
Hierarchical Comprehensive Triangular

Decomposition�

Zhenghong Chen, Xiaoxian Tang, and Bican Xia

School of Mathematical Sciences, Peking University, China
{septemwnid,tangxiaoxian}@pku.edu.cn, xbc@math.pku.edu.cn

Abstract. The concept of comprehensive triangular decomposition
(CTD) was first introduced by Chen et al. in their CASC’2007 paper
and could be viewed as an analogue of comprehensive Gröbner sys-
tems for parametric polynomial systems. The first complete algorithm
for computing CTD was also proposed in that paper and implemented
in the RegularChains library in Maple. Following our previous work on
generic regular decomposition for parametric polynomial systems, we
introduce in this paper a so-called hierarchical strategy for computing
CTDs. Roughly speaking, for a given parametric system, the parametric
space is divided into several sub-spaces of different dimensions and we
compute CTDs over those sub-spaces one by one. So, it is possible that,
for some benchmarks, it is difficult to compute CTDs in reasonable time
while this strategy can obtain some “partial” solutions over some para-
metric sub-spaces. The program based on this strategy has been tested
on a number of benchmarks from the literature. Experimental results on
these benchmarks with comparison to RegularChains are reported and
may be valuable for developing more efficient triangularization tools.

Keywords: Comprehensive triangular decomposition, regular chain, hi-
erarchical, generic regular decomposition, parametric polynomial system.

1 Introduction

Solving parametric polynomial system plays a key role in many areas such as
automated geometry theorem deduction, stability analysis of dynamical systems,
robotics and so on. For an arbitrary parametric system, in symbolic computation,
solving this system is to convert equivalently the parametric system into new
systems with special structures so that it is easier to analyze or solve the solutions
to the new systems. There are two main kinds of symbolic methods to solve
parametric systems, i.e., the algorithms based on Gröbner bases [12, 14–17, 23]
and those based on triangular decompositions [1, 2, 5, 9, 11, 13, 19, 20, 24–27].

The methods based on triangular decompositions have been studied by many
researchers since Wu’s work [24] on characteristic sets. A significant concept
in the theories of triangular sets is regular chain (or normal chain) introduced

� The work was supported by National Science Foundation of China (Grants 11290141
and 11271034).

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 434–441, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Hierarchical CTD 435

by Yang and Zhang [27] and Kalkbrener [11] independently. Gao and Chou
proposed a method in [9] for identifying all parametric values for which a given
system has solutions and giving the solutions by p−chains without a partition
of the parameter space. Wang generalized the concept of regular chain to regular
system and gave an efficient algorithm for computing it [20–22]. It should be
noticed that, due to their strong projection property, the regular systems or
series may also be used as representations for parametric systems. Chen et. al.
introduced the concept of comprehensive triangular decomposition (CTD) [5] to
solve parametric systems, which could be viewed as an analogue of comprehensive
Gröbner systems. Algorithm CTD for computing CTD was also proposed in [5].

There are several implementations based on the above triangularization meth-
ods, such as Epsilon [22], RegularChains [6] and wsolve [19].

Suppose P ⊂ Q[U ][X ] is a parametric polynomial system where X = (x1, . . . ,
xn) are variables and U = (u1, . . . , ud) are parameters. The above mentioned
algorithms all solve the system in Cd+n directly. That means all the unknowns
(U and X) are viewed as variables and triangular decompositions are computed
over Q. It may happen that no triangular decompositions overQ can be obtained
in a reasonable time for some systems while a triangular decomposition overQ[U ]
is much easier to be computed.

Based on this observation, we propose a strategy which computes CTDs for
given parametric systems hierarchically and the CTDs are called hierarchical
comprehensive triangular decompositions (HCTD). By “hierarchical” we mean
that, roughly speaking, a generic regular decomposition is computed first over
Q[U ] and a parametric polynomial B(U) is obtained at the same time such that
the solutions to the original system in Cd+n can be expressed as the union of solu-
tions to those regular systems in the decomposition provided that the parameter
values satisfying B(U) �= 0. Then, by applying similar procedure recursively, the
solutions satisfying B(U) = 0 are obtained through adding B(U) = 0 to the sys-
tem and treating some parameters as variables. We give an algorithm based on
this hierarchical strategy which computes CTDs for given parametric systems.
The algorithm has been implemented with Maple and tested on a number of
benchmarks from the literature. Experimental results on these benchmarks with
comparison to RegularChains are reported (see Tables 2) and may be valuable
for developing more efficient triangularization tools. For some benchmarks, it
is difficult to compute CTDs in reasonable time while our program can output
“partial solutions” (see Table 4).

The rest part of this extended abstract is organized as follows. Section 2 in-
troduces an algorithm, Algorithm HCTD, for computing CTDs hierarchically and
an example is illustrated there. Section 3 compares the Algorithm HCTD and the
Algrotihm CTD in [5] by experiments. Section 4 introduces another hierarchical
strategy for computing CTD and the comparing experiments are also shown.
Section 5 shows the benefit of the hierarchical strategy by experiments.



436 Z. Chen, X. Tang, and B. Xia

2 Algorithm HCTD

For the concepts and notations without definitions, please see [2, 6, 21].
Suppose T is a regular chain in Q[U ][X ] and H ⊂ Q[U ][X ]. [T,H] is said

to be a regular system [5] if res(H,T) �= 0 for any H ∈ H. For any B ⊂ Q[U ],
VU (B) denotes the set {(a1, . . . , ad) ∈ Cd|B(a1, . . . , ad) = 0, ∀B ∈ B}. For any
P ⊂ C[X ], V(P) denotes the set {(b1, . . . , bn) ∈ Cn|P (b1, . . . , bn) = 0, ∀P ∈
P}. For any P ⊂ Q[U ][X ], V(P) denotes the set {(a1, . . . , ad, b1, . . . , bn) ∈
Cd+n|P (a1, . . . , ad, b1, . . . , bn) = 0, ∀P ∈ P}. For D ⊂ Cd+n, denote by ΠU (D)
the set {(a1, . . . , ad) ∈ Cd|(a1, . . . , ad, b1, . . . , bn) ∈ D}. Suppose [T,H] is a reg-
ular system in Q[U ][X ]. If H = {H}, then [T,H] is denoted by [T, H ] for short.

Due to page limitation, we only present the specification of an algorithm for
computing CTDs hierarchically.

Algorithm HCTD
Input: a finite set P ⊂ Q[U ][X ], a non-negative integer m (0 ≤ m ≤ d)
output: finitely many 3-tuples [Ai,Bi,Ti], a polynomial B, where

– B ∈ Q[um+1, . . . , ud], Ai,Bi ⊂ Q[U ]
– Ti is a finite set of regular systems in Q[U ][X ]

such that

– ∪iV
U (Ai\Bi) =

(
Cd\VU (B)

) ∩ΠU (V(P))
– for any i, j (i �= j), VU (Ai\Bi) ∩ VU (Aj\Bj) = ∅
– for any i, if a ∈ VU (Ai\Bi), then [T(a),H(a)] is a regular

system in C[X ] for any [T,H] ∈ Ti

– for any i, if a ∈ VU (Ai\Bi), then
V(P(a)) = ∪[T,H]∈Ti

V(T(a)\H(a)).

The output of HCTD(P,m) is called the m-HCTD of P. Each [Ai,Bi,Ti] in
the m-HCTD is called a branch. Each regular system in the set ∪Ti is called
a grape. By Algorithm HCTD, for any P, if m = 0, the output is the so-called
generic regular decomposition [8] of P; if m = d, the output is the comprehensive
triangular decomposition [5] of P. The Example 1 below shows how to get m-
HCTD (m = 0, . . . , d).

Example 1. Consider the parametric system

P =

⎧
⎪⎪⎨

⎪⎪⎩

2x2
2(x

2
2 + x2

1) + (u2
2 − 3u2

1)x
2
2 − 2u2x

2
2(x2 + x1) + 2u2

1u2(x2 + x1)
− u2

1x
2
1 + u2

1(u
2
1 − u2

2),
4x3

2 + 4x2(x
2
2 + x2

1)− 2u2x
2
2 − 4u2x2(x2 + x1) + 2(u2

2 − 3u2
1)x2 + 2u2

1u2,
4x1x

2
2 − 2u2x

2
2 − 2u2

1x1 + 2u2
1u2.

where x1, x2 are variables and u1, u2 are parameters.
1. By the Algorithm RDU in [8], we compute a set T1 of regular systems and a

polynomial B1(u1, u2) such that if B1(u1, u2) �= 0, then the solution set of P = 0
is equal to the union of the solution sets of the regular systems in T1. Then we
obtain the 0-HCTD of P: [A1,B1,T1].



Hierarchical CTD 437

2. Let P1 = P ∪ {B1}. Regard {u1, x1, x2} as the new variable set. By the
Algorithm RDU, we compute a set S1 of regular systems and a polynomial B2(u2)
such that if B1(u1, u2) = 0 and B2(u2) �= 0, then the solution set of P = 0 is equal
to the union of the solution sets of the regular systems in S1. For S1, applying the
similar method as the Algorithm RegSer in [20] and the Algorithms Difference
and CTD in [6], we obtain the 1-HCTD of P: [A1,B1,T1], . . . , [A4,B4,T4].

3. Let P2 = P1∪{B2}. Regard {u2, u1, x1, x2} as the new variable set. By the
Algorithm RDU, we compute a set of regular systems S2 and a polynomial B3 = 1
such that if B1(u1, u2) = 0, B2(u2) = 0 and B3 �= 0, then the solution set of
P = 0 is equal to the union of the solution sets of the regular systems in S2.
For S2, applying the similar method as the Algorithms RegSer, Difference and
CTD, we obtain the 2-HCTD of P: [A1,B1,T1], . . . , [A6,B6,T6].

Table 1. [Ai,Bi,Ti]

i Ai Bi Ti

1 ∅ {u1u2(u
2
1 − u2

2)} {[{−2x2
1 + 3x1u2 − u2

2 + u2
1, 2x1x2 + u2

1 − u2x2}, u1]}
2 {u1} {u2} {[{−2x1 + u2, u2 − 2x2}, 1]}
3 {u1 − u2} {u2} {[{x1, x2 − u2}, 1], [{2x1 − 3u2, x2 + u2}, 1]}
4 {u1 + u2} {u2} {[{x1, x2 − u2}, 1], [{2x1 − 3u2, 2x2 + u2}, 1]}
5 {u2} {u1} {[{2x2

1 − u2
1, 2x

2
2 − u2

1}, 1]}
6 {u1, u2} {1} {[{x2}, 1], [{x1, x2}, 1], [{2x2

1 − u2
1, 2x

2
2 − u2

1}, 1]}

3 Experiment of Comparison

We have implemented the Algorithm HCTD as a Maple function HCTD and tested
a great many benchmarks from the references [5, 7, 12, 14]. Throughout this
paper, all the computational results are obtained in Maple 17 using an Intel(R)
Core(TM) i5 processor (3.20GHz CPU), 2.5 GB RAM and Windows 7 (32 bit).
All the timings are given by seconds. The “timeout” mark means the time is
greater than 1000 seconds. The Table 2 compares the functions HCTD (when
m = d) and ComprehensiveTriangularize (CTD) in RegularChains.

In Table 2, the column “time” lists the timings of HCTD (m = d) and CTD; the
column “branch” lists the numbers of branches output by HCTD and CTD; and
the column “grape” lists the numbers of grapes output by HCTD and CTD. It is
indicated by Table 2 that

– for the benchmarks 3–27, HCTD runs faster than CTD, especially, for the bench-
mark 27, CTD is timeout and HCTD completes the computation in time; for
the benchmarks 28–40, CTD runs faster than HCTD, especially, for the bench-
marks 38–40, HCTD is timeout and CTD solves the systems efficiently; for the
benchmarks 41–49, both HCTD and CTD are timeout;

– for the benchmarks 14, 31, 32, 35 and 36, the number of branches output by
HCTD is much bigger than that output by CTD;

– for the benchmarks 6, 10, 12, 29, 30, 32, 35 and 37, the number of grapes
output by HCTD is much bigger than that output by CTD.



438 Z. Chen, X. Tang, and B. Xia

4 Different Hierarchical Strategy

To compute a m-HCTD for a given parametric system, as shown by Example 1,
we first take {x1, . . . , xn} as variable set and then add one parameter into the
variable set at each recursive step. A different hierarchical strategy may be that
we add a prescribed number (say s) of parameters into the variable set at the
first step and each recursive step.

The algorithm applying this different hierarchical strategy is called HCTDA

and has been implemented as a function HCTDA. The comparing data of HCTD
and HCTDA (for s = 1) is shown in Table 3. It is indicated by Table 3 that

– for the benchmarks 3–11, HCTD runs faster than HCTDA, especially, for the
benchmarks 10–11, HCTDA is timeout and HCTD completes the computation
in time; for the benchmarks 12–18, HCTDA runs faster than HCTD, especially,
for the benchmarks 19–20, HCTD is timeout and HCTDA completes the com-
putation in time;

– the difference of the numbers of branches (grapes) output by HCTD and HCTDA

is not striking.

In fact, we can input different s when calling HCTDA. For many benchmarks in
Table 2, the timings of different s are similar. There are some benchmarks on
which the timings of HCTDA differ greatly for different s. Due to page limitation,
we do not report the timings here.

5 Benefit of Hierarchical Strategy

We see that the benchmarks 41–49 in Table 2 are timeout when using both CTD

and HCTD (m = d). In fact, for some polynomial systems from practical areas,
the complexity of computing comprehensive triangular decomposition is way
beyond current computing capabilities. However for these systems (especially
the systems with many parameters), we may try to compute the m-HCTD for
m = 0, . . . , d − 1. In this way, although we cannot solve the system completely,
we may still get partial solutions.

We have tried the timeout benchmarks 41-49 in Table 2. The experimental
results are shown in Table 4, where the columns “m = 0”, “m = 1”, “m = 2”,
“m = 3” and “m = 4” denote the timings of calling Algorithm HCTD for m =
0, 1, 2, 3, 4; and the “error” mark means Maple returns an error message and
stops computing. It is seen from the Table 4 that

– for all the benchmarks, we successfully get partial solutions;
– for most of the benchmarks, such as the benchmark 1 and benchmarks 3–7,

we get results only when m = 0.



Hierarchical CTD 439

Table 2. Comparing HCTD and CTD

benchmark d n
time branch grape

HCTD CTD HCTD CTD HCTD CTD

1. MontesS2 1 3 0. 0. 1 1 1 1
2. MontesS4 2 2 0. 0. 1 1 1 1
3. F8 4 4 0.437 1.014 18 14 14 9
4. Hereman-2 1 7 0.093 0.468 2 2 10 6
5. MontesS3 1 2 0. 0.031 3 2 2 2
6. MontesS5 4 4 0.078 0.187 6 8 13 6
7. MontesS6 2 2 0.015 0.047 4 3 5 4
8. MontesS7 1 3 0.046 0.156 4 4 6 8
9. MontesS8 2 2 0. 0.094 2 2 2 2
10. MontesS12 2 6 0.593 7.925 5 5 61 27
11. MontesS13 3 2 0.078 0.265 6 9 9 8
12. MontesS14 1 4 0.452 4.353 6 3 28 12
13. MontesS15 4 8 0.187 0.889 5 5 14 12
14. MontesS16 3 12 1.198 1.825 37 8 11 7
15. Bronstein 2 2 0.015 0.219 6 7 7 7
16. AlkashiSinus 3 6 0.094 0.437 8 6 8 6
17. Lanconelli 7 4 0.28 0.546 14 11 7 5
18. zhou1 3 4 0.047 0.156 5 5 5 5
19. zhou2 6 7 0.671 2.09 17 18 19 16
20. zhou6 3 3 0.031 0.218 6 4 6 5
21. SBCD13 1 3 0.015 0.094 2 2 9 6
22. SBCD23 1 3 0.202 0.344 4 2 15 12
23. F2 2 2 0.032 0.234 3 3 3 3
24. F3 4 1 0.063 0.905 5 6 5 6
25. F5 3 2 0.046 0.11 6 3 3 3
26. F7 3 2 0. 0.016 2 2 2 2
27. S2 4 1 44.544 timeout 150 92
28. MontesS9 3 3 0.693 0.468 21 13 16 13
29. MontesS10 3 4 0.421 0.359 13 6 19 6
30. MontesS11 3 3 0.858 0.655 12 16 20 10
31. F4 4 2 11.637 0.375 20 3 3 3
32. zhou5 4 5 5.616 2.902 51 19 97 22
33. F6 4 1 0.296 0.14 13 3 11 3
34. MontesS1 2 2 0.016 0. 4 2 3 3
35. Hereman-8-8 3 5 96.439 10.468 108 9 161 14
36. S3 4 3 2.618 1.436 35 13 17 11
37. Maclane 3 7 5.242 4.009 17 9 155 27
38. S1 3 2 timeout 4.04 10 10
39. Neural 1 3 timeout 0.188 2 7
40. Gerdt 3 4 timeout 0.842 4 6
41. Lazard-ascm2001 3 4 timeout timeout

42. Leykin-1 4 4 timeout timeout

43. Cheaters-homotopy-easy 4 3 timeout timeout

44. Cheaters-homotopy-hard 5 2 timeout timeout

45. Lazard-ascm2001 3 4 timeout timeout

46. MontesS18 2 3 timeout timeout

47. Pavelle 4 4 timeout timeout

48. p3p 5 2 timeout timeout

49. z3 6 11 timeout timeout



440 Z. Chen, X. Tang, and B. Xia

Table 3. Comparing HCTD and HCTDA (for s = 1)

benchmark d n
time branch grape

HCTD HCTDA HCTD HCTDA HCTD HCTDA

1. MontesS5 4 4 0.078 0.078 6 6 13 13
2. zhou1 3 4 0.047 0.047 5 5 5 6
3. MontesS9 3 3 0.693 0.796 21 21 16 27
4. MontesS11 3 3 0.858 1.207 12 24 20 38
5. MontesS12 2 6 0.593 0.671 5 5 61 60
6. AlkashiSinus 3 6 0.094 0.109 8 10 8 10
7. Bronstein 2 2 0.015 0.031 6 5 7 6
8. MontesS7 2 2 0.046 0.266 4 6 4 6
9. SBCD13 1 3 0.015 0.031 2 2 9 7
10. F6 4 1 0.296 timeout 13 11
11. S2 4 1 44.544 timeout 150 92
12. Maclane 3 7 5.242 2.605 17 13 155 122
13. SBCD23 1 3 0.202 0.109 4 2 15 13
14. F4 4 2 11.637 1.653 20 26 3 3
15. MontesS15 4 8 0.187 0.124 5 5 14 14
16. F8 4 4 0.437 0.358 18 16 14 11
17. MontesS16 3 12 1.198 0.951 37 21 11 8
18. S3 4 3 2.618 1.81 35 29 17 15
19. Neural 1 3 timeout 0.296 6 15
20. Gerdt 3 4 timeout 288.352 4 11

Table 4. Timings of m-HCTD for different m

benchmark d n
time

m = 0 m = 1 m = 2 m = 3 m = 4

1. Lazard-ascm2001 3 4 0.936 timeout

2. Leykin-1 4 4 0.203 20.436 timeout

3. Cheaters-homotopy-easy 4 3 3.681 timeout

4. Cheaters-homotopy-hard 5 2 39.640 timeout

5. Lazard-ascm2001 3 4 0.858 timeout

6. MontesS18 2 3 0.327 timeout

7. Pavelle 4 4 0.234 timeout

8. p3p 5 2 0. 0. 0.015 6.549 timeout

9. z3 6 11 0.094 error

References

1. Alvandi, P., Chen, C., Moreno Maza, M.: Computing the limit points of the quasi-
component of a regular chain in dimension one. Computer Algebra in Scientific
Computing, 30–45 (2013)

2. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comp. 28, 105–124 (1999)

3. Chen, C., Davenport, J., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Triangular
decomposition of semi-algebraic systems. In: Proc. ISSAC, pp. 187–194 (2010)

4. Chen, C., Davenport, J., Moreno Maza, M., Xia, B., Xiao, R.: Computing with
semi-algebraic sets represented by triangular decomposition. In: Proc. ISSAC,
pp. 75–82 (2011)



Hierarchical CTD 441

5. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive tri-
angular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

6. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comp. 47 (6), 610–642 (2012)

7. Chou, S.-C.: Mechanical geometry theorem proving. Springer (1988)
8. Chen, Z., Tang, X., Xia, B.: Generic regular decompositions for parametric poly-

nomial systems. Accepted by Journal of Systems Science and Complexity (2013),
arXiv:1301.3991v1

9. Gao, X.-S., Chou, S.-C.: Solving parametric algebraic systems. In: Proc. ISSAC,
pp. 335–341 (1992)

10. Gao, X.-S., Hou, X., Tang, J., Chen, H.: Complete solution classification for the
perspective-three-point problem. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 25(8), 930–943 (2003)

11. Kalkbrener, M.: A generalized euclidean algorithm for computing for computing tri-
angular representationa of algebraic varieties. J. Symb. Comp. 15, 143–167 (1993)

12. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive
gröbner systems. In: Proc. ISSAC, pp. 25–28 (2010)

13. Moreno Maza, M.: On triangular decompositions of algebraic varieties. Technical
Report TR 4/99, NAG Ltd., Oxford, UK (1999)

14. Montes, A., Recio, T.: Automatic discovery of geometry theorems using minimal
canonical comprehensive Gröbner systems. In: Botana, F., Recio, T. (eds.) ADG
2006. LNCS (LNAI), vol. 4869, pp. 113–138. Springer, Heidelberg (2007)

15. Nabeshima, K.: A speed-up of the algorithm for computing comprehensive gröbner
systems. In: Proc. ISSAC, pp. 299–306 (2007)

16. Suzuki, A., Sato, Y.: An alternative approach to comprehensive gröbner bases. In:
Proc. ISSAC, pp. 255–261 (2002)

17. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive gröbner bases.
In: Proc. ISSAC, pp. 326–331 (2006)

18. Tang, X., Chen, Z., Xia, B.: Generic regular decompositions for generic zero-
dimensional systems. Accepted by Science China: Information Sciences (2012),
doi: 10.1007/s11432-013-5057-5

19. Wang, D.K.: Zero decomposition algorithms for system of polynomial equations.
In: Computer Mathematics, pp. 67–70. World Scientific (2000)

20. Wang, D.M.: Computing triangular systems and regular systems. J. Symb.
Comp. 30, 221–236 (2000)

21. Wang, D.M.: Elimination methods. Springer (2001)
22. Wang, D.M.: Elimination practice: software yools and applications. Imperial Col-

lege Press (2004)
23. Weispfenning, V.: Comprehensive gröbner bases. J. Symb. Comp. 14, 1–29 (1992)
24. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geome-

tries. Science in China Series A Mathematics, 507–516 (1977) (in Chinese)
25. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering

of a class of inequality-type theorems. Science in China Series F Information
Sciences 44(1), 33–49 (2001)

26. Yang, L., Xia, B.: Automatic inequality proving and discovering. Science Press
(2008) (in Chinese)

27. Yang, L., Zhang, J.: Searching dependency between algebraic equations: An al-
gorithm applied to automated reasoning. In: International Centre for Theoretical
Physics, pp. 1–12 (1990)

28. Yang, L., Zhang, J., Hou, X.: Non-linear algebraic formulae and theorem automated
proving. Shanghai Education Technology Publishers (1992) (in Chinese)


	Hierarchical Comprehensive TriangularDecomposition
	1 Introduction
	2 Algorithm HCTD
	3 Experiment of Comparison
	4 Different Hierarchical Strategy
	5 Benefit of Hierarchical Strategy
	References




