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Abstract. We present an efficient software package for computing ho-
mology of sets, maps and filtrations represented as cubical, simplicial
and regular CW complexes. The core homology computation is based on
classical Smith diagonalization, but the efficiency of our approach comes
from applying several geometric and algebraic reduction techniques com-
bined with smart implementation.
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1 Introduction

In 1995 M. Mrozek and K. Mischaikow presented a computer assisted proof
of the existence of chaotic dynamics in Lorenz equations [10,11]. The computer
programs needed for the proof became the seed of the software package developed
by members of the CAPD (Computer Assisted Proofs in Dynamics) group [21].
Throughout the years the package became a reach collection of software libraries
and tools for rigorous numerics of dynamical systems (see [9] for the description
of the mainstream CAPD package).

An important ingredient of the mentioned proof is Conley index, a homo-
logical invariant of dynamical systems. The computer assisted proofs based on
Conley index brought interest in cubical homology theory [7] and stimulated the
development of the homology package for the needs of computer assisted proofs.
Since 2005 the homology software for CAPD has been developed jointly with
the Computational Homology Project (CHomP) [23].

After having implemented the classical algorithm based on Smith diagonaliza-
tion it became clear that it is much too slow for the needs of computer assisted
proofs. This originated the search for faster homology algorithms.

CAPD::RedHom is a software package for efficient homology computations of
cubical and simplicial complexes as well as some special cases of regular CW
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complexes. Originally, the software was designed for applications in rigorous nu-
merics of Topological Dynamics. Such applications, based on interval arithmetic,
lead in a natural way to cubical sets. They may be represented very efficiently
as bitmaps. The cubical sets arising from the algorithms in dynamics usually are
strongly inflated in the sense the sets which much smaller representation have the
same topology or homotopy type. Such small representations may be found in
linear time by various geometric reduction techniques. The algebraic invariants
of topology, in particular homology, are then computed for the small represen-
tation. This leads to a very significant speed up. In particular, the expensive,
linear algebra computations, such as Smith diagonalization, are performed on
small data.

The package was developed by: P. Brendel, P. Dlotko, G. Jablonski, M. Juda,
A. Krajniak, M. Mrozek, P. Pilarczyk, H. Wagner, N. Zelazna.

2 Functionality

The CAPD::RedHom software package, which is currently under intensive de-
velopment, constitutes a redesign of the CAPD homology software. It is based
on the already mentioned as well as the very recent reduction ideas proposed
in [1,4,5,6,14,17]. It is designed to meet the needs of various areas of applica-
tions, to apply to cubical and simplicial sets as well as CW complexes and at the
same time to maintain the efficiency of the original CAPD software for cubical
sets. This is achieved by applying the techniques of static polymorphism based
on C++ templates so that the reduction algorithms may be applied to various
representations of sets without any overhead run-time costs. An unwanted side
effect is that this makes the code very hard to use as a library or a plug-in.
For this reason recently we put a lot of effort to make the efficient C++ code
accessible in external, commonly used libraries. Presently, the code is available
as a plug-in for GAP [24], Python, and Sage [25].

The package is intended both for users who are interested in stand-alone pro-
grams as well as programmers who want to use the library in their programs. The
ultimate goal is that the package will provide Betti numbers, torsion coefficients,
homology generators and matrices of maps induced in homology. Moreover, for
filtered sets the package will provide persistence intervals [3].

3 Applications

The original CAPD homology software was written for applications in rigorous
numerics of dynamical systems. However, the range of applicability of homology
software encompasses several other areas: electromagnetism, image analysis, vi-
sualization, data mining, sensor networks, robotics and many others. Although
the general goal is the same, these areas differ in details of input and output.
The cubical representation of sets is convenient in dynamics, because interval
arithmetic used in computer assisted proofs in the theory of dynamical systems
leads in a natural way to such sets. It is also convenient in the analysis of raster
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images. However, in many situations the simplicial representation is more nat-
ural. In electromagnetics and in all cases when sets exhibit fractal structure a
general CW complex representation is most convenient.

Apart from the original applications in rigorous numerics of dynamical sys-
tems [13], so far the package has found applications in image analysis [18], ma-
terial science [17,1], electromagnetism [2], and group representation theory [20].

4 Underlying Theory

One way of avoiding the supercubical cost of the classical homology algorithm
is decreasing the size of the input to Smith algorithm without changing the
homology. Such an approach was first proposed in [8] by means of a linear time
reduction of chain complexes. The reduction process considered in that paper is
purely algebraic and may be viewed as a method of limiting the fill-in process
in the Smith diagonalization.

However, reductions may be performed directly on the level of the topological
space. At first, this may look like acting against the fundamentals of algebraic
topology. Algebraic topology solves problems in topology by translating them
to the ground of much simpler algebra. But, experiments indicate that in many
applications doing geometric reductions directly at the topological level instead
of algebraic reductions after translating the problem from topology to algebra
may significantly speed up the computations. Also, such an approach often uses
significantly less memory.

The first implemented algorithm of this type is based on the observation
that for a cube Q ⊂ X , if Q ∩ cl(X \ Q) is acyclic then X can be replaced
by cl(X \ Q) without affecting the homology (see [19]). This fact was used in
the reduction techniques proposed in [12] and motivated the Acyclic Subspace
Homology Algorithm (see [15]), based on the construction of a possibly large
acyclic subspace A of the topological spaceX . The computation of the homology
groups H(X) reduces then to the computation of H(X \A) in the sense of one
space homology theory (see [16]). The method is particularly useful for cubical
subsets of Rn with n ∈ {2, 3}, because in these dimensions the acyclic subspace
may be constructed extremely fast due to the possibility of storing all possible
neighborhood configurations and using them as look-up tables for testing the
acyclicity.

The simplest example of reductions on the topological level are free face col-
lapses proposed in [7]. Unfortunately, in many situations free faces are quickly
exhausted and the remaining set is still large. Significantly deeper reductions in
low dimensions may be achieved by means of the dual concept of free cofaces.
This idea leads to the Coreduction Homology Algorithm [16].

The Acyclic Subspace Homology Algorithm and the Coreduction Homology
Algorithm together with Discrete Morse Theory [4] seem to be the fastest ho-
mology algorithms for inflated cubical and simplicial sets available so far. In
particular, they outperform algebraic homology algorithms just because they
run in a fraction of time needed to translate the problem to algebra.
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5 Technical Contribution

Algorithms implemented in the CAPD::RedHom package behave incredibly well
for inflated data sets. We see such sets especially in applications, where a continu-
ous problem is translated into a combinatorial problem. Among many examples,
there is a common pattern: to achieve sufficient theoretical conditions for the
discretization, we need to subdivide our space. That operation do not change
homology, but increase data size.

We compared CAPD::RedHom with latest CHomP [23] (programs homsimpl
and chomp-simplicial) and Linbox [26] (program homology gap 1.4.3 used in GAP
[24] - we cannot use latest version, GPC compiler removed from Ubuntu/Debian
in 2011). For the comparison we generated simplicial complexes using Sage [25].
For classical examples available in module sage.simplicial complexeswe gen-
erate their subdivisions with subdivide() routine. Using various parameters we
generated 380 input files.We will present detailed list of examples in the full paper.
For the purpose of this article, on the Figure 1 we show CPU usage for following
complexes:

– Torus() with 4 subdivisions, 18144 2-dimensional simplices on input;
– KleinBottle()with 4 subdivisions, 20736 2-dimensional simplices on input;
– MooreSpace(9)with 3 subdivisions, 13176 2-dimensional simplices on input;
– ProjectivePlane() with 4 subdivisions, 12960 2-dimensional simplices on

input;
– MatchingComplex(7) with 3 subdivisions, 22680 2-dimensional simplices on

input;
– ChessboardComplex(5,5)with 1 subdivision, 14400 4-dimensional simplices

on input;
– RandomComplex(11,5) with 1 subdivision, 172680 5-dimensional simplices

on input;

The number of subdivisions in each case is big enough to force non-instant
computations. The case RandomComplex(11,5) emphasize benefits from our ap-
proach: CAPD::RedHom is almost three times faster than CHomP and Lin-
box cannot finish computations in one hour. On the chart CumulativeCPU we
presents total CPU usage by each program in the experiment.

During development of the CAPD::RedHom package we faced a lot of inter-
esting technical and theoretical problems. The most important challenge in our
applications is in data set size. The biggest set computed so far contains 109

simplices in dimension 0 − 3 (600 · 106 facets) [20]. The set required 3 days of
computations on a machine with 512 GB of RAM. Big data sets in applica-
tions convinced us to start implementations of our algorithms for parallel and
distributed computations. This is a big challenge in the area of computational
homology. In the full paper we will show our progress in this subject.
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Fig. 1. CPU usage charts. On each picture from left: R (CAPD::RedHom), CS (CHomP
- chomp-simplicial), CH (CHomP - homsimpl), L (Linbox - homology gap).
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