Hom4PS-3: A Parallel Numerical Solver
for Systems of Polynomial Equations Based on
Polyhedral Homotopy Continuation Methods

Tianran Chen®, Tsung-Lin Lee?, and Tien-Yien Li!

! Michigan State University, USA
chential@msu.edu, li@math.msu.edu
http://www.math.msu.edu/~chential/
http://www.math.msu.edu/~1i/

2 National Sun Yat-sen University, Taiwan ROC
leetsung@math.nsysu.edu.tw
http://www.math.nsysu.edu.tw/~leetsung/

Abstract. Homotopy continuation methods have been proved to be an
efficient and reliable class of numerical methods for solving systems of
polynomial equations which occur frequently in various fields of mathe-
matics, science, and engineering. Based on the successful software pack-
age Hom4PS-2.0 for solving such polynomial systems, Hom4PS-3 has
a new fully modular design which allows it to be easily extended. It
implements many different numerical homotopy methods including the
Polyhedral Homotopy continuation method. Furthermore, it is capable
of carrying out computation in parallel on a wide range of hardware ar-
chitectures including multi-core systems, computer clusters, distributed
environments, and GPUs with great efficiency and scalability. Designed
to be user-friendly, it includes interfaces to a variety of existing math-
ematical software and programming languages such as Python, Ruby,
Octave, Sage and Matlab.

Keywords: polynomial systems, homotopy continuation, polyhedral
homotopy, binomial system.

1 Introduction

The problem of solving systems of polynomial equations, or polynomial systems,
has been, and will continue to be, one of the most important subjects in both
pure and applied mathematics. The need to solve polynomial systems arises
naturally and frequently in various fields of science and engineering as docu-
mented in [1,13,18]. The homotopy continuation method has been established,
in recent years, as one of the most reliable and efficient class of numerical meth-
ods for finding the full set of isolated solutions to a general polynomial system.
There are many mature software implementing this method, including Bertini[3],
HOMPACK]20], NAG4M2[12], and etc. See [2,13,16,18] for a survey. One impor-
tant branch among them is the polyhedral homotopy method initiated in [9]. The

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 183-190, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

http://www.math.msu.edu/~chentia1/
http://www.math.msu.edu/~li/
http://www.math.nsysu.edu.tw/~leetsung/

184 T. Chen, T.-L. Lee, and T.-Y. Li

method has been successfully implemented in software packages PHCpack [19]
developed by J. VERSCHELDE at University of Illinois at Chicago Circle, PHoM
[8] developed by a group led by M. KoJima at Tokyo Institute of Technology
in Japan, and Hom4PS-2.0 [10] developed by a group led by the authors. The
efficiency and reliability in real world applications of Hom4PS-2.0 is documented
in [10,11,13]. Based Hom4PS-2.0, a new numerical solver for polynomial systems
Hom4PS-3[5] is created around the same core mathematical algorithms. Written
in the C++ programming language and taking advantage of the object-oriented
programming paradigm, Hom4PS-3 has a fully modular structure following mod-
ern design principles that allows it to be easily extended by individual “modules”.
Designed to be user-friendly from the ground up, it includes interfaces to a vari-
ety of existing mathematical software and programming languages such as Sage,
Python, Ruby, Octave, and Matlab.

In real world applications from science and engineering, there is no short-
age in the demand of solving larger and larger polynomial systems. Homotopy
continuation methods are particularly suited to handle these large polynomial
systems due to its pleasantly parallel nature: each isolated solution is computed
independently of the others. Hom4PS-3 is designed to take advantage of a variety
of parallel hardware architectures including multi-core systems, NUMA systems,
computer clusters, distributed environments, and GPUs. Using parallel compu-
tation techniques tailored for each architecture (a symmetric model using Intel
TBB and OpenMP on multi-core architectures, a hierarchical model for NUMA
architectures, a master-worker model using MPI on clusters, an asynchronous
message passing model for distributed environments, and a hybrid “single-thread-
multiple-data” model for GPUs), excellent efficiency and scalability have been
achieved on these systems.

2 Functionality

Given an input polynomial system, which can be represented in a number of
different formats, Hom4PS-3 solves the polynomial system and outputs a list
of complex solutions. This list includes all isolated nonsingular solutions of the
given system in C" as well as isolated singular solutions together with their mul-
tiplicity information. Optionally, Hom4PS-3 can also produce “solutions at in-
finity” by carrying out computation in the complex projective space or weighted
projective spaces. For polynomial systems having solution components of posi-
tive dimensions, an included module posdim can be used to compute sample or
“witness” points on solution components of any given dimension. Furthermore,
the number of components and their degrees can be computed via the “witness”
points.

On a Unix/Linux or similar operating system, one can solve a polynomial
system with Hom4PS-3 simply by invoking the command

hom4ps-easy FILE

on a terminal, where FILE is the path of the file that contains the representation
of the input polynomial system. This command runs Hom4PS-3 in its “easy

Hom4PS-3 185

mode” in which a predetermined set of parameters for controlling the behavior
of the program that is likely appropriate for most situations is used.

The behavior of Hom4PS-3 can be controlled via a long list of switches and
parameters given either on the command line or as a configuration file. They
control the usage of certain modules, the precision to be used for floating point
arithmetic, the strategy for adjusting “step sizes” in the procedure of tracking
homotopy paths (Section 3), and many other aspects of the program. A complete
list can be found in its reference manual. Both the downloadable packages and
complete documentation can be found on the website http://www.homdps3.org.

2.1 Parallel Computation Capabilities

Multi-core Systems. A multi-core processor contains multiple processing
units, called “cores”, each capable of executing program instructions and carry-
ing out computation independently. On a multi-core system, Hom4PS-3 automat-
ically spreads work load across all available processor cores on the system via a
multi-thread model. The implementation supports both Intel TBB and OpenMP,
two of the most popular programming frameworks for multi-core systems.

Computer Cluster. A computer cluster is a group of computers, connected
via high speed network, that work together on a single task and can be viewed as
a single computer system. Using MPI, the de facto standard for communication
on clusters, Hom4PS-3 can distribute work load among nodes in the cluster.

GPU Computing. GPU computing is the use of graphics processing units,
or GPUs, which are originally designed for rendering graphics, to perform gen-
eral purpose computation in a highly parallel fashion. On platforms where one
or more GPU devices are available, Hom4PS-3 can take advantage of these
highly parallel hardware on specific tasks involving intensive floating point ma-
trix and vector manipulations such as polynomial and derivative evaluation and
“mixed volume” computation (Section 3). The current implementation is built
on top CUDA, a popular proprietary GPU programming framework developed
by NVidia. Experimental supports for OpenCL, the dominant open standard de-
veloped by multiple vendors, are under active development.

2.2 Interfaces with Existing Mathematical Software and
Programming Languages

Sage Interface. Sage is a free open-source mathematical software with features
covering many aspects of mathematics, including algebra, combinatorics, numer-
ical mathematics, number theory, and calculus. The Sage interface is one of the
easiest way to use Hom4PS-3. For example, one can use Hom4PS-3 to solve a
extremely simple polynomial system in Sage by using the following commands:

http://www.hom4ps3.org

186 T. Chen, T.-L. Lee, and T.-Y. Li

import homé4pspy

R.<x,y> = CC[’x,y’]

f=x"2 - 3%x + 2
g=y"2-4xy +3
homdpspy.solve_real ([f,g])

In this example, the first line imports the Hom4PS-3 interface. The next three
lines creates a polynomial ring in two variables over the complex (floating point)
field and two polynomials using the Sage syntax. The last line solves the polyno-
mial system for the real solutions via Hom4PS-3 and returns a list of dict each
describing a solution. Of course it is typically used to handle much more compli-
cated and larger systems than this simple example, and with the power of Sage
one can perform complicated algebraic construction to build the input system
for Hom4PS-3, bridging the world of symbolic and numerical computation.

Python Interface. Python is a popular programming language (and the solid
foundation on top of which Sage was built). The hom4pspy module used in the
Sage can also be used separately as a Python interface. The commands

import homé4pspy
hom4pspy.solve_real (["x"2 - 3*x + 2", "y"2 - 4xy + 3"])

solves the same simple polynomial system, now represented as strings.

Octave Interface. (GNU) Octave is a software and programming language
designed for numerical computations that is mostly compatible with Matlab. In
Octave, with the Hom4PS-3 interface, the commands

hom4psoct
hom4psoct.solve_real ("x"2 - 3xx + 2, y~2 - 4%y + 3")

solves the same simple polynomial system, represented as a single string (due to
the lack of sophisticated symbolic manipulation capabilities in Octave).

3 Underlying Theory

In the 90’s, a considerable research effort in Europe had been directed to the
problem of solving polynomial systems in two consecutive major projects,
PoSSo (Polynomial System Solving) and FRISCO (FRamework for Integrated
Symbolic and numerical COmputation), supported by the European Commis-
sion. Those research projects focused on the development of the well-established
Grobner basis methods within the framework of computer algebra. Their reliance
on symbolic manipulation makes those methods seem somewhat limited to rel-
atively small problems. In 1977, GARCIA and ZANGWILL [7] and DREXLER [6]
independently discovered that the homotopy continuation method could be used
to find the full set of isolated solutions to a polynomial system numerically. In

Hom4PS-3 187

the last several decades, the method has been quite well developed and proved
to be reliable and efficient. Note that continuation methods are the method of
choice to deal with general nonlinear systems of equations numerically and glob-
ally as illustrated by the extensive bibliography listed in [1] where general ideas
of the method were discussed.

One of the most important branches of the homotopy continuation method for
solving general polynomial systems is the polyhedral homotopy method initiated
by B. HUBER and B. STURMFELS [9]. For an n X n square polynomial systems

pl(X) = ZaESl C1,a x?
P(zy,...,2n) = P(x) = : (1)

p”(X) = Zaesn cnva Xa

where x = (z1,...,2,), a= (a1,...,a,)" € NI, and x* = z{* ---2%". Here S;,
a finite subset of N, is called the support of p;(x). For fixed supports Si, ..., Sy,
it is a basic fact in algebraic geometry that for generic choices of the complex
coefficients ¢; a € C* the number of isolated solutions of the system P(x) = 0
in (C*)” is a fixed number. The word “generic” here can be understood as
“randomly chosen”. Its precise meaning can be found in [4], [9] and [13]. This
fixed number also serves as an upper bound on the number of isolated solutions
P(x) = 0 can have in (C*)™ among all choices of coefficients. In [4], this up-
per bound, now commonly known as the BKK bound, is formulated in terms of
mized volume: For convex polytopes Q1,...,Qr C RF let \1Q1,..., A\ Qp rep-
resent their scaled version, by factors of positive Aq,..., A\; respectively. Then
the Minkowski sum A\ Q1+ -+ A\ Q is also a convex polytope. It can be shown
that the volume Vol (A1 Q1 + -+ + A\ Q) in R* is a homogeneous polynomial
in A1,..., Ax. The mized volume, denoted by MVol(Qy,..., Qy), is defined to be
the coefficient of A\; X Ay X - - - X Ag in this polynomial. The theory of BKK bound
[4] states that the number of isolated solutions of the system P(x) = 0 in (C*)"
for generic choices of the coefficients is the mixed volume of the convex hull of
the supports of p1,...,py, ie.

MVol(convSy, ..., convS,).

We shall restrict our focus on solving a polynomial system P(x) = 0 in (1)
with “generic” (nonzero) complex coefficients ¢; o € C*. When the system with
generic coefficients is solved, one can always use it to solve the system with
specifically given coefficients with the same supports by the Cheater’s homotopy
[14] (or [17]).

To solve P(x) =01in (1), consider, with a new variable ¢, the homotopy

hi(x,t) = Zaesl C1,a xagwi(a)
H(xy,...,2n,t) = H(x,t) = . (2)
hn(x,t) = Zaesn Cn,a xagen(@)

with “lifting” functions ws,...,w,, where each wy : Sp — Q has randomly
chosen images. Note that when ¢ = 1, H(x,1) = P(x). For a € Sj, write

188 T. Chen, T.-L. Lee, and T.-Y. Li

a = (a,wg(a)). In [9], it was shown that if the system P(x) = 0 has isolated
solutions in (C*)", then there exists & = (a,1) € R*"™! with a = (a1,...,)
and a corresponding collection of pairs {a;,aj} C Si,...,{an,al,} C S, such
that for each k =1,...,n

(ax, &) = (a},,a) < (a,a) for all a € Sy \ {ax,a)} (3)
and
Ko = |det [a; —a] ... a, —a] || > 0.

Here (,) stands for the standard inner product in Euclidean space. Let T be
the collection of all such a’s, then

>k

aeT

is independent of the choice of the lifting functions wsi,...,ws. In fact, this
number agrees with the number of isolated solutions of the system P(x) =0 in
(C*)™, counting multiplicities, known as the BKK bound mentioned before.

Now, for a fixed o in 7 along with its corresponding set of pairs {a;,a}} C
S1,..., {ap,a,} C Sy, let By = (g, &) = (&}, &) = (a,, o) +wk(ay,) for k =
1,...,n. Then by (3), for each k =1,...,n,

Br < (a,a) forall a€ S\ {a, a}}. 4)
By the change of variables x = t* ey, i.e., for y = (y1,...,Yn)

r1 =ty

T, = " Yn,
we have, for a = (a1,...,a,) € Sk and a = (a, wg(a))

xaen(®) = g gln ger(@)
= () . ()
=yl oyt parartetanan+wi(a)
= y2 ¢{(@w(@)),(e,1))
=y CHY)

with & = (o, 1). Substituting the result into H(x,t) in (2), it follows that

E?(y’t) = hl(ta i yvt) = ZaESl Cl,a yat<é’d>

H(y,t) = H(t" oy, t)=q":
Eg(ya t) = hn(ta ey, t) = ZBESn Cnay® t(8.a)

Hom4PS-3 189

Though the above expression may contain positive or negative powers of ¢, the
minimum exponents of ¢ in each A§ is actually given by 3. Therefore, if

t761]TLl (y, t) = Zaesl Cl,a ya t<é’d>*ﬁl
H* (yv t) =) (6)
Py, 1) = Y acs, Cnay™ tEO 0

then, by (4), each component of H* has exactly two terms having no powers of ¢
while all other terms have positive powers of ¢. Hence, when ¢t = 0, H*(y,0) =0
is the “binomial system of equations”

cl,alya1 + C1,a'1ya/1 =0
: (7)

’
a a, _
Cna,y " + Cnaly ™ = 0

with k, nonsingular isolated solutions in (C*)™. It is known that such binomial
systems can be solved accurately and efficiently via numerical methods [13].
After (7) is solved, these nonsingular solutions obtained can be used as the
starting points for following the homotopy paths y(t) of H*(y,t) = 0, for which
H*(y(t),t) =0 from t = 0 to t = 1. Note that the change of variables x =t ey
in (5) yields x = y at t = 1. Therefore, each end point y(1) at ¢ = 1 of the
homotopy path y(t) of H*(y,t) = 0 is also an end point x(1) of the homotopy
path x(t) of the homotopy H(x,t) = 0 given in (2) which, in turn, provides
a solution of the target system P(x) = 0 in (1). Altogether it yields ko of the
isolated solutions of P(x) = 0 in (C*)"™ along this route. In [9], it was shown
that as one follows the homotopy paths defined by H*(y,t) = 0 for all individual
a € T, one obtains all (isolated) solutions of P(x) = 0 in (C*)", justifying, in
fact, the BKK bound agrees with)+ fq.

Even though the above procedure only addresses the solution set in (C*)"
of the target system P(x) = 0 in (1), this method has been extended in [15]
so that all isolated zeros of the target system P(x) in C™ can be obtained.
Since its inception, this general method has achieved a great success. It is widely
considered to be one of the most efficient, robust and reliable numerical methods
for solving systems of polynomial equations. Hom4PS-3 implements this method
as its primary tool.

References

1. Allgower, E., Georg, K.: Introduction to numerical continuation methods, vol. 45.
Society for Industrial and Applied Mathematics (2003)

2. Attardi, G., Traverso, C.: The PoSSo library for polynomial system solving. In:
Proc. of ATHENP 1995 (1995)

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving
Polynomial Systems with Bertini. Society for Industrial and Applied Mathematics
(2013)

190

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Chen, T.-L. Lee, and T.-Y. Li

Bernshtein, D.N.: The number of roots of a system of equations. Functional Anal-
ysis and its Applications 9(3), 183185 (1975)

Chen, T.R., Lee, T.L., Li, T.Y.: Hom4PS-3: an numerical solver for polynomial
systems using homotopy continuation methods, http://www.hom4ps3.org
Drexler, F.-J.: Eine methode zur berechnung samtlicher 16sungen von polynomgle-
ichungssystemen. Numerische Mathematik 29(1), 45-58 (1977)

Garcia, C.B., Zangwill, W.I.: Finding all solutions to polynomial systems and other
systems of equations. Mathematical Programming 16(1), 159-176 (1979)

Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., Mizutani, T.: PHoM—
a polyhedral homotopy continuation method for polynomial systems. Comput-
ing 73(1), 57-77 (2004)

Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial sys-
tems. Mathematics of Computation 64(212), 1541-1555 (1995)

Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polyno-
mial systems by the polyhedral homotopy continuation method. Computing 83(2),
109-133 (2008)

Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0 para: Parallelization of HOM4PS-2.0
for solving polynomial systems. Parallel Computing 35(4), 226-238 (2009)
Leykin, A.: NAG4M2: Numerical algebraic geometry for Macaulay?2,
http://people.math.gatech.edu/~aleykin3/NAG4M2/

Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation
methods. In: Ciarlet, P.G. (ed.) Handbook of Numerical Analysis, vol. 11, pp.
209-304. North-Holland (2003)

Li, T.Y., Sauer, T., Yorke, J.: The cheater’s homotopy: an efficient procedure for
solving systems of polynomial equations. SIAM Journal on Numerical Analysis,
1241-1251 (1989)

Li, T.Y., Wang, X.: The BKK root count in C". Mathematics of Computation of
the American Mathematical Society 65(216), 1477-1484 (1996)

Morgan, A.P.: Solving polynomial systems using continuation for engineering and
scientific problems. Classics in Applied Mathematics, vol. 57. Society for Industrial
and Applied Mathematics (2009)

Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Ap-
plied Mathematics and Computation 29(2), 123-160 (1989)

Sommese, A.J., Wampler, C.W.: The Numerical solution of systems of polynomials
arising in engineering and science. World Scientific Pub. Co. Inc. (2005)
Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial
systems by homotopy continuation. ACM Transactions on Mathematical Software
(TOMS) 25(2), 251-276 (1999)

Watson, L.T., Billups, S.C., Morgan, A.P.: Algorithm 652: Hompack: A suite of
codes for globally convergent homotopy algorithms. ACM Transactions on Math-
ematical Software (TOMS) 13(3), 281-310 (1987)

http://www.hom4ps3.org
http://people.math.gatech.edu/~aleykin3/NAG4M2/

	Hom4PS-3: A Parallel Numerical Solver
for Systems of Polynomial Equations Based on
Polyhedral Homotopy Continuation Methods

	1 Introduction
	2 Functionality
	2.1 Parallel Computation Capabilities
	2.2 Interfaces with Existing Mathematical Software and Programming Languages

	3 Underlying Theory
	References

