
Software for Discussing Parametric Polynomial

Systems: The Gröbner Cover
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Abstract. We present the canonical Gröbner Cover method for dis-
cussing parametric polynomial systems of equations. Its objective is to
decompose the parameter space into subsets (segments) for which it ex-
ists a generalized reduced Gröbner basis in the whole segment with fixed
set of leading power products on it. Wibmer’s Theorem guarantees its ex-
istence. The Gröbner Cover is designed in a joint paper of the authors,
and the Singular grobcov.lib library [15] implementing it, is developed
by Montes. The algorithm is canonic and groups the solutions having
the same kind of properties into different disjoint segments. Even if the
algorithms involved have high complexity, we show how in practice it is
effective in many applications of medium difficulty. An interesting appli-
cation to automatic deduction of geometric theorems is roughly described
here, and another one to provide a taxonomy for exact geometrical loci
computations, that is experimentally implemented in a web based appli-
cation using the dynamic geometry software Geogebra, is explained in
another session.

Keywords: Groebner cover, parametric polynomial, canonical algorithm,
automatic theorem discovering.

1 The Gröbner Cover

The Gröbner Cover algorithm for discussing parametric polynomial ideals
gives a canonical description, classifying the solutions by their characteristics
(number of solutions, dimension, etc.).

The Gröbner Cover is the analog of the reduced Gröbner basis of an ideal
for parametric ideals. Its existence was proved by Wibmer’s Theorem [14], and
the method and algorithms were developed in [8]. Montes implemented in Sin-
gular the grobcov.lib library [15], whose actual version incorporates Kapur-Sun-
Wang algorithm [3] for computing the initial Gröbner System used in grobcov
algorithm, as described in [6], and recently also the Locus algorithm used in
Dynamical Geometry software as described in [1] and in another session.

Let x = x1, . . . , xn be the set of variables and a = a1, . . . , am the set of
parameters. Given a generating set F = {f1, · · · , fs} ⊂ Q[a][x] of the parametric
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ideal I = 〈F 〉 and a monomial order �x in the variables, the grobcov algorithm
determines

– the unique canonical partition of the parameter space Cm into locally closed
sets (segments) with associated generalized reduced Gröbner basis:

GC = {(S1, B1, lpp1), . . . , (Sr, Br, lppr)}.
– The segments Si are disjoint locally closed subsets of Cm and ⊕iSi = Cm.
– The basisBi of a segment Si has fixed set of leading power products (lpp), who

ensures that the type of solutions is the same over all points of the segment,
and is the generalized reduced Gröbner basis of 〈F 〉 over the segment Si.

– The lpp’s are included in the output, even if they they are given by the basis,
to characterize the segments and facilitate the applications.

– Moreover, if the ideal is homogeneous, the lpp’s are characteristic of the
segment as no other segment has the same lpp’s.

The generalized reduced Gröbner basis Bi of a segment Si is formed by a set of
monic I-regular functions over Si. An I-regular function, representing an element
of the basis, allows a full-representation in terms of a set of polynomials that
specialize for every point a0 of the segment, either to the corresponding element
of the reduced Gröbner basis of the specialized ideal Ia0 after normalization, or
to zero. It also allows a generic representation given by a single polynomial that
specializes well on an open subset of the segment and to zero on the remaining
points of it. Usually the generic representation is sufficient, and we can, if needed,
compute the full representation from it using the extend algorithm.

The segments Si are expressed in canonical P-representation, given by a set
of prime ideals of the form

Prep(S) = {{pi, {pij : 1 ≤ j ≤ ri}} : 1 ≤ i ≤ s}
representing the set:

S =

s⋃

i=1

⎛

⎝V(pi) \
ri⋃

j=1

V(pij)

⎞

⎠ .

Each V(pi) \
⋃ri

j=1 V(pij) is a component of the segment, and its representative
{pi, {pij : 1 ≤ j ≤ ri}}, by abuse of language, is also denoted a component when
there is no ambiguity. pi is called the top of the component, and {pij : 1 ≤ j ≤ ri}
the holes.

1.1 Historical Development of the Theory of Gröbner Bases for
Parametric Polynomial Ideals

The first steps in the algebraic study of parametric polynomial ideals where made
by V. Weispfenning (1992) in [12], who proved the existence of a Comprehensive
Gröbner System (CGS) and a Comprehensive Gröbner Basis (CGB). Progress
were made in two directions:
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1. Improving the output: Montes (2002) [5],Weispfenning (2003) [13], Manubens
& Montes (2009) [4], Montes & Wibmer (2010) [8], Montes (2012) [6].

2. Speed up the algorithms: Kapur (1995), Kalkbrenner (1997), Sato (2005),
Suzuki & Sato (2006) [11], Nabeshima (2007) [9], Kapur & Sun & Wang
(2010) [3].

The Gröbner Cover [8] is the final state of the research of point 1., and
the actual implementation of the GC algorithm incorporates the best speed up
algorithm [3] of point 2. as described in [6].

1.2 The Gröbner Cover Algorithm

The algorithm for computing the Gröbner Cover has the following steps:

1. Homogenize the input ideal wrt the variables.
2. Compute a disjoint reduced Comprehensive Gröbner System (DRCGS).1

3. Compute the P-representation of the segments.
4. Add together the segments with common lpp using LCUnion algorithm,

knowing that the union is locally closed by Wibmer’s Theorem.
5. Dehomogenize the bases.
6. For every GC-segment, compute the generic representation of the generalized

reduced Gröbner basis using Combine algorithm.
7. Optionally, one can also compute the full representation of the bases using

Extend algorithm after computing the generic GC

When the GC algorithm [8] was introduced in 2010, the DRCGS used for step
2. in the implementation was our own algorithm buildtree [8]. But its use is
not strictly necessary. We only need to compute a DRCGS. In the new 2012
implementation of the GC the DRCGS used in step 2. was Kapur-Sun-Wang
algorithm [3] because it is simpler and generally faster. This is described in [6].

1.3 Example

To fix ideas on the use of the grobcov algorithm of the Singular “grobcov.lib”
library [15], let us consider a very simple example: the inverse kinematic problem
of the robot arm of Figure 1. The problem consist of determining the angles
θ1 and θ2 and the length � to reach the point of coordinates (r, z). Setting
ci = cos(θi) and si = sin(θi) the equations are obviously:

F = s1s2�− c1c2�− c1 + r, s1c2�− s1 − c1s2�+ z, s21 + c21 − 1, s22 + c22 − 1.

The call for solving the problem using Singular grobvcov is:

1 A DRCGS is a CGS whose segments are dijoint and the bases specialize to the
reduced Gröbner basis and have fixed lpp over the whole segment.
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(r, z)

θ1

θ2

1 l

Fig. 1. Simple robot arm

Input:

LIB "grobcov.lib";

ring R=(0,r,z),(s1,c1,s2,c2,l),lp;

ideal F= s1*s2*l-c1*c2*l-c1+(r), s1*c2*l-s1-c1*s2*l+(z),

s1^2+c1^2-1, s2^2+c2^2-1;

def G=grobcov(F);

"grobcov(F)=" G;

Output: We summarize the output in the following table

S. lpp Basis Segment

1 c2�, s
2
2, 2c2�+ �2 + (−r2 − z2 + 1), s22 + c22 − 1,

c1, (2r2 + 2z2)c1 + (−2z)s2�+ r�2 + (−r3 − rz2 − r), C2 \ V(r2 + z2)
s1. (2r2 + 2z2)s1 + (2r)s2�+ (z)�2 + (−r2z − z3 − z).

2 c2�s2, 2c2�+ �2 + 1, (z)s2 + (−r)c2 + (−r)l,
c1�

2, (4z2)c1�
2 + (−4z2)c1 + (−r)�4 + (2r)�2 + (4rz2 − r), V(r2 + z2) \ V(z, r)

c1c2, (8z2)c1c2 + (8z2)c1�+ (−8rz2 + 2r)c2 + (−r)�3+
s1. +(−4rz2 + 3r)�, (2z)s1 + (2r)c1 + �2 − 1.

3 �2, c2, s2, s
2
1 �2 − 1, c2 + 1, s2, s

2
1 + c21 − 1. V(z, r)

There are 3 segments, and for each segment there are 4 arguments: 1) the
lpp, 2) the basis, 3) the P-representation of the segment, 4) the lpp of the
homogenized ideal. The fourth argument is purely informative to verify that each
segment has a characteristic lpp of the homogenized ideal. It can be discarded,
and we deleted it form the output. The output is to be read as follows:

1) The first segment represents the generic case: the solution is valid for every
values of the parameters r, z, except when r2 + z2 = 0. We have one-degree of
freedom in the variables. One can choose � free. For each value of � �= 0 there
are two angle solutions with opposite value of θ2. For fixed � we have

c2 =
r2 + z2 − �2 − 1

2�
, s2 = ±√

1− c22,

c1 =
2zs2�+ r(r2 + z2 + 1− �2)

2(r2 + z2)
, s1 =

−2rs2� + z(r2 + z2 + 1− �2)

2(r2 + z2)
.
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As we want real solutions, we must choose � such that |c2| ≤ 1. We set � > 0.
The limits for cos(θ2) imply |� − 1| ≤ √

r2 + z2 ≤ � + 1. With this choice the
angles are real.

2) The second segment is purely complex and can be discarded in practice.
3) There is only one special position (r, z) = (0, 0) for which necessarily � = ±1

and in practice � = 1. Then θ2 = π, and θ1 free.
These results correspond accurately to the geometry.

2 Applications

The Gröbner Cover has many applications. Let us highlight one interest-
ing problem that can be solved using it: automatic discovering of geometrical
theorems. In the “Parametric Polynomial Systems” session we show its use for
determining and classifying geometrical loci that can be used by Dynamical
Geometry software [1].

2.1 Automatic Deduction of Geometrical Theorems

Consider a generally false geometrical statement depending on some variable
points for which we want to find the conditions in order to make the statement
to hold true. Consider the coordinates of the free points of a construction as
parameters and the remaining coordinates or values as variables. Then apply
grobcov to the system defining the statement and the construction, and find
the conditions over the parameters that makes the statement hold true. We show
an interesting example: the generalization of the classical XIX-century known
Steiner-Lehmus Theorem [10] that is described in [7]. Let us summarize here the
results.

Classical Theorem states that the length of the inner bisectors of a triangle
are equal if and only if the triangle is isosceles. Consider the triangle ABC of

A B

C

R R′PP ′

S S′T

T ′

QQ′ M

M ′

Fig. 2. Bisectors of the triangle ABC
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Figure 2, and take coordinates A(−1, 0), B(1, 0) and C(a, b). Trace the circles
with center A and radius AC that intersects line AB (i.e the x-axis) at P (p, 0)
and P ′, and the circle with center B and radius BC intersecting line AB at
R(r, 0) and R′. The equation (a+ 1)2 + b2 − (p+ 1)2 determining p in terms of
a, b does not distinguish between P and P ′. The same happens for the points R
and R′ and for the equations determining M and T (or T ′) and M (or M ′), so
that the statement AM

2
= BT

2
, i.e. (x1 + 1)2 + y21 = (x2 − 1)2 + y22, does not

distinguish between inner and outer bisectors. System F only implies that one
bisector (inner or outer) of A is equal to one bisector of B. The system is

F = (a+ 1)2 + b2 − (p+ 1)2, (a− 1)2 + b2 − (r − 1)2,
ay1 − bx1 − y1 + b, ay2 − bx2 + y2 − b,
−2y1 + bx1 − (a+ p)y1 + b, , 2y2 + bx2 − (a+ r)y2 − b,
(x1 + 1)2 + y21 − (x2 − 1)2 − y22 .

Applying grobcov in the ring R=(0,a,b),(x1,y1,x2,y2,p,r),dp to the ideal
generated by F it outputs 9 segments. Table 1 gives the 3 curves and 9 point
varieties representing real and complex points in the parameter space appearing
in the description of the grobcov(F). We do not detail the complex points as
we are not interested in. Table 2 summarizes the relevant characteristics of the
output of grobcov(F) for our purposes.

Table 1. Curves and point varieties appearing in grobcov(F)

Curves

C1 = V((8a2 + 9b2)(a2 + b2)4 − 4(14a4 + 13a2b2 − 3b4)(a2 + b2)2

+2(72a6 + 43a4b2 − 74a2b4 − 37b6)− 4(44a4 − 39a2b2 + 43b4) + 104a2 + 137b2 − 24),
C2 = V(a),
C3 = V(b).

Point varieties real points numerical values

V1 = V(b.a+ 1) P1 = (−1, 0)
V2 = V(b, a− 1) P2 = (1, 0)
V3 = V(a, b) P4 = (0, 0)

V4 = V(b, a2 − 3) P42, P41 = (±√
3, 0)

V5 = V(3b2 − 1, a) P52, P51 = (0,±√
3/3)

V6 = V(b2 − 3, a) P62, P61 = (0,±√
3)

V7 = V(b4 + 5b2 + 8, a) no real roots

V8 = V(b4 + 44b2 − 16, 5a+ b2 + 7) P82, P81 = (3− 2
√
5,±

√
−22 + 10

√
5)

V9 = V(b4 + 44b2 − 16, 5a− b2 − 7) P92, P91 = (−3 + 2
√
5,±

√
−22 + 10

√
5)

Curves and points can be visualized on Figure 3. The fourth column in Table
2 is direct consequence of the lpp in column 3. We need the basis to determine
the fifth column, who indicates which bisectors (internal i or external e) are
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C1

P1 P2P3P41 P42

P51

P52

P61

P62

P91

P92

P81

P82

iA = iB , eA = eB
eA = eB

iA = eB
eA = iB

C2

C3

Fig. 3. Generalized Steiner-Lehmus Theorem

equal for the different solutions. From the basis we can determine the signs of
p+ 1 and of r − 1 for each point of the solution.

p > −1 corresponds to the inner bisector iA and p < −1 to the external eA,
r < 1 corresponds to the inner bisector iB and r > 1 to the external eB.

The line C3, i.e. the x-axis, corresponds to degenerate triangles, and so the seg-
ments 4,7,8 can be discarded. The remaining segments give the whole informa-
tion on the generalized Theorem. The curve C1 has different colors, that can
change only at the special self intersecting points. To determine its color it suf-
fices to evaluate p and r on an intermediate point of the interval. The curve C2
corresponds to the classical Theorem and with the Gröbner Cover we can
appreciate also more details on it. On the whole line (isosceles triangles) we
have iA = iB and also eA = eB except for special points P51 and P52 where all
bisectors are equal and special points P61 and P62 where the external bisectors
become infinity. The Gröbner Cover reveals the generalized Theorem over
the curve C1 with all the details.
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Table 2. Segments of grobcov(F). (Bases are not explicitely given)

Nr. Segment lpp Num. S. Bisectors

1 C2 \ (C1 ∪ C2 ∪ C3) {1} 0 -

2 C1 \
((⋃2

i=1 Vi

) ∪ (⋃9
i=4 Vi

)) }{r, p, y2, x2, y1, x1} 1 depends on sector

3 (C2 \ (V3 ∪ V5 ∪ V6)) ∪ {p, y2, x2, y1, x1, r
2} 2 iA = iB , eA = eB

∪ V8 eA = eB = iB
4 C3 \ (V1 ∪ V2) {y2, y1, r2, p2, x2

1} ∞
5 V5 {y2, x2, y1, x1, r

2, p2} 4 iA = iB = eA = eB
6 V6 {r, p, y2, x2, y1, x1} 1 iA = iB
7 V1 {y1, r2, y2r, p2x2

1} ∞
8 V2 {y2, r2, p2, y1p, x12} ∞
9 V9 {r, y2, x2, y1, x1, p

2} 2 eA = eB = iA
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of Polynomial Ideals. Jour. Symb. Comp. 6, 149–167 (1988)

3. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehen-
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Comp. 36, 669–683 (2003)
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