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Abstract. The side-chain prediction problem (SCP-problem), is a com-
putational problem to predict the optimal structure of proteins by finding
the optimal dihedral angles. The SCP-problem is one of key computa-
tional cornerstones for many important problems such as protein design,
flexible docking of proteins, homology modeling, etc. The SCP-problem
can be formulated as a minimization problem of an integer linear program
which is NP-hard thus inevitably invites heuristic approach to find the
solution. In this paper, we report a heuristic algorithm, called BetaSCP2,
which quickly finds an excellent solution of the SCP-problem. The solu-
tion process of the BetaSCP2 is facilitated by the Voronoi diagram and
its dual structure called the quasi-triangulation. The BetaSCP2 is en-
tirely implemented using the Molecular Geometry engine called BULL!
which has been developed by Voronoi Diagram Research Center (VDRC)
in C++ programming language. The benchmark test of the BetaSCP2
with other programs is also provided. The BetaSCP2 program is available
as both a stand-alone and a web server program from VDRC.

Keywords: protein structure/function, side-chain prediction, BetaSCP2,
Voronoi diagram, quasi-triangulation, beta-complex.

1 Introduction

Bio-molecules such as protein, DNA, and RNA play important biological func-
tions in the living bodies. It is a general consensus that the functions of molecules
come from their geometric structures. Hence, there have been tremendous stud-
ies which tried to figure out the relationship between the structure and functions
either computationally or experimentally.

Protein consists of linearly connected amino acids by a peptide bond where
a water molecule leaves during each connection. Residue, the remaining part
of each amino acid in a bonded sequence, consists of two parts: backbone and
side-chain. While the backbone part is common to each residue, the side-chain
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is different depending on each type of residue. Protein structure is generally de-
termined by the dihedral angles of some rotatable bonds in each residue because
other variations except the angles are relatively negligible [11].

The side-chain prediction problem, abbreviated as SCP-problem, is a com-
putational problem to predict the optimal structure of proteins by finding the
optimal dihedral angles. Assuming that a backbone structure is fixed (i.e., the
coordinates of the atoms in a backbone are given), the SCP-problem finds the
optimal side-chain structure by predicting the dihedral angles in side-chains so
that the total energy of the structure is minimized.

While each dihedral angle, in theory, can take any value between 0 and 360
degrees, it is well-known that there exists a preferred range of dihedral angle
which maps to a representative angle through statistical analysis. A combination
of such representatives for each residue is called a rotamer which is short for
rotational isomer. Example rotamer is shown in Figure 1 . Figure 1(a) shows the
chemical formula of aspartic acid whose side-chain has two dihedral angles (χ1:
between CH and CH2; χ2: between CH2 and C) as shown in Fig. 1(b). The
backbone atoms are also shown (H2N , CH , C, OH) at the top of Fig. 1(b).
Fig. 1(c) shows the union of nine rotamers for aspartic acid with different values
of χ1 and χ2 (Hydrogens are usually ignored in the graphical visualization).
Different residues have different number of dihedral angles. Hence, there could
exist different rotamer set for each type of residue. The collection of rotamer
sets for all residue types is called a rotamer library [12,23].

(a) (b) (c)

Fig. 1. Example rotamer: (a) the chemical formula of aspartic acid, (b) the two dihedral
angles in the side-chain of aspartic acid, (c) the union of nine rotamers for aspartic
acid

Consider a protein Π = {ρ1, ρ2, . . . , ρn} consisting of n residues. Each residue
ρ has the backbone part β and the side-chain σ. Let B = {β1, β2, . . . , βn} and
Σ = {σ1, σ2, . . . , σn} be the backbone parts and side-chains for the residues,
respectively. Thus, βi and σi constitute ρi and a protein can be represented as
Π = B∪Σ. B is called the backbone of the proteinΠ . Suppose that the structure
of Π (i.e. the atom coordinates of B and Σ) is completely defined. Then, the
potential energy EΠ of Π for the SCP-problem is usually defined as follows [10]:

EΠ = EBΣ + EΣΣ (1)
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where EBΣ is the potential energy between protein backbone and the side-chain
of each residue and EΣΣ is the potential energy between a side-chain σi and
another side-chain σj , i �= j. The energy function used in this study is the
van der Waals interaction between non-bonded atoms modeled by the following
Lennard-Jones potential energy function

E = EBΣ + EΣΣ (2)

=
∑

i∈β

∑

j∈σ

{Aij

d12ij
− Bij

d6ij
}+

∑

i∈σi

∑

j∈σj

{Aij

d12ij
− Bij

d6ij
}

where dij is the Euclidean distance between the centers of a pair of atoms ai
and aj . Aij and Bij are constants depending on atom types and the parameters
in either AMBER [8] or CHARMM [4] could be used.

Given a rotamer library, the energy function E, and the structure of B, the
SCP-problem is to assign the optimal rotamer r∗ to each residue ρ for σ so
that EΠ of Eq. (1) is minimized [10]. Thus, the SCP-problem can be formulated
as a minimization problem of an integer linear program[13,21,28] which is NP-
hard thus necessarily invites a heuristic approach to find the solution. The NP-
hardness of the SCP-problem is proved either by reducing satisfiability (SAT)
problem to the decision problem of the SCP-problem [24,7] or by reducing the
unconstrained quadratic 0-1 programming problem to the formulation of the
SCP-problem [14]. The SCP-problem is one of key computational cornerstones
for many important problems such as protein design [9,3], flexible docking of
proteins [2,26], homology modeling [27], etc.

2 BetaSCP2 Algorithm

The SCP-problem can be formulated in an integer linear program (ILP) of For-
mulation 1 [13,6,14,21,28] where the constraints are not shown here due to space
constraint. Two types of decision variables corresponding to two types of ener-
gies in Eq. (1) are defined as follows: xij decides whether rotamer j is accepted
for residue i or not; xijkl decides whether the interaction between rotamer k of
residue i and rotamer l of residue j is accepted or not. mi represents the number
of rotamers for a residue i in rotamer library.

Formulation 1. (ILP for SCP-problem)

Min.

n∑

i=1

mi∑

j=1

EBΣ(i, j)xij +

n−1∑

i=1

mi∑

j=1

n∑

k=i+1

mk∑

l=1

EΣΣ(i, j, k, l)xijkl (3)

xij ∈ {0, 1}, xijkl ∈ {0, 1}. (4)

While the size ‖xik‖ of xik linearly increases with respect to M1 =
∑n

i=1 mi, the

size ‖xijkl‖ of xijkl dramatically grows according to M2 =
∑n−1

i=1

∑n
k=i+1(mi ×

mk) where M2 � M1. Therefore, we prefer to cut down ‖xijkl‖. BetaSCP1
algorithm, previously reported [25], decomposes the SCP-problem into subprob-
lems and solves the ILP corresponding to each subproblem by using CPLEX
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solver [1]. While BetaSCP1 produces a solution very close to the global opti-
mum, it is computationally very inefficient because it should invoke the CPLEX
solver repeatedly.

BetaSCP2 algorithm decomposes the SCP-problem into small-sized subprob-
lems and transforms each subproblem into simple geometric problem which is
very efficiently solved via the theory of beta-complex, which is a derived from
the Voronoi diagram of spheres (Refer to the Appendix for the brief discussion).
The input of the procedure BetaSCP2 below is a protein backbone B from a PDB
file and a rotamer library R. In STEP 1, BetaSCP2 initially assigns a rotamer
r0 to each residue by considering the probability of the rotamer instances in R.
In STEP 2 and 3, the minimum enclosing sphere (MES) for each residue and
the quasi-triangulation of MES set are computed by using BULL! engine [16].
In STEP 4, BetaSCP2 improves the rotamer r0 initially assigned to each residue
ρ by looking into the only nearby other rotamers which is defined by first-order
Voronoi neighbors of Definition 1. Through STEP 4.1 and 4.2, BetaSCP2 com-
putes the intersection volume of each candidate for ρ and choose the best one
with minimum intersection volume. Note that BetaSCP2 exploits the intersection
volume instead of potential energy. It can be easily proved that the rotamer with
less intersection volume has the lower potential energy if there exists such an
intersection. This important observation will be reported elsewhere in future.

BetaSCP2(B, R)

1 1. assign an initial rotamer r0 to each residue.
2 2. compute the MES of each residue.
3 3. compute the quasi-triangulation for the MES set.
4 4. for the first-order Voronoi neighbors FN of the MES for each residue ρ
5 4.1. for each rotamer r of ρ in R
6 4.1.1. compute intersection volume XV(r) of r with
7 other rotamers in FN .
8 4.2. find out the best rotamer r∗ with minimum XV(r∗).

Figure 2 illustrates the BetaSCP2 algorithm: Figure 2(a) is an input protein
structure; Figure 2(b) shows the backbone and the rotamer set corresponding
to each residue by stick model; Figure 2(c) shows the rotamers to be initially
assigned to each residue and their minimum enclosing spheres (MES) in yellow
by space-filling model.

3 Benchmark Test

We have compared the BetaSCP2 algorithm with SCWRL4 [22] and CISRR [5]
against 248 data from Protein Data Bank (PDB). The computational environ-
ment is as follows: Intel Core 2 Duo CPU E6850 (3.0GHz with 4GB RAM) and
Windows 7. For comparing the solution quality, we evaluated Lennard-Jones
potential (LJ) energy functions of the structures computed by each program.
Figure 3(a) and (b) show LJ energies for three data sets from three programs.
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(a) (b) (c)

Fig. 2. Illustration of BetaSCP2 algorithm: (a) input protein structure (PDB code:
3FQP), (b) the backbone and rotamer sets of residues of (a), (c) the initially assigned
rotamers to each residue and their minimum enclosing spheres

The X-axis represents the computed structures with respect to their residue
sizes. The Y-axis represents LJ energies of the structures. Due to too high ener-
gies of SCWRL4, the difference between BetaSCP2 and CISRR are not clearly
recognized in Figure 3(a); its zoom-up in Figure 3(b) clearly shows the powerful
result of BetaSCP2.

BetaSCP2 produces energetically very stable structures, compared to both
SCWRL4 and CISRR as shown in Figure 3(b). It turns out that BetaSCP2
outperforms SCWRL4 for 214 among 248 data. BetaSCP2 outperforms CISRR

(a) (b)

(c) (d)

Fig. 3. Benchmark test for BetaSCP2, SCWRL4 and CISRR: (a) energies of the struc-
tures computed by BetaSCP2, SCWRL4, and CISRR, (b) the zoom-up of (a), (c)
computation times for BetaSCP2, SCWRL4, and CISRR, and (d) computation times
for BetaSCP2 and CISRR
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for 52 data. However, the energy of BetaSCP2 are extremely lower for those 52
data. The mean and variance of BetaSCP2 are very low compared to those of
CISRR. For the other 196 data, their energy differences between BetaSCP2 and
CISRR are relatively small.

For comparing the computational efficiency, we counted the computation
time of each program. Figure 3(c) shows the computation times of BetaSCP2,
SCWRL4, and CISRR. Figure 3(d) shows the computation times of BetaSCP2
and SCWRL4 only. SCWRL4 is fastest among three programs. While BetaSCP2
shows a strongly linear pattern from both graphs, CISRR seems to have a super-
linear pattern. BetaSCP2 is approximately three times faster than CISRR. The
computation time taken by SCWRL4 relatively fluctuates wildly with respect to
protein size.

4 Conclusion

In this paper, we reported the BetaSCP2 algorithm, and its implementation
which quickly finds an excellent solution of the SCP-problem. The core idea of the
BetaSCP2 algorithm is to transform the SCP-problem into a simple geometric
problem whose solution process can be facilitated by the Voronoi diagram and its
dual structure called the quasi-triangulation. Due to this idea, BetaSCP2 could
improve the computational efficiency compared to BetaSCP1 without degrading
the solution quality. The BetaSCP2 algorithm is entirely implemented using the
Molecular Geometry engine called BULL! which has been developed by Voronoi
Diagram Research Center (VDRC) in C++ programming language. Comparing
with other programs, BetaSCP2 produces energetically very stable structures
efficiently. Even though there could be other criteria, we compare the programs
according to energy of computed structure.

Acknowledgement. This research was supported by the National Research
Lab grant funded by the National Research Foundation (NRF) of Korea (No.
2012R1A2A1A05026395).

Appendix: Voronoi Diagram and Its Derivative Structures

Suppose that we are given a set S = {s1, s2, . . . , sn} of spheres si = (pi, ri)
in R

3 where pi is the center and ri is the radius. Then Voronoi diagram VD
of S consists of n Voronoi cells: {VC(s1),VC(s2), · · · ,VC(sn)}. A Voronoi cell
VC(si) = {d(x, pi) − ri < d(x, pj) − rj , i �= j} where d(x, y) is the Euclidean
distance between two points x and y. Then VD is represented by the quadruplet
(V V , EV , FV , CV): V V = {vV1 , vV2 , . . .}, EV = {eV1 , eV2 , . . .}, FV = {fV

1 , f
V
2 , . . .},

and CV = {cV1 , cV2 , . . . cVn} are the sets of the Voronoi vertices (V-vertices),
Voronoi edges (V-edges), Voronoi faces (V-faces), and Voronoi cells (V-cells)
in VD, respectively. Note that VD is different from the ordinary Voronoi dia-
gram of sphere centers in many respects. One of the important properties for
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VD is that VD reflects the size differences among spheres in Euclidean distance
metric. For the details of VD, refer to [15,20].

Given VD, its dual structure quasi-triangulation QT is defined as follows:
Each V-vertex maps to a tetrahedral cell simplex (q-cell); Each V-edge maps to
a triangular face simplex (q-face); Each V-face maps to an edge simplex (q-edge);
And each V-cell maps to a vertex simplex (q-vertex). Then QT is represented by
the quadruplet (V Q, EQ, FQ, CQ): V Q = {vQ1 , vQ2 , . . . vQn }, EQ = {eQ1 , eQ2 , . . .},
FQ = {fQ

1 , fQ
2 , . . .}, and CQ = {cQ1 , cQ2 , . . .} are the sets of the q-vertices, q-

edges, q-faces, and q-cells in QT , respectively.
VD and QT are equivalent to each other in mathematical and computational

point of view. Given VD, QT of S is computed in O(m) time in the worst case
where m is the number of the q-simplexes in QT . The reverse conversion from
QT to VD takes linear time in the worst case with respect to the number of the
topological entities in VD. For the details of QT , see [19,17,18].

Definition 1 (First-order Voronoi Neighbors)
Suppose that we have VD of a set S = {s1, s2, . . . , sn} of spherical balls. Let
FV
i be the V-faces bounding VC(si) of a ball si. F

V
j is similarly defined. Given

a spherical ball si ∈ S, a set FN i = {sj ∈ S | FV
i ∩FV

j �= ∅, i �= j} is called the
first-order neighbors of si.
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