
BULL! - The Molecular Geometry Engine

Based on Voronoi Diagram, Quasi-Triangulation,
and Beta-Complex

Deok-Soo Kim1,2,�, Youngsong Cho2, Jae-Kwan Kim2, Joonghyun Ryu2,
Mokwon Lee1, Jehyun Cha1, and Chanyoung Song1

1 Department of Mechanical Engineering, Hanyang University, Seoul, Korea
dskim@hanyang.ac.kr

http://voronoi.hanyang.ac.kr
2 Voronoi Diagram Research Center, Hanyang University, Seoul, Korea
{ycho,jkkim,jhryu,mwlee,jhcha,cysong}@voronoi.hanyang.ac.kr

Abstract. Libraries are available for the power diagram and the ordi-
nary Voronoi diagram of points upon which application programs can be
easily built. However, its counterpart for the Voronoi diagram of spheres
does not exist despite of enormous applications, particularly those in
molecular worlds. In this paper, we present the BULL! library which
abbreviates “Beta Universe Library Liberandam!” for computing the
Voronoi diagram of spheres, transforming it to the quasi-triangulation,
and extracting the beta-complex. Being an engine library implemented
in the standard C++, application programmers can simply call API-
functions of BULL! to build application programs correctly, efficiently,
and easily. The BULL! engine is designed so that the application pro-
grams developed by embedding API-functions are completely indepen-
dent of the future modifications of the engine.

Keywords: application program interface, engine, molecular structure,
computational geometry, geometric modeling, C++.

1 Introduction

Molecular structure determines molecular function. While the meaning of “struc-
ture” varies in molecular worlds, “geometry” is always central to molecular struc-
ture and there exist rich prior studies on the geometry of molecules. However,
the studies were mostly conducted in ad hoc manner depending on discipline or
even depending on a particular aspect of a problem at hand; There have been no
unified framework of theory to deal with the geometry of molecular structure.

Authors’ group at the Voronoi DiagramResearch Center (VDRC) [1], Hanyang
University, has been developing the Molecular Geometry (MG) theory dur-
ing the past decade based on the Voronoi diagram, in particular the Voronoi
diagram of spheres, and its derivative structures [6,11,4,8,7,10]. Suppose that P

� Corresponding author.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 206–213, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://voronoi.hanyang.ac.kr

BULL! - The Molecular Geometry Engine 207

is a molecular structure problem of interest at hand. Let S(P) be its solution to be
found. In the MG paradigm, the problem P is first transformed to a correspond-
ing geometry problem G of three-dimensional spheres whose solution S(G) can
be easily found via a geometry engine. Then, S(G) is inverse-transformed to get
S−1(G) which is expected to be close to S(P). Assuming a geometric engine for
transforming G to S(G), S−1(G) can converge to S(P) with a sufficient number
of iterations if the forward- and backward-transformations are well-defined.

P S(P)

G S(G)

Fig. 1. The Molecular Geometry paradigm for solving all geometry problems in
molecular worlds

BULL! is the engine for the MG paradigm based on the Voronoi diagram
of spherical atoms and its two derivative structures: the quasi-triangulation and
the beta-complex. This paper is the initial proposal of the BULL! library which
abbreviates “Beta Universe Library Liberandam!” meaning that the library lib-
erates researchers who are working on molecular structure from the hard and
tedious job of developing accurate and efficient geometric algorithms and their
implementation. The BULL! library is implemented in the standard C++ lan-
guage and will be freely available from VDRC (http://voronoi.hanyang.ac.kr).

2 Three Fundamental Constructs in BULL!

There are three fundamental computational constructs in the MG theory: the
primal, the dual, and the interested subset of the dual which correspond to
the Voronoi diagram, the quasi-triangulation, and the beta-complex in BULL!,
respectively. Any, perhaps all, geometry problems in molecular worlds can be
correctly, efficiently, and easily solved using either one of these constructs or
their combinations.

Among various types of Voronoi diagram, the Voronoi diagram of spheres is
the key construct. The Voronoi diagram of spheres is the generalization of the
power diagram [2] which is a generalization of the ordinary Voronoi diagram
of points from the Euclidean distance point of view [3,13]. By the same token,
in the dual space, the quasi-triangulation [9,7] is the generalization of the reg-
ular triangulation and the Delaunay triangulation and the beta-complex [8] is
the generalization of the (weighted) alpha-complex [5]. Note that the Voronoi

208 D.-S. Kim et al.

diagram of spheres is also called the additively-weighted Voronoi diagram. The
quasi-, regular, and the Delaunay triangulations are the dual of the Voronoi
diagram of spheres, the power diagram, and the ordinary Voronoi diagram of
points, respectively.

The Voronoi diagram VD of three-dimensional spheres can be computed by
the edge-tracing algorithm taking O(n3) time in the worst case but O(n) time
on average for molecules [6]. The quasi-triangulation QT is obtained by trans-
forming VD in O(n) time in the worst case. Then, the beta-complex is extracted
from QT using a binary search in O(n log n+k) time in the worst case where k is
the number of simplexes in the resulting beta-complex. More powerful approach
to general queries on the quasi-triangulation is available [10]. Fig. 2 summa-
rizes the process from the Voronoi diagram to the quasi-triangulation to the
beta-complex, given an input of the arrangement of atoms.

Atom
arrangement

Voronoi
Diagram

Quasi-
triangulation

Beta-
complex

Fig. 2. An atom arrangement is given as an input. The Voronoi diagram is first com-
puted and is transformed to the quasi-triangulation which is then used to extract the
beta-complex.

Fig. 3 shows an example of this process in the plane. Fig. 3(a), (b), and
(c) show the Voronoi diagram of circular disks, the quasi-triangulation, and the
beta-complexes corresponding to the probe of a certain radius. The beta-complex
defines the neighborhood information between atom pairs within the boundary
of the disk set defined by the probe whereas the quasi-triangulation defines that
for all disks. The figures are all created using the BetaConcept program [12]
freely available at VDRC.

3 Data Structures in BULL!

Data structure is one of the key issues in BULL!. Radial-edge data structure
(REDS) stores the topology of the Voronoi diagram because Voronoi diagrams
have a cell structure. Fig. 4 shows the schematic diagram of the REDS used
in BULL!. In the following, “V-” denotes “Voronoi.” Each V-cell of the Voronoi
diagram has a direct pointer to each of its V-faces and thus has |f |V-face pointers
where |f | is the number of V-faces of the V-cell. Each V-face has two pointers
to the incident V-cells. Each V-face has a pointer to each one of its bounding
loops and each loop points to the V-face that it lies on. A V-face has one or more
loops where the first one is external and the others are for interior holes. Thus
a V-face has |l| V-loop pointers. Each loop has a pointer to the V-face that it
belongs to. Each loop points to one of the partial edges that belongs to the loop

BULL! - The Molecular Geometry Engine 209

(a) (b) (c)

Fig. 3. (a) The Voronoi diagram of disks, (b) the quasi-triangulation, and (c) the beta-
complexes corresponding to a circular probe. Figures created using the BetaConcept

program [12].

and each partial edge points to the loop that it belongs to. Each partial edge has
two more types of pointers for the two types of cycles on a V-face: one for the
radial cycle which consists of a single pointer; the other for the loop cycle which
consists of two pointers for its predecessor and successor. Each V-edge has two
pointers to its V-vertices and each V-vertex has four pointers where each points
to a V-edge incident to it.

V-cell, V-face, V-edge, and V-vertex may be associated with corresponding
geometry. Each V-cell has the coordinates and radius of the spherical atom
generator corresponding to itself and each V-vertex has its coordinate data.
Each V-face and V-edge may or may not have its surface and curve equation,
respectively, depending on application. If the geometry part of V-face and V-
edge is not explicitly stored, they can be easily computed if the topology of the
Voronoi diagram is available.

VCell

VFace

VEdge

VVertex

Surface

Curve

Point

Generator

VLoop

VPartialEdge
radial cycle

loop cycle

1

2

42

2| f |

1

1
1 1

1

| l |

Fig. 4. Radial edge data structure (REDS) for Voronoi diagram of spherical atoms

210 D.-S. Kim et al.

The quasi-triangulation QT is stored in the Inter-world data structure [9]
(IWDS) which is schematically shown in Fig. 5(a). Each QT-cell has four point-
ers to each of its QT-faces and each QT-face has two pointers to the incident
QT-cells. Each QT-cell has also four pointers to each of its QT-vertices and each
QT-vertex has a pointer to the incident QT-cells. Each QT-face has three point-
ers to each one of its QT-edges and each QT-edge has |w| pointers to the incident
QT-faces. Each QT-edge has two pointers to its QT-vertices and each QT-vertex
has a pointer to one of the incident QT-edges. If there are a fixed number m of
incident QT-simplexes to a QT-simplex σ, σ has m pointers. Otherwise (i.e., if
there are an arbitrary number of QT-simplexes incident to a QT-simplex σ), σ
has only one pointer to one of the incident QT-simplexes from which all the other
QT-simplexes can be traversed. The number |w| is to connect small-worlds. The
explicit representation of QT-faces and QT-edges are necessary for the extraction
of beta-complexes from the quasi-triangulation. Otherwise, if it is not necessary
to store QT-faces and QT-edges explicitly, then a more compact data structure
can be devised as shown in Fig. 5(b) which is now we call a compact IWDS,
abbreviated cIWDS. Note that these two data structures were called differently
in our earlier papers.

It is important for us to state the following: BULL! uses REDS to store all
the three types of Voronoi diagrams in 3D: The Voronoi diagram of spheres, the
power diagram, and the ordinary Voronoi diagram of points. This is possible be-
cause REDS can store the most general one: the Voronoi diagram of spheres. By
the same token, BULL! uses IWDS to store all the three types of triangulations
in a compact form: the quasi-, the regular, and Delaunay triangulations. Note
that this observation is critically used in the design of the classes in BULL!.

QTFace

QTCell

QTEdge

QTVertex

2 1

4 2

3 |w| 4 1

(a)

QTGate

QTCell

QTVertex

4 1

4
|w|

2

(b)

Fig. 5. Data structure for the quasi-triangulation. (a) Inter-world data structure
(IWDS) and (b) compact inter-world data structure (cIWDS).

BULL! - The Molecular Geometry Engine 211

4 Architecture of BULL! and an Example Application
Program

The architecture of BULL! is designed so that programmers can create appli-
cation programs easily and conveniently through out entire software life cycle.
To achieve this goal, we have designed BULL! so that application program is
completely separated from the internal functions which may be modified as the
development of BULL! goes on.

BULL! has a three-tier architecture as shown in Fig. 6: API-tier, Core-
tier, and Geometry-tier. The API-tier is only visible to and the other two are
completely hidden from application programmers. Thus, application program
interacts only with the API-tier by including the related head files and embed-
ding the API-functions. The API-tier interacts with Core-tier which implements
the application neutral data structure of the primal and dual structures. The
Core-tier interacts with the Geometry-tier which actually contains the Voronoi
diagram construction codes, possibly implementing more than one algorithms
for the Voronoi diagram construction. Currently, the Geometry-tier contains the
implementations of the edge-tracing algorithm and the region-expansion algo-
rithm for three-dimensional spheres. In this architecture, the modifications to be
made in the Geometry-tier in future does not cause any change in the codes of
already-existing application programs.

In principle, the API-tier currently contains three main classes:
AtomSetVoronoiDiagram, QuasiTriangulation, and BetaComplex. Each
contains API-functions that can be embedded in application programs to
perform various computations. There are their respective counterparts in
the Core-tier: BallSetVoronoiDiagramCore, QuasiTriangulationCore,
and BetaComplexCore. Both the transformation between the Voronoi
diagram and the quasi-triangulation and the extraction of the beta-
complexes from the quasi-triangulation are in fact all performed in the
Core-tier. Each of the API-tier classes communicates its counterpart in
the Core-tier. In the Geometry-tier, there are currently two classes for the
Voronoi diagram of spheres: SphereSetVoronoiDiagramByEdgeTracing and
SphereSetVoronoiDiagramByRegionExpansion where both communicate with
BallSetVoronoiDiagramCore. Note that we try to exclusively use the words
“atom,” “ball,” and “sphere” for API-, Core-, and Geometry-tier, respectively.

Fig. 7 illustrates an example of simple application program which calls a few
API-functions of BULL!. Assume that necessary header files are included. Given

API-
tier

Core-
tier

Geometry-
tier

Fig. 6. 3-tier architecture of BULL!

212 D.-S. Kim et al.

a set of 100 input disks (ie, atoms) generated by the line 2, the simple API-
functions in the lines 3 and 4 creates the Voronoi diagram atomVD and stores
in atomlist. The lines 5 and 6 retrieves all the Voronoi cells in the Voronoi
diagram. The lines 7 through 11 counts the number of adjacent Voronoi cells
of each Voronoi cell in the Voronoi diagram and accumulates these numbers for
all Voronoi cells in the Voronoi diagram. Then, the lines 12 and 13 prints out
the average number of adjacent Voronoi cells in the entire Voronoi diagram. The
lines 14 through 17 perform similar operation for the quasi-triangulation which
is transformed from the Voronoi diagram in the line 15. The lines 18 through
22 perform similar operation for the beta-complex which is extracted from the
quasi-triangulation by the line 20. As this code shows, the creation of such an
application program is very straightforward once a user understands the basics
of the theory and learns a few API-functions which are necessary to build an
application program. Application programs performing more complicated tasks
can be similarly created by using API-functions of BULL!.

1 int main()
{

2 list<Sphere3d> atomlist = generateRandomAtoms(100);

3 AtomSetVoronoiDiagram atomVD;
4 atomVD.compute(atomlist);

5 list<VCellHandle> all cells;
6 atomVD.getAllVCells(all cells);

7 int countAdjacentCells = 0;
8 list<VCellHandle>::iterator i cell;
9 for (i cell=all cells.begin(); i cell!=all cells.end(); i cell++) {
10 countAdjacentCells += atomVD.countNumberOfAdjacentCells(*i cell);
11 }
12 cout << "The average number of adjacent cells is ";
13 cout << (double)countAdjacentCells/atomVD.countNumberOfCells() << endl;

14 QuasiTriangulation QT;
15 QT.transform(atomVD);
16 cout << "The number of 2-adjacency anomaly is ";
17 cout << QT.countNumberOf2AdjacencyAnomaly() << endl;

18 double betaValue = 10.0;
19 BetaComplex BC;
20 BC.extract(QT, betaValue);
21 cout << "The number of atoms on the boundary of BC(beta=50) is ";
22 cout << BC.countNumberOfBCVerticesOnBoundary() << endl;

23 return 0;
};

Fig. 7. An example application program

BULL! - The Molecular Geometry Engine 213

5 Conclusion

The Voronoi diagram of spherical atoms has many important applications, par-
ticularly for molecular worlds. While there are libraries for the ordinary Voronoi
diagram and power diagram, its counterpart for spheres is not available. In this
paper, we present the BULL! engine library for the Voronoi diagram of spheres,
the quasi-triangulation, and the beta-complex with which application program-
mers can easily build application programs dealing with molecules. The BULL!
engine is designed so that the application programs developed based on the API-
tier is completely independent of future modifications. BULL! will be available
from VDRC (http://voronoi.hanyang.ac.kr) at Hanyang University.

Acknowledgement. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIP) (No.
2012R1A2A1A05026395).

References

1. Voronoi Diagram Research Center, http://voronoi.hanyang.ac.kr/
2. Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM

Journal on Computing 16, 78–96 (1987)
3. Aurenhammer, F.: Voronoi diagrams – a survey of a fundamental geometric data

structure. ACM Computing Surveys 23(3), 345–405 (1991)
4. Cho, Y., Kim, D., Kim, D.S.: Topology representation for the Voronoi dia-

gram of 3D spheres. International Journal of CAD/CAM 5(1), 59–68 (2005),
http://www.ijcc.org

5. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Transac-
tions on Graphics 13(1), 43–72 (1994)

6. Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its com-
putation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)

7. Kim, D.S., Cho, Y., Sugihara, K.: Quasi-worlds and quasi-operators on quasi-
triangulations. Computer-Aided Design 42(10), 874–888 (2010)

8. Kim, D.S., Cho, Y., Sugihara, K., Ryu, J., Kim, D.: Three-dimensional beta-shapes
and beta-complexes via quasi-triangulation. Computer-Aided Design 42(10), 911–
929 (2010)

9. Kim, D.S., Kim, D., Cho, Y., Sugihara, K.: Quasi-triangulation and interworld
data structure in three dimensions. Computer-Aided Design 38(7), 808–819 (2006)

10. Kim, D.S., Kim, J.K., Cho, Y., Kim, C.M.: Querying simplexes in quasi-
triangulation. Computer-Aided Design 44(2), 85–98 (2012)

11. Kim, D., Kim, D.S.: Region-expansion for the Voronoi diagram of 3D spheres.
Computer-Aided Design 38(5), 417–430 (2006)

12. Kim, J.K., Cho, Y., Kim, D., Kim, D.S.: Voronoi diagrams, quasi-triangulations,
and beta-complexes for disks in R

2: The theory and implementation in BetaCon-
cept. Journal of Computational Design and Engineering 1(2), 78–86 (2014)

13. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, Chichester (1999)

http://voronoi.hanyang.ac.kr/
http://www.ijcc.org

	BULL! - The Molecular Geometry Engine
Based on Voronoi Diagram, Quasi-Triangulation,
and Beta-Complex

	1 Introduction
	2 Three Fundamental Constructs in BULL!
	3 Data Structures in BULL!
	4 Architecture of BULL! and an Example Application Program
	5 Conclusion
	References

