373

If t /∈ T (c) then H(c, t) = H(c, t0) and E(c, t) = E(c, t0) by Lemma 2. Other-
wise, H(c, t) = E(c0, t) if c ≡ latch(c0, c1) or ⊥ if not, and

E(c, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if c ≡ φ

op(E(c1, t), ··, E(cn, t)) if c ≡ op(c1, ··, cn) and ∀i : E(ci, t) �= ⊥
E(c0, t) if c ≡ c0@c1

H(c, t0) if c ≡ latch(c0, c1) and H(c, t0) �= ⊥
E(c1, t) if c ≡ latch(c0, c1) and H(c, t0) = ⊥
⊥ otherwise

By induction using the well-foundedness argument of Lemma 1, the two se-
mantics define the same tick and values for all cells at all times. ��

In summary, storing one value for each occurrence of latch enables the in-
cremental computation of these semantics over time. In particular, the memory
required is bounded by the client size. Moreover, the amount of computation per
tick is also bounded by the client size (assuming unit cost for the operators op).

3.3 Live Calculus

We now define the semantics of live clients where we permit formulas to evolve
over time. We suppose that each cell c ∈ C has a feed of formulas ĉ with tick
dom(ĉ) and formula ĉ(t) at time t. While we do not model cell creation or
deletion explicitly, we permit cells to be initially empty. The formula feeds model
external changes to formulas (e.g., user input). We do not consider “higher-order”
spreadsheets where formulas could be computed by the spreadsheet itself.

We define the immediate dependencies of cell c at time t as follows.

deps(c, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if ĉ(t) = φ

{c1, ··, cn} if ĉ(t) = op(c1, ··, cn)
{c0, c1} if ĉ(t) = c0@c1

{c1} if ĉ(t) = latch(c0, c1)

We say a client is well-formed iff the graph of immediate cell dependencies is
acyclic at all times. We define the tick of cell c, T (c), by concatenating the ticks
of its successive formulas over time. We first define the tick of a cell c around
time t as follows.

T [t](c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dom(φ) if ĉ(t) = φ

{t ∈
⋃n

i=1 T (ci)|∀i ∈ {1, ··, n} : T (ci) � t �= ∅} if ĉ(t) = op(c1, ··, cn)
{t ∈ T (c1)|E(c1, t) = true, T (c0) � t �= ∅} if ĉ(t) = c0@c1

T (c1) if ĉ(t) = latch(c0, c1)

T (c) = dom(ĉ) ∪

⎛⎝ ⋃
(t0,t1)∈dom(ĉ)

T [t0](c) ∩ [t0, t1)

⎞⎠ ∪
⎛⎝ ⋃

t=max(dom(ĉ))

T [t](c) ∩ [t,∞)

⎞⎠

374 M. Vaziri et al.

By convention, a cell also ticks when its formula feed does. The last term in
this union handles the case of a finite formula feed.

We define the value of cell c at time t using the current formula ĉ(t) as in the
core calculus except for the latch construct. Let t0 = max(dom(ĉ) � t) be the
most recent arrival of the formula feed ĉ if defined. If ĉ(t) = latch(c0, c1) then

E(c, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E(c0, prev(T (c) � t)) if T (c) � t > t0 and T (c0) � prev(T (c) � t) �= ∅
E(c1, t) if T (c) � t > t0 and T (c0) � prev(T (c) � t) = ∅
E(c1, t) if T (c) � t = t0

⊥ otherwise

Intuitively, a latch does not access values that predate the formula that con-
tains the latch. This ensures that these semantics are still incrementally com-
putable without the need for an “oracle” to predict future latch occurrences.

3.4 Stream Calculus

Our core calculus from Section 3.1 is not intended as an actual programming
interface for the end-user. This section introduces a stream calculus that enriches
the core calculus with higher-level notions of streams and formulas. A stream is
a sequence of tuples with named attributes. The stream calculus permits nesting
constructs in formulas, handles constant values, and formalizes PRE.

To simplify the presentation, we return to the fixed formulas of the core cal-
culus, but the techniques for live editing in Section 3.3 remain applicable.

Streams. We say that two feeds are synchronous if they have the same tick. We
define a stream s to be a non-empty, finite collection of synchronous feeds. The
feeds in a stream are labeled with attributes. Given a stream s, we write s.a to
denote the feed of s labeled a. We write A(s) for the set of attributes of s.

Semantics. We now define a calculus over streams by reduction to the core
calculus of Section 3.1. The syntax of formulas is as follows, where v stands for
a constant value:

f ::= v | s.a | c | op(f1, ··, fn) | f0@f1 | latch(f0, f1) | PRE(f0, f1, v) | PRE(f, v)

Constructs can be nested. Formulas v and s.a are server feeds φ. Formula
v denotes a feed with value v and tick {0}. Formula PRE(f0, f1, v) is a syn-
tactic shortcut for latch(f0, first(v, f1)) where the first operator maps (x, y) to
x. Therefore, first(v, f1) produces a constant feed of values v with tick T (f1).
Formula PRE(f, v) is a shorthand for PRE(c, c, v) where c is a fresh cell with for-
mula f . The binary form of PRE is the most intuitive one: PRE(f, v) ticks when
f does, evaluates to v initially then to the previous value of f . This form cannot
express cyclic computations such as accumulators. The tick of cell c in client
{c = add(PRE(c, 0), 1)} cannot be defined by recursion.2 The ternary form of

2 Least-fixed-point approaches would not work either as our calculus supports sub-
straction by means of the @ construct.

Stream Processing with a Spreadsheet 375

PRE therefore permits the independent specification of the formula f0 to latch,
the tick f1 of the latch, and the initial value v of the latch. It is less expressive
than the core latch construct—it restricts its second argument to a constant
feed—but easier for the user to reason about.

Let C be a client in the stream calculus. We define the semantics of C by
constructing a client C′ in the core calculus. In particular, we specify that C is
well-formed iff C′ is. The semantics of a cell c in C is specified as the semantics
of the cell c in C′, that is, the cell with the same name in the reduced client.

Intuitively, the reduced client is simply defined by introducing helper cells for
every subformula and replacing subformulas with references to these helper cells.
Concretely, we specify by induction over the structure of formulas, a reduction R
that maps a cell c with formula f in the stream calculus to a fragment of a client
in the core calculus, that is, one or more cells with their respective formulas in
the core calculus. All cells but c itself in each map are fresh, i.e., have a globally
unique name.

The reduced client C′ of C is then simply the union of these fragments for
each cell c in C.

R(c, f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{c ≡ f} if f ∈ {v, s.a, c0}
{c ≡ op(c1, ··, cn)} ∪

⋃n
i=1R(ci, fi) if f = op(f1, ··, fn)

{c ≡ c0@c1} ∪ R(c0, f0) ∪R(c1, f1) if f = f0@f1

{c ≡ latch(c0, c1)} ∪ R(c0, f0) ∪R(c1, f1) if f = latch(f0, f1)

{c ≡ c0} ∪ R(c0, latch(f0, first(v, f1))) if f = PRE(f0, f1, v)

{c ≡ c0} ∪ R(c0,PRE(c1, c1, v)) ∪R(c1, f) if f = PRE(f, v)

3.5 Query Language

The stream calculus assumes a programming model where the user modifies one
cell at a time, defining one value feed at a time. In contrast, ActiveSheets’
query language allows the user to enter formulas in a range of cells at once
by defining a stream with multiple attributes and a window over this stream
history, all in a single step. Moreover, this query language provides higher-level
mechanisms to process streams inspired from relational operators—emphasizing
relations and deemphasizing arrival times.

In this section, we specify a basic query language over streams, and show how
it reduces to the stream calculus. It consists of projection and selection operators.
Our implemented query language supports other traditional relational operators
such as sort, pivot, aggregate, and deduplicate. Excel has native features that
support static version of some of these constructs (sort, pivot), and our query
language complements these features with streaming ones.

The query language is tightly integrated with the UI. In particular, the number
of rows in the target range of a query defines the length of the stream history
to preserve. We do not model this coupling here.

376 M. Vaziri et al.

Queries. The syntax of queries is defined as follows where q denotes a query, s
a stream, a an attribute, and f a formula in the stream calculus.

qs ::= s′

| PROJECT(qs, a1 = f1, ··, an = fn)
| SELECT(qs, f)

A query qs defines a new client stream named s. We require that the names of
the streams (client and server) are pairwise distinct. The PROJECT construct
defines a new stream with attributes a1 through an, with formulas f1 through fn,
respectively. In essence, the PROJECT construct allows the user to synchronize a
collection of feeds to produce a stream: the values of f1 through fn are sampled
according to the tick of the first parameter of PROJECT, and assigned to the
attributes of the resulting stream. The SELECT construct defines a new stream
with all the attributes of its first parameter, but with tuples that have been
filtered according to the Boolean formula f .

Semantics. A client (C,Q) in the query language combines a client C in the
stream calculus—a finite collection of cells and formulas—and a finite collection
of queries Q. We denote by W (Y) the set of all the client streams (server
streams, respectively).

The attributes A(s) of s in W are defined as follows:

A(s) =
{
A(s′) if qs = s′ or qs = SELECT(q′s′ , f)
{a1, ··, an} if qs = PROJECT(q′s′ , a1 = f1, ··, an = fn)

We map each attribute a of each client stream s to a fresh cell in C′ denoted cas .
We define by induction on the structure of queries a reduction from a query qs
to a collection of cells C(s) in the stream calculus as follows.

C(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⋃
a∈A(s){cas ≡ s′.a} if qs = s′ and s′ ∈ Y⋃
a∈A(s){cas ≡ cas′} if qs = s′ and s′ ∈W

C(s′) ∪
⋃n

i=1{cai
s ≡ nth(i, f1, ··, fn)@true(ca

′
s′)}

if qs = PROJECT(q′s′ , a1 = f1, ··, an = fn) and a′ ∈ A(s′)
C(s′) ∪

⋃
a∈A(s){cas ≡ cas′@(f@true(cas′))} if qs = SELECT(q′s′ , f)

For the PROJECT construct, we resample each fi using the tick of q′s′ , which
we can obtain by applying the constant unary true operator to one of its at-
tributes a′. But we need to make sure that all fi are defined before we emit a
value for any attribute. We therefore combine all the fi together using operator
nth : (i, a1, ··, an) �→ ai. Like any operator lifted to feeds, it only starts ticking
once all arguments are defined.

For the SELECT construct, we first sample the Boolean condition f according
to the tick of the target stream s′ using the rightmost @ construct, then apply
the resulting filter to the stream s′ using a second @ construct. This ensures
that the output stream is synchronous with the input stream.

The reduced client C′ is obtained as C ∪
⋃

s∈W C(s). We specify that (C,Q)
is well formed iff C′ is.

Stream Processing with a Spreadsheet 377

4 Implementation

ActiveSheets is implemented as a client-server architecture. The client is a thin
layer that implements minimal functionality by design so that it may be easily
repurposed for integration with multiple spreadsheet front-ends. In the current
implementation, the client is integrated with Microsoft Excel. It interacts with
the server via a RESTful interface [12] that provides an API to discover available
streams, subscribe to streams and create feeds, as well as to export data and
computation. Fig. 8 sketches the overall system architecture.

4.1 Client Side

The client consists of two components. The first is the client proxy. It encap-
sulates front-end independent functionality including a session manager and a
real-time data service that continuously updates the cells in the spreadsheet
when ticks advance. The second is the front-end user interface and integration
with the spreadsheet application (e.g., Microsoft Excel). The client UI and some
of its features were described earlier in Section 2.

In our current implementation, the client proxy is written in C# and the
UI front-end consists of a collection of Visual Basic macros. The client proxy
implements the Real-Time Data Server interface (IRtdServer) to communicate
with Excel. It makes it possible for the client proxy to notify Excel that new
data is available and for Excel to asynchronously pull the data from the client
proxy. The client proxy therefore acts as a buffer between the ActiveSheets

server and Excel. The client proxy runs as a dynamic-link library (DLL) plugin
inside Excel.

4.2 Server Side

The server side consists of the server proxy and a stream processing engine. The
former implements the primary functionality while the latter is used to deploy
generated stream processors when the client exports computation to the server.
The server side proxy is comprised of a (1) name manager, (2) query processor,
and (3) spreadsheet compiler.

The name manager maintains a directory of client connections and dispatches
client requests to dedicated handlers. When a query is received that subscribes
a client to a particular stream, the name manager allocates a dedicated handler
to service the request. The handler persists as long as the client connection is
maintained. The current implementation is written in Java and based on Akka,
an actor-based system for highly concurrent and event-driven applications [1]. It
is conceptually a message-driven runtime, where actors execute when messages
are received, producing new messages that are consumed by subsequent actors
or pushed to the client. Actors in ActiveSheets input tuples from existing
streams, parse and reformat the tuples if necessary, and output the resulting
tuples as new messages that are dispatched to registered listeners (e.g., clients).
Data that is exported from the spreadsheet is handled by the name manager.

378 M. Vaziri et al.

Server

Client

Domain
expert

Live input data
… …

Live exported data
… … Stream processing engine

ActiveSheets server proxy

ActiveSheets client proxy

Spreadsheet application

Data and
meta-data

Data and
control

Fig. 8. ActiveSheets System Architectures

The query processor is an actor that applies a given set of transformations
to a sequence of input tuples. The query is received from the client as a string,
parsed on the server, and interpreted accordingly. All of the query operators
described in Section 3.5 are supported. The operators are applied sequentially
in the order implied by the programmer, although we believe the order of appli-
cation is amenable to optimizations since some operators are commutative and
may reduce the amount of computation applied to any given tuple.

The spreadsheet compiler is responsible for handling exported computation. It
parses the spreadsheets and builds a dependence graph between the cells, which
in turn is used to derive a computational circuit for the spreadsheet. Terminal
cells which have no incoming edges or outgoing edges in the dependence graph
are input and output signals, respectively. Internal cells contain formulas that
correspond to gates in the circuit, with input wires flowing from and output
wires flowing to other cells as in the dependence graph. One circuit is created
for each exported spreadsheet, and it is encapsulated within a single actor that
will update the output signals as new ticks arrive. Output signals are visible to
other users as new streams. The computation on the server persists even if the
spreadsheet is no longer running.

5 Case Studies

The goal of this section is to convey a feeling for what kind of streaming compu-
tations are natural to implement in a spreadsheet. The examples are drawn from
a variety of domains (commerce, transportation, infrastructure, and security),
and illustrate how the features of ActiveSheets play out in practice. Fig. 9
shows an Excel spreadsheet for the examples.

Stream Processing with a Spreadsheet 379

Fig. 9. Case studies. Yellow background indicates live streaming data, blue background
indicates constants, and green rectangles show formulas.

380 M. Vaziri et al.

Decision Table. Consider a commerce application where the input is a stream of
persons (with name and age category), and the output is a stream of ticket prices.
The ticket prices are obtained by looking them up in a table indexed by the age
category (child, student, senior, or regular). Such tables are natural to express
in spreadsheets, more so than in traditional text-based languages. The example
in Fig. 9 looks up the ticket price for Bob, who is a student, and must thus pay
10 Euro. Excel offers VLOOKUP(key: ref, tab: rangeRef, valCol: int, range: bool)
for table lookup. One requirement this use case illustrates is that besides single-
cell references, we must also support range-references, which refer to a rectan-
gular region comprising multiple rows and columns. The calculus models range
references via n-ary functions. The VLOOKUP operator itself does not need to
be baked into the calculus, since it is stateless and built into Excel. Variations
on the decision-table case study could use relative lookup instead of absolute
lookup, for instance, when the age is given as an integer instead of a category.

Recency-Weighted Average. Consider a transportation application where the
input is a stream of travel times between two landmarks, and the output is a
stream of travel time estimates between the same landmarks. To estimate travel
time in current traffic, the most recent input samples should count the most
in the estimation. This can be accomplished by weighting the window with a
decay curve. In Fig. 9, the most recent travel time is in cell B20, and the cells
above it use PRE to get earlier readings. Cell D14 specifies the decay factor
with the constant 0.7. In many traditional streaming languages, such as CQL [4]
or SPL [15], windows are high-level and opaque, supporting only a fixed set
of built-in aggregations such as sum, min, max, or average. However, this use-
case requires associative access on window contents. In ActiveSheets, this is
natural to do, since the window contents are laid out in a range of cells, offering
users full viewing and manipulation power. Variations of this use case could take
additional information into account, such as the day of the week.

Forecasting. Consider an infrastructure application where the input is a stream
of temperature readings in a data center, and the output is a stream of predic-
tions for future temperature readings based on the current trend. A spreadsheet
can implement this by calculating a least-square fit over the recent readings, then
extend that curve into the future for forecasts. The example in Fig. 9 extends
the temperature trend by a distance of 5 steps into the future, and predicts that
it will reach a dangerous 92.6◦ Celsius. Such forecasting algorithms are not that
easy to get right, and a spreadsheet can help with debugging, since the devel-
oper can visualize the curve and the prediction interactively. This use case does
not pose any additional requirements on the calculus; it suffices to offer associa-
tive history access as is the case with recency-weighted average. As a variation,
instead of predicting the temperature at a fixed distance in the future, the ap-
plication could predict how long it would take to reach a fixed threshold value
(say, 100◦ Celsius). This could be used for an evacuation count-down.

Stream Processing with a Spreadsheet 381

State Machine. Consider a security application where the input is a stream of
activities at a business location, and the output is a stream of suspicious events
that ought to be checked out by authorities. An example of a suspicious event
would be when a person enters the business location, drops an object and then
leaves the premises without taking back the object. This is easy to specify via a
deterministic finite automaton (DFA). A spreadsheet can implement a DFA via
a transition table indexed by the previous state and the current activity, to yield
the next state and an output. Just like a decision table, a DFA transition table
can be naturally represented by a block of cells in a spreadsheet. As cell I46 in
Fig. 9 illustrates, the lookup in this case is two-dimensional, using VLOOKUP
in combination with MATCH. As far as the calculus is concerned, this use case
combines the requirement for a decision table with the requirement for history
access. But in contrast to windows, which use PRE on input streams only, here,
the old state in cell G52 comes from using PRE on the current state in cell I46,
which is itself computed. Besides this security application, state machines are
also useful in other stream processing domains, such as for detecting M-shape
patterns in streams of stock quotes [14].

6 Related Work

This paper covers topics at the intersection of spreadsheet programming and
stream processing.

Spreadsheets as a programming platform. The idea to use spreadsheets for cod-
ing is not new. In Haxcel, each cell can hold a Haskell definition [16]. Similarly,
Wakeling also proposes a Haskell-based spreadsheet [22]. As in our approach,
this is motivated by wanting to offer an interactive programming experience,
where changes to code have immediate visible effects. Unlike our approach, these
approaches assume that the programmer already knows Haskell, and these ap-
proaches do not attempt to tackle stream processing.

Woo et al. use spreadsheets as a tool for data analysis over sensor net-
works [23]. This work comes closer to streaming, since sensors continuously
produce data. But the work is custom-tailored for the sensor domain, whereas
we address stream processing more generally. Sestoft compiles spreadsheets to
a functional implementation [20]. Like our work, this means exporting compu-
tation from a spreadsheet. Serafima augments spreadsheets to work with trees,
motivated by processing XML data [19]. Neither Sestoft nor Serafima tackle
using spreadsheets for stream processing.

McGarry augments spreadsheets with streaming data import and windows,
but offers no feature to export data or code [17]. The StreamBase platform
offers adapters that import and export data to Excel spreadsheets [21]. Like
our work, this addresses programming with spreadsheets for stream process-
ing. Unlike our work, the StreamBase Excel adapters export no code from the
spreadsheet. Cloudscale uses Excel spreadsheets to configure streaming analyt-
ics [10]. Unlike our work, the user does not describe the analytics directly using
the built-in computation features of Excel.

382 M. Vaziri et al.

Programming models for streaming. Diverse programming models have been
proposed to make it easier to write streaming applications. The programming
languages community has developed several dedicated streaming languages, in-
cluding Lustre for programming real-time controllers [8], StreamIt for pro-
gramming many-cores [13], Lime for programming FPGAs [5], and SPL for
programming distributed clusters [15]. These language-centric approaches en-
able advanced compiler optimizations, but require programmers to learn a new
language.

Instead of requiring programmers to learn a new language, another approach
is to build a library in an existing language. Spark Streaming, which is based on
Scala, is an example for this [25]. However, Scala requires more sophistication,
and has a smaller user base, than spreadsheets.

A popular approach for making programming of streaming applications more
high-level is to offer not a full-fledged language, but simple patterns. Examples
for this include SASE [24], Cayuga [11], and MatchRegex [14]. The patterns
match over sequences of events to detect situations worthy of reporting. But
while these might be easier to learn than a full language, they still come with a
learning curve hindering wide-spread adoption.

The databases community tackles programming models for streaming by ob-
serving that many users are already familiar with SQL. Hence, approaches like
CQL [4] or the language for Microsoft StreamInsight [2] use SQL as a starting
point, and then add extensions such as windowing constructs for streaming. But
for non-programmer end-users, spreadsheets are still more familiar than SQL.

At the far end of the spectrum, Mario requires no programming at all [7].
Instead, the user merely enters tags as they might in a web search engine. The
system then guesses what might be the right stream program based on these tags.
Like spreadsheets, this is immediately usable by end-users. Unlike spreadsheets,
it offers far less control over what streaming application comes out in the end.

The formalization of our core calculus—choice of constructs, semantics, and
properties—has a lot in common with synchronous programming languages [6].
It adopts the synchrony hypothesis : outputs are produced instantly so that inputs
and outputs are formally synchronous. It has ticks but not clocks: arrival times
are not required to be periodic or regular. It is asynchronous in that its constructs
can compose arbitrary feeds irrespective of their relative arrival times. Feeds are
implicitly sampled (i.e., re-clocked) when not in sync. As a consequence, we
have no need for a clock calculus to ensure proper pairing and boundedness.
While the calculus permits cyclic definitions, it guarantees causality. We choose
to ensure causality by preventing timing cycles and making sure every value
cycle includes a delay (a latch). While some synchronous programming languages
such as Esterel favor more sophisticated causality analyses [18], we do not
think these would be sensible extensions to the execution strategy of a typical
spreadsheet. Because filtering is such an essential feature of our system, we
choose to break timing cycles by explicitly clocking latches—separating the input
tick from the input value—rather than introducing a delay in the @ construct,
akin to delaying the reaction to absence in reactive programming models [3].

Stream Processing with a Spreadsheet 383

Our live calculus is not as expressive as higher-order synchronous models [9]
but preserves the guarantees (bounded time and memory usage) of the core
calculus in the presence of dynamically changing formulas.

7 Conclusion

This paper presents ActiveSheets, a system for visualizing and programming
live streams in a spreadsheet. Stream processing has gained importance as many
businesses have continuous data feeds, and analyzing these on-the-fly helps find
opportunities and avoid risks. Using a spreadsheet makes streaming accessible
to the end-user. Furthermore, a spreadsheet offers a very hands-on experience,
since the data is manipulated directly where the user can see it, and interac-
tive code changes have immediate visible effects. We formalize the semantics of
ActiveSheets, and describe an implementation of ActiveSheets that uses
Microsoft Excel as the client front-end. When the user programs a streaming
application using ActiveSheets, he or she can elect to export either data or
computation. Exported data can be further processed by the server, or can be
used to initiate actions, such as alerts or sales. Exported computation can run
directly on the server, and live on even when the client is closed. Since exported
computation runs on the server, it saves the cost of communicating with the
client; furthermore, it can be optimized and compiled to machine code. Over-
all, ActiveSheets enables end-users to author powerful and efficient streaming
applications using familiar spreadsheet features.

Acknowledgements. We thank James Giles, Louis Mandel, and anonymous
reviewers for their feedback and suggestions.

References

1. The Akka project, http://akka.io (retrieved November 2013)

2. Ali, M., Chandramouli, B., Goldstein, J., Schindlauer, R.: The extensibility frame-
work in Microsoft StreamInsight. In: International Conference on Data Engineering
(ICDE), pp. 1242–1253 (2011)

3. Amadio, R.M., Boudol, G., Castellani, I., Boussinot, F.: Reactive concurrent pro-
gramming revisited. CoRR abs/cs/0512058 (2005)

4. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: seman-
tic foundations and query execution. Journal on Very Large Data Bases (VLDB
J.) 15(2), 121–142 (2006)

5. Auerbach, J., Bacon, D.F., Cheng, P., Rabbah, R.: Lime: a Java-compatible and
synthesizable language for heterogeneous architectures. In: Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pp. 89–108 (2010)

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83
(2003)

http://akka.io

384 M. Vaziri et al.

7. Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A.: A tag-based
approach for the design and composition of information processing applications.
In: Onward! Track of Object-Oriented Programming, Systems, Languages, and
Applications (Onward!), pp. 585–602 (2008)

8. Caspi, P., Pilaud, D., Halbwachs, N., Raymond, P.: Lustre: a declarative language
for real-time programming. In: Symposium on Principles of Programming Lan-
guages (POPL), pp. 178–188 (1987)

9. Caspi, P., Pouzet, M.: Synchronous Kahn networks. In: International Conference
on Functional Programming (ICFP), pp. 226–238 (1996)

10. Cloudscale big data analytics, http://www.hashdoc.com/document/8626/
big-data-analytics (retrieved November 2013)

11. Demers, A., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.: Cayuga:
A general purpose event monitoring system. In: Conference on Innovative Data
Systems Research (CIDR), pp. 412–422 (2007)

12. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002)

13. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In: Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pp. 151–162 (2006)

14. Hirzel, M.: Partition and compose: Parallel complex event processing. In: Confer-
ence on Distributed Event-Based Systems (DEBS), pp. 191–200 (2012)

15. Hirzel, M., Andrade, H., Gedik, B., Jacques-Silva, G., Khandekar, R., Kumar,
V., Mendell, M., Nasgaard, H., Schneider, S., Soulé, R., Wu, K.L.: IBM Streams
Processing Language: Analyzing big data in motion. IBM Journal of Research &
Development 57(3/4), 7:1–7:11 (2013)

16. Lisper, B., Malström, J.: Haxcel: A spreadsheet interface to Haskell. In: Workshop
on the Implementation of Functional Languages (IFL), pp. 206–222 (2002)

17. McGarry, J.: Processing continuous data streams in electronic spreadsheets. Patent
No. US 6,490,600 B1 (2002)

18. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel, 1st edn. Springer
Publishing Company, Incorporated (2007)

19. Serafimova, I.: Spreadsheet-based template language prototype for tree data struc-
ture description and interpretation. In: International Conference on Computer Sys-
tems and Technologies (CompSysTech), pp. 148–154 (2012)

20. Sestoft, P.: Implementing function spreadsheets. In: Workshop on End-User Soft-
ware Engineering (WEUSE), pp. 91–94 (2008)

21. StreamBase Microsoft Excel adapter, http://docs.streambase.com/sb66/
index.jsp?topic=/com.streambase.sb.ide.help/data/html/

samplesinfo/Excel sample.html (retrieved November 2013)
22. Wakeling, D.: Spreadsheet functional programming. Journal of Functional Pro-

gramming (JFP) 17(1), 131–143 (2007)
23. Woo, A., Seth, S., Olson, T., Liu, J., Zhao, F.: A spreadsheet approach to program-

ming and managing sensor networks. In: Conference on Information Processing in
Sensor Networks (IPSN), pp. 424–431 (2006)

24. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: International Conference on Management of Data (SIGMOD), pp.
407–418 (2006)

25. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
Fault-tolerant streaming computation at scale. In: Symposium on Operating Sys-
tems Principles (SOSP), pp. 423–438 (2013)

http://www.hashdoc.com/document/8626/big-data-analytics
http://www.hashdoc.com/document/8626/big-data-analytics
http://docs.streambase.com/sb66/index.jsp?topic=/com.streambase.sb.ide.help/data/html/samplesinfo/Excel_sample.html
http://docs.streambase.com/sb66/index.jsp?topic=/com.streambase.sb.ide.help/data/html/samplesinfo/Excel_sample.html
http://docs.streambase.com/sb66/index.jsp?topic=/com.streambase.sb.ide.help/data/html/samplesinfo/Excel_sample.html

Implicit Staging of EDSL Expressions:

A Bridge between Shallow and Deep Embedding

Maximilian Scherr and Shigeru Chiba

The University of Tokyo, Japan
scherr@csg.ci.i.u-tokyo.ac.jp,

chiba@acm.org

Abstract. Common implementation approaches for embedding DSLs
in general-purpose host languages force developers to choose between
a shallow (single-staged) embedding which offers seamless usage, but
limits DSL developers, or a deep (multi-staged) embedding which offers
freedom to optimize at will, but is less seamless to use and incurs addi-
tional runtime overhead. We propose a metaprogrammatic approach for
extracting domain-specific programs from user programs for custom pro-
cessing. This allows for similar optimization options as deep embedding,
while still allowing for seamless embedded usage. We have implemented
a simplified instance of this approach in a prototype framework for Java-
embedded EDSL expressions, which relies on load-time reflection for im-
proved deployability and usability.

Keywords: DSL, metaprogramming, Java, programming languages.

1 Introduction

In recent years, the study of domain-specific languages (DSLs) and the inves-
tigation of their usage and implementation methods have attracted increasing
interest. These languages, which are limited in scope and tailored to a specific
problem domain, are said to be easier to reason about and maintain, and open
the door to domain-specific optimizations [1].

One form of DSL implementation of particular interest is the embedding of
DSLs by means of the available language constructs of an enclosing general-
purpose programming language. These embedded DSLs (EDSLs) bring several
advantages to the table. For one, sizable parts of the existing tool and general
language support (e.g. syntactic and semantic analysis) can be inherited from
the host language [1]. More importantly, they enable the embedded usage of
DSL programs side by side with host language code. As they have a look-and-
feel similar to the host language code, they can be approached by programmers
in a fashion similar to using traditional libraries.

Recent examples of such EDSLs in object-oriented programming are JMock
[2], Guava’s fluent APIs (e.g. FluentIterable, Splitter, etc.) [3], SQuOpt

[4], and jOOQ [5].

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 385–410, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

386 M. Scherr and S. Chiba

When using only facilities expressible within the host language, an EDSL
developer may commonly approach pure language embedding, i.e. without “pre-
processor, macro-expander, or generator” [1], in one of two different fashions:

– Execution of the atomic surface elements of the EDSL is directly governed
by the semantics of the host language. Evaluation of DSL programs occurs
immediately in small steps, yielding and passing intermediate results. This
implementation approach is called shallow embedding.

– Execution of the atomic surface elements of the EDSL first produces (or
stages) an intermediate representation (e.g. AST) of the expressed program
or snippet. Evaluation to final result values occurs separately. This approach
is called deep embedding.

Hybrid forms are also possible, where only selected parts of an EDSL are deeply
embedded. Intuitively, it may help to think of depth here as a measure of freedom
of EDSL programs from the host language’s semantics. This has implications on
the degree of expressiveness and ability to optimize domain-specific computation.
In section 2 we describe the trade-offs between these two approaches.

The strength of deep embedding lies in the fact that computation is staged,
allowing for intermediate, customized processing. However, staging commonly
occurs in an explicit fashion with the potential to detract users and cause over-
head. In order to approximate this staging without incurring penalties we pro-
pose a method called implicit staging, which takes the form of a framework to
be employed by EDSL developers. Section 3 outlines this approach in general.

The main idea behind implicit staging is to statically extract domain-specific
code before it is executed by means of static analysis, in particular abstract
interpretation. This yields a representation of the domain-specific code that can
be processed by an EDSL’s developer in a customized fashion. We make the
following contributions:

– Implicit staging is a method to channel the processing of domain-specific
computation within its static context by semi-automatically isolating it from
general-purpose code.

– We present how increasing the amount of contextual information bears the
potential for rich optimizations that take into account the intermixed nature
of both shallow as well as deep EDSLs.

– In order to concretely illustrate and evaluate our approach, we implemented
a proof-of-concept framework using load-time reflection [6] for the Java lan-
guage. It enables implicit staging of compound EDSL expressions and is
mainly focused on bridging the gap between shallow and deep embedding.
We present this implementation in section 4 and its evaluation in section 5.

– The prototype shows that our approach is feasible even without full source
code availability and that even basic data-flow analysis suffices to extract
worthwhile portions of EDSL subprograms.

Implicit Staging of EDSL Expressions 387

2 Implementation of Embedded DSLs

In our treatment of EDSLs, provided as libraries, we distinguish between three
main roles (cf. figure 1): The developer (alternatively implementor or provider)
of the EDSL defines the interface, implements the language behavior, and writes
its documentation. The user of the EDSL is any developer who employs the
EDSL (directly or indirectly) to support the implementation of programs. The
end user then is anyone who actually causes the execution of these programs.

Fig. 1. EDSL implementation and usage roles

Depending on the choice of host language, the choice of basic building bricks
of an EDSL varies. For instance, in modern ML variants and Haskell these are
commonly data constructor and function applications. In Java they are mainly
field accesses and method calls. In our treatment we simply call these atomic
surface elements the tokens of an EDSL. Furthermore, in statically typed host
languages the introduction of EDSL-specific types and the restriction of type
signatures in effect allow developers to restrict certain combinations of EDSL
tokens, i.e. the EDSL’s specific syntax. It is mainly the runtime behavior of
these tokens that defines the concrete nature of the embedding.

In the following, we introduce shallow and deep embedding [7] by example of a
simple EDSL for matrix operations in Java. A materialized matrix is represented
by a Matrix data type which wraps a two-dimensional double array. We assume
the existence of factory methods for creating matrices from given elements. We
consider only three tokens: static methods for matrix addition (add) and multi-
plication (mul), and a static method to stand for a uniform scaling matrix (sca),
i.e. a diagonal matrix of a given dimension and a scaling factor on its diagonal.

2.1 Shallow Embedding

When operations of an embedded language are directly mapped to equivalent
operations of its host language the embedding is said to be shallow. This means
that EDSL tokens both represent a domain-specific operation and their imple-
mentation or meaning is to immediately perform it. In a shallow embedding of
our matrix EDSL this means that the add method is implemented to take in
two matrices and return a new one with added elements. The case of matrix
multiplication is analogous to addition, and the sca method creates an actual
scaling matrix. Listing 1 shows a simple usage example.

388 M. Scherr and S. Chiba

Listing 1. Shallow EDSL usage example

1 Matrix a, b, c;
2 // Omission
3 Matrix d = add(add(a, b), mul(c, sca(5, 3.0)));
4 Matrix e = add(a, d);

The advantage from an EDSL user’s point of view lies in the fact that the
behavior of an EDSL expression is easily predictable right where it appears in
the code. The expression add(add(a, b), mul(c, sca(5, 3.0))) on line 3
yields a new matrix, and does nothing more (or less). The fact that intermediate
results are created may be detrimental for the runtime performance, but not for
the understanding of that code line. This makes the usage of shallow embedded
DSLs very seamless.

From an EDSL developer’s point of view shallow embedding is easy to imple-
ment. However, this advantage is outweighed by the limitations due to having
to directly adhere to the host language’s semantics. In particular, this means
that optimizations such as common subexpression elimination or fusion of op-
erations cannot be implemented, execution cannot be chunked and scheduled in
sizes worthwhile for parallel execution, and execution is bound to occur on the
same machine and architecture that executes the host program.

2.2 Deep Embedding: Staging at Runtime

Instead of directly mapping tokens to equivalent host language operations, it
is possible to make them generate an intermediate representation (IR), usually
an AST. Here, the sole purpose of token execution is to contribute to build-
ing and composing the next stage of computation, i.e. staging. This IR can be
processed (e.g. optimized, transformed, compiled, etc.) in a separate step and
subsequently executed. This typically yields the end result of the expressed com-
putation. However, it is also possible for the result to be a further stage. A case
for this would be a program P1 whose evaluation generates a program P2 whose
evaluation generates a program P3, and so on.

For a deep embedding of our matrix EDSL we could use an abstract data
type MatrixExp with concrete data types for the different AST node types. The
token methods are implemented to create corresponding nodes. Instead of taking
arguments of type Matrix, the add and mulmethods now take arguments of type
MatrixExp. We add a method cnst to create an AST node that will evaluate to
a provided (materialized) matrix.

Listing 2 shows a simple usage example. Lines 3–4 show the rough equivalent
of listing 1, lines 6–7 show a different usage of the EDSL in which the multi-
staged nature of the embedding is more apparent.

Implicit Staging of EDSL Expressions 389

Listing 2. Deep EDSL usage example

1 Matrix a, b, c;

2 // Omission

3 Matrix d = add(add(cnst (a), cnst (b)), mul(cnst (c), sca(5, 3.0))). evaluate ();

4 Matrix e = add(cnst (a), cnst (d)). evaluate ();

5 // Omission

6 MatrixExp dExp = add(add(cnst (a), cnst (b)), mul(cnst (c), sca (5, 3.0)));

7 Matrix f = add(cnst (a), dExp).evaluate ();

When the evaluatemethod is called, the entire EDSL program has already been
staged and can be fully inspected. This enables domain-specific optimizations,
alternative interpretations, or compilation to a possibly different target language
and execution. For instance, nested binary additions can be specialized to a
flattened addition which does not produce fully materialized intermediate results.

There are potential downsides to deep embedding. Depending on the host
language, it can be hard to hide from the programmer the fact that computation
is staged. This may sometimes be desirable, but when not it arguably adds an
additional layer of complexity for code understanding, especially if the ability to
dynamically create and pass around computation (e.g. ASTs) is abused by users.
Furthermore, EDSL developers have to build data structures for their specific
IR and make the tokens generate the correct IR nodes.

From a runtime performance point of view, the overhead associated with IR
construction, in particular the IR’s memory footprint, optimization, and inter-
pretation (or compilation) need to be carefully considered. After all, an EDSL
developer has no picture of and no influence on how the EDSL’s users place
EDSL expressions and trigger their evaluation in their programs.

2.3 No Middle Ground?

It is no surprise that deep embedding allows for much more powerful and ex-
pressive EDSLs than shallow embedding. Essentially, it can be seen as “just”
providing an elegant way to explicitly perform (domain-specific) code genera-
tion and execution at runtime. On the other hand, shallow embedding offers a
more immediate and seamless usage than deep embedding. However, this im-
mediate usage relies on the immediate execution by the host language, limiting
EDSL performance and expressiveness.

Both have in common the fact that it is reasonable to assume that snippets
of EDSL programs do in fact occur as static, compound expressions. However,
EDSL developers are unable to exploit this fact with either of the embedding
styles. Without the ability to do so, a true alternative between shallow and deep
embedding seems unattainable.

3 Implicit Staging

Custom treatment of EDSL programs, the crucial step for optimization, occurs
after a representation for them has been constructed. In the case of shallow

390 M. Scherr and S. Chiba

embedding, this step is never really allowed to happen. Although a sort of repre-
sentation is in fact implicitly constructed during compile time or interpretation
time, commonly there is neither awareness of what constitutes domain-specific
code, nor is it possible to customize its processing. As described, deep embed-
ding can be used to circumvent this. However, it means explicit IR construction,
explicit processing, and explicit triggering of execution at runtime.1

We propose an approach called implicit staging that aims to reduce explicit-
ness to a minimum where it is a hindrance, i.e. the IR construction and execution
triggering, and retains it where it is desirable, i.e. customized IR processing, while
not changing the way EDSL programs are expressed by EDSL users.

Unlike the described pure embedding approaches it is an impure approach.
Namely, it requires an outside, static, meta-level view and transformations on
user programs. With the exception of languages which allow arbitrary self-
modification, implicit staging can typically occur only once before the execution
of a program. Figure 2 shows the general overview of an implicit staging system
for a given program and EDSL:

1. Staging: Domain-specific parts are automatically extracted, reified, and
made available for processing to EDSL developers in the form of an IR.

2. Processing: The result of this customized processing forms a so-called
residue of the domain-specific computation.

3. Unstaging: The residue is reflected within the original program, yielding a
new, transformed program.

Fig. 2. Implicit staging overview

In principal, the staging step should be able to be performed on the basis of
a simple description or enumeration of the EDSL’s tokens by its developer. The
processing step is to be entirely defined and customized by EDSL developers
to form a desired residue suitable for unstaging. Like staging, the unstaging
step might also be guided by configuration, which is to be kept simple. Hence,
implicit staging lends itself to be provided in the form of a framework to EDSL
developers for whom it performs the staging and unstaging tasks.

1 Though in practice some of these steps can be combined, the separation of steps
here is helpful for a high-level discussion.

Implicit Staging of EDSL Expressions 391

3.1 Staging by Static Token Reinterpretation

The extraction of domain-specific code can be approached by statically simulat-
ing runtime staging behavior to varying degrees. Since EDSL tokens are elements
of the host language, they commonly have a defined runtime behavior. However,
during implicit staging, tokens may be regarded as mere markers and identifiers
for domain-specific computation.

If we assume a representation of the input user program that retains token
identifiability, even if it does not retain all the original source code structure,
the tokens can be reinterpreted as performing the construction of a generic IR.
However, unlike runtime interpretation or execution, as is the case with pure
embedding approaches, this staging reinterpretation is to be performed statically
and abstractly.

The IR can be further augmented with data-flow and control-flow information,
providing detailed information on the static context in which domain-specific
computation occurs. For instance, this might include type information, uses and
definitions, or value ranges. During processing of the IR, developers can use this
to improve the residue generation, e.g. perform better optimizations. Some of
it might even be necessary for the unstaging step, for instance to perform type
conversions for the residue.

3.2 The Approach’s Potential

Implicit staging provides the basis for exposing a non-atomic, non-local, or even
global view on domain-specific computation. In particular, this means that deep
embedding style freedom can be approximated for traditionally shallowly em-
bedded DSLs. For instance, in an expression like add(mul(a, b), mul(a, b)),
which yields a materialized matrix, the common subexpression can be eliminated
during processing. This is the middle ground we were looking for. However, im-
plicit staging does not necessarily stop there. In fact, it is an extension to both
shallow as well as deep embedding.

The fact that implicit staging may provide contextual information about the
input program and contained EDSL subprograms opens the door to optimiza-
tions that are not possible with the described pure embedding approaches on
their own. After all, even with deep embedding, what can be inspected dur-
ing (runtime) IR processing is only what has been dynamically constructed.
For instance, in the deeply embedded expression add(mul(cnst(a), cnst(b),

mul(cnst(a), cnst(b))) the fact that there is a common subexpression may
eventually be discovered (during processing steps at runtime), but this is redun-
dantly and possibly repeatedly done. With implicit staging it can be optimized
in the residue to help reduce runtime staging overhead.

If we can extend our view even further, assuming an IR that provides informa-
tion on dependencies between compound EDSL expressions, further optimization
opportunities arise. More generally, implicit staging could not only be used to
separate domain-specific computation from general purpose one, but help incor-
porate the relation between the two levels of computation into the EDSL’s design

392 M. Scherr and S. Chiba

and implementation. After all, unlike dedicated DSLs, embedded DSL code snip-
pets live within a general purpose program with its own data flow and control
flow. With an appropriate interface for EDSL developers, global optimizations
could be applied to EDSL programs which are intermixed and dispersed in user
code.

Sometimes, the purpose of dynamically staging an EDSL program at runtime
is to gather as big a program as makes sense in order to increase the chance of
finding redundant code and other optimization opportunities. Recall our deeply
embedded matrix DSL from section 2.2 and consider the user code in listing 3. It
might be wise to ever so slightly alter the surrounding user program to maintain
as much of the dynamically generated EDSL program as possible until a matrix
result needs to be materialized, i.e. when EDSL-external code needs it.

Listing 3. Deep EDSL context example (eager)

1 MatrixExp aExp , bExp , cExp , dExp;
2 // Omission
3 Matrix e = add(aExp , bExp). evaluate ();
4 System.out.println (mul(cnst(e), add(cExp , dExp)).evaluate ());
5 System.out.println (e);

Listing 4 shows such a lazier version. However, if we (statically) knew that
evaluate does not perform optimizations in this situation, it might be worth-
while to stay with the eager version of listing 3 or make different changes.

Listing 4. Deep EDSL context example (lazy)

1 MatrixExp aExp , bExp , cExp , dExp;
2 // Omission
3 MatrixExp eExp = add(aExp , bExp);
4 System.out.println (mul(eExp , add(cExp , dExp)).evaluate ());
5 System.out.println (eExp.evaluate ());

It is our vision for implicit staging, with a sufficiently rich IR and powerful
unstaging process, to eventually make it possible for EDSL developers to trans-
parently adapt user programs in the described fashion. This would free EDSL
users from the burden to consider the implementation details of the EDSL at
hand (in our example the evaluate method).

3.3 Design Aspects

Designing an actual framework for implicit staging requires careful consideration
of the following aspects:

– The choice of host language determines the type of language elements that
can be used as EDSL tokens. Furthermore, properties such as dynamic link-
ing and potential self-modification capabilities may limit the extent of im-
plicit staging. This means that not all host languages are equally suited.
Generally speaking, any language that makes static code analysis hard is
unlikely to be a good candidate.

Implicit Staging of EDSL Expressions 393

– The timing of performing IR construction is mainly determined by the type
of representation in which user programs can be provided to the framework.
While dedicated (pre-)processing of source code is an option, it usually comes
with restrictions regarding the deployment of both the EDSL itself as well
as end-user applications, e.g. upgrades require recompilation. Additionally,
working entirely at compile time restricts data sharing and forces an early
code generation phase.

– The scope of the IR, its contained contextual information, and its construc-
tion greatly influence implementation difficulty for both the framework de-
veloper as well as EDSL developers. This is the main hurdle anticipated for
fully realizing the vision outlined in section 3.2.

4 Implicit Staging at Load Time

In order to concretely illustrate and evaluate implicit staging, we developed a
simple and limited proof-of-concept framework for DSLs embedded in Java. As
indicated in section 3, implicit staging does not necessarily have to occur at
compile time. Java serves well to show this, as it is a language environment
where compilation, class loading, and runtime are closely related. Compilation
results in bytecode [8] which retains sufficient language-level information (e.g.
method names) and its loading occurs on demand at runtime.

Java neither has compile-time metaprogramming facilities, nor does it allow
for simple compiler customization without relying on a custom compiler. How-
ever, it does allow for customized bytecode transformation at load time, i.e. when
a class file is loaded by the Java Virtual Machine (JVM). Choosing load time as
the time for performing implicit staging has the following advantages:

Seamless Workflow Integration: There exists a dedicated mechanism to per-
form bytecode transformations at load time on the JVM. Hence, setting up
our implicit staging implementation should not be harder than using other
bytecode instrumentation tools and should not substantially impair software
development and usage workflows.

Runtime System Specialization: User programs and contained EDSL ex-
pressions in bytecode remain as is until they are loaded on a specific run-
time system. The processing of their IR can be specialized dynamically to
that runtime system. For instance, in presence of specific libraries, drivers,
or hardware, EDSL expressions could be compiled to exploit these, and in
their absence a fallback implementation could be used.

Shared Environment: Loaded user programs share the same runtime environ-
ment (including the heap) as the staging, IR processing, and unstaging steps.
This establishes cross-stage persistence [9–11] which grants EDSL developers
certain freedoms and ease of use. For instance, in our implementation it is
used to provide a simple interface for returning the results of IR processing
as live objects.

394 M. Scherr and S. Chiba

EDSL Deployment and Evolution: Any upgrade or patch of an EDSL’s im-
plementation as well as of our implicit staging framework itself can be sup-
plied modularly. There is no need to recompile user programs from Java
source files with updated library versions. For instance, this is useful in
cases where user programs are only deployed as binaries and cease to be
maintained. Implicit staging at load time enables the evolution and improve-
ments of an EDSL to still be reflected in such cases.

Working with Java comes with the issues of late binding (i.e. virtual method
calls) which restrict whole-program analysis. However, these issues are shared
with other OOP language environments. Being able to work at load time is in
so far beneficial as it allows us to consider more information on the actual state
of the whole program when it is run than at compile time. However, the main
technical challenge lies in having to process low-level (i.e. machine language like)
bytecode instead of structured source code.

4.1 Prototype Overview

In the following we will describe the components, interfaces, and workflow of our
prototype implementation. We designed it with a focus on enabling optimization
and semantic customization of (mostly local) compound EDSL expressions in
user programs, in order to offer a bridge between shallow and deep embedding for
EDSL developers. Compound EDSL expressions are individual Java expressions
that are composed of EDSL tokens either in a nested or chained fashion.

Aside from providing skeleton token implementations, an EDSL’s developer
is required to provide an implementation of the TokenDeclaration interface to
specify the set of tokens of the embedded language, as well as an implementa-
tion of the ExpressionCompiler interface to specify how EDSL expressions are
to be translated. The former implicitly configures the staging step, the latter
corresponds directly with the custom processing step mentioned in section 3.

Figure 3 shows a simplified, combined workflow for the usage as well as the
inner workings of our prototype. EDSL users, e.g. application developers, may

void m() {
 ···
 Matrix d =
 add(add(a, b),
 mul(c, sca(5, 3.0)));
 ···
}

.class.java

Java Compiler Java VM Implicit Staging Java Agent

$execute(a, b, c, 5, 3.0)

Matrix $execute(···)
 { ··· }

Staging Unstaging

Processing
(Translation)

Staged Expression

Embedded Language ExpressionCompilerTokenDeclaration

Fig. 3. Java prototype overview

Implicit Staging of EDSL Expressions 395

write EDSL expressions as they traditionally could with pure embedding ap-
proaches. After all, the tokens (i.e. methods or method calls) may exist inde-
pendently of our framework. User programs are compiled as usual and deployed
with application startup configured to use the implicit staging framework.

At the core of our prototype lies a custom Java programming language agent
(of java.lang.instrument) which intercepts class loading. When an end user
starts the application, the JVM feeds classes to be loaded to the agent and sub-
sequently finalizes the loading of the returned, potentially transformed classes.
Staging, processing, and unstaging are all performed within this agent.

During staging, the bytecode in method bodies is analyzed and all contained
EDSL expressions are extracted according to the token declaration provided
by the EDSL developer. Note that in the interest of simplicity, figure 3 only
shows this simplified for a single expression. Then, for the EDSL-specific custom
processing all expressions are eventually translated to static methods one by one
using the provided expression compiler. Finally, unstaging consists of replacing
the original EDSL expressions with calls to the corresponding methods.

4.2 Staging: Expression Extraction

The staging process is configured and guided by the token declaration of an
EDSL. It specifies which methods2 belong to the EDSL and is provided as an
implementation of the TokenDeclaration interface with the following methods:

– boolean isToken(CtMethod method), a characteristic function for mem-
bership of a method in the set of EDSL tokens.

– boolean hasTokens(CtClass clazz), a method to help quickly exclude
classes that do not contain EDSL tokens.

Our implementation uses the hasTokens method to skip the analysis of classes
which do not refer to classes containing EDSL tokens. It only serves optimization
purposes. The classes CtMethod and CtClass are reified method and class types
similar to java.lang.reflect.Method and java.lang.Class<T>, provided by
the Javassist library [6] used in our implementation. Additionally, our prototype
offers a helper class which allows simple registration of tokens and implements
the interface by standard semantics for superclass and interface lookup.

Being equipped with the information necessary to distinguish between general
and EDSL-specific parts of a program, we can perform staging using a simple
abstract interpretation (forward flow) data-flow analysis approach [12]. A trivial
parsing of the input bytecode is not sufficient, since compound EDSL expressions
are not guaranteed to be neatly clustered after compilation and depend on the
flow of data and control.

The idea of implicit staging extends beyond mere syntactic extraction. In-
stead, we attempt to statically interpret tokens as if they were deeply embedded
and thus retrieve a static, anticipated shape of compound EDSL expressions. For

2 This could be extended to fields but in our current implementation we limit ourselves
to methods.

396 M. Scherr and S. Chiba

the sake of simple API design and implementation complexity, our prototype is
still very limited in that it only extracts expressions on a mostly local scale.

Intermediate Representation. The staged IR in terms of section 3 is simply
a list of the contained EDSL expressions’ ASTs. In the following we will discuss
their representation. Every instance of Expression holds at least:

– Its positions, i.e. the positions of the instructions that caused the original
expressions to be placed on the operand stack (before a potential merge).

– Its type, i.e. the type of the value this expression would have during actual
execution (as specific as this can be determined statically).

– Its value number, i.e. a number that can be used to determine whether two
expressions would yield the same concrete result during execution.

Type analysis and value numbering analysis are currently performed as part of
the same data-flow analysis. The latter is currently very simple and only tracks
storing and loading of local variables and some stack operations such as dupli-
cation, the former follows a similar pattern as is found in bytecode verification
in the JVM. In fact, our data-flow analysis is an extension of such type-analysis
component already present in Javassist3. Hence, for the sake of brevity, we will
omit value numbering and type analysis for the rest of our description.

Local variables, or StoredLocal (loc) instances, store the same information
with the difference that it holds stored-by positions instead of positions, i.e. the
positions of the instructions that caused the storing of the local variable.

There is currently only one type of expression that is considered EDSL-
specific: InvocationExpression (inv). In addition to the general information,
it holds both the EDSL token method and its arguments as a sequence of expres-
sions. A similar expression type is ConversionExpression (cnv) that wraps a
convertee expression. It integrates with the parameters of invocation expressions
to bookkeep for potential conversions (casting, boxing, unboxing).

The following expressions constitute the terminal leaves of a resulting expres-
sion AST and are considered parameter expressions (ParameterExpression) as
they stand for the parameters to domain-specific computation:

– LocalAccessExpression (lac) holds the stored local variable that is accessed
and its potential indices in the local variable array.

– StringConstantExpression (str) and NullExpression (nul) stand for (and
hold) constant values. This can be easily extended to other constants.

– StandaloneExpression (sta) wraps an expression that is to be treated as
standalone.

– UnknownExpression (() stands for a value resulting from unknown, usually
EDSL-external, computation.

Figure 4 shows the AST resulting from staging the expression add(add(a, b),

mul(c, sca(5, 3.0))) (cf. listing 1). The reason for the two rightmost leaf
expressions being (is that we currently do not handle numeric constants. We
would get the same result if the two values came from non-EDSL method calls.

3 javassist.bytecode.analysis.Analyzer.

Implicit Staging of EDSL Expressions 397

Fig. 4. AST for add(add(a, b), mul(c, sca(5, 3.0)))

The StandaloneExpression type requires additional explanation. Consider
the following expression: add(a, d = mul(b, c)). The mul(b, c) part is re-
quired to be considered standalone, as it could be shared with EDSL-external
code. For the current discussion it can be considered equivalent to (.

Abstract Interpretation (Transferring States). The subject states of our
data-flow analysis are JVM stack frames containing the contents of the operand
stack (i.e. expressions) as well as local variables. Our abstract interpretation
models the effect of bytecode instructions using a transfer function (as is common
in data-flow analysis) which transfers the state before interpreting an instruction
to that after it. We informally describe this function as follows:

(i) If we encounter an invocation instruction for a method m, we first check
whether m is a token of the EDSL using isToken. If so, we pop the num-
ber of parameters for this method from the stack, create a new invocation
expression (inv) with these parameters and the instruction’s position, and
add this expression to a (global) list of extracted expressions. If the method
returns a value, we also push the expression onto the stack. If m is not a
token but one of the auto-boxing and unboxing methods, we pop an ex-
pression from the stack, wrap it into a conversion expression (cnv) with the
instruction’s position, and push it onto the stack. Checked cast instructions
are handled in a similar fashion.

(ii) If we encounter a store instruction, we pop an expression from the stack
and create a stored local variable (loc) with the instruction’s position and
place it at the desired index into the local variable array of the stack frame.
We also mark the positions of the popped expression as standalone.

(iii) In case of a load instruction, we retrieve the associated stored local variable
(loc), then create a new local access expression (lac) containing this (with
its index) as well as the instruction’s position, and push it onto the stack.

(iv) Handling the various constant instructions is trivial.
(v) Any other instruction or case that causes popping of the stack marks the

popped expression’s positions as standalone. Any push onto the stack that
is not part of the aforementioned cases causes an unknown expression (()
with the instruction’s position to be pushed onto the stack.

Abstract Interpretation (Merging States). When our abstract interpre-
tation encounters a branching instruction, it needs to explore all the branches.

398 M. Scherr and S. Chiba

When these branches join back together (e.g. after an if statement), the states
of these branches are merged. For our stack frames we do this by pointwise merg-
ing of the contained expressions and local variables using a merge function (as
is common in data-flow analysis). It can be briefly summarized as follows:

(i) Positions and local variable indices are merged using set union.
(ii) Merging stored local variables (loc) yields a stored local variable (loc) with

merged elements.
(iii) Merging constant expressions yields the same constant if they share the

same value and are of same type, otherwise (with merged positions.
(iv) Merging invocation expressions (inv) yields an invocation expression (inv)

with merged elements (arguments, etc.) if they share the same token, oth-
erwise (with merged positions.

(v) Merging different types of expressions and merging any expression with (
always yields (with merged positions.

(vi) Merging expressions of same type and not of the aforementioned cases
yields the same expression with merged elements.

Merging with a yet undefined element of the stack frame is realized by simply
overwriting. Merging stack frames of different size should not happen and when
detected produces an error.

Post-processing. After a fixed point is reached, i.e. transferring and merging
of states do not produce new results, the data-flow analysis stops. In a final
post-processing step the global list of expressions is then purged of true subex-
pressions, and expressions whose positions have been marked standalone are
turned into standalone expressions.

Having introduced this, we can now illustrate the effects of the abstract inter-
pretation. Consider the expression mul(a, x > 0 ? add(b, c) : mul(b, c)).
Java’s ternary operator is not reconstructed by our analysis. Instead, the anal-
ysis deals with this situation by merging the stack frames at the end of the two
branches. For the case that x is greater than zero we have this expression at the
top of the abstract operand stack:

e1 = inv
(
{pos4}, Matrix.add,

[
lac({pos2}, bloc , {bi}), lac({pos3}, cloc, {ci})

])
For the case that x is at most zero we get the following expression at the top of
the stack:

e2 = inv
(
{pos7}, Matrix.mul,

[
lac({pos5}, bloc , {bi}), lac({pos6}, cloc, {ci})

])
Our data-flow analysis needs to merge these two expressions when control-flow
merges, yielding (({pos4, pos7}). Hence, the outer expression will be:

e3 = inv({pos8}, Matrix.mul,
[
lac({pos1}, aloc, {ai}),(({pos4, pos7})

])
This means that our analysis would yield all three expressions e1, e2, and e3
separately. Note that if both e1 and e2 were invocations of the same method this
would not be the case, since both would merge into a true subexpression of an
expression similar to e3 but with a known second argument.

Implicit Staging of EDSL Expressions 399

4.3 Processing: Expression Translation

The expressions resulting from staging are wrapped into so-called expression sites
(ExpressionSite) one by one and provided to the expression compiler provided
by the EDSL developer. Expression sites represent the place and context in which
an expression was staged and offer methods to support expression translation.

Translation to Source Code. Implementing the ExpressionCompiler inter-
face directly allows EDSL developers to provide meaning to staged expressions
in the form of Java source code. This interface only requires one method to be
implemented: void compile(ExpressionSite expressionSite).

Connecting parameter expressions with runtime values is accomplished indi-
rectly. Namely, the passed ExpressionSite instance offers utility methods to
generate source code for value access from ParameterExpression nodes.

The translated code for the whole expression is passed to the given expression
site via an instance method on it, called setCode.

Translation to Live Objects. Since compiling from our intermediate repre-
sentation AST format to source code can be a daunting task, we also offer a
high-level alternative: Translation to live objects. To this end, we provide the
abstract class ExpressionToCallableCompiler which implements the low-level
ExpressionCompiler interface.

EDSL developers implement the compileToCallable method which returns
an instance of Callable<T>. Eventually, our framework implementation will
replace the original EDSL expression (site) with a call to the call method of
the returned Callable<T> instance. Our Callable<T> interface is similar to the
interface of the same name found in the Java API but its call method takes an
argument of type Environment. During execution time, this environment serves
as storage for the actual arguments passed to the staged EDSL expression.

Environment elements can be accessed through instances of the Variable<T>
class, which trivially implements the Callable<T> interface. Internally, these
variables are wrapped indices into the environment and provide access methods.
The ExpressionToCallableCompiler class provides factory methods to create
variables from parameter expressions or fresh ones that can be used as interme-
diate values. Glue code generated by our framework implementation establishes
that during execution time, retrieving the value of a variable created from a
parameter expression will yield the value of the associated argument.

ExpressionToCallableCompiler implements the low-level compile method
in three steps. First, compileToCallable is called. Then, an accessor class is
created and the return value from the first step is written to a static field of
this accessor class (using runtime reflection). Finally, glue code is generated
which creates an Environment instance filled with the expression’s arguments
and calls the Callable<T> instance via its accessor class. This code includes
boxing, unboxing, and checked casting if required.

As a concrete illustration, consider an expression representation for our ma-
trix EDSL as a tree with node types Add, Mul, and Sca which implement our

400 M. Scherr and S. Chiba

Fig. 5. Optimized Callable<T> tree for add(add(a, b), mul(c, sca(5, 3.0)))

Callable<T> interface with semantics close to the shallow embedded methods
of similar names introduced in section 2.1. We also consider two additional
types: AddN, representing n-ary matrix addition (using a single accumulator),
and Scale, representing the scaling of a matrix by a given factor.

Take again the expression add(add(a, b), mul(c, sca(5, 3.0))) (cf. fig-
ure 4). A high-level expression compiler can be defined by the EDSL developer
to optimize and translate this expression to the tree presented in figure 5. As
described, the compiler keeps a mapping between parameter expressions and
variables for generating the correct glue code to fill the environment with val-
ues. Listing 5 shows this glue code, assuming the generated accessor class is
called $CallableAccessor.

Listing 5. Glue code (shortened) in $execute method

1 static Matrix $execute (Matrix u, Matrix v, Matrix w, int x, double y) {
2 Object [] values =
3 new Object [] { u, v, w, Integer .valueOf (x), Double.valueOf (y) };
4 Environment environment = $CallableAccessor.createEnvironment(values);
5 return (Matrix) $CallableAccessor.callable .call(environment);
6 }

Glue code generation happens behind the scenes and can safely be ignored by
EDSL developers. All of this allows the definition of an expression’s semantics
via an essentially static computational object entry point. What this actually
looks like internally is in the hands of the EDSL developer.

4.4 Unstaging: Relinking Expression Sites

Having translated all expressions and provided Java method bodies (e.g. as in
listing 5) for the expression sites, our framework implementation then needs to
establish the appropriate links in the user program.

For every expression site, a (uniquely named) static method (like $execute

in figure 4 and listing 5) with the expression site’s (flattened) type signature
is added to the surrounding class, and its body is set to the provided source
code. Javassist comes with an inbuilt, custom compiler that makes this possible.
Subsequently, every instruction associated with non-parameter subexpressions

Implicit Staging of EDSL Expressions 401

of an EDSL expression site are removed from the bytecode. Finally, a call to the
associated method is inserted at the expression site’s position.

For the sake of brevity, we omitted the description of some minor details
of the implementation here, like the exact method of bytecode editing and the
treatment of issues such as a potential exceeding of the maximum number of
method parameters (as imposed by the JVM).

5 Evaluation

The evaluation of our prototype is split into two parts. We first discuss the
limitations of our current IR and data-flow analysis and give hints at potential
extensions. In the second part we present simple EDSLs and experiments on the
runtime performance impact of implicit staging.

5.1 IR and Staging Limitations

We kept our prototype simple both for illustration purposes as well as for the
simplification of implementation and API design. This means that the vision
outlined in section 3.2 has by no means been fully achieved. The most signifi-
cant limitations currently stem from the very simple data-flow analysis used for
the extraction of EDSL programs. Namely, only domain-specific code originally
occurring as compound expressions is extracted. Furthermore, these expressions
are treated in a very isolated fashion.

While not discussed in section 4, we have actually experimented with allowing
the inspection of variable accesses (lac) to offer some level of non-local view.
Take for instance the code snippet in listing 6. During expression translation
our prototype allows the inspection of the accesses to t in order to optimize all
multiplications referring to it, e.g. to perform appropriate scalar scaling instead
of matrix multiplication.

Listing 6. Non-local, interleaved EDSL code example

1 t = sca(5, 3.0);
2 u = mul(a, t);
3 if (/* Omission */) { v = mul(u, t); } else { v = add(u, t); }

However, we found it challenging to devise an easy-to-use API on the current
level of processing single expressions that would also allow dealing with the
removal of line 1. Whether it can be removed or not depends on the EDSL and
whether it is actually inlined by all other expressions and external uses. We
believe it is necessary to expose more details (for instance as graphs of shared
expression usage) to EDSL developers to handle these non-local aspects.

Note that with deep embedding the aforementioned case is not an issue. Fur-
thermore, at the end of the given code snippet, v would be a dynamically staged
program that depends on the actual flow of control. However, in a static setting
we cannot predict what path will be taken. One way around this would be to
pre-optimize expressions for every possible shape they may take. However, in the

402 M. Scherr and S. Chiba

general case this is likely to cause intractable code explosion. Another approach
currently under consideration is to implicitly switch to runtime staging for these
dynamic, interleaved code situations using site-specific type conversions.

Listing 7 provides another example trivially solved by staging at runtime.
However, in cases like this, a more powerful data-flow analysis could actually stat-
ically determine that this code can be unrolled to stand for t = add(add(add(a,

b), b), b). Doing so, we enter the realm of partial evaluation to improve the
prediction of the concrete shape of EDSL code, while still allowing its processing
to be guided by the EDSL developer.

Listing 7. Constant EDSL expression generation example

1 t = a;
2 for (i = 0; i < 3; i++) { t = add(t, b); }

To some extent this notion could be extended to staging occurring over several
method calls. However, in Java and many other OOP languages it is not always
possible to statically determine the exact target of a method call. Such highly
dynamic cases are best left to deep embedding, not precluding the aid of implicit
staging (cf. 3.2) within method bodies.

5.2 Experiment A: Matrix EDSL

For evaluation purposes we implemented three versions of the matrix EDSL
appearing throughout this paper, using shallow embedding, implicit staging per
our prototype (with compilation to Callable<T>) imitating the look-and-feel of
the shallowly embedded version, and deep embedding. The latter two perform
optimizations as indicated in section 4.3, i.e. fusing binary additions and turning
multiplications with scaling matrices into scaling operations with further fusion
when applicable. We made the utmost effort to keep these implementations as
comparable as possible to each other.

We set up an experiment to assess not only how effective our optimizations
actually are, but also to get a rough idea of how often they might actually be
applicable. To this end, we considered randomly generated matrix operation
expressions up to a depth of 5 for which we counted Matrix variables and sca

expressions as leaves. For each depth we have 30 such expressions, once occurring
in a warm-up loop and once in a loop for which execution time is measured. We
generated random 8 × 8 matrices and scalar values of type double to serve as
parameters for these expressions and assign them to local variables as we were
not interested in the literal generation time. This generated benchmark was also
adapted for the deeply embedded language version. Note that all randomness
was only part of the benchmark code generation.

Initially we ran the benchmark code ten times for each version with 100000
loop iterations for warm-up and measurement, each on a 3 GHz Intel Core i7
machine with 8 GB of RAM with JRE 74. Due to measurement fluctuations,

4 Java(TM) SE Runtime Environment (build 1.7.0 21-b12)
Java HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode).

Implicit Staging of EDSL Expressions 403

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5
0

20

40

60

80

100

120

140

T
im

e
(s
ec
on
d
s)

Shallow Embed.

Implicit Staging

Deep Embedding

Fig. 6. Random matrix expr. results

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5
0

10

20

30

40

50

60

70

T
im

e
(s
ec
on
d
s)

Shallow Embed.

Implicit Staging

Deep Embedding

Fig. 7. Biased matrix expr. results

we opted to increase the number of loop iterations to 10000000 and reran the
benchmark code, this time only three times per EDSL implementation version
due to the increased running time per benchmark. Apart from the much lower
fluctuations between the results, on average these new measurements match very
closely with the results of the earlier, shorter experiment. We will mainly discuss
the results of the 10000000 iterations experiment here.

Figure 6 shows the results of our experiment with random expressions. Due
to space concerns, we summarize the results by averaging over all 30 expression
execution times per expression depth. For expressions at depth 1, implicit staging
was faster than shallow embedding for 7 of the 30 expressions and faster than
deep embedding for 21 of the 30 expressions. This can be explained by the
low probability of optimization opportunities for expressions of depth 1 and
the added overhead of boxing and Callable<T> calling. Still, the maximum
slowdown experienced at depth 1 was only by about 6.1% compared to shallow
embedding and 4.7% compared to deep embedding. On average, implicit staging
was 22.9% faster than shallow embedding and 7.6% faster than deep embedding.

For expressions at depth 2 to 5, implicit staging was faster than shallow em-
bedding for more than 25 of the 30 expressions each. At depth 2, deep embedding
was still faster than implicit staging for 17 of the 30 expressions, but for deeper
expressions implicit staging was faster than deep embedding for more than 26
of the 30 expressions each. It appears that in the cases where deep embedding
was faster, boxing of double values is to blame for the slowdown. Overall (depth
averages), implicit staging sped up execution compared to shallow embedding at
minimum by 22.9% and at maximum by 74.3%. Compared to deep embedding,
implicit staging sped up execution at minimum by 2.5% and at maximum by
10.8%.

We also generated the same type of benchmark with a bias towards optimiz-
able expressions. Figure 7 shows the results of our experiment with this bench-
mark code. It is no surprise that shallow embedding did not fare well in this
experiment. Even deep embedding seems to fare worse than it did in the non-
biased expressions experiment. Even so, there are cases, i.e. expressions, where

404 M. Scherr and S. Chiba

implicit staging was slower than shallow embedding (at maximum by 7.6%) and
slower than deep embedding (at maximum by 7.9%). Again, these cases can most
likely be attributed to the aforementioned boxing overhead. Overall (depth av-
erages), implicit staging sped up execution compared to shallow embedding at
minimum by 100.4% and at maximum by 257.5%. Compared to deep embed-
ding, implicit staging sped up execution at minimum by 9.4% and at maximum
by 29.7%.

We also wanted to explore worst-case performance for our implementations. To
this end, we chose the expression mul(mul(add(sca(5, 2.0), sca(5, 2.0)),

add(sca(5, 2.0), sca(5, 2.0))), add(sca(5, 2.0), sca(5, 2.0))). It
lends itself as a worst-case specimen, since no optimizations (though possible)
were implemented for adding scaling matrices.

Implicit staging was 103.2% slower than shallow embedding. However, deep
embedding fared no better with a slowdown by 104.5%. This indicates that the
overhead caused by expression tree (or Callable<T> tree) evaluation is signif-
icant. In order to further test this case, we implemented an expression com-
piler that generates Java code identical to the original expression instead of a
Callable<T>. This implementation was only 1.1% slower (for our worst-case
expression) than shallow embedding. Hence it seems advisable to move away
from the simpler Callable<T> compilation for final versions of an implicitly
staged EDSL implementation. It may be worthwhile to investigate how we can
automate this code generation from a compiled Callable<T> instance.

Implicit Staging Overhead. Unfortunately, our implicit staging implemen-
tation incurs substantial overhead at class-loading time. In our experiments,
expressions at a certain depth were collected in their own class whose static ini-
tializers we used for measuring the time class loading took. As a basis for com-
parison, we took our earliest ten runs experiment and therein the class loaded
last, i.e. the one for depth 5, as we can assume the runtime environment to be
warmed up at this point. For this case, we measured that our implementation
slowed down the class-loading process by 529.4 ms. That was 138.3 times slower
than without using implicit staging.

It is important to note that this overhead is incurred only once per class and
only if this class actually contains code potentially referring to EDSL expressions.
In a large code base, this overhead might indeed become problematic but to a
certain degree it is an inevitable side effect of our approach. We will still attempt
to further optimize at least the fixed parts of our framework implementation
(data-flow analysis, expression site relinking, etc.).

Implementation Complexity. Although only of limited reliability, we use
lines of code as a metric to estimate the implementation complexity for each
of the approaches. The shallow embedding implementation was accomplished in
about 100 lines of code, the implicit staging implementation took up about 360
lines of code, and the deep embedding implementation took up about 300 lines of
code. It appears that implicit staging does not incur much more implementation

Implicit Staging of EDSL Expressions 405

complexity than deep embedding. Of course, this can mainly be attributed to
the fact that we tried (and managed) to stay as similar as possible with our
implementations.

5.3 Experiment B: Chained Filtering and Mapping EDSL

Our previous example language used static method call nesting for its syntax. Of
course, it is also possible to implicitly stage EDSLs which use method chaining.

We implemented an abstract data type FunSequence<T>which allows for (im-
mutable) list operations as are common in functional programming, i.e. filtering
(filter with Predicate<T>) and mapping (map with Function<T, R>). Two
concrete classes implement this data type, the list-backed FunList<T>, and the
array-backed FunArray<T>. Again, we started out with a naive shallow embed-
ding.

Consider the code snippet presented in listing 8 and assume that the func-
tions and predicates used as arguments are defined outside. Every mapping or
filtering creates a new list and makes this compound expression rather memory
demanding and slow.

Listing 8. FunSequence usage example

1 FunSequence <Integer > res = inputSeq .map(sqrt).map(square).map(increment)
2 .filter(even). filter(greaterThanZero)
3 .map(invert).map(invert).map(increment)
4 .filter(divisibleByFour);

Running this code (warmed up) in a loop with 10 iterations, inputSeq initialized
to 6000000 random elements with values between -100 and 100, took on average
across 10 runs about 14613.4 ms (σ = 1178.2 ms) with FunArray<T> and about
31221 ms (σ = 2192.2 ms) with FunList<T>5.

With the help of implicit staging, we implemented optimizations for this
EDSL, notably the fusion of filtering and mapping operations into a single loop.
Its implementation was encapsulated in an non-type-safe method and should
thus not be exposed publicly. Though artificial this example may seem, it show-
cases that implicit staging can be used to expose optimized but unsafe function-
ality in a type-safe fashion.

Running the aforementioned benchmark with implicit staging took 8786.3 ms
on average (σ = 180.2 ms) with FunArray<T> and about 9790.8 ms (σ = 934 ms)
with FunList<T>. The former was faster by 66.3% compared with pure shallow
embedding, the latter by 218.9%.

5.4 Experiment C: Safe Arithmetic EDSL

Our last example is a language for performing integer arithmetic with overflow
detection. It is based on one of the methods described in “The CERT Oracle
Secure Coding Standard for Java” [13], which involves conversion to values of
BigInteger type.

5 In the latter case it was necessary to increase the maximum heap space size.

406 M. Scherr and S. Chiba

Listing 9. Safe addition

1 public static final int add(int left , int right) {

2 return intRangeCheck (

3 BigInteger .valueOf(left).add(BigInteger .valueOf(right))). intValue ();

4 }

Listing 9 shows the implementation for addition, where intRangeCheck will
throw a runtime exception in case of detected overflow. Other operations are
implemented in a similar fashion. Warmed up, executing the loop shown in
listing 10 takes across 10 runs on average 2490.3 ms (σ = 21.8 ms).

Listing 10. Safe arithmetic EDSL benchmark

1 for (int i = 0; i < 10000000; i++) {
2 int j = i % 100;
3 res = mul(mul(add(a, j), add(a, j)), add(a, b));
4 }

We also implemented an implicitly staged version, which does away with the
redundant conversion of intermediate values. All parameters are converted to
BigInteger and only at the end, before converting back to int, overflow checking
is performed. This simple optimization reduces the running time of the bench-
mark (with implicit staging) on average to 2372.9 ms (σ = 35.3 ms). This may
not seem much, but consider that our prototypical EDSL implementation causes
additional boxing, unboxing, and Callable<T> calling overhead. With an addi-
tional common subexpression elimination optimization, the benchmark running
time is reduced to 2066.7 ms (σ = 17.5 ms). Of course, this effect is more drastic
the more common subexpressions occur.

Note that implicit staging here effectively changes the semantics. Namely, it is
fine for intermediate results to exceed the int extrema as long as the end result is
within them. The expression sub(add(Integer.MAX VALUE, 5), 5) will throw
an exception in the shallowly embedded implementation, whereas our implicitly
staged implementation would return Integer.MAX VALUE. This is intentional,
since we want to consider compound expressions of the EDSL as closed entities.
This may seem as an unfair advantage against shallow embedding but the fact
that implicit staging allows us to do so is in the first place is exactly what we
want to highlight here.

6 Related Work

DSLs and little ad-hoc languages have been advocated for use in domain-specific
tasks at least since Bentley’s article on “Little Languages” [14]. Syntactic ex-
tension allows general-purpose languages to embed such languages. There exist
general-purpose languages such as Converge [15] or Lisp with powerful compile-
time metaprogramming features that allow this in an integrated fashion.

Converge is a dynamically typed language with a strong focus on allowing cus-
tom and rich syntax extensions in combination with splicing annotations for DSL

Implicit Staging of EDSL Expressions 407

development. Domain-specific code (with custom syntax) is explicitly marked as
DSL blocks or shorter DSL snippets. In most Lisp dialects syntactic extension
are somewhat limited in the framework of S-expressions, yet powerful macro sys-
tems effectively allow for a great deal of linguistic customizations and domain
specialization. Template Haskell [16] allows compile-time metaprogramming in
a type-safe fashion with explicit notation for compile-time expansion.

It is important to note that these compile-time facilities rely on the availabil-
ity of source code user programs and consider syntactic entities. Our load-time
implicit staging approach for Java is based on data-flow analysis instead, which
manages to recover EDSL code snippets while hiding non-EDSL code.

As shown in section 5.2, there is a substantial overhead associated with our
current prototype and undeniably with our load-time approach in general. This
issue is not shared by traditional compile-time metaprogramming approaches.
However, for these approaches it is much harder or impossible to avoid deploya-
bility issues and to enable cross-stage persistence in a way that allows generated
code to access data available during the staging phase. At load time, the latter
becomes a trivial issue. Furthermore, while our current prototype is still limited
in scope and might in fact somewhat resemble a load-time hygienic macro system,
we believe its abstract EDSL token interpretation approach is more amenable
to further extensions, as indicated in section 3.2 and 5.1.

Even without syntactic extension capabilities or macro functionality, embed-
ded DSLs have been shown to be feasible using deep or shallow embedding, or
combinations thereof [7]. Hudak [1] and Elliot et al.[17] have shown that Haskell
is well suited for this. Yet, even languages with stronger restrictions on syntax
and more verbosity, such as Java, have been used to implement EDSLs [2, 3, 5].

To overcome runtime performance issues, Hudak [1] has proposed partial eval-
uation. Czarnecki et al. [18] have presented an effective approach using staged
interpreters which requires a host language withmulti-stage programming (MSP)
support [9, 11]. Bagge et al. [19] have used a source-to-source transformation so-
lution for the C++ language, enabling optimizations via rewrite rules. Guyer et
al. [20] have introduced a compiler architecture for the C language which enables
domain-specific optimizations not on the syntactic level but on the data-flow
level. In fact, Guyer et al. [20] claim not to target the optimization of DSLs, but
that of the domain-specific aspects of software libraries. These optimizations are
communicated to the compiler by analysis and action annotations (written in
their own dedicated language). It is similar to implicit staging in its (external)
specification of domain-specific procedures as well as its detachment from the
mere source code syntax level.

The aforementioned ideas either rely on non-mainstream host languages or
compiler extensions. Rompf et al. [10] have introduced a method called Light-
weight Modular Staging (LMS) which is a purely library based approach. LMS
brings MSP support to the Scala [21] language as a library, where lifted Rep[T]

data-types stand for staged code. Using Scala’s traits, it is easy to extend this
library and implement EDSLs with it.

408 M. Scherr and S. Chiba

When optimizing EDSL programs, it is similar to the deep embedding ap-
proach but more elegantly hides its nature by employing Scala’s type inference,
trait composition, and implicit conversion features. LMS has been used to im-
plement several EDSLs with the Delite [22, 23] back end, such as OptiML [24]
and OptiCVX [25], with great results. However, while the usage of EDSLs imple-
mented using LMS is mostly seamless, the unstaging (i.e. the code generation,
compilation, and loading) of staged code is triggered explicitly.

JIT macros as described by Rompf et al. in Project Lancet [26], a very am-
bitious and promising JVM implementation, resemble parts of our load-time
staging approach. Combined with LMS, JIT macros are described as allowing
domain-specific optimizations at JIT-compile time. However, their expansion or
handling necessitates the localized, explicit triggering of JIT compilation in user
programs, a feature of Lancet.

7 Conclusion

To address the issue of DSL (expression) embedding, we proposed implicit stag-
ing, an impure approach to language embedding. We have further concretely
implemented and introduced an instance of implicit staging for the Java lan-
guage using load-time reflection. Our prototype implementation has shown to
be an effective tool for implementing EDSL expression semantics in a customized
fashion, while letting EDSLs expose a shallow interface. By moving the process
of staging to load time, we gain an advantage in reducing overhead compared to
deep embedding.

Our prototype offers an improvement over pure shallow embedding and we
believe it can serve as an alternative to deep embedding in many cases. Namely,
when true, dynamic runtime staging of EDSL code is not mandatory. However,
it remains to be seen how our approach scales beyond the small examples we
evaluated. We intend to investigate this in the future.

Despite its current limitations we believe our framework can be used as step-
ping stone to more elaborate implicit staging (at load time) systems. It is our
future work to explore designs, implementations, and use cases for exploiting
static and dynamic contextual information both within user programs as well as
the runtime system.

References

1. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of the
5th International Conference on Software Reuse, ICSR 1998, pp. 134–142. IEEE
Computer Society, Washington, DC (1998)

2. Freeman, S., Pryce, N.: Evolving an embedded domain-specific language in java.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA 2006, pp. 855–865.
ACM, New York (2006)

3. https://code.google.com/p/guava-libraries/ (retrieved December 2, 2013)

https://code.google.com/p/guava-libraries/

Implicit Staging of EDSL Expressions 409

4. Giarrusso, P.G., Ostermann, K., Eichberg, M., Mitschke, R., Rendel, T., Kästner,
C.: Reify your collection queries for modularity and speed? In: Proceedings of the
12th Annual International Conference on Aspect-Oriented Software Development,
AOSD 2013, pp. 1–12. ACM, New York (2013)

5. http://www.jooq.org/ (retrieved December 2, 2013)
6. Chiba, S.: Load-time structural reflection in java. In: Bertino, E. (ed.) ECOOP

2000. LNCS, vol. 1850, pp. 313–336. Springer, Heidelberg (2000)
7. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL.

In: Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 21–36. Springer,
Heidelberg (2013)

8. Gosling, J.: Java intermediate bytecodes: Acm sigplan workshop on intermediate
representations (ir 1995). In: Papers from the 1995 ACM SIGPLAN Workshop on
Intermediate Representations, IR 1995, pp. 111–118. ACM, New York (1995)

9. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: Java
multi-stage programming using weak separability. In: Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, pp. 400–411. ACM, New York (2010)

10. Rompf, T., Odersky, M.: Lightweight modular staging: A pragmatic approach
to runtime code generation and compiled DSLs. Commun. ACM 55(6), 121–130
(2012)

11. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci. 248(1-2), 211–242 (2000)

12. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 1973, pp. 194–206. ACM, New York (1973)

13. https://www.securecoding.cert.org/confluence/display/java/

NUM00-J.+Detect+or+prevent+integer+overflow (retrieved December 2, 2013)
14. Bentley, J.L.: Programming pearls: Little languages 29(8), 711–721 (1986)
15. Tratt, L.: Domain specific language implementation via compile-time meta-

programming. TOPLAS 30(6), 1–40 (2008)
16. Sheard, T., Jones, S.P.: Template meta-programming for haskell. SIGPLAN

Not. 37(12), 60–75 (2002)
17. Elliott, C., Finne, S., De Moor, O.: Compiling embedded languages. J. Funct.

Program. 13(3), 455–481 (2003)
18. Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: DSL implementation in

MetaOCaml, Template Haskell, and C++. In: Lengauer, C., Batory, D., Blum,
A., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp.
51–72. Springer, Heidelberg (2004)

19. Bagge, O.S., Kalleberg, K.T., Haveraaen, M., Visser, E.: Design of the Code-
Boost transformation system for domain-specific optimisation of C++ programs.
In: Binkley, D., Tonella, P. (eds.) Third International Workshop on Source Code
Analysis and Manipulation (SCAM 2003), pp. 65–75. IEEE Computer Society
Press, Amsterdam (2003)

20. Guyer, S., Lin, C.: Broadway: A compiler for exploiting the domain-specific se-
mantics of software libraries. Proceedings of the IEEE 93(2), 342–357 (2005)

21. http://www.scala-lang.org/ (retrieved December 2, 2013)
22. Brown, K.J., Sujeeth, A.K., Lee, H.J., Rompf, T., Chafi, H., Odersky, M., Oluko-

tun, K.: A heterogeneous parallel framework for domain-specific languages. In:
Proceedings of the 2011 International Conference on Parallel Architectures and
Compilation Techniques, PACT 2011, pp. 89–100. IEEE Computer Society, Wash-
ington, DC (2011)

http://www.jooq.org/
https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow
https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow
http://www.scala-lang.org/

410 M. Scherr and S. Chiba

23. Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R., Olukotun, K.: A
domain-specific approach to heterogeneous parallelism. In: Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming, PPoPP
2011, pp. 35–46. ACM, New York (2011)

24. Sujeeth, A.K., Lee, H., Brown, K.J., Chafi, H., Wu, M., Atreya, A.R., Olukotun, K.,
Rompf, T., Odersky, M.: Optiml: an implicitly parallel domainspecific language for
machine learning. In: Proceedings of the 28th International Conference on Machine
Learning, ICML (2011)

25. http://stanford-ppl.github.io/Delite/opticvx/index.html

(retrieved December 2, 2013)
26. Rompf, T., Sujeethy, A.K., Browny, K.J., Lee, H., Chafizy, H., Olukotuny, K.,

Odersky, M.: Project lancet: Surgical precision JIT compilers. Technical report
(2013)

http://stanford-ppl.github.io/Delite/opticvx/index.html

Babelsberg/JS
A Browser-Based Implementation of an

Object Constraint Language

Tim Felgentreff1, Alan Borning2,3, Robert Hirschfeld1, Jens Lincke1,
Yoshiki Ohshima3, Bert Freudenberg3, and Robert Krahn4

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
2 University of Washington, Seattle, WA, USA

3 Viewpoints Research Institute, Los Angeles, CA, USA
4 Communications Design Group, SAP Labs, San Francisco, CA, USA

Abstract.

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Constraints provide a useful technique for ensuring that de-
sired properties hold in an application. As a result, they have been
used in a wide range of applications, including graphical layout, sim-
ulation, scheduling, and problem-solving. We describe the design and
implementation of an Object Constraint Programming language, an
object-oriented language that cleanly integrates constraints with the un-
derlying language in a way that respects encapsulation and standard
object-oriented programming techniques, and that runs in browser-based
applications. Prior work on Object Constraint Programming languages
has relied on modifying the underlying Virtual Machine, but that is
not an option for web-based applications, which have become increas-
ingly prominent. In this paper, we present an approach to implement-
ing Object Constraint Programming without Virtual Machine support,
along with an implementation as a JavaScript extension. We demon-
strate the resulting language, Babelsberg/JS, on a number of applications
and provide performance measurements. Programs without constraints
in Babelsberg/JS run at the same speed as pure JavaScript versions,
while programs that do have constraints can still be run efficiently. Our
design and implementation also incorporate incremental re-solving to
support interaction, as well as a cooperating solvers architecture that
allows multiple solvers to work together to solve more difficult problems.

Keywords: Constraints, Object Constraint Programming.

1 Introduction

Constraints are relations among objects that should hold. This could be that
all parts in an electrical circuit simulation obey the laws of physics, that the
rows in a Sudoku include each digit from 0 to 9, or that a streamed video
plays smoothly in the presence of changing CPU and network load. We also
want to support interactive use of constraints, for example, continuously re-
satisfying a set of layout constraints on screen widgets as they are moved with

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 411–436, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

412 T. Felgentreff et al.

the mouse. In addition, it is useful to extend the constraint formalism to allow
soft constraints as well as required ones, where the system should try to satisfy
the soft constraints if possible, but it is not an error if they cannot be satisfied.
For example, we might have a soft constraint for video quality that we are
willing to relax if necessary, given the current network load, or a desired ideal
spacing between two widgets that again can be relaxed if need be. In the work
reported here, we want to support constraints in a clean way in an object-oriented
language running in a lightweight, web-based programming environment.

Fig. 1. Constructing a Constraint-based Wheatstone Bridge Simulation

Figures 1 and 2 are screenshots from our prototype system that illustrate the
kinds of capabilities we want. Both are constructed in the Lively Kernel environ-
ment [1], an entirely web-based programming environment built on JavaScript.

Figure 1 shows a constraint-based simulation of Wheatstone Bridge being
constructed. (A Wheatstone Bridge is used to measure an unknown electrical
resistance by balancing two pairs of resistors so that the electrical potential
between them is 0.) Parts representing batteries, resistors, and meters are copied
from the Lively Kernel parts bin [2] on the right, dropped into the circuit on
the left, and wired together. These parts carry constraints representing Ohm’s
Law, Kirchhoff’s Current Law, and so forth. The system automatically solves
the constraints when the parts are first connected, and re-solves them if the
battery’s supply voltage or a resistance is edited, updating the voltage displayed
by the meter. (See Appendix A for the implementation.)

Figure 2 shows a color chooser from the parts bin that can be used to create
a color palette for a website. Users can specify the desired average hue and
luminance using the sliders, as well as change each color individually using a
color chooser. The system automatically updates the colors and sliders according
to user input — for example, the hue slider adjusts when the user changes the
luminance slider. The system supports incremental re-solving, so that colors

Babelsberg/JS 413

change smoothly when dragging the sliders. Furthermore, the constraints on
hue, luminance, and specific color selection have different priorities. The system
is allowed to make changes to individually selected colors or cause changes to
other colors to keep the average hue and luminance constant, whereas dragging
the sliders forces the system to use the new value. The widget has additional
constraints that luminance and hue of each individual color must be at least 80%
of the average luminance and hue, and that the system cannot set red, green,
and blue values outside the range 0–1.

Fig. 2. Color Palette Chooser with Hue and Luminance Goals

While the capability to graphically construct constraint-based simulations
dates back to Sketchpad [3] and ThingLab [4], in the current work we want to en-
able a true integration of constraints with the host object-oriented programming
language, and further support this in a web-based environment. To accomplish
this, we build on our recent work on Babelsberg [5], a language framework that
supports an integration of constraint satisfaction with objects and their methods.
Babelsberg in turn builds on earlier work on constraint-imperative programming
in Kaleidoscope [6] and Turtle [7]. In Babelsberg, constraints are expressed as
predicates using the underlying object-oriented language. The constraint is that
the predicate evaluates to true, and the system maintains this constraint auto-
matically whenever objects that participate in the constraint change.

Babelsberg improves on related approaches to constraint satisfaction in
object-oriented programs, which use libraries [8,9,10], domain-specific languages
[11,12], or (more recently) functional-reactive programming [13,14] to specify
and solve constraints. These approaches do not need special runtime support,
but require the programmer to call specific application programming interfaces
(apis) or follow certain rules to not accidentally circumvent the constraints.

We first implemented the Babelsberg design as a prototype in Ruby [15], called
Babelsberg/R. This implementation depends on extending the Ruby Virtual
Machine (vm). However, applications written in e.g. JavaScript typically have

414 T. Felgentreff et al.

to work on a variety of client vms included in different Web browsers. This
makes it infeasible to implement Babelsberg in a JavaScript vm. JavaScript
is currently of considerable interest in the industry and research communities.
Thus, an implementation as an extension written entirely in JavaScript enables
us to apply constraint programming to a variety of existing problems, and to
compare it directly with alternative solutions on a variety of platforms. Another
goal for our design is good performance. As with the original Babelsberg/R
implementation, we want the extension to have at most minimal impact on
speed for programs without constraints; and for programs with constraints, we
still want to have good performance for interactive graphical applications, which
generally implies the need to support incremental constraint solvers [16].

In addition to the goal of good performance, a useful Object Constraint Pro-
gramming language requires sufficiently powerful constraint solving capabilities.
In prior work [5], we identified (but had not yet implemented) an important re-
quirement, namely support for cooperating constraint solvers. The motivation is
that it is often infeasible to provide a single constraint solver that works well for
all aspects of a problem; instead, different solvers may be more appropriate than
others for some aspects, and which need to work together to solve the problem.
Our design and implementation in Babelsberg/JS provides this capability, in a
way that supports incremental re-solving of constraints without requiring access
to the vm.

The contributions of this work thus are:

– A design for Object Constraint Programming (ocp) languages that does not
require vm support

– An implementation of cooperating constraint solvers, including techniques
to do so without vm support and that support incremental constraint satis-
faction

– A realization of these in an operational implementation in JavaScript, run-
ning in the Lively Kernel environment, including additional support within
the language extension for writing constraint programs

The rest of this paper is structured as follows. Section 2 describes related
work and the Babelsberg framework on which we build. In Section 3, we de-
scribe the features a language must provide to support Babelsberg without vm
extensions. This design is realized in Babelsberg/JS (Section 3), which also in-
cludes support for cooperating constraint solvers (Section 3.1) and incremental
re-solving (Section 3.2). We then describe the implementation of Babelsberg/JS
in the Lively Kernel environment (Section 4), and the results of performance
evaluation (Section 5). Section 6 describes future work and concludes.

2 Background and Related Work

Programs frequently have some set of constraints that should hold. In a standard
imperative language, the usual approach to dealing with such constraints is to
leave it entirely up to the programmer to ensure that they are satisfied — the

Babelsberg/JS 415

constraints may be implicit in the code and just expressed explicitly in comments
and documentation, or perhaps in the form of machine-checkable assertions.

For some constraints, programmers may write assertions to fail early if the
constraints are unexpectedly not satisfied [17], while other constraints describe
invalid system states that can be automatically corrected. In our color chooser
example, when the user selects a specific color that does not meet the luminance
constraints, the system is allowed to change it. To deal with these kinds of
situations, programmers may write corrective code that is executed at various
times (for example, color adjustments may run while the user is dragging the
luminance slider). This code uses branches and state changing operations to
check and correct invalid state. However, these statements are order dependent,
and the branching code expresses the constraints implicitly. Furthermore, it can
be unclear whether a solution is complete in that it covers all possible cases
or optimal. As argued in our prior work on Babelsberg [5] and elsewhere, it is
usually clearer to express and satisfy constraints explicitly, rather than encoding
them in control flow.

One approach to making the constraints explicit is to use a library that pro-
vides one or more constraint solvers. Numerous solvers, covering a wide range
of type domains (including reals, booleans, and finite sets), are available for im-
perative languages and can be called from imperative code [8,9,10,16]. For more
specialized domains such as user interface layout, some libraries provide separate
domain specific languages (dsls) to express, for example, minimal distances be-
tween graphical objects. Prominent examples here include the Mac OS X layout
specification language [11] or the Squander framework [18]. For our example,
these approaches replace the branching and state changing code with declara-
tive constraints. However, these constraints are expressed in the language of the
library, using solver-specific types and expressions. To interact with the impera-
tive state of the system, the solver must be called explicitly, and the constrained
values must be copied between the solver and runtime data structures whenever
either imperative code or the solver update them. This is error-prone, because
programmers may accidentally circumvent the solvers if they do not call the
solver in all required places. Further, because solvers often operate on a limited
number of domain-specific primitive types, object-oriented abstractions cannot
be used to express constraints.

An alternative approach is to integrate a means to express and maintain
one-way constraints with the language itself. Some languages such as Scratch
[19], LivelyKernel [1], and KScript [13] have built-in support for data flow,
which allows programmers to express unidirectional constraints among objects.
Babelsberg/JS shares with these systems the need to intercept object access and
solve constraints when the system is disturbed.

To support a broader set of constraints, other languages directly integrate
one or more solvers into their execution model. Again, there is a large body of
prior art in this area, including Constraint Logic Programming [20], Constraint
Imperative Programming [6,7], and Object Constraint Programming [5].

416 T. Felgentreff et al.

As illustrated by the color palette chooser example, it can be useful to extend
the concept of constraints to include soft constraints with different priorities as
well as required ones. There are various ways to formalize multiple priorities for
soft constraints, and how to trade off conflicting soft constraints with the same
priority; here we use the formalism described in [21]. In addition to hard and
soft constraints, it is useful to add support for placing a read-only annotation
on a variable in a given constraint. Operationally, a read-only annotation tells
the system that it may not change the value of that variable to satisfy the given
constraint.1 Another useful extension is the addition of stay constraints and edit
constraints [8], which provide important tools for integrating constraints with
a language with state and in supporting interactive constraint systems. Stay
constraints specify that a variable should keep its previous value. Soft stay con-
straints with a very low priority are used to express frame axioms, i.e., the desire
that things remain the same unless there are some other constraints that force
them to change. For example, suppose we are moving one part of a geometric
figure with constraints. Without weak stay constraints to try and keep things
where there used to be, the entire figure might collapse to a single point (still sat-
isfying all its required constraints, but to the surprise of the user). Finally, edit
constraints provide a concise and efficient way to support incremental updates,
for example, moving a constrained object with the mouse. A typical sequence of
actions when moving a part of a constrained figure is to first add edit constraints
on the x and y values of a point being moved, then repeatedly provide new x
and y values given the mouse position (and let these values propagate through
the other constraints), and then finally remove the edit constraint when done
moving.

2.1 Object Constraint Programming and Babelsberg

Object Constraint Programming differs from Constraint Imperative Program-
ming in that it focuses on object-orientation as the main paradigm. It seeks to
integrate declarative constraints in a way that does not compromise the expecta-
tions of imperative object-oriented programmers and that provides a declarative
semantics that is compatible with these expectations.

Babelsberg is a design for a family of Object Constraint Programming lan-
guages. Since the language we present in this paper is an instance of this design,
we summarize its goals in this subsection. These include:

– a syntax and semantics that are a strict superset of and fully compatible
with the base language

– a unified mechanism for abstraction shared between constraints and object
oriented code, so that constraints can re-use object-oriented methods and
respect encapsulation

1 For example, if we have a constraint a+ b = c?, where c has been annotated as read-
only, the system may change a or b or both to satisfy the addition constraint, but not
c. Other constraints might change c, however, which would of course force changes
to a or b. For simplicity, here we have given an intuitive, operational description of
read-only annotations; please see [21] for a formal, declarative semantics.

Babelsberg/JS 417

– performance that is competitive with the base language for standard object-
oriented code without constraints

– support for both required and soft constraints, constraints on object iden-
tity, variables that are read-only to solvers or imperative code, as well as
incremental re-solving for use in interactive applications

– an api for constraint solvers that makes it straightforward to add new solvers
and does not privilege the solvers provided with the implementation, to make
it easy to use different solvers in different programs

2.2 Babelsberg/R

In [5] we describe Babelsberg/R, an implementation of Babelsberg based on a
modified Ruby vm. The modifications are almost all semantic extensions, with
only one minor syntactic extension, plus libraries for constraint satisfaction.
The semantic model is also an extension of Ruby’s, and supports all of the
existing Ruby constructs such as classes, instances, methods, message sends,
blocks (closures), object identity, and the language’s control structures.

All these Ruby constructs are also supported in constraints. However, there
are two important restrictions:

– The expression that defines a constraint should return a boolean, just like
an assertion. The constraint is that the boolean is true.

– Constraints can be placed on the results of message sends, as long as the
execution of these messages does not have side-effects (or those side-effects
are benign, like caching), and repeated execution of the expression produces
the same result, as long as no variables participating in the constraint have
changed (so system calls for example to a random number generator or a file
stream do not qualify)

For example, the constraint in the color chooser that each color should have a
luminance at least 80% of the global targeted average can be expressed concisely
in Babelsberg/R:
1 c o l o r s . each do | c o l o r |
2 always { p a l e t t e . target_luminance ∗ 0 . 8 <= co l o r . luminance () }
3 end

What looks like an assertion on each element in the colors collection is actually
a constraint. Whenever any color or the target palette luminance changes, the
system will automatically adapt to ensure that this constraint is always satis-
fied. This snippet also shows that constraints can be used within imperative
constructs and constrain the values of properties (the target_luminance) as well as
the results of object-oriented message sends (the result of the calculated luminance

of colors).
Given a set of constraint expressions, Babelsberg can choose among multiple

solvers to find a solution to them. The architecture makes it straightforward to
add new solvers, and does not privilege the solvers provided with the language
(they are merely the ones that come with the standard library). However, the

418 T. Felgentreff et al.

programmer has to indicate which solver is available to the runtime, and there
may be constraints that are too difficult for the solvers. Additionally, features
such as incremental solving, read-only variables, soft constraints, and stay con-
straints are only available with some solvers.

Babelsberg/R was implemented by modifying the Ruby vm. It uses two inter-
pretation modes: imperative evaluation mode and constraint construction mode.
The interpreter normally operates in imperative evaluation mode. In the absence
of constraints, this is the standard Ruby vm. However, if the interpreter encoun-
ters a load or store instruction for a variable with a constraint on it, rather
than directly loading or storing into the variable, it calls the appropriate con-
straint solver to retrieve the variable’s value or to solve an equality constraint
between the variable and the new value. When a constraint is being added, the
interpreter switches to constraint construction mode. It continues to evaluate
expressions using message sends, but rather than computing the result, it builds
up a network of primitive constraints that represent the constraint being added,
keeping track of the dependencies in the process.

To support this, the Ruby vm was extended to support constrained variables.
These variables refer to different objects depending on the context they are
used in. One is the normal object-oriented binding used in the host language
execution. The other is a constraint object that can be used by a solver for
constraint construction and solving. Variables become constrained variables only
when they are used in a constraint, minimizing the performance impact for parts
of the program where only normal variables are accessed.

3 Object Constraint Programming without VM Support

In industry, JavaScript has become the de-facto standard for Web program-
ming, and a huge amount of code exists in the language. This fact, along with
JavaScript’s unique design and its execution environment in a Web browser, also
make it of great interest to the research community, motivating work on revising
and adapting useful features of other languages to include in it [22,23].

To provide practical support for ocp in JavaScript, we adapt the Babelsberg
design to not require support from the underlying vm. This enables us to run
Babelsberg/JS in modern browsers and use it in a variety of practical Web
applications.

For Babelsberg/JS, since we do not have access to the vm, we cannot re-
define the operation of load and store instructions to handle variables with
constraints on them. Instead, the unmodified JavaScript vm is used only for im-
perative evaluation mode. To intercept accesses and assignments to constrained
variables, we wrap properties with property accessors that interact correctly with
the constraint solver. To get the value of a constrained variable, the accessor gets
the value for that variable from its solver. For a store, the setter in general calls
the appropriate constraint solver to solve an equality constraint between the
variable and its new value for a store.

For constraint construction mode, we use a custom JavaScript interpreter,
itself written in JavaScript. This custom interpreter is about three orders of

Babelsberg/JS 419

magnitude slower than the underlying one. However, since evaluating code in
constraint construction mode is a much less common activity, and one that
doesn’t occur in inner loops, the performance penalty is not a significant issue.

Generalizing our approach, we have thus identified the following requirements
for implementing the Babelsberg scheme without vm support:
– The host language must support a means to intercept variable lookup, so

names can refer to different objects.
– The vm-based implementation of Babelsberg assumes that the vm provides

access to the program state so solvers can ignore encapsulation and modify
data structures directly. In contrast, here the extension must enable calling
the appropriate api functions to manipulate data structures.

– The host language must provide a means to modify interpretation of a block
of code to implement the constraint construction mode.

The first requirement is only partially supported in JavaScript, namely for
object fields using property accessors. We therefore limit ourselves to constrain-
ing field storage in Babelsberg/JS, but not storage into local variables. (Some
compiled OO languages, for example C#, also support property accessors; and
other dynamic OO languages, such as Python and Smalltalk, support method
wrappers to enable intercepting accessors, again within the limitation of only
constraining field access.) As with the original Babelsberg/R design, it does not
matter whether the fields are constrained directly or whether they are used in
the execution of a method that was constrained to produce a certain result. A
property that is accessed in the execution of a constraint expression is wrapped
with property accessor that intercepts lookup and storage.

Property Accessors for Constrained Objects. When an object has been
used in a constraint, its constrained properties have been replaced with property
accessors. The property getter is a simple wrapper that reads from the solver
variable in the most upstream region in which the field is referenced (cf. 3.1).
Instead of returning the field value of the object, it returns the value of that
variable in the solver data structure. The property setter distinguishes two cases.
If the variable is writable from a solver, an equality constraint for that solver is
created and the updated constraint system is solved, potentially triggering other
solvers. On the other hand, if the variable is not writable (either because it is of
a type that no available solver supports or because it has been marked as read-
only by the programmer), its new value is stored, and all dependent constraints
are recalculated. These dependent constraints have treated the variable as a
constant (because they cannot modify it). To recalculate them, the constraints
are deactivated in the solvers, and the expressions that created them are re-
evaluated in constraint construction mode to create new constraints based on
the new value. (The implementation of edit constraints (Section 3.2) handles the
situation of repeated changes much more efficiently.)

Creating Constraints. As an example of defining constraints, consider an
interactive temperature converter, which maintains the relation between sliders
representing values on the Fahrenheit, Celsius, Rankine, and Kelvin scales.

420 T. Felgentreff et al.

1 var c onve r t e r = {} ,
2 cassowary = new CLSimplexSolver () ;
3 always : { s o l v e r : cassowary
4 c onve r t e r .C ∗ 1 . 8 == conve r t e r .F − 32 &&
5 c onve r t e r .C + 273.15 == conve r t e r .K &&
6 c onve r t e r .F + 459.67 == conve r t e r .R
7 }

In Babelsberg/JS, a source-to-source transformation creates a call to a global
function — always — from an always: expression of this form (this transformation
just provides syntactic sugar – the function can also be called directly with
function object.) Once this function has executed, a change to any one of the
temperature values in the converter object will trigger changes to the other
three values to keep the constraint satisfied through property accessors described
above.

The always function passes the predicate expressing the constraint and infor-
mation about the context into a custom JavaScript interpreter. This interpreter
is used to evaluate expressions in constraint construction mode, which is provided
as part of the Babelsberg/JS library. The custom interpreter creates property
accessors (getters and setters) for the C, F, K, and R fields of the converter object.
The appropriate accessor is then called whenever some other part of the program
uses one of those fields. However, within the constraint expression, accesses to
these fields do not use these accessors, but instead return ConstrainedVariable
objects. Messages are then sent to these objects, and instead of calculating val-
ues, build up networks of primitive constraints that can then be satisfied by a
solver. The always function returns a Constraint object that provides meta-level
access to the asserted relations, using the protocol described for Babelsberg/R
[5].

In this example, the constraints are on the fields of the object. However,
constraints in Babelsberg/JS (as with any instance of the Babelsberg scheme)
can also invoke methods that perform computations. For example, imagine the
converter uses the getCelsius method to return a cached temperature value that
is updated in regular intervals from a Web service:

1 var c onve r t e r = {} ,
2 cassowary = new CLSimplexSolver () ;
3
4 c onve r t e r . g e tCe l s i u s = function () {
5 i f (! c onve r t e r . updater) {
6 updateCe l s ius (c onve r t e r) ; // updateCelsius omitted for brevity
7 c onve r t e r . updater = s e t I n t e r v a l (5000 , function () {
8 updateCe l s ius (c onve r t e r) ;
9 }) ;

10 }
11 return c onve r t e r .C;
12 }
13
14 always : { s o l v e r : cassowary
15 c onve r t e r . g e tCe l s i u s () ∗ 1 . 8 == conve r t e r .F − 32 &&
16 c onve r t e r . g e tCe l s i u s () + 273 .15 == conve r t e r .K &&
17 c onve r t e r .F + 459.67 == conve r t e r .R
18 }

Babelsberg/JS 421

By placing the constraint on the result of sending messages rather than on
fields, Babelsberg respects object encapsulation. The value returned from the
message send in this example is simply a float, but return values can also be
arbitrary objects and computed values. For example, we could constrain the
maximum pressure of a volume of dry air with a fixed density and gas constant,
which would effectively limit the maximum temperature to around 36◦ Celsius.

1 c onve r t e r . p r e s su r e = function () {
2 var gasConstantDryAir = 287 .058 , // J /(kg * K)
3 den s i t y = 1 . 29 3 ; // kg /m ^3
4 return den s i t y ∗ gasConstantDryAir ∗ c onve r t e r .K / 1000 ;
5 }
6

7 always : { s o l v e r : cassowary
8 c onve r t e r . p r e s su r e () <= 115 // kPa
9 }

3.1 Cooperating Constraint Solvers

The temperature converter described above has no graphical representation. Cas-
sowary only works on reals, yet in order to display the temperature scales, we
need to convert the values into strings and update the Web browser’s Docu-
ment Object Model (dom) using the appropriate api. This is best done with
a local propagation solver, which can invoke arbitrary methods to satisfy the
constraints, in this case by calling the api. (The constraints that define the
temperature converter are simple enough that we could have used a local propa-
gation solver for all of them, but this is unsatisfactory for many problems, such
as the Wheatstone bridge example in Figure 1, since local propagation cannot
handle such situations as simultaneous equations or inequalities.)

There is currently no single solver that can efficiently handle all constraints
that arise in a typical application (and it seems unlikely that one can be created).
To address this, we extend the work presented in [5] to include an architecture
for cooperating constraint solvers, allowing a problem to be partitioned among
multiple solvers. For this example, we use two solvers: one for linear arithmetic
on the reals, and one for local propagation constraints.

Our architecture for cooperating solvers partitions constraints into regions
that are connected via read-only variables, implementing the design proposed
in [24]. The result is a very loose coupling among the cooperating solvers. This
approach is in contrast to the more commonly-used Satisfiability Modulo The-
ory (smt) technique for supporting cooperating constraint solvers [25], which
uses inferred equality constraints as the means for the cooperating solvers to
communicate (including the case when neither of the equated variables has a
specific value). Our experience so far indicates that our approach is more suited
to integration with imperative constructs, in which variables do always have
specific values, and lends itself well to support edit constraints for incremental
re-solving. (While we have not yet done so in our implementation, the architec-
ture described in [24] in fact allows hierarchies of cooperating solvers, so that
within a single region, there could be multiple solvers that cooperate by sharing
inferred equality constraints.)

422 T. Felgentreff et al.

In the cooperating solvers architecture, each constraint belongs to exactly
one solver. All constraints that belong to the same solver are in the same region.
While constraints belong to exactly one region, variables may be shared across
regions. This happens if variables occur in multiple constraints that belong to
different regions. These variables must be read-only in all but one of the regions.
Read-only variables are represented in a solver-specific manner, either using
stay constraints for solvers that support them, or through required equality
constraints. To support this, solver libraries should provide a method that makes
a variable read-only for them.

In this architecture, the regions must form an acyclic graph, so that solving
can simply proceed from the upstream to the downstream regions, propagat-
ing variable values. Figure 3 shows an example configuration. Solving proceeds
from the left and each solver propagates values for its variables to downstream
solvers that need them. The downstream solvers can only read, not write to those
variables. This architecture prohibits loops and a system that oscillates without
finding a solution. To create this graph, the system determines an order for the
solvers based on the dependencies between the constraints. The programmer can
explicitly control the position of a solver in this graph, or the libraries can pro-
vide information so the system can create the order without the programmer’s
support. Applications can use multiple instances of the same solver type that are
used one after the other (for example, for a problem that first uses Cassowary
to solve simultaneous linear constraints, then DeltaBlue for local propagation
constraints, then Cassowary again).

Fig. 3. Regions propagating variable values downstream

Once the solver regions are sorted, solving proceeds from the furthest up-
stream region. Each region will determine values for the variables it can write
to, and the downstream regions will adjust to accommodate the new values prop-
agated to their read-only variables from higher level regions. Soft constraints are
solved for just within each region — in keeping with the theory of hard and soft
constraints in the presence of read-only variables [21], if a soft constraint in an
upstream region restricts a variable to a certain value, then a downstream region
must use that value and can in fact not distinguish if this value was determined
by a required or a soft constraint. If constraints in a downstream region cannot
be satisfied due to an upstream soft constraint, we do not backtrack.

Given these additional capabilities, we can now add a graphical representation
to our temperature converter. We want the color of a div element to change when
the temperature is above 30◦ C.

Babelsberg/JS 423

1 var e l = jQuery ("# tooHotWarning ") ;
2
3 always : { s o l v e r : d e l t ab l u e
4 e l . c o l o r . formula ([c onve r t e r . g e tCe l s i u s ()] , function (c e l s i u s) {
5 var c o l o r = c e l s i u s > 30 ? " red " : " blue " ;
6 e l . s e tAt t r i bu t e (" class " , c o l o r) ;
7 return c o l o r ;
8 }) ;
9 }

Note that for the DeltaBlue local propagation solver, we do not provide a predi-
cate (although we could — in that case it would be run to test whether re-solving
is necessary). Instead, local propagation solvers need formulas for all writable
variables that state their dependencies and how to update the variable. In this
case, we want the Celsius value to be used as input for the color, but not vice
versa, so we only provide one formula. The only dependency here is on the return
value of converter.getCelsius(), passed explicitly in line 4. (Note that this could be
omitted Babelsberg/R, because its version of DeltaBlue supports deducing the
dependencies from the formula function — a feature we have not yet implemented
here.) The dependencies are passed as arguments to the formula function, so we
can use them directly to update the dom using the browser’s setAttribute api and
return the new value. These functions, just like the predicates for Cassowary, are
evaluated in constraint construction mode which wraps variables with property
accessors — the function formula is simply a function defined by DeltaBlue.

3.2 Incremental Re-solving for Cooperating Constraint Solvers

Some applications involve repeatedly re-satisfying the same set of constraints
with differing input values. A common such case is an interactive graphical ap-
plication with a constrained figure, in which we move some part of the figure with
the mouse. For such applications, it is important to re-solve the constraints effi-
ciently, and a number of constraint solvers, including DeltaBlue and Cassowary,
support this using edit constraints that allow a new value for a variable to be
repeatedly input to the solver.

The original Babelsberg design did not include support for incremental re-
solving at the language level — it was up to the solver library to provide access
to such functionality. However, to integrate with our cooperating solvers archi-
tecture, Babelsberg/JS does include support for incremental re-solving through
a solver-independent edit function that takes the variables to be edited and re-
turns a callback function. The process that produces new values can use this
callback to input new values into the solvers for the variables to be edited.

The edit function gathers all the constraints in which the passed variables
participate. Only variables that occur solely in solver regions that support edit
constraints can be edited; otherwise an exception is raised. The read-only anno-
tations for variables in the solvers for downstream regions are converted to edit
constraints, reflecting the fact that the upstream regions will be providing new
values for these variables. Finally, the edit function creates a callback function
and returns it. This callback can then be used to feed new values into the solvers.

424 T. Felgentreff et al.

As an example, suppose we wanted to connect the Celsius value of our temper-
ature converter to a graphical slider. We wrap the original onDrag (which updates
the slider’s value) to input the new value into the edit callback as well.

1 var ca l l back = ed i t (converte r , [’C ’]) ;
2 s l i d e r . onDrag = s l i d e r . onDrag . wrap (function (or iginalOnDrag , evt) {
3 originalOnDrag (evt) ;
4 ca l l back ([s l i d e r . va lue]) ;
5 }) ;

Two restrictions apply to the use of incremental re-solving with cooperating
solvers: first, all variables that are edited must be only in regions of solvers that
support edit constraints; and second, while the edit callback is used, no new
constraints can be created. (Edit constraints are just a technique for optimizing
the sequence of repeatedly replacing a constraint that a variable equal a constant
with a new constraint with a new constant. Thus, if the restrictions aren’t met, it
is still possible to express and solve the desired constraints, just not as efficiently.)

4 Implementation in Lively Kernel

We have implemented Babelsberg/JS in the Lively Kernel environment [1]. We
provide pure JavaScript implementations of DeltaBlue and Cassowary as con-
straint solvers and extend the Lively Kernel JavaScript interpreter to evaluate
constraint expressions. The code is not Lively specific – we use the collection
apis and class system of Lively, but this could be trivially changed. However,
when used in the Lively environment, we provide a source transformation that
makes writing constraints in the Object Explorer [2] more convenient.

4.1 Assignment

Assignment to objects that are constrained in Babelsberg/JS is the core concept
that binds the declarative constraints and imperative code together. Whereas in
standard imperative code an assignment writes a value to a memory location,
assignments in Babelsberg add equality constraints on constrained objects and
trigger re-satisfaction. The new equality constraint may be unsatisfiable, in which
case the assignment is not executed and a runtime exception is generated.

As in Babelsberg/R, the Babelsberg/JS runtime informs the developer of a
failed assignment by generating a runtime exception. To support the cooperating
solvers design, assignment in Babelsberg/JS is a 3-step process:

Set Value. If the new value is the same as the old, we simply return. Otherwise,
we convert all read-only constraints on the assigned variable either to required
edit constraints (for solvers that support them) or to equality constraints.

If the assigned value has an external variable, i.e., it is constrained by a solver
that can handle its type (for example a real in Cassowary), the new value is input
into the furthest upstream solver using an equality constraint and this solver is
then called. Afterwards, the equality constraint for assignment is removed. How-
ever, if the solver cannot satisfy its constraints with the new value, an exception
is raised.

Babelsberg/JS 425

Update Downstream Variables. For all external variables except the primary one
(the one in the most upstream solver), the new value is input into the solver. If
any of the solvers fail to satisfy their constraints with the new value, an exception
is generated and all read-only constraints are re-enabled as above.

All remaining constraints are in solvers that cannot handle the type of that
variable. Consequently, its value was treated as a constant in their constraint
expressions. With the new value, these have to be recalculated. The old variable
value is remembered and the new value is stored. These constraints are disabled,
their expressions re-evaluated in constraint construction mode, and then the
constraints are re-enabled. If any constraint in this set fails to run its expression
or cannot be satisfied with the new value, the old value is restored and an
exception is generated.

Update Connected Variables. Finally, we have to update the variables connected
to the assigned variable. To do so, we create the transitive closure of all variables
connected to the assignee through constraints. For all these variables, a new value
has already been created for all solvers that already ran, but their downstream
read-only constraints still have to be updated. These variables have to go through
the first two steps of the assignment process, returning early if their values have
not changed.

At this point, assignment can only fail for variables that are in solvers that
have not run yet. These are only solvers that the primary assignee is not part of.
If any one of these solvers cannot satisfy their constraints with the new value,
we restore the old value, re-satisfy the constraints, and raise an exception. While
this may leave the system in a different state than it was in before assignment
(depending on the implementation of the participating solvers, they may not
deterministically find the same solution to the same set of constraints) the system
will still be in a state that satisfies all previous constraints.

Deferred Assignment of Connected Variables. Babelsberg/R included an opti-
mization to defer copying the values from a solver to the object-oriented variable
location after assignment. Instead of copying the values for all affected variables
immediately, the variable’s values would be copied when they are next used in
imperative code. This optimization cannot be used with our cooperating con-
straint solver architecture. Consider the following contrived example:

1 var obj = {a : 10 , b : 10 , c : true } ;
2 always : { s o l v e r : cassowary
3 obj . a + obj . b== 20
4 }
5 always : { s o l v e r : d e l t ab lu e
6 obj . c . formula ([obj . b] , function (b) {
7 i f (b== 13) throw " unlucky " ;
8 return b < 10 ;
9 })

10 }
11 obj . a = 7 ;

When obj.a changes, Cassowary is called to resatisfy the first constraint. However,
to trigger DeltaBlue to solve the second constraint, the new value for obj.b has

426 T. Felgentreff et al.

to be copied immediately, rather than when obj.b is next read. Otherwise, a
failure to satisfy the second constraint is only encountered sometime later in the
execution and difficult to trace back to the assignment that caused it.

Assigning Mutable Objects. So far we have described how assignment is handled
for atomic objects, such as integers and floats. We have not, in our design,
addressed the case of mutable objects with substructure. Consider the following
midpoint line:

1 var l i n e = { s t a r t : pt (0 , 0) , end : pt (1 , 1) , midpoint = pt (0 , 0) } ;
2 always : { s o l v e r : cassowary
3 var c en t e r = l i n e . s t a r t . g e tPos i t i on () .
4 addPt(l i n e . end . g e tPos i t i on ()) . scaleBy (0 . 5) ;
5 l i n e . midpoint . g e tPos i t i on () . eqPt (c en t e r) ;
6 }
7
8 l i n e . midpoint = pt (1 , 1) ;

There are two ways to look at such an assignment: a) the assignment asserts
equality between midpoint and pt(1, 1) — both mutable objects — not their x

and y parts. So the solver could also modify the parts of the newly assigned
point to satisfy the constraint. This seems counter-intuitive, so presumably the
right-hand side of an assignment should be read-only to the solver. On the other
hand, there are use-cases for constraints for example in input rectification [26],
where programmers may expect the system to fix the assigned object, rather
than reject the assignment.

For now, we consider the behavior in this case to be implementation defined.
Babelsberg/JS marks the assigned objects’ parts with strong stay constraints.
This means that, as long as other constraints allow, the solver will not change
the new position for the midpoint. The design of a general solution is subject of
further research.

Changing the Type of Variables. Most solvers only provide support for a
limited number of type domains (such as reals or booleans). When variables
are used in constraints, their current values determine how they are handled
by the solvers. Changing the type of a variable, although possible in a dynamic
language, is a relatively uncommon operation, so slow performance is acceptable.
When it does occur, the variable is removed from all solvers, all its constraints are
disabled, and its constraint expressions are re-executed in constraint construction
mode, thus creating new solver-specific representations.

4.2 Constraint Construction

When a programmer writes a function that contains a constraint expression,
this expression is evaluated using our JavaScript ConstraintInterpreter. Popular
JavaScript vms2 (Apple Safari’s SquirrelFish3, Google Chrome’s V84, Mozilla
2 http://www.w3schools.com/browsers/browsers_stats.asp
3 http://trac.webkit.org/wiki/SquirrelFish
4 https://code.google.com/p/v8/

http://www.w3schools.com/browsers/browsers_stats.asp
http://trac.webkit.org/wiki/SquirrelFish
https://code.google.com/p/v8/

Babelsberg/JS 427

Firefox’s SpiderMonkey [27], or Microsoft’s Chakra5) do not provide direct ac-
cess to the native interpreter or execution context of the caller, so our interpreter
cannot look up names used in the constraint expression in the caller’s environ-
ment. Instead, those names have to be passed explicitly.

Babelsberg/JS provides a source-to-source transformation based on UglifyJS 6,
which collects names from the context and modifies the source code to pass those
names into the constraint expression. This source transformation is enabled au-
tomatically when programmers use Babelsberg/JS in the Lively Kernel’s Ob-
ject Editor. For other JavaScript code, they have to provide a context object
explicitly.7

Given a context, a function, and a solver, the ConstraintInterpreter executes
the expressions in the function to create the constraint. The ConstraintInter-
preter subclasses a JavaScript interpreter, modifying its behavior in three main
aspects:

1. Slot accesses are intercepted. For each slot accessed during the execution of a
constraint expression, property accessors are created that delegate access to
a ConstrainedVariable object. For each slot, only one ConstrainedVariable
is created on first access. ConstrainedVariables manage the communication
with the various solvers and create solver specific representations of the slot
value.

2. Certain unary (! and −) and binary operations (arithmetic, equality, in-
equalities, conjunction) are not interpreted as usual if an operand is a Con-
strainedVariable or an expression involving ConstrainedVariables. Instead,
the constraint object is sent a message to construct a solver-specific expres-
sion representing the operation and that expression is returned. For example,
in Cassowary, the expression a.value <= b.value would return a LinearInequal-
ity object.

3. Functions invoked in the expression are also interpreted in the Constraint-
Interpreter by default. However, the plain JavaScript interpreter is used if
the receiver is a ConstrainedVariable. In that case, the call is executed using
normal JavaScript execution semantics. This is required to avoid creating
constraints on the state of the solvers themselves.

The responsibility of ConstrainedVariables during constraint construction is
to pass calls to the appropriate solver. To that end, a ConstrainedVariable lazily
builds a mapping from solvers to solver-specific representations of its value. Dur-
ing construction, if the programmer has explicitly selected a solver, this solver is
5 http://en.wikipedia.org/wiki/Chakra(JScriptengine)
6 http://lisperator.net/uglifyjs/
7 Note that we cannot use eval to access the outer scope. If we only supported con-

straints that access fields of objects in the scope and do not call user defined func-
tions, we could have rewritten the code and evaluated the constraint expression
using JavaScript’s eval function, which has access to the enclosing scope. Using a
custom interpreter, however, allows us to easily instrument the execution of most
user-defined functions, so we can use normal object-oriented methods in constraint
expressions.

http://en.wikipedia.org/wiki/Chakra (JScript engine)
http://lisperator.net/uglifyjs/

428 T. Felgentreff et al.

asked to provide a value representation by sending the message constraintVariableFor

with the value as argument. If no solver was provided, the value is sent the
constraintSolver message. Solver libraries may override this message for types that
they can operate on. If the value responds with a solver instance, this solver
becomes the active solver for the currently constructed constraint and is asked
to provide a representation, again by sending constraintVariableFor.

Whenever a new representation is created in this manner, the solvers are
sorted to determine which region the variable belongs to. Only the solver re-
sponsible for this region may write to the variable; as far as all other solvers are
concerned it is read-only.

4.3 Determining Cooperating Solver Regions

The architecture for cooperating constraint solvers requires that each variable
must be read-only in all but one of the regions that it occurs in. Furthermore,
the regions and associated solvers must form an acyclic graph.

In Babelsberg/JS, when a variable appears in a new solver, we gather the
solvers for the variable and sort them into regions. The region information is
stored as a property of a solver instance. This allows, for example, the use of
multiple instances of the same solver in different regions.

The variable is marked read-only for all solvers except the one in the furthest
upstream region, the defining solver. This means that new values are assigned
by calling suggestValue on the defining solver, and that all other solvers are trig-
gered (in descending order of regions) once the defining solver has resatisfied its
constraints, as described in Section 4.1.

4.4 Edit Constraints

Since the original Babelsberg design did not include language-level support for
edit constraints, these were supplied by the solver libraries. In Babelsberg/R,
the meta-level protocol for inspecting constraints was used to support edit con-
straints in Cassowary and DeltaBlue. The programmer called the appropriate
edit method with the objects to be edited and a stream that would provide new
values. The Constraint meta-protocol was used to create edit variables, constrain
them to be equal to the supplied variables, and update them from the stream.

To support cooperating incremental re-solving (cf. Section 3.2), in
Babelsberg/JS there are two changes to this scheme. First, to support edit con-
straints within a single thread, the edit method returns a callback to input new
values into the solvers, rather than taking a stream of values. Second, since
the language design now supports edit constraints explicitly, the solvers have to
provide a specific edit constraint api.

Upon calling the edit method, the following methods are called on the solvers
and the supplied variables, in order:

prepareEdit is called on each solver variable. In this method, variables can pre-
pare themselves for editing. In Cassowary, for example, this would call the

Babelsberg/JS 429

addEditVar method on the solver with the variable as argument. For DeltaBlue,
this creates an EditConstraint on the variable and adds it to the list of con-
straints.

beginEdit is called once for each solver participating in the edit before the
callback is returned. In Cassowary, this initializes the edit constants array
and prepares the solver for fast re-solving when these constants change. In
DeltaBlue, the solver generates an execution plan to solve the constraints
starting with the EditConstraints as input.

Now the callback can be used to input new values into the system and trigger
re-solving. The callback will call resolveArray on each solver with the new values
and update the object’s storage (so other observers and hooks around the values
still work). Because the solver’s execution plan is fixed for the duration of an
edit, we disallow creating new edit callbacks before the current edit has finished.
When new constraints are created, the execution plan may also become invalid,
but we do not enforce invalidating the edit callback in this case.

To finish editing, the callback is simply called without supplying new values.

finishEdit is sent to each solver variable. Cassowary variables do nothing here,
DeltaBlue variables remove their EditConstraints from the solver.

endEdit is called once for each solver to reset the solver state.

Compared to Babelsberg/R, this makes the interface for edit constraints uni-
form across solvers and also allows it to work with cooperating solvers. However,
each solver now has to provide some support for this, so more work is required
to enable the feature.

5 Performance Evaluation

Our design tries to provide reasonable performance for a variety of applications.
To evaluate its performance, we investigated two scenarios: a) how constraint
solving performance compares with using imperative code to satisfy the con-
straints, b) how object-oriented performance is affected by our extension (thus
comparing the use of Babelsberg/JS with calling a constraint satisfaction library
from standard imperative code).

For the first problem, we used a Kaleidoscope example as a benchmark [28].
(The same benchmark was used for Babelsberg/R.) In this example, we simulate
a user interaction in which the user drags a slider to adjust the upper end of the
mercury in a thermometer. The constraints are that the mercury should follow
the mouse if possible, but must not go outside the thermometer, and that the
graphical representation of the thermometer and mercury (using a gray and a
white rectangle) as well as a number displaying the current value, should be
updated.

We compare the performance of a purely imperative solution using branches
and assignments, a constraint version that calls the Cassowary constraint sat-
isfaction library from imperative code, and a version with the same set of con-
straints in Babelsberg/JS (cf. Appendix B). Both of the constraint versions use
edit constraints.

430 T. Felgentreff et al.

Imperative Library Babelsberg/JS
100x 1.47 ± 0.128 24 ± 0.486 109 ± 2.29
1,000x 1.62 ± 0.0922 143 ± 4.26 214 ± 4.89
10,000x 1.86 ± 0.382 1445 ± 270 1311 ± 304

Unconstrained Access Constrained Access
1,000x 3.31 ± 0.289 8.57 ± 1.08
10,000x 20.4 ± 0.694 29.8 ± 1.82
100,000x 189 ± 5.83 241 ± 15.9

All numbers are the average execution time in milliseconds ± the standard
deviation. We ran each set of iterations 10 times on Firefox 27 on a 3.2 Ghz
Intel Core i5. This micro-benchmark show that, in extreme cases, the object-
constraint versions are many hundred times slower than the purely imperative
solution. However, Babelsberg/JS is comparable to the library-based approach.
Using a library has less overhead for few iterations (where creating the con-
straints takes a large portion of the time in Babelsberg/JS). However, in both
cases, by using edit constraints, we can achieve acceptable performance for re-
peatedly solving a set of constraints with varying input values. Considering that
Babelsberg/JS is intended for imperative programmers who want to express con-
straints in some parts of their programs, we expect that most of the time the vm
will not be solving constraints in tight loops, but running mostly imperative code
intermingled with constraint re-satisfaction. Furthermore, we think the benefits
for comprehensibility, code size, and robustness justify the performance impact
in some system parts. The imperative code is more complex because it has to
make all cases explicit using branches, it is hard to tell whether the solution is
optimal or complete, and the constraints are hard to derive from the code.

To test how the purely object-oriented parts of a system are affected if we
pass objects with constraints to them, we measured the overhead of field access
for constrained versus unconstrained fields by repeatedly reading the same 5
properties from an object first without and then with equality constraints on
each variable. These results are comparable to those for Babelsberg/R and show
that the overhead for reading constrained objects in purely imperative parts of
the code is minimal.

In our example applications — the circuit simulation, color palette chooser,
and temperature converter presented above, as well as a simple particle simu-
lation, an available-to-promise function, and a layout example — the overhead
of constraints was much less pronounced and they provided interactive perfor-
mance, often even without using edit constraints.

6 Future Work and Conclusion

We have presented a design for implementing an Object Constraint Programming
language without vm support, which is realized as a JavaScript extension called
Babelsberg/JS. We have also implemented a number of features from the original

Babelsberg/JS 431

ocp design, including unified language constructs for constraint definition and
object-oriented code, automatic maintenance of constraints, integration with the
existing syntax and semantics, an interface to add new solvers and constraint
solver constructs such as read-only variables and incremental re-solving; and
also extended the design to support cooperating constraint solvers. There are a
number of directions for future work.

Usability of Babelsberg/JS. An important area for future work is the evaluation
of the usability of our approach in general applications. We are interested in
the comprehensibility of Babelsberg/JS code, especially to the target group for
this language, i.e., imperative programmers with little prior experience with con-
straint programming. This will also provide opportunity to compare performance
on more practical examples.

Debugging, Explanation, and Solver Selection. It is currently difficult to tell
why a solver may not be able to satisfy a given constraint, why it produced an
unexpected result, or why finding a solution is slow. Our ConstraintInterpreter
should include support for reasoning about the constraint system it builds. Pro-
log (or just a direct backtracking algorithm) may be useful as a “meta-solver”
to automatically find a solver (or set of solvers) for a particular configuration of
constraints.

Other Babelsberg/R features. Babelsberg/R included support for more ocp fea-
tures that we have omitted for now in this work. Specifically, we want to add
support for identity [29], class, and message protocol constraints. Furthermore,
to control when solving is invoked, Babelsberg/R provides multi-assignments to
update multiple values simultaneously before a solver is invoked. Finally, we plan
to add the convenience methods once and assert ... during ... to control the duration
of constraints, although these could be trivially added using the meta-protocol
of Constraint objects.

Babelsberg/JS, compared to the earlier Babelsberg/R implementation, can be
applied more directly to existing problems. It runs unmodified in different Web
browsers, and integrates with the existing imperative language and libraries. The
work reported here is quite recent, and we expect to continue to evolve both the
language and its implementation.

References

1. Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: The lively kernel A
self-supporting system on a web page. In: Hirschfeld, R., Rose, K. (eds.) S3 2008.
LNCS, vol. 5146, pp. 31–50. Springer, Heidelberg (2008)

2. Lincke, J., Krahn, R., Ingalls, D., Roder, M., Hirschfeld, R.: The Lively PartsBin–
a cloud-based repository for collaborative development of active web content. In:
2012 45th Hawaii International Conference on System Science (HICSS 2012), pp.
693–701. IEEE (2012)

432 T. Felgentreff et al.

3. Sutherland, I.: Sketchpad: A man-machine graphical communication system. In:
Proceedings of the Spring Joint Computer Conference, IFIPS, pp. 329–346 (1963)

4. Borning, A.: The programming language aspects of ThingLab, a constraint-oriented
simulation laboratory. ACM Transactions on Programming Languages and Sys-
tems 3(4), 353–387 (1981)

5. Felgentreff, T., Borning, A., Hirschfeld, R.: Babelsberg: Specifying and solving
constraints on object behavior. Technical Report 81, Hasso-Plattner-Institut, Pots-
dam, Germany (May 2014)

6. Lopez, G., Freeman-Benson, B., Borning, A.: Kaleidoscope: A constraint impera-
tive programming language. In: Constraint Programming. NATO Advanced Science
Institute Series, Series F: Computer and System Sciences, vol. 131, pp. 313–329.
Springer (1994)

7. Grabmüller, M., Hofstedt, P.: Turtle: A constraint imperative programming lan-
guage. In: Research and Development in Intelligent Systems XX, pp. 185–198.
Springer (2004)

8. Badros, G.J., Borning, A., Stuckey, P.J.: The Cassowary linear arithmetic con-
straint solving algorithm. ACM Transactions on Computer-Human Interaction
(TOCHI) 8(4), 267–306 (2001)

9. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

11. Sadun, E.: iOS Auto Layout Demystified. Addison-Wesley (October 2013)
12. Enthought Inc: Enaml 0.6.3 documentation (February 2014)
13. Ohshima, Y., Lunzer, A., Freudenberg, B., Kaehler, T.: KScript and KSWorld:

A time-aware and mostly declarative language and interactive GUI framework.
In: Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013, pp. 117–
134. ACM, New York (2013)

14. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield,
A., Krishnamurthi, S.: Flapjax: A programming language for Ajax applications.
ACM SIGPLAN Notices 44(10), 1–20 (2009)

15. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly (Jan-
uary 2008)

16. Freeman-Benson, B.N., Maloney, J., Borning, A.: An incremental constraint solver.
Communications of the ACM 33(1), 54–63 (1990)

17. Rinard, M., Cadar, C., Nguyen, H.H.: Exploring the acceptability envelope. In:
Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA 2005), pp. 21–30.
ACM (October 2005)

18. Milicevic, A., Rayside, D., Yessenov, K., Jackson, D.: Unifying execution of im-
perative and declarative code. In: 33rd International Conference on Software En-
gineering (ICSE), pp. 511–520 (May 2011)

19. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Communications of the ACM 52(11), 60–67 (2009)

20. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th
ACM Principles of Programming Languages Conference (POPL 1987), pp. 111–
119. ACM (January 1987)

Babelsberg/JS 433

21. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. LISP and
Symbolic Computation 5(3), 223–270 (1992)

22. Van Cutsem, T., Miller, M.S.: Proxies: Design principles for robust object-oriented
intercession APIs. ACM Sigplan Notices 45(12), 59–72 (2010)

23. Kang, S., Ryu, S.: Formal specification of a JavaScript module system. In: Pro-
ceedings of the ACM International Conference on Object-Oriented Programming
Systems Languages and Applications, pp. 621–638. ACM (2012)

24. Borning, A.: Architectures for cooperating constraint solvers. Technical Report
VPRI Memo M-2012-003, Viewpoints Research Institute, Glendale, California
(May 2012)

25. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1, 245–257 (1979)

26. Long, F., Ganesh, V., Carbin, M., Sidiroglou, S., Rinard, M.: Automatic input rec-
tification. In: 2012 34th International Conference on Software Engineering (ICSE),
pp. 80–90. IEEE (2012)

27. Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M.R., Ka-
plan, B., Hoare, G., Zbarsky, B., Orendorff, J., et al.: Trace-based just-in-time type
specialization for dynamic languages. ACM Sigplan Notices 44(6), 465–478 (2009)

28. Lopez, G., Freeman-Benson, B., Borning, A.: Kaleidoscope: A constraint impera-
tive programming language. In: Constraint Programming. NATO Advanced Science
Institute Series, Series F: Computer and System Sciences, vol. 131, pp. 313–329.
Springer (1994)

29. Lopez, G., Freeman-Benson, B., Borning, A.: Constraints and object identity. In:
Pareschi, R. (ed.) ECOOP 1994. LNCS, vol. 821, pp. 260–279. Springer, Heidelberg
(1994)

434 T. Felgentreff et al.

A Examples

Circuits. The circuit parts are represented by classes that create constraints
in their initializers. (The context has to be passed because classes are written
in plain JavaScript files in Lively without source transformation.) The code to
connect leads is omitted (it constrains voltages to be equal and the sum of
currents to be 0.0 between leads).

1 Object . s ubc l a s s (’ T w o L e a d e d O b j e c t ’ , {
2 i n i t i a l i z e : function () {
3 this . l ead1 = { vo l tage : 0 . 0 , cu r r en t : 0 . 0 } ;
4 this . l ead2 = { vo l tage : 0 . 0 , cu r r en t : 0 . 0 } ;
5 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
6 return s e l f . l ead1 . cu r r en t + s e l f . l ead2 . cu r r en t == 0 . 0 ;
7 }) ;
8 } ,
9 }) ;

10 TwoLeadedObject . s ubc l a s s (’ R e s i s t o r ’ , {
11 i n i t i a l i z e : function ($super , r e s i s t a n c e) {
12 $super () ;
13 this . r e s i s t a n c e = r e s i s t a n c e ;
14 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
15 return s e l f . l ead2 . vo l tage − s e l f . l ead1 . vo l tage ==
16 s e l f . l ead2 . cu r r en t ∗ r e s i s t a n c e
17 })
18 } ,
19 }) ;
20 TwoLeadedObject . s ubc l a s s (’ B a t t e r y ’ , {
21 i n i t i a l i z e : function ($super , supplyVol tage) {
22 $super () ;
23 this . supplyVol tage = supplyVol tage ;
24 always({ s o l v e r : cassowary ,
25 ctx : { s e l f : this , supply : this . supplyVol tage }} ,
26 function () {
27 return s e l f . l ead2 . vo l tage − s e l f . l ead1 . vo l tage == supply
28 })
29 } ,
30 }) ;
31 Object . s ubc l a s s (’ G r o u n d ’ , {
32 i n i t i a l i z e : function () {
33 this . l ead = { vo l tage : 0 . 0 , cu r r en t : 0 . 0 } ;
34 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
35 return s e l f . l ead . vo l tage == 0.0 && s e l f . l ead . cu r r en t == 0.0
36 })
37 } ,
38 }) ;
39 TwoLeadedObject . s ubc l a s s (’ Wire ’ , {
40 i n i t i a l i z e : function ($super) {
41 $super () ;
42 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
43 return s e l f . l ead1 . vo l tage == s e l f . l ead2 . vo l tage
44 })
45 } ,
46 }) ;
47 TwoLeadedObject . s ubc l a s s (’ V o l t m e t e r ’ , {
48 i n i t i a l i z e : function ($super) {
49 $super () ;
50 this . read ingVoltage = 0 . 0 ;
51 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
52 return s e l f . l ead1 . cu r r en t == 0.0 &&
53 s e l f . l ead2 . vo l tage − s e l f . l ead1 . vo l tage == s e l f . read ingVol tage
54 })
55 } ,
56 }) ;

Babelsberg/JS 435

B Benchmarks

For comparing purely imperative to purely constraint-oriented performance we
started with the following imperative version.

1 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
2 mouse . locat ion_y = i
3 var old = mercury . top
4 mercury . top = mouse . locat ion_y
5 i f (mercury . top > thermometer . top)
6 mercury . top = thermometer . top
7 i f (old < mercury . top) // move gray rect u p w a r d s (d r a w s over the w h i t e)
8 gray . top = mercury . top
9 else // move w h i t e rect d o w n w a r d s (d ra w s over the gray)

10 white . bottom = mercury . top
11 d i sp l ay . number = mercury . top
12 }

In the constraint library and Babelsberg/JS versions, we specify the same
constraints and use an edit constraint in the same manner, once through the
Cassowary api and once in the syntax of Babelsberg/JS. Given below is the
Babelsberg/JS version. (The solver argument is omitted for brevity.)

1 always(function () { return d i sp l ay . number ==mercury . top }) ;
2 always(function () { return white . top == thermometer . top }) ;
3 always(function () { return white . bottom==mercury . top }) ;
4 always(function () { return gray . top ==mercury . top }) ;
5 always(function () { return gray . bottom==mercury . bottom }) ;
6 always(function () { return mercury . top <= thermometer . top }) ;
7 always(function () { return mercury . bottom== thermometer . bottom }) ;
8 always({ p r i o r i t y : " s t r o n g " } , function () {
9 return mercury . top ==mouse . locat ion_y

10 }) ;
11
12 var cb = ed i t (ctx . mouse , [" l o c a t i o n _ y "]) ;
13 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
14 cb (i) ;
15 }

To compare accessor performance with and without constraints, we measured
the following two loops individually:

1 var o = { get a () {return 0} , get b () {return 0} , get c () {return 0}} ,
2 oc = {a : 0 , b : 0 , c : 0} ;
3 always({ s o l v e r : cassowary , ctx : {oc : oc }} , function () {
4 return oc . a==0 && oc . b==0 && oc . c ==0
5 }) ;
6
7 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
8 sum = o . a + o . b + o . c ;
9 }

10 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
11 sum = oc . a + oc . b + oc . c ;
12 }

436 T. Felgentreff et al.

C Artifact Description

Authors of the Artifact. Design and documentation: Tim Felgentreff, Alan
Borning, Robert Hirschfeld, Jens Lincke, Yoshiki Ohshima, Bert Freudenberg,
Robert Krahn. Core developer: Tim Felgentreff.

Summary. The artifact shows Babelsberg/JS, an implementation of the
Babelsberg design for object-constraint programming in the Lively Kernel. It
includes an installation of the Lively Kernel environment and a number of ex-
ample applications, some of which are mentioned in the paper. A screencast
shows how the examples can be accessed. The provided package is designed to
support repeatability of the experiments of the paper: in particular, it allows
users to try and modify the example applications from the paper, as well as to
run the benchmarks.

Babelsberg/JS uses a modified JavaScript interpreter to transform constraint
expressions into constraints that are handed to the Cassowary and DeltaBlue
constraint solver libraries. The full source code is included in the Lively Kernel
environment, and instructions for exploring it are included.

Content. The artifact package includes:

– a Babelsberg/JS installation in a local Lively Kernel environment;
– the Chromium browser already open on a Lively Kernel world;
– a screencast that shows how to interact with the examples.

We provide a VirtualBox disk image for testing Babelsberg/JS. The image
contains a stripped down installation of Ubuntu 13.10 LTS set up to launch
Chromium directly with the screencast and the Lively Kernel page already
open. Through port forwarding the environment is also accessible from the host:
http://localhost:9001/users/timfelgentreff/ecoop_artifact.html.
Note that to access the latter, we recommend a WebKit-based browser (Safari,
Chrome, or their derivatives) or a recent version of Firefox (29 at the time of
this writing).

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink.

Tested Platforms. The artifact is known to work on Oracle VirtualBox ver-
sion 4 (https://www.virtualbox.org/) with at least 512 MB RAM.

License. BSD-3-Clause (http://opensource.org/licenses/BSD-3-Clause)
for Babelsberg/JS, MIT (http://opensource.org/licenses/MIT) for the
Lively Kernel environment

MD5 Sum of the Artifact. 57324cb58f7a517ab1abd1088bbd9d0f

Size of the Artifact. 810 MB

http://localhost:9001/users/timfelgentreff/ecoop_artifact.html
https://www.virtualbox.org/
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/MIT

Automated Multi-Language Artifact Binding

and Rename Refactoring between Java and
DSLs Used by Java Frameworks

Philip Mayer and Andreas Schroeder

Programming & Software Engineering Group
Ludwig-Maximilians-Universität München, Germany

{mayer,schroeder}@pst.ifi.lmu.de

Abstract. Developing non-trivial software applications involves using
multiple programming languages. Although each language is used to de-
scribe a particular aspect of the system, artifacts defined inside those
languages reference each other across language boundaries; such refer-
ences are often only resolved at runtime. However, it is important for
developers to be aware of these references during development time for
programming understanding, bug prevention, and refactoring. In this
work, we report on a) an approach and tool for automatically identifying
multi-language relevant artifacts, finding references between artifacts in
different languages, and (rename-) refactoring them, and b) on an ex-
perimental evaluation of the approach on seven open-source case studies
which use a total of six languages found in three frameworks. As our main
result, we provide insights into the incidence of multi-language bindings
in the case studies as well as the feasibility of automated multi-language
rename refactorings.

Keywords: multi language software, polyglot programming, Java,
domain-specific languages, program comprehension, refactoring,
experiment.

1 Introduction

The use of multiple programming languages in the development of a software
system is a common occurrence in software creation. In many cases, a multitude
of languages is used; this includes the well-known general purpose languages
Java, C, C++, JavaScript, or Ruby; but also domain-specific languages (DSLs)
which are dedicated to certain areas, such as the database field (SQL, HQL,
Entity Mapping Files), user interface design (HTML, JSP, JSF, OpenGL, SVG,
CSS) or system setup and configuration (WSDL, Spring IOC, OSGi DS).

There are different reasons for using multiple languages in the development of a
software system. A usually cited benefit is increased productivity [3] through the
use of specialized languages for a certain domain (language-as-a-tool metaphor).
Additional reasons lie in the use of legacy code (system integration) and in the
expertise of the developers at hand.

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 437–462, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

438 P. Mayer and A. Schroeder

Applications consisting of parts written in different programming languages
have been called Multi-Language Software Applications (MLSAs) [9]. Each part
and thus language is used to encode a particular aspect of the system. However,
each of the parts usually also contains software artifacts which, due to certain
properties such as their name or position, are relevant across language borders,
being bound to artifacts in a different language. Binding of such artifacts usually
happens at runtime by a framework or (virtual) machine.

Unfortunately, such multi-language bindings can lead to problems, both in the
initial software creation phase and in maintenance, since they must be kept intact
for the system to exhibit the proper behavior. Throughout development and
maintenance as well as in program understanding, programmers must be aware
not only of the semantics of the individual languages, but also of the semantics of
the frameworks which handle the multi-language bindings which leads to added
mental load. This is a particular problem in refactoring: If an artifact is changed
without changing the referenced artifacts in other languages, the overall system
semantics changes (and the system might break altogether). Worrying about
such problems may lead developers to be hesitant about refactorings, which
means the accumulation of technical debt [15].

We believe that a generic and systematic approach to supporting multi-
language software systems can help to improve the situation for developers and
increase productivity. In this work, we report on an investigation into such an
approach within the Java ecosystem, i.e. in software systems which use Java as
their main programming language and employ frameworks with domain-specific
languages for implementing the non-Java parts of the system.

Our work contributes to the state of the art in three ways:

– we propose an approach for multi-language support in IDEs in which lan-
guage artifacts and artifact bindings are handled as top-level entities,

– we present an implementation of this approach, including automated dis-
covery and binding of artifacts at design time as well as rename refactoring
across six languages from three frameworks,

– we evaluate our approach and tool on seven open-source case studies, giving
empirical evidence of a) incidence of multi-language artifacts and bindings
and b) accuracy of discovery, binding, and rename refactoring of our tool.

Our evaluation shows that we can indeed automatically discover, bind, and
refactor artifacts in 3783 multi-language bindings — with full success in 95.96%
of cases and with well-justified warnings to the user in the remaining cases.

2 Exploration Area and Motivating Example

We have selected the Java ecosystem as our area of investigation, that is soft-
ware which uses Java as the main programming language and domain-specific
languages provided by Java frameworks for encoding specific aspects of the sys-
tem. The three areas, or domains, of system configuration, database querying,
and user interface design each feature a number of such frameworks; from each,
we have selected one framework for further investigation:

Artifact Binding and Rename Refactoring between Java and Java DSLs 439

– The Spring framework1 includes an XML dialect for configuring Java objects,
in particular using dependency injection through JavaBean-style properties.
We refer to this language as the Spring language.

– The Hibernate OO mapper2 allows definition of the mapping between Java
classes and database tables in another XML dialect (HBM). Additionally,
the Hibernate Query Language (HQL) is used for querying the database (in
the form of the defined entities). We refer to the first as the HBM language,
the second as the HQL language.

– The Wicket UI framework3 also contains two conceptual languages. The
first is an extension to HTML used for defining HTML rendering templates.
These templates are inflated and populated using a corresponding UI compo-
nent tree providing dynamic data, which is defined in Java using the Wicket
API, an internal DSL which we call Wicket/API. Bindings between Wick-
et/HTML and Wicket/API are established through the use of corresponding
identifier strings.

Each of the languages in these frameworks offer two to five artifact types which
are potentially bound to artifacts in other languages. These artifacts, which are
shown in Figure 1, are defined and exemplified in the corresponding framework
documentations and implementations.

The diagram shows the Java language in the center with the artifact types
Constructor, Type, Parameter, and Method/Field (mostly, one or the other is
used; therefore, they are shown together). These artifacts may be bound to three
DSLs: Spring, HBM, and Wicket/API. From HBM and Wicket/API, additional
multi-language bindings may lead to HQL and Wicket/HTML, respectively.

Spring

Java

W/API

W/HTML

HBM HQLBean

ConstructorArgument

Property

Container

Element

Method / Field

Constructor

Parameter

Type

Page

PropertyModel

Fragment

Widget

EntityReference

Attribute AttributeReference

Entity

Fig. 1. Artifact Bindings Across Languages

1 www.springsource.com
2 www.hibernate.org
3 wicket.apache.org

www.springsource.com
www.hibernate.org
wicket.apache.org

440 P. Mayer and A. Schroeder

Listing 1.1. Hibernate Queries (HQL)

1 public class HibernateJtracDao {

2 public int bulkUpdateStatusToOpen(Space sp,

3 int st) {

4 int c = bulkUpdate (" update Item i set i.status=?

where i.status=? and i.space.id=?",

5 new Object[] { State.OPEN , st , sp.getId()});

6 }

7 }

Listing 1.2. Hibernate Mapping (HBM)

1 <hibernate -mapping package =" info.jtrac.domain">

2 <class name ="Item" table=" items">

3 <property name ="status" column="status"/>

4 </class >

5 <class name =" History" table=" history">

6 <property name ="status" column="status"/>

7 </class >

8 </hibernate -mapping >

Listing 1.3. Java

1 public abstract class AbstractItem {

2 public Integer getStatus() {

3 return status;

4 }

5 public void setStatus(Integer status) {

6 this.status = status;

7 }

8 }

Listing 1.4. Wicket Property & Widget Definition (Wicket/API)

1 private class ItemViewForm extends Form {

2 public ItemViewForm () {

3 History h = new History ();

4 setModel (new BoundCompoundPropertyModel(h));

5 add(new IndicatingDropDownChoice("status",

6 states , renderer));

7 }

8 }

Listing 1.5. Wicket Page Fragment (Wicket/HTML)

1 <form wicket:id=" form">

2 <select wicket:id="status"/>

3 </form >

Artifact Binding and Rename Refactoring between Java and Java DSLs 441

As a motivation for our work, we give an example from one of our case studies
which shows how multi-language bindings look like in real life. The example,
which is shown in Listings 1.1 to 1.5, shows bindings between Java, HBM, HQL,
Wicket/API, and Wicket/HTML.

We begin with the property status in Listing 1.3, which is defined with
JavaBean-style getters and setters in the abstract class AbstractItem. This
class is the common superclass of the classes Item and History (which are not
shown). However, these two classes are also Hibernate entities and defined as
such in Listing 1.2 along with a status property each, which is bound to the
getters and setters for status as shown. This Hibernate property is used in HQL
queries in Listing 1.1; in this case, on the entity Item or rather its alias i.

The property status of the History subclass of AbstractItem, as defined in
Listing 1.3, is also referenced from Wicket/API (Listing 1.4, line 4) through a
BoundComponentPropertyModel, where History is defined as a data source for
the DropDownChoice widget in line 5. The status string used in line 5 is also
used as a widget identifier between Wicket/API and Wicket/HTML; the latter
is shown in Listing 1.5.

Thus, the example shows a total of nine multi-language bindings between
eight artifacts across five languages (or one general-purpose language and two
frameworks). If any of these elements is renamed, all of the others must be
renamed as well since the bindings are created (among other things) due to name
resolution. It is additionally to be expected that the getters and setters from Java
are also referenced elsewhere such that any invocations must be refactored as
well. The same applies to any other use of the Hibernate HBM property definition
and the ID of the Wicket/API widget.

To evaluate automated discovery and rename refactoring of such bindings,
we employed seven open-source case studies with a size between 6k and 110k
LOC (see Table 1). Two of the case studies use mainly Spring; two use mainly
Hibernate; and two use mainly Wicket. A seventh uses all three frameworks
in combination. We discuss how the case studies were used for evaluation in
Section 4.

3 Multi-Language Artifact Binding and Rename
Refactoring

The use of multiple additional languages in Java software systems is not new. Ac-
cordingly, existing Java IDEs already contain some support for finding artifacts
bindings and for refactoring across language borders. However, such solutions are
usually rather isolated: There is sporadic support in the form of IDE plug-ins
for particular frameworks such as Spring or Hibernate, for example for Eclipse.
There are three major drawbacks to current implementations.

Firstly, there is no generic support for multi-language artifact binding per se;
that is, IDEs are generally unaware of such bindings unless a plug-in contributes
them, in which case each plug-in must provide its own data structure, navigation
menus, and so on.

442 P. Mayer and A. Schroeder

Secondly, current Java IDEs (Eclipse, IDEA, NetBeans) use a participant ap-
proach to refactoring non-Java elements: Usually, DSL refactorings are imple-
mented as add-ons to existing Java refactorings instead of refactorings in their
own right since there is specific support for such participation. By contrast, im-
plementing completely new DSL refactorings with participant support of their
own involves significant additional effort. Also, refactoring changes might need to
be propagated back and forth between languages as new bindings are identified
which is also difficult to implement using current participant approaches (first,
participants need to be enabled and disabled depending on where a refactoring
is started; second, changes must be gathered in a sort of feedback loop to ensure
that every participant may react to changes by others).

Finally, there is no systematic support for handling more than two languages,
in particular if they are not directly bound to Java. As indicated above, the
artifacts of some DSLs (HQL) might bind to artifacts of other DSLs instead of
Java (namely HBM), thus creating cascades of bindings (and thus refactorings).

We believe that a generic, systematic approach to multi-language artifact
binding and refactoring will make it easier to implement MLSA support in IDEs
and thus lead to better support for developers. We thus investigate an approach
to handling multiple languages in IDEs which

– treats all languages, including DSLs, as equals and offers the infrastructure
to make artifacts of each language centrally available,

– defers handling of binding resolution between each of the languages to ded-
icated binding resolvers,

– and allows per-language refactorings to trigger, and be triggered from, generic
refactoring routines which propagate changes based on artifact bindings.

We discuss this approach, and a prototype implementation within Eclipse, in
the next three sections. Note that the tool we have implemented is not intended
to be a product; rather, its aim is demonstrating feasibility and generating the
data about real-life software analysis and refactorings.

Section 3.1 discusses artifact discovery, i.e. reading source code and providing
artifacts. Section 3.2 discusses the dedicated binding implementations which
resolve multi-language bindings. Finally, Section 3.3 discusses how refactorings
across language borders are implemented.

3.1 Artifact Discovery

Our approach is based on automated discovery of artifacts relevant for multi-
language bindings. With the term artifact we refer to a representation of a
concept used in the source code, such as, for Java, TypeDeclarations which in
turn contain MethodDeclarations, LocalVariableDeclarations, Statements,
and so on. These artifacts form a semantic model [5] in which references or
in-language bindings between them are already resolved; for example, a Java
MethodInvocation is bound to its MethodDeclaration.

The benefit of using semantic models is a simplification of the navigation
within the code base as well as uniquely identifying artifacts; it is furthermore

Artifact Binding and Rename Refactoring between Java and Java DSLs 443

useful in code analysis and visualization and, in our case, in separating the diffi-
culties in finding artifacts within a language with other multi-language concerns.

A semantic model must be extracted from the source code — a parser is re-
quired as well as resolution mechanisms for in-language bindings. We call this
process model discovery; for each language, a model discoverer must be writ-
ten and registered with the platform. In our approach, we use one meta-model
per language, not a single language-agnostic model. Analysis is later done by
analyzing relationships between pairs of individual language models.

Required Effort. The effort required for model discovery routines depends en-
tirely on the language which is analyzed. Regarding difficulty, we can separate
the languages we have investigated into two groups. The first group contains Java
(the base language, without data flow), Spring, Hibernate Mapping (HBM), and
Wicket/HTML. In these languages, it is relatively easy to extract the structure
and all artifacts from the source code; furthermore, in-language bindings be-
tween elements may be complex, but are based on straightforward and exact
rules. Parsers with in-language binding resolution already exist for Java; Spring
and HBM are XML-based files such that existing XML parsers may be used to
extract data, with a follow-up of in-language binding resolution implemented by
hand.

The second group contains HQL and Wicket/API; in other words, languages
whose source fully or partially consist of strings handled by Java statements.
In both cases, identifiers or query fragments may be combined using an arbi-
trary number and combination of loops, decisions, and values passed in from
the outside. In case of Wicket/API, data and control flow is furthermore used
to (manually) construct a UI tree out of objects in memory. This tree of Java
objects is required to correspond to the tree created in HTML out of HTML
widgets.

Finding and resolving all HQL and Wicket identifiers and artifacts is generally
undecidable in the environment they live in, i.e. in a general purpose program-
ming language. We have gone to great length in the model discovery for these
languages; however, some elements could not be extracted which in turn leads
to various problems in artifact binding and refactoring.

An example of this from one of the case studies is shown in Listing 1.6, where
the variable field is used in the construction of the query. The contents of
field, in this case, cannot be resolved in general since it represents a custom
contributed database table column. Thus, it is known that some attribute of
Item is accessed, but not which one. In such cases, a specific unresolved artifact
is added to the model to make this problem explicit (this information is later
used to add refactoring warnings).

Listing 1.6. Dynamic Query in HQL

1 bulkUpdate ("update Item item set item ." +

field.getName () + " = null ");

444 P. Mayer and A. Schroeder

Besides unresolved elements, there may also be orphan artifacts. Contrary to
the example above, these are artifacts whose reference from other model elements
cannot be resolved — that is, for example, a widget creation is found in the code,
but it is unknown to which page or parent element it belongs. Like unresolved
elements, these are reported explicitly in the model.

Static Analysis. For discovering HQL and Wicket artifacts embedded in API
calls, we have created a custom static analysis approach on top of the MoDisco
Java semantic model4. In terms of data flow analysis, our approach is interpro-
cedural (in that it treats method invocations non-atomic) and flow-sensitive (in
that it considers the order of statements).

The domain over which our analysis operates is the domain of method and
object environments: we keep track of approximations of valuations of stack and
heap variables (i.e. local variables and object fields). The values we approximate
are strings for HQL queries as well as custom representations of framework data
structures such as UI trees for Wicket and query trees for HQL. The transfer
functions we use depend on the source of the code they represent: for application
code, we use standard transfer functions that correspond to the semantics of
Java. For invocations of framework methods, we use custom transfer functions
on the representations of framework data structures. For instance, the transfer
function for line 5 in Listing 1.4 creates a new drop down choice component,
and adds it as child to the ItemViewForm component. Invocations of framework
methods that are not analyzed (for example, the Java Collections framework)
are treated as atomic and ignored.

Our static analysis only performs a single pass over a sequence of program
statements following method invocations, and has therefore two pragmatic limi-
tations: firstly, loops found in program code are handled by performing a single
pass of the loop body. Secondly, recursive methods are handled by ignoring
back-edges in the call graph, i.e., by skipping recursive method calls. Because
of these limitations, our static analysis will miss fabricated identifiers and over-
approximates artifacts in looping and recursive program code. In the context of
model discovery for multi-language artifact binding, however, this is no severe
limitation, as every multi-language binding must point to a corresponding static
name in another language, and thus fabrication of names is not encouraged in
any of the analyzed frameworks.

The analysis routines we implemented proved sufficient to discover the vast
majority of artifacts relevant to multi-language artifact binding, as discussed
in the next section. Since artifact discovery in HQL and Wicket/API is only
a partial aspect of our work, it was not our goal to provide full coverage. In
particular, we did not go as far as creating grammars for string expressions
found in Java code as in Christensen et al. [2]. Also, we do not provide support
for the Java Collection Framework and do not analyze uses of Java Reflection
as in Livshits et al. [10].

4 www.eclipse.org/MoDisco

www.eclipse.org/MoDisco

Artifact Binding and Rename Refactoring between Java and Java DSLs 445

3.2 Multi-Language Artifact Binding Resolution

Multi-language binding resolution is concerned with associating artifacts from
two languages with one another, based on the rules of the underlying frame-
work (such as Spring). Considering our example in Section 2, the two HQL
AttributeReference artifacts with name status must each be bound to the
HBM Property with the same name.

The name of an artifact is, in most cases, an important aspect of binding, but
it is nearly never the only one: All languages we have investigated are strongly
hierarchical; thus, the position of artifacts within such hierarchies is crucial. In
our example, the HQL attribute status only refers to the status property of
class Item; not any other class. It is obvious that a purely textual search will
fail in most cases given such a structure. Furthermore, frameworks usually give
developers quite a lot of freedom, i.e. different ways of achieving the same thing,
optional bindings, or double meanings for identifiers. The binding resolution
routines must take these into account and thus depend on the positioning of
elements, attribute value grouping, different naming conventions, and so on.
Multi-language binding resolution fails if an artifact is found in one language
but its required complementary artifact — based on all the framework rules and
options — in another language is not.

For each interesting language pair, we have created dedicated binding resolvers
which each use their own custom resolution algorithm. These algorithms are
based on the binding logic of the underlying frameworks (i.e. Spring, Hibernate,
and Wicket); we have discussed some of these algorithms in detail in [11]. As an
example, the binding resolver for Spring first binds Spring beans (from the Spring
artifact model) to Java classes (from the Java artifact model) based on fully
qualified class names. Afterwards, it binds nested Spring properties to members
in the previously bound Java classes based on simple names.

The binding resolution algorithms in our approach thus always bind artifacts
of two languages together. This yields five resolution implementations for the
six languages we have investigated: Spring and Java, HBM and Java, and Wick-
et/API and Java are the ones grouped around Java; while HQL and HBM and
Wicket/HTML and Wicket/API deal with DSLs on both sides.

The binding results in the form of individual artifacts and the links between
them are reported in a common language-agnostic linking model. This model
later allows identifying the necessary rename operations for a change; its contents
are centrally available on the IDE level; thus, two binding resolvers may bind the
same Java artifact into different languages, which is what happens, for example,
with the status property in the example (Listing 1.2). In this way, the IDE can
support navigation from artifact to artifact and is aware of transitively connected
artifacts; in the case of binding errors, it can report and annotate the offending
artifact.

As in model discovery, writing a binding resolver requires effort. While the
code implementing the actual resolving is already part of each framework im-
plementation (e.g., in Spring, Hibernate, and Wicket), it is written with a fo-
cus on runtime and thus not easily extracted. In fact, in our case, we have

446 P. Mayer and A. Schroeder

re-implemented all resolution code by hand based on the framework documenta-
tion and the available framework code. While a good knowledge of the framework
involved is certainly a requirement for writing a binding resolver, in most cases
the logic, though complex, is not overly difficult and thus does not require a
large investment.

3.3 Multi-Language Rename Refactoring

The last part of our approach is support for multi-language rename refactoring.
Many refactoring procedures have been defined in the literature [4]. Of these,
the most important ones across language borders are rename refactorings, to
which we restrict ourselves in this work. These are also the most commonly
used automated refactorings: A study in 2012 has shown 44% of all tracked
refactorings to be rename refactorings [22].

Renaming artifacts even in one language can get very complex (especially
in Java [18]); thus, we believe it is best to re-use existing refactorings rather
than implementing new ones for multi-language refactorings. In our work, we
therefore assume that each language comes with its own set of automated rename
refactorings. This is certainly true for Java in most IDEs; it is less true for
the DSLs we have looked at. For some, plug-ins are available which add this
functionality, for some, there are not. In the latter cases, we have implemented
single-language rename refactorings by hand to ensure an equal setup for all
languages (fortunately, the selected DSLs include only limited amounts of in-
language bindings and thus the refactorings are rather simple).

Relating Artifact Names. To support rename refactoring across language bor-
ders, we need to know how the names of the artifacts relate. Using the informa-
tion from the multi-language artifact binding, we already know which artifacts
are bound across language borders. The binding resolvers discussed in the last
section also have the information which properties of these artifacts carry the
names relevant for the binding, and how the names are related; to support the
refactoring step, this information needs to be attached to the bindings (on a
meta-level).

In some cases, the relationship is very simple: If a Spring property is bound to
a Java field, the names must match exactly. In other cases, some transformation
takes place: If the property is bound to a setter, for example, the Java method
name must be prefixed with set and the first letter of the property name must
be uppercased (adhering to the JavaBean convention).

Changing Artifacts. Refactoring usually starts from a single change of an ar-
tifact property (such as a Java method name) which is triggered by the user.
Once known to the multi-language enabled IDE, this change can now be propa-
gated through the multi-language bindings to all artifacts which are (transitively)
bound to the artifact in which the change originated, i.e., to its transitive binding
closure. This closure can be found generically without involving language-specific

Artifact Binding and Rename Refactoring between Java and Java DSLs 447

routines. Note that we may move back and forth between languages in this pro-
cess: If, for example, we start with Item.status from Listing 1.2 and move to
Java, the fact that status is not defined in Item but in a superclass and is used
also in History requires us to move back to HBM (and perhaps even HQL).

The resulting transitive closure may contain artifacts from many different lan-
guages, each annotated with the information which properties must be changed
to which new value. The actual source code-changing rename can now be per-
formed by language-specific refactoring routines as discussed above, which may
lead to additional in-language binding renames. For example, renaming a Java
method may involve renaming all of the method invocations, which are not rel-
evant across languages but certainly relevant within Java.

Error Conditions. Multi-language refactorings can only be executed on artifacts
with established multi-language bindings (otherwise, the original artifact is an-
notated as having a binding error during binding resolution). Still, a refactoring
may not always be possible.

Firstly, there are conditions in which we must inform the user that we do not
have sufficient information to guarantee a successful refactoring execution: Such
warnings result from problems in artifact discovery. As mentioned in Section 3.1,
there may be cases where we know that there is an artifact reference present but
not exactly which one, indicated through the presence of an unresolved artifact.
In this case, a warning is attached to the refactoring (as, e.g., the Java rename
refactoring does in the presence of parsing errors).

Secondly, any of the single-language refactorings invoked may veto a change
(for example, due to a restricted name in a language). In this case, the overall
refactoring is aborted with an error.

4 Experimental Evaluation

The underlying rationale for automated multi-language binding and refactoring
support is improving developer productivity. However, productivity is hard to
measure directly. We have thus instead opted for measuring a surrogate endpoint,
which is given by the fitness for the particular purpose of our approach; in
particular that our tool is able to automatically and correctly:

– identify multi-language relevant artifacts in each individual language,
– identify and establish the bindings between said artifacts,
– refactor the previously bound artifacts across multiple languages.

Our assumption is that a developer with such tool support is more productive
than without. It is future work to test the surrogate against the actual endpoint
with adequate empirical studies. In the following, we discuss the setup, execution,
and results of our evaluation.

448 P. Mayer and A. Schroeder

4.1 Experimental Setup

Case Study Setup. We selected seven open-source applications which make
use of Java and at least one of the three frameworks we support. Our sam-
pling process was as follows: After having selected the frameworks to investigate
(Spring, Hibernate, and Wicket), we performed a search for applications using
these frameworks (two for each) in the ohloh.net repository. Unfortunately, the
population size was quite small, i.e. we did not find many applications which
were a) not trivially sized, b) not frameworks or framework extensions them-
selves, and c) in a compilable and unit-testable state. We selected the first seven
applications for which a) to c) were satisfied.

Table 1. Case Studies

Case Domain Languages Version LOC

Plazma ERP+CRM solution Spring 1.0.2 78k

Tudu Lists Todo Lists Management Spring, Hibernate 2.3 6k

itracker Issue Tracker Hibernate, Spring 3.1.5 110k

PicketLink Identity Management Hibernate 1.3.1 42k

Brix Content Managament Wicket 2013-08-21 31k

gidooCMS Content Management Wicket 2013-08-21 10k

JTrac Issue Tracker All 2.1.0 14k

The cases are listed in Table 1. If possible, the latest stable version was down-
loaded either from the repository or from a release website. In the case of gi-
dooCMS and Brix, no such version was available; a snapshot was instead taken
from the repository. The cases were prepared for analysis as follows:

– Since our tool is Eclipse-based, all case studies were converted to Eclipse
projects such that the code compiles with the JDT and unit tests could be
run within the Eclipse environment, and without any other build system
(such as Maven).

– Since we use the MoDisco discoverer for Java, all classes relevant for discov-
ery must be available as source code; the relevant library classes were thus
extracted and added as source files (and removed from the libraries).

– For refactoring testing, we require a dense test net for all multi-language
relevant artifacts. Where such was not available, we have implemented ad-
ditional tests by hand.

Creating tests for each case study ranged from trivial to demanding. In the
case of Spring and HBM, it was sufficient to instantiate the frameworks since
they perform start-up tests to ensure integrity of the bound artifacts. However,
for HQL as well as for Wicket, no such start-up test mechanisms were available.
However, executing the code containing the artifacts leads the framework to fail;
thus, tests were implemented to cover all the relevant lines of code.

Artifact Binding and Rename Refactoring between Java and Java DSLs 449

Tool Setup. Our tool provides three types of results: artifacts, bindings, and
refactoring closures. Firstly, the artifact discovery results in a list of all artifacts
potentially multi-language relevant which are available in a project. Since it is
not possible to test the correct discovery of these artifacts automatically, we
have created tool support (in addition to orphan detection) specifically for the
task of annotating artifacts and have manually read through the source code to
ensure that all relevant artifacts were covered.

Secondly, the binding resolvers discover relationships between artifacts from
different languages. As above, these bindings need to be checked by hand. Again,
we have created specific tool support for the visualization of such bindings,
which allowed us to manually iterate over the bindings, checking both successful
bindings and error cases.

The final result are transitive artifact closures and their refactoring. In this
case, we have opted for automated verification in the same spirit as in “normal”
refactorings: By using unit tests. As mentioned in the previous chapter, refac-
torings are executed on the transitive closures of refactoring changes, i.e. on a
group of artifacts which need to be renamed together. To verify whether the
renamings performed are correct, the following process was run for all closures,
one after the other:

– All unit tests were first run on the unchanged source code. The tests were
expected to pass.

– In the second phase, artifacts were grouped by language. One by one, these
artifact groups were renamed individually, i.e. first the Java artifacts, then
the Spring artifacts, and so on. After each rename, the tests were run and
expected to fail to ensure that renaming the artifacts individually actually
introduces problems. After each test, the changes were undone again.

– Finally, all artifacts in the current closure were renamed and the tests were
run one more time; in this case, they were expected to succeed. This change
was undone as well before proceeding to the next closure.

This process is a very thorough test on many parts of the framework: It
requires that the correct artifacts are grouped into closures; that each artifact
is correctly resolved and has the right source code location attached; that each
individual language refactoring is triggered correctly; and (on the case study
side) that there are indeed tests which cover the multi-language bindings of the
closure.

4.2 Results

Artifact Discovery. The result of artifact discovery is a list of potentially
multi-language relevant artifacts (see again Figure 1). The discovery results are
shown in Table 2 (note that the figure starts at 50%, the remainder being Java
artifacts).

Since all of the cases are written using Java as the main language, the percent-
age of Java artifacts is rather high. In Java, potentially relevant artifacts include

450 P. Mayer and A. Schroeder

Table 2. Discovered Artifacts for each Case Study per Language

Language Plazma Tudu itracker pLink Brix gidoo JTrac Total

Java 12 525 1083 4922 2963 5342 1469 3027 31 331

Spring 450 78 236 0 0 0 102 866

HBM 0 21 198 59 0 0 150 428

HQL 0 3 205 244 0 0 182 634

W/API 0 0 0 0 574 224 648 1446

W/HTML 0 0 0 0 368 183 466 1017

Unresolved 0 0 0 0 18 19 19 56

Orphan 0 0 0 0 92 6 0 98

Total 12 975 1185 5561 3266 6394 1901 4594 35 876

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

Plazma Tudu itracker pLink Brix gidoo Jtrac

Orphan

Unresolved

W/HTML

W/API

HQL

HBM

Spring

Java

all types, public methods, fields, etc. Considering this, it is quite interesting to
see that DSL artifacts amount to as much as they do (from 3.47% to 34.11%,
mean 12.67%).

The unresolved and orphan rows in Table 2 show artifacts which could not
be fully discovered. These numbers only occur in the projects which make use
of HQL and Wicket/API and are indeed related to these two languages. As
discussed in Section 3.1, it is not possible in these two languages to statically
discover and properly place each element in the language models.

First, unresolved elements (56) refer to cases where a reference to an artifact
was found but its value could not be determined — as in the HQL query example
in Section 3.1. These elements are later important in refactoring, where they
induce warnings for refactorings; however, due to their incomplete nature (in
particular, their lack of name or identifier) they can not be bound.

Second, orphan elements (98) refer to cases where elements were found but their
context, contrary to unresolved elements, is unknown such that a reference could
not be added to the model. Multi-language binding resolution is not possible with
orphans, thus no navigation is available and the orphans cannot take part in refac-
toring. In all of the cases reported here (as manually verified), the elements would
not have been resolved across languages or taken part in refactoring anyway:Most
of the orphans lie in Wicket JUnit test case implementations, where their IDs are

Artifact Binding and Rename Refactoring between Java and Java DSLs 451

ignored (54 cases); the remaining occurrences either use passed-in IDs (39) or lie
within Wicket library code (5). Thus, there is no further impact of missing these
elements here (this may obviously be different in other cases).

Artifact Binding Resolution. In binding resolution, artifact bindings from
one language to artifacts from a second language are resolved based on the rules
of the underlying framework. The resulting numbers are shown in Table 3.

Table 3. Discovered Multi-Language Bindings for each Case Study per Resolver

Resolver Plazma Tudu itracker pLink Brix gidoo JTrac Total

Spring to Java 517 89 241 0 0 0 123 970

HBM to Java 0 25 151 65 0 0 271 512

HQL to HBM 0 3 429 215 0 0 199 846

W/API to Java 0 0 0 0 108 4 216 328

W/API to HTML 0 0 0 0 382 192 553 1127

Total 517 117 821 280 490 196 1362 3783

Binding Error 0 0 0 0 26 11 5 42

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Plazma Tudu itracker pLink Brix gidoo Jtrac

Binding Error

W/API to W/HTML

W/API to Java

HQL to HBM

HBM to Java

Spring to Java

Again, due to the nature of the underlying case studies, we see a progression
from Spring-related bindings via Hibernate-related bindings to Wicket-related
bindings from left to right, with the exception of JTrac on the far right which
uses all frameworks. In total, we have found 3783 bindings between elements in
all case studies; the average number of bindings per case is 540. Considering that
these bindings must be intact for the software to work correctly and are only
partially supported by tools, possibilities for things to go wrong abound. From
a purely statistical point of view, in the case with the most bindings (JTrac),
this would amount to one multi-language binding every 11 lines of code.

In the three projects to the right, we see a total of 42 binding errors; as
mentioned in Section 3.2, a binding error is reported if an artifact was found
without its expected corresponding artifact in another language. All errors are
reported on HQL and Wicket artifacts.

452 P. Mayer and A. Schroeder

In 14 cases, these errors are actual problems in the observed code (JTrac: 2
/ gidooCMS: 5 / Brix: 7), that is, an artifact should indeed have a partner in
another language but did not. The other 28 cases are erroneously reported errors
and can be separated into three categories. The first category is the originally
expected one: Binding errors due to unresolved artifacts, of which there are
only two (0/2/0). The second category contains problems due to the if-then-
else over-approximation in the HQL and Wicket/API static analysis; i.e. some
artifacts are present in more than one position in the model of which some are
inaccurate (3/0/15). The third category contains missing bindings which are due
to references in Wicket library code (0/4/4) which is due to the use of MoDisco.

Thus, all 28 erroneous reports (0.74%) are due to shortcomings in the static
analysis. The two binding errors due to unresolved artifacts will lead, additionally
and independently, to refactoring warnings. The others, which are due to over-
approximation or use of library code and refer to ”missing” artifacts do not carry
identifiers and thus have no further impact on refactoring.

Refactoring Change Closures. If an element, or rather a name property
of an element is selected for a rename refactoring, all existing multi-language
bindings must be traversed to find the transitive closure of artifacts which are
affected by the rename, and which must be changed as well. In the following, we
first report on results from this traversal. Afterwards, we present the results of
actually executing refactorings for each closure.

Closure Discovery Results. The results from the discovery of closures and thus
the incidence of languages, artifacts, and edits is shown in Table 4.

Table 4. Discovered Transitive Refactoring Closures per Case Study

Case Plazma Tudu itracker PicketLink

Closures 122 72 214 55

Ø Languages 2.00 ± 0 2.03± 0.17 2.28 ± 0.45 2.56 ± 0.50

Language Max 2 3 3 3

Ø Artifacts 4.69± 12.00 2.21± 0.47 4.32 ± 5.54 6.09 ± 6.08

Ø Edits 4.28± 12.06 4.42 ± 12.41 28.58 ± 68.32 16.93 ± 19.47

Artifacts > 2 (%) 4.92 18.06 69.63 72.73

Case Brix gidoo JTrac Total

Closures 398 174 674 1709

Ø Languages 2.05 ± 0.21 2.00± 0 2.14 ± 0.48 2.15± 0.39

Language Max 3 2 5 5

Ø Artifacts 2.22 ± 0.79 2.13± 0.79 2.90 ± 2.70 3.51± 4.39

Ø Edits 3.49 ± 2.91 3.60± 5.08 6.07 ± 17.04 9.62± 28.25

Artifacts > 2 (%) 11.56 4.02 32.34 28.03

Overall, the number of transitive closures range from 55 (PicketLink) to 674
(JTrac); the total is 1709 closures with an average of 244 closure per case. The
average of artifacts in all closures is 3.51; however, with a standard deviation

Artifact Binding and Rename Refactoring between Java and Java DSLs 453

of 4.39. In Plazma, itracker, PicketLink, and JTrac, the standard deviation is
quite high, while in Tudu, Brix, and gidooCMS it is quite low. The maximum
number of artifacts in a closure is 61 (in Plazma), where the Spring property
dataSource is renamed; this property is injected into 60 beans which share a
common setter method (hence 61 artifacts).

An interesting observation is the number of closures in which there are more
than 2 artifacts. Here, the case studies seem to fall into three groups: The first
group includes itracker and PicketLink with around 70% of closures with more
than 2 artifacts; the second group consisting of just JTrac with around 30%, and
finally all others with less than 20%. Since itracker and PicketLink mostly use
HBM/HQL and JTrac has a HBM/HQL part, we have investigated whether this
phenomenon is language-specific. Figure 2 shows closure artifact counts per lan-
guage (that is, size of closures which have artifacts in the given language), where
it becomes clearly visible that we mostly deal with only 2 artifacts in Spring,
Wicket/HTML and Wicket/API. In HBM and HQL, however, the majority of
closures have 3 or more artifacts.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Java Spring HBM HQL W/API W/HTML

>15 Artifacts

6 15 Artifacts

3 6 Artifacts

2 Artifacts

Fig. 2. Artifacts per Closure and Language

Another observation regards the number of languages involved in the closures
also shown in Table 4. In four case studies, we mostly or exclusively deal with
two languages per closure: In Plazma, only Spring and Java are involved; in
gidooCMS, only Wicket/API and Wicket/HTML. There are two closures with
HQL and HBM artifacts in Tudu and 19 closures with Java in Brix, which is why
the maximum number of languages is three in these cases. The highest number
of languages involved in one closure is 5 in JTrac, which nevertheless only has an
average number of 2.14 languages per closure. The remaining two case studies lie
in the middle with 3 maximum languages and an average of 2.28 (itracker) and
2.56 (PicketLink) artifacts per closure. An example of a closure with 5 languages
(from JTrac) has already been shown in Section 2 (Listings 1.1 to 1.5).

An inverse representation of these numbers is shown in Figure 3 which shows
the percentage of closures with 2 to 5 languages having at least one element from

454 P. Mayer and A. Schroeder

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Java Spring HBM HQL W/API W/HTML

5 Languages

4 Languages

3 Languages

2 Languages

Fig. 3. Languages per Closure

the chosen language. This correlates with the number of artifacts: In Spring,
Wicket/API and Wicket/HTML, closures mostly deal with two languages. In
HBM, over 40% of closures deal with three and more languages. As expected,
HQL-affected closures always use at least three languages (HQL, HBM, and
Java), with extensions into Wicket/API and Wicket/HTML.

As an insight into the technical underpinnings, Table 4 also gives the average
number of actual text edits performed per closure, which also varies greatly. This
number depends not only the number of artifacts relevant for multi-language
bindings, but also on all the additional changes the per-language refactorings had
to add. The maximum number of text changes for a closure is 620 (in itracker),
where an id attribute is renamed: This attribute is defined in an abstract entity
superclass and is thus used in each HBM entity definition as well as all HQL
queries for any of these elements; furthermore, the id getters and setters in Java
must be renamed which are again heavily used in the code base.

Refactoring Results. The results from executing the refactoring actions on all of
the closures found is shown in Table 5. Note that the figure starts from 80%, the
remainder being successful tests.

The results show that the tests after refactoring each closure succeeded in
95.96% of cases across all case studies (1640 of 1709 closures). In the remaining
69 cases, a warning was attached to the closure (based on incomplete artifact
discovery, as discussed above); in 38 of these cases, the tests still succeeded; thus,
the warning was unnecessary; in 31 cases the test failed, thus the warning was
accurate. No closure test failed without a warning being attached. In all cases,
problems are again down to artifact discovery in HQL and/or Wicket/API; in
all of these cases, we can warn the user of potential problems.

The last row in Table 5 shows the number of closures in which at least one
single-language tests succeeded. Recalling from the experimental setup, each
closure was refactored multiple times: Firstly, each language on its own (which
should lead to test failures), and finally all together (which should succeed).

Artifact Binding and Rename Refactoring between Java and Java DSLs 455

Table 5. Results from Refactoring Transitive Closures

Language Plazma Tudu itracker pLink Brix gidoo JTrac Total

OK 122 72 214 55 398 162 617 1640

OK (warned) 0 0 0 0 0 7 31 38

FAIL (warned) 0 0 0 0 0 5 26 31

Total 122 72 214 55 398 174 674 1709

Single Language Success 0 0 0 1 17 3 39 60

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

Plazma Tudu itracker pLink Brix gidoo Jtrac

Warn Fail

Warn OK

OK

Thus, it is interesting to look at why the single-language tests succeeded despite
having not renamed all elements.

First, there is one succeeding test in PicketLink on an HQL attribute called
binaryValue. This attribute is used in an unreachable part of code which thus
could not be tested. In Brix, gidooCMS, and JTrac, most (56) of the test suc-
cesses refer to the Java language and are due to fallback behavior of Wicket: If a
Java getter/setter is not found for a certain entity, Wicket looks for a field of the
same name. Since we only rename the JavaBean-style getters and setters and all
relevant fields have exactly the same property name, the field is still found by
Wicket and thus the tests succeed. Manual renaming of the field leads to test
failures in every case. In the remaining three cases (two from Brix, one from gi-
dooCMS), the success affects both Wicket/HTML and Wicket/API. In the first
two cases, the references are overwritten by generated HTML code (Brix), in the
second, we deal with dead code (gidooCMS); thus, they are not testable.

4.3 Discussion

Our experimental evaluation has covered six languages across seven case studies;
each language was present in at least three case studies.

The artifact discovery process has reported 35876 multi-language relevant
artifacts across all case studies. As discussed, 154 these (56 unresolved elements,
98 orphans) from the languages HQL and Wicket/API could not be extracted
due to static analysis limitations in these languages.

456 P. Mayer and A. Schroeder

In the follow-up multi-language binding resolution, 3783 unique bindings be-
tween artifacts across languages have been automatically resolved. Again due to
limitations in the static analysis, some bindings have been erroneously reported
as missing in 18 cases (0.74%).

Regarding the refactoring step, we were able to automatically refactor all
1709 closures found. The test run results after refactoring the closures show
a success rate of 95.96%, i.e. in 1640 of 1709 closures, the tests after a full
refactoring succeeded. The remaining 69 cases were attached with warnings due
to incomplete artifact discovery; in about half of them, the refactorings and
subsequent tests succeeded despite warnings.

The single-language test runs which were supposed to show that single-
language changes do not suffice only succeeded in 60 cases, of which most are
due Wicket’s fallback mechanisms; the remaining four are due to unreachable or
dead code. This clearly shows that the system functionality, as far as the tests
are concerned, is only kept intact by multi-language refactoring.

Thus, we believe that the fitness for the intended purpose of our tool (i.e.,
discovery, binding, and refactoring for multi-language software applications) has
been established. The automated refactoring and testing approach we have used
in this experimental evaluation has been helpful in reaching this goal, in debug-
ging, and in establishing trust in our own system, since all aspects of the system
must work together to lead to succeeding tests after refactoring.

The numbers also show that, in particular regarding HQL and HBM appli-
cations, more than two artifacts and languages are involved in multi-language
transitive refactoring closures. We believe that this shows the need for generic
support for languages and language bindings instead of a participant-based two-
language approach.

Finally, the implementation and validation of our tool has shown which lan-
guage features are particularly difficult to support. In fact, all artifact discovery,
binding, and refactoring problems ultimately originate in the languages HQL
and Wicket/API and the fact that the statements of these languages are em-
bedded in Java and it is allowed to manipulate them using Java control flow
constructs, necessitating extensive (and expensive) static analysis. Compared
to the length to which one has to go to to support such languages, supporting
external languages such as Spring, HBM, or Wicket/HTML is almost trivial.

It is interesting to ask the question if the ability to manipulate the language
constructs in HQL and Wicket/API in this manner is really necessary, i.e. if it
is crucial to the usability or fitness for purpose of these languages. This is to
be investigated in the future. If no reasons can be found, we recommend not
allowing such manipulations in future languages, and suggest using external,
clearly separated languages instead.

Although our tool showed good results on the languages we investigated, it is
unclear how these results translate to other languages. Several frameworks within
the Java world deal with similar domains (i.e. system configuration, querying,
and UI); these would present a good starting point for further evaluation.

Artifact Binding and Rename Refactoring between Java and Java DSLs 457

Regarding refactorings, a possible conceptual difficulty of our approach lies
in the re-use of existing refactorings, which might change elements in the source
code, affecting artifacts that are part of another multi-language binding. Since
this change is encapsulated behind the refactoring, it is not possible to react
before the change has been committed. Note that this is only a problem if the
artifacts changed are not bound in the semantic model as well (otherwise, the
propagation algorithm would have found them). We have not encountered this
problem in our test cases, but it is conceivable that such situations may occur.

4.4 Threats to Validity

Our claim is the fitness for the intended purpose of our tool, i.e. that artifact
discovery, binding, and refactoring works as expected when tested on real-life
cases for the languages involved. Obviously, we can only claim this for the seven
case studies we have investigated; however, we believe that they represent a good
spread of cases; we have also taken care to implement a general solution. Still,
other cases may lead to different and possibly more error cases in each of the
areas of artifact discovery, binding, and refactoring.

Regarding our evaluation, artifact discovery and binding resolution have been
executed manually, i.e. we investigated the source code to determine whether
discovery and binding were accurate. We have created and used tool support
specifically for this task for artifact annotation and orphan detection and have
taken care to find all elements; however, it is still possible that we have missed
artifacts and bindings during this process. Refactoring success was tested by
JUnit tests; although we have checked coverage regarding the artifacts found,
some closures may still be incomplete without us noticing. In the other direction,
some closures may also be too extensive, i.e. include elements which would not
have needed renaming. Since the renaming and tests of the individual language
artifact groups failed as described, there is a strong indication that all bindings in
each closure are relevant; however, we did not unit-test each binding individually.

Since our model discovery partially relies on an incomplete static analysis,
some artifacts are reported as unresolved or orphans; also, several binding errors
are reported which do not in fact exist. However, the number of such problems
is rather low; thus we believe that we can still claim usefulness of our tool.

A final issue is how well our approach can be adapted to an interactive mode,
since our refactoring tests have been carried out in batch mode. Model discovery
and binding is currently a non-incremental process and takes up to a minute,
depending on the number of bindings in the code. It is future work to inves-
tigate incremental discovery (as, for example, in the JDT compiler) as well as
incremental artifact binding routines.

5 Related Work

We discuss adjacent existing work in three parts: Firstly, works which focus on a
particular language binding or bindings; secondly, works which focus on multiple,
but similar languages, and finally, other related work.

458 P. Mayer and A. Schroeder

To our knowledge, our work is the first which ranges across six languages
and three frameworks, focuses on a generic framework to be placed inside an
IDE to treat all languages and language bindings in an equal way, and contains
a systematic unit-test based evaluation of multi-language refactorings on seven
open-source case studies.

Domain- or Language Specific Approaches. Firstly, there are several works
which implement support for individual language pairings which usually go
deeper into individual language semantics whereas our approach is focused on a
generic integration architecture.

In 2008, the workshop on refactoring tools has drawn two papers on cross-
language refactoring. Chen and Johnson [1] present an approach for refactoring
references to Java in XML code (examples given are Spring, Struts, and Hiber-
nate). XPath expressions are used to locate references in XML code, and rename
refactorings are considered. Kempf et al. [6] have discussed cross-language refac-
toring between Java and the Groovy programming language, also with a focus on
renaming. A follow-up paper in 2009 [7] has shown these refactorings to be com-
pletely automatable, and the implementation is now part of the official Groovy
Eclipse plugin. In both cases, the implementations presented are specific to the
target languages (i.e. XML and Groovy); our own approach could be used to
integrate these languages and binding implementations with others.

A similar work which deals with interactions between two particular languages
is Tatlock et al. [21] (2008). They use the term deep refactoring for their approach
to the refactoring of Java applications using a JPA-based framework. Both class
and field renames between Java entities and JPA queries are considered. Their
approach uses data flow analysis to also collect partial queries. Furthermore, they
include a type checking algorithm for verifying inputs and outputs of queries, i.e.
whether the correct Java types are used as parameters and returning elements
in JPA. Thus, their approach goes beyond what we offer for JPA, but is in turn
restricted to JPA and queries, since the grammar-based approach they use is not
easily extensible to other, non-query languages.

Schink et al. [16] have presented, in 2011, an approach to refactor Hiber-
nate applications which include entity definitions (in this case, as annotations)
and queries. The refactorings analyzed are Rename Method, Pull Up Method
and Introduce Default Value. An interesting aspect here is the discussion of the
data present in the database, and of the impact of refactorings (such as pull up
method) on such data. Thus, this approach goes beyond rename and even uses a
dedicated database refactoring; again, it would be interesting to integrate these
efforts (and investigate different refactorings for additional languages).

In 2012, Nguyen et al. [13] have presented the tool BabelRef which handles
cross-language function calls and widget references in the web application lan-
guages PHP, JavaScript, and HTML with the goal of renaming elements. Their
specific focus is on the partial nature of HTML page parts in PHP, where they
use symbolic execution to create a single tree structure called D-model; by con-
trast, our own approach uses an artifact model with separate bindings.

Artifact Binding and Rename Refactoring between Java and Java DSLs 459

Refactorings on Similar Languages. Secondly, there is some work on refac-
toring multiple languages which share similar concepts, such as being object-
oriented. Such approaches can take advantage of language similarities, which
however makes them specific to this context.

The first two of these are by Strein et al.[19,20] (2006). Here, a generic frame-
work based on a common meta-model is presented with the aim of renaming
elements, in particular methods, across languages. They present the tool X-
Develop, which implements these refactorings for the languages of the .NET
framework (C#, J#, and Visual Basic). A key difference in this approach is
the use of a common meta-model, which is beneficial if the target languages are
similar, as in .NET — all languages share the same or very similar concepts
such as types, methods, and properties. Thus, elements from all languages are
represented in the same way on this level, and it is indeed feasible to write refac-
torings on this level. By contrast, we have investigated very different languages
in which there are few common concepts; we therefore use per-language models
and re-use existing individual refactoring implementations for each language.

Sobernig and Zdun [17] (2010) discuss multi-language refactoring as an eval-
uation technique for implementing multi-language method calls in a scenario in
which one OO language is embedded into another (in this case, the Frag lan-
guage into Java). The main goal of this work is a comparison between reflective
and generative integration techniques, where the amount of effort required for
implementing refactorings can be used for comparison. Besides renaming, they
also consider the very interesting refactorings replace embedded with host object
and replace embedded with host method, as well as remove host method. Such
refactorings are naturally only possible in languages with similar functionality;
not between a general-purpose and a domain-specific language as in our case.

Other Related Work. We have investigated patterns of cross-language linking
between Java and DSLs before [11] (namely, Spring, Hibernate, and Android),
identifying how to describe and implement binding resolution between artifacts
in these frameworks. In a follow-up paper [12], we have presented results from
the application of such resolution on a single case study. Building on these re-
sults, the current paper provides a comprehensive description of an approach and
implementation of a generic and systematic multi-language support framework,
and includes a thorough empirical investigation on seven case studies.

In 2012, Pfeiffer and Wasowski [14] have executed a user study to show multi-
language support mechanisms in general to aid software developers. This experi-
ment with 22 participants has evaluated the tool TexMo, which includes support
for links between Java, Hibernate and Wicket, and is based on the JTrac case
study which we use as well. The main differences lie in the fact that artifact
bindings in TexMo are manually established, and are based on a common, text-
based model. In comparison, our tests show the feasibility of automation as well
as the usefulness of cross-language renames from the unit testing perspective.

A more general discussion of program comprehension and maintenance of
multi-language application can be found in Kontogiannis et al. in 2006 [8]. Open
issues relate to gathering data, formalization and modeling of multi-language

460 P. Mayer and A. Schroeder

systems, extraction, discovery and storage of extracted information, and how to
support exploration, queries, and knowledge management.

6 Conclusion

Multi-language software applications (MLSAs) are a common occurrence for
which systematic tool support is lacking in today’s IDEs. We believe that such
support can make a significant difference for developers, and have thus
investigated an approach and tool for multi-language software. Our implementa-
tion supports six languages (Java, Spring, HBM, HQL, Wicket/API and
Wicket/HTML) across three frameworks (Spring, Hibernate, and Wicket).

Our approach treats languages and language bindings as first-level entities,
and includes systematic support for multiple (in particular, more than two at a
time) languages without language bias. We provide a generic refactoring algo-
rithm which re-uses existing single-language refactorings and propagates changes
across languages based on artifact bindings.

Using manual inspection for artifact and binding discovery as well as auto-
mated refactoring and unit testing, we have evaluated our tool on seven open
source case studies with a total of 3768 bindings between artifacts in different
languages. The automated refactorings succeeded in 95.96% of the 1709 transi-
tive closures of artifacts which must be renamed together. The remaining cases
were annotated with warnings such that the user is aware of potential problems.

Through our experiments, we have shown that the tool is fit for the purpose it
was created, i.e. automatically and correctly finding multi-language relevant ar-
tifacts, discovering the bindings between them, and (rename) refactoring element
across language borders.

Acknowledgement. This work has been partially sponsored by the EU project
ASCENS, 257414.

References

1. Chen, N., Johnson, R.: Toward Refactoring in a Polyglot World. In: Proceedings
of the 2nd Workshop on Refactoring Tools, pp. 1–4. ACM (2008)

2. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

3. Fjeldberg, H.C.: Polyglot Programming. A Business Perspective. Master thesis,
Norwegian University of Science and Technology (2008)

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Pearson Education (2012)

5. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
6. Kempf, M., Kleeb, R., Klenk, M., Sommerlad, P.: Cross language refactoring for

Eclipse plug-ins. In: Proceedings of the 2nd Workshop on Refactoring Tools, pp.
1:1–1:4. ACM (2008)

Artifact Binding and Rename Refactoring between Java and Java DSLs 461

7. Klenk, M., Kleeb, R., Kempf, M., Sommerlad, P.: Refactoring support for the
Groovy-Eclipse plug-in. In: Companion to the 23rd ACM SIGPLAN Conference
on Object-Oriented Programming Systems Languages and Applications, pp. 727–
728. ACM (2008)

8. Kontogiannis, K., Linos, P., Wong, K.: Comprehension and Maintenance of Large-
Scale Multi-Language Software Applications. In: Proceedings of the 22nd IEEE
International Conference on Software Maintenance, pp. 497–500. IEEE Computer
Society (2006)

9. Linos, P.: PolyCare: A Tool for Re-engineering Multi-language Program Integra-
tions. In: Proceeding of the 1st IEEE International Conference on Engineering of
Complex Computer Systems, pp. 338–341. IEEE Computer Society Press (1995)

10. Livshits, B., Whaley, J., Lam, M.S.: Reflection Analysis for Java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

11. Mayer, P., Schroeder, A.: Patterns of Cross-Language Linking in Java Frameworks.
In: Proceedings of the 21st IEEE International Conference on Program Compre-
hension, pp. 113–122 (2013)

12. Mayer, P., Schroeder, A.: Towards Automated Cross-Language Refactorings be-
tween Java and DSLs used by Java Frameworks. In: Proceedings of the 6th ACM
Workshop on Refactoring Tools, pp. 1–4 (2013)

13. Nguyen, H.V., Nguyen, H.A., Nguyen, T.T., Nguyen, T.N.: BabelRef: detection
and renaming tool for cross-language program entities in dynamic web applications.
In: Proceedings of the 34th International Conference on Software Engineering, pp.
1391–1394. IEEE Press (2012)

14. Pfeiffer, R.-H., W ↪asowski, A.: Cross-Language Support Mechanisms Significantly
Aid Software Development. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 168–184. Springer, Heidelberg (2012)

15. Pfeiffer, R.-H., W ↪asowski, A.: TexMo: A Multi-language Development Environ-
ment. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.)
ECMFA 2012. LNCS, vol. 7349, pp. 178–193. Springer, Heidelberg (2012)

16. Schink, H., Kuhlemann, M., Saake, G., Lämmel, R.: Hurdles in Multi-language
Refactoring of Hibernate Applications. In: Proceedings of the 6th International
Conference on Software and Data Technologies, pp. 129–134. SciTePress (2011)

17. Sobernig, S., Zdun, U.: Evaluating java runtime reflection for implementing cross-
language method invocations. In: Proceedings of the 8th International Conference
on the Principles and Practice of Programming in Java, pp. 139–147. ACM (2010)

18. Steimann, F., Thies, A.: From Public to Private to Absent: Refactoring Java Pro-
grams under Constrained Accessibility. In: Drossopoulou, S. (ed.) ECOOP 2009.
LNCS, vol. 5653, pp. 419–443. Springer, Heidelberg (2009)

19. Strein, D., Kratz, H., Lowe, W.: Cross-Language Program Analysis and Refac-
toring. In: Proceedings of the 6th IEEE International Workshop on Source Code
Analysis and Manipulation, pp. 207–216. IEEE Computer Society (2006)

20. Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An Extensible Meta-Model for Pro-
gram Analysis. IEEE Transactions on Software Engineering 33(9), 592–607 (2007)

21. Tatlock, Z., Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Deep typechecking and
refactoring. In: Proceedings of the 23rd ACM SIGPLAN Conference on Object-
Oriented Programming Systems Languages and Applications, pp. 37–52. ACM
(2008)

22. Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P., Johnson, R.E.:
Use, disuse, and misuse of automated refactorings. In: Proceedings of the 34th
International Conference on Software Engineering, pp. 233–243. IEEE Press (2012)

462 P. Mayer and A. Schroeder

A Artifact Description

Authors of the Artifact. Design and Core Implementation: Philip Mayer,
Andreas Schroeder. Language Metamodels and Parsers: Thomas Neumeier

Summary. This aim of this artifact is demonstrating feasibility of an implemen-
tation for analysis and refactoring of multi-language software systems (MLSAs),
and for collecting data from this process. As such, the routines for gathering
artifacts, artifact bindings, and for executing refactorings are targeted at batch
processing, using (lengthy) tables with CSV export functionality as output. Sup-
port is also available for graphically visualizing some aspects of the data, and
for navigating to the source code positions of artifacts, bindings, and closures.

The implementation is realized as a set of Eclipse plug-ins. These plug-ins
include EMF meta-models, model parsers, language binding implementations,
and refactoring add-ons for six languages (Java, Spring, Hibernate/HBM, Hi-
bernate/HQL, Wicket/API, and Wicket/HTML). Additional code (views, edi-
tors, actions) provides the user interfaces and glue code required to use the core
routines as well as automated regression tests for all case studies.

The artifact package provides a virtual machine image designed to support
repeatability of the experiments in the paper and thus regenerating the data we
have presented. It also includes the code of the seven case studies we have used
in our analysis.

Content. The artifact package consists of a VirtualBox VM image which hosts:

– an Eclipse installation with all required plug-ins and the source code of our
tool implementation in the workspace

– a configured runtime Eclipse launch configuration with all seven case studies
in the workspace to be used for testing

– detailed instructions for using the artifact to test some interesting language
links as well as reproducing the data used in the paper

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. Additionally, the source code and instructions for installation are
available on our website: http://www.xllsrc.net/.

Tested Platforms. Being Java- and Eclipse-based, the artifact should work
on all major platforms. The virtual machine image is known to work on any
platform running Oracle VirtualBox (with around 4GB of main memory).

License. EPL-1.0 (http://www.eclipse.org/legal/epl-v10.html)

MD5 Sum of the Artifact. e4be341e2b4a02b9bd118a5488125ba5

Size of the Artifact. 4.03 GB

http://www.xllsrc.net/
http://www.eclipse.org/legal/epl-v10.html

Retargetting Legacy Browser Extensions
to Modern Extension Frameworks

Rezwana Karim1, Mohan Dhawan2, and Vinod Ganapathy1

1 Rutgers University, Piscataway NJ, USA
{rkarim,vinodg}@cs.rutgers.edu

2 IBM Research, New Delhi, India
mohan.dhawan@in.ibm.com

Abstract. Most modern Web browsers export a rich API allowing third-party ex-
tensions to access privileged browser objects that can also be misused by attacks
directed against vulnerable ones. Web browser vendors have therefore recently
developed new extension frameworks aimed at better isolating extensions while
still allowing access to privileged browser state. For instance Google Chrome
extension architecture and Mozilla’s Jetpack extension framework.

We present Morpheus, a tool to port legacy browser extensions to these new
frameworks. Specifically, Morpheus targets legacy extensions for the Mozilla
Firefox browser, and ports them to the Jetpack framework. We describe the key
techniques used by Morpheus to analyze and transform legacy extensions so that
they conform to the constraints imposed by Jetpack and simplify runtime pol-
icy enforcement. Finally, we present an experimental evaluation of Morpheus by
applying it to port 52 legacy Firefox extensions to the Jetpack framework.

Keywords: JavaScript browser extensions. Privilege separation.

1 Introduction

Extensions enhance the core functionality of Web browsers, enabling end users to cus-
tomize the look and feel of their browsing experience. The ease with which browser
extensions can be written, downloaded and installed and the features that they enable
have all contributed tremendously to their popularity, as well as to the browsers that they
target. Browsers such as Mozilla Firefox and Google Chrome have galleries with thou-
sands of extensions implementing a wide array of features. Popular extensions often
have in excess of a million users.

To support extensions, browsers typically expose an API that gives access to privi-
leged browser objects. For example, Mozilla’s XPCOM (cross-domain component ob-
ject model) API [25] allows browser extensions to access the file system, the network,
the cookie store, and user preferences, among others. Such a rich API is often neces-
sary to implement extensions with useful features. In sharp contrast, code that executes
within a Web page is often tightly sandboxed by the browser, e.g., using the same-origin
policy, and does not have access to such privileged browser APIs.

Unfortunately, browser extensions do not undergo the same quality control as the
rest of the browser, and are riddled with vulnerabilities. In a recent study of over 2400

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 463–488, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

464 R. Karim, M. Dhawan, and V. Ganapathy

Mozilla Firefox extensions, Bhandakavi et al. [8] found several instances of insecure
programming practices that can easily be exploited for malicious purposes. Any such
exploit would endow the attacker with access to privileged browser APIs, thereby com-
pletely undermining the security of the Web browser.

Given such concerns, browser vendors have begun to develop new frameworks that
aim to better isolate extensions [9, 2, 6, 5]. These frameworks force extension authors
to adhere to core security principles, such as privilege separation and least privilege
to some extent. They partition extensions to limit how extensions access privileged
browsed objects. An attacker who hijacks one of the partitions of such an extension is
unable to access privileged browser objects available to other partitions. Mozilla’s Jet-
pack framework and the Google Chrome extension model are two popular examples of
modern extension frameworks that use these techniques to improve extension security.

While the quantitative impact of such frameworks at reducing attacks against exten-
sions is as yet unknown, it is qualitatively clear that by embracing first principles, they
improve extension security. However, such frameworks require extensions to be writ-
ten from ground up, adhering to the programming disciplines that they enforce. To be
applicable to legacy extensions, the extensions must be ported to the new frameworks.
However, doing so manually would be expensive and time-consuming.

In this paper, we present Morpheus, a static analysis and transformation tool that al-
lows legacy extensions to be systematically ported into modern extension frameworks
in a manner that allows enforcement of fine grained security policies without any mod-
ification to browser runtime. Our prototype targets legacy Mozilla Firefox extensions,
and rewrites them to make them compatible to the Jetpack framework while conform-
ing to the security principles. We chose to focus on Firefox because of the abundance
of legacy extensions for this browser. There are currently over 9000 extensions avail-
able for Firefox. Morpheus targets an important subset of these extensions, those written
fully in JavaScript. Rather than require these extensions to be rewritten for Jetpack from
scratch, Morpheus preserves the investment in these extensions and provides a path for
automatically refactoring them to work in Jetpack. We have applied Morpheus to port
52 popular Firefox extensions into the Jetpack framework, and are actively applying it
to more extensions from the Firefox extension gallery.

This paper makes the following contributions:

• We identify the key challenges in building a reliable and usable toolchain (Mor-
pheus) for systematic conversion of legacy Firefox extensions to the more secure Jet-
pack framework.

• We present an automated transformation toolchain to partition legacy extension code
into Jetpack modules that satisfy the principle of least privilege. Each module encap-
sulates objects corresponding to sensitive browser APIs and enables accessor methods
which provide the required API functionality.

• We present a policy checker framework for Jetpack extensions. The modular and
extensible architecture of Jetpack extensions allows developers to seamlessly add or
remove security policies without affecting the rest of the code.

• Our evaluation with a suite of 52 popular legacy extensions demonstrates that the
design of Morpheus is practical and it is deployable for real world use.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 465

2 Overview

In this section, we describe the architecture of legacy extensions, with a particular focus
on issues that motivated browser vendors to develop new extension frameworks. We
then discuss the key components of the new Jetpack framework from Mozilla.

2.1 Threats to Extension Security

Browser extensions are written using open technologies such as HTML, CSS and
JavaScript, but they often utilize privileged browser APIs to perform useful tasks. For
example, Mozilla’s XPCOM API gives an extension access to the file system, the net-
work, and sensitive browser state such as cookies and browsing history. The goal of an
attacker is to misuse the extension to access the capabilities provided by browser APIs.

A typical browser extension can interact with content on Web pages and any remote
server on the Internet. For example, a DisplayWeather extension may access the Web
page to search for locations in the text as specified by the user, and its home server
to get the corresponding weather data to be shown in the Web page itself. An attacker
can hijack an extension by either (1) tricking the user into visiting a malicious Website
and then exploiting vulnerabilities in the extension, or (2) compromising the extension’s
communication with its home server, i.e., the attacker can inject malicious packets in the
network stream or compromise the remote server to which the extension communicates.

Browsers attempt to safeguard against the first class of attacks by isolating the ex-
ecution of JavaScript code on the Web page (unprivileged content scripts) from the
JavaScript code executing within the extension (privileged chrome scripts). This isola-
tion of content scripts from chrome scripts limits the threats posed by a Web attacker by
disallowing direct access to sensitive browser APIs. Nevertheless, there are often bugs
in this isolation mechanism, leading to exploits. To defend against the second class of
network-based attacks, extensions can use SSL to secure their connection with their
home server.

2.2 Legacy Extensions on Firefox

Consider Figure 1, which shows a snippet from the DisplayWeather extension that we
developed. The extension provides options to overlay weather information on a browser
panel for which it reads the zipcode from persistent storage. In lines 1-6, the function
getZipCode reads the file ’zip.txt’ from the user’s profile directory to retrieve the
zipcode for the user specified location. In line 2, import attaches the FileUtils ob-
ject to the extension’s global namespace. FileUtils.jsm internally invokes XPCOM
APIs to enable all file I/O operations. Lines 9-28 define the Weather object that en-
capsulates properties and methods to fetch weather data from a remote server. The
method requestDataFromServer defined in lines 16-27 uses XMLHttpRequest to
fetch weather data for a given zipcode from a remote server. Line 30 registers a click

event listener with the extension’s icon in the browser’s status bar to display weather
in a panel. In lines 33-37, the code creates an event listener addWeatherToWebpage
to overlay weather information on the Web page, whenever a new Web page is loaded.

466 R. Karim, M. Dhawan, and V. Ganapathy

(1) function getZipCode(locationStr){
(2) Components.utils.import(’resource://gre/modules/FileUtils.jsm’);
(3) var dir = ’ProfD’, filename = ’zip.txt’;//get the ’zip.txt’ file from profile directory
(4) var file = FileUtils.getFile(dir, [filename]);
(5) var locationZipcodeMap = readFile(file);
(6) return locationZipcodeMap[locationStr]; //retrieve zipcode for the location
(7) }
(8) ...
(9) var Weather = {

(10) temperature: null,
(11) ...
(12) getWeatherData: function(zipcode){
(13) Weather.requestDataFromServer(zipcode);
(14) return processWeatherData(Weather.temperature);// format weather data
(15) },
(16) requestDataFromServer: function(sendData){
(17) var httpRequest = new window.XMLHtttpRequest();
(18) ...
(19) //set the listener to handle response from Server
(20) httpRequest.onreadystatechange = function(){
(21) // extract temperature data from response and set Weather.temperature
(22) Weather.extractTemperature(httpRequest.response);
(23) ...
(24) }
(25) httpRequest.open(’GET’, serverUrl, true);
(26) httpRequest.send(sendData);//contact remote server
(27) }
(28) }
(29) //Add the click listener to the extension’s icon to show Weather in panel
(30) document.getElementById(’weatherStatusBar’).addEventListener

(’click’, showWeatherInPanel, false);
(31) ...
(32) window.addEventListener(’DOMContentLoaded’, addWeatherToWebpage, false);
(33) function addWeatherToWebpage(){
(34) var locationStr = getLocationFromWebpage(gBrowser.contentDocument);
(35) var temperature = Weather.getWeatherData(getZipCode(locationStr));
(36) modifyWebpageContent(gBrowser.contentDocument, temperature);
(37) }

Fig. 1. Code snippet from the DisplayWeather extension

Lines 34-36 identify all DOM1 elements that contain a user-specified location in the
active Web page and invoke getWeatherData method defined on the Weather ob-
ject to retrieve latest weather updates. The method modifyWebpageContent in line 36
actually overlays the weather information on the active Web page.

This example highlights several features used by legacy Firefox extensions:

(1) Unified JavaScript heap: Mozilla’s legacy extension development environment pro-
vides a unified heap for all JavaScript code execution. Both privileged chrome scripts
and unprivileged content scripts reside in the same heap, raising the risk of shared ref-
erences. For example, line 36 invokes the modifyWebpageContent method with a
reference to the document object of the active Web page. Mozilla uses XrayWrappers
(also know as XPCNativeWrappers) to isolate the untrusted references of the content
JavaScript from the chrome JavaScript. However, this mechanism has a history of ex-
ploitable bugs [9, 29]. If this interface is exploited, and the user navigates to a malicious
Web page, the document object would belong to the attacker, who could then influence
the execution of the privileged code within the extension [30].
A second consequence of having a unified heap for JavaScript execution results is that
top-level objects declared in chrome scripts are attached as properties of the global
object. This often results in namespace collisions across different extensions or even

1 Document Object Model (DOM) provides a structural representation of the document, en-
abling developers to modify its content and appearance using JavaScript.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 467

different chrome scripts within the same extension. Further, since globals defined in
one script can be accessed and modified from another script, data races may occur.

(2) Privileged objects: All chrome scripts have default access to the global window
object and its properties. The Components object is a special property of the window

which provides access to the browser’s sensitive XPCOM APIs. If an attacker gets a
reference to the Components object, he effectively has control over the entire browser.
The fact that the Components object is so powerful and is yet available to all scripts by
default is a significant threat to security in a shared heap environment.

(3) Chrome DOM: Much as the DOM API available to content scripts on a Web page,
chrome scripts also have access to the chrome DOM. The chrome DOM is responsible
for the visual representation of the browser’s UI including toolbars, menus, statusbar
and icons. Since much of Firefox’s UI is also written in JavaScript, chrome scripts can
programmatically access and modify the browser’s entire UI (line 30).

The issues discussed above stem in part due to the architecture of Mozilla’s legacy
extension framework. Parts of the browser itself are written in JavaScript, as are exten-
sions. With a unified heap and lack of any isolation primitives in the language itself,
extension developers must consciously and carefully restrict access to critical function-
ality. The legacy extension framework makes it easy for developers to commit mistakes,
and much prior work has shown the pitfalls of legacy extensions [13, 8, 14, 9].

2.3 The Jetpack Extension Framework

The Jetpack extension framework [2, 20] is an effort by Mozilla to incorporate secu-
rity principles in the design of the extension architecture, thereby improving the overall
security of extensions. Jetpack uses a layered defense architecture to make it harder
for an attacker to compromise extensions, and limit the damage done if he succeeds in
compromising all or part of the extension. The Jetpack project shares ideological sim-
ilarities with the Google Chrome extension architecture [9]. It has also been motivated
by the goal of easing extension development process with an emphasis on modular de-
velopment and code sharing, and partly by the new multi-process Firefox architecture
[24].

Conceptually, each Jetpack extension has two parts: (1) at least one add-on script
(also known as chrome script) that interacts with a set of core modules, which have
access to the sensitive browser APIs, and (2) zero or more content scripts. The chrome
script(s) execute within the Web browser with restricted but elevated privileges: it must
explicitly request access at load time to the browser APIs that it requires access to; any
attempt to access other APIs at runtime is blocked. Content scripts interact with the
Web page and are unprivileged. In addition, Jetpack incorporates these features:

(1) Chrome/content heap partitioning. Chrome and content scripts execute in separate
processes. This partitioning guarantees isolation of the JavaScript heap for the chrome
and content scripts and prevents inadvertent access by content scripts to privileged ref-
erences in the chrome code. Communication amongst the chrome and content scripts is
made possible through IPC with all messages exchanged in the JSON [3] format.

(2) Content script integrity. Content scripts execute in the context of the Web page and
a malicious Web page can redefine objects referenced by the content script, thereby

468 R. Karim, M. Dhawan, and V. Ganapathy

Fig. 2. Architecture of a simple Jetpack extension. Policy Checker is not part of original architec-
ture and is introduced by Morpheus.

affecting its integrity. Jetpack uses content proxies to protect the integrity of content
scripts. Content proxies allow the content script to access the content on the Web page
while still having access to the native objects and APIs (e.g., document and window),
even if the Web page has redefined them.

(3) Chrome privilege separation. Jetpack provides developers with a set of core mod-
ules that encapsulate the functionality of the privileged browser APIs, thus preventing
inadvertent misuse of these APIs by the developer. Further, developers must explic-
itly request these core modules as required by the extension’s chrome scripts. If com-
promised, this restricts the set of privileges that an attacker can obtain to only those
requested by the exploited script.

The Jetpack framework further recommends developers to partition the chrome script
and organize an extension as a hierarchy of user modules, each of which may itself re-
quest other user modules and zero or more core modules using the require interface.
The set of privileges thus acquired by each user module is determined statically by an-
alyzing the source code and enforced by the framework at runtime. The Jetpack frame-
work further provides isolation among all modules. Objects declared within a module
are local to the module unless exported via the module’s exports interface.

Figure 2 shows the overall architecture of a Jetpack extension. In summary, Jet-
pack attempts to improve extension security by separating content scripts from chrome
scripts, employing privilege separation for chrome scripts, and restricting the privileges
of chrome scripts to those declared at load time. While this architecture does not prevent
vulnerabilities in extension scripts, it ensures that the effect of any exploits is contained
to the vulnerable components of the extension, and will not give the attacker unbridled
access to privileged browser APIs.

However, a compromised chrome script can still trick core modules to access sen-
sitive resources of the attacker’s choice. Consider the scenario where the attacker has
compromised the chrome script in the DisplayWeather extension, and has changed the
parameter value in FileUtils.getFile() to read the passwords stored on disk. The
core module with privileges to access file-system will then read and return all the saved

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 469

passwords to the attacker. Similarly, the attacker can redirect stolen data to an attacker-
controlled remote server by changing serverUrl in httpRequest.open(). In both
cases, the attacker does not need to extend the script’s privileges at runtime. Instead,
lack of policy checker to enforce fine-grained access control enables the attacker to
exploit benign extensions even in the security enhanced Jetpack framework.

3 Morpheus

While the Jetpack framework provides clear security benefits to extensions, legacy ex-
tensions must be rewritten in Jetpack in order to enjoy these benefits. Morpheus is
a static dataflow analysis and transformation tool that automates this process. In this
section, we identify the key requirements that Morpheus’s analysis and transformation
must provide and describe its design.

3.1 Design Requirements

The transformations in Morpheus must perform the following tasks:

(1) Chrome/content partitioning. Jetpack requires chrome and content scripts to exe-
cute in isolated heaps. Morpheus must analyze the code of the legacy extension and
identify object references that should be part of either chrome scripts or content scripts.
Code that transitively accesses these object references should also correspondingly be
marked for execution within the context of chrome or content scripts.

In Jetpack, chrome scripts interact with content scripts via asynchronous
message passing protocols using JSON. In contrast, legacy extensions use
synchronous calls for content/chrome communication. For example, calls to
getLocationFromWebPagecontent and modifyWebPageContent (lines 34-36, Fig-
ure 1) are synchronous invocations in the legacy extension. Thus, to preserve the control
flow of the legacy extension, Morpheus must use the asynchronous communication API
available in Jetpack and emulate the synchronous nature of content/chrome communi-
cation in legacy extensions.

(2) Module construction. The Jetpack framework encapsulates a selection of the priv-
ileged browser APIs as core modules and requires developers to arrange their code as
user modules to limit the extent of the damage in case of a breach. A Jetpack exten-
sion is a hierarchical collection of such core and user modules. Morpheus must identify
the use of privileged browser APIs in the legacy extension and create core modules for
them. Although creation of user modules is not mandatory, it is recommended. Thus,
Morpheus must analyze the legacy extension and extract related functionality that can
be compiled into a user module.

Modules interact using the require and exports interfaces. Although modules are
allowed to export privileged objects that they access, doing so would undermine the se-
curity of the whole extension (by exposing the object to other modules). Morpheus must
therefore ensure that the modules it creates never export references to privileged objects.
Instead, they should export accessor methods to these privileged objects, which can be
invoked by other modules to achieve their desired tasks. One may argue that exporting

470 R. Karim, M. Dhawan, and V. Ganapathy

accessor methods is akin to accessing capabilities to achieve the desired functionality.
However, as will be described later in Sections 3.3 and 4, isolating capabilities in sepa-
rate JavaScript modules makes it harder for an attacker to compromise other modules.

(3) Scope and global objects. Legacy extensions make frequent use of global ob-
jects as shown in Figure 1. Morpheus must ensure that partitioning the code into
chrome/content and user/core modules does not affect visibility of the globals (or
other objects in scope) in the Jetpack extension.

(4) Policy Checker. Benign software that exposes an API to third-party code is often
vulnerable to the confused deputy problem [16]. To safeguard core Jetpack modules
from becoming confused deputies themselves, (see Section 2) and also protect benign-
but-buggy extensions, Morpheus must allow enforcement of fine-grained access control
and other security policies at runtime. A key requirement here is that the extension code
should be oblivious to the security policies and the policy checker implementation.

(5) Preserve extension UI. The transformed Jetpack extension must retain the look and
feel of the legacy extension. Thus, the browser’s UI overlays, including any CSS, XUL
and icons, must be appropriately mapped.

In our work to date, we have not attempted to optimize the performance of the trans-
formed extension. The goal of Morpheus is to preserve the investment in legacy ex-
tensions, while also improving their security by making them amenable for use within
Jetpack. In doing so, Morpheus may degrade the performance of the legacy extension,
e.g., by using an asynchronous communication API to emulate synchronous communi-
cation. We plan to optimize performance in future work.

3.2 Analyses and Transformations

Morpheus invokes Transform (see algorithm 1) over the legacy extension to transform
it into the corresponding Jetpack extension. Transform takes in (i) the JavaScript code
of the legacy extension L, which has been preprocessed to resolve any global-local
scope conflict, (ii) an alias relation A as computed by the CFA2 algorithm [32] over the
extension’s JavaScript code, and (iii) some basic transformation rules R (see Table 2).
Each transformation rule modifies an expression ξ from the program’s abstract syntax
tree (AST) T . Transform in turn invokes algorithms 2(a), 2(b) and 3 to complete the
transformation. Table 1 lists the common notations used in all algorithms and rules.

We now discuss in detail the analyses and transformations implemented in Morpheus
corresponding to each of the design requirements listed above.

Chrome/Content Separation. To identify object references that must appear in chrome
or content scripts, Morpheus identifies the context in which object references and their
property accesses should be evaluated. The context of an object reference is the context
in which it was declared. Thus, any object declared in chrome code must be evaluated
in chrome context and similarly all accesses to content objects must be evaluated in the
context of the current Web page (content). For the rest of the paper, we refer chrome
context as chrome and content context as content.

Morpheus uses static dataflow analysis to identify whether code that accesses an ob-
ject reference should be evaluated in either chrome or content. Our analysis leverages
the dataflow rules given in prior work [32]. The analysis is based on the observation that

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 471

Table 1. Common notations used in transformation rules and algorithms

E Set of all expressions
Epa f Fixed property access expression of the form e.x, e[’x’]
Epad Dynamic property access expression of the form e[v]

Epa Property access expression where Epa := Epa f ∪ Epad where Epa ⊂ E

Emi Method invocation expression e.f(args), e[’f’](args), e[vf](args)
Expcom XPCOM invoke expression, where Expcom ⊂ E. It can be one of the two forms, either

(i) Components.classes[.*].getService(Components.interfaces[.*]]), or
(ii)Components.utils.import("resource://gre/modules/*.jsm");

Eob jInit Object Literal expression of the form { a:1, b:function(){}}, where Eob jInit ⊂ E

Edecl Function/ variable declaration expression, where Edecl ⊂ E. Can be any of the following expressions
const c; let l; var a; var b=5; function foo(){}

Expression(η) Expression for AST node η
Object(ξ) expression representing object whose property is accessed in expression ξ, where ξ ∈ (Epa ∪ Emi)
Property(ξ) expression representing property being accessed in expression ξ, where ξ ∈ Epa

Node(η, ξ) AST node for expression ξ and a descendant of node η
GetAliasSet(A, n) Consults alias relationA and returns all may-alias for the node n.
InContent(ξ) Checks if object denoted by expression ξ belongs to content context.
CanMakeModule(n,T) Decides if code corresponding to AST node n can be extracted and put in a separate module. In our

implementation, it embodies the criteria that the object, represented by n, must have at least one
method defined as its property that is invoked from outside the object.

Transform(L,A,R)
Input: L : Legacy code,A : alias relation, R : set of rewriting rules
Output: M a set of Jetpack modules

Initialize:
T := AS T (L) ; O := ∅ /*Set of AST nodes for object literals*/
S := ComputeSensitiveSet(L,A) ; D := ComputeDOMSet(L,A)

foreach n ∈ Nodes(T) do
ξn := Expression(n)
if ξn ∈ Expcom then Rewrite(ξn,T ,R1) /*rewrite with require, import core modules*/ ;
else if ξn ∈ Emi ∧ (Node(n,Object(ξn)) ∈ S ∨ Node(n,Object(ξn)) ∈ D) then Rewrite(ξn,T ,R3) ;
else if ξn ∈ Epa ∧ (Node(n,Object(ξn)) ∈ S ∨ Node(n,Object(ξn)) ∈ D) then Rewrite(ξn,T ,R2) ;
else if ξn ∈ Eob jInit ∧ CanMakeModule(n,T) then O ∪ = {n} ;

M := ExtractModule(T , O) /*Creates user modules from the relevant code*/
return M

Algorithm 1. Transforming legacy extension code to Jetpack modules

JavaScript code in legacy extensions is evaluated in chrome unless it specifically makes
a transition to access objects in content scripts. There are only a limited number of ways
to make a transition from chrome code to content code, i.e., by accessing content,
contentWindow and contentDocument properties on selected chrome objects, like
window and gBrowser. This observation forms the basis of our static analysis.

All JavaScript in a legacy extension executes in the same heap, and thus objects
have global visibility. To precisely identify which objects must reside in the chrome

or content, Morpheus does a whole program analysis of the legacy extension. It con-
catenates all JavaScript code within the extension before performing the static analysis.
This concatenation includes scripts defined within JavaScript files, event handlers and
globals declared within overlay files and also JavaScript code modules. The result of
the static analysis is a table where each entry is an object reference and the context in
which it should be evaluated.

Static analysis to determine the chrome/content context of object references can
suffer from false positives and negatives when content references are accessed using
JavaScript’s reflective constructs. This happens, for instance, when object references
are used within the eval string, or passed as parameters to functions but are accessed

472 R. Karim, M. Dhawan, and V. Ganapathy

ComputeDOMSet(L,A)
Input: L: Legacy code,A: Alias relation
Output: D : set of AST nodes for DOM objects

Initialize:
T := AS T (L) ; D := ∅

foreach n ∈ Nodes(T) do
ξn := Expression(n)
ξrn := rValueExp(ξn), ξln := lValueExp(ξn)
if (ξrn ∈ D)
∨(ξrn ∈ Emi ∧ ((Node(n,Object(ξrn)) ∈ D)

∨ InContent(Object(ξrn))))
∨(ξrn ∈ Epa ∧ ((Node(n,Object(ξrn)) ∈ D)

∨ InContent(Object(ξrn))))
∨(ξrn ∈ Epa ∧ ((Node(n,Object(ξrn)) ∈ D)

∨ InContent(Property(ξrn)))) then
D ∪ = {Node(n, ξln)}
Al := GetAliasSet(A, Node(n, ξln))
D ∪ = Al /*add all alias of ξln to D*/

return D

ComputeSensitiveSet(L,A)
Input: L: Legacy code,A: Alias relation
Output: S : set of AST nodes for sensitive objects

Initialize:
T := AS T (L) ; S := ∅

foreach n ∈ Nodes(T) do
ξn := Expression(n)
if ξn ∈ Expcom
∨(ξn ∈ Emi ∧ (Node(n,Object(ξn)) ∈ S))
∨(ξn ∈ Epa ∧ (Node(n,Object(ξn)) ∈ S)) then

S ∪ = {n}
An := GetAliasSet(A, n)

S ∪ = An /*add all alias of ξn
to S*/

return S

(a) (b)

Algorithm 2. Algorithms for computation of set of nodes corresponding to (a) content DOM
objects and (b) sensitive objects

Table 2. Rewrite rules for expression. Each rule modifies an expression ξ and updates AST T

Rule: (ξ ⇒ ξ′)→ (T ⇒ T ′), where ξ := expression(n). T is set to T ′ after applying each rule
Rule R1: Import Module
m := get-module-name(ξ)
ξ′ := require(’m’)

Rule R2: Rewrite property access with setProperty, getProperty
o := object(ξ), prop := property(exp)

(R2.a)
property-read(T, ξ)

ξ′:= o.getProperty(’p’)
(R2.b)

property-write(T, ξ) v := value-to-store(T, ξ)

ξ′:= o.setProperty(’p’, v)

Rule R3 : Rewrite method invocation with invoke
o := object(ξ), μ := method(exp), α := arguments(exp)
ξ′ := o.invoke(’μ’, α)
Rule R4: Rewrite Global Access with GlobalGET, GlobalSET

(R4.a)
Global-read(T, ξ)

ξ′:= GlobaGET(’ξ’)
(R4.b)

Global-write(T, ξ) v := value-to-store(T, ξ)

ξ′:= GlobaSET(’ξ’, v)

Rule R5: Global Write ** This rule creates a new statement
σ := GlobaSET(’ξ’,ξ)

as elements of the arguments array within the function. Morpheus currently does not
handle such cases and instead relies on the developer to rewrite the code to make it
more amenable to analysis, or to manually classify the context of the object reference.

By default, a legacy extension executes in chrome, so object references that remain
in chrome in Jetpack can be evaluated as before. To evaluate objects in content, Mor-
pheus considers the content as a sensitive resource and models it as a core Jetpack
module called contentDOM. Algorithm 2(a) identifies all program points correspond-
ing to property accesses of content objects and Morpheus then rewrites these accesses
by accessor methods to abstract away the design of the content module from the exten-
sion code. For example, the code gBrowser.contentDocument in a legacy extension
would be rewritten as gBrowser.getProperty(’contentDocument’). Likewise,
the property access gBrowser.contentDocument.location would be rewritten as
gBrowse.getProperty(’contentDocument’).getProperty(’location’).

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 473

var table = require(’core module table’);
var policyChecker = require(’policy checker’);
var module = {

id: initModule(), /*initializes the module*/
getProperty: function() {

var property = arguments[0];
var violated = policyChecker.check

(<core module name>, property);
if(violated){

return {};
}
var ref = table.getReference(this.id);

switch(property) {
case ’< depends on the core module >’:

var retval = ref[property];
var newref = < new core module instance>
table.setReference(newref.id, retval);
return newref;

... /* more case statements */
default:

return null;
}

},
/*code for setProperty, invoke*/

}
exports.module = module ;

Fig. 3. Template for secure core module with policy

Morpheus addresses a key challenge that arises as a result of the design
of Jetpack’s contentDOM module. As shown in line 36 in Figure 1, legacy
extensions may contain statements that refer to objects in both chrome and
content, i.e., modifyWebPageContent is a method defined in the chrome while
gBrowser.contentDocument is the active window’s document object and is there-
fore an object in content. Moreover, the call to modifyWebPageContent is syn-
chronous in the legacy extension. Since the Jetpack framework executes chrome scripts
and content scripts in separate processes, they cannot share object references, but only
exchange data in JSON format asynchronously. Thus, in the Jetpack counterpart of this
extension, the call in line 36 would be asynchronous because modifyWebPageContent
should be part of content script as they operate on the gBrowser.contentDocument

from the active Web page. Morpheus addresses this challenge by creating opaque iden-
tifiers for objects in the content and transmitting these identifiers across the JSON
pipe to the chrome. Morpheus’s transformation also attempts to retain the control flow
of the original extension code as intended by the developer (see Section 5).

Module Construction. Modules in Jetpack must ideally not export references to priv-
ileged objects. Any such leaking references to other modules can lead to privilege es-
calation attacks, i.e., a module to which a reference is leaked may be able to access a
privileged object without explicitly requesting access to it at load time. Morpheus cre-
ates extensions that do not export privileged objects. Instead, Morpheus creates mod-
ule templates (see Figure 3) that export accessor methods to these privileged objects.
These modules export only four properties, namely id, getProperty, setProperty
and invoke to privileged objects. Each module encapsulates a privileged object, which
is assigned an opaque identifier (id) on module initialization. Other modules access the
object using getProperty and setProperty, which are getter and setter methods, and
invoke, which allows invocation of methods defined on the privileged object. The first
argument to each of getProperty, setProperty and invoke is the property to be
accessed followed by a list of arguments. Each of these methods can either return prim-
itive values or an instance of a module. Accessor methods also embody any security
policies associated with access to privileged objects. Section 4 discusses the security
implications of creating modules in this way.

Morpheus transforms legacy extensions to use core modules designed as above in
the following way. It first analyzes the legacy extension to locate the use of browser’s
privileged XPCOM APIs and generates a list of program points (as shown in algorithm
2(b)) for the property access and methods invoked on corresponding privileged XPCOM

474 R. Karim, M. Dhawan, and V. Ganapathy

ExtractModule(T ,O,A)
Input: T : AST for Legacy, O : Set of nodes for object literals, A : alias relation
Output: M a set of Jetpack modules

Initialize:
T := ∅ /*Map from node n ∈ O to AST*/ ; ι := ∅ /*Map from node n ∈ O to parentAST from

which it is extracted*/

foreach ni ∈ O do
Tni := CopyAstForNode(T , ni); T[ni] := Tni ; ι[ni] := T

/*update parent AST for nested object Literal expression*/
foreach ni ∈ O do

if IsNestedObject(ni,T) then
T p := FindParentAST(ni , T) ; ι[ni] := T p /*T p is the smallest AST T from T[ni] such that
ni � root(T)*/

foreach ni ∈ O do
Tni := T[ni] /*AST for node ni*/
Gni := GetGlobalIdentifiers(Tni) /* Gni is set of identifiers used but not defined in Tni*/
Hni := GetLocalIdentifiersGloballyUsed(T ,O,Tni) /*Identifiers defined in Tni but also used
in other T*/
/*Hni is set of identifiers defined in Tni and used in other modules*/

foreach q ∈ Nodes(Tni) do
ξq := Expression(q)
if ξq ∈ Gni then Rewrite(ξq ,Tni ,R4) /*rewrite with GlobalGET, GlobalSET*/ ;
else if ξq ∈ Edecl then

σ := CreateNewStatement(lValueExp(ξq),R5) /*create a GlobalSET*/
AddToAst(Tni , σ)

mi :=MakeNewModule(Tni) /*Place the code for AST Tni in a new module and append
necessary code*/
M ∪ = mi

/*modify the parent AST*/
T p := ι[ni] /*get parent AST*/
ξni := Expression(GetNodeFromAst(ni,T p)); Rewrite(ξni , T

p,R1) /* rewrite with require*/
Ani := GetAliasSet(A, GetNodeFromAst(ni ,T p))
foreach λ ∈ Nodes(T p) do

ξλ := Expression(λ)
if ξλ ∈ Emi ∧ (Object(ξλ) = ξni) then Rewrite(ξλ,T p,R3) /*rewrite with invoke*/;
else if ξλ ∈ Epa ∧ (Object(ξλ) = ξni) then Rewrite(ξλ,T p,R2) /*rewrite property access*/ ;

m :=MakeNewModule(T) ; M ∪ = m /*construct the main module and add to set M*/
return M

Algorithm 3. Algorithm for extracting user modules

API. Morpheus then rewrites the extension code by replacing all such references as
per the rules R1, R2, R3 in Table 2 for the corresponding core module in Jetpack.
The Jetpack framework does not provide core modules for all XPCOM APIs, so core
modules may have to be supplied separately. We have used our module template to
build a suite of core modules for a variety of XPCOM APIs. We developed these core
modules by hand, and used an off-the-shelf static analysis tool [17] to verify that these
core modules do not export references to privileged objects.

Morpheus also creates user modules by analyzing legacy extension code. The main
objective is to partition the chrome script into multiple modules in a way to attenuate the
authority of individual modules and limit the effect of a vulnerability exploit. Ideally,
user modules should be generated by clustering functions based on access to XPCOM
functionality. However objects with privilege to access different XPCOM can be used
in a single statement. This makes splitting based on XPCOM access non-trivial, since
it would require more precise and sophisticated static analysis and semantic-preserving
transformation algorithm. Therefore we adopted a simpler approach of encoding the
developer’s way of partitioning code.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 475

Morpheus identifies code fragments in the legacy extension that achieve related func-
tionality. The underlying intuition is that these code fragments can then be grouped into
a single module. Morpheus uses a simple notion of object ownership to identify related
functionality: it identifies a set of functions that are owned by the same object, and
groups such functions into a single module. This heuristic is based on the observation
that developers often group functionality as object hierarchies that are more likely to
access similar, if not the same, XPCOM interfaces within one object. Even though this
might provide less meaningful partitions if the developer does not arrange his code us-
ing purposeful object hierarchies, our evaluation shows that this approach is practical
and we do extract a reasonable number of user modules with most of them accessing
only a few core modules. User modules follow the same template as core modules with
the difference that the object encapsulated within the module is the one that owns the
functions grouped in that module, instead of a sensitive XPCOM object as for core
modules. Morpheus rewrites references to the encapsulated objects with a require

invocation. Algorithm 3 encodes the user modules extraction and rewriting technique.
As shown in line 2 in Figure 1, an extension can load a JavaScript code module

(JSM) using an invocation to Components.utils.import. The import API takes as
arguments the URL of the script to be loaded and an optional scope object. On execu-
tion of the import statement, the array of objects defined in the script (referenced by
the URL) is attached to the scope object. In case the scope object is not defined, the im-
ported objects are attached to the global object, i.e., they can be accessed and modified
by any script in the extension code. Browser-provided JSMs internally access XPCOM
interfaces and therefore are treated as privileged API by Morpheus. Core modules are
constructed for them and accesses of such JSMs are rewritten accordingly. In contrast,
Morpheus rewrites all JSMs, defined by legacy extension developers, to access only
core modules designed as above. However since these JSMs are self contained code
fragments with a well defined interface for exporting objects, Morpheus rewrites the
entire JSM as a user module, and does not partition it further into smaller modules.

Scope and Global Objects. When Morpheus creates user modules from a legacy exten-
sion, it is possible that the resulting user modules may require access to scope or global
variables defined in the legacy extension. However, Morpheus creates modules, which
are isolated by the Jetpack framework, and therefore cannot share references/updates
to scope and global variables. Morpheus therefore creates a new global module that
(1) stores references to all the scope and global variables, and (2) exports two meth-
ods GlobalGET and GlobalSET to enable access to these variables. It then analyzes all
user modules, identifies instances of scope or global variables used (but not defined) and
rewrites access to these variables as per rule R4 in Table 2, i.e., using either GlobalGET
or GlobalSET.

Preserving Extension UI. As mentioned in Section 2.2, most of the browser’s UI is
scriptable, i.e., it can be accessed and modified using JavaScript. Morpheus leverages
this ability and generates JavaScript code to dynamically modify the browser’s UI on
invocation of the Jetpack functionality. To do so, Morpheus analyzes the legacy exten-
sion’s CSS and XUL overlay files, which represent UI descriptions as XML markups,
and dynamically loads the appropriate JavaScript code at runtime to preserve the UI of
the legacy extension.

476 R. Karim, M. Dhawan, and V. Ganapathy

(2) var FileUtils = require(’core/FileUtils’).module;
(4) var file = FileUtils.invoke(’getFile’,dir, [filename]);
(9) var Weather = require(’user/Weather’).module;
() GlobalSET(’Weather’, Weather); /*new statement added*/

(30) document.invoke(’getElementById’,’weatherStatusBar’)
.addEventListener(’click’, showWeatherInPanel, false);

(32) window.invoke(’addEventListener’,’DOMContentLoaded’, addWeatherToWebpage, false);
(34) var locationStr = getLocationFromWebpage(gBrowser.getProperty(’contentDocument’));
(35) var temperature = Weather.invoke(’getWeatherData’, getZipCode(locationStr));
(36) modifyWebpageContent(gBrowser.getProperty(’contentDocument’, temperature));

Fig. 4. Code snippet from Main module of the transformed DisplayWeather Jetpack extension.
Only statements from Figure 1 that are rewritten by Morpheus are shown.

(9) var module = {
(12) getWeatherData: function(zipcode){
(13) GlobalGET(’Weather’).invoke(’requestDataFromServer’, zipcode);
(14) return processWeatherData(GlobalGET(’Weather’).getProperty(’temperature’));
(15) },
(16) requestDataFromServer: function(sendData){
(17) var httpRequest = require(’core/XMLHtttpRequest’).module;
(20) httpRequest.setProperty(’onreadystatechange’, function(){
(22) GlobalGET(’Weather’).invoke(’extractTemperature’, httpRequest.getProperty(’response’));
(24) });
(25) httpRequest.invoke(’open’, ’GET’, serverUrl, true);
(26) httpRequest.invoke(’send’, sendData); /*contact remote server*/
(27) }
(28) }

() exports.module = module ; /*new statement added*/

Fig. 5. Code snippet from Weather module of the transformed DisplayWeather Jetpack extension.
Only the statements from Figure 1 that are rewritten by Morpheus are shown.

Figures 4 and 5 show the rewritten statements and extracted user modules on apply-
ing Morpheus to our DisplayWeather extension (see Figure 1).

3.3 Policy Checker

Transformations on legacy extensions as applied by Morpheus greatly simplify enforce-
ment of security policies on a per extension granularity. Morpheus supports both simple
access control checks as well as complex stateful policy checks on sensitive browser re-
sources and APIs managed by the core modules.

Security policies for preventing undesired accesses by the core modules are encoded
in a separate Jetpack module named PolicyChecker, and all accessor methods in core
modules must consult the PolicyChecker before actually granting access to the sen-
sitive resources requested by a potentially compromised user module. To do so, Mor-
pheus mandates that core modules place a trap in their accessor methods, as shown in
Figure 3. PolicyChecker exports an API check to validate the request for accessing
the sensitive resource by the user module. If the request does not conform to the exten-
sion’s security policy, a violation is raised and the PolicyChecker simply blocks the
requested access and returns an empty object.2

Since policies are encoded within the isolated PolicyChecker module and core
modules can only invoke the check API to validate the access, Morpheus allows poli-
cies to be added or removed with no modification of the extension code.

2 The supplementary materials contain an example of a security policy.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 477

hs

hs.p

p

h′
s

h′
s.p

p

getProperty(’p’)hs

hs.p

Module mj Module ms

(a) (b) (c)

Fig. 6. (a) Module hierarchy in transformed DisplayWeather extension. Difference of heap map
of property access of a sensitive object where hξ is the heap object for the expression ξ. (b) s.p
in legacy extension (c) s.getProperty(’p’) in Jetpack. mj is a user module, ms is a module
wrapping sensitive object s.

.

4 Security Analysis

A Jetpack extension’s ability to limit the consequences of a breach depends on the
structure of its modules and the security policies. Figures 6(b) and 6(c) show the effect
of Morpheus’s transformations in accessing property of sensitive object in terms of the
heap model.

In a legacy extension when accessing a property p in sensitive object s, the heap
object hs for s and hs.p for s.p lies in the same address space, as shown in Figure 6(b).
However when processed by Morpheus, s.p is rewritten as s.getProperty(’p’)

and the heap object hs for s does not have direct access to hs.p, as shown in Figure 6(c).
Instead, invoking the getProperty method gives it access to the actual heap object h′s
that has direct access to its property p heap object h′s.p. The dotted line between h′s.p and
hs.p denotes that (i) the latter is the wrapped version of the former object, and (ii) this
relation is further protected by the policy enforcement mechanism. Note that both h′s and
h′s.p lie in a different module ms, which is isolated from the module m j corresponding
to the transformed legacy code. Thus, if an attacker manages to compromise m j he will
not have direct access to the actual heap object from m j.

Given the above heap model, we now analyze the security of a legacy exten-
sion transformed by Morpheus using several properties (enumerated in Table 3), pro-
vided in part by the Jetpack framework, Morpheus’s transformation, and Morpheus’s
PolicyChecker for policy enforcement.

Let P(m) denote the set of privileges that can be accessed by a module m. It is com-
puted as follows:

P(m) := (
⋃

m→x P(x))
⋃

(
⋃

m �→mu LP(mu))
⋃

(
⋃

m �→mc P(mc)), where
m→ x means module m has direct access to XPCOM interface x,
mi �→ m j means module mi imports module m j,
U is the set of user modules mu in an extension,
C is the set of core modules mc in an extension and U ∩ C is ∅, and
LP(mu) denotes the set of privileges leaked from user module mu

478 R. Karim, M. Dhawan, and V. Ganapathy

Table 3. Security properties

Provider Property
P1 Each Jetpack extension is a hierarchical collection of modules that are isolated and share no state except

that is explicitly exported using the exports construct.
P2 The set of privileges that can be manipulated and exported by a module depends on (i) user modules, and

(ii) core modules it includes using the require construct.
P3 Jetpack A module can import a privilege only when the Jetpack framework first loads the module. This implies that

the module cannot dynamically extend its privileges at runtime.
P4 All Jetpack modules lie in chrome space and can contact with content Web page over an asynchronous

message passing channel.
P5 Only core module can directly access XPCOM APIs. User modules can never directly access XPCOM APIs.
P6 Each core module encapsulates reference to only one XPCOM interface and does not have direct access

to other XPCOM interfaces
P7 Morpheus Core modules can not import any user module
P8 Each module exports only an opaque identifier and accessor methods, that can return either primitive values

or instances of other modules
P9 Each module stores the reference to the sensitive object it encapsulates within another designated module,

i.e., all core modules share a common module to store sensitive objects.
P10 Policy Each core module can access a specific sensitive resource after being verified by security policy mediate

Checker the particular sensitive resource that a core module can access.

P3 together with P2 guarantees that P(m) can be statically determined and cannot
be changed during execution, and thus prevents the attacker from creating and dynam-
ically loading instances of other core modules inside the compromised core (or user)
module m. P5, P6 and P7 limit the privileges P(m) for any core module m ∈ C to
(
⋃

m→x P(x))
⋃

(
⋃

m �→mc P(mc)). In case m is compromised, P9 guarantees that the at-
tacker only has access to the reference to the privileged object encapsulated by it (see
Figure 6(b)), and no access to objects managed by other core modules, e.g., mc

j. This
is because core module table, which stores the sensitive references for other core
modules, does not support iteration and its accessor methods need an opaque identifier
to return the sensitive reference. Since the opaque identifier itself is a reference, it is not
possible for the attacker to manufacture the reference and access all sensitive objects.

For a user module m ∈ U, P5 and P8 guarantee that
⋃

m→x P(x) is ∅ at all times.
This implies that a user module cannot export references to privileged objects, because
it has none. Therefore, we need not implement accessor methods for user modules,
but Morpheus still keeps the same interface as it allows developers to conveniently
enforce security policies on user modules. P8 also guarantees that

⋃
m �→mu LP(mu) is ∅

that makes P(m) for any user module m ∈ U equal to
⋃

m �→mc P(mc). In other words,
the privileges of a user module can be determined by inspecting privileges of the core
modules it imports. Thus, the above properties ensure that for any module m, P(m) ≡
⋃

m �→mc P(mc) always holds.
The DisplayWeather extension with access to the user’s file system and the network

is an attractive target for Web attackers, who may want to steal sensitive user data, such
as stored passwords, from the file system and send it over to an attacker controlled re-
mote server. We now illustrate how Morpheus improves the security of the transformed
DisplayWeather extension. Figure 6(a) shows the module hierarchy for the transformed
Jetpack extension. Using the above formula and the transformed code (Figures 4 and
5), we claim that P(mFile) ≡ { f ile}, P(mNetwork) ≡ {network}, P(mMain) ≡ { f ile}, and
P(mWeather) ≡ {network} holds even if these modules get compromised.

Unlike in the legacy DisplayWeather extension, P4 guarantees that the modules in the
corresponding Jetpack are isolated from the content. Assuming that the attacker has

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 479

(i) compromised the asynchronous message passing channel between the content and
the chrome, and (ii) can infiltrate into the chrome space (that contains all the modules),
we consider the case of a security breach in a user module mWeather. The only privi-
lege that the attacker gets is access to the network via the mNetwork module. Although
we place no restriction on the nature of code that the attacker can evaluate within the
extension, as listed earlier, P3 restricts the powers of the attacker by disallowing him
from loading a new core module mLoginManager (to read all stored passwords), as it was
not requested by the compromised mWeather module at load time.

Due to the fixed module hierarchy in Jetpack extensions, the attacker cannot even
trick mFile module (to read the password file) by only compromising mWeather, and must
also compromise mMain or mFile. If we assume that the attacker has managed to infil-
trate a core module mFile, then the only privilege he gets is f ile, i.e., access to the file
system. Similar scenario applies if the attacker has managed to infiltrate the core mod-
ule mNetwork. In each of the above cases, the attacker only gets access to the privileges
available in the compromised module m computed by P(m) and no more. This is in
contrast to the legacy extensions where a breach in any portion of an extension enables
the attacker to obtain access to any privileged object managed by the browser.

P10 further attenuates the authority of core modules. Let us assume that the attacker
has compromised both the mMain and mWeather modules, and also managed to modify the
file path in FileUtils.getFile to the intended password file, and the URL for the re-
mote server to one that is controlled by attacker. In such a scenario, the PolicyChecker
will prevent the mFile and mNetwork core modules to read file other than ProfD/zip.txt

from the file system and contact a remote server other than the legitimate weather server.
Even if the attacker has compromised mFile and mNetwork module, the PolicyChecker

will still prevent access to unauthorized resources.
We note that if the mWeather module was not extracted using Morpheus’s transfor-

mations, P(mMain) would have evaluated to { f ile, network}. In the absence of any se-
curity policy, compromising only mMain module would have sufficed for the attacker.
In other words, Morpheus does not worsen the security guarantees given by Jetpack
framework. In fact, its module extraction based on the owning object algorithm along
with the PolicyChecker make it harder for the attacker to mount a successful attack,
by increasing the minimum number of modules that need to be compromised.

5 Implementation

We realized the entire Morpheus toolchain in about 13, 400 lines of JavaScript (node.js
[4]), of which about 10, 500 lines were devoted to implement 100 core modules with
wide ranging functionality. We used node.js to ease the implementation of the proto-
type. We leveraged Doctor JS [1], which also uses node.js as its backend, to implement
our JavaScript code analyzer. Specifically, we added about 100 lines of code to cus-
tomize Doctor JS for analysis of legacy extensions. Generation of Jetpack modules and
rewriting of the global variables utilized the Narcissus [21] parser and decompiler to
(i) rewrite the source ASTs, and (ii) convert the rewritten ASTs back to source code.
This required about 4200 lines of JavaScript code. Finally, dynamic generation of the
UI and subsequent packaging of the modules into a Jetpack addon required 900 and 100

480 R. Karim, M. Dhawan, and V. Ganapathy

lines of JavaScript code, respectively. Another 370 lines of shell scripts were required
to automate the entire toolchain. Policy checker is implemented as a Jetpack module
and requires only 150 lines of JavaScript code to encode all policies listed in Table 6.

The transformation of legacy extension into the corresponding Jetpack, and correct
evaluation of chrome and content scripts in the transformed Jetpack posed several is-
sues. We discuss a few of them here:

• Content proxy. A content proxy is required for mediating interaction between chrome
and content scripts (see Section 2.3). The default content proxy implemented in the Jet-
pack framework was stateless, i.e., execution of content scripts across different invoca-
tions of the proxy did not share any execution context. This stateless execution posed
a problem since the transformed Jetpack requires multiple invocations to the proxy de-
pending upon context switches, i.e., from chrome to content and back (see line 36 in
Figure 1). We overcame the problem by modifying the default content proxy to retain
all execution state after initialization. The content proxy is initialized every time a new
document is loaded.

• Opaque identifiers. Message exchange between the chrome and content scripts is
asynchronous and is limited to transfer of primitive values and opaque identifiers only.
Since object creation may also happen in the content, management of opaque identi-
fiers must also be done in the content. We therefore inject the content proxy with scripts
to manage opaque identifiers during its initialization.

• Synchronous execution. In order to retain the synchronous execution semantics as in-
tended by the extension developer, Morpheus implements a synchronous execution pro-
tocol for evaluating object references in the content. Specifically, Morpheus utilizes
the processNextEvent API defined on XPCOM’s thread interface to implement the
synchronous behavior by repeatedly processing the next pending event on the currently
executing thread until it receives a response from the content process. This technique
along with a stateful content proxy ensures that the transformed extension achieves
synchronous execution semantics without blocking the CPU. However, this mechanism
may affect the performance of the transformed extension if it makes numerous context
switches between the chrome and the content.

• Custom XPCOM interface. Firefox allows extension developers to declare their own
XPCOM components and register them with the extension architecture by packaging
supporting JavaScript files, which implement the component interfaces, with the exten-
sion. Morpheus treats such JavaScript files as modules, redefines the components using
helper methods provided by Jetpack and rewrites them like other JavaScript code in the
legacy extension. All top level objects in extension scripts are also added to global

module so that they can be accessed by the modules defining the XPCOM interface.

6 Evaluation

We evaluated Morpheus using four criteria: (i) correctness of the transformation, (ii)
conformance to the principle of least authority (POLA), (iii) effectiveness of user mod-
ule creation and (iv) effectiveness of policy-checker. We performed the evaluation us-
ing a suite of 52 legacy extensions (50 popular legacy extensions from Mozilla’s addon

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 481

Table 4. Legacy extensions transformed using Morpheus and corresponding Jetpack statistics

Legacy Extension Functionality # Users
Amazon Search Search in amazon.com using the right click context menu from any Website. 1,866
BlockSite Blocks Websites and disables hyperlinks of user’s choice. 214,173
Bookmark All Bookmark all opening tabs quickly without any dialog. 5,304
Clear Cache Clears the browser cache with one click 10,557
Clear Cache Button Clears the browser cache. 44,843
Comment Blocker Blocks or hides all unwanted comments on Websites. 1,415
Context Search Expands the context menu’s “Search for” item for all installed search engines. 67,070
Copy Link Text Adds an option to the context menu to select the text of a link on right-click. 5,199
Copy Link URL Copy the URLs of the selected links to clipboard. 13,025
Ebay Quick Search Search in ebay.com using the right click context menu from any Website. 1000
Email This Email link, title, and a selected summary of the Web page being viewed. 15,853
Empty Cache Button Cache clearing made easy. One click. 53,048
Facebook Bookmark Allow visiting Facebook Bookmarks by adding a special Button to Toolbar. 11,222
Facebook New Tab Loads Facebook.com quickly when a new tab is opened. 7,439
Facebook Toolbar Button Loads Facebook.com on clicking toolbar icon. 21,026
Facebook Touch Panel Allow quick check Facebook Notifications and Messages by a touch Panel. 10,054
FlagFox Displays a country flag depicting the location of the current Website’s server. 1,296,480
FlashBlock Blocks all Flash content from loading. 1,372,826
Go To Bing Loads bing.com in a new tab when clicked on status-bar Bing icon. 139
Go To Google Loads google.com in a new tab when clicked on status-bar Google icon. 15,700
Google Search By Image Adds Google Search by Image context menu item for images. 45,838
Google Translator Translates selected text or page into chosen language with a click or hot-key. 453,029
Google Viewer Prompt to open supported documents with Google Docs Viewer. 1,472
Image Block Adds a toggle button to conditionally block/allow images on Web pages. 22,147
ImageSearch Adds a context-menu item for images to search Google for that image. 14,285
LEOs Dictionaries Translates selected words/phrases with the help of LEOs Online Dictionaries 10,501
Leo Search Searches selected words at dict.leo.org and opens the result in a new tab. 9,835
LibraryDetector Detects which JavaScript libraries are being used on the current Web page. 1,590
Live IP address Retrieves Live IP Address and displays in the status bar. 9,090
My Home Page Load the homepage in a new Tab. 40,439
My Public IP Address Show browser IP address. 2,959
New Tab Homepage Load the homepage in a new tab; load the first in case of multiple homepages. 245,540
Open Bookmark (new tab) Always opens new tab from bookmarks. 44,683
Open GMail (new tab) Opens Google Mail Web page on a new tab. 22,107
Open GMail (pinned tab) Opens Google Mail Web page on a new pinned tab in HTTPS mode. 10,092
Open Image (new tab) Adds right-click context menu item for opening images in new tabs. 14,285
Place Cleaner Replace the default “Print” button with Mozilla’s “Print Preview” button. 21,878
Plain Text links Open plain-text urls as links via context menu. 4,738
Print Preview Replace the default “Print” button with Mozilla’s “Print Preview” button. 37,966
Really Simple Sticky Allow to add notes, reminders directly in the browser. 924
Right Click Link Opens selected text in a new tab. 6,861
Search IMDB Search the highlighted text at IMDB. 19,635
Show MyIP Displays user’s current IP address in the status bar. 11,239
Tab History Menu Enables opening the history menu for a selected tab just by clicking on it. 7,237
TinEye Rev Img Srch Adds a context menu to search for an image, where it came from, etc. 208,496
Twitter New Tab Loads twitter.com quickly when a new tab is opened. 830
Twitter Toolbar Button Loads twitter.com on clicking toolbar icon. 210
Web2Pdf Converter Web page to PDF conversion tool. 42,185
YouTube Auto Replay Enables automatic replay of a YouTube video or part of it. 26,478
YouTube IT Search the selected Text in Youtube. 15,036
DisplayWeather Displays weather of chosen location N/A
Steal-login Steal passwords and send to remote server N/A

gallery (AMO) and 2 synthetic extensions) and then transformed them using Morpheus.
Our dataset contained extensions that use common extension development technolo-
gies, such as JavaScript, HTML, XUL, CSS, etc., and did not contain any binary XP-
COM component.

Correctness of transformation. We tested the correctness of the transformation by ex-
ercising the advertised functionality of each of the 52 extensions transformed with Mor-
pheus. In each case, we enhanced the browser with the Jetpack extension being tested
and observed the results of interaction with the extension’s UI. Table 4 lists the exten-
sions evaluated along with their functionality. The top 50 entries are for the real-world
extensions whereas the bottom 2 correspond to the synthetic ones. For all cases the Jet-
pack extension was able to provide the advertised functionality of the original (legacy)
extension.

482 R. Karim, M. Dhawan, and V. Ganapathy

Fig. 7. Frequency of core modules in Jetpack user modules

FlagFox is one of the larger extensions that we transformed. It utilizes 28 core mod-
ules, and over 1307 lines of JavaScript (out of 3971 lines of extension code) are used
to implement the UI. The remaining 2667 lines implement the core functionality of the
legacy extension. We also observed that several extensions from our dataset had just a
single user module after being transformed to Jetpack extension. Go To Google, Go To
Bing, Steal-login are few instances of such case. This is due to the absence of any object
definition or absence of property method invocations from objects defined in the legacy
code. We also noticed the same Jetpack extension structure for TinEye Reverse Image
Search entry even though the legacy code defines a top-level object. This is because it
had all the functionality included in just that one object whose methods were invoked
from event handlers.

Conformance to POLA. We used an off-the-shelf tool Beacon [17] to check whether
modules in a Jetpack extension adhere to the principle of peast authority (POLA). Bea-
con detects whether a Jetpack module leaks references to privileged objects that it en-
capsulates. If so, any other code that requires this module will be able to directly
access the privileged object without an explicit require of this object, thereby violat-
ing POLA. None of the 100 core modules leaks any object reference or violates POLA.

Privilege separation in user modules. We estimated the effectiveness of our user mod-
ule extraction algorithm in approximating the ideal privilege separation by counting
the number of core modules imported by each user module. The less the number of
core modules accessed by a user module, the more effective is our module extraction
algorithm in separating the privileges in extension code, as this corresponds to possible
increase in the minimum number of modules that needs to be compromised to misuse
multiple privileges.

We analyzed the user modules produced by Morpheus for all 52 Jetpack extensions
and observed the frequency of the require invocation for various core modules within
each user module. The goal is to demonstrate that user modules created using the own-
ing object algorithm do not have access to large number of privileged objects as com-
pared to legacy extensions. Figure 7 reflects the frequency distribution of core modules.
We see that out of a total of 100 user modules across all the Jetpack extensions, there are

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 483

Table 5. List of Jetpack modules accessing multiple categories of core modules3. User modules
created using owning object algorithm are named using random strings, except when they are
either JavaScript code modules (JSMs) or the entry point of the extension i.e., main module.
Extensions not invoking any core module corresponding to XPCOM interfaces are omitted.

Jetpack Module name Categories
I II III IV V VI

Amazon Search M-1 ✓

BlockSite
M-1 ✓ ✓
M-2 ✓
main ✓ ✓

Bookmark All M-1 ✓ ✓
M-2 ✓

Clear Cache main ✓
Clear Cache Button main ✓ ✓

CommentBlocker appl (JSM) ✓
main ✓

Context Search M-1 ✓
main ✓

Copy Link Text M-1 ✓ ✓
Copy Link URL M-1 ✓ ✓
Email This M-1 ✓ ✓ ✓
Empty Cache Button M-1 ✓ ✓
Facebook Bookmarks M-1 ✓ ✓ ✓

Facebook New Tab M-1 ✓ ✓ ✓
main ✓

Facebook Toolbar M-1 ✓ ✓ ✓
Button M-2 ✓ ✓ ✓
Facebook Touch M-1 ✓ ✓ ✓
Panel M-2 ✓ ✓ ✓

FlagFox
flagfox (JSM) ✓ ✓ ✓ ✓ ✓ ✓
ipdb (JSM) ✓
main ✓

FlashBlock M-1 ✓ ✓ ✓ ✓
M-2 ✓

Jetpack Module name Categories
I II III IV V VI

Google Translator M-1 ✓
Image Block M-1 ✓
ImageSearch M-1 ✓ ✓ ✓
LEOs Dictionaries M-1 ✓
Leo Search main ✓
Live IP Address main ✓ ✓
My Home Page M-1 ✓
My Public IP M-1 ✓ ✓
New Tab Homepage main ✓
Open Bookmark (new tab) main ✓ ✓
Open Gmail (pinned tab) M-1 ✓
Open Image (new tab) M-1 ✓
Plain Text Links M-1 ✓ ✓

Places Cleaner M-1 ✓ ✓ ✓
M-2 ✓ ✓

Really Simple Sticky M-1 ✓
Search IMDB M-1 ✓ ✓ ✓
Show MyIP main ✓
Tab History Menu main ✓
Twitter New Tab M-1 ✓ ✓ ✓
Twitter Toolbar Button M-1 ✓ ✓ ✓
YouTubeIT M-1 ✓
TinEye Rev Img Srch main ✓ ✓

Web2Pdf M-1 ✓ ✓
main ✓ ✓

Dispaly Weather M-1 ✓
main ✓

Steal Login main ✓ ✓

56 modules with one or more accesses to distinct core modules. From the distribution,
it is seen that around 14 modules use only one core module and as the number of core
modules increases, the number of modules requesting multiple core modules decreases.
We also note that there is one user module with 28 accesses to core modules. This user
module is part of the FlagFox extension and is in fact a JavaScript code module (JSM)
that was wrapped as a user module. Recall that JSMs are not partitioned into smaller
modules because they are self contained code fragments (see Section 3.2).

Table 5 categorizes the usage of core modules corresponding to XPCOM interfaces
across different categories, and we make four observations about it. First, most of the
table is relatively sparse which indicates that user modules use related functionality.
Second, almost all Jetpack extensions use core modules under the Application category
and the reason is because they set user preferences. Third, since user modules created
from JavaScript code modules, like flagfox in the FlagFox Jetpack, are just wrappers,
they typically use core modules across multiple categories. Fourth, many Jetpack exten-
sions which interact with content on Web pages, like DisplayWeather, do not explicitly
invoke the core module contentDOM (see Section 3.2) responsible for access to the
content objects. Instead they access properties of either chrome window or gBrowser,

3 Core modules are grouped into 6 categories. Modules that access application or user prefer-
ences, create application threads, etc. are categorized under I. II contains core modules that
represent browser neutral functionality such as access to timers and console. Modules facili-
tating access to content objects like window and document are grouped under III. Modules
that handle browser permissions and cookies are grouped under IV, while those that access
network, file system or storage come under V. The remaining modules are grouped under VI.

484 R. Karim, M. Dhawan, and V. Ganapathy

Table 6. List of policies checked for evaluation data set

Policy Generic # extensions
Contact only specified remote server No 3
Access only files in profile directory as advertised No 1
Cannot access preference branch other than its own Yes 2
Cannot contact server if the extension has already accessed file system Yes 1
Cannot contact server if the extension has already accessed LoginManager Yes 1
Cannot contact server if the extension has access browsing history Yes 1
Cannot contact server if the extension has access browser cache Yes 2

which in turn invoke the contentDOM to make a transition to the content. Because
of this implicit invocation, column entires in category III are empty for such Jetpack
extensions.

Runtime policy checking. We evaluated the effectiveness of PolicyChecker at block-
ing attacks originating from misuse of the core modules. To do so, we encoded seven
policies in the PolicyChecker module for the transformed extensions in our dataset.
Table 6 lists these policies, which are classified as being either generic or extension-
specific. The first three policies enforce fine-grained access control over extension re-
sources, and the remaining policies are stateful. Of the extensions in our dataset, only
Steal-login exhibits malicious activity, while the others are benign and do not violate the
policies in Table 6. Thus, to verify that PolicyChecker can actually identify and block
violations in core module, we introduced synthetic violations in benign extensions. We
did so by appending additional code within the user modules of the benign but trans-
formed extensions to trigger policy violations. The third column in the table lists the
number of extensions that were used to check such synthetic violations of the corre-
sponding policy. In each case, we observed that PolicyChecker was able to identify
the violation and block the undesired operation in the core module. In our experiments,
we refrained from checking any policy for an extension if it can potentially block the
advertised functionality. For example, we did not apply policy to block network access
after file system access for the DisplayWeather extension, as the extension contacts a
weather server after reading ’zip.txt’ from the file system, which is its advertised func-
tionality. We do envision developer assistance when encoding such policies.

We now list specific observations on applying Morpheus over legacy extensions.

(1) An extension from our dataset CommentBlocker4 installs event handlers that ma-
nipulate objects from both chrome and content to achieve its advertised functional-
ity. Specifically, it installs two mutation event listeners (for DOMNodeInserted and
DOMNodeRemoved events) in the content while their handlers are declared in the
chrome. Execution of such event handlers invokes frequent invocations to the syn-
chronous execution mechanism due to context switches between the chrome and
content. Since the Jetpack framework disallows direct access of references across the
chrome/content boundary, Morpheus transforms the handler defined in the chrome

to operate using opaque identifiers for the event object (which is passed implic-
itly to all handler functions). Creating opaque identifiers for event attributes like
target and originalTarget allows most functionality, but prevents operations such
as evt.target instanceof HTMLDocument. This is because the Jetpack framework

4 CommentBlocker:https://addons.mozilla.org/en-US/firefox/addon/commentblocker/

 https://addons.mozilla.org/en-US/firefox/addon/commentblocker/

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 485

itself does not provide support for all objects available in the legacy Firefox extension
architecture. For example, comparison of object instances against HTMLDocument and
other HTML elements using the instanceof operator does not succeed in the Jetpack
framework. Thus, legacy extension using such comparisons must be rewritten to use
alternate comparisons (such as Ci.nsIHTMLDocument and Ci.nsIHTMLElement).

(2) The interface definitions for most XPCOM APIs inherit from other interfaces.
For example, the nsILocalFile interface inherits from nsIFile. QueryInterface
[22] is a construct that allows JavaScript to perform runtime type discovery and
identify the interfaces supported by an object. Thus, on instantiating an object of
type nsILocalFile, the object can perform a QueryInterface to access meth-
ods and properties defined on the nsIFile interface as well. With the core mod-
ules exporting only accessor methods, QueryInterface on module objects would
be incorrect. To correctly implement the behavior of QueryInterface, the get-
ter method in core module table maintains a linked list of objects which were
QueryInterface’d on a module object and on every property access, it traverses the
list and returns the object on which the property was defined.

(3) If an XPCOM API returns an instance of a string object, its core module returns
a wrapped string object that exports an opaque identifier and the three accessor meth-
ods (i.e., getProperty, setProperty and invoke). Since this wrapped string object
cannot be directly used for string operations like concatenation, Morpheus appends an
additional toString property on the wrapped string object.

In its current form, Morpheus is constrained mainly due to Narcissus and Doctor JS.
The Morpheus toolchain uses both these tools during different phases of its operation.
Both Narcissus and Doctor JS are under active development and do not support all
JavaScript constructs and features. For example, Narcissus does not support various
forms of the let block, array comprehension, destructuring, generators, etc. Doctor
JS uses the CFA2 algorithm [32] for JavaScript implemented atop Narcissus. Doctor
JS also does not support a number of JavaScript statements. For example, it throws
exceptions when performing string concatenation via the += shorthand operator, or if
the loop variable is not defined explicitly within the for loop itself. We are actively
working to remove such limitations by porting Morpheus to a more stable platform,
like SpiderMonkey [23], and allow evaluation of more complex extensions.

7 Related Work

There has been much interest recently in the research community to improve defenses
against vulnerable and malicious browser extensions. This paper presents an automated
approach to port legacy extensions to secure, modern platforms and to our knowledge,
Morpheus is the first tool to do so.

Securing browser extensions. The Jetpack framework is similar to the Google Chrome
extension architecture [9] which encourages a modular design. Recent work [11, 19]
explores the latter to highlight its deficiencies in developing secure Chrome extensions.

VEX [8] implements a flow- and context-sensitive static analysis of JavaScript to
study vulnerabilities in legacy Firefox extensions. Beacon [17] performs information-
flow for modular JavaScript extensions and is designed to detect poor software

486 R. Karim, M. Dhawan, and V. Ganapathy

engineering practices in modules, i.e., violation of POLA or leaked capabilities across
module interface. Sabre [13] and Djeric and Goel [14] both present dynamic informa-
tion flow tracking system to detect extensions that can leak sensitive browser data. IBEX
[15] is a framework for specifying fine-grained access control policies guarding the be-
havior of monolithic browser extensions, but requires extensions to first be written in a
dependently-typed language (to make them amenable to verification), following which
they are translated to JavaScript.

Runtime policy enforcement has also been applied to prevent extensions from leak-
ing sensitive data and limiting extension privilege in [27, 31]. Even though the approach
presented in [27] is more light-weight than [31], both techniques require modifications
to the browser. Similar to Morpheus, [27] wraps all accesses to XPCOM interfaces in
legacy extensions to validate the operations with regard to security policies specified on
the extension. In contrast, our main goal in wrapping privileged objects in individual
modules is to adhere to Jetpack’s security principles and limit the damage to only the
compromised module. The extension architecture also enables embedding fine-grained
security policy enforcement without modifying browser or Jetpack runtime. Morpheus
improves security of extensions by both porting to Jetpack and enforcing policies.

Privilege separation. Morpheus is most closely related to Privtrans [10] and Swift [12].
Privtrans automatically integrates privilege separation into legacy source code using
context switching between a secure monitor and an untrusted slave. Swift defines a
principled approach to build secure web applications by partitioning the source code.
Morpheus uses both approaches. It defines an evaluation context for object references,
as either chrome or content, and switches contexts when execution of a JavaScript
statement contains references from both contexts. This context switching approach is
needed because the Jetpack framework is restrictive and does not allow placement of
content code in chrome or vice-versa. Morpheus differs from both Privtrans and Swift
and several other privilege separation mechanisms [28, 18, 26, 33, 34], because it is en-
tirely automatic and does not require any user annotations to accomplish partitioning. A
new architecture is proposed in [7] to achieve privilege separation for HTML5 web ap-
plications including browser extensions. Morpheus is orthogonal to [7] and ports legacy
code to the Jetpack framework that mandates chrome-content privilege separation.

8 Conclusion

We present Morpheus, a streamlined mechanism to port legacy Firefox extensions to
the more secure Jetpack framework. It utilizes module isolation provided in Jetpack
framework to overcome challenges in code partitioning and secure module construc-
tion. Transformation applied by Morpheus enables fine-grained policy enforcement on
ported Jetpack extension. We evaluate Morpheus with a suite of 52 legacy extensions
and show that the automatically transformed extensions are secure by construction.

Acknowledgments. This work was funded in part by AFOSR grant FA9550-12-1-0166
via subaward 4628-RU-AFOSR-0166. We thank Santosh Nagarakatte, Chung-chieh
Shan, and the anonymous reviewers for comments on early drafts of this paper.

Retargetting Legacy Browser Extensions to Modern Extension Frameworks 487

References

1. Doctor, J.S.: http://doctorjs.org/
2. Jetpack, https://wiki.mozilla.org/Jetpack
3. JSON, http://www.json.org/
4. node.js, http://nodejs.org/
5. Opera extensions, http://dev.opera.com/extension-docs/
6. Safari extensions, https://developer.apple.com/library/safari/

documentation/Tools/Conceptual/SafariExtensionGuide/
Introduction/Introduction.html

7. Akahawe, D., Saxena, P., Song, D.: Privilege separation in HTML5 applications. In:
USENIX Security Symp. (2012)

8. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vetting browser extensions for
security vulnerabilities with VEX. CACM 54(9) (September 2011)

9. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-
bilities. In: Network and Distributed Systems Security Symp. (2010)

10. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege separa-
tion. In: 13th USENIX Security Symp. (2004)

11. Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the google chrome extension security
architecture. In: USENIX Security Symp. (2012)

12. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure web appli-
cations via automatic partitioning. SIGOPS Oper. Syst. Rev. 41(6) (2007)

13. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based browser exten-
sions. In: Annual Computer Security Applications Conference (2009)

14. Djeric, V., Goel, A.: Securing script-based extensibility in web browsers. In: USENIX Secu-
rity Symp. (2010)

15. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser extensions.
In: Proc. of IEEE Symp. on Security and Privacy (May 2011)

16. Hardy, N.: The confused deputy (or why capabilities might have been invented). SIGOPS
Oper. Syst. Rev. 22(4) (October 1988)

17. Karim, R., Dhawan, M., Ganapathy, V., Shan, C.-c.: An analysis of the Mozilla Jetpack exten-
sion framework. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 333–355. Springer,
Heidelberg (2012)

18. Kilpatrick, D.: Privman: A Library for Partitioning Applications. In: USENIX Annual Tech-
nical Conference, FREENIX Track (2003)

19. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome Extensions: Threat Analysis and Countermea-
sures. In: Network and Distributed Systems Security Symp. (2012)

20. Mozilla. Add-on SDK,
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/

21. Mozilla. Narcissus,
http://mxr.mozilla.org/mozilla/source/js/narcissus/

22. Mozilla. Query Interface, https://developer.mozilla.org/en-US/docs/
XPCOM Interface Reference/nsISupports#QueryInterface

23. Mozilla. Spidermonkey, https://developer.mozilla.org/en/SpiderMonkey
24. Mozilla Developer Network. Electrolysis,

https://wiki.mozilla.org/Electrolysis
25. Mozilla Developer Network. XPCOM,

http://developer.mozilla.org/en/XPCOM
26. Myers, A.C.: Jflow: practical mostly-static information flow control. In: ACM Principles of

Programming Languages (1999)

http://doctorjs.org/
https://wiki.mozilla.org/Jetpack
http://www.json.org/
http://nodejs.org/
http://dev.opera.com/extension-docs/
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/Introduction/Introduction.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/Introduction/Introduction.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/Introduction/Introduction.html
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/
http://mxr.mozilla.org/mozilla/source/js/narcissus/
https://developer.mozilla.org/en-US/docs/XPCOM_Interface_Reference/nsISupports#QueryInterface
https://developer.mozilla.org/en-US/docs/XPCOM_Interface_Reference/nsISupports#QueryInterface
https://developer.mozilla.org/en/SpiderMonkey
https://wiki.mozilla.org/Electrolysis
http://developer.mozilla.org/en/XPCOM

488 R. Karim, M. Dhawan, and V. Ganapathy

27. Onarlioglu, K., Battal, M., Robertson, W., Kirda, E.: Securing legacy firefox extensions with
SENTINEL. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013. LNCS, vol. 7967,
pp. 122–138. Springer, Heidelberg (2013)

28. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: 12th USENIX
Security Symp. (2003)

29. Addon SDK. Content proxy, https://addons.mozilla.org/en-US/
developers/docs/sdk/latest/dev-guide/guides/
content-scripts/accessing-the-dom.html

30. Simon Willison. Understanding the Greasemonkey vulnerability,
http://simonwillison.net/2005/Jul/20/vulnerability/

31. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Enhancing web browser security against
malware extensions. J. Computer Virology 4 (2008)

32. Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow analysis. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570–589. Springer, Heidelberg (2010)

33. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program partitioning. ACM
Trans. Comput. Syst. 20(3) (August 2002)

34. Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using Replication and Partitioning to
Build Secure Distributed Systems. In: IEEE Symp. Security & Privacy (2003)

https://addons.mozilla.org/en-US/developers/docs/sdk/latest/dev-guide/guides/content-scripts/accessing-the-dom.html
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/dev-guide/guides/content-scripts/accessing-the-dom.html
https://addons.mozilla.org/en-US/developers/docs/sdk/latest/dev-guide/guides/content-scripts/accessing-the-dom.html
http://simonwillison.net/2005/Jul/20/vulnerability/

Capture-Avoiding and Hygienic
Program Transformations

Sebastian Erdweg1, Tijs van der Storm2,3, and Yi Dai4

1 TU Darmstadt, Germany
2 CWI, Amsterdam, The Netherlands

3 INRIA Lille, France
4 University of Marburg, Germany

Abstract.

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Program transformations in terms of abstract syntax trees
compromise referential integrity by introducing variable capture. Vari-
able capture occurs when in the generated program a variable declaration
accidentally shadows the intended target of a variable reference. Existing
transformation systems either do not guarantee the avoidance of variable
capture or impair the implementation of transformations.

We present an algorithm called name-fix that automatically elimi-
nates variable capture from a generated program by systematically re-
naming variables. name-fix is guided by a graph representation of the
binding structure of a program, and requires name-resolution algorithms
for the source language and the target language of a transformation.
name-fix is generic and works for arbitrary transformations in any trans-
formation system that supports origin tracking for names. We verify
the correctness of name-fix and identify an interesting class of transfor-
mations for which name-fix provides hygiene. We demonstrate the ap-
plicability of name-fix for implementing capture-avoiding substitution,
inlining, lambda lifting, and compilers for two domain-specific languages.

1 Introduction

Program transformations find ubiquitous application in compiler construction
to realize desugarings, optimizers, and code generators. While traditionally the
implementation of compilers was reserved for a selected few experts, the current
trend of domain-specific and extensible programming languages exposes devel-
opers to the challenges of writing program transformations. In this paper, we
address one of these challenges: capture avoidance.

A program transformation translates programs from a source language to a
target language. In doing so, many transformations reuse the names that occur
in a source program to identify the corresponding artifacts generated in the
target program. For example, consider the compilation of a state machine to a
simple procedural language as illustrated in Figure 1. The state machine has
three states opened, closed, and locked. For each state the compiler generates a
constant integer function with the same name. Furthermore, for each state the
compiler generates a dispatch function that takes an event and depending on the
event returns the subsequent state. For example, the dispatch function for opened

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 489–514, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

490 S. Erdweg, T. van der Storm, and Y. Dai

state opened
close => closed

state closed
lock => locked
open => opened

state locked
unlock => closed

(a) Door state machine

1 fun opened() = 0;
2 fun closed() = 1;
3 fun locked() = 2;
4 fun opened-dispatch(event) =
5 if (event == "close") then closed() else error();
6 fun closed-dispatch(event) =
7 if (event == "open") then opened()
8 else if (event == "lock") then locked() else error();
9 fun locked-dispatch(event) =

10 if (event == "unlock") then closed() else error();
11 fun main-dispatch-next-event(state, event) =
12 if (state == opened()) then opened-dispatch(event)
13 else if (state == closed()) [...];

(b) Program generated for the door state machine

Fig. 1. Many transformations reuse names from the source program in generated code

tests if the given event is close and either yields the integer constant representing
the following state closed or a dynamic error. Finally, the compiler generates a
main dispatch function that calls the dispatch function of the current state.

A naive implementation of such compiler is easy to implement, but also runs
the risk of introducing variable capture. For example, if we consistently rename
the state locked to opened-dispatch as shown in Figure 2(a), we expect the compiler
to produce code that behaves the same as the code generated for the state
machine without renaming. However, a naive compiler blindly copies the state
names into the generated program, which leads to the incorrect code shown in
Figure 2(b): The function definition on line 4 shadows the constant function
on line 3 and thus captures the variable reference opened-dispatch on line 8 (we
assume there is no overloading). For the example shown, the problem is easy to
fix by renaming the dispatch function on line 4 and its reference on line 12 to a
fresh name opened-dispatch-0. However, a general solution is difficult to obtain.
Existing approaches either rely on naming conventions and fail to guarantee
capture avoidance, or they require a specific transformation engine and affect
the implementation of transformations.

We propose a generic solution called name-fix that guarantees capture avoid-
ance and does not affect the implementation of transformations. name-fix com-
pares the name graph of the source program with the name graph of the generated
programto identify variable capture. If there is variable capture, name-fix system-
atically and globally renames variable names to differentiate the captured vari-
ables from the capturing variables, while preserving intended variable references
among original variables and among synthesized variables, respectively. name-fix
requires name analyses for the source and target languages, which often exists or
are needed anyway (e.g., for editor services, error checking, or refactoring), and
hence can be reused. name-fix treats transformations as a black box and is inde-
pendent of the used transformation engine as long as it supports origin tracking
for names [27].

Capture-Avoiding and Hygienic Program Transformations 491

state opened
close => closed

state closed
lock=>opened-dispatch

open => opened

state opened-dispatch
unlock => closed

(a) Consistently renam-
ing door state machine

1 fun opened() = 0;
2 fun closed() = 1;
3 fun opened-dispatch() = 2;
4 fun opened-dispatch(event) =
5 if (event == "close") then closed() else error();
6 fun closed-dispatch(event) =
7 if (event == "open") then opened()
8 else if (event == "lock") then opened-dispatch() else ...
9 fun opened-dispatch-dispatch(event) =

10 if (event == "unlock") then closed() else error();
11 fun main-dispatch-next-event(state, event) =
12 if (state == opened()) then opened-dispatch(event)
13 else if (state == closed()) [...];

(b) Program generated for the renamed door state machine
is incorrect: Variable capture of opened-dispatch

Fig. 2. Variable capture can occur when original and synthesized names are mixed

name-fix enables developers of program transformations to focus on the actual
translation logic and to ignore variable capture. In particular, name-fix enables
developers to use simple naming schemes for synthesized variables in the trans-
formation and to produce intermediate open terms. For example, in Figure 1,
we append "-dispatch" to a state’s name to derive the name of the correspond-
ing dispatch function. This construction occurs at two independent places in
the transformation: When generating a dispatch function for a state, and when
generating the main dispatch function. The connection between these is only
established when assembling all parts of the generated program in the final step
of the transformation. Using name-fix , it is safe to apply global naming schemes
with intermediate open terms to associate generated variable references and dec-
larations. Transformations of this kind fall into the class of transformations for
which name-fix guarantees hygiene, that is, α-equivalent source programs are
always mapped to α-equivalent target programs.

In summary, we make the following contributions:

– We studied 9 existing DSL implementations that use transformations and
found that 8 of them were prone to variable capture.

– We present name-fix , an algorithm that automatically eliminates variable
capture from the result of a program transformation.

– We state and verify termination and correctness properties for name-fix and
show that name-fix produces α-equivalent programs for programs that are
equal up to consistent but possibly capturing renaming.

– We propose a notion of hygienic transformations and identify an interesting
class of transformations for which name-fix provides hygiene.

– We present an implementation of name-fix in the metaprogramming system
Rascal. Our implementation supports capture avoidance for transformations
that generate code as syntax trees or as strings.

492 S. Erdweg, T. van der Storm, and Y. Dai

– We demonstrate the applicability of name-fix in a wide range of scenarios:
for capture-avoiding substitution, for optimization (function inlining), for
desugaring of language extensions (lambda lifting), and for code generation
(compilation of DSLs for state machines and for digital forensics).

2 Capture-Avoiding Transformations: What and Why

Capture avoidance is best known from capture-avoiding substitution: When sub-
stituting an expression e2 under a binder as in λx. (e1[y := e2]), variable x
may not occur free in e2 otherwise the original binding of x in e2 would be
shadowed by the λ. To implement capture-avoiding substitution, we must re-
name x to a fresh variable α �∈ {y} ∪ FV(e1) ∪ FV(e2) to avoid the capture:
λα. (e1[x := α][y := e2]). Ensuring capture avoidance is already relatively com-
plicated for substitution in the λ-calculus. For larger languages and more com-
plex program transformations, ensuring capture avoidance is a non-trivial and
error-prone task.

2.1 Variable Capture in the Wild

To better understand the relevance of the problem of variable capture, we stud-
ied implementations of a DSL for questionnaires in 10 state-of-the-art language
workbenches in the context of the Language Workbench Challenge 2013 [10].1

The questionnaire DSL features named declarations of questions and named
definitions of derived values. 9 of the 10 language workbenches translate a ques-
tionnaire into a graphical representation using either Java or HTML with CSS
and JavaScript as target language. One workbench uses interpretation instead
of transformation. In most cases, the implementation of the DSL was conducted
by the developers of the workbench themselves.

The result of our study is shocking: The DSL implementations in 8 of the 9
language workbenches that use transformations fail to address capture avoid-
ance and produce incorrect code even for minimal changes to the definition of
a questionnaire. For example, some implementations fail when a question name
is changed to container, questions, or SWTUtils, because these names are implic-
itly reserved for synthesized variables. Other implementations of the DSL use
naming schemes similar to the one we illustrated in the state-machine example.
If there is already a question called Q, these implementations fail when naming
another question QBlock, calculated_Q, or grp_Q. Some of the variable captures
result in compile-time errors of the generated Java code, others result in misbe-
haved code that, for example, silently skips some of the questions when storing
answers persistently. Debugging such errors typically requires investigation of
the generated code and can be very time-consuming.

Of the studied DSL implementations, only the transformation implemented
in Más addressed variable capture. It uses global name mappings to generate
1 We studied all workbenches of the previous study [10]: Ensō, Más, MetaEdit+, MPS,

Onion, Rascal, Spoofax, SugarJ, the Whole Platform, and Xtext.

Capture-Avoiding and Hygienic Program Transformations 493

unique names from source-language variables for the generated code. The usage
of these name mappings and similar approaches is cross-cutting and relies on
the discipline of the developer; it is not enforced or supported by the framework.
We seek a solution that provides stronger guarantees and has less impact on the
implementation of a transformation.

2.2 Problem Statement

The goal of this work is to provide a mechanism that avoids variable capture
in code that is generated by program transformations. To this end, we seek a
mechanism that satisfies the following design goals:

G1: Preserve reference intent: If a reference from the source program occurs
in the target program, then the original declaration must also occur in the
target program and the reference is still bound by it. In other words, source-
program variables may neither be captured by synthesized declarations nor
by other source-program declarations.

G2: Preserve declaration extent: If a declaration from the source program occurs
in the target program, then only source-program references may be bound
by it. In other words, synthesized variable references may not be captured
by source-program declarations.

G3: Noninvasive: Avoidance of variable capture should not impact the readabil-
ity of generated code. This is important in practice, where the generated
code is often manually inspected when debugging a program transforma-
tion. In particular, a generated program should be left unchanged if it does
not contain variable capture.

G4: Language-parametric: It should be possible to eliminate variable capture from
virtually all source and target languages that feature static name resolution.

G5: Transformation-parametric: The mechanism should work with different
transformation engines and should not impose a specific style of transform-
ing programs. Ideally, the mechanism supports existing transformations un-
changed.

In the following sections, we present our solution name-fix . It fully achieves
the first three goals. In addition, name-fix is language-parametric provided the
name analysis of source and target language satisfy modest assumptions. Finally,
name-fix works with any transformation engine that provides origin tracking [27]
for variable names, so that names originating from the source program can be
distinguished from names synthesized by the transformation.

3 Graph-Guided Elimination of Variable Capture

The core idea of our solution is to provide a generic mechanism for the detection
and elimination of variable capture based on name graphs of the source and target
program. We use the term name for the string-valued entity that occurs in the
abstract syntax tree of a program. Naturally, the same name may occur at multiple
locations of a program. To distinguish different occurrences of the same name, we

494 S. Erdweg, T. van der Storm, and Y. Dai

assume names are labeled with a variable ID. In source programs, such IDs are
unique. However, for target programs generated by some transformation, we do
not require that variable IDs are unique, because the transformation may have
copied and duplicated names from the input program to the output program.

We write xv to denote that name x is labeled with variable ID v, and we
write p@v to retrieve from program p the name corresponding to variable ID v.
Nodes that share the same ID must have the same name so that p@v is uniquely
determined. The nodes of a name graph are the variable IDs that occur in a
program and the edges connect references to the corresponding declarations.

Definition 1. The name graph of a program p is a pair G = (V, ρ) where
V is the set of variable IDs in p (references and declarations),
ρ ∈ V → V is a partial function from references to declarations,

and if ρ(vr) = vd, then reference and declaration have the same name p@vr =

p@vd .

1 4 8

6 2 9 5

Fig. 3. Name graph of state
machine in Figure 1(a)

For example, Figure 3 displays the name graph of
the state machine in Figure 1(a), where we use line
numbers as variable IDs: ID 1 represents the dec-
laration of opened, ID 2 represents the reference to
closed in the transition on line 2, ID 4 represents the
declaration of closed, and so on.

We require that transformations preserve vari-
able IDs when reusing names from the source pro-
gram in the generated code. For example, when compiling the state machine of
Figure 1(a) to the code in Figure 1(b), the compiler reuses the names of state
declarations for the declaration of constant functions and for references to these
constant functions in the main dispatch. Accordingly, in the generated code,
these names must have the same variable ID as in the source program. Essen-
tially, whenever a transformation copies a name from the source program to the
target program, the corresponding ID must be copied as well and thus preserved.
In contrast, names that are synthesized by the transformation should have fresh
variable IDs.

1 4 8

6 2 9 5

’12 synthesized variables

’4 ’6 ’9 ’11

Fig. 4. Names of compiled
state machine of Figure 1(b)

For example, Figure 4 shows the name graph
of the compiled state machine (we left out nodes
of function parameters event and state for clarity).
We use line numbers from the source program as
variable IDs for reused variables, and ticked line
numbers of the target program as variable IDs for
synthesized variables. In addition, we depict nodes
of synthesized variables with a darker background
color. We have cycles in the name graph for source
nodes 1, 4, and 8 because the transformation dupli-
cated the names at these labels to generate con-
stant functions and references to these constant
functions.

Capture-Avoiding and Hygienic Program Transformations 495

1 4 8

6 2 9 5

’12

’4 ’6 ’9 ’11

Fig. 5. Variable capture
(dashed arrow) in the code of
Figure 2(b)

One important property of the name graph in
Figure 4 is that the source nodes are disconnected
from the synthesized nodes, and all references
from the original name graph in Figure 3 have
been preserved. In contrast, consider the name
graph in Figure 5 that displays result of compila-
tion after renaming state locked to opened-dispatch
as in Figure 2(b). The graph illustrates that a
source variable has been captured (dashed arrow)
during compilation: The variable at line 5 of the
source program was intended to point to the state
declared at line 8, but after compilation it points
to the dispatch function at line 4 of the synthe-
sized program.

Our solution identifies variable capture by comparing the original name graph
of the whole program with the name graph of the generated code. Function
find-capture in Figure 6 computes the set of edges that witness variable capture.
In the state-machine example, find-capture finds only one edge (5 �→ ’4) as
part of notPresrvRef1. We discuss the precise definition of variable capture in the
subsequent section.

If there are witnesses of variable capture, our solution computes a variable
renaming that has two properties. First, for each witness of variable capture,
the renaming renames the capturing variable to eliminate the witness. Sec-
ond, the renaming ensures that intentional references to the capturing vari-
able are renamed as well. This can be difficult because the name graph of
the generated code is inaccurate due to variable capture. Therefore, our solu-
tion conservatively approximates the set of potential references by including all
synthesized variables of the same name. Function comp-renaming in Figure 6
computes the renaming as a function from a variable ID to the variable’s fresh
name, computed by gensym. For the example, we get πsrc = ∅ because ’4 �∈ Vs

and πsyn = {’4 �→ "opened-dispatch-0", ’12 �→ "opened-dispatch-0"} because
t@’4 = t@’12. Function rename in Figure 6 visits all nodes in a syntax tree
(represented as s-expression) and applies the renaming π to variables with the
corresponding IDs. For the example, the renaming yields a capture-free program
with the same name graph as shown in Figure 4.

Function name-fix in Figure 6 brings it all together and is the main entry point
of our solution. It takes the name graph of the source program and the generated
target program as input. First, it computes the name graph of the target program
using the function resolveT that we assume to provide name resolution for the tar-
get language T . name-fix then calls find-capture to identify variable capture. If
find-capture finds no capturing edges, name-fix returns the generatedprogramun-
changed. Otherwise, name-fix calls comp-renaming and rename to compute and
apply the renaming that eliminates the witnessed variable capture. Since the name
graph Gt of t may be inaccurate due to variable capture, name-fix recursively calls
itself to repeat the search for and potential repair of variable capture. Note that

496 S. Erdweg, T. van der Storm, and Y. Dai

Syntactic conventions:
xv variable x labeled with variable ID v
p
@v

= x name x that occurs in program p at variable ID v

find -capture((Vs, ρs), (Vt, ρt)) = {
notPresrvRef1 = {(v �→ ρt(v)) | v ∈ dom(ρt), v ∈ Vs, v ∈ dom(ρs), ρs(v) �= ρt(v)};
notPresrvRef2 = {(v �→ ρt(v)) | v ∈ dom(ρt), v ∈ Vs, v �∈ dom(ρs), v �= ρt(v)};
notPresrvDef = {(v �→ ρt(v)) | v ∈ dom(ρt), v �∈ Vs, ρt(v) ∈ Vs};
return notPresrvRef1 ∪ notPresrvRef2 ∪ notPresrvDef;

}

comp-renaming((Vs, ρs), (Vt, ρt), t, capture) = {
πsrc = ∅;
πsyn = ∅;
foreach vd in codom(capture) {

usedNames = {t@v|v ∈ Vt} ∪ codom(πsrc) ∪ codom(πsyn)
fresh = gensym(t@vd , usedNames);
if (vd ∈ Vs ∧ vd �∈ πsrc)

πsrc = πsrc ∪ {(vd �→ fresh)} ∪ {(vr �→ fresh) | vr ∈ dom(ρs), ρs(vr) = vd};
if (vd �∈ Vs ∧ vd �∈ πsyn)

πsyn = πsyn ∪ {(v �→ fresh) | v ∈ Vt \ Vs, t
@v = t@vd};

}
return (πsrc, πsyn);

}

rename(t, π) = {
return t match {

case xv if v ∈ dom(π) => π(v)v

case xv => xv

case c => c
case (t1. . .tn) => (rename(t1, π) . . . rename(tn, π));

}
}

name-fix (Gs, t) = {
Gt = resolve

T(t);

capture = find -capture(Gs, Gt);
if (capture == ∅) return t;

(πsrc, πsyn) = comp-renaming(Gs, Gt, t, capture);
t’ = rename(t, πsrc ∪ πsyn);
return name-fix(Gs, t’);

}

Fig. 6. Definition of name-fix that guarantees capture-avoidance

Capture-Avoiding and Hygienic Program Transformations 497

1 2

4 3

(a) Graph of source
program

1 2

4 3

’5

(b) Graph of gener-
ated program t

1 2

4 3

’5

(c) After renaming
the inner x

2

1 2

4 3

’5

(d) After renaming
the outer x

1

Fig. 7. Name graphs during execution of name-fix for t = λ x
1
. (λ x

2
. x

3
x
’5
) x

4

name-fix applies a closed-world assumption to infer that all unbound variables are
indeed free, and thus can be renamed at will.

In the following, we present examples that illustrate two design choices of
name-fix thatmay be somewhat unintuitive: Why aremultiple rounds of renaming
required, and why do we renameall synthesized variables of the samename. For the
former property, consider the lambda expression t = λx1. (λx2. x3 x’5)x4, where
we use superscripts to annotate variable IDs and ticked IDs for synthesized vari-
ables. The first graph in Figure 7 shows the original binding structure of the hypo-
thetical source programthat t is generated from. The second graph shows the bind-
ing structure of t. The synthesized variable x’5 is captured by the binding of x2,
which is illegal due to notPresrvDef in find-capture. Accordingly, comp-renaming
initiates a renaming of x2, also renaming x3 to preserve the source reference. This
yields expression t′ = λx1. (λα2. α3 x’5)x4 with binding structure as shown in
the third graph. Indeed, x2 no longer captures x’5. However, now x1 captures x’5.
Thus, by renaming x1 and its reference x4, we get t′′ = λβ1. (λα2. α3 x’5)β4 with
capture-free binding structure as shown in the last graph. The iterative renaming
was necessary because the name graph of t did not indicate that x’5 is eventually
captured by x1. We could have preemptively renamed x1 together with x2, but
this contradicts our goal for minimal invasiveness.

To illustrate why name-fix renames all synthesized variables of the same name,
consider the expression t = λx’3. x1(λx2. x’4) in which x’3 captures x’1 and x2

captures x’4. Thus, name-fix needs to rename x’3 and x2. Because x’3 and x’4 are
both synthesized and have the same name, renaming of x’3 entails the renaming
of x’4 even though they are unrelated in the name graph of t. Thus, name-fix
yields the correct result t′ = λα’3. x1(λβ2. α’4). To see why x’3 should bind x’4,
consider what happens had the source program consistently used y in place of
x: t2 = λx’3. y1(λ y2. x’4). This program has no variable capture and is returned
unchanged by name-fix . Since we want the result of name-fix to be invariant
under consistent renamings of the source variables, x’3 must bind x’4 in both
t and t2. By renaming all synthesized variables of the same name, name-fix
ensures that no potential variable reference is truncated.

Both of the above examples also illustrate another point: name-fix does not
guarantee valid name binding with respect to the target language. The final

498 S. Erdweg, T. van der Storm, and Y. Dai

result in both examples contains a free variable. Instead, name-fix guarantees
that there is no variable capture. We state and verify the precise properties of
name-fix in the next section.

4 Termination, Correctness, and an Equivalence Theory

Our solution name-fix iteratively eliminates variable capture in a fixed-point
computation. In this section we show three important properties of name-fix :
name-fix terminates, name-fix eliminates variable capture, and name-fix yields
α-equivalent outputs for inputs that are equal up to consistent (but possibly
capturing) variable renaming.

We represent programs as s-expressions with constant symbols c, labeled vari-
able names xv, and compound terms (t1 . . . tn). We shall frequently require two
programs to be equal up to unconditional renaming:

Definition 2. Two programs are label-equivalent p1 ≡L p2 iff they are equal up
to variable names:

c1 ≡L c2 if c1 = c2
x
v1
1 ≡L x

v2
2 if v1 = v2

(t1 . . . tn) ≡L (t′1 . . . t
′
n) if ti ≡L t′i ∀ 1 ≤ i ≤ n

To simplify our formalization, we do not consider bijective relabeling functions
and assume label-equivalence instead. As first metatheoretical result we state
that name-fix terminates.2

Theorem 1. For any name graph Gs and any program t, name-fix(Gs, t) ter-
minates in finitely many steps.

4.1 Assumptions on Name Resolution

We present our framework for capture-avoiding transformations independent of
any concrete source and target languages. Since our technique works on top of
name graphs, we require functions resolveL that compute the name graph of a
program of some language L by name analysis. However, instead of requiring a
specific form of name analysis, we specify minimal requirements on the behavior
of resolveL that suffice to show our technique is sound. The first assumption
states that name analysis must produce a name graph.

Assumption 1. Given a program p, resolveL(p) yields the name graph G =
(V, ρ) of p according to Definition 1.

The second assumption requires resolveL to behave deterministically. First, given
two programs p1 and p2 that are equal up to variable names, names that are
references in p1 must be references in p2 if the declaration is available (but it
can refer to another declaration). Second, given a reference with two potential
declarations in p1 and p2, resolve

L must deterministically choose one of them.
2 Proofs of theorems and additional lemmas appear in a technical report [9].

Capture-Avoiding and Hygienic Program Transformations 499

Assumption 2. Let p1 ≡L p2 be label-equivalent with name graphs resolveL(p1) =
(V, ρ1) and resolveL(p2) = (V, ρ2).

(i) If ρ1(vr) = vd and p
@vr
2 = p

@vd
2 , then vr ∈ dom(ρ2).

(ii) If ρ1(vr) = vd, ρ2(vr) = v′d, p
@vd
1 = p

@v
′
d

1 , and p
@vd
2 = p

@v
′
d

2 , then vd = v′d.

In addition to these assumptions, we require that the name graph (V, ρ) of the
original source program satisfies dom(ρ) ∩ codom(ρ) = ∅. We call such graphs
bipartite name graphs. Note that resolveL often does not produce bipartite name
graphs for generated code due to name copying as in Figure 4. We believe our re-
quirements are modest and readily satisfied by name analyses of most languages.

4.2 name-fix Eliminates Variable Capture

We define the notion of capture-avoiding transformations in terms of the name
graph of the source and target programs, before we show that name-fix can turn
any transformation into a capture-avoiding one.

Definition 3. A transformation f : S → T is capture-avoiding if for all s ∈ S
with resolveS(s) = (Vs, ρs) and t = f(s) with resolveT(t) = (Vt, ρt):

1. Preservation of reference intent: For all v ∈ dom(ρt) with v ∈ Vs,
(i) if v ∈ dom(ρs), then ρs(v) = ρt(v),
(ii) if v �∈ dom(ρs), then v = ρt(v).

2. Preservation of declaration extent: For all v ∈ dom(ρt), if v �∈ Vs, then
ρt(v) �∈ Vs.

The first condition states that a capture-avoiding transformation must preserve
references of the source program. That is, if a variable v occurs in the target
program and this reference was bound in the source program, then the target
program must provide the same binding for v. That is, the transformation must
preserve the reference intent of the source program’s author.

If the source program does not contain v as a bound variable (but maybe as
a declaration), v can only refer to itself in the target program. We specifically
admit such self-references to allow transformations to duplicate names of source-
program declarations in order to introduce additional delegation. For example,
our compiler for state machines illustrated in Figure 1(a) uses names of state
declarations to generate constant functions and references to these functions.
Note that we also admit duplication of reference names, each of which has the
same variable ID and thus must refer to the original declaration.

The second condition states that a capture-avoiding transformation must keep
synthesized variable references separate from variables declared in the source
program. We consider all variables of the source program Vs to be original and
all variables of the target program that do not come from the source program
(Vt\Vs) to be synthesized. This condition prevents synthesized variable references
to be captured by original variable declarations, that is, synthesized variables
can only be bound by synthesized declarations.

500 S. Erdweg, T. van der Storm, and Y. Dai

Function find-capture in Figure 6 implements the test for capture avoidance
and collects witnesses in case of variable capture. Since name-fix only terminates
when find-capture fails to find variable capture, the correctness of name-fix
follows from its termination.

Theorem 2 (Capture avoidance). Given a transformation f : S → T ,
name-fix yields a capture-avoiding transformation λs.name-fix(resolveS(s), f(s)).

4.3 Definitions of α-equivalence and Sub-α-equivalence

It is not enough to ensure that name-fix eliminates variable capture, because, for
example, a function that returns the empty program would satisfy this property.
To ensure the usefulness of name-fix , we need to show that, given two programs
that are equal up to possibly capturing renaming, it produces α-equivalent pro-
grams (and not just any programs). Two programs are α-equivalent if they are
equal up to non-capturing renaming, that is, if they have the same syntactic
structure and binding structure.

Definition 4. Two programs p1 and p2 with name graphs resolveL(p1) = (V1, ρ1)

and resolveL(p2) = (V2, ρ2) are α-equivalent p1 ≡α p2 iff p1 ≡L p2 and ρ1 = ρ2.

Note that p1 ≡L p2 entails V1 = V2. As expected, our definition of α-equivalence
is independent of the concrete names that occur in the programs. The following
examples illustrate our definition of α-equivalence.

Program Name graph

p1 = λx1. (λ y3. y4 y5) x2 G1 = ({1, 2, 3, 4, 5}, {(2 �→ 1), (4 �→ 3), (5 �→ 3)})
p2 = λx1. (λx3. x4 x5) x2 G2 = ({1, 2, 3, 4, 5}, {(2 �→ 1), (4 �→ 3), (5 �→ 3)})
p3 = λx1. (λ y3. x4 + y5) x2 G3 = ({1, 2, 3, 4, 5}, {(2 �→ 1), (4 �→ 1), (5 �→ 3)})
p4 = λx1. (λx3. x4 + x5) x2 G4 = ({1, 2, 3, 4, 5}, {(2 �→ 1), (4 �→ 3), (5 �→ 3)})

Our definition correctly identifies p1 ≡α p2, because they are label-equivalent and
have the same name graphs. Indeed, p2 can be derived from p1 by consistently
renaming all occurrences of the bound variable y to x. In contrast, p3 �≡α p4
because the binding structure differs: x4 is bound to x1 in p3, but to x3 in
p4. All other combinations of above programs (modulo symmetry of ≡α) are
not α-equivalent because they fail the required label-equivalence. In particular,
p2 �≡α p4 in spite of having the same binding structure.

To relate programs that are equal up to possibly capturing renaming, we
propose the following notion of sub-α-equivalence.

Definition 5. Two programs are sub-α-equivalent p1 ≡G
α p2 under a name graph

G = (V, ρ) iff p1 ≡L p2 and, given Vp is the set of labels in p1 and p2,
(i) for all vr, vd ∈ Vp ∩ V with ρ(vr) = vd, p@vr

1 = p@vd
1 ⇔ p@vr

2 = p@vd
2

(ii) for all vr, vd ∈ Vp \ V, p@vr
1 = p@vd

1 ⇔ p@vr
2 = p@vd

2

Capture-Avoiding and Hygienic Program Transformations 501

Sub-α-equivalence compares two programs based on the actual names occurring
in them, and not based on the binding structure. The relation is parameterized
over a name graph G. The first condition states that for each binding in this
graph, p1 and p2 need to agree on whether reference and declaration share the
same name or not. Even if the reference and declaration have the same name, it
does not imply that there is a corresponding binding in either p1 or p2, because
another declaration can also have this name and capture the reference. The
second condition states that for all variables not in G, p1 and p2 need to agree
on which variable occurrences share names. To illustrate sub-α-equivalence, let
us consider G = ({1, 2, 3}, {(2 �→ 1), (3 �→ 1)}) and the following programs:

[p1]≡G
α

p1 = λx1. (λ y’4. x3 + y’5) x2 p2 = λ z1. (λ y’4. z3 + y’5) z2

p3 = λx1. (λ z’4. x3 + z’5) x2 p4 = λ z1. (λ z’4. z3 + z’5) z2

¬[p1]≡G
α

p5 = λ z1. (λ y’4. x3 + y’5) x2 p6 = λx1. (λ y’4. z3 + y’5) x2

p7 = λx1. (λ z’4. x3 + y’5) x2 p8 = λx1. (λ y’4. x3 + z’5) x2

The first four programs are sub-α-equivalent to p1 under G. We have p1 ≡G
α p2

because they agree on the name sharing at variable IDs 1, 2, and 3, which is
required because of the bindings in G, and on the name sharing at variable IDs
’4 and ’5, which is required because these IDs are not in G. Similar analysis
shows p1 ≡G

α p3 and p1 ≡G
α p4. Programs p5 through p8 are examples that are

not sub-α-equivalent to p1 under G. For p5 and p6 the first condition of sub-α-
equivalence fails because there is no agreement on the name sharing at 1 and 3.
For p7 and p8 the second condition fails because there is no agreement on the
name sharing at ’4 and ’5.

Note that p1 ≡G
α p4 illustrates that sub-α-equivalence is weaker than α-

equivalence because p1 �≡α p4. In the following subsection we use sub-
α-equivalence to characterize programs that name-fix can repair to α-equivalent
programs.

4.4 An Equivalence Theory for name-fix

We now turn to one of the main results of our metatheory: Function name-fix is
noninvasive, preserves sub-α-equivalence, and is invariant under consistent (but
possibly capturing) renaming of original and synthesized variables, as specified
by sub-α-equivalence.

For capture-free programs, name-fix yields the input program unchanged,
that is, name-fix is noninvasive:

Theorem 3. For any name graph Gs = (Vs, ρs) and any program t with
find-capture(Gs, resolve

T(t)) = ∅, name-fix(Gs, t) = t.

Given a bipartite name graph of the source program, name-fix preserves sub-α-
equivalence:

Theorem 4. For any bipartite name graph Gs = (Vs, ρs) and any program t,
name-fix(Gs, t) ≡Gs

α t.

502 S. Erdweg, T. van der Storm, and Y. Dai

Given a bipartite name graph of the source program, name-fix maps sub-α-
equivalent programs to α-equivalent ones:

Theorem 5. For any bipartite name graph Gs = (Vs, ρs) and programs t1 ≡Gs
α

t2, name-fix (Gs, t1) ≡α name-fix(Gs, t2).

5 Hygienic Transformations

In the previous section, we demonstrated that for any transformation f : S →
T , name-fix provides a capture-avoiding transformation λ s.name-fix(Gs, f(s)).
However, for some transformations name-fix yields a transformation that ad-
heres to the stronger property of hygienic transformations.

Definition 6. A transformation f : S → T is hygienic if it maps α-equivalent
source programs to α-equivalent target programs:

s1 ≡α s2 =⇒ f(s1) ≡α f(s2).

This definition of hygiene for transformations follows Herman’s definition of
hygiene for syntax macros [11].

Transformations can inspect the names of variables and can generate struc-
turally different code for α-equivalent inputs. For example, a transformation
may decide to produce thread-safe accessors for variables with names prefixed
by sync_. Accordingly, a consistent renaming from sync_foo to foo in the source
program leads to generated programs that are not structurally equivalent, let
alone α-equivalent. However, there is an interesting class of transformations for
which name-fix provides hygiene:

Definition 7. A transformation f : S → T is sub-hygienic if it mapsα-equivalent
source programs s1 ≡α s2 to sub-α-equivalent target programs f(s1) ≡Gs

α f(s2)
under the name graph Gs of s1 (or s2).

The class of sub-hygienic transformations includes some common transforma-
tion schemes. First, it includes transformations that transform a source program
solely based on the program’s structure but independent of the concrete variable
names occurring in it. In such transformations, synthesized variable names are
constant and the same for any source program. Second, for a source language
without name shadowing (such as state machines), sub-hygienic transformations
include those that derive synthesized variable names using an injective function
g : string → string over the corresponding source variable names. For example,
in Figure 1, we derived the name of a dispatch function by appending -dispatch
to the corresponding state name. In both cases name-fix eliminates all potential
variable capture and yields a fully hygienic transformation:

Theorem 6. For any sub-hygienic transformation f : S → T , transformation
λ s.name-fix(Gs, f(s)) is hygienic.

Capture-Avoiding and Hygienic Program Transformations 503

fun zero() = 0;
fun succ(x) = let n = 1 in x + n;
let n = x + 5 in
succ(succ(n + x + zero()))

(a) Program with free variable x

fun zero() = 0;
fun succ(x) = let n = 1 in (x + n);
let n0 = 2*n + 5 in
succ(succ(n0 + 2*n + zero()))

(b) Result of substituting 2*n for x

Fig. 8. name-fix yields a capture-avoiding substitution that renames local variables

6 Case Studies

To evaluate the applicability of capture-avoiding program transformation in
practice, we have successfully applied name-fix in three different scenarios:

– Optimization: Function inlining via substitution in a procedural language.
– Desugaring of language extensions: Lambda lifting of local functions.
– Code generation: Compilation of state machines and of Derric, an existing

DSL for digital forensics, to Java.

We have implemented all case-studies in Rascal, a programming language and
environment for source code analysis and transformation [14]. The source code
of our implementation and all case studies are available online:
http://github.com/seba--/hygienic-transformations.

6.1 Preservation of Variable IDs with String Origins in Rascal

As described in Section 3, a transformation must preserve variable IDs of the
source program when reusing these names in the target program. While it is
possible for a developer of a program transformation to manually preserve vari-
able IDs via copying, it is easier and safer if the transformation engine does it
automatically. We extended Rascal to preserve variable IDs automatically via a
new Rascal feature called string origins [25]. Every string value (captured by the
str data type) carries information about its origin. A string can either originate
from a parsed text file, from a string literal in a metaprogram, or from a string
computation such as concatenation, slicing, or substitution.

String origins allow us to obtain precise offsets and lengths for known sub-
strings (e.g., names) so that it is possible to replace substrings. We use this
feature to support name-fix for transformations that produce a target program
as a string instead of an abstract syntax tree. Despite the higher fragility of
string-based transformations, they are common in practice. In our case studies,
we use string-based transformations to generate Java code.

6.2 Capture-Avoiding Substitution and Inlining

Substitution and inlining are program transformations that may introduce vari-
able capture. Using name-fix , the definition of capture-avoiding versions of these

http://github.com/seba--/hygienic-transformations

504 S. Erdweg, T. van der Storm, and Y. Dai

transformations becomes straight-forward because name-fix takes over the re-
sponsibility for avoiding variable capture. Figure 8 illustrates the application
of capture-avoiding substitution to a program of a simple language with global
first-order functions and local let -bound variables. In the example, we use sub-
stitution to replace free occurrences of variable x by 2*n. To prevent capture, our
capture-avoiding substitution function renames the locally bound variable n.

Substitution is a program transformation where the source and the target lan-
guage coincide. Capture-avoiding substitution must retain the binding structure
of the original (source) program. Since this requirement is part of our definition of
capture-avoiding transformations, we can use name-fix to get a capture-avoiding
substitution function from a capturing substitution function. This simplifies the
definition of substitution for our procedural language to the following:

subst(p, x, e) = name-fix(resolve(p), substP(p, x, e));
substP(p, x, e) = prog([substF(f, x, e) | f ← p.fdefs], [substE(e2, x, e) | e2 ← p.main]);
substF(fdef(f, params, b), x, e) = fdef(f, params, x in params ? b : substE(b, x, e));

substE(var(y), x, e) = x == y ? e : var(y);
substE(let(y, e1, e2), x, e) = let(y, substE(e1, x, e), x == y ? e2 : substE(e2, x, e));
substE(e1, x, e) = for (Exp e2 ← e1) insert substE(e2, x, e);

Function substP takes a program p and substitutes e for x in all function defini-
tions and expressions of the main routine using substF and substE, respectively.
Function substF substitutes e for x in the body of a function only if x does not
occur as parameter name of the function, that is, only if x is indeed free in the
function body. Function substE proceeds similarly for let -bound variables. The
final case of substE uses Rascal’s generic-programming features [14] to provide a
default implementation: We substitute e for x in each direct subexpression of e1
and insert the corresponding result in place of the subexpression.

Function subst ensures capture avoidance, but function substP does not: When
pushing expression e under a binder, the bound variable may occur free in e, in
which case the bound variable should be renamed. By using name-fix , we can
omit checking and potentially renaming the bound variable both for function
definitions and for let expressions and still get a capture-avoiding substitution
function subst that behaves as illustrated in Figure 8.

Inlining of functions is a common program-optimization technique used by
compilers. We illustrate our implementation of capture-avoiding inlining in Fig-
ure 9. The left column shows a simple program using two logical functions or
and and. The central column shows the program after inlining and. Note that
our language uses a single namespace for functions and let -bound variables. We
avoid capture of the reference to or by renaming the local variable or to or0. The
right column shows the result of inlining or in the central program. The local
variable tmp in the definition of or is renamed to tmp0 since otherwise it would
capture the reference to the variable tmp of the main body.

Based on our implementation of substitution, we can easily implement inlining
by calling substE to substitute all arguments of a function call into the body of
the function. Like for substitution, it suffices to call name-fix after function

Capture-Avoiding and Hygienic Program Transformations 505

fun or(x, y) =
let tmp = x in
if tmp == 0
then y
else tmp;

fun and(x, y) =
!or(!x, !y);

let or = 1 in
let tmp = 0 in
and(or, tmp)

(a) Original program

fun or(x, y) = ...;
fun and(x, y) = ...;

let or0 = 1 in
let tmp = 0 in
!or(!or0, !tmp)

(b) First inline function and

fun or(x, y) = ...;
fun and(x, y) = ...;

let or0 = 1 in
let tmp = 0 in
let tmp0 = !or0 in
if tmp0 == 0
then !tmp
else tmp0

(c) Then inline function or

Fig. 9. Capture-avoiding function inlining is similar to hygienic macro expansion

inlining is complete. Intuitively, this is because name-fix only renames bound
variables, which are ignored by substE anyway. A detailed investigation of when
to call name-fix is part of our future work.

6.3 Lambda Lifting

Language extensions augment a base language with additional language features.
Many compilers first desugar a source program to a core language. Extensible
languages like SugarJ [8] enable regular programmers to define their own exten-
sions via custom desugaring transformations. Such desugaring transformations
should preserve the binding structure of the source program. In fact, the lack
of capture-avoiding and hygienic transformations in extensible languages was a
major motivation of this work.

Exemplary, to show that name-fix supports language extensions, we imple-
mented an extension of our procedural language for local function definitions
that we desugar by lifting them into the global toplevel function scope [13]. The
left column of Figure 10 shows an example usage of the extension, where we have
a global function f that is shadowed by a local function f, which is used in an-
other local function g. When lifting the two local functions, we get two toplevel
functions named f, where the originally local f captures a call to the originally
global f in the definition of y. Accordingly, name-fix renames the lifted function
f and its calls, both in the main program and the lifted version of g.

We implement lambda lifting by recursively (i) finding local functions, (ii)
adapting calls to the local function to pass along variables that occur free in the
function body, and (iii) lifting the function definition to the toplevel. To identify
calls of a local function, we use the name graph of the non-lifted program. A single
call to name-fix after desugaring suffices to eliminate potential name shadowing
between functions in the toplevel function scope.

506 S. Erdweg, T. van der Storm, and Y. Dai

fun f(x) = x + 1;
let y = f(10) in
let fun f(x) = f(x + y) in
let fun g(x) = f(y + x + 1) in
f(1) + g(3)

(a) Example with local functions f and g

fun f(x) = x + 1;
fun f0(x, y) = f0(x + y, y);
fun g(x, y) = f0(y + x + 1, y);
let y = f(10) in
f0(1, y) + g(3, y)

(b) Desugaring of local functions

Fig. 10. Lambda lifting of local functions f and g requires renaming to avoid capture

list[FDef] compile(list[State] states) =
map(state2const, states) + map(state2dispatch, states) + mainDispatch(states)

FDef state2const(State s, int i) =
fdef(s.name, [], val(nat(i)));

FDef state2dispatch(State s) =
fdef("<s.name>-dispatch", ["event"], transitions2cond(s.transitions, val(error())));

Exp transitions2cond([t, ∗ts], Exp els) =
cond(equ(var("event"), val(string(t.event)))

, call(t.state, [])
, transitions2cond(ts, els));

FDef mainDispatch(states) =
fdef("main", ["state","event"], mainCond(states, val(error())))

Exp mainCond([s, ∗ss], Exp els) =
cond(equ(var("state"), call(s.name, []))

, call("<s.name>-dispatch", [var("event")])
, mainCond (ss, els));

Fig. 11. Implementation of compiler from state machines to our procedural language

6.4 State Machines

In Section 1, we introduced a language for state machines to illustrate the prob-
lem of inadvertent capture in program transformation. The name-fix algorithm
can be used to repair the result of the transformation without changing the
transformation itself. As a result, developers can structure transformations in
almost arbitrary ways. In the case of the state-machine compiler, a simple nam-
ing convention suffices to link generated references to declarations. In our case
study, the conventions are that state names become constants and state names
suffixed with -dispatch become dispatch functions.

We believe the increased liberty of using naming conventions simplifies the
implementation of program transformations. We illustrate the main part of the
compiler of state machines to our procedural language in Figure 11. In contrast to
approaches based on explicit binders such as HOAS [19] or FreshML [23],
generated references do not have to literally occur below their binders in the

Capture-Avoiding and Hygienic Program Transformations 507

state current
close => closed

end

state closed
open => current
lock => token

end

state token
unlock => closed

end

(a) Renamed door
state machine

public class Door {
final int current = 0, closed = 1, token = 2;
void run(...) {
int current0 = current; String token0 = null;
while ((token0 = input.nextLine()) != null) {
if (current0 == current)
{if (close(token0)) current0 = closed; else continue;}
if (current0 == closed)
{if (open(token0)) current0 = current;
else if (lock(token0)) current0 = token; else continue;}

if (current0 == token)
{if (unlock(token0)) current0 = closed; else continue;}

}}}

(b) Renaming of local variables current and token to preserve
the references of the state machine (exemplarily highlighted)

Fig. 12. Application of name-fix for generated Java code with JDT name resolution

transformation itself. For example, function compile independently generates state
constants, state dispatch functions, and the main dispatch function (by mainCond),
even though the main dispatch function refers to both generated constants and
state dispatch functions via naming conventions.
Compilation to Java. To exercise capture-avoiding transformation in a more real-
istic setting, we also applied name-fix on the result of compiling state machines
to Java. To obtain a name graph for Java, we used Rascal’s M3 source code
model of Java, which provides accurate name and type information extracted
from the Eclipse JDT [12]. The compiler from state machines to Java generates
Java code as structural strings (cf. Section 6.1). It generates a constant for each
state and a single dispatch loop in a run method.

We illustrate the application of the compiler and the use of name-fix on the
generated Java code in Figure 12. The left column shows the state machine from
Figure 1(a) where we consistently renamed states opened and locked to current
and token, respectively. The right column shows the compiled Java program.
Since the dispatch loop in run uses current to store the current state and token to
save the last-read token, the compilation introduces variable capture. Note that
even without using name-fix , the generated code compiles fine but is ill-behaved
because current==current in the first if would always succeed. name-fix repairs
the variable capture by renaming the local variables. This case study shows that
name-fix and our implementation are not limited to simple languages, but are
applicable for generating capture-free programs of languages like Java.

6.5 Digital Forensics with Derric

Derric is a domain-specific language for describing (binary) file formats [26].
Such descriptions are used in digital forensic investigations to recover evidence

508 S. Erdweg, T. van der Storm, and Y. Dai

format Bad

sequence S1 S2

structures
S1 { x: 0x0; y: S2.x; }
S2 { x; }

(a) A Derric format

public class Bad {
private long x;
private boolean S1() {
markStart();
long x0 = ...; ValueSet vs2 = ...;
vs2.addEquals(0);
if (!vs2.equals(x0)) return noMatch();
long y = ...; ValueSet vs5 = ...;
vs5.addEquals(x);
if (!vs5.equals(y)) return noMatch();
addSubSequence("S1");
return true;

}...}

(b) The local variable shadows the field and must be renamed

Fig. 13. name-fix eliminates variable capture for existing DSL compiler of Derric

from (possibly damaged) storage devices. Derric descriptions consist of two
parts. The first part describes the high-level structure of a file format by list-
ing sequence constraints on basic building blocks (called structures) of a file.
The second part describes each structure by declaring fields, their type, and
inter-structure data dependencies. From these descriptions, the Derric com-
piler generates high-performance validators in Java that check whether a byte
sequence matches the declared format.

We show a minimalist, artificial Derric format description in the left column
of Figure 13. The format declares two structures (S1 and S2), which must occur
in sequence. S1 contains two fields: x, which must be 0, and y, which should be
equal to field x of S2, which is not further constrained. We show an excerpt of
the code generated by the Derric compiler in the right column of Figure 13.
The main issue is in method S1, which handles format recognition of structure
S1. Field x, which Derric uses to communicate S2’s field x to method S1 is
shadowed by the local variable x which corresponds to S1’s field x. Without
going into too much detail, it is instructive to note that the Java code compiles
fine even without any renaming, but it behaves incorrectly: Instead of checking
S1.y = S2.x, it checks S1.y = S1.x. Such scenario occurs whenever two structures
have a field of the same name and one structure access this field of the other
structure in a constraint. name-fix restores correctness by consistently renaming
the local variable in case of capture.

The Derric case study illustrates the flexibility and power of name-fix .
Derric is a real-world DSL compiling to a mainstream programming language
(Java). The compiler consists of multiple transformations for desugaring and
optimization. The result of these transformations is an intermediate model of a
validator, which is then pretty printed to Java. Nevertheless, we did not have to
modify theDerric compiler in any significant way to be able to repair inadvertent

Capture-Avoiding and Hygienic Program Transformations 509

captures, nor was the compiler designed with name-fix in mind. This is shows that
our approach is readily applicable in realistic settings.

7 Discussion

We reflect on the problem statement of this work, explain how name-fix supports
breaking hygiene, and point out open issues and future work.
Problem statement. In section 2.2, we postulated five design goals for name-fix ,
all of which it satisfies. In Section 4, we have verified that name-fix preserves ref-
erence intent (G1) and declaration extent (G2) of the source program. Moreover,
we have established an equivalence theory for name-fix that at least supports
noninvasiveness (G3). In the previous section, we have shown how name-fix can
be applied in a wide range of scenarios using different languages: state machines,
a simple procedural language,Derric, and Java. These results support our claim
that capture elimination with name-fix is language-parametric (G4).

Although the case studies are all implemented in Rascal, any transformation
engine that propagates the unique labels of names is suited for name-fix . Similar
to our encoding, one could easily imagine representing names as tagged strings
Name = (String,Int). A structural representation of strings or compound identifiers
are not necessary. Moreover, we do not require that transformations are written
in any specific style to support capture elimination. In particular, our transfor-
mations make use of sophisticated language features such as intermediate open
terms or generic programming. We conclude that a mechanism like name-fix is
transformation-parametric and realizable in other transformation engines (G5).
Breaking hygiene. Some transformations require that source programs refer to
names synthesized by a transformation. Such breaking of hygiene often oc-
curs with implicitly declared variables. In other words, intended capture im-
plies that there is a source reference that is not bound by a declaration in
the source program. Consider, anaphoric conditionals which are like normal
if -expressions but allow reference to the result of the condition using a spe-
cial variable it [1]. For instance, in the expression aif c then !it else it, the variable
it implicitly refers to a local variable generated by the desugaring of aif. Ap-
plying name-fix , however, resolves the capture which in this case is intended:
let it0 = c in if it0 then !it else it. To break hygiene in such cases, the transforma-
tion must mark the source occurrences of it when they are carried over to
the result: aif(c, t, e) ⇒ let("it", c, cond(var("it"), mark("it", t), mark("it", e))).
In our implementation, mark(s, t) sets a synthesized=true attribute on the ID
of any string s in t. Effectively this means that such names are treated as
synthesized names instead of source names. As a result, name-fix does not
rename the binder, and the result of desugaring the above expression will be
let it = c in if it then !it else it.
Future work. Theorem 6 shows that name-fix turns sub-hygienic transformations
into hygienic transformations. However, there is currently no decision procedure
for whether a transformation is sub-hygienic or not. For a Turing-complete meta-
language, a static analysis can only approximate this property. Nevertheless, a

510 S. Erdweg, T. van der Storm, and Y. Dai

conservative analysis would be useful as it can guarantee that a transformation
is sub-hygienic. For example, all transformations of our case studies except sub-
stitution are sub-hygienic, but we have not formally ensured that. We expect
a type system that checks sub-hygiene to provide guidance to transformation
developers similar to FreshML [23], but without reducing the flexibility.

Another open issue is when to apply name-fix . This is important when build-
ing transformations on top of other transformations or composing transforma-
tions sequentially into transformation pipelines. After every application of a
transformation, there could be inadvertent variable capture that name-fix can
eliminate. For our case studies we used informal reasoning to decide whether
the call to name-fix can be delayed, but more principled guidance would be
useful. For example, a simple class of transformations that commutes with ap-
plications of name-fix is the class of name-insensitive transformations, such as
constant propagation. More generally, care has to be taken whenever a transfor-
mation compares two names for equality, because intermediate variable capture
may yield inaccurate equalities. Since name-fix is the identity on capture-free
programs (Theorem 3), applying name-fix more than necessary is at most inef-
ficient, but not unsafe.

name-fix renames not only synthesized names but also names that originate
from the source program. This may break the expected interface of the gener-
ated code. Accordingly, name-fix currently is a whole-program transformation
that does not support linking of generated programs against previously generated
libraries, because names in these libraries cannot be changed. Therefore, name-fix
is currently ill-suited for separate compilation. We have experienced this problem
in the Derric compiler, where a Derric field named BIG_ENDIAN will shadow
a constant with the same name that occurs in Derric’s precompiled run-time
system. We leave the investigation of a modular name-fix for future work.

Finally, the current implementation of name-fix requires repeated execution
of the name analysis of the target language. As a result, name-fix can be expen-
sive in terms of run-time performance. When a compiler is run continuously in
an IDE, this penalty can be an impediment to usability. Fortunately, incremental
name analysis is a well-studied topic (e.g., [20,28]) that is likely to yield bene-
fits for name-fix because (i) we know the delta induced by name-fix (renamed
variables) and (ii) new variable capture can only occur in references that have
changed.

8 Related Work

Various approaches to ensuring capture avoidance have been studied in previous
work. Many of them represent a program not as a syntax tree, but use the syntax
tree as a spanning tree for a graph-based program representation with additional
links from variable references to the corresponding variable declarations. The
advantage of graph-based representations is that variable references are unam-
biguously resolved at all times, which can guide developers of transformations.
For example, nameless program representations such as de Bruijn indices [5] en-
code the graph structure of variable bindings via numeric values; Oliveira and

Capture-Avoiding and Hygienic Program Transformations 511

Löh directly encode recursion and sharing in the abstract syntax of embedded
DSLs [17] via structured graphs. The disadvantage of these techniques is that
they require explicit handling of graphs (updating indices, redirecting edges) and
do not support open terms well.

In higher-order abstract syntax (HOAS) [19] variable references and decla-
rations are encoded using the binding constructs of the metalanguage. Thus,
developers of transformations inherit name analysis and capture-avoiding sub-
stitution from the metalanguage and work with fully name-resolved terms. It is
well-known that HOAS has a number of practical problems [22]. For instance,
the use of metalevel functions to encode binders makes them opaque; it is not
possible to represent open terms or to pattern match against variable binders
inside constructs such as let.

FreshML [23] uses types to describe the binding structure of object-language
variable binders. This enables deconstruction of a variable binder via pattern
matching, which yields a fresh name and the body as an open term in which the
bound variable has been renamed to the fresh one. Due to using fresh variables,
accidental variable capture cannot occur but intentional variable capture is pos-
sible. FreshML is limited by using types for declaring variable scope, because this
is only possible for “declare-before-use” lexical scoping and not, for example, for
the scoping of methods in an object-oriented class.

In model-driven engineering it is common to describe abstract syntax using
class-based metamodels [18]. Syntactic categories correspond to classes, parent-
child relations and cross-references are encoded using associations. Metamodels
are expressive enough to model programs with each name resolved to its dec-
laration using direct references (pointers). As a result, a large class of model-
transformation formalisms are based on graph rewriting [4]. However, we are
unaware of any work in this area that addresses capture avoidance. Especially,
in the case of model-to-text (M2T) transformations, names have to be output
and all guarantees about capture avoidance (if any) are lost.

Seminal work on hygiene has been performed in the context of syntax
macros [15,3]. Like name-fix , hygienic macro expansion automatically renames
bound variables to avoid variable capture. In related work, a number of ap-
proaches to hygienic macro expansion have been proposed [2,3,7,11]. Closest to
our work is the expansion algorithm proposed by Dybvig, Hieb, and Brugge-
man [7] in that they also associate additional contextual information to iden-
tifiers in syntax objects, similar to our string origins. However, in their work
renamings appear during macro expansion (modulo lazy evaluation), whereas
we perform renamings after transformation. Moreover, since for macros the role
of an identifier only becomes apparent after macro expansion, they have to track
alternative interpretations for a single identifier. In contrast, we require name
analysis for the source language, which enables a completely different approach
to hygienic transformations.

Marco [16] is a language-agnostic macro engine that detects variable capture
by parsing error messages produced by an off-the-shelve compiler of the base
language. Marco checks whether any of the free names introduced by a macro is

512 S. Erdweg, T. van der Storm, and Y. Dai

captured at a call-site of the macro. While Marco does not require name analysis,
it has to rely on the quality of error messages of the base compiler, provides no
safety guarantees, and can only detect but not fix variable capture.

Generation environments [24] are metalanguage values that allow the scoping
of variable names generated by a program transformation. A program transfor-
mation can open a generation environment to generate code relative to the en-
capsulated lexical context. Since generation environments can be passed around
as metalanguage values, different transformations can produce code for a shared
a lexical context. While generation environments simplify the implementation
of transformations, they rely on the discipline of developers and do not provide
static guarantees.

Another area where capture avoidance is important is rename refactorings.
In particular, previous work on rename refactoring for Java [21] omits checking
preconditions and instead tries to fix the result of a renaming through quali-
fied names so that reference intent is preserved. De Jonge et al. generalize this
approach to support name-binding preservation in refactorings for other lan-
guages [6]. In contrast to our work, rename refactorings are a limited class of
transformations that do not introduce any synthesized names.

9 Conclusion

We presented name-fix , a generic solution for eliminating variable capture from
the result of program transformations by comparing name graphs of the transfor-
mation’s input and output. This work brings benefits of hygienic macros to the
domain of program transformations. In particular, name-fix relieves developers
of transformations from manually ensuring capture avoidance, and it enables the
safe usage of simple naming conventions. We have verified that name-fix termi-
nates, is correct, and yields α-equivalent programs for inputs that are equal up to
possibly capturing renaming. As we demonstrated with case studies on program
optimization, language extension, and DSL compilation, name-fix is applicable
to a wide range of program transformations and languages.

Acknowledgement. We thank Mitchel Wand, Paolo Giarrusso, Justin Pom-
brio, Atze van der Ploeg, and the anonymous reviewers for helpful feedback.

References

1. Barzilay, E., Culpepper, R., Flatt, M.: Keeping it clean with syntax parameters.
In: Scheme (2011)

2. Bawden, A., Rees, J.: Syntactic closures. In: LFP, pp. 86–95. ACM (1988)
3. Clinger, W., Rees, J.: Macros that work. In: POPL, pp. 155–162. ACM (1991)
4. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-

proaches. IBM Systems Journal 45(3), 621–645 (2006)
5. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae 75(5), 381–392 (1972)

Capture-Avoiding and Hygienic Program Transformations 513

6. de Jonge, M., Visser, E.: A language generic solution for name binding preservation
in refactorings. In: LDTA. ACM (2012)

7. Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in scheme. Lisp and
Symbolic Computation 5(4), 295–326 (1992)

8. Erdweg, S.: Extensible Languages for Flexible and Principled Domain Abstraction.
PhD thesis, Philipps-Universität Marburg (2013)

9. Erdweg, S., van der Storm, T., Dai, Y.: Capture-avoiding and hygienic program
transformations (incl. proofs). CoRR, abs/1404.5770 (2014)

10. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

11. Herman, D.: A Theory of Typed Hygienic Macros. PhD thesis, Northeastern Uni-
versity, Boston, Massachusetts (2012)

12. Izmaylova, A., Klint, P., Shahi, A., Vinju, J.: M3: An open model for measuring
source code artifacts. arXiv:1312.1188, BENEVOL 2013 (2013)

13. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer, Hei-
delberg (1985)

14. Klint, P., van der Storm, T., Vinju, J.: Rascal: A domain-specific language for
source code analysis and manipulation. In: SCAM, pp. 168–177 (2009)

15. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: LFP, pp. 151–161. ACM (1986)

16. Lee, B., Grimm, R., Hirzel, M., McKinley, K.S.: Marco: Safe, expressive macros
for any language. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 589–613.
Springer, Heidelberg (2012)

17. B.C.: d. S. Oliveira and A. Löh. Abstract syntax graphs for domain specific lan-
guages. In: PEPM, pp. 87–96. ACM (2013)

18. Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Metamodelling for grammarware re-
searchers. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp.
64–82. Springer, Heidelberg (2013)

19. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: PLDI, pp. 199–208.
ACM (1988)

20. Reps, T., Teitelbaum, T., Demers, A.: Incremental context-dependent analysis for
language-based editors. TOPLAS 5(3), 449–477 (1983)

21. Schäfer, M., Ekman, T., de Moor, O.: Sound and extensible renaming for Java. In:
OOPSLA, pp. 227–294. ACM (2008)

22. Sheard, T.: Accomplishments and research challenges in meta-programming. In:
Taha, W. (ed.) SAIG 2001. LNCS, vol. 2196, pp. 2–44. Springer, Heidelberg (2001)

23. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders
made simple. In: ICFP, pp. 263–274. ACM (2003)

24. Macko, M., Batory, D.: Scoping constructs for software generators. In: Czarnecki,
K. (ed.) GCSE 1999. LNCS, vol. 1799, pp. 65–78. Springer, Heidelberg (2000)

25. Valdera, P.I., van der Storm, T., Erdweg, S.: Tracing model transformations with
string origins. In: ICMT. Springer (to appear, 2014)

26. van den Bos, J., van der Storm, T.: Bringing domain-specific languages to digital
forensics. In: ICSE, pp. 671–680. ACM (2011)

27. van Deursen, A., Klint, P., Tip, F.: Origin tracking. Symbolic Computation 15,
523–545 (1993)

28. Wachsmuth, G., Konat, G.D.P., Vergu, V.A., Groenewegen, D.M., Visser, E.: A
language independent task engine for incremental name and type analysis. In:
Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 260–
280. Springer, Heidelberg (2013)

514 S. Erdweg, T. van der Storm, and Y. Dai

A Artifact Description

Authors of the Artifact. Design, implementation, and documentation: Sebas-
tian Erdweg, Tijs van der Storm, Yi Dai.
Summary. We provide implementations of the name-fix algorithm and
our case studies, all implemented in the Rascal metaprogramming language
(rascal-mpl.org). We use Rascal’s built-in support for syntax definitions and
parsing. Program transformations and the name-fix algorithm itself are stan-
dard Rascal functions.
Content. The main code is stored in directory projects/Rascal-Hygiene. Below
we summarize its contents.

– src: Source code of name-fix and case studies
– src/name: Implementation of name-fix and required data structures
– src/name/tests : Unit tests for all case studies.
– src/lang/simple: Implementation of the simple procedural language
– src/lang/java: Name analysis for Java using Eclipse JDT
– src/lang/missgrant : Implementation of the state-machine language
– src/lang/derric: Implementation of the Derric language (copied), see

http://derric-lang.org
– src/org/derric_lang: runtime classes needed for compiling the Derric lan-

guage (copied), see http://derric-lang.org
– input : Example state machines
– output : Generated state machines
– format : Example format descriptors for the Derric case study

In addition to the source of name-fix and the case studies, the unzipped artifact
contains the Rascal in form of an Eclipse update site. To run the case studies,
install Rascal from this update site in a fresh Eclipse installation. The artifact
contains detailed documentation on how to install and run the code.
Getting the Artifact. The artifact endorsed by the Artifact Eval-
uation Committee is available free of charge as supplementary mate-
rial of this paper on SpringerLink. The latest version of our code
is available online and includes installation and usage instructions:
https://github.com/seba–/hygienic-transformations.
Tested Platforms. The artifact is known to work on any platform running
Oracle’s JDK 1.7 and Eclipse Kepler.
License. LGPL-3.0 (https://www.gnu.org/licenses/lgpl-3.0.txt)
MD5 Sum of the Artifact. 64d3406286a99f048c9bc3d754a52e84
Size of the Artifact. 50 MB

rascal-mpl.org
derric-lang.org
derric-lang.org
https://github.com/seba--/hygienic-transformations
https://www.gnu.org/licenses/lgpl-3.0.txt

Converting Parallel Code from Low-Level
Abstractions to Higher-Level Abstractions

Semih Okur1, Cansu Erdogan1, and Danny Dig2

1 University of Illinois at Urbana-Champaign, USA
{okur2,cerdoga2}@illinois.edu
2 Oregon State University, USA
digd@eecs.oregonstate.edu

Abstract. Parallel libraries continuously evolve from low-level to higher-
level abstractions. However, developers are not up-to-date with these
higher-level abstractions, thus their parallel code might be hard to read,
slow, and unscalable. Using a corpus of 880 open-source C# applica-
tions, we found that developers still use the old Thread and ThreadPool
abstractions in 62% of the cases when they use parallel abstractions.
Converting code to higher-level abstractions is (i) tedious and (ii) error-
prone. e.g., it can harm performance and silence the uncaught exceptions.

We present two automated migration tools, Taskifier and Simpli-
fier that work for C# code. The first tool transforms old style Thread
and ThreadPool abstractions to Task abstractions. The second tool trans-
forms code with Task abstractions into higher-level design patterns. Us-
ing our code corpus, we have applied these tools 3026 and 405 times,
respectively. Our empirical evaluation shows that the tools (i) are highly
applicable, (ii) reduce the code bloat, (iii) are much safer than manual
transformations. We submitted 66 patches generated by our tools, and
the open-source developers accepted 53.

1 Introduction

In the quest to support programmers with faster, more scalable, and readable
code, parallel libraries continuously evolve from low-level to higher-level abstrac-
tions. For example, Java 6 (2006) improved the performance and scalability of its
concurrent collections (e.g., ConcurrentHashMap), Java 7 (2011) added higher-level
abstractions such as lightweight tasks, Java 8 (2014) added lambda expressions
that dramatically improve the readability of parallel code. Similarly, in the C#
ecosystem, .NET 1.0 (2002) supported a Threading library, .NET 4.0 (2010)
added lightweight tasks, declarative parallel queries, and concurrent collections,
.NET 4.5 (2012) added reactive asynchronous operations.

Low-level abstractions, such as Thread, make parallel code more complex, less
scalable, and slower. Because Thread represents an actual OS-level thread, devel-
opers need to take into account the hardware (e.g., the number of cores) while
coding. Threads are heavyweight: each OS thread consumes a non-trivial amount
of memory, and starting and cleaning up after a retired thread takes hundreds

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 515–540, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

516 S. Okur, C. Erdogan, and D. Dig

of thousands of CPU cycles. Even though a .NET developer can use ThreadPool
to amortize the cost of creating and recycling threads, she cannot control the
behavior of the computation on ThreadPool. Moreover, new platforms such as Mi-
crosoft Surface Tablet no longer support Thread. .NET also does not allow using
the new features (e.g., async/await abstractions) with Thread and ThreadPool.
Furthermore, when developers mix old and new parallel abstractions in their
code, it makes it hard to reason about the code because all these abstractions
have different scheduling rules.

Higher-level abstractions such as .NET Task, a unit of parallel work, make
the code less complex. Task gives advanced control to the developer (e.g., chain-
ing, cancellation, futures, callbacks), and is more scalable than Thread. Unlike
threads, tasks are lightweight: they have a much smaller performance overhead
and the runtime system automatically balances the workload. Microsoft now en-
courages developers to use Task in order to write scalable, hardware independent,
fast, and readable parallel code [26].

However, most developers are oblivious to the benefits brought by the higher-
level parallel abstractions. In recent empirical studies for C# [18] and Java [25],
researchers found that Thread is still the primary choice for most developers. In
this paper we find similar evidence. Our corpus of the most popular and active
880 C# applications on Github [12] that we prepared for this paper, shows
that when developers use parallel abstractions they still use the old Thread and
ThreadPool 62% of the time, despite the availability of better options. Therefore,
a lot of code needs to be migrated from low-level parallel abstractions to their
higher-level equivalents.

The migration has several challenges. First, developers need to be aware of
the different nature of the computation. While blocking operations (e.g., I/O
operations, Thread.Sleep) do not cause a problem in Thread-based code, they
can cause a serious performance issue (called thread-starvation) in Task-based
code. Because the developers need to search for such operations deep in the call
graph of the concurrent abstraction, it is easy to overlook them. For example,
in our corpus of 880 C# applications, we found that 32% of tasks have at least
one I/O blocking operation and 9% use Thread.Sleep that blocks the thread
longer than 1 sec. Second, developers need to be aware of differences in handling
exceptions, otherwise exceptions become ineffective or can get lost.

In this paper, we present an automated migration tool, Taskifier, that trans-
forms old style Thread and ThreadPool abstractions to higher-level Task abstrac-
tions in C# code. During the migration, Taskifier automatically addresses the
non-trivial challenges such as transforming blocking to non-blocking operations,
and preserving the exception-handling behavior.

The recent versions of parallel libraries provide even higher-level abstrac-
tions on top of Tasks. For example, the Parallel abstraction in C# supports
parallel programming design patterns: data parallelism in the form of parallel
loops, and fork-join task parallelism in the form of parallel tasks co-invoked in
parallel. These dramatically improve the readability of the parallel code. Con-
sider the example in Code listing 1.1, taken from ravendb [1] application. Code

Converting Parallel Code from Low-Level Abstractions 517

listing 1.2 represents the same code with a Parallel operation, which dramat-
ically reduces the code. According to a study [15] by Microsoft, these patterns
may also lead to better performance than when using Task, especially when there
is a large number of work items (Parallel reuses tasks at runtime to eliminate
the overhead).
Code 1.1 Forking Task in a loop
1 List <Task > tasks = new List <Task >();
2 for (int i = 0; i <= n; i++)
3 {
4 int copy = i;
5 Task taskHandle = new Task (
6 () => DoInsert (..., copy));
7 taskHandle .Start ();
8 tasks .Add(taskHandle);
9 }

10 Task .WaitAll(tasks);

Code 1.2 Equivalent Parallel.For
1 Parallel .For (0,n,(i)=> DoInsert (...,i));

Despite the advantages of the higher-level abstractions in the Parallel class,
developers rarely use them. In our corpus we found that only 6% of the applica-
tions use the Parallel operations. We contacted the developers of 10 applications
which heavily use Thread, ThreadPool, and Task abstractions, and asked why they
are not using the Parallel operations. The major reason given by developers was
lack of awareness. This indicates there is a need for tools that suggest transfor-
mations, thus educating developers about better coding practices.

Transforming the Task-related code into higher-level Parallel operations is
not trivial: it requires control- and data-flow analysis, as well as loop-carried
dependence analysis. For the example in Listing 1.1, the code does not execute
the assignment in Line 4 in parallel with itself in other iterations (only the code
in the task body – Line 6 – is executed in parallel). However, after converting
the original for into a Parallel.For, the assignment in Line 4 will also execute
in parallel with other assignments. Thus, the programmer must reason about
the loop-carried dependences.

Inspired from the problems that developers face in practice, we designed and
implemented a novel tool, Simplifier, that extracts and converts Task-related
code snippets into higher-level parallel patterns. To overcome the lack of devel-
oper awareness, Simplifier operates in a mode where it suggests transforma-
tions as “quick-hints” in the Visual Studio IDE. If the developer agrees with the
suggestion, Simplifier automatically transforms the code.

This paper makes the following contributions:
Problem: To the best of our knowledge, this is the first paper that describes

the novel problem of migrating low-level parallel abstractions into their high-
level counterparts. We show that this problem appears in real-life applica-
tions by bringing evidence of its existence from a corpus of 880 C# open-
source applications.

Algorithms: We describe the analysis and transformation algorithms which
address the challenges of (i) migrating Thread-code into Task abstractions
and (ii) transforming Task code snippets into higher-level Parallel design
patterns.

518 S. Okur, C. Erdogan, and D. Dig

Tools: We implemented our algorithms into two tools, Taskifier and Sim-
plifier. We implemented them as extensions to Visual Studio, the primary
development environment for C#.

Evaluation: We empirically evaluated our implementations by using our code
corpus of 880 C# applications. We applied Taskifier 3026 times and Sim-
plifier 405 times. First, the results show that the tools are widely applicable:
Taskifier successfully migrated 87% of Thread and ThreadPool abstractions
to Task. Simplifier successfully transformed 94% of suggested snippets to
Parallel. Second, these transformations are valuable: Taskifier reduces the
size of the converted code snippets by 2617 SLOC and Simplifier reduces
by 2420 SLOC in total. Third, the tools save the programmer from manu-
ally changing 10991 SLOC for the migration to Task and 7510 SLOC for the
migration to Parallel. Fourth, automated transformations are safer. Several
of the manually written Task-based codes by open-source developers con-
tain problems: 32% are using blocking operations in the body of the Task,
which can result in thread-starvation. Fifth, open-source developers found
our transformations useful. We submitted 66 patches generated by our tools
and the open-source developers accepted 53.

2 Background on Parallel Abstractions in .NET

Our tools target the parallelism paradigms in .NET. Here we give a gentle in-
troduction to parallel programming in .NET. There are four main abstractions
that allow developers to spawn asynchronous computation.

2.1 Thread

Operating systems use processes to separate the different applications that they
are executing. Thread is the basic unit to which an operating system allocates
processor time, and more than one thread can be executing code inside one
process. Threading library in .NET provides an abstraction of threads, Thread
class since its first version, 2003.

Thread represents an actual OS-level thread, so it is expensive to use; creat-
ing a Thread needs about 1.5 MB memory space. Windows also creates many
additional data structures to work with this thread, such as a Thread Environ-
ment Block (TEB), a user mode stack, and a kernel mode stack. Bringing in
new Thread may also mean more thread context switching, which further hurts
performance. It takes about 200,000 CPU cycles to create a new thread, and
about 100,000 cycles to retire a thread.

On one hand, Thread class allows the highest degree of control; developers can
set many thread-level properties like the stack size, priority, background and
foreground. However, general-purpose apps do not need most of these low-level
features. On that matter, Microsoft discourages developers to use these features
because they are usually misused [26]. In modern C# code, developers should
rarely need to explicitly start their own thread.

Converting Parallel Code from Low-Level Abstractions 519

On the other hand, Thread has some limitations. For example, a Thread con-
structor can take at most one parameter and this parameter must be of type
Object. In Code listing 1.3, a Thread is first created with its body which is
MailSlotChecker method. ParameterizedThreadStart indicates that this method
needs to take a parameter. After priority and background properties are set, the
parameter, info is created and given to Start method that asynchronously exe-
cutes the Thread. When the instance info of MailSlotThreadInfo type is passed to
Thread body, it will be forced to upcast to Object type. Developers manually need
to downcast it to MailSlotThreadInfo type in MailSlotChecker method. Hence,
this introduced verbose code like explicit casting, ParameterizedThreadStart ob-
jects. To wait for the termination of the Thread, the code invokes a blocking
method, Join.

Code 1.3 Thread usage example from Tiraggo [7] app
Thread thread = new Thread(new ParameterizedThreadStart(MailSlotChecker));
thread.Priority = ThreadPriority.Lowest;
thread.IsBackground = true;
MailSlotThreadInfo info = new MailSlotThreadInfo(channelName , thread);
thread.Start(info);
...
thread.Join(info);

2.2 ThreadPool

To amortize the cost of creating and destroying threads, a pool of threads can be
used to execute work items. There is no need to create or destroy threads for each
work item; the threads are recycled in the pool. .NET provides an abstraction,
the ThreadPool class, since its first version.

Although ThreadPool class is efficient to encapsulate concurrent computation,
it gives developers no control at all. Developers only submit work which will
execute at some point. The only thing they can control about the pool is its
size. ThreadPool offers no way to find out when a work item has been completed
(unlike Thread.Join()), neither a way to get the result.

Code listing 1.4 shows two main examples of ThreadPool usage.
QueueUserWorkItem is used to put work items to the thread pool. The first exam-
ple executes foo(param) method call in the thread pool but it is unclear because
of the syntax. The second example executes the same thing with a lambda func-
tion which is introduced in C# 4.0. Developers can directly pass the parameters
to the lambda function. However, QueueUserWorkItem only accepts a lambda func-
tion that takes one parameter: (x)=> Developers always need to provide one
parameter, regardless of whether they use it or not, thus many times they call
this parameter unused or ignored.

Code 1.4 ThreadPool example
1 ThreadPool.QueueUserWorkItem(new WaitCallback(foo),param);
2 ThreadPool.QueueUserWorkItem((unused)=> foo(param));

520 S. Okur, C. Erdogan, and D. Dig

2.3 Task

The Task abstraction was introduced in the Task Parallel Library [16] with
the release of .NET 4.0 in 2010. Task offers the best of both worlds, Thread
and ThreadPool. Task is simply a lightweight thread-like entity that encapsu-
lates an asynchronous operation. Like ThreadPool, a Task does not create its
own OS thread so it does not have high-overhead of Thread. Instead, it is exe-
cuted by a TaskScheduler; the default scheduler simply runs on the thread pool.
TaskScheduler use work-stealing techniques which are inspired by the Java fork-
join framework [14].

Unlike the ThreadPool, Task also allows developers to find out when it fin-
ishes, and (via the generic Task<T>) to return a result. A developer can call
ContinueWith() on an existing Task to make it run more code once the task
finishes; if it’s already finished, it will run the callback immediately. A devel-
oper can also synchronously wait for a task to finish by calling Wait() (or, for a
generic task, by getting the Result property). Like Thread.Join(), this will block
the calling thread until the task finishes.

The bottom line is that Task is almost always the best option; it provides a
much more powerful API and avoids wasting OS threads. All newer high-level
concurrency APIs, including PLINQ, async/await language features, and modern
asynchronous methods are all built on Task. It is becoming the foundation for
all parallelism, concurrency, and asynchrony in .NET. According to Microsoft,
Task is the only preferred way to write multithreaded and parallel code [26].

2.4 Parallel

The Parallel class is a part of the TPL library. It provides three main meth-
ods to support parallel programming design patterns: data parallelism (via
Parallel.For and Parallel.ForEach), and task parallelism (via Parallel.Invoke).

Parallel.For method accepts three parameters: an inclusive lower-bound, an
exclusive upper-bound, and a lambda function to be invoked for each iteration.
By default, it uses the work queued to .NET thread pool to execute the loop
with as much parallelism as it can muster. Parallel.For(0, n, (i)=> foo(i));

Parallel.ForEach is a very specialized loop. Its purpose is to iterate through a
specific kind of data set, a data set made up of numbers that represent a range.
Parallel.ForEach(books, (book)=>foo(book))

Parallel.Invoke runs the operations (lambda functions) given as parameters
concurrently and waits until they are done. It parallelizes the operations, not
the data. Parallel.Invoke(()=> foo(), ()=> boo());

Parallel class works efficiently even if developers pass in an array of
one million lambda functions to Parallel.Invoke or one million iterations to
Parallel.For. This is because Parallel class does not necessarily use one Task
per iteration or operation, as that could add significantly more overhead than is
necessary. Instead, it partitions the large number of input elements into batches
and then it assigns each batch to a handful of underlying tasks. Under the cov-
ers, it tries to use the minimum number of tasks necessary to complete the loop

Converting Parallel Code from Low-Level Abstractions 521

(for For and ForEach) or operations (for Invoke) as fast as possible. Hence, Mi-
crosoft shows that Parallel class performs faster than equivalent Task-based
code in some cases [15].

Parallel class will run iterations or operations in parallel unless this is more
expensive than running them sequentially. The runtime system handles all thread
scheduling details, including scaling automatically to the number of cores on the
host computer.

3 Motivation

Before explaining Taskifier and Simplifier, we explore the motivations of
these tools by answering two research questions:

Q1: What level of parallel abstractions do developers use?
Q2: What do developers think about parallel abstractions?

We first explain how we gather the code corpus to answer these questions. We
use the same code corpus to evaluate our tools (Section 6).

3.1 Methodology

We created a code corpus of C# apps by using our tool Collector. We chose
GitHub [12] as the source of the code corpus because Github is now the most pop-
ular open-source software repository, having surpassed Google Code and Source-
Forge.

Collector downloaded the most popular 1000 C# apps which have been
modified at least once since June 2013. Collector visited each project file in
apps in order to resolve/install dependencies by using nuget [17], the package
manager of choice for apps targeting .NET. Collector also eliminated the
apps that do not compile due to missing libraries, incorrect configurations, etc.
Collector made as many projects compilable as possible (i.e., by resolving/in-
stalling dependencies).

Collector also eliminated 72 apps that targeted old platforms (e.g., Win-
dows Phone 7, .NET Framework 3.5, Silverlight 4) because these old platforms
do not support new parallel libraries.

After all, Collector successfully retained 880 apps, comprising 42M SLOC,
produced by 1859 developers. This is the corpus that we used in our analysis
and evaluation.

In terms of the application domain, the code corpus has (1) 364 libraries or
apps for desktops, (2) 185 portable-libraries for cross-platform development, (3)
137 Windows Phone 8 apps, (4) 84 web apps (ASP.NET), (5) 56 tablet appli-
cations (Surface WinRT), and (6) 54 Silverlight apps (i.e., client-side runtime
environment like Adobe Flash). Hence, the code corpus has apps which (i) span
a wide domain and (ii) are developed by different teams with 1859 contributors
from a large and varied community.

522 S. Okur, C. Erdogan, and D. Dig

Roslyn: The Microsoft Visual Studio team has released Roslyn [22] with the
goal to expose compiler-as-a-service through APIs to other tools like code gener-
ation, analysis, and refactoring. Roslyn has components such as Syntax, Symbol
Table, Binding, and Flow Analysis APIs. We used these APIs in our tools for
analyzing our code corpus.

Roslyn also provides the Services API allowing to extend Visual Studio. Devel-
opers can customize and develop IntelliSense, refactorings, and code formatting
features. We used Services API for implementing our tools.

3.2 Q1: What Level of Parallel Abstractions Do Developers Use?

In a previous study [18], we found out that developers prefer to use old style
threading code over Task in C# apps. We wanted to have a newer code corpus
which includes the recently updated most popular apps. We used Roslyn API to
get the usage statistics of the abstractions.

As we explained in Section 2, there are 4 main ways to offload a compu-
tation to another thread: (1) creating a Thread, (2) accessing the ThreadPool
directly, (3) creating a Task, (4) using task or data parallelism patterns with
Parallel.Invoke and Parallel.For(Each). Table 1 tabulates the usage statistics
of all these approaches. Some apps use more than one parallel idiom and some
never use any parallel idiom.

Table 1. Usage of parallel idioms. The three columns show the total number of ab-
straction instances, the total number of apps with instances of the abstraction, and the
percentage of apps with instances of the abstraction.

App App%
Creating a Thread 2105 269 31%
Using ThreadPool 1244 191 22%
Creating a Task 1542 170 19%
Data Parallelism Pattern with Parallel.For(Each) 432 51 6%
Task Parallelism Pattern with Parallel.Invoke 53 12 1%

As we see from the table, developers use Thread and ThreadPool more than
Task and Parallel even though our code corpus contains recently updated apps
which target the latest versions of various platforms. The usage statistics of
Parallel are also very low compared to Task. These findings definitely show that
developers use low-level parallel abstractions.

Surprisingly, we also found that 96 apps use Thread, ThreadPool, and Task
at the same time. This can easily confuse the developer about the scheduling
behavior.

3.3 Q2: What Do Developers Think about Parallel Abstractions?

In this question, we explore why developers use low-level abstractions and
whether they are aware of the newer abstractions.

Converting Parallel Code from Low-Level Abstractions 523

We first asked the experts on parallel programming in C#. We looked for
the experts on StackOverflow [20] which is the pioneering Q&A website for
programming. We contacted the top 10 users for the tags “multithreading" and
“C#", and got replies from 7 of them. Among them are Joe Albahari who is the
author of several books on C# (e.g., “C# in a Nutshell"), and John Skeet who
is the author of “C# in Depth" and he is regarded as one of the most influential
people on StackOverflow.

All of them agree that Task should be the only way for parallel and con-
current programming in C#. For example, one said “Tasks should be the only
construct for building multithreaded and asynchronous applications”. According
to them, Thread should be used for testing purposes: “threads are actually useful
for debugging” (e.g., guaranteeing a multithreading environment, giving names
to threads). When we asked them whether an automated tool is needed to con-
vert Thread to Task, they concluded that the existence of some challenges makes
the automation really hard. For example, one said that “I wonder whether doing
it nicely in an automated fashion is even feasible" and another said that "Often
there’s in-brain baggage about what the thread is really doing which could affect
what the target of the refactoring should actually be".

Second, we contacted the developers of 10 applications which heavily mix
Thread, ThreadPool, and Task. Most of them said that the legacy code uses Thread
and ThreadPool and they always prefer Task in the recent code. The developer
of the popular ravendb application [1], Oren Eini, said that “We intend to move
most stuff to tasks, but that is on an as needed basis, since the code works" and
another said that his team “never had time to change them". This comment
indicates that the changes are tedious.

We also asked the developers whether they are aware of the Parallel class.
Developers of 7 of the apps said that they are not aware of the Parallel class
and they were surprised seeing how much it decreases the code complexity: “Is
this in .NET framework? It is the most elegant way of a parallel loop".

4 Taskifier

We developed Taskifier, a tool that migrates Thread and ThreadPool abstrac-
tions to Task abstractions. Section 4.1 presents the algorithms for the migration
from Thread to Task. Section 4.2 presents the migration from ThreadPool to Task.
Section 4.3 presents the special cases to handle some challenges. Section 4.4
presents how developers interact with Taskifier.

4.1 Thread to Task

First, Taskifier needs to identify the Thread instances that serve as the target
of the transformation. In order to do this, Taskifier detects all variable decla-
rations of Thread type (this also includes arrays and collections of Thread). For

524 S. Okur, C. Erdogan, and D. Dig

each Thread variable, it iterates over its method calls (e.g., thread.Start()) and
member accesses (e.g., thread.IsAlive=...). Then, Taskifier replaces each of
them with their correspondent from the Task class. However, corresponding op-
erations do not necessarily use the same name. For instance, thread.ThreadState,
an instance field of Thread class gets the status of the current thread. The same
goal is achieved in Task class by using task.Status.

Some low-level operations in Thread do not have a correspondent in the Task
class. For example, (1) Priority, (2) Dedicated Name, (3) Apartment State.

After studying both Thread and Task, we came up with a mapping between
them. Taskifier uses this map for the conversion. If Taskifier finds operations
that have no equivalents, it will discard the whole conversion from Thread to Task
for that specific Thread variable.

The most important transformations in the uses of Thread variables are for
creating, starting, and waiting operations. Code list. 1.5 shows a basic usage of
Thread and Code list. 1.6 represents the equivalent code with Task operations. De-
velopers create Thread by using its constructor and providing the asynchronous
computation. There are various ways of specifying the computation in the con-
structor such as delegates, lambdas, and method names. In the example below,
a delegate (ThreadStart) is used. Taskifier gets the computation from the dele-
gate constructor and transforms it to a lambda function. For starting the Thread
and Task, the operation is the same and for waiting, Task uses Wait instead of
Join.

Code 1.5 Simple Thread example
ThreadStart t = new ThreadStart(doWork);
Thread thread = new Thread(t);
thread.Start ();
thread.Join();

Code 1.6 Equivalent Task code
Task task = new Task(()=> doWork ());
task.Start();
task.Wait();

While the transformation in Code listings 1.5 and 1.6 shows the most ba-
sic case when the asynchronous computation does not take any arguments, the
transformation is more involved when the computation needs arguments. Con-
sider the example in Code listing 1.7. The asynchronous computation is the
one provided by the Reset method (passed in line 1), but the parameter of the
Reset method is passed as an argument to the Thread.Start in line 3. Since the
Thread.Start can only take Object arguments, the developer has to downcast
from Object to a specific type (in line 7).

Code listing 1.8 shows the refactored version, that uses Task. Unlike in Thread,
Task.Start does not take a parameter. In order to pass the state argument e to
the asynchronous computation Reset, the code uses a lambda parameter in the
Task constructor. In this case, since there is no need to cast parameters in the
Reset method body, Taskifier also eliminates the casting statement (Line 7
from Code list. 1.7).

Converting Parallel Code from Low-Level Abstractions 525

Code 1.7 Thread with dependent operators from Dynamo [3] app
1 ParameterizedThreadStart threadStart = new ParameterizedThreadStart(Reset);
2 Thread workerThread = new Thread(threadStart);
3 workerThread.Start(e);
4 ...
5 private void Reset(object state)
6 {
7 var args = (MouseButtonEventArgs)state;
8 OnClick (this , args);
9 ...

10 }

⇓
Code 1.8 Code listing 1.7 migrated to Task
1 Task workerTask = new Task(()=> Reset(e));
2 workerTask.Start ();
3 ...
4 private void Reset(MouseButtonEventArgs args)
5 {
6 OnClick (this , args);
7 ...
8 }

Taskifier also changes the variable names such as from workerThread to
workerTask by using the built-in Rename refactoring of Visual Studio.

After Taskifier migrates the Thread variable to Task, it makes an overall
pass over the code again to find some optimizations. For instance, in Code list-
ing 1.8, there is no statement between Task constructor and Start method. In
Task, there is a method combining these two statements: Task.Run creates a
Task, starts running it, and returns a reference to it. Taskifier replaces the
first two lines of Code listing 1.8 with only one statement: Task workerTask =
Task.Run(()=>Reset(e));

Taskifier successfully detects all variable declarations of Thread class type;
however, we noticed that developers can use threads through an anonymous in-
stance. The example below from antlrcs app [2] shows such an anonymous usage
of Thread on the left-hand side, and refactored version with Task on the right-
hand side. Taskifier replaces the Thread constructor and the start operation
with a static method of Task.

new Thread(t1.Run).Start(arg); => Task.Run(()=>t1.Run(arg));

4.2 ThreadPool to Task

The conversion from ThreadPool to Task is less complex than the previous
transformation. There is only one static method that needs to be replaced,
ThreadPool.QueueUserWorkItem(...). Taskifier simply replaces this method
with the static Task.Run method and removes the parameter casting from
Object to actual type in the beginning of the computation. The example below
illustrates the transformation.

526 S. Okur, C. Erdogan, and D. Dig

WaitCallback operation= new WaitCallback(doSendPhoto);
ThreadPool.QueueUserWorkItem(operation , e);

⇓
Task.Run(()=> DoSendPhoto(e));

4.3 Special Cases

There are three special cases that make it non-trivial to migrate from Thread
and ThreadPool to Task manually:

1 I/O or CPU-Bound Thread: During manual migration, developers need
to understand whether the candidate thread for migration is I/O or CPU bound
since it can significantly affect performance. If an I/O-bound Thread is trans-
formed to a Task without special consideration, it can cause starvation for
other tasks in the thread pool. Some blocking synchronization abstractions like
Thread.Sleep can also cause starvation when the delay is long.

Manually determining whether the code in a Thread transitively calls some
blocking operations is non-trivial. It requires deep inter-procedural analysis.
When developers convert Thread to Task manually, it is easy to miss such block-
ing operations that appear deep inside the methods called indirectly from the
body of the Thread. In our code corpus, we found that 32% of tasks have at least
one I/O blocking operation and 9% use Thread.Sleep that blocks the thread
longer than 1 second. It shows that developers are not aware of this issue and
their tasks can starve.

Thus, it is crucial for Taskifier to determine whether the nature of the
computation is I/O or CPU-bound. If it finds blocking calls, it converts them
into non-blocking calls, in order to avoid starvation.

To do so, Taskifier checks each method call in the call graph of the Thread
body for a blocking I/O operation by using a blacklist approach. For this check, we
have the list of all blocking I/O operations in .NET. If Taskifier finds a method
call to a blocking I/O operation, it tries to find an asynchronous (non-blocking)
version of it. For example, if it comes across a stream.Read() method call, Task-
ifier checks the members of the Stream class to see if there is a corresponding
ReadAsync method. Upon finding such an equivalent, it gets the same parameters
from the blocking version. ReadAsync is now non-blocking and returns a future Task
to get the result when it is available. After finding the corresponding non-blocking
operation, Taskifier simply replaces the invocation with the new operation and
makes it await’ed. When a Task is awaited in an await expression, the current
method is paused and control is returned to the caller. The caller is the thread
pool so the thread pool will choose another task instead of busy-waiting. When
the await’ed Task’s background operation is completed, the method is resumed
from right after the await expression.

Converting Parallel Code from Low-Level Abstractions 527

var string = stream.Read(); => var string = await stream.ReadAsync();

If Taskifier cannot find asynchronous versions for all blocking I/O op-
erations in the Thread body, it does not take any risks of blocking the cur-
rent thread and, instead, it inserts a flag to the Task creation statement:
TaskCreationOptions.LongRunning. This flag forces the creation of a new thread
outside the pool. This has the same behavior as the original code, i.e., it explic-
itly create a new Thread. But now the code still enjoys the many other benefits
of using Tasks, such as compatibility with the newer libraries and brevity.

In the case of Thread.Sleep, Taskifier replaces this blocking operation with a
timer-based non-blocking version, await Task.Delay. Upon seeing this statement,
the thread in the thread pool does not continue executing its task and another
task from the thread pool is chosen (cooperative-blocking).

2 Foreground and Background Thread: By default, a Thread runs in the
foreground, whereas threads from ThreadPool and Task run in the background.
Background threads are identical to foreground threads with one exception: a
background thread does not keep the managed execution environment running.
Thread is created on the foreground by default but can be made background by
“thread.IsBackground = true" statement. If a developer wants to execute Task
in a foreground thread, she has to add some extra-code in the body of Task.

Since the intention is to preserve the original behavior as much as possible,
Taskifier should do the transformations accordingly. In the example below,
the program will not terminate until the method, LongRunning reaches the end.
However, when this Thread is turned into Task without any special consideration,
the program will not wait for this method and it will immediately terminate.
While it is easy to diagnose the problem in this simple example, it can be really
hard for a fairly complex app.
public static void main(String args[])
{

...
new Thread(LongRunning);

}

Although, in some cases, Taskifier is able to tell from the context if the
thread is foreground or background, it is usually hard to tell if the developer re-
ally intended to create a foreground thread. Developers usually do not put much
thought into a thread’s being a foreground thread when created. We chose to im-
plement our algorithm for Taskifier to transform Thread to Task by default to
work in the background. The developer still has the option of telling Taskifier
to create foreground tasks; however, the reasoning behind going with the back-
ground by default is that when we contacted the developers, most of them did
not want the Task to work in the foreground even though they created foreground
threads.

3 Exception Handling: Another difference between Thread and Task is the
mechanism of unhandled exceptions. An unhandled exception in Thread and

528 S. Okur, C. Erdogan, and D. Dig

ThreadPool abstractions results in termination of the application. However, un-
handled exceptions that are thrown by user code that is running inside Task
abstractions are propagated back to the joining thread when the static or in-
stance Task.Wait methods are used. For a thrown exception to be effective in a
Task, that Task should be waited; otherwise, the exceptions will not cause the
termination of the process.

A simple direct migration from Thread and ThreadPool to Task can make the
unhanded exceptions silenced so developers will not notice them. This situation
may destroy the reliability and error-recovery mechanism that developers put
into the original program.

To take care of this, Taskifier adds a method call to make sure exception
handling is preserved and unhandled exceptions are not ignored when non-waited
threads are migrated to tasks. During the transformation of the example below,
Taskifier adds a new method, FailFastOnException to the project just once.
Other instances of Task in the project can use this method. However, this stage
is optional and can be enabled by the user upon request.
new Thread(method).Start ();
void method ()
{

throw new Exception();
}

⇓
Task.Run(()=> method ()). FailFastOnException();
void method ()
{

throw new Exception();
}
public static Task FailFastOnException(this Task task)
{

task.ContinueWith(c => Environment.FailFast ("Task faulted ", c. Exception),
TaskContinuationOptions.OnlyOnFaulted |
TaskContinuationOptions.ExecuteSynchronously |
TaskContinuationOptions.DetachedFromParent);

return task;
}

4.4 Workflow

We implemented Taskifier as a Visual Studio plugin, on top of the Roslyn
SDK [22]. Because developers need to run Taskifier only once per migration,
Taskifier operates in a batch mode. The batch option allows the programmer to
migrate automatically by selecting any file or project in the IDE. Before starting
the migration, Taskifier asks the user for two preferences: Foreground Thread
option and Exception Handling option. When it operates at the file levels, Task-
ifier might still modify other files when necessary (e.g., if the method in Thread
body is located in another file). Taskifier migrates Thread and ThreadPool ab-
stractions to Task in about 10 seconds on an average project (100K SLOC).

Converting Parallel Code from Low-Level Abstractions 529

5 Simplifier

Taskifier automatically migrates old-style parallel abstractions (Thread and
ThreadPool) to the modern Task. However, there are still some opportunities for
higher-level abstractions that can make the code faster and more readable.

Parallel class (see Section 2.4) provides parallel programming design patterns
as a higher-level abstraction over Task class. Implementing these design patterns
with tasks requires developers to write code with several instances of Tasks.
A much simpler alternative is to use a single instance of the Parallel class,
which encapsulates the main skeleton of the design patterns. While the direct
usage of Tasks affords more flexibility and control, we found out that in many
cases, developers do not use the extra flexibility, and their code can be greatly
simplified with a higher-level design pattern.

We developed Simplifier that converts multiple Task instances to one of
three Parallel operations (Parallel.For, Parallel.ForEach, Parallel.Invoke).
Simplifier suggests code snippets that can be transformed to Parallel opera-
tions and then does the actual transformation on demand. Hence, we divided the
explanation of the algorithms into two parts: Suggestion and Transformation. In
the Suggestion part, we explain how Simplifier chooses the code candidates.
In the Transformation part, we explain how Simplifier transforms these candi-
dates to Parallel operations. After explaining the three algorithms, we discuss
how developers interact with Simplifier in Section 5.4.

5.1 Multiple Tasks to Parallel.Invoke

Simplifier offers the transformation of task parallelism pattern composed of a
group of Task instances to Parallel.Invoke. First we explain the properties of
code snippets that can be transformed to this operation.

Suggestion: As we explained in Section 2.4, Parallel.Invoke is a succinct way
of creating and starting multiples tasks and waiting for them. Consider the
example below. Parallel.Invoke code on the right-hand side is the equivalent
of the code on the left-hand side. For the purpose of simplifying the code with
Parallel.Invoke, Simplifier needs to detect such a pattern before suggesting a
transformation.

Code 1.9 Multiple Tasks
Task t1=new Task(()=> sendMsg (arg1));
Task t2=new Task(()=> sendMsg (arg2));
t1.Start ();
t2.Start ();
Task.WaitAll (t1,t2);

Code 1.10 Equivalent with Invoke
Parallel .Invoke (()=> sendMsg (arg1),

()=> sendMsg (arg2));

Listing 1.9 shows the simplest form of many variations of code snippets. In
order to find as many fits as possible, we need to relax and expand this pattern
to detect candidates. First step to detect the pattern is that the number of Task

530 S. Okur, C. Erdogan, and D. Dig

variables should be at least 2, as Parallel.Invoke can take unlimited work items
as parameters. Second, Simplifier has to consider that there are many syntac-
tic variations of task creation and task starting operations. Also, there are some
operations that combine both creation and starting like Task.Factory.StartNew
and Task.Run methods. Third, one should keep in mind that there is no need to
separate the creation of Tasks into one phase and starting them into another.
Each Task can be created then started immediately. Fourth, there may be other
statements executing concurrently in between the start of a Task and the barrier
instruction that waits for all spawned tasks. In case of such statements, Simpli-
fier encapsulates them in another Task and passes the task to Parallel.Invoke.
Code listing 1.11 shows a more complex pattern of task parallelism from a real-
world app and demonstrates the last point.

After Simplifier finds out the code snippets that fit into the pattern stated
above, it checks if some preconditions hold true to ensure that the transformation
is safe. These preconditions are not limitations of Simplifier; they are caused
by how Parallel.Invoke encapsulates the task parallelism pattern. Because it
is a higher-level abstraction, it waives some advanced features of Task. The
preconditions are:

P1: None of the Task variables in the pattern can be result-bearing compu-
tations, i.e., a future – Task<ResultType> – also called a promise in C#.
The reason is that after the transformation, there is no way to access the
result-bearing from the Parallel class.

P2: There should be no reference to the Task variables outside of code snippet
of the design pattern. Such references will no longer bind to a Task after the
transformation eliminates the Task instances.

P3: None of the Task variables in the pattern can use the chaining operation
(ContinueWith). Since the chaining requires access to the original task, this
task will no longer exist after the transformation.

Transformation: If Simplifier finds a good match of code snippets, its
suggestion can be executed and turned into a transformation which yields
Parallel.Invoke code. Code listing 1.12 shows the code after the transforma-
tion of Code listing 1.11.

During transformation, the main operation is to get work items from Task
variables. In the example below, the work item of first Task is ()=> DoClone(...).
These work items can be in different forms such as method identifiers, delegates,
or lambda functions as in the example below. Simplifier handles this variety
of forms by transforming the work items to lambda functions.

After Simplifier gets the work items for the tasks t1 and t2, it forms another
work item to encapsulate the statements between task creation and task waiting
statements (line 3 and 4 in Code List. 1.11).

Simplifier gives all these work items in the form of lambda functions to
Parallel.Invoke method as parameters. It replaces the original lower-level task
parallelism statements with this Parallel.Invoke method.

Converting Parallel Code from Low-Level Abstractions 531

Code 1.11 Candidate from Kudu [5] app
1 var t1 = Task.Factory .StartNew (() => DoClone ("PClone1 ", appManager));
2 var t2 = Task.Factory .StartNew (() => DoClone ("PClone2 ", appManager));
3 ParseTheManager();
4 DoClone ("PClone3 ", appManager);
5 Task.WaitAll (t1, t2);

⇓

Code 1.12 Equivalent Parallel.Invoke code
1 Parallel .Invoke (() => DoClone ("PClone1 ", appManager),
2 () => DoClone ("PClone2 ", appManager),
3 () => {ParseTheManager();
4 DoClone ("PClone3 ", appManager);})

5.2 Tasks in Loop to Parallel.For

Simplifier can transform a specific data parallelism pattern to Parallel.For.
First we explain the properties of code snippets that can be transformed to this
operation.

Suggestion: As we explained in Section 2.4, Parallel.For is a more concise
way to express the pattern of forking several tasks and then waiting for them all
to finish at a global barrier.

Considering the example below, the Parallel.For code on the right is the
equivalent of the code on the left.

Code 1.13 Forking tasks in a loop
Task[] tasks = new Task [n];
for(int i=0; i<n; i++)
{

int temp = i;
tasks[i]= new Task(

()=>Queues[temp].Stop());
tasks[i].Start();

}
Task.WaitAll(tasks);

Code 1.14 Equivalent with Parallel.For
Parallel.For(0,n,(i)=> Queues[i].Stop());

Simplifier needs to detect usages of Tasks that form the pattern on the left
example above. The code snippet in Listing 1.13 is one of the basic represen-
tatives of this design pattern; there are other variations who fit the pattern.
First thing the tool looks for in the code to decide if it matches the pattern is
that the increment operation of the loop must be of the form ++ or += 1 (i.e.,
increments should only be by 1). The loop boundaries do not matter as long as
they are integers. Second, as explained in Sec. 5.1, there may be many syntactic
variations for the task creation and starting operations.

Third, the collection of tasks does not have to be of type Array, they may
be of another type like List. In this case, tasks are added with tasks.add(...)
method to the collection in the loop. Fourth, as long as there is no modification

532 S. Okur, C. Erdogan, and D. Dig

to the collection, there may be other statements between creating the collection
of tasks and the for loop. During the transformation, these statements are not
discarded and they take place before Parallel.For.

Fifth, there might be other statements in the loop besides task creation, start-
ing, and adding to the collection. In the Code List. 1.13 above, there is one such
statement: int temp=i;. This causes each task to have its own copy of the loop
index variable during the iteration of the loop.

Sixth and last, some simple assignment operations may also exist between the
loop and the barrier operation that waits for all spawned tasks. Code listing 1.15
shows a more complex pattern of data parallelism from a real-world app and
demonstrates the last point with the statements in Line 8-9.

After Simplifier detects the code snippets that fit into the pattern stated
above, it checks some preconditions ensuring that the transformation is safe.
These preconditions are the result of how the Parallel.For encapsulates the
date parallelism pattern.

P1, P2, P3: The first three preconditions are the same as the first three
preconditions in Sec. 5.1.

P4: The operations in the loop except the task-related statements should not
carry any dependence between iterations. Consider the Code listing 1.15,
the statements in Line 4-5 will sequentially execute because they are not
included in Task. After transforming to Parallel.For, the whole body of the
loop will be parallelized.

P5: The statements after the loop (e.g., Line 8-9 in Code List. 1.15) but before
the Task.WaitAll should not access any data from the Task body. At first,
Simplifier did not allow any statement between the loop and Task.WaitAll.
After we manually analyzed the statements between the loop and WaitAll in
our code corpus, we noticed that many of them are simple variable declara-
tions which do not use any data from the loop and do not contain any method
call sites like in the Code List. 1.15. Therefore, we relaxed this precondition
and allowed the statements after the loop but before the Task.WaitAll unless
they do not access any data from the Task body in the loop. To detect such
cases, Simplifier used an intra-procedural data-flow analysis to determine
that these statements are independent from the loop. Roslyn [22] provides
ready-to-use control & data flow analysis APIs that Simplifier used to
understand how variables flow in and out of regions of source.

Transformation: Code listing 1.16 shows the code after the transformation of
Code listing 1.15 showing a more complex example.

During transformation, the main operation is to the get loop boundaries and
the work item from the task in the loop. In the example below (Line 6), the
work item is ()=> MultiSearcherCallableNoSort(...). The loop boundaries are
0 and tasks.Length. However, the collection of tasks will be deleted after the
transformation. Hence, when Simplifier detects such a dependence on the size
of task collections in the loop boundaries, it replaces this boundary with the
original size of the task collection, which is searchables.Length.

Converting Parallel Code from Low-Level Abstractions 533

Then, Simplifier needs to make sure that the statements in the loop (e.g.
Line 4-5 in List. 1.15) are not dependent on loop iterations. If they are not, these
statements are put in the beginning of the work item; otherwise, the transfor-
mation will not occur. If one of these statements is the temporary holder of the
iteration value like cur = i in the example below, Simplifier removes it and
replaces the holder (cur) with the iteration variable (i) in the work item as seen
in List. 1.16.

Lastly, Simplifier replaces the original lower-level data parallelism state-
ments with the Parallel.For method.

Code 1.15 Candidate from lucene.net [6] app
1 Task[] tasks = new Task[searchables.Length];
2 for (int i = 0; i < tasks.Length; i++)
3 {
4 int cur = i;
5 cur = callableIterate(cur);
6 tasks[i] = Task.Factory.StartNew(() => MultiSearcherCallableNoSort(cur , ...));
7 }
8 int totalHits = 0;
9 float maxScore = float.NegativeInfinity ;

10 Task.WaitAll(tasks);

⇓

Code 1.16 Equivalent Parallel.For code
1 Parallel .For(0, searchables.Length , (i) => {
2 i = callableIterate(i);
3 MultiSearcherCallableNoSort(i, ...);});
4 int totalHits = 0;
5 float maxScore = float.NegativeInfinity;

5.3 Tasks in Loop to Parallel.ForEach

While this transformation is very similar to Parallel.For, it transforms foreach
loops instead of for loops. foreach loops are a special case of loops that are used
to iterate over the elements of a collection.

First we explain the properties of code snippets that can be transformed to
this operation.

Suggestion: Considering the example below, the Parallel.ForEach code on the
right is the equivalent of the code on the left.

Code 1.17 Equivalent Task example
Task[] tasks = new Task[sables.Length];
foreach (var sable in sables)
{

tasks[i] = Task.Run(
() => sable.DocFreq(term));

}
Task.WaitAll(tasks);

Code 1.18 Parallel.ForEach example
Parallel.ForEach(sables ,

(sable)=>sable.DocFreq(term));

534 S. Okur, C. Erdogan, and D. Dig

Simplifier needs to detect usages of Tasks in a foreach loop that form the
pattern on the left example above. We will generalize this pattern with the same
5 variations in the Parallel.For algorithm, except the first one which represents
the custom loop boundaries.

After Simplifier detects the code snippets that fit into the pattern, it checks
for the same preconditions as in the Parallel.For transformation.

Transformation: Code listing 1.20 shows the code after the transformation of
Code listing 1.19. The transformation is done in a very similar manner with the
Parallel.For version, except the loop boundaries.

After the work item is extracted from Task, Simplifier needs to get the
collection variable and iteration variable from the loop declaration (functions,
functionText). Then, Simplifier replaces the original lower-level data paral-
lelism statements with the Parallel.ForEach method.

Code 1.19 Candidate from Jace [4] app
1 List <Task > tasks = new List <Task >();
2 foreach (string functionText in functions)
3 {
4 Task task = new Task(() =>
5 {...
6 function (functionText , ...); ...
7 });
8 tasks.Add(task);
9 task.Start ();

10 }
11 Task.WaitAll (tasks.ToArray ());

⇓

Code 1.20 Equivalent Parallel.ForEach code
1 Parallel.ForEach(functions,(functionText) = >{...
2 function(functionText, ...); ...
3 });

5.4 Workflow

We implemented Simplifier as a Visual Studio plugin, on top of the Roslyn
SDK [22]. Simplifier’s workflow is similar to a “quick hint" option which exists
in major IDEs such as Eclipse, Netbeans, IntelliJ. Simplifier scans the file that
is open in the editor in real-time. It tries to find code snippets that fit into
the patterns of the three transformations discussed above. Because it executes
on the background (triggered by any keystroke), the analysis of finding code
snippets should be fast enough to prevent sluggishness. However, the analyses
for Parallel.For(Each) require some expensive checking of preconditions such as
P4 and P5 in Sec. 5.2. Because they require dependence and data-flow analyses,
we do not execute them in the suggestion phase, but in the transformation phase.

If Simplifier finds candidates, it suggests the places where the transfor-
mations can be useful by underlining the code snippet and displaying a hint

Converting Parallel Code from Low-Level Abstractions 535

in the sidebar. After the user clicks the hint and confirms, Simplifier trans-
forms the code for the Parallel.Invoke. Simplifier tests long-running precon-
ditions, such as for the Parallel.For(Each), in the transformation phase. If the
candidate passes these preconditions too, the code will be transformed to the
Parallel.For(Each). If not, Simplifier will give an informative warning.

6 Evaluation

We conducted two kinds of empirical evaluation. First, we quantitatively evaluate
based on case studies of using our tools on open-source software. Second, we
qualitatively evaluate based on patches that we sent to open-source developers.

6.1 Quantitative

To quantitatively evaluate the usefulness of Taskifier and Simplifier, we an-
swer the following research questions:

RQ1: How applicable are the tools?
RQ2: Do the tools reduce the code bloat?
RQ3: How much programmer effort is saved by the tools?
RQ4: Are the automated transformations safe?

Experimental Setup: To answer the questions above, we ran Taskifier and
Simplifier on our code corpus that we gathered from Github. The code corpus
has 880 C# apps, comprising 42M SLOC, spanning a wide spectrum from web
& desktop apps to libraries and mobile apps.

We ran both tools in batch mode over this code corpus. Even though Sim-
plifier was not designed to run in a batch mode, we implemented a batch
mode specifically for the purpose of the evaluation. Taskifier visits all Thread
variable declarations and anonymous instances, and applies the migration algo-
rithm. Simplifier finds the candidates of code snippets for each source file, then
transforms the snippets to the targeted pattern.

Table 2 summarizes the results for the first three research questions.

RQ1: How applicable are the tools? Out of our corpus of 880 apps, 269
used Threads (see Table 1). Together, they account for 2105 Thread instances.
Based on our discussion with experts (see Section 3.3), they suggested we discard
Thread usages in test code because developers may need threads for enforcing a
multithreading testing environment. After eliminating the Thread usages in test
code, we were left with 1782 Thread instances in production code, as shown in
Table 2.

Taskifier migrated 78% of the Thread instances. The remaining 22% of
Thread instances used operations that are not available in the Task class, thus are
not amenable for migration. For example, one can set up the name of a Thread,

536 S. Okur, C. Erdogan, and D. Dig

Table 2. Taskifier and Simplifer Conversion Results. The first column shows the to-
tal number of instances that the tool applied. The second column shows the total
number of instances that the tool successfully converted and the third column shows
the percentage of successfully transformed instances. The fourth column shows the to-
tal number of reduced SLOC by the transformations and the fifth column shows the
percentage of the reduced lines. The last column shows the total number of modified
SLOC.

Applicability Reduction Modified
Applied Conv. Conv. % SLOC %. SLOC

Thread to Task 1782 1390 78% 2244 24% 8876
ThreadPool to Task 1244 1244 100% 173 14% 2115
Task to Parallel.Invoke 85 85 100% 502 44% 1870
Task to Parallel.For(Each) 205 188 92% 1918 62% 5640

but not of a Task. Deciding whether the name is important requires domain
knowledge, thus Taskifier stays on the safe side and warns the programmer.

Because there are no preconditions for the migration of ThreadPool instances,
Taskifier migrated all of them to Task.

As for Simplifier, it successfully transformed 100% of the 85 Task-based
fork-join patterns to Parallel.Invoke. Out of the 205 identified Task-based data-
parallelism patterns, it transformed 92% to Parallel.For or Parallel.ForEach.
The remaining 8% did not pass the preconditions. A major number of them was
failed due to P4: loop-carried dependence.

RQ2: Do the tools reduce the code bloat? The second column, Reduction,
of Table 2 shows by how much each tool eliminates bloated code. As we expect,
because Simplifier transforms multiple Task operations and helper operations
to one equivalent method in the Parallel class (i.e., a many-to-one transfor-
mation), it has the largest impact. For the transformation to Parallel.Invoke,
Simplifier achieved on average a 44% reduction in SLOC for each code snippet
that it transformed. For the transformation to Parallel.For(Each), it achieved
on average a 62% reduction for each transformed code snippet.

Taskifier migrates one Thread operation to one equivalent Task operation
(i.e., a one-to-one transformation), so we expect modest reductions in LOC.
These come from optimizations such as combining the creation and start Task
operations, removing explicit casting statements which are not needed in Task
bodies, etc. However, the advantages brought by Taskifier are (i) the modern-
ization of the legacy code so that it can now be used with the newer platforms,
and (ii) the transformation of blocking operations to the equivalent non-blocking
operations.

RQ3: How much programmer effort is saved by the tools? The last col-
umn of Table 2 shows that the transformations are tedious. Had the programmers

Converting Parallel Code from Low-Level Abstractions 537

manually changed the code, they would have had to manually modify 10991 SLOC
for the migration to Task and 7510 SLOC for the migration to Parallel.

Moreover, these changes are non-trivial. Taskifier found that 37% of Thread
instances had at least one I/O blocking operation. To find these I/O blocking
operations, Taskifier had to check deeper in the call-graphs of Thread bodies,
which span 3.4 files on average.Simplifier found that 42% of the loops it tried to
transform contained statements that needed an analysis to identify loop-carried
dependences.

RQ4: Are the automated transformations safe? We used two means to
check the safety of our transformations. First, after our tools applied any trans-
formation, our evaluation script compiled the app in-memory and determined
that no compilation errors were introduced. Second, we sampled and manually
checked 10% of all transformed instances and determined that they were correct.
Also, the original developers of the source code thought that the transformations
were correct (see Section 6.2).

In contrast to the code that was transformed with the tools, we found that
32% of the Task-code manually written by open-source developers contained at
least one I/O blocking operation which can cause serious performance issues (see
Section 4.3). However, the code transformed by Taskifier into Task instances
does not have this problem.

6.2 Qualitative Evaluation

To further evaluate the usefulness our of tools in practice, we identified actively
developed C# applications, we ran our tools on them, and submitted patches1
to the developers.

For Taskifier, we selected the 10 most recently updated apps that use Thread
and ThreadPool and transformed them with Taskifier. We submitted 52 patches
via a pull request. Developers of 8 apps out of 10 responded, and accepted 42
patches.

We received very positive feedback on these pull requests. Some developers
said that migration to Task is on their TODO list but they always postponed it
because of working on new features. It is tedious to migrate Task and developers
can easily miss some important issues such as blocking I/O operations during the
migration. Taskifier helps them migrate their code in a fast and safe manner.

For Simplifier, we selected a different set of 10 most recently updated
apps that had a high chance of including good matches of code snippets for
Parallel.For(Each) or Parallel.Invoke patterns. We submitted 14 patches. De-
velopers of 7 apps out of 10 responded, and accepted 11 patches. All of them
liked the new code after the transformation and asked us whether we can make
the tool available now.

1 All patches can be found on our web site: Taskifier.NET

Taskifier.NET

538 S. Okur, C. Erdogan, and D. Dig

6.3 Discussion

As explained in Section 4.3, Taskifier analyzed the call graph of Thread body
to detect I/O blocking operations, using a blacklist approach. Although we have
the list of I/O blocking operations in .NET framework, Taskifier is not aware
of I/O blocking operations implemented by 3rd-party libraries whose source code
is not available in the app. However, we don’t expect that the number of blocking
I/O operations implemented by external libraries to be high.

Most of non-blocking I/O and synchronization operations were released in
.NET 4.5 (2012). If an application does not target .NET 4.5, it cannot take ad-
vantage of the non-blocking operations. However, applications that are targeting
the new platforms (e.g, Windows Phone 8, Surface) are forced to use .NET 4.5.

With respect to releasing Taskifier and Simplifier, we will be able to
publish the tools when Microsoft publicly releases the new version of Roslyn
(expected by Spring ’14). Because we used an internal version of Roslyn, we had
to sign an NDA, which prohibits us from releasing tools based on Roslyn.

7 Related Work

Empirical Studies about Parallelism: Pankratius et al. [21] analyzed con-
currency related transformations in a few Java applications. Torres et al. [25]
conducted a study on the usage of concurrent programming constructs in Java,
by analyzing around 2000 applications. In our previous study [10] we cataloged
the kinds of changes that Java developers perform when they write parallel code.
We have also conducted an empirical study [18] on how developers from thou-
sands of open source projects use C# parallel libraries.

In this paper, we do not only target the usage statistics of parallel abstractions
but also provides Taskifier and Simplifier for helping developers migrate from
low-level parallel abstractions to higher-level abstractions.

Refactoring Tools for Parallelism: There are a few refactoring tools that
specifically target concurrency. Dig et al. [9,11] retrofit parallelism into sequential
applications via Java concurrent libraries. In the same spirit, Wloka et al. [27]
present a refactoring for replacing global state with thread local state. Schafer et
al. [24] present Relocker, a refactoring tool that lets programmers replace usages
of Java built-in locks with more flexible locks. Schafer et al. [23] also investi-
gated the problem of whether existing sequential refactorings are concurrency-
aware. Gyori et al. [13] present Lambdaficator, that refactors existing Java code
to use lambda expressions to enable parallelism. We previously studied asyn-
chronous programming and developed Asyncifier [19], an automated refactoring
tool that converts old style asynchronous code to use new language features
(i.e., async/await). However, none of these previous tools address the problem
of migrating between different levels of abstractions in (already) parallel code.

Balaban et al. [8] present a tool for converting between obsolete classes and
their modern replacements. The developer specifies a mapping between the old

Converting Parallel Code from Low-Level Abstractions 539

APIs and the new APIs. Then, the tool uses a type-constraint analysis to de-
termine if it can replace all usages of the obsolete class. Their tool supports a
one-to-one transformation whereas Simplifier supports many-to-one transfor-
mations. Even our one-to-one transformations from Taskifier require custom
program analysis, e.g., detecting I/O blocking operations, and cannot be simply
converted by a mapping program.

8 Conclusions

To make existing parallel code readable, faster, and scalable, it is essential to
use higher-level parallel abstractions. Their usage is encouraged by the industry
leaders as the old, low-level abstractions are subject to deprecation and removal
in new platforms.

Our motivational study of a corpus of 880 C# applications revealed that many
developers still use the lower-level parallel abstractions and some are not even
aware of the better abstractions. This suggests a new workflow for transformation
tools, where suggestions can make developers aware of new abstractions.

Converting from low-level to high-level abstractions can not be done by a
simple find-and-replace tool, but it requires custom program analysis and trans-
formation. For example, 37% of Thread instances use blocking I/O operations,
which need special treatment when they are converted to Task instances, oth-
erwise it can create severe performance bugs. We found that 32% instances of
manually written Task indeed contain blocking I/O operations.

In this paper we presented two tools. Our first tool, Taskifier, converts
Thread-based usage to lightweight Task. We were surprised that despite some
differences between Thread and Task abstractions, 78% of the code that uses
Thread can be successfully converted to Task. Our second tool, Simplifier, con-
verts Task-based code into higher-level parallel design patterns. Such conversions
reduce the code bloat by 57%. The developers of the open-source projects ac-
cepted 53 of our patches and are looking forward to using our tools.

Acknowledgements. This research is partly funded through NSFCCF-1439957
and CCF-1442157 grants, a SEIF award from Microsoft, and a gift grant from
Intel. The authors would like to thank Cosmin Radoi, Yu Lin, Mihai Codoban,
Caius Brindescu, Sergey Shmarkatyuk, Alex Gyori, Michael Hilton, and anony-
mous reviewers for providing helpful feedback on earlier drafts of this paper.

References

1. RavenDB 2nd generation document database (May 2014), http://ravendb.net
2. Antlrcs (May 2014), http://github.com/antlr/antlrcs
3. Dynamo App. (May 2014), https://github.com/ikeough/Dynamo
4. Jace App. (May 2014), https://github.com/pieterderycke/Jace
5. Kudu App. (May 2014), https://github.com/projectkudu/kudu
6. Lucene.NET App. (May 2014), https://github.com/apache/lucene.net

http://ravendb.net
http://github.com/antlr/antlrcs
https://github.com/ikeough/Dynamo
https://github.com/pieterderycke/Jace
https://github.com/projectkudu/kudu
https://github.com/apache/lucene.net

540 S. Okur, C. Erdogan, and D. Dig

7. Tiraggo App. (May 2014), https://github.com/BrewDawg/Tiraggo
8. Balaban, I., Tip, F., Fuhrer, R.: Refactoring support for class library migration.

In: Proceedings of the OOPSLA 2005, pp. 265–279 (2005)
9. Dig, D., Marrero, J., Ernst, M.D.: Refactoring sequential Java code for concurrency

via concurrent libraries. In: Proceedings of the ICSE 2009, pp. 397–407 (2009)
10. Dig, D., Marrero, J., Ernst, M.D.: How do programs become more concurrent: A

story of program transformations. In: Proceedings of the IWMSE 2011, pp. 43–50
(2011)

11. Dig, D., Tarce, M., Radoi, C., Minea, M., Johnson, R.: Relooper. In: Proceedings
of the OOPSLA 2009, pp. 793–794 (2009)

12. Github (May 2014), https://github.com
13. Gyori, A., Franklin, L., Dig, D., Lahoda, J.: Crossing the gap from imperative to

functional programming through refactoring. In: Proceedings of the FSE 2013, pp.
543–553 (2013)

14. Lea, D.: A Java fork/join framework. In: Proceedings of the ACM 2000 Conference
on Java Grande, pp. 36–43 (2000)

15. Leijen, D., Hall, J.: Parallel Performance: Optimize Managed Code For Multi-Core
Machines. In: MSDN (October 2007)

16. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. ACM
SIGPLAN Notices 44(10), 227 (2009)

17. Nuget (May 2014), http://www.nuget.org/
18. Okur, S., Dig, D.: How do developers use parallel libraries? In: Proceedings of the

FSE 2012, pp. 54–65 (2012)
19. Okur, S., Hartveld, D.L., Dig, D., van Deursen, A.: A study and toolkit for asyn-

chronous programming in C#. In: Proceedings of the ICSE 2014, pp. 1117–1127
(2014)

20. Stack Overflow (May 2014), http://stackoverflow.com
21. Pankratius, V., Schaefer, C., Jannesari, A., Tichy, W.F.: Software engineering for

multicore systems. In: Proceedings of the IWMSE 2008, pp. 53–60 (2008)
22. The Roslyn Project (May 2014), http://msdn.microsoft.com/en-us/hh500769
23. Schäfer, M., Dolby, J., Sridharan, M., Torlak, E., Tip, F.: Correct refactoring of

concurrent java code. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp.
225–249. Springer, Heidelberg (2010)

24. Schäfer, M., Sridharan, M., Dolby, J., Tip, F.: Refactoring Java programs for flex-
ible locking. In: Proceedings of the ICSE 2011, pp. 71–80 (2011)

25. Torres, W., Pinto, G., Fernandes, B., Oliveira, J.P., Ximenes, F.A., Castor, F.: Are
Java programmers transitioning to multicore?: a large scale study of java FLOSS.
In: Proceedings of the SPLASH 2011 Workshops, pp. 123–128 (2011)

26. Toub, S.: Patterns of Parallel Programming. Microsoft Corporation (2010)
27. Wloka, J., Sridharan, M., Tip, F.: Refactoring for reentrancy. In: Proceedings of

the FSE 2009, pp. 173–182 (2009)

https://github.com/BrewDawg/Tiraggo
https://github.com
http://www.nuget.org/
http://stackoverflow.com
http://msdn.microsoft.com/en-us/hh500769

Portable and Efficient Run- ime Monitoring of
JavaScript Applications sing Virtual Machine

Layering

Abstract.

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Run-time monitoring of JavaScript applications is typically
achieved either by instrumenting a browser’s virtual machine, usually
degrading performance to the level of a simple interpreter, or through
complex ad hoc source-to-source transformations. This paper reports on
an experiment in layering a portable JS VM on the host VM to expose
implementation-level operations that can then be redefined at run-time
to monitor an application execution. Our prototype, Photon, exposes
object operations and function calls through a meta-object protocol. In
order to limit the performance overhead, a dynamic translation of the
client program selectively modifies source elements and run-time feed-
back optimizes monitoring operations. Photon introduces a 4.7× to 191×
slowdown when executing benchmarks on popular web browsers. Com-
pared to the Firefox interpreter, it is between 5.5× slower and 7× faster,
showing the layering approach is competitive with the instrumentation of
a browser VM while being faster and simpler than other source-to-source
transformations.

Keywords: JavaScript, Virtual Machine, Runtime Monitoring, Perfor-
mance Evaluation, Optimization, Metaobject Protocol

1 Introduction

JavaScript (JS), the de facto language of the web, has recently gained much
popularity among researchers and practitioners alike. In particular, due to the
highly dynamic nature of the language, there is a growing interest in observing
the behavior of JS programs. For instance, run-time monitoring is being used
for widely different purposes, such as gathering empirical data regarding the
dynamic behavior of web applications [10], automatically extracting benchmarks
from web applications [11], and enforcing access permission contracts [6].

Common profiling tasks in JS, such as intercepting all object operations or
function calls, are difficult to achieve in a portable and efficient manner. A pop-
ular approach consists of modifying a production virtual machine (VM). While
� This work was done at Université de Montréal.

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 541–566, 2014.
© Springer-Verlag Berlin Heidelberg 2014

T
U

1 McGill University, Montreal, Canada
erick.lavoie@mail.mcgill.ca

2 Université de Montréal, Montreal, Canada
{dufour,feeley}@iro.umontreal.ca

Erick Lavoie1,*, Bruno Dufour2, and Marc Feeley2

this approach guarantees a high level of compliance with the source language, it
suffers from some important drawbacks. Most modern JS implementations are
production-quality VMs that are optimized for performance and thus difficult to
modify. Generally, this approach also binds the profiling system to a single VM,
and therefore greatly limits the portability of the approach. Moreover, modifica-
tions to the VM codebase must evolve as the VM is being developed upstream,
which can happen at a rapid pace. As a result, many attempts to modify a JS
VM are punctual efforts that are abandoned shortly thereafter [3,8,10].

The most popular alternative approach for instrumenting JS programs con-
sists of implementing an ad hoc source-to-source translator and runtime library
tailored to the problem at hand. While this approach is easier to maintain
and more portable than instrumenting a VM, implementing a correct source-
to-source transformation is deceptively difficult in practice, even for seemingly
simple tasks. For instance, instrumenting all object creations also requires in-
strumenting all function calls because any function call could potentially be a
call to Object.create through an alias. Other dynamic constructs in JS, such as
eval, are notoriously difficult to instrument while guaranteeing that the observed
behavior of the program will remain unaffected. Also, JS programs can easily
redefine core operations from Object and Array. Such modifications are difficult
to handle. A profiler that is unaware of such redefinitions could behave incor-
rectly, or worse, cause a change in the observed behavior of the profiled program.
Finally, the profiler code itself must maintain various invariants. For example,
instrumentations that rely on extending existing objects with new properties
must take proper care not to leak information that is visible to user code by
introspection (e.g., by iterating over all properties of an object1).

Both VM instrumentation as well as source-to-source transformations can
have unexpected performance costs. VM instrumentation often settles for mod-
ifying a simple non-optimizing interpreter to avoid the additional complexity
of instrumenting a commercial Just-In-Time (JIT) compiler. The performance
hit incurred by disabling the JIT compiler in a modern JS implementation is
significant, often an order of magnitude or more. Second, while source-to-source
transformations can benefit from the full range of optimizations performed by
the JIT, a naive transformation often results in a similar slowdown.

In this paper, we present an alternative technique for run-time monitoring of
JS applications based on virtual machine layering. Virtual machine layering con-
sists of exposing implementation-level operations performed by the VM through
various abstraction layers. Specifically, our approach uses a flexible object model
as a basis to build the abstraction layers. A JS application is then transformed
to make use of these abstractions. Because this transformation is performed
during the execution, the resulting framework can be viewed as a metacircular
VM written on top of a host VM for the source language. This approach has
three main advantages. First, exposing implementation-level operations provides

1 Marking properties as non-iterable is not sufficient in general, since
Object.getOwnPropertyNames will return all property names, irrespective
of their iterable nature.

542 E. Lavoie, B. Dufour, and M. Feeley

a good compromise between the portability offered by source-to-source trans-
lations and the expressiveness of VM modifications. For instance, profilers can
easily extend or redefine the implementation-level operations to accomplish their
specific tasks. Second, by exposing implementation-level operations in a separate
layer, our approach can prevent interference between VM code and user code.
This is achieved by ensuring that user code only manipulates objects through
proxies2, which provide a form of sandboxing over the native objects provided by
the host VM. Finally, the metacircular VM can leverage fast operations provided
by the underlying host VM to reduce the overhead of the transformation. This is
achieved by (i) letting the host VM execute operations for which no abstraction
is necessary, and (ii) providing abstractions that use or support the operations
that are efficiently implemented by the host VM. Reusing complex primitive op-
erations from the host VM also greatly reduces the development effort required
to provide a fully compliant VM implementation.

Virtual machine layering is not new and has been previously studied as an
implementation technique for metaobject protocols [7]. It can add to JS many
of the functions of an intercession API such as the Java Virtual Machine Tools
Interface (JVMTI) by reifying implicit operations of the language. In contrast
to JVMTI, it does not require the modification of the internals of a VM, only a
single intercession point in the browser to maintain the invariants of the layered
VM by translating dynamically loaded code before it is executed by the host
VM. However, it cannot give access to implementation-specific information such
as garbage collection events or exact memory usage. A standard API would
supersede it, but until consensus is reached by VM implementors, VM layering
can help build on a common instrumentation infrastructure and explore the
API design space. One of the authors wrote a small patch to add an intercession
point to the Debugger API in Firefox3. We believe it should be straightforward
to implement and require little maintenance to support on all major browsers.

Photon4, our prototype implementation of this technique, uses a single prim-
itive operation, message-sending, to reify implementation-level operations such
as object operations and function calls. The use of the message-sending primi-
tive provides a simple and dynamic mechanism to instrument and even redefine
the behavior of a reified operation. For instance, a profiler could intercept all
calls by providing a wrapper function for Photon’s call primitive operation. In
order to offset the cost of the message-sending mechanism, Photon implements
a send cache optimization. This optimization allows the behavior of a message
send (e.g., a property access) to be specialized at a given program point. This
caching optimization is crucial to obtain a good performance in practice, making
Photon on average 19% faster than a commercial interpreter while providing a
much higher degree of flexibility and dynamism.

This paper makes two main contributions: (i) the design of a VM that reifies
object operations and function calls around a single message-sending primitive

2 We refer to the implementation concept in general, not the upcoming JS Proxies.
3 https://bugzilla.mozilla.org/show_bug.cgi?id=884602
4 https://github.com/elavoie/photon-js/tree/ecoop2014

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 543

Object Representation

Application

Function Calls, Object Ops

Litteral Object
Creation

Instrumented
Object Ops and
Function Calls

Data
Structures

Caching and
Specialization

Control- ow,
Primitives,

etc.

Obj. Ops, Fun. Calls

High-Performance Host JavaScript VM

Source-to-Source JIT Compiler

Message Sending

Instrumentation

Fig. 1. Components of the Photon virtual machine

so that their behavior can be redefined dynamically, (ii) an object representation
exploiting the underlying host VM’s inline caches and dynamic object model for
performance. Both are shown to provide a significant performance increase over
existing approaches and are an important step towards portable and efficient
instrumentation frameworks for JavaScript.

We present in turn, an overview of the components of the system, the ob-
ject representation, the message-sending semantics, a compilation example, a
performance evaluation, and related work.

2 Overview

In a conventional JS setting, an application runs over a high-performance host
VM. In the case of a metacircular VM, an additional VM layer is inserted be-
tween the application and the host VM. This layer can be a full or a differential
implementation. In a full implementation, the metacircular VM provides all func-
tionalities of the source language. In a differential setting, however, the metacir-
cular VM only implements parts of the required functionality, and delegates the
remaining operations to the underlying host VM. Our approach follows a differ-
ential strategy. Object operations are handled by one of the layers introduced
by Photon while primitive operations are handled by the host VM.

This section presents Photon’s design goals and components.

2.1 Design Goals

Our design aims to achieve the following properties:

– Isolation: The application is isolated to avoid any interference with instru-
mentation code, while still allowing an instrumentation to fully inspect and
modify the application state.

– Abstraction: Low-level details, mostly related to performance optimiza-
tions, are encapsulated to simplify the definition of instrumentations.

– Performance: Native features are reused when possible (e.g. control-flow
operations). The performance of some host features (e.g., fast global function
calls) is leveraged in optimizations that reduce the overhead of abstractions.

544 E. Lavoie, B. Dufour, and M. Feeley

In this paper, we focus on the performance aspect to stress the feasibility of
virtual machine layering on modern JS VMs.

2.2 Overview of the Components

Figure 1 shows a structural view of the components of Photon.
Source-to-Source Compiler. The source-to-source compiler translates the orig-

inal JS code to use the runtime environment provided by Photon. Non-reified
elements, such as control-flow operations as well as primitive values and opera-
tions are preserved. Object operations and function calls are translated to make
use of the message sending layer. Literal object creations are translated to use
the object representation. The source-to-source compiler is itself written in JS
and is therefore available at run-time. By staging it in front of every call to eval,
it effectively provides a JIT compiler to Photon.

Message Sending. Photon uses a message sending primitive to reify operations
internal to the implementation, such as property accesses on objects and function
calls. These reified operations can then easily be overridden and redefined when
required, for example to profile the application or to specialize the behavior
of an operation. Photon itself makes use of this extra level of indirection for
performance by providing a caching mechanism at each site that performs a
message send, a form of memoization.

Object Representation. In order to isolate the application from the instrumen-
tation and the host VM, Photon provides a virtualized representation of objects
(including functions). Each JS object in the original application is represented in
Photon by two distinct objects: a property container and a proxy5. The property
container corresponds to the original object, and acts as storage for all properties
that are added to an object. For performance reasons, the property container
object is a native JS object provided by the host VM. This allows Photon to
leverage its efficient property access mechanism.

The native property container can only be accessed through Photon, and
never directly from the application. All object operations go through the proxy
object, which is the object that is manipulated directly by the transformed appli-
cation code. Object representation operations can be specialized in certain classes
of objects for performance, such as indexed property accesses on arrays. The use
of proxy objects also simplifies the task of implementing instrumentations be-
cause it abstracts implementation details that are required for performance. It
also allows object-specific instrumentation information to be stored on a proxy
without risk of interference with the application properties.

Instrumentation. An instrumentation can redefine the behavior of object op-
erations and function calls by replacing the corresponding method on a root
object with an instrumented version using the object representation operations.
The ability to completely replace a method provides maximum flexibility to in-
strumentation writers as opposed to being limited to a specific event before and
5 Implemented using a regular object. It would be interesting future work to investigate

how the upcoming JS proxies perform.

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 545

Object.prototype

root object's
proxy

object container root array's proxy array container

prototype

proxied object
Array.prototype

array's proxy array containerobject's proxy object container

Fig. 2. Representation for objects and arrays

after an operation. However, most instrumentations will choose to simply del-
egate to the original implementation of an operation and act as wrappers. An
instrumentation is executed with the same privileges as the VM, and can there-
fore directly access the execution environment of the VM. It can also use native
objects as data structures.

The next sections expand on the object representation and message sending.

3 Object Representation

Conceptually, all JS objects are associative arrays where the keys represent the
properties of an object. As with many dynamic languages, properties can be
dynamically added, redefined or removed from an object. Each object also has a
reference to a prototype object from which it inherits properties. The sequence
of prototype objects until the root of the object hierarchy forms the prototype
chain of an object. Functions are also objects, and are first-class citizens in the
language. Methods on objects are simply properties with functions as values.
JS also treats all global variables and function declarations as properties of a
singleton global object.

Photon virtualizes the host VM objects exposed to the application in order
to provide isolation between the application and the instrumentations, and to
reify the object operations supported by JS. While this design provides a high
level of flexibility, it also introduces a source of overhead. Proper care must be
taken to limit the performance impact of the object representation.

Figure 2 illustrates the object representation used in Photon, with
Object.prototype as the root of all objects. Photon structures the object rep-
resentation as proxies to native objects [5]. Each original JS object is therefore
represented by two distinct objects in the transformed application. In this rep-
resentation, the structure of the native (i.e., proxied) object is the same as with
the original representation. Using native objects to store properties is motivated
by performance. Modern JS VMs aggressively optimize property accesses and
method calls on objects, as these operations are key to good performance in

546 E. Lavoie, B. Dufour, and M. Feeley

Operation Interface Example
Property read get(id) o.get("p")
Property write set(id, val) o.set("p",42)
Property delete del(id) o.del("p")
Prototype read getPrototype() o.getPrototype()
Object creation create() parent.create()
Call call(rcv, ..args) fun.call(global)

Table 1. Object representation operation interfaces

practice. Therefore, preserving the internal structure of the represented objects
enables the optimizations performed by the host VM, such as lookup caching.

The application root objects are virtualized for isolation. For example, the
application Object.prototype is a child of Photon’s Object.prototype. It is
referred to as root.object in Photon’s implementation. Other JS object model
root objects, such as Array.prototype are also reified and have root.object
for prototype.

The proxy object encapsulates the logic implementing the object operations,
as well as the invariants that are required for performance (e.g., invalidating
caches in response to a redefined operation). Table 1 lists the methods that are
provided by proxy objects in order to reify object operations.

Additionally, in order to exploit the fast lookup chain implementations pro-
vided by the host VM, the prototype chain of the proxies mirrors the prototype
chain of the native objects. This organization of the proxy objects enables spe-
cializing and optimizing the operations performed on the object representation
at run-time by strategically defining specialized methods along the proxy pro-
totype chain. For example, property accesses performed on array objects can be
optimized for the case where the property is numerical rather than using a less
efficient, generic mechanism.

However, this strategy does not work well with native types that can be
created using a literal syntax, such as arrays, functions and regular expressions.
In order to preserve the prototype chain invariant, it would be necessary to
change the prototype of these objects after their creation. While technically
possible, doing so would invalidate structural invariants assumed by the host
VM, at the cost of performance. For such objects, the original native prototype
is maintained. When a lookup is needed, it is performed explicitly through the
proxy prototype chain. This is illustrated for arrays in the right part of Figure 2.

Although proxies mirror native objects in their prototype chain, they do
not mirror their properties. In fact, their properties will be fixed for the whole
execution if the object operations are not redefined (e.g., through an instru-
mentation). Proxies can therefore adapt to dynamic circumstances by adding
specialized methods at run-time, which can be used for performance gains. The
next subsections demonstrate how this can be exploited to specialize operations
for a fixed number of arguments.

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 547

3.1 Specialization on a Fixed Number of Arguments

Our object representation does not mandate a specific calling convention for
functions. Function calls are reified through a call method implemented by
function proxies. The naive implementation of call uses the equivalent call or
apply method provided by the host VM. However, this generic mechanism is
inefficient. It can be avoided by globally rewriting every function to explicitly
pass the receiver object. This way, a specialized call operation on a proxy object
can simply and efficiently invoke the native function with all arguments passed
explicitly. Therefore, function calls can be specialized for the number of argu-
ments found at a given call site. For example, a call operation specialized for
one argument in addition to its receiver could be implemented as follows:

fn_proxy.call1 = function ($this, arg0) {
return this.proxiedObject($this, arg0);

};

Note that all callable proxies must provide an implementation of call1 (e.g.,
by defining this operation on the FunctionProxy root).

4 Message-Sending Semantics

Source-level instrumentations aim to intercede on common and often opaque
operations performed by the host VM. Our object representation provides a
mechanism that reifies implementation-level object operations. In order to enable
the redefinition of such operations in a flexible, dynamic and efficient way, our
approach uses a single message sending primitive. Translating opaque operations
to our message-sending primitive makes them available for instrumentation, and
provides additional performance benefits.

4.1 Reifying Object Operations

Reifying opaque operations in source-level instrumentations is typically achieved
by transforming the original code so that all such operations go through
globally accessible functions. For example, in the case of the property read
var v = o.foo, the program could be instrumented as follows:

function __get__(o, p) {
<before>
var r = o[p];
<after>
return r;

};
...
var v = __get__(o,"foo");

This strategy exposes the details of the opaque operation, such as the iden-
tity of the object as well as the name of the property being accessed. It allows

548 E. Lavoie, B. Dufour, and M. Feeley

an instrumentation to perform some work before, after or even instead of the
original operation. However, it lacks flexibility. For instance, instrumentations
requiring a fine-grained control over which objects need to be monitored would
need to introduce tests in the global function, at a cost in performance. Also,
this rigid design makes it difficult to disable the instrumentation dynamically
without incurring the run-time cost introduced with the instrumentation mecha-
nism. Furthermore, multiple optimizations cannot be combined seamlessly with-
out adapting the intercession mechanism.

To address these limitations, our approach replaces globally accessible func-
tions with methods defined on the objects being monitored. This strategy ex-
ploits the object-oriented nature of the underlying implementation, and enables
a fine-grained monitoring strategy to be implemented easily. For example, an
instrumentation of property reads could be implemented as follows:

o.__get__ = function (p) {
<before 1>
var r = this[p];
<after 1>
return r;

};
Array.prototype.__get__ = function (p) {

<before 2>
var r = this[p];
<after 2>
return r;

};
Object.prototype.__get__ = function (p) {

<before 3>
var r = this[p];
<after 3>
return r;

};
...
var v = o.__get__("foo");

This example illustrates how an instrumentation can be applied selectively
to a set of objects based on their hierarchy. This example performs a different
instrumentation for three distinct classes of objects: a given instance o, all arrays,
and all other objects. While there is an added cost to this technique, it preserves
the ability of the host VM to optimize the calls to __get__ using its regular
inline caching mechanism.

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 549

Object Model Operation Example Equivalent Message Send
Property read o.p send(o,"__get__","p")
Property write o.p=42 send(o,"__set__","p",42)
Property delete delete o.p send(o,"__del__","p")
Object creation with literal {p:42} send({p:42},"__new__")
Object creation with constructor new C() send(C,"__ctor__")

Table 2. Object model operations and examples of their equivalent message sends

<after 1>
return r;

}));
...
function send(proxy, msg, ..args) {

return proxy.get(msg).call(obj, ..args);
}
var v = send(proxy, "__get__", "foo");

The send function in the previous example encapsulates the message sending
logic as implemented by Photon. The semantics of the send operation correspond
to a regular method call: the function proxy corresponding to a given message is
first looked up, possibly using the prototype chain, and is then invoked with the
provided arguments. While this formulation is not strictly necessary to obtain
the desired semantics, our current implementation relies on it for performance
optimizations, as explained in Section 4.3.

The strategy used to support __get__ can be used to support all other object
operations. A summary of the supported operations and their equivalent message
sends is listed in Table 2.

4.2 Reifying Function Calls

JS functions can be called directly (e.g., f()) or indirectly through their call
method. This mechanism can be seen as a form of built-in reification of the
calling protocol. However, there is no causal connection between the state of the
call method and the behavior of function calls: redefining the call method on
Function.prototype does not affect the behavior of call sites. Therefore, call
is not sufficient to expose all function calls for instrumentation purposes.

This causal relationship is established in our approach by providing a call
operation on all function proxies. Similarly to other object operations, all func-
tion calls in the original program are transformed into a send of the call message
to a function proxy. Table 3 lists the transformation strategy for each type of
function call provided by JS. Note that global function calls are translated di-
rectly into method calls on the global object, thereby exposing their semantics
at the compilation stage. In order to implement both method calls and regular
function calls using the same mechanism, a modification of the send operation
ensures that the reified call operation is used for all calls throughout the system:

550 E. Lavoie, B. Dufour, and M. Feeley

Note that to ensure isolation, this instrumentation strategy is combined with
the object representation presented in Section 3. All operations are therefore
performed on proxies instead of accessing the native object directly:

proxy.set("__get__",
new FunctionProxy(function (p) {

<before 1>
var r = this.get(p);

Call Type Description Equivalent Message Send
Global Calling a function in the global ob-

ject. Ex: foo()
Sending a message to the global ob-
ject. Ex: send(global,"foo")

Local Calling a function in a local variable.
Ex: fn()

Sending the call message to the
function. Ex: send(fn,"call")

Method Calling an object method.
Ex: obj.foo()

Sending a message to the object.
Ex: send(obj,"foo")

apply or
call

Calling the call or apply function
method. Ex: fn.call()

Sending the call or apply mes-
sage. Ex: send(fn,"call")

Table 3. Call types and their equivalent message sends

function send(rcv, msg, ..args) {
var m = rcv.get(msg);
// Use reified "call"
var callFn = m.get("call");
return callFn.call(m, rcv, ..args);

}

With these mechanisms in place, all function calls can be instrumented simply
by redefining the root function’s call method.

4.3 Efficient Implementation

In order to reduce the indirection introduced by the transformation process,
Photon uses a caching mechanism for send operations. Send caches use global
function calls both as an optimized calling mechanism as well as operations that
can be redefined dynamically. They provide the same ability as code patching in
assembly. On the state-of-the-art JS VMs, inlining functions becomes possible
when their number of expected arguments matches the number of arguments
supplied. If the global function is redefined at a later time, the call site will be
deoptimized transparently. This is a highly powerful mechanism because much
of the complexity of run-time specialization is performed by the underlying host.
The caches implemented by Photon piggyback on this approach.

For example, sending the message msg to an object obj inside a foo function
can be written as follows:

function foo(obj) {
send(obj, "msg"); // Equivalent to obj.msg();

}

The send function is a global function. It can be replaced with another global
function that is guaranteed to be unique, so that each call site effectively receives
its own version of the send primitive. In addition to the message to be sent,
this global function is also provided with a unique identifier used to access the
corresponding global function name, for later specialization of the call site:

function initialState(rcv, dc, ..args) {

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 551

<<<code updating variable "scN" (N=dc[0])>>>
return send(rcv, dc[1], ..args);

}

var sc0 = initialState;
var dc0 = [0, "msg"];

function foo(obj) {
sc0(obj, dc0);

}

Note that the initialState function follows the same calling convention as
the send function. Furthermore, dc0 can be used to store additional information
according to the state of the cache, if needed.

After an initial execution, the cache will dynamically be redefined to hold
an optimized version of the operation. For the example, the default caching
mechanism implemented by Photon will specialize the cache as follows:
var sc0 = function (rcv, dc) {

return rcv.get("msg").call(rcv);
};
var dc0 = [0, "msg"];

function foo(obj) {
sc0(obj, dc0);

}

Apart from the indirection of the global function call, this example is optimal
with regard to the chosen object representation. If the underlying host VM
chooses to inline the global function, the cost of the indirection will be effectively
eliminated in practice.

In addition to the inlining of the message sending operation in terms of the
object operations, as shown previously, Photon also uses the cache to avoid the
cost of message sending altogether for reified operations, by inlining an optimized
version of its behaviour. In this case, the reified operation is assumed to be
defined only once on the root object. Photon tests it by looking for a __memoize__
property on the method (explained in the next subsection).

That limitation is necessary because, when an instrumentation redefines the
reified operation simultaneously on more than one object, Photon’s current in-
variant tracking mechanism cannot detect whether the instrumented method of
the current receiver object would resolve to the one inlined. It is assumed, in this
case, that an instrumentation writer would not define a __memoize__ property
on the instrumented operation in order to prevent the application of that second
optimization.

Memoized Methods. Memoization is usually associated with functional pro-
gramming and entails trading space-efficiency for time-efficiency by remembering
past return values of functions with no side-effect. By analogy, we define a mem-
oized method in our approach to be a method that performs the same operation,

552 E. Lavoie, B. Dufour, and M. Feeley

albeit possibly more efficiently by exploiting run-time information (e.g., argu-
ment count). This particular functionality is necessary to efficiently implement
the JS object operations in our system because they are reified as methods.

The basic principle behind memoizing methods is to allow a method to in-
spect its arguments and receiver in order to specialize itself for subsequent calls.
The first call is always performed by calling the original function while all sub-
sequent calls will be made to the memoized function. A function call defines its
memoization behavior by defining a __memoize__ method.

There is an unfortunate interaction between memoization and the reification
of the call protocol. A further refinement specifies that memoization can only
occur if the call method of the function has not been redefined. Otherwise, the
identity of the function passed to the call method would not be the same. To
preserve identity while allowing memoization, the behavior of the cache can be
different depending on the state of the Function.prototype’s call method. If
its value is the default one, the identity of the function is not important and
memoization can be performed. Otherwise, memoization will be ignored. This
definition has the advantage that there is no penalty for temporarily redefining
the calling method after the original method has been restored.

Specializing Instrumentations.Performance-critical instrumentations can use
memoization to provide efficient specialized operations. For example, consider a
simple instrumentation that counts the number of property accesses:

root.object.set("__get__",
new FunctionProxy(

function ($this, prop) {
counter++;
return $this.get(prop);

}));

The redefinition of the __get__ operation prevents the use of the default in-
lining mechanism, and therefore reverts the send cache behavior to the following:

var counter = 0; // Added by the instrumentation

var sc0 = function (rcv, msg, prop) {
return rcv.get("__get__").call(rcv, prop);

};

sc0(o, "__get__", "p");

To limit the incurred performance overhead, this instrumentation could pro-
vide an implementation of __get__ that additionally responds to the __memoize__
message. After the first execution of the property access, the optimized version
of the send cache would become specialized as follows, thereby eliminating much
of the additional overhead from the naive implementation:

var counter = 0; // Added by the instrumentation

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 553

var sc0 = function (rcv, msg, prop) {
counter++;
return rcv.get(prop);

};

sc0(o, "__get__", "p");

Initial
state

Memoized
method call

Regular
method call

Call rede nition or
Any __memoize__ update

Send with
default call and

no __memoize__ method

Send with
default call and

__memoize__ method

Send with
rede ned call

Bailout or
Method update or
Call rede nition or

Any __memoize__ update

Legend

Event
Transition
Condition

Fig. 3. Cache States and Transitions

Cache States and Transitions. In order to guarantee the correct behavior of
an application, caches need to be invalidated when their invariants are violated.
This requires tracking the invariants for each cache used in the system. To sim-
plify tracking the invariants, we always perform lookups for method calls (i.e.,
method calls are always a get followed by a call). This is a reasonable choice
if the object representation can piggyback on the host optimizations.

In addition to its initial state, each cache can be in one of two states, regular
method call, in which the method is first looked up and called, and Memoized
method call, in which a method-specific behavior is executed.

Transitions between states happen on message-sends and object-operation
events. We choose to under-approximate the tracking of invariants and conser-
vatively invalidate more caches than minimally required. As long as the opera-
tions triggering the invalidation of caches are infrequent, the performance impact
should be minimal. We therefore track method values cached in memoized states
by name without consideration for the receiver object. If a method with the same
name is updated on any object, all caches with a given message name will be
invalidated. Also, if the call method on the Function.prototype object or any
method with the __memoize__ name is updated, all caches will be invalidated.
This way, we only need to track caches associated with names. Memory usage is
proportional to the number of active cache sites.

There is no state associated with a redefined call method. In that particular
case, all caches will stay in the initial state and a full message send will be

554 E. Lavoie, B. Dufour, and M. Feeley

performed. Figure 3 summarizes those elements in a state diagram. A more
detailed explanation of every event and transition conditions is given in Table 4.

Our current tracking strategy was chosen to evaluate the performance of our
prototype with a minimal implementation effort. However, it is not granular
enough to track instrumentations redefining operations on non-root objects. A
more granular strategy should be used for instrumentations requiring different
operations for different groups of objects.

Cache Events Explanation
Send A message is sent to a receiver object.
Call redefinition The call method on Function.prototype is redefined.
Any memoized redefinition Any __memoize__ method is being redefined.
Bailout A run-time invariant has been violated.
Method redefinition An object with a method with the same name has its

method being updated.

Cache Transition Condition Explanation
Default call Function.prototype call method is the same as the

initial one.
Redefined call Function.prototype call method is different than

the initial one.
No __memoize__ method No method named __memoize__ has been found on the

method to be called.
__memoize__ method A method named __memoize__ has been found on the

method to be called.

Table 4. Cache Events and Transition Conditions

5 Compilation and Execution Example

We now show how the components of Photon work together using an example.
It illustrates many of the reified operations discussed previously: property reads
and writes as well as function and method calls. Consider the following program:

var f = function (n, d) {

for (var i=1; i<=2; i=i+1) {
n = n + d.getTime();

}

return n;
};

f(42, new Date(100));

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 555

Note that the getTime method call will be executed twice during execution.
The source-to-source compiler translates each reified operation to a message

send according to Table 2 and Table 3. Each occurrence of a message send has an
associated send cache (scn) initialized to the initialState function, and a data
cache (dcn), containing the cache identifier (n), the message name and compile
time information about arguments. Each literal object created is wrapped in a
proxy to obey the object representation, a function literal is therefore wrapped
with a FunctionProxy. Non-reified operations, such as the scope chain accesses,
control-flow operations, such as the for statement, numbers and arithmetic op-
erations are preserved as-is in their original form.

The commented original code is weaved with the generated code for clarity:

sc1 = initialState; // SC for: var f = ...
dc1 = [1,"__set__",["ref","string","scSend"]];

sc2 = initialState; // SC for: function (n,d)...
dc2 = [2,"__new__",[]];

sc3 = initialState; // SC for: d.getTime()
dc3 = [3,"getTime",["get"]];

sc4 = initialState; // SC for: f(42, ...)
dc4 = [4,"f",["ref","number","scSend"]];

sc5 = initialState; // SC for: new Date(100)
dc5 = [5,"__ctor__",["scSend","number"]];

sc6 = initialState; // SC for: Date
dc6 = [6,"__get__",["ref","string"]];

sc1(root_global, // var f =
dc1,
"f",
sc2(root.func, // function (n,d) {

dc2,
new FunctionProxy(

function ($this,n,d) {
var i = undefined;
for (i=1; i<=2; i=i+1) {
// n = n + d.getTime();
n = n + sc3(d, dc3);

}
return n;

}))); // };

sc4(root_global, // f(42,
dc4,
42,
sc5(sc6(root_global, // new Date(100));

556 E. Lavoie, B. Dufour, and M. Feeley

dc6,
"Date"),

dc5,
100));

When executed, this code will perform message sends at each of the send
caches. The third send cache (sc3) will benefit from the caching mechanism. The
first time around the loop, the initialState function in the Photon runtime
will be called. Since getTime is a regular method call, Photon’s runtime will
inline the send semantics and specialize it for the number of arguments at sc3’s
call site by storing a specialized function in sc3, equivalent to:

sc3 = function ($this) {
return $this.get("getTime").call0($this);

};

Further calls will be made to this function rather than to initialState.

6 Performance

Currently there is no general purpose instrumentation framework that has been
shown to work on a wide-array of web applications, across browsers, and at
a reasonable performance cost. The task of porting to multiple browsers and
supporting the fast evolution of web standards is beyond the capacity of a small
research team, and we did not attempt it. The rest of this performance evaluation
should be read in that light.

Nonetheless, our work on Photon has produced interesting performance re-
sults. When compared to the slowdowns observed on other systems, they suggest
the approach helps reduce the perceivable latency on instrumented applications.

We identified interpreter-level performance as the target because from pri-
vate communications with other researchers and anecdotal evidence from pub-
lished work [11,10], this is what typically ends up being instrumented in practice,
without any portability across browsers or browser versions. That level of per-
formance is reported to be “barely noticeable on most sites” [11]. Our approach
provides a similar performance while being portable.

Our evaluation shows that Photon is portable across many popular browser
VMs and that it is faster than other published systems.

6.1 Setting

We chose CPU-bound benchmarks, which although not representative of typi-
cal web applications [10], represent the worst-case in terms of instrumentation
overhead. For this reason we have mainly used the V8 benchmark suite version
7 in our performance evaluation. These benchmarks are self-checking to detect
execution errors. We ran the benchmarks five times and took the average.

To investigate portability, we have used four different JS VMs in our experi-
ments: three VMs based on JIT compilers and one VM based on an interpreter.
The following web browsers were used:

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 557

– Safari version 6.0.2 (8536.26.17), which is based on the Nitro JS VM.
– Chrome version 25.0.1364.172, which is based on the V8 JS VM.
– Firefox version 20.0, which is based on the SpiderMonkey JS VM. Firefox

was run with the JIT enabled, and also with the JIT disabled (which causes
the SpiderMonkey interpreter to be used). To disable the JIT we have set the
following Firefox javascript options to false, as suggested by the SpiderMon-
key development team: ion.content, methodjit.chrome, methodjit.content,
typeinference. Note that disabling SpiderMonkey’s type inference actually
accelerates the execution of all programs because the interpreter does not
take advantage of the type information.

Chrome does not have an interpreter and recently, the Safari interpreter was
rewritten in an assembly language dialect for performance, making its modifi-
cation for instrumentation more complicated. We therefore think that the only
remaining interpreter that is both simple and fast enough for instrumentation is
the Firefox interpreter.

To simplify the description of the results, we will conflate the name of the
web browser with that of its JS VM.

A computer with a 2.6 GHz Intel Core i7 processor and 16 GB 1600 MHz
DDR3 RAM and running OS X 10.8.2 is used in all the experiments.

The experiments can be run by visiting the corresponding links from the
project web page6. Individual results are reported as well as average value,
standard-deviation, and ratios between configurations.

6.2 Related systems

To put the performance results we obtained in context, we compared against
alternatives. Either they ran fewer of the V8 benchmarks than Photon, they
had a higher slowdown or both. The related work section compares them with
Photon in more details.

Js.js [13] is a JS port of the Firefox interpreter compiled using the Emscripten
C++ to JS compiler. This is a heavy-weight approach with a significant perfor-
mance overhead and, presumably, would require a similar amount of effort to
instrument as if the Firefox interpreter was instrumented. The EarleyBoyer and
Splay benchmarks ran out of memory, RayTrace crashed the version of Chrome
we were using and RegExp would trigger a malloc error in Js.js. NavierStokes
would take more than 10 minutes to complete and the other benchmarks would
show slowdowns between 5243× and greater than 18515×.

Jalangi [12] is a record-replay and dynamic analysis framework for JavaScript.
We independently tested their system using V8 benchmarks using the precon-
figured virtual machine7 they provide on their website and found their system
6 http://elavoie.github.io/photon-js/
7 On OS X 10.8.5, on an 1.8GHz Intel Core i7 with 4 GB of RAM, with the virtual

image running LUbuntu 13.04 with 2GB of RAM and Jalangi commit 5f6d538d9e....
The virtualization was found to introduce a 15% slowdown compared to running the
V8 benchmarks on the host.

558 E. Lavoie, B. Dufour, and M. Feeley

to introduce slowdowns between 384× and 2520× during recording, except for
RegExp (15×) and Splay (29×). We also verified that on some of the interactive
application they used for testing, the slowdown was noticeable but not to the
point of completely hindering the interaction. The main take away is that al-
though some of the slowdowns on CPU-bound benchmarks may seem impressive,
the additional latency is acceptable in practice.

AspectScript [14] is similar to Photon but uses the aspect formalism as an
interface for designing dynamic analyses. We executed the latest version of As-
pectScript against the V8 benchmarks, and found it to be between 10× and
454× slower than Photon on Safari. Additionally, only four of the benchmarks
ran without errors.

JSProbes [3] and work by Lerner et al. [8] modified the host VM but both
are now incompatible with current browser VMs.

Narcissus could run none of the V8 benchmarks and was two orders of mag-
nitude slower than Photon on a micro-benchmark stressing the function calls.

In the next sections, we investigate the performance behaviour of Photon.

6.3 Comparison with nterpreter nstrumentation

RayTrace RegExp Richards Splay DeltaBlue

EarleyBoyer Crypto NavierStokes Geometric mean

0×
1×
2×
3×
4×
5×
6×

Safari JIT Chrome JIT Firefox JIT

Fig. 4. Relative performance of Photon on various VMs compared to the Firefox in-
terpreter

Figure 4 gives for each benchmark and JIT VM the execution speed ratio
between Photon with no instrumentation and the Firefox interpreter. Therefore,
on average, Photon without instrumentation runs the benchmarks faster on Sa-
fari JIT (by 19%) and Chrome JIT (by 14%) than when they are run directly on
the Firefox interpreter. The execution speed with Photon is consistently faster
over all JIT VMs for Crypto and NavierStokes which run about 7× faster with
Photon on Safari JIT and Chrome JIT. The major increase in performance can
be attributed to a substantial proportion of the time spent in features that are

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 559

I I

not instrumented by Photon, either native libraries or language features other
than object operations and function calls. The worst case for all JIT VMs occurs
for RayTrace, which is 2.5× to 5.5× slower when executed with Photon. This
shows that the performance of Photon running on a JIT VM is roughly in the
same ballpark as an interpreter.

6.4 Inherent Overhead Compared to JIT Compilation

Figure 5 shows the slowdown caused by Photon on each VM relative to executing
the program without Photon on the same VM. These results mostly show that
(1) selective program transformation can benefit from the native performance of
features that are not instrumented, that (2) performance is not portable across
browsers, given the significant variability in performance results observed on the
same benchmarks between browsers, and (3) the interpreter is much less affected
by program transformation than JITs are, which suggests that the peformance
of JITs is highly dependent on the nature of the code.

Newer experiments8 show the maximum memory usage ratios to be between
1.25× and 4.0× with EarleyBoyer(27.7/7.2MB) and Splay(164/92.5MB) being
the relative and absolute worst. The absolute memory usage suggests Photon is
practical on current desktop and laptop machines.

They also show that the host VM inline caching is crucial for Photon’s per-
formance and execution. Disabling inline caches on Chrome9 slows down Photon
by an additional factor between 9× and 156× and prevents EarleyBoyer from
completing because it runs out of memory.

6.5 Effect of Send Caching

For all benchmarks, at the end of execution, all caches that were executed at
least once are in one of the two optimized cases and all reified operations are
in a memoized state. Deactivating the optimization by performing the method
lookups on each operation slows down Photon by a factor between 29× and 320×
in addition to the previously reported slowdowns, and prevents EarleyBoyer from
running because of a stack overflow.

6.6 Performance with Instrumentation

We have evaluated the performance of Photon with an instrumentation that
counts the number of run-time occurrences of the following object represen-
tation operations: property read, write and deletion. We chose this particular
instrumentation because it is simple, it covers frequently used object model op-
erations and it was actually used to gather information about JS (it can be used
to reproduce the object read, write and deletion proportion figure from [10]).
8 On OS X 10.8.5, on an 1.8GHz Intel Core i7 with 4 GB of RAM running Chrome

version (33.0.1750.117), because the old setup was not available anymore.
9 By starting it with the –js-flags="–nouse_ic" option.

560 E. Lavoie, B. Dufour, and M. Feeley

Richards RayTrace DeltaBlue EarleyBoyer Crypto

Splay NavierStokes RegExp Geometric mean

0×

50×

100×

150×

200×

Safari JIT Chrome JIT Firefox JIT Firefox interpreter

Fig. 5. Inherent overhead (factor slowdown) of Photon on various VMs

Two implementations of this instrumentation were used; a simple (~16 lines
of code) and a fast version (~100 lines of code)10. The simple version does not
exploit memoization and corresponds to the straightforward implementation:
incrementing a counter and calling the corresponding object representation op-
eration. The fast version uses the memoization protocol to inline the counter
incrementations inside the optimized version of the object operations.

The execution speed slowdown of Photon with each version of the instru-
mentation for each JS VM is given in Table 5. This means that on Safari JIT
and Chrome JIT, on average, the benchmarks run with the fast version of the
instrumentation on Photon essentially at the same speed as the uninstrumented
original benchmarks directly on the Firefox interpreter, while in many cases the
simple version is sufficient to obtain a reasonable performance.

7 Limitations

Due to our implementation of the prototype chain, accessing the __proto__
property leaks the internal representation. This can be solved at a substantial
performance cost by testing every property access. Alternatively, it can be mit-
igated with no run-time penalty by detecting, at compile-time, accesses to the
10 https://github.com/elavoie/photon-js/tree/ecoop2014/

instrumentations

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 561

Safari Chrome Firefox Firefox
JIT JIT JIT interp.

Benchmark simple fast simple fast simple fast simple fast
Richards 2.31× 1.06× 2.38× 1.26× 2.81× 1.07× 1.88× 1.24×

RayTrace 1.59× 1.07× 1.30× .93× 2.19× 1.02× 1.55× 1.15×

DeltaBlue 2.68× 1.11× 3.16× 1.01× 2.03× 1.02× 1.98× 1.19×

EarleyBoyer 2.18× 1.12× 2.31× 1.14× 2.71× 1.07× 1.78× 1.15×

Crypto 16.80× 1.23× 18.53× 1.00× 6.91× 1.00× 4.33× 1.30×

Splay 1.70× 1.68× 2.45× 1.37× 1.96× 1.05× 1.42× 1.17×

NavierStokes 29.17× 1.07× 39.41× 2.05× 11.86× 1.11× 5.65× 1.36×

RegExp 1.37× 1.01× 1.31× .99× 1.29× 1.02× 1.30× 1.03×

Geom. mean 3.54× 1.15× 3.90× 1.18× 3.03× 1.04× 2.15× 1.19×

Table 5. Execution speed slowdown of Photon with a simple and a fast instrumentation
of property read, write and delete

__proto__ property and calling the object representation getPrototype method
instead. However, the possibility of dynamically generating the __proto__ name,
even if very unlikely in practice, render it unsound.

Meta-methods can conflict with application methods if they have the same
name. This limitation will be solved in the next version of the standard, when
unforgeable names will be available in user space. Until then, we can rely on
unlikely names to minimize possible conflicts with existing code.

Setting the __proto__ property throws an exception. This might be fixed
by invalidating all caches should the prototype of an object change. A more
sophisticated mechanism could be devised if the operation is frequent.

Operations on null or undefined might throw a different exception because
they might be used as base objects for an object representation method. The
exception will say that the object representation is missing instead of the prop-
erty. This problem only happens for incorrect programs because otherwise an
exception would still interrupt it. We don’t think it is worth handling.

Functions passed to the standard library are wrapped to remove the extra
arguments introduced by our compilation strategy. However, the wrappers do not
perform message sends, therefore these calls are invisible to an instrumentation.

Photon objects cannot be manipulated outside of Photon, the execution en-
vironment (e.g. DOM) needs to be virtualized. For the DOM, Andreas Gal’s
implementation in JavaScript seems a good starting point11.

8 Related Work

The layering of a metacircular implementation implementing reflection tech-
niques with an object-oriented approach was beautifully explained in “The Art
of the Metaobject Protocol” [7]. This paper revisited those ideas while consider-
ing the performance behavior of modern JS VMs.
11 https://github.com/andreasgal/dom.js

562 E. Lavoie, B. Dufour, and M. Feeley

Sandboxing frameworks for JS, such as Google Caja [1], BrowserShield [9]
and ADSafe [2] guarantee that guest JS code cannot modify the host JS en-
vironment outside of a permitted policy. We focus here on Google Caja as a
representative candidate. The Caja sandbox provides a different global object
to the guest code and performs a source-to-source translation to ensure that
all operations on host objects are mediated by proxies enforcing a user-defined
security policy. Photon also provide a different global object for the purpose
of simplifying reasoning about instrumentations while providing an acceptable
level of performance. Our sandboxing strategy does not need to be as stringent,
therefore we deem acceptable the possibility of leaking the native objects by
accessing the __proto__ property.

JSBench [11] performs instrumentation of object operations and function
calls for recording execution traces of web applications that can be replayed as
stand-alone benchmarks. JSBench instrumentation is specially tailored to the
task of recording benchmarks while Photon aims to be a general framework.

The idea of using aspect-oriented programming for profiling tasks has been
explored in the past, although some limitations of the model have been identi-
fied (e.g., [4]). AspectScript [14] has similar aims as Photon, namely providing
for JS a general interface for dynamic instrumentation of object operations and
function calls. It uses a source-to-source translation scheme with a single reifier
primitive which is analogous to our message-sending primitive. Compared to our
instrumentation interface, they use the dynamic weaving of aspect formalism in-
stead of our “operations as methods” approach. Because of the use of the aspects
formalism, their approach provides better encapsulation of the instrumentation
strategy at the expense of flexibility and performance.

Js.js [13] is a JS port of the Firefox interpreter compiled using the Emscriptem
C++ to JS compiler. It is intended for sandboxing web applications. The result-
ing JS interpreter then runs in the browser on top of an existing VM. Photon
avoids reimplementing features other than object operations and function calls.
The resulting implementation is both faster and simpler to instrument.

Other approaches target the host VM for efficiency reasons. JSProbes [3]
is a series of patches to the Firefox interpreter that allow instrumentations to
be written in JS and target pre-defined probe points, such as object creation,
function calls and implementation events such as garbage collector start and
stop events. JSProbes provides much of the same properties as Photon at a much
lower execution overhead and with additional information about implementation
events that are inaccessible to Photon. At the time of writing, maintenance of
JSProbes has stopped, making the approach unavailable in practice. In a different
setting, Lerner et al. explored the requirement for implementing aspect support
in an experimental JIT-compiler [8]. They reported a simpler and more efficient
implementation than other aspect-oriented approaches. Their work was intended
to inform possible ways to open native implementations to instrumentation with
an aspect formalism. So far, no production VM implements aspects, which makes
this approach unavailable in practice. Photon does not require modifications to

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 563

the host VM. It therefore does not add to the maintenance cost of production
VMs to be usable in practice.

Jalangi [12] is a record-replay and dynamic analysis framework for JavaScript.
It performs an ahead-of-time (static) source-to-source translation of the program
to replace instrumented operations with function calls. The instrumented pro-
gram is executed to record a trace of execution, which is then used to perform
dynamic analyses. Being static, their translation strategy cannot handle the dy-
namic aliasing of eval or Object.create. Photon however, by virtualizing the
execution environment, provides wrapper around these methods, which supports
dynamic aliasing.

Narcissus JS in JS interpreter implementation by Mozilla that reifies all the
language operations of the language. However, compared to Photon, Narcissus
is much slower and none of the V8 benchmarks could be executed.

9 Conclusion and Future Work

Run-time monitoring of JS applications is crucial to obtain empirical data about
current web applications, to improve their efficiency and improve VM technolo-
gies. Unfortunately, there is no general purpose instrumentation framework that
has been shown to work on a wide-array of web applications, across browsers,
and at a reasonable performance cost. Existing approaches have either modified
browser VMs at the expense of portability, or relied on source-to-source trans-
formations that are complex to develop and still incur a significant overhead.

In this paper, we explored the performance aspects of virtual machine lay-
ering, in which a portable implementation of a JS implementation exposes
implementation-level operations that can be redefined at run time to monitor the
application execution. We have shown that by a selective dynamic translation of
source elements, combined with run-time feedback to optimize the reified opera-
tions, we could obtain significantly better performance than existing approaches
when exposing object operations and function calls to the point where the ap-
proach can be competitive with the instrumentation of a browser interpreter
while being portable across VM implementations.

The major challenge remaining, which prevents the application of the ap-
proach in practice, is the full and efficient virtualization of the execution en-
vironment, whether it is the browser libraries such as the Document Object
Model (DOM) or the extensions of the NodeJS framework. One requirement is
the possibility of full intercession of all the code loaded. Work is under way to
extend Debugger API in Firefox based on the work done at Mozilla by one of
the authors to support it. The other requirement is the proper wrapping of all
the environment libraries, which is a significant engineering effort but could be
reusable for different implementation strategies of virtual machine layering and
instrumentation APIs. This could be tackled as a community effort.

564 E. Lavoie, B. Dufour, and M. Feeley

 Portable and Efficient Run-Time Monitoring of JavaScript Applications 565

Acknowledgement. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Fonds Québécois de la
Recherche surla Nature et les Technologies (FQRNT) and Mozilla Corporation.

References

1. Google Caja (December 2012), http://code.google.com/p/google-caja/
2. ADSafe (March 2013), http://www.adsafe.org/
3. JSProbes (March 2013), http://brrian.tumblr.com/search/jsprobes
4. Binder, W., Ansaloni, D., Villazón, A., Moret, P.: Flexible and efficient profiling with

aspect-oriented programming. Concurrency and Computation: Practice and Experience
23(15), 1749–1773 (2011)

5. Bracha, G., Ungar, D.: Mirrors: design principles for meta-level facilities of object-
oriented programming languages. In: Proceedings of the 2004 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, pp.
331–344. ACM, New York (2004)

6. Heidegger, P., Bieniusa, A., Thiemann, P.: Access permission contracts for scripting
languages. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, pp. 111–122. ACM, New York (2012)

7. Kiczales, G., Rivieres, J.D.: The Art of the Metaobject Protocol. MIT Press, Cambridge
(1991)

8. Lerner, B.S., Venter, H., Grossman, D.: Supporting dynamic, third-party code
customizations in JavaScript using aspects. In: Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2010, pp. 361–376. ACM, New York (2010)

9. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShield:
Vulnerability-driven filtering of dynamic HTML. ACM Trans. Web 1(3) (September
2007)

10. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior of
JavaScript programs. In: Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 1–12. ACM (2010)

11. Richards, G., Gal, A., Eich, B., Vitek, J.: Automated construction of JavaScript
benchmarks. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA 2011, pp. 677–
694. ACM, New York (2011)

12. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: A selective record-replay and
dynamic analysis framework for javascript. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pp. 488–498. ACM, New York
(2013),
http://doi.acm.org/http://dx.doi.org/10.1145/2491411.2491447

13. Terrace, J., Beard, S.R., Katta, N.P.K.: JavaScript in JavaScript (js.js): sandboxing third-
party scripts. In: Proceedings of the 3rd USENIX Conference on Web Application
Development, WebApps 2012, p. 9. USENIX Association, Berkeley (2012)

14. Toledo, R., Leger, P., Tanter, E.: AspectScript: expressive aspects for the web. In:
Proceedings of the 9th International Conference on Aspect-Oriented Software
Development, AOSD 2010, pp. 13–24. ACM, New York (2010)

A Artifact Description

Authors of the artifact. Erick Lavoie

Summary. The artifact comprises both Photon, the layered virtual machine
used for dynamic program analysis described in the previous paper, and the
performance experiments used to obtain the performance figures. The current
implementation of Photon initially performs a source-to-source translation of
JavaScript code, while running over NodeJS. The resulting code then runs in
the browser in a virtualized environment that abstracts the standard libraries
and also includes Photon, for correct translation of dynamically generated code.
The experiments come packaged as ready-to-run web pages for easy comparison
of performance results with newer configurations of browser and machines.

Content. The artifact package includes:

– a set of experiments packaged as ready-to-run web pages;
– the Photon system;
– detailed instructions for using the artifact and running the experiments,

provided as an index.html file.

To simplify repeatability of our experiments, we provide a VirtualBox disk image
containing a Ubuntu Linux image fully configured for testing Photon.

Getting the artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of Photon code is available on GitHub at
https://github.com/elavoie/photon-js and a copy of the index.html page, in-
cluding all the performance experiments, is available at the corresponding GitHub
page http://elavoie.github.io/photon-js/.

Tested platforms. The artifact is known to work on any platform running
Oracle VirtualBox version 4 (https://www.virtualbox.org/) with at least 5 GB
or free space on disk and at least 1 GB of free space in RAM.

License. MIT Licence

MD5 sum of the artifact. 7d38dddb53c801fff254123f45074144

Size of the artifact. 1.03 GB

566 E. Lavoie, B. Dufour, and M. Feeley

An Executable Formal Semantics of PHP

Daniele Filaretti and Sergio Maffeis

Department of Computing, Imperial College London, London, United Kingdom (UK)
{d.filaretti11,sergio.maffeis}@imperial.ac.uk

Abstract.

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

PHP is among the most used languages for server-side script-
ing. Although substantial effort has been spent on the problem of auto-
matically analysing PHP code, vulnerabilities remain pervasive in web
applications, and analysis tools do not provide any formal guarantees of
soundness or coverage. This is partly due to the lack of a precise specifi-
cation of the language, which is highly dynamic and often exhibits subtle
behaviour.

We present the first formal semantics for a substantial core of PHP,
based on the official documentation and experiments with the Zend ref-
erence implementation. Our semantics is executable, and is validated by
testing it against the Zend test suite. We define the semantics of PHP
in a term-rewriting framework which supports LTL model checking and
symbolic execution. As a demonstration, we extend LTL with predicates
for the verification of PHP programs, and analyse two common PHP
functions.

1 Introduction

PHP is one of the most popular languages for server-side scripting, used by ama-
teur web developers as well as billion-dollar companies such as Google, Facebook
and Yahoo!. It is used for developing complex programs, enabling all sort of sen-
sitive activities such as online banking, social networking, and cloud computing.
Despite the flexibility and ease of use of PHP, its dynamic features (shared by
similar scripting languages) make it easy to introduce errors in programs, poten-
tially opening security holes leading to the leakage of sensitive data and other
forms of compromise.

Many web applications have reached a level of complexity for which testing,
code reviews and human inspection are no longer sufficient quality-assurance
guarantees. Tools that employ static analysis techniques [9,34,20] are needed in
order explore all possible execution paths through an application, and guarantee
the absence of undesirable behaviours. However, due to classic computability
results, this goal can be accomplished only by applying a certain degree of ab-
straction, with consequent loss of precision (i.e. introducing false positives). To
make sure that an analysis captures the properties of interest, and to navigate
the trade-offs between efficiency and precision, it is necessary to base the design
and, we add, the development, of static analysis tools on a firm understanding
of the language to be analysed.

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 567–592, 2014.
© Springer-Verlag Berlin Heidelberg 2014

568 D. Filaretti and S. Maffeis

The main contribution of this paper is to present KPHP, the first formal (and
executable) semantics of PHP, which can serve as a basis to define program
analyses and semantics-based verification tools (Section 3).

Some programming languages, such as Standard ML [30], already come with
a formal specification. Others, such as C [19] and JavaScript [18] are specified
in English prose with varying degrees of rigour and precision, and have recently
been formalised [32,25,3,15,11,4]. PHP is only implicitly defined by its de facto
reference implementation (the Zend Engine [14]), and the (informal) PHP refer-
ence manual [13]. Due to the lack of a document providing a precise specification
of PHP, defining its formal semantics is particularly challenging. We have to rely
on the approximate information available online, and a substantial amount of
testing against the reference language implementation. We do not to base our
semantics on the source code of the Zend Engine in order to avoid bias towards
inessential implementation choices. In defining our semantics, we identify several
cases where the behaviour of PHP is complicated and unexpected. Some of these
examples are known to PHP programmers, and have contributed to driving our
design. Other examples are new, and were discovered by us as a consequence of
semantic modelling (Section 2). Although useful to get introduced to each lan-
guage construct, the online PHP language reference [13] is not precise enough
to serve as a basis for a formal semantics. Quite the opposite, we hope that
our formal semantics may serve as a basis to create a precise, English prose
specification of PHP in the style of the ECMA specification of JavaScript [18].

We write our semantics in K [39,37], a framework for defining programming
languages on top of the Maude [8] term-rewriting tool. A language semantics as
expressed in K has a rigorous meaning as a term rewriting system, and is suitable
for formal reasoning and automated proofs. Moreover, it is directly executable,
enabling a tight design-test loop which is crucial for the test-driven semantics
development needed in the case of PHP. Extensive testing using official test suites
is becoming “best practice” to validate executable semantics of programming
languages [15,11,4]. We validate KPHP by automated testing against the Zend
PHP test suite [40] (Section 4), and we design additional PHP tests in order to
cover all of the semantic rules, including those not exercised by [40].

The main goal of our semantics is to provide a formal model of PHP upon
which semantics-based verification tools (such as abstract interpreters, type sys-
tems and taint-checkers) can be built. Developing such tools goes beyond the
scope of this paper. However, we are able to begin demonstrating the practical
relevance of KPHP by using it for program verification. In particular, the K
framework exposes Maude’s explicit-state Linear Temporal Logic (LTL) model
checking to the semantics [11], and supports symbolic execution for any language
definition [1]. We define an extension of LTL with predicates to express interest-
ing temporal properties of PHP programs, and verify two representative PHP
functions from phpMyAdmin [33] and the PHP documentation [10] (Section 5).

An extended version of this paper, together with the latest version of the
semantics, and all the KPHP development (including KPHP interpreter, tests
and verification examples) is available on http://phpsemantics.org.

http://phpsemantics.org

An Executable Formal Semantics of PHP 569

2 A PHP Primer

In this Section, we give a brief introduction to the PHP language and its usage,
and present examples of some challenging and surprising features of the language.
1 Some of these examples are known to PHP programmers, and have contributed
to driving the design of our semantics. Others are new, and were discovered by
us, as a consequence of semantic modelling.
Hello World Wide Web. PHP scripts are typically run by web servers. Typ-
ing a URL such as http://example.com/hello.php?name=xyz in a browser may
cause the responding server to invoke PHP on the file hello.php listed below:

<? echo "<HTML ><Body >Hello �".$_GET ["name"]."!</ Body ></ HTML >"; ?>

This minimal example illustrates the typical behaviour of a PHP script. It re-
ceives inputs from the web and it responds by generating an HTML page de-
pending on such inputs. The predefined $_GET array is in fact populated from
the parameters of the HTTP request, and echo is a simple output command
that in shell mode prints to standard output but that in server mode generates
the body of the HTTP response message. In this paper, we focus on PHP as
a programming language, and leave the important topic of formalisation of the
server execution model to future work.

2.1 PHP: A Closer Look

We now describe some features of the core PHP language which may be unfa-
miliar to programmers used to different languages, challenging to represent in
an operational semantics, or both.
Aliasing and References. PHP supports variable aliasing via the assignment
by reference construct. This mechanism provides a means of accessing the same
variable content by different names.

$x = 0;
$y = &$x; // $x and $y are now aliased
$y = "Hello !";
echo $x; // prints "Hello !"

Aliasing can be useful for example to write functions that operate on parame-
ters containing large data structures, avoiding the overhead of copying the data
structure inside the local scope of the function. On the other hand, aliasing is no-
toriously difficult to analyse statically. PHP references are different from pointers
(as in C) in that neither address-arithmetic nor access to arbitrary memory is
allowed. For example, the following code would be rejected:

$x = (&$x + 1); // causes a parse error

1 All the examples are reproducible by pasting the code in the PHP Zend Interpreter
(version 5.3.26 or similar) available in most OSX or Linux distributions. The symbol
> precedes the shell output. For readability, here we re-format the output of var_dump.

570 D. Filaretti and S. Maffeis

Braced and Variable Variables. The official PHP documentation gives the
following description for variable variables: “A variable variable takes the value
of a variable and treats that as the name of a variable”. Here is an example:

$x = "y";
$y = "Hello !";
echo $$x; // prints "Hello !"

Hence, in a PHP semantics, variable names should be modelled as a set of string-
indexed constructors, rather than as a set of unforgeable identifiers.

Variable variables are useful for example to simulate higher-order behaviour
by passing functions by name. On the other hand, they hinder static analyses,
because it is not possible in general to determine statically the set of variables
used by a PHP script. A similar argument applies to braced variables, a syntax
to turn the result of an arbitrary expression into an identifier, as for example in

${"x"} = "y"; // defines variable $x
$z -> {"x".$x}; // access field xy of object $z

Type Juggling. Each PHP value has a type (boolean,integer,...). Automatic
type conversions are performed when operators are passed operands of the in-
correct type. For example, non-empty strings are translated to the boolean true,
and booleans true and false are converted respectively to the integers 1 and 0.

if ("false ") echo true + false ; else echo "false "; // prints "1"

Some type conversions need to be defined explicitly. For example, an object can
be converted to a string by defining the magic method __toString. If such method
is undefined, the attempted conversion triggers an exception.

Type juggling makes it easier to write code that does not get stuck, but
also increases the probability that such code will not behave as expected. For
example, although the conversion of objects to numbers is undefined according
to the online documentation, the Zend engine converts objects to the integer 1

(our semantics mimics this behaviour, and issues an additional warning).
Arrays. Arrays in PHP are essentially ordered maps from integer or string keys
to language values. If a value of a different type is given as a key, type juggling
will try to convert it to an integer.

$x = array ("foo" => "bar" ,4.5 => "baz");

The array $x above maps "foo" to "bar" and 4 to "baz". Note how the float value
4.5 was automatically converted to the integer value 4.2 Array elements can be
accessed via standard square-bracket notation, and it is also possible to assign
an element to an array without specifying a key.

$x[] = "default" // use default key 5
$echo x[5] // prints "default"

2 Although we model array key conversions in our semantics, we do not give
full details about them here. The interested reader can try evaluating this:
$x = array(1=>"foo", "2"=>"wow", 3.5=>"doh", "4.5"=>"omg", NULL=>"lol");.

An Executable Formal Semantics of PHP 571

In this case, a default key (the greatest integer key already defined, plus one)
is used. Arrays contain an internal pointer to the current element (the first by
default), which can be manipulated using functions current next, each and reset:

echo current($x); // prints "bar"
next($x); // advances the pointer
echo current($x); // prints "baz"

Objects. From a semantic standpoint, PHP objects can be seen as string-
indexed arrays with additional visibility attributes (public, protected or static),
and with methods inherited by their defining class. Just like arrays, (stdClass)
objects can be initialised “on the fly”:

$obj -> x = 0;
var_dump($obj);
> object (stdClass)#1 (1) { ["x"]=> int(0) }

Access to an array element is always granted, whereas access to an object prop-
erty is regulated by the visibility attribute, and depends on the context whence
the property is being accessed. Inheritance is class-based. Consider the following
example from the Zend test suite [40]:

class par {
private $id = "foo";
function displayMe () {

echo $this -> id; }}

class chld extends par {
public $id = "bar";
public function displayHim () {

parent :: displayMe (); }}

$obj = new chld ();
$obj -> displayHim (); // prints "foo"

Crucially, this code returns "foo" because $id is declared private in the superclass
par. If instead par defined $id as public, the code would return "bar". In Sec-
tion 3.2, we shall see how we capture this subtlety in our semantics by indexing
the arrays of object fields by key-visibility pairs. A notable difference between
objects and arrays is that objects are copied by reference whereas arrays are
copied by value. Most existing analysis tools for PHP do not support objects,
because their semantics is not easy to analyze.

2.2 PHP: Digging Deeper

We now look more in depth, to uncover difficult “corners” of PHP. While the first
example below on array copy is a well-known PHP issue [41], the others are our
original observations, discovered while developing the relevant semantics rules.
Although some PHP experts may be aware of these cases, they are not part of
the mainstream knowledge about PHP, and are hence worth discussing.
Array Copy Semantics. In PHP arrays are copied by value. For example, the
code below copies each element of the array stored in $x into a fresh array to be
stored in $y, and then updates the first element of $x, without affecting $y:

572 D. Filaretti and S. Maffeis

$x = array (1, 2, 3);
$y = $x;
$x [0] = "updated";
echo $y [0]; // prints 1

Yet, in PHP it is possible to alias a variable to a particular array element. If
such sharing happens before the array copy, its semantics become quit subtle.
Consider the following code:

$x = array (1, 2, 3);
$temp = &$x [1]; // we introduce sharing
$y = $x; // and assign normally
$x [0] = "regular"; // update a regular element
$x [1] = "shared "; // update the shared element

var_dump($x);
> array (3) {

[0]=> string (7) "regular"
[1]=> &string (6) "shared "
[2]=> int(3) }

var_dump($y);
> array (3) {

[0]=> int(1)
[1]=> &string (6) "shared "
[2]=> int(3) }

These results show that array $x is copied element by element in $y, so that
the assignment to $x[0] affects only $x, except for the aliased element $x[1],
which is now shared with $y, which therefore also sees the side effects of the
second assignment. Accordingly, our semantics copies the shared elements of
the array by reference, and the non-shared elements by value. If a non-shared
element is an array itself, the process continues recursively. Matters get even
more complicated when taking into account the copy-on-write semantics of PHP
arrays, as shown by Tozawa et al. [41], who first identified this problem and
pointed out inconsistencies in the Zend implementation.
Global Variables as Array Properties. In PHP, global variables are visible
at the top level, and can be imported in functions explicitly using the global $x;

command. Superglobals are special variables directly accessible inside any scope
that does not shadow them. Shadowing occurs for example when a function
defines a parameter or a local variable with the same name as the superglobal.
The superglobal variable $GLOBALS points to an array whose properties are the
global variables, so that effectively these can be manipulated with the dual syntax
of variables or object properties. For example,

$GLOBALS["x"] = 42;
echo $x; // prints 42

Because of this ambivalence of global variables, in the semantics it is natu-
ral to model scopes as heap-allocated arrays, rather than as frames of a stack
independent from the heap. This is analogous to what happens in JavaScript se-
mantics [25,4], where global variables are the properties of the global object, and
scopes are heap-allocated objects. Maffeis et al. [27,26] show that confusing vari-
ables (which can usually be identified statically) with object properties (which
can be computed at run-time) complicates security analyses for JavaScript. The

An Executable Formal Semantics of PHP 573

case for PHP is even more desperate, as “thanks” to variable variables even
variables on their own cannot be determined statically.
Evaluation Order. In C, the evaluation order of expressions is undefined. In
most languages, it follows a left-to-right order. Let us see what happens in PHP.

$a = array ("one");
$c = $a[0].($a [0] = "two");
echo $c; // prints "onetwo "

$a = array ("one");
$c = ($a [0] = "two").$a [0];
echo $c; // prints "twotwo "

This example suggests that the operands of the string concatenation operator
“.” are indeed evaluated left-to-right. That it should be so easy! Let us see what
happens if the operands are simple variables instead of array elements:

$a = "one";
$c = $a.($a = "two");
echo $c; // prints "twotwo "

$a = "one";
$c = ($a = "two").$a;
echo $c; // prints "twotwo "

Both print "twotwo", contradicting our hypothesis: the example on the left sug-
gests that expressions are evaluated right-to-left. Through the lenses of our for-
mal semantics, we can explain this behaviour: the arguments to binary operators
are indeed evaluated left-to-right, but while evaluating array elements (or object
properties) yields the corresponding value, evaluating simple variables yields a
pointer that is dereferenced only when the value is effectively needed. In this
case, the value of $a to the left of the string concatenation is read only after the
assignment to the right has taken place.
Object and Array Iteration. Scripting languages such as JavaScript and
PHP provide constructs to iterate over all the properties of an object. Such
constructs can be tricky to implement, and hard to model in a formal semantics.
For example, the JavaScript formalisation of [4] does not model the for-in loop,
as the corresponding ECMA5 standard is inconsistent when it comes to describe
object updates within the loop. We discovered that the corresponding foreach

statement in PHP is also very challenging, due to the presence of aliasing and
the behaviour of the explicit current pointer.

Consider this example, where we iterate twice through the fields of array $a:

$a = array (’a’, ’b’, ’c’);
foreach ($a as &$v) {}; // aliasing on $v
foreach ($a as $v) {};

Since there is no code inside the bodies of the two loops, we could expect the
array to remain unchanged. However, a call to var_dump($a) shows that that is
not the case:

array (3) { [0]=> string (1) "a"
[1]=> string (1) "b"
[2]=> string (1) "b" }

This is what happens: variable $v, introduced by the first foreach, has global
visibility; at the end of the first foreach, $v and $a[2] are aliased; at every

574 D. Filaretti and S. Maffeis

iteration of the second foreach, a simple assignment $v = $a[...] is made, storing
the current array element in $v, and hence in $a[2].

There is even worse. Consider the code below: it initialises two objects, creates
an aliasing to $obj1 and iterates on its fields. When the current element is 1 (at
the first loop iteration), it replaces the object being iterated upon.

$obj1 -> a = 1; $obj1 -> b = 2;
$obj2 -> a = 3; $obj2 -> b = 4;
$ref = &$obj1 ; // aliasing on $obj1
foreach ($obj1 as $v){ echo "$v ,"; if ($v === 1) $obj1 =$obj2 ; };
if ($obj1 === $obj2) echo "true ";

This code outputs 1,3,4,true: the iterator is swapped, and iteration continues
on the second object. But if we remove the aliasing on $obj1 by commenting out
the 3rd line, then the output surprisingly becomes 1,2,true, where the update
to $obj1 is visible only at the end of the loop.

In absence of aliasing, the foreach on arrays is analogous. In presence of alias-
ing instead foreach behaves differently. Consider the code below:

$a1 = array (1,2); $a2 = array (3,4);
$ref = &$a1; // aliasing on $a1
foreach ($a1 as $v){ echo "$v ,"; if ($v === $a1 [0]) $a1=$a2; };

This code enters an infinite loop outputting 1,3,3,3,3.... Since PHP arrays
are copied by value (as opposed to objects which are copied by reference), the
assignment $a1 = $a2 copies the whole data structure associated to $a2, including
its current pointer, which is used to perform the iteration, causing the infinite
loop (see Section 3.3 for more details on array assignment).

To be precise, during array copy, the original current pointer is copied to the
new array only if it points to a valid element. If instead the original current is
overflown, the current pointer of the new copy is reset:

$x = array (0,1); // initialise $x
next($x); $y = $x; // increment current & copy array
echo current($y); // prints 1 (current was copied)
next($x); $z = $x; // overflow current & copy array
echo current($z); // (1) prints 0 (current was reset)
echo current($x); // (2) prints "" (current is overflown)

Once again, we find some erratic behaviour of PHP: if we comment out the
output line marked with (1) above, the current of $x is reset instead, and line
(2) prints 0. We consider this to be a bug in the current version of PHP,3 and
our semantics prints "" for line (2) in both cases (see Section 3.3).

3 KPHP

In this Section, we describe our formalisation of the operational semantics of
PHP. Our semantics is vast (more that 800 rules), so we can only provide a
3 This behaviour is related to PHP Bug 16227, which was resolved in PHP 4.4.1 and

was reintroduced since PHP 5.2.4.

An Executable Formal Semantics of PHP 575

roadmap through it, selectively explaining some of the crucial features, and re-
ferring the reader to http://phpsemantics.org for the gory details.

3.1 Preliminaries: The K Framework

We write our semantics in K [39,37], a framework for defining programming
language semantics on top of the Maude [8] term-rewriting tool. We chose K
for three main reasons: (i) a semantics in K has a rigorous meaning as a term
rewriting system, supporting fully formal proofs; (ii) a semantics in K is directly
executable, enabling a tight design/test loop; (iii) once a semantics is defined, the
K-Maude toolchain provides automatic support for model checking and symbolic
execution of programs.

In order to model a language in K, the first thing to be defined is a configu-
ration. Intuitively, configurations specify the structure of the abstract machine
on which programs written in the language will be run, and are represented as
labeled, possibly nested multisets, called cells. Cells contain pieces of the pro-
gram state, such as the program to be evaluated, the heap, and function and
class definitions. A K semantic rule for assigning a value to a variable in a simple
imperative language looks like this:〈X = V

.
...
〉
k
〈... X �→ N ...〉env

〈
... N �→ _

V
...
〉
store

In this simple case, the configuration has three cells, k, env and store. The k cell,
by convention, always represents a list of computations waiting to be performed,
where the left-most element is a local rewriting rule stating that, after execution,
command X=V should be removed from the stack (“.” is the empty list or set).
The rest of the program is denoted by the don’t care notation “ ...” for lists.
The env cell maps variables to locations, and it is used to find the address of X

via pattern matching. Finally, the store cell maps locations to values. The rule
above says that if location N can be found, its content is overwritten by V (“_”
matches any term). K rules can be quite compact and modular, as they only
need to mention the cells relevant to the rule at hand. If the only cell needed by
a rule is k, it can be omitted. For example we can write directly X = V

. instead
of 〈X = V

. ...〉k.
To control the evaluation order of sub-expressions, rules can be annotated

with strictness and context information. For example, one can write
syntax Stmt ::= Id "=" Exp [strict(2)]

meaning that Exp (meta-variable 2 of the production) is meant to be evaluated
before the assignment takes place. Hence, Exp is placed at the front of the execu-
tion list in the k cell, as in 〈Exp � Id = � · · · 〉k, where � denotes the sequential
composition of tasks to be performed, and � is a place holder that will be re-
placed by the result of evaluating Exp. Further details of the K framework will
become apparent as we describe our semantics.

http://phpsemantics.org

576 D. Filaretti and S. Maffeis

3.2 KPHP Overview

Parsing. For parsing, we use the PHP grammar from PHP-front, a package
for generating, analysing and transforming PHP code used by the PHP-sat [7]
project. The grammar is in the SDF [17] format, which can be passed to the
sdf-2-kast tool [6], which generates an abstract syntax tree for K.
Values. PHP supports three categories of data types: scalar, compound and
special. Scalar types are the boolean, integer, float and string types, compound
types are the array and object types, and special types are the NULL and resource

types. The resource type is used for files and other external resources, and is
left for future work. For simplicity, we model scalar types by the corresponding
built-in types of K, although there may be some subtle differences for example
in the approximations made by floating-point computations.
Arrays and Objects. We model arrays as pairs array(C,EL) where EL is a
list of array elements and C is an optional current element. Array elements are
represented as triples [k, v, l] where k is an integer or string key, l is the
memory location where the actual value is stored, and v a visibility attribute
(discussed below). Objects are triples OID(L,CL,ID) where L is the location of an
array containing the fields of the object, CL is the name of the object’s class and
ID is a unique numeric object identifier. Classes are 4-tuples Class(SC,IV,MT,SV)

where SC is the name of the superclass, IV is the list of instance and static
variables, MT is the method table, and SV is a pointer to the scope holding static
variables (those shared across all objects from the given class).

The visibility attribute is always public for proper array elements, whereas
it can be also protected or private for objects fields. As implied by the object
inheritance example of Section 2.1, the correct handling of visibility of object
properties is subtle. In particular, array elements are identified by a combination
of the key and the visibility attribute. In that example, the field array of $obj

will contain two separate entries ["id",public,l1] and ["id",private(par),l2],
necessary to resolve the right element depending on the context. The modelling
of arrays, especially when considering the interaction with other features such as
aliasing, was one of the main challenges of this and related efforts (e.g. [21,43]).

Finally, the NULL value is the value returned when attempting to read any non
previously initialised variable, array or object elements.
Values in Memory. Following the online documentation, in the memory we
wrap values into four-tuples zval(Value, Type, RefCount, Is_ref). Each zval con-
tains the value, its type, a reference counter keeping track of the number of lo-
cations currently pointing to the value, and a boolean flag indicating whether
or not the value is aliased.4 We define a number of internal low-level operations
which manipulates zvals (zvalRead, incRefCount, etc.), and use them as build-
ing blocks for defining higher level functions (read, write, etc.) providing the
illusion of operating directly on simple values, increasing the modularity of the
semantics.
4 The flag is_ref is used for implementing the array copy-on-write optimisation. We

include it just for completeness, since in our semantics, is_ref is true iff refcount>1.

An Executable Formal Semantics of PHP 577

(array)

refcount = 1

"foo"

(int) 5

refcount = 1

(int) 5

refcount = 2

(int) 5

refcount = 1

l1

l2

l3

l4

"bar"

"baz"

12

(array)

refcount = 1

"$x"
lg

"$y"

(int) 5

refcount = 1

l5

Fig. 1. Example heap, where the reserved location lg contains the global scope

Memory. The heap, which is contained in the heap cell, is a map H : loc→ zval,
where loc is a countable set of locations l1, . . . , ln. Fig. 1 shows the heap after
executing the program

$x = array ("foo" => 5, "bar" => 5);
$y = 5;
next($x);
$x["baz"] = &$x["bar"];
$x [12] = 5;

where the elements pointed to by the array current pointers are shaded (in
yellow), and shared zvals are shaded (in red), and lg is the location containing
the global scope, which is a special array where both $x and $y are defined. We
have shown in Section 2.2 how the global scope can be accessed directly via the
variable $GLOBALS. In fact, just like in JavaScript, it is convenient to represent all
PHP scopes as heap-allocated arrays.
References. Several programming languages internally use references, and so
does PHP, but with its own original twist. Consider running a simple program
unset($y) on the state shown in Fig. 1. If the argument $y were to be evaluated to
a value, we would reach unset(5) which is nonsensical. Even evaluating $y to the
location l5 would not be the right choice, since in that case we could successfully
free the location, but not remove the link from $y to l5 (which is stored in the
array at lg). This is just an example of a general class of cases, which imply
that variables need to be evaluated to references of the form ref(L, K) where L is
the address of the array or object containing the variable, and K is the variable
name. When the actual value stored in the variable is needed, further steps of
reduction can be taken to resolve the reference. This is not a trivial process, as
the lookup depends on whether the reference appears on the left or right hand
side of an assignment. Consider the code

$x = $y;

where neither $x nor $y have been initialised. The first step is to evaluate the
variables obtaining the references ref(lg,"x") and ref(lg,"y"). On the left-hand

578 D. Filaretti and S. Maffeis

side, since "x" is not an entry of the (array) scope lg, it will be created, adding
a link to a fresh location. For the right-hand side, since "y" is also not present
in lg, NULL will be returned and written to the fresh location.

Unfortunately, since arrays are copied by value, this is not the end of the
story. Consider the following program (adapted from a Zend test):

function mod_x () {
global $x;
$x = array (’a’,’b’);
return 0;

}

$x = array (1, 2);
$x[0] = mod_x ();
var_dump($x);
>array (2) { [0]=> int(0)

[1]=> string (1) "b" }

If $x[0] was evaluated to a reference before calling mod_x (as in JavaScript),
it would become ref(L1,0), where L1 is obtained by resolving the reference
ref(L,"x") in the current scope L. Hence, the assignment would affect the orig-
inal array and the output would still show "a" (instead of 0) at position 0. In
order to model the observed PHP behaviour, we introduce a more general type
of reference (lref) which can be thought as a “path”. In the example above, the
expression $x[0] effectively evaluates to lref(ref(L,"x"),0), a value which rep-
resent a path starting at the current scope L and ending at the desired location.

The lref mechanism is also fundamental to handle assignments to arrays and
objects created on-the-fly. Assume that variable $y is undefined. Consider:

$y[] -> x = 42;

This is indeed valid PHP code, that creates an array and an object on the fly,
adds the object as element 0 to the array, and adds 42 as field x to the object.
Exceptions. The treatment of exceptions is based on an exceptionStack cell
where we push the catch branch and the program continuation. If an exception
is thrown, the catch is executed, otherwise the continuation is executed.
HTML. In general, a PHP script can be an HTML document that contains
several PHP tags <? ... ?> (or <?PHP ... ?>) delimiting regions of PHP code that
are executed as part of the same script. The HTML is treated as part of the
program output, in the order it is encountered. Our semantics implements this
behaviour. Hence, the hello.php example of Section 2 is equivalent to

<HTML ><Body ><? echo "Hello �".$_GET ["name"]."!"; ?></Body ></ HTML >

Configuration. The global configuration of PHP, which represents the global
state of the abstract machine, consists of 42 cells, and is shown in Figure 2 (we
hide some of the nested cells to improve readability). The script cell contains
details of the script being executed, and in particular a cell k with the actual
program in the meta-variable $PGM . The tables cell contains function, class
and constant definitions. The scopes cell contains pointers to the various (global,
super-global, current) scopes in the heap. The control cell contains the function
stack, and information about the current object and class. The IO cell contains
the input and output buffers, which K automatically connects to stdin and
stdout. The instrumentation cell gathers meta-information for analysis purpose,

An Executable Formal Semantics of PHP 579

Fig. 2. Overview of the global configuration for KPHP

such as the trace of semantic rules used during an execution. Finally, the gc cell
is used for bookkeeping by our implementation of garbage collection.
Semantic Rules. Each non-trivial language construct is described by several
rewrite rules, each performing a step towards the full evaluation of the construct.
Conceptually, the evaluation process happens in three steps. First, structural and
context rules are applied. Their role is to rearrange the current program so that
other rules can be applied. These include for example heating and cooling rules,
which move the arguments of an expression to the top of the computation stack
(cell k) and plug the results back once evaluated, and desugaring rules. Next,
intermediate rules apply. Their role is mostly to pre-process arguments. For ex-
ample, they convert types, resolve references, or read from memory. Finally, step
rules apply. They give semantics to the actual language constructs, and cause
the term being evaluated to be consumed, returning a value where necessary, so
that the computation may progress.

Besides rewrite rules, K definitions also include functions, which do not have
side effects on the configuration. In our semantics, we mostly use these functions
to define logical predicates for the side-conditions of other rewrite rules.

3.3 KPHP: Selected Semantic Rules

Overall, the semantics comprises over 1,200 definitions: more than 700 are proper
transition rules, the others are auxiliary definitions. As representative examples,
we describe below the rules for assignment and functions.
Assignment. The rules for assignment are reported in Figure 3. Assignment is
a binary expression whose arguments are evaluated left-to-right. We model this
by two CONTEXT rules that enforce that evaluation order: rule (A) does not pre-
scribe a type for the wildcard _ variable, that can match any term, including an
unevaluated expression, whereas rule (B) can apply only after the first argument
is evaluated to a KResult. In an assignment, the LHS will evaluate to a reference.
Rule (C) resolves the reference to a location. If the RHS is a value, rule (D)
puts the internal operation copyValueToLoc at the front of the k cell, and puts
the value V to be returned as a continuation. copyValueToLoc takes care of writing

580 D. Filaretti and S. Maffeis

(A) CONTEXT ’Assign(�,_)

(B) CONTEXT ’Assign(_:KResult,�)

(C) ’Assign
(

R:Ref
convertToLoc(R) ,_

)
[intermediate]

(D) ’Assign(L:Loc, V:Value)
copyValueToLoc(V, L)�V [step]

(E) ’Assign
(
_ : KResult, V:ConvertibleToLocconvertToLoc(V,r)

)
when ¬ isLiteral(V) [intermediate]

(F) ’Assign(L:Loc,L1:Loc)
reset(L) � ’Assign(L, L1)

when currentOverflow(L1) [intermediate]

(G) ’Assign(L,L1)
’Assign(L, convertToLanguageValue(L1))

when ¬ currentOverflow(L1) [intermediate]

Fig. 3. Semantic rules for assignment

V in L, operating recursively if V is an array. If the RHS is not a value, then
rule (E) forces it to be converted to a location. If the location L1 thus obtained
contains an array whose current pointer is overflown, the current pointer of the
assignment target L is reset by rule (F). In the remaining cases, rule (G) converts
the location L1 to a value, enabling rule (D).
Functions. When a function definition is executed, we create a new entry in the
functions cell mapping the function name to a 4-tuple f(FP,FB,RT,LS) containing
the function parameter list FP, its body FB, its return type RT (by value/by
reference) and a pointer LS to a scope holding the static variables (which persist
across function invocations).

A function call is parsed in the AST as ’FunctionCall(E,Args). Expression E is
evaluated to a string FN (the function name), used to retrieve from the functions

cell the various parameters described above. Execution continues by placing at
the front of the k cell the internal runFunction term shown in the rule below,
which replaces the contents of the cell k with a new list of internal commands
(the current program continuation K will be saved on the stack).〈

runFunction(FN:String, f(FP:K, FB:K, RT:RetType, LS:Loc), Args:K)�K⎛
⎜⎜⎜⎜⎜⎜⎜⎝

processFunArgs(FP, Args) �

pushStackFrame(FN, K, L, CurrentClass, CurrentObj, RT, D) �

ArrayCreateEmpty(L1) � setCrntScope(L1) � incRefCount(L1) �

copyFunArgs � FB � ’Return(NULL)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

〉
k

〈L:Loc〉currentScope 〈CurrentClass:Id〉class 〈CurrentObj:Loc〉object
〈D:K. 〉functionArgumentDeclaration
when fresh(L1) [internal]

An Executable Formal Semantics of PHP 581

The first command evaluates the function arguments Args in the current scope.
This depends on the declaration of the formal parameters FP: if a parameter is
declared by reference, the evaluation must stop at a location, and not fetch the
value from memory. The next command pushes the current state on the stack,
including the current scope L and continuation K. The next three commands
create the function local scope L1 (the side condition fresh(L1:Loc) means that
location L1 is newly allocated), set it as the current execution scope, and incre-
ment its reference counter. The next command assigns the evaluated arguments
to the formal parameters allocated on L1. Finally, the function code FB is run,
followed by a default return instruction.

3.4 The KPHP Interpreter

Our semantics is defined in 29 “.k” files, and consists of approximately 8500 lines
of code. Compiling the semantics with the kompile utility of the K distribution
creates a directory of files for the Maude tool. We provide a Unix shell script
called kphp that, given the name of a PHP file, invokes the krun utility with
appropriate parameters (for the external parser, options, etc.). This runs our
semantics as if it was the standard PHP interpreter.

4 Testing and Validation

In this Section we discuss the testing and validation of our (executable) semantics
of PHP. Since KPHP is actively developed, the numbers below refer to the release
current at the time of publication of this paper.
Test-Driven Semantics Development. As discussed in Section 1, there is no
official document providing a specification of PHP. Hence, the development of
our semantics was largely test-driven. The choice of specifying the semantics in K
meant that at each stage of this work we had a working interpreter corresponding
to the fragment of PHP we specified up to that point. This made it possible to
test critical semantics rules as they were being developed. For this ongoing testing
we wrote snippets of PHP, and compared the results from our interpreter with
the ones from the Zend Engine, which is the de facto reference interpreter.
Validation. As common in other PHP projects (e.g. Facebook’s HHVM), we
validated our semantics/interpreter by testing it against the official test suite
distributed with the Zend engine. Although our semantics covers most of the
core PHP language (including its challenging features, such as arrays, objects,
references, aliasing, exceptions, etc.), the test suite includes many tests that refer
to constructs or library functions that we do not yet support. The Zend test suite
is already split into folders containing different categories of tests. We tested the
semantics against all the tests in the folders lang (core language) and functions:
we did not pick tests manually to avoid introducing bias.

The lang folder contains 216 tests and we pass 97 of them, the functions
folder contains 14 and we pass 4. If a test fails, it is for one of four reasons:
(i) our semantics models a feature incorrectly; (ii) a language construct is not

582 D. Filaretti and S. Maffeis

0 50 100 150 200 250 300 350 400
100

102

104

Fig. 4. Coverage of KPHP rules by the Zend test suite (logarithmic scale)

supported by our semantics; (iii) the external parser has a bug, and returns the
wrong AST; (iv) the external parser does not support some features added to
PHP after version 5.0. For each failed test, our test harness shows one of these
four categories. Successful tests are partitioned in 2 sets: 71 are automatically
recognised as success, 26 are considered successful after manual review of the
output (for example, our warning and error messages do not contain source code
line numbers, because they are not recorded by the external parser).

The only test that fails in category (i) is 031.phpt, which tests for the erratic
behaviour of current described in Section 2.2. This fail is intentional, as we
consider such behaviour to be a bug in the Zend Engine. All the other failed tests
belong to categories (ii)-(iv), hence are either not supported by the semantics or
by the parser. The total number of passed tests may not seem very high (JSCert
passes almost 2,000 tests), but this is due to the size of the Zend test suite, and is
outside our control. Moreover, many tests are non trivial, focussing on complex
evaluation strategies, classes, constructors, interaction between global variables,
functions, objects and aliasing. We are satisfied by this validation experiment -
so far, our semantics behaves as the official PHP implementation.
Coverage. In order to assess the level of coverage of our semantics achieved
by the Zend test suite, we added a trace cell to the KPHP configuration, where
we add the name of each rule as it is executed. Out of 721 semantics rules, 403
are executed at least once, and 318 are never executed. In Figure 4 we show the
histogram, ordered by frequency, of the executed rules. There is a big difference
in the number of times different rules are exercised by the test suite. This is
partly explained by our design. The small group of rules which is called more
than 25, 000 times by the test suite corresponds to the low-level, internal rules
which are used as building blocks by other, higher level rules. Internal rules
that perform type conversions, such as *toInt, are also intensively exercised,
as expected. 158 of 403 rules are called at least 100 times, and 264 are called
more than 10 times. Using the Zend tests alone, coverage amounts to 56% of
the semantic rules. In order to achieve full-coverage, we have written targeted
additional tests that cover the rules not exercised by the Zend suite.

An Executable Formal Semantics of PHP 583

5 Applications

One of the main goals of our semantics is to provide a formal model of PHP
on which semantics-based verification tools (such as abstract interpreters, type
systems and taint-checkers) can be built. Developing such tools goes beyond the
scope of this paper. However, we are able to begin demonstrating the practical
relevance of our semantics by showing potential applications based on the K-
Maude tool chain. In particular, the K framework exposes Maude’s explicit-state
LTL model checking to the semantics [11], and supports symbolic execution for
any language definition [1]

In this Section, we show how we used LTL model checking in conjunction with
symbolic execution to obtain a PHP code analyser, and we analyse properties of
two 3rd-party PHP functions of practical relevance.

5.1 Temporal Verification of PHP Programs

Model Checking and Symbolic Execution in K. A K definition is eventually
translated to a Maude rewrite theory, which can be model checked against LTL
formulas using Maude’s built-in model checker. In order to use the model checker
in a meaningful way with respect to PHP, we need to instrument the semantics
in two ways. First, we must decide what semantics rules should be considered
as state transitions by the model checker, tag such rules, and pass the tags to
the --transition compilation option. Second, we need to extend LTL with a
set of atomic propositions that can be used to express interesting properties of
PHP programs.

Symbolic execution has been recently introduced in K [1] and is enabled by
using the option --backend symbolic when compiling the K definition. When
symbolic mode is enabled, programs can be (optionally) given symbolic inputs
of any of the types natively supported by the K tool (int,float,string,bool).

We now describe the KPHP extensions needed for model checking and sym-
bolic execution.
State Transitions. Our semantics comprises many internal and intermediate
rules, and it is not obvious what exactly should represent a change in the program
state and what should instead be considered non-observable. Instead of fixing
this notion once and for all, we allow ourselves maximum flexibility by defining
several sets of semantic rules, and assigning a tag to each set:

– step: rules which correspond to the execution of language constructs.
– internal: rules used for operations which are not part of the user language,

such as incrementing the reference counter.
– intermediate: rules which perform auxiliary work, such as performing a type

conversion on an argument before a step or internal rule can be applied.
– mem: low-level rules which directly write the memory.
– error: orthogonal set of rules which cause a transition to an error state.

Using these tags, we are able to reason about programs at different degrees of
abstraction. In the rest of this section, we consider only the state transitions

584 D. Filaretti and S. Maffeis

generated by selecting the step rules. An alternative would be for example to
consider only the mem rules, if the observations of interest are just the memory
updates.
A Temporal Logic for PHP. We now define an extension of LTL with pred-
icates over KPHP configurations (i.e. PHP program states). Given a PHP pro-
gram, we would like to be able to express conditions such as: “variable $usr never
contains ’admin’”, or “the local variable $y of function foo will at some point be
aliased to the global variable $y". Moreover, we also want to be able to reason
about correspondence assertions [42], by labelling program points and stating
properties such as “after reaching label ’login’ variable $sec always contains 1”.
To this end, we introduce predicates such as eqTo (equals to), gv (global vari-
able), fv (function variable). The LTL formulas corresponding to the informal
specifications above are, respectively:

�¬eqTo(gv(var(’usr’)),val(’admin’))
♦alias(fv(’foo’,var(’y’)),gv(var(’y’)))
label(’login’)⇒ �eqTo(gv(var(sec)),val(1))

Moreover, we also found useful to be able to reason about types. For example,
the following formula says that variable $y always has type integer during the
execution of function foo:

�(inFun(’foo’)⇒has_type(fv(’foo’,var(’y’)),integer))

Each new predicate should be given a precise meaning in the context of the
KPHP configuration. We illustrate how we do that through the example of pred-
icate eqTo(e1,e2). Given a configuration B, we need to define when it satisfies the
predicate:

B |= eqTo(e1,e2) ⇔ eval(B,e1) = eval(B,e2)

meaning, that formula eqTo(e1,e2) is true for B if and only if e1 and e2 evaluate
to the same value. The definition of functions such as eval is crucial, as it con-
nects the semantics to the model checker. These functions should be written in
purely functional style and avoid side effects. In practice they are pretty simple,
as they only need to inspect a configuration using pattern matching. As another
example, consider predicate alias(e1,e2):

B |= alias(e1,e2) ⇔ lvalue(B,e1) = lvalue(B,e2)

Function lvalue returns the location of the heap where its argument is stored, so
the predicate is true when the arguments are aliased or identical. We use similar
techniques to give semantics to all of our predicates, which can be used to form
extended LTL formulas together with standard LTL connectives.
Limitations. The approach described here suffers from the known limitations
of the underlying verification techniques. In particular, explicit state LTL model
checking will struggle to handle programs that generate large state spaces that
depend heavily on the program inputs. The support for symbolic execution

An Executable Formal Semantics of PHP 585

mitigates this problem, but as common to this approach it does not handle
higher order data structures, such as objects, and struggles with loops depend-
ing on symbolic values. Despite these limitations, in the rest of this section we
show that we can indeed verify some non-trivial properties of real PHP code.

5.2 Case Study: Input Validation

In our first example of model checking, we consider the function PMA_isValid

taken from the source code of phpMyAdmin [33], one of the most common open
source web applications, which provides a web interface to administer an SQL
server.

PMA_isValid takes three arguments (&$var, $type, and $compare) and returns
a boolean. Its purpose is to “validate” the argument $var according to different
criteria that depend on the other two arguments. We analyse the full source
code of PMA_isValid, which is shown in Appendix 1 of the extended version of
this paper, available on http://phpsemantics.org.

In the simplest case, PMA_isValid simply checks that $var is of the same type
(or meta type) specified by $type, ignoring the remaining argument $compare:

PMA_isValid (0, "int"); // true
PMA_isValid ("hello ", "scalar "); // true
PMA_isValid ("hello ", "numeric"); // false
PMA_isValid ("123", "numeric"); // true
PMA_isValid ("anything", false); // always true

A more interesting case is when the argument $type is instantiated with one of
"identical", "equal" or "similar". In such case, the validation of $var is performed
against $comparison, according to the criterion specified by $type:

PMA_isValid (0, "identical ", 1); // false
PMA_isValid (0, "equal ", 1); // true
PMA_isValid ("hello ", "similar", 1); // false

If $type is an array, validation succeeds if $var is an element of that array. If $type
is "length", validation succeeds if $var is a scalar with a string length greater
that zero, If $type = false, validation always succeeds.

PMA_isValid (0, array (0,1,2)); // true
PMA_isValid (true , "length "); // true , as (string) true = "1"
PMA_isValid (false , "length "); // false , as (string) false = ""

The developer had an informal specification of this function in mind, which he
wrote in a comment at the beginning of the function. However, it is not obvious
wether such specification is met by the actual implementation. Leveraging model
checking and symbolic execution we are able to prove that the function behaves
as expected, by verifying each sub-case.

We first write some code accepting (possibly) symbolic inputs, and calling the
function:

http://phpsemantics.org

586 D. Filaretti and S. Maffeis

$var = user_input (); // symbolic
$type = user_input (); // symbolic
$compare = user_input (); // symbolic
$result = PMA_isValid ($var , $type , $compare);

then we attempt to verify multiple times the LTL formula

♦eqTo(gv(var(’result’),val(true)))

each time providing different combinations of symbolic and concrete inputs, until
all of the cases discussed above are covered. Indeed, these verifications succeed,
proving the correctness of the function.

As a concrete example, in order to prove that the result of calling PMA_isValid

with $type="numeric" is true when $var is an integer, we provide the symbolic
input #symInt(x) to $var, and the concrete input "numeric" to $type. We proved
analogous results for the case of float variables, and for the other similar cases.
We proved that PMA_is_Valid($var, "similar", $compare) returns true for any
integer $var and string $compare, by providing symbolic values #symInt(x) and
#symString(y) to $var and $compare.

5.3 Case Study: Cryptographic Key Generation

In our second example, we consider the Password-Based Key Derivation Function
pbkdf2 from the PHP distribution [10]. pbkdf2 takes five parameters: the name of
the algorithm to be used for hashing ($algo), a $password, a $salt, an iteration
$count and the desired $key_length. It returns a key derived from $password and
$salt whose length is $key_length. We wish to prove that the function always
returns a string, and that its length is equal to the requested $key_length.

Using the same approach as for the previous example, we write some initial
code accepting (possibly) symbolic inputs, and calling the function:

$algo = "sha224 ";
$pass = user_input (); // symbolic input
$salt = user_input (); // symbolic input
$count = 1;
$key_len = 16;
$result = pbkdf2 ($algo , $pass , $salt , $count , $key_len);

Next, we run the model checker on our query formulae:

1. The result is a string: ♦has_type(gv(var(’result’)),string)
2. The length of the output is as requested:

♦eqTo(gv(var(’key_len’)),len(gv(var(’result’))))

3. The length of the string stored in local variable $output grows, and eventually
becomes greater than the required output length:

�
(
(inFun(’pbkdf2’) ∧ ¬inFun(’top’) ∧ ♦inFun(’top’)) =⇒
(♦(geq(len(fv(’pbkdf2’,var(’output’))), fv(’pbkdf2’, var(’key_len’)))
U inFun(’top’))

)

An Executable Formal Semantics of PHP 587

Property (3) shows that property (2) is non-trivial. Moreover, it illustrates a
technically more intriguing LTL formula. Using the model checker, we are able
to verify that all three properties in less than a minute. Unlike the previous
example, which we were able to run and analyse out-of-the-box, in this case we
had to provide implementations for an number of functions (such as hash), which
belong to libraries outside of the core language. For the sake of verification, we
only provide simple stubs for these functions, making sure to preserve the type
and output length properties of their original versions. The complete source
code of pbkdf2 and related functions can be found in Appendix 2 of the extended
version of this paper, available on http://phpsemantics.org.

6 Limitations and Future Work

A formal, executable semantics of a real programming language is too large a task
to be completed in one single effort. This paper models the core of PHP, which
includes the features we considered more important and instructive, leaving out
some non-core features and the numerous language extensions. In this Section,
we summarise what we left out of the current formalisation, and indicate what
we think are the next priorities to take this work further.
Parsing Limitations. As discussed in Section 4, the external parser we cur-
rently use does not understand some language constructs introduced after version
5.0, such as for example the literal array syntax with square brackets ([1,2,3]
instead of array(1,2,3)). It also does not parse correctly some constructs such as
$this->a[] which gets parsed as $this->(a[]) instead of ($this->a)[]. In future
development, we plan to adopt a fully-compliant external parser.
Missing Language Features. We have not (yet) implemented a number of
non-core language features, and in particular: bit-wise operators, most escape
characters, regular expressions, namespaces, interfaces, abstract classes, itera-
tors, magic methods and closures. We do not foresee significant obstacles in
integrating these into KPHP. For example, magic methods are special object
methods (__toString, __get, __call, etc.) with reflective behaviour that are
called automatically by PHP. JavaScript has similar reflective methods, and
techniques to formalise them are well documented [25,4]. As a taster, we in-
cluded in the core language the __construct magic method, which is used by
the new command when creating a fresh object. Since version 5.3, PHP includes
anonymous functions, implemented as objects of a special Closure class. These
are not supported by our parser, but can be easily modelled in our semantics by
adding to the object OID constructor an optional argument pointing to the entry
of the functions cell where the anonymous function definition would be stored
(using the same mechanism of regular functions).
Internal Functions. As in related projects, a challenge when dealing with a
real language is the sheer number of built-in library functions that operate on
numbers, strings, arrays and objects. At the moment we model just a small, rep-
resentative subset of them (e.g. strlen, substr, count, is_int, is_float, var_dump,
etc.). Where possible, we define such functions in PHP directly; we define them

http://phpsemantics.org

588 D. Filaretti and S. Maffeis

in K in the remaining cases (this corresponds to PHP native functions imple-
mented in C).
Language Extensions. Language extensions, such as the functions that pro-
vide access to an SQL database, or that connect a PHP script with a server
(and hence with the network) are of fundamental importance for developing web
applications, but are squarely beyond the scope of our current work. Our goal is
to provide a sound semantic foundation to the core language that glues all such
functions together. Until (semi-)automated techniques that help giving seman-
tics to language extensions are developed, our view is that such extensions need
to be investigated on a case-by-case basis. Often, they can be abstracted in terms
of approximate information such as for example their types, taint behaviour, or
side effects, as exemplified by our case study of Section 5.3.

7 Related Work

In this Section, we discuss related work on the mechanised formalisation of pro-
gramming languages, and on the analysis of PHP.
Mechanised Formalisation of Programming Languages. Proof assistants
such as Coq [2], Isabelle/HOL [31], are a popular choice for the mechanised spec-
ification of programming languages. For example, HOL was used by Norrish [32]
to specify a small-step operational semantics of C, and to prove meta-properties
of the language. Blazy and Leroy, as part of the CompCert project [3], have built
a verified compiler for a significant fragment of C, formalised in Coq. They have
proved that the semantics of source programs is preserved by the compilation
process. In the JSCert project [4], Bodin et al. have built a mechanised formal-
isation of JavaScript (ECMAScript 5) and tested it again the ECMA262 test
suite. In Coq, they have developed an inductive definition of the semantics and
a separate fixpoint definition of a JavaScript interpreter, and proved that the in-
terpreter is sound with respect to the semantics. From the Coq fixpoint definition
they have automatically extracted OCAML code to execute the interpreter.

In the K framework instead a semanticist may directly focus on writing and
analysing language definitions: execution is taken care of by the tool. Ellison
and Rosu [11] have defined an executable formal semantics of C in K [37]. Their
formalisation has been extensively tested against the GCC torture suite [12],
and they demonstrate examples of the debugging and model checking C code
using the built-in capabilities of K. On a smaller scale, K, has also been used
to formalise, Python [16], Scheme [28], Verilog [29], Haskell [23] and Java [5]. A
number of program analysis techniques such as symbolic execution [1], program
logics [36] and program equivalence [24] are being developed and incorporated
into the K, extending the potential benefits of defining a programming language
semantics in this framework.

For PHP, we followed the approach of [11]. In the absence of a specification
document, it was crucial to be able to immediately execute operational seman-
tics rules as they were being developed, in order to compare with the reference

An Executable Formal Semantics of PHP 589

implementation of the language. Moreover, we were intrigued by the possibil-
ity to leverage existing model checking and symbolic execution capabilities to
demonstrate our semantics at work.

The approach to define an executable semantics of a real programming lan-
guage and validating it by testing against official test suites was trail-blazed by
Guha et al. [15], who give semantics to JavaScript via a translation to a simpler
intermediate language called λJS , formalised in the PLT Redex tool [22] (which
also takes care of execution). More recently, the same approach was adopted by
Politz et al. [35] to Python.
PHP Analysis. Analysis of PHP and other web languages is an important topic,
given the prevalence of security flaws such as XSS, CSRF and SQL injection.
There are many research and commercial tools that statically analyse PHP code,
including Pixy [21], WebSSARI [43], PHP-Sat [7] and HP Fortify [38]. According
to the respective papers, all of these tools have specific weaknesses related to
language features that are hard to understand and analyse. For example, Pixy
and WebSSARI do not follow taint flows across objects. We believe that the next
generation of static analysis tools can benefit from a precise, formal semantics
of the language.

We are the first to present such a semantics for PHP. The only previous work
we are aware of that looks in depth as some aspect of PHP semantics is an
analysis of the array-copying mechanism of PHP by Tozawa et al. [41]. They
formalise a tiny fragment of the language that suffices to describe the array copy
mechanism, and show a flaw in a runtime optimisation used by the Zend engine.
Their work sheds light on how complex the array semantics in PHP is, and was
an inspiration for us to dig deeper into the PHP semantics.

8 Conclusions

In this paper we described the first formal semantics of PHP. We focussed on
the core language, leaving language extensions and library functions for future
work. Our semantics is executable, meaning that from the formal definition we
automatically obtained a trusted interpreter of PHP, which we used for testing
and debugging the semantics.

We validated the semantics by showing that is passes all the Zend tests ap-
plicable to the PHP fragment we modelled, and we achieved full coverage of our
semantic rules by defining new ad-hoc tests. Given a mechanised semantics, it is
still an open research problem how to automatically generate a comprehensive
regression test suite for a language. If such a systematic approach to test gener-
ation was available, our semantics could be the basis for a regression test suite
for PHP implementations.

Leveraging built-in features of K and Maude, we also provided a proof-of-
concept infrastructure for the verification of PHP programs, which we demon-
strated on two realistic examples. Our work is a first step towards defining
semantics-based, static-analysis tools that provide formal guarantees for PHP
web applications.

590 D. Filaretti and S. Maffeis

Acknowledgments. We are indebted to Antoine Delignat-Lavaud for many
insightful discussions on the arcana of PHP. We would also like to thank the K
team for their technical support on using the K framework, and Shijiao Yuwen
for useful comments on an earlier version of the KPHP semantics. Filaretti and
Maffeis are supported by EPSRC grant EP/I004246/1.

References
1. Arusoaie, A., Lucanu, D., Rusu, V.: A Generic Framework for Symbolic Execution.

In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
281–301. Springer, Heidelberg (2013)

2. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive Theorem Prov-
ing and Program Development - Coq’Art - the Calculus of Inductive Constructions.
Texts in theoretical computer science. Springer (2004)

3. Blazy, S., Leroy, X.: Mechanized Semantics for the Clight Subset of the C Language.
Journal of Automated Reasoning 43, 263–288 (2009)

4. Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Schmitt, A.,
Smith, G.: A Trusted Mechanised JavaScript Specification. In: POPL 2014 (2014)

5. Bogdanas, D.: Formal Semantics of Java in the K Framework,
https://github.com/kframework/java-semantics

6. Bogdanas, D.: Label-Based Programming Language Semantics in the K Framework
with SDF. In: SYNASC 2012, pp. 170–177 (2012)

7. Bouwers, E.: PHP-Sat,
http://www.program-transformation.org/PHP/PhpSat

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and Programming in Rewriting Logic. Theoretical
Computer Science 285(2), 187–243 (2002)

9. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL
1977, pp. 238–252 (1977)

10. PHP Documentation. Cryptographic Function pbkdf2,
http://php.net/manual/en/function.hash-hmac.php

11. Ellison, C., Roşu, G.: An Executable Formal Semantics of C with Applications. In:
POPL 2012, pp. 533–544 (2012)

12. Free Software Foundation. GCC Torture Suite,
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html

13. The PHP Group. PHP Official Documentation,
http://www.php.net/manual/en/

14. The PHP Group. PHP Zend Engine, http://php.net
15. Guha, A., Saftoiu, C., Krishnamurthi, S.: The Essence of Javascript. In: D’Hondt,

T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010)
16. Guth, D.: Python Semantics in K,

http://code.google.com/p/k-python-semantics/
17. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The Syntax Definition Formal-

ism SDF - Reference Manual. SIGPLAN Not. 24(11), 43–75 (1989)
18. ECMA International. ECMA-262 ECMAScript Language Specification (2009),

http://www.ecma-international.org/publications/standards/
Ecma-262.htm

19. International Organization for Standardization. C Language Specification - C11.
ISO/IEC 9899:2011 (2011),
http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?%csnumber=57853

https://github.com/kframework/java-semantics
http://www.program-transformation.org/PHP/PhpSat
http://php.net/manual/en/function.hash-hmac.php
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
http://www.php.net/manual/en/
http://php.net
http://code.google.com/p/k-python-semantics/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?%csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?%csnumber=57853

An Executable Formal Semantics of PHP 591

20. Jhala, R., Majumdar, R.: Software Model Checking. ACM Compututing Sur-
veys 41(4) (2009)

21. Jovanovic, N., Kruegel, C., Kirda, E.: Static Analysis for Detecting Taint-Style
Vulnerabilities in Web Applications. Journal of Computer Security 18(5), 861–907
(2010)

22. Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M., Mc-
Carthy, A., Rafkind, J., Tobin-Hochstadt, S., Findler, R.B.: Run Your Research:
On the Effectiveness of Lightweight Mechanization. In: POPL 2012, pp. 285–296
(2012)

23. Lazar, D.: Haskell Semantics in K,
https://github.com/davidlazar/haskell-semantics

24. Lucanu, D., Rusu, V.: Program Equivalence by Circular Reasoning. In: Johnsen,
E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 362–377. Springer, Heidelberg
(2013)

25. Maffeis, S., Mitchell, J.C., Taly, A.: An Operational Semantics for JavaScript.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer,
Heidelberg (2008)

26. Maffeis, S., Mitchell, J.C., Taly, A.: Isolating JavaScript with Filters, Rewriting,
and Wrappers. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 505–522. Springer, Heidelberg (2009)

27. Maffeis, S., Taly, A.: Language-Based Isolation of Untrusted JavaScript. In: CSF
2009, pp. 77–91 (2009)

28. Meredith, P., Hills, M., Roşu, G.: A K Definition of Scheme. Technical Report
Department of Computer Science UIUCDCS-R-2007-2907, University of Illinois at
Urbana-Champaign (2007)

29. Meredith, P., Katelman, M., Meseguer, J., Roşu, G.: A Formal Executable Seman-
tics of Verilog. In: MEMOCODE 2010, pp. 179–188 (2010)

30. pR. Milner, M. Tofte, and D. Macqueen. The Definition of Standard ML. MIT
Press (1997)

31. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

32. Norrish, M.: C Formalised in HOL. University of Cambridge Technical Report
UCAM-CL-TR-453 (1998)

33. phpMyAdmin Team. phpMyAdmin,
http://www.phpmyadmin.net/home_page/index.php

34. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
35. Politz, J.G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chitipothu,

A., Krishnamurthi, S.: Python: the Full Monty. In: OOPSLA 2013 (2013)
36. Roşu, G., Ştefănescu, A.: Checking Reachability using Matching Logic. In: OOP-

SLA 2012, pp. 555–574 (2012)
37. Roşu, G., Şerbănuţă, T.F.: An Overview of the K Semantic Framework. Journal

of Logic and Algebraic Programming 79(6), 397–434 (2010)
38. Fortify Team. Fortify Code Secure, http://www.armorize.com/codesecure/
39. K Team. The K Framework,

http://k-framework.org/index.php/Main_Page
40. PHP Quality Assurance Team. Zend Test Suite,

https://qa.php.net/write-test.php
41. Tozawa, A., Tatsubori, M., Onodera, T., Minamide, Y.: Copy-On-Write in the PHP

Language. In: POPL 2009, pp. 200–212 (2009)
42. Woo, T.Y.C., Lam, M.: A Semantic Model for Authentication Protocols. In: Secu-

rity and Privacy (SP), pp. 178–194 (1993)
43. Xie, Y., Aiken, A.: Static Detection of Security Vulnerabilities in Scripting Lan-

guages. In: USENIX 2006 (2006)

https://github.com/davidlazar/haskell-semantics
http://www.phpmyadmin.net/home_page/index.php
http://www.armorize.com/codesecure/
http://k-framework.org/index.php/Main_Page
https://qa.php.net/write-test.php

592 D. Filaretti and S. Maffeis

A Artifact Description

Authors of the Artifact. Daniele Filaretti and Sergio Maffeis.

Summary. The provided package is designed to support repeatability of the
experiments of the paper: in particular, it allows users to test the KPHP inter-
preter and symbolic model checker on a variety of examples, including the ones
discussed in the paper. We provide details on how to install and build KPHP,
together with step-by-step instructions for running the examples and getting
users started with their own experiments.

Content. The artifact package includes:

– the complete source files;
– a build of the K Framework (which is needed for running KPHP);
– all the examples discussed in the paper;
– a self-contained Linux-based virtual machine which can be used to run the

artifact, if a user does not want to install KPHP and K directly;
– detailed instructions on how to build and use the artifact in index.html.

Getting the Artifact. The artifact, endorsed by the Artifact Evaluation Com-
mittee of ECOOP’14, is available free of charge as supplementary material of
this paper on SpringerLink. KPHP is still under development. The latest ver-
sion of KPHP, together with a user-friendly web interface, is available online at
http://www.phpsemantics.org.

Tested Platforms. The K tool binaries (needed for running KPHP) run best
on Linux and OS X. On Windows, Cygwin emulation must be used, which may
slow down execution. The self-contained Linux-based VMware virtual machine
we provide (included in the package) can be used in case of installation problems
on non-standard system configurations.

License. EPL-1.0 (http://www.eclipse.org/legal/epl-v10.html).

MD5 Sum of the Artifact. 711cf733df354605ac2f32db942b9a49.

Size of the Artifact. 280.4 MB.

http://www.phpsemantics.org
http://www.eclipse.org/legal/epl-v10.html

Identifying Mandatory Code for Framework Use

via a Single Application Trace

Naoya Nitta1, Izuru Kume2, and Yasuhiro Takemura3

1 Graduate School of Natural Science, Konan University, Japan
n-nitta@konan-u.ac.jp

2 Graduate School of Information Science,
Nara Institute of Science and Technology, Japan

kume@acm.org
3 Department of Character Creative Arts, Osaka University of Arts, Japan

yasuhi-t@osaka-geidai.ac.jp

Abstract. Application frameworks allow application developers to ef-
fectively reuse both designs and implementations which frequently ap-
pear in their intended domains. However, when using a framework with
large scale APIs, its usage to implement an application-specific behavior
tends to be complicated. Thus, in practice, application developers use
existing sample application code as references for their development, but
the task to locate the parts which are related to their application usually
becomes a burden. To address this problem, in this paper, we character-
ize the problem as a kind of dynamic flow analysis problem, and based
on the characterization, we present a method to automatically identify
the mandatory code for the framework use using only a single sample
application’s trace. We have conducted case studies with several real-
world frameworks to validate our method and the results indicate that
the method is suitable to extract the mandatory framework usage.

1 Introduction

Recently, object-oriented application frameworks (in the following, frameworks
for short) are widely used to facilitate application development in various do-
mains. By reusing an appropriate framework, application developers can reduce
the costs for their design and implementation processes effectively. They can ful-
fill their requirements typically by subclassing framework-provided classes and
overriding their methods so that their written application-specific code is able
to be executed in a run of an instance of the framework.

However, when using a framework with large scale APIs, its usage to cor-
rectly attach application code tends to be complicated [1, 2]. For example in [2],
it is mentioned that application programmers are often required to attach their
code to a framework at multiple and scattered predefined points in the correct
manner. The main reason why such predefined points are scattered is that to
call an overriding method declared in an application-specific class, the frame-
work instance requires some dependencies to be previously injected by another
application-specific code. The pattern in which such dependencies are injected is

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 593–617, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

594 N. Nitta, I. Kume, and Y. Takemura

known as dependency injection [3]. Actual implementation steps to attach appli-
cation code may consist of multiple instances of dependency injection and may
include subclassing framework-provided classes, overriding their methods, im-
plementing framework interfaces, instantiating appropriate objects and calling
methods defined in the framework classes with correct parameters in the correct
order. The same kind of difficulty to use frameworks is also discussed in [4, 5].
In practice, application developers often refer to the code of an existing sam-
ple application of a framework as an executable example of framework usage.
In this strategy, they are usually required to locate the parts strictly related
to their own application to develop in the sample application code, and such a
task of locating often becomes a burden since the application-related and the
application-unrelated parts are generally tangled within a single component of
the code and also both of them are scattered across its multiple components.

To address the problem, several techniques and tools have been proposed.
Some of them are based on static approaches and the others are on dynamic
approaches. By static analysis, Strathcona [4] and DMMC [6] can automatically
extract relevant code or important method calls from the source code of sample
applications. Such tools are helpful for application programmers who are faced
with difficulties using an unfamiliar framework’s APIs. However, such tools tend
to require a number of instances of framework usage which appear in the code of
many sample applications or source code repositories to obtain one reliable re-
sult. In contrast, FUDA [5] uses a lightweight dynamic analysis to automatically
extract framework usage from few execution traces of few sample applications.
The method can extract not only mandatory but also optional application code
to use a framework. However, to refine its output into pure mandatory part, the
method requires more execution traces of sample applications as its input.

In this paper, we characterize the problem as a kind of dynamic flow anal-
ysis problem, and based on the characterization we can develop an algorithm
to extract framework usage which can work with only one execution trace of a
single sample application. In the following, we focus on Java as an object ori-
ented programming language. Since generally, employing conventional dynamic
flow analysis, such as data or control flow analysis induces a high computing load
and may yield oversized results, we define a refined dynamic dependency, expres-
sion level dynamic dependency, and based on the dependency, we further define
a slicing technique, named asymmetric slicing. By asymmetric slicing, the flow
analysis can be appropriately controlled and unrelated results to the application
under consideration will be reduced. We have implemented our method as an
Eclipse plug-in, named AsymmetricTracker using Java and AspectJ. Similarly to
FUDA, AsymmetricTracker can output the extraction results as template code
for framework use. To validate our characterization of the problem, we have con-
ducted similar case studies to [5] and check the outputs of AsymmetricTracker
against the reference templates presented in [7]. The results show that Asym-
metricTracker can output close results to the mandatory parts of the reference
templates, despite using only one trace of a single sample application.

The main contributions of this paper are as follows.

Identifying Mandatory Code for Framework Use 595

– We characterize the problem of framework usage extraction as a kind of
dynamic flow analysis problem.

– Based on the characterization, we have developed a method to automati-
cally identify the mandatory code for a framework use through only a single
sample application’s trace.

– We have evaluated the recall and precision of outputs of the method through
case studies.

The remainder of this paper is organized as follows. First, we introduce a
motivating and running example in Sect. 2 and explain our characterization of
the problem in Sect. 3. Next, several basic concepts to be used in our method
are defined in Sect. 4. Then, we explain the whole process of our method in Sect.
5 and its implementation in Sect. 6. The evaluation of our method through case
studies is shown in Sect. 7, and we will discuss the validity of the characterization
and that of case studies in Sect. 8. Finally, the related work is discussed in Sect.
9, and we will conclude the paper in Sect. 10.

2 Running Example

In this section, we consider implementing a context menu using JFace as a moti-
vating and running example throughout the paper. For the implementation task,
we assume that SampleView class (shown in Fig. 1, borrowed from [5], 267 LOC)
is used as sample code of a context menu. The code provides a visual component
in Eclipse platform and displays a tree (represented by TreeViewer class) within
the component. A context menu can be popped up over the tree. The lines re-
lated to the context menu are marked by ‘*’ or ‘**’ in Fig. 1. Among them,
the mandatory lines, without any of which the context menu does not work, are
marked by ‘**’. Differently from the sample in [5], in this paper we consider that
some parts related to the tree viewer (i.e., line 36 and line 193, in the following,
line numbers are abbreviated like l. 36 and l. 193) are also related to the context
menu because the menu cannot be popped up without these parts. The tree and
the context menu are created within the execution of createPartControl() (l.
190∼). When the right mouse button is clicked on the tree, menuAboutToShow()
(l. 205∼) is called back from the instance of JFace and the content of the context
menu is constructed and showed. If a menu item in the context menu is selected,
run() (l. 221 or l. 226) is called back from it. Note that with each event, some
application-specific code is called back from the framework-provided code. This
inverse nature of control flow is called inversion of control (often abbreviated as
IoC). Inversion of control is a main feature of frameworks.

As we can see from the figure, the usage of JFace to implement the context
menu is very complicated, that is, instantiating tree viewer, menu manager, menu
listener and action, obtaining menu and control objects from the objects, and
passing one object to another object in the correct order are all needed. Even
for programmers who are given the above sample application code, the task to
locate the part related to the context menu is a burden since the part is tangled
with the unrelated parts and is scattered across multiple methods in the code.

596 N. Nitta, I. Kume, and Y. Takemura

:
35: public class SampleView extends ViewPart {

*36: private TreeViewer viewer;
37: private DrillDownAdapter drillDownAdapter;

*38: private Action action1;
*39: private Action action2;
40: private WelcomeWindow welcomeWindow;

:
98: class ViewContentProvider
99: implements IStructuredContentProvider, ITreeContentProvider {

:
162: }
163: class ViewLabelProvider extends LabelProvider {

:
189: }
190: public void createPartControl(Composite parent) {
191: welcomeWindow = new WelcomeWindow();
192: welcomeWindow.open();

**193: viewer = new TreeViewer(parent, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);
194: drillDownAdapter = new DrillDownAdapter(viewer);
195: viewer.setContentProvider(new ViewContentProvider());
196: viewer.setLabelProvider(new ViewLabelProvider());
197: viewer.setInput(getViewSite());

*198: makeActions();
*199: hookContextMenu();
200: }

*201: private void hookContextMenu() {
**202: MenuManager menuMgr = new MenuManager("#PopupMenu");
*203: menuMgr.setRemoveAllWhenShown(true);

**204: menuMgr.addMenuListener(new IMenuListener() {
**205: public void menuAboutToShow(IMenuManager mgr) {
*206: fillContextMenu(mgr);

**207: }});
**208: Menu menu = menuMgr.createContextMenu(viewer.getControl());
**209: viewer.getControl().setMenu(menu);
*210: getSite().registerContextMenu(menuMgr, viewer);
*211: }
*212: private void fillContextMenu(IMenuManager manager) {

**213: manager.add(action1);
*214: manager.add(action2);
*215: drillDownAdapter.addNavigationActions(manager);
*216: manager.add(new Separator());
*217: manager.add(new Separator(IWorkbenchActionConstants.MB_ADDITIONS));
*218: }
*219: private void makeActions() {

**220: action1 = new Action() {
221: public void run() { showMessage("Action 1 executed"); }

**222: };
*223: action1.setText("Action 1");
*224: action1.setToolTipText("Action 1 tooltip");
*225: action2 = new Action() {
226: public void run() { showMessage("Action 2 executed"); }

*227: };
*228: action2.setText("Action 2");
*229: action2.setToolTipText("Action 2 tooltip");
*230: }

:
267: }

**: mandatory
*: optional

Fig. 1. A sample application code of context menu

Identifying Mandatory Code for Framework Use 597

Minimal parts to generate the inflows

Execution

Inflow to framework
Framework

Part

Application
Part

Outflow from framework
Minimal inflows to gain the IoC

IoC of interest

Fig. 2. Our characterization of the problem

3 Our Approach

In this paper, we focus on identifying the mandatory parts in given sample
application code which enable a particular application-specific behavior. The
reason why we focus on the mandatory parts is that if one is given the mandatory
parts, then he/she can have at least one ‘executable’ code which can be used in
his/her own application under consideration.

Before explaining our characterization of the problem, recall the running ex-
ample explained in the previous section. First, we consider why each line is
needed to make the context menu work. For example, if l. 209 is removed, then
menuAboutToShow() (l. 205) is not called back from the instance of JFace and the
menu cannot be shown. Also if l. 213 is removed, then run() (l. 221) is not called
back from it and the menu item cannot be selected. These observations suggest
that the mandatory parts of the sample application code can be characterized
as a minimal part of the code which leads to the behavior-related occurrences
of IoC. Indeed, by our analysis, all of the mandatory lines marked by ‘**’ are
related to either of the above two occurrences (calls to l. 205 and l. 221) of IoC.
The reason why some additional application code is needed to make the IoC
occur is that before the IoC occurs, the framework instance requires some de-
pendencies to be injected by the additional application code. For example, when
l. 221 is called back, a runtime dependency previously injected by the invocation
of MenuManager.add() at l. 213 is used. The pattern in which such dependen-
cies are injected is known as dependency injection [3]. In this paper, we call the
framework usage to inject such dependencies injection points. A minimal part
of the sample application code which leads to the behavior-related occurrences
of IoC is considered as an implementation of the corresponding injection points.
Therefore, first, we characterize the problem as identifying a minimal part of the
sample application code which leads to the behavior-related occurrences of IoC.
This is our primary characterization of the problem.

To solve the problem, dynamic analysis approaches will be effective. Thus,
next, we refine the above characterization of the problem from a dynamic anal-
ysis point of view. Consider the overall structure of traces of framework appli-
cations. Each execution trace of a framework application can be divided into
two parts; one is a part where the application-specific code is executed (applica-
tion part for short) and the other is one where the framework-provided code is

598 N. Nitta, I. Kume, and Y. Takemura

executed (framework part for short). Furthermore, there exist two kinds of in-
teractions between these two parts. One kind of the interactions is ‘inputs’ from
the application part to the framework part and the other kind is ‘outputs’ from
the framework part to the application part. For example in a run of the sample
application in Fig. 1, the executions of l. 209 and l. 213 are considered as inputs
to the instance of JFace, and the calls to l. 205, l. 221 and l.226 are considered as
outputs from the instance. In this paper, we call such inputs and outputs inflows
and outflows, respectively (more specifically, see Sect. 4.2). Note that there are
several types of inflows to the framework part; 1) a method call to the framework
part with several parameters, 2) returning a value in reply to a callback from
the framework part and 3) an assignment to a field declared in a framework-
provided class. On the other hand, each occurrence of IoC is considered as a
kind of outflow from the framework part. Here, we should notice that the whole
behavior of the framework part is determined only by the sequence of inflows
from the application part if inputs across other boundaries are fixed1. Thus, we
can refine the primary characterization of the problem into the following two
parts. First, identify a minimal subsequence of inflows to the framework part to
gain the behavior-related occurrences of IoC (cf. Fig. 2). Next, extract a mini-
mal part of the application code which can generate such a sequence of inflows.
The extracted code can be considered as the mandatory part which enables the
intended behavior. This is our characterization of the problem.

Note that under the characterization, a user is required to explicitly or im-
plicitly specify behavior-related occurrences of IoC in the trace. This can be
done by a similar way to the trace marking step presented in [8] and [5]. Recall
the running example explained in the previous section. In an execution of the
sample application, a call to menuAboutToShow() (l. 205) and calls to run()

(l. 221 and l. 226) are behavior-related occurrences of IoC because the former is
called by the instance of JFace when the right mouse button is clicked on the
tree, and each of the latter is called by it when a menu item in the context menu
is selected. Thus, if the user could specify from when to when the behavior of
interest is active while collecting the trace, then the set of the behavior-related
occurrences of IoC can be identified within the collected trace. For this reason,
our approach assumes that when the behavior is activated and when deactivated
are observable from the user.

At first glance, a minimal subsequence of inflows to the framework part to
gain a certain outflow seems to be straightforwardly identified within a trace
by a canonical tracking technique of dynamic flows such as data and control
flows backward from the outflow. However, in this case such a tracking does not
correctly work since full tracking of dynamic flows may lead to many unrelated
inflows for the following reasons. First, tracking control flows generated by con-
ditional branches may lead to unrelated code (it will be discussed in Sect. 4.3).
Second, the control and data flows come and go across the framework-application
boundary many times, but the minimal subsequence to be identified within the

1 In this section, we assume that the user operations of the framework instance are
fixed since we focus on one specific execution scenario to obtain a trace to analyze.

Identifying Mandatory Code for Framework Use 599

Method call:

p1: · · · r.m(a1, . . . , an) · · · p2 is called from p1, and this operator is

p2: T0 m(T1 f1, . . . , Tn fn) { evaluated at p3 in the method execution

p3: · · · this · · · started from p2. An expression e is evaluated

p4: · · · e · · · at p4, and whether p4 is executed or not is

fi(p2)
DD→ ai(p1) (1 ≤ i ≤ n) (1)* directly determined by the method

this(p3)
DD→ r(p1) (2)* invocation of p2.

e(p4)
CD→ m(T1 f1, . . . , Tn fn)(p2) (3)

m(T1 f1, . . . , Tn fn)(p2)
CD→ r.m(a1, . . . , an)(p1) (4)

Return:
p1: return e; The value of r.m(a1, . . . , an) is returned

p2: · · · r.m(a1, . . . , an) · · · from p1.

r.m(a1, . . . , an)(p2)
DD→ e(p1) (5)*

Conditional Branch:
p1: if (e) { An expression e2 is evaluated at p2, and

/ while (e) { whether p2 is executed or not is directly

/ for (s1; e; s2) { determined by the evaluation of e.

p2: · · · e2 · · ·
e2(p2)

CD→ e(p1) (6)

Expressions:
p1: · · · o.f · · · A field f of a container o is evaluated at p1.

o.f(p1)
DD→ o(p1) (7)

p1: · · · a[x] · · · An array element a[x] of an array a is

a[x](p1)
DD→ a(p1) (8) evaluated at p1.

a[x](p1)
DD→ x(p1) (9)

p1: · · · e1 · · · An expression e2 is evaluated at p2, and e1

p2: · · · e2 · · · is a subexpression of e2 and evaluated at p1.

e2(p2)
DD→ e1(p1) (10)*

Assignment:
p1: e2 = e1 The value of an expression e1 is assigned

e2(p1)
DD→ e1(p1) (11)* to e2 at p1.

DEF-USE:
p1: v = · · · A value is assigned to a variable v at p1,

p2: · · · v · · · v is used at p2, and there is no assignment to

v(p2)
DD→ v(p1) (12)* v from p1 to p2.

p1: o1.f = · · · A value is assigned to a field o1.f at p1,

p2: · · · o2.f · · · o2.f is used at p2, o1 and o2 refer to the

o2.f(p2)
DD→ o1.f(p1) (13)* same object, and there is no assignment to the

field f of the same object from p1 to p2.

*: source dependency which will be explained in Sect. 4.3

Fig. 3. Definition of expression level dynamic dependencies

600 N. Nitta, I. Kume, and Y. Takemura

35: public class SampleView︸ ︷︷ ︸
e34

extends ViewPart {

36: private TreeViewer viewer;
38: private Action action1;

190: public void createPartControl(Composite parent)︸ ︷︷ ︸
e33

{

193: viewer︸ ︷︷ ︸
e31

= new TreeViewer(parent, SWT.MULTI | SWT.H SCROLL | SWT.V SCROLL)︸ ︷︷ ︸
e32

;

198: makeActions()︸ ︷︷ ︸
e30

;

199: hookContextMenu()︸ ︷︷ ︸
e26

;

200: }
201: private void hookContextMenu()︸ ︷︷ ︸

e25

{

202: MenuManager menuMgr︸ ︷︷ ︸
e23

= new MenuManager(”#PopupMenu”)︸ ︷︷ ︸
e24

;

204:

e22︷ ︸︸ ︷
menuMgr︸ ︷︷ ︸

e20

.addMenuListener(new IMenuListener()︸ ︷︷ ︸
e21

{

205: public void

e10︷ ︸︸ ︷
menuAboutToShow(IMenuManager mgr︸︷︷︸

e9

) {

206:

e8︷ ︸︸ ︷
fillContextMenu(mgr︸︷︷︸

e7

);

207: }});

208: Menu menu︸︷︷︸
e15

=

e19︷ ︸︸ ︷
menuMgr︸ ︷︷ ︸

e16

.createContextMenu(

e18︷ ︸︸ ︷
viewer .getControl()︸ ︷︷ ︸

e17

);

209:

e14︷ ︸︸ ︷
e13︷ ︸︸ ︷

viewer .getControl()︸ ︷︷ ︸
e11

.setMenu(menu︸︷︷︸
e12

);

211: }

212: private void

e6︷ ︸︸ ︷
fillContextMenu(IMenuManager manager︸ ︷︷ ︸

e5

) {

213:

e4︷ ︸︸ ︷
manager︸ ︷︷ ︸

e3

.add(action1︸ ︷︷ ︸
e2

);

218: }

219: private void

e29︷ ︸︸ ︷
makeActions() {

220: action1︸ ︷︷ ︸
e27

= new Action()︸ ︷︷ ︸
e28

{

221: public void run()︸ ︷︷ ︸
e1

{ showMessage("Action 1 executed"); }

222: };

Fig. 4. Expressions in the sample code

Identifying Mandatory Code for Framework Use 601

inflows should not be affected by any application-specific structure while it will
be affected by the internal structures of the framework part. Therefore in the
next section, we define a refined dynamic dependency, expression level dynamic
dependency which may reduce unrelated results to the framework use, and based
on expression level dynamic dependency, we further define asymmetric slicing,
by which dynamic flow tracking can be appropriately controlled.

4 Basic Definitions

As explained in the previous section, we use a dynamic analysis to obtain a
minimal sequence of inflows which leads to the specified occurrences of IoC.
For this purpose, we define a fine-grained dynamic dependency, which we call
expression level dynamic dependency in Sect. 4.1. Based on this dependency, we
formally define inflow and outflow in Sect. 4.2. Finally, we define asymmetric
slicing in Sect. 4.3 to appropriately control dynamic dependency tracking.

4.1 Expression Level Dynamic Dependency

Most of static/dynamic slicing techniques use statement level control and data
dependencies. A statement level dependency is a dependency between two dis-
tinct statements. For ordinary use, statement level dependencies are sufficient
and efficient. However, in this paper, we use more fine-grained dependencies,
expression level dependencies, so that dependency tracking can be appropriately
controlled as discussed in Sect. 3. By using expression level dependencies, more
detailed flows of the target program can be obtained. Consider the following
sample program.

:

1: A a = new A();

2: B b = new B();

3: C c = new C();

4: a.set(b, c);

5: C c2 = a.getC();

:

7: public class A {

8: B b;

9: C c;

10: public void set(B b, C c) {

11: this.b = b;

12: this.c = c;

13: }

14: public B getB() {

15: return b;

16: }

17: public C getC() {

18: return c;

19: }

20: }

602 N. Nitta, I. Kume, and Y. Takemura

Assume that the control reaches l. 5, and backward track the part of the code
related to c2. With respect to statement level dependencies, l. 5 depends on l.
18, and l. 18 depends on l. 12. Further, l. 12 depends on l. 10, l. 10 depends
on l. 4, and finally l. 4 depends on l. 3, l. 2 and l. 1. Here, note that the value
of b at l. 2 does not actually affect the value of c2 at l. 5. On the other hand,
with respect to expression level dependencies, c at l. 4 can be tracked from c2

at l. 5, but b at l. 4 never be tracked from the same seed. This is because each
dependency between two expressions is separately tracked. Thus, also b at l. 2
never be tracked from the seed.

Below, we formally define expression level dependencies. Let T be an execution
trace of a program. An evaluation of an expression e at an execution point p in T
is denoted by e(p). If e(p) directly dynamically data-depends on e′(p′), then we

denote e(p)
DD→ e′(p′). Also if e(p) directly dynamically control-depends on e′(p′),

then we denote e(p)
CD→ e′(p). Expression level dynamic data dependency relation

DD→ and expression level dynamic control dependency relation
CD→ are defined in

Fig. 3. Indirect dynamic data and control dependencies are the transitive closures

of direct dynamic data and control dependencies and denoted by

∗
DD→ and

∗
CD→ ,

respectively. For expressions in Fig. 4, which are extracted from the sample
application code in Fig. 1 and numbered in order of the reverse direction of the

program execution, we can derive e2
DD→ e27

DD→ e28 and e28
CD→ e29

CD→ e30
CD→ e33,

for example. We should notice that there are data dependencies e2
DD→ e34 and

e27
DD→ e34 where e34 represents implicit this operator. These dependencies are

obtained by the rule (7) in Fig. 3 since accesses to fields of this object (i.e., e2
and e27) implicitly use this operator.

Table 1. Reference point of expression

expression reference point

variable declaration location of the variable
field access declaration location of the field
array element access declaration location of the array
formal parameter declaration location of the parameter
this operator the location where the method declared
any expression which appears at other

the location where it appears
than the lhs of an assignment†

† If one of the above expression (i.e., a variable, a field access, and so on) appears
at other than the lhs of an assignment, then it matches at least two rules in this
table. In such case, to avoid a collision on its location, we assume that it contains
an additional virtual subexpression of the same form whose location corresponds to
its declaration location.

Identifying Mandatory Code for Framework Use 603

e
1

e
2

e
4

e
3

e
9

e
10

e
27

e
28

e
29

e
5

e
7

e
6

e
8

(e
11
)

e
11

e
13

e
12

e
16

e
14

(e
17
)

e
17

e
18

(e
19
)

e
19

e
20

e
21

e
22

(e
24
)

e
24

(e
32
)

e
32

e
33

e
31

e
30

e
26

e
25

e
23

e
15

e
34

Application

Framework

inputs to framework outputs from framework

call � (type 1), ◦ (type 2) • (type 3)

IoC � (type 4) (type 5)

assignment ! (type 6)

Fig. 5. Cross-boundary flows related to e1 and their types (explained in Sect. 5.3)

4.2 Cross-Boundary Flow

In this subsection, we formally define inflow and outflow of information flow
to model interactions between the application part and the framework part in
a trace. First, we define the reference point of each expression in a program
so that it can be used to determine which part the expression belongs to, the
application part or the framework part. The reference point of an expression is
defined depending on the type of the expression as shown in Table 1. Since we
use expression level dependencies, for each direct dynamic dependency, we can
define the parts which the source and the target of the dependency belong to.

We define inflow and outflow based on the direction of each information flow
(not on the direction of each direct dependency). Note that a flow is always in
the reverse direction of the corresponding dependency. Assume that there exists
a direct dynamic dependency d, and let s and t be the source and the target of d,
respectively. If the reference points of s and t belong to the application-specific
code and the framework-provided code respectively, then we say that there exists
an outflow from t to s. On the other hand, if the reference points of s and t
belong to the framework-provided code and the opposite side code respectively,
then we say that there exists an inflow from t to s. Also, if both the reference
points of s and t belong to the framework-provided code, then the correspnding
flow is called framework-internal, and both of them belong to the application-
specific code then called application-internal. Inflow and outflow are called cross

604 N. Nitta, I. Kume, and Y. Takemura

boundary flows. We use prefixes ‘in-’ and ‘out-’ in the sense that although a
framework can be used by various applications, the framework-provided code is
generally fixed and each outflow from the framework part is determined only
by the previous subsequence of inflows from the application part no matter how
the actual application part is written where inputs from other boundaries are
fixed. Fig. 5 shows the cross boundary flows related to the outflow to e1, which
indicates a behavior-related occurrence of IoC, in an execution of the sample
code shown in Fig. 1. Expressions e1 ∼ e33 in the figure are identical to those in
Fig. 4. Each edge represents a flow between the expressions (not a dependency
between them). With respect to framework-internal flows, individual direct flows
are omitted in the figure, and instead, indirect flows are depicted as broken
arrows.

4.3 Asymmetric Slicing

As explained in Sect. 3, full tracking of dynamic dependencies may lead to much
unrelated code to injection points identification since the result of such tracking
would be affected by application-specific structures.

For example, consider the dynamic flows shown in Fig. 5 and corresponding
code shown in Fig. 4. As shown in Fig. 5, the inflow from e4 is needed to obtain
the outflow to e1. To generate the inflow, at least an execution of e4 is needed
in any execution of any application. Since e4 is executed in a method execution
started from e6, e4 directly control-depends on e6. However, the invocation of
e6 is not necessary to generate the inflow from e4 because only the result that
the control reaches e4 is necessary and it does not matter where the control has
passed through to e4. This suggests that dynamic control dependencies within
an application part do not need to be tracked.

Similarly, the inflow from e2 is also necessary to obtain the outflow to e1. To
generate the inflow, at least e2 should be passed as the parameter of invocation
e4. Since e2 is a field access of SampleView, it directly depends on this operator
e34 in SampleView. However, e34 is not necessary to generate the inflow because
only the fact that the returned value from invocation e28 (i.e., created object)
is delivered to e2 is necessary and it does not matter where field e2 is actually
declared. This suggests that dynamic data dependencies on containers of fields
within an application part do not need to be tracked. For the same reason,
dynamic data dependencies of array elements on arrays and indices also do not
need to be tracked within any application part. As a result, only expression level
dynamic dependencies marked by * in Fig. 3 need to be tracked. We call these
dependencies source dependencies. Intuitively, source dependency represents the
dependency which is needed to generate or deliver a specified value, and roughly
corresponds to the dependency to obtain thin slicing [21] and origin relationship
of object flow [9].

With respect to framework-internal flows, basically, all of the dependencies
should be tracked because the framework-provided code are generally fixed in
framework reuse, and the framework-internal flows to obtain the outflow to e1
are hardly affected by any application-specific structure. However, we will omit

Identifying Mandatory Code for Framework Use 605

only dynamic control dependencies by conditional branches (i.e., (6) in Fig. 3).
The reason is as follows. Consider the following simple framework application.
In the application, we assume that Application, FeatureA and FeatureB are
application-specific, and Feature and FeatureManager are framework-provided.
Further assume that we want to know how to inject the runtime dependency for
IoC from l. 18 to l. 23.

1: class Application {

2: public void init() {

3: FeatureManager featureManager = new FeatureManager();

4: FeatureA a = new FeatureA();

5: FeatureB b = new FeatureB();

6: featureManager.addFeature(a);

7: featureManager.addFeature(b);

:

8: }

9: }

10: public class FeatureManager {

11: ArrayList<Feature> features = new ArrayList<Feature>();

:

12: public void addFeature(Feature f) {

13: features.add(f);

14: }

15: public void activateAll() {

16: for (int i = 0; i < features.size(); i++) {

17: Feature f = fratures.get(i);

18: f.activate();

19: }

20: }

21: }

22: public class FeatureB extends Feature {

23: public void activate() {

24: :

25: }

26: }

Obviously, the injection point is only the execution of l. 7. However, if we track all
of the dependencies within the framework part from the occurrence of the IoC,
then also the execution of l. 6 will be extracted since FeatureB.activate() in-
directly depends on features.size() at l. 16, and it indirectly depends on both
featureManager.addFeature(a) at l. 6 and featureManager.addFeature(b)

at l. 7. The unrelated code is essentially introduced by the control dependency
of f.activate() at l. 18 on ‘i < features.size()’ at l. 16. This suggests that
dynamic control dependencies by conditional branches should not be tracked.
Note that such a case is not specific to this toy example, and a similar case is
identified in a subject of the case study presented in Sect. 7.1. Needlessness of
tracking control dependencies by conditional branches is also discussed in [21].

Based on the above observations, an asymmetric slice for a given seed s is
defined as the part of the framework application code which can be obtained by

606 N. Nitta, I. Kume, and Y. Takemura

2. Trace Collection 3. Trace Marking

4. Extracting Framework Use Instructions

5. Template Generation

1. Sample Application and Execution

Scenario Selection

Template

Analyzer

Tracer

manual

tool

supported

automated

Fig. 6. Method overview

tracking from s, 1) all cross boundary dependencies, 2) all source dependencies
within the application part and 3) all expression level dynamic dependencies
other than control dependencies by conditional branches within the framework
part. In Fig. 5, thick arrows represent the flows backward tracked by asymmetric
slicing for seed e1 and the expressions surrounded by circles are the end points
of the tracking.

5 Framework Usage Extraction Method

In this section, we present the entire process of our method to extract framework
usage. An overview of the method is shown in Fig. 6. Its process consists of
five steps. The first step is performed manually, the second and third steps are
performed concurrently and supported by a tool, and the remainder is fully
automated. We have implemented the automated parts of the process as an
Eclipse plug-in, named AsymmetricTracker.

5.1 Sample Application Selection

Our method requires only a single sample application to collect a trace. The
sample application is required to show the behavior which the user intends to
implement in his/her own application. In general, also unrelated behaviors may
be implemented in the same application, but our method can work if the behavior
of interest can be observed separately from the other behaviors at runtime.

5.2 Trace Collection and Marking

An execution trace of the sample application can be collected by tracer of Asym-
metricTracker, which is implemented in AspectJ. It can be woven into either the
source code of the application at compile-time or its bytecode at load-time. For
load-time weaving, we use Equinox Weaving. Trace data can be collected by run-
ning the sample application into which the tracer has been woven. As explained
in Sect. 3, the user is also required to mark from when to when the behavior of
interest is activated during the trace collecting execution so that the occurrences
of IoC which activates the behavior can be specified in the collected data.

Identifying Mandatory Code for Framework Use 607

204: public class menuexampleapplication.views.SampleView.1 extends SomeFWClass {
205: public void menuAboutToShow(obj411392407) {
213: obj411392407.add(obj1439519072);
207: }
207: }
220: public class menuexampleapplication.views.SampleView.3 extends SomeFWClass {
221: public void run() {
221: }
222: }
35: public class menuexampleapplication.views.SampleView extends SomeFWClass {

190: public void createPartControl(obj1048781428) {
193: TreeViewer obj326074899 = new TreeViewer(obj1048781428);
202: MenuManager obj411392407 = new MenuManager();
204: 1 obj995514860 = new 1();
204: obj411392407.addMenuListener(obj995514860);
208: org.eclipse.swt.widgets.Control obj1861376421 = obj326074899.getControl();
208: org.eclipse.swt.widgets.Menu obj336910740

= obj411392407.createContextMenu(obj1861376421);
209: obj1861376421.setMenu(obj336910740);
220: 3 obj1439519072 = new 3();
200: }
267: }

Fig. 7. The generated template

5.3 Extracting Framework Use Instructions

This step is the core of our method. We have implemented this step and the
successive step as analyzer of AsymmetricTracker using Java. As discussed in
Sect. 3, we intend to extract a minimal subsequence of inflows to the framework
part to gain the behavior-related occurrences of IoC in a given trace data. The
inputs to this step are the collected trace data, specified occurrences of IoC,
and the boundary between the framework part and the application part. Note
that our method allows a user to specify each of the parts by multiple packages’
names. The extraction is done by asymmetric slicing. In the following, we explain
how the slicing proceeds.

Controlled Tracking. First, consider how behavior-related IoC occurs. As
explained in Sect. 4.2, an occurrence of IoC corresponds to an outflow from the
framework part. Thus, the controlled tracking starts with such an outflow and
proceeds backward. For example, in the running example, the outflow to e1 in
Fig. 4 and 5 is the last occurrence of behavior-related IoC, and the tracking starts
with e1. As discussed in Sect. 4.3, to avoid being affected by any application-
specific structure, the backward tracking is controlled by asymmetric slicing.
Fig. 5 shows the controlled backward tracking from e1 (the arrows in the figure
are in the reverse direction).

Extraction of Instructions. Cross boundary flows within the asymmetric slice
for a specific outflow constitute a minimal set of inflows and outflows to obtain
the outflow. In this paper, we call application-side expressions of minimal inflows
and outflows to obtain the behavior-related occurrences of IoC framework use
instructions. For example in Fig. 5, e2 ∼ e4, e9, e10, e11 ∼ e14, e16 ∼ e22, e24, e32

608 N. Nitta, I. Kume, and Y. Takemura

are framework use instructions. Note that all of these expressions are included
in the mandatory lines in the sample code (see Fig. 1 and 4). Each framework
use instruction is classified into one of the following types;

type 1: a call to a method declared in a framework’s type,
type 2: a call to a method declared in a framework’s type with passing appro-

priate parameters,
type 3: a call to a method declared in a framework’s type with receiving its

return value,
type 4: an override of a method declared in a framework’s type with returning

an appropriate return value.
type 5: an override of a method declared in a framework’s type with or without

receiving its parameters, and
type 6: an assignment to a field declared in a framework’s type.

As shown in Fig. 5, type 1, 2, 4 and 6 correspond to inflows to the framework part.
The other ones correspond to outflows from the part, which will be needed to gen-
erate appropriate inflows to the part. For example, the calls marked by ‘•’ in Fig.
5 are all type 3, and the returned values from them are to be passed as parameters
or receivers of the calls of type 2 which are marked by ‘◦’. In the figure, type 1, 2,
3, 4, 5 and 6 instructions are marked by ‘$’, ‘◦’, ‘•’, ‘�’, ‘’, and ‘*’, respectively.
In addition to the type of the instruction, each instruction has the information
about the object’s ID which should be passed to, received from or returned to the
framework part in the trace. Also, each one of type 1 to 5 instructions is related to
one call which is located across the framework-application boundary, and it can
have zero or more child instructions. A child instruction of an instruction i2 is an
instruction i1 such that i1-related call is located at a descendant of i2-related call
in the runtime call hierarchy and there is no instruction between i1 and i2. The
whole information of instructions is used in the next step.

5.4 Template Generation

Based on the framework use instructions extracted in the previous step, this
step generates a template code which leads to the intended occurrences of IoC.
The generated template code of the running example and corresponding line
numbers in Fig. 1 are shown in Fig. 7. Recall the cross boundary flows in Fig. 5.
In the figure, for example, e12 is type 2 instruction and e11, e19 and e24 are type
3 instructions. From these instructions, we can generate the statements corre-
sponding to l. 202, l. 208 and l. 209 in Fig. 7. Note that in the template, l. 208
is divided into two statements since it includes two instructions. The template
may include a call to a method declared in a framework’s type with passing
appropriate parameters and receiving its return value, creation of an instance of
an appropriate framework’s class, an assignment to a field declared in a frame-
work’s type, subtyping an appropriate supertype declared in the framework, and
implementation of an appropriate supertype’s method. We designed this step so
that source dependencies within the application part can be preserved in the
template. The template is generated according to the types of instructions. We
omit the details of the algorithm from the paper due to limitations of space.

Identifying Mandatory Code for Framework Use 609

6 Implementation

We have implemented tracer of AsymmetricTracker using AspectJ and analyzer
of AsymmetricTracker using Java. The analyzer is also implemented as an Eclipse
plug-in. The target Java program into which the tracer has been woven can be
launched by the plug-in and its trace is collected and written into a text file.

In expression level dynamic dependencies, a primitive value can be tracked
only through the rule (6) or (9) in Fig. 3, or when the seed is of a primitive
type. However, the rule (6) is never used in asymmetric slicing since no dynamic
control dependency by a conditional branch is tracked by it (as discussed in Sect.
4.3). In addition, a seed of asymmetric slicing in our tool is always a method
signature invoked through IoC and it is not of a primitive type (as explained in
Sect. 5). Thus, tracking dynamic dependencies among primitive type expressions
can be avoided if the rule (9) can be ignored. By designing the tool not to track
any dynamic dependency among primitive type expressions,

– the size of the trace data to analyze can be significantly reduced,
– the impacts of the tracer on the performance of the target program’s execu-

tion can be reduced with the following slight approximation, and
– AspectJ can be used to implement the tracer with the same slight approxi-

mation.

The approximation of slices is done as follows. First, we focus on the fact that
a reference value is unique to each referred object and it is never recreated by
any calculation. Thus, if a reference value is found in a method execution, then
it should have originated from one of the following.

case 1: It has been created in the previous part of the method execution.
case 2: It has been returned from a method invocation in the previous part of

the method execution.
case 3: It has been passed as a parameter of the method invocation (‘this’

object is considered as a kind of parameter).
case 4: It has been got from a field in the previous part of the method execution.
case 5: It has been got from an array element in the previous part of the method

execution.
case 6: It has been stored in a final local variable in an enclosing method when

the method is invoked.

By searching the above origin of a target reference value, expression level dy-
namic data and control dependencies can be efficiently tracked since the points
in the method execution to search the origin are limited as the above and no
assignment to a local variable nor an argument within the method execution
should be tracked. The search would fail only when more than two origins are
found in the same method execution but such a case is almost negligible. If case
5 and 6 of the above origins can be ignored, then we can use AspectJ for the
implementation of the tracer to collect the trace data (since AspectJ can not
intercept these cases). The details of the algorithm are omitted from the paper
due to limitations of space. For the details, the reader can refer to [10].

610 N. Nitta, I. Kume, and Y. Takemura

7 Evaluation

For the evaluation of AsymmetricTracker, we have conducted several case studies
(Sect. 7.1). Also, we have evaluated the impacts of AsymmetricTracker’s tracer
on the performance of the sample application’s execution (Sect. 7.2).

7.1 Template Extraction Quality

Subjects of Case Studies. To evaluate the quality of the extracted templates,
we compare AsymmetricTracker’s extraction results with FUDA’s ones given in
[5]. Furthermore, to evaluate the effects of asymmetric slicing, we have also
implemented an extraction tool, named FullTracker, which works with the same
tracer as AsymmetricTracker but uses canonical uncontrolled slicing excepting
control dependencies by conditional branches, and compare it with the other
tools. In [5], experimental data of 14 subjects from four real-world frameworks are
presented. However among them, 6 subjects are out of the AsymmetricTracker’s
scope since they are unrelated to dependency injection and do not require the
slicing technique of FUDA. Moreover, two of the subjects are from Java 2D, and
the tracer of AsymmetricTracker cannot be woven into Java 2D class libraries
since Equinox Weaving requires that the target system has been put into OSGi
bundles. Therefore, we have conducted case studies on the remaining 6 subjects
from three frameworks; JFace2, UI in Eclipse3 and GEF4.

Reference Templates. To measure the precision and recall of the extraction
results, some appropriate reference templates are needed. In order to keep the
comparison fair, we have intended to borrow the mandatory parts of the reference
templates at [7] in their original forms. However, slight revisions of the reference
templates were needed for the following reasons.

– Several mandatory return statements are missing in the original templates.
– Mandatory but indirect use of the framework (e.g., use of TreeViewer at l.

193 in Fig. 1, whose ancestor class is defined in JFace) is often missing in
the original templates.

– Several optional but not mandatory statements (e.g., l. 203 in Fig. 1, without
which the context menu can work) are included in the original templates.

– The reference templates for two subjects from GEF are somewhat erroneous.
– We think that automatically generated method stubs by IDE such as abstract

method overriding are not needed in the mandatory parts. Thus, we have
removed such method stubs from the templates, but taken care so that the
revisions of the templates do not have harmful effects on the FUDA’s results.

– If more than one set of mandatory statements is definable for one subject,
then the closest one to the extracted template is selected.

2 http://wiki.eclipse.org/index.php/JFace
3 http://www.eclipse.org/
4 http://www.eclipse.org/gef/

http://wiki.eclipse.org/index.php/JFace
http://www.eclipse.org/
http://www.eclipse.org/gef/

Identifying Mandatory Code for Framework Use 611

Sample Applications. The experimental data in [5] are obtained by using two
traces of two sample applications per one subject. Since AsymmetricTracker and
FullTracker require only one trace of one sample application, we chose one from
the two samples used by FUDA. Some applications are non-small (e.g., Flow in
GEF contains 4889 LOC).

Experimental Results. The precision and recall of each generated template
is calculated against the corresponding mandatory reference template as follows.
Let M be the set of statements in the mandatory reference template and G be
those in the generated template. Then the precision is calculated by |G∩M |/|G|
and the recall is calculated by |G ∩M |/|M |. Also the numbers of false positives
and false negatives are calculated by |G| − |G ∩M | and |M | − |G ∩M |, respec-
tively. The comparison among AsymmetricTracker’s results, FullTracker’s ones
and FUDA’s ones is shown in Table 2. The detailed results of the case studies
are available at online [10]. For all subjects, AsymmetricTracker outputs tem-
plates with significantly higher precision than FUDA and also higher precision
than FullTracker. Note that to obtain the results, FUDA used two sample ap-
plications per one subject, and to improve the precision results, it will require
more sample applications. With respect to the recall, there cannot be found
any significant difference among them (the averages of AsymmetricTracker and
FullTracker are higher than FUDA). In fact, the sets of false negatives in Asym-
metricTracker’s results and FUDA’s ones are incomparable for several subjects.
For example, only two false negatives are common to both results about con-
tent assist. AsymmetricTracker could not identify two statements due to not
tracking control dependencies by conditional branches, and the others due to
appearing at the marked region of the trace, within which AsymmetricTracker
extracts only callbacks from the framework part. FUDA could not identify six
statements (three return statements, two of which are common to Asymmet-
ricTracker’s ones, and three indirect uses of framework-provided class). Most of
the AsymmetricTracker’s false negatives for GEF are caused by only one condi-
tional branch not tracked by asymmetric slicing, but some of them are tracked
by FullTracker through a bypass on dependency chains.

7.2 Computing Performance

We have evaluated the impact of the tracer of AsymmetricTracker and Full-
Tracker on the performance of a sample application’s execution when collecting
a trace. Among the tool-supported steps, the impact on the trace collection
step is considered most crucial because only this step needs user operations.
Unfortunately, we could not find any implementation of FUDA, and thus could
not evaluate its tracer’s performance. We have woven the tracer of Asymmet-
ricTracker and FullTracker into UI, JFace and SWT parts of Eclipse platform
and measured the time required to launch Eclipse platform with and without
the tracer. The reason why we focused on the launching is that its execution is
not affected by any user operation. According to our measurements, the sample

612 N. Nitta, I. Kume, and Y. Takemura

Table 2. Comparison among AsymmetricTracker’s results, FullTracker’s ones and
FUDA’s ones regarding 6 subjects from JFace, UI, GEF

fr
a
m
ew

o
rk

subject method |M | |G| |M ∩G| false
positives

false
negatives

precision recall

J
F
a
ce

context
menu

AsymmetricTracker 13 13 12 1 1 92.3% 92.3%
FullTracker 13 19 12 7 1 63.2% 92.3%

FUDA 13 16 11 5 2 68.8% 84.6%

content
assist

AsymmetricTracker 20 25 16 9 4 64.0% 80.0%
FullTracker 20 29 16 13 4 55.2% 80.0%

FUDA 17 22 11 11 6 50.0% 64.7%

toolbar
button

AsymmetricTracker 9 10 9 1 0 90.0% 100%
FullTracker 9 12 9 3 0 75.0% 100%

FUDA 9 13 4 9 5 30.8% 44.4%

U
I

navigate
AsymmetricTracker 14 13 13 0 1 100% 92.9%

FullTracker 14 13 13 0 1 100% 92.9%
FUDA 14 33 14 19 0 42.4% 100%

G
E
F figure

AsymmetricTracker 26 18 16 2 10 88.9% 61.5%
FullTracker 26 53 19 34 7 35.8% 73.1%

FUDA 26 67 17 50 9 25.4% 65.4%

connection
AsymmetricTracker 36 21 19 2 17 90.5% 52.8%

FullTracker 36 68 23 45 13 33.8% 63.9%
FUDA 34 75 18 57 16 24.0% 52.9%

average
AsymmetricTracker – – – – – 87.6% 79.9%

FullTracker – – – – – 60.5% 83.7%
FUDA – – – – – 40.2% 68.7%

application ran about 2.8 times slower when collecting its trace on a desktop PC
with a Core i7-2600 at 3.40GHz, 16.0GB of RAM and Windows 7. The impact
to the execution is considered relatively small.

8 Discussion

The validity of our method strongly relies on that of our characterization of
the problem discussed in Sect. 3. Owing to the characterization, we develop
a dynamic flow analysis method to identify the parts strictly related to the
application-specific behavior of interest using one sample application’s trace. In
this section, we will discuss 1) the validity of our characterization of the problem,
2) the validity of our dynamic approach, and 3) the feasibility of our method.

Validity of Our Characterization of the Problem. In Sect. 3, we have
characterized the problem of framework usage extraction as a kind of strict
dynamic flow analysis problem. In the characterization, we focus only on the

Identifying Mandatory Code for Framework Use 613

intended behavior’s activations which are caused by some occurrences of inver-
sion of control in a sample application’s trace and consider extracting a minimal
part of the code which strictly affects the occurrences of inversion of control in
the trace. Therefore, if such a part of the code is extracted, then there should
be a strict dependency between the behavior’s activation and each part of the
extracted code. This means that the extracted code reflects a kind of lowerbound
of the mandatory framework usage. Thus, we can expect that our method has
less potential for false positive results as its nature.

On the other hand, there is no guarantee of less potential for false negative
results in the natures of the method. Such a potential may be introduced by
our characterization of omitting behavior’s aspects other than its activations
and/or our approach to tracking i.e., asymmetric slicing. Thus, the validity of
our characterization of the problem mainly depends on how little false negatives
our method generally causes. We will confirm it through the following discussion.

Validity of Our Dynamic Analysis Approach. As we can see from the re-
sults of the case studies shown in Table 2, AsymmetricTracker almost succeeded
in extracting the mandatory parts of the reference templates through only a sin-
gle sample application trace. Almost all false negatives (except for three state-
ments) are caused by not tracking control dependencies by conditional branches.
Instead, if such control dependencies are tracked, more false positives (e.g., l. 210
in Fig. 1 for context menu) would be caused. On the other hand, FUDA causes
false negatives due to several different reasons. The most essential reason is that
FUDA does not track dynamic flows within the framework parts of traces. As a
whole, the recall of AsymmetricTracker’s results is almost at the same level as
FUDA, while the average is higher than FUDA. With respect to the precision,
AsymmetricTracker is expected to have less potential for false positive results
as its nature (as discussed in the previous subsection). The results of the case
studies well support the prediction. In addition, based on the comparison with
FullTracker, we can confirm the effectiveness of asymmetric slicing.

Feasibility of Our Method. FUDA requires a user for marking on the trace
from when to when the behavior of interest is activated during an execution sce-
nario to refine the results. The task is quite straightforward since no knowledge
about the framework’s APIs is needed for the task. AsymmetricTracker employs
a very similar approach to specifying the origin of dynamic flow tracking, and
the marking task is also straightforward. Dynamic analysis approaches such as
AsymmetricTracker and FUDA cannot work without any executable sample ap-
plication. However, a user can hardly find an appropriate sample application
especially for rare framework usage. Even if the user can find it, the setup of its
runtime environment might not be easy. Since AsymmetricTracker requires only
one trace of a single sample application, such difficulties can be mitigated. As ex-
plained in 7.2, the impact of the tracer on the trace collection step is considered
most crucial, but the tracer still be feasible for a large scale application such as
Eclipse platform. With respect to the full-automated steps, each template in the

614 N. Nitta, I. Kume, and Y. Takemura

case studies could be obtained within 15 minutes. These steps will significantly
reduce manual effort for mandatory part extraction.

Strengths and Weaknesses. As a whole, AsymmetricTracker has almost suc-
ceeded in extracting the mandatory code for framework use through only a single
application’s trace with relatively low false positives and negatives. In compar-
ison with FUDA, AsymmetricTracker fails to extract a mandatory statement
when there exists a control dependency by a conditional branch between the
statement and the occurrences of inversion of control. On the other hand, FUDA
fails to extract a mandatory statement if it is a return statement or indirect use of
the framework. AsymmetricTracker is suitable to extract the mandatory part of
the application code especially in case of using dependency injection, but FUDA
requires two or more applications to obtain such a part. Instead, FUDA can
extract optional parts which are excluded by AsymmetricTracker. Since Asym-
metricTracker well preserves the traceability links between the template and the
sample application, as suggested in [5], they would be helpful to manually locate
optional parts. For example in Fig. 1, optional statements (e.g., l. 216 and l. 223)
are placed close to mandatory statements. Thus, locating them and determining
whether they are optional or not are rather straightforward.

9 Related Work

9.1 Framework Usage Support

Many research efforts have been paid to support complicated framework use. We
categorize the researches into the following three groups by their usage context.

Example Recommender Tools. Many tools have been presented to support
a programmer who is faced with difficulties using unfamiliar framework’s APIs
by recommending example component, usage or code snippet. Such approaches
are categorized by their underlying techniques. Several tools have been pro-
posed [4, 11–15] which recommend examples by mining source code repositories
or an existing application. CodeWeb [11] uses software structure to obtain us-
age patterns, CodeBroker [12] uses comments and method signatures to locate
task-relevant components, and Strathcona [4] uses structural context to gener-
ate a source code snippet. MAPO [13] clusters code snippets which are obtained
from a repository and mines API usage patterns. In [14], path sensitive static
dataflow analysis, clustering and pattern abstraction are used to human-readable
usage examples. In [15], a client change history is used to detect temporal us-
age patterns. These approaches does not assume the programmer’s knowledge
about the framework’s APIs, but they require source code repositories. Prospec-
tor [16], XSnippet [17] and PARSEWeb [18] use source and destination types to
recommend examples to obtain an object of the destination type from that of
the source type. These approaches are quite helpful in specific usage contexts.
However, they require the knowledge of these types and their usage contexts.

Identifying Mandatory Code for Framework Use 615

Defect Detection Tools. Programmers who use unfamiliar framework’s APIs
are often required to follow some implicit rules. If they do not use the API’s
without following the rules, then potential defects can be introduced. To detect
such potential defects, several tools [6, 19, 20] have been proposed. For example,
PR-Miner [19] and JADET [20] can detect such potential defects using API usage
patterns which frequently appear in a repository. DMMC [6] detects missing
method calls based on usage pattern mining with relatively low false positives.
From the aspect of framework usage extraction, these tools can be considered
as kinds of code completion tools. If a partial usage of the framework’s APIs
has been written by a programmer, then the tools can help him/her complete
his/her code by detecting missing code. In this paper, we focus on writing such
a partial usage rather than completing its implementation.

Framework Usage Extraction Tools. Most of the above tools use static
approaches to retrieve source code repositories. The main advantage of static
approaches is that they do not require any executable application and any run-
time environment. However, such tools tend to require a number of instances of
framework usage which appear in the code of many sample applications or source
code repositories to obtain one reliable result. In contrast to them, dynamic ap-
proaches may allow a user to work with a smaller number of applications. FUDA
[5] is a pioneering work to use dynamic approach for framework usage extrac-
tion, and it is one of the closest researches to ours. It can extract mandatory
and optional code for framework use as a template from few traces of few sample
applications. They also demonstrated the quality of the generated templates by
showing high precision and recall of the templates through case studies of several
real-world frameworks. Employing a stricter dynamic flow analysis, we improve
their results in terms of the number of sample applications to use. Our method
requires only a single sample application’s trace to obtain mandatory code. As
is the case with FUDA, our method generates mandatory code as a template
for certain framework use. The validity of our results is confirmed by comparing
the results with FUDA’s reference templates. The main difference from FUDA
in terms of technical aspects is that FUDA uses a lightweight slicing technique,
which only tracks object IDs of parameters, return values and receivers which
appear at the framework-application boundary, to reduce false positives but our
method uses a stricter dynamic flow analysis. This feature will work in the di-
rection to reduce false positives and to possibly increase false negatives. We have
confirmed that our method causes significantly low numbers of false positives in
the case studies. With respect to false negatives, the results of our method and
those of FUDA are generally incomparable. Since our method has less potential
for false positive results as its nature, it will be suitable to extract mandatory
framework usage. In contrast, if one wishes to obtain some optional framework
usage in addition to mandatory one, then FUDA will be more helpful than ours.

9.2 Program Analysis

From a technical point of view, object flow [9] is a closest one to our dy-
namic analysis technique, namely asymmetric slicing. The dependency used by

616 N. Nitta, I. Kume, and Y. Takemura

asymmetric slicing within the application specific part correspond to origin re-
lationship of object flow, and the dependency within the framework part are a
strict extension of that part of object flow. Although a static analysis technique,
thin slicing [21] uses a similar data dependency to object flow. As is the case with
object flow, the dependency within the framework part cannot be completely
tracked by thin slicing with no expansion. The paper also presents a method for
hierarchically expanding thin slices, but it cannot be used in automated frame-
work usage extraction since the expansion is controlled manually. Among trace
analysis methods, we should pick up Scenariographer [22]. It extracts sequences
of method invocations to the objects of a target class from a trace, and gen-
erates class usage scenarios from the method invocation sequences. FUDA and
our method also extract sequences of method invocations from a trace, but they
are not restricted to invocations to the objects of one class but focus on the
invocations between the framework and the application parts.

10 Conclusion

We have characterized the framework usage extraction problem as a kind of
strict dynamic flow analysis problem and presented a method to automatically
solve the problem which can work with only a single execution trace of a single
sample application. By this method, a user can understand why each statement
of the extracted usage is needed. The results of the case studies indicate that our
characterization of the problem is valid and our method is suitable to extract
mandatory framework usage from application code. As future work, we wish to
improve the recall of AsymmetricTracker’s outputs by distinguishing types of
control dependency to track from those not to track. To extract optional parts,
we expect that calls to the framework part in the marked region are useful.

Acknowledgment. The authors would like to thank Yusuke Tezuka for his
initial contribution to this work, and also thank Keishi Yamane for his efforts
to implement AsymmetricTracker. This work was partly supported by Grants-
in-Aid for Scientific Research (C) No.25350306 from the Japan Society for the
Promotion of Science and Grant-in-Aid for Challenging Exploratory Research
No.23650016 from the Japan Ministry of Education.

References

1. Ko, A., Myers, B., Aung, H.: Six learning barriers in end-user programming sys-
tems. In: Proceedings of the 2004 IEEE Symposium on Visual Languages Human
Centric Computing (VLHCC 2004), pp. 199–206 (2004)

2. Fairbanks, G.: Software engineering environment support for frameworks A posi-
tion paper. In: Proceedings of the ICSE 2004 Workshop on Directions in Software
Engineering Environments (WoDiSEE 2004), pp. 70–73 (2004)

3. Fowler, M.: Inversion of control containers and the dependency injection pattern
(2004), http://www.martinfowler.com/articles/
injection.html#FormsOfDependencyInjection

http://www.martinfowler.com/articles/injection.html#FormsOfDependencyInjection
http://www.martinfowler.com/articles/injection.html#FormsOfDependencyInjection

Identifying Mandatory Code for Framework Use 617

4. Holmes, R., Murphy, G.C.: Using structural context to recommend source code
examples. In: Proceedings of ICSE, pp. 117–125 (2005)

5. Heydarnoori, A., Czarnecki, K., Bartolomei, T.T.: Supporting framework use via
automatically extracted concept-implementation templates. In: Drossopoulou, S.
(ed.) ECOOP 2009. LNCS, vol. 5653, pp. 344–368. Springer, Heidelberg (2009)

6. Monperrus, M., Bruch, M., Mezini, M.: Detecting missing method calls in object-
oriented software. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 2–25.
Springer, Heidelberg (2010)

7. Generative Software Development Lab.: FUDA supporting material,
http://gsd.uwaterloo.ca/tse-fuda

8. Salah, M.: An environment for comprehending the behavior of software systems,
Ph.D. dissertation, Drexel University (2005)

9. Lienhard, A., Ĝırba, T., Wang, J.: Practical object-oriented back-in-time debug-
ging. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 592–615. Springer,
Heidelberg (2008)

10. Software Design and Verification Lab.: ECOOP 2014 artifacts page,
http://nitta-lab-www.is.konan-u.ac.jp/ECOOP2014

11. Michail, A.: Data mining library reuse patterns using generalized association rules.
In: Proceedings of ICSE, pp. 167–176 (2000)

12. Ye, Y., Fischer, G.: Supporting reuse by delivering task-relevant and personalized
information. In: Proceedings of ICSE, pp. 513–523 (2002)

13. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending
API usage patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
318–343. Springer, Heidelberg (2009)

14. Buse, R.P.L., Weimer, W.: Synthesizing API usage examples. In: Proceedings of
ICSE, pp. 782–792 (2012)

15. Uddin, G., Dagenais, B., Robillard, M.P.: Temporal analysis of API usage concepts.
In: Proceedings of ICSE, pp. 804–814 (2012)

16. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid mining: helping to nav-
igate the API jungle. In: Proceedings of PLDI, pp. 48–61 (2005)

17. Sahavechaphan, N., Claypool, K.: XSnippet: mining for sample code. In: Proceed-
ings of OOPSLA, pp. 413–430 (2006)

18. Thummalapenta, A., Xie, T.: PARSEWeb: A programmer assistant for reusing
open source code on the web. In: Proceedings of ASE, pp. 204–213 (2007)

19. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules
and detecting violations in large software code. In: Proceedings of ESEC/FSE, pp.
306–315 (2005)

20. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: Pro-
ceedings of ESEC/FSE, pp. 35–44 (2007)

21. Sridharan, M., Fink, S.J., Bod́ık, R.: Thin slicing. In: Proceedings of PLDI, pp.
112–122 (2007)

22. Salah, M., Denton, T., Mancoridis, S., Shokoufandeh, A., Vokolos, F.I.: Scenariog-
rapher: A tool for reverse engineering class usage scenarios from method invocation
sequences. In: Proceedings of ICSM, pp. 155–164 (2005)

http://gsd.uwaterloo.ca/tse-fuda
http://nitta-lab-www.is.konan-u.ac.jp/ECOOP2014

Cooperative Scheduling of Parallel Tasks

with General Synchronization Patterns

Shams Imam and Vivek Sarkar

Department of Computer Science, Rice University
{shams,vsarkar}@rice.edu

Abstract. In this paper, we address the problem of scheduling parallel
tasks with general synchronization patterns using a cooperative runtime.
Current implementations for task-parallel programming models provide
efficient support for fork-join parallelism, but are unable to efficiently
support more general synchronization patterns such as locks, futures,
barriers and phasers. We propose a novel approach to addressing this
challenge based on cooperative scheduling with one-shot delimited con-
tinuations (OSDeConts) and event-driven controls (EDCs). The use of
OSDeConts enables the runtime to suspend a task at any point (thereby
enabling the task’s worker to switch to another task) whereas other run-
times may have forced the task’s worker to be blocked. The use of EDCs
ensures that identification of suspended tasks that are ready to be re-
sumed can be performed efficiently. Furthermore, our approach is more
efficient than schedulers that spawn additional worker threads to com-
pensate for blocked worker threads.

We have implemented our cooperative runtime in Habanero-Java (HJ),
an explicitly parallel language with a large variety of synchronization pat-
terns. The OSDeCont and EDC primitives are used to implement a wide
range of synchronization constructs, including those where a task may
trigger the enablement of multiple suspended tasks (as in futures, barri-
ers and phasers). In contrast, current task-parallel runtimes and sched-
ulers for the fork-join model (including schedulers for the Cilk language)
focus on the case where only one continuation is enabled by an event
(typically, the termination of the last child/descendant task in a join
scope). Our experimental results show that the HJ cooperative runtime
delivers significant improvements in performance and memory utiliza-
tion on various benchmarks using future and phaser constructs, relative
to a thread-blocking runtime system while using the same underlying
work-stealing task scheduler.

Keywords: Task Parallelism, Cooperative Scheduling, Delimited Con-
tinuations, Async-Finish Parallelism, Habanero-Java.

1 Introduction

With the advent of the multicore era, it is clear that future improvements in ap-
plication performance will primarily come from increased parallelism in software.

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 618–643, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Cooperative Scheduling of Parallel Tasks 619

A dominant programming model for multicore processors is the Task Parallel
Model (TPM), as exemplified by programming models such as Cilk [2], TBB [25],
OpenMP 3.0 [24], Java’s ForkJoinPool [22], Chapel [4], X10 [5], Habanero-C [31],
and Habanero Java (HJ) [3]. Current implementations for the TPM provide effi-
cient support for fork-join parallelism, but are unable to efficiently support more
general synchronization patterns that are important for a wide range of applica-
tions. In the presence of patterns such as futures [17], barriers, and phasers [26],
current TPM implementations revert to thread-blocking scheduling of tasks. Bar-
riers and futures are two common synchronization patterns advocated by many
industry multicore programming models that go beyond the fork-join model.
But, there is as yet no demonstration of an effective solution to schedule pro-
grams with futures and barriers in a scalable fashion when the number of blocked
tasks exceeds the number of worker threads.

In this paper, we address the problem of efficient cooperative scheduling of
parallel tasks with general synchronization patterns. Our solution is founded
on the use of one-shot delimited continuations (OSDeConts, Section 4.1) and
single-assignment event-driven controls (EDCs, Section 4.2) to schedule tasks
cooperatively in the presence of different synchronization patterns. The OSDe-
Cont and EDC primitives can be used to support a wide range of synchronization
constructs (SyncCons) including those where a task/event may trigger the en-
ablement of multiple suspended tasks. This general case is not supported by
work-stealing schedulers for Cilk and other fork-join models for task parallelism.
While efficient continuation-based scheduling is well established for fork-join par-
allelism in well structured tree-like computations in projects such as Cilk and
Manticore [10], we are unaware of any past work that supports more general
(and a wide variety of) synchronization patterns in a scalable manner with sup-
port for large numbers of suspended tasks. To the best of our knowledge, our
paper is the first to support synchronization patterns that represent arbitrary
computation graphs through the use of one-shot continuations.

Our cooperative approach of using OSDeConts and EDCs is more perfor-
mant than schedulers that spawn additional worker threads to compensate for
blocked worker threads (as well as approaches that leave worker threads blocked
without spawning new worker threads). Transparent use of OSDeConts allows
us to leverage the benefits of event-driven programming while the user code
remains in standard thread-based structure, thereby avoiding the need to write
fragmented difficult to understand event-driven programs where logical units are
broken down into multiple callbacks [9]. Section 2 uses simple example programs
to illustrate the performance issues with scheduling programs that use block-
ing SyncCons and the productivity issues with event-driven programming. The
contributions of this paper are:

– Use of OSDeConts and EDCs to create a new generic cooperative runtime for
task-parallel programs (Section 4). We believe that any task-parallel Sync-
Con can be supported by this cooperative runtime. To the best of our knowl-
edge, this is the first effort to systematically use OSDeConts to support a
task-parallel runtime. A key challenge we address in our runtime is that

620 S. Imam and V. Sarkar

the resolution of a synchronization can, in general, trigger the enablement
of multiple suspended tasks, a scenario that does not occur in traditional
fork-join operations.

– We include recipes for implementing different SyncCons using the API ex-
posed by our cooperative runtime (Section 5). These (and other) SyncCons
are all treated uniformly by the runtime and can all be used together without
issues in the same program.

– An implementation of our cooperative runtime for the HJ language which
supports a large variety of SyncCons.

– Empirical evaluation of the performance of our cooperative runtime relative
to a runtime that uses thread-blocking operations (Section 6). Our experi-
ments on various benchmarks show that the cooperative runtime can achieve
over 10× speed-up over a runtime that uses thread-blocking operations while
implementing SyncCons such as futures and phasers.

The rest of this paper includes Section 3 which discusses related work and
Section 7 which contains our conclusions. For the interested reader, [21] con-
tains additional details on our implementation, including the use of an extended
version of the open source Kilim bytecode weaver [28] to support OSDeConts.
Our implementation conforms to all the constraints imposed by a standard Java
Virtual Machine (JVM).

2 Motivating Examples

In popular task parallel runtimes such as those for HJ, X10, and Chapel, the
runtime is usually able to handle synchronization points associated with fork
and join operations without blocking the worker. However, other potential syn-
chronization points (such as resolution of future results, point-to-point syn-
chronization points, lock-based implementation of atomic regions) are blocking
operations in the runtime. This may result in the worker threads being blocked,
effectively resulting in fewer parallel threads that are executing. The runtime can
compensate by creating additional worker threads, but this adds to overhead in
the runtime as each thread needs its own system resources. In addition, context
switching overhead is incurred when the blocked threads become unblocked.

On Intel processors it takes about 1100 ns per thread context switch (with-
out cache effects) [27]. In contrast, object allocation, method call, and setting
fields takes around 30 ns, 5 ns and 1 ns respectively [14] on the CLR (timings
on the JVM should be similar). Our continuation creation scheme includes one
object allocation, setting fields per live variable to be saved, and returning from
method calls. Using continuations should cost less than 50 ns per method in
the call chain. Besides, the compensation strategy of creating additional threads
is contradictory to the goal of the TPM which relies on using comparatively
few heavyweight threads to run many lightweight tasks. Finally, these current
solutions do not scale as increasing the number of worker threads can eventu-
ally cause the runtime to crash due to exhaustion of memory or other system
resources.

Cooperative Scheduling of Parallel Tasks 621

In addition to the problems mentioned above, presence of synchronization con-
straints can also lead to starvation situations when all available worker threads
become blocked. In such scenarios, the program behavior can change when the
parallel program is run with different numbers of worker threads with the star-
vation scenario not occurring when enough worker threads are provided to com-
pensate for the number of tasks involved in the synchronization constraint.

1 public class CyclicProducers {
2 public static void main(final String [] args) {
3 // number of tasks to create
4 final int numTasks = 64;
5 finish {
6 final ItemHolder itemHolder = new ItemHolder(numTasks);
7 for (int i = 0; i < numTasks ; i++) {
8 final int myId = i;
9 async {

10 // first produce an item
11 final int myProducedItem = produceItem(...);
12 itemHolder.put(myId , myProducedItem);
13 ...
14 // now consume item produced by neighbor
15 final int neighId = (myId + 1) % numTasks ;
16 // wait until neighbor produces item
17 final Object itemToConsume = itemHolder.get(neighId);
18 consumeItem(myId , itemToConsume);
19 } } } } }

Fig. 1. An example that can lead to starvation when a thread-blocking runtime runs
this program with too few worker threads

Consider an example program, in Fig. 1, which spawns a number of tasks
which form a ring. Each task is involved in a two stage computation: in the first
stage the task produces a value (in lines 11-12) and in the second stage the task
consumes the value produced by its immediate right neighbor in the ring (in
line 17-18). The synchronization constraint of having to wait for the neighbor to
produce the item handled in the get()method of the ItemHolder data structure
is not shown in the example, but one can imagine it being implemented by
traditional locks in any of the languages mentioned above (HJ, Cilk, X10, etc.).
Locks in these languages have blocking implementations and cause the tasks to
block worker threads. Consider this program, which spawns 64 tasks, being run
with 64 worker threads. In such a scenario, each of the spawned tasks would
potentially be assigned to individual worker threads and each task will have an
opportunity to run and produce a value. As a result, all of the blocking calls
to get() would eventually be satisfied and the computation would complete.
Instead, consider the program being run on a runtime with 32 worker threads.
If the task scheduler schedules alternate tasks (i.e. tasks with id 0, 2, 4, ..., 62),
each of them will produce their value and block in the call to get() since their
neighbor has not been scheduled to run and never produces the value that these
tasks want to consume. Since all available worker threads become blocked, no
computational progress can be made and we have a starvation! If a cooperative

622 S. Imam and V. Sarkar

1 public class CyclicProducers {
2 public static void main(final String [] args) {
3 // number of tasks to create
4 final int numTasks = 8;
5 finish {
6 final promise <int >[] items = new promise <>[numTasks]...;
7 for (int i = 0; i < numTasks ; i++) {
8 final int myId = i;
9 async {

10 // first produce an item
11 final int myProducedItem = produceItem(...);
12 items[myId].put(myProducedItem);
13 ...
14 // now consume item produced by neighbor
15 final int neighId = (myId + 1) % numTasks ;
16 // trigger callback when neighbor produces item
17 asyncAwait(items[neighId]) {
18 final Object itemToConsume = items[neighId].nbGet ();
19 consumeItem(myId , itemToConsume);
20 } } } } } }

Fig. 2. An event-driven version of Fig. 1 where callbacks are used to avoid thread-
blocking operations. A promise can be viewed as a container with a full/empty state
that obeys a dynamic single-assignment rule. The nbGet() methods represents a non-
blocking get() operation. The nbGet() can only be performed inside an asyncAwait

block on any promise registered in its await clause (e.g. items[neighId] on line 17).

runtime were used instead, no starvation would occur in this program irrespective
of the number of worker threads used.

To avoid blocking, programmers can choose to write their code in an event-
driven style with callback registrations. Fig. 2 shows an event-driven version of
Fig. 1 where callbacks are used to avoid thread-blocking operations. In this ver-
sion, the possible blocking calls to get() are replaced by a callback registration
(at line 17-19) on the rest of the computation to run when the value from the
neighbor is eventually produced. This version requires additional support from
the language or runtime to allow callback registrations on the underlying prim-
itive (e.g. promise) being used to implement the data structure. Though this
version of the program is cumbersome to write, it will never display starvation
irrespective of the task scheduler used since there are no blocking operations and
worker threads can always be used to make computation progress.

As another example, Fig. 3 shows the classic (and inefficient) parallel version
of the Fibonacci function written in an event-driven style. This style of program-
ming makes writing and maintaining code somewhat onerous and error-prone.
A key difficulty is that the logical unit of work is broken across callbacks and
methods are passed extra parameters to help registering on the callbacks. There
is no direct return of a value from the callee to the caller. These make the code
harder to read and maintain, especially as the method size grows and multiple
parameters need to be passed along the call chain.

Fig. 4 shows an example program to compute Fibonacci numbers using fu-
tures to asynchronously compute values of the subproblems. The code for this
version follows a more standard program structure and is easier to read and

Cooperative Scheduling of Parallel Tasks 623

1 public class FibCallback {
2 public static void fib (int n, promise <int> f) {
3 if (n < 2) { f.put(n); return; }
4 promise <int> x = newPromise <>();
5 promise <int> y = newPromise <>();
6 async { fib(n-1, x); };
7 async { fib(n-2, y); };
8 asyncAwait(x, y) { f.put(x.nbGet() + y.nbGet()); }
9 }

10 public static void main (String [] args) {
11 int n = Integer .parseInt (args[0]);
12 promise <int> res = newPromise <>();
13 async { fib(n, res); };
14 asyncAwait(res) {
15 println (res.nbGet());
16 } } }

Fig. 3. Version of the Fibonacci numbers program that uses event-driven style with
callbacks and asynchronous tasks. Asynchronous tasks are created with async; asyn-
chronous callbacks are registered on promises using asyncAwait. The fib() method
needs an extra parameter to store the promise and allow callback registrations. Call-
ing fib does not return a result directly, rather an additional callback needs to be
registered on line 14 to receive and display the result.

1 public class FibFuture {
2 public static int fib (int n) {
3 if (n < 2) { return n; }
4 future<int> x = async <int >{ fib(n-1); };
5 future<int> y = async <int >{ fib(n-2); };
6 return x.get() + y.get();
7 }
8 public static void main (String [] args) {
9 int n = Integer .parseInt (args[0]);

10 future<int> res = async <int >{ fib(n); };
11 println (res.get());
12 } }

Fig. 4. Version of the Fibonacci numbers program that uses futures for synchroniza-
tion with asynchronous tasks. Calls to future get() wait until the value in the future
becomes available. This example is aligned with thread-based code where no extra pa-
rameters are required to register callbacks and the function calls return values directly.

maintain compared to Fig. 3. The get() operations are potential synchroniza-
tion points where the task may suspend itself if the value of the future has not
already been resolved. In many current runtimes, these potential synchroniza-
tion points could result in thread blocking operations. In our runtime, we handle
the synchronization points cooperatively using OSDeConts without blocking the
worker thread. This allows us to leverage the benefits of event-driven program-
ming while the user code remains in standard thread-based structure (i.e. the
user writes programs similar to Fig. 1 and Fig. 4). As we see in Section 6.2, the
non-blocking version of Fibonacci with futures clearly outperforms a blocking
version by a factor that exceeds 100×. Similar performance gains can also be
achieved by cooperatively scheduling tasks with other SyncCons, such as phasers
(see Section 6.3).

624 S. Imam and V. Sarkar

3 Related Work

The general idea of using event-based programming in thread-based code has
also been explored by others in the past. In Tasks [9], explicit method annota-
tions provide yield points. These annotations are used to translate the code into
event-based style using a form of continuation passing style (CPS) translation.
Unlike what its name might suggest, Tasks has nothing to do with task par-
allelism, instead it is a programming model for writing event-driven programs.
Our implementation requires no explicit method annotations, uses OSDeConts,
and runs safely on a parallel scheduler (i.e. the operations are thread-safe).

Use of continuations for task parallelism was popularized by Cilk [2], an exten-
sion to C that provides an abstraction of threads in explicit CPS. Our approach
uses OSDeConts to achieve the same goal as Cilk where there are no thread block-
ing operations in the generated code. We support additional SyncCons where a
task may trigger the enablement of multiple suspended tasks (as in futures, bar-
riers and phasers) in contrast to Cilk where only one continuation is enabled
by an event (the termination of the last child/descendant task in a join scope).
Since Cilk relies on serial elision to be equivalent to a sequential program, such
programs are not supported in Cilk as there may be no equivalent sequential
program which use these SyncCons. Having nonblocking operations allows us
to provide proper time guarantees, since some progress is continually made to-
wards the computation. In Cilk, such time guarantees are lost when locks, which
are typically blocking, are used. However, supporting the time bound guarantee
comes at a cost of space bound with all the additional space for temporary local
variables in the heap.

The Intel Threading Building Blocks (TBB) [25] task scheduler is inspired
by the early Cilk work-stealing scheduler. TBB deals with possible blocking
operations by running other tasks on the same stack, effectively stitching the call
stack of the new tasks on top of the blocked task’s stack. TBB also allows the
parent tasks to specify another “continuation” task that will continue its work
when such blocking scenarios arise. This minimizes the load on the scheduler and
the uncontrolled overflow of the stack. However, this places the burden on the
programmer to detect and schedule tasks to avoid blocking. In our approach, the
user does not have to deal with the blocking constructs manually, the runtime
implicitly handles the creation of continuations and the scheduler picks the next
tasks to execute. Also, since each task has its own stack, we do not have to
worry about the stack overflowing due to stitching of frames from multiple tasks.
Overall, we go a step further than Cilk and TBB by showing how additional
SyncCons such as futures, phasers and isolated blocks can be supported in a
nonblocking manner.

Qthreads [30] is a lightweight threading library for C/C++ applications that
also uses call stack stitching, it allows spawning and controlling tasks with small
(4k) stacks. Our runtime is based on OSDeConts and poses no limits on the
stack size of tasks created by the runtime, the stack size for worker threads in
our implementation is limited by the JVM thread stack size (default around
1M for 64-bit JVMs) and the limits for OSDeConts is defined by the size of

Cooperative Scheduling of Parallel Tasks 625

the heap. The qthreads API provides access to full/empty-bit (FEB) seman-
tics (producer-consumer pattern with mutable buffer) and the threads need to
be able to interact with the FEB for synchronization. In our runtime, tasks
synchronize among themselves using the EDC primitive which is based on the
observer pattern.

Li et al. present an alternative approach to implement concurrency in Glasgow
Haskell Compiler (GHC) [23]. The runtime offers continuations as a mechanism
from which concurrency can be built and also supports preemptive concurrency
of very lightweight threads. In their implementation of GHC, the list of sus-
pended continuations is periodically polled by the scheduler to see if the cause
for blocking has been resolved. We differ in that we use OSDeConts and avoid
any polling while deciding to resume suspended tasks by allowing EDCs to add
resumed tasks into the scheduler’s work queue. Also, we run inside the JVM
where we cannot create continuations directly and have to rely on CPS-like
transforms to support OSDeConts.

Fluet et al. [10] use full continuations to support fine-grained parallelism in
their Manticore project. Manticore, like the GHC, is based on a functional lan-
guage. It relies on a tree of futures that allows stacking continuations and a
comparatively limited set of synchronization patterns (mainly futures). In con-
trast, our abstractions support a wide variety of synchronization patterns (e.g.
futures, phasers, atomic) and arbitrary computation DAGs where continuations
may be placed in the work queue without restrictions.

The use of continuations in task parallel programs has also been proposed
by the C++ implementation of X10 [29]. The work-stealing scheduler in their
implementation supports the work-first policy inspired from Cilk. Their imple-
mentation supports distributed async-finish programs along with conditional
atomic blocks but does not support clocks (a precursor to HJ phasers). In our
approach we rely on the help-first policy to have independent stack frames for
tasks to enable use of OSDeConts and can use either a work-sharing or work-
stealing scheduler. Our cooperative runtime is general enough to support a wide
variety of SyncCons as we prove in our implementation.

Continuations are also used in the Continuators construct for an implicitly
parallel implementation of Scheme [19]. There continuations are used to invoke
the body of a function application (without blocking the interpreter) after the
arguments have been evaluated in parallel. We employ delimited continuations
with the same goal of avoiding thread blocking operations, additionally, our
proposal provides an API to implement SyncCons which subsumes the parallel
argument evaluation case. Also, our implementation dynamically discovers sus-
pension points and minimizes overhead by avoiding continuation creations when
EDCs have already been resolved.

4 Cooperative Runtime for Task Scheduling

The general TPM allows programmers to represent their computations as di-
rected acyclic graphs with dependences between inter-dependent tasks. As a re-
sult, there has been a lot of work done in developing structured synchronization

626 S. Imam and V. Sarkar

constructs (SyncCons) on the TPM by the community. These constructs include
the well structured async-finish variant of fork-join style tasks, point-to-point
synchronization with futures, localized and group synchronization using phasers,
and weak atomicity in critical sections [2,17,26,3]. Such constructs introduce new
challenges for the runtime while scheduling and executing tasks.

Synchronization constraints can prevent a currently executing task from mak-
ing further progress as it waits to synchronize with other ready but not executing
task(s). Many task parallel runtimes implement such waits by either busy-waiting
until the constraint is resolved or by blocking the worker thread. An alternative
approach is to use cooperative scheduling of tasks where an executing task, via
runtime support, decides to actively suspend itself and yield control back to the
runtime. The runtime can then perform book-keeping on the suspended task and
use the worker thread to execute other ready tasks. The suspended task can be
resumed and scheduled for execution when the synchronization constraint that
caused it to suspend is resolved. This approach allows the runtime to continue
making progress in the computation and to constantly exploit available paral-
lelism during application execution without spawning additional threads. This
nonblocking approach enables us to provide proper time guarantees since each
worker is actively making some progress towards the computation. Supporting
the time bound guarantee comes at a cost of space bound since many tasks may
be in flight (either suspended, ready, or executing) with all the additional space
for temporary local variables in the heap.

In the rest of the section, we present some background on one-shot OSDe-
Conts and EDCs. Then we describe the API we expose in our runtime to allow
language/library developers implement a variety of SyncCons. Finally, we ex-
plain how OSDeConts and EDCs are used to build a cooperative task-parallel
runtime.

4.1 One-Shot Delimited Continuations

Delimited continuations (DeConts) were introduced by Felleisen in 1988 [8] where
he referred to them as prompts. Continuations represent the rest of a compu-
tation from any given point. They refer to the ability to capture the state of
a computation at that point, the computation can later be resumed from that
point by resuming the continuation. In contrast, DeConts represent the rest of
the computation from a well-defined outer boundary, i.e. a subcomputation. This
allows DeConts to return to their caller allowing the program to proceed at the
call site. DeConts are hence a good choice when a limited part of the computa-
tion needs to be saved/restored [6]. In general, a continuation can be resumed
multiple times from the same captured state; however one-shot continuations re-
fer to continuations that are resumed at most once. This guarantee makes them
cheaper to implement because they don’t require making additional copies of
the state.

Cooperative Scheduling of Parallel Tasks 627

4.2 Event-Driven Controls

Event-Driven Controls (EDCs) are an extension to Data-Driven Controls (DDCs)
which were presented in [20] and used to support event-driven actors in a task
parallel runtime. A DDC lazily binds a value and a closure called the execution
body (EB), both the value and the EB follow the dynamic single-assignment
property ensuring data-race freedom. When the value becomes available, the
EB is executed using the provided value. We generalize DDCs to EDCs in this
work to allow multiple EBs to be attached to the EDC as callbacks. We treat the
availability of a value in the EDC as an event and use the event to trigger the
execution of EBs. Due to the single-assignment property, the registered EBs are
executed at most once. We also allow multiple values to be added into the EDC
as long as the values are logically equivalent, this does not violate the dynamic
single assignment property and it does not trigger re-executions of the EBs. At-
tempting to add unequal values into the EDC is reported as a runtime error.
Fig. 5 shows a simplified implementation of a DDC excluding SyncCons. The
EB of the EDC may be executed either asynchronously or synchronously. For
example, in a task parallel runtime the EB could store book-keeping data and
act as a synchronous callback into the runtime. The EB could trigger possible
asynchronous actions, such as scheduling and execution of a task, by interacting
with the runtime.

1 class EventDrivenControl {
2 ValueType value = ...;
3 List <ExecBody > ebList = ...;
4 /** triggers callback execution **/
5 void setValue (ValueType theValue) {
6 if (! valueAvailable()) {
7 value = theValue ;
8 // execute the callbacks/EBs
9 ebList.each().scheduleWith(value);

10 } } else {
11 // check for error
12 } }
13 /** enables callback registration **/
14 void addExecutionBody(ExecBody theBody) {
15 if (valueAvailable()) {
16 // value available , execute immediately
17 theBody .scheduleWith(value);
18 } else {
19 // need to wait for the value
20 ebList.add(theBody);
21 } } }

Fig. 5. Simplified representation of an EDC not displaying synchronizations or vali-
dations. Both the value and the execution body can be lazily attached. The execu-
tion body determines whether it is scheduled asynchronously or synchronously in the
scheduleWith() method.

628 S. Imam and V. Sarkar

4.3 Cooperative Runtime - Design

To allow library/language developers to create their own SyncCons, we expose
EDCs as an API in our runtime. The OSDeConts created to manage the book-
keeping are not exposed to the developer; this is especially desirable since con-
tinuations are notorious for being hard to use and to understand by developers
(as opposed to compilers and runtime systems). The API contains the following
operations:

– The static newEDC() factory method is used to instantiate a new EDC. EDCs
are initialized without a resolved value and with an empty EB list. The EDC
can be used like a regular object, e.g. stored as a field, passed around as
parameters, invoked as receivers for methods, etc.

– The static suspend(anEdcInstance) method signals possible creation of a
suspension point. If the EDC passed as an argument has not been resolved,
the current task is suspended and the runtime handles the book-keeping to
register an EB to resume the task when the EDC is resolved.

– The setValue(someValue) method resolves the EDC, i.e. it binds a value
with the EDC and triggers the execution of any EB registered with the EDC.
Suspended tasks registered with the EDC will be resumed and scheduled for
execution by the runtime.

– The isValueAvailable() can be used to check whether the value in the
EDC has been resolved.

– The getValue() method retrieves the value associated with the EDC. It
is only safe to call this method if the value in the EDC has already been
resolved. If execution proceeds past a call to suspend(), it is guaranteed
that a value is available in the EDC.

With these operations in place, language/library developers can implement
their custom SyncCons and synchronization patterns. The same API is used
in our implementation of Habanero-Java to support the constructs such as end
of finish, futures, phasers, etc. For example, Fig. 6 shows how simple it is to
implement futures using the exposed API. A single EDC is used to suspend all
consumers who try to read the value of the future before it has been resolved.
When the value of the future is available, the EDC is resolved with a call to
setValue() and any suspended consumer tasks are resumed by the runtime.

4.4 The Cooperative Runtime

In our cooperative runtime, when a potential synchronization point is discovered
dynamically, thread blocking operations are avoided by suspending the currently
executing task and cooperatively scheduling other ready tasks from the work
queue. When the EDC is resolved, the suspended task (and its continuation) is
put back into the work queue to eventually be resumed by a worker thread. Task
suspensions are implemented by using standard OSDeConts and this guarantees
that the runtime never spawns more worker threads than it was initially started
with. The trade-off is that the compiler and the runtime now need to support

Cooperative Scheduling of Parallel Tasks 629

1 class Future <T> {
2 EventDrivenControl<T> edc = EventDrivenControl.newEDC<T>();
3 public void put(T item) {
4 edc.setValue (item); // resumes consumer (s)
5 }
6 public T get() {
7 // suspend consumer task till value produced
8 EventDrivenControl.suspend (edc);
9 // return value after it is resolved

10 return edc.getValue ();
11 } }

Fig. 6. Futures implemented using the EDC API provided by the cooperative runtime.
All consumer tasks suspend until the item is produced. Once the item is available,
multiple suspended consumers are resumed by the runtime.

the overhead of creating the OSDeConts and handling the management of the
EDCs in addition to the management of threads and tasks.

A pictorial summary of our runtime is provided in Fig. 7. The runtime co-
operatively schedules tasks using OSDeConts and EDCs in the presence of ar-
bitrary dependences or synchronization constraints. The runtime places tasks
into queues while the pool of worker threads continuously attempt to execute
tasks dequeued from these queues. Execution of tasks may result in more tasks
being spawned and enqueued into the queues. An application starts with a sin-
gle main task in the work queue which promptly gets executed by one of the
worker threads. The application terminates when a) the work queues are empty;
and b) all synchronization constraints in the program have been satisfied (i.e. no
deadlocks).

Fig. 7. The cooperative runtime includes worker threads and ready task queues like
most other task parallel runtimes. In addition, there are EDCs which maintain a list
of suspended tasks to implement higher-level synchronization constructs. Resolving an
EDC moves a suspended task into the ready queue.

Our runtime uses a help-first policy [15] while scheduling tasks. Under this
policy, spawning a child task enqueues it is in the task queue and allows the
parent task to continue execution past the spawn operation. The child task hence
has a stack of its own and can be executed by any of the worker threads. The

630 S. Imam and V. Sarkar

independent stack allows us to treat the task as a subcomputation and to have
a well-defined outer boundary while forming the OSDeCont. In contrast, using a
work-first policy [15] does not provide an independent call-stack for a spawned
task and requires maintaining fragmented call-stacks to allow helper threads to
resume computations. This precludes the use of OSDeConts in a work-first policy
(though the work-first policy can be more efficient than help-first for recursive
divide-and-conquer parallelism when steals are infrequent, the work-first policy
cannot be used to support general SyncCon). In addition, constructs such as
phasers are not amenable to work-first scheduling since these constructs do not
satisfy the “serial elision” property.

With the help-first policy in effect, we wrap the stack of each task around an
OSDeCont which defines an execute() method as the continuation boundary.
When a worker thread executes a task, it resumes the computation of the OS-
DeCont which in turn invokes the execute() method, as shown in Fig. 8. At
synchronization points where a task is not allowed to make progress semanti-
cally, an OSDeCont is captured and only the state until the execute() method
needs to be saved. On returning from a call to execute(), the runtime verifies
the cause for the return and performs book-keeping if the task was suspended.
The worker thread then goes ahead and tries to dequeue other scheduled tasks
to execute and continue making progress towards the overall computation.

Fig. 8. Representation of the runtime call stack when a task is being executed by a
worker thread. The worker.executeTask() method is responsible for managing the
OSDeConts that may be suspended while executing the body of a task.

In our runtime, the static suspend method of the API (Section 4.3) restricts
the cause of OSDeCont suspensions to instances of EDCs. On returning to the
worker.executeTask(), the runtime checks whether an EDC was returned as a
cause (i.e. the task was suspended) and registers an EB with that EDC. There
is no limit to the number of tasks that can be registered to an EDC (in the form
of an EB). When the EDC is resolved, the EBs are executed and the suspended
tasks are rescheduled. Note that this approach does not need to use polling to
keep track of when suspended tasks can be resumed. After being scheduled, the

Cooperative Scheduling of Parallel Tasks 631

queued task is picked up by a worker thread and execution is resumed from the
previous suspension point. When the execution of the task completes normally,
without suspending, the runtime performs any cleanup operations associated
with the task and looks for more work from the queue.

The remaining pieces in the runtime are the steps to undertake where syn-
chronization points: a) capture continuations, b) create EDCs, and c) resolve
EDCs. The use of OSDeConts and EDCs are abstracted by the implementer of
the SyncCons and transparent to an end user of these constructs. We discuss
how various SyncCons can be developed in our runtime in Section 5.

Work-Stealing Scheduler. The exact policy to retrieve tasks from work
queues is unspecified in our cooperative runtime. Recent work has shown that
work-stealing policies work very well on multicore architectures. A scheduler us-
ing a work-stealing policy maintains a queue of pending tasks per worker thread.
When a worker completes a task, it pops a pending task from its own queue.
If the queue is empty, it attempts to steal a task from another worker’s queue.
Our runtime uses the help-first policy and maintains an independent stack for
each task, the OSDeCont created is thread independent and can be run by any
thread. Hence, any worker thread may execute a task and we are able to use
both the work-stealing or work-sharing scheduling policies in our runtime.

Serializability of Computations. Serializability of a group of parallel or
concurrent statements refers to the ability to provide a serial ordering of the
statements. In our runtime, since a single worker thread can execute the entire
computation, that schedule provides a serializable order for the statements. The
caveat is that the granularity of the statement blocks is around suspension points
rather than user-written tasks. These new statement blocks can be used to form
structures to represent the program dependence graph of the computation and
reason about parallel portions and simplify, for example, data race analysis. With
additional support from a scheduler, the statement blocks from the dependence
graph can be scheduled in a deterministic order if so desired or can be used
to generate different schedules, both of which can be very useful for debugging
programs.

5 Support for Synchronization Constructs

Synchronization constructs (SyncCons) are used to coordinate the parallel execu-
tion of tasks. In this section, we describe how various SyncCons can be supported
by our cooperative runtime. The key idea is to translate the coordination con-
straints into producer-consumer constraints on EDCs and to use OSDeConts to
suspend consumers when waiting on item(s) from producer(s). We claim that
any task-parallel SyncCon can be translated in such a manner and hence be
supported by our runtime. The constructs we present include: a) termination
detection of child tasks, b) producer-consumer synchronization, c) collective bar-
rier synchronization, d) single blocks executed by only one task in a group, and

632 S. Imam and V. Sarkar

e) weak isolation while accessing a shared resource. While constructs a) through
d) are typically used for deterministic parallelism, construct e) can be used to
support nondeterminism as well.

5.1 Fork-Join Synchronization

In structured fork-join parallelism, a parent task can spawn one or more child
tasks that can logically run in parallel with the parent task. The parent task
can then wait, by joining, until all of its transitively spawned children complete
execution. An EDC, which wraps a counter1, is created for each parent task.
The counter is atomically incremented each time a child task is forked and
atomically decremented as each child task completes execution, either normally
or abnormally. When the count reaches zero, the value of the EDC is resolved.
The join operation serves as a possible suspension point in our runtime and uses
the EDC as its cause for suspending if it is invoked before the count reaches zero.
If the count is zero when the join operation is called, execution of the parent task
continues without the need for suspension. This model can be easily extended
to also support nested fork-join parallelism.

5.2 Producer-Consumer Synchronization

In producer-consumer patterns, producer tasks are responsible for resolving the
values inside EDCs while consumer tasks suspend until the value inside an EDC
has been resolved. A common case is the single-producer multiple-consumer case,
also known as futures [17]. A future represents an immutable value, an EDC in
our runtime, which will become available at a later point by a producer task.
When the producer task completes execution it resolves the value inside the
EDC thus resuming any previously suspended consumers. Consumers who read
the value of the future after it has already been resolved can continue execu-
tion without being suspended. The single-producer single-consumer case can be
supported by further wrapping an EDC and ensuring that only one consumer is
able to read the value of the EDC, read requests from other consumers report
an error.

The general producer-consumer problem with a mutable buffer location can
also be modeled using our API. An example of such a construct is the synchro-
nization variable construct available in Chapel [4]. In effect, the buffer location
is either empty or full and producers/consumers need to wait when the location
is full/empty, respectively. This can be modeled in our runtime by maintaining
a doubly-linked list of a pair of EDCs and a pointer to the active pair. The first
element in the pair represents whether a producer has produced the item making
the location full, while the second element represents whether a consumer has
consumed the item making the location empty. A producer suspends until the
previous consumer-EDC has been resolved, while a consumer suspends until the
producer-EDC in the currently active pair has been resolved. Separate producer

1 Distributed counters can be used for increased scalability.

Cooperative Scheduling of Parallel Tasks 633

1 class EdcPair <T> {
2 EventDrivenControl<T> p = EventDrivenControl.newEDC <>();
3 EventDrivenControl<Boolean > c = EventDrivenControl.newEDC <>();
4 }
5 class SynchronizationVariable<T> {
6 Node <EdcPair <T>> pNode; // producer chain
7 Node <EdcPair <T>> cNode; // consumer chain
8 Node <EdcPair <T>> nextNode (Node <EdcPair <T>> n) {
9 if (n.nextNode == null)

10 n.nextNode = new Node <>(n, ...);
11 return n.nextNode ;
12 }
13 public SynchronizationVariable() {
14 Node <...> item = new Node <>(null , ...);
15 item.c.setValue (true);
16 cNode = pNode = nextNode (item);
17 }
18 public void write(T item) { /* suspendable method */
19 Node <EdcPair <T>> n;
20 isolated { n = pNode; pNode = nextNode (n); }
21 EventDrivenControl.suspend (n.prevNode .c);
22 n.p.setValue (item);
23 }
24 public T read() { /* suspendable method */
25 Node <EdcPair <T>> n;
26 isolated { n = cNode; cNode = nextNode (n); }
27 EventDrivenControl.suspend (n.p);
28 n.c.setValue (true);
29 return n.p.getValue ();
30 } }

Fig. 9. Synchronization variables implemented using operations provided in the coop-
erative runtime. Producers suspend until the previous item is consumed, consumers
suspend until the current item is produced.

and consumer pointers are maintained and they are advanced to the next node
in the list when write and read operations are invoked, respectively.

An example implementation of synchronization variables recipe using the co-
operative API is provided in Fig. 9. There are two pointers being maintained to
track progresses made by producers and consumers. A pair of EDCs are main-
tained to ensure there is the strict alternation of writes and reads by producers
and consumers, respectively, while accessing the synchronization variable. If a
producer arrives before the previous value has been read by a consumer it is
suspended and vice versa.

5.3 Collective Barrier Synchronization

A barrier synchronization provides a means to ensure a group of tasks have
all arrived at a particular point before advancing. This is especially useful in
phased computations by ensuring each task in the group of tasks has completed
one phase before starting the next phase of the computation. It is possible that
the group of tasks involved in the barrier remain static or change dynamically
over time, either form of barriers can be supported by our API/runtime. Im-
plementing barriers in a runtime that uses thread-blocking operations is not
scalable if the number of tasks registered on the barrier exceeds the number of

634 S. Imam and V. Sarkar

available worker threads. This can lead to deadlocks if the runtime is not allowed
to create additional worker threads to allow all tasks to reach the barrier and
release the blocked threads. In the case where the runtime can compensate by
creating additional worker threads, scalability and efficiency are affected due to
the overhead of having to manage additional worker threads. In our cooperative
runtime, since there are no thread blocking operations, the tasks can suspend
themselves if they arrive too early at a barrier allowing the worker threads to
execute other ready tasks and reach the barrier point. Eventually all tasks will
arrive at the barrier and the suspended tasks will be resumed.

Fig. 10. The barrier represents each phase with two counters to keep track of registered
and arrived tasks and an EDC which is used to track early arrivers. As each phase
completes, the EDC in the current phase is resolved resuming suspended tasks and the
active phase pointer is moved to the next item in the linked list.

To support barriers with dynamic task registration (the static task version is
a special case), we maintain a count of registered tasks, a count of arrived tasks,
and an EDC for each phase in the barrier computation as shown in Fig. 10.
When a task dynamically registers on the barrier, it registers on the next phase
and increments the count of registered tasks for that phase. However, a task
always deregisters in the current phase of the barrier and increments the arrived
task count. As each task arrives at the barrier it increments the count for arrived
tasks in the current phase and the count for registered tasks in the next phase.
Additionally, if the task is not the last to arrive at the barrier point it suspends
itself using the EDC for the current phase as the cause. The last task to arrive at
the current phase of the barrier resolves the EDC of the current phase, advances
the phase of the barrier, and continues without suspending. Resolving the EDC
resumes all the tasks suspended on the barrier and the tasks now participate in
the next phase of the computation when executed.

5.4 Phaser Synchronization

An extension to barrier synchronization is provided by phasers [26]. They unify
collective and point-to-point synchronization for phased computations. Unlike
traditional barriers where tasks register in signal-and-wait mode, tasks can also
be registered on a phaser in signal-only or wait-only modes. Tasks registered on

Cooperative Scheduling of Parallel Tasks 635

a wait mode (wait-only or signal-and-wait) need to wait for all tasks registered
on a signal mode to arrive at the barrier point. The implementation for barriers
(Section 5.3) needs to be extended by allowing only signalers to increment the
counts of their local phase. Since signaler tasks can be in different phases, care is
required to ensure that the correct counters are incremented. Tasks registered in
signal-only mode never suspend and continue to make progress. Tasks registered
in wait mode need to suspend themselves and wait for the EDC for a given
phase to be resolved when all signaler tasks for a given phase arrive at the
barrier point. As the EDC for the oldest phase is resolved by the last signaler
task, it also advances the current phase for use by the waiter tasks.

5.5 Single Blocks

The OpenMP single construct specifies that a statement block is executed by
only one task among a group of registered tasks [24]. The wait version requires
that all registered tasks wait until some task has executed the single block. This
is similar to supporting barriers with a single phase. All tasks, except the last
task, that arrive at the single suspend themselves. The last task that resolves
the EDC executes the statement block before resolving the EDC and causing
the tasks registered on the single to be resumed. The nowait version does not
require to suspend tasks, it requires some bookkeeping to ensure that exactly
one task to arrive at the single executes the statement block.

Phasers also support a variant of single blocks when tasks are registered
using the signal-wait-single mode. The semantics defines that the single block
is executed only after all the signalers and waiters have arrived at the single

block. Both the signalers and the waiters need to ensure they proceed only after
all signalers have arrived and at least one task has executed the single block.
Supporting such blocks in our runtime requires the use of two EDCs for each
phase of the phaser. The first EDC keeps track of whether all signalers have
arrived while the second EDC is used to track whether the statements inside
the single block has been executed by some task. Thus tasks can possibly be
suspended twice while executing a single block.

5.6 Weak Isolation

Habanero-Java provides the isolated SyncCon, which can be used to implement
critical sections and coordinate the mutation of shared data. The weak isola-
tion guarantee states that the statements inside the critical sections will be
executed mutually exclusively with respect to other demarcated critical sections
(DCS). In general, weak isolation enforces a serializability bottleneck as only
one critical section may be executed by the runtime in the absence of a more so-
phisticated analysis. Often this serializability is implemented using locks where
worker threads block while waiting to attain the lock. Use of locks can limit
performance in scenarios where there is moderate or high contention for the lock
by the interfering DCS. In the cooperative runtime, blocking of threads while
using locks is avoided by maintaining a dynamic linked-list of EDCs. Each task

636 S. Imam and V. Sarkar

executing the DCS registers itself to an EDC in the list and suspends itself if
it does not link to a resolved EDC. The first EDC in the list already resolved
by default to allow the first requestor of the lock to make progress in its DCS
without suspending. Any task linked to a resolved EDC gets to execute its DCS
and resolves the next EDC in the list.

6 Experimental Results

The benchmarks were run on individual nodes in a IBM POWER7 compute
cluster. Each node contains 256GB of RAM and four eight-core IBM POWER7
processors running at 3.8GHz each. There is a 32 kB L1 cache and a 256 KB L2
cache per core. The software stack includes IBM Java SDK Version 7 Release 1
and Habanero-Java (HJ) version 1.3.1 (r33926). Each benchmark used the same
JVM configuration flags2 and was run for ten iterations in ten separate JVM
invocations, the arithmetic mean of thirty execution times (last three from each
invocation) are reported. This method is inspired from [13] and the last three
execution times are used to approximate the steady state behavior. In the bar
charts, the error bars represent one standard deviation.

We implemented our cooperative runtime in the Habanero-Java (HJ) language
supporting all its available constructs without requiring any changes to the syn-
tax of HJ programs, i.e. users are unaware of the use of EDCs and one-shot
OSDeConts by the runtime. Our implementation is briefly described in [21]. The
implementation of our cooperative runtime for HJ conforms to the constraints
imposed by a standard Java Virtual Machine (JVM). In particular, such JVMs
do not provide support for continuations or for storing and restoring the stack.
We use an extended version of the open source bytecode weaver provided by the
Kilim framework [28] to support one-shot OSDeConts that are thread indepen-
dent and can be restored on threads managed by the HJ runtime.

We focus on benchmarks for the different SyncCons to compare the perfor-
mance of our implementation of the cooperative runtime with a) the existing
work-sharing runtime available in HJ which has blocking implementations for
most of the SyncCons, and b) the ForkJoinPool and helper classes from the
java.util.concurrent package in Java like AtomicInteger, CyclicPhaser,
CountDownLatch, etc.3 Both these blocking runtimes have been shown to deliver
performance competitive with other runtimes (e.g., OpenMP, X10), for general
SyncCons. Both HJ runtimes were configured to use the same work-stealing
scheduler (ForkJoinPool from the standard JDK) as previous experience has
shown the scheduling policy to be more effective than a work-sharing policy. All
the benchmarks were run using thirty-two worker threads as the starting seed.

2 Flags: -Xms6344m -Xmx65536m -XX:MaxPermSize=256m -XX:+UseParallelGC

-XX:+UseParallelOldGC -XX:-UseGCOverheadLimit.
3 Not all benchmarks have a corresponding Java implementation / data for execution
times of the benchmarks. In such cases the performance numbers are not shown in
the charts.

Cooperative Scheduling of Parallel Tasks 637

In the blocking runtimes, additional threads are created around blocking suspen-
sion points, while the cooperative runtime never creates more worker threads.
All benchmarks use the same algorithm in their implementation. For the HJ
file(s) as input, only the runtime is switched from the blocking version to the
cooperative version during compilation.

6.1 Fork/Join Benchmarks

Fig. 11 shows the result of fork-join benchmarks using the async-finish con-
structs from HJ. The first benchmark is the Java Grande Forum (JGF) Fork-Join
(FJ) microbenchmark [7], it measures the time taken to spawn and join asyn-
chronous tasks inside a single finish scope. Each task does a minimal amount
of work before it terminates. Since there is only a single finish, this bench-
mark effectively measures the relative overhead in the two runtimes to spawn
and manage tasks. The cooperative runtime is slower by about 40% as it has
the overhead of wrapping the task in a OSDeCont and checking whether the
task suspended when it is executed (even though the tasks themselves never
suspend in this benchmark). One optimization technique to reduce the overhead
is to avoid transforms of tasks that are statically known to be nonblocking. The
next benchmark, N-body (Computer Language Benchmarks Game [12]), shows
a similar slowdown while using the cooperative runtime as there are few finish

FJ NBody LuDec MST BFS-BF DR

·104

6
,3
1
4
.7

4
,3
6
9
.4
2

7
3
2
.0
1

3
,5
9
4
.4
1 5

,7
7
2
.2
1

4
,8
2
7
.2
9

4
,4
4
2
.6
8

3
,7
2
2
.7
3

1
,1
8
3
.6
2

4
,6
7
8
.8

7
,1
2
2
.4
8

1
1
,1
7
9
.2
5

7
,3
3
2
.1
8

6
,8
5
0
.5
4

9
0
5
.4

A
v
er
a
g
e
E
x
ec
u
ti
o
n
T
im

e
(i
n
m
il
li
se
cs
)

Cooperative Blocking Java-ForkJoinPool

Fig. 11. Results for async-finish benchmarks. JGF Fork Join (FJ) with 4 million
tasks. NBody with 300K steps. LU-Decomposition (LuDec) with an array size of 2K
and block size of 128. MST, BFS-BF and DR with an input graph of size 512 nodes
and artificial load values of 500K, 20M, and 8M respectively.

638 S. Imam and V. Sarkar

blocks created compared to async blocks (a ratio of 1:7). The effects of block-
ing are shadowed to some extent since there are fewer join points resulting in
fewer blocked threads. The LU Decomposition (LuDec) benchmark, from the
Cilk Benchmark [1], is the first to show speed-up of around 60% as there are
relatively more finish blocks created compared to async blocks. The next set
of benchmarks, Minimum Spanning Tree (MST), Breadth First Search using
Bellman Ford algorithm (BFS-BF), and Dijkstra Routing (DR), come from the
IMSuite benchmark suite [16] for various graph algorithms written in task paral-
lel languages. The relatively larger number of finish blocks allow the cooperative
runtime to show speedups of around 20% for MST and BFS-BF, while the DR
benchmark executes over 2× faster. The Java versions of the benchmarks have
their finish implemented using atomic integers and latches which have blocking
semantics. The Java versions are slower than the cooperative runtime implemen-
tation in all the fork-join benchmarks, for which data is available, due to blocking
at the end of finish using countdown latches.

6.2 Future Benchmarks

The Fibonacci microbenchmark does almost no computation inside the task thus
allowing us to measure the overheads of the future SyncCon in the two runtimes.
Two versions of the Fibonacci program were mentioned in Fig. 3 and Fig. 4. With
the cooperative runtime we achieve performance close to the program written
in event-driven style while still using the easier to read thread-based style. The

Sm-Wat Bin-Tree CD25 CD100

1
,2
3
1
.7
8

2
,8
6
1
.4
8

4
9
5
.3
3

1
,1
7
6
.3
1

7
,5
1
1
.5
2

5
,2
9
0
.7
4

5
6
8
.1
4

1
,1
6
6
.6
9

5
,3
5
7
.1
4

2
,2
4
7
.3
6

A
v
er
a
g
e
E
x
ec
u
ti
o
n
T
im

e
(i
n
m
il
li
se
cs
)

Cooperative Blocking Java-ForkJoinPool

Fig. 12. Smith Waterman on strings of length 960 and 928. Binary Tree operating on
a tree with depth of 14. Cholesky Decomposition on an input matrix of size 2000×2000
with tile sizes of 25 and 100.

Cooperative Scheduling of Parallel Tasks 639

cooperative version using futures comfortably outperforms the blocking version,
e.g. computing the 20th term of fib resulted over 100× speed-up. In fact, the
blocking version runs out of memory for values of n larger than 20 as the runtime
attempts to create extra threads to compensate for the blocked threads while
the cooperative version completes in around 100 milliseconds. The Java future
implementation is similar to the HJ blocking runtime’s implementation of fu-
tures. Hence, the running times for the future benchmarks on these two variants
are similar.

In the Smith-Waterman benchmark, futures are used to represent the value
at each cell of the dynamic programming table and backtracking starts at the
highest corner cell. Each cell depends on values from three neighboring cells
and thus each cell has exactly three suspension points, once for each attempt to
resolve the future of a neighboring cell, while computing its own value. Due to
the comparative lack of delay while trying to resolve a future after its creation
many blocking operations are performed in the blocking runtime. This degrades
performance, as seen in Fig. 12, and the cooperative version outperforms the
blocking version by a factor of 6×.

The Binary Trees benchmark, from the Computer Language Benchmarks
Game [11], involves allocating binary trees, walking the trees bottom-up, and
deallocating many nodes after the walk. In this benchmark, there is a relatively
larger delay between the creation of the future and the attempt to resolve its
value. This nature of the benchmark allows the blocking scheduler to make some
progress in executing the futures and thus helps minimize blocking operations
due to calls on unresolved futures. Even with this property, the cooperative
runtime still outperforms the blocking version by a factor close to 2×.

The next benchmark is Cholesky Decomposition, a dense linear algebra ap-
plication. We use futures to enforce the data dependences and exploit loop and
pipeline parallelism. With smaller tile sizes, more tasks/futures are created and
there is a higher probability of blocking on a future. Hence, the cooperative run-
time performs better by about 13% at the smaller tile size of 25. As the tile size
increases there are fewer blocked threads on unresolved futures and the blocking
runtime performs as well as the cooperative runtime.

6.3 Phaser Benchmarks

To compare the performance of phasers we implemented two microbenchmarks:
Barrier (BAR) (tasks registered on phasers in sig-wait mode) and Reduction
(RED) (tasks registered on phasers in sig-wait-single mode using sum accumu-
lators). We also implemented two additional benchmarks from the JGF bench-
mark suite: Moldyn (MOL) and LU-Factorization (LUF). Since our hardware
had thirty-two cores, we registered more than forty tasks (i.e. more than thirty-
two) on the phasers to stress test the runtimes. This ensures that most of the
registered tasks encounter a forced suspension point at the next operation as
only a maximum of thirty-two tasks can be running at any given time. In the
blocking runtime, each such suspension point causes the worker thread to block
and additional threads are created to run the other tasks. As such the runtime

640 S. Imam and V. Sarkar

VC512SOR500BAR40 RED40 LUF40 MOL40

1
,0
9
6
.2
6

2
7
4
.2
2

5
3
.2

7
2
.1
9

7
8
.2
7

1
8
2
.0
2

2
,0
6
0
.3
4

5
,7
7
4
.2
5

5
,7
4
2
.8
8

5
,8
0
3
.2
8

1
,6
6
2
.3
7

5
4
3
.6
9

3
5
7
.5
3

7
1
9
.3
3

5
9
0
.7
1

3
4
1
.4
8

A
v
er
a
g
e
E
x
ec
u
ti
o
n
T
im

e
(i
n
m
il
li
se
cs
)

Cooperative Blocking Java-ForkJoinPool

Fig. 13. Phaser benchmark results. BAR, RED, LUF, and MOL with 40 tasks regis-
tered on the phaser. SOR benchmark with an input array size of 500. VC coloring with
an input graph of 512 nodes and artificial load of 10M.

has to deal with the overhead of these additional thread context switches. In
contrast, the cooperative runtime avoids such thread context switches and relies
on the continuations to perform the relatively lightweight task context switches.
We can see that we can achieve more than 100× for BAR, RED, and LUF and
close to 10× speed-up for MOL in the cooperative runtime. These speed-ups
are even greater when more than forty tasks are registered on the phasers. We
also include results from two other phaser benchmarks: JGF’s Successive Over-
Relaxation (SOR) with an input size of 500 and IMSuite’s Vertex Coloring with
an input graph of 512 nodes. In these benchmarks, where more computation is
done between phases and overheads from context switching can be amortized to
some degree, we get over 50× speed-up for SOR and 2× speed-up for VC.

Java’s implementation of CyclicPhaser is noticeably more performant than
the HJ blocking runtime version. However, CyclicPhasers are still slower than
our cooperative implementation which does not block worker threads. On the
various phaser benchmarks, the HJ cooperative version ranges from being 2× to
10× faster than the pure Java version.

7 Conclusions and Future Work

In this paper, we address the problem of scheduling parallel tasks with general
synchronization patterns using a cooperative runtime for scalability and perfor-
mance. Our solution is founded on a novel use of one-shot delimited continu-
ations and event-driven controls. We describe recipes for implementing various

Cooperative Scheduling of Parallel Tasks 641

SyncCons using our cooperative API and provide an implementation of our co-
operative runtime for the Habanero-Java language. Experimental results for our
implementation for Habanero-Java, on various future and phaser benchmarks,
show that the cooperative runtime delivers significant improvements in perfor-
mance and memory utilization relative to a thread-blocking runtime system while
using the same underlying work-stealing task scheduler.

We are working on further extending our cooperative runtime to support
preemptive scheduling using the notion of Engines [18] to ensure fairness in the
scheduling of tasks. Such a scheme also requires support for runtime generated
priorities while scheduling tasks. Engines will enable us to support speculative
parallelization, e.g. in the form of Cilk’s [2] abort statement, more efficiently.
Exploiting the dynamic dependence graph around suspension points to detect
dataraces and to help in debugging is also an interesting area of future research
which we are looking forward to pursue.

Acknowledgments. This work was supported in part by NSF award CCF-
0964520. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect those of the
National Science Foundation. The results in this paper were obtained on a system
that was supported in part by NIH award NCRR S10RR02950 and an IBM
Shared University Research (SUR) Award in partnership with CISCO, Qlogic
and Adaptive Computing. We are grateful to Vincent Cavé and Jun Shirako for
discussions on the Habanero Java runtime system and phasers, respectively. We
also thank Akihiro Hayashi, Sağnak Taşırlar, and Jisheng Zhao for sharing their
benchmarks with us. We are grateful to Deepak Majeti, Rishi Surendran, Nick
Vrvilo, and the anonymous reviewers whose feedback on earlier drafts helped
improve the presentation of this paper.

References

1. Blumofe, R.: LU decomposition - Cilk,
http://courses.cs.tau.ac.il/368-4064/cilk-5.3.1/examples/lu.cilk

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. In: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 1995, pp. 207–216. ACM, New York (1995)

3. Cavé, V., Zhao, J., Guo, Y., Sarkar, V.: Habanero-Java: the New Adventures of
Old X10. In: PPPJ, pp. 51–61 (2011)

4. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel Programmability and the
Chapel Language. International Journal of High Performance Computing Applica-
tions 21(3), 291–312 (2007)

5. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: An Object-Oriented Approach to Non-uniform Cluster
Computing. SIGPLAN Not. 40, 519–538 (2005)

6. Drago, I., Cunei, A., Vitek, J.: Continuations in the Java Virtual Machine. In:
International Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems (2007)

http://courses.cs.tau.ac.il/368-4064/cilk-5.3.1/examples/lu.cilk

642 S. Imam and V. Sarkar

7. EPCC: The Java Grande Forum Multi-threaded Benchmarks,
http://www2.epcc.ed.ac.uk/computing/research activities/

java grande/threads/s1contents.html

8. Felleisen, M.: The Theory and Practice of First-Class Prompts. In: Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1988, pp. 180–190. ACM, New York (1988)

9. Fischer, J., Majumdar, R., Millstein, T.: Tasks: Language Support for Event-driven
Programming. In: Proceedings of the 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM 2007, ACM, New
York (2007)

10. Fluet, M., Rainey, M., Reppy, J., Shaw, A.: Implicitly Threaded Parallelism in
Manticore. J. Funct. Program. 20(5-6) (November 2010)

11. Fulgham, B.: binary-trees benchmark,
http://benchmarksgame.alioth.debian.org/u32/

performance.php?test=binarytrees

12. Fulgham, B.: n-body benchmark,
http://benchmarksgame.alioth.debian.org/u32/performance.php?test=nbody

13. Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java Performance
Evaluation. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications, OOPSLA 2007, pp. 57–
76. ACM, New York (2007)

14. Gray, J.: Writing Faster Managed Code: Know What Things Cost,
http://msdn.microsoft.com/en-us/library/ms973852.aspx

15. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-First and Help-First Schedul-
ing Policies for Async-Finish Task Parallelism. In: Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp.
1–12. IEEE Computer Society, Washington, DC (2009)

16. Gupta, S., Nandivada, V.K.: IMSuite: A Benchmark Suite for Simulating Dis-
tributed Algorithms. CoRR abs/1310.2814 (2013)

17. Halstead, R.H.: Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems 7, 501–538 (1985)

18. Haynes, C.T., Friedman, D.P.: Engines Build Process Abstractions. In: Proceedings
of the 1984 ACM Symposium on LISP and Functional Programming, LFP 1984,
pp. 18–24. ACM, New York (1984)

19. Herzeel, C., Costanza, P.: Dynamic Parallelization of Recursive Code Part I: Man-
aging Control Flow Interactions with the Continuator. In: Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA 2010, pp. 377–396. ACM, New York (2010)

20. Imam, S., Sarkar, V.: Integrating Task Parallelism with Actors. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA 2012, pp. 753–772. ACM, New York (2012),
http://doi.acm.org/10.1145/2384616.2384671

21. Imam, S., Sarkar, V.: A Case for Cooperative Scheduling in X10’s Managed Run-
time. In: The 2014 X10 Workshop (X10 2014) (June 2014)

22. Lea, D.: A Java Fork/Join Framework. In: Java Grande, pp. 36–43 (2000)
23. Li, P., Marlow, S., Peyton Jones, S., Tolmach, A.: Lightweight Concurrency Prim-

itives for GHC. In: Proceedings of the ACM SIGPLAN Haskell Workshop, Haskell
2007, pp. 107–118. ACM, New York (2007)

24. OpenMP Application Program Interface, Version 3.0 (May 2008),
http://www.openmp.org/mp-documents/spec30.pdf

http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://benchmarksgame.alioth.debian.org/u32/performance.php?test=binarytrees
http://benchmarksgame.alioth.debian.org/u32/performance.php?test=binarytrees
http://benchmarksgame.alioth.debian.org/u32/performance.php?test=nbody
http://msdn.microsoft.com/en-us/library/ms973852.aspx
http://doi.acm.org/10.1145/2384616.2384671
http://www.openmp.org/mp-documents/spec30.pdf

Cooperative Scheduling of Parallel Tasks 643

25. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates, Inc.,
Sebastopol (2007)

26. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: a Unified Deadlock-
Free Construct for Collective and Point-to-Point Synchronization. In: Proceedings
of the 22nd Annual International Conference on Supercomputing, ICS 2008, pp.
277–288. ACM, New York (2008)

27. Sigoure, B.: How long does it take to make a context switch,
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-

make-context.html

28. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

29. Tardieu, O., Wang, H., Lin, H.: A Work-Stealing Scheduler for X10s Task Paral-
lelism with Suspension. In: Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2012, pp. 267–276.
ACM, New York (2012)

30. Wheeler, K., Murphy, R., Thain, D.: Qthreads: An API for programming with
millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, pp. 1–8 (2008)

31. Yan, Y., Chatterjee, S., Budimlic, Z., Sarkar, V.: Integrating MPI with Asyn-
chronous Task Parallelism. In: Cotronis, Y., Danalis, A., Nikolopoulos, D.S., Don-
garra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp. 333–336. Springer, Heidelberg
(2011), http://dx.doi.org/10.1007/978-3-642-24449-0_41

http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://dx.doi.org/10.1007/978-3-642-24449-0_41

MiCA: A Compositional

Architecture for Gossip Protocols

Lonnie Princehouse1, Rakesh Chenchu1, Zhefu Jiang1,
Kenneth P. Birman1, Nate Foster1, and Robert Soulé2

1 Cornell University, USA
{lonnie,rr548,zj46,ken,jnfoster}@cs.cornell.edu

2 University of Lugano, Switzerland
robert.soule@usi.ch

Abstract.

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

The developers of today’s cloud computing systems are ex-
pected to not only create applications that will work well at scale, but
also to create management services that will monitor run-time conditions
and intervene to address problems as conditions evolve. Management
tasks are generally not performance intensive, but robustness is critical:
when a large system becomes unstable, the management infrastructure
must remain reliable, predictable, and fault-tolerant.

A wide range of management tasks can be expressed as gossip protocols
where nodes in the system periodically interact with random peers and
exchange information about their respective states. Although individual
gossip protocols are typically very simple, by composing multiple proto-
cols one can create a wide variety of interesting, complex functionality
with strong (albeit probabilistic) robustness and convergence guarantees.
For example, in a system with a sufficiently dense topology, all nodes will
learn the information being disseminated in expected logarithmic time.
Unfortunately, programmers today must typically build gossip protocols
by hand—an approach that makes their programs more complicated and
error-prone, and hinders attempts to optimize gossip implementations to
achieve better performance.

MiCA is a new system for building gossip-based management tools
that are highly resistant to disruptions and make efficient use of sys-
tem resources. MiCA provides abstractions that enable expressing gos-
sip protocols in terms of functions on pairs of node states, along with
a rich collection of composition operators that facilitates constructing
sophisticated protocols in a modular style. The MiCA prototype realizes
these abstractions on top of the Java Virtual Machine, and implements
optimizations that greatly reduce the number and size of messages used.

Keywords: Gossip protocols, fault tolerance, composition, distributed
systems, program partitioning, Java.

1 Introduction

Monitoring and management infrastructure is critical for ensuring the reliability
of modern cloud computing applications. In practice, each application typically

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 644–669, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

MiCA: A Compositional Architecture for Gossip Protocols 645

has a distinct notion of what constitutes a healthy system state. For example, a
scientific computing application might be especially sensitive to CPU utilization,
while a database application might depend on the size of buffer queues, and
the throughput of a streaming video service might be determined by available
network capacity. Other examples include distributed hash tables, which must
build and maintain structured overlay networks, and data mining applications,
which must ensure the convergence of results produced by iterative computation.

Unfortunately, programmers today typically develop monitoring and manage-
ment infrastructure by hand—a rudimentary approach that leads to a number
of practical problems. First, because they lack tools that provide high-level ab-
stractions, programmers must deal with a host of low-level details such as setting
up and maintaining network connections, serializing and deserializing applica-
tion data, and dealing with exceptions and failures. Second, because standard
infrastructure is not available, they must reimplement conventional algorithms,
such as computing the minimum value in the system, from scratch in each new
tool. Third, when several different tools are deployed on the same platform, the
aggregate behavior can be unpredictable and can produce unexpected errors—
nullifying the very properties the tools were designed to ensure!

Clearly, there is a growing need for higher-level frameworks that would en-
able programmers to rapidly build robust monitoring and management tools. To
address this need, this paper presents MiCA (Microprotocol Composition Ar-
chitecture). Unlike frameworks based on pub-sub [13,6] or any-cast [15,3] com-
munication models, MiCA is based on gossip. In a gossip protocol, each node
exchanges information with a randomly selected peer at periodic intervals. Be-
cause it is based on periodic peer-to-peer communication, gossip’s network load
tends to be well-behaved, scaling linearly with system size and not prone to re-
active feedback. Moreover, because peers are selected randomly, no single node
is indispensable, so tools built on gossip are extremely tolerant to disruptions
and able to rapidly recover from failures. Accordingly, gossip is an attractive
choice for system monitoring tools [26,22,27], network overlay management [14],
and even distributed storage systems [26,8,20,5].

MiCA enables programmers to describe gossip protocols in terms of three
functions: a function view that is used to determine peers to gossip with; a
function update that takes states of gossiping nodes and computes the new
states following an exchange; and a function rate that determines how frequently
exchanges should occur. This abstraction exposes the essential characteristics of
gossip protocols, but hides low-level implementation details such as how random
numbers are picked, how network connections are managed, and how protocol
messages are constructed. Because the MiCA run-time system handles all these
details, programmers are free to focus on higher-level issues.

To facilitate building more sophisticated protocols, MiCA also provides a col-
lection of composition operators that combine several smaller protocols into a
single larger one. These operators are made possible by MiCA’s abstractions,
which provide a clean interface for merging protocols while preserving their es-
sential behavior. As examples of protocol composition, a MiCA programmer

646 L. Princehouse et al.

might develop a layered protocol that first creates a tree overlay on top of an
otherwise unstructured network and then aggregates data values up the tree. Or,
they might implement a transformation that takes an unreliable protocol and
makes it fault-tolerant by running multiple copies of the protocol concurrently
in a pipeline [2]. Protocol transformations of these kinds would be extremely
tedious to implement by hand but are easy to express in MiCA.

Describing gossip protocols using higher-level abstractions provides the MiCA
system with opportunities for optimizing implementations of protocols automat-
ically. For example, although the update function is defined on pairs of node
states, the compiler can often determine that only a portion of the state of each
node actually needs to be serialized and sent over the network using program
analysis. In composite protocols, the run-time system can often bundle messages
from different sub-protocols together, thereby reducing the communication cost
of running those protocols simultaneously. Consequently, MiCA programs can
provide correct behavior and predictable performance, while substantially re-
ducing overhead compared to hand-written code.

We have built a prototype implementation of MiCA and used it to implement
a wide range of standard protocols. To evaluate the performance of our system,
we have performed experiments using MiCA on a collection of micro-benchmarks
and simulations. Overall, these experiments demonstrate the effectiveness and
robustness of our approach—in particular, that MiCA effectively bounds the
costs of monitoring applications with hundreds of distinct components.

In summary, the main contributions of this paper are as follows:

1. We design a novel framework for building gossip protocols that captures their
essential features while eliding tedious low-level implementation details.

2. We develop a collection of primitive gossip protocols and well-behaved pro-
tocol composition operators that satisfy natural correctness criteria.

3. We present our implementation and results from experiments illustrating the
expressiveness and robustness of our framework.

The rest of the paper is structured as follows: § 2 and § 3 motivate MiCA’s de-
sign using intuitive examples and experimental results from a simple simulation;
§ 4 describes operators for composing protocols and discusses correctness; § 5
discusses state management and an optimization; § 6 describes the MiCA pro-
totype; § 7 presents an evaluation; § 8 discusses related work; and § 9 concludes.

2 Overview

This section introduces MiCA, using an epidemic protocol as a running example.

Assumptions. MiCA is based on a model of gossip in which the behavior of
the system emerges from frequent pairwise interactions between nodes in the
system. We call each interaction an exchange, and the nodes participating in an
exchange a gossip pair. The state of the system evolves as the result of repeated,
concurrent exchanges.

MiCA: A Compositional Architecture for Gossip Protocols 647

This model reflects several assumptions that hold in real-world cloud com-
puting and data center environments: messages may be reordered or lost by the
network, and the local clocks on each node all run at the same rate (though the
clocks need not be synchronized). The evolution of the system state proceeds in
loose rounds, with each correctly functioning node initiating a gossip exchange
once every unit of time. Although the probabilistic nature of this model means
that gossip protocols do not provide firm guarantees at fine-grained time scales,
the expected behavior of the system over time can be reasoned about accurately.

Failures are inevitable in any real-world system, and systems based on gossip
protocols are no exception. MiCA uses a failure model that includes both fail-
stop and Byzantine nodes: nodes may crash and messages may be forged or lost,
either due to network faults or malicious code executing on some of the nodes
in the system. We do assume, however, that all messages are well formed and
that malfunctioning nodes do not overwhelm the system by sending messages at
arbitrary rates (an assumption that could be enforced by the network itself).

These assumptions mean that failures can prevent an otherwise correct node
from gossiping in any particular round, but over time, such failures are likely to
be vastly outnumbered by successful exchanges. Primitive gossip protocols are
expected to tolerate transient failures—e.g., selecting sufficiently long rounds to
prevent endemic timeouts—and programmers are expected to avoid pathological
topologies and communication patterns that could lead to partitions or bottle-
necks. In practice, most gossip protocols are designed to overcome transient
faults and achieve convergence under less than ideal network conditions.

Programming model. The programming abstraction provided in MiCA closely
follows the informal model of gossip protocols just described. With MiCA, pro-
grammers write gossip protocols by specifying the implementation for one par-
ticipant node. Each participant in a protocol is a Java object implementing the
following interface:

interface GossipParticipant {

ProbMassFunc<Address> view();

double rate();

void update(GossipParticipant other);

}

The first method, view, controls peer selection during gossip exchanges. Un-
like other gossip systems, which assume uniform random selection from a set of
neighboring nodes or the global set of nodes, MiCA allows the programmer to
specify the view as a discrete probability distribution on the set of network ad-
dresses. The MiCA run-time samples this distribution to select a gossip peer. The
view method returns a probability mass function object (i.e., ProbMassFunc),
which supports a sample method. As we will discuss in § 4, MiCA composition
operators ensure that the probability mass function is scaled to provide a proper
distribution over gossip nodes.

This approach has several advantages. First, working with probability
distributions allows greater flexibility than uniform random selection. For ex-
ample, probabilities can be used to encode notions of locality (“gossip more

648 L. Princehouse et al.

frequently with nearby neighbors”) and capacity (“gossip more frequently with
super-peers”), and even to encode overlay topologies [14]. Second, it allows de-
velopers to implement their protocols as if they were deterministic. Sources of
non-determinism (e.g., peer-selection) are abstracted away and handled by the
MiCA runtime. This makes programs simpler and eliminates a potential source
of bugs. Third, it retains precise information about distributions and makes
them available for analysis and manipulation by other operators. In particu-
lar, these distributions are used heavily by MiCA’s composition operators—e.g.,
composing two protocols with uniform random peer selection over different sets
of nodes yields a non-uniform distribution over the union of those sets—unlike
other systems, where views are sampled and discarded prior to composition,
losing opportunities for optimization.

The view function also serves as a way to delegate overlay topology main-
tenance to another software component. When populating the view, developers
often need to pay attention to the structure of the selected nodes: correctness
and convergence are usually tied to particular topological properties, which may
not hold for ad-hoc topologies. The MiCA programmer can use Java’s type sys-
tem to declare these requirements; for example, a protocol that outsources its
view to an overlay maintenance layer might accept this layer as an instance of
the interface ExpanderGraphOverlay.

The second method, rate, specifies the local node’s gossip rate relative to
the basic unit of time. A constant rate such as 1.0 is usually sufficient for non-
composite protocols, but variable rates are used by composition to multiplex
sub-protocols without slowing down their overall convergence rates against wall-
clock time. Per-node variable rates are also used by some gossip protocols, for
example, as a mechanism to compensate for dropped packets [24].

The third method, update, takes the state of the gossip peer as input and
performs an exchange, potentially modifying the states of the initiating node and
the peer. Due to failures, one or both of the nodes may not actually be updated—
modifications are not guaranteed to be atomic. However, the widespread success
of gossip protocols testifies to the utility of this abstraction, and its simplicity:
programmers are able to work with pairs of node states rather than having to
explicitly send and receive messages, and the tedious logic needed to manually
deal with timeouts and failures is subsumed by the model.

2.1 Example

As an example, consider the MiCA program in Figure 1. MinFinder nodes im-
plement a simple epidemic protocol that, given a system in which nodes initially
contain arbitrary integer values, eventually converges to a global system state
where every (correctly functioning) node contains the minimum value in the sys-
tem. The view method returns a probability distribution on network addresses.
For the purpose of this example, we assume the view is known in advance and
is supplied as a parameter to the constructor. The rate method returns a con-
stant indicating that 1.0 gossip exchanges should occur every round. The update

MiCA: A Compositional Architecture for Gossip Protocols 649

class MinFinder implements GossipParticipant {

int value;

ProbMassFunc<Address> view;

MinFinder(int value, ProbMassFunc<Address> view) {

this.value = value;

this.view = view;

}

ProbMassFunc<Address> view() { return view; }

double rate() { return 1.0 }

void update(GossipParticipant other) {

MinFinder that = (MinFinder) other;

this.value = min(this.value, that.value);

that.value = this.value;

}

}

Fig. 1. Anti-entropy protocol in MiCA

method implements a push-pull anti-entropy protocol: it compares the values
stored on the initiating node and the receiving node, and updates both values
to the minimum. It is worth pointing out that while the update method allows
developers to transmit data between nodes, it is ultimately the MiCA runtime
that determines which data is sent. As a result, the runtime can optimize the
exchange. For example, if it can determine that some data will not be used by an
update, it will only send the relevant subset of the data. It is straightforward to
show that MinFinder participants converge to the minimum value in expected
logarithmic time (in the absence of failures) on a complete graph [9].

3 Näıve Composition

Cloud computing platforms such as Amazon EC2, Microsoft Azure, IBM Web-
sphere, Google Compute Engine, and Facebook consist of tens or even hun-
dreds of thousands of individual components that must be monitored to ensure
the health of the platform. Gossip protocols provide a simple way to ensure
that monitoring tools will behave predictably and have bounded communica-
tion costs. However, while it is not difficult to monitor multiple components
of a system simultaneously—one can fork a new process for each component—
combining tasks näıvely leads to increasing demands on system resources such
as CPU, memory, and network bandwidth. In large systems, these demands can
cause the cost of monitoring to rapidly dominate the very system being moni-
tored. Addressing this issue is one of the primary motivations for MiCA.

To quantify the cost of näıve composition (and the potential for optimization)
we conducted an experiment in which we executed several monitoring tasks si-
multaneously. We executed an increasing number of copies of an anti-entropy

650 L. Princehouse et al.

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200C
P

U
 u

sa
ge

 (
%

 o
f t

ot
al

)

Number of Monitoring Tasks

Mica
Naive

 0

 100

 200

 300

 400

 500

 0 40 80 120 160 200

M
em

or
y

us
ag

e
(M

B
)

Number of Monitoring Tasks

Mica
Naive

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 40 80 120 160 200N
et

pe
rf

 T
C

P
 L

at
en

cy
 (

m
s)

Number of Monitoring Tasks

Mica
Naive

Fig. 2. The average CPU, memory, and network utilization when running an increasing
number of monitoring tasks with both näıve composition and MiCA

protocol and measured CPU utilization, memory utilization, and network la-
tency. Intuitively, this experiment can be thought of as modeling the situation
where an administrator must monitor an aggregate value for each of a large num-
ber of components. We ran the experiment on a testbed consisting of 32 virtual
machines on a Eucalyptus cluster. Each VM was configured with an emulated
2.9GHz CPU, 4GB memory, 10GB ATA disk, and 1Gb/s NIC. The physical
nodes hosting the VMs were 15 Dell-R720 servers with two 8-core 2.9GHz E5-
2690 CPUs, 96GB RAM, 2×900GB disks, and two 10Gb/s Ethernet NICs each.

The results of the experiment are given in Figure 2. They show that CPU,
memory, and network utilization rapidly increased under näıve composition,
whereas MiCA was able to scale out to hundreds of monitoring tasks with only a
little additional cost compared to running a single copy of the epidemic protocol.
For example, with 200 monitoring components, CPU utilization on each instance
exceeded 50% and required 250MB of memory, and network latency for other
traffic was increased by a factor of two. Overall, this experiment demonstrates
how interactions between monitoring components can incur substantial costs,
and highlights the benefits that can be gained using optimized implementations
of higher-level abstractions provided in systems such as MiCA.

4 Protocol Combinators

MiCA not only helps developers build complex monitoring tools out of sim-
pler reusable components—it also provides operators that combine protocols
while preserving semantics and guaranteeing predictable performance. As moti-
vation for these operators, suppose that we want to execute two copies of the
MinFinder protocol: one copy to compute the minimum address in the system,
and a second copy to compute the smallest amount of free memory of any node
in the system. Why might we want to do this? Perhaps the first copy implements
leader election and the second implements a monitoring application. Using the
abstractions described in the last section, it would not be difficult to construct
a new MinFinderTwo protocol that implements both tasks. This protocol would
maintain a pair of values, and would update both components of the pair on each

MiCA: A Compositional Architecture for Gossip Protocols 651

Table 1. Forms of gossip protocol composition

Communication
Isolated Combined

State

Isolated
With this näıve implementa-
tion strategy, each application
is completely independent.

Subsystems cannot share state,
but can multiplex messages
(e.g., MQ[30], TIBCO[23]).

Combined

An application can have many
shared subsystems, but each
communicates independently
(e.g, JXTA[15], Bast[13]).

Composition reduces the over-
head of executing multiple
monitoring applications simul-
taneously (e.g., MiCA).

exchange. Of course, it would be even better if we could simply reuse our existing
implementation of MinFinder instead of building a whole new protocol from
scratch. This section presents composition operators that do just this—merging
one or more gossip protocols into a single protocol that implements the behaviors
of each sub-protocol.

There are many different ways of combining protocols. MiCA compositional
operators can be categorized along two axes: whether the state and communi-
cation of the composed protocols are isolated or shared. Table 1 presents an
overview of various approaches for protocol composition:

– Isolated state, isolated communication: This is the näıve multiplexing ap-
proach discussed in § 3, in which each protocol executes completely indepen-
dently. As demonstrated by our simulations, this approach does not scale.

– Isolated state, shared communication: This approach provides communica-
tion primitives that can combine messages with the goal of reducing network
congestion. This approach is used in pub-sub message buses, like TIBCO [23],
and message-storage middleware, such as IBM WebSphere MQ [30]. POSIX
streams also provide a similar style of message multiplexing.

– Shared state, isolated communication: This approach enables a single appli-
cation to have many subsystems, each of which is monitored independently.
For example, each job in MapReduce [7] runs in its own thread and commu-
nicates independently, but the overall system state is shared. Examples of
this kind of system include JXTA [15] and Bast [13].

– Shared state, shared communication: This new approach combines the ad-
vantages of the previous two, allowing a single application to be expressed
in terms of several sub-protocols whose state depends on each other, while
reducing communication overhead by bundling messages together.

Note that although Table 1 locates MiCA in the quadrant for shared-state
and shared-communication, MiCA actually provides a comprehensive suite of
composition operators that capture each of these forms of composition. The rest

652 L. Princehouse et al.

of this section discusses correctness criteria for protocol composition operators,
and then presents the operators that we find most useful in applications in detail.

4.1 Correctness Properties

To reason effectively about a composite protocol, programmers need assurance
that the semantics of the combined protocol faithfully encodes the behavior of
each sub-protocol. This section identifies essential properties for gossip compo-
sition:

– View preservation: A view-preserving operator ensures that the ratio of
the frequencies with which it initiates gossip exchanges that update sub-
protocols are identical to the ratio (calculated pointwise) of the distributions
generated by each sub-protocol’s view method. In other words, the rate of
events where the composite chooses to execute Pi.update may be reduced
or increased, but must be done so uniformly for all nodes in Pi’s view.

– Rate preservation: A rate-preserving operator ensures that each sub-protocol
continues to run at the same wall-clock rate as it would if run in isolation. Of
course, there is a tension between view preservation and rate preservation: to
ensure the former, a composite protocol must only execute each sub-protocol
on certain exchanges, while to ensure the latter, it must not delay the rate
at which the sub-protocol gossips.

– State preservation: A state-preserving operator ensures that the effect on
the state of each sub-protocol is either the outcome of executing the update
method of that sub-protocol or a no-op. In other words, composition does
not introduce any co-mingling of sub-protocol states. Note that deliberate
state sharing is still allowed—indeed, it is vital for building layered protocols
where a lower-level protocol computes some form of state (such as a mesh-
overlay), which is imported as a read-only input by one or more higher-level
protocols layered over it. In the context of MiCA, state corresponds to an
instance of a GossipParticipant, and everything reachable from it.

Together, these properties facilitate reasoning about composite protocols in a
modular way: the programmer can write, reason about, and deploy a smaller
protocol within a larger composite, and understand the way that it will be-
have without having to consider the entire program. They serve as guides while
designing and debugging the operators presented in the rest of this section.

4.2 Operators

We now define a few useful MiCA composition operators. We begin with an ob-
vious operator, round-robin merging, whose behavior is intuitive but restrictive
and inefficient, before moving on to more sophisticated probabilistic operators.

MiCA: A Compositional Architecture for Gossip Protocols 653

class RoundRobinMerger implements GossipParticipant {

GossipParticipant g1, g2;

boolean g1Next; // if true, g1 gossips next

...

ProbMassFunc<Address> view() {

if(g1Next) return g1.view();

else return g2.view();

}

double rate() { return g1.rate() + g2.rate(); }

void update(GossipParticipant other) {

RoundRobinMerger that = (RoundRobinMerger) other;

if(g1Next) g1.update(that.g1);

else g2.update(that.g2);

g1Next = !g1Next;

}

Fig. 3. Round-robin merging. Note: assumes g1 and g2 to gossip at the same rate.

Round-robin merging. Arguably the most obvious way to merge multiple proto-
cols into a single protocol is to interleave their operations in round-robin fashion.
Figure 3 defines a simple composition operator that does exactly this: given sub-
protocols g1 and g2, it alternates between g1 exchanges and g2 exchanges, using
a boolean g1Next to keep track of the next sub-protocol to execute. For reasons
discussed below, this operator assumes that the rate methods of g1 and g2

are equivalent. The view method branches on g1Next and dispatches the view

method from g1 or g2. The update method is similar, but also updates g1Next
so that the other protocol will execute on the next exchange. The rate method
is slightly different: it returns the sum of the rates for g1 and g2. This is cor-
rect since doubling the rate of the combined protocol compensates for the fact
that each sub-protocol is only able to initiate an exchange every other round.
Hence, the rate at which each sub-protocol converges will be preserved in the
composite protocol. Note that if g1 and g2 have different rates, then it would
be incorrect to combine them using round-robin merging—a more sophisticated
strategy would be needed to account for the rate disparity. The next operator
provides a possible approach.

Correlated merging. Another way to combine several protocols into one is to
do so probabilistically. That is, instead of alternating between the sub-protocols
in sequence, we can invoke the view methods to compute the probability dis-
tributions for each sub-protocol and construct a composite distribution that
represents the peer selection preferences of both. This approach takes advantage
of the fact that both sub-protocols may sometimes be willing to gossip with the
same peer, allowing execution of both updatemethods to be bundled into a single
exchange and reducing the overall number of messages sent without degrading
performance. The correlated merge operator (Figure 4) is aggressive in trying to
exploit this form of overlap—it bundles messages as often as possible while still

654 L. Princehouse et al.

class CorrelatedMerger implements GossipParticipant

GossipParticipant g1, g2;

...

ProbMassFunc<Address> view() {

double r1 = g1.rate();

double r2 = g2.rate();

double w = r1 / (r1 + r2);

ProbMassFunc<Address> d1 = g1.view().scale(w);

ProbMassFunc<Address> d2 = g2.view().scale(1-w);

return ProbMassFunc.max(d1, d2).normalize();

}

double rate() {

double r1 = g1.rate();

double r2 = g2.rate();

ProbMassFunc<Address> d1 = g1.view().scale(r1);

ProbMassFunc<Address> d2 = g2.view().scale(r2);

return ProbMassFunc.max(d1, d2).magnitude();

}

void update(CorrelatedMerger other) {

CorrelatedMerger that = (CorrelatedMerger) other;

double r1 = g1.rate();

double r2 = g2.rate();

double w = r1 / (r1 + r2);

double pr1 = g1.view().get(that) * w;

double pr2 = g2.view().get(that) * (1-w);

double pmin = Math.min(pr1,pr2);

double pmax = Math.max(pr1,pr2);

double alpha = (pr1 - pmin) / pmax;

double beta = (pr2 - pmin) / pmax;

double gamma = pmin / pmax;

switch (weightedChoice({ alpha, beta, gamma })) {

case 0: // only g1 gossips

g1.update(that.g1); break;

case 1: // only g2 gossips

g2.update(that.g2); break;

case 2: // both g1 and g2 gossip

g1.update(that.g1);

g2.update(that.g2);

}

}

}

Fig. 4. Correlated merging.

satisfying the view-preservation and rate-preservation properties. Because this
operator is somewhat involved, we step through each of its methods in detail.

The view method works more or less in the way just described: it computes
the views for g1 and g2 and scales them by w and (1-w) respectively, where w is

MiCA: A Compositional Architecture for Gossip Protocols 655

the relative weight of g1’s rate with respect to g2. It then computes the pointwise
max of the scaled distributions and normalizes the result. This produces a distri-
bution that reflects the peer selection preferences of g1 and g2 with respect to
their relative rates. This is equivalent to summing the two rate-scaled views and
then subtracting their intersection, where the area of the intersection represents
the fraction of correlation between views that can be exploited by bundling—
two sub-protocols with identical views intersect completely, whereas two disjoint
views have none. The rate method calculates the views for g1 and g2, scales
them by r1 and r2, and then takes the area under the pointwise maximum of
the resulting distributions. This calculation determines the rate needed to cor-
rectly execute both sub-protocols while preserving their rates, and anticipating
opportunistic bundling of messages. The update method must decide whether
to gossip g1, g2, or both. To do this, it uses the sub-protocol views to compute
three probabilities: given that a particular peer was sampled from the composite
view, let alpha be the probability that only g1 chose to gossip with that peer,
beta be the same for g2, and gamma be the probability that both nodes choose
to gossip—i.e., the view intersection for the selected peer’s address. A pseudo-
random choice selects one of these three possibilities and executes the respective
update methods.

Correlated merge has two significant advantages over simple round-robin.
First, it is completely general, in that it does not make any assumptions about
the protocols being combined. This is unlike round-robin merge, which assumes
that the two sub-protocols gossip at the same rate. Second, it can greatly reduce
the number of messages needed to implement the composite protocol; this is
advantageous because it amortizes overheads over the messages in the bundle.
The degree to which the operator is able to bundle messages depends on the
amount of overlap in the peer selection preferences of g1 and g2—the greater
the overlap of their distributions, the greater the benefit.

To illustrate correlated merging, consider the following abstract examples.

– Suppose that g1 gossips by selecting randomly from nodes with odd ad-
dresses, and g2 by selecting randomly from nodes with even addresses. That
is, if there are n nodes in total, g1’s view method returns a distribution
where odd nodes have probability mass 2/n and even nodes have probability
mass 0, and symmetrically for g2. Because these distributions are disjoint,
the view method for the merged protocol returns the uniform distribution
on all n addresses. For a given gossip partner b, the distribution computed by
g1 assigns probability mass 0 to b if b’s address is even, and the distribution
computed by g2 assigns probability mass 0 to b if b’s address is odd. The
combined update method invokes g1’s update method when called with a
partner b whose address is odd and otherwise invokes g2’s update method.
Importantly, it never invokes both update functions as the peer selection
preferences are disjoint. In a sense, probabilistic merge operator subsumes
round-robin merging when the sub-protocol distributions are disjoint.

– Suppose instead that both g1 and g2 gossip by selecting randomly from
all nodes—i.e., the view method for both sub-protocols returns a uniform

656 L. Princehouse et al.

class IndependentMerger implements GossipParticipant

GossipParticipant g1, g2;

...

ProbMassFunc<Address> view() {

double r1 = g1.rate();

double r2 = g2.rate();

double w = r1 / (r1 + r2);

ProbMassFunc<Address> d1 = g1.view().scale(w);

ProbMassFunc<Address> d2 = g2.view().scale(1-w);

return d1.add(d2).normalize();

}

double rate() { return g1.rate() + g2.rate(); }

void update(IndependentMerger other) {

IndependentMerger that = (IndependentMerger) other;

double r1 = this.g1.rate();

double r2 = this.g2.rate();

double w = r1 / (r1 + r2);

double pr1 = g1.view().get(that) * w;

double pr2 = g2.view().get(that) * (1-w);

double alpha = pr1 / (pr1 + pr2);

double beta = pr2 / (pr1 + pr2);

switch (weightedChoice({ alpha, beta })) {

case 0: // Only g1 gossips

g1.update(that.g1); break;

case 1: // Only g2 gossips

g2.update(that.g2); break;

}

}

Fig. 5. Independent merging

distribution where every node has probability mass 1/n. The combined view

method returns the same uniform distribution and the update method eval-
uates g1 and g2 every round, where round length is a system-wide constant.
This example shows how probabilistic merge allows protocols with equivalent
view methods to be combined without additional messages or rate increases.

– Finally, suppose that g1 gossips randomly with odd nodes, and g2 gossips
randomly with all nodes. The combined view method returns a distribution
in which nodes with odd addresses are assigned probability mass 4/(3·n) and
nodes with even addresses are assigned probability mass 2/(3 ·n). Hence, the
run-time chooses peers with odd addresses twice as often as it chooses peers
with even addresses. The combined updatemethod has two cases: if the node
has an odd address, it always invokes g1’s update method and additionally
invokes g2’s update method with probability 1/2. Or, if the node has an
even address, then it only invokes g2’s update method. Hence, the merged
protocol distributes exchanges evenly between g1 and g2, allowing many
exchanges with odd peers to execute both sub-protocols.

MiCA: A Compositional Architecture for Gossip Protocols 657

class EpochPipeliner<G extends GossipParticipant> extends

CorrelatedMerger {

GossipParticipantFactory<G> factory = null;

int epochLength = 0;

int currentEpochStart = 0;

EpochPipeliner(GossipParticipantFactory<G> factory, int epochLength) {

super(factory.create(), factory.create());

...

}

void update(EpochPipeliner<G> other) {

int now = getRuntimeState().getSystemClockRounds();

if(now - currentEpochStart >= epochLength) {

g1 = g2; // promote backup to primary

g2 = factory.create();

currentEpochStart = now;

}

super.update(other);

}

}

Fig. 6. Epoch-based “pipelining” operator

Independent merging. Although it is often advantageous to bundle messages
from multiple sub-protocols together, there is also a downside to the correlated
merge operator: the peer selection preferences of the sub-protocols are no longer
independent. This could violate assumptions in a program that depends on inde-
pendence. For example, the correctness of the random walk protocol developed
by Massoulié et al. [17] depends on randomly sampling locations in the system. If
we mistakenly composed two copies of this protocol using the correlated merging
operator just defined, believing that this would yield samples from two distinct
random walks, both instances would actually generate the same walks. Such
problems could have dire consequences in systems whose robustness assumes in-
dependent peer selection. Another example involving random walks comes from
Broder et al. [4], who solve the problem of generating independent paths be-
tween pairs of nodes with a random walk approach. More generally, any system
relying on the independence of concurrent gossip protocols could be inadver-
tently sabotaged by the correlated merge operator. To address this concern, we
present an independent probabilistic merge operator (Figure 5). Like correlated
merge, independent merge makes probabilistic gossip choices, and combines sub-
protocol view and rate methods. However, the independent merge ensures that
the probabilistic decisions made by each sub-protocol are independent.

Epoch pipelining. The final operator presented in this section implements a
completely different kind of composition. Rather than composing multiple sub-
protocols in parallel, it composes a single protocol with itself, running two in-
stances in a primary-backup configuration for enhanced fault tolerance.

658 L. Princehouse et al.

As a motivating example, recall the MinFinder example from the previous
section, which gossips the minimum value in the system using a simple anti-
entropy protocol. This protocol converges rapidly to a stable state and is ex-
tremely robust—a small number of lost messages or transient failures have little
affect on overall convergence. However, it is susceptible to a particular failure
that can easily lead to unintuitive behavior. To illustrate, consider a system in
which each node executes MinFinder. Next, suppose that after running the pro-
tocol for a while, the node that originally contained the minimum value crashes.
What should happen?We might want the system to converge to the next smallest
value in the system. But, assuming the crashed node successfully communicated
with at least one other node, this is not what will happen. Instead, the system
will continue gossiping the old minimum value even though none of the nodes in
the system still have that value.

To address this problem, we can execute two copies of MinFinder side by
side. The primary protocol, by convention g1, contains the definitive copy of the
protocol while the backup protocol, g2, executes a second copy of the protocol
from a fresh state. The composite protocol executes the two copies in parallel
until a certain number of rounds have elapsed—sufficiently many to ensure that
the backup copy has converged to a stable value. At that point, the composite
protocol replaces the primary with the backup and resets the backup to a fresh
copy of the protocol. It is easy to see that this “pipelined” protocol does not
suffer from the anomaly described above, since the minimum value is recomputed
from scratch in each epoch. Note that this implementation of pipeline parallelism
requires system-wide clock drift to be less than one half of a round, to prevent
possible contamination from the primary layer to the backup layer. This is a
reasonable constraint in a data center, where round-trip communication times
between nodes are no more than a few milliseconds.

We can define pipelining on top of any of the merging operators just de-
fined. Figure 6 gives a definition using correlated merge operator. Note that the
view and rate functions are inherited from the super class. The definition of
a pipelining operator based on independent merge is similar, and preferable in
many scenarios since it makes completely independent choices when selecting
a peer. On the downside, however, it requires extra messages and an increased
rate, whereas the operator based on correlated merge only requires larger mes-
sages since it can always bundle messages from each pipeline stage. A more
general EpochPipeliner implementation might admit other implementations of
epoch-switching, for example, triggered by a consensus threshold instead of a
clock [10]. Finally, although we do not develop it here, one can define pipelining
of k protocol copies at a time for higher levels of fault tolerance.

5 State Management and Data Movement

MiCA is designed to abstract away the details of handling distributed state. In
particular, developers write the update function with the illusion that each par-
ticipating node is able to access the other’s state as if it were local. In actuality,

MiCA: A Compositional Architecture for Gossip Protocols 659

n′
1,msg1 = f1(n1)

n′
2,msg2 = f2(n2,msg1)

n′′
1 = f3(n

′
1,msg2)

Initiator n1 Receiver n2

msg1

msg2

Fig. 7. Execution of a gossip exchange with the explicit messages used by the low-level
target of the MiCA compiler. Provided the synthesized functions f1, f2, f3 are correct,
the final states of both nodes are guaranteed to be the same as if update had executed
locally: (n′′

1 , n
′
2) = update(n1, n2).

the update function is a distributed program that exchanges messages using the
communication pattern illustrated in Figure 7. The MiCA compiler transforms
the update function into the distributed implementation, and the MiCA runtime
manages the exchange of state between the nodes.

To transform update into the distributed equivalent, MiCA partitions the
function into three fragments, f1, f2, and f3, that cooperate to execute the
gossip exchange. First, the initiator of the exchange updates its own state by
applying f1, and sends its updated state to the receiver node in message msg1.
Next, the receiver executes its fragment, f2, using the initiator state and its own
state, and then returns its new state in msg2. Finally, the initiator updates its
state, using f3, with the data from the receiver. Note that when partitioning the
function into fragments, the compiler must ensure that the fragments obey the
constraints imposed by the program dependence graph (PDG). So, f1 cannot
execute code that may read state from n2, and f3 cannot execute code that may
modify the state of n2. This can be expressed as two cuts in the PDG, breaking
update into three regions corresponding to f1, f2, and f3.

Consistency Model. A key challenge for maintaining MiCA’s local state abstrac-
tion is handling failures during the execution of update. Ideally, MiCA would
provide guarantees about an exchange, even if failures occur. Unfortunately, it is
impossible to guarantee the obvious property—transactional atomicity—because
when a network fault is detected on a given node, that node has no way of deter-
mining whether the remote node has successfully completed its last phase. This
means that the node cannot decide whether or not to roll back its local state or
not (this is an instance of the classic Two Generals’ problem).

To avoid these issues, MiCA employs a relaxed consistency model. MiCA
saves node state before executing calls to update. If a network error is detected
(including timeouts, which do not necessarily mean the message failed to reach
its destination), the state is rolled back. All state changes that occurred during
the unsuccessful update are erased by the rollback. This leaves four possible
outcomes for each gossip exchange: each node completes successfully, or one

660 L. Princehouse et al.

or both revert to their original state. However, it precludes the possibility of
corrupting state by interrupting update in the middle of its execution.

Communication Optimization. The simplest strategy to exchange state between
the participants would be to send the entire state of each node. In contrast,
MiCA uses an optimization to reduce the communication overhead. Rather than
send the entire state, the compiler performs a static analysis that determines
conservative sets of objects that may be read and may be modified by f1, f2,
and f3. MiCA then generates custom serializers that send the relevant objects in
messagesmsg1 and msg2. This analysis is currently performed at the granularity
of fields of the root protocol objects. While coarse, this is a significant improve-
ment over the näıve strategy, in that fields that will definitely not be used are
not exchanged. It would be natural to duplicate the execution of side-effect-free
code to further reduce the amount of state that needs to be transmitted, but
MiCA does not currently implement this extension.

6 Implementation

We have built a full working prototype of MiCA, implemented as an extension to
Java, and made it available under an open-source license. Our implementation
can be obtained at: https://github.com/mica-gossip/mica. It includes the
compiler and runtime, as well as a library of primitive protocols and implemen-
tations of the composition operators presented in this paper.

The MiCA compiler is implemented as a bytecode post-processor. Post-
processing allows MiCA to partition the update function into methods for each
node participating in the gossip exchange, and perform the static analysis for
the communication optimization.

The current implementation uses TCP/IP for network communication. One
connection is kept alive for the duration of the gossip exchange. However, the
communication layer of MiCA does not depend on this particular implementa-
tion choice. In ongoing work, we are exploring an alternative implementation
that uses UDP. Because gossip protocols are tolerant of failures, the unreliable
communication mechanism seems like a natural choice if some performance ben-
efit can be gained due to smaller packet headers, reduced connection state, etc.

MiCA uses the Soot analysis framework [25] for analysis and transformation,
and relies on Soot for computing the program dependence graph, points-to sets,
and call graph. For functions f1, f2, and f3, the remote node (either n1 or n2) is
replaced with a custom-generated proxy class, inspired by the Uniform Proxies
of Eugster [12]. An instance of this proxy class may represent a local or remote
GossipParticipant object; in the case of a remote object, the proxy acts as a
container for the subset of fields that may be necessary for remote execution.

7 Experience and Case Studies

To evaluate our design and implementation of MiCA, we asked volunteers in
an undergraduate course to use MiCA for developing distributed applications.

https://github.com/mica-gossip/mica

MiCA: A Compositional Architecture for Gossip Protocols 661

0 20 40 60 80 100 120 140

Rounds

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

te
 c

h
a
n
g
e
s
 p

e
r

ro
u
n
d
 (

n
o
rm

)

a

b
c d

leader

tree

count

label

Fig. 8. Convergence of all four layers. Arrows indicate (a) Convergence from arbitrary
starting state; (b) a transient fault: 10% of nodes crash; (c) failed nodes recover; (d)
a large artificial disruption of the bottom layer’s state. Note that the leader election
layer was not affected by the transient fault because the leader did not crash.

To explore how MiCA performs in real-world scenarios, we performed two case
studies in a simulated environment.

In the undergrad course, a number of students who had no connection to
our research efforts used MiCA to develop their projects. Using MiCA, they
developed a data replication protocol for use in coherent distributed caching, a
probabilistic consensus protocol, a scalable distributed denial-of-service (DDoS)
detection application, and a storage backend for a peer-to-peer social network.

The case studies were performed in a simulated runtime. This runtime sim-
ulates a gossip network of many logical nodes with a discrete event simulation
passing messages via message queues on a single machine. All of the MiCA logic
and state serialization is the same as in the TCP/IP runtime. The simulated
runtime allowed us to perform experiments faster than realtime. For the first
case study, we implemented a four-layer composite protocol that builds a tree
over an otherwise unstructured topology and then labels the nodes of the tree
according to a depth-first traversal. During execution, we introduced several
disruptions, and measured the time needed for each layer to converge back to
a stable state. This experiment demonstrates how MiCA facilitates building so-
phisticated protocols out of simple components, as well as the resilience of such
composite protocols to various kinds of failures. For the second case study, we
studied the effect on convergence times for protocols built using probabilistic
merge. Because this operator changes the gossip rate for each sub-protocol from
a deterministic to an probabilistic value, the expected convergence time is in-
creased in certain topologies. This experiment illustrates this effect, which we
call dilation, using another simulation.

7.1 Layered Protocol

The first case study is based on a four-layer composite protocol originally pro-
posed by Dolev [11]. The layers represent several standard varieties of gossip,

662 L. Princehouse et al.

all working together: overlay maintenance, aggregation, and dissemination. The
lowest layer, leader, gossips on a fixed topology and executes a standard leader
election protocol. The leader selected by the lowest layer is then used by the
second layer, tree, to construct a spanning tree overlay. The third and fourth
layers, count and label, gossip over the tree overlay. The count layer recur-
sively counts the number of nodes in each sub-tree and aggregates the results up
the tree to the root, while label assigns a numeric label to each node, resulting
in a depth-first traversal ordering. The labeling is achieved using a dissemination
protocol: a parent assigns labels to its children based on its own label plus an
offset calculated from the sizes of the children’s sub-trees.

Unlike all the composite protocols we have seen so far, this layered proto-
col requires sharing state between the sub-protocols. For example, the protocol
for the tree layer depends on the state maintained by the leader layer. It is
straightforward to encode this behavior in MiCA—the programmer simply cre-
ates references between the sub-protocols using ordinary Java references. For
example the following code creates the layers needed for the case study:

LeaderElection leader = new LeaderElection(topology);

Tree tree = new Tree(leader, topology);

Count count = new Count(tree);

Label label = new Label(tree, count);

GossipParticipant g = new IndependentMerger(leader,

new IndependentMerger(label,

new IndependentMerger (tree, count)));

Note that sharing state between sub-protocols using references obviously breaks
the state preservation property, albeit in a fairly innocuous way.

After implementing the layered protocol, we then executed it on a random
topology in a simulated environment and measured the amount of time needed
for each layer to converge under various disruptions. Figure 8 present the con-
vergence results for all four layers on a 100-node random graph of degree four,
starting from arbitrary initial states. To model failures, we introduced a tran-
sient disruption by crashing 10% of the nodes at t = 40 and restarting them
at t = 70. At t = 100, we introduced a major disruption by clobbering the
state of the leader layer with arbitrary values. We measured convergence as
the normalized per-round rate of change: a value of 1.0 indicates that 100% of
the nodes were changing in a given round while a value of 0.0 indicates the
protocol has converged. As these graphs show, MiCA can be used to implement
protocols that will recover rapidly from transient failures, even major ones, and
even when several protocols are combined together.

We also ran the experiment using correlated merge instead of independent
merge. This resulted in similar convergence times, but each gossip exchange
bundled together the messages for 2.3 layers on average, dramatically reducing
the total number of gossip exchanges by 56%. Note, however, that this is not a
general result: this particular layered protocol is amenable to correlation because
count and label always gossip together, as do leader and tree.

MiCA: A Compositional Architecture for Gossip Protocols 663

7.2 Dilation

The second case study illustrates an effect that we call dilation, and that can arise
when protocols running at different rates are merged probabilistically. Recall
that the rate of a gossip protocol controls the frequency at which the node
initiates exchanges with another node. When a protocol runs in isolation, rate is
completely deterministic: the node sleeps until the appropriate time, initiates an
exchange with that node, and then sleeps again. However, in a composite protocol
implemented using the probabilistic merge operator, a given sub-protocol will
only be able to initiate gossip at an expected rate. In particular, although the
average rate will faithfully track the value specified by the rate method for
that sub-protocol, the variance of the distribution of the interval between gossip
exchanges increases as sub-protocols are added to the composite.

To demonstrate this effect, we simulated the anti-entropy protocol from Fig-
ure 1, obtaining the results seen in Figure 9. The graph in the upper left corner
gives the baseline: the protocol executes deterministically, and the distribution
of intervals between exchanges is tightly clustered around 1.0 (because no packet
loss occurs in this experiment, it would be exactly 1.0 were it not for measure-
ment artifacts). The next graph, on the upper right, shows the effect when the
protocol is composed with another protocol using probabilistic merge. Now the
distribution contains values ranging from less than 1.0 all the way up to 5.0. That
is, some exchanges occur faster than the stated rate, and some occur slower, even
though the average exactly matches the target rate. As additional sub-protocols
are added to the composite, shown by the graphs on the bottom row, the dilation
becomes increasingly evident.

A natural question to ask is whether this phenomenon affects important prop-
erties of a protocol, such as convergence. The answer is that it can, depending on
the protocol and topology, but significant consequences are seen only in some-
what artificial situations. Figure 10 depicts the convergence rate for the anti-
entropy protocol with various degrees of dilation on a system whose topology
is a complete graph. The x-axis contains the number of gossip rounds and the
y-axis contains the number of changes induced on that round. A protocol con-
verges when the number of changes reaches 0. In a complete graph topology, the
effect of dilation is minimal: because we are executing an anti-entropy protocol
and every node is connected to every other node, overall convergence does not
hinge on specific nodes being able to gossip at particular moments. We believe
that this would be the most common case in real uses of MiCA.

Note that dilation does not mean that probabilistic merge is incorrect—on
the contrary, all our operations correctly produce protocols that faithfully im-
plement the sub-protocol, and faithfully run them at the correct average rate.
The point is somewhat more subtle: what we see here is that turning a deter-
ministic behavior into a probabilistic one can sometimes slow convergence if the
underlying topology has a slow information-dissemination time, but would not
have this impact when running on a topology with the properties of an expander
graph, of which the complete graph is an extreme example. We plan to con-
tinue studying dilation in the future, with the goal of fully characterizing the

664 L. Princehouse et al.

0 2 4 6 8 10

Interval length between gossip events (rounds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

c
ti

o
n
 o

f
in

te
rv

a
ls

dilation-0

0 2 4 6 8 10

Interval length between gossip events (rounds)

0.00

0.05

0.10

0.15

0.20

F
ra

c
ti

o
n
 o

f
in

te
rv

a
ls

dilation-1

0 2 4 6 8 10

Interval length between gossip events (rounds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
ra

c
ti

o
n
 o

f
in

te
rv

a
ls

dilation-2

0 2 4 6 8 10

Interval length between gossip events (rounds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
ra

c
ti

o
n
 o

f
in

te
rv

a
ls

dilation-3

Fig. 9. Effect of dilation for an anti-entry protocol on intervals between gossip ex-
changes. The labels indicate the degree of dilation: d0 is no dilation, d2 is two nested
operators, etc.

0 2 4 6 8 10 12 14 16

Round

0

200

400

600

800

1000

1200

R
a
te

 (
c
h
a
n
g
e
 e

v
e
n
ts

 p
e
r

ro
u
n
d
)

complete-d0

complete-d1

complete-d2

complete-d3

complete-d4

Fig. 10. Effect of dilation for an anti-entropy protocol in a complete topology. The
labels indicate the degree of dilation: d0 is no dilation, d2 is two nested operators, etc.

classes of protocols and topologies that are guaranteed to be immune to this
effect. We are also exploring other ways to implement the composition operators
that incorporate mechanisms for limiting or otherwise bounding the effects of
dilation.

MiCA: A Compositional Architecture for Gossip Protocols 665

8 Related Work

Work related to MiCA falls into several general categories: gossip-specific frame-
works (Opis [6], Gossip Objects [28]); object-oriented distributed system libraries
(Bast [13], Jini [29]); compositional network transport protocol systems (Ap-
pia [18], Cactus [31]); and languages and abstractions for distributed program-
ming (P2 [16], MACEDON [21], BLOOM [1]). In this section, we discuss each of
these in turn. It should also be noted that MiCA’s core abstraction—the pairwise
representation of gossip protocols—was originally presented in a short workshop
paper [19]. This earlier work did not define gossip protocols precisely and did
not include an implementation or experiments.

The first of these categories contains systems closest to MiCA, namely, those
concerned specifically with gossip. Opis [6] is an OCaml-based framework for
gossip. It offers a formal definition of gossip similar to that used in MiCA. In
Opis, gossip protocols are event-driven programs that react to user-defined ex-
ternal network events and internal timer events. This is an interesting contrast
to MiCA’s protocol representation, which could also be regarded as using events
to drive state changes, but has only a small, fixed number of state transitions
exposed to the programmer. Like MiCA, Opis leverages object-oriented com-
position for protocols, but with added benefit from OCaml’s rich type system.
However, Opis offers no analog to MiCA’s compositions, which consider not
only the object-oriented composition of classes, but also explore strategies for
semantic-preserving combination of protocol views.

The Gossip Objects framework [28] offers a compositional infrastructure for
publish-subscribe gossip protocols. Unlike MiCA, Gossip Objects is an imple-
mentation specifically for publish-subscribe gossip, and not a general frame-
work. Like MiCA, Gossip Objects has optimizations for running many concurrent
systems. Composition takes the form of speculative message delivery, bundling
messages to non-subscribers in an effort to have them delivered indirectly and
accelerate the overall gossip rate. Gossip Objects does not preserve the relative
rates of protocols being combined. This is a design decision, not a bug: Gossip
Objects’ purpose is to improve the efficiency of message delivery.

The next category of related work consists of general-purpose, object-oriented
approaches to building distributed systems. These frameworks do not provide
MiCA’s gossip-centric world view, but do share a common philosophy for pro-
tocol composition. Bast [13] is an object-oriented library of distributed system
components, whose main goals were modular composition and code reuse. The
platform introduced a primitive group type and allowed developers to define
subtypes supporting additional properties. The primary focus in Bast was on
atomic broadcast with various levels of ordering and durability. For example, a
database built using Bast might obtain ACID guarantees by exploiting ordering
and other atomicity properties of the underlying groups (e.g., in implementations
of locking or propagation of updates to replicas). However, while Bast’s Java
implementation is similar to MiCA’s in that both represent protocols as classes
and use object-oriented composition mechanisms such as inheritance, MiCA fo-
cuses on gossip protocols, and on optimizations that reduce communication while

666 L. Princehouse et al.

preserving semantics. To the best of our knowledge, Bast never explored gossip
protocols, and generally avoided transformations where knowledge of protocol
semantics would be needed.

Apache River [29] (originally Jini) is a Java framework for client-server dis-
tributed services, originally created by Sun Microsystems. It provides extensi-
ble components for service registration and discovery for distributed systems,
and other utilities to facilitate distributed systems programming such as remote
method invocation and mobile code. Less broad than Bast, it is a good example
of an off-the-shelf component available to Java developers building distributed
systems. River’s services are good examples of the protocol layers that could be
implemented in a MiCA stack.

Cactus [31] and Appia [18] both undertake the challenge of transport protocol
composition. Recognizing that transports like TCP and UDP are not ideal for
all situations, these two systems provide ways to modularly compose a transport
protocol that has desired properties; for example, Cactus could be used to satisfy
the statement “I need a transport protocol with congestion control, but I don’t
need reliable ordering”. Cactus includes a library of “micro-protocols”, each of
which implements a particular functionality; the philosophy of composition is
similar to MiCA’s. Although MiCA gossip protocols run at a layer above the
transport, some functionality, such as quality-of-service, could be implemented
either in transport or as a MiCA gossip layer.

Finally, there are languages designed for directly programming an entire dis-
tributed system. Although MiCA is not a language, its distribution of the update
function onto a pair of nodes is similar to what these whole-system languages
accomplish. P2 [16] and Bloom [1] are declarative languages that approach
distributed systems programming from a databases perspective. P2 allows pro-
grammers to specify properties of distributed system state and compiles to a
dataflow-oriented runtime system. Bloom is a Ruby-like language, designed for
efficient and concise query execution on distributed data tables. MACEDON [21]
is a language for building P2P-style overlay networks. Like MiCA, it uses a
domain-specific language extension to describe its systems; unlike MiCA, its do-
main is not gossip, but overlay networks. The programmer writes from a single-
node perspective, but MACEDON includes tools for analyzing whole-system
behavior.

9 Future Work

Today’s data center operators lack tools for creating new services to manage
networks and applications, both within enterprise networks and even in the new
class of wide-area enterprise VLANs that span between today’s massive cloud-
computing data center systems. This paper presents MiCA, a new compositional
architecture and system for building network management protocols. The sys-
tem assists developers in creating applications from micro-protocols implemented
using gossip or self-stabilization mechanisms, which can then be composed in a

MiCA: A Compositional Architecture for Gossip Protocols 667

property-preserving manner to build sophisticated functionalities. Unlike proto-
cols built in a more classical manner, which have been known to misbehave in un-
expected and disruptive ways when deployed on a very large scale, MiCA yields
scalable solutions with absolutely predictable, operator-controlled, worst-case
message rates and sizes. Using the techniques of the gossip and self-stabilization
communities, the developer creates components that are provably convergent
under the MiCA run-time model. Moreover, the framework provides abstrac-
tions for composing protocols in a manner that preserves their semantics while
optimizing across components to make the best possible use of available commu-
nication resources. In this manner, MiCA makes it easy to build the massively
scalable applications needed to efficiently operate today’s data centers.

Acknowledgements. This work was supported by grants from the National
Science Foundation, DARPA, and ARPA-e, and a Sloan Research Fellowship.

References

1. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:
Boom analytics: exploring data-centric, declarative programming for the cloud. In:
European Conference on Computer Systems, pp. 223–236 (2010)

2. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digital
clock synchronization. In: Symposium on Principles of Distributed Computing, pp.
385–394 (August 2008)

3. Bonjour, http://www.apple.com/support/bonjour/

4. Broder, A.Z., Frieze, A.M., Upfal, E.: Static and dynamic path selection on
expander graphs: A random walk approach. Random Structures and Algo-
rithms 14(1), 87–109 (1999)

5. Apache Cassandra, http://cassandra.apache.org

6. Dagand, P.-E., Kostić, D., Kuncak, V.: Opis: Reliable distributed systems in
OCaml. In: International Workshop on Types in Language Design and Implemen-
tation, pp. 65–78 (January 2009)

7. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Symposium on Operating Systems Design and Implementation, pp. 137–150
(December 2004)

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Symposium on Operating Systems Principles, pp. 205–220
(October 2007)

9. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Symposium on Principles of Distributed Computing, pp. 1–12 (August 1987)

10. Dolev, D., Hoch, E.N.: Byzantine self-stabilizing pulse in a bounded-delay model.
In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 234–252.
Springer, Heidelberg (2007)

11. Dolev, S.: Self-Stabilization. MIT Press (2000)

12. Eugster, P.: Uniform proxies for java. In: Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pp. 139–152 (October 2006)

http://www.apple.com/support/bonjour/
http://cassandra.apache.org

668 L. Princehouse et al.

13. Garbinato, B., Guerraoui, R.: Flexible protocol composition in Bast. In: Interna-
tional Conference on Distributed Computing Systems, pp. 22–29 (May 1998)

14. Jelasity, M., Montresor, A., Babaoglu, Ö.: T-Man: Gossip-based fast overlay topol-
ogy construction. Computer Networks 53(13), 2321–2339 (2009)

15. JXTA The Language and Platform Independent Protocol for P2P Networking,
https://jxta.kenai.com

16. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Im-
plementing declarative overlays. In: Symposium on Operating Systems Principles,
pp. 75–90 (October 2005)

17. Massoulié, L., Le Merrer, E., Kermarrec, A.-M., Ganesh, A.: Peer counting and
sampling in overlay networks: random walk methods. In: Symposium on Principles
of Distributed Computing, pp. 123–132 (August 2006)

18. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a flexible protocol kernel supporting
multiple coordinated channels. In: International Conference on Distributed Com-
puting Systems, pp. 707–710 (April 2001)

19. Princehouse, L., Birman, K.: Code-partitioning gossip. Operating Systems Re-
view 43, 40–44 (2010)

20. Riak, http://basho.com/riak/
21. Rodriguez, A., Killian, C.E., Bhat, S., Kostic, D., Vahdat, A.: MACEDON:

Methodology for automatically creating, evaluating, and designing overlay net-
works. In: Symposium on Networked Systems Design and Implementation, pp.
267–280 (March 2004)

22. Subramaniyan, R., Raman, P., George, A.D., Radlinski, M.A., Radlinski, M.A.:
GEMS: Gossip-enabled monitoring service for scalable heterogeneous distributed
systems. Cluster Computing 9(1), 101–120 (2006)

23. Tibco message bus,
http://www.tibco.com/products/automation/messaging/default.jsp

24. Tölgyesi, N., Jelasity, M.: Adaptive peer sampling with newscast. In: Sips, H.,
Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 523–534.
Springer, Heidelberg (2009)

25. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot – a
Java optimization framework. In: Conference of the Centre for Advanced Studies
on Collaborative Research, pp. 125–135 (November 1999)

26. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. Trans-
actions on Computing Systems 21(2), 164–206 (2003)

27. van Renesse, R., Minsky, Y., Hayden, M.: A gossip-based failure detection service.
In: International Middleware Conference, pp. 55–70 (September 1998)

28. Vigfusson, Y., Birman, K., Huang, Q., Nataraj, D.P.: Optimizing information flow
in the gossip objects platform. Operating Systems Review 44(2), 71–76 (2010)

29. Waldo, J.: The Jini architecture for network-centric computing. Communications
of the ACM 42(7), 76–82 (1999)

30. WebSphere MQ, http://www-03.ibm.com/software/products/en/wmq/
31. Wong, G.T., Hiltunen, M.A., Schlichting, R.D.: A configurable and extensible

transport protocol. In: International Conference on Computer Communications,
pp. 319–328 (April 2001)

https://jxta.kenai.com
http://basho.com/riak/
http://www.tibco.com/products/automation/messaging/default.jsp
http://www-03.ibm.com/software/products/en/wmq/

MiCA: A Compositional Architecture for Gossip Protocols 669

A Artifact Description

Authors of the Artifact. Lonnie Princehouse

Summary. The artifact is a prototype implementation of the MiCA gossip
framework. It includes the runtime and libraries used to develop and experiment
with MiCA. It also includes implementations of the protocol composition opera-
tors and examples given in the paper. The implementation is able to run MiCA
protocols on a real network or on a simulated network with a variety of network
topologies.

Content. The artifact package includes:

– A runnable jar with bundled dependencies
– Source code
– Documentation and examples

Start with index.html

Getting the Artifact. The artifact endorsed by the Artifact Evalua-
tion Committee is available free of charge as supplementary material of
this paper on SpringerLink. The latest version of our code is available at:
https://github.com/mica-gossip/mica.

Tested Platforms. The artifact requires Java 6 or greater to run the compiled
jar, or a recent version of Eclipse to use the pre-built Eclipse workspace.

License. BSD 3-Clause License (http://opensource.org/licenses/BSD-3-
Clause)

MD5 Sum of the Artifact. 68988b8c4623a529366a01d89113ec66

Size of the Artifact. 26521350

h
h

Semantics of (Resilient) X10

Silvia Crafa1, David Cunningham2, Vijay Saraswat3,
Avraham Shinnar3, and Olivier Tardieu3

1 University of Padova, Italy
crafa@math.unipd.it

2 Google Inc., USA
sparkprime@gmail.com

3 IBM TJ Watson Research Center, USA
{vsaraswa,shinnar,tardieu}@us.ibm.com

Abstract.

�
�
�
��
��

��
� 	
��
�����

	

�
��
�
�
��

�����	�����

�
��

�
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

We present a formal small-step structural operational semantics for a
large fragment of X10, unifying past work. The fragment covers multiple places,
mutable objects on the heap, sequencing, try/catch, async, finish, and
at constructs. This model accurately captures the behavior of a large class of
concurrent, multi-place X10 programs. Further, we introduce a formal model of
resilience in X10. During execution of an X10 program, a place may fail for many
reasons. Resilient X10 permits the program to continue executing, losing the data
at the failed place, and most of the control state, and repairing the global control
state in such a way that key semantic principles hold, the Happens Before Invari-
ance Principle, and the Exception Masking Principle. These principles permit an
X10 programmer to write clean code that continues to work in the presence of
place failure. The given semantics have additionally been mechanized in Coq.

1 Introduction

The need for scale-out programming languages is now well-established, because of high
performance computing applications on supercomputers, and analytic computations on
big data. Such languages – based for example on a partitioned global address space
([21,9], [10]) – permit programmers to write a single program that runs on a collection
of places on a cluster of computers, can create global data-structures spanning multi-
ple places, can spawn tasks at remote places, detect termination of an arbitrary tree of
spawned tasks etc. The power of such languages is shown by programs such as M3R,
which implement a high-performance, main-memory version of Hadoop Map Reduce
[22] in a few thousand lines of code. Other high performance multi-place libraries have
been developed for graph computations [12] and sparse matrix computations [23].

At the same time, the practical realities of running large-scale computations on clus-
ters of commodity computers in commercial data centers are that nodes may fail (or may
be brought down, e.g. for maintenance) during program executions. This is why multi-
place application frameworks such as Hadoop [13], Resilient Data Sets [25], Pregel
[18] and MillWheel [2] support resilient computations out of the box. In case of node
failure, relevant portions of the user computation are restarted.

A new direction has been proposed recently in [11]: extending a general purpose
object-oriented, scale-out programming language (X10) to support resilience. The hy-
pothesis is that application frameworks such as the ones discussed above can in fact be

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 670–696, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Semantics of (Resilient) X10 671

programmed in a much simpler and more direct fashion in an object-oriented language
(powerful enough to build parallel, distributed libraries) that already supports resilience.
It is feasible to extend X10 in this way since is based on a few, orthogonal constructs
organized around the idea of places and asynchrony. A place (typically realized as a pro-
cess) is simply a collection of objects together with the threads that operate on them. A
single computation may have tens of thousands of places. The statement async S sup-
ports asynchronous execution of S in a separate task. finish S executes S, and waits
for all tasks spawned by S to terminate. Memory locations in one place can contain
references (global refs) to locations at other places. To use a global ref, the at (p) S
statement must be used. It permits the current task to change its place of execution to p,
execute S at p and return, leaving behind tasks that may have been spawned during the
execution of S. The termination of these tasks is detected by the finish within which
the at statement is executing. The values of variables used in S but defined outside
S are serialized, transmitted to p, de-serialized to reconstruct a binding environment
in which S is executed. Constructs are provided for unconditional (atomic S) and
conditional (when (c) S) atomic execution. Finally, Java-style non-resumptive excep-
tions (throw, try/catch) are supported. If an exception is not caught in an async,
it is propagated to the enclosing finish statement. Since there may be many such
exceptions, they appear wrapped in a MultipleExceptions exception.

[11] shows that this programming model may be extended to support resilience
in a surprisingly straightforward way. A place p may fail at any time with the loss
of its heap and tasks. Any executing (or subsequent) tasks on that place throw a
DeadPlaceException (DPE). Global refs pointing to locations hosted at p now
“dangle”; however they can only be dereferenced via an at (p) S, and this will throw
a DPE exception. If a task at a failed place has started a task T at another place, this task
is not aborted. Instead Resilient X10 posits a high-level principle, the Happens Before
Invariance (HBI) principle: failure of a place should not alter the happens before rela-
tionship between statement instances at remaining places. [11] shows that many inter-
esting styles of resilient programming can be expressed in Resilient X10. The language
is implemented at a fairly modest cost.

In this paper we formalize the semantics of Resilient X10. Our fundamental motiva-
tion is to provide a mechanized, formal semantics for a core fragment of Resilient X10
that is separate from the implementation and can be used as a basis for reasoning about
properties of programs and for establishing that principles such as HBI actually hold.

We proceed as follows. Our first task is to formalize a large portion of X10, called
TX10. We build on the small-step, transition system for X10 presented in [24] which
deals with finish, async and for loops. We extend it to handle multiple places
and at, exceptions and try/catch statements, necessary to express place failure. (In the
spirit of [24] we omit formalization of any of the object-oriented features of X10 since
it is fairly routine). Configurations are just pairs 〈s, g〉 representing a statement s (the
program to be executed) and a global heap g, a partial map from the set of places to
heaps. Transitions are (potentially) labeled with exceptions, tagged with whether they
were generated from a synchronous or asynchronous context. We establish desirable
properties of the transition system (absence of stuck states, invariance of place-local
heaps). We establish a bisimulation based semantics that is consistent with the intuitions

672 S. Crafa et al.

underlying the “gap based” trace set semantics of Brookes [8]. We establish a set of
equational laws for this semantics.

On this foundation we show that the semantics of Resilient X10 can be formalized
with just three kinds of changes. (1) A place failure transition models the failure of
a place p by simply removing p from the domain of g. This cleanly models loss of
all data at p. Next, the transition rules for various language constructs are modified to
reflect what happens when those constructs are “executed” at a failed place. (2) An at-
tempt to activate any statement at a failed place results in a DeadPlaceException.
(3) Consistent with the design of Resilient X10, any synchronous exception thrown by
(the dynamic version of) an at(q) s at a failed place q are masked by a DPE. These
are the only changes needed.

We show that the main properties of TX10 carry over to Resilient TX10. We also
show important resilience-related properties: our main theorem establishes that in fact
Resilient TX10 satisfies Happens Before Invariance. We also present a set of equational
laws and discuss differences with the laws for TX10.

We have encoded a mechanized version of the syntax and semantics of both TX10
and Resilient TX10 in Coq, an interactive theorem prover [4]. In doing so we addressed
the challenge of formalizing the copy operation on heaps and establishing termina-
tion (even in the presence of cycles in the object graph). We mechanize the proof that
there are no stuck configurations, and furthermore prove that the relation is computable,
yielding a verified interpreter for TX10 and Resilient TX10.

Related work. Our work is related to three broad streams of work. The first is formal-
ization of X10 and Java with RMI. The first formalization of X10 was in [21]. This
paper adapts the framework of Middleweight Java [5] to represent a configuration as a
collection of stacks and heaps. This choice led to a rather complex formalization. [17]
presents an operational semantics for the X10 finish/async fragment, but again
with a complex representation of control. We build on the work of [24] which for the
first time represents the control state as a statement, and presents a very simple defi-
nition of the Happens Before relation. We extend that work to handle exceptions (nec-
essary for the formalization of resilience), and place-shifting at, and formally treat
resilience. [1] presents a semantics for Java with remote method invocation; hence they
also deal with multiple places and communication across places. In particular they for-
malize a relational definition of copying an object graph, although they do not formalize
or mechanize an implementation of this specification. Their formalization does not deal
with place failure, since Java RMI does not deal with it.

The second stream is the work on formalization of the semantics of concurrent imper-
ative languages [7,6,8]. Our work can be seen as adding block-structured concurrency
constructs (finish, async), exceptions, and, of course, dealing with multiple places,
and place failure.

The third stream is the work on distributed process algebras that deal with failure
[14,16,15,3,19]. [3] introduces an extension of the π-calculus with located actions, in
the context of a higher-order, distributed programming language, Facile. [14] introduces
locations in the distributed join calculus, mobility and the possibility of location failure,
similar to our place failure. The failure of a location can be detected, allowing failure
recovery. In the context of Dπ [16], an extension of the π-calculus with multiple places

Semantics of (Resilient) X10 673

and mobility, [15] gives a treatment of node- and link-failure. In relationship with all
these works, this work differs in dealing with resilience in the context of distributed
state, global references, mobile tasks with distributed termination detection (finish), and
exceptions, and formalizing the HBI principle. Our work is motivated by formalizing a
real resilient programming language, rather than working with abstract calculi.

Summary of Contributions. The contributions of this paper are:

– We present a formal operational semantics for TX10, a significant fragment of
X10, including multiple places, mutable heap, try/catch statements, throws,
async, finish and at statements. The semantics is defined in terms of a la-
beled transition relation over configurations in which the control state is represented
merely as a statement, and the data state as a mapping from places to heaps.

– We present a set of equational laws for operational congruence.
– We extend the formal operational semantics to Resilient TX10, showing that it

enjoys Happens Before Invariance and Exception Masking Principles.
– We present equational laws for Resilient X10.
– We mechanize proofs of various propositions in Coq. More precisely, all the the

proofs in the paper have been mechanized but for Theorem 4.8, Theorem 4.10,
Theorem 3.3 and the equational laws, which have been proved manually. In par-
ticular, the mechanization of the proof that no configurations are stuck yields a
verified executable version of the semantics.

Rest of this paper. Section 2 introduces TX10, informally describing the basic con-
structs and a small-step operational semantics of TX10. Section 3 presents laws for
equality for a semantics built on congruence over bisimulation. The second half of the
paper presents a semantic treatment of resilience. Section 4 discusses the design of Re-
silient TX10. formalizes this semantics using the idea of rewriting the control state to
represent place failure. Finally, presents equational laws for congruence, and Section 5
concludes.

2 TX10

We describe in this section the syntax and the semantics of TX10, the formal subset of
the X10 language [20] we consider in this work. We have also encoded a mechanized
version in Coq, which will be discussed in Section 2.2.

The syntax of TX10 is defined in Table 1. We assume an infinite set of values Val,
ranged over by v, w, an infinite set of variables ranged over by x, y, and an infinite set
of field names ranged over by f . We also let p, q range over a finite set of integers Pl=
0...(n−1), which represent available computation places. A source program is defined
as a static statement s activated at place 0 under a governing finish construct. The
syntax then includes dynamic statements and dynamic values that can only appear at
runtime. Programs operate over objects, either local or global, that are handled through
object identifiers (object ids). We assume an infinite set of object ids, ObjId (with a
given bijection with the natural numbers, the “enumeration order”); objects are in a one
to one correspondence with object ids. Given the distributed nature of the language and

674 S. Crafa et al.

Table 1. Syntax of TX10

(Values) v, w ::=
o (Runtime only.) Object ids
o$p (Runtime only.) Global Object ids
E,BF,BG,DP Exceptions

(Programs) pr ::=
finish at (0) s activation

(Expressions) d, e ::=
v Values
x Variable access
e.f Field selection
{f :e, . . . , f :e} Object construction
globalref e GlobalRef construction
valof e Global ref deconstruction

(Statements) s, t ::=
skip; Skip – do nothing
throw v; Throw an exception
valx = e s Let bind e to x in s
e.f = e; Assign to field
{s t} Run s then t
at(p)(valx = e) s Run s at p with x bound to e
async s Spawn s in a different task
finish s Run s and wait for termination
try scatch t Try s, on failure execute t
z Runtime versions
(Dynamic Stmts) z ::=
at (p) s Runtime only
async s Runtime only
finishμ s Run s, recording exceptions in μ

to model X10’s global references, we assume that each object lives in a specific (home)
place, and we distinguish between local and global references, denoted by o and o$q.
More precisely, we use the following notation:

– p : ObjId→ Pl maps each object id to the place where it lives;
– ObjIdq = {o ∈ ObjId | p(o) = q} and grObjId = {o$p | o ∈ ObjIdp ∧ p ∈ Pl}

Then given o ∈ ObjIdq , we say that o is a local reference (to a local object) while o$q
is a global reference (to an object located at q).

The expression {f1 : e1, . . . , fn : en} (for n ≥ 0) creates a new local object and
returns its fresh id. The object is initialized by setting, in turn, the fields fi to the value
obtained by evaluating ei. Local objects support field selection: the expression e.f eval-
uates to the value of the field with name f in the object whose id is obtained by eval-
uating e. Similarly, the syntax of statements allows field update. X10 relies on a type
system to ensure that any selection/update operation occurring at runtime is performed
on an object that actually contains the selected/updated field. Since TX10 has no cor-
responding static semantic rules, we shall specify that o.f throws a BadFieldSelection
BF exception when the object o does not have field f .

The expression globalref e creates a new global reference for the reference
returned by the evaluation of e. Whenever e evaluates to a global reference, the ex-
pression valof e returns the local object pointed by e. Errors in dealing with global

Semantics of (Resilient) X10 675

references are modelled by throwing a BadGlobalRef exception BG. (see Section 2.1
for a detailed explanation of the semantics of global references).

TX10 deals with exception handling in a standard way: the statement throw v
throws an exception value v that can be caught with a try scatch t statement. For
simplicity, exception values are constants: besides BF and BG described above, we add
E to represent a generic exception. The exception DP stands for DeadPlaceException,
and will only appear in the semantics of the resilient calculus in Section 4. Variable
declaration valx = e s declares a new local variable x, binds it to the value of the
expression e and continues as s. The value assigned to x cannot be changed during the
computation. We shall assume that the only free variable of s is x and that s does not
contain a sub-statement that declares the same variable x.This statement is a variant of
the variable declaration available in X10. In X10 the scope s is not marked explicitly;
rather all statements in the rest of the current block are in scope of the declaration. We
have chosen this “let” variant to simplify the formal presentation.

The construct async s spawns an independent lightweight thread, called activity, to
execute s. The new activity running in parallel is represented by the dynamic statement
async s. The statement finish s executes s and waits for the termination of all the
activities (recursively) spawned during this execution. Activities may terminate either
normally or abruptly, i.e. by throwing an exception. If one or more activities terminated
abruptly, finish s will itself throw an exception that encapsulates all exceptions. In
TX10, we use the parameter μ in finishμ s to record the exception values thrown by
activities in s. μ is a possibly empty set of values; we simply write finish s instead
of finish∅ s.

The sequence statement {s t} executes t after executing s. Note that if s is an async,
its execution will simply spawn an activity async s, and then activates t. Therefore,
{async s t} will actually represent s and t executing in parallel. We say that sequenc-
ing in X10 has shallow finish semantics.

Finally, at(p)(valx = e) s is the place-shifting statement. We assume that the only
free variable in s is x. This statement first evaluates e to a value v, then copies the object
graph rooted at v to place p to obtain a value v′, and finally executes s synchronously
at p with x bound to v′. Running s at p synchronously means that in {at(p)(valx =
e) s t}, t will be enabled precisely when the at statement has only asynchronous
sub-statements left (if any). Thus at also has shallow finish semantics, just like
sequential composition. In the cases when the programmer does not need to transmit
values from the calling environment to s, the variant at (p) s may be used instead. As
an example, the program finish at(0) {at(1) async s at(2) async s} evolves
to a state where two copies of s run in parallel at places 1 and 2. The entire program
terminates whenever both remote computations end.

Currently, X10 supports a variant of these at constructs. The programmer writes
at (p) s and the compiler figures out the set of variables used in s and declared outside
s. A copy is made of the object reference graph with the values of these variables as
roots, and s is executed with these roots bound to this copied graph. Moreover X10, of
course, permits mutually recursive procedure (method) definitions. We leave the treat-
ment of recursion as future work.

676 S. Crafa et al.

2.1 Operational Semantics

We build on the semantics for X10 presented in [24]. In this semantics, the data state
is maintained in a shared global heap (one heap per place), but the control state is
represented in a block structured manner – it is simply a statement.

Heap h ::= ∅ | h · [o �→ r] Global heap g ::= ∅ | g · [p �→ h]

The local heap at a place p is a partial map that associates object ids to objects repre-
sented by partial maps r from field names to object ids. The global heap g is a partial
map form the set of places Pl to local heaps. Heaps are inductively defined with the op-
erator · used to append a new entry. We let ∅ denote the unique partial map with empty
domain, and for any partial map f by f [p→ v] we mean the map f ′ that is the same as
f except that it takes on the value v at p. Moreover, in the following we write s[v/x] for
variable substitution.

X10 is designed so that at run-time heaps satisfy the place-locality invariant formal-
ized below. Intuitively, the domain of any local heap only contains local object refer-
ences, moreover any object graph (rooted at a local object) only contains references to
either (well defined) local objects or global references.

Let h be a local heap and o ∈ dom(h) an object identifier. We let h↓o denote the
object graph rooted at o, that is the graph with vertexes the values reachable from o via
the fields of o or of one or more intermediaries. In other terms, it is the graph where an
f -labelled edge (v, f, v′) connects the vertices v and v′ whenever v is an object with
a field f whose value is v′. We also denote by ho the set of all object values that are
reachable from o, that is the set of all vertices in the object graph h↓o.

Definition 2.1 (Place-local heap). A global heap g is place-local whenever for every
q ∈ dom(g), and h = g(q)

– dom(h) ⊆ ObjIdq and ∀o ∈ dom(h). ho ⊆ (ObjIdq ∩ dom(h)) ∪ grObjId

The semantics is given in terms of a transition relation between configurations, which
are either a pair 〈s, g〉 (representing the statement s to be executed in global heap g)
or a singleton g, representing a computation that has terminated in g. Let k range over

configurations. The transition relation k
λ−→p k′ is defined as a labeled binary relation

on configurations, where λ ∈ Λ = {ε, v×, v⊗}, and p ranges over the set of places. The

transition k
λ−→p k′ is to be understood as: the configuration k executing at p can in

one step evolve to k′, with λ = ε indicating a normal transition, and λ = v⊗, resp. v×,
indicating that an exception has thrown a value v in a synchronous, resp. asynchronous,
subcontext. Note that failure is not fatal; a failed transition may be followed by any
number of failed or normal transitions. We shall write

ε−→p as −→p, and we let
�−→

represent the reflexive, transitive closure of
λ−→0.

Definition 2.2 (Semantics). The operational semantics O[[s]] of a statement s is the

relation O[[s]]
def
= {(g, g′) | 〈finish at (0) s, g〉 �−→ g′}.

Semantics of (Resilient) X10 677

Table 2. Synchronous and Asynchronous Statements

� isAsync async s

� isAsync s

� isAsync at (p) s
� isAsync try scatch t

� isAsync s � isAsync t

� isAsync {s t}

� isSync s∗

with s∗ ∈

⎧⎨
⎩
skip, val x=e s, e.f = e,
at(p)(valx = e) s, async s,
finish μ s,throw v

⎫⎬
⎭

� isSync s

� isSync {s t}
� isSync {t s}
� isSync at (p) s
� isSync try scatch t

In order to present rules compactly, we use the “matrix” convention exemplified below,
where we write the left-most rule to compactly denote the four rules obtained from the
right-most rule with i = 0, 1, j = 0, 1.

γ
λ−→ γ0 | γ1

cond0 δ0
λ0−→ δ00 | δ01

cond1 δ1
λ1−→ δ10 | δ11

γ
λ−→ γi condj

δj
λj−→ δji i = 0, 1 j = 0, 1

We also introduce in Table 2 two auxiliary predicates to distinguish between asyn-
chronous and synchronous statements. A statement is asynchronous if it is an async s,
or a sequential composition of asynchronous statements (possibly running at other
places). The following proposition is easily established by structural induction.

Proposition 2.3. For any statement s, either
 isAsync s xor
 isSync s.

In order to define the transition between configurations, we first define the evalua-
tion relation for expressions by the rules in Table 3. Transitions of the form 〈e, h〉 −→p

〈e′, h′〉 state that the expression e at place p with local heap h correctly evaluates to e′

with heap h′. On the other hand an error in the evaluation of e is modeled by the transi-

tion 〈e, h〉 v⊗−→p h. An object creation expression is evaluated from left to right, accord-
ing to rule (EXP CTX). When all expressions are evaluated, rule (NEW OBJ) states that
a new local object id is created and its fields set appropriately. Rule (NEW GLOBAL

REF) shows that a new global reference is built from an object id o by means of the ex-
pression globalref o. A global reference o$p can be dereferenced by means of the
valof expression. Notice that rule (VALOF), according to X10’s semantics, shows that
the actual object can only be accessed from its home place, i.e. p(o) = p. Any attempt
to select a non-existing field from an object results in the BF exception by rule (SELECT

BAD), while any attempt to access a global object that is not locally defined results in
a BG error by rule (VALOF BAD). In X10, the static semantics guarantees that objects
and global references are correctly created and that any attempt to select a field is type
safe, hence well typed X10 programs do not occur in BF and BG exceptions, however
we introduce rules (SELECT BAD), (VALOF BAD) and (BAD FIELD UPDATE) so that
the operational semantics of TX10 enjoys the property that there are no stuck states, i.e.
Proposition 2.10 in Section 2.3.

678 S. Crafa et al.

Table 3. Expression Evaluation

(NEW OBJ)

o ∈ ObjIdp\dom(h) n ≥ 0

〈{f1:v1, ..., fn:vn}, h〉 −→p 〈o, h · [o �→ ∅[f1 �→ v1] . . . [fn �→ vn]]〉

(SELECT)

h(o)=r[f �→ v]

〈o.f, h〉 −→p 〈v, h〉

(SELECT BAD)

v �=o ∨ (v=o ∧ f /∈dom(h(o)))

〈v.f, h〉 BF⊗−→p h

(NEW GLOBAL REF)

〈globalref o, h〉 −→p 〈o$p, h〉

(VALOF)

〈valof o$p, h〉 −→p 〈o, h〉

(BAD GLOBALREF)

v �= o$p 〈valof v, h〉 BG⊗−→p h

v �= o 〈globalref v, h〉 BG⊗−→p h

(EXP CTX)

〈e, h〉 λ−→p 〈e′, h′〉 | h

〈e.f, h〉 λ−→p 〈e′.f, h′〉 | h
〈globalref e, h〉 λ−→p 〈globalref e′, h′〉 | h

〈valof e, h〉 λ−→p 〈valof e′, h′〉 | h
〈{f1:v1, ..., fi:vi, fi+1:e, ...}, h〉 λ−→p 〈{f1:v1, ..., fi:vi, fi+1:e

′, ...}, h′〉 | h

The following proposition shows that the heap modifications performed by rules
(NEW OBJ) and (NEW GLOBAL REF) respect the place-locality invariant.

Proposition 2.4. Let g be a place-local heap, p ∈ dom(g) and h = g(p). We say
that 〈e, h〉 is place-local whenever for any local object id o occurring in e it holds
o ∈ dom(h). If 〈e, h〉 is place-local and 〈e, h〉 −→p 〈e′, h′〉, then g · [p �→ h′] is
place-local, and 〈e′, h′〉 is place-local.

Now we turn to the axiomatization of the transition relation between configurations. Ta-
ble 4 collects a first set of rules dealing with basic statements. These rules use the con-
dition p ∈ dom(g), which is always true in TX10 since places do not fail. We include
this condition to let Table 4 to be reused when we consider place failure in Section 4.
Most of these rules are straightforward. Rule (EXCEPTION) shows that throwing an
exception is recorded as a synchronous failure. Moreover, rule (BAD FIELD UPDATE)
throws a BF exception whenever f is not one of its fields.

The rest of operational rules are collected in Table 5. These rules, besides defining
the behavior of the major X10 constructs, also illustrate how the exceptions are prop-
agated through the system and possibly caught. In words, synchronous failures arise
from synchronous statements, and lead to the failure of any synchronous continuation,
while leaving (possibly remote) asynchronous activities that are running in parallel free
to correctly terminate (cf. Proposition 2.11). On the other hand, asynchronous failures

Semantics of (Resilient) X10 679

Table 4. Basic Statements

(SKIP)

p ∈ dom(g)

〈skip, g〉 −→p g

(EXCEPTION)

p ∈ dom(g)

〈throw v, g〉 v⊗−→p g

(FIELD UPDATE)

p ∈ dom(g) f ∈ dom(g(p)(o))

〈o.f=v, g〉 −→p g[p → g(p)[o → g(p)(o)[f �→v]]]

(DECLARE VAL)

p ∈ dom(g) 〈s[v/x], g〉 λ−→p 〈s′, g′〉 | g′

〈valx = v s, g〉 λ−→p 〈s′, g′〉 | g′

(BAD FIELD UPDATE)

p∈dom(g) (v �=o ∨ (v=o ∧ f /∈dom(g(p)(o))))

〈v.f = v′, g〉 BF⊗−→p g

(CTX)

p ∈ dom(g) 〈e, g(p)〉 λ−→p 〈e′, h′〉 | h′ g′ = g[p �→ h′]

〈valx = e s, g〉 λ−→p 〈valx = e′ s, g′〉 | g′

〈e.f = e1, g〉 λ−→p 〈e′.f = e1, g
′]〉 | g′

〈o.f = e, g〉 λ−→p 〈o.f = e′, g′〉 | g′

〈at(p)(valx = e) s, g〉 λ−→p 〈at(p)(valx = e′) s, g′〉 | g′

arise when an exception is raised in a parallel thread. In this case the exception is con-
fined within that thread, and it is caught by the closest finish construct that is waiting
for the termination of this thread. On termination of all spawned activities, since one
(or more) asynchronous exception were caught, the finish constructs re-throws a
synchronous failure (cf. Proposition 2.12).

Let us precisely discuss the rules in Table 5. The async construct takes one step
to spawn the new activity by means of the rule (SPAWN). Moreover, according to rule
(ASYNC), an exception (either synchronous or asynchronous) in the execution of s is
masked by an asynchronous exception in async s. We let MskAs(λ) be the label λ
where we highlight the fact that an exception masking has occurred. The finish s
statement waits for the termination of any (possibly remote) asynchronous (and syn-
chronous as well) activities spawned by s. Any exception thrown during the evaluation
of s is absorbed and recorded into the state of the governing finish. Indeed, con-
sider rule (FINISH) where we let be μ ∪ λ=μ if λ=ε and μ ∪ λ={v} ∪ μ if λ=v× or
λ=v⊗. Then this rule shows that the consequence has a correct transition −→p even
when λ �= ε: i.e., the exception in s has been absorbed and recorded into the state of
finish. Moreover, the rule (END OF FINISH) shows that finish terminates with a
generic synchronous exception whenever at least one of the activities its governs threw
an exception (in X10 it throws a MutipleExceptions containing the list of ex-
ceptions collected by finish).Two rules describe the semantics of sequential com-
position. When executing {s t}, rule (SEQ) shows that the continuation t is activated
whenever s terminates normally or with an asynchronous exception. On the other hand,
when the execution of s throws a synchronous exception (possibly leaving behind resid-
ual statements s′) the continuation t is discarded. Rule (PAR) captures the essence of
asynchronous execution allowing reductions to occur in parallel components.

680 S. Crafa et al.

Table 5. Statements Semantics

(SPAWN)

〈async s, g〉 −→p 〈async s, g〉

(ASYNC)

〈s, g〉 λ−→p 〈s′, g′〉 | g′

λ=ε 〈async s, g〉 −→p 〈async s′, g′〉 | g′

λ=v×, v⊗ 〈async s, g〉
MskAs(v×)

−−−−−−→p 〈async s′, g′〉 | g′

(FINISH)

〈s, g〉 λ−→p 〈s′, g′〉

〈finishμs, g〉 −→p 〈finishμ∪λs
′, g′〉

(END OF FINISH)

〈s, g〉 λ−→p g′ λ′=
{
ε if λ∪μ=∅
MskAs(E⊗) if λ∪μ�=∅

〈finishμ s, g〉
λ′

−−→p g′

(SEQ)

〈s, g〉 λ−→p 〈s′, g′〉 | g′

λ = ε, v× 〈{s t}, g〉 λ−→p 〈{s′ t}, g′〉 | 〈t, g′〉

λ = v⊗ 〈{s t}, g〉 λ−→p 〈s′, g′〉 | g′

(PAR)

� isAsync t 〈s, g〉 λ−→p 〈s′, g′〉 | g′

〈{t s}, g〉 λ−→p 〈{t s′}, g′〉 | 〈t, g′〉

(PLACE SHIFT)

(v′, g′) = copy(v, q, g)

〈at(q)(valx=v)s, g〉 −→p 〈at (q) {s[v′
/x] skip}, g′〉

(AT)

〈s, g〉 λ−→q 〈s′, g′〉 | g′

〈at (q) s, g〉 λ−→p 〈at (q) s′, g′〉 | g′

(TRY)

〈s, g〉 λ−→p 〈s′, g′〉 | g′

λ = ε, v× 〈try scatch t, g〉 λ−→p 〈try s′ catch t, g′〉 | g′

λ = v⊗ 〈try scatch t, g〉 −→p 〈{s′ t}, g′〉 | 〈t, g′〉

The rule (PLACE SHIFT) activates a remote computation; it uses a copy operation on
object graphs, copy(o, q, g), that creates at place q a copy of the object graph rooted at o,
respecting global references. In X10 place shift is implemented by recursively serializ-
ing the object reference graph G rooted at o into a byte array. In this process, when it is
encountered a global object reference o$p, the fields of this object are not followed; in-
stead the unique identifier o$p is serialized. The byte array is then transported to q, and
de-serialized at q to create a copy G′ of G with root object a fresh identifier o′ ∈ ObjIdq .
All the objects in G′ are new. G′ is isomorphic to G and has the additional property that
if z is a global ref that is reachable from o then it is also reachable (through the same
path) from o′.

Definition 2.5 (The copy operation). Let g be a global heap, q a place with h = g(q).
Let be o ∈ ObjId such that p(o) ∈ dom(g), then copy(o, q, g) stands for the (unique)
tuple 〈o′, g[q → h′]〉 satisfying the following properties, where N = dom(h′)\dom(h).

– N is the next |N | elements of ObjIdq.
– o′ ∈ N

Semantics of (Resilient) X10 681

– There is an isomorphism ι between the object graph g(p(o))↓o rooted at o and the
object graph h′↓o′ rooted at o′. Further, ι(v) = v for v ∈ grObjId

– h′
o′ ⊆ N ∪ grObjId.

– h′ = h · [o′ �→ r] where r is the root object of the graph h′↓o′

We extend this definition to arbitrary values, that is copy(v, q, g) is defined to be v
unless v is an object id, in which case it is defined as above.

Proposition 2.6. Let g be a place-local heap. Let p, q ∈ dom(g) be two (not nec-
essarily distinct) places, and let o ∈ ObjIdp. Let copy(o, q, g) = 〈o′, g′〉. Then g′ is
place-local.

Place-shift takes a step to activate. Moreover, in the conclusion of the rule (PLACE

SHIFT) the target statement contains a final skip in order to model the fact that
the remote control has to come back at the local place after executing the re-
mote code s[v

′
/x′]. As an example, consider {at (p) {async s skip} t} and

{at (p) {async s} t}. The local code t is already active only in the second statement
while in the first one it is waiting for the termination of the synchronous remote state-
ment. Accordingly, the second program models the situation where the control has come
back locally after installing the remote asynchronous computation. Modeling this addi-
tional step is actually relevant just in the resilient calculus, where we need to model the
case where the remote place precisely fails after executing s but before the control has
come back. Indeed, consider {at (p) {async s skip} t} and {at (p) {async s} t}.
The local code t is already active only in the second statement while in the first one it
is waiting for the termination of the synchronous remote statement. Accordingly, the
second statement models the situation where the control has come back locally after
installing the remote asynchronous computation.

As for error propagation, by rule (AT) we have that any exception, either synchronous
or asynchronous, that occurred remotely at place p is homomorphically reported locally
at place r. As an example, consider at (r) {at (p)throwE t}, then the exception at
p terminates the remote computation and is reported at r as a synchronous error so that
to also discard the local continuation t, whose execution depends on the completion
of the remote code. In order to recover from remote exceptions, we can use the try-
catch mechanism and write at (r) {try (at (p)throwE) catch t′ t} so that the
synchronous exception is caught at r according to the rule (TRY). More precisely, the
try scatch t statement immediately activates s. Moreover, the rule (TRY) shows that
asynchronous exceptions are passed through, since they are only caught by finish.
On the other hand, synchronous exceptions are absorbed into a correct transition and the
catch-clause is activated, together with the (asynchronous) statements s′ left behind
by the failed s.

Example 2.7. Consider the two programs s1 = at (p)finish at (q)async s and
s2 = finish at (p) {at (q)async s}. In both programs the termination of s is de-
tected by the finish construct, that is, at place p in s1 and at place 0 in s2. Moreover, if
the execution of s at q throws an exception, we have that the asynchronous exception is
also caught by the finish construct, that is it is caught at place p for s1 and at place 0
for s2. Such a difference is not observable in TX10, indeed we will provide in Section 3

682 S. Crafa et al.

an equational law (cf. law (24)) showing that s1 and s2 are observationally equivalent.
On the other hand, we will see that in Resilient TX10 the two statements behave dif-
ferently when places p and q are subject to failure. As a further example consider the
programs s′1 = {s1 s′} and s′2 = finish {at (p) {at (q)async s} s′}. In s′1 we
have that s′ is executed at place 0 after the termination of s, while in s′2 we have that s′

is executed at place 0 in parallel with s running at q. Moreover, let s throw an exception,
then in s′1 we have that the finish at p re-throws a (masked) synchronous exception
that discards the continuation s′, while in s′2 we have that s′ correctly terminates since
the asynchronous exception is captured by the outer finish.

2.2 Mechanization in Coq

We have encoded the syntax and semantics of TX10 in Coq, an interactive theorem
prover. Encoding the syntax and semantics are mostly straightforward, and closely fol-
lows the paper presentation. However, the mechanized formalism has a richer notion of
exception propagation, which was omitted from the paper for compactness. Labels can
carry a list of exceptions, allowing multiple exceptions to be propagated by finish
(instead of using a single generic exception). Additionally, labels / exceptions can be
any value type. This complicates the rules, since the (AT) rule needs to copy any values
stored in the labels from the target heap to the caller’s heap. This is done by the actual
X10 language, and correctly modeled by our mechanized semantics.

The most challenging part of encoding the semantics is encoding the copy operation
given in Definition 2.5, which copies an object graph from one heap to another.

Mechanizing the Copy Operation. Definition 2.5 provides a declarative specifica-
tion of the copy operation, asserting the existence of a satisfying function. The mech-
anization explicitly constructs this function. In particular, it provides a pure (provably
terminating and side-effect free) function with the given specification.

We first encode definitions of (local) reachability and graph isomorphism, proving
key theorems relating them. We also define what it means for a value to be well-formed
in a given heap: all objects (locally) reachable from that value must be in the heap. In
other words, the object graph rooted at the value may not contain dangling pointers.

The tricky part of implementing this algorithm in Coq is proving termination. This
is not obvious, since there can be cycles in the object graph that we are copying. To
prevent looping on such cycles, the implementation carefully maintains and uses the set
of existing mappings from the source to the destination heap. To prove termination for
a non-structurally recursive function, we define a well-founded measure that provably
decreases on every recursive call. We omit details for lack of space.

As well as proving that the implementation is total, we also prove that it has the
required specification. Moreover, if copy fails, there must exist some object id reachable
from the root that is not contained in the heap. This last part of the specification in turn
enables us to prove that copy will always succeed if the initial value is well formed.

Semantics of (Resilient) X10 683

2.3 Properties of the Transition Relation

TX10 satisfies a number of useful properties, given below. We have mechanized all
these proofs in Coq, using our encoding of TX10. This provides a high level of assur-
ance in these proofs, and fills in the details of the various well-formedness conditions,
such as place-locality, needed to ensure that the properties hold.

Definition 2.8 (Place-local Configuration). Given a place-local heap g, we say that a
configuration 〈s, g〉 is place-local if

– for any local object id o occurring in s under at(p) or at (p) , we have that o ∈
dom(g(p)) (hence o ∈ ObjIdp by place-locality of g), and

– for any global reference o$q occurring in s, we have that o ∈ dom(g(q)).

Proposition 2.9 (Place-locality). If 〈s, g〉 is a place-local configuration and 〈s, g〉 λ−→p

〈s′, g′〉 | g′, then 〈s′, g′〉 is a place-local configuration, resp. g′ is a place-local heap.

Proposition 2.10 (Absence of stuck states). If a configuration k is terminal then k is
of the form g.

The mechanized proof of Proposition 2.10 additionally proves that the evaluation
relation is computable: if the configuration is not terminal, we can always compute a
next step. This is of course not the only step, since the relation is non-deterministic.
Similarly, we prove that the transitive closure of the evaluation relation does not get
stuck and is computable. This proof can be “run”, yielding a simple interpreter for
TX10.

The following propositions deal with error propagation. Proposition 2.11 shows that
synchronous failures arise from synchronous statements; they entail the discard of any
synchronous continuation, while leaving (possibly remote) asynchronous activities run-
ning in parallel free to correctly terminate. On the other hand, Proposition 2.12 shows
that asynchronous failures are caught by the closest finish construct that is waiting
for the termination of the thread where the failure arose. We rely on the following defi-
nition of Evaluation Contexts, that is contexts under which a reduction step is possible:

E ::= [] | {E t} | {t E} with
 isAsync t | at (p)E
| asyncE | finishμ E | tryE catch t

Proposition 2.11 (Synchronous Failures). If 〈s, g〉 v⊗−→p k then
 isSync s. Moreover,
if k ≡ 〈s′, g′〉, then
 isAsync s′.

Proposition 2.12 (Asynchronous Failures)

– If 〈s, g〉 v×−→p k then there exists an evaluation context E[] such that s = E[s1]

with 〈s1, g〉 v×−→p k′ and
 isAsync s1.

– If 〈finishμ s, g〉 λ1−→p . . .
λn−→p g because of 〈s, g〉 λ′

1−→p . . .
λ′
n−→p g, then

1. λi = ε for i = 1, . . . , n− 1, and
2. either λn = E⊗ or λn = ε and ∀j = 1, . . . , n λ′

j = ε.

684 S. Crafa et al.

The proofs of the propositions above easily follow by induction on the derivation of

〈s, g〉 v⊗−→p k, resp. 〈s, g〉 v×−→p k, and an inspection of the rules for finish.

Proposition 2.13. Let be 〈s, g〉 λ−→p 〈s′, g′〉, then if
 isAsync s then
 isAsync s′, or
equivalently, if
 isSync s′ then
 isSync s.

3 Equivalence and Equational Laws

In this section we define a notion of equivalence for TX10 programs along the lines
of [21]. We consider weak bisimulation defined on both normal transitions and tran-
sitions that throw an exception. Moreover, the bisimulation encodes the observation
power of the concurrent context in two ways: (i) it preserves the isSync/isAsync predi-
cate and (ii) takes into account concurrent modification of shared memory. As a result,
the equivalence turns out to be a congruence (cf. Theorem 3.3).

We use a notion of environment move to model the update of a shared heap by a
concurrent activity. The store can be updated by updating a field of an existing object,
by creating a new (local) object, or by means of a serialization triggered by a place shift.

Definition 3.1 (Environment move). An environment move Φ is a map on global heaps
satisfying:

1. if g is place-local, then Φ(g) is place-local,
2. dom(Φ(g)) = dom(g), and ∀p ∈ dom(g) dom(g(p)) ⊆ dom(Φ(g)(p)).

Let (−→p)
∗ denote the reflexive and transitive closure of

ε−→p, that is any number

(possibly zero) of ε-steps. Then we let
λ

=⇒p stand for (−→p)
∗ λ−→p (−→p)

∗ when
λ �= ε, and (−→p)

∗ if λ = ε.

Definition 3.2 (Weak Bisimulation). A binary relation R on closed configurations is
a weak bisimulation if whenever

1. g R k then k = g,
2. 〈s, g〉 R k then k = 〈t, g〉 for some t, and

–
 isSync s if and only if
 isSync t and
– for every environment move Φ, and for every place p it is the case that

(a) if 〈s, Φ(g)〉 λ−→p 〈s′, g′〉 then for some t′, 〈t, Φ(g)〉 λ
=⇒p 〈t′, g′〉 and

〈s′, g′〉 R 〈t′, g′〉, and vice versa.

(b) if 〈s, Φ(g)〉 λ−→p g′ then 〈t, Φ(g)〉 λ
=⇒p g′ and vice versa.

Two configurations are weak bisimilar, written 〈s, g〉 ≡ 〈t, g′〉, whenever there exists a
weak bisimulation relating them. The weak bisimilarity is the largest weak bisimulation
between configurations.

Theorem 3.3. Weak bisimilarity is a congruence.

Semantics of (Resilient) X10 685

The theorem comes by a standard argument showing that the smallest congruence con-
taining weak bisimilarity is a weak bisimulation. We illustrate the equivalence by means
of a number of equational laws dealing with the main constructs of TX10. To ease the
notation we write laws between statements rather than configurations. We start with
laws for sequencing and asynchronus actvities:

� isSync s {skip; s} ≡ s {s skip; } ≡ s (1)

{throw v s} ≡ throw v (2)

{{s t} u} ≡ {s {t u}} (3)

� isAsync s,� isAsync t {s t} ≡ {t s} (4)

async async s ≡ async s (5)

asyncskip �≡ skip asyncthrow v �≡ throw v (6)

{asyncthrow v asyncthrow v} �≡ asyncthrow v (7)

Observe that (1) only hold for synchronous statements since both {skip s} and
{s skip} are synchronous statements irrespective of s, hence the equivalence only
holds when also the r.h.s. is synchronous. Laws (6) do not hold since only the l.h.s.
are asynchronous. Law (7) does not hold since weak bisimilarity counts the number of
(asynchronous) exceptions, and the l.h.s. throws two asynchronous E× while the r.h.s.
just one. Notice that by law (2) we have instead {throw v throw v} ≡ throw v,
which is correct because the l.h.s. throws a single E⊗ since synchronous errors discard
the continuation. The following set of laws deals with the try/catch construct:

tryskipcatch t ≡ skip (8)

� isSync s trythrow v catch s ≡ s (9)

try scatchthrow v ≡ s (10)

� isAsync s try scatchu ≡ s (11)

� isAsync s try {s t}catchu ≡ {try scatchu try tcatchu} (12)

try (try scatch t)catchu ≡ try scatch (try tcatchu) (13)

Notice that law (12) does not hold if s is a synchronous statement. Indeed, a syn-
chronous error in s implies that in the l.h.s. the continuation t is discarded, while the
execution of the r.h.s. might activate two copies of u when both s and t fail in sequence.

686 S. Crafa et al.

at (p)skip ≡ skip (14)

at (p)throw v ≡ throw v (15)

at (p) {s t} ≡ {at (p) s at (p) t} (16)

at (p)at (q) s ≡ at (q) s (17)

async at (p) s ≡ at (p)async s (18)

at (p) (try scatch t) ≡ try (at (p) s)catch (at (p) t) (19)

All the laws above for place shift also hold for the dynamic version of at. Finally,
the following set of laws deal with the finish construct:

finish skip ≡ skip (20)

finish {s t} ≡ finish s finish t (21)

finish async s ≡ finish s (22)

finish {s async t} ≡ finish {s t} (23)

finish at (p) s ≡ at (p)finish s (24)

finish finish s ≡ finish s (25)

Notice that law (23) comes form (21) and (22). We conclude with a set of inequalities,
where we write
 noAsync s if s has no sub-term of the form async s′ for some s′,
i.e., if s cannot evolve to an asynchronous statement.

finish throw v �≡ throw v (26)

finish {s throw v} �≡ {finish s throw v} (27)

(� noAsync s) finish s �≡ s (28)

(� noAsync s) finish try scatch t �≡ try scatchfinish t (29)

All these laws do not hold because of the exception masking mechanism performed by
the finish construct. For instance, in law (26) the exception v⊗ thrown by throw v is
masked in the l.h.s. by E⊗ by the finish construct.

4 Resilient TX10

The resilient calculus has the same syntax of TX10. We now assume that any place
p ∈ Pl\{0} can fail at any moment during the program computation. Place 0 has a
special role: programs start at place zero, then this place is used to communicate the
result to the user, so we assume it can never fail (if it does fail, the whole execution is
torn down). In order to define the semantics, we now let global heaps g to be partial
(rather than total) maps from places to local heaps. Intuitively, dom(g) is the set of

Semantics of (Resilient) X10 687

Table 6. Resilient Semantics I

(PLACE FAILURE)

p ∈ dom(g)

〈s, g〉 −→p 〈s, g \ {(p, g(p))}〉

(SPAWN)

p ∈ dom(g) 〈async s, g〉 −→p 〈async s, g〉

p /∈ dom(g) 〈async s, g〉 DP⊗−→p g

(LOCAL FAILURE)

p /∈ dom(g)

〈skip, g〉 DP⊗−→p g

〈throw v, g〉 DP⊗−→p g

〈val x = e s, g〉 DP⊗−→p g

〈e1.f = e2, g〉 DP⊗−→p g

(ASYNC)

〈s, g〉 λ−→p 〈s′, g′〉 | g′

λ = ε 〈async s, g〉 −→p 〈async s′, g′〉 | g′

λ = v×, v⊗ 〈async s, g〉
MskAs(v×)

−−−−−−→p 〈async s′, g′〉 | g′

(FINISH)

〈s, g〉 λ−→p 〈s′, g′〉

〈finishμs, g〉 −→p 〈finishμ∪λs
′, g′〉

(END OF FINISH)

〈s, g〉 λ−→p g′ λ′=

⎧⎨
⎩

ε if λ∪μ=∅
E⊗ if λ∪μ�=∅, p∈dom(g)
DP⊗ if λ∪μ�=∅, p/∈dom(g)

〈finishμ s, g〉
MskAs(λ′)
−−−−−→p g′

non-failed places. The semantics of Resilient TX10 is given by the rules in Table 3 and
Table 4 from Section 2 plus the rules in Tables 6, 7 and 8 given in this section. More
precisely, the resilient calculus inherits from TX10 the rules for expression evaluation
(i.e., Table 3) and those in Table 4 which correspond to basic statement executed at
non-failed place p, i.e. p ∈ dom(g). The rules for TX10’s main constructs, i.e. those in
Table 5, hold also in the resilient calculus when p ∈ dom(g), but they must be integrated
with additional rules dealing with the case where the local place p has failed. Therefore,
in order to improve the presentation, rather than inheriting Table 5, we collect here all
the operational rules for the main constructs, compacting them in Tables 6, 7 and 8.

The place failure may occur at anytime, and it is modelled by the rule (PLACE FAIL-
URE), which removes the failed place from the global heap. The semantics of TX10 is
then extended according to the behaviour of Resilient X10 ([11]), that is so to ensure
that after the failure of a place p:

1. any attempt to execute a statement at p results in a DP exception (Theorem 4.8);
2. place shifts cannot be initiated form p nor launched to the failed p (rule (PLACE

SHIFT));
3. any remote code that has been launched from p before its failure is not affected and

it is free to correctly terminate its remote computation. If a synchronous exception
escapes from this remote code and flows back to the failed place, then this exception
is masked by a DP (Proposition 4.7) which is thrown back to a parent finish
construct waiting at a non-failed place.

More precisely, we will show that the operational semantics of Resilient TX10 enforces
the following three design principles:

688 S. Crafa et al.

Table 7. Resilient Semantics II

(SEQ)

〈s, g〉 λ−→p 〈s′, g′〉

λ = ε, v× 〈{s t}, g〉 λ−→p 〈{s′ t}, g′〉

λ = v⊗ 〈{s t}, g〉 λ−→p 〈s′, g′〉

(PAR)

� isAsync t 〈s, g〉 λ−→p 〈s′, g′〉 | g′

〈{t s}, g〉 λ−→p 〈{t s′}, g′〉 | 〈t, g′〉

(SEQ TERM)

p ∈ dom(g) 〈s, g〉 λ−→p g′

λ = ε, v× 〈{s t}, g〉 λ−→p 〈t, g′〉

λ = v⊗ 〈{s t}, g〉 λ−→p g′

(SEQ FAILED TERM)

p /∈ dom(g) 〈s, g〉 λ−→p g′

� isSync s 〈{s t}, g〉 DP⊗−→p g′

� isAsync s 〈{s t}, g〉 DP×−→p 〈t, g′〉

1. Happens Before Invariance Principle: failure of a place q should not alter the
happens before relationship between statement instances at places other than q.

2. Exception Masking Principle: failure of a place q will cause synchronous excep-
tions thrown by at (q) s statements to be masked by DP exceptions.

3. Failed Place Principle: at a failed place, activating any statement or evaluating any
expression should result in a DP exception.

We now precisely describe the rules for the main constructs. The rule (LOCAL FAIL-
URE) shows that no expression is evaluated at a failed place; any attempt to execute a
basic statement at the failed place results in a synchronous DP exception. Similarly,
rule (SPAWN) shows that new activities can only be spawned at non-failed places. On
the other hand, rule (ASYNC) is independent form the failure of p, so that any remote
computation contained in s proceeds not affected by the local failure. The semantics
of finish is the same as in Section 2, but for the rule (END OF FINISH), which now
ensures that when p /∈ dom(g) a DP⊗ (rather than E⊗) exception is thrown whenever
one of the governing activities (either local or remote) threw an exception.

The rules for sequences are collected in Table 7. Rules (SEQ) and (PAR) are the
same as in the basic calculus, allowing remote computation under sequential or parallel
composition to evolve irrespective of local place failure. The failure of p plays a role
only in rule (SEQ FAILED TERM): in this case the termination of the first component
s in the sequence {s t} always results in a DP exception. Moreover, the continuation
t is discarded when s is a synchronous statement. On the other hand, when s is an
asynchronous statement, t might be an already active remote statement, hence the rule
gives to t the chance to terminate correctly.

Rule (PLACE SHIFT) allows the activation of a place-shift only when both the source
and the target of the migration are non-failed places. Rule (AT) behaves like in TX10
except that it masks any remote synchronous exception with a DP exception. As an
example consider at (p) {at (q) s at (r) t}; if p fails while s and t are (remotely) exe-
cuting, it is important not to terminate the program upon completion of just s (or just t).
Then with rule (AT) we have that a remote computation silently ends even if the control

Semantics of (Resilient) X10 689

Table 8. Resilient Semantics III

(PLACE SHIFT)

(v′, g′) = copy(v, q, g)

p, q ∈ dom(g) 〈at(q)(valx=v)s, g〉 −→p 〈at (q) {s[v′
/x] skip}, g′〉

q /∈ dom(g) 〈at(q)(valx = v) s, g〉 DP⊗−→p g

p /∈ dom(g) 〈at(q)(valx = e) s, g〉 DP⊗−→p g

(AT)

〈s, g〉 λ−→q 〈s′, g′〉 | g′ λ′=
{
MskAs(DP⊗) if λ=v⊗, p/∈dom(g)
λ otherwise

〈at (q) s, g〉
λ′

−−→p 〈at (q) s′, g′〉 | g′

(TRY)

〈s, g〉 λ−→p 〈s′, g′〉 | g′

λ = ε, v× 〈try scatch t, g〉 λ−→p 〈try s′ catch t, g′〉 | g′

p ∈ dom(g), λ = v⊗ 〈try scatch t, g〉 −→p 〈{s′ t}, g′〉 | 〈t, g′〉

p �∈ dom(g), λ = v⊗ 〈try scatch t, g〉 λ−→p 〈s′, g′〉 | g′

comes back at a failed home. As another example, consider at (r) {at (p)skip t}
with p /∈ dom(g), then the failure of skip at p must be reported at r as a synchronous
error so that the continuation t is discarded.

Example 4.1. Consider the following program, where the code sq is expected to be
executed at q after the termination of any remote activities recursively spawned at p:

at (q) {finish asyncat (p) {finish s sp} sq}

Let us also assume that s spawns new remote activities running in a third place r.
Now, assume that both p and r fail while s is (remotely) executing. We have that s
throws an exception that should be detected by the inner finish, however since p is a
failed place, termination and error detection in s must be delegated to the outer finish
waiting at non failed place q: that is indeed performed by rule (END OF FINISH). Hence
we have that the finish at q throws a synchronous error and the continuation sq is
discarded. Notice that enclosing the inner finish within a try-catch construct is only
useful when p is a non failed place. Indeed, consider the program

at (q) {finish asyncat (p) {try (finish s)catch t sp} sq}

then by the rule (TRY) for exception handling we have that when p is a failed place the
clause is never executed, hence the two programs above have the same semantics. On
the other hand, we can recover from an exception in s by installing a try/catch at the non
failed place q: at (q) {try (finish asyncat (p) {finish s sp})catch t sq}.

690 S. Crafa et al.

Example 4.2. Let review Example 2.7 in the context of Resilient TX10. Let be s′1 =
{at (p)finish at (q)async s s′} and s′2=finish {at (p) {at (q)async s} s′}.
Assume that place p fails during the remote execution of s at q. Despite such a failure,
the behaviour of the two programs is the same as in Example 2.7, according to the Hap-
pens Before Invariant Principle That is s′ is executed at place 0 after the completion of
s in the case of program s′1 while in s′2 we have that s′ runs in parallel with s. More-
over, let s throw an exception; since the asynchronous remote exception is caught by
the closest finish construct, in s′2 we have that the asynchronous exception flows at
place 0 while s′ correctly continues its execution. On the other hand, the rule (END

OF FINISH) ensures that in s′1 a DP⊗ exception is thrown and the continuation s′ is
discarded, according to the Exception Masking Principle.

4.1 Properties of the Transition Relation

The main properties of the operational semantics of TX10 scale to Resilient TX10. We
have encoded the syntax and semantics of Resilient X10 in Coq, as we did for TX10
(see Section 2.2). Using this encoding, we have mechanized the analogous proofs for
Resilient X10. First of all, the definition of place-locality must be generalized to the
case of partially defined heaps. More precisely, given a configuration 〈s, g〉, any local
object id o in s must be locally defined, while a global reference o$p might now be a
dangling reference since the global object’s home place p might have failed.

Definition 4.3 (Place-local Resilient Configuration). Given a place-local heap g, we
say that a configuration 〈s, g〉 is place-local if ∀p ∈ dom(g)

– for any local object id o occurring in s under at(p) or at (p) , we have that o ∈
dom(g(p)) (hence o ∈ ObjIdp by place-locality of g).

Given the definition above, we can prove that resilient semantics preserves place-
locality of resilient configurations and that the semantics has no stuck states.

Proposition 4.4 (Place-locality). If 〈s, g〉 is a place-local resilient configuration and

〈s, g〉 λ−→p 〈s′, g′〉 | g′, then 〈s′, g′〉 is a place-local resilient configuration, resp. g′ is
a place-local heap.

Proposition 4.5 (Absence of stuck states). If a configuration k is terminal then k is of
the form g.

Proposition 2.11 and 2.12 dealing with error propagation hold also in Resilient TX10,
with a minor modification: in the second clause of Proposition 2.12 the final error
thrown by a finish construct might be either E⊗ or DP⊗.

The main results of this section are the three principles stated above. We start with the
Exception Masking Principle, formalized by Theorem 4.6, showing that no synchronous
exception other than DP can arise form a failed place.

Theorem 4.6 (Exception Masking Principle). Let be p /∈ dom(g) and 〈s, g〉 λ−→p k.
If λ = v⊗, then v = DP.

Semantics of (Resilient) X10 691

The following proposition states that remote computation at a non-failed place pro-
ceeds irrespective of local place failure, but for the exception masking effect. Then
Theorem 4.8 formalizes the Failed Place Principle, showing that if s performs a correct
step at a failed place p, then either (i) s contains a substatement that remotely computed
a correct step at a non failed place, or (ii) a local activity ended at p with a DP that
has been absorbed by a governing finish. We introduce the following notation: we write

 isLocal s whenever s does not contain active remote computation, that is s has no
substatements of the form at (q) s′. We write
 isRemotep s when any basic statement
in s occurs under a at (q) construct for some place q with q �= p.

Proposition 4.7 (Remote computation). Let be
 isRemotep s. If 〈s, g〉 λ−→p

〈s′, g′〉 | g′ with p ∈ dom(g), then 〈s, g〉 −→p 〈s, g \ {(p, g(p))}〉
λ′
−−→p 〈s′, g′∗〉 | g′∗

where g′∗ = g′ \ {(p, g′(p))} and λ′ = λ if λ = ε, v× while λ′ = DP⊗, if λ = v⊗.
Moreover
 isRemotep s′.

Theorem 4.8 (Failed Place Principle). If 〈s, g〉 −→p 〈s′, g′〉 | g′ with p /∈ dom(g),
then either

– s = E[s1] with
 isRemotep s1, 〈s1, g〉 −→p 〈s′1, g′〉 | g′ and s′ = E[s′1], or

– s = E[finishμ t], s′ = E[finishDP t′] and 〈t, g〉
DP⊗ or DP×
−−−−−−−−→p 〈t′, g′〉.

We refer to [24] for a precise definition of the happens before relation in terms of
paths that identify occurrences of static statements. We rely here on a much simpler
definition in terms of the operational semantics. Intuitively, given a program s with two
substatements s1, s2, we say that s1 happens before s2 whenever in any program execu-
tion s1 is activated, i.e. it appears under an evaluation context, before s2. This definition
is weaker than that in [24] since it captures the idea of “is enabled before” rather than
“happens before”. However, we think that the core of the Happens Before Invariance is
already carried over by Theorem 4.10, and we think that its proof scales to a standard
”happens-before” relation at the price of labelling substatements and transitions along
the lines of [24].

We denote by �k a trace 〈s0, g0〉
λ1−→0 〈s1, g1〉

λ2−→0 . . .
λn−→0 〈sn, gn〉. Moreover

we write |�k| for the length n of such a trace, and ki to indicate the i-th configuration
〈si, gi〉, i = 0, ..., n.

Definition 4.9 (Happens Before). Let s0 be a program and let s1, s2 be two substate-
ments of s0, i.e. s0 = E1[s1] and s0 = E2[s2] for some evaluation contexts E1, E2.
Then we say that s1 happens before s2, written s1 < s2, whenever for any trace �k such
that k0 = 〈s0, g0〉 and k|�k| = 〈E[s2ρ], g〉 for some g, some evaluation context E and

some variable substitution ρ, there exists i ∈ 0, ..., |�k| such that ki = 〈E′[s1ρ′], g′〉 for
some g′, E′, ρ′.

Notice that the definition of the Happens Before relation is parametric on a transition
relation. Let write s1 < s2 when we restrict to (traces in) TX10 semantics, and s1 <R

s2 when considering (traces in) the resilient semantics.

Theorem 4.10 (Happens Before Invariance). Let s0 be a program and let s1, s2 be
two substatements of s0. Then s1 < s2 if and only if s1 <R s2.

692 S. Crafa et al.

4.2 Equational laws

The equational theory of TX10 can be smoothly generalized to the resilient calculus.
In order to scale the notion of weak bisimilarity to Resilient TX10 we have to consider
generalized environment moves that take into account the failure of a number of places.

Definition 4.11 (Resilient Environment move). An environment move Φ is a map on
global heaps satisfying:

1. if g is place-local, then Φ(g) is place-local,
2. dom(Φ(g)) ⊆ dom(g), and ∀p ∈ dom(Φ(g)) dom(g(p)) ⊆ dom(Φ(g)(p)).

The weak bisimilarity for Resilient TX10 is then defined as in Definition 3.2, where
we rely on resilient environment moves and the operational steps used in the bisimu-
lation game are those defined in this section. In particular, this means that also place
failures occurring at any time must be simulated by equivalent configurations. We dis-
cuss in the following which of the equational laws of Section 3 are still valid in the
resilient calculus.

� noAsync s � isLocal s {skip; s} ≡ s (1a R)

� isSync s {s skip; } �≡ s (1b R)

� noAsync s � isLocal s trythrow v catch s ≡ s (9 R)

The law (1) of Section 2 is not valid anymore, as illustrated by (1a R) and (1b R) above.
The problem is that now the place where the commands are executed may fail at any
time. Hence, in order for the law to be valid also at a failed place, law (1a R) requires
a stronger constraint for s so to ensure that also the r.h.s throws a DP⊗. On the other
hand law (1b R) never holds since the failure of the local place can happen after the
completion of s but before the execution of skip, thus only the l.h.s. would throw a
DP⊗. Similarly, law (9) of Section 2 is replace here by the stricter law (9 R) to ensure
that s throws a synchronous DP⊗ error whenever the local place is failed. All the other
laws of TX10 are still valid in Resilient TX10, but for those involving place shifting,
summarized below:

at (p)skip �≡ skip (14 R)

at (p)throw v �≡ throw v (15 R)

at (p) {s t} �≡ {at (p) s at (p) t} (16 R)

at (p) {s t} ≡ {at (p) s at (p) t} (16 dyn R)

at (p)at (q) s �≡ at (q) s (17 R)

async at (p) s �≡ at (p)async s (18 R)

at (p) (try scatch t) �≡ try (at (p) s)catch (at (p) t) (19 R)

finish at (p) s �≡ at (p)finish s (24 R)

Semantics of (Resilient) X10 693

The laws (14) and (15) for place shift does not hold in the resilient calculus since they
involve two terms that run in different places that might fail at different moments. Rule
(16) does not hold anymore since the local place can fail after the completion of s but
before the place shift of t. On the other hand its dynamic version, i.e., law (16 dyn R) is
still valid since both terms already run at the same place p and the failure of local place
does not affect remote computation. The law (17) does not hold since p may fail before
the place-shift at q. Note that also the dynamic version of rule (17) does not hold, i.e.
at (p)at (q) s �≡ at (q) s since the failure of p would mask any exception thrown
at q. Law (18 R) (as well as its dynamic version) does not hold anymore because of
the exception masking effect. Indeed, if s remotely throws a synchronous exception v⊗
and the home place is failed, we have that the r.h.s. throws a v× exception while the
l.h.s. throws DP× by means of masking. Law (19) does not hold anymore since p may
fail after s has thrown an exception but before the activation of the handling t. Finally,
in law (24 R) a difference appears between the two terms when the remote place p fails
after the remote code has been activated. In this case s throws a DP exception at the
failed place, but in the l.h.s. the local (non failed) finish masks this exception as a
generic E, while in the r.h.s. the exception reported locally is still DP.

5 Conclusions and Future work

We have studied a formal small-step structural operational semantics for TX10, that is
a large fragment of the X10 language covering multiple places, shared mutable objects,
sequences, async, finish, at and try/catch constructs. We have then shown
that this framework smoothly extends to the case where places dynamically fail. Failure
is exposed through exceptions thrown by any attempt to execute a statement at the failed
place. The error propagation mechanism in Resilient TX10 extends that of TX10 (i) by
discarding exception handling at failed places, i.e. no catch clause is ever executed
at failed places, and (ii) by masking with a DeadPlaceException any remote exception
flowing back at the failed place. Moreover, we established a Happens Before Invari-
ance Principle showing that the failure of a place p does not alter the happens before
relationship between statements at places other than p.

As an example of formal methods that can be developed on top of the given opera-
tional semantics, we studied a bisimulation based observation equivalence. We showed
that it correctly encodes the observation power of the concurrent context by proving
that it is a congruence. We illustrated this equivalence by means of a number of laws
dealing with the main constructs of the language, discussing which of these equiva-
lences are invariant under place failures. The axiomatization of the given equivalence
is left for future work. We think that the resilient equational theory opens the way to
the development of laws that can be used in the X10 compiler to optimize programs,
e.g. using polyhedral analysis [24]. We also plan for future work the extension of the
framework we presented to cover the atomic and when constructs from X10. We also
plan to develop a denotational semantics for TX10 based on a pomset model that natu-
rally allows the definition of the happens before relation. Another promising approach
seems to be the study of full abstraction by extending to this setting the trace set model
of S. Brookes [7].

694 S. Crafa et al.

References

1. Ahern, A., Yoshida, N.: Formalising java rmi with explicit code mobility. In: OOPSLA 2005,
pp. 403–422. ACM, New York (2005)

2. Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S., Haberman, J., Lax, R., McVeety, S.,
Mills, D., Nordstrom, P., Whittle, S.: MillWheel: Fault-Tolerant Stream Processing at Inter-
net Scale. In: Very Large Data Bases, pp. 734–746 (2013)

3. Amadio, R.M.: An asynchronous model of locality, failure, and process mobility. In: Garlan,
D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 374–391. Springer,
Heidelberg (1997)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Comp. Sci. Springer (2004)

5. Bierman, G.M., Parkinson, M.J., Pitts, A.M.: Mj: An imperative core calculus for java and
java with effects. Technical report, University of Cambridge Computer Laboratory (2003)

6. de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: The failure of failures in a
paradigm for asynchronous communication. In: Groote, J.F., Baeten, J.C.M. (eds.) CON-
CUR 1991. LNCS, vol. 527, pp. 111–126. Springer, Heidelberg (1991)

7. Brookes, S.: Full abstraction for a shared variable parallel language. In: Proceedings of the
8th Annual IEEE Symposium on Logic in Computer Science, pp. 98–109. IEEE Computer
Society Press (1993)

8. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci. 375(1-3),
227–270 (2007)

9. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C.,
Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA
2005, pp. 519–538. ACM, New York (2005)

10. UPC Consortium, et al.: UPC language specifications. Lawrence Berkeley National Lab Tech
Report LBNL–59208 (2005)

11. Cunningham, D., Grove, D., Herta, B., Iyengar, A., Saraswat, V., Tardieu, O., Kawachiya,
K., Murata, H., Takeuchi, M.: Resilien X10: Efficient failure-aware programming. In: PPoPP
2014, pp. 67–80. ACM, New York (2014)

12. Dayarathna, M., Houngkaew, C., Suzumura, T.: Introducing Scalegraph: an X10 library for
billion scale graph analytics. In: X10 2012, pp. 6:1–6:9. ACM, New York (2012)

13. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: OSDI
2004, p. 10. USENIX Association, Berkeley (2004)

14. Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., Rémy, D.: A calculus of mobile agents.
In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 406–421.
Springer, Heidelberg (1996)

15. Francalanza, A., Hennessy, M.: A theory of system behaviour in the presence of node and
link failure. Inf. Comput. 206(6), 711–759 (2008)

16. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press, New York (2007)
17. Lee, J.K., Palsberg, J.: Featherweight X10: a core calculus for async-finish parallelism. In:

PPoPP 2010, pp. 25–36. ACM, New York (2010)
18. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,

G.: Pregel: A system for large-scale graph processing. In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2010, pp. 135–146.
ACM, New York (2010)

19. Riely, J., Hennessy, M.: Distributed processes and location failures. Theor. Comput.
Sci. 266(1-2), 693–735 (2001)

20. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 language specification
version 2.2 (March 2012),
x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

Semantics of (Resilient) X10 695

21. Saraswat, V.A., Jagadeesan, R.: Concurrent clustered programming. In: Abadi, M., de Alfaro,
L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 353–367. Springer, Heidelberg (2005)

22. Shinnar, A., Cunningham, D., Saraswat, V., Herta, B.: M3R: increased performance for in-
memory Hadoop jobs. Proc. VLDB Endow. 5(12), 1736–1747 (2012)

23. X10 Global Matrix Library (October 2011),
https://x10.svn.sourceforge.net/svnroot/x10/trunk/x10.gml

24. Yuki, T., Feautrier, P., Rajopadhye, S., Saraswat, V.: Array dataflow analysis for polyhedral
x10 programs. In: PPoPP 2013, pp. 23–34. ACM, New York (2013)

25. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing
with working sets. In: HotCloud 2010, p. 10 (2010)

https://x10.svn.sourceforge.net/svnroot/x10/trunk/x10.gml

696 S. Crafa et al.

A Artifact Description

Authors of the Artifact. Avraham Shinnar.

Summary. The artifact is a mechanization of the semantics for TX10 and Resilient
X10 in Coq. The mechanization verifies key properties of both language(s), bringing an
additional level of assurance to the paper versions. These properties include the totality
and computability of both languages. The latter proofs additionally serve as interpreters
for the languages. An important part of the mechanization effort is the implementation
of a total heap copy algorithm. This algorithm is shown to have the properties states in
the accompanying paper. In particular, the result is a heap isomorphism of the original.

Content. The artifact package includes:

– An html page (index.html) describing the structure of the development, and an
overview of the content of each file.

– The actual mechanization, presented as a series of Coq source (*.v) files.
– A Makefile that can be used to automate building (verifying) the development.

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Committee is
available free of charge as supplementary material of this paper on SpringerLink.

Tested Platforms. This artifact should compile on any platform that supports Coq
8.4pl3 (http://coq.inria.fr/download). A few Gigabytes of RAM are re-
quired for the compilation process. Compiling the artifact (in particular CopyObj) takes
multiple hours.

License. EPL-1.0 (http://www.eclipse.org/legal/epl-v10.html)

MD5 Sum of the Artifact. 52acdbfd95ad5a7f48b959a253a286a9

Size of the Artifact. 90K

http://coq.inria.fr/download
h

Author Index

Abadi, Mart́ın 257
Aldrich, Jonathan 105, 157, 334
Ali, Karim 54
Ancona, Davide 282

Bierman, Gavin 257
Birman, Kenneth P. 644
Black, Andrew P. 131
Borning, Alan 411
Bruce, Kim B. 131

Caires, Lúıs 334
Chenchu, Rakesh 644
Chiba, Shigeru 385
Chung, Benjamin 105
Corradi, Andrea 282
Crafa, Silvia 670
Cunningham, David 670

Dai, Yi 489
da Rocha Pinto, Pedro 207
Dhawan, Mohan 463
Dig, Danny 515
Dinsdale-Young, Thomas 207
Dolby, Julian 54
Dufour, Bruno 541

Erdogan, Cansu 515
Erdweg, Sebastian 489

Feeley, Marc 541
Felgentreff, Tim 411
Filaretti, Daniele 567
Foster, Nate 644
Freudenberg, Bert 411

Ganapathy, Vinod 463
Gardner, Philippa 207
Gramoli, Vincent 182
Guerraoui, Rachid 182

Haller, Philipp 308
Herbsleb, James D. 157
Hirschfeld, Robert 411

Hirzel, Martin 360
Homer, Michael 131

Imam, Shams 618

Jiang, Zhefu 644
Jones, Timothy 131

Karim, Rezwana 463
Kim, Dohyeong 232
Krahn, Robert 411
Kume, Izuru 593
Kurilova, Darya 105

Lavoie, Erick 541
Lee, Kyu Hyung 232
Lhoták, Ondřej 54
Li, Siliang 80
Li, Yue 27
Lincke, Jens 411

Maffeis, Sergio 567
Mayer, Philip 437
Militão, Filipe 334
Miller, Heather 308

Nistor, Ligia 105
Nitta, Naoya 593
Noble, James 131

Odersky, Martin 308
Ohshima, Yoshiki 411
Okur, Semih 515
Omar, Cyrus 105

Potanin, Alex 105
Princehouse, Lonnie 644

Rabbah, Rodric 360
Rapoport, Marianna 54
Ryder, Barbara G. 1

Saraswat, Vijay 670
Sarkar, Vivek 618
Scherr, Maximilian 385
Schroeder, Andreas 437
Shinnar, Avraham 670
Soulé, Robert 644

698 Author Index

Storm, Tijs van der 489

Sui, Yulei 27

Sunshine, Joshua 157

Suter, Philippe 360

Takemura, Yasuhiro 593

Tan, Gang 80

Tan, Tian 27

Tardieu, Olivier 360, 670

Tip, Frank 54
Torgersen, Mads 257

Vaziri, Mandana 360

Wei, Shiyi 1

Xue, Jingling 27

Zhang, Xiangyu 232

	Preface
	Artifacts
	Organization
	Abstracts of Keynote Lectures
	Molecular Programming
	A View on the Past, Present and Future of Objects
	How Do You Like Your Software Models?Towards Empathetic Design of Software Modeling Methods and Tools
	Software Environmentalism
	Table of Contents
	Analysis
	State-Sensitive Points-to Analysis for the Dynamic Behavior of JavaScript Objects
	1 Introduction
	2 Definitions and Motivating Example
	2.1 JavaScript Object-Reference State
	2.2 Imprecision of Points-to Analysis

	3 State-Sensitive Points-to Analysis
	3.1 State-Preserving Block Graph
	3.2 Points-to Graph Representation
	3.3 Points-to Analysis Transfer Functions
	3.4 State Sensitivity
	3.5 Block-Sensitive Analysis
	3.6 Implementation of State-Sensitive Analysis in JSBAF

	4 Evaluation
	4.1 Experimental Design
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Self-inferencing Reflection Resolution for Java
	1 Introduction
	2 Understanding Reflection Usage
	2.1 Background
	2.2 Empirical Study

	3 Methodology
	3.1 Assumptions
	3.2 Self-inferencing Reflection Resolution
	3.3 Elf vs. Livshits et al.’s Analysis and Doop

	4 Reflection Resolution
	4.1 Domains and Input/Output Relations
	4.2 Target Propagation
	4.3 Target Inference
	4.4 Properties

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Results and Analysis

	6 Related Work
	7 Conclusion
	References
	A Artifact Description

	Constructing Call Graphs of Scala Programs
	1 Introduction
	2 Background
	3 Motivating Examples
	3.1 Traits
	3.2 Abstract Type Members
	3.3 Closures
	3.4 Calls on the Variable this
	3.5 Bytecode-Based Analysis

	4 Algorithms
	4.1 TCAnames
	4.2 TCAbounds
	4.3 TCAexpand
	4.4 TCAexpand-this
	4.5 Correctness

	5 Implementation
	5.1 Super Calls
	5.2 Incomplete Programs

	6 Evaluation
	6.1 Research Questions
	6.2 Results

	7 Conclusions
	References
	A Artifact Description

	Finding Reference-Counting Errors in Python/CPrograms with Affine Analysis
	1 Introduction
	2 Background: The Python/C Interface and ReferenceCounting
	2.1 Python/C Reference Counting and Its Complexities

	3 Related Work
	4 Pungi Overview
	5 Affine Abstraction
	5.1 Bug Definition with Non-escaping References
	5.2 SSA Transform
	5.3 Affine Translation
	5.4 Escaping References

	6 Affine Analysis and Bug Reporting
	7 Implementation and Limitations
	8 Evaluation
	9 Conclusions and Future Work
	References

	Design
	Safely Composable Type-Specific Languages
	1 Motivation
	2 Type-Specific Languages inWyvern
	2.1 Inline Literals
	2.2 Splicing
	2.3 Layout-Delimited Literals
	2.4 Implementing a TSL

	3 Syntax
	3.1 Concrete Syntax
	3.2 Program Structure
	3.3 Forward Referenced Blocks
	3.4 Abstract Syntax

	4 Bidirectional Typechecking and Elaboration
	4.1 Programs and Type Declarations
	4.2 External Terms
	4.3 Literals
	4.4 Hygiene
	4.5 From Values to ASTs
	4.6 Metatheory
	4.7 Decidability

	5 Corpus Analysis
	6 Implementation
	7 Related Work
	8 Discussion
	References

	Graceful Dialects
	1 Introduction
	2 Grace in a Nutshell
	3 Dialects
	3.1 Structure
	3.2 Pluggable Checkers
	3.3 Run-Time Protocol

	4 Case Studies of Dialects
	4.1 Logo-Like Turtle Graphics
	4.2 Design by Contract
	4.3 Dialect forWriting Dialects
	4.4 Requiring Explicit Type Annotations
	4.5 Type Checking
	4.6 Literal Blocks

	5 Discussion
	5.1 Inheritance
	5.2 Delegation
	5.3 Macros
	5.4 Local Dialects

	6 Related Work
	6.1 Racket
	6.2 Scala
	6.3 Ruby
	6.4 Haskell
	6.5 Cedalion
	6.6 Pluggable Checkers

	7 Conclusion
	References
	A Artifact Description

	Structuring Documentation to Support State Search: A Laboratory Experiment about ProtocolProgramming
	1 Introduction
	2 Background and Related Work
	3 Plaiddoc
	4 State Search Categories
	5 Methodology
	5.1 Recruitment
	5.2 Training
	5.3 Experimental Setup
	5.4 Tasks
	5.5 Post-experiment Interview

	6 Results
	6.1 Task Completion Time
	6.2 Correctness
	6.3 Learning
	6.4 State Concept Mapping
	6.5 Participant Preference

	7 Threats to Validity
	7.1 Construct Validity
	7.2 Internal Validity
	7.3 External Validity

	8 Type Annotations as Documentation
	9 Conclusion
	References

	Concurrency
	Reusable Concurrent Data Types
	1 Introduction
	2 Overview
	2.1 Extensibility
	2.2 Composability

	3 Polymorphic Transactional Memory
	3.1 Opaque Transactions
	3.2 Hand-over-Hand Transactions
	3.3 Snapshot Transactions
	3.4 Irrevocable Transactions

	4 Correctness
	4.1 Invariants
	4.2 Semantics Preservation
	4.3 Linearizability of the Data Type
	4.4 Reusability

	5 Language Integration
	5.1 Bytecode Instrumentation
	5.2 Exception Handling
	5.3 Nesting Semantics
	5.4 Legacy Code

	6 Evaluation
	6.1 Settings
	6.2 PT Methodology vs JDK
	6.3 Polymorphism vs Monomorphism
	6.4 Adding Forms Is Beneficial
	6.5 java.util.Vector vs ReusableVector
	6.6 The Vacation Application
	6.7 j.u.c.ConcurrentLinkedQueue vs ReusableQueue

	7 Related Work
	8 Concluding Remarks
	References

	TaDA: A Logic for Time and Data Abstraction
	1 Introduction
	2 Motivating Examples
	2.1 Lock
	2.2 Multiple Compare-And-Swap (MCAS)
	2.3 Resource Transfer

	3 Logic
	4 Case Study: Concurrent Deque
	4.1 Abstract Specification
	4.2 The “Snark” Linked-List Deque Implementation

	5 Semantics
	6 Related Work
	7 Conclusions
	7.1 Future Work

	References

	Infrastructure-Free Logging and Replay of ConcurrentExecution on Multiple Cores
	1 Introduction
	2 Motivation
	2.1 Motivating Example
	2.2 Observations

	3 Language and Semantics
	3.1 Logging Semantics
	3.2 Replay Semantics

	4 Incremental Schedule Exploration
	4.1 ExplorationWindow
	4.2 Coarse-Grained Exploration
	4.3 Fine-Grained Exploration

	5 Caching Replay Failures
	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Types
	Understanding TypeScript
	1 Introduction
	2 The Design of TypeScript
	3 Featherweight TypeScript
	4 Safe Featherweight TypeScript (safeFTS)
	5 OperationalSemantics
	6 Production Featherweight TypeScript (prodFTS)
	6.1 Unchecked Downcasts
	6.2 Unchecked Gradual Typing (and Unchecked Indexing)
	6.3 Unchecked Covariance

	7 Connection to Gradual Typing
	8 Related Work
	9 Conclusion
	References

	Sound and Complete Subtyping Types for Object-OrientedLanguages
	1 Introduction
	2 A Motivating Example
	3 Background
	3.1 Types and Tree
	3.2 Principle of Induction and Coinduction

	4 Semantic Subtyping between Coinductive Types
	5 A Sound and Complete Inference System
	5.1 Type Normalization
	5.2 Subtyping Rules

	6 A Sound and Complete Algorithm
	7 Conclusion
	References
	A Artifact Description

	Spores: A Type-Based Foundation for Closuresin the Age of Concurrency and Distribution
	1 Introduction
	1.1 Selected Related Work
	1.2 Contributions

	2 Spores
	2.1 Spore Syntax
	2.2 The Spore Type
	2.3 Basic Usage
	2.4 Advanced Usage and Type Constraints
	2.5 Transitive Properties

	3 Formalization
	3.1 Subtyping
	3.2 Typing Roles
	3.3 Operational semantics
	3.4 Soundness
	3.5 Relation to Spores in Scala
	3.6 Excluded Types

	4 Implementation
	5 Evaluation
	5.1 Using Spores Instead of Closures
	5.2 Spores and Apache Spark
	5.3 Spores and Akka

	6 Case Study
	7 Other Related Work
	8 Conclusion
	References

	Rely-Guarantee Protocols
	1 Introduction
	1.1 Approach in a Nutshell

	2 Pipe Example
	3 Type System Overview
	4 Sharing Mutable State
	4.1 Specifying Rely-Guarantee Protocols
	4.2 Checking Protocol Splitting
	4.3 Using Shared State
	4.4 Framing State
	4.5 Consumer Code

	5 Technical Results
	6 Additional Examples
	6.1 Sharing a Linear ADT
	6.2 Capturing Local Knowledge
	6.3 Iteratively Sharing State

	7 Related Work
	8 Conclusions
	References

	Implementation
	Stream Processing with a Spreadsheet
	1 Introduction
	2 Overview
	3 Spreadsheet Calculus
	3.1 Core Calculus
	3.2 Boundedness
	3.3 Live Calculus
	3.4 Stream Calculus
	3.5 Query Language

	4 Implementation
	4.1 Client Side
	4.2 Server Side

	5 Case Studies
	6 Related Work
	7 Conclusion
	References

	Implicit Staging of EDSL Expressions:A Bridge between Shallow and Deep Embedding
	1 Introduction
	2 Implementation of Embedded DSLs
	2.1 Shallow Embedding
	2.2 Deep Embedding: Staging at Runtime
	2.3 No Middle Ground?

	3 Implicit Staging
	3.1 Staging by Static Token Reinterpretation
	3.2 The Approach’s Potential
	3.3 Design Aspects

	4 Implicit Staging at Load Time
	4.1 Prototype Overview
	4.2 Staging: Expression Extraction
	4.3 Processing: Expression Translation
	4.4 Unstaging: Relinking Expression Sites

	5 Evaluation
	5.1 IR and Staging Limitations
	5.2 Experiment A: Matrix EDSL
	5.3 Experiment B: Chained Filtering and Mapping EDSL
	5.4 Experiment C: Safe Arithmetic EDSL

	6 Related Work
	7 Conclusion
	References

	Babelsberg/JS A Browser-Based Implementation of anObject Constraint Language
	1 Introduction
	2 Background and Related Work
	2.1 Object Constraint Programming and Babelsberg
	2.2 Babelsberg/R

	3 Object Constraint Programming without VM Support
	3.1 Cooperating Constraint Solvers
	3.2 Incremental Re-solving for Cooperating Constraint Solvers

	4 Implementation in Lively Kernel
	4.1 Assignment
	4.2 Constraint Construction
	4.3 Determining Cooperating Solver Regions
	4.4 Edit Constraints

	5 Performance Evaluation
	6 Future Work and Conclusion
	References
	A Examples
	B Benchmarks
	C Artifact Description

	Refactoring
	Automated Multi-Language Artifact Binding and Rename Refactoring between Java and DSLs Used by Java Frameworks
	1 Introduction
	2 Exploration Area and Motivating Example
	3 Multi-Language Artifact Binding and RenameRefactoring
	3.1 Artifact Discovery
	3.2 Multi-Language Artifact Binding Resolution
	3.3 Multi-Language Rename Refactoring

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References
	A Artifact Description

	Retargetting Legacy Browser Extensionsto Modern Extension Frameworks
	1 Introduction
	2 Overview
	2.1 Threats to Extension Security
	2.2 Legacy Extensions on Firefox
	2.3 The Jetpack Extension Framework

	3 Morpheus
	3.1 Design Requirements
	3.2 Analyses and Transformations
	3.3 Policy Checker

	4 Security Analysis
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Capture-Avoiding and HygienicProgram Transformations
	1 Introduction
	2 Capture-Avoiding Transformations: What and Why
	2.1 Variable Capture in the Wild
	2.2 Problem Statement

	3 Graph-Guided Elimination of Variable Capture
	4 Termination, Correctness, and an Equivalence Theory
	4.1 Assumptions on Name Resolution
	4.2 name-fix Eliminates Variable Capture
	4.3 Definitions of α-equivalence and Sub-α-equivalence
	4.4 An Equivalence Theory for name-fix

	5 Hygienic Transformations
	6 Case Studies
	6.1 Preservation of Variable IDs with String Origins in Rascal
	6.2 Capture-Avoiding Substitution and Inlining
	6.3 Lambda Lifting
	6.4 State Machines
	6.5 Digital Forensics with Derric

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Artifact Description

	Converting Parallel Code from Low-LevelAbstractions to Higher-Level Abstractions
	1 Introduction
	2 Background on Parallel Abstractions in .NET
	2.1 Thread
	2.2 ThreadPool
	2.3 Task
	2.4 Parallel

	3 Motivation
	3.1 Methodology
	3.2 Q1: What Level of Parallel Abstractions Do Developers Use?
	3.3 Q2: What Do Developers Think about Parallel Abstractions?

	4 Taskifier
	4.1 Thread to Task
	4.2 ThreadPool to Task
	4.3 Special Cases
	4.4 Workflow

	5 Simplifier
	5.1 Multiple Tasks to Parallel.Invoke
	5.2 Tasks in Loop to Parallel.For
	5.3 Tasks in Loop to Parallel.ForEach
	5.4 Workflow

	6 Evaluation
	6.1 Quantitative
	6.2 Qualitative Evaluation
	6.3 Discussion

	7 Related Work
	8 Conclusions
	References

	JavaScript, PHP and Frameworks
	Portable and Efficient Run- ime Monitoring of JavaScript Applications sing Virtual MachineLayering
	1 Introduction
	2 Overview
	2.1 Design Goals
	2.2 Overview of the Components

	3 Object Representation
	3.1 Specialization on a Fixed Number of Arguments

	4 Message-Sending Semantics
	4.1 Reifying Object Operations
	4.2 Reifying Function Calls
	4.3 Efficient Implementation

	5 Compilation and Execution Example
	6 Performance
	6.1 Setting
	6.2 Related systems
	6.3 Comparison with nterpreter nstrumentation
	6.4 Inherent Overhead Compared to JIT Compilation
	6.5 Effect of Send Caching
	6.6 Performance with Instrumentation

	7 Limitations
	8 Related Work
	9 Conclusion and Future Work
	References
	A Artifact Description

	An Executable Formal Semantics of PHP
	1 Introduction
	2 A PHPPrimer
	2.1 PHP: A Closer Look
	2.2 PHP: Digging Deeper

	3 KPHP
	3.1 Preliminaries: The K Framework
	3.2 KPHP Overview
	3.3 KPHP: Selected Semantic Rules
	3.4 The KPHP Interpreter

	4 Testing and Validation
	5 Applications
	5.1 Temporal Verification of PHP Programs
	5.2 Case Study: Input Validation
	5.3 Case Study: Cryptographic Key Generation

	6 Limitations and Future Work
	7 Related Work
	8 Conclusions
	References
	A Artifact Description

	Identifying Mandatory Code for Framework Usevia a Single Application Trace
	1 Introduction
	2 Running Example
	3 Our Approach
	4 Basic Definitions
	4.1 Expression Level Dynamic Dependency
	4.2 Cross-Boundary Flow
	4.3 Asymmetric Slicing

	5 Framework Usage Extraction Method
	5.1 Sample Application Selection
	5.2 Trace Collection and Marking
	5.3 Extracting Framework Use Instructions
	5.4 Template Generation

	6 Implementation
	7 Evaluation
	7.1 Template Extraction Quality
	7.2 Computing Performance

	8 Discussion
	9 Related Work
	9.1 Framework Usage Support
	9.2 Program Analysis

	10 Conclusion
	References

	Parallelism
	Cooperative Scheduling of Parallel Taskswith General Synchronization Patterns
	1 Introduction
	2 Motivating Examples
	3 Related Work
	4 Cooperative Runtime for Task Scheduling
	4.1 One-Shot Delimited Continuations
	4.2 Event-Driven Controls
	4.3 Cooperative Runtime - Design
	4.4 The Cooperative Runtime

	5 Support for Synchronization Constructs
	5.1 Fork-Join Synchronization
	5.2 Producer-Consumer Synchronization
	5.3 Collective Barrier Synchronization
	5.4 Phaser Synchronization
	5.5 Single Blocks
	5.6 Weak Isolation

	6 Experimental Results
	6.1 Fork/Join Benchmarks
	6.2 Future Benchmarks
	6.3 Phaser Benchmarks

	7 Conclusions and Future Work
	References

	MiCA: A CompositionalArchitecture for Gossip Protocols
	1 Introduction
	2 Overview
	2.1 Example

	3 Na¨ıve Composition
	4 Protocol Combinators
	4.1 Correctness Properties
	4.2 Operators

	5 State Management and Data Movement
	6 Implementation
	7 Experience and Case Studies
	7.1 Layered Protocol
	7.2 Dilation

	8 Related Work
	9 Future Work
	References
	A Artifact Description

	Semantics of (Resilient) X10
	1 Introduction
	2 TX10
	2.1 Operational Semantics
	2.2 Mechanization in Coq
	2.3 Properties of the Transition Relation

	3 Equivalence and Equational Laws
	4 Resilient TX10
	4.1 Properties of the Transition Relation
	4.2 Equational laws

	5 Conclusions and Future work
	References
	A Artifact Description

	Author Index

