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Preface

The 4th International Congress on Mathematical Software (ICMS 2014) was
held during August 5–9, 2014, at Hanyang University in Seoul, Korea. It contin-
ued the tradition of being held every four years as a satellite conference of the
International Congress of Mathematicians, which was also held in Seoul. There
were five invited plenary talks and 125 contributed talks. From the abstracts
of these talks, 106 were submitted and accepted as extended abstracts for the
present proceedings.

Mathematics has many interrelated branches. It is commonly observed that
despite this diversity, there is deep unity in mathematical thinking. One emerg-
ing thread across all branches of mathematics is the notion of effectivity or
computation. Mathematical theories often predict the existence of objects with
certain properties and it might be important to find the objects. Finding such
objects calls for a finite procedure or algorithm, which we implement in software.
Conversely, to formulate conjectures or new mathematical theories, we may want
to explore the space of such objects. Searching the space also requires software.
Mathematics has increasing overlap with disciplines such as computer science,
the emerging area of computational sciences and engineering and various appli-
cation areas. Again the idea of computation is a key factor in this convergence.

Thus, the computational phenomenon brings mathematics into direct contact
with technology, resulting in the creation of certain residue or artifacts that we
call mathematical software. Bruno Buchberger in his invited paper here goes
further, with the bold assertion: Mathematics is essentially software. We in the
International Conference of Mathematical Software believe that the appearance
of mathematical software is one of the most important modern developments in
mathematics, and this phenomenon should be studied as a coherent whole. Our
vision for ICMS is to serve as the major forum for mathematicians, scientists,
programmers, and developers who are interested in software.

Software is not static: Anyone who uses software knows that its typical “half-
life” is frustratingly short: But it compiled properly just last year! There is con-
stant renewal, development, and disruptive changes. It is partly caused by new
mathematical advances, but often the pressure is from technological changes,
e.g., the appearance of graphics processing units (GPUs). How do we produce
software in such an environment? Software requires algorithms, but to realize
algorithms we need organizational principles and tools. There are issues of nu-
merical robustness, scalability, usability, maintainability, best practice, and effi-
ciency of software. These are standard topics in computer science, but the nature
of mathematical software also presents unique issues.

What are these unique issues? We cite one from the invited abstract of
Wolfram Decker below: “... the implementation of an advanced and more ab-
stract computational machinery often depends on a long chain of more specialized
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algorithms and efficient data structures at various levels.” In Decker’s work on
computer algebra systems, such a chain might involve concepts and algorithms
from commutative algebra, algebraic geometry, arithmetic algebraic geometry,
and singularity theory. Any working mathematician will instantly recognize this
as another example of the said interrelatedness of mathematics. It is true that
any complex real-world application will exhibit such interconnectedness. But in
mathematics, the interconnection is more precise, even axiomatizable.

Such issues are reflected in the extended abstracts collected in this volume.
They cover wide-ranging mathematical areas and software issues. They are or-
ganized according to various sessions at ICMS 2014. Furthermore, the range of
mathematical software represented at ICMS 2014 bodes well for our vision. It
shows strong demand for mathematical software. Such software may be classi-
fied as either large monolithic and comprehensive systems or boutique software
with more specialized targets. A more recent third class is suggested by Decker’s
example above: aggregative systems that aim to provide a common framework
for two or more self-contained systems. We predict that all these varieties of
software will continue to multiply and diversify.

To ensure that ICMS continues to play a positive role in future of this field,
for the first time, the organizers adopted a set of bylaws to govern ICMS 2014
and beyond. This is a minimal set of rules to standardize the organization and
whose interpretation is guided by past ICMS practice. They were tentatively
adopted by the Advisory Board and will be presented for ratification at the first
business meeting of ICMS during the conference.

We are thankful to all the individuals whose effort and support make ICMS
2014 possible: the plenary speakers, all the contributors of abstracts and ex-
tended abstracts, the special session organizers, and the LNCS team at Springer
under the leadership of Alfred Hofmann. We have benefited from the experience
of the ICMS Advisory Board chaired by Professors Nobuki Takayama and An-
dres Iglesias. Last but not least, we acknowledge the work of the local chair,
Professor Deok-Soo Kim, and his committee at Hanyang University. Our ple-
nary speakers were funded by a generous grant from the National Institute for
Mathematical Sciences of Korea.

June 2014 Hoon Hong
Chee Yap



Bylaws of ICMS

The motivation for these bylaws is to guide the future directions and governance
of the International Congress of Mathematical Software (ICMS). Ultimately,
we hope to build a community of researchers and practitioners centered around
the aims of the first three ICMS, namely, “mathematical software” viewed as
a scientific activity. Such a community is closely allied with areas such as al-
gorithms and complexity, software engineering, computational sciences, and of
course all of constructive mathematics including computer algebra and numerical
computation. But mathematical software has unique (evolving) characteristics
that ICMS aims to foster and support. To build such a community, we need
continuity and some rules governing the central activity of our research commu-
nity, namely, the ICMS conference. The following proposal is based on, and is
consistent with, the historical patterns observed in the first three ICMS events
(2002, 2006, 2010). The proposal is deliberately minimal and under-specified.
Therefore the interpretations should be guided by historical patterns.

Bylaw 1: Composition of Organizers

Each ICMS conference shall have the following organizational positions:

1. Advisory Board
2. General Chair
3. Program Chair
4. Local Chair
5. Secretary
6. Program Committee
7. Local Committee

Chair could also mean Co-chairs.

Bylaw 2: Appointments

1. The Advisory Board shall consist of the General Chair, Program Chair, and
Local Chair of the previous two conferences, and any other members that
they shall appoint. The General Chair of the last-but-one ICMS shall serve as
the chair for the current Advisory Board. All appointments to the Advisory
Board last for two ICMS conferences.

2. The Advisory Board appoints the Secretary.
3. The Advisory Board appoints the General Chair for the next conference.
4. The General Chair, in consultation with the Advisory Board, appoints the

Program Chair and Local Chair.
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5. The ProgramChair, in consultation with the General Chair and the Advisory
Board, appoints the Program Committee members.

6. The Local Chair, in consultation with the General Chair, appoints the Local
Committee members.

Bylaw 3: Duties

1. The Advisory Board Chair will hold an ICMS business meeting during each
conference.

2. The Secretary shall maintain a permanent ICMS website for past activities,
and also a list of names and emails of attendees of past ICMS conferences.

Bylaw 4: Amendments

1. The bylaws can be amended by ballot, either at the ICMS business meeting
or by email.

2. Persons who have registered for at least one of the three preceding ICMS
conferences are eligible to vote.

Appendix: Remarks on the Bylaws

1. The bylaw is self-described as minimal and under-specified; both are viewed
as positive qualities. This appendix will comment on the bylaws using their
historical (non-binding) interpretations. It will also motivate the exclusion
of certain items in the bylaws.

2. Historically, ICMS was organized as a satellite of ICM. Like ICM, ICMS is
held every 4 years. But even in our short history, there was a break in this
pattern in 2010. Looking forward, there are good arguments to have biennial
meetings (e.g., this is better for community building).

3. We do not specify the format of ICMS, believing it to be the prerogative
of the General Chair and the Program Chair to shape it to best serve the
community. Historically, the program has centered around plenary speakers
and special sessions organized by experts in the area of interest.

4. The term “software” is a unique characteristic of ICMS that distinguishes
it from the allied areas mentioned in the bylaw. We are not only interested
in “paper algorithms” but in their implementation and in their software en-
vironment. We want to foster software development as a scientific activity,
to promote the publication of software-like paper publications, and to es-
tablish standards for such activities. Past ICMSs have had an important
component of software tutorial and demonstrations and distribution of free
software (e.g., Knoppix CD).
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5. The ICMS positions listed in the bylaw do not exclude additional positions:
the positions of a treasurer and a “documentation chair” for software have
been suggested. But we refrain from mandating such positions in the bylaw.

6. Term limit for appointment to ICMS posts is generally a good thing. Again,
we do not encode this into the bylaw, as we recognize many good reasons
to make exceptions. For example, a competent “document chair” should
probably be given a life appointment.

7. The idea of a permanent repository for ICMS is assumed in the bylaw.
Nobuki Takayama has a website that might be considered as the starting
point. The General Chair and Program Chair should each deposit a report
for the activities of their particular ICMS in this repository.
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Invited Plenary Speakers and Talks

Invited Plenary Speakers1

Jonathan Borwein University of Newcastle
Bruno Buchberger RISC Johannes Kepler University
Wolfram Decker Technische Universität Kaiserslautern
Andrew Sommese University of Notre Dame
Kokichi Sugihara Meiji University
Lloyd N. Trefethen University of Oxford

Abstracts of Invited Plenary Talks

1. Computer Discovery and Visual Theorems in Mathematics
Jonathan Borwein (University of Newcastle)

Long before current graphic, visualization and geometric tools were avail-
able, John E. Littlewood, 1885-1977, wrote in his delightful Miscellany:

A heavy warning used to be given [by lecturers] that pictures are
not rigorous; this has never had its bluff called and has permanently
frightened its victims into playing for safety. Some pictures, of course,
are not rigorous, but I should say most are (and I use them whenever
possible myself).

Over the past five years, the role of visual computing in my own research
has expanded dramatically. In part this was made possible by the increasing
speed and storage capabilities—and the growing ease of programming—of
modern multi-core computing environments. But, at least as much, it has
been driven by my group’s paying more active attention to the possibilities
for graphing, animating or simulating most mathematical research activities.

I shall describe diverse work from my group in transcendental number the-
ory (normality of real numbers), in dynamic geometry (iterative reflection
methods), probability (behaviour of short random walks), and matrix com-
pletion problems (especially, applied to protein confirmation). While all of
this involved significant numerical-symbolic computation, I shall focus on
the visual components.

1 Wolfram was unable to present his talk after an unfortunate accident.
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2. Soft Math
Math Soft
Bruno Buchberger (RISC Johannes Kepler University)

In this talk we argue that mathematics is essentially software. In fact, from
the beginning of mathematics, it was the goal of mathematics to automate
problem solving. By systematic and deep thinking, for problems whose so-
lution was difficult in each individual instance, systematic procedures were
found that allow to solve each instance without further thinking. In each
round of automation in mathematics, the deep thinking on spectra of prob-
lem instances is reflected by deep theorems with deep proofs.

In 20th century, the systematic procedures for spectra of problems became
physically tangible as algorithms / software for the universal computer (which
itself essentially is a mathematical invention). In 21st century, the rounds of
automation in mathematics reach higher and higher levels and move more
and more to the meta-level of mathematics, i.e. to the automation of math-
ematical thinking itself.

In this talk, we illustrate the evolution of mathematics towards higher and
higher levels of automation of its own problem solving and thinking process
by a couple of examples of increasing sophistication starting from calculation
with Roman numbers up to the automatic invention of algorithms like the
speaker’s algorithm for computing Gröbner bases.

As a practical experience of Gödel’s Incompleteness Theorem, there is no up-
per bound to the sophistication of higher and higher rounds in mathematical
automation. Thus, mathematicians live in the best of all worlds: They can
embark on more and more challenging problems that need an algorithmic
solution knowing that, after an algorithmic solution has been achieved, there
will always be room for more sophistication and human mathematical inven-
tion. Thus, in a sense, mathematicians will never become jobless.

By the intellectual power in the automation of mathematical problem solv-
ing, visible as “software”, mathematics is also in the center of the spiral of
automation in all science, technology and economy and is the silent driving
force behind the spiral of innovation.

Unfortunately, the intellectual attractiveness and practical relevance of math-
ematics is hard to explain to outsiders. Or, more precisely, mathematicians
often do a very bad job for explaining the fundamental role of mathematics
clearly enough to outsiders, who in fact are the insiders of modern society.
However, it is very important for the further development of mathematics
that the role of mathematics for modern science, technology, economy, and
welfare is made public. We will also present a few ideas about this political
aspect of being a mathematician in today’s society.
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3. Challenges in the Development of Open Source Computer Algebra Systems
Wolfram Decker (Technische Universität Kaiserslautern)

Computer algebra is facing new challenges as mathematicians are inventing
new and more abstract tools to answer difficult problems and connect appar-
ently remote fields of mathematics. On the mathematical side, while we wish
to provide cutting-edge techniques for application areas such as commutative
algebra, algebraic geometry, arithmetic algebraic geometry, singularity the-
ory, and many more, the implementation of an advanced and more abstract
computational machinery often depends on a long chain of more special-
ized algorithms and efficient data structures at various levels. On the soft-
ware development side, for cross-border approaches to solving mathematical
problems, the efficient interaction of systems specializing in different areas is
indispensable; handling complex examples or large classes of examples often
requires a considerably enhanced performance. Whereas the interaction of
systems is based on a systematic software modularization and the design of
mutual interfaces, a new level of computational performance is reached via
parallelization, which opens up the full power of multi-core computers, or
clusters of computers.
In my talk, I will report on the ongoing collaboration of groups of devel-
opers of several well-known open source computer algebra systems: GAP,
which pays particular emphasis to group theory, Singular, a system for
applications in algebraic geometry and singularity theory, and Polymake,
a software for convex geometry. In presenting computational tools relying on
this collaboration, and some of the mathematical challenges which lead us to
develop such tools, I will in particular highlight the Homalg project which
provides an abstract structure and algorithms for Abelian categories, aiming
at concrete applications ranging from linear control theory to commutative
algebra and algebraic geometry.
I will also comment on progress in the design of parallel algorithms for basic
tasks in commutative algebra and algebraic geometry such as primary de-
composition, normalization, finding adjoint curves, or parametrizing rational
curves.

4. Numerical Algebraic Geometry: Theory and Practice
Andrew Sommese (University of Notre Dame)

The goal of Numerical Algebraic Geometry is to carry out algebraic geomet-
ric calculations in characteristic zero using numerical analysis algorithms.
This comes down to numerical algorithms to compute and manipulate so-
lution sets of polynomial systems. Numerical Algebraic Geometry is a nat-
ural outgrowth of the continuation methods to compute isolated complex
solutions of systems of polynomials with complex coefficients. There are a
wide range of applications including solution of chemical systems, kinematics,
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numerical solution of systems of nonlinear differential equations, and com-
putation of algebraic geometric invariants.

Bertini is open-source C software, developed by Bates (Colorado State U.),
Hauenstein (Notre Dame), Sommese (Notre Dame), and Wampler (General
Motors R. & D.), to carry out Numerical Algebraic Geometry computations.
Bertini will be rewritten to make it a better tool for users. Bertini dates from
over a decade ago, and from this experience we have identified several possi-
bilities for significant improvements. One goal is to change some of the data
structures and add internal functionality that will give the user the ability
to write scripts and interface with other software.

In this talk, I will give an overview of Numerical Algebraic Geometry. I will
consider the theoretical algorithms underlying the area in the light of the
practical issues that arise when implementing the algorithms in the current
and the future Bertini.

5. Principle of Independence for Robust Geometric Software Learned by the
Human Visual Computation
Kokichi Sugihara (Meiji University)

Straightforward implementation of geometric algorithms usually results in
unstable software because numerical errors generate inconsistency and make
the software to fail. The human brain, on the other hand, can manage image
data robustly although the resolution, precision and computation speed are
all poor when compared with the electric computers.

In this talk we try to characterize the sources of the robustness of the human
visual computation through optical illusion, and consider to utilize them for
designing robust geometric software. In particular we point out that the hu-
man brain is persistent and similar persistency can be implemented to make
geometric software robust. In other words, we treat only independent set of
information and thus avoid inconsistency. This idea includes the topology-
oriented approach which we have studied for robust geometric computation.

6. CHEBFUN as a software project
Lloyd N. Trefethen (University of Oxford)

Chebfun is a software system for numerical computation with functions.
The starting point in 2002 was the idea of overloading Matlab’s discrete ob-
jects (vectors, matrices,...) to continuous analogues (functions, operators,...).
For speed and robustness, however, everything remains numerical, based on
piecewise Chebyshev expansions. Thus another way to view Chebfun is as
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an extension of the rounding-to-16-digits idea of floating point arithmetic
from numbers to functions.

From this starting point, Chebfun has moved in many directions, including
linear and nonlinear ODEs, time-dependent PDEs, edge-detection, computa-
tion with functions defined on rectangles in 2D, quadrature and orthogonal
polynomials, Legendre-Chebyshev conversions, rootfinding in 1D and 2D,
and rational approximation. Besides its convenience for practical desktop
computing, it is also an excellent tool for exploring many topics of approxi-
mation theory.

Though this talk will touch on these mathematical topics, the organizing
principle will be software. How does a project like this evolve over a decade
from one programmer and his PhD supervisor to a dozen developers linked
by GitHub with users around the world? How do you keep the project under
control and make it strong for the future even when most of the work is done
by students and postdocs passing through transiently and busy building their
research careers? These challenges are new to me in the past decade, and I
have as many questions as answers.
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Comprehensive Boolean Gröbner Bases on General Computer Algebra
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Akira Nagai and Shutaro Inoue

A Method to Determine if Two Parametric Polynomial Systems Are
Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Jie Zhou and Dingkang Wang

Mathematical Web/Mobile Interfaces and
Visualization

An Implementation Method of a CAS with a Handwriting Interface on
Tablet Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Mitsushi Fujimoto

New Way of Explanation of the Stochastic Interpretation of Wave
Functions and Its Teaching Materials Using KETpic . . . . . . . . . . . . . . . . . . 549

Kenji Fukazawa

IFSGen4LATEX: Interactive Graphical User Interface For Generation
and Visualization of Iterated Function Systems in LATEX . . . . . . . . . . . . . . 554

Akemi Gálvez, Kiyoshi Kitahara, and Masataka Kaneko



XXX Table of Contents

GNU TEXMACSTowards a Scientific Office Suite . . . . . . . . . . . . . . . . . . . . . . 562
Massimiliano Gubinelli, Joris van der Hoeven,
François Poulain, and Denis Raux

Computer Software Program for Representation and Visualization of
Free-Form Curves through Bio-inspired Optimization Techniques . . . . . . . 570

Andrés Iglesias and Akemi Gálvez

On Some Attempts to Verify the Effect of Using High-Quality Graphics
in Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Kiyoshi Kitahara, Tadashi Takahashi, and Masataka Kaneko

Math Web Search Interfaces and the Generation Gap of
Mathematicians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Andrea Kohlhase

Practice with Computer Algebra Systems in Mathematics Education
and Teacher Training Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Hideyo Makishita

Development of Visual Aid Materials in Teaching the Bivariate Normal
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Toshifumi Nomachi, Toshihiko Koshiba, and Shunji Ouchi

Creating Interactive Graphics for Mathematics Education Utilizing
KETpic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

Shunji Ouchi, Yoshifumi Maeda, Kiyoshi Kitahara, and
Naoki Hamaguchi

A Tablet-Compatible Web-Interface for Mathematical Collaboration . . . . 614
Marco Pollanen, Jeff Hooper, Bruce Cater, and Sohee Kang

Development and Evaluation of a Web-Based Drill System to Master
Basic Math Formulae Using a New Interactive Math Input Method . . . . . 621

Shizuka Shirai and Tetsuo Fukui

Generating Data of Mathematical Figures for 3D Printers with KETpic
and Educational Impact of the Printed Models . . . . . . . . . . . . . . . . . . . . . . 629

Setsuo Takato, Naoki Hamaguchi, and Haiduke Sarafian

A Touch-Based Mathematical Expression Editor . . . . . . . . . . . . . . . . . . . . . 635
Wei Su, Paul S. Wang, and Lian Li

Establishment of KETpic Programming Styles for Drawing . . . . . . . . . . . . 641
Satoshi Yamashita, Yoshifumi Maeda, Hisashi Usui,
Kiyoshi Kitahara, Hideyo Makishita, and Kazushi Ahara



Table of Contents XXXI

General Session

Integration of Libnormaliz in CoCoALib and CoCoA 5 . . . . . . . . . . . . . . . 647
John Abbott, Anna Maria Bigatti, and Christof Söger
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and Visual Theorems
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CARMA, University of Newcastle, NSW
jon.borwein@gmail.com

www.carma.newcastle.edu.au

Abstract. Long before current graphic, visualisation and geometric tools
were available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany1:

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has per-
manently frightened its victims into playing for safety. Some
pictures, of course, are not rigorous, but I should say most are
(and I use them whenever possible myself). [p. 53]

Over the past five years, the role of visual computing in my own
research has expanded dramatically. In part this was made possible by
the increasing speed and storage capabilities—and the growing ease of
programming—of modern multi-core computing environments.

But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or simulating
most mathematical research activities.

Keywords: visual theorems, experimental mathematics, randomness,
normality of numbers, short walks, planar walks, fractals, protein confir-
mation.

1 Introduction

I first briefly discuss what is meant both by visual theorems and by experimen-
tal computation. I then turn to dynamic geometry (iterative reflection methods
[1]) and matrix completion problems2 (applied to protein confirmation [3]). (See
Case studies I and II.) I end with description of recent work from my group in
probability (behaviour of short random walks [6,8]) and transcendental number
theory (normality of real numbers [2]). (See Case studies III.)

1 J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953); J. E. Lit-
tlewood and Béla Bollobás, ed., Littlewood’s miscellany, Cambridge University Press,
1986.

2 See http://www.carma.newcastle.edu.au/jon/Completion.pdf and http://www.

carma.newcastle.edu.au/jon/dr-fields11.pptx.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 1–8, 2014.
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1.1 Some Early Conclusions: So I Am Sure They Get Made

1. Maths can be done experimentally3 (it is fun) using computer algebra, nu-
merical computation and graphics: SNaG Computations, tables and pictures
are experimental data but you can not stop thinking.

2. Making mistakes is fine as long as you learn from them, and keep your eyes
open (conquer fear).

3. You can not use what you do not know and what you know you can usually
use. Indeed, you do not need to know much before you start research (as we
shall see).

2 Visual Theorems and Experimental Mathematics

In a 2012 study On Proof and Proving [10] the International Council on Math-
ematical Instruction wrote:

The latest developments in computer and video technology have provided a
multiplicity of computational and symbolic tools that have rejuvenated math-
ematics and mathematics education. Two important examples of this revital-
ization are experimental mathematics and visual theorems.

By a visual theorem4 I mean a picture or animation which gives one confidence
that a desired result is true in Gianqunto’s sense that it represents “coming to
believe it in an independent, reliable, and rational way” (either as discovery or
validation) as described in [4]. While we have famous pictorial examples purport-
ing to show all triangle are equilateral, there are equally many or more bogus
symbolic proofs that 1 + 1 = 1. In all cases ‘caveat emptor’.

Modern technology properly mastered allows for a much richer set of tools for
discovery, validation, and even rigorous proof than our precursors could have ever
imagined would come to pass—and it is early days. The same ICMI study [10],
quoting [5, p. 1], says enough about the meaning of experimental mathematics
for our curernet purposes:

Experimental mathematics is the use of a computer to run computations—
sometimes no more than trial-and- error tests—to look for patterns, to identify
particular numbers and sequences, to gather evidence in support of specific
mathematical assertions that may themselves arise by computational means,
including search.

Like contemporary chemists — and before them the alchemists of old—who
mix various substances together in a crucible and heat them to a high tem-
perature to see what happens, today’s experimental mathematicians put a
hopefully potent mix of numbers, formulas, and algorithms into a computer in
the hope that something of interest emerges.

3 DHB and JMB, “Exploratory Experimentation in Mathematics” (2011),
www.ams.org/notices/201110/rtx111001410p.pdf

4 See http://vis.carma.newcastle.edu.au/.

www.ams.org/notices/201110/rtx111001410p.pdf
http://vis.carma.newcastle.edu.au/
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3 Case Studies

We turn to three sets of examples:

3.1 Case Study Ia: Iterative Reflections

Let S ⊂ Rm. The (nearest point or metric) projection onto S is the (set-valued)
mapping, PSx := argmins∈S‖s−x‖. The reflection with respect to S is then the
(set-valued) mapping, RS := 2PS − I. Iterative projection methods have a long
and successful history. The basic model [1,3] finds a point in A ∩ B assuming
information about the projections on A and B is accessible. The corresponding
reflection methods are more recent and appear more potent.

Theorem 1 (Douglas–Rachford (1956–1979)). Suppose A,B ⊂ Rm are
closed and convex. For any x0 ∈ Rm define

xn+1 := TA,Bxn where TA,B :=
I + RBRA

2
.

If A ∩B �= ∅, then xn → x such that PAx ∈ A ∩B. Else ‖xn‖ → +∞.

The method also applies to a good model for phase reconstruction, namely for
B affine and A a boundary ‘sphere’. In this case we have some local and many
fewer global convergence results; but much empirical evidence— both numeric
and geometric (using Cinderella, Maple and SAGE).

Cinderella applet5 showing 20000 starting points coloured by distance from
y-axis after 0, 7, 14, 21 steps. Is this a “generic visual theorem” showing global
convergence off the (chaotic) y-axis? Note the error—scattered red points—from
using ‘only’ 14 digit computation.

5 See http://carma.newcastle.edu.au/jon/expansion.html.

http://carma.newcastle.edu.au/jon/expansion.html
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Proven region of convergence in grey showing what we can prove (L) is
less than what we can see (R).

3.2 Case Study Ib: Protein Confirmation

Proteins are large biomolecules comprising multiple amino acid chains.6 Proteins
participate in virtually every cellular process and Protein structure → predicts
how functions are performed. NMR spectroscopy (Nuclear Overhauser effect7)
can determine a subset of interatomic distances without damage (under 6Å ).
This can profitably be viewed as a non-convex low-rank Euclidean distance ma-
trix completion problem. We use only interatomic distances below 6Å typically
constituting less than 8% of the total nonzero entries of the distance matrix and
use our reflection method to extrapolate the rest.

Six Proteins: average (maximum) errors from five replications.

Protein # Atoms Rel. Error (dB) RMSE Max Error

1PTQ 40 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

Here

Rel.error(dB) := 10 log10

(
‖PC2PC1XN − PC1XN‖2

‖PC1XN‖2

)
,

RMSE :=

√∑m
i=1 ‖p̂i − ptruei ‖22
#ofatoms

, Max := max
1≤i≤m

‖p̂i − ptruei ‖2.

The points p̂1, p̂2, . . . , p̂n denote the best fitting of p1, p2, . . . , pn when rotation,
translation and reflection is allowed.

The numeric estimates do not well segregate good and poor reconstructions
so we ask what the reconstructions look like?

6 RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
7 A coupling which occurs through space, rather than chemical bonds.
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1PTQ (actual) 5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)

The picture of ‘failure’ suggests many strategies for success. What do recon-
structions look like?8 There are many projection methods, so it is fair to ask
why we use Douglas-Rachford? The two sets of images below show the striking
difference in the two methods.

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Douglas–Rachford reflection method reconstruction

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.

Alternating projection method reconstruction

Yet the method of alternating projections works very well for optical abber-
ation correction (originally on the Hubble telescope and now on amateur tele-
scopes attached to latops). And we still struggle to understand why and when
these methods work on different convex problems?

3.3 Case Study II: Trefethen’s 100 Digit Challenge

In the January 2002 issue of SIAM News, Nick Trefethen presented ten diverse
problems used in teaching modern graduate numerical analysis students at Ox-
ford University, the answer to each being a certain real number. Readers were

8 Video of the first 3,000 steps of the 1PTQ reconstruction is at http://carma.

newcastle.edu.au/DRmethods/1PTQ.html.



6 J.M. Borwein

challenged to compute ten digits of each answer, with a $100 prize to the best
entrant. Trefethen wrote, “If anyone gets 50 digits in total, I will be impressed.”
To his surprise, a total of 94 teams, representing 25 different nations, submitted
results. Twenty received a full 100 points (10 correct digits for each problem).
Bailey, Fee and I quit at 85 digits! The problems and solutions are dissected
most entertainingly in [9]. We shall examine the two final problems.

Problem #9. The integral I(a) =
∫ 2

0
[2 + sin(10α)]xα sin

(
α

2−x

)
dx depends

on the parameter α. What is the value α ∈ [0, 5] at which I(α) achieves its
maximum?

The maximum α is expressible in terms of a Meijer-G function—a special
function with a solid history that we use below. While knowledge of this function
was not common among contestants, Mathematica and Maple both will figure
this out; help files or a web search then quickly inform the scientist. This is
another measure of the changing environment. It is usually a good idea—and
not at all immoral—to data-mine.

Problem #10. A particle at the center of a 10×1 rectangle undergoes Brow-
nian motion (i.e., 2-D random walk with infinitesimal step lengths) till it hits
the boundary. What is the probability that it hits at one of the ends rather
than at one of the sides?

Bornemann starts his remarkable solution by exploring Monte-Carlo meth-
ods, which are shown to be impracticable. A tour through many areas of pure
and applied mathematics leads to elliptic integrals and modular functions which
proves that the answer is p = 2

π arcsin (k100) where

k100 :=

((
3− 2

√
2
)(

2 +
√
5
)(

−3 +
√
10
)(

−
√
2 +

4
√
5
)2)2

,

is a singular value. [In general p(a, b) = 2
π arcsin

(
k(a/b)2

)
.] No one (except har-

monic analysts perhaps) anticipated a closed form—let alone one like this. This
analysis can be extended to some other shapes, and the computation has been
performed by Nathan Cilsby for self-avoiding walks.

3.4 Case Study IIIa: Short Walks

The final set of studies expressedly involve random walks. Our group, motivate
initially by multi-dimensional quadrature techniques for higher precision than
Monte Carlo can provide looked at the moments and densities of n-step walks
of unit size with uniform random angles [6,8]. Intensive numeric-symbolic and
graphic computing lead to some striking new results for a century old problem.
Here we mention only two. Here pn is the radial density of the n-step walk
(pn(x) ∼ 2x

n e
−x2/n).
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The densities p3 (L) and p4 (R) and simulations.

We first discovered σ(x) := 3−x
1+x is an involution on [0, 3] ([0, 1] �→ [1, 3]):

p3(x) =
4x

(3− x)(x + 1)
p3(σ(x)). (1)

So 3
4p

′
3(0) = p3(3) =

√
3

2π , p(1) = ∞. We then found and proved that:

p3(α)=
2
√
3α

π (3 + α2)
2F1

(
1

3
,
2

3
, 1

∣
∣
∣
∣
α2

(
9− α2

)2

(3 + α2)3

)

=
2
√
3

π

α

AG3(3 + α2, 3 (1− α2)2/3)
(2)

where AG3 is the cubically convergent mean iteration (1991): AG3(a, b) :=

limn an = limn bn with an+1 = an+2bn
3 and bn+1 = 3

√
bn · a2

n+anbn+b2n
3 , start-

ing with a0 = a, b0 = b. More surprisingly we ultimately get a modular closed
form:

p4(α) =
2

π2

√
16− α2

α
Re 3F2

(
1

2
,
1

2
,
1

2
,
5

6
,
7

6

∣∣∣∣
(
16− α2

)3
108α4

)
. (3)

Crucially, for Re s > −2 and s not an odd integer the corresponding moment
functions [6], W3,W4 have Meijer-G representations

W3(s) =
Γ (1 + s

2
)√

π Γ (− s
2
)
G21

33

(
1, 1, 1

1
2
,− s

2
,− s

2

∣∣∣∣14
)

, W4(s) =
2s

π

Γ (1 + s
2
)

Γ (− s
2
)

G22
44

(
1, 1−s

2
, 1, 1

1
2

− s
2
,− s

2
,− s

2

∣∣∣∣1
)

.

3.5 Case Study IIIb: Number Walks

Our final studies concern representing base-b representations of real numbers as
planar walks. For simplicity we consider only binary or hex numbers and use two
bits for each direction: 0 = right, 1=up, 2=left, and 3=down [2]. This allows us
to compare the statistics of walks on any real number to those for pseudo-random
walks9 of the same length. For now we illustrate only the comparison between
the number of points visited by 10, 000 million-step pseudo-random walks and
for 10 trillion bits of π chopped up into 10, 000 walks.

9 Python uses the Mersenne Twister as the core generator. It has a period of 219937 −
1 ≈ 106002.
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Number of points visited by 10, 000 million-step base-4 random walks (L) and π (R)

3.6 Case Study IIIc: Normality of Stoneham Numbers

A real constant α is b-normal if, given integer b ≥ 2, every m-long string of
digits appears in the base-b expansion of α with precisely the expected limiting
frequency 1/bm. Borel showed that almost all irrational real numbers are b-
normal in any base but no really explicit numbers (e.g., e, π

√
2) have been proven

normal. In our final study we shall detail the discovery of the next theorem.
The Stoneham numbers are defined by αb,c =

∑∞
n=1

1
cnbcn

.

Theorem 2 (Normality of Stoneham constants). For coprime pairs b ≥
2, c ≥ 2, the constant αb,c is b-normal, while if c < bc−1, αb,c is bc-nonnormal.

Since 3 < 23−1 = 4, α2,3 is 2-normal but 6-nonnormal ! This yields the first
concrete transcendental to be shown normal in one base yet abnormal in another.
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In this talk we argue that mathematics is essentially software. In fact, from the
beginning of mathematics, it was the goal of mathematics to automate problem
solving. By systematic and deep thinking, for problems whose solution was dif-
ficult in each individual instance, systematic procedures were found that allow
to solve each instance without further thinking. In each round of automation in
mathematics, the deep thinking on spectra of problem instances is reflected by
deep theorems with deep proofs.

In 20th century, the systematic procedures for spectra of problems became
physically tangible as algorithms / software for the universal computer (which
itself essentially is a mathematical invention). In 21st century, the rounds of
automation in mathematics reach higher and higher levels and move more and
more to the meta-level of mathematics, i. e. to the automation of mathematical
thinking itself.

In this talk, we illustrate the evolution of mathematics towards higher and
higher levels of automation of its own problem solving and thinking process by
a couple of examples of increasing sophistication starting from calculation with
Roman numbers up to the automatic invention of algorithms like the speaker’s
algorithm for computing Gröbner bases.

As a practical experience of Gödel’s Incompleteness Theorem, there is no up-
per bound to the sophistication of higher and higher rounds in mathematical
automation. Thus, mathematicians live in the best of all worlds: They can em-
bark on more and more challenging problems that need an algorithmic solution
knowing that, after an algorithmic solution has been achieved, there will always
be room for more sophistication and human mathematical invention. Thus, in a
sense, mathematicians will never become jobless.

By the intellectual power in the automation of mathematical problem solving,
visible as “software”, mathematics is also in the center of the spiral of automation
in all science, technology and economy and is the silent driving force behind the
spiral of innovation.

Unfortunately, the intellectual attractiveness and practical relevance of math-
ematics is hard to explain to outsiders. Or, more precisely, mathematicians often
do a very bad job for explaining the fundamental role of mathematics clearly
enough to outsiders, who in fact are the insiders of modern society. However,
it is very important for the further development of mathematics that the role
of mathematics for modern science, technology, economy, and welfare is made

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 9–15, 2014.
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public. We will also present a few ideas about this political aspect of being a
mathematician in today’s society. Some of these ideas are:

– The university is the place from where the deep understanding of the essence
and role of mathematics must emanate and penetrate all branches of science,
technology, economy, and society. Also, university teaching of mathematics
must be the solid ground on which the appropriate ways of teaching math-
ematics at all levels and in all branches of the educational systems can be
based.

– For being able to play this role, university professors must feel a high re-
sponsibility for mastering all the different aspects of mathematics (modeling
of real world, invention of abstract mathematical knowledge, algorithmic
problem solving, formal reasoning, interpretation of mathematical results in
real world) in whatever field of mathematics they are working. In a provoca-
tive slogan, I request that every math professor at university level should
be a master “both in proving as well as in programming”. A math professor
at university level must also be a master of language who is able to “speak
mathematics” in whatever language our addressees from science, technology,
economy, medicine, politics, etc. speak.

– Independent of specific contents, the essence of mathematics is the “art of
explaining”, i.e. the art of making complicated things (Latin “ex”: sticking
out like a high mountain) simple (“plain”, “flat”). The art of explaining
is the essence of both research and teaching. Explanation is only possible
by deep thinking. Complicated things do not become “plain” by themselves
but only by looking at them from many different angles, trying out various
different ways of abstraction and simplification etc. It is the “miracle of
mathematics” that by thinking hard and deeply once (in finite time) about
the general version of a problem one may find a solution (method, algorithm)
that allows us not to think any more in the infinitely many concrete instances
of the problem.

– It is exactly this explanatory power of mathematics – the power of reduc-
ing something complex to something simpler – that constitutes the universal
value of mathematics. University mathematics has a high responsibility to
explain and demonstrate this universal value to all branches of science and
technology but, more importantly, also to all institutional instances of soci-
ety. As an echo, mathematics will receive the attention and appreciation of
society it deserves.

– In fact, through my experience of working as the head of Softwarepark Ha-
genberg and, hence, based on hundreds of concrete interactions I had with
(big and small) companies, research institutes, public institutions, investors,
banks, educational institutions, political institutions and administration, I
am coming more and more to the conclusion that the biggest waste of money
and time in today’s society is caused by the lack of being able to “ex-plain”:
lawyers who can not really explain the essence of complicated formulations
to their customers; customers of software companies who cannot really spec-
ify clearly what in the end the new software should do; software experts
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who do not know how to force a customer to reveal what his problem really
is; members of governance boards who do not know what the numbers in a
balance sheet really mean and who do not dare to ask; doctors who do not
really listen to the patient and patients who cannot really express what their
problem is; civil servants who only apply rules instead of trying to solve the
problem of the citizen; etc.

Since our systems grow in size, the lack of explanation skill has more and
more drastic effects. We only get shocked by big scandals like the finance
crisis or the NSA disaster but millions of small, hidden scandals that waste
or destroy time, money, motivation, welfare, . . . happen in every moment. I
think that only a small part of the negative effects are generated by crim-
inal energy, the biggest part is just generated by not being able to explain
things clearly with an attempt at expressing what we want to express in the
language of the person to whom we talk. I think that, more than anything
else, providing mathematics as the “art of explaining” could and should be
our greatest gift to the world.

– The actual situation of math research and teaching at many universities is
very different from the ideals sketched above: Many mathematicians unlearn
to speak with “normal” people and become masters in making simple things
complicated and erect a language wall around themselves that let outsiders
soon give up. More shockingly, children and students get the impression that
mathematics is a closed esoteric world with little relevance for real life and
is something very special rather a universal and actually very practical skill
of how to handle complex situations by systematic “ex-planation”.

– The “spiral of marginalization of mathematics” is disastrous, both for society
and mathematics: If university math conveys an unclear and narrow picture
about the essence and role of mathematics to university math students, the
math graduates will convey an even more foggy and more limited picture to
the environment in which they will work (in particular also to the children
and students they teach at elementary and high school level). Children and
students grow up with a distorted and limited, even threatening, experience
about mathematics and universities will have to accept that the level of
mathematical capabilities of incoming students is less and less sufficient for
what is needed for the next round of scientific and technological progress.
So, the negative spiral is closed and leads to a disaster. (In the same way,
companies with employees who have a distorted and limited picture of math-
ematics will not find their way to using mathematics if they face challenging
problems of technological, industrial or organizational innovation.)

– This downward spiral must be interrupted. Of course, one could identify any-
one at any level of this spiral as being responsible for improving the situation.
However, since I do not like this “circular shift of responsibility” which is
prevalent in today’s society (in many different areas as, for example, finan-
cial crisis, environmental problems, bureaucratic overflow etc.), I would like
to identify university mathematics (concretely, university professors) as the
crucial group of people who must manage to turn the downward spiral into
an upward spiral: Mathematics professors at the universities must develop
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in themselves the comprehensive picture and methodological competence I
tried to sketch above in order to establish mathematics as the central think-
ing and problem solving technology of current and future science, technology,
economy and society. At the same time, university professors have to make
sure that their students (in particular the PhD students who will shape the
next generation of mathematics), despite the enormous intellectual pressure
they face when trying to become professional in the technicalities of math-
ematics, are motivated and attracted to take their time for developing a
comprehensive view of the various different layers and aspects of mathemat-
ics and for acquiring and cultivating the universally applicable thinking and
problem solving skill, including the “the art of explaining”.

– In a comprehensive view of mathematics, in a modern setting, software plays
a particularly important role. Software is the endpoint in the materialization
of mathematical theories: From mathematical knowledge (proven insight;
theorems) through mathematical algorithms (whose proven correctness is
based on theorems) to their implementation as programs executable on ma-
chines. Thus, software realizes the fundamental aspiration of mathematics
to solve problems (in their general specification) by deep thinking in general
terms (but finite amount of time) until a general method can be established
whose execution for the potentially infinitely many instances does not need
thinking any more, i. e. can be given to “non-thinkers”, i. e. ultimately to
computers. If mathematics leaves out the aspect of software, it deprives it-
self of an essential aspect. One may even say, it deprives itself of the essential
aspects, if one adheres to a view of mathematics (“demand driven view”)
where one starts from a problem and goes to the world of theorems for ob-
taining knowledge that will allow to solve the problem. If one adheres to a
view of mathematics where one starts from systematic investigation of what
is true in a certain theory (“curiosity driven view”) and then asks whether
the new knowledge has applications for problem solving, then the aspect of
software is essential but secondary. In my comprehensive view, the demand
driven and the curiosity driven aspect are equally important, they interact
in a spiral, none of them is first or second, higher or lower, less or more
important but, rather, they constitute two sides of the same medal and are
both indispensable for making the object a medal.

– Today, however, mathematics and software are even more intimately con-
nected by being the meta-theory for each other. The intellectual process of
developing software (even for applications that do not need any non-trivial
mathematics) is a formal process whose quality heavily depends on system-
atic and sound design procedures. This process, more and more, is under-
stood as a technological process much like the production of industrial goods
that can be and should be handled by mathematical methods. Essential as-
pects of this process like model based specification, verification, complex-
ity analysis, component based design and implementation, data structures,
generic programming need both the mathematical expertise gained from the
application of mathematics to processes in science and technology as well
as the deep insights gained in 20th century mathematical logic. Here, I call



Soft Math – Math Soft 13

this new area (formal theory and technology of designing and implementing
software) “software science”.

In principle, what I said here about the role of mathematics for the pro-
cess of software design and development is equally true for the process of
designing new hardware. Only that, of course, more and more sophisticated
insights about the physical reality go into hardware research and design and
form the challenging limitations and challenging new opportunities for re-
alizing the principle of “universal, program based computing”, which is a
fundamentally mathematical concept. In fact, software and hardware design
grow more and more together and the mathematical challenge for both as-
pects is basically identical.

– Conversely, the best tools of current software technology are now available,
and heavily used, for building up impressive mathematical software systems
(like Mathematica, Maple etc.) that comprise basically all the algorithmic
mathematical methods that have been worked out over the past centuries
and decades – many of them based on deep and new mathematical theories –
in comprehensive, nicely structured, extensible and programmable algorithm
libraries. Some of these systems specialize to particular areas of mathematics
(like CoCoA for polynomial ideal theory) and try to be comprehensive for
this area.

– Strategically, I think that mathematics is well advised to consider both soft-
ware science as well as the professional implementation of mathematical
software as an integral part of mathematics. I hope I was able to make clear
that this is essential from a philosophical and theoretical point of view in
order to preserve and expand mathematics as the comprehensive, sound and
strong “thinking technology” of mankind. However, it is also essential from
a political point of view. If mathematics gives up software (or, even worse,
does not even embark on software both as a science and as a tool) mathemat-
ics will be marginalized in current science, technology, economy, and society
in general. And others will take over (or already have taken over) who will
do the job – with less rigor and less potential for the “arts of ex-plaining”
but more feeling for how to earn money and how to be indispensable and
influential. This will also have the consequence that only very few youngsters
will find their way to studying mathematics and those who will still get there
will find themselves in a difficult position in society and, also, will encounter
a mathematics deprived of essential ingredients so that another downward
spiral is generated.

– Mathematics, in its comprehensive view and not only as a collection of re-
sults but more essentially as a particular thinking culture, is an essential
part of the heritage of mankind. If we do not manage to attract brilliant
and enthusiastic young people to embark on the adventure of mathematics
as a research topic, global society will grow into a situation where the so-
phisticated results of mathematics – packed in software (“apps”, . . . ) – will
be available to everyone everywhere at any time but nobody will be able to
understand the mathematical principles and results behind these external
tools – both in their potential but also in their limitations. (It is alarming
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that in media, politics and even schools – and even universities people are
still speaking about the “the computer can do or cannot do or never will be
able to do . . . this or that” whereas “human can do or cannot do this or
that . . . ”. Of course, sometimes, this is just a sloppy way of speaking but
most of the times this expresses a fundamental misunderstanding about the
intelligence behind computers, which is human mathematical intelligence as
it always was.)

Similarly, if essential mathematical skills (in the comprehensive sense
sketched above) are not any more available in the masses as a reliable part of
general education, neither technological and economic innovation, nor growth
in common welfare, nor an increase in democratic awareness, democratic cul-
ture and societal evolution will be possible.

– A comprehensive view of mathematics that also sees the object level of math-
ematics permanently together with the meta-level (the level in which we try
to automate and support the thinking process of doing mathematics in a
certain area) will change the way of how, in the future, we will organize the
quality control and archiving process of mathematics, which currently is the
noble purpose of mathematical journals. It is near at hand that, practically,
by the advent of the web, the process of archiving, documenting, retrieving
mathematical knowledge will soon change and printed versions of mathemat-
ical journals will play less and less role or will just be a by-product of the
archiving process. In contrast, quality control by the anonymous peer review-
ing process, in my view, will become even more important in the computer
age. This process is a crucial intellectual invention, which is only a couple of
centuries old and, in fact, was the crucial reason why science and technology
evolved in such a breath-taking speed with such innovative power. Even if
much of new research is just “published” by uploading a paper onto the web,
it will always make a difference whether something is exposed to anonymous
criticism or not (well knowing and emphasizing that there is nothing like
“an absolute instance for determining truth”). Hence, the question is how
this process of anonymous peer reviewing will change and can be made more
efficient, reliable, transparent, flexible, structured.

I am optimistic and (in the frame of my Theorema Project) I am actively
working on how the enormous advances which were made in automated
reasoning could be used for supporting the anonymous refereeing procedure
of new mathematical results. In fact, I think that the most essential criteria
for the scientific value of new results (like importance, originality, correctness,
completeness) can well be decided (at least partly) by formal methods. Also,
using a formal approach, (mathematical) journals will turn more and more
from passive knowledge bases to globally accessible interactive knowledge
purifiers, expanders and generators.

– Finally, let me briefly touch the question of mathematical software in edu-
cation. Still, a kind of battle is going on between the “purists” who believe
that the use of mathematical software (the big brother of the “pocket cal-
culators”) will spoil the mathematical understanding and the “populists”
who believe that many parts of mathematical education are obsolete
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because mathematical software is available for solving problems by a mouse
click. I think that both these views are fundamentally wrong and based on
a limited understanding of mathematics. Mathematics is a process that goes
from a first vague understanding of a problem via deep thinking to a clear
understanding of the problem hand in hand with the development and proof
of mathematical knowledge that allows to solve the problem in a systematic
way (in the ideal case by an algorithm). This process iterates through higher
and higher levels of mathematical knowledge and mathematical problem
solving.

Good math education repeats this invention process with the student. It
should give the student the chance to understand the invention in the first
phase (which I call the “white-box phase”). In this phase, it would be a silly
short-cut if, instead of developing understanding, one would show the student
just which button has to pressed (or which function has to be called) using
existing software. In the second phase (which I call the “black-box phase”),
when the method is understood, the method should be programmed (in the
ideal case when students are at an age in which they can write programs
themselves) and one should give the student the joyful experience that, from
now on, the problem discussed does not need any more hard work but rather,
in each instance, can now be solved by calling the algorithm. I formulated
this “White Box / Black Box Principle” already in 1989. However, it seems
that, unfortunately, the battle between purists and populists is still going on
(in particular, in the math didactics community).
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Abstract. The formalisation of mathematics by use of theorem provers
has reached the stage where previously questioned mathematical proofs
have been formalised. However, sceptics will argue that lingering doubts
remain about the efficacy of these formalisations. In this paper we moti-
vate and describe a capability for addressing such concerns. We concen-
trate on the nearly-complete Flyspeck Project, which uses the HOL Light
system to formalise the Kepler Conjecture proof. We first explain why
a sceptic might doubt the formalisation. We go on to explain how the
formal proof can be ported to the highly-trustworthy HOL Zero system
and then independently audited, thus resolving any doubts.

1 The Flyspeck Project

Tom Hales’ proof of the Kepler Conjecture consists of 300 pages of mathematical
text, and uses the results of executing three bespoke computer programs consist-
ing of tens of thousands of lines of computer source code. When submitted for
publication, the referees held back from giving a full endorsement, complaining
that the proof was too complex to check in its entirety. Hales’ response was to
instigate the Flyspeck Project [1] to settle the matter once and for all, using the
HOL Light [2] theorem prover for the HOL logic [3] to formalise his proof.

The project is now nearing completion, with the formalisation of the results
of one of the three computer programs being the only incomplete aspect. As
predicted by Hales, the project has consumed around 20 man years of effort, the
bulk of which has been concerned with formalising the mathematical text. This
aspect of the project was carried out by an international team of mathematicians,
with about 15 contributors.

For the text formalisation, the text was broken down into around 700 distinct
lemmas, each with a bounty attached that was awarded on completion of the
lemma’s formal proof. Formal proofs were submitted as HOL Light proof script
files (written in ML source code), and rerun by Hales before being incorporated
into the project repository. Within these proof script files, almost anything was
acceptable, so long as no new axioms1 were added and the desired lemma result
was assigned as the value of a pre-arrangedML identifier. Now complete, the text
formalisation consists of around 200 proof scripts with a total of around 450,000
non-comment/blank lines of ML, resulting in around half a billion primitive
inferences when processed through HOL Light.

1 In this paper, by axiom we mean an extension to a theory using a general extension
command that does not enforce conservative extension.
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Once the results of the third computer programhave been formalised, the state-
ment of the Kepler Conjecture can be proved as a final theoremwithin HOL Light,
by bringing together the four components of the project. Assuming that HOL
Light itself is sound, if processing all the proof scripts through HOL Light results
in the final theorem being proved and no new axioms, then the Kepler Conjecture
has been formally proved. Or so the optimists would have us believe.

2 The Sceptics’ Concerns

Sceptics would disagree, and list many concerns that need to be addressed.2 Note
that these concerns apply equally to any mathematics formalisation project.

Firstly, has a final theorem actually been proved in the theorem prover? Per-
haps the proof scripts simply fail to produce a final theorem when processed
altogether in one session. This is easy to address, but still must be done. The
scripts must been rerun by someone who is independent of the formalisation
project, to check that everything successfully processes. We call the person per-
forming this role a proof auditor, or auditor for short.

Secondly, how do we know that the statement of the final theorem means what
it is purported to mean? Maybe there is a subtle problem in the statement,
or in the definition of one of the constants used in it, or in the definition of
one of the constants used in one of the definitions. The final theorem and its
tree of dependent definitions all need to be reviewed in minute detail by the
auditor. This task is far from trivial in a large proof formalisation, where there
is typically substantial supporting theory referred to in the statement of the
final theorem (although in Flyspeck this is deliberately minimized to reduce the
risk), and where the exact equivalence of the final theorem with the original
mathematical result is not obvious. Thus the auditor must be an expert in the
field of mathematics formalisation.

Thirdly, have any axioms been added that make the theorem prover’s theory
inconsistent? This question should be easy to resolve in projects such as Flyspeck
where no axioms are supposed to be added.

Fourthly, maybe the settings for displaying concrete syntax (e.g. the fixity
settings for the constants used in the statement of the theorem) have been con-
figured in some way that happens make the statement get misinterpreted to
mean something different. The auditor needs to be aware of all the settings that
can alter the display of theorems, and how these settings have been configured.

Fifthly, can we really trust the theorem prover to correctly record and display
all this information that is required for the review? Are there flaws in the im-
plementation of the theorem prover that mean statements can get confusingly
displayed (e.g. as in Pollack-inconsistency [5]), or that definitions or axioms don’t
get correctly recorded? The auditor needs to somehow address such concerns.

Sixthly, can we really trust that the theorem prover is sound? Is it possible
that there is a subtle programming error in the implementation of one of its
inference rules, or in the setting up of its theory?

2 For an alternative discussion of these issues, see [4].
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Seventhly, can we really trust that the theorem prover implementation guar-
antees that it is sufficient to consider just the soundness of the system and its
state after having processed a proof script to ascertain whether a theorem has
been proved. Is it possible for a proof script to make the theorem prover unsound,
thus requiring the auditor to consider the proof script in their review?

Finally, just in case anyone is thinking of the improbability of the above
concerns happening purely by accident, can we really trust that someone involved
in the project has not maliciously exploited a vulnerability for their own ends? If
a contributor knew about a back door to creating theorems, perhaps they would
be tempted to exploit this to get their bounty payment more easily. Or perhaps
the manager might be tempted to exploit a flaw to get the project completed on
time or on budget. In their review, the auditor must assume malicious intent,
rather than use arguments about the improbability of innocent error.

3 Problems with HOL Light

HOL Light is one of the simplest and widely-studied theorem provers. It imple-
ments the HOL logic, one of the simplest, widely-understood and uncontroversial
formal logics. Furthermore, it has an LCF-style kernel [6], whereby the type sys-
tem of its implementation language is used to enforce that all proofs ultimately
execute purely in terms of the kernel’s 10 primitive inference rules. Finally, its
kernel has itself been formally verified correct. As theorem provers go, it is one
of the highest regarded for trustworthiness.

However, concentrating on the sceptics’ concerns about the theorem prover
being used (the fifth, sixth and seventh from the previous section), HOL Light
does not fare well.3 We know of no problems with respect to the sixth concern,
but for the other two there are various. Note that other well-known theorem
provers have their own problems and overall fare no better than HOL Light. We
concentrate on HOL Light’s weaknesses in this paper because it is the system
used in Flyspeck.

Firstly, it does not quite record all definitions: type constants defined by
directly using the kernel interface are not recorded. Thus any type constants
defined in proof scripts cannot be trusted to have any given definition.

Secondly, there are various flaws in the way it displays HOL concrete syntax
that make it Pollack-inconsistent. One such flaw is that type annotation is never
used in displayed expressions. This can cause various kinds of confusion, for ex-
ample an expression may contain two variables with the same name but different
type that will appear to be the same variable, or a theorem may appear to be
universally true for variables of any type when it has actually only been proved
for variables of a specific type (e.g. a type with just one element). Another flaw
is that overloaded names are not distinguished, so a variable with the same name
as a constant will appear to be that constant, or an expression containing a vari-
able with the same name as a reserved word might appear to be some expression

3 Our observations apply to all recent versions of HOL Light, including the most recent
at the time of writing, SVN revsion 193.
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with a completely different syntactic form. Note that circumventing these issues
by displaying primitive syntax carries its own risks, because expressions then
become much more difficult to read, and thus easier to misinterpret.

Thirdly, HOL Light’s LCF-style kernel is not completely watertight: it is pos-
sible to process a proof script that will result in unsound deduction. These vul-
nerabilities stem from HOL Light not addressing aspects of its implementation
language, a dialect of ML called OCaml, which is also the language its proof
scripts are written in. One vulnerability is that HOL Light does not protect
against OCaml’s mutable strings, and so the name of a HOL constant can be
altered by the user simply by altering the string storing the name (see Figure
1). Another is that OCaml has an (undocumented) function called Obj.magic

that can be used to subvert the OCaml type system and thus bypass the kernel.

let t = fst (dest_const (concl TRUTH));;

t.[0] <- ’F’;;

let FALSE = EQ_MP (REFL ‘F‘) TRUTH;;

t.[0] <- ’T’;;

Fig. 1. Exploiting OCaml string mutability to prove false in HOL Light

4 A Proof Auditing Capability

We now describe how components from the Common HOL Project [7], for as-
sisting portability between HOL theorem provers, can be employed to support
the process of auditing large formal proofs performed in HOL theorem provers.
Common HOL is based around a set of basic theory and inference rules that is
common to all HOL systems.

One component of Common HOL is the HOL Zero theorem prover. Unlike
the other HOL systems, this is not designed for developing formal proofs, but
as a HOL proof checker, i.e. for checking formal proofs developed on other HOL
systems. It has been carefully designed to excel at trustworthiness, with a sim-
ple and well-documented implementation, an LCF-style kernel and no known
soundness-related flaws. It has a parser and pretty printer for concrete syntax,
but unlike any other HOL system it is Pollack-consistent. Even though it is
implemented in OCaml, it addresses the associated vulnerabilities, for example
it protects against mutable strings by making copies at suitable points. There
is even a bounty of $100 for discovering soundness-related flaws, and a list of
exposed flaws is published on the website (the most recent flaw was in 2011).

Another component is a proof porting capability. This records a proof on
one HOL system during the execution of its proof script, recording it in terms
of Common HOL theory and inference rules. This recorded proof can then be
exported as a proof object file, and then imported into another HOL system,
where it can be replayed to recreate the original proof. Common HOL proof
exporters and importers currently exist for HOL Light and HOL Zero, and so it
is possible to port proofs between these two systems. This capability can port
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massive formal proofs, involving hundreds of millions of basic steps, with ease.
The entire Flyspeck text formalisation is ported using only modest hardware
and in less than twice the time it takes to process in HOL Light.

By combining these components, it is possible create an effective proof au-
diting capability. Proofs carried out on one HOL theorem prover can be quickly
ported to HOL Zero. Because we can assume HOL Zero is sound, replaying
the ported proof on HOL Zero establishes that the proof does not exploit un-
soundness in the original system. Furthermore, because we can trust that HOL
Zero records all axioms and definitions correctly and displays them unambigu-
ously, the auditor can concentrate on reviewing the content of these, displayed in
human-readable concrete syntax, rather than worry about flaws in the theorem
prover. And because the input is a proof object file, rather than an ML proof
script, the auditor need not worry about whether arbitrary ML could play havoc
with the LCF-style kernel.

5 Conclusion

The Common HOL Project provides the necessary components for an effective
proof auditing capability for proofs based on HOL. Proofs carried out in one
HOL system can be quickly ported to HOL Zero, which offers a suitably trust-
worthy environment for performing an audit of the proof. We recommend that
mathematics formalisation projects such as the Flyspeck Project are audited
using this capability, to resolve any lingering doubts sceptics might have about
their efficacy.
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Abstract. Symbolic Computing package is an add-on package that fa-
cilitates symbolic computation in Mathematica. It enables display and
interpretation of derivatives, integrals, sums, products, vector opera-
tors, brackets, and various forms of subscripts and superscripts using
the traditional mathematical notation based on the low-level box lan-
guage and contains over 700 functions for notation, algebraic manipula-
tion and evaluation of mathematical expressions. The package function
categories include: basic algebra, complex variables, differential calculus,
elementary functions, equation solving, equations, formula manipulation,
Fourier analysis, function analysis, integral calculus, operator analysis,
polynomials and series, products, sums, trigonometric functions, vectors
and matrices. The package has its own interpreter language, complete
on-line documentation and two palettes for entering mathematical ex-
pressions and execution control of functions. This provides a powerful
platform for streamlined manipulation of all or parts of an expression
and will significantly enhance the capabilities of the kernel and user-
defined functions. Development of the package and its applications to
various topics of mathematics and related disciplines will be presented.

Keywords: Symbolic Computing, Formula Manipulation, Mathemat-
ica.

1 Introduction

Symbolic computing [1], in contrast to numerical computing, is computation
with variables and constants according to the rules of algebra for manipulation
and evaluation of mathematical expressions. This will lead to dramatic improve-
ment of analytical calculation and can be applied to research and education
of mathematics, physics and various other science and engineering disciplines.
Other advantages include minimization of human errors and improvement of ac-
curacy during calculation by using computer software that incorporates known
algorithms and mathematical identities.

Symbolic Computing package [2] is an add-on package that facilitates symbolic
computation in Mathematica [3]. With over 700 functions that enable traditional

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 21–25, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



22 Y. Chung

mathematical notation, algebraic manipulation and evaluation of various math-
ematical expressions, the package allows the users to focus on the principles
instead of time-consuming and error-prone calculations and provides good read-
ability and minimization of human errors during calculations. Expressions that
closely resemble the traditional mathematical style, e.g., subscripts, superscripts
and vector notations, can be used and this will replace a lot of hand calcula-
tions. Using this approach, materials and references including derivation of the
mathematical formulas can be contained in a single document.

This paper will describe the main components and key features of the package,
examples of the usage of the functions for formula manipulation, the interpreter
language implemented in the SCMAF function, and some of the technical details
underlying the design of the package.

2 Main Components and Key Features

The development objective of the Symbolic Computing package is to design and
implement a symbolic computing system based on Mathematica that can freely
manipulate various mathematical expressions using traditional notations and
deferred on-demand evaluation. The package can be used for algebraic manipu-
lation of formulas using symbolic computing and it provides seamless integration
with the computing environment of Mathematica.

There are over 700 functions in the package and all functions have the prefix
SC, which stands for “Symbolic Computing,” e.g., SCDerivExpand and SCEvalInt.
The package function categories include: basic algebra, complex variables, differ-
ential calculus, elementary functions, equation solving, equations, formula ma-
nipulation, Fourier analysis, function analysis, integral calculus, operator analy-
sis, polynomials and series, products, sums, trigonometric functions, vectors and
matrices.

The package also has its own interpreter language implemented in the SCMAF

function, which is an abbreviation of SCMapApplyFunctions. It provides a pow-
erful platform for streamlined manipulation of all or parts of an expression.
The kernel and user-defined functions are called in sequence for step-by-step
controlled manipulation of expressions and the features provided by SCMAF sig-
nificantly enhances the capabilities of the functions. User-defined functions can
still be used separately independent of SCMAF, in which case the features pro-
vided by the options of SCMAF cannot be used. The basic syntax of SCMAF is
shown below.

SCMAF[expr,
f1, {x11, x12, ...}, lopts1,
f2, {x21, x22, ...}, lopts2,
f3, x31, lopts3,
f4, {{x411, x412, ...}, sopts41, {x421, x422, ...}, sopts42, ...}, lopts4,
...,
gopts],
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where f1, f2, ... are functions to operate on the expressions in sequence, {x11,
x12, ...}, {x21, x22, ...}, ... are the argument lists, and loptsi, soptsij are local
options applied to the function fi and the preceding argument list. gopts is the
global options for the SCMAF function. By default, the first arguments x11, x21,
... are replaced according to x11 → f1[x11, x12, ...], x21 → f2[x21, x22, ...], etc.,
and the MainArg local option can be used to change the main argument.

The package has on-line documentation of all functions accessible through the
Mathematica help browser and two palettes for entering mathematical formulas
and navigating through the functions in SCMAF.

3 Formula Manipulation

A large portion of the functions in the package is for manipulation of mathe-
matical expressions. For this purpose, expressions like integrals, products and
sums entered in 2-D format are not evaluated so that further operations can be
done. Even though this can be sometimes achieved, e.g. for integrals, by pro-
viding explicit specification of the function arguments when the integral cannot
be evaluated, they are often omitted in practice, and in such cases, evaluation
should be deferred. Merging derivatives and integrals using the package func-
tions SCMergeDerivs and SCMergeInts, respectively, is shown in Fig. 1, where
f and g are implicitly functions. Inside the shaded box is the user input and the
output is shown below. Note that evaluation of the expressions is not done so
that the merging operations can be performed.

Fig. 1. Merging derivatives and integrals

The package functions can have options according to the standard Mathemat-
ica syntax. As an example, Fig. 2 shows transformation of a second-order partial
derivative using the variable transformation (x, t) → (ξ, η). The Apply option
specifies the function to apply to the result for post-processing.

Figure 3 shows an example of using SCMAF for the proof of Schwarz’s inequality
in the complex vector space. It starts with the obvious statement ‖a+ λb‖2 ≥ 0,
expands it in complex vector space and a sequence of operations are done to
arrive at the desired result ‖a∗ · b‖ ≤ ‖a‖ ‖b‖.
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Fig. 2. Transformation of a partial derivative

Fig. 3. Proof of Schwarz’s inequality using SCMAF and a sequence of operations

4 Interaction with Mathematica Kernel

The Symbolic Computing package has a large collection of functions designed
to perform manipulation of various forms of mathematical expressions using the
traditional notation. It utilizes the functionalities of the Mathematica kernel as
much as possible and integrates with it in a seamless manner by not interfering
with its operation.

However, in order to accomplish the package’s main objectives of formula ma-
nipulation, certain forms of expressions like integrals, products and sums entered
in 2-D form are not evaluated until explicitly asked by the user by invoking the
corresponding kernel functions, as compared to the normal Mathematica con-
vention. The package also contains various known mathematical algorithms and
identities in addition to those already built in the kernel, which, combined with
the effective user command interface, significantly facilitates manipulation and
transformation of expressions.
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5 Implementation Details

The notations are implemented primarily using the low-level box language func-
tions MakeExpression for input and MakeBoxes for output. Great care needs
to be taken when defining the rules for these functions in order not to cause
inconsistencies.

The SCMAF function, whose example is shown in Fig. 3, provides a mecha-
nism of precisely specifying the parts of the expression to which the functions
are applied. Position specifications and patterns can be used as well as any
Mathematica expressions. The Base and Target options can also be used to
complement this functionality.

The syntaxes of the package functions were designed in conformity with the
conventions of Mathematica. Minimum information is required for the input
and others are specified using options with the default values that are most
commonly used. In a typical usage shown in Fig. 4, the Laplacian of the vector
field function A = r̂f(r)sinφ is evaluated in the spherical coordinate system
(r, θ, φ). The functions given by the Apply option are applied in the reverse
order like the kernel function Composition.

Fig. 4. Evaluation of the radial component of the Laplacian of the vector A using
SCEvalVecOp and some options
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1 Introduction

There is an interesting duality between the forms and extents of mathemat-
ical knowledge that is verbally expressed (published in articles, scribbled on
blackboards, or presented in talks/discussions) and the forms that are needed
to successfully extend and apply mathematics. To “do mathematics”, we need
to judge the veracity, extract the relevant structures, and reconcile them with
the context of our existing knowledge – recognizing parts as already known and
identifying those that are new to us. In this process we may abstract from syn-
tactic differences, and even employ interpretations via non-trivial mappings as
long as they are meaning-preserving.

This mathematical practice of viewing an object of class A as
one of class B – which we call framing – is an essential part of
mathematical literacy – the skillset that identifies mathemat-
ical training. Indeed, framing is at the heart of understanding –
seeing the network structure of math knowledge – and applying
it. The essence of mathematical literacy is depicted in the figure
on the right: trained mathematicians have access to a large, struc-
tured space of knowledge – we call it the Mathematical Knowledge Space
(MKS) – that is induced via framing from a small core of represented knowledge.
Unfortunately, mathematical software systems currently show only a very small
degree of mathematical literacy. In this paper we present MMT theory graphs as
a modular representation paradigm for mathematical knowledge, MathHub.info
as an archive system that supports MMT-encoded knowledge, and �Search as
an example of a math-literate search engine.

2 Representing the Math Knowledge Space in MMT

We will now present the OMDoc/MMT format [5] which focuses on the network
structure of mathematical knowledge and makes framing a central representa-
tional concern: MMT groups symbols facts into theories and represents (po-
tential) framings as theory morphisms, which interlink theories into a theory
graph. Theory morphisms are mappings between theories which map axioms of
the source theory to theorems of the target theory. This ensures that all theorems
of the source theory induce theorems of the target theory.
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To understand the setup, consider the theory graph in Fig. 1. The right side
of the graph introduces the elementary algebraic hierarchy building up algebraic
structures step by step up to rings; the left side contains a construction of the
integers. In this graph, the nodes are theories, the solid edges are imports and
the dashed edges are views.

Fig. 1. A MMT Graph for Elementary Algebra

Importantly, every MMT symbol and statement is identified by a canonical,
globally unique URI (called its MMT URI). Theories and views can be refer-
enced relative to the URI of the containing theory graph, and symbol declarations
by the URI of the containing theory, separated by ?. For instance, if U is the
URI of the theory graph in Fig. 1 then the theory NatPlus and its symbol +
have URIs U?NatPlus and, respectively, U?NatPlus?+.

Theory inheritance is realized by structures, which are named imports (and
defined using theory morphisms). Includes are trivial structures which are un-
named and total. Symbol declarations induced by structures and views can be
referenced relative to their name, separated by /. For instance, the addition
operation from Ring can be referenced with U?Ring?a/◦.

The definition of the theory Ring makes use of two MMT structures: m (for
the multiplicative operations) and a (for the additive operations). To complete
the ring we only need to add the two distributivity axioms in the inherited
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operators m/◦ and a/◦. Furthermore, a theory morphism, f , is used to represent
that natural numbers with addition (NatPlus) form a monoid (Monoid).

It is a special feature of MMT that assignments can also map morphisms into
the source theory to morphisms into the target theory. We use this to specify the
morphism c modularly (in particular, this allows to re-use the proofs from e and
c). Note that already in this small graph, there are a lot of induced statements.
For instance, the associativity axiom is inherited seven times (via inclusions;
twice into Ring) and induced four times (via views; twice each into NatArith and
IntArith). All in all, we have more than an hundred induced statements from
the axioms alone. If we assume just 5 theorems proven per theory (a rather
conservative estimation), then we obtain a number of induced statements that
is an order of magnitude higher.

3 Archiving the Math Knowledge Space in MathHub.info

The MathHub.info system [1] is a development environment for active mathe-
matical documents and an archive for flexiformal mathematics.

The MathHub.info system has three main components (the detailed architec-
ture is presented in Fig. 2):

– the GitLab repository manager as the versioned data store holding the source
documents

– the MMT system [4] as the semantic service provider that imports the source
documents and provides services for them

– and the Drupal CMS as the frontend that makes the sources and the semantic
services available to users.

Currently, the MathHub.info data store contains the following libraries of var-
ious degrees of formality:

– the SMGloM termbase with ca. 1500 small sTeX files containing definitions
of mathematical terminology and notation definitions.

– ca. 6500 files with sTeX-encoded teaching materials (slides, course notes,
problems, and solutions) in Computer Science,

– the LATIN logic atlas with ca. 1000 meta-theories and logic morphisms,
– the Mizar Mathematical Library of ca. 1000 articles with ca. 50.000 theorems,

definitions, and proofs, and
– a part of the HOL Light Library with 22 theories and over 2800 declarations.

We have MMT importers for all MathHub.info libraries and, therefore, MMT
services become available for them. Current services including HTML presenta-
tion, querying, type checking and change management.

On the frontend side, Drupal natively supplies uniform theming, user manage-
ment, discussion forums, etc. We extend it with dedicated modules to connect
with the source documents in GitLab (for editing) as well as the imports in
MMT (for MMT services, e.g. HTML presentation). Moreover, the JavaScript
library JOBAD makes the documents active by interfacing with MMT services
to enable complex in-browser interactions.
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Fig. 2. The MathHub.info Architecture

4 Searching for Induced Statements

To search for induced statements, we use our MathWebSearch system [3],
which indexes formula-URL pairs and provides a web interface querying the
formula index via unification. This can be used for

Instance Search e.g. to find all instance of associativity we can issue the query

∀x, y, z : S .(x op y) op z = x op (y op z), where the - are query variables

that can be instantiated in the query. In the library from Fig. 1 we would
find the commutativity axiom SemiGrp/assoc, its directly inherited versions
in Monoid, Ring and in particular the version u?IntArith?c/g/assoc.

Applicable Theorem Search where universal variables in the index can be
instantiated as well; this was introduced for a non-modular formal libraries

in [2]. Here we could search for 3 + 4 = R and find the induced statement
u?IntArith?c/comm with the substitution R �→ 4 + 3, which allows the user
to instantiate the query and obtain the equation 3+4 = 4+3 together with
the justification u?IntArith?c/comm that can directly be used in a proof.

Realizing �Search on top of MathWebSearch has two parts:

– The search engine proper is very simple: instead of harvesting formulae di-
rectly from a formal digital library, we flatten the library first, and then har-
vest formulae. Flattening is the process of explicating all induced statements
in an OMDoc/MMT theory graph, a central service of the MMT system, and
defining feature of the �Search system. Note that the MMT URIs of state-
ments do not change during flattening, so they can directly be utilized as
search hits in �Search.

– For the presentation of search hits, we cannot simply rely on the MMT
system to dereference the MMT URIs (which would indeed compute the
induced statements), but we have to use the structure of the OMDoc/MMT
theory graph to explain the path between the search hits and the represented
knowledge. Luckily the MMT URIs contain enough information to compute
this. Fig. 3 shows a �Search result in action: �Search found the induced
statement of associativity of + on Z and uses the combinations of morphisms
m and i from Fig. 1 to justify the hit.
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Fig. 3. The �Search Web Interface for MathHub.info

5 Conclusion and Future Work

We have presented a unified framework for representing the inherent network
structure of mathematical knowledge – OMDoc/MMT –, for enabling mathe-
matically literate services – MathHub.info – and substantiated this with a model
service – �Search. The OMDoc/MMT language has been validated in large-scale
representation and translation experiments, the systems are in a late prototype
state; �Search is fully integrated into MathHub.info and can be used on the
MathHub.info content directly (though results depend on the modular struc-
ture). We expect to open MathHub.info for general use in this year, when the
system has stabilized.
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Abstract. There are new roles for software in mathematical knowledge
management (MKM). Three simple initial examples of MKM roles will
be considered here. The first is software applied to the Mathematical
Subject Classification (MSC). The second example is MathML (Mathe-
matics Markup Language), a standard from the W3C, now in its third
edition, and hoping to become an ISO standard. The third example of
software in the service of mathematical knowledge is the use of programs
to analyze the nature of our subject as represented by its literature seen
as a network. How these tools have already been deployed makes clear
that mathematical knowledge management, even in its primitive present
form, can aid further development of mathematics. These examples above
are just starting points.

Keywords: mathematical knowledge management, mathematical sub-
ject classification, MSC, mathematical markup language, MathML,
SKOS, network analysis.

1 Introduction

Modern computers are often employed to do the calculations needed for mathe-
matics, whether numerical or symbolic. It can be claimed that’s why they were
invented. There are also roles for software in mathematical knowledge manage-
ment (MKM). An obvious one developing new tools to help access the math-
ematical literature, which is the main way mathematical knowledge has been
expressed and archived until recently. Three simple initial examples of MKM
roles will be considered here. The first is software applied to the Mathematical
Subject Classification (MSC) which is a traditional way of organizing literature
holdings.

2 Mathematics Subject Classification

A simple hierarchy of areas and sub-areas of mathematics is the basic structure
of most traditional classifications of mathematics (or any other field) and, in par-
ticular of the Mathematics Subject Classification (MSC) developed in the 1960s
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and now jointly maintained by Mathematical Reviews (MR) and Zentralblatt
für Mathematik (ZB). Both these secondary knowledge services are probably
now better known for their online databases MathSciNet [MathSciNet:website]
and zbMATH [zbMATH:website].

In its present form the MSC skeleton is a rather flat three-level tree: 1 root,
63 top-level areas, 528 secondary areas, and 5606 leaf nodes. This gives an idea
of its size. Over the years the MSC has been revised several times since the fields
of mathematics vary in their importance and new views of mathematics and new
concepts arise. Also mathematics can be said to have lost areas once regarded
as within its purview, such as many of its classical applications, and especially
statistics (applied statistics), and most recently computer science or informatics.

The most recent revision of the MSC resulted in the current MSC2010 which
has its own web site, [MSC2010:website], used in preparing the revision during
2006–2009. Until next revision, MSC2020 — which I tend think of as the “Full
Hindsight Revision”, the web site will be the public archive of information about
the MSC and deliberations about its development, and a proposed location for
some services based on the MSC.

There are a several aspects of the details of the MSC that make for compli-
cations in realizing the MSC in software; for instance:

– It was developed from input by the highly varied mathematical community
interpreted by, on the order of, a hundred mathematical editors from MR
and ZB over decades.

– There are numerous additional relationships going beyond inclusion between
areas identified.

– There is tension between the simple form of the MSC tree and faceting
expressed in what has been developed by a heterogeneous collection of con-
tributing authors.

– There is reuse of terminology in the node descriptions: linguistic overloading
with mathematics.

– There are multilingual problems that arise from the international desire for
translations of the MSC (e.g. Chinese, Russian, and Italian so far).

– The master MSC versions had been encoded since 1984, for the dominant
purposes of printing them, using TEX typesetting system (which is admit-
tedly a full macro computing language, in principle).

– There is a desire to record the evolution of the MSC over the years.
– It is not trivial to maintain an evolving labeled tree.
– There are mathematical formulas present in the descriptions.

The revision to MSC2010 was taken as a good time to change the authoritative
source from the MSC to a form more promising for the Semantic Web. But it
was also a time in which suggestions from the mathematical community could be
collected through a web site, stored in a MySQL database so that all would be
dealt with, and the changes being adopted could all be exposed with MediaWiki
to public view.

MSC2010 information is now held in a master file encoded using SKOS (Simple
Knowledge Organization System) [SKOS:website] which is a World Wide Web
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Consortium standard [W3C:website]. Conversion to SKOS was done using Perl
and Python scripts. But this eventually involved some small customizations of
the vocabulary, which was envisaged by SKOS. Our needs went beyond the
paradigms seen from the use by the US Library of Congress in converting their
LC Subject Headings to SKOS (they have over 250,000 of those).

Of course, it is probably MR and ZB, and the traditional publishing world
who make most use of the MSC in the course of their daily workflows. However,
it does play a role in traditional searches for mathematical material, and can be
used to make phrase-based searching more nuanced. To encourage the creation
of more tools using the MSC the authoritative information is offered publicly in
many forms: [MSC2010:SKOS], RDF/XML, Turtle, N-Triples, TriX, and JSON,
as well as on-screen display versions in English, Chinese, Russian, Italian and the
[MSC2010:MediaWiki] and the [MSC2010:TiddlyWiki]. There the beginnings of
SPARQL access with prototype examples. In addition there are some classic
text, TEX and PDF forms as well as a KWIC index on the site.

3 Mathematics Markup Language — MathML

One special aspect of the MSC was the inclusion of some mathematical for-
mulas. Mathematical expressions are nowadays properly encoded for the web in
MathML, our second example. MathML [MathML3:spec] is also a standard from
the W3C, now in its third edition, and hoping to become an ISO standard soon.

MathML is a markup language for mathematical expressions. It was origi-
nally developed, starting in 1998, as an XML [XML:spec] vocabulary to support
mathematical publication in the modern information world and was apparently
oriented toward XHTML for the rest of the documents where formulas were to
be found. As such MathML specifies a class of labeled rooted planar trees, but
the details are significant. The changing web standards landscape and the rise of
HTML5, an extensive rework of HTML, have shown that MathML can work in
the new context with surprisingly little adjustment. The purpose of MathML is
to capture both presentational aspects and some of the semantics of mathemat-
ics, so MathML is in the tradition of the efforts at pasigraphy reported at the
first ICM in 1897 [Schröder:1897][Peano:1894], and also harks back to Leibniz’s
calculus ratiocinator. In its newest version 3.0 (Second edition) of 10 April 2014
MathML plays very well with HTML5. In turn HTML5 recognizes the math el-
ement from the MathML namespace and specifies that the semantics of markup
within that element shall be defined by the MathML specification (and other ap-
plicable specifications) (Section 4.7.14 in the HTML 5.0 specification, currently
a Candidate Recommendation of the W3C as of this writing [HTML5:spec]).

The adoption of a new standard does take years—on average about a decade
and a half according to Andrew Odlyzko. MathML is thus not doing so badly.
The example of TEX which may be thought to have taken the mathematical
community by storm can be said to have taken over a decade to really catch on
from its first edition in SAIL in 1978, or from the first complete rewrite in Web,
a literate programming extension of Pascal. TEX did have the advantage of being
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a complete package for document composition not a specification attempting to
be part of a larger context of specifications and technology still under very active
development. It was also the work of a single genius, Donald Knuth, and not of
a changing committee.

However, MathML is being utilized, not just by MR and ZB, who have been
relatively early adopters as they were for TEX but by publishers with XML work-
flows, and by those who have to have the assurance of using a publicly adopted
standard, not a proprietary one, which is coherent with the Web. While render-
ing support within browsers remains a problem area despite years of lobbying, it
is improving—mathematics, and indeed technical documentation, is just a much
less lucrative business than advertising and entertainment. In the meantime a
technology originally intended as a stopgap, namely MathJax [MathJax:website],
has brilliantly provided, through JavaScript, rendering support of a surprisingly
high quality and reliability in almost all browsers. Perhaps its initial success can
be ascribed to its being a single person’s conception and work: Davide Cervone,
then advised by his friend Robert Miner, who contributed a great deal to the
development of MathML and regrettably died young.

4 Networks of Mathematics

The third example of software in the service of mathematical knowledge is the
use of programs to analyze the nature of our subject as represented by its liter-
ature. Possibly the oldest consideration of this sort is the Erdős number, which
comes from the co-authorship graph of mathematical papers. Later and more
thorough analyses have been done of other networks representing mathematics’
publications, whether in terms of co-authorship or co-citation, or in relation to
subject areas (using the MSC), e.g. [Brunson:2013]. Further studies have be-
gun [Dubois:2013] [Borjas:2012], leading to such modern topics as persistent
homology [Bampasidou:2014] and A-theory [Babson:2006][Atkin:1974]. Machine
processing of the corpus of mathematics as a natural language has also started.
Analysis of the use of formulas depends on a standard notation such as MathML.

5 Conclusion

Finally let it be pointed out that the MSC and MathML are already extensively
used in such places as [Wikipedia], [PlanetMath], and the [EuDML] as well
as essentially in the publishing world, MathSciNet and zbMATH. The easing
of access to recorded mathematical knowledge offered a possible World Her-
itage DML, and even use of MSC and MathML in [swMATH], make clear that
mathematical knowledge management, even in its primitive present form, can
aid further development of mathematics. The examples above are just starting
points.
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1 Introduction

Representation formats based on theory graphs have been successful in formal-
ized mathematics as they provide valuable logic-compatible modularity and fos-
ter reuse. Theories – sets of symbols and axioms – serve as modules and theory
morphisms – truth-preserving mappings from the (language of the) source theory
to the target theory – formalize inheritance and applicability of theorems. The
MMT [4] system re-developed the formal part of the OMDoc theory graph into a
foundation-independent meta-system for formal mathematics and implemented
it in the MMT API.

But full formalization of mathematics is tedious in the best of situations, often
prohibitively costly. Moreover, it forces commitment to irrelevant foundational
choices. As it is also unnecessary for many applications, we are currently ex-
tending the MMT format to allow content of flexible formality (which we call
flexiformal content) in an effort to regain the original OMDoc coverage for
OMDoc2.

In flexiformal representation formats, the basic inventory of theory graph
notions from MMT is insufficient due to the presence of natural language and
presentation markup in formulae: these are – in the absence of AI techniques –
opaque to formal methods. As a consequence, we need other means of assigning
meaning to them.

In this paper, we study two interrelated mechanisms for that:

– extending parallel markup (fine-grained cross-referencing between presenta-
tion and content markup) to the discourse level and

– meaning adoption via postulated views.

The first gives meaning to informal statements (definitions, theorems, proofs)
by linking them with formal counterparts. The second, by adopting the semantics
from another (more) formal theory.

2 Parallel Markup

The idea of parallel markup has been pioneered in the MathML format [1], which
has two sub-languages: presentation MathML for the layout of mathematical
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formulae and content MathML for the specification of the functional structure
(the “operator tree”). For parallel markup of a formula, MathML combines the
presentation and content trees in a single XML tree and marks up corresponding
subtrees by cross-references. Parallel markup supports two workflows:

– formalization: the annotation of presentation formulae with (multiple) for-
malizations and

– presentation: the annotation of content formulae with (multiple) presenta-
tions.

Fig. 1. Parallel Markup for a Definition

The duality between presentation and content captured by MathML is not
restricted to the formulae level. At the statement level, inside mathematical
documents, it manifests as the duality between narration and content. The nar-
rative structure of mathematical text is often different from the structure of it’s
formalization. Definitions may refer to concepts not yet introduced, proofs may
omit or reorder reasoning steps. Moreover, narrative mathematical texts often
opt for conciseness in detriment of rigor and rely to the intuitions of the reader
to infer the meaning and resolve ambiguities. The same motivates the choice of
notations at the formula level.

Therefore, co-representing both aspects of mathematics is a fundamental chal-
lenge not only at the formula level but also at the statement level. Consequently,
in OMDoc2 we extend parallel markup to all levels. A fundamental difference is
that, at the formula level, the human-oriented representation is given by nota-
tions, while at the statement level it is given by the mathematical vernacular. It
is also much more flexible in expression.

Here, we see the presentation of formulae to correspond to the narrative
(human-oriented) representation at the general level. Then parallel markup in
OMDoc2 amounts to co-representing the semantic and narrative aspects of math-
ematics in one format. From the OMDoc2 perspective, mathematical documents
where both aspects are adequately marked up are the ideal flexiformal structures.
Therefore, while supporting the same formalization and presentation workflows
as MathML, we use flexiformalization to refer to the process of adding semantic
or narrative information to a document.

We extend OMDoc2 with parallel markup by supplementing the narrative-
oriented notions of OMDoc (e.g. assertions, theorems, definitions, proofs, etc)
with the content-oriented notations of MMT (e.g. constants, assignments, struc-
tures). This establishes the appropriate containers needed for parallel markup.
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We use the pre-existing OMDoc metadata infrastructure [3] to mark up the
cross-references that make up the parallelism relation, since this is more flexible
and can be harvested by standard metadata harvesters.

We see an instance of statement-level parallel markup in Figure 1. The narra-
tive structure (a paragraph with a numbered classification) is given on the left;
one phrase (the definiendum) is marked by emphasis, other parts – the nota-
tion and the definiens are left implicit. The OMDoc narrative elements provide
markup for these – here indicated by boxes – and metadata for cross-references –
here dashed arrows. On the right side we see the MMT formalization as a typed
constant declaration with a definiens – τf. is the description operator that de-
fines the constant exp as “that function f , such that . . . ”. The three parts of
the constant declaration are given syntactically in MMT, and can – with the
extensions proposed here – be integrated into the parallel markup.

3 Adoptions

Adoptions introduce a new kind of theory morphism that differs from the two
primary MMT ones in its dynamics. Currently MMT has

structures which contribute to the specification of a target theory by importing
the symbols and axioms of the source theory (modulo a mapping).

views which establish a meaning-preserving mapping between two pre-existing
theories by satisfying proof obligations (proving the translated axioms of
the source) in the target theory. Semantically they show that the target is a
specialization or implementation of the source.

For meaning adoption we have a situation that is somewhere in-between. For
instance, we have the situation of a recap in the introduction of a paper. This
briefly introduces the concepts and properties necessary to make the paper self-
contained without giving a full development. Instead, their meaning is estab-
lished by adopting the referenced development – which we assume to be in the
form of a theory (graph) for this discussion. The reader can remember or ac-
cept the content of the recap or read up on the referenced source. In a theory
graph-based setting we want to understand the relation between a recap and its
source as a constitutive relation; we call it an adoption. An adoption behaves
dynamically like a structure in that it adds to the specification of its target –
like a structure it does not have/need proof obligations, but logically acts like a
view from the target to the source, in that it makes the recap a specialization of
the full development.

Consider the situation where the symbols of a theory S are imported in T
via a partial inclusion i, and their meaning is specified via a postulated view
v : T → S. Then S and T form an adoption and there is an adoption morphism
i/v from S to T .
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4 Scenario: Grounding Course Materials by Adoption

We will now look at a typical situation where parallel markup and adoption hap-
pen and work out the details of postulated views and the influence on property
and symbol inheritance.

Take for instance a course which introduces (naive) set theory informally,
but grounds itself in a formal, modular definition of axiomatic set theory. Then
we have the situation in Figure 2. On the right hand side, we have a careful
introduction in the form of a modular theory graph starting at a theory ZFset
that introduces membership relation and the axioms of existence, extensionality,
and separation and defines the set constructor {·|·} from these axioms. On the
left we have a theory SET that adopts the symbols ∈ and {·|·} via a partial
inclusion a1 from ZFset to SET but “defines” them by alluding to the intuitions
of the students. Note that such a partial inclusion always gives rise to a view in
the opposite direction, here the view v1 from SET to ZFset. We cannot discharge
the proof obligations in v1, since the definition of the set constructor {·|·} is
opaque – i.e. given as natural language, which is not subject to formal methods.
As introduced above we think of v1 as a “definitional view” that gives meaning
to the opaque parts in SET: the proof obligations have to be met in order for
the diagram to commute (which is an invariant we want to maintain). Then Set
and ZFset form an adoption morphism.

The setting also accommodates parallel markup nicely. The “definition” of
{·|·}, which is similar to the left side of Figure 2 fits into theory SET and the
formal counterpart into ZFset. Note that the “top-level” parallel relation between
the narrative definition and the constant declaration is directly induced by the
adoption morphism a1/v1.

Fig. 2. A course grounded in a modular Library

The informal course materials continue by introducing the set operations rang-
ing from set union to the power set in one go in the theory SETOPS. On the
library side, we introduce the set theory axioms one by one, derive the respec-
tive operators from them, and at the end collect all the material in the theory
ZFops. At this point, we can justify the theory SETOPS via a partial inclusion
of the symbols ∪, . . . , P from ZFops, which gives rise to another definitional
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view v2 to ZFops. As MMT allows inclusions between morphisms we can reuse
the assignments from v1 when defining v2, as indicated by v2 : incl v1.

We observe that the two theory graphs are self-contained: the course mate-
rials can be understood without knowing about the library; in particular, the
membership relation used in the definition of the union operator in SETOPS is
from theory SET. This self-containedness is important for intra-course didactics,
but it has the problem that the courses become insular; how are students going
to communicate with mathematicians who have learned their maths from other
courses? Here is where the views vi come in. Say the other mathematicians have
course theories SET and SETOPS with views v1 and v2 into the same library,
then the views v1 and v1 induce a partial isomorphisms between SET and SET
in the sense of [2] (and correspondingly between SETOPS and SETOPS) that
justify communication.

5 Conclusion

Most mathematical knowledge is laid down as mathematical vernacular in the
form of rigorous, but informal documents. Theory-graph-based approaches, have
been very successful in providing modularity and avoiding redundancy in for-
mal methods, but cannot directly be applied to informal content since that is
opaque to formal methods. In particular informal content does not offer the sub-
structures to anchor the meaning-giving relations to. In this paper, we present
two interrelated measures to alleviate this problem: 1. statement and formulae-
level parallel markup 2. meaning adoption via postulated views, and show their
contribution on examples. We are already testing these two in a semantic, multi-
lingual glossary of mathematics and course materials for an introductory course
on computer science.
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Abstract. In this talk we present the formalization and formal verifica-
tion of the complexity analysis of Buchberger’s algorithm in the bivariate
case in the computer system Theorema as a case study for using the sys-
tem in mathematical theory exploration.

We describe how Buchberger’s original complexity proof for Groebner
bases can be carried out within the Theorema system. As in the original
proof, the whole setting is transferred from rings of bivariate polyno-
mials over fields to the discrete space of pairs of natural numbers by
mapping each polynomial to the exponent vector of its leading mono-
mial. The complexity analysis is then carried out in the discrete space,
mostly by means of combinatorial methods that require many tedious
case distinctions, making this proof a natural candidate for automated
theorem proving. However, following our Theorema philosophy, we do
not expect general theorem provers (like resolution provers) to carry out
this task in a natural and efficient way. Rather, we designed and im-
plemented a special prover for such proofs. We show how the Theorema
philosophy of working in parallel both on the meta level (designing and
implementing special provers) and on the object level (design of the no-
tions and theorems) of a theory can lead to a new quality and style of
mathematical research.

Keywords: Groebner basis, Buchberger algorithm, mathematical the-
ory exploration, complexity analysis, Theorema.

1 Introduction

The purpose of this talk is to present a major case study in how mathemati-
cal theory exploration can be carried out in the Theorema system: Theorema
[16,10] is a system which was initiated by Bruno Buchberger and developed in
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his Theorema group at RISC since the the mid-nineties. It uses the computer
algebra systemMathematica [13] as software frame. Its user interface is currently
re-designed and -implemented (Theorema Version 2.0). The case study that is
presented here explores the complexity of Buchberger’s algorithm [1,2,7] for com-
puting Groebner bases of polynomial ideals over fields in the bivariate case.

It is important to note already at this point that the underlying theory (i. e.
the complexity analysis) is not “new” in the sense that it was developed only
recently with the help of the Theorema system, but in fact it was already devel-
oped more than 30 years ago by Buchberger in [3,4,5]. This, however, allows one
to observe one of the essential strategies of Theorema: It is easily possible to take
an existing theory produced step by step in ordinary mathematical notation, and
convert it into a completely formal version in almost exactly the same (natural
mathematical) notation in Theorema with hardly any effort. Significant portions
of the proofs can then be generated automatically by using existing Theorema
provers and designing a few others (which might be used later again in similar
but different theories).

The focus of this talk is not on Theorema itself – how it is implemented,
how it works, etc. – but mainly on how it can be used in mathematical theory
exploration, i.e. in the everyday-life of “working mathematicians”.

2 Theoretic Background

The case study in this paper is concerned with the analysis of the complexity
of Buchberger’s algorithm [1,2,7] in the bivariate case. Buchberger’s algorithm
computes so-called Groebner bases of polynomial sets over fields. A number of
fundamental problems for polynomial ideals can be solved once a Groebner basis
for the ideal is known.

Hence, deriving bounds on the complexity of this algorithm has been of in-
terest since the introduction of Groebner bases: Even the very first presentation
of the algorithm in Buchberger’s 1965 PhD thesis already contained a rough
analysis. Later [3,4,5] Buchberger concentrated especially on the bivariate case
and managed to derive tight bounds on the degrees of the polynomials in the
Groebner basis both in the case of using graded admissible term orderings and
pure lexical orderings. These degree-bounds are expressed in terms of the degrees
of the polynomials in the input basis.

For the sake of completeness it has to be mentioned that it is well-known al-
ready for a long time that Buchberger’s algorithm has double exponential time-
and space complexity in the number of indeterminates [14], and that the degrees
of the polynomials in the Groebner basis resulting from an application of Buch-
berger’s algorithm are polynomial in the maximum degree of the polynomials in
the input set, if the number of indeterminates is fixed [12,15].

The complexity analysis in [3] and [5] proceeds in the following way: First of
all, the whole problem setting is transferred from K[x, y], the ring of bivariate
polynomials over the field K, to the discrete space N2 by mapping each non-
zero polynomial to the exponent vector of its leading monomial w. r. t. some
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graded admissible ordering. The rest of the elaboration is combinatorial, mainly
distinguishing between all possible cases that might occur during the algorithm.
None of these cases requires deep mathematical thinking so that the exploration
lends itself to automated theorem proving (It should be noted, however, that
the set-up and flow of the proof - which is basically the invention of a suitable
degree invariant in the main loop of the algorithm - is non-trivial).

We followed the ideas of [3,5] in our formalization, with some slight deviations:

1. The domain of the exponents is not restricted to N, but to so-called totally-
ordered Abelian monoids D,

2. As much as possible, the number of indeterminates n is not restricted to two
since some results also hold for general n

3. In the bivariate case, a different partition of the “exponent space” D2 is
chosen which is different from the one in [3]; In fact, it is not a partition,
but only a cover.

The first two deviations were made for the purpose of making everything as gen-
eral as possible. A totally-ordered Abelian monoid is a commutative semigroup
with unit, where in addition

– The monoid operation possesses the so-called cancellation property, meaning
that x+ z = y + z is always equivalent to x = y.

– A total order relation ≤ is defined, which also has the cancellation property
in the sense that x+ z ≤ y + z is always equivalent to x ≤ y.

It is quite easy to see that N is such a totally-ordered Abelian monoid, as are Z,
Q, R and even C with a lexicographic ordering.

The third deviation is a simplification: It turns out that the proof of the main
theorem in [3] can be simplified a bit, and that a big part of the proof of the
main theorem in [5] becomes superfluous, if our new partition (or cover) is used1.

3 Formalizing the Theory in Theorema

Formalizing a mathematical theory in Theorema does not require any knowl-
edge that goes beyond the mathematical knowledge and mathematical thinking
culture of a “working mathematician”. In particular, no specific programming
language needs to be known and no special syntax has to be learned. Rather,
Theorema syntax is just a “cultivated” version of ordinary (“two-dimensional”)
mathematical syntax. However, it is “formal” in the sense that it can be pro-
cessed by algorithmic inference techniques.

As an example, consider the aforementioned criterion that detects unnecessary
steps in Buchberger’s algorithm (the chain criterion):

1 For the readers familiar with the proof strategy in [3,5]: There, the focus is very
much on contours of sets of points in N2, and quite some effort is needed to reduce
the general case to the case of contours. This is not needed at all.
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Definition 1. For all x, y and A:

chainCrit(x, y, A) :⇔ ¬ ∃
1≤j≤|A|

⎛⎝∧⎧⎨⎩
Aj |z

deg(lcm(x,Aj)) < deg(z)
deg(lcm(Aj , y)) < deg(z)

⎞⎠
where z denotes lcm(x, y).

This textbook-style definition already comes very close to the Theorema syntax:
There, one also has quantifiers, abbreviations, subscripts, and many other syn-
tactic constructs available. Hence, for reading and writing Theorema definitions
and theorems, one does not have to get acquainted to a new, unnatural notation
first.

3.1 Details of the Formalization

Formalizing a theory in Theorema is not straightforward in the sense that many
decisions have to be made regarding how the theory should be formalized and
which goals one wants to achieve. The need for making decisions is not a defi-
ciency of the Theorema formal approach to mathematics but, rather, a system
like Theorema should allow to set up a theory in many different “views” and
styles according to the tastes and exploration goals of the person working with
the system.

One decision we had to make, for instance, was about using functors [6,17,8]
for building up towers of domains in a structured way; In particular, as already
indicated above, we did (and do) not want to restrict ourselves to the case of
pairs of exponents over N. Hence, the first idea at hand is to use a functor that
maps domains D and natural numbers n to the domain of exponent vectors of
length n over domain D and defines all the necessary operations on them (like
chainCrit). However, later it turned out that in each part of the theory always
one particular domain D and dimension n are fixed anyway, meaning that even
in proofs one does not have to fall back to other choices of D or n. Thus, a
functor is not needed, and so we dropped it and introduced “global constants”
for D and n instead.

3.2 Computations

If one wants to actually carry out computations involving notions such as chain-
Crit in Theorema, there is no need to do anything further than entering the
definition into the system, in a form which is very close to usual textbook no-
tation (c. f. definition 1). As soon as this is done, one can immediately compute
with the notion, which is because the equational part of higher-order predicate
logic (the rewrite mechanism that successively replaces equals by equals (in a
directed way) until no more replacements are possible) can be considered as the
interpreter of a universal programming language. In other words, part of the
(Theorema version of) predicate logic is a programming language.
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For instance, if one wants to check whether the chain criterion holds for ex-
ponent vectors 〈10, 0〉 and 〈0, 12〉 and tuple 〈〈10, 0〉, 〈11, 10〉, 〈0, 12〉〉 of exponent
vectors, one basically just has to type in

chainCrit[〈10, 0〉, 〈0, 12〉, 〈〈10, 0〉, 〈11, 10〉, 〈0, 12〉〉]

and hit shift+enter - Voilà! The result will be True, meaning that the chain
criterion indeed holds.

Note that Theorema provides built-in support for tuples: Tuples are simply
represented as sequences of expressions enclosed in angle brackets. Either the
individual elements are given explicitly, or a quantifier may be used to construct
the elements of the tuple. For the sake of convenience we decided to represent
exponent vectors as tuples, too.

4 Designing a New Prover in Theorema

One of the main ideas behind Theorema is the the philosophy that automated
reasoning can practically only be carried out if an entire hierarchy of special
provers is at the disposal of the user, each designed for proving theorems in a
certain theory. This is in contrast to having only one single proving technique
(e. g. resolution) available, which, theoretically, would be sufficient but does not
generate short and structured proofs. The key strategy for this approach is “prov-
ing by intermediate principles”, introduced in [9].

Therefore, we also decided to create a new prover for our own purpose, which
should be capable of proving theorems in the present theory of complexity anal-
ysis. This prover is, in particular, able to handle tuples, total order relations,
associative-commutative operations, and functions related to minimum and max-
imum in a way which is both correct and concise.

Creating a new prover in Theorema is a bit more involved than formalizing
a theory: Since it operates on objects of the object level (formulas), the prover
itself is an object of the meta level. We chose Mathematica as the meta-language
for Theorema, which means that new provers have to be implemented directly in
Mathematica. Thus, users who want to add new provers to Theorema, must know
how to program in Mathematica. If one knows (basic) Mathematica, writing a
prover is again easy: It only consists of two parts: The first part is designing a
collection of inference rules, each transforming one proof situation (given by a list
of formulas constituting the current knowledge and a single formula constituting
the current proof goal) into new proof situations in a style which very much
resembles sequent calculus proving. The second part consists of finding a good
strategy that guides the proof search, i. e. decides in which order the rules are
tried, whether all applicable rules or only the first one are applied, etc. The
two parts are independent of each other in the sense that one can combine
the inference rules and strategies in any way; In particular, when creating a new
prover it is possible to only specify the inference rules but use an already existing
strategy, or the other way round.
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Here, a subtle problem of automated proving has to be mentioned: Before
one can really trust the output produced by an automated prover, one first has
to verify the prover itself, i. e. prove it correct. Otherwise, there will always be
a logical gap in the computer-supported treatment of formalized mathematics.
Now, since provers in Theorema have to be implemented in Mathematica (on the
meta level) and can thus not be the subject of computations of whatever kind
on the object level in Theorema, this implies that Theorema cannot be used for
verifying its own provers. Although some research has already been and is still
being conducted to overcome this issue in Theorema (c. f. [11]), at the present
stage one still has to live with it. And, of course, mathematical proving without
a proving system has to “trust” that the human prover is correct in each and
any individual proof step.

5 Verifying the Theory in Theorema

As soon as both the formalization has been done and a suitable prover has
either been implemented or chosen from a list of already existing ones, one can
immediately start proving. For this, one just has to set up the proof task, i. e.
select the formula one wants to prove (the proof goal), the formulas one wants
to use (the knowledge base), and some other options depending on the prover
and proof strategy selected (e. g. which of the inference rules one really wants
to make use of, parameters concerning search time and -depth, or the degree of
user interaction). Finally, one clicks a button and waits until a result is obtained
- unless some of the inference rules require user interaction, such as finding
witnesses for existentially quantified proof goals or selecting the proof branch
that looks most promising.

Indeed, the prover we created in the frame of our complexity analysis relies
on such user interaction to some extent: Apart from the usual tasks that might
come to one’s mind and that have been pointed out above, like instantiating
quantifiers in a clever way, we also allow the user to

– select an implication in the knowledge base, first prove its premise in a sub-
proof, and then continue with the original goal, having the consequence of
the implication among the assumptions, and to

– “exchange” the current goal and a formula in the knowledge base by putting
their negations “on the other side”, i. e. from goal to knowledge and from
knowledge to goal, respectively.

Both of these strategies proved to be quite convenient on several occasions.
Another feature of our prover is that it heavily makes use of (conditional)

rewriting of terms and formulas by rewrite rules originating from formulas in
the knowledge base. For instance, if

∀
x,y,A

chainCrit(x, y, A� x) ⇔ chainCrit(x, y, A)



Complexity Analysis in Theorema 47

is known2, then every (sub-)formula of the form

chainCrit(x, y, A� x)

in the proof situation (with x, y and A arbitrary terms) can actually be replaced
by

chainCrit(x, y, A)

All this is not something we invented only for our own purpose, but rather it is
once again a fundamental concept in the philosophy of Theorema.

6 Conclusion

We want to demonstrate that the Theorema system, whose user-interface is
currently redesigned, provides a good approach for doing computer-supported
mathematics in a formal and formally verified way. Not only does computer-
supported theory exploration have all the advantages it is expected to have
(automatically finding proofs, performing computations, having well-structured
theories), but it also helps in improving the mathematical contents: We could
easily generalize the domain of exponents from N to totally-ordered Abelian
monoids, and we also realized that big parts of Buchberger’s original elaboration
are in fact superfluous, meaning that some of the proofs could drastically be
shortened. From a methodological point of view, this is interesting because - as
expected in our philosophy - formal treatment of mathematics will often lead
also to improvements and purification of the mathematical ideas themselves.
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Abstract. Theorema 2.0 stands for a re-design including a complete re-
implementation of the Theorema system, which was originally designed,
developed, and implemented by Bruno Buchberger and his Theorema
group at RISC. In this talk, we want to present the current status of the
new implementation, in particular the new user interface of the system.

Keywords: Theorema, mathematical assistant system, automated the-
orem proving, theory exploration, user interfaces, GPL.

1 Introduction

Theorema 2.0 is—like its predecessor versions—based on Mathematica, which
means that it is implemented in the Mathematica programming language and
that it uses the Mathematica notebook front end as its user interface. Unlike
the command-oriented interaction pattern typically propagated in Mathemat-
ica applications, Theorema 2.0 is heavily based on the graphical user interface
capabilities supported in recent versions of Mathematica. As a result, the user
needs the keyboard only for typing the mathematics (definitions, theorems, ex-
planatory text) into the system, all actions to be performed are guided by the
graphical user interface. This approach fosters the convergence of writing for-
mal mathematics towards writing normal mathematics, because the overhead
when writing a Theorema document compared to writing a standard mathemat-
ical document shrinks to almost zero. Moreover, the learning curve for using a
mathematical assistant system is considerably flattened and the system will be
more attractive, in particular for beginners.

A first version of Theorema 2.0 has already been presented in [Win12], where
an emphasis was put on the new graphical user interface. In this presentation,
we report on improvements and further extensions, but also on some new devel-
opments in the system that are not connected directly to the user interface.

Theorema 2.0 runs on all platforms, on which Mathematica is available. Math-
ematica is needed to run the system, but the Theorema system itself is open
source licensed under GPL and is available at GitHub.
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2 How to Use the Theorema System

When using (mathematical) software it is important for the user to exactly un-
derstand, for which intended purpose the software has been developed. Of course,
there are examples of “legitimate fruitful abuse” (e.g. using a spreadsheet program
to illustrate iterative algorithms when teaching mathematics) but in general the
user is better off when she uses the software in line with the developers’ intentions.

Much of mathematical software falls into the category of algorithm libraries,
i.e. collections of algorithms for certain more or less well described application
areas, like linear algebra, polynomial equations, geometry, differential equations,
first order theorem proving, and the like. For each of the algorithms there is an
input-output-specification and the systems differ in the range of problems that
can be solved, the computational efficiency, or the input/output format. For the
Theorema system, the situation is a bit more complex since Theorema tries to be
a mathematical assistant system that supports the mathematician during all her
mathematical activities, from first scratch work on some topic, through giving
definitions of mathematical notions, formulating conjectures, proving theorems,
formulating algorithms, executing algorithms on concrete input data, organizing
the knowledge in order to reuse it in the future, composing lecture notes until
finally writing a proper mathematical publication.

Although computer-support for automated or interactive theorem proving is
in our main focus, the acceptance of a mathematical assistant system does not
depend solely on the power of the prover. The huge variety of different working
styles and habits is a major challenge for the user interface. Fig. 1 shows the
new interface of Theorema 2.0, which consists of one or more Theorema notebook
documents (left) and the Theorema commander (right).

In addition to standard Mathematica notebook features, a Theorema note-
book supports Theorema environments, which contain blocks of formal mathe-
matics such as definitions or theorems. The name of the environment (“Facts”
in Fig. 1) can be freely chosen, it serves only structuring purposes and carries
no semantics. Inside an environment, formal mathematics is written in cells of
a particular style defined by the Theorema system, in fact by the Theorema
stylesheet that is required to be used for Theorema notebooks. Formal mathe-
matics is written in a very rich version of the language of predicate logic in com-
mon two-dimensional notation and must be executed (like Mathematica input
in a standard Mathematica notebook) in order to become known to Theorema
within the current session. It is important to note that the stylesheet does not
only define the optical appearance of formal mathematics cells but also their
functionality. We use the possibility to define actions to be executed before and
after the cell content is processed and only so it is guaranteed that Theorema
input is processed correctly. An important consequence of this setting is that
Theorema does not interfere Mathematica in any way, the whole functionality of
Mathematica can be accessed in standard Mathematica input cells. Every formal
math cell carries a label through which the formula can be referenced (e.g. in a
proof). In order to accommodate common practice, formal mathematics can be
intermixed with plain informal text as shown in Fig. 1 also.
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Fig. 1. Theorema 2.0 user interface

The Theorema commander is responsible to guide the user through all sorts of
activities (to be selected in the left column in the commander) to be performed
on the formal mathematics written in the notebooks. For every activity chosen,
the commander opens a wizard that guides the user through the concrete actions
in that activity. The “Session”-activity, for instance, has the actions “compose”,
“inspect”, and “archives” helping to compose notebook content, inspect the
formulas available in the current session, and setting up of knowledge archives,
respectively.

Example 1 (How to prove a theorem). In order to prove a theorem, the sys-
tem needs the theorem (= the proof goal), the knowledge base available, and
the proving method to be applied (since Theorema is a multi-method system).
The prove-activity with its actions “goal”, “knowledge”, “built-in”, “prover”,
“submit”, and “inspect” guides the user through this process.

1. The goal is specified by simply selecting the cell containing the theorem in
the notebook.

2. The knowledge base consists of a) user-defined knowledge contained in some
environments possibly spread over several notebooks and b) Theorema built-in
knowledge that can be added to the knowledge base, e.g. on built-in arithmetic
operations. For composing user-defined knowledge, Theorema 2.0 provides the
knowledge browser, which contains for each Theorema notebook available in the
current session a structured outline, in which all (groups of) formulas that should
go into the knowledge base can be checked by mouse-click. A similar mechanism
is used to select built-ins.

3. A prover in Theorema 2.0 is a collection of inference rules. Rules are grouped
into categories (e.g. quantifier rules) that are displayed in the rule browser. In
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analogy to the knowledge browser (groups of) rules can be activated or deac-
tivated by mouse-click. In addition, rule priorities for their application during
the proof search and the granularity of the resulting proof can be adjusted by
the user.

4. When all settings are finished the collected data is submitted to Theorema
by mouse-click and the answer of the system is printed into the notebook directly
underneath the environment containing the goal. In addition to a summary of all
settings the answer contains most importantly a button to display the proof and
a button to regenerate the proof using the original settings. The proof displays
in a separate window with natural language explanation and the “inspect”-
panel in the commander shows the corresponding proof tree as an alternative
representation. Clicking the mouse in one of the representations will reposition
the cursor in the other representation for quick navigation through a proof.

3 System Highlights

All actions to be performed in the system are mouse-driven, there is no need for
the user to call complicated functions with lots of parameters in order to initiate
some action. The interaction pattern should be more like using a web shop in
the internet.

The proof methods are highly configurable through the Theorema comman-
der. It should be easy for the user to adjust the behavior of the system as
appropriate for a concrete problem.

Computation is an integral component in the provers. Every formula is silently
simplified by computation as soon as it enters a proof. The computational knowl-
edge applied is subject to user configuration, no user is forced to use Theorema
built-in knowledge in a proof.

Formula input is supported both through palettes with mouse-click and
through keyboard shortcuts. Structural input of formulas following their tree
structure is supported, “invisible parentheses” guarantee correct grouping with-
out any need for operator precedences.

Theorema notebooks can be setup to contain theories, which can be exported
and stored in a format to be later imported and re-used in other notebooks
or theories. The namespaces are separated such that naming collisions between
theories are avoided.
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Abstract. We introduce a new approach in black box group theory
which deals with black box group problems in the category of black
boxes and their morphisms. This enables us to enrich black box groups
by actions of outer automorphisms such as Frobenius maps or graph
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new technique, we present a number of new results, including a solution
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Lie type of odd characteristic.
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1 Black Box Groups

A black box group X is a black box (or an oracle, or an algorithm) operating on
0 − 1 strings of uniform length which encrypt elements of some finite group G.
The procedures performed by a black box are specified as follows.

BB1 X produces strings of fixed length l(X) encrypting random (almost) uni-
formly distributed elements from G; this is done in probabilistic time poly-
nomial in l(X).

BB2 X computes, in probabilistic time polynomial in l(X), a string encrypting
the product of two group elements given by strings or a string encrypting
the inverse of an element given by a string.

BB3 X decides, in probabilistic time polynomial in l(X), whether two strings
encrypt the same element in G—therefore identification of strings is a
canonical projection

X
π−→ G.

In this situation we say that X encrypts the group G.
A natural question here is to determine the isomorphism type of a black box

group X or, if it is known, find an isomorphism between X and its natural copy.
To that end, we need additional assumptions about X, which we are keeping to
a minimum by adopting an additional axiom.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 53–58, 2014.
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BB4 We are given a global exponent of X, that is, a natural number E such
that π(x)E = 1 for all strings x ∈ X while computation of xE is computa-
tionally feasible (say, logE is polynomially bounded in terms of log |G|).

Note that axioms BB1–BB4 hold, for example, in matrix groups over finite
fields where we can take for E the exponent of the ambient GLn(q).

In this paper, we assume BB1–BB4 and are concerned with structure recov-
ery of black box groups X encrypting an explicitly given group G of Lie type
over Fq, that is, with constructing, in probabilistic polynomial time in log |G|,

– a black box field K encrypting Fq, and
– a morphism Ψ : G(K) → X.

Unlike the constructive recognition algorithms of black box groups [7–11],
we shall note here that we are not using a discrete logarithm oracle or an
SL2(q)-oracle, see [4] for a detailed discussion of the hierarchy of black box group
problems.

2 Morphisms and Automorphisms

Let X and Y be two black box groups encrypting the groups G and H , respec-
tively. We say that a map ζ, which assigns strings from X to Y, is a morphism
of black box groups if

– the map ζ is computable in probabilistic time polynomial in l(X) and l(Y);
and

– there is an abstract homomorphism φ : G → H such that the following
diagram is commutative:

X
ζ−→ Y

πX ↓ ↓ πY
G

φ−→ H

where πX and πY are the canonical projections of X and Y onto G and H ,
respectively.

In this case we say that a morphism ζ encrypts the homomorphism φ. Observe
that replacing a given generating set of a black box group X by a more suitable
one means that we construct a new black boxY and work with the corresponding
morphism Y → X.

The first result based on this new philosophy is “amalgamation of local auto-
morphisms”:

Theorem 1. [4, Theorem 5.1] Let X be a black box group encrypting a group
G. Assume that G contains subgroups G1, . . . , Gl invariant under an automor-
phism α ∈ AutG and that these subgroups are encrypted in X as black boxes Xi,
i = 1, . . . , l, supplied with morphisms

φi : Xi −→ Xi
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which encrypt restrictions α |Gi of α on Gi. Assume also that 〈Gi, i = 1, . . . , l〉 =
G. Then we can construct, in time polynomial in l(X), a morphism φ : X −→ X
which encrypts α.

This theorem can be applied, for example, to groups of Lie type and systems
of root SL2-subgroups corresponding to the nodes in the associated Dynkin di-
agrams. That way, we construct the following automorphisms of groups of Lie
type.

(1) Frobenius maps on groups of Lie type of odd characteristic [4];
(2) Graph automorphisms of SLn(q), Dn(q) (including the triality of D4(q)),

F4(q), and E6(q) (for odd q) [6].

Interestingly, construction of graph automorphisms in black box groups of Lie
type of odd characteristic does not use information about the underlying field.
Further manipulation with morphisms between root SL2(q)-subgroups yields, for
example, the following (field-independent) black box embeddings constructed in
time polynomial in log q and n:

– SUn(q) ↪→ SLn(q
2);

– G2(q) ↪→ SO7(q) ↪→ SO+
8 (q) ↪→ SL8(q);

– 3D4(q) ↪→ SO+
8 (q) ↪→ SL8(q);

These embeddings are implemented in GAP for various fields but notably we
construct the embedding SU3(p) ↪→ SL3(p

2) for the 60 digit prime

p = 622288097498926496141095869268883999563096063592498055290461.

Notice that the size of SL3(p
2) is bigger than 10960.

Another very important corollary of Theorem 1 is that if the action of an
involutive automorphism a of G is known on some a-invariant subgroups of G
generating G, then we can transfer the action of a on these subgroups to whole
group G. We call this process a reification of a. More precisely, we have

Theorem 2. [4, Theorem 7.1] Let X be a black box group encrypting a finite
group G. Assume that G admits an involutive automorphism a ∈ AutG and
contains a-invariant subgroups H1, . . . , Hn where a either inverts or centralizes
each Hi.

Assume also that we are given black boxes Y1, . . . ,Yn encrypting subgroups
H1, . . . , Hn. Then we can construct, in polynomial time,

– a black box for the structure {Y, α }, where Y encrypts H = 〈H1, . . . , Hn〉
and α encrypts the restriction of a |H of a to H;

– a black box subgroup Z encrypting Ω1(Z(CH(a))), the subgroup generated by
involutions from Z(CH(a));

– if, in addition, the automorphism a ∈ G and H = G then α is induced by
one of the involutions in Z.
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An immediate application of Theorem 2 is that we can append a diagonal
automorphism d of PSL2(q) to a black box group X encrypting PSL2(q) to
obtain a black box group Y = X� 〈δ〉 encrypting PGL2(q), where δ encrypts d,
see [5] for details. This construction plays a crucial role in the proof of Theorem 3
below.

In addition, if a is an inner involutive automorphism in a group G of small
2-rank, after reification it can be identified with a string in X .

It turns out that construction of an involution in black box groups encrypting
PGL2(2

k) by Kantor and Kassabov [12] is a special case of Theorem 2, see [4] for
further discussion. Moreover, the construction of a black box projective plane is
based on reification of involutions.

3 PSL2(q): Structure Recovery and Unipotent Elements

This is our principal result.

Theorem 3. [5] Let Y be a black box group encrypting PSL2(Fq) for q = pk of
known odd characteristic p. Then we construct, in probabilistic time polynomial
in log q,

– a black box group X encrypting PGL2(Fq) and an effective embedding

Y ↪→ X;

– a black box field K of order q, and
– polynomial in log q time isomorphisms

Y
↓

PGL2(Fq) � PGL2(K) � X −→ SO3(K)

where Fq is the standard explicitly given field of order q.

Construction of unipotent elements in X is an automatic corollary, but can
be actually done at early stages of the proof of this theorem.

Our approach to the proof is recovery, within X, of geometric structures aris-
ing from the adjoint representation of the group PGL2(q) on its Lie algebra sl2
seen as an inner product space with respect to its Killing form—this explains
appearance of the morphism

X −→ SO3(K)

in the statement of Theorem 3.
Our proof in [5] starts by exploiting the fact that the set of involutions in X is

the set I = P�Q of regular points in projective plane P over sl2 with a quadric
Q (coming from the Killing form), and the points in Q are the Borel subgroups
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in X. There are also two types of lines in P: regular and parabolic. The regular
lines are the polar images of regular points

π(t) = {x ∈ I | [t, x] = 1 and t �= x}. (1)

The parabolic lines correspond to Borel subgroups B in X and consist of invo-
lutions inverting a maximal unipotent subgroup U of B, together with U itself
seen as a point in P.

It turns out that the set I is a finite symmetric space with the conjugation
operation ◦, for s, t ∈ I, s ◦ t = ts, forming a finite field analogue of the real
hyperbolic (Lobachevsky) plane viewed as a symmetric space. The black box
field K is built by applying the Hilbert’s coordinatization on this Lobachevsky
plane I. The analysis of the action of X on I produces the morphism

X −→ SO3(K).

Constructing the black box field by coordinatizing the Lobachevsky plane enables
us to construct arbitrary elements in P with specified coordinates. In particu-
lar, we can construct unipotent elements in X encrypting PGL2(q), which are
precisely the points on the quadric Q.

4 Toolbox in Lobachevsky Plane

It is shown in [5] that the following procedures are performed in time polynomial
in log q inside the Lobachevsky plane constructed in X. So we construct a black
box that

(a) produces uniformly distributed points from I;
(b) checks the equality of points;
(c) checks collinearity of triples of points;
(d) for any two points s, t ∈ I, computes the half turn of t around s, which we

denote by s ◦ t;
(e) for any involution t ∈ I, produces uniformly distributed regular points in

the polar image of t:

�(t) = { s ∈ I | s ◦ t = t and s �= t };

(f) for any two distinct points s, t ∈ I, produces uniformly distributed regular
points on the line s ∨ t through s and t;

(g) for a regular line through two distinct points s and t, constructs its pole,
which is the involution commuting with both s and t;

(h) for any two distinct lines k and l, finds its intersection point k ∧ l or, if the
lines k and l do not intersect in I and therefore their intersection point z
belongs to Q, computes the unipotent element.

(i) for a point s ∈ I, computes the polar projection

ξs : I� { s } −→ π(s)
x �→ π(x) ∧ (s ∨ x);
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(j) for any two points s, t ∈ I conjugate under the action of X, finds r ∈ I such
that r ◦ s = t;

(k) represents any element of X as a product of two involutions from X.

As an example, we show how we draw the line passing through two distinct
points s, t ∈ I as in item (f). For an involution x ∈ X denote by Tx the maximal
torus in CX(x).

If z = st is a unipotent element then 〈zTs〉s is a parabolic line. Otherwise
observe that it suffices to construct the involution j := j(s, t) which commutes
with both s and t. Indeed, the line passing through s and t is the coset Tjw
where w is an involution inverting Tj , see Equation (1). If z = st has even
order, then j is the involution in 〈z〉 which can be constructed by using square
and multiply method. However, if z has odd order, then we can not construct j
immediately but we know its action on X:

– j centralizes 〈z〉,
– j inverts every element in the torus Ts.

Hence, j(s, t) can be reified from these two conditions by using Theorem 2.
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Abstract. We report on the functionality and the underlying theory of
the GAP package CoReLG (Computing with Real Lie Groups)1; it pro-
vides functionality to construct real semisimple Lie algebras, to check for
isomorphisms, and to compute Cartan decompositions, Cartan subalge-
bras, and nilpotent orbits.
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1 Introduction

An n-dimensional Lie algebra over a field F is an n-dimensional F-vector space
g, furnished with a bilinear multiplication

[−,−]: g× g → g, (a, b) �→ [a, b]

which satisfies [u, u] = 0 and [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (Jacobi iden-
tity) for all u, v, w ∈ g. Studied originally over the complex field F = C, Lie
theory originated in the 19-th century in the work of the Norwegian mathemati-
cian Sophus Lie. Since then it has developed tremendously and it has become
one of the central areas of 20-th and 21-st century mathematics, finding many
applications in such diverse fields as physics, geometry, and group theory. In the
second half of the 20-th century, the development of the computer provided a
new research tool in Lie theory. Algorithms were developed and implemented on
computer for various tasks related to Lie theory. Initially, this mostly concerned
the combinatorial formulae for investigating representations of Lie groups due to,
for example, Weyl and Freudenthal. The success of this endeavour has led to a
new field of research, called Computational Lie Theory, which is concerned with
the development of algorithms in Lie theory, their implementation on computer,
and their application to theoretical problems. Over the past decades several com-
puter programs in this area have emerged, for example, LiE [3], GAP [8], and

1 This work and the first author were supported by a Marie-Curie Fellowship (grant
no. PIEF-GA-2010-271712) and an ARC-DECRA Fellowship, project DE140100088.
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Magma [1]. The last two programs are large computer algebra systems having
well developed libraries for Computational Lie Theory.

The main focus in Computational Lie Theory has been on complex semisim-
ple Lie algebras and Lie groups, and their representations. However, an impor-
tant branch of Lie theory deals with real Lie groups and algebras. These are
of paramount importance in physics and differential geometry. Probably due to
the difficulty with dealing with the field of real numbers, which leads to vari-
ous phenomena of non-splitness, there has not been much attention to real Lie
groups in Computational Lie Theory. This changed at the beginning of the 21-
st century, when a large group in the United States set up a research program
to study real Lie groups by computational means. This is known as the Atlas
project [2], and its main goal is to study the unitary dual of a real Lie group.
An important problem in real Lie theory, not addressed by the Atlas project, is
the classification of the orbits of a real Lie group acting on a vector space.

In this paper, we report on our GAP-package CoReLG [7], for working with
real semisimple Lie algebras given by a multiplication table (which the Atlas
software does not do). As described in detail in the book [9], defining a Lie algebra
by its structure constants allows for a detailed investigation of its structure. We
remark that efficient algorithms for dealing with complex semisimple Lie algebras
are already available in the GAP-package SLA [10].

1.1 Notation

The aim of this section is to introduce necessary notation; we refer to any stan-
dard book (for example, [12], [13], and [14]) for details and proofs. The struc-
ture constants of an n-dimensional Lie algebra g with basis {v1, . . . , vn} are

{c(k)a,b}1≤a,b,k≤n, defined by

[va, vb] =
∑n

k=1
c
(k)
a,bvk.

The Lie algebra g is semisimple if it has no nontrivial abelian ideals, or, equiv-
alently, if it is the direct sum of simple Lie algebras, that is, nonabelian Lie
algebras which have no nontrivial ideals. The adjoint of g ∈ g is the map
adg(g): g → g, h �→ [g, h]. The Killing form of g is the bilinear map κg: g×g → C,
κg(g, h) = trace(adg(g) ◦ adg(h)). Each semisimple Lie algebra g defined over C
has a Cartan subalgebra H ≤ g, which is a maximal abelian subalgebra consists
of semisimple elements, that is, each h ∈ H has a diagonalisable adjoint. This
gives rise to the root space decomposition

g = H⊕
⊕

α∈Φ
gα where gα = {g ∈ g | ∀h ∈ H: [h, g] = α(h)g};

where Φ ⊆ H∗ consists of all linear maps H → C such that gα �= {0}. Since κg
is non-degenerate, for each α ∈ Φ there exists tα ∈ H with α(−) = κ(tα,−);
for α, β ∈ Φ define (α, β) = κg(tα, tβ) = α(tβ). Now V = SpanR(Φ) is an
Euclidean space with inner product (−,−); this is a root system. The theory
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of abstract root systems shows that there exist a basis of simple roots Π =
{α1, . . . , α�} ⊆ Φ (which also is a vector space basis of V ), and an associated
Weyl group, Cartan matrix, and Dynkin diagram. The Cartan-Killing-Dynkin
classification of simple complex Lie algebras states a one-to-one correspondence
between the isomorphism types of these Lie algebras and the isomorphism types
of Dynkin diagrams. The Dynkin diagrams are classified by their type: there are
four infinite families An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), and Dn (n ≥ 4), and
five exceptional types G2, F4, E6, E7, and E8.

If g is a simple Lie algebra defined over the real numbers, then either g is a
simple complex Lie algebra considered as real, or the complexification gc = g⊗RC
of g is a simple complex Lie algebra. In the latter case, g is a real form of
the simple complex Lie algebra gc. Each complex simple Lie algebra has, up
to isomorphism, only finitely many real forms. A Cartan subalgebra of a real
semisimple Lie algebra g is a nilpotent self-normalising subalgebra h ≤ g; its
complexification hc is a Cartan subalgebra of gc.

2 Applications

In this section, we describe some of the new functionality provided by our soft-
ware package CoReLG [7]; we give details on the underlying theory in Section
3. Our algorithms and implementations allow to investigate real (semi)simple
Lie algebras computationally: one can compute Cartan decompositions, Cartan
subalgebras, nilpotent orbits, and isomorphisms between Lie algebras. The field
SqrtField in the example output of our algorithms is the infinite-dimensional
number field Q(

√
−1,

√
2,
√
3,
√
5,
√
7 . . .); we give more details in Section 4.

2.1 Construction of Simple Real Lie Algebras

For every type of simple complex Lie algebra (An, Bn, Cn, Dn, G2, F4, E6,
E7, E8) there exist, up to isomorphism, only finitely many real forms. We pro-
vide functions RealFormsInformation, IdRealForm, and RealFormById which
construct these real simple Lie algebras; the example below considers type A3.

gap> RealFormsInformation("A",3);

There are 5 simple real forms with complexification A3

1 is of type su(4), compact form

2 - 3 are of type su(p,4-p) with 1 <= p <= 2

4 is of type sl(2,H)

5 is of type sl(4,R)

Index ’0’ returns the realification of A3

gap> L := RealFormById("A",3,4);

<Lie algebra of dimension 15 over SqrtField>

gap> IdRealForm(L);

[ "A", 3, 4 ]
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2.2 Cartan Subalgebras

We provide a function CartanSubalgebrasOfRealForm which constructs, up to
conjugacy, all Cartan subalgebras of a real semisimple Lie algebra.

gap> L := RealFormById("F",4,2);;

gap> CSA := CartanSubalgebrasOfRealForm(L);;

gap> Size(CSA);

8

gap> CSA[1];

<Lie algebra of dimension 4 over SqrtField>

2.3 Isomorphisms

The function IsomorphismOfRealSemisimpleLieAlgebras constructs, if exists,
an isomorphism between two given real semisimple Lie algebras. The function
VoganDiagram outputs the associated Vogan diagram, which determines the iso-
morphism type of the real form.

gap> L := RealFormById( "F", 4, 2 );;

gap> sc := StructureConstantsTable(Basis(L));;

gap> K := LieAlgebraByStructureConstants(SqrtField,sc);;

gap> iso := IsomorphismOfRealSemisimpleLieAlgebras(K,L);

<Lie algebra isomorphism between Lie algebras of dimension 52>

gap> Display(VoganDiagram(L));

F4: 2---(4)=>=3---1

Involution: ()

2.4 Nilpotent Orbits

The nilpotent orbits of a real simple Lie algebra g are the G-orbits of nilpo-
tent elements in g, where G is the adjoint group of g. If g has rank at most
8, then the function NilpotentOrbitsOfRealForm computes representatives of
the nilpotent orbits of g. These orbits have been precomputed and are stored
in a database; they are constructed as orbits in g by using the isomorphism
functionality described above. The function RealCayleyTriple returns a so-
called sl2-triple defining the orbit; its third component is a nilpotent element
representing the orbit.

gap> L:=RealFormById("A",3,3);;

gap> orb:=NilpotentOrbitsOfRealForm(L);;

gap> Length(orb);

9

gap> o:=orb[2];

<nilpotent orbit in Lie algebra>

gap> RealCayleyTriple(o);

[ (-1/4)*v.8+(-1/4)*v.14, (1/2)*v.2, (-1/4)*v.8+(1/4)*v.14 ]
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Our algorithms can answer the following questions: Let g be a real semisimple
Lie algebra with semisimple subalgebra a ≤ g; let s be the semisimple part of
the centraliser of a in g; what is the structure of s, that is, its Cartan subalge-
bras, Cartan decompositions, and its isomorphism type? The following example
considers the semisimple part c of the centraliser of a subalgebra a ≤ g with a
and g real forms of type A1 and E7, respectively.

gap> L:=RealFormById("E",7,2);;

gap> ch:=ChevalleyBasis(L);;

gap> A:=Subalgebra(L,[ch[1][1],ch[2][1],ch[3][1]],"basis");;

gap> C:=LieDerivedSubalgebra(LieCentraliser(L,A));;

gap> IdRealForm(C);

[ "D", 6, 5 ]

gap> Length(CartanSubalgebrasOfRealForm(C));

4

gap> Display(VoganDiagram(C));

(5)

/

D6: 1---2---3---4

\

6

Involution: ()

3 Underlying Theory

We comment on the underlying theory for the tasks described in Section 2, see
also [5] and [6].

3.1 Construction of Simple Real Lie Algebras

The classification of the simple real Lie algebras is known, and, up to isomor-
phism, the real forms of a simple complex Lie algebra g can be constructed as
follows. The first step is straightforward and requires to construct the so-called
compact real form c of g. The associated (compact) real structure is τ : g → g,
a+ ıb �→ a− ıb, where a, b ∈ c; here we write g = c⊕ ıc. Let θ ∈ Aut(g) be an au-
tomorphism of order 2, commuting with τ , and denote by c± the ±1-eigenspace
of the restriction of θ to c. Now rτ,θ = c+⊕ ıc− is a real form of g, and every real
form of g is isomorphic to rτ,θ for some θ. Moreover, rτ,θ ∼= rτ,θ′ if and only if θ
and θ′ are conjugate in Aut(g). Involutionary automorphisms of g are classified,
up to conjugacy, in terms of Vogan diagrams; running over these automorphisms
yields all real forms of g up to isomorphism.

Note that rτ,θ = k ⊕ p where k and p are the 1- and (−1)-eigenspace, respec-
tively, of the restriction of θ to rτ,θ. This decomposition is a Cartan decomposition
of rτ,θ with Cartan involution θ; it is unique up to conjugacy.
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For a given simple complex Lie algebra and fixed Cartan subalgebra and
Chevalley basis, there exist canonical choices for the compact real form and the
involutionary automorphisms. The real forms, rτ,θ, obtained from these choices
are called real forms in canonical form. (We remark that the structure of the
canonical automorphism is encoded in the Vogan diagram of the real form, see
VoganDiagram above.)

The challenge to construct real forms efficiently is to determine the multi-
plication table of rτ,θ by theoretical means, which allows one to write down
this table (and thus to define rτ,θ) directly, avoiding all computations. This is a
straightforward, but tedious undertaking; it requires to determine the structure
constants of a suitable basis of each rτ,θ.

3.2 Cartan Subalgebras

If g is a complex simple Lie algebra, then, up to conjugacy under its adjoint
group, there is a unique Cartan subalgebra in g. In contrast, there is no unique
Cartan subalgebra in a real simple Lie algebra. However, up to conjugacy, there
are only finitely many Cartan subalgebras; they have been classified by Kostant
(1955) and Sugiura (1959). For our implementation, we devised a constructive
version of Sugiura’s classification theorem; it depends on the notion of strongly
orthogonal sets of roots.

3.3 Isomorphisms

Let g be a simple real Lie algebra. By constructing and analysing its complex-
ification gc, we know the type of gc. In particular, g is isomorphic to some
canonical real form r = rτ,θ, with rc ∼= gc, for some involutionary automorphism
θ ∈ Aut(rc), commuting with the compact real structure τ of rc. Our approach
is to construct an isomorphism gc → rc which is compatible with the associated
real structures of g and r; such an isomorphism clearly induces an isomorphism
between the real forms g and r. We construct this isomorphism in several steps.
First, for each Lie algebra g and r, we construct a so-called maximally compact
Cartan subalgebra and a Cartan involution stabilising this Cartan subalgebra.
(Our implementations provide this functionality.) With respect to this Cartan
subalgebra and chosen basis of simple roots, we construct a so-called Cheval-
ley basis and canonical generating set; this allows us to define an explicit iso-
morphism ϕ: gc → rc. The next step is to modify ϕ (by means of defining it
with respect to a modified canonical generating set) so that ϕ is compatible
with the Cartan involutions of g and r, respectively. We achieve this by acting
with the Weyl groups of gc and rc on the respective canonical generating sets.
Once such a compatible ϕ is found, one can easily modify it again so that it is also
compatible with the respective real structures. This completes the construction
of an isomorphism g → r.

The above construction assumes we know that g ∼= r. In practice, we only
work with g and, using the above approach, find a suitable canonical generating
set so that the Cartan involution acts on it in a standard way; in other words,
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we construct standard parameters for g, such that two real simple Lie algebras
are isomorphic if and only if their standard parameters coincide. In this case, it
is straightforward to write down an explicit isomorphism. By construction, the
canonical forms rτ,θ have standard parameters.

3.4 Nilpotent Orbits

The nilpotent orbits of a simple complex Lie algebra are determined by the
Dynkin-Kostant and Bala-Carter classifications (see [4]): the nonzero nilpotent
elements are in one-to-one correspondence to certain semisimple elements (char-
acteristic elements), which are in one-to-one correspondence to certain weighted
Dynkin diagrams. The situation is more complicated for a simple real Lie algebra
g. By the Kostant-Sekiguchi correspondence, if g = k ⊕ p is a Cartan decompo-
sition, then the nilpotent orbits in g are in one-to-one correspondence to the
nilpotent K-orbits in pc, where K is the adjoint group of kc. There exist effi-
cient implementations for computing the K-orbits in pc (see [11]). However, the
Kostant-Sekiguchi correspondence is non-constructive, and obtaining explicit or-
bit representatives in g is difficult. We used ad hoc computations and Gröbner
bases to make this correspondence explicit for Lie algebras of rank at most 8.

4 Technical Problems

Our implementations face three technical (and theoretical) limitations.
Firstly, for a given real semisimple Lie algebra g, we have to construct a Cartan

subalgebra of gc and a corresponding root system. While there exist efficient
algorithms to construct Cartan subalgebras, computations of the associated root
systems may fail because the algorithm does not succeed in splitting the Cartan
subalgebra over a small-degree extension of the base field. The problem of finding
Cartan subalgebras which can be split is very difficult.

Secondly, our current approach for making the Kostant-Sekiguchi correspon-
dence explicit requires the use of ad hoc computations using Gröbner bases.
Even though we automated these computations systematically, the complexity
of Gröbner basis computations limits the scope of this approach. This, and some
limitations of the algorithms in [11], are the reason why our databank of nilpo-
tent orbits currently contains only Lie algebras of rank at most 8.

The final limitation is concerned with the base field. In order to define a Lie
algebra by a multiplication table over the reals, it usually suffices to take a sub-
field of the real field as base field. However, many algorithms need a Chevalley
basis which is defined over the complex numbers; therefore, we require that the
base field also contains the imaginary unit ı. Other procedures, for example, the
isomorphism test, requires the computation of square roots. Thus, in practise,
the base field of our real Lie algebras is Q

√
= Q(ı,

√
2,
√
3,
√
5, . . .), the Gaussian

rationals with all
√
p, p a prime, adjoined. We have implemented the arithmetic

of this field in GAP, and realised it as the field SqrtField. We remark that,
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in theory, a computation with our implementation can fail because we cannot
construct a particular square root; our observation is that this happens rather
sporadically.
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Abstract. Bacterial genomes can be modelled as permutations of con-
served regions. These regions are sequences of nucleotides that are iden-
tified for a set of bacterial genomes through sequence alignment, and
are presumed to be preserved through the underlying process, whether
through chance or selection. Once a correspondence is established be-
tween genomes and permutations, the problem of determining the evo-
lutionary distance between genomes (in order to construct phylogenetic
trees) can be tackled by use of group-theoretical tools. Here we review
some of the resulting problems in computational group theory and de-
scribe BioGAP, a computer algebra package for genome rearrangement
calculations, implemented in GAP.

Keywords: computational group theory, bacterial genomics.

1 Introduction

We aim to introduce biologically inspired computational problems to a group
theory and wider mathematics and computer science audience. The biological
background (bacterial genomics, phylogenetics) is briefly described, the genome-
permutation correspondence established, then more specific models introduced.
We identify the types of computational problems and describe implemented so-
lutions for some models in our software package BioGAP[7].

Bacteria

Bacteria are single-cell microorganisms. Despite their small size they are very
important: they live everywhere, they take part in nutrient recycling, they are
important for the human body and also cause illnesses, and they form a biomass
bigger than the combined biomass of all plants and animals. Therefore, under-
standing their evolutionary development is crucial.

The bacterial genome is circular; a remarkable property with important con-
sequences for algebraic modelling. Bacterial evolution happens at three different
levels [11]:

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 67–74, 2014.
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Fig. 1. Reference genome and the signed permutation [1, 2, 3,−7,−6,−5,−4, 8]

1. Local changes such as single nucleotide polymorphisms (SNPs).
2. Regional changes include inversion, translocation, deletion and others.
3. Topological changes that produce knots and links in the DNA.

Here we are interested in regional changes and this level of description is partic-
ularly suitable for abstract algebraic modelling.

The Genome-Permutation Correspondence

Conserved regions are sequences of nucleotides that are identified for a set of
bacterial genomes through sequence alignment, and are presumed to be preserved
through the underlying process, whether through chance or selection. Therefore,
an evolutionary event can be described as a rearrangement of these regions [10].
For more precise models, we also need to track the orientation of the regions.

According to biological observations, the most frequent rearrangement type
is inversion, cutting out a segment, turning it around and gluing it back. For
example, the regions can be numbered so the “reference” genome is represented
by the sequence [1, 2, 3, 4, 5, 6, 7, 8] for 8 regions. An inversion of the segment
between regions 4 and 7 (inclusive) is then either [1, 2, 3, 7, 6, 5, 4, 8] (unsigned),
or [1, 2, 3,−7,−6,−5,−4, 8] (signed), see Fig. 1.

It is unfortunate that the genome rearrangement terminology was developed
to some extent independently from the algebraic terminology. For instance, trans-
position in group theory means swapping neighboring points as a permutation,
while in genomics it is the operation of cutting out a segment and gluing it in
somewhere else.

Phylogenies and Genomic Distance

One of the key questions in biology is to establish relationships between organ-
isms and species, that is, reconstructing their evolutionary history. A commonly
used way to do this is by drawing a phylogenetic tree. With some tree construc-
tion methods (e.g. neighbour-joining or UPGMA [12]) this requires calculating
the distance between individual genomes, where we assume that the distance is
the shortest path. Using the genome-permutation correspondence the distance



BioGAP 69

calculation can be turned into a combinatorial group theory problem, namely
calculating the word distance between group elements.

The assumption that the evolutionary history is the distance is just the first
approximation. Biological intuition says that the number of these shortest paths
can also have a significant role [18,17]. Thinking in terms of random walks, in
case if there are many shortest paths we overestimate, if there are only a few
then we underestimate the length of the sequence of evolutionary events.

Computational Tasks

Let G be a group with generators S = {s1, . . . , sn}, so that every element of G
can be written as a product of the generators and their inverses. S∗ is the free
monoid generated by S, which is the set of all words, i.e. finite sequences of the
elements of S. The empty word is denoted by ε. The group element realized by
the word w is denoted by w, thus w ∈ S∗ and w ∈ G.

The geodesic distance is defined by dS(g1, g2) = |u|, where u is a minimal
length word in S∗, called a geodesic word, with the property that g1u = g2, also
denoted by g1

u−→ g2. GeoS(g1, g2) is the set of all geodesic words from g1 to g2.
If no confusion arises, then we will use d(g1, g2) and Geo(g1, g2). The length of
a group element g is defined by its distance from the identity: �(g) = d(1G, g)
and we also write Geo(g) instead of Geo(1G, g), where 1G is the identity of the
group. In particular �(1G) = 0 and Geo(1G) = {ε}.

In groups, due to a simple translation principle, it is convenient and enough to
study the geodesics starting from the identity only. For group elements g1, g2 ∈
G = 〈S〉 we write g1 ≤S g2 if ∃w = uv ∈ S∗ such that w = g2, u = g1, w ∈
Geo(g2), i.e. there is a geodesic from the identity to g2 and g1 is on it. Using
terminology from order theory [5] we can call the set of group elements occurring
in Geo(1G, g) with this partial order an interval, and denote it [1G, g]. Figure 2
demonstrates in a simple example that group elements of the same length can
have different intervals.

The Cayley graph Γ (G,S) of G with respect to the generating set S is the
directed graph with group elements as nodes and the labeled edges encoding
the action of G on itself. Thus g

s−→ gs is an edge, s ∈ S. The diameter of
G is defined by diam(G) = maxg∈G �(g). With the Cayley graph formalism we
can rephrase the phylogeny reconstruction problem as follows: a phylogeny on
X ⊆ G is a minimal connected subgraph of the Cayley graph containing X .

Using these formal definitions we can identify two basic types of group-
theoretical computational tasks.

1. Distance: calculating the length of a shortest path between two group ele-
ments g1 and g2.

2. Intervals: construct GeoS(g1, g2), the set of all geodesic paths or estimate
its size.

Both problems have trivial algorithmic solutions. The distance can be found
by an orbit calculation [14] and the interval is defined by all reduced words
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Fig. 2. In Z2 two group elements with the same length can have intervals of different
size.
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realizing a group element in a presentation. However, the number of regions
we need to calculate with are beyond the limits of simple brute-force methods.
Given the impossibility of searching the entire group when the number of regions
is large (for example, genomes with 60 regions can correspond to groups of order
∼ 10100), it is necessary to exploit the algebraic structure.

The groups involved in this research are well-studied in mathematics. The
group of unsigned permutations of the set n = {1, . . . , n} is the symmetric group
Sn and it is a subgroup of the group of signed permutations (the hyperoctahedral
group, or Coxeter group of type B). However, the generating sets derived from
models of the biological processes are different from standard generating sets,
rendering many previous mathematical results inapplicable.

Also, the properties of Cayley graphs are studied in geometric group theory,
but the focus there is on infinite groups, and the results are often trivial when
applied to finite groups (e.g. hyperbolicity).

2 Inversion Systems

Following [8], in general we define an inversion system to be a tuple (G, I) where
G is a permutation group and I is a set of inversions such that 〈I〉 = G, i.e.
I generates G. We need to keep the generating set, therefore algorithms that
change generating sets are not directly applicable.

If all inversions are allowed and we ignore orientation, then we have the group
of all permutations of n, namely the symmetric group Sn. The generators are all
possible inversions of segments on the circle, and the metric is the word length,
up to the action of the dihedral group. This is the model considered by [20], and
for which they obtained bounds on the distance. A significant number of exten-
sions and improvements have followed this path with great success [15,13,1]. The
signed version of this model, in which regions are regarded as having orientation,
gives rise to the hyperoctahedral group, and is the most widely studied model
in the inversion distance literature.
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On the circle, an inversion of one region is equivalent to the inversion of
the complementary region. One consequence is that one may consider a select
region to be fixed, and only consider inversions that do not move it. This enables
treatment of the problem as if it were a linear chromosome. This is the basis for
many efficient methods currently available, including the use of breakpoints [15]
and methods using the breakpoint graph due to [2].

The Two-Inversion Unsigned Model

Biological observations suggest that not all inversions are equally probable [4],
therefore the obvious next step is to restrict the size of the set of generating inver-
sions. In the unsigned case, considering only inversions of size two we have trans-
positions (in the algebraic sense) as generators, for n regions I = {s1, . . . , sn}
where sn = (n, 1). Omitting sn gives the Coxeter generators for the symmetric
group [3], and an inversion system that is well-understood mathematically with
an easy length calculation by the bubblesort algorithm [16]. However, from the
biological point of view we need the generator sn, since we deal with circular
genomes. It turns out that to some extent the idea of counting the number of
crossings to get the word distance can be salvaged if we go to the affine symmet-
ric group – sort of unrolling the circle on an infinite line in both directions (see
[8] for details). This example shows that small changes in the generating set can
lead to a different situation, where non-trivial group theoretical knowledge and
technical arguments need to be applied.

3 Functionality of the BioGAP Package

To attack these problems we have developed a software package called Bio-

GAP [7]. Although the package was specially written to support our research,
we have made the code as general as possible.

BioGAP is a package for GAP, which is a system for computational discrete
algebra, with particular emphasis on computational group theory. Implement-
ing our algorithms in GAP gives us access to the advanced methods of com-
putational group theory. Relying on well-tested library functions provided by
GAP we can ensure correctness and save development time.

There are three main functionalities of BioGAP:

– Calculating with signed permutations;
– Geodesic paths in Cayley graphs; and
– Visualisation.

Signed Permutations

We constructed a new data type for signed permutations. Following the software
design principle of reusing, we implemented signed permutations of n points
as unsigned permutations of 2n points. Signed points i and −i are coded as
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consecutive integers, so it is easy to fix a point regardless its orientation, and it is
possible to do the mapping without knowing the number of points (an alternative
would be to represent positive points as (1, . . . , n) then (n+1, . . . , 2n)). Here is
the coding and decoding.

C(i) =

{
2i if i > 0

2|i| − 1 if i < 0

D(k) =

⌊
k + 1

2

⌋
· (−1)k mod 2

Here is a short calculation demonstrating how signed permutations are defined
by their list of images.

gap> p := SignedPermutation([1,-3,-2,4,5]);

(-2,3)(2,-3)

gap> q := SignedPermutation([1,2,-5,-4,-3]);

(-3,5)(3,-5)(-4,4)

gap> p*q;

(-2,3,-5)(2,-3,5)(-4,4)

gap> ImageListOfSignedPerm(last);

[ 1, -3, -5, -4, 2 ]

The cyclic notation’s redundancy comes from the definition of signed permuta-
tion, namely that for a signed permutation p(−i) = −p(i) for all i ∈ n.

Geodesic Paths

Assuming that we can calculate the length efficiently, there is a straightforward
algorithm for constructing the interval. For finding the geodesics, instead of a
brute-force search in every direction, we can quickly discard those paths where
the sum of the distance from the start and the remaining distance to the desti-
nation is more than the length of a shortest path. This allows us both to study
small but non-trivial cases of intervals in groups (e.g. Fig. 3) and also to count
or estimate the number of geodesics without constructing the interval explicitly.
For a group given by a presentation, an alternative approach would be to start
with a geodesic word and systematically generate equivalent words by applying
the defining relations.

Visualisation

GraphViz is a widely used graph visualisation package [9], also used by several
GAP packages. TikZ/pgf [19] is a package for producing vector graphics for
LATEX. The underlying idea is that a function generates source code in the dot

language or in LATEX for the given mathematical object. Then the actual figure
can be generated separately to be included in papers, or using the Viz package
[6] immediately displayed on screen from the GAP command line. Figures 1 and
3 were both auto-generated using TikZ and GraphViz respectively.
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Fig. 3. Intervals [1,(1,2,5,4)] using transposition generating sets {s1, s2, s3, s4} (linear
genome) and {s1, s2, s3, s4, s5} (circular genome). The bottom node is the identity of
the group. The edge labels encode the generators. The box contains the number of
outgoing and incoming edges at each level of the ranked poset.

Availability

TheBioGAPpackage is still under active development. Its source code is available
from https://bitbucket.org/egri-nagy/biogaphttps://bitbucket.org/

egri-nagy/biogap, and on this site support can also be obtained.
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Abstract. We describe how the SgpDec computer algebra package can
be used for composing and decomposing permutation groups and trans-
formation semigroups hierarchically by directly constructing substruc-
tures of wreath products, the so called cascade products.

Keywords: transformation semigroup, permutation group, wreath prod-
uct, Krohn-Rhodes Theory.

1 Introduction

Wreath products are widely used theoretical constructions in group and semi-
group theory whenever one needs to build a composite structure with hierarchi-
cal relations between the building blocks. However, from a computational and
engineering perspective they are less useful since wreath products are subject
to combinatorial explosions and we are often interested only in substructures
of them. Cascade products precisely build these substructures by defining the
hierarchical connections explicitly. As input, given a group or a semigroup with
unknown internal structure, the goal of cascade decomposition algorithms is to
come up with a list of simpler building blocks and put them together in a cascade
product, which realizes in some sense the original group or semigroup. Roughly
speaking, for permutation groups, cascade product decompositions can be inter-
preted as putting the inner workings of the Schreier-Sims algorithm (generalized
to any subgroup chain) into an external product form, therefore one can build
cascade products isomorphic to the group being decomposed. For semigroups,
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Krohn-Rhodes decompositions [14] can be computationally represented by cas-
cade products of transformation semigroups.

In this paper we describe how the Gap [9] package SgpDec [6] implements
cascade products and decomposition algorithms and we also give a few simple
example computations. This description of the package only focuses on the core
functionality of the package.

A transformation is a function f : X → X from a set to itself, and a trans-
formation semigroup (X,S) of degree n is a collection S of transformations of
X closed under function composition, |X | = n. In case S is a group of per-
mutations of X , we call (X,S) a permutation group. Using automata theory
terminology sometimes we call X the state set, often represented as a set of
integers n = {0, . . . , n− 1}. We write xs to denote the new state resulting from
applying a transformation s ∈ S to a state x ∈ X .

2 Cascade Product by a Motivating Example

To motivate the definition of the cascade product, we consider how the mod-
4 counter, the cyclic permutation group (4,Z4), can be constructed from two
mod-2 counters. The direct product Z2 × Z2 contains no element of order 4.
Since Aut(Z2) is trivial there is only one semidirect product of Z2 and Z2, which
equals their direct product. Their wreath product, Z2 � Z2

∼= D4, the dihedral
group of the square can be used to emulate a mod-4 counter, since Z4 ↪→ D4.
But this construction is not efficient, beyond the required rotations the dihedral
group has the flip-symmetry as well, doubling the size of the group. However,
we would like to have a product construction that is isomorphic to (4,Z4).

This motivates the definition of cascade products : efficient constructions of
substructures of wreath products, induced by explicit dependency functions [5].
Essentially, cascade products are transformation semigroups glued together by
functions in a hierarchical tree. More precisely, let

(
(X1, S1), . . . , (Xn, Sn)

)
be a

fixed list of transformation semigroups, and dependency functions of the form

di : X1 × . . .×Xi−1 → Si, for i ∈ {1 . . . n}.

A transformation cascade is then defined to be an n-tuple of dependency func-
tions (d1, . . . , dn), where di is a dependency function of level i. If no confusion
arises, on the top level we can simply write d1 ∈ S1 instead of d1(∅) ∈ S1.

The cascade action is defined coordinatewise by x
di(x1,...,xi−1)
i , applying the re-

sults of the evaluated dependency functions (see Fig. 1), so that the cascade
product can be regarded as a special transformation representation on the set
X1 × . . . × Xn. The hierarchical structure allows us to conveniently distribute
computation among the components (Xi, Si), and perform abstractions and ap-
proximations of the system modelled as a cascade product. Then if W is a set of
transformation cascades (X1, S1) �W · · · �W (Xn, Sn) denotes the transformation
semigroup (X1 × · · ·Xn, 〈W 〉), where 〈W 〉 is the semigroup of transformation
cascades generated by W .
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s1 = d1(∅) d2 d3

s2 = d2(x1)

s3 = d3(x1, x2)

x1

(X1, S1)

x2

(X2, S2)

x3

(X3, S3)

(X,S)

xs1
1

(X1, S1)

xs2
2

(X2, S2)

xs3
3

(X3, S3)

(X,S)

Fig. 1. Action in a cascade product of components [(X1, S1), (X2, S2), (X3, S3)]. The
current state (x1, x2, x3) (top) is transformed to the new state (xs1

1 , xs2
2 , xs3

3 ) (bottom)
by the transformation cascade (d1, d2, d3). The component actions si are calculated
by evaluating the dependency functions of (d1, d2, d3) on the states of the components
above. The evaluations are highlighted and they happen at the same time. The depen-
dencies, where the state information travels, are denoted by dotted lines.
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Fig. 2. Two mod-2 counters cascaded together to build a mod-4 counter

We can construct (4,Z4) exactly by using two copies of (2,Z2). The generator
set contains only one permutation cascade W = {(+1, c)}, where +1 is the
generator of Z2 and c is a dependency function mapping 2 to Z2 with c(0) = 1Z2 ,
and c(1) = +1. The first dependency is a constant (increment modulo 2) while
the second dependency implements the carry. Therefore, with fewer dependencies
than required by the wreath product, the mod-4 counter can be realized by an
isomorphic cascade product: (2,Z2) �W (2,Z2) ∼= (4,Z4), see Fig. 2.

An immediate consequence of the generality of the cascade product is that
several well-known constructions are special cases of the cascade product, and as
such they are easy to implement. Direct products consist of all d = (d1, . . . , dn)
with each di constant. Wreath products consist of all possible dependency func-
tions. Direct, cascade, and wreath products constructions for transformation
semigroups are now available in SgpDec, and iterated wreath products for per-
mutation groups also became a bit more convenient to define.

3 Functionality

There are two different basic ways of using the SgpDec package. Depending on
whether the starting point is a complex structure or a set of (simple) building
blocks, we can do decomposition or composition.

3.1 Composition and Construction

The questions we aim to answer by constructing cascade products can be of the
following types.

1. What is the (semi)group generated by a given set of transformation cascades?
2. What can be built from a given set of (simple) components?
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The usual scenario is that for a list of components we give a set of cascades as
a generating set. For instance, the quaternion group Q = 〈i, j〉 is not a semidirect
product, but it embeds into the full cascade product (2,Z2) � (2,Z2) � (2,Z2),
a group with 128 elements. Therefore, it can be built from copies of Z2. The
dependency functions can only have two values, thus to define cascade permu-
tations it is enough to give only those arguments that give +1 (the generator of
Z2). A cascade permutation realizing i is defined by the dependency functions
(d1, d2, d3) where d2(0) = d2(1) = d3(0, 0) = d3(1, 1) = +1 and all other argu-
ments map to the identity. Similarly, a cascade realizing j is defined by (d′1, d

′
2, d

′
3)

where d′1(∅) = d′3(0, 0) = d′3(0, 1) = +1, (see Fig. 3, note that the state values
are shifted by 1). One can check that these two order 4 elements generate the
8-element quaternion group Q. Therefore by W = {(d1, d2, d3), (d′1, d′2, d′3)} we
have

(Q,Q) ∼= (2,Z2) �W (2,Z2) �W (2,Z2).

gap> Z2:=CyclicGroup(IsPermGroup,2);

Group([ (1,2) ])

gap> d:=Cascade([Z2,Z2,Z2],[[[1],(1,2)],[[2],(1,2)],

[[1,1],(1,2)],[[2,2],(1,2)]]);

<perm cascade with 3 levels with (2, 2, 2) pts, 4 dependencies>

gap> dprime:=Cascade([Z2,Z2,Z2],[[[],(1,2)],[[1,1],(1,2)],[[1,2],(1,2)]]);

<perm cascade with 3 levels with (2, 2, 2) pts, 3 dependencies>

gap> StructureDescription(Group([d,dprime]));

"Q8"

(1,2)

1

(1,2)

2

(1,2)

1 2 1

(1,2)

2

(1,2)

1 2

(1,2)

1

(1,2)

2 1 2

Fig. 3. Generators of a cascade representation of the quaternion group in a tree form.
The edge labels are states, while the nodes contain the action. Empty node corresponds
to the identity. The gray part of the tree is fixed.

3.2 Decomposition

1. What are the basic building blocks of a given (semi)group?
2. How can we represent it as a cascade product?

A typical scenario is that for a given composite semigroup or group we choose
a decomposition algorithm which returns a cascade product.
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Frobenius-Lagrange Decomposition. In the case of groups the decompo-
sition uses the idea behind induction in representation theory (see e.g. [1]), so
it traces back to Frobenius. Indeed, a special case of them comprises the well-
known Krasner-Kaloujnine embeddings [13]. All we need here is just standard
group theory, namely the action on cosets, hence the name Frobenius-Lagrange
Decomposition.

How would someone come up with the generators cascades of the quaternion
group in Section 3.1? The easiest solution is to use this group decomposition.

gap> Q := QuaternionGroup(IsPermGroup,8);

Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ])

gap> CQ := FLCascadeGroup(Q);

<cascade group with 2 generators, 3 levels with (2, 2, 2) pts>

The actual implementation takes a subgroup chain as input (chief series by
default) and form the components by examining the coset space actions derived
from the chain. Therefore, the decomposition method can be considered as a
generalized Schreier-Sims algorithm [12].

Coordinatewise calculation in a cascade product can also be thought of as a
sequence of refining approximate solutions. For instance, each completed step of
an algorithm for solving the Rubik’s Cube corresponds to calculating the desired
value at a hierarchical level of some cascade product representation and it gives
a configuration ‘closer’ to the solved state.

Holonomy Decomposition. For transformation semigroups the holonomy
method [16,17,10,7,11,15,4] is used. The holonomy decomposition works by a
close analysis of how the semigroup acts on those subsets of the state set which
are images of the state set. As a small example let’s define T as the transfor-
mation semigroup generated by t1 = ( 1 2 3 4

3 2 4 4 ) and t2 = ( 1 2 3 4
3 3 1 3 ). Calculating its

holonomy decomposition and displaying some information can be done by the
following commands:

gap> T:=Semigroup([Transformation([3,2,4,4]),Transformation([3,3,1,3])]);

<transformation semigroup on 4 pts with 2 generators>

gap> HT := HolonomyCascadeSemigroup(T);

<cascade semigroup with 2 generators, 3 levels with (2, 2, 4) pts>

gap> DisplayHolonomyComponents(SkeletonOf(HT));

1: 2

2: 2

3: (2,C2) 2

The displayed information tells us that this 13-element semigroup can be realized
as the cascade product of four copies of the transformation monoid of constant
maps of two points and one instance of Z2. The components are put together in
a 3-level cascade product.

Holonomy decompositions are useful whenever a finite state-transition model
of some process needs to be analyzed (e.g. [3]).
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C2

1

2

3

4

{1,2,3,4}

{2,3,4}

[ 1 ]

{1,3}

[ 2 ]

{3,4}

[ 2, 1 ]

{2,4}

[ 1 ]

{3}

[ 1, 1, 2 ]

{1}

[ 1, 1, 2, 2 ]

{4}

[ 2, 1 ]

{2}

Fig. 4. Tiling picture – the internal details of the holonomy decomposition of the
transformation semigroup T generated by t1 and t2. The numbers on the left denote
the hierarchical levels (level 4 consists of singleton sets and it is needed by the holonomy
algorithm but not a component of the cascade product). Outer boxes contain subsets
that are mutually reachable from each other under the semigroup action. The arrows
indicate how a subset is ‘tiled’ by its subsets, the arrow labels contain words (sequences
of generators) that take a subset to one of its tiles. Dotted arrow means the tile is not an
image. Roughly, the holonomy algorithm finds the components by checking the action
of the semigroup on a set of tiles.

3.3 Visualization

SgpDec uses GraphViz, a widely used graph drawing package [8], for visuali-
sation purposes. The underlying idea is that a function generates source code in
the dot language for the given mathematical object. Then the actual figure can
be generated separately to be included in papers, or using the Viz package [2]
immediately displayed on screen from the Gap command line. Figure 3 and 4
were both auto-generated using GraphViz.
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Abstract. We exhibit an implementation in the computer algebra sys-
tem GAP of a method to approximate generators of an integral arithmetic
group.

Keywords: arithmetic groups, finite approximation.

1 Introduction

A rational algebraic group G(Q) is a subgroup of GL(n,Q) defined by a finite set

of polynomial equations f1, . . . , fl ∈ Q[x1, . . . , xn2 ]. More precisely, if g ∈ Qn2

denotes the list of the entries of g ∈ GL(n,Q), then G(Q) = {g ∈ GL(n,Q) |
fi(g) = 0 for 1 ≤ i ≤ l}. Further, we write

G(Z) = G(Q) ∩GL(n,Z).

A subgroup H ≤ GL(n,Q) is an arithmetic group in G(Q) if H is commen-
surable with G(Z); that is, the intersection H ∩G(Z) has finite index in H and
in G(Z). The group H is an integral arithmetic group in G(Q) if H is arithmetic
in G(Q) and satisfies H ≤ GL(n,Z). Thus H is an integral arithmetic group if
and only if H is a subgroup of finite index in G(Z).

Arithmetic groups have interesting applications. For example, many interest-
ing linear groups such as the special linear groups SL(n,Z) and the orthogonal
groups O(n,Z) are arithmetic groups. Further, Baues and Grunewald [1] prove
that the outer automorphism group of a polycyclic-by-finite group is an arith-
metic group and Grunewald and Segal [5] show that the automorphism group of
a finitely generated nilpotent group is closely related to an arithmetic group.

Borel and Harish-Chandra [2] prove that every arithmetic group is finitely gen-
erated. However, despite the interest in the topic, it is still difficult to determine
explicit generators for an arithmetic group described by its associated polyno-
mials f1, . . . , fl and further information how it arises from G(Z). Grunewald and
Segal [4] introduce a (theoretical, but not practical) algorithm to determine a
finite set of generators for an arithmetic group. Hence the problem of finding
generators for an arithmetic group is algorithmically decidable. De Graaf and
Pavan [3] exhibit a practical algorithm to determine generators for a unipotent
arithmetic group. But a practical algorithm for the general case is not available.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 83–86, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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2 Aims

The deterministic construction of generators for G(Z) seems out of reach at
current. Thus our aim is to approximate generators of G(Z) and to implement
methods for this purpose as software package for the computer algebra system
GAP [6].

The main function of this software package takes as input a set of polynomials
f1, . . . , fl associated to a rational algebraic group and a sequence of natural
numbers S = (s1, . . . , sk). It determines a finite generating set for a group GS(Z)
so that the following holds:

• GS(Z) ≤ G(Z) for each sequence S.
• GS(Z) ≤ GS′(Z) if S′ = (s1, . . . , sk, sk+1) extends S = (s1, . . . , sk).
• GS(Z) = G(Z) for almost all sequences of length 1.

Once generators (or approximate generators) for G(Z) are available, it is
possible to determine generators (or approximate generators) for an integral
arithmetic subgroup of G(Z) if this subgroup is suitably described. In many ap-
plications these subgroups are described as stabiliser in G(Z) of some explicitly
described action. In this case on can apply a stabiliser algorithm to determine
or approximate the desired integral arithmetic subgroup of G(Z).

3 Approaches

Suppose that a list of polynomials f1, . . . , fl ∈ Q[x1, . . . , xn2 ] is given. We assume
throughout that the polynomials define a rational algebraic group; that is, the
zeros of f1, . . . , fl in GL(n,Q) form a subgroup of GL(n,Q).

First we introduce some notation. For m ∈ N let GL(n,m) = GL(n,Z/mZ)
and denote

ĜL(n,m) = {g ∈ GL(n,m) | det(g) ∈ {−1, 1}}.

Next, let ρm : Z → Z/mZ. This natural epimorphism induces a homomorphism

ρm : GL(n,Z) → ĜL(n,m).

Let t ∈ GL(n,m). The matrix s ∈ Zn×n is called the normalised preimage of
t, if ρm(s) = t and the entries si,j of s satisfy −m/2 < si,j ≤ m/2. Note that this
defines the normalised preimage of t uniquely. Also note that ρm(det(s)) = det(t)
and thus det(s) �= 0. Hence s is an element ofGL(n,Q). As s is an integral matrix,
it follows that s is an element of GL(n,Z) if and only if det(s) ∈ {−1, 1}. We
denote

σm : GL(n,m) → GL(n,Q) : t �→ s.
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The following is a basic outline of our proposed method. Let S = (s1, . . . , sk)
denote a sequence of natural numbers and write mi = s1 · · · si for 0 ≤ i ≤ k.

(1) Initialise U = 〈1〉 ≤ GL(n,Z).
(2) For i in (1, . . . , k) do

(a) Determine Vi = 〈g ∈ ĜL(n,mi) | fi(g) ≡ 0 mod mi for 1 ≤ i ≤ l〉.
(b) Let Ui = ρmi(U) be the image of U in ĜL(n,mi).
(c) Let Ti be a transversal of Ui in Vi.
(d) For each t ∈ Ti do

(i) determine the normalised preimage s = σmi(t).
(ii) check whether s ∈ G(Z) by evaluating f1(s), . . . , fl(s) and det(s).
(iii) if yes, then replace U by 〈U, s〉.

(3) Return U .

In the talk we discuss variations of this method as well as open problems
around it and possible connections to ideas from algebraic geometry.

An extreme case is the case of a sequence of length 1. In this case, the following
straightforward observation can be made.

Theorem 1. For almost all m ∈ N it follows that G(m)(Z) = G(Z).

Proof. By construction, GS(Z) ⊆ G(Z) for any sequence S. It remains to inves-
tigate the converse inclusion. Recall that the group G(Z) is finitely generated
by the theorem of Borel and Harish-Chandra [2]. Let g1, . . . , gr denote a set of
generators for G(Z). Let m′ denote the maximum among the absolute values of
the entries of these generators and choose m > 2m′. Then gi = σm(ρm(gi)) for
1 ≤ i ≤ r holds and hence the above algorithm detects each of these generators.

Remark 1. If a bound m on the absolute values of the entries of a finite gener-
ating set of G(Z) could be determined from f1, . . . , fl, then the above method
could be turned into a deterministic method to determine a finite generating set
of G(Z).

4 An Example

For an example calculation we consider the group

G = 〈g1, . . . , g5 | [g1, g2] = g5, [g3, g4] = g25 , [gi, gj] = 1

for all i < j with (i, j) �= (1, 2), (3, 4)〉.

Then G is a torsion-free nilpotent group of class 2 with G′ = Z(G) = 〈g5〉.
There exists a natural homomorphism

ν : Aut(G) → Aut(G/G′) : α �→ αG/G′ .

The kernel of ν consists of those automorphism inducing the identity on G/G′.
This kernel is naturally isomorphic to Z1(G/G′, G′) and thus is free abelian of
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rank 4. The critical part of the determination of Aut(G) is the construction of
the image of ν. Let

D =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −2
0 0 2 0

⎞⎟⎟⎠ .
Then the entries di,j of D satisfy [gj , gi] = g

di,j

5 . It is not difficult to observe that

image(ν) ∼=M(D) = {g ∈ GL(4,Z) | gDgT = D}.

Note thatM(D) is an arithmetic group. We apply (a variation of) the algorithm
proposed above using the sequence S = (2, 2, 2) and obtain a subgroup U of
G(Z) generated by 16 generators. Among these 16 generators are the following
two matrices

m1 =

⎛⎜⎜⎝
1 −1 0 1
0 1 0 0
0 −2 −1 0
0 −2 −1 −1

⎞⎟⎟⎠ and m2 =

⎛⎜⎜⎝
−2 1 −1 −1
−1 0 0 0
−2 0 0 1
0 0 −1 −1

⎞⎟⎟⎠ .
Thus 〈m1,m2〉 ≤ U ≤ M(D) by construction. We note that the images of
〈m1,m2〉 and U in GL(4, p) for the primes p ∈ {2, 3, 5, 7, 11, 13, 17, 19} agree.
Based on this, we propose the following conjecture.

Conjecture 1. The matrices m1 and m2 generate M(D).
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Abstract. Some problems in algorithmic group theory have good, well-
understood, solutions as far as theory is concerned. This often is because
of considering problems from other areas as solved, or because of ignoring
practical aspects that are rarely if ever spelled out. This article considers
some such aspects that have turned out to be difficult in the context of
writing group theoretic software.

1 Introduction

Solving group theoretic questions has been one of the first tasks that computers
have been put to. Indeed, already in 1945 Alan Turing writes [14, p.3]:

[...] switch from calculating the energy levels of the neon atom to the
enumeration of groups of order 720.

Since then many group theoretic algorithms have been developed. Trying to give
even only a summary is beyond the scope of this note, a good starting point for
the interested reader is the monograph [8].

Today, computer calculations have become part of the group theorists toolkit.
This development has been aided by the availability of systems – namely Cayley
[5], successor Magma [2], as well as GAP [7] – that are broad in scope and don’t
require knowledge of the details of the underlying algorithms.

The reduction of a problem to calculations done on a computer has become
mostly uncontroversial, criticisms being not so much on the side of correctness
but based on esthetics and the lack of insight in quoting a computer result.

Nevertheless software does not always do in practice, what in theory should
be easy (or what has been proven as being easy: The asymptotic behavior de-
scribed by complexity estimates might consider any practically feasible case as
a constant). Sometimes there is a notable chasm between theoretical results and
practical software. (Vice versa some problems have good practical solutions for
any case that ever occurred in practice, but seem to be theoretically intractable.)
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Many of these issues should be of interest to other areas of mathematical
software, be it as a confirmation of issues other software also faces, as possibly
interesting problems in other areas of mathematics, or even as application of a
solution method that is not yet know in group theory.

2 Deciding on a Method

Often there are different algorithms for achieving the same result, the better per-
forming one being applicable only under particular circumstances. When using
these algorithms in a system in the context of a larger calculation it therefore is
desirable to have the system select the best method available to perform a partic-
ular calculation. The type system [4] of GAP4 tries to do this by associating bits
to known properties, it then selects amongst multiple applicable methods the
one that meets most bits as being the most specialized one. In basic situations
this works well. However it is easy to construct situations in which a property
test is potentially expensive (for example testing for finiteness might not even
terminate). Still, in some cases it would be far better to first test the property,
than having to use a slower, more general, algorithm.

Q1: How does one decide on the “typical” case when algorithms test for prop-
erties that can be expensive, but can also speed up calculations?

Q2: Can one indicate to the system how expensive a certain calculations will
be, to let it decide on whether a particular test is worth doing first?

Q3: If not, can/should one alert the user about such situations, without over-
whelming the user who knows to be in a case where tests don’t help?

A similar question comes up when considering the resources to utilize. A trade-
off between speed and memory is often possible, however systems with large
amounts of memory often are shared between tasks and a system should not
hamper other users by always choosing to sacrifice memory for speed.

Q4: How much memory should the system use if it would speed up calculations?
Q5: How many processors should a parallel calculation use if a calculation can

be parallelized?

Note that the prototypical group theoretic calculation of identifying the orbit in
which an object lies often has super-linear speedup on a parallel setting if orbits
are given by representatives. This is because a test for mapping one object to
another can terminate if it succeeds, but needs to exhaust the full space to show
nonequivalence. Thus once one mapping test succeeds, all other parallel tests
can be terminated. (Q5 thus cannot simply be answered by Amdahl’s law.)

3 Integer Matrix Normal Forms

The issue of exact integer values becoming large has been long recognized in
computer algebra as requiring care in the design of algorithms. It usually is
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not relevant when working with finite groups, but as soon as groups become
potentially infinite it raises its head.

The prototype of this is the case of determining the quotient G/G′ of a finitely
presented group G. Writing the relators of G in abelianized form (i.e. aba = b2

becomes a2b−1) as rows in a matrix A, we determine the Smith Normal Form
S = P · A ·Q of A. The diagonal entries of S determine the structure of G/G′,
the entries of Q−1 the homomorphism from G to an abelian group with this
structure in normal form.

To make such calculations effective we would not only like this calculation to
run fast, but even more to keep the entries of Q−1 small.

Q6: Calculate a Smith Normal Form while minimizing the transforming matri-
ces (in a suitable norm).

In recent work [6] this same problem came up in a slightly different context:
Let G ≤ SLn(Z) and ϕ : G → SLn(Z/Zm) be the natural reduction modulo m.
We want to compute pre-images under ϕ, that is given a matrix A such that
det(A) ≡ 1 (mod m), find B ≡ A (mod m) with det(B) = 1. We can find B by
decomposing A = P−1SQ−1, then the nonidentity determinant will be in S and
B = P−1Q−1 ≡ A (mod m) has determinant 1. To keep the coefficients in B
small we would like to keep those of P and Q small as well.

4 Polynomial Equations

A principal tool for working with finitely presented groups is to find quotients
(or to enlarge existing quotients). By using ring structures to represent the
quotient group over, the relations for the group then produce equations over
the ring that seem to be amenable to Gröbner Basis methods. Assume that
F = 〈x1, . . . , xn〉 is a free group, R � F is the normal subgroup generated by
the relators r1(x), . . . , rk(x), and G = F/R. Then a map xi �→ yi given on the
group generators extends to a homomorphism if and only if rj(y) = 1 for all j.

We first consider the case considered in [13]. Here the yi are taken to be in
a matrix group as matrices with variable entries. (Assumptions on the module
structure are used to reduce the number of variables.) The conditions rj(y) = 1
and for the determinants being nonzero then give a system of polynomial equa-
tions in these variables. As multiple homomorphisms might be possible, there
typically are multiple solutions in multiple characteristics, but not all solutions
correspond to homomorphisms with different kernels.

Q7: Describe the different group quotients given by such a variety.

A second case is that of so-called quotient algorithms [12,11]: We assume
knowledge of a homomorphism ϕ : G→ H to some (often finite) groupH and are
looking for a homomorphism ψ : G→ K with kerψ < kerϕ andN = kerϕ/ kerψ
a vector space (or Z-module). The image of ψ thus can be considered as an
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extension of N by H . The relations for G then become equations for N as an H-
module. (For example, suppose aba = 1 is a relation for G and a �→ g ·n, b �→ hm
with n,m variable entries in N . Then 1 = aba �→ gnhmgn = ghg · nhgmgn with
ghg evaluating to a constant in N .) The resulting module presentation describes
the largest possible choice for N as a quotient for G.

To describe ψ concretely, it is necessary to determine a basis for N and ma-
trices for the action of G on N . This is essentially a non-commutative Gröbner
basis calculation. Again it is of interest to solve this in all characteristics simul-
taneously

Q8: Given a module presentation, find a basis, as well as matrices describing
the action of algebra generators.

5 Theoretical Knowledge

The classification of finite simple groups is the 800lb gorilla in the background of
finite group theory. Unsurprisingly, many algorithms reduce to the case of simple
groups as base case. In this situation the algorithm then will use constructive
recognition to construct an isomorphism to the group in its “textbook” form
(say An represented as even permutations of degree n) and fetch tabulated in-
formation about the group that is “taken from the literature”. Examples would
be the structure of the outer automorphism group, or a list of representatives of
maximal subgroups.

Clearly one would like a computer system to have access to such data. (Indeed
some results of prior (computer) classifications – such as groups of small order [1],
or transitive permutation groups [9] – probably only can be disseminated in form
of a computer data base.)

Given the heterogeneity of information, such data bases most likely have to
contain not just “numerical” information, but also procedures that construct
parameterized objects. Often there are extensive case distinctions depending on
parameter classes.

As such data then is used within algorithms to make classification decisions,
correctness is of utmost importance. However, there is often a history of theo-
retical classifications that had to be corrected later. (A prominent example of
this is the classification of maximal subgroups of classical groups [10], which just
recently was redone [3].) For the software

Q9: How do we ensure/check that a theoretical classification was implemented
correctly, in particular if it involves many special cases?

Q10: How do we indicate that a substantial theoretical classification was used
in a result? How do we deal with (keeping track, changing code, correcting
previously wrong results) subsequent corrections of the classification?
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6 Making the Software Usable

Finally, to make software actually usable, there are practical aspects. These
include not only maintenance and bug fixes, but already the initial step of getting
it to run on a user’s machine.

Q11: Provide a user-friendly distribution and an installation process on common
platforms that follows standard conventions.

Work towards this goal is crucial for software to stay usable as a research
tool. It unfortunately don’t fit well in the current model of publications and
research grants the community uses to acknowledge and reward work. Finding
appropriate ways to sustain such work is a task the mathematical community
will need to solve in the future if mathematical software is to blossom.
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Abstract. A tool package for computing genus 0 Belyi functions is pre-
sented, including simplification routines, computation of moduli fields,
decompositions, dessins d’enfant. The main algorithm for computing the
Belyi functions themselves is based on implied transformations of the hy-
pergeometric differential equation to Fuchsian equations, preferably with
few singular points. This gives a fast way to compute the Belyi functions
(of degree 60 and beyond) with nearly regular branching patterns.

Keywords: Belyi functions, Heun functions, pull-back transformations.

1 Introduction

Although Belyi functions is a captivating field of research in algebraic geome-
try, Galois theory and related fields, their computation is still considered hard.
Grothendieck [1, pg. 248] doubted that “there is a uniform method for solving
the problem by computer”. The offered software efficiently computes Belyi func-
tions of genus 0 with nearly regular branching patterns (or dessins d’enfant).
Recall that a Belyi function of genus 0 is a rational function ϕ : P1 → P1 that
branches only in the 3 fibers ϕ(x) ∈ {0, 1,∞}.

The mentioned near-regularity is defined as follows. Given positive integers
k, �,m, a Belyi function ϕ : P1 → P1 is called (k, �,m)-regular if all points above
ϕ = 1 have the branching order k, all points above ϕ = 0 have the branching
order �, and all points above ϕ = ∞ have the branching order m. Given yet
another positive integer n, a Belyi function ϕ : P1

x → P1
z is called (k, �,m)-

minus-n-regular if, with exactly n exceptions, all points above ϕ = 1 have the
branching order k, all points above ϕ = 0 have the branching order �, and all
points above ϕ = ∞ have the branching order m. An example of a (2, 3, 9)-
minus-4-regular function is the degree 12 Belyi function1.

1 One can check that the numerator of ϕ(x)− 1 is a square. By the Hurwitz formula
or checking ϕ′(x), there is no branching in other fibers. The 4 exceptional points are
x = ∞, x = 0, x = 9, x = 1.
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ϕ(x) =
64x2(x− 3)9(x− 9)

27(x− 1)(8x3 − 72x2 − 27x+ 27)3
.

The nearly regular Belyi functions transform between Fuchsian equations with
a small number (say, ≤ 4) of singularities. Generally, a (k, �,m)-minus-n-regular
Belyi function with 1 �∈ {k, �,m} pulls-back a hypergeometric equation with
the local exponent differences 1/k, 1/�, 1/m to a Fuchsian equation with n sin-
gularities (after a proper normalization). In particular, minus-3-regular func-
tions give pull-back transformations between hypergeometric equations, while
minus-4-regular functions give pull-backs to Heun equations2. In fact, the main
algorithm of our software utilizes the implied pull-back transformations of the
hypergeometric differential equation.

The software was developed while classifying [5] hypergeometric-to-Heun
transformations in the 1/k + 1/�+ 1/m < 1 case. The maximal degree of these
transformations is 60. The software computes the degree 60 functions (two cubic
Galois orbits) within 2 min. on Maple 15 and 2.66 GHz Mac. The complete list of
these minus-4-regular functions consists of 366 Galois orbits. The largest Galois
orbit (i.e., the degree of the moduli field) has size 15, for a degree 37 branching
pattern; it is computed within 5 min. The largest computation (14 min.) is for
a degree 44 branching pattern with Galois orbits of size 3 and 13. Extensive
results of these computations are presented in [4], along with the main Maple
program in ComputeBelyi.mpl, and several other Maple routines for simplifica-
tion, decomposition routines, and computation of dessins d’enfant, moduli fields
and (if applicable) the obstruction conic for realization fields.

2 Computing Belyi Functions

Most straightforwardly, a (k, �,m)-minus-n-regular Belyi function is determined
by the polynomial identity

P � U = Qm V +RkW (1)

as ϕ(x) = P � U/QmV . Here P,Q,R are monic polynomials in C[x] whose roots
are the points with the prescribed branching orders �,m, k; and U, V,W are
polynomials whose roots are the n exceptional points. The polynomials P,Q,R
should not have multiple or common roots, and one of U, V,W may be assumed
to be monic. The degrees of these polynomials are set by the branching pattern
and the assignment3 of x = ∞. Their coefficients are to be determined. The

2 Examples of (k, �,m)-regular functions the well-known Galois coverings P1 → P1

of degree 12, 24, 60 with the tetrahedral, octahedral or icosahedral monodromies,
respectively. We take k = 2, � = 3, m ∈ {3, 4, 5} for that.

3 It is convenient to assign x = ∞ to a bachelor point, i.e., a point with a unique
branching order for its fiber. Due to Möbius transformations, we may assign x = 0
and x = 1 to other bachelor points if those exist. It is usually efficient to assign
x = ∞ even if there are no bachelor points, though then solutions can be obtained
over larger number fields than necessary. Rather than assigning x = 0, we may
assume the shape xd+	xd−2+ . . . of one of the polynomials. If x = 1 is not assigned,
the undetermined coefficients are weighted-homogeneous by the scaling x �→ αx.
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straightforward method just expands (1) and compares the coefficients to x.
This is not practical for Belyi functions of degree ≥ 12. One reason is numerous
parasitic [2] solutions where the three terms in (1) have common roots. Parasitic
solutions may even arise in families of positive dimension.

Differentiation helps to compute Belyi functions more efficiently, as is occa-
sionally demonstrated in the literature. In particular, the roots of ϕ′(x) are the
branching points above ϕ = 0 and ϕ = 1 with the multiplicities reduced by
1. We conclude the following shape of the logarithmic derivatives of ϕ(x) and
ϕ(x) − 1:

ϕ′(x)

ϕ(x)
= h1

Rk−1W

P QF
,

ϕ′(x)

ϕ(x) − 1
= h2

P �−1U

QRF
. (2)

Here h1, h2 are constants, and F is the product of irreducible factors of U V W ,
each to the power 1. If x = ∞ lies above ϕ = ∞ then

h1 = h2 = [ the branching order at x = ∞ ], (3)

as this is the residue of both logarithmic derivatives at x = ∞. On the other
hand,

ϕ′(x)

ϕ(x)
= �

P ′

P
+
U ′

U
−m

Q′

Q
− V ′

V
, etc. (4)

Pairs of expressions for the logarithmic derivatives of ϕ(x), ϕ(x) − 1 lead to a
stronger system of algebraic equations, usually of smaller degree and with less
parasitic solutions. If k = 2, the polynomial R can be eliminated symbolically.
This ansatz does not use the location ϕ = 1 of the third fiber. Therefore U, V,W
can be assumed to be monic as well, and then (1) can be adjusted by constant
multiples at the latest stage.

To get an even more restrictive system of algebraic equations, we utilize the
near-regularity of ϕ(x). The Gauss hypergeometric equation is

d2y(z)

dz2
+

(
C

z
+
A+B − C + 1

z − 1

)
dy(z)

dz
+

AB

z (z − 1)
y(z) = 0. (5)

This is a canonical Fuchsian equation with three singularities: z = 0, z = 1,
z = ∞. The local exponent differences4 at them are 1 − C, C − A− B, A− B,
respectively. We assume these numbers to equal 1/�, 1/k, 1/m, respectively. Let
us apply a pull-back transformation of the form

z �−→ ϕ(x), y(z) �−→ Y (x) = θ(x) y(ϕ(x)), (6)

where ϕ(x) is a rational function, and θ(x) is a radical function (an algebraic
root of a rational function). A blunt symbolic computation gives this lemma.

4 In particular, the local exponents at z = 0 equal 0 and 1 − C, as visible from the
general local solutions 2F1(A,B,C; z) and z1−C

2F1(1 + A− C, 1 +B − C, 2−C; z).
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Lemma 1. Let ϕ(x) be a Belyi map determined by (1). The hypergeometric
equation (5) with

A =
1

2

(
1− 1

k
− 1

�
− 1

m

)
, B =

1

2

(
1− 1

k
− 1

�
+

1

m

)
, C = 1− 1

�

is transformed to the following differential equation under the pull-back transfor-
mation z �→ ϕ(x), y(z) �→ (QmV )

A
Y (ϕ(x)):

d2Y (x)

dx2
+

(
F ′

F
− U ′

� U
− V ′

mV
− W ′

kW

)
Y (x)

dx
+

+A

[
B

(
h1h2 P

�−2Rk−2 U W

Q2F 2
− m2Q′2

Q2
− V ′2

V 2

)
+
mQ′′

Q
+
V ′′

V
+

+

(
1

k
+

1

�

)
mQ′V ′

QV
+

(
mQ′

Q
+
V ′

V

)(
F ′

F
− U ′

� U
− V ′

V
− W ′

kW

)]
Y (x) = 0.

On the other hand, transformation (6) multiplies the exponent differences
by the branching order of ϕ(x) at each x-point. The points with the respec-
tively prescribed branchings k, �,m have the exponent difference 1, and become
non-singular with proper θ(x). The transformed equation will have n singular-
ities. The location of its singularities is determined by U, V,W . There will be
n− 3 new variables, the accessory parameters of the target equation. The terms
to dY (x)/dx are always the same for the target and symbolically computed
equations. But comparison of the terms to Y (x) gives new algebraic equations
between the undetermined coefficients, unless A = 0. The key contribution of
this trick is to simplify Q from the denominator of the Y (x) coefficient.

Combination of the logarithmic derivative ansatz and Lemma 1 usually al-
lows straightforward elimination of most accessory parameters and coefficients
of P,Q,R. If x = ∞ is assigned above ϕ = ∞, usually only 2n− 5 variables are
left for hard Gröbner basis computations. Increasing n by 1 basically adds two
new variables: the location of the new singularity and an accessory parameter.
If k = 2, � = 3 and m �= 6, the polynomials R,P can be eliminated symbolically.

3 Examples

Consider computation of degree 15 Belyi functions with the branching pattern5

6 [2] + 1 + 1 + 1 = 5 [3] = 2 [7] + 1. We assign the bachelor non-branching point
to x = ∞. The points of the same order are described by monic polynomials
P,Q,R,W without multiple roots, of degree 5, 2, 6, 3 respectively. We have
U = V = 1. Rather than fixing x = 0, we normalize Q = x2 + c by a translation
x �→ x + β. Now only scaling Möbius transformations x → αx are left to act.
The logarithmic derivative ansatz gives

R = 3P ′Q− 7PQ′, P 2 = 2QR′W +QRW ′ − 7Q′RW.

5 We are thus looking for (2, 3, 7)-minus-4 regular functions. Following the notation in
[5], the regular branching orders are given in square brackets.
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Lemma 1 gives

13

84

(
P

Q2W
− 49Q′2

Q2

)
+

7Q′′

Q
+

7Q′W ′

2QW
=

135 (x− q)

28W
,

where q is an accessory parameter. Symbolic elimination of R,P on Maple gives
a non-linear differential equation for W = x3 + w1x

2 + w2x + w3, and then an
expanded polynomial expression of degree 8 in x. The coefficients are weighted-
homogeneous equations for the undetermined c, w1, w2, w3, q. Maple solves them
immediately. There are 4 Galois orbits of solutions, 3 of them parasitic6. The
proper solution is defined over a cubic field K. A common problem with com-
puting Belyi functions is simplification of the moduli field and of the Belyi func-
tion itself. We use LLL techniques techniques to find a small field polynomial,
ξ3 + 2ξ2 + 6ξ − 8 in this case. The shortest expression7 for ϕ(x) we found is

ϕ(x) =
1162 + 4282ξ + 1523ξ2

27

(14x+ 12 + ξ − ξ2)3

3x+ 3− 1
2ξ

2
×(

x4 + x3 − (1 + 2ξ + 1
2ξ

2)x2 − (5 + ξ + 3
2ξ

2)x − 4
)3(

5x2 + (13 + 3ξ − 1
2ξ

2)x+ 4 + 4ξ + ξ2
)7 . (7)

This Belyi function can be composed with a quartic covering to obtain a degree
60 covering with the branching pattern 30 [2] = 20 [3] = 8 [7] + 1 + 1 + 1 + 1.

The implied diffferential relations explain appearance of Chebyshev and Ja-
cobi polynomials in certain Belyi functions. As is known, Chebyshev polynomials

Tn(x) = cos(n arccosx), Un(x) =
sin(n arccosx)

sinx
. (8)

define the Belyi functions

ϕ(x) = Tn(1− 2x)2, ϕ(x) − 1 = 4 x (x− 1)Un−1(1− 2x)2 (9)

6 Two parasitic solutions have c = w2 = w3 = 0 but different q/w1. The third solution
is a degree 9 Belyi function with the branching pattern 4 [2] + 1 = 3 [3] = [7]+ 1+1,
defined over Q(

√−7). The moduli field is Q actually, but the quadratic extension
occurs because x = ∞ is assigned to a non-bachelor point (from the parasitic per-
spective). For comparison, the logarithmic derivative ansatz alone gives 9 Galois
orbits of parasitic solutions, of total degree 14. A degree 54 example in [6, §2.4] is
computed with just 3 parasitic Galois orbits, but the logarithmic derivative ansatz
would give hundreds of parasitic solutions.

7 Our standard routine focuses on finding the shortest expression for W up to Möbius
transformations. It finds a small defining polynomial for the minimal degree 9 field
(over Q) containing the roots of W . This polynomial necessarily has a cubic factor
over K, which is identified with W by a Möbius transformation that matches the 3
roots. Expression (7) was obtained by observing that P factors over K into a linear
and a quartic factor P ∗. We looked for a small defining polynomial P ′ for the degree
12 field for the roots of P ∗, with the additional condition that the j-invariant of
the four roots (of a quartic factor of P ′ over K) equals the j-invariant for P ∗. This
polynomial P ′ was found immediately from the LLL basis of the field computation.
A Möbius transformation identifies the short quartic factor of P ′ with P ∗.



Computation of Belyi Functions 97

with the linear dessins d’enfant like � � � � � � � � �. This follows
from the logarithmic derivative ansatz already: assuming ϕ(x), ϕ(x)− 1 propo-
tional to F 2, x(x − 1)G2 (with F,G of degree n, n − 1, respectively) leads to

2nG = 2F ′, 2nF = (2x− 1)G+ 2 x (x− 1)G′, (10)

and then to hypergeometric equations for the Chebyshev polynomials; see [6,

§5.1] for details. Jacobi polynomials J
(α,β)
N with α, β proper half-integers8 (or

rational numbers) appear in Belyi pull-backs to hypergeometric equations with
the Z/2Z (or a finite cyclic) monodromy. This is shown in [6, §5.3] by relating
the Belyi functions to Schwarz maps for the involved hypergeometric equations.
This generalizes the observation of Jacobi polynomials in Belyi functions in [3].

4 Software Usage

The main Maple routine is ComputeBelyi() in [4, ComputeBelyi.mpl]. Here is the
input specification:

ComputeBelyi(d, [k, �,m], [Bk, B�, Bm], x);

where d is the degree; Bk, B�, Bm are lists of branching orders in the 3 fibers.
To force the assignment x = ∞, list that branching order multiplied by −1. The
assigned branchings k, �,m can be skipped in Bk, B�, Bm, respectively. In each
Bk, B�, Bm, one exceptional branching < k, �,m (respectively) can be skipped.
Empty Bm (and then empty B�) can be skipped. Bk can be written as a sequence
of numbers rather than a list.

The output is the list [Gj ], where each Gj = [ϕ, . . .] represents a Galois orbit.
If the moduli field of Gj is not a realization field, the second member of the list
Gj is the triple [C(u, v), u, v], where C(u, v) = 0 is the obstruction conic. The
remaining members of Gj are the polynomials defining the realization field of ϕ
(and the extra variables in the expression of ϕ).

Our website [4] offers a set of routines to simplify Belyi functions, compute
their moduli fields, obstruction conics, decompositions and dessins d’enfant, Less
trivial algorithms are described in [6, §4]. We also developed a script language
(executable on Maple) to draw dessins in the Latex or the EPS format.
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Abstract. The Baues–Wirsching cohomology is one of the cohomologies
of a small category. Our aim is to describe the first Baues–Wirsching
cohomology of the small category generated by a finite quiver freely. We
consider the case where the coefficient is a natural system obtained by
the composition of a functor and the target functor. We give an algorithm
to obtain generators of the vector space of inner derivations. It is known
that there exists a surjection from the vector space of derivations of the
small category to the first Baues–Wirsching cohomology whose kernel is
the vector space of inner derivations.

Keywords: Finite quivers, path algebras, category algebras, inner
derivations, Gaussian elimination.

1 Introduction

Baues and Wirsching [1] introduced a cohomology of a small category, which is
called nowadays the Baues–Wirsching cohomology. It is known that the Baues–
Wirsching cohomology is a generalization of some cohomologies; e.g., the coho-
mology of a groupG with coefficients in a left G-module, the singular cohomology
of the classifying space of a small category with coefficients in a field, and so
on. Let k be a field and D a natural system on a small category C; that is, a
functor from the category of factorizations in C to the category k-Mod of left
k-modules. The n-th Baues–Wirsching cohomology of C with coefficients in D is
denoted by Hn

BW (C, D). For an equivalence φ : C → C′ of small categories and
a natural system D on C, Baues and Wirsching showed that the k-linear map
φ̃ : Hn

BW (C, D) → Hn
BW (C′, φ∗D) induced by φ is an isomorphism for n ∈ Z.

The Baues–Wirsching cohomology is an invariant for the equivalence of small
categories in this sense.

Assume that C is freely generated by a finite quiver and that D = Ď ◦ t is
the composition of Ď and the target functor t. In this case, it is known that
Hn

BW (C, D) vanishes for n ≥ 2 and that H0
BW (C, D) is isomorphic to the limit

limC Ď. Therefore, we focus on the first cohomology H1
BW (C, D). Let kC be
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the category algebra of C, i.e. the algebra whose basis is formed by the set of
morphisms of C and whose multiplication is the composition of morphisms (if
the morphisms are not composable, then the multiplication is zero). Since C is
generated by Q, the category algebra is the path algebra kQ. Define the functor
πC from kC-Mod to the category k-ModC of functors from C to k-Mod as follows:
πC maps an object M in kC-Mod to the functor which maps x ∈ ob(C) to
idx ·M and which maps u ∈ mor(C) to the left multiplicative map of u; and πC
maps a morphism f in kC-Mod to the natural transformation {f |idx·M}x∈ob(C).
Since the set of objects in C is finite, πC is an equivalence of categories. (See
[5].) Our algorithm introduced in this article computes the first cohomology
H1

BW (C, πC(N) ◦ t) for a left kC-module N .
By [1], we can regard Hn

BW (C, πC(N) ◦ t) as the Hochschild–Mitchell co-
homology. Since C is generated by Q and πC is an equivalence of categories,
H1

BW (C, πC(N) ◦ t) is the first Hochschild cohomology of the path algebra kQ
with coefficients in N . In [4], Han gave an algorithm to compute Hochschild
cohomologies of a monomial algebra A with coefficients in A. Han uses compu-
tation of the cyclic cohomology of A in his algorithm. In [3], Green and Solberg
gave an algorithm to construct projective resolutions of modules over quotients
of path algebras. In [2], Buchweitz, Green and Solberg say that the resolution
is used to give a minimal projective resolution of the quotients algebra over
the enveloping algebra and they research on the multiplicative structure of the
Hochschild cohomology ring. We do not use a cyclic cohomology nor a projective
resolution in our algorithm, but we give generators of the vector space of inner
derivations in a combinatorial way.

The authors gave a description of the first Baues–Wirsching cohomology in the
case where C is a B2-free poset [6]. The algorithm in this paper is a generalization
of the idea of the special case.

This article is organized as follows: In Section 2.1, we define some notation.
In Section 2.2, we give algorithms. In Section 3, we show our main result.

2 Definition

2.1 Definition of the First Baues–Wirsching Cohomology

We define some notation on the first Baues–Wirsching cohomology in this sec-
tion.

Let P and Q be finite sets, s and t maps from Q to P . We call the set Q
equipped with the triple (P ; s, t) a finite quiver. We call an element of P a
vertex and call an element of Q an arrow. An arrow f ∈ Q such that s(f) = a
and t(f) = b is denoted by f : a → b. We call a sequence f1 · · · fl of arrows a
path of length l if s(fi) = t(fi+1) for all i. A path f1 · · · fl such that t(f1) = s(fl)
is called a cycle. We say that a quiver Q is acyclic if Q has no cycle. Let Q′ be
a subset of Q and P ′ a subset of P . We call the set Q′ equipped with the triple
(P ′; s|Q′ , t|Q′) a subquiver of Q if s(Q′) and t(Q′) are subsets of P ′.

Let Q be a finite quiver. The category defined in the following manner is called
the small category freely generated by Q:
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– the set of objects is the set of vertices of Q;
– a morphism from x to y is a path from x to y;
– the identity idx is the path from x to x of length 0; and
– if s(f) = t(g), then the composition of morphisms f and g is the concatena-

tion of paths f and g.

Let C be a small category freely generated by Q. The category F(C) defined
in the following manner is called the category of factorizations in C:
– the objects are morphisms in C;
– a morphism from α to β is a pair (u, v) of morphisms in C such that β =
u ◦ α ◦ v; and

– the composition of (u′, v′) and (u, v) is defined by (u′, v′) ◦ (u, v) = (u′ ◦ u,
v ◦ v′).

A covariant functor from F(C) to k-Mod is called a natural system on a small
category C. LetD be a natural system on the small category C. For α ∈ ob(F(C)),
Dα denotes the k-module corresponding to α. For a pair (u, v) of composable
morphisms, we define u∗ and v∗ by

u∗ = D(u, ids(v)) : Dv → Du◦v,
v∗ = D(idt(u), v) : Du → Du◦v.

Let d : mor(C) →
∏

ϕ∈mor(C)Dϕ be a map such that d(f) ∈ Df for each f ∈
mor(C). We call d a derivation from C to D if d(f ◦ g) = f∗(dg) + g∗(df) for
each pair (f, g) of composable morphisms. We define Der(C, D) to be the k-
vector space of derivations from C to D. We call d an inner derivation from C
to D if there exists an element (nx)x∈ob(C) ∈

∏
x∈ob(C)Didx

such that d(f) =

f∗(ns(f))−f∗(nt(f)) for each f ∈ mor(C). We define Ider(C, D) to be the k-vector
space of inner derivations from C to D. The first Baues–Wirsching cohomology
H1

BW (C, D) is the quotient space Der(C, D)/Ider(C, D).

Remark 1. Let Q be a quiver, C a small category freely generated by Q, N a
kC-module, t the target functor, and D̃ the natural system πC(N) ◦ t. For a pair
(u, v) of composable morphisms, u∗ (resp. v∗) maps m ∈ D̃v = idt(v) ·N (resp.

n ∈ D̃u = idt(u) ·N) to u ·m ∈ D̃u◦v = idt(u) ·N (resp. n ∈ D̃u◦v = idt(u) ·N).

2.2 Definition of Algorithms

In this section, we give algorithms to obtain generators of Ider(C, D).
Let Q be a finite quiver, and P the set of vertices of Q. For subsets Q1, Q3

of Q and a subset P̂ of P , we define the set H(P̂ ;Q,Q1, Q3) to be{
h ∈ Q3

∣∣∣∣ t(h) ∈ P̂ .hp is not a cycle in Q for any path p in Q1.

}
.

For subsets Q1, Q2 of Q and h ∈ H(P̂ ;Q,Q1, Q3), we define the set G(Q1, Q2;h)
to be {

g ∈ Q2

∣∣∣∣ There exists a cycle in Q1 ∪Q2 ∪ { h }
which contains g and h.

}
.
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Definition 1 (Algorithm to construct a decomposition of a quiver).

Input a finite quiver Q.
Output ((ai)

l
i=1; (bi)

m
i=1; (fi)

l
i=1; (gi)

n
i=1; (hi)

r
i=1).

Procedure

1. Let P be the set of vertices of Q.
2. Let P̌ = ∅, P̂ = P , Q1 = ∅, Q2 = ∅, Q3 = Q.
3. While H(P̂ ;Q,Q1, Q3) �= ∅, do the following:

(a) Choose an element h ∈ H(P̂ ;Q,Q1, Q3).
(b) Let Q′ = ((Q1 ∪Q2) \G(Q1, Q2;h)) ∪ { h }.
(c) Let Q̄ be a maximal acyclic subquiver of Q including Q′.
(d) Let P̌ =

{
a ∈ P | ∃f ∈ Q̄ such that t(f) = a.

}
.

(e) Let P̂ = P \ P̌ .
(f) For each a ∈ P̌ , choose fa ∈ Q̄ so that t(fa) = a.
(g) Let Q1 =

{
fa | a ∈ P̌

}
, Q2 = Q′ \Q1, and Q3 = Q \Q′.

4. Let l = |P̌ |. For i = 1, . . . , l, do the following:

(a) Choose a vertex x ∈ P̌ such that there exists no arrow in Q1 whose
source is x.

(b) Let ai = x.
(c) For α ∈ Q1 so that t(α) = x, let fi = α.
(d) Let P̌ = P̌ \ { x }, and Q1 = Q1 \ { α }.

5. Let { b1, . . . , bm } = P̂ .
6. Let { g1, . . . , gn } = Q2.
7. Let { h1, . . . , hr } = Q3.

Remark 2. In Step 3 in Definition 1, |H(P̂ ;Q,Q1, Q3)| strictly decreases since
|P̂ | decreases in each step. Hence Step 3 is a finite procedure.

Remark 3. Let ((ai)
l
i=1; (bi)

m
i=1; (fi)

l
i=1; (gi)

n
i=1; (hi)

r
i=1) be an output of Defini-

tion 1. Let

P̌ = { a1, . . . , al } ,
P̂ = { b1, . . . , bm } ,
Q1 = { f1, . . . , fl } ,
Q2 = { g1, . . . , gn } , and
Q3 = { h1, . . . , hr } .

The set P̌
∐
P̂ is a decomposition of P . The set Q1

∐
Q2

∐
Q3 is also a decom-

position of Q. By Step 4 in Definition 1, ai corresponds to the target of fi for
i = 1, . . . , l. Hence if there exists a path from aj to ai or a path from bj to ai
in Q1, then the path is unique. Since the quiver Q1 ∪ Q2 is a maximal acyclic
subquiver of Q, we can regard P̌ as a poset. Moreover, if aj ≤ ai in the poset
P̌ , then the inequality i ≤ j holds. If Q is a finite acyclic quiver, then Q3 is the
empty set. By Step 3 in Definition 1, for hi so that t(hi) ∈ P̂ , there exists a path
p in Q1 such that hip is a cycle in Q.
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Definition 2 (Algorithm to construct generators of the vector space
of inner derivations).

Input ((ai)
l
i=1; (bi)

m
i=1; (fi)

l
i=1; (gi)

n
i=1; (hi)

r
i=1).

Output (V,W ).

Procedure

1. Let Q1 = { f1, . . . , fl }.
2. (We define elements vi,j in the path algebra kQ.) For j = 1, . . . , l, do

the following:

(a) For i = 1, . . . , l, let vi,j = 0.
(b) Let vj,j = idaj .
(c) For i = 1, . . . , n, do the following:

i. Let vl+i,j = 0.
ii. If there exists a path p from aj to t(gi) in Q1, then let vl+i,j =

vl+i,j + p.
iii. If there exists a path p from aj to s(gi) in Q1, then let vl+i,j =

vl+i,j − gip.

(d) For i = 1, . . . , r, do the following:

i. Let vl+n+i,j = 0.
ii. If there exists a path p from aj to t(hi) in Q1, then let vl+n+i,j =

vl+n+i,j + p.
iii. If there exists a path p from aj to s(hi) in Q1, then let vl+n+i,j =

vl+n+i,j − hip.

3. Let V = (vi,j)1≤i≤l+n+r, 1≤j≤l.

4. (We define elements wi,j in the path algebra kQ.) For j = 1, . . . ,m, do
the following:

(a) For i = 1, . . . , l, let wi,j = 0.
(b) For i = 1, . . . , n, do the following:

i. Let wl+i,j = 0.
ii. If there exists a path p from bj to t(gi) in Q1, then let wl+i,j =

wl+i,j + p.
iii. If there exists a path p from bj to s(gi) in Q1, then let wl+i,j =

wl+i,j − gip.

(c) For i = 1, . . . , r, do the following:

i. Let wl+n+i,j = 0.
ii. If there exists a path p from bj to t(hi) in Q1, then let wl+n+i,j =

wl+n+i,j + p.
iii. If there exists a path p from bj to s(hi) in Q1, then let wl+n+i,j =

wl+n+i,j − hip.

5. Let W = (wi,j)1≤i≤l+n+r, 1≤j≤m.

Remark 4. Let (V,W ) be the output of Definition 2 for some input. The matrix
(vi,j)1≤i≤l, 1≤j≤l is the identity matrix, i.e., the diagonal matrix whose entries
one (ida1 , . . . , idal

). The matrix (wi,j)1≤i≤l, 1≤j≤m is the zero matrix.
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3 Our Main Result

We show our main result in this section. Our main result computes the first
Baues–Wirsching cohomology via the column echelon matrix obtained by our
algorithm.

Let Q be a finite quiver, C a small category freely generated by Q. Fix a left
kC-module N , and consider the natural system D̃ = πC(N) ◦ t.

Let T = ((ai)
l
i=1; (bi)

m
i=1; (fi)

l
i=1; (gi)

n
i=1; (hi)

r
i=1) be the output of Definition

1 for Q. We define the k-vector space A1, A2, and A3 by

A1 =
⊕l

i=1 D̃fi , A2 =
⊕n

i=1 D̃gi , and A3 =
⊕r

i=1 D̃hi .

Let (V,W ) be the output of Definition 2 for T . Let vj and wj be the j-th
column vector of V and W , respectively. The vectors vj and wj are elements of⊕l+n+r

i=1 kC. We define the k-vector spaces V̄ and W̄ by

V̄ =
〈
vjnaj | naj ∈ idaj ·N, 1 ≤ j ≤ l

〉
,

W̄ =
〈
wjnbj | nbj ∈ idbj ·N, 1 ≤ j ≤ m

〉
.

Theorem 1. The first Baues–Wirsching cohomology H1
BW (C, D̃) is isomorphic

to
(A1 ⊕A2 ⊕A3)/(V̄ + W̄ )

as k-vector spaces.

Proof. According to Baues and Wirsching [1], if C is freely generated by S ⊂
mor(C), then we can identify Der(C, D) with

∏
α∈S Dα. Via the identification,

Ider(C, D) is the k-vector space⎧⎨⎩(α∗(ns(α))− α∗(nt(α)))α ∈
∏
α∈S

Dα

∣∣∣∣∣(nx)x ∈
∏

x∈ob(C)
Didx

⎫⎬⎭ .
Let

Q = { fi | 1 ≤ i ≤ l } ∪ { gi | 1 ≤ i ≤ n } ∪ { hi | 1 ≤ i ≤ r } , and
P = { ai | 1 ≤ i ≤ l } ∪ { bi | 1 ≤ i ≤ m } .

It follows that Der(C, D̃) ∼= A1 ⊕A2 ⊕A3. Hence Ider(C, D̃) is isomorphic to the
k-vector space

B =

{
(αns(α) − nt(α))α∈Q ∈ A

∣∣∣∣ (nx)x ∈
⊕
x∈P

idx ·N
}
.

For x ∈ P and m ∈ idx ·N , we define rxm = (rx,αm)α∈Q ∈ A by

rx,αm =

⎧⎨⎩
−αm (s(α) = x)
m (t(α) = x)
0 (otherwise).
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It is clear that the k-vector space B is equal to

〈rxm | x ∈ P,m ∈ idx ·N〉 .

For j = 1, . . . , l and naj ∈ idaj · N , we define rajnaj to be rajnaj +∑i−1
k=1 rak

fknaj . For j = 1, . . . ,m and nbj ∈ idbj · N , we define rbjnbj to be

rbjnbj +
∑l

k=1 rak
fknbj . It follows from the direct calculation that rajnaj and

rbjnbj are equal to vjnaj and wjnbj , respectively. Hence we have Theorem 1.
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Abstract. In this work, we study the structure of skew constacyclic
codes over the ring R = F4[v]/〈v2 − v〉 which is a non chain ring with 16
elements where F4 denotes the field with 4 elements and v an indetermi-
nate. We relate linear codes over R to codes over F4 by defining a Gray
map between R and F 2

4 . Next, the structure of all skew constacyclic codes
is completely determined. Furthermore, we construct DNA codes over R.

Keywords: Non chain rings, Linear codes, Skew codes, DNA codes.

1 Introduction

Many papers have been written on linear codes over fields especially over binary
fields due to their direct application nature. The paper written by Hammons at
al. [1] is recognized to be a significant milestone study in coding theory. This pa-
per gave an important connection between non binary (quaternary) linear codes
and some well known binary non linear codes. Most of the studies are concen-
trated on the case with codes over finite chain rings. However, optimal codes
over non-chain rings exist (e.g see [2]). But the case over non-chain structure is
more complicated. In [10], the algebraic structure of cyclic codes over F2 + vF2,
where v2 = v are studied. Zhu and Wang studied a class of constacyclic codes
in [9]. Recently, D. Boucher et al. considered codes over non commutative rings.
Leonard Adleman [7] pioneered the studies on DNA computing by solving NP-
complete problem by DNA molecules. DNA codes are algebraically studied over
GF (4) in [11]. Also DNA codes are considered over F2[u]/〈u2 − 1〉 which is a
ring with four elements [5]. Later in [3], DNA double pairs are matched with
the elements of F16 by a family of special polynomials to solve the reversibility
problem.

2 Preliminaries

Throughout this paper, R denotes the commutative ring F4+vF4 = {a+vb|a, b ∈
F4} with v2 = v. We take F4 = {0, 1, w, w + 1} where w2 = w + 1. The ring R
is a finite non-chain ring with 16 elements. Any element of R can be uniquely
expressed as c = a + vb, where a, b ∈ F4. The Gray map from R to F4 × F4 is

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 106–110, 2014.
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given by φ(c) = (a+ b, a). It is routine to check that φ is a ring isomorphism, so
R is a finite semi-local, Frobenius ring with maximal ideals 〈v〉 and 〈1 + v〉.

A linear code C over R of length n is an R-submodule of Rn. For any linear
code C of length n over R, the dual code is defined by C⊥ = {u ∈ Rn|〈c, u〉 = 0
for all c ∈ C} where 〈c, u〉 denotes the standard Euclidean inner product of c
and u in Rn. Let R be a ring and a ∈ R. The Hamming weight of a nonzero
element of R equals to 1 or 0 otherwise. If a = (a1, a2, . . . , an) ∈ Rn, then the
Hamming weight of a is w(a) =

∑n
i=1 w(ai). The Hamming distance between

a, b ∈ Rn is d(a, b) = w(a − b). Hamming distance is a metric on Rn. The Lee
weight of any element of R is wL(c) = wH(φ(c)). Let A and B be two linear
codes. The operations ⊗ and ⊕ are defined as; A⊗B = {(a, b) | a ∈ A, b ∈ B}
and A ⊕ B = {a + b | a ∈ A, b ∈ B}. A generator matrix for a nonzero linear
code C over R can be put into the following form:

G =

⎛⎝ Ik1 (1 + v)B1 vA1 (1 + v)A2 + vB2 (1 + v)A3 + vB3

0 vIk2 0 vA4 0
0 0 (1 + v)Ik3 0 (1 + v)B4

⎞⎠
where Ai and Bj are F4 matrix for all 1 ≤ i, j ≤ 4. Let C be a linear code over
R. The following result is presented in [4]. Let;

C1 = {x+ y ∈ Fn
4 | (x+ y)v + x(v + 1) ∈ C, for some y ∈ Fn

4 } (1)

C2 = {x ∈ Fn
4 | (x+ y)v + x(v + 1) ∈ C} (2)

Then, C1 and C2 are linear codes over F4. Consequently, C = vC1 ⊕ (1 + v)C2

and |C| = 16k14k24k3 .

3 Skew Constacyclic Codes over R

In this section we define skew constacyclic codes for R, which is a finite non
chain ring and we mention the algebraic structure skew constacyclic codes over
F4 + vF4 and classify them with respect to their Gray image. Two types of
nontrivial automorphisms can be defined over F4 + vF4:

ψ : F4 + vF4 → F4 + vF4

a+ bv → a+ (1 + v)b
θ : F4 + vF4 → F4 + vF4

a+ bv → a2 + vb2
(3)

Definition 1. [8] Let θ be an automorphism over R and λ be a unit element
of R. Then, a linear code C of length n is called skew constacyclic or θλ− consta-
cyclic over R if C satisfies the property that σθλ(c) = (θ(λcn−1), θ(c0), ..., θ(cn−2))
∈ C whenever c = (c0, c1, ..., cn−1) ∈ C for all c ∈ C where σθλ(c) is called the
θλ−constacyclic shift of c over R.

In polynomial representation, a linear code of length n over F4 is a left F4[x; θ]-
submodule of F4[x; θ]/(x

n − λ) where F4[x; θ] is skew polynomial ring with the
non-commutative multiplication defined as xia = θi(a)xi, a ∈ F4 if and only if it
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Table 1. The Relation of θλ−constacyclic C over R and the codes: C1 and C2 over F4

C C1 C2

θw θw θw
θ(1+w) θ(1+w) θ(1+w)

θ(v+w) θ(1+w) θw
θ(1+v+w) θw θ(1+w)

θ(1+vw) θ(1+w) skew cyclic
θ(1+w+vw) skew cyclic θ(1+w)

θ(1+v+vw) θw skew cyclic
θ(v+w+vw) skew cyclic θw

is a θλ−constacyclic code. Furthermore if C is a left submodule of F4[x; θ]/(x
n−

λ) then C is generated by a monic polynomial g(x) which is a right divisor of
xn − λ in F4[x; θ] [6].

In particular, if λ is equal to 1 and −1 then C is called skew cyclic and skew
negacyclic code, respectively.

Theorem 1. Let C be a linear code of length n over R and C = (v)C1 ⊕
(1 + v)C2. Then, C is a θλ-constacyclic code if and only if C1 and C2 are
θπ1(φ(λ))−constacyclic and θπ2(φ(λ))−constacyclic codes of length n over F4, re-
spectively.

Corollary 1. The Table 1 summarizes all skew constacyclic codes over R and
explores their relation to the Gray images.

4 Codes over R and Their DNA Code Applications

In this section, we obtain the DNA codes over R that correspond to DNA double
pairs (bases) and we create a new approach to solve the reversibility problem for
DNA double pairs (bases) apart from [3]. Let SD4 = {A, T,G,C} represent the
set of DNA alphabet. We define the set

SD16 = {AA,AT,AG,AC, TT, TA, TG, TC,GG,GA,GC,GT,CC,CA,CG,CT }
(4)

and define a correspondence between the elements of R and DNA double pairs in
Table 2. We take the matching between elements of F4 and SD4 originally given
in [11] such as A → 0, T → 1, C → w, G → w + 1 = w2. The Watson-Crick
complement is given by Ac = T, T c = A,Cc = G,Gc = C. Hence in SD16 we
have (AA)c = TT, ..., (TC)c = AG. If c is a codeword such as c = (c0, ..., cn−1),
then the complement of c is cc = (cc0, ..., c

c
n−1) and the reverse-complement of c

is crc = (ccn−1, ..., c
c
0).

Let C be a code over R of length n and c ∈ C be a codeword where c =
(c0, c1, ..., cn−1) , ci ∈ R and Θ(c) : C → S2n

D4
where (c0, c1, ..., cn−1) → (b0, b1, ...,

b2n−1) given in Table 2. Each ci is mapped to coordinate pairs b2i, b2i+1 where
i = {0, 1, ..., n− 1}. Θ(c) = (b0, b1, ..., b2n−1) is a DNA codeword of Θ(C), bj ∈
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Table 2. ψ-table for DNA correspondence

Element Gray image DNA double pairs

0 (0,0) AA

1 (1,1) TT

w (w,w) CC

1 + w (1 + w, 1 +w) GG

v (1, 0) TA

1 + v (0, 1) AT

v + w (1 + w,w) GC

1 + v + w (w, 1 + w) CG

vw (w, 0) CA

1 + vw (1 +w, 1) GT

w + vw (0, w) AC

1 + w + vw (1, 1 + w) TG

v + vw (1 +w, 0) GA

1 + v + vw (w, 1) CT

w + v + vw (1, w) TC

1 + w + v + vw (0, 1 + w) AG

SD4 , j ∈ {0, 1, ..., 2n − 1}. For instance, (c0, c1, c2, c3) = (1, v, w, w + v) → is
mapped to (TTTACCGC) = (b0, b1, b2, b3, b4, b5, b6, b7).

Definition 2. Let g1(x) and g2(x) be polynomials with deg g1(x) = t1,
deg g2(x) = t2 and both dividing xn − 1 over F4. Let � = min{n − t1, n − t2},
and g(x) = vg1(x) + (v + 1)g2(x) over R. C is a linear code over R, generated
by the set Eg. The set Eg is called a ψ set.

Eg = {E0, E1, ..., E�−1}

where

Ei =

{
xig(x) if i is even
xiψ(g(x)) if i is odd.

Theorem 2. Let g1(x) and g2(x) be self reciprocal polynomials dividing xn − 1
over F4 and 2 ≤ � be an even integer.

1. Let deg g1(x) = deg g2(x) or one of g1(x) or g2(x) be equal zero. If we take
g(x) = vg1(x)+(v+1)g2(x), then |〈Eg〉| = 16� and |〈Eg〉| = 4�, respectively.

2. Let deg g1(x) �= deg g2(x) and 2 ≤ s = |t1 − t2| be even. If we take g(x) =
vg1(x) + (v + 1)xs/2g2(x) for deg g1(x) > deg g2(x), or g(x) = vxs/2g1(x) +
(v + 1)g2(x) for deg g1(x) < deg g2(x) then |〈Eg〉| = 16�.

In both cases, C = 〈Eg〉 is a linear code over R and Θ(C) is a reversible DNA
code.

Theorem 3. Let g(x) be a self reciprocal polynomial dividing xn − 1 but x− 1 �
g(x) over F4. If C = 〈Eg〉, then Θ(C) is a reversible complement DNA code.
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Abstract. Dougherty et al. calculated some of the weight enumerators
of the projections of the 2-adic Golay code of length 24 to finite rings
[Lifted codes and their weight enumerators, Discrete Mathematics, 305
(2005) 123–135]. In this paper, we calculate the missing values so that
we complete the calculation of the weight enumerators of the projections
of the 2-adic Golay code of length 24 to all the finite rings.

Keywords: Golay codes, Lifted codes, p-Adic codes, Weight
enumerators.

1 Introduction

Let p be a prime. Zpe is the ring of integers modulo pe, (1 ≤ e <∞). Zp∞ is the
ring of p-adic integers. For undefined notations, refer to [2,3].

The factorization of x23 − 1 over Z2∞ is

x23 − 1 = (x− 1)π1(x)π2(x),

where, π1(x) = x11+ax10+(a−3)x9−4x8−(a+3)x7−(2a+1)x6−(2a−3)x5−
(a− 4)x4 +4x3+(a+2)x2 +(a− 1)x− 1 and a = 0+2+8+32+64+128+ · · ·
is a 2-adic integer satisfying a2 − a + 6 = 0. We make a cyclic code generated
by π1(x), and extend this code by appending 1 to the generators. Then we have
the [24, 12, 13] self-dual 2-adic Golay code G.

Let Ge = Ψe(G) which is the projection of the 2-adic Golay code G to Zpe . We
have the following series

G1 ≺ G2 ≺ · · · ≺ Ge ≺ · · · ≺ G (1)

of lifts of codes [3]. Since G1 is the well known binary Golay code,

WG1 (x, y) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24.

In [3], they computed WG2(x, y). Since Ge is self-dual, we have

WGe (x, y) =
12∑
j=0

ci
(
x2 + (2e − 1)y2

)j
(xy − y2)24−2j . (2)

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 111–114, 2014.
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There are 13 unknowns c0, c1, c2, . . . , c12 in (2). Let (Ae
0, A

e
1, . . . , A

e
24) be the

weight distribution of Ge. From [2], we know the minimum distance of Ge is
eight for all e ≥ 1, and from [3] we know Ae

8 = 759 and Ae
9 = 0 for all e ≥ 1. So

that if we know Ae
10, A

e
11, and A

e
12, then we can determine WGe(x, y). From [3],

we also know that Ae
10, A

e
11, A

e
12 remain constant for e ≥ 7. In summary, we only

have to calculate Ae
10, A

e
11, and A

e
12 for e = 3, 4, 5, 6, 7 to complete the weight

distribution of Ge for all e ≥ 1. The object of this paper is to compute these
values. All the computation of this paper was made using Magma [1] with a
2.3GHz and 3.0GB RAM PC.

2 Main Results

The calculation times of WG1 (x, y), WG2(x, y), and WG3(x, y) using the Magma
function, “WeightDistribution”, are 0.000(sec), 0.983(sec), 14653.704(sec)(≈ four
hours), respectively. We expect that the running time of WG4 is more than two
years. Therefore this naive method can not be applied to our problem.

2.1 Calculation of Ae
10, A

e
11, and Ae

12

We only have to calculate Ae
10, A

e
11, and A

e
12, (e = 3, 4, 5, 6, 7). There are Magma

functions, “NumberOfWords”, “PartialWeightDistribution”. But these functions
can be applied only for codes over finite fields. So, we have to make a program.

In the following, we state the algorithm in [4, p. 404]. Let Fq be the finite field
of order q. Let C be an [n, k] linear code over Fq with n = 2k and two generator
matrices G′ = (I, A′) and G′′ = (A′′, I) for C, where I is the k × k identity
matrix. Let G′

i and G
′′
i be the i-th row of G′ and G′′, respectively. In order to

determine the number of codewords of weight w in C we count

(i) for all values of t with 1 ≤ t ≤ w/2 and all possible choices of ai ∈ (Fq−{0})
the number of codewords c of weight w which are the linear combination of
t rows of G′

c = a1G
′
i1 + a2G

′
i2 + · · ·+ atG

′
it ; (3)

(ii) for all values of t with 1 ≤ t < w/2 and all possible choices of ai ∈ (Fq−{0})
the number of codewords c of weight w which are the linear combination of
t rows of G′′

c = a1G
′′
i1 + a2G

′′
i2 + · · ·+ atG

′′
it . (4)

We can easily apply this algorithm to a linear code over Zpe with some minor
improvement by the following. Let C be an [n, k] linear code over Zpe with n = 2k
and two generator matrices G′ = (I, A′) and G′′ = (A′′, I) for C, where I is the
k× k identity matrix. Let A′

i and A
′′
i be the i-th row of A′ and A′′, respectively.

In order to determine the number of codewords of weight w in C we count

(i) for all values of t with 1 ≤ t ≤ w/2 and all possible choices of ai ∈ (Zpe−{0})
the number of codewords c of weight w− t which are the linear combination
of t rows of A′

c = a1A
′
i1 + a2A

′
i2 + · · ·+ atA

′
it ; (5)
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(ii) for all values of t with 1 ≤ t < w/2 and all possible choices of ai ∈ (Zpe−{0})
the number of codewords c of weight w− t which are the linear combination
of t rows of A′′

c = a1A
′′
i1 + a2A

′′
i2 + · · ·+ atA

′′
it . (6)

Let G = (I, A) be a generator matrix of Ge, (1 ≤ e < ∞). Then its parity
check matrix H = (AT , I) is also a generator matrix of Ge. So, we can apply the
above algorithm to Ge. The number of the calculation of Eqn. (5) and Eqn. (6)
is ∑

1≤t≤w/2

(
12

t

)
(2e − 1)t +

∑
1≤t<w/2

(
12

t

)
(2e − 1)t. (7)

Expression (7) has a factor 2et and we know that the complexity grows ex-
ponentially as e and w grow. If e = 7, w = 12, and t = 6, then 2et is 242.
Here is our calculation results. For w = 8, the running times of e = 1, 2, 3, 4
are 0.016, 0.609, 17.109, 340.344 seconds, respectively. So, we expect that it is
computationally impossible to calculate the number of codewords of weight 12
in WG7 .

2.2 Our Method

We state our algorithm. Let C be an [n, k] linear code over Zpe with n = 2k
and two generator matrices G′ = (I, A′) and G′′ = (A′′, I) of C, where I is the
k × k identity matrix. For a given w ≥ 1, our algorithm computes the number
of codewords of C with weight w, i.e., Ae

w.
We still consider all values of t with 1 ≤ t ≤ w/2 (or 1 ≤ t < w/2) as in

the algorithm of the previous subsection. But we avoid “all possible choices of
ai ∈ (Zpe−{0})”. Let LC(A′, t) be the set of all choices of t rows of A′. Therefore

|LC(A′, t)| =
(
k
t

)
. Let i1, i2, . . . , it be an element of LC(A′, t) which represent

some t rows. LetM ′ = (m′
ij) be the submatrix of A′ which consists of i1-th row,

i2-th row, ..., and it-th row of A′. We define

Z ′
j = {(x1, x2, . . . , xt) ∈ (Zpe − {0})t|m′

1jx1 +m′
2jx2 + · · ·+m′

tjxt = 0} (8)

for j = 1, 2, . . . , k, and

f(A′, {i1, i2, . . . , it}) =
∑

I⊆{1,2,...,k},|I|=k−(w−t)

∣∣∣∣ ⋂
j∈I

Z ′
j −

⋃
j /∈I

Z ′
j

∣∣∣∣.
Then the number of codewords of weight w in C is

Ae
w =

∑
1≤t≤w/2

∑
{i1,i2,...,it}∈LC(A′,t)

f(A′, {i1, i2, . . . , it})

+
∑

1≤t<w/2

∑
{i1,i2,...,it}∈LC(A′′,t) f(A

′′, {i1, i2, . . . , it}). (9)

We explain Eqn. (9). Let c = (c1, . . . , ck, ck+1, . . . , c2k) be a codeword of C
and wt(c) = w. Since we consider t non-zero coefficient linear combination of
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G′ = (I, A′), wt(c1, . . . , ck) = t and wt(ck+1, . . . , c2k) = w − t. Therefore the
number of zero components of (ck+1, . . . , c2k) is k− (w− t) which corresponds to⋂

j∈I Z
′
j, and the number of nonzero components (ck+1, . . . , c2k) is w − t which

corresponds to
⋃

j /∈I Z
′
j.

We can quickly calculate
⋂

j∈I Z
′
j since we can view

⋂
j∈I Z

′
j as a homogeneous

system of linear equations with |I| equations and t unknowns. So that we avoid
the calculation in Eqn. (5). Our algorithm is very fast for Ge. For example, the
running time for e = 7 with w = 8, 9, 10, 11, 12 are 15, 27, 43, 60, 135 seconds,
respectively. Our result is in Table 1.

Table 1. Ae
w : the number of codewords of weight w in Ge

e = 3 e = 4 e = 5 e = 6 e = 7

w = 8 759 759 759 759 759

w = 9 0 0 0 0 0

w = 10 12144 12144 12144 12144 12144

w = 11 48576 48576 48576 48576 48576

w = 12 658352 1629872 2504240 3281456 3281456

Remark 1. We state our method for a linear code over Zpe . But our method can
be described in the same way for a linear code over an arbitrary commutative
ring with unity.

Acknowledgment. The author would like to thank Young Ho Park (Kangwon
National University) for his helpful discussions on this research.
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Abstract. It is well known that there are exactly five inequivalent
doubly-even binary self-dual codes of length 32 and minimum distance
8. The first proof was done by Conway and Pless in 1980. The second
proof was given by H. Koch in 1989 by using the balance principle. Both
proofs require nontrivial mathematical arguments. In this talk, we give
a computer-aided proof of this fact.

Keywords: balance principle, self-dual codes, classification of linear
codes.

1 Introduction

Self-dual codes have been of great interest since the beginning of coding theory
around 1948. For example, the extended binary Hamming [8, 4, 4] code is self-
dual and the extended binary Golay [24, 12, 8] code is also self-dual. Furthermore,
each code is unique up to isomorphism. Hence it is a natural question to classify
all binary self-dual codes for a given length n.

A binary linear code C is called self-dual if C is equal to its dual C⊥. A
self-dual code is called Type I (or singly-even) if there is a codeword with weight
≡ 2 (mod 4), and called Type II (or doubly-even) if all codewords have weight
≡ 0 (mod 4). Two binary codes are said to be equivalent if they differ only by a
permutation of the coordinates. Let C be a binary self-dual code of length n and
minimum distance d(C). Rains gave the following upper bound on the minimum
distance d(C).

d(C) ≤
{
4
[
n
24

]
+ 4, if n �= 22 (mod 24),

4
[
n
24

]
+ 6, if n = 22 (mod 24).

A self-dual code meeting one of the above bounds is called extremal. A code is
called optimal if it has the highest possible minimum distance for its length and
dimension.

It is well known from the Gleason theorem that if C is a Type II code of length
n then n ≡ 0 (mod 8). V. Pless has asked me if there is a purely combinatorial
proof of this fact and I have not found one yet. I hope that someone can find
such a proof.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 115–118, 2014.
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In the following table, we give a current status of the classification of binary
self-dual codes of lengths up to 40. Here dI (dII respectively) denotes the optimal
(O) or extremal (E) minimum distance of Type I (II respectively) codes. The
symbol numI (numII respectively) denotes the number of Type I (II respectively)
codes with minimum distance dI(dII respectively).

Table 1. Type I and II codes of length 2 ≤ n ≤ 40

n dI numI dII numII n dI numI dII numII

2 2O 1 22 6E 1
4 2O 1 24 6E 1 8E 1
6 2O 1 26 6O 1

8 2O 1 4E 1 28 6O 3
10 2O 2 30 6O 13
12 4E 1 32 8E 3 8E 5
14 4E 1 34 6O 938
16 4E 1 4E 2 36 8E 41

18 4E 2 38 8E 2744
20 4E 7 40 8E 10200655 8E 16470

In particular, it is well known that there are exactly five inequivalent doubly-
even binary self-dual codes of length 32 and minimum distance 8. The first proof
was done by Conway and Pless [3] in 1980. The second proof was given by H.
Koch [4] in 1989 by using the balance principle. Both proofs require nontrivial
mathematical arguments.

In this talk, we give a computer-aided proof of this fact. We also use the
balance principle by classifying all [24,9,8] doubly-even codes. We show that
there are exactly 22 such codes by the program called Q-extension made by Iliya
Bouyukliev [1]. Using this result, we reprove that there are exactly five doubly-
even self-dual [32,16,8] codes by writing Magma [2] programs implementing a
restricted equivalence test. This experiment shows that the combination of Q-
extension and Magma can be used for classification problems. We will discuss the
difficulty of this approach and some possible reduction of the running complexity.

2 Balance Principle

We recall the balance principle below.

Theorem 1 ([4,5]). Let C be a self-dual [n, n2 ] code. Choose a set of coordinate
positions Pn1 of size n1 and let Pn2 be the complementary set of coordinate
positions of size n2 = n− n1. Let Ci be the subcode of C all of whose codewords
have support in Pni . The following hold.

(i) (Balance Principle)

dimC1 −
n1
2

= dimC2 −
n2
2
.
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(ii) If we reorder coordinates so that Pn1 is the left-most n1 coordinates and Pn2

is the right-most n2 coordinates, then C has a generator matrix of the form

G =

⎡⎣A O
O B
D E

⎤⎦ (1)

where [A O] is a generator matrix of C1 and [O B] is a generator matrix
of C2, O being the appropriate size zero matrix. We also have the following.
(a) If ki = dimCi, then D and E each have rank n

2 − k1 − k2.
(b) Let A be the code of length n1 generated by A, AD the code of length

n1 generated by the rows of A and D, B the code of length n2 generated
by B, and BE the code of length n2 generated by the rows of B and E.
Then A⊥ = AD and B⊥ = BE.

3 Some Computational Results

In this section, we describe how to apply the balance principle to Type II
[32, 16, 8] codes. Let C be a Type II [32, 16, 8] code. We let n = 32. We need
to choose n1 in Theorem 1. The most common way to choose n1 is to take the
weight of a codeword with minimum weight in a Type II [32, 16, 8] code, that is,
n1 = 8. Hence we may take A = [1, · · · , 1, 0, · · · , 0]. Now we have to compute
the rank of the matrix B or the dimension of the code C2 in the notation of
Theorem 1. Note that

dimC1 − n1

2 = dimC2 − n2

2
1− 8

2 = dimC2 − 24
2

dimC2 = 9

Therefore, the code C2 generated by B has parameters [24, 9, 8] and should be
doubly-even since C is doubly-even. It may be possible to generate all doubly-
even self-orthogonal [24, 9, 8] codes in Magma. However, we have found that there
is a very efficient program called Q-extension made by Iliya Bouyukliev [1].
A good thing about this program is that without much programming it can
construct all linear [n + n′, k, d + d′] codes for n1 = 1, 2, · · · , d1 = 0, 1, 2, · · · ,
from given parameters [n, k]. Below is the command of Q-extension to construct
all [24, 9, 8] doubly-even codes with all one-vector from the [9, 9, 1] full code.

Extension:

(1) [9,9,1] to [24,9,8]

1. Start

* 2. Restrictions on weights

3. Column multiplicity restrictions

4. Change inp --> outp

2 5. Dual distance

o 6. Form of the output matrices (c-convenient for extension, o-ordinary)

o 7. Self-orthogonal
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8. Number of ones adding in first row (Now :1)

9. Show input

10. Show output

11. Start with all even weights: 1 to 5

12. Restrictions on even weights

y 13. Self-complementary

14. Help

15. About Q-Extension

16. Exit

Choose:

As a result, we have obtained exactly 22 inequivalent [24, 9, 8] doubly-even
codes. For each such code, we must fill in the two matricesB and E in Theorem 1.
Since A is the all one-vector, we can choose D to be the subcode of the even
code in F8

2 which does not contain the all one-vector. Therefore all we have to
do is to find all possible matrices E such that

1. The vectors of E should be orthogonal to those of B.
2. The code generated by [D E] must have minimum weight 8.

This task cannot be done by Q-extension and so we have used Magma. Since E
is a 6×24 matrix and each row of E should have vectors of weight 6, 10, 14, 18, 22,
there are about (

∑5
i=1

(
24

4i+2

)
)6 = 41919806 ≈ 5.426 ∗ 1039 possible matrices for

E. Hence it is infeasible to find E this way. Instead, in each step when we add
a row to E, we apply an equivalence test to the subcode coming from A,B,D,
and that part of E such that the equivalence fixes the first 6 coordinates. This
method reduces the time to construct the matrices C. Finally, we have reproved
the following fact using computer algebra systems.

Theorem 2 ([3],[4]). There are exactly five Type II [32, 16, 8] codes.
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Abstract. Goppa’s codes on algebraic curves defined over finite fields,
called AG codes, are usually regarded as the most successful class of er-
ror correcting codes in theory as well as in practice. Despite the splendid
history of theoretic achievements though, an efficient algorithm decod-
ing general AG codes appeared only recently. The decoding algorithm
requires some precomputed data about the Riemann-Roch spaces of func-
tions or differentials of the given curve of positive genus. As Magma is
particularly good at computing with these spaces, the algorithm was
implemented on Magma. We present its Magma implementation and de-
scribe certain details of the implementation.

Keywords: Decoding algorithm, Algebraic Geometry coodes, Algebraic
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1 Introduction

LetX be a smooth geometrically irreducible projective curve defined over a finite
field F of genus g. Let F(X) and ΩX denote the function field and the module
of differentials of X respectively. Let P1, P2, . . . , Pn be distinct rational points
on X , and D = P1 + P2 + · · ·+ Pn. Let G be an arbitrary divisor on X , whose
support does not contain the rational points. Recall that L(G) = {f ∈ F(X) |
(f) +G ≥ 0} and Ω(G) = {ω ∈ ΩX | (ω) ≥ G}. Goppa [4] defined two kinds of
error correcting codes

CL(D,G) = {(f(P1), f(P2), . . . , f(Pn)) | f ∈ L(G)} (1)

and

CΩ(D,G) = {(resP1(ω), resP2(ω), . . . , resPn(ω)) | ω ∈ Ω(−D +G)}, (2)

which are respectively called an evaluation AG code and a differential AG code.
As well known, they are dual to each other.

The class of AG codes provides series of codes with large minimum distances
surpassing the Gilbert-Varshamov bound [9]. Research on the dimensions and the
minimum distances of AG codes has deep connections with important problems
of discrete mathematics, number theory and algebraic geometry [8]. Moreover,

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 119–123, 2014.
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with the projective line taken forX , the class of AG codes includes Reed-Solomon
codes and BCH codes that have been used in various communication and storage
devices. Generalizing decoding algorithms for Reed-Solomon and BCH codes,
efficient decoding algorithms for a subclass of AG codes have been devised.
Some AG codes are strong candidates to replace Reed-Solomon codes. Further-
more AG codes and their subfield subcodes are also considered for the McEliece
cryptosystem and for secret sharing schemes. For research on and practice of
these applications, availability of efficient decoding algorithms for AG codes is
essential.

Then it is unfortunate to find that decoding algorithms for AG codes are
currently very poorly available in computer algebra systems. In Singular and
Magma, Skorobogatov and Vladut’s basic algorithm for general differential AG
codes [9] is implemented, but this is almost all one can find in public. The basic
algorithm requires as input another divisor G1 such that the supports of G1 and
D are disjoint and

deg(G1) < deg(G)− 2g + 2− t and dimF(L(G1)) > t (3)

to correct all errors of weight ≤ t, and it is known that G1 exists for all t ≤
(d∗ − 1− g)/2, where d∗ = degG− 2g+ 2 is the Goppa bound on the minimum
distance or the designed distance of CΩ(D,G).

However, in the research literature, actually there have been much more ad-
vances on the problem of decoding AG codes. By extensive works of Feng, Rao,
Sakata and many others, a fast decoding algorithm that corrects errors of weight
less than half of d∗ for one-point differential AG codes, in which G = mQ, was
already established in 1990’s [3,6]. Moreover, decoding algorithms for multi-
point differential and evaluation AG codes have been proposed by Duursma [2],
Beelen and Høholdt [1], and Sakata and Fujisawa [7]. Unfortunately these al-
gorithms were never available in public on computer algebra systems. It seems
that implementations of these algorithms are only kept in the researchers’ pri-
vate computers. A more important reason of this situation may be that none
of these algorithms are fast, simple to implement, and easy to apply for general
AG codes.

To improve on the current situation, recently, there appeared a fast decoding
algorithm for general evaluation and differential AG codes [5] that can correct
up to half of their designed distances.1 This algorithm is very simple and easy
to implement. Indeed all heavy computations are just to provide required initial
data to the algorithm, and for each received vector, the algorithm performs
very simple iterative procedure to recover message symbols. Computations of
the initial data are all ultimately based on the computation of a basis of the
Riemann-Roch space L(G) or Ω(G) for any divisor G. As Magma has very nice
facilities for computing with these spaces, the decoding algorithm can be most
easily implemented in Magma. In the next section, we show an example session
on Magma with a decoding example from the Magma documentation.

1 Precisely speaking, general AG codes mean multi-point AG codes, which allows
arbitrary G but requires a rational point Q not in the support of D.
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2 Example Session

The following Magma scripts construct [23, 14, 7] differential AG code C on the
Klein quartic, of genus g = 3, defined over F8 on the projective plane.

> F<a> := GF(8);

> PS<x,y,z> := ProjectiveSpace(F, 2);

> Cv := Curve(PS, x^3*y + y^3*z + x*z^3);

> FF<X,Y> := FunctionField(Cv);

> Pl := Places(Cv, 1); // rational points

> Q := Place(Cv![0,1,0]);

> P := [Pl[i]: i in [1..#Pl] | Pl[i] ne Q];

> G := 11*Q;

> C := AGDualCode(P, G);

With the rational point Q = [0 : 1 : 0] on the curve, the divisor G1 = 4Q
satisfies the condition (3) for t = 1. Thus the Magma intrinsic AGDecode, which
implements Skorobogatov and Vladut’s basic algorithm, can correct arbitrary
errors of weight 1.

> v := Random(C);

> rec_vec := v;

> rec_vec[Random(1,Length(C))] +:= Random(F);

> res := AGDecode(C, rec_vec, 4*Q);

> res eq v;

true

However, observe that as the minimum distance of C is 7, the code has capa-
bility of correcting unambiguously errors of weight at most 3. So the decoding
algorithm in Magma fails to exert the full potential of the code.

Now we turn to the new Magma intrinsic DifferentialAGCode, which im-
plements the interpolation-based decoding algorithm from [5] for differential AG
codes (2).

> D:=&+P;

> code:=DifferentialAGCode(D,G,Q);

> code eq C;

true

> code‘DecodingRadius;

3

The last output indicates that the code is capable of correcting errors of weight
up to half of the actual minimum distance of C.

> res := DecodeAGCode(code,rec_vec);

> res eq v;

true

> rec_vec[Random(1,Length(C))] +:= Random(F);
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> rec_vec[Random(1,Length(C))] +:= Random(F);

> Distance(rec_vec, v);

3

> res := DecodeAGCode(code,rec_vec);

> res eq v;

true

There is also new Magama intrinsic EvaluationAGCode, which implements
the new decoding algorithm for evaluation AG code (1).

> ecode := EvaluationAGCode(D,G,Q);

> Dual(ecode) eq code;

true

> ecode‘DecodingRadius;

5

> MinimumDistance(ecode);

12

Note that ecode is a [23, 9, 12] evaluation AG code, dual of code, and can correct
errors of weight up to 5.

3 Implementation Details

The details of the decoding algorithm implemented in the Magma intrinsic
EvaluationAGCode is fully described in [5]. The decoding algorithm for dif-
ferential AG codes is not much different from the companion algorithm. The
efficiency and simplicity of the decoding algorithm are partially due to the ini-
tial data precomputed before actual decoding procedure. Moreover, the data are
just polynomials over the finite field F representing elements of the Riemann-
Roch spaces. This polynomial description is made possible by so-called Apéry
systems on the function field. In this section, we explain how to compute the
Apéry systems and the initial data for the decoding algorithm.

First we recall some definitions from [5]. Let

R =
∞⋃
s=0

L(sQ) ⊂ F(X).

For f ∈ R, let ρ(f) = −vQ(f). The Weierstrass semigroup at Q is then

Λ = {ρ(f) | f ∈ R} = {λ0, λ1, λ2, . . . } ⊂ Z≥0.

It is well known that Λ is a numerical semigroup whose number of gaps is the
genus g of X . The nonnegative integers in Λ are called nongaps. Let γ be the
smallest positive nongap, and let ρ(x) = γ for some x ∈ R. For each 0 ≤ i < γ,
let ai be the smallest nongap such that ai ≡ i (mod γ) and ρ(yi) = ai for some
yi ∈ R. Then every element of R can be written as a unique F-linear combination
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of the monomials {xkyi | k ≥ 0, 0 ≤ i < γ}. The set {yi | 0 ≤ i < γ} is called
the Apéry system of R.

Recall that for divisor G, the Magma command Basis(G) computes a basis
of L(G) and Dimension(G) computes the dimension of L(G). These commands
are used to compute γ and x with ρ(x) = γ and the Apéry system of R. Further
details of the computations will be dealt in the full paper.

Acknowledgments. This work was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF) funded by the
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Abstract. In this study we focus on codes over a special family of com-
mutative rings where we are able to construct a map that gives a cor-
respondence between k-bases (k-letter words) of DNA with elements of
the ring. By making use of so called coterm polynomials, we are able
to solve the reversibility and complement problems in DNA codes and
construct DNA codes over this ring.

Keywords: Coterm polynomials, Reversible-complement codes, DNA
codes.

1 Introduction

The first and remarkable application of DNA was demonstrated by Adleman [2]
where DNA molecules are used in an experiment to solve the famous directed
salesman problem. The solution of this problem relies on the Watson Crick Com-
plement (WCC) property of DNA. The salesman problem is well known to be an
NP problem. Hence, the interest of DNA in computing science attracted many
researchers. Later, in [4], D. Boneh, et al., and independently Adleman, et al. in
[3] developed a molecular program based on DNA where they showed that Data
Encryption (DES) can be broken. Due to the structure of DNA, DNA molecules
are proposed to be used for data storage systems [5]. DNA sequences can be
viewed as strings of a four alphabet set which consists of adenine (A), guanine
(G), thymine (T ) and cytosine (C). The DNA replicates by taking advantage
of its Watson-Crick property which helps to detect errors and hence avoid any
misconstructions which cause diseases or deformations in cells. The WCC prop-
erty makes sure that A and T bound to each other and G and C bound to each
other in the process of replications. A and G are called the complements of T
and C respectively or vice versa. In this work, the complement of a base say X
will be denoted by Xc, for instance, the complement of A is Ac = T. Since DNA
enjoys error detection and correction while the cells reproduce and this occurs
in a huge numbers in the living bodies, the structure of DNA can be used as a
model for error correcting codes. The first attempts naturally are done for codes
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over four element alphabets. One such study is presented in [1] by Abualrub et
al. where DNA codes are studied over four element finite fields. Also, Siap et al.
studied DNA codes over the finite ring F2[u]/(u

2 − 1) in [8]. Later, for the first
time pairs of nucleotides (two letter strings) were identified with elements of the
ring F2[u]/(u

4−1). Also in [6], DNA-double pairs are used with the field F16 and
optimal codes were obtained. These studies encouraged further considerations
for k-letter words and algebraic structures that support such considerations.

Here, being inspired by the work [9] we study DNA codes over an extension
ring of F2+uF2, by means of a notion so called ”coterm polynomials”. In doing so,
we identify sequences of DNA bases with elements from the extension ringR2k =
F2[u]/(u

2k−1). With the introduction of coterm polynomials, we construct linear
codes that enjoy the WCC property of DNA i.e linear codes that have the reverse-
complement property. While the matching between the rings elements and DNA
strings are to be found, so called reversibility problem arises. Basically each
codeword (DNA string) under the ring operations and the linearity of the code
has to fall inside the code itself. This has to be true especially for the reversibility
property. To clarify the reversibility problem, we let (u1, u2, u3) be a codeword
that corresponds to the DNA string AGTTCCGTC where u1 = 1 + u + u2,
u2 = u+ u3 + u4 + u5, u3 = u+ u2 + u3 + u4 ∈ R6. The reverse of (u1, u2, u3) is
(u3, u2, u1) and (u3, u2, u1) corresponds to GTCTCCAGT. But GTCTCCAGT
is not the reverse of AGTTCCGTC. As seen from this example one needs to
make sure that the DNA code is closed under such operations in order to enjoy
the DNA property.

2 Reversible Codes over R with Coterm Polynomials

In this section, we suppose that the ring R is a commutative ring with identity.

Definition 1. Let f(x) = a0 + a1x + · · · + an−1x
n−1 ∈ R[x]/(xn − 1) be a

polynomial, with ai ∈ R. If for all 1 ≤ i ≤ !n
2 ", we have ai = an−i, then f(x) is

said to be a coterm polynomial over R.

Identifying the elements Φ(c(x)) = c = (c0, c1, . . . cn−1) in R
n with polynomi-

als c(x) = c0 + c1x+ · · ·+ cn−1x
n−1 ∈ R[x].

〈Sg〉 is a set in Rn generated by the right and the left shifts of coterm g(x),
respectively. For any integer i, by τ i we mean shifts on n coordinates given by
the composition of τ i times where we let i to be negative as well. In all these
shifts, the indices are shifted modulo n to the right if i positive or to the left if
i is negative.

Example 1. Let g(x) = 1 + w2x2 + wx3 + x4 + x5 + wx6 + w2x7 be a coterm
polynomial over F4 and C = 〈Sg〉 be a linear code of length 9. For t = 2 (t is
chosen to be 2 here for this example, i.e the right and the left shifts up to 2
are taken here) (k = 2t+ 2) the [9, 6, 3] optimal reversible code is obtained and
the details of the construction are presented in the sequel. The corresponding
generator matrix is as follows, with the row

c = (1, 0, w2, w, 1, 1, w, w2, 0)
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corresponding to the polynomial g(x) we have:

〈S2
g 〉 = {τ−3(c), τ−2(c), τ−1(c), τ0(c), τ1(c), τ2(c)} =⎛⎜⎜⎜⎜⎜⎜⎝

w 1 1 w w2 0 1 0 w2

w2 w 1 1 w w2 0 1 0
0 w2 w 1 1 w w2 0 1
1 0 w2 w 1 1 w w2 0
0 1 0 w2 w 1 1 w w2

w2 0 1 0 w2 w 1 1 w

⎞⎟⎟⎟⎟⎟⎟⎠ .

3 Reversible DNA Codes over F2[u]/(u
2k − 1)

In order to match the DNA strings with the ring elements, first we borrow the
function η given in [8] which gives a correspondence between DNA single bases
and the ring F2[u]/(u

2 − 1).

η(A) = 0, η(T ) = 1 + u, η(G) = 1, η(C) = u.

Definition 2. Elements of the ring R2k can be expressed uniquely by the digits
1s (units), u2s, u4s, u6s, u8s, ... , u2(k−1)s over R2k. We call this system the
u2-adic system. In other words any element in R2k can be expressed as a linear
combination of 1, u2, . . . , u2k−2, where the coefficients are from F2[u]/(u

2 − 1).

Definition 3. Let b1b2...bk be a DNA k-base (k-leter word) where bi ∈ {A, T,
G,C}. The corresponding elements of DNA k-bases in R2k based on the u2-adic
systems are obtained as follows:

ζ(b1b2...bk) = α ∈ R2k, (1)

where

α = η(bk)1 + η(bk−1)u
2 + η(bk−2)u

4 + ...+ η(b1)u
2(k−1) =

k∑
t=1

η(bt)u
2(k−t).

Example 2. Consider TCGCAT as a DNA 6-bases. The corresponding element
of R12 = Z2[u]/(u

12 − 1) that represents this base-sequence is given by

TCGCAT→ζ(TCGCAT )=η(T )1+η(A)u2+η(C)u4+η(G)u6+η(C)u8+η(T )u10.

So we have

TCGCAT → ζ(TCGCAT ) = (1+u)1+(0)u2+(u)u4+(1)u6+(u)u8+(1+u)u10

hence

TCGCAT → ζ(TCGCAT ) = 1 + u+ u5 + u6 + u9 + u10 + u11.
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Definition 4. Let 〈r〉 be a subring of R and generated by an element r. Let C
be a code generated by g(x) in R[x]/(xn − 1) as follows. If S = {c1, c2, ..., cz} is
a subset of Rn, then C is a code generated by S with 〈r〉 over Rn, i.e.,

C = {r0c1 + r1c2 + ...+ rzcz | ri ∈ 〈r〉}.

In both cases C is called an r-module code.

Definition 5. Let Bk = b1b2...bk be a DNA k-base. Then (Bk
1 ,B

k
2 , ...,B

k
n) is

called an n-tuple of DNA k-bases. Thus, we have the following notations:

1. (Bk)r = bkbk−1...b1 is the reverse of Bk.
2. (Bk)c = bc1b

c
2...b

c
k is the complement of Bk.

3. (Bk)rc = bckb
c
k−1...b

c
1 is the reverse complement of Bk.

4. ζ(Bk
1 ,B

k
2 , ...,B

k
n) = (ζ(Bk

1), ζ(B
k
2), ..., ζ(B

k
n)).

Definition 6. We define rCDNAk
to be the following n-tuple of DNA k-bases:

If n is odd,

rCDNAk
= (Bk

sr ,B
k
1 ,B

k
2 , ...,B

k
n−1
2

, (Bk
n−1
2

)r, ...(Bk
2)

r, (Bk
1)

r) (2)

if n is even,

rCDNAk
= (Bk

sr ,B
k
1 ,B

k
2 , ...,B

k
n
2 −1,B

k
sr n

2
, (Bk

n
2 −1)

r, ...(Bk
2)

r, (Bk
1)

r), (3)

where Bk
sr = (Bk

sr)
r and Bk

sr n
2
= (Bk

sr n
2
)r, i.e. they are self-reversible. These

n-tuples are called r-coterm n-tuples of DNA k-bases. Φ−1ζ(rCDNAk
) is called

an r-coterm polynomial.

Example 3. Suppose we have a 7-tuple of DNA 3-bases given by rCDNAk
=

(TTT,GAC, TCA,CGT, TGC,ACT,CAG). Then ζ(rCDNAk
) = (1 + u + u2 +

u3+u4+u5, u+u4, u3+u4+u5, 1+u+u2+u5, u+u2+u4+u5, 1+u+u3, 1+u5).
Let t = 1, hence k = 4. C = 〈Sg〉 is a u2-module code of length 7 and ζ−1(C) is
a reversible DNA code of length 21.

Example 4. Let us consider

rCDNA3 = (ATA,AGG, TGC,CGT,GGA)

or

ζ(rCDNA3 ) = (u2 + u3, 1 + u2, u+ u2 + u4 + u5, 1 + u+ u2 + u5, u2 + u4).

The r-coterm poynomial is g(x) = Φ−1(ζ(rCDNA3 )) = u2 + u3 + (1 + u2)x+
(u+ u2 + u4 + u5)x2 + (1 + u+ u2 + u5)x3 + (u2 + u4)x4.

The generator set for t = 0 is given by Sg = {τ−1(c), τ(c)0} = {(u2 + u3, 1 +
u2, u+ u2 + u4 + u5, 1 + u+ u2 + u5, u2 + u4), (1 + u2, u+ u2 + u4 + u5, 1 + u+
u2 + u5, u2 + u4, u2 + u3)}
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This can be considered as a matrix as follows:(
τ−1(c)
τ(c)0

)
=

(
1 + u2 u+ u2 + u4 + u5 1 + u+ u2 + u5 u2 + u4 u2 + u3

u2 + u3 1 + u2 u+ u2 + u4 + u5 1 + u+ u2 + u5 u2 + u4

)
.

4 Conclusion

In this work, we introduce coterm and r-coterm polynomials to construct re-
versible codes and hence DNA codes. We solve reversibility problem for DNA k
bases by means of coterm polynomials. The advantage of using these polynomi-
als is evident from providing simple constructions and providing a rich source
of DNA codes. Further, some optimal reversible codes are obtained by coterm
polynomials.

Acknowledgment. We thank to the referee(s) for his/her valuable remarks.
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Abstract. The computation of persistent homology has proven a fun-
damental component of the nascent field of topological data analysis and
computational topology. We describe a new software package for topolog-
ical computation, with design focus on needs of the research community.
This tool, replacing previous jPlex and Plex, enables researchers to ac-
cess state of the art algorithms for persistent homology, cohomology, hom
complexes, filtered simplicial complexes, filtered cell complexes, witness
complex constructions, and many more essential components of compu-
tational topology.

We describe, herewithin, the design goals we have chosen, as well as
the resulting software package, and some of its more novel capabilities.

Keywords: persistent homology, topological data analysis, computa-
tional topology.

1 Motivation and Design Goals

The main reason for the existence of javaPlex is to provide researchers in the
area of topological data analysis a unified software library to support their in-
vestigations. With this in mind, the design goals for it are as follows:

– Support for new directions for research: The main goal of the javaPlex
package is to provide an extensible base to support new avenues for research
in computational homology and data analysis. While its predecesor jPlex
was very well suited towards computing simplicial homology, its design made
extension difficult.

– Interoperability: Since javaPlex is a java package, it is accessible from
anything that runs in the Java runtime environment: in a Java or Scala
application, or called from Matlab or Mathematica, or as a library loaded
into beanshell, jython for a scripting interface.

– Adherence to generally accepted software engineering practices:
As a means to realizing the first goal, the javaPlex software package was de-
signed and implemented with software engineering best-practices. Emphasis
was placed on maintainability, modularity, and reusability of the different
parts of the code.
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We refer the reader to [Car09] for a very readable introduction to the field of
topological data analysis as well as the computational tasks involved.

2 Previous Work

The javaPlex package is the fourth version in the Plex family. These programs
have been developed over the past decade by members of the computational
topology research group at Stanford University. Each successive version incor-
porated the results of new advances in the relatively quickly developing fields of
computational topology and topological data analysis.

Like javaPlex, its predecessor jPlex was also written in the Java language.
However, it differed in that the main goal of jPlex was the computation of
simplicial homology. Recent research topics in topological data analysis have
required practitioners to move beyond conventional simplicial homology to more
general scenarios.

3 Persistent Homology and Topological Data Analysis

The javaPlex library is focused on computing persistent homology and enabling
research and use of topological data analysis methods. At the core of these
tasks is the ability to compute the homology indicated by a point cloud. To this
end, [ELZ02] introduced persistent homology, refined by [ZC05]. Using one of a
whole family of methods, the point cloud induces a filtered simplicial complex,
where the filtration encodes distance data as increasing “closeness” data for the
data points in the point cloud. From a simplicial complex, we can generate a
chain complex : a vector space with vectors representing the geometry and with
an operator ∂ capturing what it means to be on the boundary of a cell. The
homology is defined as ker ∂/ im∂, and can be considered to represent essential
cycles or bubbles in arbitrary high dimensions as witnessed in the data itself.

Persistence captures the notion of computing this homology for a range of
parameter values, connecting the local results to extract a barcode that represents
each such essential feature as a discrete component coupled with a spread of
parameter values at which the feature exists in the dataset. For more details, we
refer an interested reader to [Car09].

4 Filtered Complex Generation

As mentioned in the abstract, the primary function of javaPlex is the construc-
tion of filtered chain complexes of vector spaces associated to actual point cloud
datasets. The motivation for such constructions is that they provide a persistent
model of the dataset in question across all scales. javaPlex currently supports the
construction of two main types of filtered simplicial complexes: the Vietoris-Rips
and lazy-witness constructions. To begin, suppose that we have a finite metric
space (X , d). In practice, it is possible that X is a set of points in Euclidean
space, although this is not necessary.
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4.1 The Vietoris-Rips Construction

We define the filtered complex VR(X , r) as follows. Suppose that the points of
X are {x1, ...xN}, where N = |X |. The Vietoris-Rips complex is constructed as
follows:

– Add points: For all points x ∈ X , x ∈ VR0(X , 0).
– Add 1-skeleton: The 1-simplex [xi, xj ] is in VR1(X , r) iff d(xi, xj) ≤ r.
– Expansion: We define VR(X , r) to be the maximal simplicial complex with

1-skeleton VR1(X , r). That is, a simplex [x0, ..xk] is in VR(X , r) if and only
if all of its edges are in VR1(X , r).

An extensive discussion on algorithms for computing the Vietoris-Rips com-
plex can be found in [Zom10]. The javaPlex implementation is based on the
results of this paper.

4.2 The Lazy-Witness Construction

The fundamental idea behind the lazy-witness construction is that a relatively
small subset of a point cloud can accurately describe the shape of the dataset.
This construction has the advantage of being more resistant to noise than the
Vietoris-Rips construction. An extensive discussion about it can be found in
[dSC04].

The lazy-witness construction starts with a selection of landmark points, L ⊂
X with |L| = L. One possibility is to simply choose a random subset of X .
Another possibility is to perform a sequential max-min selection: An initial point
l0 is selected, and then we inductively select the point lk which maximizes the
minimum distance to all previously generated points. This max-min construction
tends to produce more evenly spaced points than the random selection. Again
we refer the reader to [dSC04] for a more detailed discussion, as well as empirical
results supporting these claims.

This construction is parameterized by a value ν, which most commonly takes
the values 0, 1, or 2. We also define the distance matrix D to contain the pairwise
distances between the points in X .

– Define mi: If ν = 0, let mi = 0, otherwise, define mi to be the ν-th smallest
entry in the i-th column of D.

– Add points: For all points l ∈ L, l ∈ LW0(X , 0, ν).
– Add 1-skeleton: The 1-simplex [li, lj ] is in LW1(X , r, ν) iff there exists an
x ∈ X such that max(d(li, x), d(lj , x)) ≤ r +mi.

– Expansion: We define LW(X , r, ν) to be the maximal simplicial complex
with 1-skeleton LW1(X , r, ν).

5 Homology Computation

At the core of the javaPlex library is the set of algorithms that actually compute
the homology of a filtered chain complex. Key references to background mate-
rial regarding these algorithms can be found in [ZC05, dSMVJ10]. Although we
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do not describe them in detail here, we note that the algorithms for computing
persistent absolute/relative (co)homology can be formulated as matrix decom-
position problems. The fundamental reason for this is the equivalence of the
category of persistent vector spaces of finite type, and the category of finitely
generated graded modules over F[t]. This correspondence is described in [ZC05].

The homology algorithms are built in a way that is optimized for chain com-
plexes implemented as streams. By this we mean that a filtered chain complex
is represented by a sequence of basis elements that are produced in increasing
order of their filtration indices. Enforcing the constraint that all complexes must
be implemented this way allows javaPlex to perform the matrix decomposition
operations in an efficient online fashion.

6 Applications

Although in principle javaPlex can compute the persistent homology of arbitrary
chain complexes of vector spaces, almost always these complexes arise from some
sort of topological construction. Below we outline these different situations.

6.1 Simplicial Homology

Computing simplicial homology of a filtered sequence of complexes is performed
by generating a SimplexStream and running it through the persistent homology
algorithm. A sample invocation would look like follows:

ExplicitSimplexStream stream = new ExplicitSimplexStream();

// add vertices with stream.addVertex; simplices with

// stream.addElement

stream.finalizeStream();

AbstractPersistenceAlgorithm<Simplex> pA =

Plex4.getDefaultSimplicialAlgorithm(d + 1);

BarcodeCollection<Double> intervals = pA.computeIntervals(stream);

6.2 Simplicial Cohomology

As described in [dSMVJ10], persistent cohomology can be computed by consum-
ing simplices in the opposite order, computing coboundaries instead of bound-
aries, and reversing the order of simplices when picking out leading terms. This
is supported in javaPlex through the DualStream class that transforms an exist-
ing simplex stream to a reversed version, together with the Java utility method
java.util.Collections.reverseOrder which can reverse the simplex order
declaration instantiating the homology algorithm:

AbstractPersistenceAlgorithm<Simplex> pA =

new IntAbsoluteHomology(ModularIntField.getInstance(prime),

Collections.reverseOrder(SimplexComparator.getInstance()),

0, d+1);

BarcodeCollection<Double> intervals = pA.computeIntervals(stream);
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6.3 Novel Operations and Types

javaPlex also supports arbitrary cell complexes, where the gluing maps are given
explicitly rather than generating them implicitly from the simplices. In addition
to this, there is also support for computing with tensor products and Hom
complexes of chain complexes of any type in the system. The particular case
of dualizing a chain complex to get cochains is handled by DualStream, while
the general homomorphism complexes are handled by HomStream instead.

In a recent preprint [TC11], the hom-complex was used to compute a param-
eterization for the space of homotopy classes of chain maps between simplicial
complexes.

7 Examples

7.1 Simplicial Homology

In Figure 1, one can see an example of a filtered simplicial complex generated
from points on a torus. As one moves from left to right, the filtration param-
eter r is increased, yielding a more connected complex. In Figure 2 we show
the persistence barcodes for the same shape. Note that the significant intervals
correspond to homological features that last for a long time in the filtration.

Fig. 1. Example of a lazy-witness complex generated from randomly sampled points
on a torus

7.2 Matlab Scripting Example - Cellular Homology

In this section we show a brief Matlab session in which the cellular homology is
computed for a Klein bottle over different coefficient fields. Essentially, this code
example constructs a cellular Klein bottle, initializes persistence algorithm ob-
jects over the fields Z/2Z, Z/3Z, and Q, and computes the persistence intervals.

% get the cellular Klein bottle

stream = examples.CellStreamExamples.getCellularKleinBottle();

% get cellular homology algorithm over Z/2Z

Z2_persistence = api.Plex4.getModularCellularAlgorithm(3, 2);

% get cellular homology algorithm over Z/3Z

Z3_persistence = api.Plex4.getModularCellularAlgorithm(3, 3);
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Fig. 2. Persistence barcodes for a lazy-witness filtration of random points on a torus.
The parameters used were: N = 1000, L = 300, rmax = 0.3. The inner and outer radii
of the torus were 0.5 and 1, respectively. The max-min selection procedure was used to
create the landmark set. Note that long intervals correspond to significant homological
features, and short ones are most likely the result of noise. We can see that the number
of significant intervals in each dimension equals the expected Betti number.

% get cellular homology algorithm over Q

Q_persistence = api.Plex4.getRationalCellularAlgorithm(3);

% compute over Z/2Z - should give (1, 2, 1)

Z2_intervals = Z2_persistence.computeIntervals(stream)

% compute over Z/3Z - should give (1, 1, 0)

Z3_intervals = Z3_persistence.computeIntervals(stream)

% compute over Q - should give (1, 1, 0)

Q_intervals = Q_persistence.computeIntervals(stream)

The output of this example is:

Z2_intervals =

Dimension: 2 [0, infinity)

Dimension: 1 [0, infinity), [0, infinity)

Dimension: 0 [0, infinity)

Z3_intervals =

Dimension: 1 [0, infinity)

Dimension: 0 [0, infinity)
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Q_intervals =

Dimension: 1 [0, infinity)

Dimension: 0 [0, infinity)

This is exactly what we expect, due to the presence of 2-torsion in the Klein
bottle.

7.3 Hom Complex Examples

As mentioned earlier, the hom complex is another homological construction that
is useful in algebraic topology. A key result is that the 0-dimensional homology
classes of Hom(A,B)∗ correspond exactly with homotopy classes of chain maps
between A and B. Thus, by computing homology (with field coefficients in our
case), we can obtain an explicit parameterization of the affine space of homotopy
classes of chain maps for simplicial complexes. Additionally, a practitioner can
also optimize over this space to select a particular map that optimizes some sort
of geometric objective.

In Figures 3 and 4 we show examples of the computation of homotopy rep-
resentatives of chain maps between two simplicial complexes. The specific maps
were computed by minimizing the maximum �1 norm of the images and adjoint
images. The maps are represented by composing the color of the domain with
the computed map. In the first example we can see that the larger circle is essen-
tially partitioned into different segments of constant color. The second example
shows the mapping of a trefoil knot to a square.

Fig. 3. Example of a homotopy representative from the class of chain maps that induce
isomorphisms on both 0 and 1 dimensional homology

Fig. 4. Example of a chain map on a lazy-witness filtration of a trefoil knot
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Abstract. PHAT is a C++ library for the computation of persistent ho-
mology by matrix reduction. We aim for a simple generic design that
decouples algorithms from data structures without sacrificing efficiency
or user-friendliness. This makes PHAT a versatile platform for experi-
menting with algorithmic ideas and comparing them to state of the art
implementations.

1 Introduction

Persistent homology is one of the most widely applicable tools in the emerg-
ing field of computational topology. Intuitively, persistent homology tracks the
topological features in a growing sequence of shapes. For a comprehensive intro-
duction to the theory and some applications, see [4,5].

Computing persistent homology for a given data set requires the construction
of a filtered cell complex, i.e., an ordered list of cells such that every prefix forms a
subcomplex. We represent a filtered cell complex by its boundary matrix, a square
matrix whose indices correspond to the ordering of the cells, and whose entries
encode the boundary relation of the complex. Since we only consider homology
with coefficients in Z2, the entries of the boundary matrix are in Z2. Given
a boundary matrix, computing persistent homology amounts to transforming
it into a reduced form using certain elementary matrix operations, similar to
Gaussian elimination. A boundary matrix is called reduced iff the column pivots,
i.e., the maximal indices of the nonzero column entries, are disjoint.

The purpose of PHAT1 is to provide a platform for comparative evaluation of
new and existing algorithms and data structures for matrix reduction. PHAT is
among the fastest codes for computing persistent homology currently available [1]
and can be obtained under the GNU Lesser General Public License.

While the worst case computational complexity is cubic for all combinations
of algorithms and data structures, the actual running time for real world data
sets can differ drastically. We demonstrate that there are three key ideas that
can have a tremendous impact on the running time: the clearing optimization
suggested in [2], the computation of persistent cohomology as proposed in [3],
and the use of an efficient data structure for column additions.

1 http://phat.googlecode.com

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 137–143, 2014.
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2 Design

PHAT is a C++ library consisting of about 3200 lines of code. Its main purpose
is the computation of the persistent homology of a boundary matrix in an ex-
tensible, simple, and efficient way. A boundary matrix can be passed to PHAT
through an input file that encodes the boundary in a compact form; we refer
to the README file of the library for details on the file format. Internally, the
matrix is accessed through a template class called boundary matrix with the
following interface:

template < typename Representation >

class boundary_matrix {

Representation rep;

int get_max_index ( int idx );

void add_to( int source , int target );

...

};

A boundary matrix stores an internal object of the supplied Representation

type and forwards all matrix access and manipulation requests to this object.
Furthermore, boundary matrix implements several functions independent of the
representation, such as reading from and writing to a file. This way, the required
interface of the representation class is kept as small as possible. We remark that
dynamic polymorphism would give similar advantages (collecting the interface
of boundary matrix in an abstract base class and implementing it in several
subclasses). We decided for the templated version for efficiency reasons: in a
polymorphic implementation, every call to a matrix operation requires a lookup
in the virtual function table, and most of the execution time is in fact spent for
such low-level matrix operations.

The main function of the library has the following signature:

template < typename ReductionAlgorithm , typename Representation >

void compute_persistence_pairs( persistence_pairs& pairs ,

boundary_matrix < Representation >& boundary_matrix );

It takes a boundary matrix as input and transforms it into reduced form. More-
over, it computes the persistence pairs (as pairs of indices) from the reduced
matrix and stores them in the container pairs. The function has two template
parameters: Representation defines the data structure for the boundary ma-
trix (see above), and ReductionAlgorithm specifies which method is used for
matrix reduction. The template class ReductionAlgorithmmust yield function
objects, i.e., it must implement the () operator. This operator is assumed to take
a boundary matrix as an argument and transform it into reduced form. The tem-
plate parameter ReductionAlgorithm thereby specifies in which order columns
of the matrix are accessed, while the template parameter Representation speci-
fies how columns of the matrix are accessed. As shown in Section 5, both aspects
are equally important for an efficient implementation, and we describe the op-
tions provided by the PHAT library below.
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3 Algorithms

We use the following notation throughout this paper. The pivot index of a col-
umn in the matrix is the largest index of any nonzero entry. All our reduction
algorithms perform left-to-right column additions until no two columns have the
same pivot index. A matrix with this property is called reduced.

PHAT 1.4 provides five different choices of reduction strategies, two of which
have a parallel implementation using OpenMP.

Sequential algorithms. The standard algorithm for reducing boundary matri-
ces [6] traverses the columns from left to right and reduces a column completely
(through left-to-right column additions) before proceeding with the next one.
The reduction of a column is complete once either its pivot index does not ap-
pear as a pivot index in a previous column or the column becomes zero.

The algorithm twist [2] is based on the standard algorithm and exploits
the observation that a column will eventually be reduced to an empty column
if its index appears as the pivot of another column. By reducing columns in
decreasing order of the dimensions of the corresponding cells, we can explicitly
clear the columns corresponding to pivot indices. Since the omitted column
operations often constitute the bulk of the column operations in the standard
algorithm, the clearing optimization can have a tremendous impact on practical
performance. It is therefore also used in all other algorithms described below.
Due to its simplicity and efficiency, the twist algorithm is the default in PHAT.

The idea behind the row algorithm [3] is to traverse the columns from right
to left. Whenever the pivot of a newly inspected column A equals the pivot of a
column B to its right, we add A to B.

Parallel algorithms. The algorithm spectral sequence decomposes the bound-
ary matrix into blocks and processes them in diagonals from the main diagonal
outward. The reduction of the individual blocks in a single diagonal is then
independent and can be performed in parallel.

The chunk algorithm [1] begins with the reduction of two diagonals of blocks,
as in the spectral sequence algorithm. In a second step, it simplifies the partially
reduced boundary matrix by eliminating the indices of the already found pairs
from the matrix. Finally, the simplified matrix is reduced using the twist algo-
rithm. The chunk algorithm is a generalized version of the approach in [8] to
compute persistence using discrete Morse theory [7]. The first two steps of the
algorithm be run in parallel.

Dualization. Every algorithm for persistent homology also yields an algorithm
for persistent cohomology by applying it to the corresponding coboundary ma-
trix. This matrix is given by the anti-transpose of the boundary matrix D, ob-
tained by swapping Di, j with Dn+1−j, n+1−i. Reducing the coboundary matrix
yields the same persistence pairs, up to reindexing. In some cases, this dualiza-
tion yields significant speed-ups [3], in particular for Vietoris–Rips complexes.
PHAT contains a method to anti-transpose a boundary matrix, thus providing
the option to dualize every algorithm proposed in this section.
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4 Data Structures

All boundary matrix data structures currently implemented in PHAT use a
vector containing the individual columns. The column type is defined by the
representation. There are two kinds of representations in PHAT, direct and ac-
celerated. A direct representation makes use of a single column type for storage
and computation, whereas an accelerated representation provides an additional
type that is optimized for fast column additions. To simplify notation, we refer
to the number of nonzero entries of a column as its length.

Direct representations. The class vector list represents a column as a doubly-
linked list (list<int>) storing the indices of nonzero entries in increasing order,
as suggested in [5]. Adding two columns of lengths k and m can therefore be
performed in time O(k+m) by computing the symmetric difference of the lists.
The pivot of a column can be found in O(1) by querying the last element of
the list. The representation vector vector is analogous, using a dynamically
growing array (vector<int>) instead of a linked list. This representation is more
machine friendly, since it makes use of a contiguous memory region. However,
both representations have the disadvantage that column additions are expensive
when a small column is added to a large column.

An alternative representation is vector set, where columns are stored as
balanced binary search trees (set<int>). Adding a column A of length k to
a column B of length m can be performed as follows. We iterate through the
entries of A, removing the entry from B if it is already present, and inserting it
otherwise. The complexity of such an addition is O(k log(k+m)), which can be
much better than O(k +m) when k # m. The pivot of a column can be found
in O(1).

The representation vector heap combines the advantages of contiguous stor-
age and efficient column addition. Columns are again stored as vector<int>,
but the indices are now arranged in heap order. Adding a column A of length k
to a column B of length m can be lazily performed by inserting the indices of A
into B in amortized time O(k log(k+m)). This implies that an index may tem-
porarily appear multiple times in the heap. The symmetric difference operation
is delayed until a certain number of insertions is exceeded or the content of the
column is queried. This allows for the pivot of a column of length k to be found
in amortized time O(1).

Accelerated representations. Similar to vector heap, accelerated representations
also aim at combining contiguous storage with efficient column additions. An
accelerated representation is a subclass derived from vector vector that con-
tains an instance of a specialized column type, supporting fast column additions
and pivot queries. This column is used as a cache for the active column, i.e.,
the last column modified by the algorithm. For a net gain in performance, effi-
cient conversion between vector<int> and cache type, column additions, and
pivot queries are required. Moreover, the employed algorithm needs to exhibit a
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cache-friendly access pattern. This is the case for all algorithms of Section 3
except from the row algorithm.

A simple yet efficient choice for the column cache is set<int>. The result-
ing representation is called sparse pivot column. Another option is the use
of a heap as explained in the description of vector heap. The corresponding
representation is called heap pivot column.

Alternatively, full pivot column uses a bit array of size n to store the entries
of the column explicitly. Adding a column of length k to this representation
still takes time O(k log(k + m)) due to some additional structure required to
quickly access the pivot of a column. We store all modified indices in a heap
called history, and extract elements from the history until we find an index with
nonzero column entry in the bit array. To ensure that no element is inserted into
the history multiple times, we also maintain a bit array representing its content.
When converting the bit array back into a vector<int>, we repeatedly extract
and remove the pivot in order to re-initialize it to zero for further use.

The bit tree pivot column representation stores the column explicitly in
a tree structure. Internally, an 64-ary tree is used, which is encoded implicitly
in a bit array. It not only supports fast insertions, deletions and lookup of en-
tries, but also maximum, minimum, successor, and predecessor queries, all in
time O(log n). Furthermore, the structure can be traversed and cleared in time
proportional to the number of nonzero entries.

5 Experiments

To evaluate the performance of the different algorithms and data structures,
we perform computational experiments using two data sets. The running times
are measured on a workstation with two Intel Xeon E5645 CPUs using the
integrated benchmark utility of PHAT v1.4. All data sets are available on the
project homepage.

The first data set is the 3-skeleton of the Vietoris-Rips filtration of a point
cloud generated by a uniform random sample of the 2-sphere. Using 64 points,
the resulting boundary matrix has 679,120 columns and 2,670,528 nonzero en-
tries. The running times in seconds for the matrix reduction of this data set
are shown in Table 1, where we denote the dualized algorithms by (·)∗. It can
be observed that the combination of dualization with algorithms employing the
clearing optimization leads to drastically shorter running times compared to
other choices. To admit a meaningful comparison for these fast algorithms, we
repeat the experiment using 192 points, resulting in a boundary matrix with
56,050,288 columns and 223,002,432 nonzero entries. The running times in Ta-
ble 2 show that the more sophisticated data structures significantly improve the
running time. Moreover, the simple sequential twist algorithm is about as fast
as the parallel algorithms on this example.

The second data set is a lower-star Morse filtration of a cubical complex
generated from a 3D image that indicates separation behavior in a vector field [9].
Using a 643 sub-region of the image, we get a boundary matrix with 2,048,383
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Table 1. Running times (in seconds) for the 3-skeleton of the Vietoris-Rips filtration of
64 points on a 2-sphere, using different combinations of algorithms and data structures.
The prefix “A-” refers to accelerated representations, while (·)∗ denotes dualization.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

standard 15.5 2.7 6.5 5.6 5.2 7.7 2.3 1.6
standard∗ 2353.4 160.3 15.9 13.4 13.5 15.1 4.1 0.6

twist 15.1 2.4 6.4 5.7 5.3 7.1 2.0 1.4
twist∗ 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

row 44.1 4.5 19.0 7.4 20.7 34.3 15.4 13.4
row∗ 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0

chunk 0.6 0.2 0.5 0.5 0.3 0.5 0.2 0.2
chunk∗ 2.8 0.3 0.1 0.1 0.1 0.1 0.1 0.0

spectral sequence 9.7 1.7 4.1 3.3 3.4 4.2 1.5 1.1
spectral sequence∗ 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2. Running times for the 3-skeleton of the Vietoris-Rips filtration of 192 points
on a 2-sphere. See Table 1 for details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

twist∗ 2635.4 339.9 4.9 2.0 2.5 6.1 2.1 1.0
row∗ 2842.3 434.6 5.6 4.0 59.4 107.9 45.9 17.3

chunk∗ 24391.6 3276.2 25.2 14.2 14.0 20.7 8.7 4.0
spectral sequence∗ 2644.8 349.2 5.2 1.9 3.3 6.6 3.1 1.0

Table 3. Running times for a 643 image data set. See Table 1 for details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

standard 144.8 15.2 27.9 19.5 16.6 18.6 13.6 9.5
standard∗ 461.0 39.1 33.1 22.3 22.1 21.4 12.4 14.9

twist 9.6 0.6 0.4 0.1 0.1 0.1 0.1 0.1
twist∗ 343.0 19.1 1.0 0.5 0.6 0.7 0.2 0.2

row 10.3 1.1 0.4 0.4 1.5 2.1 1.2 0.7
row∗ 339.9 32.9 1.1 1.0 27.0 44.6 17.8 7.5

chunk 1.8 0.2 0.2 0.1 0.1 0.1 0.1 0.1
chunk∗ 5.7 0.5 0.3 0.2 0.2 0.2 0.2 0.2

spectral sequence 9.6 0.8 0.2 0.1 0.1 0.1 0.1 0.1
spectral sequence∗ 338.1 21.4 0.9 0.7 0.8 0.8 0.3 0.1

Table 4. Running times for a 2563 image data set. See Table 1 for details.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree

twist 2080.2 101.7 26.4 11.3 11.1 12.3 10.4 8.8
row 3201.8 210.4 52.1 32.5 1778.7 3437.1 1244.1 734.3

chunk 894.5 156.1 9.8 6.5 6.3 6.2 5.6 4.7
spectral sequence 1197.7 261.7 11.9 8.5 8.5 8.4 7.1 6.1
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columns and 6,096,762 nonzero entries. The running times for this data set are
shown in Table 3. We observe that homology computation is generally faster
than cohomology computation for this data set, and the clearing optimization
is again crucial for a fast algorithm. To investigate the performance behavior
further, we also apply a subset of the algorithms to the full data set consisting
of 2563 voxels – the corresponding boundary matrix has 133,432,831 columns
and 399,515,130 nonzero entries. The results in Table 4 again demonstrate the
usefulness of the complex data structures introduced in Section 4. In contrast to
the first data set, the parallel algorithms can outperform the sequential methods
in this case.
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Abstract. Persistence modules on commutative ladders naturally arise
in topological data analysis. It is known that all isomorphism classes of
indecomposable modules, which are the counterparts to persistence in-
tervals in the standard setting of persistent homology, can be derived
for persistence modules on commutative ladders of finite type. Further-
more, the concept of persistence diagrams can be naturally generalized as
functions defined on the Auslander-Reiten quivers of commutative lad-
ders. A previous paper [4] presents an algorithm to compute persistence
diagrams by inductively applying echelon form reductions to a given per-
sistence module. In this work, we show that discrete Morse reduction can
be generalized to this setting. Given a quiver complex X, we show that
its persistence module Hq(X) is isomorphic to the persistence module
Hq(A) of its Morse quiver complex A. With this preprocessing step, we
reduce the computation time by computing Hq(A) instead, since A is
generally smaller in size. We also provide an algorithm to obtain such
Morse quiver complexes.

Keywords: Homology groups, Representation theory of quivers,
Discrete Morse theory.

1 Introduction

1.1 Motivations

Suppose that we have two two-step filtrations of complexes X1 ⊂ X2 and Y 1 ⊂
Y 2 and that we would like to study the robust and common topological features
between them. Standard persistence [3] allows us to study the persistent features
in X and Y independently of each other, while zigzag persistence [2] allows us to
extract common features through the diagrams X i ↪→ X i∪Y i ←↩ Y i for i = 1, 2.
To extract robust and common features however, we use the diagram

X =

X2 X2 ∪ Y 2 Y 2

X1 X1 ∪ Y 1 Y 1

(1)

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 144–151, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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of complexes and study the induced diagram

Hq(X) =

Hq(X
2) Hq(X

2 ∪ Y 2) Hq(Y
2)

Hq(X
1) Hq(X

1 ∪ Y 1) Hq(Y
1)

(2)

for some dimension q. This diagram can be thought of as a representation on
the quiver

◦ ◦ ◦

◦ ◦ ◦
1

4

2

5

3

6

(3)

with commutative relations. In general, define an orientation τn to be an n− 1
sequence of symbols f or b meaning “forwards” or “backwards,” respectively.
The commutative ladder CL(τn) is defined as the path algebra of the quiver

◦ ◦ ◦ . . . ◦

◦ ◦ ◦ . . . ◦

1

1′

2

2′

3

3′

n

n′

,

where the orientation of each pair of ith horizontal arrows corresponds to the
ith term of τn, taken together with commutative relations. We give precise defi-
nitions for these concepts in the next section. For a more detailed treatment, we
refer the reader to [1], for example.

For now, we consider the diagram (2). The Krull-Remak-Schmidt theorem
guarantees that it can be written uniquely as an indecomposable decomposition

Hq(X) ∼=
⊕

[I]∈Γ0

IkI .

We recall the following theorem from the paper [4].

Theorem 1. The commutative ladders CL(τn) of length n ≤ 4 are
representation-finite for arbitrary orientations τn.

In particular, Theorem 1 tells us that Γ0 can be taken as a fixed finite list of
isomorphism classes of indecomposable representations. The paper [4] provides
Γ0 using the so-called Auslander-Reiten quiver. With this decomposition, an
extended definition of persistence diagrams has been given for this setting, from
which we can study the robust common topological features.

Moreover, the paper [4] provides an algorithm to compute the multiplicities
kI for Hq(X). In this work, we apply the technique of Morse reductions to our
settings in order to reduce the time taken for computing Hq(X). We generalize
the results of [7] concerning the use of discrete Morse theory for filtrations and
those of [5] for zigzag complexes to what we call quiver complexes. A particular
example of a quiver complex is the diagram (1).
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1.2 Background

Let K be a field. A complex [9] is a pair (X,κ) of a graded set X = %q≥0Xq (a
disjoint union) together with an incidence map κ : X×X → K. The elements of
X are called cells, and each cell σ ∈ Xq is assigned a dimension dimσ = q. An
incidence map satisfies the properties that κ(σ, τ) �= 0 implies dim σ = dim τ +1
and that

∑
τ∈X κ(σ, τ)κ(τ, ρ) = 0 for any σ, ρ ∈ X .

We use complexes to model our geometric objects. In this work, we consider
only complexes with X finite. In particular, a simplicial complex is an example
of a complex by setting κ(σ, τ) = ±1 for all faces τ of σ with dim τ = dimσ− 1,
with sign determined by the orientations of σ and τ .

A subcomplex of (X,κ) is a complex (X ′, κ′) such that X ′ ⊂ X , κ|X′×X′ = κ′,
and for any σ ∈ X ′, τ ∈ X \X ′ implies κ(σ, τ) = 0. We define a relation < by
setting τ < σ if and only if κ(σ, τ) �= 0. The face order <′ of X is defined by
transitive extension of <. When τ <′ σ, τ is said to be a face of σ. Then, the
third condition for subcomplexes can be rephrased as that all faces of cells in X ′

are also in X ′.
A quiver G = (G0, G1) is a directed graph with vertices G0 and arrows G1.

Given an arrow α : a → b, we write s(α) = a and t(α) = b, called its source
and target, respectively. A directed path p = (a|α1, . . . , αl|b) from a to b is a
sequence of arrows αi such that s(αi+1) = t(αi) for i = 1, . . . , l − 1, s(α1) = a,
and t(αl) = b. The path algebra of G, denotedKG, is theK-algebra generated by
the paths in G with multiplication defined by composing paths. A representation
(V a, fα) of KG is a set of K-vector spaces {V a}a∈G0 , together with linear maps
fα : V a → V b for every arrow α : a → b. This forms an object of the category
rep(KG) with each morphism ψ : (V a, fα) → (W a, gα) defined as a set of linear
maps ψa : V a → W a for a ∈ G0 satisfying the commutativity gαψa = ψbfα for
each arrow α : a→ b.

A relation w =
∑

p cpp ∈ KG is aK-linear combination of paths with the same
source and target and with length at least 2. Given a representation (V a, fα),
we define φw for relations w by first setting φp = fαl ◦ · · · ◦ fα1 for a path p =
(a|α1, . . . , αl|b) and extending linearly to φw =

∑
p cpφp. Let I = 〈w1, . . . , wn〉

be a two-sided ideal of KG generated by relations. We define rep(KG/I) as the
full subcategory of rep(KG) of objects such that φw = 0 for all relations w ∈ I.

Let G = (G0, G1) be a finite acyclic connected quiver. We restrict our atten-
tion to what we call quiver complexes. A quiver complex X is a complex (Xa, κa)
for each a ∈ G0 satisfying the condition that if there is an arrow α : a → b in
G1, then we have a subcomplex inclusion ια : (Xa, κa) ↪→ (Xb, κb). We adopt
the term slice to refer to the individual complexes (Xa, κa) in contrast to the
whole quiver complex X. For example, the filtrations of complexes studied in [7]
are quiver complexes over G = ◦ → ◦ → ◦ · · · → ◦.

Given a quiver complex X, we define its qth chain complex Cq(X) with co-
efficients in K by taking the K-vector space Cq(X

a) of q-chains of Xa with
coefficients in K for every a ∈ G0, and for every arrow α : a → b, the induced
inclusion ια : Cq(X

a) → Cq(X
b). It is easy to see that each Cq(X), for q ≥ 0,

is an object of rep(KG). Now, for every a ∈ G0, we define the boundary maps
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∂aq : Cq(X
a) → Cq−1(X

a) by ∂aq (σ) =
∑

τ∈Xa κa(σ, τ)τ . These boundary maps
for each Cq(X

a) define a morphism ∂q : Cq(X) → Cq−1(X) in rep(KG).
This allows us to construct the homology module of X by taking Hq(X) =

ker ∂q

im ∂q+1
in rep(KG). Equivalently, one can construct Hq(X) by taking Hq(X

a)

of each slice (Xa, κa) and using the maps ι∗α : Hq(X
a) → Hq(X

b) induced from
inclusions for every arrow α : a→ b.

In fact, this construction gives us representations of KG with added com-
mutative relations in the following sense. Let I be the two-sided ideal of KG
generated by relations of the form p − p′, where p = (a|α1, . . . , αl|b) and p′ =
(a|α′

1, . . . , α
′
k|b) are any two nontrivial and unequal paths from a to b for all

pairs a, b ∈ G0. Then, it can be shown that Cq(X) and Hq(X) are objects of
rep(KG/I). In particular, the diagram (2) is an object of rep(CL(fb)).

Once we obtain Hq(X), we can use the algorithm in [4] to compute its inde-
composable decomposition and thus its persistence diagram. To go from a quiver
complex X to Hq(X), one may apply classical computations for homology groups
and induced maps.

In this work, we generalize the technique of [7] to quiver complexes. That is,
we replace X by a related and smaller quiver complex A, called its Morse quiver
complex. We show that Hq(X) ∼= Hq(A), which guarantees that this replacement
preserves homological information. Even though we are particularly interested
in the quiver (3), our discussions will apply for any quiver complex over any
finite, acylic, connected quiver.

2 Underlying Theory

We recall some ideas found in [7] for Morse reductions, but we extend the defi-
nitions for use in our more general setting. Moreover, these ideas are very much
related to discrete Morse theory [6]. The results here are further generalizations
of those in [5].

Let (X,κ) be a complex. A matching of (X,κ) is a partition of X into the sets
A, Q, K, together with a bijection w : Q → K such that κ(w(Q), Q) is invertible
(nonzero, since we are working over a field) for all Q ∈ Q. Define the relation �
on Q by Q′�Q if and only if Q′ < w(Q). Then, the matching above is said to be
an acyclic matching if and only if the transitive closure of � is a partial order. For
σ, τ ∈ A, a gradient path from σ to τ is a sequence p = (Q1, . . . , Ql) of elements
of Q such that Qi �= Qi+1 �Qi for i = 1, . . . , l− 1, and Q1 < σ, τ < w(Ql). The

multiplicity of p is defined as m(p) = κ(σ,Q1)
∏l−1

i=1 κ(w(Qi),Qi+1)∏l
i=1 −κ(w(Qi),Qi)

κ(w(Ql), τ) We

define the incidence map κ̃ : A×A → K by κ̃(σ, τ) = κ(σ, τ) +
∑

pm(p), where
the sum is taken over all gradient paths p from σ to τ , for σ, τ ∈ A.

It is known that (A, κ̃), called the Morse complex of (X,κ) induced by the
above acyclic matching, is also a complex and that for q ≥ 0, Hq(X) ∼= Hq(A)
[6,7]. The paper [7] extends this fact to the case where we have a filtration of a
complex. Here, we extend it to our more general setting.
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Definition 1. An acylic matching of a quiver complex X is a set of acylic match-
ings {(Aa, wa : Qa → Ka)}a∈G0 such that for every arrow α : a → b, we have
Aa ⊂ Ab, Qa ⊂ Qb, Ka ⊂ Kb, and wb(Q) = wa(Q) for all Q ∈ Qa.

Given an acyclic matching of X, we have a Morse complex (Aa, κ̃a) in each slice.
It can be shown that there is a subcomplex inclusion (Aa, κ̃a) ↪→ (Ab, κ̃b) for
every arrow α : a→ b. These data define what we call the Morse quiver complex
A of X induced by the above acylic matching.

We take C(X) to be the sequence {Cq(X)}q≥0 in rep(KG/I) together with the
boundary maps ∂q : Cq(X) → Cq−1(X). A chain map φ : C(X) → C(Y) is a
sequence of morphisms {φq : Cq(X) → Cq(Y)} that commute with the boundary
maps. Two chain maps φ, ψ : C(X) → C(Y) are said to be chain homotopic if for
every q ≥ 0, there is a map θq : Cq(X) → Cq+1(Y) such that ∂Yq+1θq + θq−1∂

X
q =

φq − ψq. Two chain complexes C(X) and C(Y) are said to be chain equivalent if
there exists chain maps φ : C(X) → C(Y) and ψ : C(Y) → C(X) such that ψφ
and φψ are chain homotopic to the appropriate identity chain maps.

It can be shown, through a simple generalization of the standard proof, that
if C(X) and C(Y) are chain equivalent, then Hq(X) ∼= Hq(Y) for all q ≥ 0. With
this background, we can state our main theorem.
Theorem 2. Let X be a quiver complex and {(Aa, wa : Qa → Ka)}a∈G0 an
acylic matching of X that induces the Morse quiver complex A. Then, C(X) and
C(A) are chain equivalent and thus Hq(X) ∼= Hq(A) for all q ≥ 0.

The proof, which we briefly summarize below, is to construct the required chain
equivalences between C(X) and C(A). The chain equivalences are defined by an
inductive process. Let (Xa

Q, κ
a
Q) be the complex obtained from (Xa, κa) by re-

moving the pair Q,w(Q), for some Q ∈ Qa, and appropriately modifying the
incidence map. We have chain equivalences ψa

Q : Cq(X
a) → Cq(X

a
Q) and φ

a
Q :

Cq(X
a
Q) → Cq(X

a) of the same form as in [7]. By taking the compositions of ψa
Q

over all Q ∈ Qa, we obtain ψa : Cq(X
a) → Cq(Aa), and similarly φa in the op-

posite direction. One condition that needs to be satisfied is the commutativity of
for every arrow α : a→ b, with a similar statement for φa.

Cq(X
a) Cq(Aa)

Cq(X
b) Cq(Ab)

ψa

ψb

(4)

To that end, we set an order on the elements of Qa for all a such that if
Q appears before Q′ in Qa and there is an arrow α : a → b, then Q appears
before Q′ in Qb. In the inductive process above, we remove the pairs Q,w(Q)
in the given order. This consistent ordering of the elements of Qa for a ∈ G0

is important for satisfying the commutativity of (4). In contrast, the paper [7]
deals with the quiver G = ◦ → ◦ → · · · → ◦, and the consistent ordering follows
from the nesting of Qa for a ∈ G0.

For every arrow α : a → b, we have the cases where Q is an element of both
Qa and Qb, and where Q is an element of Qb but not Qa. It can be shown that
we have the commutative diagrams
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Cq(X
a) Cq(X

a
Q)

Cq(X
b) Cq(X

b
Q)

ψa
Q

ψb
Q

, and

Cq(X
a) Cq(X

a)

Cq(X
b) Cq(X

b
Q)

1

ψb
Q

(5)

respectively. Recall that ψa and ψb are defined by composing ψa
Q for a ∈ Qa

and ψb
Q for b ∈ Qb, respectively. Every time we encounter a Q in Qa and Qb, we

use the diagram on the left, while if Q is in Qb but not Qa, we use the diagram
on the right. By consistent ordering, composing diagrams of the forms given in
(5) indeed gives us ψa and ψb on the top and bottom rows, and leads to the
commutative diagram (4). The arguments for φa proceed similarly.

3 Algorithm

We say that σ is an element of a quiver complex X, denoted σ ∈ X, if σ ∈ Xa for
some slice Xa of X. For every σ ∈ X, we define the support of σ, denoted b(σ),
as a function b(σ) : G0 → {0, 1} with b(σ)(a) = 1 if σ ∈ Xa and 0 otherwise.

We assume that κa(σ, τ) = κb(σ, τ) whenever σ, τ are elements of Xa and Xb.
With this condition, we can define κ(σ, τ) by

κ(σ, τ) =

{
κa(σ, τ) if σ, τ ∈ Xa for some a,

0 otherwise.

Let us show that the assumption above holds without loss of generality, by a
suitable renaming of elements of X. Let %a∈G0X

a .
= {(σ, a)|σ ∈ Xa, a ∈ G0} be

the disjoint union of the slices. We define an equivalence relation ∼ on %a∈G0X
a

as the transitive closure of ≈, where (σ, a) ≈ (σ′, b) if and only if σ = σ′ and
there is a path from a to b or b to a (or trivially, a = b). Under this equivalence
relation, we denote the class of (σ, a) by [σ, a]. Furthermore, it is easy to see that
if (σ, a) ∼ (σ, b) and (τ, a) ∼ (τ, b), then κa(σ, τ) = κb(σ, τ).

We rename σ as [σ, a] for every σ ∈ Xa and a ∈ G0 to obtain a quiver

complex X̂ defined by X̂a = {[σ, a]|σ ∈ Xa} and κ̂a([σ, a], [τ, a]) = κa(σ, τ).
Now, suppose that π, ρ ∈ X̂a, X̂b. Then, π = [σ, a] = [σ, b] and ρ = [τ, a] = [τ, b]
for some σ, τ in the original complex. Thus, κa(σ, τ) = κb(σ, τ) and we conclude

κ̂a(π, ρ) = κ̂b(π, ρ). This shows that X̂ satisfies the assumption above.
We adapt the algorithm of [7], making changes as required. The input to

MorseReduce is the cells of X, together with incidence map κ and the support
functions b. Let D be the maximum of the dimensions of the cells. We place all
cells in a container U of unprocessed cells. As we go through the algorithm, we
remove cells from U either by MakeCritical, which moves cells to A, or by
RemovePair, which moves pairs of cells to Q and K.

The boundary of σ relative to the remaining cells is ∂Uσ =
∑

τ∈U κ(σ, τ),
while the coboundary of σ is cbU (σ) = {ρ ∈ U |κ(ρ, σ) �= 0}. An elementary
coreduction pair [8] is a pair of cells ξ, η such that ∂Uξ = uη, where 0 �= u ∈ K.
The algorithm identifies such elementary coreduction pairs and removes them
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procedure MorseReduce(U, κ, b)
for d ∈ {0, 1, . . . , D} do

while {σ ∈ U | dimσ = d} �= ∅ do
A← MakeCritical(d)
Que ← new Queue
enqueue: cbU (A) in Que
while Que �= ∅ do

dequeue: ξ from Que
if ∂Uξ = 0 then

enqueue: cbU (ξ) in Que
else if ∂U (ξ) = u · η with b(η) = b(ξ), 0 �= u ∈ K then

RemovePair(ξ, η, d)

return A

via RemovePair. As we remove cells by MakeCritical or RemovePair,
new elementary coreduction pairs are possibly created. We queue candidates
and check for the existence of any new elementary coreduction pairs.

Require: ∂UK = uQ, b(K) = b(Q)
procedure RemovePair(K, Q, d)

remove: K from U
enqueue: cbU (Q) in Que
if dimQ = d then

g(Q) ← − g(K)
u

UpdateGradientChain(Q)

remove: Q from U

Require: d: {σ ∈ X| dimσ = d} �= ∅
procedure MakeCritical(d)

choose: A ∈ U of dimension d
add: A to A
UpdateGradientChain(A)
remove: A from U
∂AA← g(A)
return A

For every cell σ, we store a variable g(σ) that keeps track of how the removed
cells affect the boundary of σ. At the time the algorithm terminates, we have
κ̃(σ, τ) = 〈g(σ), τ〉 for σ, τ ∈ A. Here, we take the inner product 〈·, ·〉 relative to
the standard basis consisting of all cells of A. We set Aa = {σ ∈ A|b(σ)(a) = 1}

procedure UpdateGradientChain(ξ)
for ζ ∈ cbU (ξ) do

if ξ ∈ A then
g(ζ) ← g(ζ) + κ(ζ, ξ)ξ

else
g(ζ) ← g(ζ) + κ(ζ, ξ)g(ξ)

and define κ̃a(σ, τ) = 〈∂Aσ, τ〉, for every σ, τ ∈ Aa and a ∈ G0. This gives
a Morse quiver complex of the input X induced from the acyclic matching
{(Aa, wa : Qa → Ka)}a∈G0 , where w

a(η) = ξ for every ξ, η sent to RemovePair.
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Given an input quiver complex X, an existing method to obtain its persistence
diagram is to compute Hq(X) and then use the algorithm in [4]. Here, we intro-
duce MorseReduce as a preprocessing step and use the following flowchart.

1. Compute a Morse quiver complex A of X by MorseReduce.
2. Compute Hq(A) by the process sketched in the introduction.
3. Apply the algorithm in [4] on V = Hq(A) to obtain its persistence diagram.

By Theorem 2, Hq(X) ∼= Hq(A) and this flowchart gives the same output as
working with Hq(X) instead. Since the number of cells of A is at most that of X,
subsequent computations tend to complete faster with the preprocessing step.

In the following table, we summarize the time taken in seconds for computa-
tions on three sample quiver complexes X over the quiver (3) with K = Z2 and
q = 1, together with sizes |X| and |A|. The column under twithout contains the
total times taken for computing without using Morse reductions and working on
Hq(X) directly, while twith lists the total times taken for following the flowchart
above.

# |X| |A| twithout twith

1 15,341 2,777 903.31 39.53
2 17,626 7,164 3497.55 143.41
3 32,540 7,834 5162.12 42.34

For every input, the only difference between the computations performed is
whether or not we perform preprocessing by MorseReduce, with other imple-
mentation details kept the same. Since the preprocessing technique is essentially
independent of the subsequent steps, if one were to use a more efficient algorithm
for steps 2 and 3, we expect to observe similar improvements in performance.
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Abstract. The problem of determining whether a given (finite abstract)
simplicial complex is homeomorphic to a sphere is undecidable. Still, the
task naturally appears in a number of practical applications and can often
be solved, even for huge instances, with the use of appropriate heuris-
tics. We report on the current status of suitable techniques and their
limitations. We also present implementations in polymake and relevant
test examples.

Keywords: sphere recognition, combinatorial manifolds, discrete Morse
theory, presentations of fundamental groups, bistellar flips.

1 Introduction

The sphere recognition problem often arises in the guise of manifold recognition,
that is, deciding whether a given finite abstract simplicial complex triangulates
some manifold then determining the type of the manifold it triangulates. In the
piecewise linear (PL) category, recognizing whether a given complex triangulates
a PL manifold can be reduced to PL sphere recognition since the links of all
vertices of the given complex need to be PL spheres. The following is a (very
incomplete) list of scenarios where manifold recognition can be used:
1. Enumeration. When enumerating triangulations of manifolds of a given di-

mension with a fixed number of vertices or facets, we want to ensure that
the objects produced are indeed manifolds and discard all others [6,7,31].

2. Topological Constructions. Various topological manifold constructions can
be discretized so that the objects of interest can be studied with the help
of a computer. To ensure the discretization has been carried out correctly,
we want to confirm the manifold property. In practice, this test effectively
detects the majority of construction errors [1,33,30].

3. Meshing. The goal here is to obtain a triangulation of a hypersurface in some
(higher-dimensional) Euclidean space by sampling; see, e.g., [27]. As in the
case of the topological constructions, we want to verify that the triangulation
is non-degenerate.
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Throughout this extended abstract we will only consider closed manifolds
encoded as finite abstract simplicial complexes. However, our methods can easily
be modified to deal with manifolds with boundary or more general cell complexes.

2 An Integrated Recognition Procedure

Let K be a d-dimensional (finite abstract simplicial) complex with n vertices
and m facets. A facet is a face that is maximal with respect to inclusion.
A d-dimensional complex is pure if each facet has exactly d + 1 vertices. A
codimension-1-face in a pure complex is called a ridge.

To verify whether K is a PL d-sphere, there are three elementary combinato-
rial checks that are useful to perform first. These checks are fast; their running
time is bounded by a low-degree polynomial in the parameters d, m and n. If
one of the checks fails, this will serve as the certificate that K is not a sphere.

(1) Check if K is pure.

(2) Check if each ridge is contained in exactly two facets.

Success in these two tests will ascertain that K is a pseudo-manifold (with-
out boundary). A pseudo-manifold K of dimension d = 0 is the 0-dimensional
sphere S0; it consists of two isolated vertices.

(3) If d ≥ 1, check if the 1-skeleton of K is a connected graph.

A connected pseudo-manifold K of dimension d = 1 is a polygon, and thus
triangulates the 1-dimensional sphere S1.

The pseudo-manifold property of a simplicial complex is inherited by all face
links. In particular, a connected pseudo-manifold of dimension 2 is a triangula-
tion of a closed surface or of a closed surface with pinch points. A pinch point
has multiple disjoint cycles as its vertex link.

A d-dimensional pseudo-manifold is a combinatorial d-manifold if all vertex
links are PL homeomorphic to the boundary of the d-simplex. In particular, a
combinatorial d-manifold is a triangulation of a PL d-manifold.

A (connected) 2-dimensional pseudo-manifold K with the additional property
that all vertex links are single cycles is a combinatorial 2-manifold and triangu-
lates a closed surface. If the Euler characteristic of K is 2, then K is S2.

The sphere recognition problem becomes more interesting from d ≥ 3 and
requires additional steps; see also the discussion in Section 3 below.

We begin by computing the Hasse diagram of the complexK; this is a directed
graph with one node per face and a directed edge for each pair of incident faces
whose dimensions differ by one. How to orient the edges is merely a matter of
convention; here we assume they point towards the higher-dimensional faces. We
use a method introduced by Kaibel and Pfetsch [18] which is output sensitive in
the sense that it is linear in φ, the total number of faces of K. More precisely,
this algorithm’s worst-case complexity is in O(d ·m2 · φ).

After the initial Tests (1), (2), and (3), our next test for verifying whether K
is a PL d-sphere is to first verify that K is a combinatorial manifold. A pure
d-dimensional simplicial complex K is a combinatorial d-manifold iff for any
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proper i-face F of K, 0 ≤ i ≤ d− 1, the link of F in K is a PL (d−i−1)-sphere.
Notice that if all links of i-faces are PL spheres, then all links of (i−1)-faces
are combinatorial (d−i)-manifolds, which is a necessary condition to verify that
the links of (i−1)-faces are PL spheres. In this way, this property is recursive.
In practice, however, a recursive method is likely to encounter repetitions so a
level-wise approach is preferred.

According to Whitehead [35], any combinatorial d-manifold that becomes col-
lapsible after the removal of one facet is a PL d-sphere. This statement is equiv-
alent to the existence of an acyclic matching in the Hasse diagram with exactly
two critical cells. That is, a matching given by the pairings induced by the per-
formed elementary collapses such that if the edges of the matching are reversed,
the resulting directed graph is acyclic and has precisely two unmatched nodes:
one representing a facet and one representing a vertex. In the language of discrete
Morse theory, as developed by Forman [12,13], to every acyclic matching in the
Hasse diagram there is a corresponding discrete Morse function with the same
number of critical cells. For a general discrete Morse function on a d-dimensional
simplicial complex, the discrete Morse vector (c0, c1, . . . , cd) counts the critical
cells per dimension.

A randomized search for small discrete Morse vectors was introduced in [3].
This approach proceeds level-wise from top to bottom. The free faces for ele-
mentary collapses are chosen uniformly at random; if there are no free faces, a
face of the current maximal dimension is chosen uniformly at random, marked
critical, and removed.

A combinatorial manifold K is a PL sphere iff some subdivision of K admits
(1, 0, . . . , 0, 1) as its discrete Morse vector. We say that (1, 0, . . . , 0, 1) is a spher-
ical discrete Morse vector and recursively (or level-wise) check the links of all
faces to see whether they admit such a vector. However, we need to overcome
four major difficulties:
% Computing an optimal discrete Morse vector for a simplicial complex is
NP-hard [17,20].

% There are combinatorial d-spheres that do not admit a spherical discrete
Morse vector [2,4].

% For d ≥ 5, the question of whether a given simplicial d-complex is a (com-
binatorial) d-sphere is undecidable [34]; in particular, there is no bound on
the number of, say, barycentric subdivisions needed to permit the discrete
Morse vector (1, 0, . . . , 0, 1).

% In iterated barycentric subdivisions, finding the vector (1, 0, . . . , 0, 1) quickly
becomes unlikely [1]; see Section 3 for experimental results.

In Section 3, we will demonstrate that despite these drawbacks, finding optimal
discrete Morse functions (within some ‘horizon’) is often surprisingly easy, even
for huge complexes; see also [1,3].

(4) Heuristic: Search for a spherical discrete Morse vector using the random
discrete Morse algorithm [3].

Brehm and Kühnel [6] introduced a basic version of (4) to show that some
8-dimensional simplicial complex with 15 vertices is a combinatorial 8-manifold.
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Algorithm 1. Sphere recognition heuristics

Input: K: triangulation of connected closed PL d-manifold, where d ≥ 3
Output: Decision: Is K PL homeomorphic to Sd?

1 compute Hasse diagram
2 for N rounds do
3 compute random discrete Morse vector
4 if discrete Morse vector spherical then return YES

5 compute homology
6 if homology not spherical then return NO
7

8 compute and simplify presentation of fundamental group π1
9 if presentation of π1 trivial then

10 if d �= 4 then
11 return YES
12 else
13 for N ′ rounds do
14 perform random bistellar flip
15 if boundary of simplex reached then return YES

16 else
17 if π1 ∼= Z2,Z, . . . then
18 return NO
19 else
20 for N ′ rounds do
21 perform random bistellar flip
22 if boundary of simplex reached then return YES

23 return UNDECIDED

A necessary condition for K to be homeomorphic to the d-sphere is that the
homology, say with integer coefficients, is trivial. If it is not, we know that K
is not homeomorphic to the d-sphere. Writing down the (simplicial) boundary
matrices from the Hasse diagram is a straightforward procedure. Computing
the homology then amounts to determining the Smith Normal Forms of these
matrices; see e.g. Munkres [23, §11]. To improve the running time, reduction
of the initial complex is essential; see CHomP [11], RedHom [9], or polymake’s
application topaz [15] for implementations.

(5) Check the homology.

LetK be a simply connected combinatorial d-manifold, d �= 4, with the homol-
ogy of the d-dimensional sphere. Then K is PL homeomorphic to the boundary
of the (d+ 1)-simplex (PL Poincaré conjecture [25,29]).

To determine whether K is simply connected, we compute a finite presen-
tation of the fundamental group π1(K) [28] and use heuristics to simplify the
presentation, e.g., as implemented in the software package GAP. Deciding whether
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a finitely presented group is trivial is again an undecidable problem [24], but GAP
often finds a simplification of the presentation quickly.

(6) Heuristic: Compute and simplify a presentation of the fundamental group.

Since the 4-dimensional PL Poincaré conjecture is open, exotic 4-spheres may
exist. Exotic 4-spheres are simply-connected combinatorial 4-manifolds with the
homology of S4 (and are thus homeomorphic to S4 by the 4-dimensional topo-
logical Poincaré conjecture [14]), but not PL homeomorphic to the boundary of
the 5-simplex. This means that there are two situations in which our algorithm
may return UNDECIDED. When a combinatorial manifold has the homology of
a sphere, no spherical discrete Morse vector is found and
% the combinatorial manifold is 4-dimensional and is found to be simply con-
nected; or

% no decision was possible on the fundamental group.
As a last and final resort for these two cases, attempt to reach the boundary
of the (d+1)-simplex by applying random bistellar flips as suggested by Björner
and Lutz [5].

(7) Heuristic: Simplify using random bistellar flips.

If Test (7) is inconclusive, the decision problem remains unsolved.

We indicate how our method can be further refined.

Remark 1. Depending on how likely K is homeomorphic to Sd we can first check
its homology before we try the random discrete Morse algorithm.

Remark 2. In the case of non-PL triangulations of Sd, our approach may be
used to show that a given triangulation is isomorphic to the double-suspension
of some homology sphere or has some other not too complicated PL singular set.

Remark 3. In special cases of non-spherical manifolds computing other invari-
ants of K may be worthwhile; for a survey, e.g., see [16]. In particular, if d = 4
and π1(K) = 1, computing the intersection form of K decides the homeomor-
phism type of K, however, it does not settle the PL type; see Freedman [14].

3 Computational Results and Horizon for Computations

S.P. Novikov (cf. [10,34]) proved that recognizing the d-sphere is undecidable
for d ≥ 5. For the 4-sphere it is unknown whether it can be recognized algorith-
mically. Rubinstein [26] used normal surface theory to provide an algorithm to
recognize the 3-dimensional sphere; see also Thompson [32] and Matveev [21].
Unfortunately, the known deterministic 3-sphere recognition algorithms have ex-
ponential running time or worse. King [19] showed that two triangulations (as
pseudo-simplicial complexes) of S3 with t tetrahedra are related by a sequence

of less than 2201t
2

edge contractions and expansions. A similar result was ob-
tained by Mijatovic [22], who proved that two pseudo-simplicial triangulations

of S3 with t tetrahedra are related by at most 6·106t222·104t2 bistellar flips. Bur-
ton implemented the Rubinstein–Thompson–Matveev–Casson algorithm in his
3-manifold software package Regina [8].
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While our Algorithm 1 cannot guarantee success, we are not aware of a single
triangulation of the 3-sphere for which the recognition of π1 via Test (6) fails,
and substantial work was required to provide such examples in dimension 4 [33].

The smallest known triangulated 3-sphere for which the discrete Morse Test (4)
fails is the example triple trefoil (constructed via a complicated knot in the
1-skeleton with 18 vertices) from [2,3]; it does not admit a spherical discrete
Morse vector. For ‘more standard’ triangulations of S3, even with up to 5 · 105
vertices and 107 tetrahedra, it is very likely that Test (4) is positive; see [2] and
the examples below. For triangulations of an even larger size, Test (4) will even-
tually fail [1]. While for smaller examples computations will be successful most
of the time, there is a horizon beyond which computing good discrete Morse vec-
tors becomes hopeless, and — for the first time — we actually see this horizon
in the experiments on iterated barycentric subdivisions reported below. Test (6)
is successful on the 3-sphere triple trefoil.

For the 4-sphere, there is a triangulation with 30 vertices [33] on which the
GAP implementation of Test (6) fails as well as our current implementation of
Test (7). This example is constructed via a non-trivial presentation of the trivial
group, and precisely this presentation with two generators and two relators is
obtained for the simplified fundamental group. The example is obtained after
applying bistellar flips to the r = 4 case of a series of triangulations of the
Akbulut–Kirby spheres with face vectors f = (176 + 64r, 2390 + 1120r, 7820 +
3840r, 9340 + 4640r, 3736 + 1856r) for r ≥ 3. Test (4) and (6) fail on all small
examples of this series. With Test (7), we were successful only for r = 3. The
flipping algorithm for Test (7) retains the complex having the (lexicographically)
smallest f -vector found during the search; Test (4) is positive for a few of those
simplified complexes.

In fact, finding interesting and challenging test examples for our recognition
procedure is non-trivial. Most examples from the literature are tiny, easily fit into
memory, and can be recognized instantaneously. A recent example of larger size
is contractible non 5 ball [1], a non-PL triangulation of a contractible and
collapsible 5-manifold, different from the 5-ball, with f -vector f = (5013, 72300,
290944, 495912, 383136, 110880). The example was shown to be collapsible [1];
the vector (1, 0, 0, 0, 0, 0) was obtained after only a single random discrete Morse
vector search in a running time of 82 hours. Our new implementation in the
polymake system [15] of the search for random discrete Morse vectors produced
the same result in about 9 seconds; the computations ran on a standard desktop
computer with AMD Phenom II X6 1090T CPU (3.2 GHz, 6422 bogomips) and
8 GB RAM.

The boundary of contractible non 5 ball is a combinatorial 4-manifold
with f = (5010, 65520, 212000, 252480, 100992). We used Algorithm 1 to confirm
that this example is indeed a combinatorial manifold. For all face links a spher-
ical discrete Morse vector was found immediately. In total, recognition of all
face links took about 7.5 hours. The example itself is a homology 4-sphere that
has the binary icosahedral group as its fundamental group, as was confirmed
computationally in [1].
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We ran our implementation on higher barycentric subdivisions of bound-
aries of simplices. For the 3rd barycentric subdivision sd 3 bd delta 4 of the
boundary of the 4-simplex with f = (12600, 81720, 138240, 69120) the optimal
discrete Morse vector (1, 0, 0, 1) was found in 994 out of 1000 runs of the random-
revlex version [1] of the random discrete Morse search. For the 4th barycentric
subdivision sd 4 bd delta 4 of the boundary of the 4-simplex with face vec-
tor f = (301680, 1960560, 3317760, 1658880) the optimal discrete Morse vector
(1, 0, 0, 1) was found in only 844 out of 1000 runs, which may indicate that the
horizon for computations lies near the 5th barycentric subdivision.

4 Conclusion

For ‘standard’ triangulations of the d-sphere, Test (4) provides a reliable and
extremely fast tool for recognition. The test is essentially linear in the number
of faces, and thus can be repeated several times if the first try does not produce
a spherical discrete Morse vector. Test (6) depends only on the 2-skeleton of a
complex, so higher-dimensional complexes of considerable size can be processed.
Some of our experiments show that Test (4) can be run for complexes with 107 or
more faces, Test (6) for complexes with 5 ·105 or more triangles, while Test (7) is
efficient in dimension 3 for examples with up to 104 vertices, but slow in higher
dimensions.
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Abstract. We present an efficient software package for computing ho-
mology of sets, maps and filtrations represented as cubical, simplicial
and regular CW complexes. The core homology computation is based on
classical Smith diagonalization, but the efficiency of our approach comes
from applying several geometric and algebraic reduction techniques com-
bined with smart implementation.
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1 Introduction

In 1995 M. Mrozek and K. Mischaikow presented a computer assisted proof
of the existence of chaotic dynamics in Lorenz equations [10,11]. The computer
programs needed for the proof became the seed of the software package developed
by members of the CAPD (Computer Assisted Proofs in Dynamics) group [21].
Throughout the years the package became a reach collection of software libraries
and tools for rigorous numerics of dynamical systems (see [9] for the description
of the mainstream CAPD package).

An important ingredient of the mentioned proof is Conley index, a homo-
logical invariant of dynamical systems. The computer assisted proofs based on
Conley index brought interest in cubical homology theory [7] and stimulated the
development of the homology package for the needs of computer assisted proofs.
Since 2005 the homology software for CAPD has been developed jointly with
the Computational Homology Project (CHomP) [23].

After having implemented the classical algorithm based on Smith diagonaliza-
tion it became clear that it is much too slow for the needs of computer assisted
proofs. This originated the search for faster homology algorithms.

CAPD::RedHom is a software package for efficient homology computations of
cubical and simplicial complexes as well as some special cases of regular CW
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complexes. Originally, the software was designed for applications in rigorous nu-
merics of Topological Dynamics. Such applications, based on interval arithmetic,
lead in a natural way to cubical sets. They may be represented very efficiently
as bitmaps. The cubical sets arising from the algorithms in dynamics usually are
strongly inflated in the sense the sets which much smaller representation have the
same topology or homotopy type. Such small representations may be found in
linear time by various geometric reduction techniques. The algebraic invariants
of topology, in particular homology, are then computed for the small represen-
tation. This leads to a very significant speed up. In particular, the expensive,
linear algebra computations, such as Smith diagonalization, are performed on
small data.

The package was developed by: P. Brendel, P. Dlotko, G. Jablonski, M. Juda,
A. Krajniak, M. Mrozek, P. Pilarczyk, H. Wagner, N. Zelazna.

2 Functionality

The CAPD::RedHom software package, which is currently under intensive de-
velopment, constitutes a redesign of the CAPD homology software. It is based
on the already mentioned as well as the very recent reduction ideas proposed
in [1,4,5,6,14,17]. It is designed to meet the needs of various areas of applica-
tions, to apply to cubical and simplicial sets as well as CW complexes and at the
same time to maintain the efficiency of the original CAPD software for cubical
sets. This is achieved by applying the techniques of static polymorphism based
on C++ templates so that the reduction algorithms may be applied to various
representations of sets without any overhead run-time costs. An unwanted side
effect is that this makes the code very hard to use as a library or a plug-in.
For this reason recently we put a lot of effort to make the efficient C++ code
accessible in external, commonly used libraries. Presently, the code is available
as a plug-in for GAP [24], Python, and Sage [25].

The package is intended both for users who are interested in stand-alone pro-
grams as well as programmers who want to use the library in their programs. The
ultimate goal is that the package will provide Betti numbers, torsion coefficients,
homology generators and matrices of maps induced in homology. Moreover, for
filtered sets the package will provide persistence intervals [3].

3 Applications

The original CAPD homology software was written for applications in rigorous
numerics of dynamical systems. However, the range of applicability of homology
software encompasses several other areas: electromagnetism, image analysis, vi-
sualization, data mining, sensor networks, robotics and many others. Although
the general goal is the same, these areas differ in details of input and output.
The cubical representation of sets is convenient in dynamics, because interval
arithmetic used in computer assisted proofs in the theory of dynamical systems
leads in a natural way to such sets. It is also convenient in the analysis of raster
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images. However, in many situations the simplicial representation is more nat-
ural. In electromagnetics and in all cases when sets exhibit fractal structure a
general CW complex representation is most convenient.

Apart from the original applications in rigorous numerics of dynamical sys-
tems [13], so far the package has found applications in image analysis [18], ma-
terial science [17,1], electromagnetism [2], and group representation theory [20].

4 Underlying Theory

One way of avoiding the supercubical cost of the classical homology algorithm
is decreasing the size of the input to Smith algorithm without changing the
homology. Such an approach was first proposed in [8] by means of a linear time
reduction of chain complexes. The reduction process considered in that paper is
purely algebraic and may be viewed as a method of limiting the fill-in process
in the Smith diagonalization.

However, reductions may be performed directly on the level of the topological
space. At first, this may look like acting against the fundamentals of algebraic
topology. Algebraic topology solves problems in topology by translating them
to the ground of much simpler algebra. But, experiments indicate that in many
applications doing geometric reductions directly at the topological level instead
of algebraic reductions after translating the problem from topology to algebra
may significantly speed up the computations. Also, such an approach often uses
significantly less memory.

The first implemented algorithm of this type is based on the observation
that for a cube Q ⊂ X , if Q ∩ cl(X \ Q) is acyclic then X can be replaced
by cl(X \ Q) without affecting the homology (see [19]). This fact was used in
the reduction techniques proposed in [12] and motivated the Acyclic Subspace
Homology Algorithm (see [15]), based on the construction of a possibly large
acyclic subspace A of the topological spaceX . The computation of the homology
groups H(X) reduces then to the computation of H(X \A) in the sense of one
space homology theory (see [16]). The method is particularly useful for cubical
subsets of Rn with n ∈ {2, 3}, because in these dimensions the acyclic subspace
may be constructed extremely fast due to the possibility of storing all possible
neighborhood configurations and using them as look-up tables for testing the
acyclicity.

The simplest example of reductions on the topological level are free face col-
lapses proposed in [7]. Unfortunately, in many situations free faces are quickly
exhausted and the remaining set is still large. Significantly deeper reductions in
low dimensions may be achieved by means of the dual concept of free cofaces.
This idea leads to the Coreduction Homology Algorithm [16].

The Acyclic Subspace Homology Algorithm and the Coreduction Homology
Algorithm together with Discrete Morse Theory [4] seem to be the fastest ho-
mology algorithms for inflated cubical and simplicial sets available so far. In
particular, they outperform algebraic homology algorithms just because they
run in a fraction of time needed to translate the problem to algebra.
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5 Technical Contribution

Algorithms implemented in the CAPD::RedHom package behave incredibly well
for inflated data sets. We see such sets especially in applications, where a continu-
ous problem is translated into a combinatorial problem. Among many examples,
there is a common pattern: to achieve sufficient theoretical conditions for the
discretization, we need to subdivide our space. That operation do not change
homology, but increase data size.

We compared CAPD::RedHom with latest CHomP [23] (programs homsimpl
and chomp-simplicial) and Linbox [26] (program homology gap 1.4.3 used in GAP
[24] - we cannot use latest version, GPC compiler removed from Ubuntu/Debian
in 2011). For the comparison we generated simplicial complexes using Sage [25].
For classical examples available in module sage.simplicial complexeswe gen-
erate their subdivisions with subdivide() routine. Using various parameters we
generated 380 input files.We will present detailed list of examples in the full paper.
For the purpose of this article, on the Figure 1 we show CPU usage for following
complexes:

– Torus() with 4 subdivisions, 18144 2-dimensional simplices on input;
– KleinBottle()with 4 subdivisions, 20736 2-dimensional simplices on input;
– MooreSpace(9)with 3 subdivisions, 13176 2-dimensional simplices on input;
– ProjectivePlane() with 4 subdivisions, 12960 2-dimensional simplices on

input;
– MatchingComplex(7) with 3 subdivisions, 22680 2-dimensional simplices on

input;
– ChessboardComplex(5,5)with 1 subdivision, 14400 4-dimensional simplices

on input;
– RandomComplex(11,5) with 1 subdivision, 172680 5-dimensional simplices

on input;

The number of subdivisions in each case is big enough to force non-instant
computations. The case RandomComplex(11,5) emphasize benefits from our ap-
proach: CAPD::RedHom is almost three times faster than CHomP and Lin-
box cannot finish computations in one hour. On the chart CumulativeCPU we
presents total CPU usage by each program in the experiment.

During development of the CAPD::RedHom package we faced a lot of inter-
esting technical and theoretical problems. The most important challenge in our
applications is in data set size. The biggest set computed so far contains 109

simplices in dimension 0 − 3 (600 · 106 facets) [20]. The set required 3 days of
computations on a machine with 512 GB of RAM. Big data sets in applica-
tions convinced us to start implementations of our algorithms for parallel and
distributed computations. This is a big challenge in the area of computational
homology. In the full paper we will show our progress in this subject.



164 M. Juda and M. Mrozek

Fig. 1. CPU usage charts. On each picture from left: R (CAPD::RedHom), CS (CHomP
- chomp-simplicial), CH (CHomP - homsimpl), L (Linbox - homology gap).
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Abstract. We present the main algorithmic and design choices that
have been made to represent complexes and compute persistent homol-
ogy in the Gudhi library. The Gudhi library (Geometric Understand-
ing in Higher Dimensions) is a generic C++ library for computational
topology. Its goal is to provide robust, efficient, flexible and easy to use
implementations of state-of-the-art algorithms and data structures for
computational topology. We present the different components of the soft-
ware, their interaction and the user interface. We justify the algorithmic
and design decisions made in Gudhi and provide benchmarks for the
code. The software, which has been developped by the first author, will
be available soon at project.inria.fr/gudhi/software/.

Keywords: persistent homology, simplicial complex, software library,
computational topology, generic programming.

1 Introduction

The principle of algebraic topology is to attach algebraic invariants to topological
spaces in order to classify them up to homeomorphism. One can consequently
study the property of a discrete algebraic structure (a sequence of homology
groups in our case) instead of studying a continuous domain directly, which
would be hard to handle algorithmically. Persistent homology [14, 16] may be
considered as a ”dynamic version” of this principle: given a sequence of topolog-
ical spaces connected by continuous maps, we study the corresponding sequence
of homology groups connected by group homomorphisms, induced by the topo-
logical space maps. The whole sequence of groups together with their homo-
morphisms form an algebraic structure (specifically a module) that we study.
Very efficient methods have been developped for computing persistent homol-
ogy [1, 14] and its dual, persistent cohomology [2, 11, 13]. The generality and
stability with regard to noise [9] of persistence have made it a widely used tool
in practice.

An application of interest for computational topology is topological data anal-
ysis, where one is interested in learning topological invariants of a shape, sampled
by a point cloud. A popular approach is to construct, at different scales, an ap-
proximation of the shape using complexes built on top of the points, and then
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compute the persistent homology of these complexes. This approach has been
successfully used in various areas of science and engineering, as for example in
sensor networks [10], image analysis [6], and data analysis [8], where one typically
needs to deal with big data sets in high dimensions and with general metrics.
The simplicial complex and persistent homology packages in Gudhi provide all
software components for this approach.

The challenge is twofold. On the one hand we need to design a generic library
in computational topology, in order to adapt to the various configurations of
the problem: nature of the complexes (simplicial, cubical, etc) and their rep-
resentation, nature of the maps between them (inclusions, edge contractions,
etc), ordering of the maps (linear, zigzag, etc) and types of algorithm for per-
sistence (homology, cohomology). On the other hand, we need to implement a
high-performance library to handle complex practical examples.

We recall in Section 2 the definition of homology and persistent homology
constructed from simplicial complexes. In Section 3, we describe the design of
the Gudhi library. In Section 4, we discuss the implementation choices and the
user interface. Specifically, simplicial complexes are implemented with a simplex
tree data structure [4]. The simplex tree is an efficient and flexible data structure
for representing general (filtered) simplicial complexes. The persistent homology
of a filtered simplicial complex is computed by means of the persistent cohomol-
ogy algorithm [11, 13], implemented with a compressed annotation matrix [2].
The persistent homology package provides the computation of persistence with
different coefficient fields, including the implementation of the multi-field per-
sistence algorithm of [3], i.e. the simultaneous computation of persistence with
various coefficient fields. Finally, in Section 5 we discuss the future components
of the library and their integration in the design.

2 Theoretical Foundation of Persistent Homology

The theory of homology consists in attaching to a topological space a sequence
of (homology) groups, capturing global topological features like connected com-
ponents, holes, cavities, etc. Persistent homology studies the evolution – birth,
life and death – of these features when the topological space is changing. Conse-
quently, the theory is essentially composed of three elements: topological spaces,
their homology groups and an evolution scheme.

Simplicial Complexes: In computer science, topological spaces are repre-
sented by their discrete counterpart: (cell) complexes. On the following, we focus
on simplicial complexes, but our approach applies to all kinds of cell complexes.
Let V = {1, · · · , |V |} be a set of vertices. A simplex σ is a subcset of vertices
σ ⊆ V . A simplicial complex K on V is a collection of simplices {σ}, σ ⊆ V ,
such that τ ⊆ σ ∈ K ⇒ τ ∈ K. The dimension n = |σ| − 1 of σ is its number of
elements minus 1.

A simplicial map f : K → K′ between simplicial complexesK andK′, with re-
spective vertex sets V and V ′, is a map that sends every vertex v ∈ V to a vertex
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Indexing

Complex

Homology 0 0 0 0

10 3 42 5 6 7

〈[c]〉 〈[c]〉 〈[c]〉〈[c], [c′]〉

Fig. 1. Indexing of eight simplicial complexes and corresponding sequence of homology
groups in dimension 1

f(v) ∈ V ′, and every simplex [v0, · · · , vn] ∈ K to a simplex [f(v0), · · · , f(vn)] ∈
K′. Note that they may be redundancy in the set {f(v0), · · · , f(vn)}, in which
case the simplex image has lower dimension that its pre-image. In the follow-
ing, we focus on inclusions, which are a particular case of simplicial maps, and
discuss the case of general simplicial maps in Section 5.

Homology: For a ring R, the group of n-chains, denoted Cn(K,R), of K
is the group of formal sums of n-simplices with R coefficients. The boundary
operator is a linear operator ∂n : Cn(K,R) → Cn−1(K,R) such that ∂nσ =
∂n[v0, · · · , vn] =

∑n
i=0(−1)i[v0, · · · , v̂i, · · · , vn], where v̂i means vi is omitted

from the list. The chain groups form a sequence:

· · · Cn(K,R)
∂n−−−→ Cn−1(K,R)

∂n−1−−−→ · · · ∂2−−−→ C1(K,R)
∂1−−−→ C0(K,R)

of finitely many groups Cn(K,R) and homomorphisms ∂n, indexed by the di-
mension n ≥ 0. The boundary operators satisfy the property ∂n ◦ ∂n+1 = 0 for
every n > 0 and we define the homology groups:

Hn(K,R) = ker ∂n/im ∂n+1

We refer to [15] for an introduction to homology theory and to [14] for an intro-
duction to persistent homology.

Indexing Scheme: “Changing” a simplicial complex consists in applying a
simplicial map. An indexing scheme is a directed graph together with a traversal
order, such that two consecutive nodes in the graph are connected by an arrow
(either forward or backward). The nodes represent simplicial complexes and the
directed edges simplicial maps.

From the computational point of view, there are two types of indexing schemes
of interest in persistent homology 1: linear ones • −→ • −→ · · · −→ • −→ •
in persistent homology [16], and zigzag ones • −→ • ←− · · · −→ • ←− • in

1 i.e. from which an interval decomposition of the persistence module exists: Gabriel’s
theorem [12] in quiver theory classifies these graphs.
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FilteredComplex

typedef ... typedef

typedef

...

... Filtered complex

Coefficient fieldIndexing tag

PersistentHomology

CoefficientField

IndexingTag

Concept Model

Fig. 2. Overview of the design of the library

zigzag persistent homology [7]. These indexing schemes have a natural left-to-
right traversal order, and we describe them with ranges and iterators. We focus
in the following on the linear case, and discuss the zigzag case in Section 5.

In the following, we consider the case where the indexing scheme is induced
by a filtration. A filtration of a simplicial complex is a function f : K → R
satisfying f(τ) ≤ f(σ) whenever τ ⊆ σ. Ordering the simplices by increasing
filtration values (breaking ties so as a simplex appears after its subsimplices of
same filtration value) provides an indexing scheme.

We refer to Figure 1 for an illustration of the three components of the theory
and their connections. The figure pictures the linear indexing of eight simplicial
complexes connected by inclusions, and the corresponding sequence of homology
groups in dimension 1. Every inclusion induces a group homomorphism at the
homology level. Persistent homology studies this sequence of homology groups
connected by homomorphisms. Specifically, computing persistent homology con-
sists in computing a primary decomposition of this sequence of homology groups
(forming a module); the decomposition is usually represented by means of a
persistence diagram [14].

Remark: The reader may have found a category theory taste to this presenta-
tion of persistent homology. In particular, the vertical arrows in Figure 1 repre-
sent functors of categories. We refer to [5] for more details on the categorification
of persistent homology.

3 Design of the Library

A concept is a set of requirements (valid expression, associated types, etc) for a
type. If a type satisfies these requirements, it is a model of the concept. The gen-
eral idea under our design is to associate a concept per component presented in
Section 2: the three components of the theory (indexing, complex and homology)
are illustrated in Figure 1. Given two components related by a vertical arrow
in Figure 1, and two models A and B of their respective associated concepts, we
connect B with A through a template argument B<A>.

IndexingTag Concept: In order to describe the indexing scheme, we use a
tag IndexingTag that is either linear indexing tag or zigzag indexing tag,
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void compute_persistent_homology( FilteredComplex cpx ) {

for( Simplex_handle sh : cpx.filtration_simplex_range() ) {

int dim = cpx.dimension(sh);

update_cohomology_groups( dim, sh, cpx );

//inside update_cohomology_groups

for( Simplex_handle b_sh : cpx.boundary_simplex_range(sh) )

{...}

//out

} } }

Fig. 3. Sample code for the computation of persistence, illustrating the use of a model
of concept FilteredComplex

corresponding to the two indexing schemes of interest mentioned above. The tag
is passed as template argument to a model of the concept FilteredComplex

(described below and representing filtered cell complexes).

FilteredComplex Concept: We define the concept FilteredComplex that
describes the requirement for a type to implement a filtered cell complex. We
use the vocabulary of simplicial complexes, but the concept is valid for any type
of cell complex. The main requirements are the definition of:

1. type Indexing tag, which is a model of the concept IndexingTag, describing
the nature of the indexing scheme,

2. type Simplex handle to manipulate simplices,
3. method int dimension(Simplex handle) returning the dimension of a sim-

plex,
4. type and method Boundary simplex range boundary simplex range(

Simplex handle) that returns a range giving access to the codimension 1
subsimplices of the input simplex, as-well-as the coefficients (−1)i in the
definition of the operator ∂. The iterators have value type Simplex handle,

5. type and method Filtration simplex range filtration simplex range()

that returns a range giving access to all the simplices of the complex read in
the order assigned by the indexing scheme,

6. type and method Filtration value filtration(Simplex handle) that re-
turns the value of the filtration on the simplex represented by the handle.

Figure 3 illustrates the use of a model of the concept FilteredComplex. It
sketches the algorithm used for computing persistent homology via the approach
of [11, 13].

PersistentHomology Concept: The concept PersistentHomology describes
the requirement for a type to compute the persistent homology of a filtered
complex. The requirement are the definition of:

1. a type Filtered complex, which is a model of FilteredComplex and pro-
vides the type of complex on which persistence is computed,
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2. a type Coefficient field, which is a model of CoefficientField and
provides the coefficient field on which homology is computed.

The requirements of the concept CoefficientField are essentially the defi-
nition of field operations (addition, multiplication, inversion, etc).

We refer to Figure 2 for a presentation of the concepts and their connections.

4 Implementation

In this section we describe how these concepts are implemented. The code will
be available soon at project.inria.fr/gudhi/software/.

Simplicial Complex: We use a Simplex Tree [4] to represent simplicial com-
plexes. The class Simplex tree is a model of FilteredComplex and hence
furnishes all requirements of the concept. Moreover, it furnishes algorithms to
construct efficiently simplicial complexes, and in particular flag complexes [14].
Details on the implementation of the algorithms may be found in [4].

Persistent Homology: We use the Compressed Annotation Matrix [2] to im-
plement the persistent cohomology algorithm [11, 13] for persistence. This leads
to the class Persistent cohomology, which is a model of PersistentHomology.
The class Persistent cohomology allows the computation of the persistence di-
agram of a filtered complex, using the method compute persistent homology

(see Figure 3).
The coefficient fields available as models of CoefficientField are Field Zp

for Zp (for any prime p) and Multi field for the multi-field persistence al-
gorithm – computing persistence simultaneously in various coefficient fields –
described in [3].

Example of Use of the Library: Figure 4 illustrates the user interface for
constructing a flag complex [14] from a graph and computing its persistent ho-
mology with various coefficient fields.

Graph g; ... //compute the graph

Simplex_tree< linear_indexing_tag > st; //linear ordering

st.insert(g); //insert the graph as 1-skeleton of the complex

st.expand(5); //construct the 5-skeleton of the associated flag complex

Persistent_cohomology< Simplex_tree<linear_indexing_tag>, Multi_field >

pcoh; //persistence with "multi field coefficients" defined on a

simplex tree

pcoh.compute_persistent_homology(st,2,1223); //compute persistent

homology of st in all fields Zp for p prime between 2 and 1223

Fig. 4. User interface for the construction of a filtered flag complex with a simplex tree
and the computation of its persistent homology

project.inria.fr/gudhi/software/
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Data |P| D d r |K| Tst T ph
Z2

T ph
Z1223

T ph

Z2
1223

Bud 49,990 3 2 0.09 127 · 106 5.7 161 161 252
Bro 15,000 25 ? 0.04 142 · 106 5.8 252 252 380
Cy8 6,040 24 2 0.8 193 · 106 8.4 249 249 325
Kl 90,000 5 2 0.25 114 · 106 8.3 228 227 401
S3 50,000 4 3 0.65 134 · 106 7.2 176 176 310

Fig. 5. Timings in seconds for the various algorithms

Experiments: Figure 5 presents timings Tst for the construction of flag com-
plexes with a simplex tree using the algorithm of [4], T ph

Z2
and T ph

Z1223
for the

computation of persistent homology with coefficient is Z2 and Z1223 respec-
tively, using the implementation of [2], and T ph

Z2
1223

for the simultaneous compu-

tation of persistent homology in the 200 coefficient fields Zp with p prime, for
2 ≤ p ≤ 1223, using the multi-field persistent homology algorithm described
in [3]. Experiments have been realized on a Linux machine with 3.00 GHz pro-
cessor and 32 GB RAM, for Rips complexes [14] built on a variety of data points.
Datasets are listed in Figure 5 with the size of points sets |P|, the ambient di-
mension D and intrinsic dimension d of the sample points (”?” if unknown), the
parameter r for the Rips complex and the size of the complex |K|. More details
about the implementation, the experimental protocol, the data sets as-well-as
additional experiments can be found in [2–4].

The average timings per simplex of the various algorithms are ranging between
4.08 ·10−8 and 7.28 ·10−8 seconds per simplex for the construction of the simplex
tree, between 1.27 ·10−6 and 2.00 ·10−6 seconds per simplex for the computation
of persistent homology with coefficient field Z2 or Z1223, and between 1.68 ·10−6

and 3.52 · 10−6 seconds per simplex for the computation of multi-field persistent
homology in all fields Zp for p prime, 2 ≤ p ≤ 1223. Note that most of the time
for the computation of persistent homology is spent computing boundaries in
the simplex tree.

5 Future Components

The library may be extended in various directions that fit naturally in the design.
The first direction is to allow zigzag indexing schemes, by the creation of a
tag zigzag indexing tag. In this case, the method filtration simplex range

must indicate the direction of the arrows.
New implementations and models for FilteredComplex may be added. For

example, the construction of witness complexes [4] will be added to the class
Simplex tree. Additionnaly, new types of complexes (like cubical complexes)
and new data structures to represent them may be added to the library: in order
to compute their persistent homology, they only need to satisfy the requirements
of the concept FilteredComplex.

So far, only inclusions have been considered for simplicial maps between sim-
plicial complexes. As explained in [13], any simplicial map may be implemented
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with a sequence of inclusions and edge contractions. We will consequently add
edge contractions as updates in the class Simplex tree and implement the in-
duced updates in the class Persistent cohomology (algorithms exist for edge
contractions in a simplex tree [4] and for the corresponding updates at the coho-
mology level [13]). This way, we will be able to compute persistent homology of
simplicial maps. In this case, the range provided by filtration simplex range

must indicate the nature of the map between complexes.
Future works include also the implementation of a class Field Q, model of

concept CoefficientField, for homology with Q coefficients. Finally the inter-
face between complexes and persistent homology allows us to implement more
persistent homology algorithms.
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Abstract. Bertini real is a command line program for numerically
decomposing the real portion of a one- or two-dimensional complex ir-
reducible algebraic set in any reasonable number of variables. Using nu-
merical homotopy continuation to solve a series of polynomial systems
via regeneration from a witness set, a set of real vertices is computed,
along with connection information and associated homotopy functions.
The challenge of embedded singular curves is overcome using isosingular
deflation. This decomposition captures the topological information and
can be used for further computation and refinement.

Keywords: Numerical algebraic geometry, cell decomposition, algebraic
surface, algebraic curve, homotopy continuation, deflation.

1 Introduction

Bertini real seeks to automate the task of visualizing and computing on real
algebraic curves and surfaces. From only a defining polynomial system, the pro-
gram computes a cellular decomposition of the real portion of a one- or two-
dimensional complex algebraic set. The output of Bertini real is a set of text
files, containing the set of computed vertices, the connections between them, and
any associated homotopies. Using the homotopies, the decomposition can be re-
fined to the user’s desire with a supplemental program simply titled sampler.
An interactive visualization suite is provided in MATLAB.
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Bertini real works by leveraging the power of homotopy continuation [2,3],
numerical irreducible decomposition [8], regeneration [5], randomization [3], and
isosingular deflation [6] to decompose the real parts of complex one- and two-
dimensional components of algebraic varieties. It produces a cell decomposition,
similar to the output of other decomposition methods, most notably the Cylin-
drical Algebraic Decomposition [1].

2 Functionality

Bertini real is an MPI parallel-enabled compiled program called from the com-
mand line. The two necessary ingredients to run the software are: 1) a Bertini

input file, and 2) a Numerical Irreducible Decomposition (NID) produced by
Bertini. It further depends on MATLAB for symbolic calculations (e.g. deflation,
symbolic derivatives and determinants), the Boost C++ support library, as well
as GMP and MPFR (for multiple-precision numerics). Compilation requires a
library-compiled version of Bertini [2].

The basic pattern for usage of Bertini real is summarized below.

1. Create a NID, via Bertini. This gives a witness set for each irreducible
component, as well as information on each component’s degree, multiplicity,
and deflation requirements.

2. Run Bertini real on a single irreducible component. Bertini real checks
if the component is self-conjugate. If it is not, Bertini real finds the in-
tersection of the component with its conjugate and proceeds. The program
further deflates the system [6] so that the component is reduced and properly
deflated, so that we may track on it. It then finds a cell decomposition of
the real points in the complex set.

3. Refine the decomposition. Bertini real produces raw decompositions that
are bare skeletons of the objects they describe. If the user wants to view
a smoothed version, or use the decomposition for further calculations, they
might want to refine using the program sampler, provided as part of the
Bertini real package.

4. Visualize. Visual interpretation of the data typically quickly reveals any
problems which might have been encountered during computations. The
suite of graphical software is provided through MATLAB.

3 Application

3.1 Curve

Consider a three-jointed revolute planar robot, with equal link lengths – and
let the length be unity. If we fix a point in the workspace of the robot, we get
a curve of solutions in terms of the joint angles such that the end effector is
placed at the point. Equations are given below in (1), with si = si = sin θi, and
ci = ci = cos θi.
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Fig. 1. Example of curve decomposition. A 3R planar robot of unit link length places
its end effector at the point (x, y) = (1, 0). Left: projection onto the cosines of the
angles. Right: projection onto sines. These two plots are simpler than viewing the joint
angles directly, due to the periodic nature of trigonometric functions.

⎡⎢⎢⎢⎢⎣
c1 − s3(c1s2 + c2s1) + c1c2 − s1s2 + c3(c1c2 − s1s2)− 1
s1 + c1s2 + c2s1 + s3(c1c2 − s1s2) + c3(c1s2 + c2s1)

c22 + s21 − 1
c22 + s22 − 1
c23 + s23 − 1

⎤⎥⎥⎥⎥⎦ = 0 (1)

In Fig. 1, we present the three components of the solution curve when we
grasp the point (x, y) = (1, 0). On the left is a projection of the set onto the
cosines, and the figure on the right are the sines.

3.2 Surface

Now consider a two-joint revolute planar robot with link lengths �1 = 1, �2 = 0.5,
and let the target position for the end effector be variable and denoted (x, y),
as in (2). The set of points in the plane the robot can reach is realizable using a
surface decomposition. The workspace ought to be an annulus, and this is indeed
the result of the decomposition when projected onto (x, y) as in Fig. 2.⎡⎢⎢⎣

c1 − x+ (c1c2)/2− (s1s2)/2
s1 − y + (c1s2)/2 + (c2s1)/2

c21 + s21 − 1
c22 + s22 − 1

⎤⎥⎥⎦ = 0 (2)

4 Underlying Theory

4.1 Curve

The implementation of curve decomposition in Bertini real follows the algo-
rithm laid out in [7], depicted in Fig. 3, and summarized informally below.

To begin, there is a little user set up, the foremost of which is to run Bertini

with configuration setting TrackType:1 to obtain a NID. Optionally, the user
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Fig. 2. Example of surface decomposition. A 2R planar robot with differing link lengths
is allowed to move freely, and we decompose its workspace as a surface in terms of (x, y)
and the sines and cosines of the joint variables. On the left, projection of the surface
onto (x, y) gives an annulus as expected. At the right, the surface is tilted, revealing
the two solutions, in terms of the arctangent of (s2, c2).

may write a file containing a (random) real projection and a sphere of interest.
Bertini real automatically tests for self-conjugacy. A non-self-conjugate com-
ponent is intersected with its own conjugate to produce a finite set of isolated
real points, which terminates the computation. Otherwise, Bertini real carries
out the following six steps.

1. Find critical points. These points will include singular points, and points
such that the curve is tangent to the direction of projection, and they will
satisfy the system:

fcrit =

⎡⎣ f(x)

det

(
Jf(x)
Jπ1(x)

)⎤⎦ = 0, (3)

where J indicates the Jacobian matrix of partial derivatives and π1 : CN → C
is the random real projection being used for the decomposition. Let c1, . . . , cn
be the real critical points, ordered so that π1(c1) < π1(c2) < · · · < π1(cn).

2. Intersect with sphere. To cut off unbounded arcs of the curve, or to focus
the view to the user’s region, we intersect with a sphere of center x0 and
radius r, and solve the system (4), inserting the real intersection points into
the list of ordered critical points.

fsphere =

[
f(x)

||x− x0||22 − r2

]
. (4)

3. Slice. To find what will become the midpoints of the edges of the decom-
position, slice the curve between its critical points, by tracking from the
single witness linear L to each midpoint projection value, pmi = (π1(ci) +
π1(ci+1))/2, as:

Hmidslice =

[
f(x)

tL(x) + (1− t)(π1(x) − pmi)

]
.
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Fig. 3. The six major steps for a curve decomposition as implemented in Bertini real.
This illustration uses an elliptic curve, x3 − 2x+ 1− y2 = 0.

4. Connect the dots. Use the following homotopy to track midpoints first left
and then right to the points on the curve above each critical point:

Htrack =

[
f(x)

π(x)− (tpmi + (1− t)p)

]
,

where p is taken first as p = π1(ci) and then as p = π1(ci+1).
5. Merge. Optionally, we can remove superfluous intersections which lie in the

same projection fiber as critical points. These points arise when the curve
has non-critical branches above a critical point, and they can be removed to
produce a simpler decomposition.

6. Refine. Optionally, the user can refine the decomposition to their specifica-
tion. By using the same homotopy as in Step 4, we can move the generic point
in the center of each edge to any projection value p, π1(ci) < p < π1(ci+1).
Two methods are available in Bertini real: 1) a fixed-number method,
where the user specifies how many points they want per edge; and 2) an
adaptive method, where the user specifies a distance tolerance and a limit
on the of number of refinement iterations.

4.2 Surface

The implementation of surface decomposition in Bertini real follows the algo-
rithm laid out in [4], depicted in Fig. 4, and summarized informally below.

Similarly to a curve decomposition, there is a small amount of user set up.
Of course, one must obtain a NID, and the user may choose a projection and
sphere. Self-conjugacy testing, and deflation are performed automatically. The
six steps below are for self-conjugate components only. Any non-self-conjugate
component is intersected with its conjugate component, producing at most a
curve, which is then treated as in the curve case above. The decomposition of a
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Fig. 4. The six major steps for a surface decomposition as implemented in
Bertini real. This example uses the Whitney Umbrella, x2 − y2z = 0, a degree 3
surface in three variables, which is unbounded and contains a curve of singularity
(around part of which, the surface is one-real dimensional.

surface is found with respect to two random real projections, π1, π2 : CN → C,
as follows.

1. Decompose the critical curve. The critical curve is analogous to the outline
of an object when viewed in an image plane and is also the set where the
tangent is parallel to the two directions of projection, π1, π2. The curve is
defined by the system:

fcritcurve =

⎡⎢⎢⎣
f

det

⎛⎝ Jf(x)
Jπ1(x)
Jπ2(x)

⎞⎠
⎤⎥⎥⎦ = 0. (5)

Witness sets for the components of the critical curve are obtained via regen-
eration from the witness set, using a left-nullspace approach, and these are
passed the curve method for decomposition with respect to π1.

2. Decompose singular curves. As a matter of course from computing the wit-
ness set for the critical curve, we also obtain witness points for singular
curves, since every singular curve will also satisfy (5). We use isosingular de-
flation [6] to deflate the input system these witness points, thereby producing
full witness sets. These are then decomposed with respect to π1 exactly as
for any other component of the critical curve.

3. Intersect with sphere. The intersection of the surface with a sphere of radius
r and center x0 will result in a curve, defined by (4). The intersection curve
is treated as part of the critical curve, so it too is decomposed with respect
to π1.

4. Slice. We perform a curve decomposition at each of two sets of π1 projection
values – at each critical π1-value, and halfway between each pair, coming from
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the critical points of the critical curve, singular curves, and the sphere curve.
Call these critical slices and mid-slices, respectively. Each of these slices has
a constant π1 value and is decomposed with respect to π2.

5. Connect the dots. The midpoints of each edge of each mid-slice become the
center point for a face of the decomposition. The decompositions of the mid-
slices reveal how the midpoint is connected to the top and bottom edges of
its face, each coming from the critical curve, the sphere curve, or a singular
curve. The description of the face is completed by finding which edges in
the adjacent left and right critical slices connect to the midpoint. This is
determined using a homotopy that keeps the midpoint from crossing its top
and bottom edges as it is moved to the left and right critical projection
values: see [4].

6. Refine. The decomposition to this point is coarse, in that it provides a coarse
triangulation of the surface. A refinement method is provided in the separate
executable sampler, which refines each edge and face in the decomposition,
to contain a number of points of the user’s choice. Adaptive and eventually
optimal sampling for surfaces is a matter of ongoing development.

5 Technical Contribution

5.1 Advances

Bertini real allows a non-expert access to the algorithms of [7,4] for decom-
posing the real points of complex algebraic curves and surfaces, whereas the
previous prototype codes required expertise and worked only on sets of low de-
gree. Importantly, Bertini real is the first implementation that removes the
restriction to almost-smooth surfaces that was needed in [4] — non-smooth sur-
faces can now be treated in any number of variables. The largest curve we have
decomposed so far is a 3-3 Burmester curve [9] in 14 variables of degree 630.

5.2 Challenges

The main algorithms as implemented in Bertini real are all for affine varieties.
One can decompose any projective variety one wants, by considering patch equa-
tions and the transformation into an affine space. However, the Bertini tracker
loops used by Bertini real expect there to be a single homogenizing variable
for a single non-homogeneous variable group. Furthermore, Bertini as written
was not intended to be called as a library as we do with Bertini real, so link-
ing into the loops required a great deal of finesse. This experience is helping the
setting up of specifications for the next version of Bertini.

While curves are comparatively easy to decompose, Bertini real’s surface
decomposer is currently capable of dealing with only moderately sized systems
— surfaces involving no randomization and six variables are generally currently
tractable. However, we have encountered difficulty decomposing a particular
Burmester surface, involving eight polynomials in ten variables. While we can
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readily obtain the witness points for the critical curve, computing the critical
points of the critical curve remains a barrier for this problem. The code uses
a determinantal formulation of the criticality condition, wherein we compute a
symbolic determinant involving a Jacobian matrix. MATLAB struggles with this,
eventually spitting out a system over 25 MB in size. Worse, Bertini must then
parse this input file to create procedures for evaluating the function and its
Jacobian, which overwhelms the available computing resource.

The major obstacle to running large problems through the surface decomposer
is therefore the elimination of the determinant. Alternate methods that avoid
the determinant are the subject of further research.

Acknowledgments. All authors were partially supported by AFOSR grant
FA8650-13-1-7317. DJB was partially supported by NSF grant DMS-1025564.
DAB and JDH were additionally supported by DARPA YFA.

References

1. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I:
The basic algorithm. SIAM Journal on Computing 13(4), 865–877 (1984)

2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for
Numerical Algebraic Geometry, http://bertini.nd.edu

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving
Polynomial Systems with Bertini, vol. 25. SIAM (2013)

4. Besana, G.M., Di Rocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.:
Cell decomposition of almost smooth real algebraic surfaces. Numerical Algo-
rithms 63(4), 645–678 (2013)

5. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regeneration homotopies for
solving systems of polynomials. Mathematics of Computation 80(273), 345–377
(2011)

6. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Foundations of
Computational Mathematics 13(3), 371–403 (2013)

7. Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a
complex curve. Contemporary Mathematics 448, 183–205 (2007)

8. Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical decomposition of the
solution sets of polynomial systems into irreducible components. SIAM Journal on
Numerical Analysis 38(6), 2022–2046 (2001)

9. Tong, Y., Myszka, D.H., Murray, A.P.: Four-bar linkage synthesis for a combination
of motion and path-point generation. In: Proc. ASME IDETC/CIE 2013, Portland,
OR, August 4-7 (2013)

http://bertini.nd.edu


Hom4PS-3: A Parallel Numerical Solver

for Systems of Polynomial Equations Based on
Polyhedral Homotopy Continuation Methods

Tianran Chen1, Tsung-Lin Lee2, and Tien-Yien Li1

1 Michigan State University, USA
chentia1@msu.edu, li@math.msu.edu

http://www.math.msu.edu/~chentia1/

http://www.math.msu.edu/~li/
2 National Sun Yat-sen University, Taiwan ROC

leetsung@math.nsysu.edu.tw

http://www.math.nsysu.edu.tw/~leetsung/

Abstract. Homotopy continuation methods have been proved to be an
efficient and reliable class of numerical methods for solving systems of
polynomial equations which occur frequently in various fields of mathe-
matics, science, and engineering. Based on the successful software pack-
age Hom4PS-2.0 for solving such polynomial systems, Hom4PS-3 has
a new fully modular design which allows it to be easily extended. It
implements many different numerical homotopy methods including the
Polyhedral Homotopy continuation method. Furthermore, it is capable
of carrying out computation in parallel on a wide range of hardware ar-
chitectures including multi-core systems, computer clusters, distributed
environments, and GPUs with great efficiency and scalability. Designed
to be user-friendly, it includes interfaces to a variety of existing math-
ematical software and programming languages such as Python, Ruby,
Octave, Sage and Matlab.

Keywords: polynomial systems, homotopy continuation, polyhedral
homotopy, binomial system.

1 Introduction

The problem of solving systems of polynomial equations, or polynomial systems,
has been, and will continue to be, one of the most important subjects in both
pure and applied mathematics. The need to solve polynomial systems arises
naturally and frequently in various fields of science and engineering as docu-
mented in [1,13,18]. The homotopy continuation method has been established,
in recent years, as one of the most reliable and efficient class of numerical meth-
ods for finding the full set of isolated solutions to a general polynomial system.
There are many mature software implementing this method, including Bertini[3],
HOMPACK[20], NAG4M2[12], and etc. See [2,13,16,18] for a survey. One impor-
tant branch among them is the polyhedral homotopy method initiated in [9]. The
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method has been successfully implemented in software packages PHCpack [19]
developed by J. Verschelde at University of Illinois at Chicago Circle, PHoM
[8] developed by a group led by M. Kojima at Tokyo Institute of Technology
in Japan, and Hom4PS-2.0 [10] developed by a group led by the authors. The
efficiency and reliability in real world applications of Hom4PS-2.0 is documented
in [10,11,13]. Based Hom4PS-2.0, a new numerical solver for polynomial systems
Hom4PS-3[5] is created around the same core mathematical algorithms. Written
in the C++ programming language and taking advantage of the object-oriented
programming paradigm, Hom4PS-3 has a fully modular structure following mod-
ern design principles that allows it to be easily extended by individual “modules”.
Designed to be user-friendly from the ground up, it includes interfaces to a vari-
ety of existing mathematical software and programming languages such as Sage,
Python, Ruby, Octave, and Matlab.

In real world applications from science and engineering, there is no short-
age in the demand of solving larger and larger polynomial systems. Homotopy
continuation methods are particularly suited to handle these large polynomial
systems due to its pleasantly parallel nature: each isolated solution is computed
independently of the others. Hom4PS-3 is designed to take advantage of a variety
of parallel hardware architectures including multi-core systems, NUMA systems,
computer clusters, distributed environments, and GPUs. Using parallel compu-
tation techniques tailored for each architecture (a symmetric model using Intel
TBB and OpenMP on multi-core architectures, a hierarchical model for NUMA
architectures, a master-worker model using MPI on clusters, an asynchronous
message passing model for distributed environments, and a hybrid “single-thread-
multiple-data” model for GPUs), excellent efficiency and scalability have been
achieved on these systems.

2 Functionality

Given an input polynomial system, which can be represented in a number of
different formats, Hom4PS-3 solves the polynomial system and outputs a list
of complex solutions. This list includes all isolated nonsingular solutions of the
given system in Cn as well as isolated singular solutions together with their mul-
tiplicity information. Optionally, Hom4PS-3 can also produce “solutions at in-
finity” by carrying out computation in the complex projective space or weighted
projective spaces. For polynomial systems having solution components of posi-
tive dimensions, an included module posdim can be used to compute sample or
“witness” points on solution components of any given dimension. Furthermore,
the number of components and their degrees can be computed via the “witness”
points.

On a Unix/Linux or similar operating system, one can solve a polynomial
system with Hom4PS-3 simply by invoking the command

hom4ps-easy FILE

on a terminal, where FILE is the path of the file that contains the representation
of the input polynomial system. This command runs Hom4PS-3 in its “easy
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mode” in which a predetermined set of parameters for controlling the behavior
of the program that is likely appropriate for most situations is used.

The behavior of Hom4PS-3 can be controlled via a long list of switches and
parameters given either on the command line or as a configuration file. They
control the usage of certain modules, the precision to be used for floating point
arithmetic, the strategy for adjusting “step sizes” in the procedure of tracking
homotopy paths (Section 3), and many other aspects of the program. A complete
list can be found in its reference manual. Both the downloadable packages and
complete documentation can be found on the website http://www.hom4ps3.org.

2.1 Parallel Computation Capabilities

Multi-core Systems. A multi-core processor contains multiple processing
units, called “cores”, each capable of executing program instructions and carry-
ing out computation independently. On a multi-core system, Hom4PS-3 automat-
ically spreads work load across all available processor cores on the system via a
multi-thread model. The implementation supports both Intel TBB and OpenMP,
two of the most popular programming frameworks for multi-core systems.

Computer Cluster. A computer cluster is a group of computers, connected
via high speed network, that work together on a single task and can be viewed as
a single computer system. Using MPI, the de facto standard for communication
on clusters, Hom4PS-3 can distribute work load among nodes in the cluster.

GPU Computing. GPU computing is the use of graphics processing units,
or GPUs, which are originally designed for rendering graphics, to perform gen-
eral purpose computation in a highly parallel fashion. On platforms where one
or more GPU devices are available, Hom4PS-3 can take advantage of these
highly parallel hardware on specific tasks involving intensive floating point ma-
trix and vector manipulations such as polynomial and derivative evaluation and
“mixed volume” computation (Section 3). The current implementation is built
on top CUDA, a popular proprietary GPU programming framework developed
by NVidia. Experimental supports for OpenCL, the dominant open standard de-
veloped by multiple vendors, are under active development.

2.2 Interfaces with Existing Mathematical Software and
Programming Languages

Sage Interface. Sage is a free open-source mathematical software with features
covering many aspects of mathematics, including algebra, combinatorics, numer-
ical mathematics, number theory, and calculus. The Sage interface is one of the
easiest way to use Hom4PS-3. For example, one can use Hom4PS-3 to solve a
extremely simple polynomial system in Sage by using the following commands:

http://www.hom4ps3.org
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import hom4pspy

R.<x,y> = CC[’x,y’]

f = x^2 - 3*x + 2

g = y^2 - 4*y + 3

hom4pspy.solve_real ( [f,g] )

In this example, the first line imports the Hom4PS-3 interface. The next three
lines creates a polynomial ring in two variables over the complex (floating point)
field and two polynomials using the Sage syntax. The last line solves the polyno-
mial system for the real solutions via Hom4PS-3 and returns a list of dict each
describing a solution. Of course it is typically used to handle much more compli-
cated and larger systems than this simple example, and with the power of Sage
one can perform complicated algebraic construction to build the input system
for Hom4PS-3, bridging the world of symbolic and numerical computation.

Python Interface. Python is a popular programming language (and the solid
foundation on top of which Sage was built). The hom4pspy module used in the
Sage can also be used separately as a Python interface. The commands

import hom4pspy

hom4pspy.solve_real ( ["x^2 - 3*x + 2", "y^2 - 4*y + 3"] )

solves the same simple polynomial system, now represented as strings.

Octave Interface. (GNU) Octave is a software and programming language
designed for numerical computations that is mostly compatible with Matlab. In
Octave, with the Hom4PS-3 interface, the commands

hom4psoct

hom4psoct.solve_real ( "x^2 - 3*x + 2, y^2 - 4*y + 3" )

solves the same simple polynomial system, represented as a single string (due to
the lack of sophisticated symbolic manipulation capabilities in Octave).

3 Underlying Theory

In the 90’s, a considerable research effort in Europe had been directed to the
problem of solving polynomial systems in two consecutive major projects,
PoSSo (Polynomial System Solving) and FRISCO (FRamework for Integrated
Symbolic and numerical COmputation), supported by the European Commis-
sion. Those research projects focused on the development of the well-established
Gröbner basis methods within the framework of computer algebra. Their reliance
on symbolic manipulation makes those methods seem somewhat limited to rel-
atively small problems. In 1977, Garcia and Zangwill [7] and Drexler [6]
independently discovered that the homotopy continuation method could be used
to find the full set of isolated solutions to a polynomial system numerically. In
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the last several decades, the method has been quite well developed and proved
to be reliable and efficient. Note that continuation methods are the method of
choice to deal with general nonlinear systems of equations numerically and glob-
ally as illustrated by the extensive bibliography listed in [1] where general ideas
of the method were discussed.

One of the most important branches of the homotopy continuation method for
solving general polynomial systems is the polyhedral homotopy method initiated
by B. Huber and B. Sturmfels [9]. For an n× n square polynomial systems

P (x1, . . . , xn) = P (x) =

⎧⎪⎨⎪⎩
p1(x) =

∑
a∈S1

c1,a x
a

...
pn(x) =

∑
a∈Sn

cn,a x
a

(1)

where x = (x1, . . . , xn), a = (a1, . . . , an)
 ∈ Nn

0 , and xa = xa1
1 · · ·xan

n . Here Sj ,
a finite subset of Nn

0 , is called the support of pj(x). For fixed supports S1, . . . , Sn,
it is a basic fact in algebraic geometry that for generic choices of the complex
coefficients cj,a ∈ C∗ the number of isolated solutions of the system P (x) = 0
in (C∗)n is a fixed number. The word “generic” here can be understood as
“randomly chosen”. Its precise meaning can be found in [4], [9] and [13]. This
fixed number also serves as an upper bound on the number of isolated solutions
P (x) = 0 can have in (C∗)n among all choices of coefficients. In [4], this up-
per bound, now commonly known as the BKK bound, is formulated in terms of
mixed volume: For convex polytopes Q1, . . . ,Qk ⊂ Rk, let λ1Q1, . . . , λkQk rep-
resent their scaled version, by factors of positive λ1, . . . , λk respectively. Then
the Minkowski sum λ1Q1+ · · ·+λkQk is also a convex polytope. It can be shown
that the volume Volk(λ1Q1 + · · · + λkQk) in Rk is a homogeneous polynomial
in λ1, . . . , λk. The mixed volume, denoted by MVol(Q1, . . . ,Qk), is defined to be
the coefficient of λ1×λ2×· · ·×λk in this polynomial. The theory of BKK bound
[4] states that the number of isolated solutions of the system P (x) = 0 in (C∗)n

for generic choices of the coefficients is the mixed volume of the convex hull of
the supports of p1, . . . , pn, i.e.

MVol(convS1, . . . , convSn).

We shall restrict our focus on solving a polynomial system P (x) = 0 in (1)
with “generic” (nonzero) complex coefficients cj,a ∈ C∗. When the system with
generic coefficients is solved, one can always use it to solve the system with
specifically given coefficients with the same supports by the Cheater’s homotopy
[14] (or [17]).

To solve P (x) = 0 in (1), consider, with a new variable t, the homotopy

H(x1, . . . , xn, t) = H(x, t) =

⎧⎪⎨⎪⎩
h1(x, t) =

∑
a∈S1

c1,a x
atω1(a)

...
hn(x, t) =

∑
a∈Sn

cn,a x
atωn(a)

. (2)

with “lifting” functions ω1, . . . , ωn, where each ωk : Sk → Q has randomly
chosen images. Note that when t = 1, H(x, 1) = P (x). For a ∈ Sk, write
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â = (a, ωk(a)). In [9], it was shown that if the system P (x) = 0 has isolated
solutions in (C∗)n, then there exists α̂ = (α, 1) ∈ Rn+1 with α = (α1, . . . , αn)
and a corresponding collection of pairs {a1, a′1} ⊂ S1, . . . , {an, a′n} ⊂ Sn such
that for each k = 1, . . . , n

〈âk, α̂〉 = 〈â′k, α̂〉 < 〈â, α̂〉 for all a ∈ Sk \ {ak, a′k} (3)

and

κα :=
∣∣det [a1 − a′1 . . . an − a′n

]∣∣ > 0.

Here 〈 , 〉 stands for the standard inner product in Euclidean space. Let T be
the collection of all such α’s, then ∑

α∈T
κα

is independent of the choice of the lifting functions ω1, . . . , ωk. In fact, this
number agrees with the number of isolated solutions of the system P (x) = 0 in
(C∗)n, counting multiplicities, known as the BKK bound mentioned before.

Now, for a fixed α in T along with its corresponding set of pairs {a1, a′1} ⊂
S1,. . . , {an, a′n} ⊂ Sn, let βk = 〈âk, α̂〉 = 〈â′k, α̂〉 = 〈a′k, α〉 + ωk(a

′
k) for k =

1, . . . , n. Then by (3), for each k = 1, . . . , n,

βk < 〈â, α〉 for all a ∈ Sk \ {ak, a′k}. (4)

By the change of variables x = tα • y, i.e., for y = (y1, . . . , yn)⎧⎪⎨⎪⎩
x1 = tα1y1

...
xn = tαnyn,

(5)

we have, for a = (a1, . . . , an) ∈ Sk and â = (a, ωk(a))

xatωk(a) = xa1
1 . . . xan

n tωk(a)

= (tα1y1)
a1 . . . (tαnyn)

an tωk(a)

= ya1
1 . . . yan

n ta1α1+···+anαn+ωk(a)

= ya t〈(a,ωk(a)),(α,1)〉

= ya t〈â,α̂〉

with α̂ = (α, 1). Substituting the result into H(x, t) in (2), it follows that

H̄α(y, t) := H(tα • y, t) =

⎧⎪⎨⎪⎩
h̄α1 (y, t) := h1(t

α • y, t) =
∑

a∈S1
c1,a y

a t〈â,α̂〉

...

h̄αn(y, t) := hn(t
α • y, t) =

∑
a∈Sn

cn,a y
a t〈â,α̂〉

.
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Though the above expression may contain positive or negative powers of t, the
minimum exponents of t in each h̄αk is actually given by βk. Therefore, if

Hα(y, t) :=

⎧⎪⎨⎪⎩
t−β1 h̄1(y, t) =

∑
a∈S1

c1,a y
a t〈â,α̂〉−β1

...
t−βn h̄n(y, t) =

∑
a∈Sn

cn,a y
a t〈â,α̂〉−βn

, (6)

then, by (4), each component of Hα has exactly two terms having no powers of t
while all other terms have positive powers of t. Hence, when t = 0, Hα(y, 0) = 0
is the “binomial system of equations”⎧⎪⎨⎪⎩

c1,a1y
a1 + c1,a′

1
ya′

1 = 0
...

cn,any
an + cn,a′

n
ya′

n = 0

(7)

with κα nonsingular isolated solutions in (C∗)n. It is known that such binomial
systems can be solved accurately and efficiently via numerical methods [13].
After (7) is solved, these nonsingular solutions obtained can be used as the
starting points for following the homotopy paths y(t) of Hα(y, t) = 0, for which
Hα(y(t), t) = 0 from t = 0 to t = 1. Note that the change of variables x = tα •y
in (5) yields x ≡ y at t = 1. Therefore, each end point y(1) at t = 1 of the
homotopy path y(t) of Hα(y, t) = 0 is also an end point x(1) of the homotopy
path x(t) of the homotopy H(x, t) = 0 given in (2) which, in turn, provides
a solution of the target system P (x) = 0 in (1). Altogether it yields κα of the
isolated solutions of P (x) = 0 in (C∗)n along this route. In [9], it was shown
that as one follows the homotopy paths defined by Hα(y, t) = 0 for all individual
α ∈ T , one obtains all (isolated) solutions of P (x) = 0 in (C∗)n, justifying, in
fact, the BKK bound agrees with

∑
α∈T κα.

Even though the above procedure only addresses the solution set in (C∗)n

of the target system P (x) = 0 in (1), this method has been extended in [15]
so that all isolated zeros of the target system P (x) in Cn can be obtained.
Since its inception, this general method has achieved a great success. It is widely
considered to be one of the most efficient, robust and reliable numerical methods
for solving systems of polynomial equations. Hom4PS-3 implements this method
as its primary tool.
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Abstract. Cgal, the Computational Geometry Algorithms Library,
provides easy access to efficient and reliable geometric algorithms. Since
its first release in 1997, Cgal is reducing the the gap between theoretical
algorithms and data structure and implementations that can be used in
practical scenarios. Cgal’s philosophy dictates correct results for any
given input, even if intermediate round-off errors occur. This is achieved
by its design, which separates numerical constructions and predicates
from combinatorial algorithms and data structures. A naive implemen-
tation of the predicates and constructions still leads to wrong results,
but reliable versions are shipped with the library.

Cgal is successful in academic prototypical development and widely
spread among industrial users. It follows the design principles of C++’s
Standard Template Library. Cgal, now available in version 4.4, is
already quite comprehensive. Nevertheless, it is still growing and
improving.

We first introduce the library, its design and basics and then present
major packages, such as triangulations and arrangements. We also illus-
trate showcases of how Cgal is used for real world applications asking
for reliable geometric computing. The second part covers recent additions
and contributions to the project: We discuss periodic and hyperbolic tri-
angulations. The arrangement package has seen improvements for point
location, rational functions and multi-part curves. It has also been ex-
tended with support for algebraic curves. This relies on several new pack-
ages that enable operations on (multivariate) polynomials and topology
computation of such curves. Geometric objects in higher dimensions can
now be represented using combinatorial maps; the instance for linear
objects, namely the linear cell complex, is of particular interest. Cgal

also provides data structures and algorithms for geometric sorting in ar-
bitrary dimensions. Finally we present Cgal’s achievements to replace
serial implementations with versions that support up-to-date multi-core
architectures.
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curves, triangulations, high-dimensional geometry.
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1 Introduction

is an open source software library for reliable
and efficient geometric computing. It serves both
academic and industrial users that demand such

implementations from various domains such as computer graphics, scientific visu-
alization, motion planning, geographic information systems, modeling, computer
aided design, bioinformatics and many more.

The origin of Cgal dates back into the 90s, when several research groups
joint efforts to combine several geometry libraries into one. Eventually, trans-
forming the advanced theoretical results into robust software was set as goal and
recommended by the Computational Geometry Impact Task Force Report [6].

Cgal is distributed under the GPL license (with few basic parts under the
LGPL license). As such, it is immediately and freely available to academic users
and other open source projects. Industrial users that are in favor of closed source
development of their products can purchase commercial licenses from Geome-

tryFactory.1

Cgal is a C++ library whose design follows the generic programming paradigm
in the style of the well-known Standard Template Library (Stl) or Boost. This
way, it abstracts combinatorial layers from numerical and geometrical operations,
and allows users to instantiate Cgal’s algorithms and data structures with their
own geometric objects – as long as they model the well-documented concepts.
Of course, Cgal also ships default kernels that offer various geometric objects
and hundreds of reliable predicates and constructions on them – if instantiated
with robust software number types. Machine types will work, but are doomed
– by design – to result in crashes, infinite loops or wrong results for many ill-
conditioned inputs. Cgal, however, follows the Exact Geometric Computing
Paradigm: As long as all basic operations are computed correctly, the overall
result will be correct. The library comes with an extensive sets of examples
and demos.

Cgal uses state-of-the-art development tools: A Git repository for version
control, Cmake as build system, and Doxygen for the huge user and reference
manual. Each package undergoes a daily function and regression testing to ensure
the quality of the library and the support for various compilers on the three major
platforms: Windows, Linux, Mac OS X. The overall quality assurance is steered
by Cgal’s editorial board via reviews of new additions to the library. The board
is also responsible for technical decisions and the promotion of Cgal.

2 Packages

Besides the kernels that are central to the library, Cgal consists of many pack-
ages serving various goals and application areas. We are highlighting next the
library’s main packages and some that have recently been added or significantly
extended:

1 http://www.geometryfactory.com
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2.1 Triangulations

Cgal’s triangulations in 2D and 3D were among the first packages added to the
library [17,14]. The packages cover methods to build and handle various trian-
gulations for point sets in two and three dimensions. Each triangulation covers
the convex hull of the input points. Triangulations are build incrementally and
can be modified by insertion and deletion of (ranges of) vertices. Besides modi-
fications, point location queries can be performed. Beyond plain triangulations,
whose result depends on the insertion order, the packages provide Delaunay and
regular triangulations, the latter also for weighted points. Delaunay and regular
triangulations allow nearest neighbor queries and cover methods to build the
dual Voronoi and power diagrams. In 2D, certain edges can be forced to appear
in a triangulation, resulting in a constrained (Delaunay) triangulation.

The packages have constantly seen improvements, in particular the API has
been adapted and performance boosts have been implemented. Beyond, the suc-
cessful mesh generation packages of Cgal depend on its triangulations.

A major recent addition to Cgal have been periodic tri-
angulations in 2D and 3D [12,5], which allow to build and
handle triangulations of the points contained in the flat
torus, that is, within a periodic domain. Other than that,
these triangulations offer the same capabilities as their
non-periodic counterparts: point location, nearest neigh-
bor queries, dual Voronoi construction. Periodic triangula-
tions have applications in astronomy, material engineering,
crystallography, modeling of foams, structural biology and
many more. Work in progress extends periodic triangula-
tion to periodic meshes.

Cgal’s triangulations also get enhanced with respect
to the embedding space. Recent work [4] implements hy-
perbolic Delaunay complexes and Voronoi diagrams. This
software for 2D is expected to be part of one of Cgal’s
next releases.

Similarly, a near release will contain triangulations in
arbitrary dimensions. The new package will deal with pure manifold simplicial
complexes which are connected and have no boundaries. Again, the convex hull of
the points is part of the triangulation. As for the low-dimensional triangulations,
insertions and point location queries will be supported – and in the case of
d-dimensional Delaunay triangulations also deletions of vertices.

2.2 Arrangements

The arrangement package supports subdivisions of a two-dimensional space into
maximal cells induced by a set of curves. Cells can be of dimension 0 (vertices),
1 (edges) and 2 (faces). The arrangement can be constructed with the well-known
plane-sweep algorithm or in an incremental way using a zone-computation. The
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implementation uses generic programming techniques to separate combinato-
rial algorithms and the representation of the arrangement as Dcel (doubly-
connected-edge-list) on one side from geometric predicates and constructions on
the other side. For each task a certain set of such operations is required. Ex-
amples are decomposing a curve into x-monotone subpieces, lexicographic com-
parison of points, vertical alignment of x-monotone curves and the construction
of the intersection of x-monotone curves. The package also supports to overlay
two arrangements (while having the chance to combine data that is attached to
cells), to perform (batched) point location queries and to compute Boolean set
operations.

Many families of curves are shipped with Cgal; we list the non-linear ones
in Section 2.3. In order to support a new family, the user only needs to pro-
vide a traits class that models the required concept. All details about Cgal’s
arrangements can be found in [9].

Recently the arrangement packages has seen several feature additions: Orig-
inally, only bounded arrangements were allowed, that is, there always must
be a (large enough) rectangle that contains all input
curves. This restriction has been removed. Arrangements
of unbounded curves are supported, and all traits classes
of unbounded curves have been adapted. Support for
spherical arrangements is on the way, and we like to men-
tion geodesic arcs on a sphere. This class of arrangement
allows to compute power diagrams (using the Envelope 3

package) of point sites on a sphere.
The random incremental point location using a trapezoidal decomposition has

also been redesigned to support unbounded arrangements, and now features a
heuristic to reduce the number of rebuilds [11]. Finally, the poly-line meta-traits
has been redesigned to eventually support poly-curves.

2.3 Non-Linear Curves and the Algebraic Kernel

Slightly more than a decade ago it was considered an impossible challenge to
reliably and efficiently compute with non-linear objects. The first break-through
was to support arrangements of circular arcs [1] and conic segments [16] in
Cgal. The next step comprised rational functions (that have recently seen a
performance boost [15]) and Bézier curves [10].

The latest addition models the most general setting, as
it subsumes all the previous cases: Arrangements of alge-
braic curves of arbitrary degree [8]. This implementation
even outperforms the conic and Bézier implementation,
as it relies less on explicit representation of low-degree al-
gebraic numbers. Algebraic curves heavily rely on Cgal’s
newer packages for arithmetic and multivariate polynomials. Uni- and bivariate
algebraic kernels form a middle layer that can be used independently to solve
and work with uni- and bivariate polynomial systems [2,3].
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2.4 Combinatorial Maps

Cgal now also offers data structures to represent objects
in higher dimensions. Combinatorial Maps are an edge-
centered structure to store orientable subdivided objects
in d-dimensional space. It describes all cells of the sub-
division and all the incidence and adjacency information
between them. In 3D it consists of vertices, edges, faces,
and volumes. To each cell, information can be added in
terms of attributes. The package provides basic creation
and modification operations, as well as iterators allowing to trace through some
specific part of the object.

A particular instance of a combinatorial map is the linear cell complex that
allows to represent an orientable subdivided d-dimensional object having linear
geometry: Each vertex refers to a point, an edge stores a segment, the geometry
of a 2-cell is obtained from the segments associated with the edges describing the
boundary of the 2-cell and so on. A 2D combinatorial map that uses 3D points
results in a linear cell complex that is equivalent to a polyhedron in 3D. That is,
the dimension of the combinatorial map is not required to match the dimension
of the ambient space.

2.5 Spatial Sorting

Many geometric algorithms are of incremental nature and
thus, their performance can depend on the order the in-
put is given in. The spatial sorting package [7] allows to
pre-sort the input along a space-filling curve such that
geometrically close objects are sorted close to each other.
This should improve overall performance by having less
cache misses and better memory locality. While the first
implementation only allowed sorting in 2D and 3D, Cgal

now supports spatial sorting in arbitrary dimensions and Hilbert sorting admits
two policies: splitting at the median or splitting at the middle.

2.6 Supporting Multi-core Architectures

Modern hardware architectures feature multiple cores and shared RAM. Ex-
ploiting these resources is a desired goal for most software projects. Supporting
multi-threaded software is a non-trivial task, in particular for geometric algo-
rithms where often parallel access to underlying data destroys the combinatorial
invariants. However, Cgal has recently evaluated guidelines to encourage con-
current implementations, and recommends to rely on Intel’s Threading Building
Blocks (Tbb).2 This library supports concurrency that follows the generic pro-
gramming paradigm and thus is perfectly suited for use within Cgal.

2 https://www.threadingbuildingblocks.org
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The upcoming release 4.5 of Cgal will feature first concurrency-enabled pack-
ages: the ability to create and delete vertices and cells in parallel to the trian-
gulation data structure [13] has been added. The user can control the number
of threads. In case Tbb is not available, Cgal automatically falls back to a
sequential implementation. The experiments have shown that the insertion and
deletion of vertices scales linearly with the number of cores available: For eight
cores, the user can expect a factor 6 speedup.

3 Applications

Cgal is widely used in academic and industrial projects. An (incomplete) list
of industrial users is available online3 which comprises companies from various
areas such as geomodeling, geographical information systems, computer aided
design, image processing, telecommunication, and many more. GeometryFac-

tory also lists details to projects run by professional users.4 About 100 projects
form various research institutes are listed on Cgal’s web-site5 – they range
from architecture, astronomy via shape matching and medical imaging to sensor
networks and particle physics. Cgal’s triangulation package has also been inte-
grated in Matlab. C++-bindings into other programming language, such as Java
and Python, exist and are constantly extended.

Acknowledgments. Figures taken from Cgal’s manual available online:
http://doc.cgal.org
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Abstract. In this work we present a CGAL (Computational Geometry
Algorithm Library) implementation of the line segment Voronoi diagram
under the L∞ metric, building on top of the existing line segment Voronoi
diagram under the Euclidean (L2) metric in CGAL. CGAL is an open-
source collection of geometric algorithms implemented in C++, used in
both academia and industry. We also discuss an application of the L∞
segment Voronoi diagram in the area of VLSI pattern analysis. In par-
ticular, we identify potentially critical locations in VLSI design patterns,
where a pattern, when printed, may differ substantially from the original
intended VLSI design, improving on existing methods.

1 Introduction

Let S be a set of n sites in the plane (simple geometric shapes, such as points,
line segments, or circular arcs). The (nearest-neighbor) Voronoi diagram [3] of
S is a subdivision of the plane into regions such that the region of a site s ∈ S
is the locus of points closer to s than to any other site in S. The distance of a
site s from a point q in the plane is defined as d(s, q) = minp∈s d(p, q), where
the the interpoint distance d(p, q) can be the Euclidean (L2) distance or any
other metric. In this paper, we focus on the Voronoi diagram of line segments
in the plane, under the L∞ metric (or maximum norm): d(p, q) = d∞(p, q) =
max(|px − qx|, |py − qy|). Fig. 1a shows in red the Voronoi diagram of the same
set of segments under the L2 and the L∞ metric (interiors of segments and their
endpoints are considered different sites).

The Voronoi diagram of segments under the L∞ metric has some nice proper-
ties, compared to the corresponding L2 diagram: (1) The L∞ diagram consists
solely of straight line segments [9], whereas the L2 diagram contains also parabolic
arcs. (2) If the coordinates of the endpoints of the input segments (sites) are ra-
tional, then the L∞ Voronoi vertices are also on rational coordinates. (3) The
degree of an algorithm [7] is a complexity measure capturing its potential for

� Supported in part by the Swiss National Science Foundation grant 134355, under
the auspices of the ESF EUROCORES program EuroGIGA/VORONOI.
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(a)

Voronoi
diagram

Delaunay
graph

s∞

L2 L∞
(b)

Fig. 1. (a) Segment Voronoi diagram under L2 and L∞ metric, with distinct sites
for interiors of segments and their endpoints, (b) L∞ Voronoi diagram and Delaunay
graph of five point sites (black) with additional site s∞ at infinity (infinite edges:
dashed; Voronoi vertices: red, finite ones filled and infinite ones unfilled)

robust implementation. An algorithm has degree d if its test computations in-
volve the evaluation of multivariate polynomials of arithmetic degree at most d.
The degree captures the precision to which arithmetic calculations need to be
executed in the exact computation paradigm [11], for a robust implementation
of the algorithm. A crucial predicate for a Voronoi algorithm is the in-circle
test, which checks whether a new input segment is altering or erasing an exist-
ing vertex of the diagram. The L2 in-circle test for arbitrary segments can be
implemented with degree 40 [4], whereas the corresponding L∞ test only with
degree 5 [9]. (4) The Voronoi diagram in L∞ coincides with straight skeleton [2]
when the input consists of axis-parallel segments, which is predominant in VLSI
designs.

Segment Voronoi diagrams encode proximity information between polygonal
objects. In many applications proximity is most naturally expressed with the
L2 distance, but there are applications, particularly in VLSI CAD, for which
the L∞ distance is a good and simpler alternative, see, e.g., [9,8] and references
therein. Thus, a robust implementation of the L∞ segment Voronoi diagram
is desirable, but, as far as we know, there is none freely available (except the
proprietary [10]). Instead of building such software from scratch, we decided to
develop it in the CGAL framework, on top of the existing L2 segment Voronoi
diagram of CGAL [6]. CGAL is an open-source collection of a wide range of
geometric algorithms implemented in C++. CGAL is built in a modular way
and there is provision for code reuse. We exploit this provision by using a sig-
nificant part of the L2 segment Voronoi diagram incremental construction code
in CGAL [6].

We also use our code for the L∞ diagram for an application in VLSI pattern
analysis. With the increase in miniaturization of current VLSI patterns, there is
a significant rise in the pattern printability problems. We discuss the potential
of using the L∞ segment Voronoi diagram to identify critical locations in a VLSI
pattern.
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Triangulation 2< . . .>

Segment Delaunay graph 2<GT, . . . > SDGL2

Segment Delaunay graph hierarchy 2<GT, . . . > SDH

Fig. 2. Previous algorithm classes

SDGL2<GT, . . . >

SDGLinf<GT, . . . > SDH<GT, . . . , SDGLx=SDGL2>

SDGLx<GT, . . . >

SDHLinf<GT, . . . > = SDH<GT, . . . , SDGLinf>

Fig. 3. New algorithm classes

2 The L∞ Segment Voronoi Diagram in CGAL

The 2D segment Delaunay graph package of CGAL provides a randomized incre-
mental construction of the L2 segment Delaunay graph [6] and its dual graph,
the segment Voronoi diagram. It is typical to always include an additional site
s∞ at infinity, as it simplifies the construction algorithms (see Fig. 1b). The SDG
L2 package contains two algorithm template classes (see Fig. 2) to construct the
SDG: (1) The segment Delaunay graph class Segment Delaunay graph 2 (ab-
breviation: SDGL2), which is derived from a CGAL triangulation class. Among
other things, it contains the functionality to maintain and update the arrange-
ment of the input sites. It also contains functions to construct duals of edges of
the SDG, i.e., edges of the Voronoi diagram. (2) The segment Delaunay (graph)
hierarchy class Segment Delaunay graph hierarchy 2 (abbreviation: SDH) is de-
rived from the SDG class. It builds a hierarchy of SDGs and uses it to achieve
faster insertion of a new site in the segment Delaunay graph. This is an imple-
mentation with better worst-case complexity than the SDG class (for details, see
[5,6]). Both template classes have a mandatory template argument (denoted by
GT in Fig. 2), that must be instantiated with one of four geometric traits classes
with geometric predicates related to the L2 diagram (like the in-circle test).

We implement the segment Delaunay graph under the L∞ metric (SDG L∞)
in CGAL, trying to reuse as much code as possible from the SDG L2 package
of CGAL. Ideally, we would like the situation to be as follows: We only write a
geometric traits class containing the L∞-related predicates (and constructions)
and supply it as the GT template argument of the SDG algorithm template
classes of Fig. 2. In any case, the most significant part of the algorithm, like the
maintenance of the arrangement of input sites and the high-level incremental
construction of the Delaunay graph is the same under both the L2 and the L∞
metric. Unfortunately, since the SDG L2 algorithm classes were not designed
with provision for other metrics except L2, there is some L2-specific code in
them, the most significant being the code for drawing dual edges for the Voronoi
diagram. Fortunately, these hard-coded L2-specific functions in the algorithms
are few; most of the functionality is indeed in the L2 geometric traits class.

We make the following design decisions related to the SDG L2 implementa-
tion: (1) Keep the same interface for users of the SDG L2 package. (2) Change
SDG L2 code as little as possible. (3) Preserve the efficiency of the SDG L2

algorithms. Therefore, we implement a few local changes in the L2 code (mostly
in the SDGL2 class) that allow us to implement Segment Delaunay graph Linf 2
(abbreviation: SDGLinf) as a class derived from SDGL2 (see Fig. 3).
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Fig. 4. L∞ bisector and its dimensionalization: (a) between two points with the same
y coordinate and (b) between a vertical segment and one of its endpoints

Since the existing hierarchy class SDH is hard-coded to use only instances of
SDGL2 at its levels, we alter SDH so that it has an additional optional template
parameter SDGLx (with default value SDGL2), which is the segment Delaunay
graph class that is used in every level of the hierarchy (and from which SDH is
derived). In Fig. 3, the altered classes SDGL2 and SDH are shown with gray, to-
gether with the new class SDGLinf. Since SDGLx is an optional parameter with
default value SDGL2, there is no change for old user code of the L2 segment De-
launay hierarchy. By setting SDGLx to SDGLinf in the SDH template, we obtain
the segment Delaunay hierarchy under the L∞ metric, for which we also create
an alias template class Segment Delaunay graph hierarchy Linf 2 (abbreviation:
SDHLinf) for easy access to the user (see Fig. 3).

A user of the SDG L∞ package must instantiate the above two algorithm
classes with one of the four L∞ geometric traits classes, which are analogous to
the corresponding L2 geometric traits classes. Apart from the classes, we also
provide a GUI demo, examples, and an ipelet for the L∞ segment Voronoi dia-
gram. Our package is currently under review for inclusion in the CGAL library.

One important difference in the L∞ setting (in comparison to the L2 setting)
is that in some special non-general position cases the L∞ bisector between two
sites can be 2-dimensional. We resort to a 1-dimensionalization of these bisectors,
by assigning portions of 2-dimensional regions of a bisector to the two sites of the
bisector. This way it is also easier to draw the Voronoi diagram. We remark that
this simplification of the diagram is acceptable in the VLSI applications, where
the L∞ diagram is employed [9]. We show examples of 2-dimensional bisectors
and their 1-dimensionalization in Fig. 4.

The L∞ parabola is the geometric locus of points equidistant under the L∞
distance from a line � (the directrix) and a (focus) point p /∈ �. In contrast with
the standard L2 parabola, the L∞ parabola consists of a constant number of
linear segments and rays [9]. Only bounded parabolic arcs appear as edges of the
L2 segment Voronoi diagram and never a complete parabola. On the other hand,
unbounded L∞ parabolic arcs can survive in the corresponding L∞ diagram (see
Fig. 5). The existing SDGL2 code is not ready to support the peculiarities of
the L∞ parabolas. For example, the Voronoi region of any segment is expected
to have 0, 1, or 2 infinite edges (these are edges with the infinite site s∞).
While this is true in the L2 setting, it is not true in the L∞ setting, where the
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L2 L∞

Fig. 5. Only bounded parabolic arcs survive in the
L2 diagram, whereas even complete L∞ parabolas
can survive in the L∞ diagram. Arrows point to
distinct infinite edges of the diagrams.

s1
q

p
s2

Fig. 6. The bisector through q
touches the parabolic arc at the
parabolic arc’s portion which is
parallel to this bisector

aforementioned number of infinite edges is unbounded in general. For example,
in the L∞ diagram of Fig. 5, there are six distinct infinite edges neighboring
with the region of the open segment.

Several problems may occur when a new point site q is inserted in the interior
of an existing segment s. This operation is needed when, for example, a newly
inserted segment crosses an existing segment. The algorithm checks the neighbors
of s in the segment Delaunay graph, splits the site of s to two sites s1 and s2
and adds the site q to the diagram. In the L∞ setting this has to be done more
carefully than in the L2 setting. For example, when the site q shares a coordinate
with a point p for which there is an L∞ parabolic arc in the diagram, we have to
be careful, because the bisector that passes through q might touch a portion of
the L∞ parabolic arc that is parallel to this bisector (see Fig. 6). Our solution is
to derive SDGLinf from SDGL2 and override some SDGL2 member functions in
SDGLinf, in particular the ones that insert a point in the interior of a segment.

In the old L2 code, when there are two points in the diagram and a third one is
inserted, the resulting Delaunay graph construction is based on the orientation
test for three points p, q, r (i.e., whether the three points make a left, a right
turn, or they are collinear), which is very specific to the L2 case. To make the
code work for both L2 and L∞, we substitute the orientation test with a call to
an in-circle predicate from the corresponding L2 or L∞ geometric traits class.

Like in L2, the L∞ traits contain predicates resolving whether a new site con-
flicts with an existing Voronoi vertex (vertex conflict) or an existing edge (edge
conflict). There are also special conflict-like predicates used when a new point
site is inserted in the interior of a segment. The vertex conflict predicates are
also known as in-circle tests. The in-circle test in L2 is analog to an “in-square”
test in L∞. A new site is tested for containment in the minimum shape (circle or
axis-parallel square) that touches the sites associated with an existing Voronoi
vertex. In L2, the circle that touches three non-collinear points is unique and
its center corresponds to the Voronoi vertex. In L∞, however, the analog axis-
parallel square might not be unique (see Fig. 7). Again our 1-dimensionalization
comes to the rescue, since we can define the Voronoi vertex to be the intersection
of L∞ bisectors of these three points and then the square becomes unique.
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Fig. 8. Different gauge types

3 Application in VLSI Pattern Analysis

As VLSI patterns keep on shrinking in size, their error-free printing is increas-
ingly challenging the chip manufacturing industry. There are two kind of faults
that occur during printing: (1) a pinch, which corresponds to an open fault
and occurs due to incomplete printing or due to discontinuity in the printing
of a shape; (2) a bridge, which corresponds to a short fault and occurs when
two printed shapes are touching each other. The identification of fault prone
patterns, also known as patterns of interest (POI), in a complete layout is a dif-
ficult and very time-consuming task. The actual location of faults within a POI is
known as a hotspot. The measurement location in each pattern is called a gauge,
which is generally represented by a line. Current gauge suggestion techniques are
rule-based or they are done manually by VLSI designers. The suggested gauges
very often miss the location of critical distance or hotspots on the clip.

We propose to use the L∞ segment Voronoi diagram to suggest good gauge
locations based on the proximity information of the shapes of a pattern. We
suggest four types of gauges (see Fig. 8): (1) Internal gauge Gi (inside a shape):
It lies on the center of the Voronoi edge inside the polygonal shape of minimum
width in the pattern. The position of Gi is the most probable for a pinch. (2)
External gauge Ge (between different neighboring shapes): It lies on the center
of the Voronoi edge between the two shapes that are closest in the pattern.
The position of Ge is the most probable for the formation of a bridge between
the two corresponding shapes. (3) Sandwich gauge, Gs: It lies on the center
of the Voronoi edge inside a polygonal shape P1 that is “sandwiched” between
two other shapes P2 and P3 for which the distance between P2 and P3 is the
minimum in the pattern. There is a probability of a pinch happening at P1

around Gs because of the influence of P2 and P3. (4) Comb gauge, Gc: It lies
on the center of the Voronoi edge inside a long polygonal shape P1 (the base of
the comb) that has close to it and on one side other polygonal shapes (the teeth
of the comb). We report the gauge for the configuration where the base of the
comb shape is closer to the teeth in the pattern. The position of Gc is dangerous
for a pinch, when printing the pattern.

We have performed experiments on patterns provided by IBM Zurich Re-
search Laboratory, in order to assess the quality of our gauges. These patterns
were hand-picked by engineers at IBM and for most of them the previous gauge
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Fig. 9. Pattern E: our gauge: Gs (◦, green) coincides with Gi (�, blue)

Fig. 10. Pattern H: our gauge: Gc (, purple) detects a pinch, improves on old gauge

suggestion missed the critical location in each pattern. Each pattern is a repre-
sentative of a wide set of patterns with similar behavior. We run experiments
on ten such patterns: A, B, C, D, E, F, G, H, I, J. Due to lack of space,
we only show patterns E (Fig. 9) and H (Fig 10) as follows: (a) in the left,
the pattern and the old gauge suggestion; (b) in the center, the SEM image
around the old suggested gauge and the location of the critical distance mea-
surement with a cyan arrow; (c) in the right, the pattern together with the
gauge suggestions provided by our tool based on the L∞ segment Voronoi di-
agram. Figures with explanation for all patterns and detailed analysis can be
found in http://compgeom.inf.usi.ch/papers/linfcgal.pdf. For each pat-
tern we measure the distance in pixels in the corresponding SEM image for each
of our suggested gauges and we take the minimum. We show the comparison with
the old measurements in Table 1. Our experiment shows that the L∞ segment
Voronoi diagram can be used effectively to identify potentially critical locations
of VLSI layouts.

Future work. A model-based OPC (MB-OPC) simulator [1] is essential for ad-
vanced lithography processes. Optimization for MB-OPC requires selection of
optimal test patterns that would cover the whole layout. We intend to use the
L∞ segment Voronoi diagram for obtaining a good set of patterns for a VLSI
layout that would in turn enhance MB-OPC. We would also like to analyze big-
ger layout clips on the order of tens of thousands of shapes. The main advantage
of our proposed methodology is that it provides gauges that are pattern depen-
dent, include context information, and at the same time are orders of magnitude
faster to compute.

http://compgeom.inf.usi.ch/papers/linfcgal.pdf
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Table 1. Comparison of CD measurement at different gauge locations

Pattern old measurement type of our gauge our measurement improvement

A 17 internal 17 (same) 0%
B 58 external 10 83%
C 52 internal 18 65%
D 31 external 21 32%
E 16 sandwich 16 (same) 0%
F 27 external 18 33%
G 86 external 13 85%
H 35 comb (pinch) 0 100%
I 47 external 10 79%
J 28 external 8 71%

Acknowledgment. We thank Menelaos Karavelas for providing us insight into
the L2 segment Voronoi diagram implementation in CGAL.
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Abstract. Libraries are available for the power diagram and the ordi-
nary Voronoi diagram of points upon which application programs can be
easily built. However, its counterpart for the Voronoi diagram of spheres
does not exist despite of enormous applications, particularly those in
molecular worlds. In this paper, we present the BULL! library which
abbreviates “Beta Universe Library Liberandam!” for computing the
Voronoi diagram of spheres, transforming it to the quasi-triangulation,
and extracting the beta-complex. Being an engine library implemented
in the standard C++, application programmers can simply call API-
functions of BULL! to build application programs correctly, efficiently,
and easily. The BULL! engine is designed so that the application pro-
grams developed by embedding API-functions are completely indepen-
dent of the future modifications of the engine.

Keywords: application program interface, engine, molecular structure,
computational geometry, geometric modeling, C++.

1 Introduction

Molecular structure determines molecular function. While the meaning of “struc-
ture” varies in molecular worlds, “geometry” is always central to molecular struc-
ture and there exist rich prior studies on the geometry of molecules. However,
the studies were mostly conducted in ad hoc manner depending on discipline or
even depending on a particular aspect of a problem at hand; There have been no
unified framework of theory to deal with the geometry of molecular structure.

Authors’ group at the Voronoi DiagramResearch Center (VDRC) [1], Hanyang
University, has been developing the Molecular Geometry (MG) theory dur-
ing the past decade based on the Voronoi diagram, in particular the Voronoi
diagram of spheres, and its derivative structures [6,11,4,8,7,10]. Suppose that P
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is a molecular structure problem of interest at hand. Let S(P) be its solution to be
found. In the MG paradigm, the problem P is first transformed to a correspond-
ing geometry problem G of three-dimensional spheres whose solution S(G) can
be easily found via a geometry engine. Then, S(G) is inverse-transformed to get
S−1(G) which is expected to be close to S(P). Assuming a geometric engine for
transforming G to S(G), S−1(G) can converge to S(P) with a sufficient number
of iterations if the forward- and backward-transformations are well-defined.

P S(P)

G S(G)

Fig. 1. The Molecular Geometry paradigm for solving all geometry problems in
molecular worlds

BULL! is the engine for the MG paradigm based on the Voronoi diagram
of spherical atoms and its two derivative structures: the quasi-triangulation and
the beta-complex. This paper is the initial proposal of the BULL! library which
abbreviates “Beta Universe Library Liberandam!” meaning that the library lib-
erates researchers who are working on molecular structure from the hard and
tedious job of developing accurate and efficient geometric algorithms and their
implementation. The BULL! library is implemented in the standard C++ lan-
guage and will be freely available from VDRC (http://voronoi.hanyang.ac.kr).

2 Three Fundamental Constructs in BULL!

There are three fundamental computational constructs in the MG theory: the
primal, the dual, and the interested subset of the dual which correspond to
the Voronoi diagram, the quasi-triangulation, and the beta-complex in BULL!,
respectively. Any, perhaps all, geometry problems in molecular worlds can be
correctly, efficiently, and easily solved using either one of these constructs or
their combinations.

Among various types of Voronoi diagram, the Voronoi diagram of spheres is
the key construct. The Voronoi diagram of spheres is the generalization of the
power diagram [2] which is a generalization of the ordinary Voronoi diagram
of points from the Euclidean distance point of view [3,13]. By the same token,
in the dual space, the quasi-triangulation [9,7] is the generalization of the reg-
ular triangulation and the Delaunay triangulation and the beta-complex [8] is
the generalization of the (weighted) alpha-complex [5]. Note that the Voronoi
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diagram of spheres is also called the additively-weighted Voronoi diagram. The
quasi-, regular, and the Delaunay triangulations are the dual of the Voronoi
diagram of spheres, the power diagram, and the ordinary Voronoi diagram of
points, respectively.

The Voronoi diagram VD of three-dimensional spheres can be computed by
the edge-tracing algorithm taking O(n3) time in the worst case but O(n) time
on average for molecules [6]. The quasi-triangulation QT is obtained by trans-
forming VD in O(n) time in the worst case. Then, the beta-complex is extracted
from QT using a binary search in O(n log n+k) time in the worst case where k is
the number of simplexes in the resulting beta-complex. More powerful approach
to general queries on the quasi-triangulation is available [10]. Fig. 2 summa-
rizes the process from the Voronoi diagram to the quasi-triangulation to the
beta-complex, given an input of the arrangement of atoms.

Atom
arrangement

Voronoi
Diagram

Quasi-
triangulation

Beta-
complex

Fig. 2. An atom arrangement is given as an input. The Voronoi diagram is first com-
puted and is transformed to the quasi-triangulation which is then used to extract the
beta-complex.

Fig. 3 shows an example of this process in the plane. Fig. 3(a), (b), and
(c) show the Voronoi diagram of circular disks, the quasi-triangulation, and the
beta-complexes corresponding to the probe of a certain radius. The beta-complex
defines the neighborhood information between atom pairs within the boundary
of the disk set defined by the probe whereas the quasi-triangulation defines that
for all disks. The figures are all created using the BetaConcept program [12]
freely available at VDRC.

3 Data Structures in BULL!

Data structure is one of the key issues in BULL!. Radial-edge data structure
(REDS) stores the topology of the Voronoi diagram because Voronoi diagrams
have a cell structure. Fig. 4 shows the schematic diagram of the REDS used
in BULL!. In the following, “V-” denotes “Voronoi.” Each V-cell of the Voronoi
diagram has a direct pointer to each of its V-faces and thus has |f |V-face pointers
where |f | is the number of V-faces of the V-cell. Each V-face has two pointers
to the incident V-cells. Each V-face has a pointer to each one of its bounding
loops and each loop points to the V-face that it lies on. A V-face has one or more
loops where the first one is external and the others are for interior holes. Thus
a V-face has |l| V-loop pointers. Each loop has a pointer to the V-face that it
belongs to. Each loop points to one of the partial edges that belongs to the loop
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(a) (b) (c)

Fig. 3. (a) The Voronoi diagram of disks, (b) the quasi-triangulation, and (c) the beta-
complexes corresponding to a circular probe. Figures created using the BetaConcept

program [12].

and each partial edge points to the loop that it belongs to. Each partial edge has
two more types of pointers for the two types of cycles on a V-face: one for the
radial cycle which consists of a single pointer; the other for the loop cycle which
consists of two pointers for its predecessor and successor. Each V-edge has two
pointers to its V-vertices and each V-vertex has four pointers where each points
to a V-edge incident to it.

V-cell, V-face, V-edge, and V-vertex may be associated with corresponding
geometry. Each V-cell has the coordinates and radius of the spherical atom
generator corresponding to itself and each V-vertex has its coordinate data.
Each V-face and V-edge may or may not have its surface and curve equation,
respectively, depending on application. If the geometry part of V-face and V-
edge is not explicitly stored, they can be easily computed if the topology of the
Voronoi diagram is available.

VCell

VFace

VEdge

VVertex

Surface

Curve

Point

Generator

VLoop

VPartialEdge
radial cycle

loop cycle

1

2

42

2| f |

1

1
1 1

1

| l |

Fig. 4. Radial edge data structure (REDS) for Voronoi diagram of spherical atoms
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The quasi-triangulation QT is stored in the Inter-world data structure [9]
(IWDS) which is schematically shown in Fig. 5(a). Each QT-cell has four point-
ers to each of its QT-faces and each QT-face has two pointers to the incident
QT-cells. Each QT-cell has also four pointers to each of its QT-vertices and each
QT-vertex has a pointer to the incident QT-cells. Each QT-face has three point-
ers to each one of its QT-edges and each QT-edge has |w| pointers to the incident
QT-faces. Each QT-edge has two pointers to its QT-vertices and each QT-vertex
has a pointer to one of the incident QT-edges. If there are a fixed number m of
incident QT-simplexes to a QT-simplex σ, σ has m pointers. Otherwise (i.e., if
there are an arbitrary number of QT-simplexes incident to a QT-simplex σ), σ
has only one pointer to one of the incident QT-simplexes from which all the other
QT-simplexes can be traversed. The number |w| is to connect small-worlds. The
explicit representation of QT-faces and QT-edges are necessary for the extraction
of beta-complexes from the quasi-triangulation. Otherwise, if it is not necessary
to store QT-faces and QT-edges explicitly, then a more compact data structure
can be devised as shown in Fig. 5(b) which is now we call a compact IWDS,
abbreviated cIWDS. Note that these two data structures were called differently
in our earlier papers.

It is important for us to state the following: BULL! uses REDS to store all
the three types of Voronoi diagrams in 3D: The Voronoi diagram of spheres, the
power diagram, and the ordinary Voronoi diagram of points. This is possible be-
cause REDS can store the most general one: the Voronoi diagram of spheres. By
the same token, BULL! uses IWDS to store all the three types of triangulations
in a compact form: the quasi-, the regular, and Delaunay triangulations. Note
that this observation is critically used in the design of the classes in BULL!.

QTFace

QTCell

QTEdge

QTVertex

2 1

4 2

3 |w| 4 1

(a)

QTGate

QTCell

QTVertex

4 1

4
|w|

2

(b)

Fig. 5. Data structure for the quasi-triangulation. (a) Inter-world data structure
(IWDS) and (b) compact inter-world data structure (cIWDS).
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4 Architecture of BULL! and an Example Application
Program

The architecture of BULL! is designed so that programmers can create appli-
cation programs easily and conveniently through out entire software life cycle.
To achieve this goal, we have designed BULL! so that application program is
completely separated from the internal functions which may be modified as the
development of BULL! goes on.

BULL! has a three-tier architecture as shown in Fig. 6: API-tier, Core-
tier, and Geometry-tier. The API-tier is only visible to and the other two are
completely hidden from application programmers. Thus, application program
interacts only with the API-tier by including the related head files and embed-
ding the API-functions. The API-tier interacts with Core-tier which implements
the application neutral data structure of the primal and dual structures. The
Core-tier interacts with the Geometry-tier which actually contains the Voronoi
diagram construction codes, possibly implementing more than one algorithms
for the Voronoi diagram construction. Currently, the Geometry-tier contains the
implementations of the edge-tracing algorithm and the region-expansion algo-
rithm for three-dimensional spheres. In this architecture, the modifications to be
made in the Geometry-tier in future does not cause any change in the codes of
already-existing application programs.

In principle, the API-tier currently contains three main classes:
AtomSetVoronoiDiagram, QuasiTriangulation, and BetaComplex. Each
contains API-functions that can be embedded in application programs to
perform various computations. There are their respective counterparts in
the Core-tier: BallSetVoronoiDiagramCore, QuasiTriangulationCore,
and BetaComplexCore. Both the transformation between the Voronoi
diagram and the quasi-triangulation and the extraction of the beta-
complexes from the quasi-triangulation are in fact all performed in the
Core-tier. Each of the API-tier classes communicates its counterpart in
the Core-tier. In the Geometry-tier, there are currently two classes for the
Voronoi diagram of spheres: SphereSetVoronoiDiagramByEdgeTracing and
SphereSetVoronoiDiagramByRegionExpansion where both communicate with
BallSetVoronoiDiagramCore. Note that we try to exclusively use the words
“atom,” “ball,” and “sphere” for API-, Core-, and Geometry-tier, respectively.

Fig. 7 illustrates an example of simple application program which calls a few
API-functions of BULL!. Assume that necessary header files are included. Given

API-
tier

Core-
tier

Geometry-
tier

Fig. 6. 3-tier architecture of BULL!
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a set of 100 input disks (ie, atoms) generated by the line 2, the simple API-
functions in the lines 3 and 4 creates the Voronoi diagram atomVD and stores
in atomlist. The lines 5 and 6 retrieves all the Voronoi cells in the Voronoi
diagram. The lines 7 through 11 counts the number of adjacent Voronoi cells
of each Voronoi cell in the Voronoi diagram and accumulates these numbers for
all Voronoi cells in the Voronoi diagram. Then, the lines 12 and 13 prints out
the average number of adjacent Voronoi cells in the entire Voronoi diagram. The
lines 14 through 17 perform similar operation for the quasi-triangulation which
is transformed from the Voronoi diagram in the line 15. The lines 18 through
22 perform similar operation for the beta-complex which is extracted from the
quasi-triangulation by the line 20. As this code shows, the creation of such an
application program is very straightforward once a user understands the basics
of the theory and learns a few API-functions which are necessary to build an
application program. Application programs performing more complicated tasks
can be similarly created by using API-functions of BULL!.

1 int main()
{

2 list<Sphere3d> atomlist = generateRandomAtoms(100);

3 AtomSetVoronoiDiagram atomVD;
4 atomVD.compute( atomlist );

5 list<VCellHandle> all cells;
6 atomVD.getAllVCells( all cells );

7 int countAdjacentCells = 0;
8 list<VCellHandle>::iterator i cell;
9 for (i cell=all cells.begin(); i cell!=all cells.end(); i cell++ ) {
10 countAdjacentCells += atomVD.countNumberOfAdjacentCells( *i cell );
11 }
12 cout << "The average number of adjacent cells is ";
13 cout << (double)countAdjacentCells/atomVD.countNumberOfCells() << endl;

14 QuasiTriangulation QT;
15 QT.transform( atomVD );
16 cout << "The number of 2-adjacency anomaly is ";
17 cout << QT.countNumberOf2AdjacencyAnomaly() << endl;

18 double betaValue = 10.0;
19 BetaComplex BC;
20 BC.extract( QT, betaValue );
21 cout << "The number of atoms on the boundary of BC(beta=50) is ";
22 cout << BC.countNumberOfBCVerticesOnBoundary() << endl;

23 return 0;
};

Fig. 7. An example application program
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5 Conclusion

The Voronoi diagram of spherical atoms has many important applications, par-
ticularly for molecular worlds. While there are libraries for the ordinary Voronoi
diagram and power diagram, its counterpart for spheres is not available. In this
paper, we present the BULL! engine library for the Voronoi diagram of spheres,
the quasi-triangulation, and the beta-complex with which application program-
mers can easily build application programs dealing with molecules. The BULL!
engine is designed so that the application programs developed based on the API-
tier is completely independent of future modifications. BULL! will be available
from VDRC (http://voronoi.hanyang.ac.kr) at Hanyang University.
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Abstract. This paper describes computations of the relations between
circumradius R and area S of cyclic polygons given by the lengths of
the sides. Classic results by Heron and Brahmagupta clearly show the
relation of circumradius and area for triangles and cyclic quadrilater-
als. In contrast, formulae for the circumradius and the area of cyclic
pentagons have been studied separately. D.P.Robbins obtained the area
formula in 1994, which is a polynomial equation in (4S)2 with degree 7.
The circumradius formula was given by P.Pech in 2006, which is also a
polynomial equation in R2 with degree 7. In this study, we succeeded
in computing the integrated formula for the circumradius and the area
of cyclic pentagons. It is found to be a polynomial equation in (4SR)
with degree 7. This equation is easily transformed into the equation in
(4SR)2 with degree 7, hence both the expressions are meaningful. The
existence of the latter form of formula was pointed out by D.Svrtan et al.
in 2004, but somehow their result seems to contain typographical errors.
Therefore, we believe that our results correspond to the correction and
extension of already known formulae.

Keywords: cyclic polygons, circumradius formula, area formula.

1 Introduction

In this study, we consider a classic problem in Euclidean geometry for cyclic
polygons; that is, n-gons inscribed in a circle, given by the length of sides
a1, a2, . . . , an. In particular, we focus on the relation between the circumradius
R and the area S of cyclic pentagons.

Firstly, for a triangle with side length a1, a2, and a3, the classic formula by
Heron gives its circumradius and area as follows:⎧⎪⎪⎨⎪⎪⎩

R = a1a2a3√
(a1+a2+a3)(−a1+a2+a3)(a1−a2+a3)(a1+a2−a3)

S =

√
(a1+a2+a3)(−a1+a2+a3)(a1−a2+a3)(a1+a2−a3)

4 .

(1)
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It is straightforward to combine these equations, and we obtain the relation

4SR = a1a2a3. (2)

Secondly, Brahmagupta’s formula gives the circumradius and the area of a
cyclic quadrilateral as⎧⎪⎪⎨⎪⎪⎩

R =
√

(a1a2+a3a4)(a1a3+a2a4)(a1a4+a2a3)
(−a1+a2+a3+a4)(a1−a2+a3+a4)(a1+a2−a3+a4)(a1+a2+a3−a4)

S =

√
(−a1+a2+a3+a4)(a1−a2+a3+a4)(a1+a2−a3+a4)(a1+a2+a3−a4)

4 .

(3)

It is direct again to integrate Equation (3) into

16S2R2 = (a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3). (4)

We should note that Equation (3) represents the case of convex quadrilaterals,
and the other case of non-convex, crossing figures is given by⎧⎪⎪⎨⎪⎪⎩

R =
√

−(a1a2−a3a4)(a1a3−a2a4)(a1a4−a2a3)
(a1+a2+a3+a4)(a1+a2−a3−a4)(a1−a2−a3+a4)(−a1+a2−a3+a4)

S =

√
(a1+a2+a3+a4)(a1+a2−a3−a4)(a1−a2−a3+a4)(−a1+a2−a3+a4)

4 .

(5)

Hence, the latter case is expressed by the relation

16S2R2 = −(a1a2 − a3a4)(a1a3 − a2a4)(a1a4 − a2a3). (6)

If we let Z = (4SR)2, then the above results for triangles and cyclic quadri-
laterals are summarized as follows:⎧⎨⎩

Z − a21a
2
2a

2
3 = 0,

(Z − (a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3))
× (Z + (a1a2 − a3a4)(a1a3 − a2a4)(a1a4 − a2a3)) = 0.

(7)

The goal of this paper is to find such integrated formula for cyclic pentagons
as Equation (7). Since D.P.Robbins [4] discovered the area formula for cyclic
pentagons in 1994, the following facts are confirmed by several authors [1][3]:

– The area formula is a polynomial equation in (4S)2 with degree 7,
– The circumradius formula is a polynomial equation in R2 with degree 7.

Therefore, we can speculate that the relation between S and R is also expressed
by a polynomial in Z = (4SR)2 with degree 7, analogously from Equation (7).
As a result, we succeeded in computing such formula exactly as speculated.

It might sound strange that the relation between the area and circumradius
has been seldom discussed, and Pech [3] describes that “it is still missing”. We
have found that D.Svrtan et al. [5] shows a likely formula with degree 7, but
their result seems to contain typographical errors or something, and their proof
is too much abbreviated to follow.

In contrast, we show two ways of computation and confirm the correctness of
both results. Hence, we believe that our result gives the correction and extension
to that of D.Svrtan [5], and we have succeeded in specifying the structure of the
integrated formula in detail.
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2 Brute Force Algorithm

2.1 Expression by Elementary Symmetric Functions

Since the coefficients in the area and circumradius formulae are symmetric with
a2i ’s, such expressions as Equation (7) can be reduced if the coefficients are
expressed by elementary symmetric functions.

The conversion is processed by the following algorithm. First, we consider the
polynomial ideal with elementary symmetric functions of n-th order:

I =
{
s1 − (a21 + · · ·+ a2n), . . . , sn − (a21 · · · a2n)

}
, (8)

and compute its Gröbner basis using a group ordering (“lexdeg” in Maple com-
puter algebra system) as

G := Basis(I, {a1, . . . , an} ( {s1, . . . , sn}). (9)

Next, computing p := NormalForm(f,G) for a symmetric function f , we get
the expression p by elementary symmetric functions. For example, Equation (7),
formulae for triangles and cyclic quadrilaterals are converted into{

Z − s3 = 0,
Z2 − 2s3Z +

(
s23 − s21s4

)
=
(
Z − s3 + s1

√
s4
) (
Z − s3 − s1

√
s4
)

= 0.
(10)

We should note that it gives a good insight into the structure of the formulae
to introduce an auxiliary expression

√
sn = a1 · · ·an. Therefore, the formula for

triangles given by Equation (2) is rewritten as

z −√
s3 = 0 (z = 4SR =

√
Z,

√
s3 = a1a2a3), (11)

which should be simpler than that in Equation (10).

2.2 Integrated Formula for Cyclic Pentagons

We assume that, according to [4][3][2], we have already computed the circumra-
dius formula with 2,922 terms for cyclic pentagons:

ΦR(y) = B7y
7 +B6y

6 +B5y
5 +B4y

4 +B3y
3 +B2y

2 +B1y +B0

= 0
(
y = R2, Bi ∈ Z[a1, . . . a5]

)
,

(12)

and the area formula with 6,672 terms:

ΦS(x) = x7 + C6x
6 + C5x

5 + C4x
4 + C3x

3 + C2x
2 + C1x+ C0

= 0
(
x = (4S)2, Ci ∈ Z[a1, . . . a5]

)
.

(13)

Using elementary symmetric functions s1 = a21 + · · ·+ a25, . . ., s5 = a21 · · · a25, we
rewrite Equations (12) and (13) into simpler forms:{

Φ̃R(y) = B̃7y
7 + B̃6y

6 + · · ·+ B̃1y + B̃0 = 0 (81 terms)

Φ̃S(x) = x7 + C̃6x
6 + · · ·+ C̃1x+ C̃0 = 0 (153 terms),

(14)
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where B̃i, C̃i ∈ Z [s1, . . . , s5]. In order to combine Φ̃R(y) and Φ̃S(x) in Equation
(14), first we substitute y = Z/x into the radius formula, and we obtain

Φ̃′
R(x, Z) = x7Φ̃R(Z/x) = B̃7Z

7 + B̃6Z
6x+ · · ·+ B̃1Zx

6 + B̃0x
7. (15)

Next, eliminating x by the resultant of Φ̃′
R(x, Z) and Φ̃S(x), we obtain

Ψ̃(Z) = Resx(Φ̃
′
R(x, Z), Φ̃S(x))

= Ã49Z
49 + · · ·+ Ã0

(
Ãi ∈ Z[s1, . . . s5]

)
(2,093,279 terms).

(16)
This computation required about 15 minutes of CPU time in the following en-
vironment: Maple14 on Win64, Xeon(2.93GHz)×2, 192GB RAM.

Finally, we factorize this polynomial with degree 49. Together with the other
factor of degree 42, we obtain the polynomial in Z with degree 7:

ψ(Z) = Z7 − 4s3Z
6 +

(
−28s1s5 − 2s21s4 + 6s23

)
Z5

+
(
(−s41 − 10s21s2 − 8s22 + 52s1s3 − 32s4)s5 + 4s3(s

2
1s4 − s23)

)
Z4

+
(
4(37s21 − 48s2)s

2
5 + (−2s41s3 + 12s31s4 + 64s3s4 + 4s21s2s3 + 16s22s3

−20s1s
2
3 − 64s1s2s4)s5 + (s21s4 − s23)

2
)
Z3

+
(
−576s35 + (64s1s4 − 80s1s

2
2 + 28s31s2 − 8s21s3 + 128s2s3 − 2s51)s

2
5

+(2s41s2s4 − 12s31s3s4 − 8s21s
2
2s4 − s41s

2
3 − 4s1s

3
3 − 32s21s

2
4 − 32s23s4

+64s1s2s3s4 − 8s22s
2
3 + 6s21s2s

2
3)s5

)
Z2

+
(
−48(s31 − 4s1s2 + 8s3)s

3
5

(−8s21s
3
2 + 256s24 + s41s

2
2 − 64s1s3s4 − 128s22s4 + 64s2s

2
3 + 16s42

+96s21s2s4 − 12s21s
2
3 − 48s1s

2
2s3 − 2s51s3 − 16s41s4 + 20s31s2s3)s

2
5

)
Z

−s35(s31 − 4s1s2 + 8s3)
2 = 0 (63 terms).

(17)
This factorization required nearly 80 hours of CPU time in the same environment
shown above. If we put ∀ai := 1, Equation (17) is reduced to

(Z2 − 35Z + 25)(Z − 1)5 = 0, (18)

which respectively correspond to the cases of regular pentagon/pentagram and
(five degenerated ) regular triangles. Therefore, we believe that Equation (17) is
the integrated formula for cyclic pentagons which is the goal of this study.

[Remark ]
The notion of the formula in Z = (4SR)2 is already proposed by D.Svrtan et
al. [5], and their Equation (35) is supposed to correspond to Equation (17)
above. Unfortunately, their result does not coincide with ours, and theirs
is not factored when we let ∀ai := 1. Therefore, D.Svrtan’s result seems
to contain typographical errors or something, which might be caused in the
process of converting into the expression by elementary symmetric functions.

3 Stepwise Algorithm

In this algorithm, first we divide a cyclic pentagon with side length {a1, . . . , a5},
by a diagonal of length d, into a triangle of sides {a1, a2, d} and a quadrilateral
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of sides {a3, a4, a5, d}. Next, using the common circumradius R, we consider the
sum of areas of the triangle and the quadrilateral.

Firstly, the circumradius formula of Heron gives the defining polynomial in
y = R2 as follows:

H3(a1, a2, d; y) := (a1+a2+d)(−a1+a2+d)(a1−a2+d)(a1+a2−d)y+a21a22d2.
(19)

Similarly, the formula of Brahmagupta gives the following polynomials for convex
and non-convex cases respectively:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H
(+)
4 (a3, a4, a5, d; y) =

(−a3 + a4 + a5 + d)(a3 − a4 + a5 + d)(a3 + a4 − a5 + d)(a3 + a4 + a5 − d)y
−(a3a4 + a5d)(a3a5 + a4d)(a3d+ a4a5)

H
(−)
4 (a3, a4, a5, d; y) =

(a3 + a4 + a5 + d)(a3 − a4 − a5 + d)(a3 − a4 + a5 − d)(a3 + a4 − a5 − d)y
−(a3a4 − a5d)(a3a5 − a4d)(a3d− a4a5)

(20)
Since the circumradius R is common to these triangle and quadrilateral, we
eliminate y using resultant and obtain the defining polynomials in the diagonal
d with degree 7:⎧⎪⎪⎨⎪⎪⎩

F (+)(d) := Resy(H
(+)
4 (a3, a4, a5, d; y), H3(a1, a2, d; y))

= a3a4a5d
7 + (a23a

2
4 + a23a

2
5 + a24a

2
5 − a21a

2
2)d

6 + · · ·
F (−)(d) := Resy(H

(−)
4 (a3, a4, a5, d; y), H3(a1, a2, d; y))

= a3a4a5d
7 − (a23a

2
4 + a23a

2
5 + a24a

2
5 − a21a

2
2)d

6 + · · ·

(21)

We should note that we have F (−)(−d) = −F (+)(d), which means the roots of
both polynomials are equivalent up to signs.

Secondly, we let S3, S4, and S5 be the area for the triangle, cyclic quadrilateral,
and cyclic pentagon respectively given in the above. Since we have S5 = S3 +
S4, we get 4S4R = 4S5R − 4S3R, where R is the common circumradius. For
the triangle, we have 4S3R = a1a2d from Equation (2). If we let z = 4S5R
and substitute 4S4R = z − a1a2d into Equations (4) and (6), we obtain the
following polynomial equations in z and d, for the cases of convex and non-
convex quadrilaterals respectively:{

f (+)(z, d) := (z − a1a2d)
2 − (a3a4 + a5d)(a3a5 + a4d)(a3d+ a4a5) = 0

f (−)(z, d) := (z − a1a2d)
2 + (a3a4 − a5d)(a3a5 − a4d)(a3d− a4a5) = 0.

(22)
Finally, we eliminate the diagonal d from F (+)(d) and f (+)(z, d) by computing

the resultant:
P (+)(z) := Resd(F

(+)(d), f (+)(z, d))
=
(
z7 + · · ·

) (
a3a4a5z

7 + · · ·
)
.

(23)

This computation took about 2.5 minutes of CPU time in total, which is drasti-
cally reduced from the brute force algorithm shown in the previous section. Since
the latter factor in Equation (23) is asymmetry with ai’s, we adopt the former
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one as the defining polynomial in z = 4SR for cyclic pentagons. Converting it
into the expression by elementary symmetric functions, with

√
s5 = a1a2a3a4a5,

we obtain the final result:

ϕ(+)(z) = z7 − 2s3z
5 − (s21 + 4s2)

√
s5z

4 + (s23 − s21s4 − 14s1s5)z
3

−(s21s3 + 8s1s4 − 4s2s3 + 24s5)
√
s5z

2

−(s21s2 − 4s22 + 2s1s3 + 16s4)s5z
−(s31 − 4s1s2 + 8s3)s5

√
s5 = 0 (18 terms).

(24)

If we put ∀ai := 1, Equation (24) is reduced to

(z2 − 5z − 5)(z + 1)5 = 0, (25)

which respectively correspond to the cases of regular pentagon/pentagram and
(five degenerated ) regular triangles, similarly to Equation (18).

For the case of non-convex quadrilateral, we compute the resultant of another
pair of F (−)(d) and f (−)(z, d), and obtain a similar result ϕ(−)(z), where we
have ϕ(−)(−z) = −ϕ(+)(z) and we can regard the roots of ϕ(+)(z) = 0 and
ϕ(−)(z) = 0 as equivalent up to signs of S5. If we put ∀ai := 1, the equation
ϕ(−)(z) = 0 is reduced to

(z2 + 5z − 5)(z − 1)5 = 0. (26)

We should note that, in our formulation, the area of the triangle between
→
OA= [x1, y1] and

→
OB= [x2, y2] is defined as the determinant

S =
1

2

∣∣∣∣x1 y1x2 y2

∣∣∣∣ . (27)

Hence, the sign of area S of polygons should be essentially discarded. There-
fore, we do not need to distinguish ϕ(+)(z) from ϕ(−)(z), and we conclude that
Equation (24) also shows the relation between circumradius and area for cyclic
pentagons.

It is straightforward to rewrite Equation (24) as a polynomial equation in
Z = z2 = (4SR)2. We separate the equation ϕ(+)(z) = 0 into the terms with
even degrees and odd degrees:

z
(
z6 − 2s3z

4 + · · ·
)

= (s21+4s2)
√
s5z

4+ · · ·+(s31− 4s1s2+8s3)s5
√
s5. (28)

Squaring both sides and substituting z2 = Z, we obtain the same result as
Equation (17), which is a polynomial in Z = (4SR)2 with degree 7. Another
equation ϕ(−)(z) = 0 gives the same result by similar computation. Hence,
we believe that the correctness of two algorithms we propose in this paper is
confirmed by those results.

[Remark ]
The paper by D.Svrtan et al. [5] is also based on this approach, but it
does not specify the final step of the computation of resultant, which should
correspond to Equation (23), or does not refer the existence of the defining
polynomial in z = 4SR. Therefore, we consider that our computation makes
corrections to theirs, and it contains new results ϕ(±)(z) unknown so far.
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4 Application to a Numerical Problem

We consider the problem where the length of sides are given as a1 = 5, a2 =
6, a3 = 7, a4 = 8, a5 = 9. The area (x = 16S2) and the circumradius (y = R2)
formula leads to the following equations:{

x7 − 145377x6 + · · · − 1360512306447018480615234375 = 0
5810802381759375y7− · · · − 11948427342082473984000000 = 0.

(29)

These equations are easily solved by conventional algorithms for numerical com-
putation, and we obtain 5 real roots of each equation. However, the correspon-
dence between area and circumradius is unknown yet, or we cannot even point
out which the case of convex pentagon is. Hence, we apply the set {5, 6, 7, 8, 9}
to the integrated formula (24):

z7 − 2356490z5 − · · · − 1672586387136000000 = 0, (30)

which yields also 5 real roots.
Since we have |z| = √

xy = 4|S|R, we check all 125(= 53) combinations of
roots {xi, yj , zk}, and pick up those satisfy the condition∣∣∣∣|Si| · Rj −

|zk|
4

∣∣∣∣ < 10−6. (31)

As a result, the following pairs are selected:

[|Si|, Rj ] = [10.47633365, 6.035515309],
[16.78535280, 4.505907128],
[23.09053708, 4.602116876],
[30.69973405, 4.802909240],
[82.47639518, 6.019756631],

(32)

which shows that the last pair implies the convex pentagon figure.

5 Concluding Remarks

We investigated closely the relations among several quantities of cyclic
pentagons, and succeeded in computing the integrated formula of area and cir-
cumradius, that is, Equations (24) and (17). We compared two algorithms and
confirmed the coincidence of both results, where the stepwise algorithm turned
out to be more efficient than the brute force algorithm,

A polynomial in (4SR)2 like Equation (17) was shown before by D.Svrtan
et al. [5], but their result seems to contain errors somehow. To the best of our
knowledge, there exist no other reports in which defining polynomial in z = 4SR
like Equation (24) is discussed. In addition to Equation (17), we believe that our
results contain original formulae ϕ(+)(z) in Equation (24).

The degrees of defining polynomials of area and circumradius for cyclic
n-gons are given by the theorem of Robbins [4]. It is also speculated that the
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integrated formula has the same degree as (4S)2 and R2. Therefore, on the anal-
ogy of formulae for quadrilaterals in Equation (10), the integrated formula in
Z = (4SR)2 for cyclic hexagons should have the following structure:

Z14 + · · · (Z [s1, . . . , s5, s6; Z])
= (Z7 + · · · )(Z7 + · · · ) (Z

[
s1, . . . , s5,

√
s6; Z

]
)

(33)

where s1 = a21 + a22 + a23 + a24 + a25 + a26, . . . ,
√
s6 = a1a2a3a4a5a6.

The present status of computations by two algorithms is as follows, and nei-
ther has succeeded in the computation yet, because of the exploding size of
polynomials. The Area formula is straightforwardly obtained by Maley [1]:

Φ̃
(+)
S (s1, . . . , s5,

√
s6; x) = x7 + C̃6x

6 + · · ·+ C̃1x+ C̃0 (282 terms). (34)

The radius formula was computed before by the author [2]:

ΦR(a1, . . . , a6; y)
:= B14y

14 + · · ·+B1y +B0 (497,417 terms) (Bi ∈ Z[a1, . . . a6])

= Φ
(+)
R (ai; y) · Φ(−)

R (ai; y) (each has degree 7 and 19,449 terms),

(35)

which is rewritten into the expressions by elementary symmetric functions:

Φ̃
(+)
R (s1, . . . , s5,

√
s6; y) = B̃7y

7+ B̃6y
6+ · · ·+ B̃1y+ B̃0 (224 terms). (36)

We discard the non-convex cases, because they are easily obtained by replacing√
s6 in the convex cases by −√

s6.

[Brute force algorithm ]

Computing the resultant from Φ̃
(+)
S and Φ̃

(+)
R , we have obtained a polynomial

of degree 49 with 52, 490, 772 terms (nearly 3.0GB), which corresponds to
Equation (16). This polynomial should also be factored into two polynomials
of degrees 42 and 7, but it is hopeless to execute it actually.

[Stepwise algorithm ]
The resultant that corresponds to Equation (23) is not finished yet, because
its computation proceeds in the coefficient Z [a1, . . . , a6], and it cannot take
the advantage of the simpler expression by elementary symmetric functions.
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Abstract. This paper presents a software to work with 3D dynamic
geometry and multivariate calculus. It provides many resources to de-
fine and manipulate diverse 0D, 1D, 2D and 3D objects. Functions are
defined explicitly or as the result of operations. Functions can (for ex-
ample) be associated to 3D objects to calculate an iterated or a surface
integral. The embedded CAS uses a novel and efficient scheme of repre-
sentation for the common transcendental functions. Applications range
from mathematical education to scientific simulation events passing by
banal or utilities applications.

Keywords: dynamic geometry, computer algebra, function’s represen-
tation, primitive transcendental functions, symbolic computation.

1 Introduction

The purpose of the software presented here is to facilitate several applications
of mathematics related to 3D analytic geometry and symbolic/numeric calcula-
tions. It has many resources for definition and manipulation of diverse 0D, 1D,
2D, 3D objects. 3D objects are represented as solid objects and may come from
primitives, user libraries, 3D scanner files, mechanical engineering software as
SolidWorks or Inventor, or, be the result of operations as symmetries, extru-
sions, Boolean operations, involutions and so on. It also includes a Computer
Algebra System kernel that uses a novel and efficient scheme of representation
for the “common transcendental functions”. Such representation is based on a
few types of power series characterized by a periodic sequence of numbers. This
representation scheme allows orders of execution similar to those of arithmetic
calculations. The software will be available from December 2014.

2 Functionality

In this software, objects are organized as: 3D, 2D, 1D, 0D geometric objects and
functions. These objects can come from various sources, for example, an object
can be recovered from a previous work session, can be imported from an external
software, it may be a primitive, it can be explicitly declared, can be retrieved
from a file of points to interpolate or to interpret as a b-spline. They can also

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 222–229, 2014.
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come from active operations as a difference of solids, the rotation of a curve
segment about an axis, they can also be the value of a definite integral or the
solution of a differential equation, etc.

Operations are executed from a context sensitive calculator, so if the operands
are two solid objects some possible operations would be: intersection or differ-
ence; but if operands are a solid object and a real function f of three real vari-
ables the calculator proposes operations like: calculation of the surface integral
or calculation of the gravity center (with f as the density function).

The functionality of operators is dynamic, but the reliance can be released
so the new object becomes independent of the operation and the operands.
Geometric objects can be associated with rigid transformations that can operate
together. They can be executed selectively, forward and backward, one step
at a time or continuously. The total configuration of objects is conceptualized
as a “scenario” and can be saved and retrieved as such. Solids can also be
saved and retrieved individually in proprietary format. The currently supported
input formats are PLY (Polygon File Format or the Stanford Triangle Format)
and STL (Standard Tessellation Language or STereoLithography file format).
Solids can be exported in STL format, allowing lift in external software and 3D
printers. The 3D-view manipulation includes functionalities such as the selective
projection, zoom in, zoom out, light source manipulation, rotations, etc. The
real functions of real variable can be plotted in a specialized window.

Possible applications for this software include: a banal construction for a de-
sired 3D-printing; construction corresponding to a calculus optimization prob-
lem; mathematical practical work support; calculation of a surface integral over
a certain 3D-object, calculation of Euler Characteristic for a double torus, sim-
ulation of a laser propagation between two concave mirrors, finite element sim-
ulation, etc. Currently the software runs on Windows but soon will be available
for MAC. The graphical output is based on OpenGL.

3 Application Examples

Example 1: elementary geometry
Calculation of the sphere volume [10]: A Cavalieri Principle illustration.

Example 2: elementary calculus
An optimization problem [11]: Given a cube, find the inscribed cylinder of max-
imum volume such that its axis coincides with one of the diagonals of this cube.
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First, a dynamic construction and then, the corresponding trace of the cylinder
volume function for manipulation (interpolation, derivation, etc.).

Example 3: elementary calculus, visualization
Problem 1 [12]: Find the volume of the intersection between two cylinders of
radio r whose axes are perpendicular.

Example 4: elementary calculus, visualization
Problem 2 [1]: Calculate the work done by the force field f(x, y, z) = y2i+z2j+
x2k along the curve of intersection of the sphere x2 + y2 + z2 = r2 and the
cylinder x2 + y2 = r2 where z > 0, r > 0. The path is traversed in a direction ...

Example 5: computational geometry
Convex hull [13]: Calculation of convex hull for two convex polyhedrons based
on the involution of the intersection of the involutions of the original intersecting
polyhedrons (in this case of a cube and a five sides prism).

Example 6: algebraic topology
Nine torus Euler characteristic χ(): Exploration of certain invariants.

Example 7: simulation
Laser reflection: Simulation of a perfect laser reflection between concave mirrors.
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Example 8: discrete function
Discrete function: Discrete input from a file, interpolation, solid of revolution,
parameters calculation, etc.

Example 9: differential equation
Differential equation y′′-4y′=e2x [1]: Input from a file, solution (variation of
parameters method).

Example 10: others examples
Boolean operators applications :

Edited inputs :

Special operators 1:
Incremental union:

Example 11: output examples
Output examples : 3D printer output.

1 For the construction of more elaborate geometries.
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4 Function Representation

The Computer Algebra System kernel embedded in this software uses a novel
and efficient scheme of representation for the criteria of a subset of functions
here named: primitive transcendental functions. This subset intersects the set of
holonomic functions [20] and includes the “common transcendental functions”
2. Such representation is based on a few types of power series characterized by
a periodic sequence of numbers. The induced representation allows to define a
natural isomorphism between some subsets of functions and the n-dimensional
space Rn that allows the implementation of diverse analytical operators as well
as the decoding of the results of such operators.

4.1 The Representations of Fundamental Classes

For the data structure of the computer application, the criteria of the complex
variable functions are represented by a “classic binary tree′′ structure (operands
in the leaves and operators in the interior nodes) [3]. The basic types of func-
tions considered (named: Exponential, Geometric, Arc) consist of the functions
whose power series expansion at the origin are of the form 3 :

∞∑
i=0

bi
xi

i!
,

∞∑
i=max{0,−k}

bi(i+ k)!
xi

i!
,

∞∑
i=0

bi(!i+ k"!)2x
i

i!
(1)

where {bi} is a periodic sequence of period n, k ∈ Z, and !m"! = {1 if m � 0;
1 � 3 � 5 � ...m if m is odd; 1 � 3 � 5 � ...(m− 1) if m is even.

Coding. Coding of a function of the X Type is made by F [X; k; b0, b1, · · · , bn−1](x).

Decoding. Decoding (calculation of the sum in terms of usual functions) is based
upon the fact that, for a given length n, a given k and a fixed type, the defined
set of functions forms an n-dimensional vector space. As an example, for the
Exponential T ype, the isomorphism is given by the function ϕ : Rn −→ Bn:

ϕ(b0, b1, ..., bn−1) =
∞∑
i=0

bi
xi

i!
where Bn =

{ ∞∑
i=0

bi
xi

i!
with bi = bi+n

}
. (2)

Fundamental Properties. The sum and scalar multiplication in Bn correspond
to the usual vector operations in Rn. The differentiation operator (integration
with constant bn) corresponds to a circular left (right) shift of the generating
sequence and the unitary increase (decrease) of k (if any). Other properties of
Rn are also transferred by the isomorphism ϕ.

Below, there are some application examples of this approach. In certain ex-
amples they are compared with the results obtained from a leading commercial
CAS (Mathematica).

2 e.g.: exp(x), cos(x), sin(x), cosh(x), sinh(x), arctan(x), arctanh(x), ln(1-x),
arcsin(x), arcsinh(x), etc.

3 They are extended to include certain Bessel and Bernoulli functions and this ex-
tension process can be continued.
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Example 12: Decoding of the series F [Geo;−1; 1, 2, 3, 4]:

2
x

1
+ 3

x2

2
+ 4

x3

3
+
x4

4
+ 2

x5

5
+ 3

x6

6
+ 4

x7

7
+
x8

8
+ ... (3)

Solution. In the Geometric T ype the functions corresponding to the base: {[-1;
1,0,1,0], [-1; 0,1,0,1], [-1; 1,0,-1,0], [-1; 0,1,0,-1]} are: {-ln

(√
1− x2

)
, arctanh(x),

-ln
(√

1 + x2
)
, arctan(x)}. Thus, the sum in question corresponds to:

[−1; 1, 2, 3, 4] = 2[−1; 1, 0, 1, 0]+3[−1; 0, 1, 0, 1]−[−1; 1, 0,−1, 0]−[−1; 0, 1, 0−1]

= −2 ln
(√

1− x2
)
+ 3arctanh(x) + ln

(√
1 + x2

)
− arctan(x) (4)

With Mathematica
The corresponding command is:

Sum[x^(4n)/((4n))+2x^(4n+1)/((4n+1))+3x^(4n+2)/((4n+2))

+4x^(4n+3)/((4n+3)),{n,1,Infinity}]

Resulting in:

1/12 (-24x-18x^2-16x^3+18ArcTanh[x^2]+24x

Hypergeometric2F1[1/4,1,5/4,x^4]+16x^3

Hypergeometric2F1[3/4,1,7/4,x^4]-3Log[1-x^4])

Example 13: Reduction of the identity 4 sinh2(x)+cosh2(x)-cosh(2x)=0:
Solution. The simplification is immediate from the mechanical treatment of prod-
ucts and the respective sums 5:

[Exp; 0, 1]2(x) + [Exp; 1, 0]2(x) − [Exp; 1, 0](2x)

= −1

2
+

1

2
[Exp; 1, 0, ](2x) +

1

2
+

1

2
[Exp; 1, 0](2x)− [Exp; 1, 0](2x)

= [Exp; 1, 0](2x)− [Exp; 1, 0](2x) = 0 ∗ [Exp; 1, 0](2x) = 0 (5)

With Mathematica
Consider the Mathematica commands:

f(x_)=Sinh(x)Sinh(x)+Cosh(x)Cosh(x)-Cosh(2x)

g(x_)=f(x)^2

Producing respectively:

:Cosh[x]^2-Cosh[2x]+Sinh[x]^2

:(Cosh[x]^2 - Cosh[2x] + Sinh[x]^2)^2

4 It is worth noting that the problem of solving equivalences is, in general, recursively
undecidable [14].

5 All products of the elements of the basis A={cosh(x), sinh(x), cos(x), sin(x)} of B4

(i.e. {[1,0,1,0], [0,1,0,1], [1,0,-1,0], [0,1,0,-1]}) are explicitly calculable.
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Example 14: Non polynomial solution of y′′+y′=ex+sin(x):
Coding. The function ex+sin(x) is of the Exp type, it corresponds to (1, 1, 1, 1)+
(0, 1, 0,−1) = (1, 2, 1, 0). If y(x) corresponds to a vector of the form (a, b, c, d).
Then, y′(x) corresponds to (b, c, d, a) and y′′(x) corresponds to (c, d, a, b), so the
equation in question would be written (c, d, a, b) + (b, c, d, a) = (1, 2, 1, 0). i.e.⎡⎢⎢⎣

0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
a
b
c
d

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
2
1
0

⎤⎥⎥⎦ (6)

Solution. The solution is then: (1,-1,2,0)+d(-1,1,-1,1).
Decoding. The solution corresponds to(changing the base to the base A of B4):

3 cosh(x)/2 − sinh(x)/2 − cos(x)/2 − sin(x)/2 + d(sinh(x) − cosh(x)) (7)

Example 15: The non polynomial solution of y′′=ln(1− x):∫ (2)

[Geo;−1;−1](x) = [Geo;−3;−1](x) (8)

The decoding is automatic: [Geo;-3;-1](x)=(1− x)2(ln(1− x)− 3/2)/2
With Mathematica

DSolve[y’’[x] == Ln[1 - x], y[x], x]

y(x) →
∫ x

1

(∫ K[2]

1

Ln(1−K[1]) dK[1]

)
dK[2] + c2x+ c1 (9)

Noteworthy that the examples show the difficulty found by this type of CAS to
solve relatively simple problems.

5 General Remarks

In regards to mathematics education, the expectation is to offer a mathematical
exercise that can provide a stimulating experience. One can imagine, for example,
assigning a practical work that consists in the construction of a model that
eventually will be 3D printed. An activity that can exploit diverse mathematical
concepts like: vectors, planes, symmetries, solids of revolution, cylinders, cones,
Boolean operations, center of mass, surface calculation, etc.

Regarding scientific and engineering simulations, currently the system has
direct and iterative methods to solve systems of equations of higher orders. It
operates sparse matrices with real entries and sparse matrices with functional
entries. The implementation of finite element methods is in preparation.

The function representation utilized and the definition of fundamental ana-
lytical calculations allows the definition of the basic classes and methods to
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develop an efficient CAS under the object-oriented programming paradigm. It is
appropriate noting that this is very important in the implementation of software
projects related with subjects such as dynamic geometry or finite element.

Dual calculations (calculations made with the coordinates) pass analytical
calculations to the domain of computable functions [5]. The approach of this
representation scheme consists of three stages (encoding - computing - decoding).
It allows to produce effective results where other CAS produce useless results.
In fact, this is a good example of the significance of the paradigm change that
occurs in the search for discrete and algorithmic solutions [9].
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Abstract. Among a large number of digital educational resources, high-
quality resources are very scarce. For quite some time, the shortage of
high-quality resources is the bottleneck problem of education informati-
zation. In this paper, we will introduce an innovational feature of digital
educational resources – sustainability, which includes interactivity, trans-
parency, and openness. The transparency means that users can obtain
the original creating process of educational resources by their contents.
The openness means that users can conveniently edit the contents of edu-
cational resources. Sustainable educational resources will become better
and better in quality through continuous optimization. The sustainable
optimization of educational resources needs intelligent subject knowledge
platform. We will demonstrate several cases of sustainable optimization
based on Super Sketchpad (SSP) which is an excellent intelligent subject
knowledge platform.

Keywords: High-quality educational resources, sustainability,
transparency, openness.

1 Introduction

The positive role of informatization in education is indubitable; however the
educational goal that people expected has not been achieved. An investigation
report by the U.S. congress shows that using computer and educational software
is helpless to improve student achievement[1]. In China, government has spent
much efforts on education informatization, but lots of facts show that the prac-
tical effects are not satisfactory and improvement of student achievement is not
significant.

In fact, most of the existing educational resources are made by common soft-
ware. Users hardly know how the resources are made. Therefore, it is very hard
for the users to edit or recreate the resources appropriately according to their
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personal demands. That is to say that the making process of the resources is not
transparent and the resources are not open.

For example, it is difficult for users to know the exact process of making the
simple geometric diagram shown in Fig. 1. If it is a piece of courseware of format
PPT, WORD or FLASH, it would be very difficult to add a foot point from point
O to segment BC into the diagram.

Fig. 1. A Simple Geometric Diagram

Therefore, although there have been heavy investments in educational in-
formatization, high-quality educational resources are still scarce. The main rea-
son is that most current educational resources are not made for sustainable
development. Creation, application, and sharing of high-quality educational re-
sources are the bottleneck problems of education informatization that have not
been satisfactorily resolved, which need to be urgently addressed nowadays[2].

Intelligent subject knowledge platform can resolve the bottleneck problems
of making high-quality educational resources [3]. So sustainable optimization of
educational resources based on intelligent subject knowledge platform is feasible
to deal with the problems of application and sharing of high-quality educational
resources.

2 Sustainability

Sustainable optimization of educational resources means that users can conve-
niently edit or recreate the resources to satisfy their personal demands. Thus,
the resources first should be editable by users; that is to say the resources are
open. Second, the original process of making the resources should be easy to
be understood and the way of editing resources should be convenient for users,
which means that the resource is transparent. If an interactive educational re-
source has the features of openness and transparency, then we say it has the
feature of sustainability. Sustainable educational resources will become better
and better in quality through continuous optimization, their utilization rate can
be improved and their useful lives can be prolonged, which will promote the
applications and sharing of the resources.
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2.1 Transparency

The transparency of an educational resource means the original making process
of the resource is shown explicitly.

The diagram in Fig. 2 is created by Super Sketchpad (SSP) which is a ma-
ture and excellent intelligent subject knowledge platform [4]. Object information
listed on the left side of the figure is generated automatically by the system ac-
cording to construction steps. The list includes key information about the geo-
metric diagram: (1) Object Index. It records the index of constructing geometric
objects in diagram; (2) Object Type. It shows of which type (e.g. point, line,
circle, and curve, etc.) the objects are; (3) Structural conditions. This indicates
the conditions for constructing the objects. For example, according to the object
information, we easily know that point C, the twelfth object, is the foot from
point A on a circle to line PO in Fig. 2.

Fig. 2. Transparency

2.2 Openness

The openness of an educational resource means that the resource can be conve-
niently edited or recreated by users according to their personal demands.

In SSP, it is very easy to create the foot point from point O to line BC. One
only needs to draw one line segment from O to BC with an intelligent pencil
tool in one step, and then SSP will generate a tip automatically when the mouse
approaches to the foot point. One can simply do more constructions, such as
tracing line segment BC and point D and making a logical animation [5] for
point A running along the circle O (Fig. 3(a)). Fig. 3(b) shows the results after
the logical animation runs once.

3 Sustainable Optimization

If a resource is sustainable, it should be optimized easily. There are several
ways of optimizing sustainable resources. For example, editing or changing the
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(a) 1 (b) 2

Fig. 3. Openness

properties of objects, deleting or adding some objects, decomposing one resource
into different parts, combining some parts of different resources into a new one,
and so on.

Here we show an optimization example by editing the properties of a resource
which involves the number of intersection points of exponential and logarithmic
functions.

(a) Intersection Point (b) Edit Properties

Fig. 4. Exponential and Logarithmic Functions

It seems easy to discuss the intersection of exponential function y = ax and
logarithmic function y = log(a, x). We can create the figure as shown in Fig. 4(a).
Obviously, when 0 < a < 1, there is an intersection point on y = x. Most people
think that there should be only one intersection point.

However, this is not the fact. Through checking the object information listed in
Fig. 4(a), we can make a simple optimization to the resource as follows: Change
the range of variable a from (0, 1) to (0, 0.1) by opening the property dialog for
variable a and inputting new data as shown in Fig. 4(b). By sliding variable
scale continuously, we can find that there are three intersection points when a is
less than about 0.06 (Fig. 6). In fact, it can be proved that the two curves have
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Fig. 5. Three Intersection Points

three intersection points when 0 < a < e−e ≈ 0.065988. It is indeed difficult to
imagine and understand the result if we don’t make such an optimization.

4 Conclusion

With the features of interactivity, transparency, and openness, educational re-
sources can be edited or recreated conveniently and quickly, and then will satisfy
individual demands of different users and become high-quality resources. In the
process of optimization, operations should be as simple as possible and steps
should be as small as possible, which need the assist of intelligent software.
Therefore, sustainable optimization of educational resources based on intelligent
subject knowledge platform is feasible to resolve the problems of application and
sharing of high-quality educational resources.
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Abstract. GeometryTouch is a dynamic geometry software system with
touch operation. Developed by JavaScript and SVG, GeometryTouch is
a Web-based application which can run on browsers of mobile devices.
When using GeometryTouch, users can draw geometric figures and create
or modify geometry-based interactive manipulatives. A virtual cursor is
designed to implement precise operations in GeometryTouch. Geometric
operations consist of 4 continuous actions and it is a challenge to im-
plement the action of “the first point confirming”. Three methods have
been investigated to tackle the problem in the paper.

1 Introduction

A dynamic geometry software (DGS) system is a computer program for inter-
active creation and manipulation of geometric constructions. It enables users
to construct geometric objects such as points, lines, and circles, and together
with the dependencies that may relate the objects to each other. It is a dynamic
construction, demonstration, and exploration tool for the study of mathematics.
Teachers and students can use a DGS system to build and investigate mathemat-
ical models, objects, figures, diagrams, and graphs. In the past 20 years, many
dynamic geometry software systems such as Cabri [2], Geometers SketchPad [10],
Cinderella [3], Euclides [4], C.a.R. [1], GeoGebra [5], Kig [6], and KSeg [7], have
been widely used in schools and colleges all over the world. Most of the DGS
systems were designed as desktop-based systems without considering any us-
age on the Web or touch-based mobile devices. There are many difficulties or
limitations to transplant them to the Web or a touch-orientated system.

Developed by the WME Group of Kent State University, GeometryEditor
[11,9,8] is an attempt to build a totally Web-based DGS system. The main
functionalities of GeometryEditor are as follows.

– Basic geometric object drawing. Drawing basic geometric shapes such as
points, segments, rays, lines, circles, ellipses, and polygons.

– Geometric object construction. Constructing a new geometric object subject
to mathematical relations with the constructed objects.

– Measurement. Measuring length, slope, radius, distance, area, circumference,
perimeter, angle, coordinates, parallel, perpendicular, and tangent relations.
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– Loci and Envelopes. Constructing loci of moving points and envelopes of
moving lines.

– Animation. Moving and changing objects for illustration and demonstration.
– Calculation. Creating and evaluating mathematical expressions based on the

existing measurements and calculations.
– Graphing. Plotting points and function graphs in coordinate systems.
– Geometric transforms.Translation, reflection, dilation, and rotationof objects.
– Defining macros. Grouping several steps of a construction into one command.

GeometryEditor defines a set of APIs to access constructions by other Web-based
systems. GeoSite (http://wme.lzu.edu.cn/geosite), a Web site for hosting the
GeometryEditor and the created geometry manipulatives by GeometryEditor’s
users, is also created by the WME Group.

2 GeometryTouch

GeometryTouch is a touch version of GemetryEditor. Developed by JavaScript
and SVG, GeometryTouch is a Web-based application which can run on browsers
of mobile devices such as iPad and Android Tablets. When using Geometry-
Touch, users including specialists, teachers, and students may draw geometry
figures and create or modify geometry-based interactive manipulatives. Figure 1
shows a screen shot of GeometryTouch.1

Fig. 1. The virtual cursor of GeometryTouch

In order to provide a touch-based user-friendly interface, touch events offer
the ability to interpret finger activities on touch screens. Multi-touch gestures
are predefined to interact with multi-touch devices. They can be recognized

1 The GeometryTouch can be accessed on http://wme.lzu.edu.cn/geositeipad.
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by detecting one or more touch events. In GeometryTouch, we define 9 basic
gestures including 6 single-touch and 3 multi-touch operations. When using Ge-
ometryTouch, we call each operation like choosing, drawing, moving, or editing
an object as a geometric operation. Different gestures can be mapped to different
geometric operations. Each geometric operation also corresponds to one or more
gestures. Figure 2 shows the relationship of gestures and some general geometric
operations.

Fig. 2. The relationships between touch gestures and geometric operations

Most of geometric operations of a DGS system need accurate operations.
However the size of human fingers and the limitation of sensing precision make
precise interactions of touch on the screen difficult. A virtual cursor is designed
in GeometryTouch to indicate the current focus. As shown in Figure 1, a small
red cross will appear on the top of a touch finger and follow with the finger. It
will change to a point when users begin to draw geometric objects. The virtual
cursor makes users easily and conveniently implement the precise operations,
such as selecting one point from several adjacent points in GeometryTouch.

In a DGS system, many geometric operations, such as drawing a circle, a ray,
or a segment, consist of four continuous actions (see Figure 3):

– Step-a: locating the first point;
– Step-b: confirming the position of the first point;
– Step-c: locating the second point;
– Step-d: confirming the position of the second point and stop.

In the mouse and keyboard environment, the four actions can be performed
as the following steps:
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Fig. 3. Steps of drawing a segment

1. moving the mouse to choose a position for the first point;
2. clicking (or pressing) to confirm the first point;
3. moving (or holding and moving) the mouse to choose a position for the

second point;
4. clicking (or releasing mouse) to confirm the second point.

In multi-touch devices, we could implement Step-a and Step-c by touchmove

action and complete Step-d by touchend event. Although there is a single
touchmove action and a single click action, one cannot perform a continuous
move-and-click operation with one finger. On the other hand there is no mouse
hold-and-move operation either in multi-touch devices. Thus it is a challenge to
implement the action of Step-b. Three methods have been investigated to tackle
the problem.

– Method 1: After completing Step-a by touchmove operation, stop and hold
for several seconds (e.g., 4 seconds) for confirming the position.

– Method 2: After completing Step-a by touchmove operation, rise the finger
for confirming the position.

– Method 3: After completing Step-a by one finger touchmove operation, click
with another finger for confirming the position.

For Method 1, the novice users can explore and learn the operation easily even
though there is no guide. However, it may cost more time to wait during the
holding operation. If we set a shorter interval in the system, it may cause a
wrong operation. For Method 2, the novice users may meet difficulties if there
are no pre-instructions. But the experienced users can quickly draw the objects
through the method. The operation of Method 3 looks like a mouse-click action.
However it needs a second finger to assist. Both the novice and experienced users
may feel tired if they use the system for a long time through this method.

3 Conclusion

GeometryTouch, a Web- and touch-based dynamic geometry software, is intro-
duced. We use a virtual cursor to make touch interactions on the screen precisely
and easily. For some continuous operations on touch device, it is hard to know
whether users have completed the previous operation. In the paper, we provide



GeometryTouch 239

three solutions for the problem. The three solutions may be useful instructions
for designing a program on touch device. Some experiments on evaluating the
three solutions are needed in the further work.
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Abstract. OpenGeo is an enhanced version of the geometric knowledge
base developed by Chen, Huang, and Wang, which is equipped with
web-based interfaces and new management facilities and made open and
online. The kernel of the knowledge base consists of typical geometric
knowledge objects such as definitions, theorems, and proofs. Several tools
have been developed to support users to manage the knowledge objects
contained in OpenGeo. Users can create new knowledge objects and add
them to OpenGeo.

Keywords: Data management, geometry software, knowledge object,
open database.

1 Introduction

There is a large amount of geometric knowledge resources created by researchers
and educators and accessible in different ways (see for example [13,8,10]). The
knowledge data in such resources are represented with different structures in
different formats. To facilitate data exchange among those resources, one has to
study how to standardize, formalize, and structure geometric knowledge data.
This question has been partially answered by Chen and others in [1] along with
the development of a geometric knowledge base. Following the work of [1], we
present in this paper an enhanced geometric knowledge base, called OpenGeo,
which is equipped with web-based interfaces and new management facilities and
will be open and online. The kernel of OpenGeo consists of typical geometric
knowledge objects such as definitions, theorems, and proofs. Based on the meth-
ods proposed in [3], several tools have been developed to support users to manage
the knowledge objects contained in OpenGeo. For example, using the developed
tools, (1) knowledge objects can be edited or deleted; (2) meta-information (e.g.,
language, format, and keyword) can be annotated for organizing and classify-
ing knowledge objects; (3) revisions of knowledge objects can be recorded; (4)
knowledge objects can be retrieved in meta-information-based ways; (5) knowl-
edge objects can be rated and commented for screening high-quality versions.
In addition, users can create new knowledge objects (containing texts, images,
diagrams, files, videos, and audios) and add them to OpenGeo.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 240–245, 2014.
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OpenGeo is created for the purpose of research and education. Creative
Commons Attribution-ShareAlike license is adopted as its main content license.
OpenGeo may serve as a public resource for users to test, for instance, geomet-
ric theorem provers and problem solvers and as an infrastructure for developing
new educational applications (e.g., generation of textbooks and courses) in online
learning environments.

2 The Knowledge Base

2.1 Ontologies for Geometric Knowledge Objects

By knowledge object, we mean an individual knowledge unit that can be rec-
ognized, differentiated, understood, and manipulated in the process of manage-
ment. We adopt ontology [4] to formally specify geometric knowledge objects
and intrinsic relations among them. Ontology is often used to represent models
composed of sets of objects, attributes, and relations. In most examples, classes,
individuals, attributes, and properties are used as ontology terminologies to ex-
plicitly specify domain concepts. They may be expressed by using, e.g., the Web
Ontology Language (OWL [4]). OWL is recognized by the World Wide Web
Consortium as a formal language for the representation of ontology statements.
Protégé [5] is one of the most widely used ontology editors which allows users
to export ontologies of the OWL form. The structure of the knowledge base,
OpenGeo, presented in this paper is built up by using Protégé.

Geometric knowledge objects can be categorized into specific classes, such as
definition, proposition, problem, proof, solution, and method. Each class may
contain several data items, such as natural language expression, formal expres-
sion, algebraic expression, nondegeneracy condition, diagram, and keyword. An
ontology class may be constructed for each class O of geometric knowledge ob-
jects or each data item of O. Ontology classes constructed for data items of O
can be divided into resource classes and annotation classes. The resource classes
specify different types of media (such as text, audio, and video) to interpret
and/or illustrate the knowledge objects in O, while the annotation classes are
used to annotate the knowledge objects in O as well as the media specified by
the resource classes.

The constructed ontology classes may satisfy certain properties. Both logical
relations among geometric knowledge objects and semantic relations between ge-
ometric knowledge objects and data items need be considered. There are three
kinds of logical relations among geometric knowledge objects: inheritance rela-
tions, dependence relations, and incidence relations. These logical relations may
be described by introducing ontology properties like hasFather, deriveFrom,
and hasProof. Semantic relations may be represented by means of the rela-
tionships “geometric knowledge objects contain media which are individuals of
the corresponding resource classes” and “geometric knowledge objects and media
have annotations which are individuals of the corresponding annotation classes.”
They may be depicted by ontology properties like hasVideo, hasKeyword, and
hasFormat.
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We have been constructing ontologies for geometric knowledge objects. For
each specific object, its annotation and resource attributes and relations with
other objects can be easily obtained on the basis of the ontology properties. For
example, from the hasDiagram property, one may obtain the diagram to which
the object is related; the hasProof and forTheorem properties may indicate the
logical relations between a theorem object and a proof object.

2.2 The Database Schema

Geometric knowledge objects are stored in the database of OpenGeo and are
managed through interfaces with management facilities and external software
tools. Without using entity-relation diagrams [6], relational data tables for the
database are created automatically from the ontologies for geometric knowledge
objects and their modifications can be automated. We use Protégé to edit ontolo-
gies for geometric knowledge objects and export them to OWL files. A parser is
developed to process the contents of the OWL files and to generate SQL state-
ments for automated creation of relational data tables. When some ontology
is modified, the parser would re-generate new SQL statements automatically
for updating the relational data tables. The paradigm of automated database
schema generation explained above is also used for the form generation of the
user interface of OpenGeo.

Geometric knowledge objects may be modified or refined gradually. One ob-
ject may exist in different versions created by different users. Therefore, database
schema need be designed to meet the management requirements of multi-users
and multi-versions. In OpenGeo, relational data tables are created to store
data about users and about which geometric knowledge objects the users have
handled.

Figure 1 illustrates the structure of the relational data tables Knowledge, Pro-
cess, Image, Users, and Know2res we have constructed, where an arrow A→ B
indicates the link from the foreign key B in one table to the primary key A in

Fig. 1. Part of the database schema for OpenGeo
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another table. The table Process records the results of processing for geometric
knowledge objects (e.g., proofs of theorems or steps of drawing diagrams for the-
orems). Name, Introduction, and Remark in Process are the data items and ID,
the primary key of Process, identifies the version of a knowledge object of type
Process. The table Image contains data items such as Keyword, LocalPath, and
ID for images uploaded by users. The table Know2res is used to store relations
between knowledge objects stored in Process and images stored in Image. The
table Users records some basic information about users. Its primary key ID is
the identity of the creator of the knowledge objects in Process and the images in
Image. Since different users may create different versions of the same knowledge
object, Type and Version are introduced to indicate of which type (Definition,
Theorem, or Process, . . .) and of which version the knowledge objects are, re-
spectively, in the Knowledge table. The current version corresponds to the ID in
the Process table. Other types of knowledge objects and media are structured
similarly.

3 The User Interface

Geometric knowledge sharing can be realized by applying network techniques.
The LAMP [7] (Linux Apache MySQL PHP/Perl/Python) is a typical frame-
work under which web servers, databases, and scripting techniques can be inte-
grated into powerful web application platforms. OpenGeo is developed by using
LAMP techniques. It also integrates tools developed by the third party to fa-
cilitate users to create data of special format. In particular, MathEdit [9] and
Sketchometry [14] are used for editing formatted formulas and demo scripts.
Users can edit complicated formulas in the manner of WYSIWYG in MathEdit
that runs in the browser. Sketchometry is a browser-based interactive tool for
drawing dynamic geometric diagrams by clicking and dragging with mouse.

We have developed a user-friendly interface for low-level management of ge-
ometric knowledge objects in OpenGeo.1 Through this interface, the user can
easily edit, modify, and delete geometric knowledge objects. To create a geo-
metric knowledge object, such as a definition, a theorem, or a proof, one can
upload media and fill in the form of the user interface generated according to
the ontology of the knowledge class to which the object belongs. To modify a
created object of a certain version, one can revise the data displayed in the form
of the user interface; the resulting object is stored as a new version. To delete a
created object, one needs to simply remove the ID of its current version; in this
case, the media for the object remain stored in the knowledge base.

In OpenGeo, geometric knowledge objects are stored in multi-versions with
multi-users. One can browse any version of an object and check who created
and edited which version of the object. Mathematical formulas and dynamic

1 For more advanced management of geometric knowledge objects, OpenGeo interfaces
with other sophisticated software tools such as GeoGebra (a dynamic geometry soft-
ware system [10]), GEOTHER (a geometry theorem prover [12]), and GeoText (a
dynamic geometry textbook [11]).



244 D. Wang et al.

diagrams can be displayed or animated, while media such as images, audios,
and videos can be viewed or played online. Geometric knowledge objects can be
retrieved by searching keywords or according to classifications based on ontology
classes.

OpenGeo users are allowed to reuse and evaluate geometric knowledge objects
stored in the knowledge base. Before creating a geometric knowledge object, the
user is urged to search the existing versions of relevant objects in the knowledge
base. The version which is first found to be appropriate by the user is regarded
as an initial version. The user can keep the reusable part and modify other parts
of the initial version and then save the revised version as a new version of the
object. This permits each user to contribute data to the knowledge base and
the contributed data are subject to evaluation and further revisions by other
users. It is expected that in this way the knowledge objects in OpenGeo will be
improved gradually by the users.

Media for knowledge objects can be easily reused and be shared by many
versions of the objects. Users can evaluate the media and rate the rationality and
quality of the interpretations for the objects by using scores. For each object, the
provisionally best version of it can be determined through interactions between
creators and viewers using collaborative filtering techniques.

The user interface also includes other auxiliary modules. One of them is the
user module, through which users can modify their profiles and view the histories
of their creations, modifications, and evaluations.

4 Ongoing and Future Work

Currently, we are formalizing geometric theorems in the OpenGeo collection and
developing semantic querying tools based on images of diagrams and formalized
geometric statements. We expect to complete these tasks and release a prelimi-
nary version of OpenGeo in early 2015.

Very recently, we have proposed a general approach for discovering geometric
theorems automatically from images of diagrams [2]. Preliminary experiments
have shown the feasibility and efficiency of our approach. We plan to implement
and apply this approach to deal with different kinds of images, including pho-
tographed images of hand-drawn diagrams. We will develop software tools to
help generate geometric theorems for OpenGeo from images of diagrams taken
from the Internet or hand-sketched on mobile devices.
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Abstract. Numerical algorithms for decomposing the real points of a
complex curve or surface in any number of variables have been developed
and implemented in the new software package Bertini real. These algo-
rithms use homotopy continuation to produce a cell decomposition. The
previously existing algorithm for surfaces is restricted to the “almost
smooth” case, i.e., the given surface must contain only finitely many sin-
gular points. We describe the use of isosingular deflation to remove this
almost smooth condition and describe an implementation of deflation via
Bertini with MATLAB.

Keywords: Real decomposition, real algebraic set, numerical algebraic
geometry, isosingular deflation, homotopy continuation.

1 Introduction

Polynomial systems appear throughout the sciences, engineering, and mathe-
matics. Given a polynomial system, f(z), with N polynomials in n variables,
a common problem is to find all solutions ẑ in C or in R such that f(ẑ) = 0,
i.e., the solution set of f(z) = 0, also denoted V (f). Such a solution set (for ei-
ther C or R) may consist of points, curves, surfaces, and/or higher-dimensional
components.

In numerical algebraic geometry, there are now several numerical methods to
produce the numerical irreducible decomposition over C of V (f). It is a funda-
mental fact from algebraic geometry that a degree d irreducible algebraic set
meets a general linear space of complementary dimension in d distinct points.
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For each irreducible component A ⊂ V (f) of dimension m, the numerical irre-
ducible decomposition contains a witness set, which is the triplet of f(z), L(z),
and W , where L is a general set of m linear equations, and W consists of nu-
merical approximations to the set of d points A∩V (L). The books [3,10] discuss
these concepts and the associated algorithms, and many of these methods are
implemented in [4].

Working over R is significantly different than working over C, reflecting a
more complicated geometry. Real slices of real algebraic sets do not behave so
uniformly as their complex counterparts, so there is no simple real analog to
the witness sets that suffice when working over C. Instead, as described below,
we break the real sets into a finite number of pieces, each having a uniform
behavior within. The decomposition of the real subsets within complex curves
was accomplished in [9], while the decomposition of the real subsets within an
adequately nice complex surface was achieved in [5]. In particular, the surface
was required to be ”almost smooth,” meaning that it could contain at most
a finite number of singularities. In this article, we remove the almost smooth
condition from the surface case by incorporating isosingular deflation [6] into
the approach of [5]. The resulting surface method and the method for curves are
both implemented in the software package Bertini real [2].

A fundamental problem with real solution sets of polynomial systems is the
choice of a data type. We have opted for a topological description, a cell de-
composition, of real curves and surfaces, dependent on the (typically random)
choice of two linear projections. The next section provides some basic details on
this data type and the previously known numerical algebraic geometry method
for computing it. Section 3 illustrates the need for isosingular deflation, which
is then described in §4. The inclusion of isosingular deflation is finally briefly
described and illustrated in §5.

2 Cell Decomposition

The cell decomposition of an algebraic surface [5] breaks it into a finite number
of regions over which the implicit function theorem holds. The construction is
related to Morse theory and similar in essence to the Cylindrical Algebraic De-
composition [1], although the specifics of the data structure and the algorithms
for computing it are quite different. The decomposition consists of ‘2-cells’ or
faces, which are bounded by ‘1-cells’ or edges, which are themselves bounded by
vertices. Each face and edge is equipped with a generic point in the middle and
a homotopy such that the generic point can be tracked along the face.

This decomposition is computed with respect to two real linear projections,
π1(x) and π2(x), typically chosen randomly, which give rise to the implicit pa-
rameterization of the surface. Each face describes some portion of the surface
with boundary either a curve over which the generic point cannot be tracked or
part of an artificially imposed edge.
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The process for decomposing an irreducible algebraic surface is illustrated in
Fig. 1 for a surface given by the Zitrus system [7]:

f(x, y, z) = x2 + z2 + y3(y − 1)3. (1)

Letting S denote the surface to be decomposed, this process is loosely given as
follows. Given a witness set for S, the techniques of numerical algebraic geometry
allow us to restrict all of the following computations to S, even in the case where
V (f) contains other irreducible components.

1. Compute the critical set C of S with respect to π1, π2. C consists
of points x̂ on S that are either singular or include the direction of the
projection in the tangent space at x̂. The points of C are solutions of the
system ⎡⎢⎢⎣

f(x)

det

⎛⎝ Jf
Jπ1
Jπ2

⎞⎠
⎤⎥⎥⎦ = 0,

where J means the Jacobian matrix of partial derivatives. The top and bot-
tom edges of the faces in the eventual surface decomposition will be edges
coming from the curve decomposition of C. See the top left of Fig. 1, where
for the particular projection we illustrate, the critical curve consists of a ring
around the surface and the two singular points at its extremities. The critical
curve is itself decomposed with respect to π1.

2. Intersect with a suitably chosen sphere. Because the surface might be
noncompact, with parts that extend to infinity, we consider only the compact
part of it lying within a suitably chosen sphere. In particular, after computing
the critical curve, the locations of all topologically interesting parts of the
surface are known, so we may choose a sphere containing all critical points of
the critical curve, and intersect it with S. In the Zitrus example, the sphere
intersection curve, i.e., the intersection of S with a sphere, is empty because
the surface is compact.

3. Slice at all critical points of π1, and halfway between. The boundary
of a face is a graph of edges of curve decompositions, the right and left of
which are slices of the surface at critical points under the first projection,
π1. In contrast, the midpoint of each face is the midpoint of an edge of a
midslice, i.e., a slice of the surface at a point halfway between two critical
points under the first projection, π1. Each slice is the intersection of the
surface with a plane corresponding to fixing π1 at a projection value, and
decomposing with respect to π2. This step is the top right in Fig. 1.

4. Connect midpoints to build faces. For each edge of each midslice, track
its midpoint to each candidate edge of each left- and right-bounding critical
slice. Using a specially crafted homotopy which couples the midpoint, top,
and bottom points, as in [5], we establish the network of connections between
midpoints. This step corresponds to the bottom left in Fig. 1, where each
color corresponds to an individual face. After this step is complete we have
a topologically correct triangulation of the surface.
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Fig. 1. Computing a cell decomposition of the Zitrus

5. Refine and smooth. The initially computed decomposition is rough, con-
taining only the bare skeleton of the surface. Since each decomposition is
equipped not only with a graph of connecting points, but also with a homo-
topy and generic point, we can refine the decomposition to obtain a more
accurate geometric representation of S. The lower right figure of Fig. 1 is a
moderately fine smoothing of the Zitrus.

3 Singular Curves on Surfaces

The Zitrus surface described in §2 is almost smooth since it has only two singular
points. In the almost smooth case, the singular points are simply part of the
critical set. In particular, numerical tracking does not need to be performed
starting from such singular points.

In contrast, when the surface contains a curve of singularities, one needs
the ability to numerically track along these singular curves to compute the cell
decomposition. An example of such a curve is the “handle” of the Whitney
umbrella [7], i.e., the z-axis, x = y = 0, in the surface implicity defined by
x2 − y2z = 0. As another example, consider the Solitude surface [7] defined by
the vanishing of

f(x, y, z) = x2yz + xy2 + y3 + y3z − x2z2. (2)

There are two singular lines on this surface, one is defined by x = y = 0 while
the other is defined by y = z = 0. In order to perform tracking on such singular
curves, we use isosingular deflation [6], which is summarized in the next section.
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4 Isosingular Deflation

Deflation is a regularization procedure for an irreducible algebraic set X ⊂ CN

which produces a new polynomial system having X as an irreducible component
of generic multiplicity 1. The advantage of such a polynomial system is that it
facilitates numerical path tracking on X . Deflation was first introduced in the
specific setting of polynomial systems in [8]. The following summarizes the more
recent isosingular deflation approach of [6], depending on determinants, as is
currently being used in Bertini real.

Let f : CN → Cn be a polynomial system and S ⊂ V(f) ⊂ CN be an
irreducible surface of generic multiplicity 1. That is, S is an irreducible algebraic
set of dimension 2 such that dimnull Jf(x) = 2 for generic x ∈ S, where Jf(x) is
the Jacobian matrix of f at x. Suppose that C is an irreducible curve contained
in the singular set of S, that is,

C ⊂ {x ∈ S | dimnull Jf(x) > 2}.

Isosingular deflation results in a polynomial system g(z) such that C is an ir-
reducible component of the solution set of g(z) = 0 of generic multiplicity 1.
Letting c be a generic point of curve C, isosingular deflation proceeds as follows:

1. Initialize g := f .
2. Loop until dimnull Jg(c) = 1:

(a) Set r := rank Jg(c).
(b) Append to g the (r + 1)× (r + 1) determinants of Jg(x).

This loop will terminate and produce a polynomial system that can be used to
perform computations on C. If the surface S was of multiplicity greater than
1, a minor modification to the stopping criterion would give a procedure for
deflating S.

The following example illustrates the deflation of the singular curves on the
Solitude surface.

Example 1. Let f be as in (2) and consider C = {(a, 0, 0) | a ∈ C}. For simplicity
of presentation, we take c = (1, 0, 0). Since all first order partial derivatives of f
vanish at c, r = 0 and we add all first partial derivatives to f , yielding

g(x, y, z) =

⎡⎢⎢⎣
x2yz + xy2 + y3 + y3z − x2z2

y2 + 2xyz − 2xz2

2xy + x2z + 3y2z + 3y2

x2y − 2x2z + y3

⎤⎥⎥⎦
It is easy to verify that dimnull Jg(c) = 1 so g has deflated C.

Now, we consider the other curve C′ = {(0, 0, a) | a ∈ C} with c′ = (0, 0, 1).
The first iteration of isosingular deflation again produces g as above, but since
dimnull Jg(c′) = 2, we need to perform another iteration. Adding in the 2× 2
determinants of Jg(x, y, z) produces a polynomial system g′ : C3 → C22 such
that dimnull Jg′(c′) = 1.
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Fig. 2. Comparison of results from decomposition without deflation (left) and with
deflation (right). This is the raw decomposition before refinement.

In the procedure above, the required null space dimension was known a pri-
ori The required determinants are computed via MATLAB with the rank r com-
puted in multiple precision using Bertini. For deflating at points for which the
corresponding dimension may not be known, we use as stopping criterion the
isosingular stabilization test described in [6], as implemented in Bertini.

5 Decomposing Surfaces

With isosingular deflation [6], we have now removed the almost smooth restric-
tion from [5] so that this new algorithm can produce a cell decomposition of
the set of real points on a complex surface regardless of the presence of singular
curves on the surface. To demonstrate, Fig. 2 presents the Solitude surface de-
fined by (2). The figure on the left shows the decomposition where the presence
of the singular curves is ignored, demonstrating the failure of the decomposi-
tion method without using isosingular deflation. The figure on the right uses
isosingular deflation to track along the singular curves, yielding a complete de-
composition. In this figure, part of the singular line corresponding to the x-axis
is isolated in that it is not an edge of any face, similar to the “handle” of the
Whitney umbrella [7].

6 Conclusion

The use of isosingular deflation permits numerical path tracking to be performed
on singular sets. We have applied this technique to remove the almost smooth
assumption for the algorithm presented in [5] to allow one to compute a cell
decomposition of the real points of any complex surface. There is no theoretical
limitation on the number of variables. The drawback of using the determinantal
formulation of isosingular deflation is the potentially large number of additional
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polynomials added to the system. We are currently exploring various approaches
for limiting the number of additional polynomials needed to deflate the compo-
nents of interest.
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Abstract. Computing with curved geometric objects forms the basis for
many algorithms in areas such as geometric modeling, computer aided
design and robot motion planning. In general, such computations cannot
be carried out reliably with standard machine precision arithmetic.

Slightly more than a decade ago robustly and efficiently dealing with
conics and Bézier curves in 2D and quadrics and splines in 3D was consid-
ered an enormous challenge. This picture has changed. Our first successes
were achieved for conics and quadrics, mainly relying on properties of the
involved low-degree polynomials. In a second step, to tackle general al-
gebraic curves and surfaces, we exploited more involved mathematical
tools such as subresultants. In addition with clever filtering techniques,
these methods already beat the previous specialized solutions. The most
recent drastical success in performance gain for algebraic curves is due
to several ingredients: The central one consists of a cylindrical algebraic
decomposition with a revised lifting step. Using results from algebraic
geometry we avoid any change of coordinates and replace the costly
symbolic operations by numerical tools. The new algorithms for curve
topology computation only need to compute the resultant and the gcd
of bivariate polynomials and to perform numerical root finding. For the
symbolic operations, we can rely on implementations exploiting graphics
hardware, which is several magnitudes faster than corresponding CPU
implementations.

All algorithms have been implemented as contributions to the C++

project Cgal. Excellent practical behavior of our algorithms has been
shown in exhaustive sets of experiments, where we compared them with
our previous and recent competing approaches. Beyond, the algorithms
are also proven to be efficient in theory. Recent work shows that our
implemented and practical algorithm needs Õ(d6+d5τ ) bit operations (d
degree, τ bitsize of coefficients) to compute the topology of an algebraic
curve and for solving bivariate systems.
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1 Computing with Algebraic Curves and Surfaces

Computing with geometric objects has always been a challenge. The first im-
plementations in the 90s, that only dealt with linear objects, basically line seg-
ments, were facing robustness issues due to rounding errors of built-in machine
arithmetic. It was needed to implement reliable number types. Such types (e.g.
software rational numbers) solved the robustness issue, but introduced a perfor-
mance penalty. They are much slower than machine arithmetic, due to memory
allocations. Software libraries, like Cgal, the Computational Geometry Algo-
rithms Library1 [14], overcome this disadvantage by relying on various filter
techniques, such as static, dynamic and combinatorial ones. The state-of-the-
art implementations of many algorithms loose only a few percent of runtime,
compared to non-reliable versions based on hardware arithmetic. Besides the
numerical problems geometric computing is constantly handling with degener-
ate situations.

Dealing with more general algebraic curves and surfaces complicates both as-
pects. Real algebraic curves and surfaces (of degree d) are defined as
vanishing sets of bivariate and trivariate polynomials:

Cf := {(x, y) ∈ R2 | 0 = f(x, y) ∈ Z[x, y]}
and

Sf := {(x, y, z) ∈ R3 | 0 = f(x, y, z) ∈ Z[x, y, z]}.
The simplest algebraic curves and surfaces are lines in 2D
and planes in 3D, the ones with d = 1. Going beyond that
limit has been considered practically impossible slightly
more than a decade ago. Meanwhile, software that breaks
through the linear limit has been presented. Computing
with algebraic curves and surfaces can be divided into two tasks:
1. Analyzing the topology of an object: finding a straight-line edge graph or

triangulation that is isotopic to a given curve or surface, respectively.
2. Computing the arrangement induced by a set of n objects: decomposing the

ambient space into maximal cells such that all points of a cell are attained
by the same set of objects.

The later is basically achievable for algebraic curves in terms of the former using
Cgal’s arrangement package [16]. The main technique to construct a planar
arrangement is the plane-sweep algorithm. In order to use Cgal’s implementa-
tion, it is required to provide a set of geometric predicates and constructions:
for instance, decomposing a curve into x-monotone subcurves, comparing two
points lexicographically, determining the relative vertical order of a point and an
x-monotone subcurve, or computing the intersections of two x-monotone sub-
curves. With basically the same needs, Cgal provides tools to overlay two ar-
rangements, perform point location queries, or create curved polygons. Comput-
ing arrangements in 3D while handling all degeneracies is still not fully achieved,
even if only linear objects (like planes or triangles) play a role.

1 http://www.cgal.org
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Algebraic Curves. The general technique how we analyze a single algebraic curve
follows the classical cylindrical algebraic decomposition scheme [6], which exploits
the fact that algebraic curves are delineable. That is, a curve can be split, over
disjoint intervals, into arcs, where each arc can be represented by an implicit
function. It consists of three steps: Projection, Lifting and Connection. The
projection step consists of first computing the resultant res(f, fy, y), whose roots,
as known from elimination theory, form a superset of the x-coordinates of a
curve’s Cf x-critical and singular points and then isolating the real roots of this
univariate polynomial. It is known that for a curve of degree d, the resultant has
degree O(d2). Next, these coordinates are lifted : For a given root x0, this is done
by isolating the real roots of f(x0, y), which is the main difficulty, in particular for
high-degree algebraic curves: The univariate fiber polynomial f(x0, y) is usually
formed by non-rational coefficients and has multiple roots. In
addition, we lift rational values in all open intervals induced
by the x-critical coordinates. This is done by choosing for
each interval I a rational qI and isolate the real roots of
the univariate polynomial f(qI , y) ∈ Q[y]. It has rational
coefficients and only simple roots. The result of the lifting
phase is the vertex set of the desired straight-line graph.
The final connection step inserts segments in between these
vertices to capture the topology of the curve.

The analysis of a single curve is required to split a curve
into its x-monotone subcurves, the other needed predicates
can be expressed in terms of the analysis of pairs of curves
(Cf , Cg). That task is similar: Project and compute x-critical
coordinates by additionally isolating the real roots of another
resultant, namely res(f, g, y). Next, these values (and rational coordinates for
each induced open interval) are lifted: We obtain a vertical order of the two
curves over the intervals and over each x-critical coordinate. Only for the latter,
the order can contain discrete intersection information (if f and g are coprime,
which can be assumed by applying a pre-processing; otherwise, two curves share
a common part).

Our achievements for low-degree and arbitrary-degree curves mainly differ in
the technique to lift x-critical points. For conics, details are in [1], the resultant of
a single curve is a polynomial of degree 2, which has either two simple solutions
or a multiple rational one. As Cfy is a line, the critical points can be expressed
by one-root numbers, that is, they are of the form a + b

√
c, a, b, c ∈ Q, c ≥ 0.

Similarly, the y-coordinates of a conic can be parameterized in x with using
at most one square-root. The coordinates of intersection points are roots of a
polynomial of degree 4, and thus are either simple roots, or one-root numbers.
There exists number types in software (CORE::expr, leda::real) that allow
exact arithmetic with such numbers, which enables to implement the needed
predicates.

For cubics, algebraic curves of degree 3, the analyses of curves and pair of
such exploit geometric properties of the curves in order to avoid arithmetic on
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irrationals as far as possible [9]. This goal is basically achieved by a careful
case analysis, for which the approach often relies on evaluations of fy and fyy,
the detection of sign changes, and signs of discriminants. For the analysis of
pairs of cubics, the approach already needs for the most general case the first
subresultant: sres1(f, g, y) in order to decide an intersection over a critical xi. The
overall distinction is lengthy and also imposes various conditions on the input
curves, which often requires the approach to transform into a generic coordinate
system (shearing) and back (shearing-back), which comes at additional cost.

The work for cubics also builds the basis for general algebraic curves. Both fol-
low the abstraction that the analysis of single curves and pairs of them are suffi-
cient to compute arrangements.The work on single curves [8] introduces a uniform
numerical lifting (bitstream-Descartes method), which however needs additional
counts obtained from sign evaluations of the principal Sturm-Habicht coefficients
(which are based on subresultants). The approach still requires shearing, but de-
tects non-generic positions along the way, namely when the bitstream-Descartes
method fails to isolate f(xi, y) in case of multiple roots. If so, the triggered shear-
ing and shearing back requires refineable approximations to match critical events
(and the connecting arcs) in the original and sheared coordinate system. These
ideas have been extended to analyze pairs of curves in [7]; that is, to reach com-
pleteness, expensive subresultants and resource-consuming shearingmust be used.

Both disadvantages for arbitrary algebraic curves disappeared in our newest
approach [2], which only deviates in the lifting phase(s) from the previous one.
The default lifting method is based on a numerical but certified (complex) root
solver which, in iterations, lower-bounds the number of “points” along a fiber. As
soon as this number matches an upper bound the fiber is lifted. The upper bound
is computed using a previous result that relates the intersection multiplicities of
the curves Cf and Cfx and Cfy to the multiplicities of roots of two resultants.
We have shown that this match is almost always attained. In particular, it holds
for curves in generic position. Only for a few special cases, this highly efficient
lifting fails and triggers a more expensive, but complete lifting method, based on
Bisolve, a solver for bivariate polynomial systems. It is used to refine the roots
of f(xi, y) with respect to roots of derivatives f (k)(xi, y) to guide a bitstream-
Descartes method in his decisions. Bisolve, which only needs resultant and
bivariate gcd computations, is also used to eventually compute the intersections
of a pair of curves along a fiber, and thus replacing the costly subresultants
and shearing. As a performance booster, the two remaining symbolic operations
(resultants and gcd) are now computable in a highly-parallel fashion on graphics
hardware, and thus do not form any longer bottlenecks.

The connection phase for arbitrary algebraic curves is performed either with a
simple enumeration, in case there is only one critical vertex along a fiber, or with
a continuation argument of the arcs in the neighborhood of the lifted vertices.
Obtaining the connection in the later case only requires to isolate real roots of
rational polynomials and to compare them.

Algebraic Surfaces. Our work on algebraic surfaces is also based on elimination
theory. In [4] we consider arrangements on one quadric q1 (an algebraic surface
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of degree 2) induced by its intersection with n − 1 other quadrics q2 . . . qn. We
project the silhouette of q1 and the intersection curves q1 ∩ qi into the plane,
which results in degree 2 and 4 curves. The analysis of the projected curves
is shaped as a lengthy case distinction that heavily relies on their low degree.
However, it allows the curves to be split into x-monotone pieces where each can
- again exploiting low-degrees - be lifted uniquely onto the lower or upper part
of q1 using ray-shooting techniques.

As for a general curve, the work to stratify a general algebraic surface [5]
also uses general techniques. The first step is to obtain a special planar arrange-
ment A: The points of each of its cells are invariant with respect to the local
degree np of f(px, py, z), the local gcd degree kp and, as shown, also the local real
degree mp (i.e. the number of lifted cells over a planar cell). A is constructed
using the presented planar approach by considering curves of degree at most
d(d− 1) in an iterative way: the projected silhouette of Sf , the coefficients of f
and the principal Sturm-Habicht coefficients. Neighboring cells that will result in
the same (n, k)-signature are merged immediately. The finalA consists of at most
O(d4) cells. Lifting these cells requires to isolate the real roots of f(px, py, z), for
(px, py) being a representative point of a given cell of A. Using the bitstream-
Descartes method for this task finally yields to describe the topology of Sf with
O(d5) items. The approach never assumes generic position, however suffers from
the use of expensive subresultants. The adjacency between lifted items is mainly
computed from a bucketing technique based on continuation arguments, with
a complication if a vertical line is contained in Sf . The stratification has been
extended to obtain an isotopic triangulation of the surface.

2 Software

Our software for general algebraic curves and surfaces is implemented in C++ in
the scope of Cgal.2 It relies on the library’s provided functionality for arithmetic
and polynomials. Honestly, lots of tools in these packages have been achieved
while working on the described goals.

Throughout the library, we follow the generic programming paradigm. This is
used to separate combinatorial tasks from geometric and numerical operations.
This allows, for instance, to parameterize our layer with different sets of number
types, like the ones provided by Gmp, Leda or Core. We can also exchange the
essential method to isolate real roots of univariate polynomials. Options here are
isolators from Cgal, as well as the method provided by Rs.3. We also provide
a bivariate algebraic kernel [3] and a traits class to use algebraic curves within
Cgal’s arrangement package. Arcs of algebraic curves can also be visualized in
a reliable and efficient way by combining the computed topological information
with a tracking algorithm [10]. The analysis of single algebraic curves and the
computation of arrangements of such is also demonstrated in a web-demo4.

2 The general implementations outperform the specialized ones, thus we skip their
exposition here.

3 http://vegas.loria.fr/rs/
4 http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi
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Performance. For comparison, we first want to mention older running times.
When conics became available in 2002, it took (on a reasonable machine at that
time) about 19s to compute the arrangement of 30 random conics and 49s for 60
random ones. It was claimed that filtering can improve this performance. The
software for cubics needed for random 30 (or 60) cubics only 6.1s (25.1s); de-
generated ones were slightly slower. Already the first implementation for general
algebraic curves outperformed both approaches. The speedup is mainly due to re-
lying on numerical decisions more than on explicit representation for low-degree
algebraic numbers. An arrangement of 50 random degree 6 curves became com-
putable in about 50s. Finally, the biggest performance gain was observed with
the revised analysis of single algebraic curves [2]. This approach avoids subre-
sultants, exploits graphics hardware for resultants and gcd, relies on Rs for real
root solving and usually lifts with a very cheap numerical root solver. Figure 1
shows large improvement factors between the previous and the newest approach
for general algebraic curves:

It is important to mention now that the current algorithms are not only faster
than previous ones, but also capable of handling geometric difficult instances
(singular) at least as fast as seemingly easy ones (random ones). The theoretical
performance is also analyzed. [12] uses amortized analysis to obtain the best
known deterministic bounds for computing the topology of algebraic curves:
The new bound of Õ(d6+ d5τ) bit operations (d degree, τ bitsize of coefficients)
improves the state of the art by four magnitudes.

random degree 15 translated

16.82 1.25x 13.31 159.22 53x 2.97
projected L6

38.91 17x 2.24 224.19 107x 2.10

Fig. 1. Speedups for analyzing different kinds of algebraic curves. Left time: seconds
for previous approach with CPU-subresultants. Right time: seconds for approach with
numerical lifting filter. Both use resultants on the graphics card!
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Stratifying an algebraic surface with the presented approach needs for many
well-studied instance ofmoderate degrees often about one second. However, higher
degree instances (such as random, interpolated or projected surfaces) require sig-
nificantly more time [5]. We foresee that running times should drastically improve
when eventually switching to the newest numerical lifting to compute A and for
lifting A’s a cells into 3D.

3 Applications

Computing with algebraic curves and surfaces has many applications, or is
essential in many as subtasks. We list a few of them with details:

– Offsets of polygons need conics as exact representations [15]. Beyond polyg-
onal shapes offsets are defined as parts of higher-degree algebraic curves,
whereas to combinatorially pick the right parts constitutes a major diffi-
culty. (left picture)

– Voronoi diagrams subdivide the ambient space of n objects into n cells, one
for each input object that represents the influence of an object with respect
to all other. Voronoi diagrams exist in all kind of dimensions, for all kind of
objects and with various distance measures. The Voronoi diagram for lines
in Euclidean 3D needs support by arrangement of algebraic curves. Namely,
each cell is represented as the lower envelope of a minimization diagram of
the trisectors in the parameter space of a cylinder; see [11]. (middle picture)

– The main task in robot motion planning is to decide whether there exists
a collision free path from the current position of the robot to the desired
destination. The robot’s configurations are modeled in a (high-dimensional)
configuration space, which is partitioned by a set of obstacles into a free and
a forbidden space. It remains to compute the cell of the starting configuration
and to decide whether the goal configuration belongs to the same cell. For
polygonal robots in the plane this task is known as the Piano Mover’s prob-
lem, where the mentioned partitioning is induced by algebraic curves [13].
(right picture)
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Abstract. This paper presents three algorithms to compute orthogonal
projection of rational curves onto rational parameterized surface. One of
them, based on regular systems, is able to compute the exact parametric
loci of projection. The one based on Gröbner basis can compute the
minimal variety that contains the parametric loci. The rest one computes
a variety that contains the parametric loci via resultant. Examples show
that our algorithms are efficient and valuable.

Keywords: Orthogonal projection, Point projection,Curve projection,
Rational curve, Rational surface.

1 Introduction

Computing the projection of a point onto a surface is to find a closest point
on the surface, and projection of a curve onto a surface is the locus of all
points on the curve project onto the surface. The orthogonal projection prob-
lem attracted great interest in minimal distance computation[7,3], calculating
the intersection of curves and surfaces[11], surface curve design[16,6], curve or
surface selecting[13], shape registration[18]. And many algorithms have been
developed[8,4,9,12,15]. Among these methods,the commonly steps are to find
the approach projective point in normed space by iteration techniques,which
rely on good initial values, and then determine the approximate parameters in
parametric space, which is called a point inversion problem.

Numerical methods above are efficient and stable in computing orthogonal
projection,and are easy applied. However, there exist common drawbacks: The
computation relies on samplings and the step size determines the accuracy of the
result. The projective locus might be invisible while the locus is smaller than the
step size. And the curve is always assumed to keep close enough to the surface
so that a single solution is guaranteed. Symbolic methods would be necessary
to overcome the shortcomings. Previous applications of symbolic methods in
CAGD could be seen in [2,21,10]. In order to apply symbolic methods, we only
concern about curves and surfaces that have rational parametric representations.
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As known to all that a commonly used representation of surface and curves is
NURBS[17], which is formed by rational patches. And since the parametric locus
could uniquely determine the projection in 3D space, we focus on the parametric
locus of orthogonal projection. Moreover, the range of surfaces and curves are
restricted in R3.

Classical symbolic tools applied in this paper are regular systems[19], Gröbner
basis[1] and resultant(see [14,5]). With the rational assumptions of curves and
surfaces,the orthogonal condition would be transformed into a simple polynomial
system. Then the orthogonal projection problem equals to determine the real
solution of the polynomial system, which can be solved by symbolic or mix
symbolic-numeric techniques.

In this paper,three algorithms are presented to compute the orthogonal pro-
jection of a rational parameterized curve onto a rational parameterized surface.
The algorithm based on regular systems is able to compute the exact loci of or-
thogonal projection, and the false points will be detected. By means of Gröbner
bases, we can get the minimal variety that contains the projective loci. And
the resultant method efficiently computes a variety that contains the projec-
tive loci. The former two algorithms can particularly be used to compute point
projections.

Compared with numerical algorithms,our algorithms have distinct advantages:

1. We generate the exact results without numerical errors.
2. Both point projection and curve projection are included.
3. There’s no point inversion problem involved since we directly concern about

the parametric loci.

In addition,the decomposition method in [20] would generate duplicate ze-
ros between different regular systems and Huang Yanli[10] proposed a method
to simplify the result. We improve Huang’s method and directly consider the
symbolic representation of zeros. Once the redundancy of zeros is judged, the
corresponding regular system could be deleted without changing the zeros.

The rest of the paper is organized as follows. Section 2 presents the main
theorems that calculate the orthogonal projections. And section 3 describes the
algorithms based on the theorems in section 2. In section 4, we demonstrate
non-trivial examples and experiment results.

2 The Main Theorems

In this section, we consider the orthogonal projection of a rational parameterized
curve onto a rational parameterized surface. In the rest of the paper, let Φ(t) =

(Φ1(t)
Φ0(t)

, Φ2(t)
Φ0(t)

, Φ3(t)
Φ0(t)

) be the parametric equation of rational curve C, and

Ψ(u, v) = (
Ψ1(u, v)

Ψ0(u, v)
,
Ψ2(u, v)

Ψ0(u, v)
,
Ψ3(u, v)

Ψ0(u, v)
)

be the parametric mapping of surface S.
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Given a rational parameterized curve C with parametric equation Φ(t) and a
rational parameterized surface S with parametric equation Ψ(u, v), the orthog-
onal projection of C onto S is defined to be the set ΓCS of points (u, v, t) that
satisfying the following condition:

(Ψ(u, v)− Φ(t)) ×N(u, v) = 0, (1)

where N(u, v) stands for the normal vector of Ψ(u, v) of S at (u, v), and “×”
denotes the cross product of two vectors. Since N(u, v) is parallel with Ψu(u, v)×
Ψv(u, v), the above condition can be written as:{

(Ψ(u, v)− Φ(t)) · Ψu(u, v) = 0,
(Ψ(u, v)− Φ(t)) · Ψv(u, v) = 0.

(2)

Here “·” is the operator of the scalar product. The problem of orthogonal pro-
jection is to find the solution of system (2). And note that (2) can be treated as
polynomial systems when Φ, Ψ are rational mappings.

To study the locus of orthogonal projection in three dimension space, we can
equivalently discuss the parametric locus of orthogonal projection. We denote
ΓCS(u, v) = {(u, v)|∃t, s.t.(u, v, t) ∈ ΓCS}.

Denote

PCS1 =
∑3

i=1(ΨiΦ0 − ΦiΨ0)(ΨiuΨ0 − ΨiΨ0u),

PCS2 =
∑3

i=1(ΨiΦ0 − ΦiΨ0)(ΨivΨ0 − ΨiΨ0v),
PCS = {PCS1, PCS2}, QCS = Ψ0Φ0,QCS = {Ψ0, Φ0}.

Theorem 1. [T1,U1], · · · , [Tk,Uk] are regular systems with the variable order

u < v < t, such that Zero([PCS ,QCS]) =
⋃k

i=1 Zero([Ti,Ui]). Then

ΓCS =

k⋃
i=1

Zero([Ti,Ui]),

And ΓCS(u, v) =
⋃k

i=1 Zero([T
(2)
i ,U

(2)
i ]).

Remark 2. For the polynomial system [PCS ,QCS], an algorithm

RegSer([PCS,QCS], [u, v, t]) = {[T1,U1], · · · , [Tk,Uk]}

such that Zero([PCS ,QCS]) =
⋃k

i=1 Zero([Ti,Ui]) had been established[19],
where [u, v, t] means the variable order is u < v < t.

Theorem 3. G is a Gröbner basis of

I = 〈PCS1, PCS2, zQCS − 1〉

under a variable order u < v < t < z. Then

ΓCS = Zero(G ∩ R[u, v, t]).

Furthermore,ΓCS(u, v) = Zero(G ∩R[u, v]).
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Theorem 4

Zero(Res(PCS1, PCS2, t))
⊇ Zero(Res(PCS1, PCS2, t)) \ Zero(Ψ0)
⊇ ΓCS(u, v).

Furthermore, if

1. Zero(Res(PCS1, PCS2, t)) ∩ Zero(lc(PCS1, t)) ∩ Zero(lc(PCS2, t)) = ∅;
2. Zero(Res(PCS1, PCS2, t)) ∩ Zero(Cof(PCS1, t)) = ∅,

and Zero(Res(PCS1, PCS2, t)) ∩ Zero(Cof(PCS2, t)) = ∅,
3. Zero(Φ0) ∩ Zero(PCS) = ∅.

then
Zero(Res(PCS1, PCS2, t)) \ Zero(Ψ0) = ΓCS(u, v).

Remark 5. In Theorem 4, Res(PCS1, PCS2, t) is the resultant of PCS1 and
PCS2 in variable t. Theorem 4 show the relationship between the loci of the
projection and the resultant method.

3 Algorithms

In this section, a series of algorithms will be concisely introduced according to
the theorems discussed above.

For a polynomial set P and a set M ⊆ K̂2, we denote Zero([P,M ]) =
Zero(P)−M . Then for a polynomial system [P,Q], we have

Zero([P,Q]) = Zero(P) \
⋃

Q∈Q Zero(Q)

= Zero(P) \
⋃

Q∈Q Zero(P ∪ {Q})
= Zero([P,

⋃
Q∈Q Zero(P ∪ {Q})]).

Let

Ω = {[T1,M1], · · · , [Tk,Mk]},

we define Zero(Ω) =
⋃k

i=1 Zero([Ti,Mi]).
Theorem 1 induces that the exact loci of projection could be decomposed

into the union of zeros of regular systems, which could be in a complex form.
In order to analyze the result easier, we developed an algorithm,denoted by
Simplify(Ω),which is improved from SIM[10], to simplify regular systems.

Given a rational curve C and a rational surface S, Algorithm 2 computes
the exact parametric loci of the orthogonal projection of C onto S basic on
theorem 1.

According to theorem 3, Algorithm 3 returns the minimal variety that con-
tains ΓCS(u, v). AndAlgorithm 4, deduced from theorem 4, calculates a variety
that contains ΓCS(u, v) .
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4 Examples and Comparision

Example 1. We consider a simple case with an algebraic surface S : Ψ(u, v) =
(v2 + u, 4uv + 2, u2 + 3) and an algebraic curve C : Φ(t) = (t+ 3,−2t, 5t+ 5).

Firstly,

PCS1(u, v, t) = (8v − 10u− 1)t+ v2 + u+ 2(u2 − 2)u− 3 + 4(4uv + 2)v,
PCS2(u, v, t) = (8u− 2v)t+ 2(v2 + u− 3)v + 4(4uv + 2)u.

In step 3 of Algorithm 2, Ω = {[T1,U1], [T2,U2], [T3,U3]}, where

T1 = {−13uv+ 9u2v − 4u− 4v4 − 2uv2 + 8v2 − 3uv2 + 39u3v + 14u2 + 4u4},
U1 = {−3278u+ 10228u2 + 38016u4 + 7512u3 + 127},
T2 = {1− 8v + 10u,−492v2 − 1351 + 2824v + 6912v3},
T3 = {−3278u+ 10228u2 + 38016u4 + 7512u3 + 127, 3392u3 + 412u2 − 1280u2

v − 464uv − 452u− 1024uv2 + 1016v + 127− 64v2 − 512v3},
U2 = ∅.U3 = ∅.

And Huang’s[10] algorithm SIM outputs {[T1,U], [T3, ∅]}, where

U = {( 1
22 ,

2
11 ), (

1
22RootOf(4Z

3 + 19Z2 − 3752Z − 8953), 1
22 ), (

1
2α, β)},

α = RootOf(216Z3 + 105Z2 + 242Z − 127),
β = RootOf(−1728Z3 + (1728 + 216)Z2 + (1080− 3429)Z − 1270

+348α2 + 2366α).

While algorithm Simplify(Ω) yields {[T1, {( 1
22 ,

2
11 )}]}. Compared with algo-

rithm SIM, algorithm Simplify returns a more laconic result by directly com-
puting the zero sets.

Algorithm 3 returns Zero(T1), while Algorithm 4 returns the same vari-
ety. And Genus(T1[1]) = 3, so the variety couldn’t be rational parameterized.
Furthermore, ( 1

22 ,
2
11 ) ∈ Zero(lc(PCS1, t))∩Zero(lc(PCS2, t)), so ( 1

22 ,
2
11 ) is not

in the exact parametric of the loci.

Example 2. consider the algebraic surface S with:

Ψ0(u, v) = 1, Ψ1(u, v) = −94.4 + 88.9v + 5.6v2,
Ψ2(u, v) = −131.3u+ 28.1u2,
Ψ3(u, v) = 5.9(u2v2 + u2v)− 3.9v2u+ 76.2u2 + 6.7v2 − 27.3uv − 50.8u

+25v + 12.1,

We randomly pick a curve C: Φ(t) = (Φ1(t)
Φ0(t)

, Φ2(t)
Φ0(t)

, Φ3(t)
Φ0(t)

) passing over S, where

Φ1(t) = (−90t− 1)(t+ 5), Φ2(t) = −4t− 200,
Φ3(t) = (−5t+ 30)(t+ 5), Φ0(t) = t+ 5.

S is a common surface in mold industry[22], and is also a popular test surface
for CNC machining methods. And note that C is a rational curve.
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Algorithm 2 yields {[T1,U1], [T2, ∅], [T3, ∅], [T4, ∅]},where

T1 = {M},U1 = {(α1, β1), (α2, β2)}.
M = 129735449752u9v4 + · · · (82terms),
|T2| = |T3| = |T4| = 2.

Since T2,T3,T4 are triangular systems with two elements,
⋃4

i=2 Zero(Ti) con-

sisted of finitely points. Furthermore, one could check that
⋃4

i=2 Zero(Ti) ⊆
Zero([T1,U1]). So the exact parametric locus is Zero([T1,U1]). And moreover,
(α1, β1,−5) and (α2, β2,−5) are in Zero(PCS), while t = −5 is not in the do-
main of Φ(t).

Algorithm 3 returns Z(M). And one can obtain Z(M) ∪ Z(u − 1313
562 ) by

means of Algorithm 4. Compared with Alorithm 3, u − 1313
562 is a redundant

branch of the projective loci. As a matter of fact, (1313562 , v,−5) is a zero of PCS,
while t = −5 is not in the domain of Φ(t).

More examples have been computed with a 3GHz CPU and 2GB memories.
And the cost of time for each algorithm have been demonstrated in table 1. And
table 2 records the number of regular systems before simplified, simplified via
SIM and simplified using Simplify. “Y” in the chart induces that Algorithm
4 have redundant branches with respect to the result of Algorithm 3, and “N”
for no.“NA” means the result is not available in 3600s or the memory reached the
hareware limit. In each example,Degree(a, b, c, d) meansmax1≤i≤3degree(Ψi) =
a, degree (Ψ0) = b, max1≤i≤3degree(Φi) = c, degree(Φ0) = d.

Table 1. Time cost of the algorithms

Degree Algorithm 2 Algorithm 3 Algorithm 4 Redundancy

EX1 (1,0,1,0) 0.016s 0.016s <0.001s N
EX2 (2,0,1,0) 0.188s 0.063s <0.001s N
EX3 (3,0,1,0) 0.032s 0.468s 0.016s N
EX4 (4,0,1,0) 0.734s 2.671s <0.001s N
EX5 (2,0,2,0) 0.203s 0.031s <0.001s N
EX6 (3,0,2,0) 596.797s 0.047s <0.001s N
EX7 (1,1,1,1) 0.078s 0.016s <0.001s Y
EX8 (2,1,2,1) 0.891s 0.297s 0.016s Y
EX9 (2,2,2,1) 0.078s 0.015s 0.032s Y
EX10 (2,2,2,2) 1.515s 0.984s 0.016s Y
EX11 (3,1,2,1) NA 113.938s 0.016s Y

Table 1 illustrates that Algorithm 2 performs well in low degree case , but
the time cost increasing fast while the degree of surface and curve increasing,
this is because the degree and the number of output regular systems in step 3
are getting enormous(see EX6 and EX11). Since most commonly used surfaces
and curves have low degree, Algorithm 2 is valuable for engineering practice.
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Table 2. Comparison on simplification methods(number of elements)

RegSer SIM Simplify

EX1 1 1 1
EX2 3 3 3
EX3 4 2 2
EX4 6 3 2
EX5 4 1 1
EX6 8 2 2
EX7 2 1 1
EX8 7 2 1
EX9 2 1 1
EX10 6 2 1
EX11 NA NA NA

Algorithm 3 is significantly better than Algorithm 2 at time cost, and
works fine while the input degree grows.

Algorithm 4 performs steady and excellent at the computation cost, but it
always generates redundant branches when the inputs are rational.

Table 2 induces that the algorithm Simplify could reduce the number of
regular systems for the parametric loci in most circumstances. And compared
with SIM, our algorithm has a more concise output.

Fig. 1. Parametric loci and 3-D curve of orthogonal projection for Example 1

Fig. 2. Parametric loci and 3-D curve of orthogonal projection for Example 2
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Abstract. In this paper, we will introduce our implementation for iso-
topic approximation of plane and space algebraic curves. The important
basic algorithm used in our implementation is real solving of
zero-dimensional polynomial systems, especially for bivariate polynomial
systems. For the topology computation of plane curves, compared to
other symbolic methods, the novelty of our method is that we can get
many simple roots on the fibers when computing the critical points of
the plane curve, which greatly improves the lifting step. After the topol-
ogy is computed, we also give a certified approximation for the plane
curve, which is a basic operation for approximating a space curve and
further for an algebraic surface. As to space curve case, the topology and
approximation are recovered from that of their projection plane curves.
We implemented our algorithms in Maple 15. The benchmarks show the
high efficiency of the implementation.

Keywords: Bivariate polynomial system, real roots isolation, plane
(space) algebraic curves, topology, isotopic approximation.

1 Introduction

To determine the topology of a given algebraic curves and to use line segments
to approximately represent the curves are basic operations in computer graphics
and geometric modeling. A mesh of a plane curve or an algebraic space curve
could be used to display the corresponding curve correctly, and is the founda-
tion of further displaying space surfaces. We consider an algebraic plane (space)
curve defined by f(x, y) = 0(correp:(f(x, y, z) = g(x, y, z) = 0)), denoted by
Cf =

{
(x, y) ∈ R2

∣∣f(x, y) = 0
} (

Cf,g =
{
(x, y, z) ∈ R3

∣∣f(x, y, z) = g(x, y, z) =

0
})

, where f, g ∈ Z[x, y, z]. Typically, the topology of Cf is given in terms of a
planar graph G embedded in R2 that is isotopic to Cf . For a geometric-topological
analysis, we further require the vertices of G to be located on Cf (ignoring the
representation error). As there are many papers study the problem of comput-
ing the topology of plane curves, we omit the corresponding references in this
extended abstract for the sake of space limitation, and we will list them in the
full paper. For the space algebraic curve, though there are some papers which

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 269–276, 2014.
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studied it [1, 4–7], the problem still needs to be explored. For example, the ef-
ficient generic position checking method, efficient and complete implementation
of the algorithms for the problem are welcome.

The paper is organized as follows. In the next section, we give some brief in-
troduction on the functions of the algorithms. The underlying theory and tech-
nique contributions are presented in section 3. Applications and Experiments
are shown in the fourth section.

2 Functionality

First we give some notations. Let Ch denote the plane algebraic curve with
defining polynomial h(x, y) ∈ Z[x, y]. Let p = (x0, y0) be a point on Cf . We call

p as an x-critical point (y-critical point) if p satisfies p ∈ Cf , ∂f∂y (p) = 0 (p ∈
Cf , ∂f∂x (p) = 0), and a singular point if p ∈ Cf , ∂f∂y (p) =

∂f
∂x (p) = 0. We briefly

introduce some main functions in our softwares.

Bivariate System Solving: This function is an efficient solver for bivariate
polynomial systems. The input of the function are a zero dimensional polynomial
system {f, g} and a rational number ε, while the output are two sets. The first
one is the isolating intervals of the real roots for the system with the length of
each interval smaller than ε, the second one is the set of multiplicities of each
real roots of the system. We can also get the linear univariate representation
(LUR) from the output of the algorithm. For more details please see [3].

LUR-Top: This function computes the topology graph of a plane algebraic
curve. The input of this function is a square free polynomial f(x, y) ∈ Z[x, y]
while the output is the topology graph of the plane curve Cf = {(x, y) ∈
R|f(x, y) = 0}. We use a modified version of Bivariate system solving to
compute the system {f, fy}. The difference is we can get the isolating intervals
for each simple points as soon as they are not in the isolating intervals of real
roots of {f, fy} on each fiber. Hence, it greatly improve the efficiency of the
algorithm.

Curve-app: This function is to used to approximate a regular plane curve. It
mainly use a modified Newton’s method to approximate a regular plane curve
segment, which consist of two ingredients. The first one is Newton’s method,
the second one is a simple check which makes sure that the approximation is
reliable.

For the detailed information about functions LUR-top and Curve-app,
please refer to [9].

LUR-3top: This function computes the topology graph and approximation of
an algebraic space curve. It mainly call the function LUR-top to compute the
topology of two projection plane curves. The topology and the approximation of
the space curve are recovered from the topology and approximation of the two
projection plane curves.
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3 Underlying Theories and Technical Contributions

In this section, we mainly introduce the underlying theories for computing the
topology graph of algebraic curves, for the bivariate polynomial systems solving,
please see [3]. For the sake of space, we just list the outline of algorithms for
computing the isotopic meshing of algebraic curves.

Isotopic Approximation for Algebraic Plane Curves
Assume f ∈ Z[x, y] be a square free polynomial. The plane curve Cf has no
vertical lines parallel to y axis. This conditions can be easily satisfied if we do a
pretreatment to the polynomial f .

Overview of the Algorithm

1. Solving the system {f, fy}:
– Project the x-critical points of the plane curve onto the x-axis and isolate

the real roots of R(x), where R(x) = sqrfree(Resy(f, fy)).
– Lifting: Lift the real zeros of R(x) to obtain the candidates of the x-

critical points of Ch.
– Certification: Certify the candidates above to make sure that each can-

didate contains exactly one x-critical point.
2. Computing on the fiber: Separating the simple roots apart from the multiple

roots of f(α, y) on each fiber x = α.
3. Connection: Compute the branch numbers for each x-critical points and

connect the plane key points appropriately. Hence we get the topology of
the plane curve.

4. ε-Meshing: Reuse line segments to approximate the plane curve such that
the error is bounded by ε.

We should indicate that the algorithm of solving the system {f, fy} has a lit-
tle difference with the function Bivariate system solving. Explicitly, we can
get the left simple roots of f(α, y) when we compute the system

{
f(α, y) =

∂f
∂y (α, y)

}
on the α fiber, which highly improves the lifting step since we need

not compute simple roots of f(α, y) any more, so it speedup the algorithm. From
the outline of the algorithm, we know the algorithm mainly involves resultant
computation and real roots isolation for univariate polynomials, this is the an-
other reason for the high efficiency of the alsorithm. For more details, please
refer to [9].

Isotopic Approximation for Algebraic Space Curves
We consider the topology computation and approximation of an algebraic space
curve. Assume C = {(x, y, z) ∈ R3 | f(x, y, z) = g(x, y, z) = 0, f, g ∈ Z[x, y, z]}.

Since we also consider the ε-meshing of the projection plane curve, we have
the following assumptions for the input algebraic space curve.

– For any x0 ∈ R, f(x0, y, z) = g(x0, y, z) = 0 has a finite number of solutions;
and

– the leading coefficients of f, g w.r.t. z have no common factors only in x.
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The main steps to obtain the topology of C are similar as that presented in [4].
But we revise some steps of the original method to compute the points on the
space curve. Now we give an outline of our method below:

Overview of the Algorithm

1. Projection: Project the space onto the XY plane and compute the topology
of the projection plane curve. This step we can use the function LUR-top.

2. Lifting: Lift the points on the Ch to obtain the space point candidates. This
is a crucial step for computing the topology of algebraic space curves. Many
algorithms use subresultant sequence to do the lifting which has been turned
out to be very time-consuming, since the process needs a large amount of
symbolic computation. We use interval polynomials to get the candidates of
the space key points which involves only real roots isolation for univariate
polynomials. Hence, the lifting process is efficient.

3. Certification: To determine which candidates contain points of the space
curve.

– We compute a rational number s with small bitsize such that the sheared
space curve C = {(x, y, z) ∈ R3 | F = f(x, y + sz, z) = 0, G = g(x, y +
sz, z) = 0} is in a weak generic position w.r.t z.

– Compute the topology of Ch̄, where h̄ = sqrfree(Resz(F,G)).
– Certify the space root candidates by comparing the space root candidates

of C and the points on the plane curve Ch̄.
4. Connection: Connect the space points using line segments by comparing the

topology of the the plane curves of Ch and Ch̄. Hence we get the topology of
the space curve.

5. ε-Meshing: Reuse line segments to approximate the space curve such that
the error is bounded by ε.

Compared to some existing methods [1, 4–7] computing generic position for the
algebraic space curves, we provide a criterion to check a weak generic position
for an algebraic space curves, and the criterion is simple and efficient. Using This
criterion, the topology computation of an algebraic space curve is transformed
into the topology computation of projection plane curves. This greatly improves
the efficiency of the algorithm. For more details, please refer to [8].

4 Application and Experiments

In this section, we main consider topology computation for algebraic curves,
As to the performance of Bivariate system solving, please refer to [3]. We
implemented our algorithm in Maple and test examples in Maple 15 on a PC with
Inter(R)Core(TM)i3-2100 CPU @3.10GHz 3.10GHz, 2G memory and Windows
7 operating system.

In the Table 1, we compare our algorithm with the algorithms in [2] indirectly.
Consider that their algorithms are implemented in C++ language and they use
the GPU acceleration technique, our algorithm is competitive.
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Table 1. Total running times for analysing the topology of five random curves from [2].
GEOTOP-BS and GEOTOP are two two algorithms in [2] for computing the topology
of the curve, the corresponding columns are the times in their paper (their code is
not available). Moreover they outsourced many symbolic computations to the graphics
hardware to reduce the computing time, For the GPU-part of the algorithm, they used
the GeForce GTX580 Graphics card (Fermi Core). We implemented our code in maple
and illustrate the times for the same benchmarks, where T1 denotes the total time
for computing Resy(f, fy), and T2 denotes total time for isolating the real roots of
Resy(f, fy). T denotes the total time for computing the topology of the curves.

Sets of five random dense curves

degree, bits GEOTOP-BS GEOTOP
LUR-top

T1 T2 T

Machine
Linux platform on a 2.8 GHz 8-Core Win 7 on 3.1GHz dual Core i3-2100

Inter Xeon W3530 with 8MB of L2 cache CPU with 256KB of L2 cache

Code language C++ Maple language
GPU speedup YES NO

06, 10 0.71 0.14 0.046 0.016 0.655
06, 512 0.15 0.29 0.219 0.047 0.874
09, 10 1.50 0.23 0.124 0.016 1.155
09, 512 2.38 0.57 2.012 0.156 3.166
12, 10 4.54 0.65 0.281 0.187 2.854
12, 512 7.37 1.49 5.553 0.468 8.628
15, 10 5.81 0.92 0.686 0.312 3.931
15, 512 11.16 2.46 13.011 0.982 17.161

Sets of five random sparse curves

06, 10 0.25 0.07 0.016 0 0.265
06, 512 0.42 0.13 0.032 0.031 0.235
09, 10 0.54 0.11 0.031 0.015 0.265
09, 512 0.78 0.20 0.499 0.157 0.899
12, 10 0.88 0.17 0.062 0.047 0.359
12, 512 1.73 0.42 1.311 0.888 2.543
15, 10 3.03 0.59 0.201 0.204 0.890
15, 512 5.88 1.22 5.054 3.401 9.126

Fig. 1. The visualization of FTT 2
3,5 Fig. 2. The visualization of FTT 2

4,5
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In Figure 1,2, we list the approximations for two complicated plane curves
which are taken from [10], for detailed information of this two curves, please
refer to [10]. In Figure 3 the defining polynomial is F ∗ = Resz(f, g), and f =
−y3−y2z+x4z+x2yz2−yz5−x5z2+x4yz2−x3y3z−x7y+x7z2+x5z4+x3y6+
y10+ z10, g = x− y− z+ z2+x2y−x2z−xyz−x4+x2yz−xy3− yz3+ y5+ z5.

Fig. 3. The topology and visualization of curve F ∗, from the above picture, we can
see, it has 11 singular points, of which 7 are isolated singular points. The time is 261.83
seconds for the topology computation while the visualization time is 97.02 second.

For the performance of space curve, we can compute the intersection of two
surfaces with degree 2 (3) and 18. As we know, the implicitization equation of
bicubic parametric surface is a polynomial with degree 18, and computing the
intersection of bicubic parametric surface with another surface has many appli-
cations in geometry modeling and computational geometry. To our knowledge,
for the exact computation of topology of algebraic space curves, there are mainly
two methods with implementations. We denote LUR-3top for the method of our
algorithm. The implementation of the method presented in [5] is included in
the software package Axel: http://axel.inria.fr/softwares/. We asked the source
code from the authors. But it does not work currently because the system of
Axel is updated but the related code of the method in [5] is not updated. So we
implement the main steps of the method with Maple by ourselves. We denote it
as SubResultant, the most time-consuming part is to compute the subresultant
of the two defining polynomials. We use the function SubresultantChain in the
package ChainTools of Maple 15. Maybe it is not a suitable way, but we can
still find some meaningful data from the comparison. We will compare with the
implementation of the method in [5] after they revise their version in our full
version paper.

In Table 2, we compare two methods for some random and dense benchmarks.
We can find that SubResultant runs faster than LUR-3top when the degrees of
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Table 2. The time (in sec) for the topology
computation of space curve of random gen-
erated dense polynomials with coefficients
between −5 to 5. The time is an averaged
one for five random space curves.

degree LUR-3top SubResultant

3-3 0.918 0.125

4-4 5.9 2.303

5-5 27.172 92.421

6-6 114.648 >3000

7-7 581.849 >3000

Table 3. The timing for the topology
computation of four given examples

Ex & degree LUR-3top SubResultant

Example 1: (4, 4) 0.827 0.281

Example 2: (6, 7) 324.466 >3000

Example 3: (2, 18) 250.195 1226.043

Example 4: (3, 18) 1724.560 >3000
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Fig. 5. Example for degree 2 and 18

defining polynomials of the space curves are low. But when the degree become
higher, it runs much slower than LUR-3top.

In Table 3, we test four explicit examples. Example 1 is taken from [5]. Ex-
ample 2 is shown in Figure 4, where f is a polynomial in three variables with
degree 6 and 77 terms, g is with degree 7 and 102 terms. Their expressions are
listed below.
f = 2− 11 y2 +2 y5 +2 z5− 18 y3− 2 z3+2 z2+2 z6+ y6 + z4 +2 x+ z+23 y+
x4yz+x3yz−2 x4−20 yz+yz2−y2z2−yz3−2 y3z2−y2z3+yz4+y5z+y2z4+
2 xy3z−2 xyz4−xy2z3+2 xy2z+x2yz3−x2yz2−x2yz−2 x2y2z+2 x3−2 x4y2+
2 x4z2 − 2 x4z + 2 x3y3 + x3y2 + 2 x3z2 − x2y3 + x2y2 − 2 x2z3 + 2 xy4 − xy3 +
2 xy+56 xz2 − yz5 +2 x5y+2 x3y− 2 x3z3 − x3z +2 x2y4 − x2y+ x2z4 − x2z−
xy5−72 xy2−xz4+xz3−x5+x6+2 x2+2 x3yz2−2 x3y2z+2 xy4z−2 xy3z2+
2 xyz3 + 2 x2z2 − 2 x4y + y3z3 + y4z − xz5 + x5z + 2 x2y3z − xy2z2 − 2 xyz,
g = −2− 2 y2− 2 y5− 2 z5− 2 z3+2 z2+ z7− y6+ z4−x− 84 z+ y− 2 x2y3z2+
x5yz−2 x4yz−2 x3y3z−x3y2z2+2 x3yz−x2y2z2+2 x2yz4+x4−xyz2−95 yz−
yz2 − 2 y3z− y2z2 + yz3 + y3z2 − 2 yz4 +2 y5z + y2z4 − y6z− xy4z2 − 2 xy3z3 −
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2 xy3z− 2 xy5z− 2 xyz4− 2 xy2z4+xy2z3− 2 xy2z− 2 x2yz3+x2yz2+2 x2yz+
2 x2y2z3 + x2y2z + x3 + 2 x5y2 + x5z2 + x4y2 + 2 x4z3 − x4z2 − 2 x4z − 2 x6z +
x3y3 − x3y2 + 2 x3z2 + 2 x2y5 + 2 x2z3 − 2 xy6 − xy4 + xy3 − 17 xz2 − 81 xz −
12 y2z + y4z2 − yz5 − 2 y4z3 − 2 y3z4 − 2 x5y − x3y4 + x3z4 − 2 x3z3 + 2 x3z −
x2y4− 74 x2y−x2z4+2 x2z+xy5+xy2+xz6+xz4−x5−x4y2z− 2 y7− 2 x6+
2 x3yz2 − 2 x2y4z − x4yz2 + 2 x3y2z − xy4z − xy3z2 + 2 xyz5 − x2z2 − 2 x4y −
2 y3z3 − y4z + xz5 − x5z − 2 x2y3z − 2 xy2z2 − 2 xyz + x6y.

From the performance of the above experiments, we can find that our algo-
rithm is efficient and stable.
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Abstract. We present a purely numerical (i.e., non-algebraic) subdi-
vision algorithm for computing an isotopic approximation of a simple
arrangement of curves. The arrangement is “simple” in the sense that
any three curves have no common intersection, any two curves intersect
transversally, and each curve is non-singular. A curve is given as the
zero set of an analytic function on the plane, along with effective inter-
val forms of the function and its partial derivatives. Our solution gener-
alizes the isotopic curve approximation algorithms of Plantinga-Vegter
(2004) and Lin-Yap (2009). We use certified numerical primitives based
on interval methods. Such algorithms have many favorable properties:
they are practical, easy to implement, suffer no implementation gaps,
integrate topological with geometric computation, and have adaptive as
well as local complexity. A preliminary implementation is available in
Core Library.

Keywords: Isotopy, arrangement of curves, interval arithmetic, subdi-
vision algorithms, marching-cube.

1 Introduction

Computing arrangements of curves and surfaces is a fundamental problem in
computational geometry. Current algorithms that guarantee the topology of the
arrangement rely on algebraic tools, such as resultants. This limits their appli-
cability to algebraic curves and surfaces. However, in many situations we need
to work with curves and surfaces defined as the zero set of an analytic function.
In such setting, we are necessarily restricted to numerical primitives, such as
evaluating the function at some set of points. In this weaker setting, therefore, it
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is very hard to provide topological guarantees. We describe a new approach for
computing curve arrangements based on purely numerical (i.e., non-algebraic)
primitives.

By a simple curve arrangement we mean a collection of non-singular
curves such that no three of them intersect, and any two of them intersect
transversally. The most fundamental case in handling the simple arrangement
of three or more curves can is the case of two curves. Let F : R2 → R2, where
F (x, y) = (f(x, y), g(x, y)) be a pair of analytic functions. It generically defines
two planar curves S = f−1(0) ⊆ R2 and T = g−1(0). The concept of hyperplane
arrangement is classical in computational geometry [4]; recent interest focuses
on nonlinear arrangements [2].

Our basic problem is the following: suppose we are given an ε > 0 and a region
B0 ⊆ R2, called the region-of-interest or ROI, which is usually in the shape of
an axes-aligned box. We want to compute an ε-approximation to the arrangement
of the pair (S, T ) of curves restricted to B0. This will be a planar straight-line
graph G = (V,E) where V is a finite set of points in B0 and E is a set of
polygonal paths in B0. Each path e ∈ E connects a pair of points in V , and no
path intersects another path or any point in V (except at endpoints). Moreover,
E is partitioned into two sets E = ES ∪ ET such that ∪ES (resp., ∪ET ) is an
approximation of S (resp., T ). The correctness of this graph G has two aspects:
topological and geometric. The latter is easy to formulate: we require that the
set ∪ES ⊆ B0 is ε-close to S in the sense of Hausdorff distance; similarly, the
set ∪ET is ε-close to T . If we specify ε = ∞, then we are basically unconcerned
about geometric closeness. Topological correctness is harder to formulate; we use
the notion of isotopy of arrangements, which is stated in the next section.

Compared to algebraic approaches (e.g., those based on resultant computa-
tion), the algorithm presented here has following advantages:

1. In the algebraic approach, one computes the overall topology of the arrange-
ment first, followed by an ε-approximation to the curves; the second step is
usually not fully addressed in these approaches. In contrast to such a “de-
coupled” approach, our algorithm provides an integrated approach, whereby
we can commence to compute the geometric approximation, even before we
determine the global topology. Ultimately, we would be able to determine the
topology exactly using zero bounds as in [13,3]. Moreover, in this integrated
approach we can cut off the computation at any desired resolution, without
fully resolving all aspects of the topology, which is useful in applications such
as visualization.

2. Our use of analytic (numerical) primitives means that our approach is ap-
plicable to the much larger class of analytic curves.

3. Numerical algorithms have adaptive as well as “local” complexity. Adaptive
means that the worst case complexity does not characterize the complexity
for most inputs, and local means the computational effort is restricted to
ROI.

One disadvantage of our current method is that it places some strong restric-
tions on the class of curve arrangements: the curves must be non-singular with
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pairwise transversal intersections in the ROI. In practice, these restrictions can
be ameliorated in different ways.

Our algorithm falls under the popular literature on Marching-cube type al-
gorithms [9]. The results we present are a generalization of the algorithms of
Plantinga-Vegter [11,10] and Lin and Yap [6] for computing isotopic approxi-
mation of a single non-singular curve or surface. We give an extension of their
results to simple curve arrangements.

2 Underlying Theory and Algorithm

Two closed sets S, T ⊆ R2 are (ambient) isotopic, denoted by S * T if there
exists a continuous mapping γ : [0, 1] × R2 → R2 such that for each t ∈ [0, 1],
the function γt : R

2 → R2 (with γt(x, y) = γ(t, x, y)) is a homeomorphism, γ0
is the identity map, and γ1(S) = T . This can be generalized to arrangement of
sets. Let S = (S1, . . . , Sm) and T = (T1, . . . , Tm) be two sequences of m closed
sets. For each non-empty subset J ⊆ [m], let SJ denote the intersection ∩i∈JSi;
similarly for T J . We say that S and T are isotopic if there exists a continuous
mapping of the form γ such that for each non-empty subset J ⊆ [m], we have
SJ * T J under γ. For simple curve arrangements, the critical problem to solve
is when m = 2. We assume that the two curves S1, S2 are restricted to a region
or box B. Our basic problem is to compute a pair of piecewise linear curves
(T1, T2) such that (T1, T2)*(S1 ∩ B,S2 ∩ B). See [1] for a general discussion of
isotopy of the case m = 1.

Interval arithmetic [7,12] is central to our computational toolkit. Let R be
the set of closed and bounded intervals in R, and R2 be the set of axis aligned
boxes in the Euclidean plane. For a function f : R2 → R, a box function is of
the form f : R2 → R such that

1. for all B ∈ R2, f(B) contains the range of f on B, and
2. for all

{
Bi ∈ R2 : i ∈ N

}
, if Bi converges monotonically (i.e., B1 ⊃ B2 ⊃

B3 ⊃ · · ·) to a point p ∈ R2 then f(Bi) converges monotonically to f(p).

Note that box functions are easy to construct for polynomials, and most of the
real functions commonly used, such as sin, cos, tan, etc.

We will use a variety of box predicates. These predicates will determine the
subdivision process. Typically, we will keep subdividing boxes until some Boolean
combination of these box predicates hold. The following pair of box predicates
is crucially used in our algorithm:

Cf
0 (B) ≡ 0 �∈ f(B),

Cf
1 (B) ≡ 0 �∈ ( fx(B))2 + ( fy(B))2.

Note that Cf
1 is taken from [11], where the interval operation I2 is defined

as {xy : x, y ∈ I}; if the predicate holds then the gradient of f in B does not
change by more than π/2. These predicates will help us approximate the isotopy
of individual curves correctly. We next consider two predicates that will allow
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us to detect boxes containing a common root of two functions f, g. First is the
Jacobian condition,

0 /∈ det( Jf,g(B)),

where JF (B) is the interval evaluation on B of the entries in the Jacobian
matrix of (f, g). It can be shown that if JC(B) holds, then B has at most one
root of f = g = 0. The second predicate is the Moore-Kioustelidis condition
(MK-condition, for short) [8], which can be viewed as a preconditioned form
of the famous Miranda Test [5]: If f is sign determinate on the left and right
segments of B and the two signs are different, whereas g is sign determinate
on the top and bottom segments and the two signs are different, then f and
g have a common root inside B (in fact, an odd number of roots). This is a
generalization to higher dimensions of the following property in one dimension:
if a continuous function changes sign on an interval then it has an odd number
of roots in the interval. Thus, if the MK-condition holds, then B has at least one
root of f = g = 0. Therefore, if both the Jacobian-condition and MK-condition
hold for a box B, then we know that B contains a unique common root of f, g.

Our algorithm uses a quadtree based subdivision of the input box B0. Let
S and T be the planar curves defined by f and g, respectively. We want to
compute a pair of piecewise linear curves that are isotopic to (S1 ∩B0, S2 ∩B0).
We use the predicates given above to decide when to subdivide a box. Initially,
we subdivide a box until one of the following conditions hold:

1. either Cf
0 or Cg

0 holds (i.e., we can exclude one of S or T from the box), or

2. at least one of Cf
1 or Cg

1 holds (i.e., change in the gradient for at least one
of them is < π/2).

So far our algorithm is similar to the algorithm in [11]. Boxes for which we
cannot exclude S and T , but which satisfy both the predicates in the second
condition are the interesting boxes as they can contain common roots of f and
g. To detect the presence of a root, we first subdivide such a box until the
Jacobian-condition holds (or we have excluded one of S or T from the box),
and then until the MK-condition holds. If both the conditions hold for a box,
we have isolated a common root of f and g. Typically, at this point we can
deduce the arrangement of the curves inside the box from the sign of the curves
on the boundary of this box. However, if the common intersection points are
located on the boundary of a box generated in the subdivision process then
the MK-condition will not terminate. To circumvent this problem, we introduce
the notion of non-aligned boxes; roughly speaking, these are boxes obtained by
scaling a box in the subdivision tree (which is an aligned box) by some constant;
see Figure 1, where a non-aligned box isolating a common root is highlighted.
The roots are then isolated inside these non-aligned boxes using essentially the
same predicates as above (but on larger boxes).

We now refine the subdivision tree further to aid in the construction of an
isotopic approximation to S and T inside B0. A crucial requirement of the sub-
division tree for constructing an isotopic arrangement is that the subdivision
should be balanced, i.e., the levels of two neighbors in the tree differ by at most
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one. This is easily attained for aligned boxes. However, for non-aligned boxes we
need an additional step to balance their interior and also to balance them with
respect to the neighboring aligned boxes. Once we have a balanced subdivision,
we can construct an isotopic arrangement by evaluating the signs of f and g at
the endpoints of the boxes; this is where the similarity with marching-cube like
methods appears. This suffices for most boxes, but there might be some boxes
for which this is not possible locally (e.g., those having a branch of S and T and
having no roots in the interior but nearby). In these cases, we need to propa-
gate the arrangement from neighboring boxes where the arrangement has been
resolved.

Fig. 1. An isotopic approximation to the arrangement of the circle x2+y2 = 2 and the
parabola y = x2. The right hand side figure is a zoom-in of the figure on the left, and
clearly shows the planar straight-line nature of the approximation. The highlighted
square on the left is a non-aligned box containing a common root. Also, note the
balanced nature of the subdivision.

Fig. 2. The figure on the left is the arrangement of the circle x2+y2 = 2 and the curve
(x2+y2+12x+9)2−4(2x+3)3. The RHS figure corresponds to the arrangement of the
curves F and G corresponding to the real and imaginary parts of a degree 5 univariate
polynomial f(z), i.e., f(x+ iy) = F (x, y)+ iG(x, y). Note that the algorithm computes
the correct arrangement in a region not containing singularities of the curves.
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3 Experimental Results

In this section we show some results of running our algorithm to compute the ar-
rangement of two curves. A preliminary version of the algorithm is implemented
in Core Library [14]. We are unaware of any other purely numerical approach
that computes an isotopic approximation to arrangement of curves, and hence
could not compare our results with other software.

4 Conclusion

The algorithm presented here is work in progress. Our initial implementation has
been promising. To truly exploit the advantages of the algorithm, we have to
test it on non-algebraic curves. The current algorithm handles a pair of curves.
The approach has to be extended to handle arrangement of curves, in general.
Moreover, removing the strong constraints on the simple nature of curves that
we can handle in a purely numerical manner is an interesting research problem.
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Abstract. Quantifier elimination (QE) over real closed fields has found
numerous applications. Cylindrical algebraic decomposition (CAD) is
one of the main tools for handling quantifier elimination of nonlinear
input formulas. Despite of its worst case doubly exponential complexity,
CAD-based quantifier elimination remains interesting for handling gen-
eral quantified formulas and producing simple quantifier-free formulas.

In this paper, we report on the implementation of a QE procedure,
called QuantifierElimination, based on the CAD implementations in the
RegularChains library. This command supports both standard quantifier-
free formula and extended Tarski formula in the output. The use of the QE
procedure is illustrated by solving examples from different applications.

Keywords: Quantifier elimination, cylindrical algebraic decomposition,
triangular decomposition, RegularChains.

1 Introduction

In the 1930’s, A. Tarski [11] proved that quantifier elimination over the reals is
possible and provided the first algorithm for real quantifier elimination, although
the complexity of his algorithm is not even elementary recursive. In 1975, G. E.
Collins [7] invented cylindrical algebraic decomposition, which opens the door for
solving quantifier elimination practically. The worst case complexity for solving
QE by means of CAD is doubly exponential in the number of variables. In
the 1990’s, QE algorithms, whose worst complexity are doubly exponential in
the number of alternative quantifier blocks instead of variables, emerged [1].
Although QE based on CAD is not favorable in terms of complexity, it remains
a practical tool for solving general QE problems and obtaining simple quantifier
free formula.

Many authors have improved the practical efficiency of CAD based on the
original projection-lifting scheme proposed by Collins. In [6], with B. Xia and L.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 283–290, 2014.
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Yang, we introduced an alternative way of computing CADs based on triangular
decompositions. In this new method, one first computes a complex cylindrical
decomposition (CCD), which partitions the complex space into cylindrically ar-
ranged cells, each of which is the complex zero set of a regular system. In a
second stage, the real connected components of each regular system are com-
puted, which all together form a CAD of the real space. A CAD computed in
this way is called an RC-CAD. The efficiency of RC-CAD was substantially im-
proved in [5], where an incremental algorithm was proposed to compute CCDs.
Moreover, in the same paper, a systematic way for making use of equational
constraints is presented.

In [4], an RC-CAD based quantifier elimination algorithm was proposed.
A preliminary implementation of it in the RegularChains library is available
through the function QuantifierElimination. The goal of this paper is to present
the implementation details of such an algorithm. Several important optimiza-
tions are also discussed. The paper is organized as follows. In Section 2, we
illustrate the user interface of QuantifierElimination by some simple examples. In
Section 3, we present some non-trivial applications of it. In Section 4, we explain
the underlying theory and algorithm as well as some optimizations realized in
the implementation.

2 Functionality

In this section, we explain the usage of QuantifierElimination by some simple
examples.

In Figure 1, the user interface of QuantifierElimination is illustrated by the
famous Davenport-Heintz example.

Fig. 1. The user interface of QuantifierElimination

The user interface of QuantifierElimination is implemented on top of the Logic
package of Maple. This package supports usual logical operators, such as ∧,
∨, ¬, =⇒ , ⇐⇒ , and represent them respectively by &and, &or, &not,
&implies, &iff. There is also a function called Normalize, which can convert a
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given logical formula into its disjunctive normal form or conjunctive normal
form. However, the quantifiers are missing in the Logic package. We create the
symbol &E and &A to represent respectively the existential quantifier ∃ and
the universal quantifier ∀. To use them, the quantified variables have to been
put in a list, as shown in Figure 1. Note that all operators in the Logic package
have the same precedence. Parentheses should be used to correctly specify the
precedence.

In Figure 1, the order of variables is not specified. In such case, QuantifierE-
limination calls the function SuggestVariableOrder of RegularChains library to
pick a “good” order by some heuristic strategy. It is also possible for the user to
choose her favorable order, as shown in Figure 2, where the variables supplied
to the function PolynomialRing are in descending order.

Fig. 2. The default output of QuantifierElimination is quantifier free formula

The default output of QuantifierElimination is a quantifier free formula formed
by polynomial constraints and logical connectives, which is the same as the
default output of QEPCAD. Such formulas are called Tarski formulas. An alter-
native output format, called extended Tarski formula, is also available, when the
option ‘output’=‘rootof’ is specified. An extended Tarski formula extends Tarski
formula by allowing indexed roots of polynomials to appear. This is illustrated
by Figure 3 and Figure 4. Such an output format is the same as the default
output of Mathematica.

Fig. 3. The output of QuantifierElimination in extended Tarski formula
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The users who are familiar with Maple’s RootOf may be surprised to see
the real index there. Indeed, it is a new feature we added to Rootof, which is
currently supported by the evalf function of Maple as shown in Figure 4.

Fig. 4. Solve QuantifierElimination in extended Tarski formula

3 Application

In this section, we present how QuantifierElimination is applied to solve several
applications.

The first application is on the verification and synthesis of switched and hybrid
dynamical systems [10]. A common problem studied in this field is to determine
if a system remains in the safe state if it starts in an initial safe state. A typical
approach to solve this problem is to find a certificate, or an invariant set, such
that the following are satisfied simultaneously:

– the initial states satisfy the invariant set
– any states that satisfy the invariant set are safe
– the system dynamics cannot force the system to leave the invariant set

Finding such a certificate can be casted into a real quantifier elimination problem.
In Figure 5, we show how to use QuantifierElimination to solve the quantifier

elimination problem casted from an 1-D robot model [10], where the details
of the casting are explained. This problem was originally solved in [10] by a
combination of Reduce and QEPCAD.

The second application is on computing control Lyapunov function. Suppose
we are given a dynamical system ẋ = f(x, u), where x ∈ Rn and u ∈ R are
respectively the state variables and the control input implicitly depending on t.
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Fig. 5. Solve a QE problem related to 1-D robot model

Definition 1. A function V (x) : Rn → R is called a control Lyapunov function
of the dynamical system ẋ = f(x, u) if the following are satisfied:

– V (x) is positive definite, that is V (0) = 0 and ∀x �= 0, V (x) > 0.
– V̇ (0) = 0 and ∀x �= 0, ∃u, such that V̇ < 0, where V̇ = ∇V (x) · f(x, u).
– V is radically unbounded, that is ‖x‖ → ∞ implies that V → ∞.

Suppose one wants to know if there exists a control Lyapunov function of a
given template V (a, x), where a are parameters. The equivalent QE problem is:

(∀x, ∃u)(x �= 0) =⇒ (V > 0 ∧ ∇V (x) · f(x, u) < 0).

If one also wants to find out if there exists u of a given template g(b, x), then
the equivalent QE problem is:

(∀x, ∃u) ((u = g(b, x)) ∧ (x �= 0 =⇒ (V > 0 ∧ ∇V (x) · f(x, u) < 0))) .

Let’s illustrate this application by a bivariate dynamical system.{
dx1

dt = −x1 + u
dx2

dt = −x1 − x32

We aim to find control Lyapunov function of the form V := a1x
2
1+a2x

2
2 and con-

trol input of the form u := b1x1+b2x2. Figure 6 shows how to call QuantifierElimi-
nation to find parameters a1, a2, b1, b2 such that control Lyapunov function exists.
The computation takes several seconds. To verify the result, let a1 = a2 = b2 = 1
and b1 = 0, we obtain u = x2, V = x21 + x

2
2 and V̇ = −2x21 − 4x22. Clearly V is a

control Lyapunov function.
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Fig. 6. Compute control Layapunov function

4 Underlying Theory

Let PF := (Qk+1xk+1, . . . , Qnxn)FF (x1, . . . , xn), where FF is a logical formula
formed by polynomial constraints with real number coefficients and logical con-
nectives and each Qi, k+1 ≤ i ≤ n, is an existential or universal quantifier. The
problem of quantifier elimination looks for an equivalent quantifier free formula
SF involving only the free variables x1, · · · , xk. Let F be the set of polynomials
appearing in FF .

The QE algorithm based on RC-CAD consists of the following steps:

1. Compute an F -sign invariant CCD of Cn, that is a CCD such that above
any given cell of it, each polynomial in F either vanishes at all points of the
cell or no points of the cell.

2. Produce an F -invariant CAD of Rn from the CCD by real root isolation.

3. For each cell c of the CAD, evaluate FF at a sample point of c and attach
the resulting truth value to c.

4. Propagate the truth value according to the quantifiers until each cell in the
the induced CAD of Rk is attached with a truth value, see Figure 7.

5. Each true cell has a defining extended Tarski formula representation. If only
extended Tarski formula output is required, then the disjunction of the rep-
resentation of all true cells, with possible simplification, gives the solution
formula SF . If Tarski formula is required, one tests if the signs of polynomi-
als in the CCD are enough to distinguish true and false cells of the CAD. If
yes, a representation of the true cells by the signs of these polynomials gives
SF . If no, the CCD is refined and the algorithm resumes from Step 2.

It was proved in [4] that the above process terminates in finitely many steps.
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(∃y)f(x, y) ≥ 0 (∀y)f(x, y) ≥ 0

Fig. 7. Propagate truth values

We explain now briefly a few optimizations that have been implemented in
QuantifierElimination. Let PF := (Qk+1xk+1, . . . , Qnxn)FF (x1, . . . , xn). If FF is
a conjunctive formula having equational constraints, then truth-invariant CCDs
and CADs are computed instead of sign-invariant ones using techniques proposed
in [5]. If FF is in disjunctive normal form and has equational constraints, then
truth table invariant CCDs and CADs are computed using algorithm presented
in [2]. If there exists m, k+1 ≤ m ≤ n, such that Qm = · · · = Qn = ∀, then PF
is converted to its equivalent form

(Qk+1xk+1, . . . , Qm−1xm−1,¬∃xm, ∃xm+1, . . . , ∃xn)¬FF (x1, . . . , xn).

This trick is particular useful if FF is of the form A =⇒ B, where A has
equational constraints, as ¬FF is equivalent to A∧¬B, which can benefit from
the techniques for making use of equational constraints in [5,2].

We have also implemented some simple partial lifting techniques when FF
is a conjunctive formula. Exploiting systematically the partial lifting techniques
as in [8] is working in progress. In [4], some simplification strategies for the
Tarski formula output of QuantifierElimination was proposed. The simplification
remains to be enhanced by integrating techniques as in [9,3]. For the extended
Tarski formula, a better technique for merging true cells is working in progress.

Acknowledgments. This work was supported by the NSFC (11301524) and
the CSTC (cstc2013jjys0002).
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Abstract. We consider the following problem of Quantifier Elimination
(QE). Given a Boolean CNF formula F where some variables are existen-
tially quantified, find a logically equivalent CNF formula that is free of
quantifiers. Solving this problem comes down to finding a set of clauses
depending only on free variables that has the following property: adding
the clauses of this set to F makes all the clauses of F with quantified
variables redundant. To solve the QE problem we developed a tool meant
for handling a more general problem called partial QE. This tool builds
a set of clauses adding which to F renders a specified subset of clauses
with quantified variables redundant. In particular, if the specified subset
contains all the clauses with quantified variables, our tool performs QE.

Keywords: Propositional logic, quantifier elimination, dependency
sequents.

1 Introduction

In this extended abstract, we describe software for solving the problem of Quan-
tifier Elimination (QE) and that of Partial QE (PQE). LetH(X,Y ) be a Boolean
formula in Conjunctive Normal Form (CNF). Given a formula ∃X [H ], the QE
problem is to find a CNF formula H∗(Y ) such that H∗ ≡ ∃X [H ].

Let F (X,Y ) and G(X,Y ) be CNF formulas. Given a formula ∃X [F ∧G],
the PQE problem is to find a CNF formula F ∗(Y ) such that F ∗ ∧ ∃X [G] ≡
∃X [F ∧G]. We will say that formula F ∗ is obtained by taking F out of the scope
of quantifiers. Obviously, QE is a special case of PQE where the entire formula
is taken out of the scope of quantifiers.

QE has numerous applications in verification. For instance, to find if a system
specified by a transition relation T (S, S′) can reach a bad state, one needs to
perform reachability analysis. Here S, S′ specify current and next state variables.
The set of states reachable in one transition from states specified by Boolean
formula G(S′) is described by ∃S[G ∧ T ]. To represent this set of states in a
quantifier-free form one needs to find a quantifier-free formula logically equiva-
lent to ∃S[G ∧ T ] i.e. to solve the QE problem.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 291–294, 2014.
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Unfortunately, the “straightforward” methods of QE seem to be very time-
consuming even in propositional logic. This is one reason that many successful
theorem proving methods such as interpolation [4] and IC3 [1] avoid QE and use
SAT-based reasoning instead. This motivates our interest in studying variations
of QE that can be solved efficiently. PQE is one of such variations. A detailed
description of our algorithm for solving the PQE problem is given in [3].

2 Application of PQE: Solving SAT by PQE

In [3], we list some applications of PQE to verification problems. In this section,
we give one more application not mentioned in [3]. Namely, we show how PQE
can be used to solve a version of SAT called Circuit-SAT. We give two methods
of reducing Circuit-SAT to PQE that are complementary to each other.

2.1 Circuit-SAT

Let N(X,Y, z) be a single-output combinational circuit. Here X and Y are the
sets of input and internal variables respectively and z specifies the output of N .
Suppose that one needs to check the satisfiability of N i.e. whether N ever evalu-
ates to 1. We will refer to this problem as Circuit-SAT (as opposed to SAT that is
the problem of checking the satisfiability of arbitrary Boolean formulas). A com-
mon way of solving Circuit-SAT is to represent N as a CNF formula H(X,Y, z)
obtained by Tseitsin transformations and then check if H ∧ z is satisfiable.

2.2 Reducing Circuit-SAT to PQE: First Method

One can reduce checking the satisfiability of formula H ∧ z above to PQE as
follows. Let F be the set of all clauses of H with literal z. We will refer to such
clauses as z-clauses of H . Let G = H \ F . Checking the satisfiability of H ∧ z
is equivalent to solving the PQE problem of finding formula F ∗(z) such that
F ∗(z)∧∃W [G] ≡ ∃W [F ∧G] whereW = X ∪Y . If F ∗(z) ≡ 1, i.e. if F ∗ consists
of an empty set of clauses, formula H ∧ z is satisfiable. If F ∗(z) = z, then H ∧ z
is unsatisfiable. In other words, if all z−clauses are redundant in ∃W [H ], then
H ∧ z is satisfiable. However, if making the original z-clauses of H redundant
requires derivation and adding to H clause z, then H ∧ z is unsatisfiable.

Indeed, if clause z is derived from H it can be resolved with clause z of H ∧ z
to produce an empty clause. This proves the unsatisfiability of H∧z. If z-clauses
are redundant in ∃W [H ] without derivation of z, the fact that H is satisfiable,
implies that assignment z = 1 can be extended to an assignment satisfying H .
This assignment obviously satisfies H ∧ z.

Note that in case H ∧ z is unsatisfiable, the final goal of a PQE-algorithm
solving the PQE problem above is the same as that of a SAT-solver. The PQE-
algorithm aims at deriving clause z that is only one resolution operation away
from producing an empty clause. However, in case H∧z is satisfiable, there is an
important difference: a PQE-algorithm can prove satisfiability just by showing
redundancy of z-clauses of H i.e. without finding a satisfying assignment.
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2.3 Reducing Circuit-SAT to PQE: Second Method

Here we give a different method of reducing Circuit-SAT to PQE.We will refer to
the methods of the previous and current subsections as first and second method
respectively. The second method is to solve the PQE problem of finding a CNF
formula K(X) such that K ∧ ∃V [H ] ≡ ∃V [z ∧H ] where V = Y ∪ {z}. That
is K is obtained by taking clause z out of the scope of quantifiers. It is not
hard to show that H ∧ z is satisfiable if and only if formula K contains at least
one clause. Every complete assignment to X falsifying K specifies an input for
which N evaluates to 1, i.e. a counterexample. So if finding one counterexample
suffices, one can stop as soon as a clause is added to K.

Notice that the first and second methods are, in a sense, complementary. To
prove unsatisfiability of H ∧ z by the first method, one needs to produce an
explicit derivation of an empty clause. However, proving satisfiability of H ∧ z
does not require finding an explicit satisfying assignment. In the second method,
the situation is the opposite. Proving satisfiability requires generating at least
one clause of H and hence finding at least one counterexample. On the other
hand, the fact that clause z is redundant in ∃V [z ∧H ] means that H ∧ z is
unsatisfiable. However, the second method does not give an explicit proof of this
fact (like generation of an empty clause).

An interesting feature of the second method is that it provides a derivation
of a counterexample. Usually a counterexample is a result of guesswork even
in a formal verification tool. For example, finding a satisfying assignment by a
SAT-solver requires guessing the decision assignments. (Implied assignments are
derived from learned clauses and do not need guesswork.) This makes it hard
to measure the complexity of finding a counterexample. In the second method,
a counterexample x is a complete assignment falsifying a clause C of K. This
clause is derived from z ∧ H and the length of this derivation can be used to
measure the complexity of finding counterexample x.

3 Quantifier Elimination by Dependency Sequents

In this section, we give the high-level view of our algorithms for QE and PQE.
Suppose that one needs to eliminate quantifiers from formula ∃X [H ]. In [2],

we developed a QE algorithm based on the notion of a Dependency Sequent
(D-sequent). This algorithm is called DCDS (Derivation of Clause D-sequents).
DCDS is based on the following two ideas. First, if one adds to H a “sufficient”
number of resolvent clauses, all X-clauses (i.e. clauses containing variables of X)
will become redundant. Second, proving clause redundancy globally is hard. So
it makes sense to use branching to prove redundancy of X-clauses in subspaces
first and then merge the results of different branches. Proving redundancy of
X-clauses of H in subspaces, in general, requires adding resolvent clauses to H .

Let q be an assignment to variables of H . A record (∃X [H ], q) → R called
D-sequent is used by DCDS to store the fact that a set R of X-clauses is
redundant in ∃X [H ] in subspace q. Assignment q is called the conditional part
of the D-sequent. When DCDS merges results of branching on a variable v, it
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“merges” D-sequents obtained in subspaces v = 0 and v = 1 using a resolution-
like operation called join. This results in producing new D-sequents that do not
have an assignment to variable v in their conditional parts. The objective of
DCDS is to derive D-sequent (∃X [H ], ∅) → HX where HX is the set of all X-
clauses of H . This D-sequents states unconditional redundancy of X-clauses in
∃X [H ]. Once this D-sequent is derived, a solution to the QE problem is obtained
by removing all X-clauses from H .

We have developed a PQE algorithm based on DCDS. This algorithm is called
DS-PQE (DS stands for D-Sequents). Suppose one needs to solve the PQE
problem of taking F out of the scope of quantifiers in ∃X [F ∧G]. DS-PQE is
based on the same two ideas as above. The main difference of DS-PQE from
DCDS , is that the former needs to prove only the redundancy of X-clauses of
F . So the objective of DS-PQE is to derive D-sequent (∃X [F ∧G], ∅) → FX

where FX is the set of all X-clauses of F . In DS-PQE, new resolvent clauses
are assumed to be added to F while G stays unchanged. So after the final D-
sequent above is derived, a solution to the PQE problem is obtained from F by
discarding the clauses of FX .

4 Software Description

DS-PQE is implemented as a stand-alone program written in C++. DS-PQE ac-
cepts formula ∃X [F ∧G] and returns formula F ∗ such that F ∗ ∧ ∃X [G] ≡
∃X [F ∧G]. Formula ∃X [F ∧G] is specified by three files. The first file describes
CNF formula F ∧ G in the DIMACS format. The second file lists the free vari-
ables of ∃X [F ∧G]. So if a variable is not mentioned in this file it is assumed to
be quantified. The third file lists the clauses of F . The resulting CNF formula
F ∗ is returned in a file in the DIMACS format.
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Abstract. Linear equalities, disequalities and inequalities on
fixed-width bit-vectors, collectively called linear modular constraints,
form an important fragment of the theory of fixed-width bit-vectors.
We present an efficient and bit-precise algorithm for quantifier elimi-
nation from conjunctions of linear modular constraints. Our algorithm
uses a layered approach, whereby sound but incomplete and cheaper lay-
ers are invoked first, and expensive but complete layers are called only
when required. We have extended the above algorithm to work with
boolean combinations of linear modular constraints as well. Experiments
on an extensive set of benchmarks demonstrate that our techniques sig-
nificantly outperform alternative quantifier elimination techniques based
on bit-blasting and Presburger Arithmetic.

Keywords: Quantifier Elimination, Linear Modular Arithmetic.

1 Introduction

A first-order theory T is said to admit quantifier elimination (henceforth called
QE) if every quantified formula ϕ in the theory is T -equivalent to a quantifier-
free formula ψ. The theory admits effective QE if there exists an algorithm
that computes ψ on input ϕ. An example of a theory admitting effective QE is
the theory of fixed-width bit-vectors. This theory is extremely important in the
context of word-level verification and analysis of hardware and software systems.
QE is a key operation in such verification and analysis tasks.

For ease of analysis, words in hardware and software systems are often ab-
stracted as unbounded integers, and QE techniques for integers [5,6] are used by
verification and analysis tools. However the results of verification and analysis
using QE for unbounded integers may not be sound [3,9] if the underlying im-
plementation uses fixed-width bit-vectors. Therefore, bit-precise QE techniques
from fixed-width bit-vector constraints is an important problem.

Boolean combinations of linear equalities, disequalities and inequalities on
fixed-width bit-vectors, collectively called linear modular constraints, form an
important fragment of the theory of fixed-width bit-vectors. Let p be a pos-
itive integer constant, x1, . . . , xn be p-bit non-negative integer variables, and
a0, . . . , an be integer constants in {0, . . . , 2p − 1}. A linear term over x1, . . . , xn
is a term of the form a1 · x1 + · · ·an · xn + a0. A linear modular equality (LME)
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is a formula of the form t1 = t2 (mod 2p), where t1 and t2 are linear terms
over x1, . . . , xn. Similarly, a linear modular disequality (LMD) is a formula of
the form t1 �= t2 (mod 2p), and a linear modular inequality (LMI) is a formula
of the form t1 %' t2 (mod 2p), where %'∈ {<,≤}. We will use linear modular
constraint (LMC) when the distinction between LME, LMD and LMI is not
important. Conventionally 2p is called the modulus of the LMC. Since every
variable in an LMC with modulus 2p represents a p-bit integer, we will assume
without loss of generality that whenever we consider a conjunction of LMCs
sharing a variable, all the LMCs have the same modulus.

The most dominant technique used in practice for eliminating quantifiers from
LMCs is conversion to bit-level constraints (also called bit-blasting [4]), followed
by bit-level QE. However this technique scales poorly as the width of bit-vectors
increases. In addition, the quantifier-eliminated formula appears more like a
propositional logic formula on blasted bits instead of being a bit-vector formula.
This reduces the scope for word-level reasoning on the quantifier-eliminated for-
mula if it is used in further reasoning. Since LMCs can be expressed as formulae
in Presburger Arithmetic (PA), QE techniques for PA such as Omega Test [6]
can also be used to eliminate quantifiers from LMCs. However using PA-based
techniques for QE from LMCs scales poorly in practice [4]. Moreover, these
techniques destroy the word-level structure of the problem.

We present efficient and bit-precise techniques for QE from LMCs that over-
come the above drawbacks in practice. In contrast to bit-blasting and PA-based
techniques, our techniques keep the quantifier-eliminated formula in linear mod-
ular arithmetic, so that it is amenable to further bit-vector level reasoning.

Our techniques have applications in model checking, program analysis and
counterexample guided abstraction refinement (CEGAR) of word-level RTL de-
signs and embedded programs. Symbolic transition relations of word-level RTL
designs and embedded programs involve boolean combinations of LMCs. LMEs
arise from the assignment statements, whereas LMDs and LMIs arise primar-
ily from branch and loop conditions that compare words/registers. QE from
formulae involving symbolic transition relation is the key operation during im-
age computation, computation of strongest post-conditions and computation of
predicate abstractions in the verification of such word-level RTL designs and
embedded programs. In a CEGAR framework, our techniques can be used to
compute abstraction of symbolic transition relation by existentially quantifying
out a selected set of variables from the transition relation, and to compute Craig
interpolants from spurious counterexamples.

There are two fundamental technical contributions of this work. First, we
present a practically efficient and bit-precise algorithm for QE from conjunctions
of LMCs called Project. Secondly, we extend Project for eliminating quantifiers
from boolean combinations of LMCs. The work presented here is a collation of
our earlier works in [1] and [2]. We have skipped the details of the algorithms
and proofs due to lack of space. For interested reader, these details can be found
in [1,2].
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2 Project : Algorithm for QE from Conjunctions of LMCs

Project uses a layered approach to eliminate quantifiers from a conjunction of
LMCs. Sound but incomplete, cheaper layers are invoked first, and expensive
but complete layers are called only when required.

2.1 Layer1: Simplifications Using LMEs

Layer1 is an extension of the work by Ganesh and Dill [8]. It involves simplifica-
tion of the given conjunction of LMCs using LMEs present in the conjunction.

For example, consider the problem of computing ∃x. ((6x+ y = 4) ∧(2x+ z �=
0) ∧ (4x + y ≤ 3)), where all LMCs have modulus 8. Note that (6x + y = 4)
can be equivalently expressed as (2 · 3x = 7y + 4). Multiplying both the sides
of (2 · 3x = 7y + 4) by the multiplicative inverse of 3 modulo 8, i.e. 3, we get
(2x = 5y+4). Replacing the occurrences of 2x by 5y+4, the original problem can
be equivalently expressed as ∃x. ((2x = 5y+4) ∧(5y+4+z �= 0)∧(2·(5y+4)+y ≤
3)). Simplifying modulo 8, we get (5y+ z+4 �= 0)∧ (3y ≤ 3)∧∃x. (2x = 5y+4).
Note that ∃x. (2x = 5y + 4) is equivalent to (4y = 0). Hence the result of QE is
(5y + z + 4 �= 0) ∧ (3y ≤ 3) ∧ (4y = 0).

Simplifications as above using LMEs present in the conjunction forms the
crux of Layer1. It can be observed that Layer1 may not always eliminate the
quantifier. For example, consider the problem of computing ∃x. ((2x + 3y =
4) ∧(x + y ≤ 3)) with modulus 8. Note that simplifications in Layer1 cannot
eliminate the quantifier in this case. Such cases are handled by the following
layers which are more expensive.

2.2 Layer2: Dropping Unconstraining LMIs and LMDs

Consider the problem of computing ∃x.A obtained after Layer1, where A is a
conjunction of LMCs. Let A ≡ C∧D∧I, where (i) D is a conjunction of (zero or
more) LMDs in A, (ii) I is a conjunction of (zero or more) LMIs in A, (iii) C is
the conjunction of the remaining LMCs in A, and (iv) ∃x. (C) ⇒ ∃x. (C∧D∧I).
Since ∃x. (C∧D∧I) ⇒ ∃x. (C) always holds, this would mean that ∃x. (C∧D∧I)
is equivalent to ∃x.C. We say that D and I are “unconstraining” in such cases.

Given ∃x. (C ∧ D ∧ I) satisfying conditions (i), (ii) and (iii) above, Layer2
uses efficiently computable conditions sufficient for condition (iv) to hold. Let
x[i] denote the ith bit of the bit-vector x, where x[0] denotes the least significant
bit of x. For i ≤ j, let x[i : j] denote the slice of bit-vector x consisting of bits
x[i] through x[j]. Let each LMI in I be of the form si %' ti, where %'∈ {≤,≥},
si is a linear term with x in its support, and ti is a linear term free of x. Let
s1, . . . , sr be the distinct linear terms in I with x in their support. We assume
without loss of generality that I contains the trivial LMIs si ≥ 0 and si ≤ 2p− 1
for each linear term si. Suppose the LMIs in I are grouped into inequalities of
the form Zi : ui ≤ si ≤ vi, where ui denotes the maximum among the lower
bounds of si in I and vi denotes the minimum among the upper bounds of si in
I. Let k1, . . . , kr be the highest powers of 2 in the coefficients of x in s1, . . . , sr.
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Fig. 1. Slicing of bits of x by k0, . . . , kr

Similarly, let k0 and kD be the highest powers of 2 in the coefficients of x in C
and D respectively. Suppose further that k1 > . . . > kr and k0 > max(kD, k1).

We can partition the bits of x into r+2 slices as shown in Fig. 1, where slice0
represents x[0 : p− k0 − 1], slicei represents x[p− ki−1 : p− ki − 1] for 1 ≤ i ≤ r,
and slicer+1 represents x[p− kr : p− 1]. Note that the value of slice0 potentially
affects the satisfaction of C as well as that of Z1 through Zr, the value of slicei
potentially affects the satisfaction of Zi through Zr for 1 ≤ i ≤ r, and the value
of slicer+1 does not affect the satisfaction of any Zi or C.

Suppose, given a solution θ1 of C, there exists a solution θ2 of C ∧ Z1 that
matches θ1 except possibly in the bits of slice1. In such cases, we say that the
solution θ1 of C can be “engineered” w.r.t. slice1 to satisfy C ∧ Z1. Suppose an
arbitrary solution of C can be engineered w.r.t. slice1 to satisfy C ∧ Z1. This
would mean that ∃x. (C ∧Z1) is equivalent to ∃x.C. Following this argument, if
an arbitrary solution of C can be engineered w.r.t. slice1 through slicer to satisfy
C∧Z1∧. . .∧Zr, then ∃x. (C∧I) is equivalent to ∃x.C, and I is unconstraining. A
similar argument as above can be used to identify unconstraining LMDs. Layer2
computes an efficiently computable under-approximation η of the number of
ways in which an arbitrary solution of C can be engineered w.r.t. slice1 through
slicer+1 to satisfy C ∧D ∧ I. If η ≥ 1, then D and I are unconstraining.

For example, consider the problem of computing ∃x. ((z = 4x+y) ∧(6x+y ≤
4) ∧(x �= z)) with modulus 8. Suppose C ≡ (z = 4x + y), D ≡ (x �= z), and
I ≡ (6x + y ≤ 4). Note that the bits of x can be partitioned into slice0, slice1
and slice2, where slice0 represents x[0 : 0], slice1 represents x[1 : 1] and slice2
represents x[2 : 2]. Slice1 and slice2 do not affect the satisfaction of C. Moreover,
it can be observed that an arbitrary solution of C can be engineered w.r.t. slice1
through slice2 to satisfy C ∧ D ∧ I. Layer2 computes η as 1 in this case, and
thus identifies that ∃x. (C ∧D ∧ I) is equivalent to ∃x. (z = 4x+ y). Note that
∃x. (z = 4x + y) is equivalent to (4y + 4z = 0). Hence the result of QE is
(4y + 4z = 0).

2.3 Layer3: Fourier-Motzkin Elimination for LMIs

There are two fundamental problems when trying to apply FM elimination for
reals [4] to a conjunction of LMIs. The first step in FM elimination is “normal-
ization” of each inequality l w.r.t. the variable x being quantified. This involves
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expressing l in an equivalent form x %' t, where %'∈ {≤,≥} and t is a term free
of x. However, normalizing an LMI w.r.t. a variable is much more difficult than
normalizing in the case for reals, since standard equivalences used for normalizing
inequalities over reals do not hold in modular arithmetic [3]. Moreover, even if
we could normalize LMIs w.r.t. the variable being quantified, due to the lack of
density of integers, FM elimination cannot be directly lifted to integers.

Layer3 makes use of a weak normal form for LMIs. We say that an LMI l with
x in its support is normalized w.r.t. x if it is of the form a · x %' t (first normal
form), or of the form a · x %' b · x (second normal form), where %'∈ {≤,≥},
and t is a linear term free of x. A boolean combination of LMCs ϕ is said to be
normalized w.r.t. x if every LMI in ϕ with x in its support is normalized w.r.t. x.

Given ∃x. I, where I is a conjunction of LMIs, Layer3 converts I to an equiv-
alent boolean combination of LMCs normalized w.r.t. x. For example, suppose
we wish to normalize x+2 ≤ y modulo 8 w.r.t. x. Consider adding the additive
inverse of 2 modulo 8, i.e. 6 to both sides of x + 2 ≤ y. Let ω1 be the condi-
tion under which the addition of x+2 with 6 overflows the 3-bit representation.
Similarly, let ω2 be the condition under which the addition of y with 6 overflows
3-bit representation. Note that if ω1 ≡ ω2, then (x+2 ≤ y) ≡ (x ≤ y+6) holds;
otherwise (x+2 ≤ y) ≡ (x > y+6) holds. ω1 ≡ ω2 can be equivalently expressed
as (x ≤ 5) ≡ (y ≥ 2). Hence, (x + 2 ≤ y) can be equivalently expressed in the
normalized form ite(ϕ, (x ≤ y + 6), (x > y + 6)), where ϕ denotes (x ≤ 5) ≡
(y ≥ 2), and ite(α, β, γ) denotes (α ∧ β) ∨ (¬α ∧ γ).

Layer3 applies a variant of FM elimination to achieve QE from the normalized
LMIs. We illustrate the idea with help of an example. Consider the problem of
computing ∃x.C, where C ≡ (y ≤ 4x) ∧ (4x ≤ z) with modulus 16. Observe
that ∃x.C is “the condition under which there exists a multiple of 4 between y
and z, where y ≤ z”. It can be shown that ∃x.C is equivalent to the disjunction
of the following three conditions: (i) (y ≤ z), and y is a multiple of 4, i.e.,
(y ≤ z)∧ (4y = 0), (ii) (y ≤ z)∧ (y ≤ 12)∧ (z ≥ y+3), (iii) (y ≤ z), (z < y+3),
and (y > z (mod 4)), i.e., (y ≤ z)∧ (z < y+3)∧ (4y > 4z). In general, suppose
we wish to compute ∃x. (l1 ∧ l2), where l1 : (t1 ≤ a · x) and l2 : (a · x ≤ t2) are
LMIs in the first normal form w.r.t. x. Let k be the highest power of 2 in the
coefficient a of x. Then, ∃x. (l1 ∧ l2) is equivalent to (t1 ≤ t2)∧ϕ, where ϕ is the
disjunction of the formulas: (i) (2p−k ·t1 = 0), (ii) (t2 ≥ t1+2k−1)∧(t1 ≤ 2p−2k),
and (iii) (t2 < t1 + 2k − 1)∧(2p−k · t1 > 2p−k · t2).

The conjunction of LMIs such as (l1∧ l2) above, where all LMIs are in the first
normal form w.r.t. x, and have the same coefficient of x are said to be “unified”
w.r.t. x. Unfortunately, unifying a conjunction of LMIs I w.r.t. x is inefficient in
general. Hence we unify I w.r.t. x and apply FM elimination only in the cases
where the unification can be done efficiently (the details of unification can be
found in [2]). In the other cases, we compute ∃x. I using model enumeration, i.e.,
by expressing ∃x. I in the equivalent form I|x←0 ∨ . . . ∨ I|x←2p−1 where I|x←i

denotes I with x replaced by the constant i.
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3 QE from Boolean Combinations of LMCs

We extend Project to work with boolean combinations of LMCs using three
approaches - a decision diagram (DD) based approach, an SMT-solving based
approach and a hybrid approach that combines the strengths of the DD based
and the SMT-solving based approaches.

The DD based approach makes use of a data structure called Linear Modular
Decision Diagram (LMDD). LMDDs are BDDs [10] with nodes labeled with
LMEs or LMIs. They represent boolean combinations of LMCs. Suppose we
wish to compute ∃X.f , where f is an LMDD over a set of variables V and
X ⊆ V . A naive algorithm to compute ∃X.f is to apply Project to each path
in f . However, this algorithm, similar to the Black-box QE algorithm [5] for
Linear Decision Diagrams, has running time linear in the number of paths in f.
We use an alternate algorithm QE LMDD to compute ∃X.f , which is motivated
by the White-box QE approach suggested in [5]. QE LMDD makes use of a
procedure QE1 LMDD that eliminates a single variable x from f . QE1 LMDD
performs a recursive traversal of the LMDD f . In each recursive call,QE1 LMDD
computes the LMDD for ∃x. (g ∧Cx), where g is the LMDD encountered during
the traversal and Cx is the conjunction of LMCs containing x encountered in
the path from the root node of f to the root node of g. If g is a 1-terminal,
then QE1 LMDD computes ∃x. (g∧Cx) by calling Project on ∃x.Cx. If the root
node of g is a non-terminal, then QE1 LMDD first simplifies g using the LMEs
in Cx and then traverses g recursively. The single variable elimination strategy
gives opportunities for reuse of results through dynamic programming, and in
practice significantly outperforms the Black-box QE algorithm.

The SMT-solving based approach is a straightforward extension of the work
in [7] for QE from boolean combinations of linear inequalities on reals. Suppose
we wish to compute ∃X. f , where f is a boolean combination of LMCs over a
set of variables V and X ⊆ V . A naive way of computing this is by converting f
to DNF by enumerating all satisfying assignments, and by invoking Project on
each conjunction of LMCs in the DNF. We use an algorithm QE SMT which
generalizes a satisfying assignment to obtain a conjunction of LMCs, and projects
the conjunction of LMCs on the variables in V \ X . The complement of the
projected conjunction of LMCs is conjoined with f before further satisfying
assignments are obtained. The interleaving of projection and model enumeration
in QE SMT helps in significant pruning of the solution space.

The hybrid approach tries to combine the strengths of the DD based and the
SMT-solving based approaches. Suppose we wish to compute ∃X.f , where f is an
LMDD over a set of variables V andX ⊆ V . The hybrid algorithmQE Combined
splits ∃X.f into an equivalent disjunction of sub-problems

∨n
i=1 (∃X. (fi ∧ Ci)),

where fi denotes an internal LMDD node in f and Ci denotes the conjunc-
tion of LMCs in the path from the root node of f to fi. QE Combined now
computes g ≡

∨n
i=1 (∃X. (fi ∧ Ci)) in the following manner: if fi∧Ci∧¬g is sat-

isfiable, then h ≡ ∃X. (fi ∧ Ci) is computed using the DD-based approach, and
then h is disjoined with g. Computing the sub-problems using the DD-based ap-
proach helps in achieving reuse of results through dynamic programming. Unlike
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QE SMT, QE Combined does not explicitly interleave projections inside model
enumeration. However disjoining the result of ∃X. (fi ∧Ci) with g, and comput-
ing ∃X. (fi ∧ Ci) only if fi ∧ Ci ∧ ¬g is satisfiable helps in pruning the solution
space of the problem, as achieved in QE SMT.

4 Experiments and Comparison with Existing Software

In order to evaluate the performance of our algorithms and compare them with
alternate QE techniques, we used a benchmark suite consisting of a set of lindd
benchmarks from [5] and a set of vhdl benchmarks. Each benchmark is a boolean
combination of LMCs with a subset of the variables in their support existentially
quantified. The lindd benchmarks are boolean combinations of octagonal con-
straints over integers. These benchmarks are converted to boolean combinations
of LMCs by assuming the size of integer as 16 bits. The vhdl benchmarks are ob-
tained from transition relation abstraction. We derived the symbolic transition
relations of a set of VHDL designs. All the internal variables in these symbolic
transition relations are quantified out, which gives abstract transition relations
of the vhdl designs.

We measured the time taken by QE LMDD, QE SMT, and QE Combined for
QE from each benchmark. We observed that (i) each approach performs better
than the others for some benchmarks, (ii) DD and SMT based approaches are
incomparable, and (iii) hybrid approach inherits the strengths of both DD and
SMT based approaches. We also measured the contributions and costs of differ-
ent layers of Project in performing QE from the benchmarks. Layer1 and Layer2
together eliminated 95% of the quantifiers in lindd benchmarks and 99.5% of the
quantifiers in vhdl benchmarks. The remaining quantifiers were eliminated by
Layer3. However, none of the benchmarks required model enumeration. Layer1
and Layer2 were cheap (on average, took 1-6 milliseconds per quantifier elimi-
nated). Layer3 was comparatively expensive. On average, Layer3 took 13 seconds
per quantifier eliminated for lindd benchmarks and 161 milliseconds per quan-
tifier eliminated for vhdl benchmarks.

We compared the performance of Project with alternate QE techniques. This
included comparison of Project with PA based QE using Omega Test [6] and
with bit-level QE using BDDs [11]. Since Layer1 is a simple extension of the work
in [8], we applied Layer1 as a pre-processing step before applying the PA based/
bit-level QE. The procedure that first quantifies out the variables using Layer1,
and then uses conversion to PA and Omega Test for the remaining variables is
called Layer1 OT. Similarly, the procedure that first quantifies out the variables
using Layer1, and then uses bit-blasting and bit-level BDD based QE for the
remaining variables is called Layer1 Blast. The instances of QE problem for
conjunctions of LMCs arising from QE SMT when QE is performed on each
benchmark were collected. The procedures Project, Layer1 Blast and Layer1 OT
were applied on these instances of the QE problem for conjunctions of LMCs.
The results demonstrated that (see Fig.2) Project outperforms the alternative
QE techniques.
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Fig. 2. Plots comparing (a) Project and Layer1 Blast and (b) Project and Layer1 OT
(All times are in milliseconds)

5 Conclusion

We presented practically efficient and bit-precise techniques for QE from LMCs.
Our experiments demonstrate that modular arithmetic based techniques for QE
outperform PA and bit-blasting based QE techniques and keep the final result
in modular arithmetic.
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Abstract. Combining classical automated theorem proving techniques
with theory based reasoning, such as satisfiability modulo theories, is
a new approach to first-order reasoning modulo theories. Skolemization
is a classical technique used to transform first-order formulas into eq-
uisatisfiable form. We show how Skolemization can benefit from a new
satisfiability modulo theories based simplification technique of formulas
called monadic decomposition. The technique can be used to transform
a theory dependent formula over multiple variables into an equivalent
form as a Boolean combination of unary formulas, where a unary for-
mula depends on a single variable. In this way, theory specific variable
dependencies can be eliminated and consequently, Skolemization can be
refined by minimizing variable scopes in the decomposed formula in order
to yield simpler Skolem terms.

1 The Role of Skolemization

In classical automated theorem proving, Skolemization [9,2,4,8] is a technique
used to transform formulas into equisatisfiable form by replacing existentially
quantified variables by Skolem terms. In resolution based methods using clausal
normal form (CNF) this is a necessary preprocessing step of the input formula. A
CNF represents a universally quantified conjunction of clauses, where each clause
is a disjunction of literals, a literal being an atom or a negated atom. The argu-
ments of the atoms are terms, some of which may contain Skolem terms as sub-
terms where a Skolem term has the form f(x̄) for some Skolem function symbol f
and a sequence x̄ of variables; f may also be a constant (x̄ is empty). The input to
Skolemization is a formula ψ in prenex normal form: Q1x1Q2x2 . . .Qnxnϕ where
Qi ∈ {∃, ∀} and ϕ is quantifier free and the free variables of ϕ, FV(ϕ), form a
subset of {xi}ni=1; ϕ is called the matrix of ψ. In its most basic form, one Skolem-
ization step Skolemize1 is a transformation that is applied to the outermost prefix

of the given prenex formula, Skolemize1(∀x̄ ∃y χ(x̄, y)) def
= ∀x̄ χ(x̄, fχ,x̄(x̄)), whose

output is another prenex formula with one less existential quantifier and where
fχ,x̄ is a new function symbol called a Skolem function (or a Skolem constant
when n = 0). Skolemize1 is applied repeatedly, denoted here by Skolemize, until
no more existential quantifiers remain. Skolem Normal Form Theorem [4, Corol-
lary 3.1.3] implies that Skolemize(ψ) is satisfiable if and only if ψ is satisfiable.
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In the context of theorem proving it is assumed that the Skolem functions are
uninterpreted.

There are several important techniques related to Skolemization. The main
objective is to minimize the arity of the Skolem functions. Mini-scoping [1],
also called antiprenexing or creating an antiprenex normal form [2,8], is the
main Skolemization technique that is used in theorem proving as a method to
minimize quantifier scopes by shifting quantifiers from the prenex back into
the formula. Mini-scoping can be seen as a separate preprocessing step prior
to Skolemization, consisting of the following rewrite steps that correspond to
standard equivalence preserving laws of logic. The formula is first transformed
into an equivalent negation normal form (NNF), so that all quantifiers occur in
a positive context.

Qx(ϕ . ψ) x/∈FV(ψ),x∈FV(ϕ)
=⇒mini-scope Qxϕ . ψ, . ∈ {∨,∧}

∀x(ϕ ∧ ψ) =⇒mini-scope ∀xϕ ∧ ∀xψ
∃x(ϕ ∨ ψ) =⇒mini-scope ∃xϕ ∨ ∃xψ

After mini-scoping, all quantified variables are renamed apart. Finally, stan-
dard Skolemization [2] is applied to the resulting formula by replacing a sub-
formula ∃yχ that occurs in the context of universal variables x̄, by the formula
χ{y �→ f(x̄)}. We refer to the full procedure as mini-scoping. Without theory
based reasoning, mini-scoping results in the lowest possible arities of the Skolem
functions, and is thus optimal in that sense. In theory based reasoning this is
not always true, one can do better, we discuss this below.

2 Working Modulo a Theory

Theory based automated reasoning is a new area of automated reasoning that
combines techniques from propositional satisfiability (SAT) and satisfiability
modulo theories (SMT) area into the expressive power of first-order reasoning
with quantifiers [5,6]. Skolemization is one piece of the big picture, it has been
considered as a solved problem, much due to the Skolemization Theorem [4,
Theorem 3.1.2]. Skolemization Theorem implies a much stronger property than
equisatisfiability, that allows the use of Skolemization modulo arbitrary theories.

Let L be the language of the theory and let Σ be the Skolem Theory con-
sisting of axioms ∀x̄(∃y χ(x̄, y) → χ(x̄, fχ,x̄(x̄))) for all L-formulas χ(x̄, y) and
new function symbols fχ,x̄. In other words, the Skolem theory axiomatizes the
intended interpretations of the Skolem functions. Skolemization Theorem says
that any L-structure A can be expanded to be a model AΣ of Σ. Therefore, if
we work with uninterpreted function symbols, i.e., without assuming Σ, and A
is a model of the original formula, then some expansion of A models the Skolem-
ized one: just pick the intended interpretations from AΣ for the uninterpreted
Skolem functions. In the other direction, the Skolemized formula always entails
the original formula. In particular if the Skolemized formula is satisfiable then
so is the original one.
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Often the starting point in theory based reasoning is a formula which presumes
Skolemization. For example, assume the theory of integer linear arithmetic and
consider the following (true) sentence:

∀x∃y(0 ≤ x ≤ 1 → (0 ≤ y ∧ x+ y ≤ 1)) (1)

It is already in prenex form and mini-scoping produces the equisatisfiable formula
where f is a Skolem function:

∀x(0 ≤ x ≤ 1 → (0 ≤ f(x) ∧ x+ f(x) ≤ 1)) (2)

We will see below how introduction of f can be avoided completely in this case.

3 Using Monadic Decomposition

We consider theories that satisfy the following conditions. More general theories
fall outside the scope of this paper. Let A be a recursively enumerable (re) L-
structure with an re universe so that all elements can be named by L-terms. As
the theory we take the theory of A.

Moreover, let Ψ be an re set of L-formulas that is closed under Boolean op-
erations, and if a is an element, x a variable, and ψ ∈ Ψ then ψ{x �→ a} ∈ Ψ .
Furthermore, satisfiability of formulas in Ψ is assumed decidable: it is decidable,
for ψ(x̄) ∈ Ψ , if A |= ∃x̄ψ(x̄). It follows from A being re that concrete witnesses
can also be generated for satisfiable formulas. Examples of A are: standard inte-
gers or standard rational numbers (or A may be multi-sorted), and an example
of Ψ is quantifier free L-formulas where all variables have a fixed sort. These con-
ditions are very natural from the standpoint of modern SMT solvers, because Ψ
embodies the basic properties supported by any state-of-the-art SMT solver [3].

We need some additional notions before defining monadic decomposition for-
mally. A unary formula is a formula with at most one free variable. An explicitly
monadic formula is a Boolean combination of unary formulas. A monadic for-
mula is a formula for which there exists an equivalent explicitly monadic formula.
Now, monadic decomposition (for Ψ) is the following problem: given a monadic
formula ψ ∈ Ψ , construct and explicitly monadic formula that is equivalent to
ψ. It is shown in [10] that this problem is solvable, the given algorithm mondec
relies solely on the assumptions of Ψ as stated above. Deciding if a formula is
monadic is shown decidable in two cases but is an open problem in general.

Now, monadic decomposition can be applied as a preprocessing step to mini-
scoping. This can happen in several different ways. First, several variables can be
grouped together and viewed as a single variable by using tuples; the structure A
as well as Ψ can, without loss of generality, be extended with tuples. Second, the
decomposition can be applied selectively to some subformulas only. Finally, if the
formula is not known to be monadic then mondec might not terminate and thus
heuristics need to be developed to decide when to abandon the decomposition
attempt.

As an example assume that the theory is linear arithmetic and pick the matrix
of the prenex formula (1). This formula is monadic (which can also be decided [10]
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with a Presburger formula but there is currently no particular implementation
for this decision procedure). If we apply mondec to the matrix of (1) we get the
following concrete output as the result of running the python script from [10]:

And(Or(Not(And(x >= 0, x <= 1)), x <= 1),
Or(Not(And(x >= 0, x <= 1)), x <= -1,

And(y >= 0, y <= 1, Or(Not(And(x >= 0, x <= 1)), x <= 0)),
And(y >= 0, y <= 0, Or(Not(And(x >= 0, x <= 1)), x <= 1))))

This formula is explicitly monadic and equivalent to the matrix of (1). Thus,
we can replace the matrix of (1) by this formula. Now mini-scoping will produce
a formula where y is not in the scope of x any more. So the final Skolemized
formula will use Skolem constants for y.

In general, if all maximal quantifier free subformulas are monadic (as is the
case with formula (1)) and mini-scoping is slightly modified and applied so that
quantifiers are pushed all the way to the unary sub-formulas, then the quantifiers
are effectively eliminated and the final formula will be a Boolean combination
of ∀xϕ(x) or ∃xϕ(x) where ϕ(x) is a formula in Ψ and thus decidable. So the
final formula is essentially propositional (modulo the theory of A). Overall, this
implies that the full first-order fragment over monadic formulas is decidable, as
an extension of of the Löwenheim class [7].

References

1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Academic Press (1986)

2. Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 5, pp. 273–333.
North Holland (2001)

3. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

4. Hodges, W.: Model theory. Cambridge Univ. Press (1995)
5. Korovin, K.: Instantiation-based automated reasoning: From theory to practice. In:

Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 163–166. Springer,
Heidelberg (2009)

6. Korovin, K.: Inst-gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013)
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Abstract. The logic of quantified Boolean formulae (QBF) extends
propositional logic by explicit existential and universal quantification of
the variables. We present the search-based QBF solver DepQBF which
allows to solve a sequence of QBFs incrementally. The goal is to exploit
information which was learned when solving previous formulae in the
process of solving the next formula in a sequence. We illustrate incremen-
tal QBF solving and potential usage scenarios by examples. Incremental
QBF solving has the potential to considerably improve QBF-based work-
flows in many application domains.

Keywords: quantified Boolean formulae, QBF, search-based solving,
Q-resolution, clause learning, cube learning, incremental solving.

1 Introduction

Propositional logic (SAT) has been widely applied to encode problems from
model checking, formal verification, and synthesis. In these practical applica-
tions, an instance of a given problem is encoded as a formula. The satisfiability
of this formula is checked using a SAT solver. The result of the satisfiability
check is then mapped back and interpreted on the level of the problem instance.

Encodings of problems often give rise to sequences of closely related formulae
to be solved, in contrast to one single formula. A prominent example is SAT-
based bounded model checking (BMC) [1]. Rather than solving each formula in
the sequence individually, incremental solving [6] aims at employing information
that was learned when solving one formula for solving the next formulae. The
overall goal is to speed up the solving process of the entire sequence of formulae.

We consider the problem of incrementally solving a sequence of quantified
Boolean formulae (QBF). The decision problem of QBF is PSPACE-complete.
Existential and universal quantification together with possible quantifier alter-
nations in QBF potentially allow for exponentially more succinct encodings of
problems than propositional logic [2]. This property makes QBF an interesting
modelling language for practical applications.

IncrementalQBF solvingwas first applied in the context ofQBF-basedbounded
model checking ofpartial designs [14].WeextendedourQBFsolverDepQBF [11,12]
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by general-purpose incremental solving capabilities. Our approach adopts ideas
from incremental SAT solving, it is application-independent and hence applicable
to QBF encodings of arbitrary problems. Furthermore, our implementation is pub-
licly available, it features APIs in the C and Java languages and thus facilitates the
use of incremental QBF solving in practice.1

We present incremental QBF solving from a general perspective. During the
solving process, QBF solvers learn information about a QBF in terms of re-
stricted inferences in the Q-resolution calculus. Information learned from
previous QBFs must be maintained to prevent unsound inferences. Regarding
practical applications, we illustrate the API of our incremental QBF solver De-
pQBF by means of examples to make its use more accessible. Incremental QBF
solving has the potential to improve QBF-based workflows in many applications.

2 Quantified Boolean Formulae

A QBF ψ := Q̂. φ in prenex conjunctive normal form (PCNF) consists of a
quantifier-free propositional formula φ in CNF containing the variables V and a
quantifier prefix Q̂. The prefix Q̂ := Q1B1 . . .QnBn contains sets Bi of proposi-
tional variables and quantifiers Qi ∈ {∀, ∃}. We assume that Bi �= ∅,

⋃
Bi = V

and Bi ∩ Bj = ∅ for i �= j. The sequence of sets Bi introduces a linear ordering
of the variables: given two variables x, y, we define x < y if and only if x ∈ Bi,
y ∈ Bj and i < j. In the following, we consider QBFs in PCNF.

An assignment A : V → {t, f} is a (partial) mapping from the set of all
propositional variables V to truth values true (t) and false (f). To allow for
simple notation, we represent an assignment A as a set {l1, . . . , lk} of literals
where, for a variable x assigned by A, we have li = x (li = ¬x) if x is mapped
to t (f). Given a QBF ψ, a variable x ∈ Bi and the assignment A = {l} with
l = x (l = ¬x), the QBF ψ[A] under the assignment A is obtained from ψ by
replacing every occurrence of x in ψ with the syntactic truth constant / (⊥)
denoting true (false), deleting x from the prefix (along with QiBi if Bi = ∅) and
applying simplifications using the annihilator and identity properties of ∧, ∨, /
and ⊥ of Boolean algebra.

The semantics of QBF is defined recursively based on the syntactic structure.
The QBF ψ = / (ψ = ⊥), which consists of the syntactic truth constant true
(false), is satisfiable (unsatisfiable). The QBF ψ = ∃({x} ∪ B1) . . . QnBn. φ is
satisfiable if and only if ψ[x] or ψ[¬x] is satisfiable. The QBF ψ = ∀({x} ∪
B1) . . . QnBn. φ is satisfiable if and only if ψ[x] and ψ[¬x] is satisfiable.

Example 1. The QBF ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable. We assign the
variables in the ordering of the prefix. Both ψ[x] = ∃y. (y) and ψ[¬x] = ∃y. (¬y)
are satisfiable, since ψ[x, y] = / and ψ[¬x,¬y] = /, respectively.

1 DepQBF is free software: http://lonsing.github.io/depqbf/

http://lonsing.github.io/depqbf/
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3 Search-Based QBF Solving with Learning

Modern search-based QBF solvers are based on an extension of the conflict-
driven clause learning approach (CDCL), which is applied in SAT solving [15].
In this QBF-specific approach called QCDCL [8,10,13,16], a backtracking search
procedure related to the DPLL algorithm [4,5] is used to generate assignments
to control the application of the inference rules in the Q-resolution calculus [3,8].
New learned clauses and cubes are inferred and added to the formula.

In the following, we present the rules of the Q-resolution calculus to derive
learned clauses and cubes, called constraints, in QCDCL-based QBF solvers.
Given a QBF Q1B1 . . .QnBn. φ and a literal l of a variable x ∈ Bi, the quantifier
type of the variable x of l is denoted by q(l) where q(l) = ∀ (q(l) = ∃) if Qi = ∀
(Qi = ∃). To allow for a uniform presentation of the rules to derive clauses and
cubes in the calculus, we represent clauses and cubes as sets of literals.

C1 ∪ {p} C2 ∪ {¬p}
C1 ∪ C2

if {x,¬x} �⊆ (C1 ∪C2), ¬p �∈ C1, p �∈ C2 and
either (1) C1,C2 are clauses and q(p) = ∃
or (2) C1,C2 are cubes and q(p) = ∀

(res)

C ∪ {l}
C

if {x,¬x} �⊆ (C ∪ {l}) and either
(1) C is a clause, q(l) = ∀ and ∀l′ ∈ C : q(l′) = ∃ → l′ < l or
(2) C is a cube, q(l) = ∃ and ∀l′ ∈ C : q(l′) = ∀ → l′ < l

(red)

C
if {x,¬x} �⊆ C and either (1) C ∈ φ with ψ = Q̂. φ or
(2) ψ[A] = / for an assignment A and C = (

∧
l∈A l)

(init)

The rule res defines Q-resolution with a pivot variable p. The constraints C1∪{p}
and C2∪{¬p} and the resolvent C1∪C2 must not contain complementary literals
and the quantifier type q(p) of the pivot variable is restricted to ∃ [3].

The rule red defines constraint reduction [3,8], which deletes universal (exis-
tential) literals from a clause (cube) C which are maximal among the literals in
C with respect to the ordering of the quantifier prefix.

The rule init defines the axioms. Any clause C ∈ φ of a QBF ψ = Q̂. φ can
be used as a start point of a resolution derivation. Given an assignment A such
that ψ[A] = /, that is C′[A] = / for all C′ ∈ φ, the cube C = (

∧
l∈A l) can be

inferred as a start point of a cube resolution derivation. The application of the
rule init to infer cubes is also called model generation [8,10,16].

Due to the soundness of the calculus, a derived learned clause C′ is added
conjunctively to ψ and has the property that Q̂. φ ≡ Q̂. (φ∧C ′). A derived learned
cube C′ is added disjunctively to ψ and has the property that Q̂. φ ≡ Q̂. (φ∨C ′).

A QBF is unsatisfiable (satisfiable) if and only if the empty clause (cube)
can be derived using the rules res, red and init . In this case, the steps in the
derivations of the learned clauses (cubes) up to ∅ correspond to a Q-resolution
proof of the unsatisfiability (satisfiability) of ψ. We write ψ 1 C if the clause
(cube) C can be derived from C using the rules of the Q-resolution calculus.
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ψ0

↓
Solver

↓
(UN)SAT

ψ1

↓
Solver

↓
(UN)SAT

. . .

ψn

↓
Solver

↓
(UN)SAT

Fig. 1. Solving a sequence S := 〈ψ1, . . . , ψn〉 of PCNFs non-incrementally

ψ0

↓
Solver

↓
(UN)SAT

LC ′
0−→

ψ1 :

φdel
1 ↓ φadd

1

Solver

↓
(UN)SAT

LC ′
1−→ . . .

LC ′
n−1−→

ψn :

φdel
n ↓ φadd

n

Solver

↓
(UN)SAT

Fig. 2. Solving a sequence S := 〈ψ1, . . . , ψn〉 of PCNFs incrementally

Example 2. Given the satisfiable QBF ψ = ∀x∃y. (x∨¬y)∧(¬x∨y) from Exam-
ple 1. By the rule init , we generate the cubes C1 := (x∧ y) and C2 := (¬x∧¬y)
using the assignments A1 = {x, y} and A2 = {¬x,¬y}. Constraint reduction of
C1 and C2 by rule red produces the cubes C3 = (x) and C4 = (¬x), respectively.
Finally, resolution by rule res of C3 and C4 produces the empty cube.

Example 3. Given the unsatisfiable QBF ψ = ∀x∃y. (x∨¬y)∧ (¬x∨y)∧ (x∨y).
Resolution of the clauses (x∨¬y) and (x∨y) by the rule res produces the clause
C1 := (x). Finally, constraint reduction by rule red results in the empty clause.

4 Incremental QBF Solving

Let S := 〈ψ1, . . . , ψn〉 be a sequence of QBFs to be solved where ψi = Q̂i. φi. The
QBF ψi+1 = Q̂i+1. φi+1 is obtained from the previous QBF ψi by adding and
deleting the sets φaddi+1 and φdeli+1 of clauses, respectively: φi+1 = (φi \φdeli+1)∪φaddi+1 .

Similarly, the quantifier prefix Q̂i+1 of ψi+1 is obtained from Q̂i by adding and
deleting quantifiers, provided that in ψi+1 still all the variables are quantified.

In non-incremental solving (Fig. 1), the solver tackles each QBF ψi in S
from scratch. The entire formula is parsed and solving starts without using any
learned constraint that was inferred when solving previous QBFs ψj with j < i.

In incremental solving (Fig. 2), the solver retains in a correctness preserving
way a subset LC ′

i−1 of the constraints that were learned from previously solved
QBFs in S in order to solve the current QBF ψi. The constraints in LC ′

i−1 can
be used for inferences by the Q-resolution calculus. The choice of the set LC ′

i−1

depends on the sets φaddi and φdeli of clauses that were added to and deleted from
the previous QBF ψi−1, respectively. For all constraints C ∈ LC ′

i−1, it must
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hold that C can be derived from ψi and hence ψi 1 C. Due to the soundness of
Q-resolution, in this case we have that (1) Q̂i. φi ≡ Q̂i. (φi ∧ C) if C ∈ LC ′

i−1

is a clause and (2) Q̂i. φi ≡ Q̂i. (φi ∨C) if C ∈ LC ′
i−1 is a cube.

Compared to non-incremental solving, incremental solving has several advan-
tages. First, the solver has to parse only the clauses φaddi which are added to
ψi−1 to obtain the new QBF ψi rather than the entire QBF ψi. In practice, an
incremental solver typically is called as a library from another application pro-
gram which generates the sequence S := 〈ψ1, . . . , ψn〉 of QBFs to be solved and
retrieves the result returned by the solver. The solver is configured to solve the
next QBF in S through its API. In contrast to that, a non-incremental solver is
called as a standalone program to solve each QBF in S, where the QBFs are first
written to hard disk, accessed by the solver and then parsed. This may result in
I/O overhead, which is avoided in incremental solving.

The addition of φaddi to the previous QBF ψi−1 can make the derivations of
cubes learned from ψi−1 invalid with respect to the current QBF ψi. Similarly,
the deletion of φdeli from the previous QBF ψi−1 can make the derivations of
learned clauses invalid. The reason is that the side conditions of the rule init ,
which held with respect to ψi−1, might no longer hold with respect to ψi.

Example 4. Let ψ′ = ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y) be obtained from
the satisfiable QBF ψ in Example 2 by adding the clause (x ∨ y). The QBF
ψ′ is unsatisfiable. Consider the cubes C1 to C4 inferred from ψ as shown in
Example 2. We have ψ′ � 1 C2 and ψ′ � 1 C4 but ψ′ 1 C1 and ψ′ 1 C3 because the
assignment A1 = {x, y} is still a model of ψ′ whereas A2 = {¬x,¬y} is not.

Example 5. Let ψ′ = ∀x∃y. (x∨¬y)∧(¬x∨y) be obtained from the unsatisfiable
ψ in Example 3 by deleting the clause (x ∨ y). The QBF ψ′ is satisfiable. We
have ψ′ � 1 C1 and no clauses can be derived from ψ′ by the rules red and res .

If the set LC ′
i−1 of constraints which is retained contains constraints C for

which ψi � 1 C then the solver might perform unsound inferences on ψi by the
Q-resolution calculus, using the constraints in LC ′

i−1.
Keeping learned constraints in incremental solving might give speedups in the

solving time, as illustrated in the following experiment.

Proposition 1 ([9,10]). ψC
n := ∀x1∃y2 . . . ∀x2n−1∃y2n.

∧n−1
i=0 [(x2i+1∨¬y2i+2)∧

(¬x2i+1 ∨ y2i+2)] is a class of satisfiable QBFs. For each QBF ψC
n , the length

of the shortest cube resolution proof of satisfiability of ψC
n is exponential in n.

Let S := 〈ψC
10, . . . , ψ

C
20〉 be the sequence of QBFs by Proposition 1 for n =

10, 11, . . . , 20. The left part of the plot on the right shows that the number
of learned cubes (y-axis, in millions) carried out by DepQBF when solving
S incrementally (“inc”) and non-incrementally (“noninc”) scales exponentially
with the size parameter n (10 . . .20 on the x-axis). Consider the reversed se-
quence S′ = 〈ψC

20, . . . , ψ
C
10〉 and the right part of the plot (20 . . . 10 on the x-

axis). When solving S′ incrementally, then all the cubes learned when solv-
ing ψC

i in S′ can be fully retained and used to solve the next QBF ψC
j with

j < i. No new cubes are inferred. This is possible because clauses are only
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deleted from ψC
i to obtain ψC

j for j <
i in S′ but not added. Therefore, for
all cubes C′ derived from ψC

i , it holds
that ψC

j 1 C′′ for a subcube C′′ ⊆
C′. The subcube C′′ is obtained from
C′ by removing any literals which no
longer occur in ψC

j . For further ex-
periments, we refer to the technical
reports related to DepQBF [12] and
QBF-based conformant planning by
incremental QBF solving [7].

5 Implementation of DepQBF

In incremental solving, the set of learned constraints must be maintained across
different calls of the solver. Regarding the learned clauses, the implementation
of DepQBF [12] is based on the idea of selector variables from incremental SAT
solving [6]. Thereby, a fresh variable v is added to each clause in the QBF
ψ = Q1B1 . . . QnBn. φ so that the clause C ∪ {v} is added to ψ instead of C.
The selector variables are existentially quantified in a separate block V ′ at the
left end of the quantifier prefix, which has the form ∃V ′Q1B1 . . . QnBn. φ. If
new clauses are derived using the rule res of the Q-resolution calculus, then
the selector variables are always transferred to the derived clauses. In order to
remove a clause C from the CNF of ψ including all learned clauses derived from
C, the solver assigns the selector variable v ∈ C to true. This causes v to be
replaced by / in every clause, which effectively removes the clauses. They can
no longer be used to make inferences by the Q-resolution calculus.

Regarding the learned cubes, we keep only cubes derived by applications of
the rule init . For every cube C which is kept, the side condition of this rule with
respect to the current QBF ψ′ must hold: ψ′[A] = / for the assignment A which
was used to derive C = (

∧
l∈A l).

The API of DepQBF provides the user with functions to manipulate the
input formula by incrementally adding and deleting clauses and variables. As
an additional API feature, the user can add and delete sets of clauses by means
of push and pop operations. This way, the set of clauses of the input formula
is organized as a sequence of frames on a stack. The same selector variable is
added to all clauses of a particular stack frame. As a unique feature, DepQBF
maintains the selector variables internally, which are invisible to the user. This
design increases the usability of the solver from a user’s perspective.

We illustrate the API of DepQBF by the code example in Fig. 3. The source
release of DepQBF comes with further examples.2 A solver object is created us-
ing the function qdpll_create. We create the quantifier prefix ∀x∃y by calling
qdpll_new_scope_at_nesting followed by qdpll_add to add the variables x

2 DepQBF tutorial: http://lonsing.github.io/depqbf/depqbf-in-practice.pdf

http://lonsing.github.io/depqbf/depqbf-in-practice.pdf


Incremental QBF Solving by DepQBF 313

int main (int argc, char ** argv) {

QDPLL *s = qdpll_create();

...

qdpll_new_scope_at_nesting

(s,QDPLL_QTYPE_FORALL,1);

qdpll_add(s,1); qdpll_add(s,0);

qdpll_new_scope_at_nesting

(s,QDPLL_QTYPE_EXISTS,2);

qdpll_add(s,2); qdpll_add(s,0);

qdpll_add(s,1); qdpll_add(s,-2);

qdpll_add(s,0);

qdpll_push(s);

...//continues on right column.

...//continued from left column.

qdpll_add(s,2); qdpll_add(s,0);

QDPLLResult res = qdpll_sat(s);

assert(res == QDPLL_RESULT_UNSAT);

assert(qdpll_get_value (s,1) ==

QDPLL_ASSIGNMENT_FALSE);

qdpll_reset(s);

qdpll_pop(s);

res = qdpll_sat(s);

assert(res == QDPLL_RESULT_SAT);

qdpll_delete (s); }

Fig. 3. DepQBF API usage example. Some configuration code was omitted for brevity

and y which we encode by the unsigned integers 1 and 2, respectively.3 Then we
add the clauses (x ∨ ¬y) by qdpll_add where the negative integer -2 encodes
the negative literal ¬y and qdpll_add(s,0) closes the clause. A new frame of
clauses is allocated by qdpll_push. We add the clause (y) to the new frame
(right column in Fig. 3). The call of qdpll_sat starts the solver given the cur-
rent QBF ψ = ∀x∃y. (x ∨ ¬y) ∧ (y). The function qdpll_get_value returns a
partial countermodel of the QBF: x was assigned to false which explains the
unsatisfiability of ψ since ψ[¬x] = (¬y) ∧ (y). By calling qdpll_pop we remove
the clauses of the most recently added frame, which contains only (y). Thus the
new QBF is ψ = ∀x∃y. (x∨¬y), which is satisfiable as found out by qdpll_sat.

The API of DepQBF allows to add new variables at any position in the pre-
fix and provides functions to inspect the prefix. Variables and clauses can not
explicitly deleted. Instead, a garbage collection phase can be triggered through
the API which deletes all the clauses, variables and quantifiers which have been
effectively removed by previous calls of qdpll_pop. The push/pop functionality
of DepQBF is particularly useful for sequences S of QBFs where a large part of
the CNFs is shared between the individual QBFs in S.

Originally, DepQBF is written in C. The release of version 3.03 (or later)
comes with the Java API DepQBF4J, which allows to call DepQBF as a library
from Java programs and thus makes incremental QBF solving more accessible.

6 Conclusion

We presented an overview of incremental QBF solving and our incremental QBF
solver DepQBF. Incremental solving is useful to solve sequences of related for-
mulae. Information learned from previously solved formulae in terms of derived
clauses and cubes can be employed to solve the next formulae in the sequence.

3 DepQBF takes input in QDIMACS format: http://www.qbflib.org/qdimacs.html

http://www.qbflib.org/qdimacs.html
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We implemented a simple approach to keep only particular cubes derived by
model generation across incremental solver calls. As future work, we consider
more sophisticated approaches to also keep cubes derived by Q-resolution.

Another important direction is the combination of incremental QBF solving
with advanced techniques such as preprocessing and the generation of proofs and
certificates. Currently, these techniques are implemented in separate tools. It is
necessary to efficiently integrate them into a uniform framework to leverage the
full power of the state of the art of QBF reasoning in practical applications.
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6. Eén, N., Sörensson, N.: Temporal Induction by Incremental SAT Solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

7. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant Planning as a Case
Study of Incremental QBF Solving. CoRR (submitted, 2014)

8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learn-
ing in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res (JAIR)
26, 371–416 (2006)

9. Janota, M., Grigore, R., Marques-Silva, J.: On QBF Proofs and Preprocessing. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312,
pp. 473–489. Springer, Heidelberg (2013)

10. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 160–175. Springer, Heidelberg (2002)

11. Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBF Solver. JSAT 7(2-3),
71–76 (2010)

12. Lonsing, F., Egly, U.: Incremental QBF Solving. CoRR, abs/1402.2410 (2014)
13. Lonsing, F., Egly, U., Van Gelder, A.: Efficient Clause Learning for Quantified

Boolean Formulas via QBF Pseudo Unit Propagation. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg
(2013)

14. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of Partial Designs
using Incremental QBF Solving. In: Proc. DATE. IEEE (2012)

15. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT
Solvers. In: Handbook of Satisfiability. FAIA, vol. 185. IOS Press (2009)

16. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)



NLCertify: A Tool for Formal Nonlinear

Optimization

Victor Magron

LAAS-CNRS, 7 avenue du colonel Roche, F-31400 Toulouse, France
magron@laas.fr

http://homepages.laas.fr/vmagron

Abstract. NLCertify is a software package for handling formal cer-
tification of nonlinear inequalities involving transcendental multivariate
functions. The tool exploits sparse semialgebraic optimization techniques
with approximation methods for transcendental functions, as well as for-
mal features. Given a box and a transcendental multivariate function as
input, NLCertify provides OCamllibraries that produce nonnegativity
certificates for the function over the box, which can be ultimately proved
correct inside the Coq proof assistant.
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1 Introduction

A variety of tools for solving nonlinear systems are being adapted for the field of
formal reasoning. One way to import the technology available inside an informal
tool is the skeptical approach: the tool yields a form of certificate which can be
verified on the formal side, i.e. inside a theoretical prover such as Coq [7]. A re-
cent illustration [4] is the integration of the computational features of SAT/SMT
solvers in Coq. The NLCertify1 tool has informal nonlinear optimization fea-
tures and enables formal verification in a skeptical way. An ambitious application
is to automatically verify real numbers inequalities occurring by thousands in
Thomas Hales’ proof of Kepler’s conjecture [8]. In the present article, nonlinear
functions include polynomials, semialgebraic functions obtained by composition
of polynomials with some basic operations (including the square root, sup, inf,
+, ×, −, /, etc.) and composition of semialgebraic functions with transcendental
functions (arctan, cos, exp, etc.) or basic operations.

Polynomial inequalities over a finite set of polynomial constraints can be
certified using a hierarchy of sums of squares (SOS) relaxations [10]. Several
variants of these relaxations are implemented in some MATLAB toolboxes:
GloptiPoly 3 [9] solves the Generalized Problem of Moments while Sparse-

POP takes sparsity into account [16], YALMIP [12] is a high-level parser for

1 The source code is available at https://forge.ocamlcore.org/frs/?group_id=351.
See also the documentation at http://nl-certify.forge.ocamlcore.org

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 315–320, 2014.
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nonlinear optimization problems and has a built-in module for SOS calculations.
These toolboxes rely on external SOS solvers for solving the relaxations (e.g.
Sdpa [17]) . However, the validity of the bounds obtained with these numeri-
cal tools can be compromise, due to the rounding error of the SOS solver. The
tool2 mentioned in [13] allows to handle some degenerate situations. For a more
general class of problems (when the functions are not restricted to polynomials),
one can combine SOS software with frameworks that approximate transcenden-
tal functions. Sollya [6] returns safe tight bounds for the approximation error
obtained when computing minimax estimators of nonlinear univariate functions.

On the formal side, recent efforts have been done to verify nonlinear inequali-
ties with theorem provers. A tool3 in Hol-light combines formal interval arith-
metic computation and quadratic Taylor approximation [15]. The features of the
MetiTarski [1] theorem prover include continued fractions expansions of uni-
variate transcendental functions such as log, arctan, etc. PVS incorporates non-
linear optimization libraries relying on Bernstein polynomial approximation [14].
The interval4 tactic can assert the validity of interval enclosures of nonlinear
functions over a finite set of box constraints inside Coq. The micromega tactic
returns emptiness certificates for basic semialgebraic sets [5].

One specific challenge of the field of formal nonlinear optimization is to
develop adaptive techniques to produce certificates with a reduced complex-
ity. NLCertify provides efficient informal libraries by implementing the nonlin-
ear maxplus method [2], which combines sparse SOS relaxations with maxplus
quadratic approximation. In addition, the tool offers a secure certification frame-
work for the bounds obtained with these semialgebraic relaxations [3]. These var-
ious features are placed in a unified framework extending to about 15000 lines
of OCaml code and 3600 lines of Coq code. The NLCertify package can solve
successfully non-trivial inequalities from the Flyspeck project (essentially tight
inequalities, involving both semialgebraic and transcendental expressions of 6 to
12 variables) as well as significant global optimization benchmarks. The running
tests for the verification of polynomial inequalities (Section 2) and transcenden-
tal inequalities (Section 3) are performed on Intel Core i5 CPU (2.40GHz)5.

2 Certified Polynomial Optimization

One particular problem among certification of nonlinear problems is to verify
the inequality ∀x ∈ K, fpop(x) ≥ 0, where fpop is an n-variate positive polyno-
mial, K := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} is a semialgebraic set obtained
with polynomials g1, . . . , gm. One way to convexify this polynomial optimiza-
tion problem is to find sums of squares of polynomials σ0, σ1, . . . , σm satisfying
fpop(x) = σ0 +

∑m
j=1 σj(x)gj(x) and deg σ0 ≤ 2k, deg(σ1g1) . . . , deg(σmgm) ≤

2k, for a fixed positive integer k (called the relaxation order). When k increases,

2 Available from the pages http://bit.ly/fBNLhR and bit.ly/gPXNF8
3 http://flyspeck.googlecode.com/files/FormalVerifier.zip
4 https://www.lri.fr/~melquion/soft/coq-interval/
5 With OCaml 4.01.0, Coq 8.4pl2, Ssreflect 1.4, Sdpa 7.3.6 and Sollya 3.0.

http://bit.ly/fBNLhR
bit.ly/gPXNF8
http://flyspeck.googlecode.com/files/FormalVerifier.zip
https://www.lri.fr/~melquion/soft/coq-interval/
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one obtains progressively stronger relaxations. In this way, it is always possible
to certify the inequality ∀x ∈ K, fpop(x) ≥ 0 for a sufficiently large order (un-
der certain assumptions [10]). These relaxations are implemented in NLCertify

and numerically solved with the SOS solver Sdpa. The tool performs a ratio-
nal extraction from the SOS solver output with the Lacaml

6 library. Then the
corresponding remainder εpop (the difference between the objective polynomial
fpop and the SOS representation) can be bounded on a box which contains K.
More details can be found in [3].

Example 1. (caprasse) Here, we consider the degree 4 polynomial inequality
∀x ∈ [−0.5, 0.5]4,−x1x33 +4x2x

2
3x4 +4x1x3x

2
4 +2x2x

3
4 +4x1x3 +4x23 − 10x2x4 −

10x24 + 5.1801 ≥ 0. The inequality is scaled on [0, 1]4 with the solver option
scale_pol = true and one adds the redundant constraints x21 ≤ 1, . . . , x24 ≤ 1
by setting bound_squares_variables = true. The inequality can be solved
numerically at the second SOS relaxation order (relax_order = 2). The cor-
rectness of the SOS representation is verified inside Coq (via the reflexive tactic
ring) by setting check_certif_coq = true. Then the execution of NLCertify
returns the following output:

% ./nlcertify caprasse
Proving that - x1 * x3 * x3 * x3 + 4 * x1 * x3 * x4 * x4 + 4 * x1 * x3 + 4 *
x2 *x3 * x3 * x4 + 2 * x2 * x4 * x4 * x4 - 10 * x2 * x4 + 4 * x3 * x3 - 10 *
x4 * x4 + 5.1801 >= 0 over the box [(-0.5, 0.5); (-0.5, 0.5); (-0.5, 0.5); (-0.5, 0.5)]
...
Computing lower bound ...
SOS numerical computation in 0.045087 secs

Proving non-negativity inside Coq
= true
: bool

Finished transaction in 1. secs (0.813333u,0.s)
Lower Bound with SOS of degree at most 4 = 0.0000021671
...
0.0000021642 >= 0.0000000000
Inequality caprasse verified

Here, the caprasse inequality is formally proved in less than 1 second which is
8 times faster than the verification procedure in Hol-light with the frame-
work described in [15] and 10 times faster than the tool based on Bernstein
approximation in PVS [14].

3 Certificates for Nonlinear Transcendental Inequalities

Now, we consider a more general goal ∀x ∈ K, f(x) ≥ 0, where f is an n-variate
transcendental function and K ⊂ Rn is a box. NLCertify implements the non-
linear maxplus method [2], which can be summarized as follows. The tool builds
first the abstract syntax tree t of f (see Figure 1 for an illustration). The leaves of
t are semialgebraic functions. The other nodes can be either univariate transcen-
dental functions or basic operations. NLCertify approximates t with means of
semialgebraic estimators and provides lower and upper bounds of t overK. When
t represents a polynomial, the tool computes lower and upper bounds of t using a

6 Linear Algebra with OCaml, this library implements Blas/Lapack routines.
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hierarchy of sparse SOS relaxations, as outlined in Section 2. The extension to the
semialgebraic case is straightforward through the implementation of the Lasserre-
Putinar lifting-strategy [11]. The user can choose to approximate transcendental
functions with maxplus estimators as well as best uniform (or minimax) polyno-
mials. The maxplus method derives lower (resp. upper) estimators using concave
maxima (resp. convex infima) of quadratic forms (see Figure 2 for an example).
Alternatively, univariate minimax polynomials are provided with an interface to
the Sollya environment, in which the Remez iterative algorithm is implemented.
In this way, NLCertify computes certified global estimators from approximations
of primitive functions by induction over the syntax tree t.

Example 2 (from LEMMA 9922699028 Flyspeck 7). Let define the polynomial
Δx := x1x4(−x1 + x2 + x3 − x4 + x5 + x6) + x2x5(x1 − x2 + x3 + x4 − x5 +
x6) + x3x6(x1 + x2 − x3 + x4 + x5 − x6)− x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6,
the semialgebraic functions r(x) := ∂4Δx/

√
4x1Δx and l(x) := 1.6294− π/2−

0.2213(
√
x2+

√
x3+

√
x5+

√
x6−8.0)+0.913(

√
x4−2.52)+0.728(

√
x1−2.0), as

well as the box K := [4, 2.12]3 × [2.652, 8]× [4, 2.12]2. Note that for illustration
purpose, the inequality has been modified by taking a sub-box of the original
Flyspeck inequality box [4, 2.522]3 × [2.522, 8]× [4, 2.522]2.

Here we display and comment the output of NLCertify for the inequality ∀x ∈
K, l(x)+arctan(r(x)) ≥ 0. The total computation time is about 20 seconds when
running the informal algorithm (check_certif_coq = false) with 3 iterations
(samp_iters = 3), no box subdivisions (bb = false) and the additional setting
xconvert_variables = true.

+

l(x) arctan

r(x)

Fig. 1. The abstract syntax tree of the function f from LEMMA 9922699028 Flyspeck

% ./nlcertify 9922699028_modified
Proving that - 1.5708 + atan ... >= 0 over the box [(4, 4.41);
(4, 4.41); (4, 4.41); (7.0225, 8); (4, 4.41); (4, 4.41)] ...
Bounding semialgebraic components
Computing approximation of atan on [0.0297, 0.4165]
Minimizer candidate x = [4; 4; 4; 8; 4; 4]
Control points set: [0.3535] ...

Semialgebraic components bounded

Iteration 1
Lower bound = -0.00463
Minimizer candidate x = [4; 4; 4; 7.0225; 4; 4]

Iteration 2

7 See the file available at
http://code.google.com/p/flyspeck/source/browse/

trunk/text formalization/nonlinear/ineq.hl

http://code.google.com/p/flyspeck/source/browse/trunk/text_formalization/nonlinear/ineq.hl
http://code.google.com/p/flyspeck/source/browse/trunk/text_formalization/nonlinear/ineq.hl
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Control points set: [0.1729; 0.3535] ...
Lower bound = -0.00006025
Minimizer candidate x = [4; 4; 4; 7.6622; 4; 4]

Iteration 3
Control points set: [0.1729; 0.2884; 0.3535] ...

Lower bound = 0.000004662
Minimizer candidate x = [4; 4; 4; 7.8083; 4; 4]

Lower and upper bounds for the semialgebraic components (i.e. r and l) are
computed using SOS relaxations. An interval enclosure for r is [m,M ], with
m := 0.0297 and M := 0.4165. Multiple evaluations of f return a set of values
and we obtain a first minimizer guess x1 := (4, 4, 4, 8, 4, 4) of f over K, which
corresponds to the minimal value of the set. Then, the solver performs three
iterations of the nonlinear maxplus algorithm.

1. The tool returns an underestimator para1
of arctan over [m,M ], with a1 :=

r(x1) = 0.3535. Then, it computes m1 ≤ minx∈K{l(x) + para1
(r(x))}. It

yields m1 = −4.63× 10−3 < 0 and x2 := (4, 4, 4, 7.0225, 4, 4).
2. From the second control point, we get a2 := r(x2) = 0.1729 and a tighter

bound m2 ≤ minx∈K{l(x)+max1≤i≤2{parai
(r(x))}}. We getm2 = −6.025×

10−5 < 0 and x3 := (4, 4, 4, 7.6622, 4, 4).
3. From the third control point, we get a3 := r(x3) = 0.2884 and m3 ≤

minx∈K{l(x) + max1≤i≤3{parai
(r(x))}}. We obtain m3 = 4.662× 10−6 > 0.

Thus, the inequality is solved.

a

y

para1

para2

para3

arctan

m Ma3a2 a1

Fig. 2. A hierarchy of maxplus quadratic underestimators for arctan

4 Conclusion

NLCertify aims at combining the safety of the Coq proof assistant with the
efficiency of informal optimization algorithms, based on low degree maxplus es-
timators and sparse semialgebraic relaxations. This could allow to derive safe
solutions for challenging problems that require to certify both approximation of
transcendental functions and bounds for polynomial programs such as impulsive
Rendezvous problems. Further developments on the formal side include the inte-
gration of a new reflexive tactic inside the Coq standard library. Adding faster
arithmetic for the polynomial coefficients ring would speedup the computation
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of the SOS checker. The current features could also be extended to handle non-
commutative SOS certificates as well as discrete combinatorial optimization.
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Abstract. We are developing linear algebra packages on Risa/Asir, a
computer algebra system. The aim is to provide programs for efficiently
and exactly solving eigenproblems on the computer algebra system for
large scale square matrices over integers or rational numbers. The soft-
ware package consists of some programs. The followings are currently
prepared for solving eigenproblems: computing eigenspaces, the spectral
decomposition, Jordan chains and minimal annihilating polynomials.

Keywords: Linear Algebra, Eigenproblems, Residue Calculus.

1 Introduction

We are developing linear algebra packages on Risa/Asir, a computer algebra
system. The aim is to provide programs for efficiently and exactly solving eigen-
problems on the computer algebra system for large scale square matrices over
integers or rational numbers.

For a square matrix with rational number entries, in general, eigenvalues are
algebraic numbers. A square matrix can be regarded as a linear transformation
on a finite-dimensional complex vector space. Any invariant subspace has a basis
which can be expressed by polynomials of the corresponding eigenvalue with
rational number coefficients. Here each polynomial has smaller degree than the
defining polynomial of the eigenvalue. Moreover the projection matrix to the
invariant subspace, which appears in the spectral decomposition, can be also
represented by polynomials of the eigenvalue. Since invariant subspaces have
common expression for conjugate eigenvalues, it depends on only the defining
polynomial of the eigenvalue.

Some mathematical software give verbose expressions as solutions of eigen-
problems. For example, “Eigenvectors” of Maple 17 returns vectors whose en-
tries are represented by rationals of eigenvalues. In this case it is hard to analyze
eigenproblems for large scale matrices because of high costs of normalization for

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 321–324, 2014.
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algebraic numbers. It is our motivation to develop and implement efficient algo-
rithms for large scale problems. We also pay attention to parallel computation
from the beginning of the research.

Our approach is based on minimal (or pseudo-)annihilating polynomials and
residue calculus of resolvents. The resolvent of square matrix is a matrix-valued
rational function of a complex variable and its denominator agrees with the
minimal polynomial of the matrix. Theoretically we have the spectral decompo-
sition by using Laurent expansion of the resolvent. In order to execute residue
calculus of the resolvent we use algebraic local cohomology groups. On the other
hand a monic polynomial is called an annihilating polynomial for a vector if
the polynomial of the matrix annihilates the vector. The minimal polynomial is
given by the LCM of minimal annihilating polynomials for the standard basis
of euclidean vector space. Minimal annihilating polynomials are also applied to
parallel computation.

2 Residue Calculus for Resolvents

In this section, we explain one of our algorithms developed for eigenproblems.
Let A be a square matrix with rational number entries. A matrix-valued rational
function R(z) = (zE −A)−1 with complex argument is called the resolvent and
has poles at eigenvalues of A. The following theorem holds:

Theorem 1 ([2], pp.40–43). Let λ1, . . . , λm be eigenvalues of A. If R(z) has
the Laurent expansion · · · + Di

(z−λi)2
+ Pi

z−λi
+ · · · at z = λi, then the spectral

decomposition of A can be expressed by

A = λ1P1 + · · ·+ λmPm +

m∑
i=1

Di, E = P1 + · · ·+ Pm,

where Pi is the projection matrix to the invariant subspace corresponding to λi
and all Di are nilpotent.

Example 1. Let A =

⎛⎝ 0 4 0
−1 4 0
0 0 3

⎞⎠ with the minimal polynomial (x − 2)2(x − 3).

The resolvent has an expression R(z) =
1

(z − 2)2
D1 +

1

z − 2
P1 +

1

z − 3
P2. Here

P1 = −3E + 4A−A2, P2 = 4E − 4A+A2 and D1 = −6E +5A−A2. Then the
spectral decomposition is given by A = 2P1 + 3P2 +D1.

Example 2. Let A =

⎛⎜⎜⎝
0 2 0 1
1 0 0 0
0 0 0 2
0 0 1 0

⎞⎟⎟⎠ with the minimal polynomial πA(x) = (x2−2)2.

For conjugate eigenvalues λ1, λ2 = ±
√
2, we put Pi =

1
16 (8E+6λiA−λiA3) and

Di =
1
8 (−2λiE−2A+λiA

2+A3). Then the spectral decomposition is expressed
by A = λ1P1 + λ2P2 + (D1 +D2).
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From these examples, we can observe some properties for spectral decompo-
sition: (1) Pi and Di can be written as polynomials of λi and A, (2) these have
common expression for conjugate eigenvalues.

We can give explicit algebraic representations for Pi and Di by using residue
calculus for resolvents. We consider a polynomial ideal AnnQ[x] (A) = {f(x) ∈
Q[x] | f(A) = O} generated by the minimal polynomial of A. There exists a
symmetric polynomial Ψf ∈ Q[x, y] which satisfies the relation f(x) − f(y) =
(x − y)Ψf(x, y) for given f ∈ AnnQ[x] (A). By assigning zE and A to Ψf (x, y),
we have an expression

R(z) =
1

f(z)
Ψf (zE,A), f ∈ AnnQ[x] (A).

Let fi be the defining polynomial of an eigenvalue λi. Any f ∈ AnnQ[x] (A) has

a decomposition f(z) = fi(z)
�igi(z) with gcd(fi, gi) = 1. Let us introduce an

algebraic local cohomology group H[Zi](Q[x]) with support Zi = {x | fi(x) = 0}.
We can compute an explicit Noetherian differential operator

Tf = (−∂)�i−1t0(x) + (−∂)�i−1t1(x) + · · ·+ t�i−1(x) ∈ Q[x]〈∂〉, ∂ =
d

dx
,

which satisfies the relation [1/f(x)] ≡ Tf [f
′
i(x)/fi(x)] in H[Zi](Q[x]). (see [3,5])

From the Laurent expansion of R(z), projection matrices can be expressed by
contour integrals around corresponding eigenvalues. By applying Tf , we have an
algebraic expression of Pi as follows:

Pi =
1

2π
√
−1

∫
C

R(z)dz =
1

2π
√
−1

∫
C

Ψf (zE,A)Tf

[
f ′i(z)

fi(z)

]
dz

=
1

2π
√
−1

∫
C

(T ∗
f • Ψf (zE,A))

f ′i(z)

fi(z)
dz = F (λiE,A),

where T ∗
f is the adjoint operator of Tf and F (x, y) ≡ T ∗

f • Ψf (x, y)
(mod Q[x, y]fi(x)). The polynomial F (x, y) also satisfies degx F (x, y) <
deg fi(x) and degy F (x, y) < deg f(x). Nilpotent matrices are also calculated
by similar formulas. So these expressions are optimized for algebraic numbers
and the complexity of the method depends on the degree of f(x). Thus we should
choose the minimal polynomial as f , that is the generator of AnnQ[x] (A).

Next we consider a column vector of Pi. For a vector p, let AnnQ[x] (A,p) =
{f ∈ Q[x] | f(A)p = 0}. The monic generator of the ideal is called the minimal
annihilating polynomial for p. By an argument similar to discussion above, we
have the following expressions:

Pip = Fp(λiE,A), Fp(x, y) ≡ T ∗
g • Ψg(x, y), g ∈ AnnQ[x] (A,p).

The projection matrix is written as Pi = (Pie1, Pie2, . . .) by the standard basis
{e1, e2, . . .} of the euclidean space. Since each minimal annihilating polynomial
has smaller degree than the minimal polynomial in general, the column vectors
of the spectral decomposition should be calculated separately by using mini-
mal annihilating polynomials for efficient computation. Moreover, the separated
method can be executed on parallel computers.
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3 Implementations

Our software package taji_mat.rr is implemented on Risa/Asir, a computer
algebra system and consists of some programs. Users input a square matrix
and its characteristic polynomial for invoking each function. The followings are
currently prepared for solving eigenproblems:

– computing bases of eigenspaces for corresponding eigenvalues,
(taji mat.eigenspace)

– the spectral decomposition, (taji mat.spec)
– Jordan chains for corresponding eigenvalues, (taji mat.jordan chain)
– minimal or pseudo-annihilating polynomials, (taji mat.annih)
– algebraic local cohomologies and residue calculation. (taji alc.snoether)

In several functions, minimal annihilating polynomials are automatically com-
puted and used.

Example 3. For executing Example 2, we may call taji_mat.spec as follows:

[100] load("taji_mat.rr");

[101] A=newmat(4,4,[[0,2,0,1],[1,0,0,0],[0,0,0,2],[0,0,1,0]]);

[102] F=(x^2-2)^2;

[103] taji_mat.spec(A,F);

Finally, we show elapsed time for invoking taji_mat.spec on parallel com-
puter. We used an integer matrix of order 48 with the minimal polynomial∏4

i=1(cubic)
4. The experiment was executed on Linux/amd64 2.6.39 with dual

Xeon E5645 (6-core, 2.4GHz) and 96GB memory.

Nodes 4 8 12 16

Time (sec.) 76.56 44.38 35.46 30.78
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Abstract. The high-quality mathematical software for the computation
of modified Bessel functions of the second kind with integer, imaginary
and complex order and real argument is elaborated. The value of function
may be evaluated with high precision for given value of the independent
argument x and order r. These codes are addressed to the wide audi-
ence of scientists, engineers and technical specialists. The tables of these
functions are published. This software improves significantly the capa-
bility of computer libraries. These functions arise naturally in boundary
value problems involving wedge-shaped or cone-shaped geometries. They
are fundamental to mathematical modeling activities in applied science
and engineering. Methods of mathematical and numerical analysis are
adapted for the creation of appropriate algorithms for these functions,
computer codes are written and tested. Power series, Tau method and
numerical quadratures of trapezoidal kind are used for the construction
of subroutines. New realization of the Lanczos Tau method with mini-
mal residue is proposed for the constructive approximation of the second
order differential equations solutions with polynomial coefficients. A Tau
method computational scheme is applied for the constructive approxima-
tion of a system of differential equations solutions related to the differ-
ential equation of hypergeometric type. Various vector perturbations are
discussed. Our choice of the perturbation term is a shifted Chebyshev

polynomial with a special form of selected transition and normalization.
The minimality conditions for the perturbation term are found for one
equation. They are sufficiently simple for verification in a number of
important cases. Tau method’s approach gives a big advantage in the
economy of computer’s time. The mathematical software for kernels of
Lebedev type index transforms – modified Bessel functions of the sec-
ond kind with complex order is elaborated in detail. The software for
new applications of Lebedev type integral transforms and related dual
integral equations for the numerical solution of problems of mathemati-
cal physics is constructed. The algorithm of numerical solution of some
mixed boundary value problems for the Helmholtz equation in wedge
domains is developed. Observed examples admitting complete analytical
solution demonstrate the efficiency of this approach for applied problems.
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integral transforms.

1 Introduction

The possibility to find the expression of the solution from known functions allows
one to make qualitative conclusions, estimate relations of unknown quantities
from prescribed parameters and obtain required numerical values without big
expenditure of time and means. It’s important very much for the investigations
in the field of theoretical and mathematical physics, mechanics, and for the tech-
nical and engineering applications. The mathematical tables were the principal
source for numerical values of mathematical special functions a time ago. The
universal character of use, high standard quality and longevity were typical for
them. The purpose of the tables was to perform laborious calculations once and
forever. We’d like to mention the big series of mathematical tables from the
Computing Centre of the USSR Academy of Sciences. We’d like to mark out
two tables from this series devoted to the modified Bessel functions of pure
imaginary and complex order [23,9].

The tables lose their value with the development of personal computers, note-
books, netbooks and informatics without paper. It’s inconvenient to input the
tables into the computer’s memory and then use and interpolate them. The
effective algorithms and codes became useful for the computation of function
values on widespread computers. It’s important to find the numerical values of
functions and their zeros, simplify such mathematical expressions as transforms
and integrals, construct methods for numerical solution of differential and inte-
gral equations with these functions. So the analytical expressions on orthogonal
polynomials, rational approximations and recurrent relations may be helpful very
much for the creation of the mathematical software. It’s possible to mark the
reliable and robust properties of good mathematical software. It’s possible to
mention a number of packages and libraries of mathematical software for special
functions. We can mark the FUNPACK package from NATS project and NAG
project for example. The Internet gave the new possibilities for the mathemati-
cal software. The NIST Digital Library of Mathematical functions http://www.
dlmf.nist.gov was created by great international collective of scientists. It was ac-
companied by NIST Handbook of Mathematical Functions [8] published in 2010
in Cambridge University Press. It may be efficient to use the cloud computing
and mobile devices for the mathematical software of special functions.

2 Functionality

The program complex for evaluation of Macdonald’s function [10] of arbitrary
real argument and real and some complex values of order is described. Approxi-
mation method, quadrature formulas, decomposition on Chebyshev polynomi-
als, recurrent relations and others are used for computations. The programs of
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complex are used in the numerical solution of mixed boundary value problems
by means of the method of integral transforms.

The complex of programs is designed for the computation of values of the
Macdonald function (modified Bessel function of the second kind)Kν(x) of
real argument x > 0 for real and some complex values of order ν.

Programs K0,K1 compute the values of the modified Bessel functions
K0(x),K1(x) for real argument x > 0. The program KN computes the val-
ues of the modified Bessel function Kp(x) for real argument x > 0 and for
the sequence of integer values of order p from 0 to n. For the computation of
the modified Bessel function Kν(x) for real argument x > 0 and arbitrary real
order ν we recommend the program of N.M.Temme [20].

The programs KIR and KIK generate values of the modified Bessel functions
Kiβ(x) and K1/2+iβ(x), correspondingly, for real argument x and real parameter
β (0.1 ≤ x ≤ 10, 0 ≤ β ≤ 10). The results of the computations by means of
the program KIR coincide with Ehrenmarks’s results [1]. It’s shown [2] that
programs KIR and KIK give a good accuracy in greater domain of x and β.

The methods used in the computations [2,5,7,9,10,12,13,15,16,19] were fol-
lowing: decompositions in Chebyshev polynomials in programs K0 and K1,
recurrent relations in the program KN , power series, Miller’s method and other
refined techniques in the program [4,20], a special approximating method (an
integral form of the Lanczos tau-method), quadrature formulas of trapezoidal
kind with optimal choice of the step and power series in the programs KIR and
KIK.

The Unified Library of Numerical Analysis of Moscow State University con-
tains about 30 codes for computation of basic special functions of mathematical
physics joined as a general library. All codes are carefully designed documented
elements of mathematical software. The majority of codes are constructed with
single and double precision. The different methods are used for the computa-
tion of different functions but one general approach is used. This is the trun-
cated Chebyshev expansions and summation of Fourier series on Chebyshev

polynomials. The following codes were elaborated:
SF21R.R Computation of gamma-function γ(x) of real argument.
SF65R.RC Computation of logarithmic derivative of gamma-function.
SF63R.R Computation of integral from first kind Bessel function of order

zero.
SF64R.R Computation of integral from Neiman (second kind Bessel) func-

tion of order zero.
SF67R.R Computation of second kind modified Bessel function Kiβ(x) of

imaginary order for real argument x and real values β.
SF70R.R Computation of second kind modified Bessel function K 1

2+iβ(x) of
complex order for real argument x and real values β.

SF74R.R Computation of first kind modified Bessel function for real argu-
ment x and sequence of integer orders p from n to 0.

SF75R.R Computation of second kind modified Bessel function for real ar-
gument x and sequence of integer orders from 0 to n.
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The codes ZP45R.R-ZP52R.R of the computation of partial sums of Fourier
series on Chebyshev polynomials were constructed also.

3 Application

The complex of programs makes possible the evaluation of the kernels of Bessel

integral transforms (K-transforms) andKontorovitch-Lebedev integral trans-
forms. They have value in the solution of some problems of mathematical physics,
including, for example, Dirichlet problem and other harmonic problems in
wedge-shaped domains.

The modified Kontorovitch-Lebedev integral transforms are also impor-
tant in the solution of some problems of mathematical physics, including, for
example, mixed boundary value problems for the Helmholtz equation in wedge
and conical domains. The complex of programs enables the evaluation of the ker-
nels of the “unmodified” and modified Kontorovitch-Lebedev integral transforms
with the precision 7-8 significant figures sufficient and necessary for applications.
These transforms were used for the numerical solution of a number of mixed
boundary value problems and dual integral equations. For example, diffusion,
heat structure transfer and elasticity problems were reduced to mixed boundary
value problems for the plane Helmholtz equation Δu − k2u = 0 and these were
solved in arbitrary sectorial domains. The complex of programs makes possible
the evaluation of the kernels of Bessel integral transforms (K-transforms) [21]

g(y, ν) =

∫ ∞

0

f(x)(xy)1/2Kν(xy)dx, y > 0, ν = 1, ν ∈ N, ν ∈ R,

and Kontorovitch-Lebedev integral transforms [6]

F (β) =

∫ ∞

0

f(x)Kiβ(x)dx, 0 ≤ β <∞.

These have value in the solution of some problems of mathematical physics,
including, for example, Dirichlet problem and other harmonic problems in
wedge-shaped domains.

The modified Kontorovitch-Lebedev integral transforms [6,11,17,18]

F+(β) =

∫ ∞

0

f(x)ReK1/2+iβ(x)dx, 0 ≤ β <∞,

F−(β) =

∫ ∞

0

f(x)ImK1/2+iβ(x)dx, 0 ≤ β <∞,

are also important in the solution of some problems of mathematical physics, in-
cluding, for example, mixed boundary value problems for the Helmholtz equation
in wedge and conical domains.

As another example, a model gas mixture combustion problem in a plane
wedge section was solved. The boundary conditions were that the gas mixture is
given as a known law on part of the boundary, and it is known how combustion
is held on the other part. The numerical solution is described in detail [14,18].
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4 Underlying Theory

The programs of complex are used in the numerical solution of mixed boundary
value problems by means of the method of integral transforms. The using of dif-
ferent quadrature formulas for evaluation K1/2+iβ(x) are considering in details
(Filon’s quadrature formulas, Gauss-Legendre quadrature formulas, quadra-
ture formulas of trapezoidal kind). It is shown that the best accuracy and speed
are achieved on using of quadrature formulas of trapezoidal kind in computation
of modified Bessel function K1/2+iβ(x). The special procedure for “optimal”
step’s choice is used based on asymptotic decompositions of these functions. The
suggested method allows to decrease substantially the machine time which is im-
portant in computation of special functions. The values of steps, knots and errors
of quadrature formulas for separate values of index and argument are analyzed.

The other methods used in the computations were the following: decompo-
sitions in Chebyshev polynomials, recurrent relations, power series, Miller’s

method and other refined techniques, approximating method and Lanczos tau-
method.

The results of computations show that the quadrature formulas of trapezoidal
kind with “optimal” choice of the step to shorten considerably the number of
knots required for the integration. The necessary number of knots depends signif-
icantly on x and β. It decreases with increasing x and increases with increasing β
(because these functions are rapidly damped as x increases and strongly oscillat-
ing for increasing β). So quadrature formulas of trapezoidal kind with “optimal”
choice of the step yield 7-8 significant digits for the computation of K1/2+iβ(x)
except when the ratio x/β is small.

Properties of the functionK1/2+iβ(x) are given in the Table’s book [9]. The fol-
lowingmethods of computationwere considered: power series (1), tau-method (2),
approximating method (integral form of the tau-method) (3), Filon’s quadra-
ture formulas (4), Gauss-Legendre quadrature formulas (5), quadrature formulas
of trapezoidal kind with “optima” choice of the step (6).

The results of calculations show that the methods 1, 3 and 6 are more eco-
nomical. They were chosen for the preparation of the program KIK. But none
of the methods gives necessary precision in 7-8 significant digits in the targeted
domain of x and β. Depending on x and β, the method which yields necessary
precision in 7-8 significant digits for the smallest expenditure of machine time is
chosen.

The use of power series, Method 1, for the computation K1/2+iβ(x) is de-
scribed in Tables [9].

The use of the approximating method, Method 3, for the computation
K1/2+iβ(x) is described in [12,15,16,19] where also its advantages are shown
in the comparison to the usual form of the tau-method with regard to precision
and speed. This method gives necessary precision on 7-8 significant digits and is
suitable for small values β (0 ≤ β ≤ 4) for almost all values of x. Let’s note that
the tau-method, Methods 2 and 3, certainly are more effective then other meth-
ods based on recurrent relations because of the necessity for multiple evaluation
of the function’s values for fixed parameter β as under the transition to new
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value x it’s not necessary to repeat all scheme of calculations and it’s sufficient
to conduct n additions and n multiplications.

The questions of the optimal choice of the residue in the approximating
method and its realization on a computer are discussed in [12,15,16,19].

Yakubovich [22] introduced the integral transforms with modified Bessel

functions of arbitrary complex order. So let’s consider the question of the use of
different quadrature formulas for the computation Kα+iβ(x).

The book of Luke [7] and paper of Gautschi [3] also consider the use of
quadrature formulas for the computation of Bessel functions. The integral rep-
resentations of the modified Bessel functionKα+iβ(x) take the following form [8]:

ReKα+iβ(x) =

∫ ∞

0

e−xchtch(αt) cos(βt)dt, (1)

ImKα+iβ(x) =

∫ ∞

0

e−xchtsh(αt) sin(βt)dt. (2)

They are most simple and convenient for the application of different quadrature
formulas [9,10,13]. Because of the rapidly decreasing integrand for increasing t,
it’s possible to truncate these integrals while maintaining the necessary precision.
Thus we consider the approximate integrals

I1 =

∫ b

0

e−xchtch(αt) cos(βt)dt, (3)

I2 =

∫ b

0

e−xchtsh(αt) sin(βt)dt. (4)

The upper limit of integration, b, is determined from the condition

ex(1−chb)ch(αb) = 10−N ,

N is taken to be 10.
The use of quadrature formulas of the trapezoidal kind, Method 6, for the

computation of the integrals (3)-(4) gives

I1(h) = h(0.5e−x +
k∑

j=1

e−xch(jh)ch(αjh) cos(βjh)), (5)

I2(h) = h

k∑
j=1

e−xch(jh)sh(αjh) sin(βjh), (6)

where k = [b/h].
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Some calculations were conducted for the comparison of the Gauss-Legendre
quadrature formulas and quadrature formulas of the trapezoidal kind with re-
spect to speed and accuracy. It was seen that, under the choice of the same
number of knots, the Gauss-Legendre formulas give a few more precise values
of functions ReK1/2+iβ(x) and ImK1/2+iβ(x) for some values x and β. But the
Gauss-Legendre formulas have the following negative properties: it’s neces-
sary to input a big number of knots and weights, it’s difficult to perform the
error estimation, it’s difficult to estimate the number of knots of needed as a
function of x and β. These difficulties are avoided by using a procedure based
on the use of quadrature formulas of trapezoidal kind with “optimal” choice of
the step.

Let’s use the procedure [5,10] for the “optimal” choice of the step h of the
trapezoidal quadrature formulas.

The results of computations show that the quadrature formulas of trapezoidal
kind with “optimal” choice of the step to shorten considerably the number of
knots required for the integration. The necessary number of knots depends signif-
icantly on x and β. It decreases with increasing x and increases with increasing β
because these functions are rapidly damped as x increases and strongly oscillat-
ing for increasing β. So quadrature formulas of trapezoidal kind with “optimal”
choice of the step yield 7-8 significant digits for the computation of K1/2+iβ(x)
except when the ratio x/β is small [10,13]. It’s necessary to mention that the
combination with Romberg integration can accelerate the convergence.

5 Technical Contribution

The values of coefficients of Chebyshev polynomials expansions were taken
with the precision on 15 - 20 digits. The check values were prepared and used for
testing. The Chebyshev polynomials expansions give 20 correct digits. But it’s
possible to use them for smaller precision also. It’s necessary to take the coeffi-
cients with n+1 decimal point and to reject expansion terms which coefficients
smaller then 10−(n+1) for the obtaining of the result with n correct digits.

The different codes were tested by the comparison of the numerical results on
the boundaries of the domains of their validity. The finite differences were used
for the verification of the numerical results also.
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Abstract. The side-chain prediction problem (SCP-problem), is a com-
putational problem to predict the optimal structure of proteins by finding
the optimal dihedral angles. The SCP-problem is one of key computa-
tional cornerstones for many important problems such as protein design,
flexible docking of proteins, homology modeling, etc. The SCP-problem
can be formulated as a minimization problem of an integer linear program
which is NP-hard thus inevitably invites heuristic approach to find the
solution. In this paper, we report a heuristic algorithm, called BetaSCP2,
which quickly finds an excellent solution of the SCP-problem. The solu-
tion process of the BetaSCP2 is facilitated by the Voronoi diagram and
its dual structure called the quasi-triangulation. The BetaSCP2 is en-
tirely implemented using the Molecular Geometry engine called BULL!
which has been developed by Voronoi Diagram Research Center (VDRC)
in C++ programming language. The benchmark test of the BetaSCP2
with other programs is also provided. The BetaSCP2 program is available
as both a stand-alone and a web server program from VDRC.

Keywords: protein structure/function, side-chain prediction, BetaSCP2,
Voronoi diagram, quasi-triangulation, beta-complex.

1 Introduction

Bio-molecules such as protein, DNA, and RNA play important biological func-
tions in the living bodies. It is a general consensus that the functions of molecules
come from their geometric structures. Hence, there have been tremendous stud-
ies which tried to figure out the relationship between the structure and functions
either computationally or experimentally.

Protein consists of linearly connected amino acids by a peptide bond where
a water molecule leaves during each connection. Residue, the remaining part
of each amino acid in a bonded sequence, consists of two parts: backbone and
side-chain. While the backbone part is common to each residue, the side-chain
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is different depending on each type of residue. Protein structure is generally de-
termined by the dihedral angles of some rotatable bonds in each residue because
other variations except the angles are relatively negligible [11].

The side-chain prediction problem, abbreviated as SCP-problem, is a com-
putational problem to predict the optimal structure of proteins by finding the
optimal dihedral angles. Assuming that a backbone structure is fixed (i.e., the
coordinates of the atoms in a backbone are given), the SCP-problem finds the
optimal side-chain structure by predicting the dihedral angles in side-chains so
that the total energy of the structure is minimized.

While each dihedral angle, in theory, can take any value between 0 and 360
degrees, it is well-known that there exists a preferred range of dihedral angle
which maps to a representative angle through statistical analysis. A combination
of such representatives for each residue is called a rotamer which is short for
rotational isomer. Example rotamer is shown in Figure 1 . Figure 1(a) shows the
chemical formula of aspartic acid whose side-chain has two dihedral angles (χ1:
between CH and CH2; χ2: between CH2 and C) as shown in Fig. 1(b). The
backbone atoms are also shown (H2N , CH , C, OH) at the top of Fig. 1(b).
Fig. 1(c) shows the union of nine rotamers for aspartic acid with different values
of χ1 and χ2 (Hydrogens are usually ignored in the graphical visualization).
Different residues have different number of dihedral angles. Hence, there could
exist different rotamer set for each type of residue. The collection of rotamer
sets for all residue types is called a rotamer library [12,23].

(a) (b) (c)

Fig. 1. Example rotamer: (a) the chemical formula of aspartic acid, (b) the two dihedral
angles in the side-chain of aspartic acid, (c) the union of nine rotamers for aspartic
acid

Consider a protein Π = {ρ1, ρ2, . . . , ρn} consisting of n residues. Each residue
ρ has the backbone part β and the side-chain σ. Let B = {β1, β2, . . . , βn} and
Σ = {σ1, σ2, . . . , σn} be the backbone parts and side-chains for the residues,
respectively. Thus, βi and σi constitute ρi and a protein can be represented as
Π = B∪Σ. B is called the backbone of the proteinΠ . Suppose that the structure
of Π (i.e. the atom coordinates of B and Σ) is completely defined. Then, the
potential energy EΠ of Π for the SCP-problem is usually defined as follows [10]:

EΠ = EBΣ + EΣΣ (1)
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where EBΣ is the potential energy between protein backbone and the side-chain
of each residue and EΣΣ is the potential energy between a side-chain σi and
another side-chain σj , i �= j. The energy function used in this study is the
van der Waals interaction between non-bonded atoms modeled by the following
Lennard-Jones potential energy function

E = EBΣ + EΣΣ (2)

=
∑
i∈β

∑
j∈σ

{Aij

d12ij
− Bij

d6ij
}+

∑
i∈σi

∑
j∈σj

{Aij

d12ij
− Bij

d6ij
}

where dij is the Euclidean distance between the centers of a pair of atoms ai
and aj . Aij and Bij are constants depending on atom types and the parameters
in either AMBER [8] or CHARMM [4] could be used.

Given a rotamer library, the energy function E, and the structure of B, the
SCP-problem is to assign the optimal rotamer r∗ to each residue ρ for σ so
that EΠ of Eq. (1) is minimized [10]. Thus, the SCP-problem can be formulated
as a minimization problem of an integer linear program[13,21,28] which is NP-
hard thus necessarily invites a heuristic approach to find the solution. The NP-
hardness of the SCP-problem is proved either by reducing satisfiability (SAT)
problem to the decision problem of the SCP-problem [24,7] or by reducing the
unconstrained quadratic 0-1 programming problem to the formulation of the
SCP-problem [14]. The SCP-problem is one of key computational cornerstones
for many important problems such as protein design [9,3], flexible docking of
proteins [2,26], homology modeling [27], etc.

2 BetaSCP2 Algorithm

The SCP-problem can be formulated in an integer linear program (ILP) of For-
mulation 1 [13,6,14,21,28] where the constraints are not shown here due to space
constraint. Two types of decision variables corresponding to two types of ener-
gies in Eq. (1) are defined as follows: xij decides whether rotamer j is accepted
for residue i or not; xijkl decides whether the interaction between rotamer k of
residue i and rotamer l of residue j is accepted or not. mi represents the number
of rotamers for a residue i in rotamer library.

Formulation 1. (ILP for SCP-problem)

Min.

n∑
i=1

mi∑
j=1

EBΣ(i, j)xij +

n−1∑
i=1

mi∑
j=1

n∑
k=i+1

mk∑
l=1

EΣΣ(i, j, k, l)xijkl (3)

xij ∈ {0, 1}, xijkl ∈ {0, 1}. (4)

While the size ‖xik‖ of xik linearly increases with respect toM1 =
∑n

i=1mi, the

size ‖xijkl‖ of xijkl dramatically grows according to M2 =
∑n−1

i=1

∑n
k=i+1(mi ×

mk) where M2 2 M1. Therefore, we prefer to cut down ‖xijkl‖. BetaSCP1
algorithm, previously reported [25], decomposes the SCP-problem into subprob-
lems and solves the ILP corresponding to each subproblem by using CPLEX
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solver [1]. While BetaSCP1 produces a solution very close to the global opti-
mum, it is computationally very inefficient because it should invoke the CPLEX
solver repeatedly.

BetaSCP2 algorithm decomposes the SCP-problem into small-sized subprob-
lems and transforms each subproblem into simple geometric problem which is
very efficiently solved via the theory of beta-complex, which is a derived from
the Voronoi diagram of spheres (Refer to the Appendix for the brief discussion).
The input of the procedure BetaSCP2 below is a protein backbone B from a PDB
file and a rotamer library R. In STEP 1, BetaSCP2 initially assigns a rotamer
r0 to each residue by considering the probability of the rotamer instances in R.
In STEP 2 and 3, the minimum enclosing sphere (MES) for each residue and
the quasi-triangulation of MES set are computed by using BULL! engine [16].
In STEP 4, BetaSCP2 improves the rotamer r0 initially assigned to each residue
ρ by looking into the only nearby other rotamers which is defined by first-order
Voronoi neighbors of Definition 1. Through STEP 4.1 and 4.2, BetaSCP2 com-
putes the intersection volume of each candidate for ρ and choose the best one
with minimum intersection volume. Note that BetaSCP2 exploits the intersection
volume instead of potential energy. It can be easily proved that the rotamer with
less intersection volume has the lower potential energy if there exists such an
intersection. This important observation will be reported elsewhere in future.

BetaSCP2(B, R)

1 1. assign an initial rotamer r0 to each residue.
2 2. compute the MES of each residue.
3 3. compute the quasi-triangulation for the MES set.
4 4. for the first-order Voronoi neighbors FN of the MES for each residue ρ
5 4.1. for each rotamer r of ρ in R
6 4.1.1. compute intersection volume XV(r) of r with
7 other rotamers in FN .
8 4.2. find out the best rotamer r∗ with minimum XV(r∗).

Figure 2 illustrates the BetaSCP2 algorithm: Figure 2(a) is an input protein
structure; Figure 2(b) shows the backbone and the rotamer set corresponding
to each residue by stick model; Figure 2(c) shows the rotamers to be initially
assigned to each residue and their minimum enclosing spheres (MES) in yellow
by space-filling model.

3 Benchmark Test

We have compared the BetaSCP2 algorithm with SCWRL4 [22] and CISRR [5]
against 248 data from Protein Data Bank (PDB). The computational environ-
ment is as follows: Intel Core 2 Duo CPU E6850 (3.0GHz with 4GB RAM) and
Windows 7. For comparing the solution quality, we evaluated Lennard-Jones
potential (LJ) energy functions of the structures computed by each program.
Figure 3(a) and (b) show LJ energies for three data sets from three programs.
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(a) (b) (c)

Fig. 2. Illustration of BetaSCP2 algorithm: (a) input protein structure (PDB code:
3FQP), (b) the backbone and rotamer sets of residues of (a), (c) the initially assigned
rotamers to each residue and their minimum enclosing spheres

The X-axis represents the computed structures with respect to their residue
sizes. The Y-axis represents LJ energies of the structures. Due to too high ener-
gies of SCWRL4, the difference between BetaSCP2 and CISRR are not clearly
recognized in Figure 3(a); its zoom-up in Figure 3(b) clearly shows the powerful
result of BetaSCP2.

BetaSCP2 produces energetically very stable structures, compared to both
SCWRL4 and CISRR as shown in Figure 3(b). It turns out that BetaSCP2
outperforms SCWRL4 for 214 among 248 data. BetaSCP2 outperforms CISRR

(a) (b)

(c) (d)

Fig. 3. Benchmark test for BetaSCP2, SCWRL4 and CISRR: (a) energies of the struc-
tures computed by BetaSCP2, SCWRL4, and CISRR, (b) the zoom-up of (a), (c)
computation times for BetaSCP2, SCWRL4, and CISRR, and (d) computation times
for BetaSCP2 and CISRR
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for 52 data. However, the energy of BetaSCP2 are extremely lower for those 52
data. The mean and variance of BetaSCP2 are very low compared to those of
CISRR. For the other 196 data, their energy differences between BetaSCP2 and
CISRR are relatively small.

For comparing the computational efficiency, we counted the computation
time of each program. Figure 3(c) shows the computation times of BetaSCP2,
SCWRL4, and CISRR. Figure 3(d) shows the computation times of BetaSCP2
and SCWRL4 only. SCWRL4 is fastest among three programs. While BetaSCP2
shows a strongly linear pattern from both graphs, CISRR seems to have a super-
linear pattern. BetaSCP2 is approximately three times faster than CISRR. The
computation time taken by SCWRL4 relatively fluctuates wildly with respect to
protein size.

4 Conclusion

In this paper, we reported the BetaSCP2 algorithm, and its implementation
which quickly finds an excellent solution of the SCP-problem. The core idea of the
BetaSCP2 algorithm is to transform the SCP-problem into a simple geometric
problem whose solution process can be facilitated by the Voronoi diagram and its
dual structure called the quasi-triangulation. Due to this idea, BetaSCP2 could
improve the computational efficiency compared to BetaSCP1 without degrading
the solution quality. The BetaSCP2 algorithm is entirely implemented using the
Molecular Geometry engine called BULL! which has been developed by Voronoi
Diagram Research Center (VDRC) in C++ programming language. Comparing
with other programs, BetaSCP2 produces energetically very stable structures
efficiently. Even though there could be other criteria, we compare the programs
according to energy of computed structure.

Acknowledgement. This research was supported by the National Research
Lab grant funded by the National Research Foundation (NRF) of Korea (No.
2012R1A2A1A05026395).

Appendix: Voronoi Diagram and Its Derivative Structures

Suppose that we are given a set S = {s1, s2, . . . , sn} of spheres si = (pi, ri)
in R3 where pi is the center and ri is the radius. Then Voronoi diagram VD
of S consists of n Voronoi cells: {VC(s1),VC(s2), · · · ,VC(sn)}. A Voronoi cell
VC(si) = {d(x, pi) − ri < d(x, pj) − rj , i �= j} where d(x, y) is the Euclidean
distance between two points x and y. Then VD is represented by the quadruplet
(V V , EV , FV , CV): V V = {vV1 , vV2 , . . .}, EV = {eV1 , eV2 , . . .}, FV = {fV1 , fV2 , . . .},
and CV = {cV1 , cV2 , . . . cVn} are the sets of the Voronoi vertices (V-vertices),
Voronoi edges (V-edges), Voronoi faces (V-faces), and Voronoi cells (V-cells)
in VD, respectively. Note that VD is different from the ordinary Voronoi dia-
gram of sphere centers in many respects. One of the important properties for
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VD is that VD reflects the size differences among spheres in Euclidean distance
metric. For the details of VD, refer to [15,20].

Given VD, its dual structure quasi-triangulation QT is defined as follows:
Each V-vertex maps to a tetrahedral cell simplex (q-cell); Each V-edge maps to
a triangular face simplex (q-face); Each V-face maps to an edge simplex (q-edge);
And each V-cell maps to a vertex simplex (q-vertex). Then QT is represented by
the quadruplet (V Q, EQ, FQ, CQ): V Q = {vQ1 , vQ2 , . . . vQn }, EQ = {eQ1 , eQ2 , . . .},
FQ = {fQ1 , fQ2 , . . .}, and CQ = {cQ1 , cQ2 , . . .} are the sets of the q-vertices, q-
edges, q-faces, and q-cells in QT , respectively.

VD and QT are equivalent to each other in mathematical and computational
point of view. Given VD, QT of S is computed in O(m) time in the worst case
where m is the number of the q-simplexes in QT . The reverse conversion from
QT to VD takes linear time in the worst case with respect to the number of the
topological entities in VD. For the details of QT , see [19,17,18].

Definition 1 (First-order Voronoi Neighbors)
Suppose that we have VD of a set S = {s1, s2, . . . , sn} of spherical balls. Let
FV
i be the V-faces bounding VC(si) of a ball si. F

V
j is similarly defined. Given

a spherical ball si ∈ S, a set FN i = {sj ∈ S | FV
i ∩FV

j �= ∅, i �= j} is called the
first-order neighbors of si.
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Abstract. Our most recent computations tell us that any counterex-
ample to Giuga’s 1950 primality conjecture must have at least 19,908
decimal digits. Equivalently, any number which is both a Giuga and a
Carmichael number must have at least 19,908 decimal digits. This bound
has not been achieved through exhaustive testing of all numbers with up
to 19,908 decimal digits, but rather through exploitation of the proper-
ties of Giuga and Carmichael numbers. This bound improves upon the
1996 bound of Borwein, Borwein, Borwein, and Girgensohn. We present
the algorithm used, and discuss technical challenges and challenges to
further computation.

Keywords: Giuga’s conjecture, normality of primes, branch and bound.

1 Introduction

Giuseppe Giuga formulated his now well-known prime number conjecture (see
Conjecture 1) in his 1950 paper [5]. The conjecture hypothesises a primality
test, although we note that the test is inefficient when compared to commonly
used modern primality tests. However, the conjecture is interesting for other
mathematical reasons as it relates to Bernoulli numbers as shown in Takahashi
Agoh’s 1995 paper [1].

Conjecture 1 (Giuga’s Conjecture). An integer, n > 1, is prime if and only if

sn :=

n−1∑
k=1

kn−1 ≡ −1 (mod n). (1)

Note that if p is prime, then sp ≡ p− 1 (mod p) is an immediate consequence
of Fermat’s little theorem. The interesting question then is whether there exists
any composite n with sn ≡ n−1 ( mod n). Any such number would be a counter-
example to the conjecture.

Herein we present an algorithm to compute lower bounds for a counterexam-
ple, used by Borwein et all in 1996 [2] to compute a lower bound of approxi-
mately 1013,886. We have extended this work by re-implementing the algorithm
using modern techniques and have produced a considerably improved bound of
approximately 1019,907 [4].

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 341–345, 2014.
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2 Underlying Theory

2.1 Giuga and Carmichael Numbers

It can be shown [2] that any number n which satisfies sn ≡ n− 1 (mod n) must
satisfy two conditions.

p |
(
n

p
− 1

)
for all prime divisors p of n (2)

(p− 1) |
(
n

p
− 1

)
for all prime divisors p of n (3)

Composite numbers satisfying (2) are called Giuga numbers. They are square-
free and satisfy the property that∑

p |n

1

p
−
∏
p |n

1

p
∈ N (4)

Note that it follows, then, that
∑

p |n
1
p > 1

Composite, square-free numbers satisfying (3) are called Carmichael numbers.
The divisors of any Carmichael number are normal in the sense of the following
definition.

Definition 1. A set of odd primes, P , is normal if no p, q ∈ P satisfies p | (q−1).

Example 1. The set {3,5,17} is normal because 4 = 5− 1 is not divisible 3, and
16 = 17− 1 is divisible by neither 3 nor 5.

Example 2. The set {3,5,7} is not normal, because 6 = 7− 1 is divisible by 3.

It is unknown whether there is any Giuga number that is also a Carmichael
number, however the existence of one would constitute a counterexample to
Giuga’s conjecture. Giuga’s conjecture can, therefore, be re-written to say that
there is no number that is both a Giuga number and a Carmichael number.

2.2 Exclusion Bounds

We compute a lower bound for a counterexample to Giuga’s conjecture by ex-
ploiting the property (4) of Giuga numbers and the normal property of prime
divisors of the Carmichael numbers. Considering the two properties in concert
greatly reduces the amount of computation which must be performed in order
to compute a lower bound.

Notation 1

– Let qk denote the kth odd prime.
– Let N denote a normal set of odd primes.
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A binary tree is constructed whose vertices are labelled by normal sets of
primes. The root vertex, considered to be at depth 1, is labelled by the empty
set. A vertex at depth d of the tree labelled by N will always have a child vertex
labelled by N , and will have a child vertex labelled by N ∪ qd if and only if
N ∪ qd is normal.

Each vertex is assigned a score, called the j-value of that vertex. The j-value
is calculated by first constructing a new set as follows. If N is a normal set of
primes labelling a vertex at depth d of the tree, then we construct the set Td(N )
by starting with Td(N ) = N and, for each k ≥ d we add qk to Td(N ) so long
as N ∪ {qk} is normal. The primes are added one at a time, from smallest to
largest, until ∑

q∈Td(N )

1

q
> 1

The reason for this stopping criteria is related to (4), above, and is explained in
[2,4]. The j-value of the vertex is simply the cardinality of the set Td(N ).

For a fixed depth d of the tree, the minimum j-value of all vertices at that
depth, denoted jd, is a lower bound for the number of prime numbers needed for a
counterexample to Giuga’s conjecture. The lower bound for the counterexample
itself is computed as

jd∏
k=1

qk

The branch and bound nature of the algorithm comes from the fact that the
sequence of j-values is non-decreasing. That is, the j-value of a child vertex is
always greater than or equal to the j-value of its parent. This allows us to forego
computation of many sub-trees whose parent vertex already has a larger j-value
than some known lower j-value. Doing so increases the speed of computation
enormously for a fixed tree-depth.

Example 3. The tree, with j-values for each vertex, expanded and bounded using
the branch and bound algorithm can be seen in Figure 1, from which we can see
that j5 = 127. Consequently, any counterexample to Giuga’s conjecture must
have at least 127 prime factors, and must therefore be greater than

127∏
k=1

qk ≈ 4.962053073 · 10297

See [2,4] for more information regarding this algorithm.

3 Implementation Details and Technical Challenges

In 1996, Borwein et al [2] used the above algorithm to compute j100 using the
Computer Algebra System Maple. Borwein reports in [3] that the computations
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Fig. 1. Trimmed tree with j-values computed to depth 5

for jk required “a few CPU hours for each k” when k was near 100. Using
a C++ implementation (which took two months to produce) they were able
to compute j135, taking “303 CPU hours” [2]. The C++ implementation then
crashed irrevocably before doing any extra work [3].

In 2012 we created a multi-threaded C++ implementation which was used to
compute j311 yielding the improved bound described in Section 1. The computa-
tion ultimately took more than ten days to complete [4]. Contrary to Borwein’s
stated experience in 2006, the initial 2012 C++ implementation was quick and
painless to write, and performed reliably. Threading was achieved through Ap-
ple’s “Grand Central Dispatch” library, and was similarly quick and painless to
learn and to implement.

The primary computation challenge came in the form of memory usage. Al-
though the branch and bound algorithm significantly reduces the number of
vertices of the tree to be computed, the tree still appears to grow exponentially
as depth increases (see below). As available memory ran out the computation
began paging, which significantly slowed the computation down. To minimise
paging, vertex data was first written to disk when processing was complete, and
later kept entirely on disk except when explicitly being processed. Vertex data
was stored using the Berkeley database library because it already incorporated
caching as well as sorting of data.

Ultimately, the paging problem was never solved and only postponed. During
the final computations of j311 the paging problem returned in spite of the fact
that only currently processing data should have been in memory. It is uncer-
tain whether this is a limitation of the Grand Central Dispatch paradigm for
such large scale computations, or whether there is a bottleneck where newly
created vertex data is written to disk. Efforts to diagnose and fix the problem
are ongoing, and no further computations have been performed.

The serious challenge to further computation is the fact that, although the use
of the j-values allows us to avoid computing the entire binary tree, the vertices
of the trimmed tree still appear to grow exponentially as the depth increases.
When computing j311 measurements were taken for the amount of time taken to
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compute jk for each 1 ≤ k ≤ 311, and of the file size of the output file produced
by the computation. Both measurements, when plotted on a log-linear scale (see
[4]) appear to be linear, which suggests an exponential relationship.

4 Further Work

Work is ongoing to find the source of the paging problems, and to fix them
so that computation can resume. The exponential growth in output file size is
hoped to be able to be temporarily fixed by compressing the output. It is hoped
that doing so will delay hard drive space from becoming the main barrier to
more computation long enough that the apparently exponential computation
times will be the primary barrier. It is hoped that a parallel implementation,
either via GPU acceleration, or via grid computation might delay the inevitable
computation time barrier.

References

1. Agoh, T.: On Giuga’s conjecture. Manuscripta Math. 87(4), 501–510 (1995)
2. Borwein, D., Borwein, J.M., Borwein, P.B., Girgensohn, R.: Giuga’s conjecture on

primality. Amer. Math. Monthly 103(1), 40–50 (1996)
3. Borwein, J.M., Bailey, D.H., Girgensohn, R.: Experimentation in Mathematics.

Computational Paths to Discovery. A.K. Peters Ltd. (2004)
4. Borwein, J., Maitland, C., Skerritt, M.: Computation of an improved lower bound

to Giuga’s primality conjecture. Integers 13, #A67 (2013)
5. Giuga, G.: Su una presumibile proprietà caratteristica dei numeri primi. Ist. Lom-

bardo Sci. Lett. Rend. Cl. Sci. Mat. Nat (3) 14(83), 511–528 (1950)



An Extension and Efficient Calculation

of the Horner’s Rule for Matrices

Shinichi Tajima1, Katsuyoshi Ohara2, and Akira Terui1

1 Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
{tajima,terui}@math.tsukuba.ac.jp
http://researchmap.jp/aterui (Terui)

2 Faculty of Mathematics and Physics, Kanazawa University, Japan
ohara@air.s.kanazawa-u.ac.jp

http://air.s.kanazawa-u.ac.jp/~ohara/

Abstract. We propose an efficient method for calculating “matrix poly-
nomials” by extending the Horner’s rule for univariate polynomials. We
extend the Horner’s rule by partitioning it by a given degree to reduce
the number of matrix-matrix multiplications. By this extension, we show
that we can calculate matrix polynomials more efficiently than by us-
ing naive Horner’s rule. An implementation of our algorithm is avail-
able on the computer algebra system Risa/Asir, and our experiments
have demonstrated that, at suitable degree of partitioning, our new algo-
rithm needs significantly shorter computing time as well as much smaller
amount of memory, compared to naive Horner’s rule. Furthermore, we
show that our new algorithm is effective for matrix polynomials not only
over multiple-precision integers, but also over fixed-precision (IEEE stan-
dard) floating-point numbers by experiments.

Keywords: The Horner’s rule, matrix polynomials.

1 Introduction

Give a field IK, a square matrix A of dimension n, a square matrixM or a column
vector v of dimension n and a univariate polynomial g(λ) of degree m (with
all the mathematical objects defined over IK), we discuss efficient calculation
of a “matrix polynomial”, or a matrix g(A)M or a column vector g(A)v. By
calculating “matrix polynomials”, we mean to evaluate a univariate polynomial
over a field at a given value that is a square matrix over the same field by the
celebrated Horner’s rule.

For a given matrix, we have developed algorithms with exact arithmetic, based
on residue analysis of the resolvent of the matrix, for various computations so
far, including spectral decomposition, calculation of (pseudo) annihilating poly-
nomials and eigenvectors. Calculation of matrix polynomials is at the core of
these computations, thus it is important to establish an efficient algorithm for
calculating matrix polynomials to increase efficiency of the overall algorithms.

While the Horner’s rule has been known as an algorithm for sequential com-
putation, several extensions have been proposed for use of the Horner’s rule
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on parallel computers ([1], [2], [4], [6]). However, our idea and/or intention for
making an efficient algorithm for the Horner’s rule is much different from theirs
because we need to establish efficient algorithm for matrix polynomials that was
not at least a main objective in previous research to the best of the authors’
knowledge.

Computing time of the Horner’s rule for matrices is dominated by multipli-
cation of a matrix by another matrix, thus we aimed to reduce the number of
matrix-matrix multiplications. With this strategy, we extend the Horner’s rule
by partitioning it by a given degree to reduce the number of matrix-matrix multi-
plications. By this extension, we show that we can calculate matrix polynomials
more efficiently than by using naive Horner’s rule.

We estimate the arithmetic time complexity of our new algorithm and derive a
degree of partition of the Horner’s rule which makes our extension the most effi-
cient. This estimate has been verified with experiments with our implementation
on the computer algebra system Risa/Asir, and our experiments have demon-
strated that, at suitable degree of partition, our new algorithm needs significantly
shorter computing time as well as much smaller amount of memory, compared
to naive Horner’s rule. Furthermore, we show that our new algorithm is effective
for matrix polynomials not only over multiple-precision integers, but also over
fixed-precision (IEEE standard) floating-point numbers by experiments.

2 The Horner’s Rule for Matrices

The Horner’s rule is known as an efficient algorithm for evaluating a univariate
polynomial at a number [3]. Let IK be a field, a ∈ IK and f(x) ∈ IK[x] be a
univariate polynomial of degree m, then we see that arithmetic time complexity
over IK for calculating f(a) by the Horner’s rule is given as O(m) (note that the
number of multiplications is given as O(m)).

Let A and M be square matrices of dimension n over IK and g(λ) ∈ IK[λ]
be a univariate polynomial of degree m, then we discuss calculating g(A)M by
the Horner’s rule (we call it “the Horner’s rule for matrices”). In this paper,
we assume naive method for multiplication of two matrices over IK, in which
arithmetic time complexity is given as O(n3) for multiplying square matrices of
dimension n [3]. Then, in this case, we estimate arithmetic time complexity over
IK for calculating g(λ) as O(mn3) since the number of matrix-matrix multiplica-
tions that dominates the entire calculation is given as O(m). Furthermore, the
arithmetic complexity becomes O(n4) if we have m * n.

3 Efficient Calculation of Matrix Polynomials with
Extension of the Horner’s Rule

Our key idea for making efficient calculation of the Horner’s rule is to reduce the
number of matrix-matrix multiplications by partitioning the Horner’s rule by a
certain degree. The following example illustrates our idea.
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Example 1. Let A and M be square matrices over IK of dimension n and g(λ) ∈
IK[λ] be a univariate polynomial, given as

g(λ) = a18λ
18 + a17λ

17 + · · ·+ a1λ+ a0, ai ∈ IK, a18 �= 0.

With the naive Horner’s rule, we calculate g(A)M as

g(A)M = a18A
18M + a17A

17M + · · ·+ a1AM + a0M

= A(A(· · · (A(a18AM + a17M) + · · ·) + a1M) + a0M,

in which we employ 18 times of matrix-matrix multiplications.
Now, we carry out “partitioned” Horner’s rule as follows, for example, parti-

tioned by degree 4.

[Step 1]. Calculate A4 = (A2)2 and store it in advance.
[Step 2]. Calculate A3M,A2M,AM and store them along with M in advance.
[Step 3]. Execute the Horner’s rule with adding polynomials partitioned by

degree 4 as follows.

g(A)M = A4{A4{A4{A4(a18A
2M + a17AM + a16M)}

+(a15A
3M + a14A

2M + a13AM + a12M)}
+(a11A

3M + a10A
2M + a9AM + a8M)}

+(a7A
3M + a6A

2M + a5AM + a4M)}
+(a3A

3M + a2A
2M + a1AM + a0M) (1)

Note that we need only additions and scalar multiplications on matrices for cal-
culating the underlined polynomials in Eq. (1) because we have already prepared
A3M,A2M,AM and M in advance. As a consequence, we have the number of
matrix-matrix multiplications in each step as follows: 2 times in Step 1, 3 times
in Step 2 and 4 times in Step 3, thus 9 times in total. Note that the total number
of matrix-matrix multiplications in the partitioned Horner’s rule is reduced to
half of that in the naive one. 3%

In general, for square matrices A and M of degree n and a polynomial g(λ)
of degree m defined as g(λ) = amλ

m + am−1λ
m−1 + · · ·+ a1λ + a0, we present

calculation of g(A)M with the partitioned Horner’s rule of degree d = 2b (with
d ≤ m) as Algorithm 1 below.

Algorithm 1 (A partitioned Horner’s rule)

Inputs
– A: square matrix of dimension n,
– M : square matrix or column vector of dimension n,
– g(λ): univariate polynomial of degree m, given as

g(λ) = amλ
m + am−1λ

m−1 + · · ·+ a1λ+ a0;
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– d = 2b: degree of partition (with d ≤ m);

Output g(A)M : square matrix of dimension n (if M is a matrix) or column
vector of dimension n (if M is a vector);

[Step 1] Calculate Ad = A2b = (· · · (A2)2 · · ·)2 and store it in advance;
[Step 2] Calculate Ad−1M,Ad−2M, . . . , AM and store them along with M in

advance;
[Step 3] Execute the Horner’s rule with adding polynomials partitioned by de-

gree d as follows:

g(A)M = Ad{· · · {Ad(amA
rM + · · ·+ aqd+1AM + aqdM)}

+(aqd−1A
d−1M + · · ·+ a(q−1)d+1AM + a(q−1)dM)}

+ · · ·
+(ad−1A

d−1M + · · ·+ a1AM + a0M),

where q and r represent the quotient and the remainder of m divided by d,
respectively. 3%

We calculate the number of matrix-matrix multiplications in Alg. 1 using b,
d, m, as follows: b times in Step 1, d− 1 times in Step 2, !m/d" times in Step 3,
thus

b+ d+ !m/d" − 1 (2)

in total, which can be represented as T (b,m) with putting d = 2b as

T (b,m) = b+ 2b + !m/2b" − 1. (3)

3.1 Estimating of the Optimal Value of the Degree of Partition d

We can estimate the optimal value of the degree of partition in Alg. 1, as follows.
Note that we only consider the number of matrix-matrix multiplications for the
Horner’s rule itself, which excludes those in the Step 11. Then, from Eq. (2), we
can estimate the number of matrix-matrix multiplications as

m

d
+ d− 1. (4)

If we fix the degree of the polynomial m, then, by the inequality of arithmetic
and geometric means, Eq. (4) attains the minimum when m/d = d or d =

√
m.

Thus, with d = 2b, we estimate the optimal value for d as the maximum value
of 2b that does not exceed

√
m or 2b that is the nearest to

√
m.

1 In calculation of minimal polynomials and/or pseudo annihilating polynomials that
are among our primary intention of application of our extension of the Horner’s
rule, we execute the Horner’s for matrices for as many times as the dimension or
the degree of irreducible factors in the characteristic polynomial of the given matrix,
while we calculate Ad just for once. Thus, we regard that the computing time for
Ad is negligible compared to those for the Horner’s rule.
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4 Experiments

We have implemented our algorithm in the above on the computer algebra sys-
tem Risa/Asir [5]. In this paper, we only explain the setting of our experiments
because of limited space, and we show brief results of the experiments in the
next section. Let A and M be square matrices of dimension n, v be a column
vector of dimension n and g(λ) be a univariate polynomial of degree m. In each
experiment, we have measured computing time and the amount of memory used
for computation by changing the degree of partition in the Horner’s rule.

We have carried out the following experiments with computing environment
as follows: Quad-core AMD Opteron 2350 at 2.0 GHz with RAM 4GB running
Linux 2.6.26-amd64.

1. The Horner’s rule with matrix-matrix multiplications for matrices A and M
of dimension 64 and a polynomial g(λ) of degree 64 with randomly-generated
64-bit integers to calculate g(A)M . We have changed the degree of partition
for the Horner’s rule d as 1 (without partition), 2, 4, 8 and 16. We have
also tested our algorithms for matrices A and M of dimension 128 and a
polynomial g(λ) of degree 128.

2. The Horner’s rule with matrix-vector multiplications for a matrix A and a
column vector v of dimension 64 and a polynomial g(λ) of degree 64 with
randomly-generated 64-bit integers to calculate g(A)v. We have changed the
degree of partition for the Horner’s rule d as 1 (without partition), 2, 4, 8,
16 and 32.

3. The Horner’s rule with matrix-matrix multiplications for matrices A and
M of dimension 64 and a polynomial g(λ) of degree 128 with randomly-
generated IEEE double-precision standard floating-point numbers to calcu-
late g(A)M . We have changed the degree of partition for the Horner’s rule
d as 1 (without partition), 2, 4, 8, 16, 32 and 64.

5 Conclusions

In this paper, we have proposed an extension of the Horner’s rule for efficient
calculation by partitioning it by a given degree. Our experiments in the previous
section have shown the following results.

– Our new algorithm is especially effective for the Horner’s rule with matrix-
matrix multiplications. Furthermore, with appropriate degrees of partition,
we can reduce not only computing time but also the amount of memory
used.

– We have the above effect also in the Horner’s rule with matrix-vector multi-
plications, although computing time for calculating matrix powers increases
as the degree of partition increases.

– Our algorithm is also effective for the Horner’s rule for the matrices over
fixed precision (IEEE double-precision standard) floating-point numbers.
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It seems that the cost for calculating matrix powers increases for larger degree
of partitions, thus the overall algorithm becomes less effective in such degrees.
However, we emphasis that our algorithm is still effective for our desired calcula-
tions by the following reason. In calculation of the minimal polynomials and/or
the pseudo annihilating polynomials of a given matrix A, we calculate g(A)v
many times by changing a vector v and a polynomial g(λ), while we calculate
powers of A just once and reuse them each time we calculate g(A)v for many
different vs and g(λ)s. Thus, as the number of different vs increases, the rel-
ative cost for calculating powers of A becomes smaller and our algorithm will
contribute to make the overall calculation more efficient.

We expect that our algorithm will be effective for matrices and/or polyno-
mials of large dimension and/or degree, respectively, such as from hundreds to
thousands, although we have actually tested our algorithm for matrices and poly-
nomials of “moderate” degrees less than a hundred. Thus, it is among our future
work to show the effectiveness of our algorithm for matrices and polynomials of
large dimensions and degrees, respectively, by more experiments. Furthermore,
while we give the degree d of partition in our algorithm as a power of 2 at
present, it is another open problem to find the optimal value for d for matrices
of larger dimensions (such as whether the power of 2 is sufficient or there exists
more optimal value between 2b and 2b+1).

In the viewpoint of implementation, we have been working on incorporat-
ing practical methods for optimizing our algorithm including parallel computa-
tion, and it is important to evaluate time complexity of our algorithm properly
with those methods. While we have established complexity analysis based on
arithmetic complexity over the field in this paper, we will need to analyze bit
complexity (with evaluating the magnitude of elements in matrices during cal-
culation) of the algorithm, since we intend to establish efficient algorithms for
matrices and polynomials over multiple-precision integers. Furthermore, with
our Horner’s rule, we intend to develop efficient algorithms for calculating the
minimal polynomials and/or the pseudo annihilating polynomials of matrices.
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Abstract. CoCoA is a well-established Computer Algebra System for
Computations in Commutative Algebra, and specifically for Gröbner
bases.

In the last few years CoCoA has undergone a profound change: the
code has been totally re-written in C++, and includes an integral open
source C++ library, called CoCoALib.

The new CoCoA-5 language still resembles the CoCoA-4 language,
and maintains or improves the naturalness and ease of use for which
CoCoA-4 was noted, but the clearly defined semantics of the new lan-
guage make it both more robust and more flexible than CoCoA-4.

Also its C++ mathematical core, CoCoALib, focusses on ease of use
and robustness, so that other software can use it as a library for multi-
variate polynomial computations and other Commutative Algebra oper-
ations.

Moreover the internal design makes it easy to render new extensions
to the library accessible also via the interactive CoCoA-5 system.

1 Introduction

CoCoA is a well-established Computer Algebra System dating back to 1989. It
was originally created as a laboratory for studying Computational Commutative
Algebra, especially Gröbner bases and Buchberger’s Algorithm, and still today
maintains this tradition.

In the last few years CoCoA has undergone a profound change in its internal
design: its “mathematical expertise” resides in a completely new, open source
software library [2], a brand new interpreter grants easy, interactive access to
CoCoA’s capabilities [1], and an OpenMath-based server offers “remote proce-
dure call” capabilities. All the code is in C++ and distributed under the GPL3
licence (i.e. free and open source). The aim of the design was to offer simple and
flexible access to the mathematical operations embodied in the library.

We presented this design outline at ICMS 2010, where we showed a first
prototype of CoCoA-5, which then implemented just a subset of the new CoCoA
language, and was limited to some fairly basic operations on polynomials.

Four years later, 2014: what is new in CoCoA?
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We have finished the design of the completely new CoCoALanguage, and its
implementation in the new interpreter — it is simple and robust enough that it
is used regularly by students.

In terms of mathematical ability, CoCoA-5 can now do (almost) everything
that CoCoA-4 can, and faster. More importantly, it can also do many things
that CoCoA-4 cannot.

The openness and clean design of CoCoALib and CoCoA-5 are intended to
encourage contributions and extensions by users outside the main development
team. This has been vindicated several times.

The internal software design makes it easy to render new extensions to Co-
CoALib (whether by the authors, or by contributors) accessible via the interac-
tive CoCoA-5 system, so there’s no need to wrestle with C++ to use them.

The openness and clean design of CoCoALib and CoCoA-5 is intended to
encourage extensions by users outside the main development team. For instance,
(1) new contributed functions integrated in CoCoALib operations on Mayer-
Vietoris trees (Saenz de Cabezon), Janet Bases (Albert, Seiler)
(2) integration of external libraries Normaliz (Bruns, Ichim, Söger) – almost
“symbiotic”, Frobby (Roune)

2 The New CoCoA-5 Language and Interpreter

CoCoA-4 was noted for its ease of use, and the naturalness of its language.
However, it was too limited, and did have some “grey areas”. As a consequence
we designed a new language for CoCoA-5.

We designed the new CoCoA-5 language “from scratch” striking a balance
between backward-compatibility (for existing CoCoA-4 users) and greater ex-
pressibility with a richer and more solid mathematical basis (eliminating those
“grey areas”).

Superficially the new CoCoA-5 language resembles that of CoCoA-4; it is
largely backward compatible, and maintains or improves the naturalness and
ease of use for which CoCoA-4 was noted — we are very aware that a number
of CoCoA users are mathematicians with only limited programming experience.
The clearly defined semantics of the new language make it both more robust and
more flexible than CoCoA-4.

2.1 The Languages in CoCoA-4 and in CoCoA-5

The design of the CoCoA-5 language began by listing what we liked in CoCoA-4,
what we did not like, and the new features we wished to have.

After one year of studying our three lists with F. Figari we established a
good outline design of the new language which also achieved a high degree of
backward compatibility, so as not to alienate existing CoCoA-4 devotees. For
example, CoCoA-5 variables are dynamically typed.

Among the new features we find rings and functions are “normal objects”,
more properly called “first class values”, and so can be assigned and passed as
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arguments — this avoids some of the awkward convolutions needed in CoCoA-4.
Another new type of value is ring homomorphism which replaces the cumbersome
mechanism needed previously.

The main feature we removed was “invisible multiplication” (i.e by juxtapo-
sition), namely xy means x*y. While some users fiercely opposed its removal, we
finally decided it was too limiting and problematic to support it in CoCoA-5 —
in fact, it often caused confusion among new users too, e.g F (x+1) is a product
but F(x+1) is a function call. Moreover this caused the constraint on the name
of the indeterminates which had to be just single lower-case letters. Neverthe-
less, in recognition of the fact that “invisible multiplication” is sometimes handy,
CoCoA-5 does accept the old CoCoA-4 syntax in expressions delimited by triple
asterisks: e.g. you may write

I := *** Ideal(2x^2y-z, 3xz-5yz^3) ***;

Once the design of the new language was almost complete, we started a col-
laboration with G. Lagorio who implemented the parser and interpreter for the
new language; naturally, this led to some refinements in the design! An impor-
tant design goal for the new parser/interpreter was to produce genuinely helpful
error messages — this was definitely a weak point of CoCoA-4. To achieve this,
Lagorio’s careful implementation was written entirely by hand, and is undoubt-
edly a vast improvement (indicating clearly what the problem was, and where it
was encountered). CoCoA-5 comprises effectively Lagorio’s interpreter together
with CoCoALib.

Here is a typical example of an error message from CoCoA-5; note that the
error was actually signalled by CoCoALib, and the interpreter caught the ex-
ception and “translated” it to human-readable form:

# X := isqrt(-99);

ERROR: Value must be non-negative

X := isqrt(-99);

^^^^^^^^^^

We regard good error messages (and warnings) as important assistance to
both to a new user learning the language, and to a CoCoA-4 user wanting to
update and clean his old code written for CoCoA-4.

2.2 The Language in CoCoALib and in CoCoA-5

We envisage that researchers and advanced users of CoCoA wishing to tackle
hard computations will develop a prototype implementation in the convenient
interpreted environment of CoCoA-5, and when the code is working properly,
they will translate it into C++ (using CoCoALib) for better performance.

Bearing this in mind, a secondary design goal of the new CoCoA-5 language
was to make it relatively easy to convert CoCoA-5 code into C++ code built upon
CoCoALib (without requiring deep knowledge of advanced features of C++).
That said, CoCoALib offers a richer programming environment, but also de-
mands greater discipline from the programmer.
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To facilitate the conversion into C++ we have, whenever possible, used the
same function names in both CoCoA-5 and CoCoALib. We have also preferred
traditional “functional” syntax in CoCoALib over object oriented “method dis-
patch” syntax, e.g. in CoCoALib we define deg(f) rather than f.deg().

We have striven to keep the CoCoA-5 language as simple as possible (but no
simpler!): for instance, there is only one type RING for rings, whereas CoCoALib
has an inheritance hierarchy with different classes for polynomial rings, quotient
rings, fraction fields, and so on.

Again for simplicity, CoCoA-5 does not regard a “power-product” as a sepa-
rate type (it is just a polynomial with one term whose coefficient is 1); in contrast,
CoCoALib has a special class PPMonoidElem which represents power-products.
Thus translating into C++ a CoCoA-5 program manipulating power-products
will require more effort, but the reward should be a decisive gain in speed.

3 Extending CoCoA-5

The capabilities of CoCoA-5 and CoCoALib are continually expanding as the
software evolves. So we have made it easy to add new functions to CoCoA-5 —
both for ourselves and for normal users.

There are several ways of extending CoCoA-5.
The easiest way to add a new function is to write it in CoCoA-5 Language.

Anyone can create new CoCoA-5 functions this way, and for instance give them
to students or colleagues.

Often there are several functions to be added together; in this case it is best
to place them in a CoCoA-5 package — compared to CoCoA-4 the creation
of a package has been greatly simplified. A collection of functions becomes a
package by saving them in a file, then inserting as the first line “Package Pack-
ageName”, and appending as the last line “EndPackage;”. Once this has been
done, any function foo(a,b) defined in the package can be called using the syn-
tax PackageName.foo(a,b). A neater solution is to export the function from
the package: this is done by inserting the declaration export foo; at the start
of the file, before any of the function definitions. An exported function becomes
directly callable as foo(a,b) and is automatically protected from being acciden-
tally overwritten.

The last way is to write the new functions in C++, and then make them
“visible” to CoCoA-5. This latter stage is normally quite straightforward thanks
to an ingenious combination of C++ inheritance and C macros (see [3] in this
volume) — we use exactly the same mechanism for making standard CoCoALib
functions accessible from an interactive CoCoA-5 session. Since it is so quick
to make a C++ function (provisionally) accessible from CoCoA-5, we have also
used it as a convenient way of supplying test inputs to new CoCoALib functions
during development.

CoCoA and Normaliz

In [3] we explain in detail the “integration” into CoCoA-5 of numerous capabil-
ities of the Normaliz library. In this instance, for technical reasons, it was most
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appropriate to interface CoCoALib and the Normaliz library directly, and then
make the “new CoCoALib” functions visible to CoCoA-5 the usual way.

4 CoCoALib: The Mathematical Brain of CoCoA

From its very outset the design of CoCoA-5 was based on a software library
encapsulating the mathematical knowhow of the system. It comes as no surprise
then that CoCoALib is the oldest part of CoCoA. We recall briefly its salient
features:

– it is well-documented, free and open source C++ code (under the GPL3
licence)

– the design is inspired by and respects the underlying mathematical structures
– the source code is clean and portable
– the function interface is natural for mathematicians
– execution speed is good with robust error detection

While most CoCoA-5 functions have now been implemented in CoCoALib,
some are still awaiting migration and currently reside in CoCoA-5 packages.

Our design of CoCoALib aims to make it easy to write correct programs, and
difficult to write incorrect ones or ones which produce “nasty surprises”. While
trying to follow this guideline we met some surprisingly tricky aspects of the
design:

– function definitions in limit cases (e.g. determinant of 0× 0 matrix)
– practical definition of a function’s domain (e.g.what result should IsPrime(0)

give? And IsPrime(-2)?)
– a choice between absolute mathematical correctness or decent computational

speed (and a remote chance of a wrong answer)

4.1 An Example of Design

Finding a library interface which is easy to learn and use, mathematically correct,
but also efficient at run-time often requires a delicate balance of compromise.
We cite here one example from CoCoALib where the solution is untraditional
but successful.

CoCoALib uses continued fractions internally in various algorithms. A con-
tinued fraction is an expression of the form:

a0 +
1

a1 +
1

a2+
1

a3+···

where a0 is an integer, and a1, a2, . . . are positive integers. Every rational number
has a finite continued fraction which, for compactness, is often represented as a
list of integers [a0, a1, a2, . . . , as].

The most natural implementation in CoCoALib would simply compute this
list. But in many applications only the first few ak are needed, and computing
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the entire list is needlessly costly. So the CoCoALib implementation produces
an iterator (a basic concept well-known in object-oriented programming) which
produces the values of the ak one at a time.

5 Extending CoCoALib

Naturally we wrote most of the source code in CoCoALib, but the design of the
library (and its openness) was chosen to facilitate and encourage “outsiders” to
contribute. We distinguish two categories of contribution: code written specifi-
cally to become part of CoCoALib, and stand-alone code written without con-
sidering its integration into CoCoALib.

5.1 Specific Contributions to CoCoALib

The first outside contribution came from M. Caboara, who wrote the code for
computing Gröbner bases and related operations while CoCoALib was still quite
young. At that stage the detailed implementation of CoCoALib was still quite
fluid, and a number of pretty radical changes in the underlying data-structures
were still to occur; yet despite these upheavals Caboara’s implementation of
Buchberger’s algorithm required virtually no changes, thus confirming the solid-
ity and stability of the CoCoALib interface design.

Another significant outside contribution came from E. Saenz-de-Cabezon, who
wrote the code for computing Mayer-Vietoris trees associated to monomial ideals.
A significant aspect of this contribution is that the author worked independently
(in another country) and relied entirely on the documentation of CoCoALib —
thus confirming the quality of the documentation. His work has encouraged us
to develop specialized, efficient handling for monomial ideals (see [7]).

A more recent contribution comes from M. Albert, who implemented an al-
gorithm for computing Janet Bases of ideals in polynomial rings. Once a Janet
Basis has been obtained, many ideal invariants can readily be determined (see
[4], [5]). His code has already been incorporated into CoCoALib; we anticipate
employing an automated, smart caching scheme to improve computational effi-
ciency by avoiding recalculation of Janet Bases when computing several different
invariants.

5.2 Combining with External Libraries

We have combined some of the features of various external libraries into Co-
CoALib. An important step in each case is the “translation” of a mathematical
value from its CoCoALib representation to that of the foreign library, and vice
versa. To make it easier to do this CoCoALib offers operations for destructuring
the various data-structures it operates upon.

The first library we combined with CoCoALib is Frobby (see [8]) which is
specialized for operations on monomial ideals. The experience also helped us
improve the interfacibility of CoCoALib.
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There is also an experimental connection to some of the functions of GSL
(GNU Scientific Library [9]). This is an interesting challenge because the inter-
face has to handle two contrasting viewpoints: the exact world of CoCoALib,
and the approximate (floating-point) world of GSL.

Finally, the most advanced integration we have achieved so far is with the
Normaliz library for computing with affine monoids or rational cones. This is
part of a closer collaboration which is described in more detail in [3]. In this
particular case a new data-structure was added to CoCoALib to contain the
type of value (cone) which Normaliz computes with.

6 CoCoAServer

The CoCoA software suite includes the CoCoAServer, a prototype which pro-
vides a client/server mechanism for accessing CoCoALib, and accepts computa-
tion requests in an OpenMath-like language. It was developed to grant access to
CoCoALib features from CoCoA-4.7 while the new CoCoA-5 system was under
development.

The advantages of making a “server” are that it can be called by any other
“client” software (which has an OpenMath interface), and it avoids the close
integration of monolithic compilation.

Currently the server remains in prototype form as resources are directed, for
the time being, at CoCoALib and CoCoA-5.
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Abstract. Nowadays, surface reconstruction from point clouds gener-
ated by laser scanning technology has become a fundamental task in
many fields, such as robotics, computer vision, digital photogrammetry,
computational geometry, digital building modeling, forest planning and
operational activities. The point clouds produced by laser scanning, how-
ever, are limited due to the occurrence of occlusions, multiple reflectance
and noise, and off-surface points (outliers), thus necessitating the need for
robust fitting techniques. These techniques require repeated parameter
estimation while eliminating outliers. Employing maximum likelihood
estimation, the parameters of the model are estimated by maximizing
the likelihood function, which maps the parameters to the likelihood of
observing the given data. The transformation of this optimization prob-
lem into the solution of a multivariate polynomial system via computer
algebra can provide two advantages. On the one hand, since all of the so-
lutions can be computed, a single solution that provides global maximum
can be selected. On the other hand, once the symbolic result has been
computed, it can be used in numerical evaluations in a split second, which
reduces the computation time. In our presentation, we applied Groebner
basis to solve the maximization of the likelihood function in various ro-
bust techniques. A numerical example with data from a real laser scanner
experiment illustrates the method. Computations have been carried out
in the Mathematica environment.

Keywords: Groebner basis, Maximum Likelihood, Point cloud, Laser
scanning, Robust estimation.

1 Introduction

Laser scanning is a cutting edge remote sensing technology that has rapidly
broadened its set of applications, especially in engineering areas, e.g.,[1,5].
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In many cases, it not only can complement the mature geodetic surveying tech-
niques, but is able to replace them. Compared to e.g., total stations, laser scan-
ning provides information on the entire object surface instead of discrete points.
Such surface-like acquisition enables detailed surface modeling, obtaining accu-
rate 3D products.

Laser scanning produces a point cloud, i.e., a vast amount of points reflected
from the surface of objects that are to be surveyed. In order to obtain information
useful for engineering purposes the data have to be processed (see, e.g., [2]);
engineers require numerical data, standardized measures, cross and longitudinal
sections of objects etc. Artificial, man-made objects usually have regular shapes;
they often can be modeled by regular features, e.g., planes, edges, geometric
primitives. Breakline detection is one major drawback of laser scanning compared
to conventional geodetic survey or with photogrammetry, i.e., how to find edges
and lines in a point cloud. One way (that point cloud processing software usually
apply) is to fit planes on the point cloud and find the edges as intersections of
planes (e.g., [4]). Obviously the reliability of edge detection highly depends on
the accuracy of plane fitting in this case. Reconstructing planes can also be
a primary task of the processing, many applications require 3D model of the
objects (e.g., buildings) on a certain level of detail, such as 3D navigation maps,
urban modeling applications, etc. In airborne laser scanning, plane fitting is used
to detect roads and roofs that are usually composed of planar surfaces. Road and
roof detection are key issues in airborne LiDAR (Light Detection and Ranging)
segmentation and classification.

The widely used point cloud processing software uses functions that are
operating as black boxes. Only a few parameters can be set but no detailed
information is provided on the algorithms working in the background. Future re-
search aims to compare the developed methods with such plane fitting functions
integrated in point cloud processing software; therefore validation of existing
software functions would become available.

Time consumption and reliability are of great importance to plane fitting
in laser scanned point clouds. The proposed algebraic method proved to be as
fast as the most popular method, Principal Component Analysis (PCA) (e.g.,
[3]), and provides more reliable implementation in the frequently used robust
technique RANdom Sample Consensus (RANSAC), that is doubtless beneficial
in case of mass data processing. Compared to integrated functions of point cloud
processing software, the proposed method is open, validated by widely used
techniques, and therefore its users have full control on the entire plane fitting
operations.

2 Algebraic Parameter Estimation

Generally to carry out a regression procedure one needs to have a model M
(x, y, z : θ = 0), an error definition eMi(xi, yi, zi : θ) as well as the probability
density function of the error PDF (eM(xi, yi, zi : θ)). Now our model is linear in
a plane,
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M(x, y, z : θ) = αx+ βy + γ − z, (1)

with parameters θ = (α, β, γ). The error model - corresponding to the TLS -
is the shortest distance of a point Pi from its perpendicular projection to the
plane,

eMi(xi,yi,zi:θ) =
zi − xiα− yiβ − γ√

1 + α2 + β2
. (2)

The probability density function of the error model is considered a Gaussian -
type error distribution as N (0, σ),

PDF (eM(xi, yi, zi : θ)) =
e−

(eM)2

2σ2

√
2πσ

. (3)

Considering a set of {(x1, y1), (x2, y2) . . . (xN , yN )} as measurement points, the
maximum likelihood approach aims at finding the parameter vector θ that max-
imizes the likelihood of the joint error distribution. Assuming that the measure-
ment errors are independent, we should maximize,

L =

N∏
i=1

e−
(eMi)

2

2σ2

√
2πσ

. (4)

In order to use sum instead of product, we can consider the logarithm of Eq.
(4),

LogL = Log

(
N∏
i=1

PDF (eM)

)
= −

N∑
i=1

LogPDF (eM). (5)

Let us consider the Gaussian - type error distribution. Then, the function to be
maximized is,

LogL(α, β, γ) = −
N∑
i=1

Log

⎛
⎜⎝e

− (eM)2

2σ2

√
2πσ

⎞
⎟⎠ = N Log

(√
2πσ

)
+

1

2σ2

N∑
i=1

(zi − xiα− yiβ − γ) 2

1 + α2 + β2
.

(6)

In order to avoid direct maximization and to get explicit formula for the es-
timated parameters, symbolic computation can be employed. We apply a Su-
perLog function in Mathematica developed by [8] that utilizes pattern-matching
code that enhances Mathematica’s ability to simplify expressions involving the
natural logarithm of a product of algebraic terms, see [7]. Our log-likelihood
estimator function can then be written as

LogL(α, β, γ) = − Nγ2

2(1+α2+β2)σ2 − 1
2
NLog[2]− 1

2
NLog[π]−NLog[σ]+

∑N
i=1 − αγxi

(1+α2+β2)σ2 +∑N
i=1 −

α2x2
i

2(1+α2+β2)σ2 +
∑N

i=1 − βγyi
(1+α2+β2)σ2 +

∑N
i=1 − αβxiyi

(1+α2+β2)σ2 +
∑N

i=1 −
β2y2

i

2(1+α2+β2)σ2 +

∑N
i=1

γzi
(1+α2+β2)σ2 +

∑N
i=1

αxizi
(1+α2+β2)σ2 +

∑N
i=1

βyizi
(1+α2+β2)σ2 +

∑N
i=1 −

z2i
2(1+α2+β2)σ2 .
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From the necessary conditions of the optimum, namely

eq1 =
∂LogL
∂α

= 0, eq2 =
∂LogL
∂β

= 0, eq3 =
∂LogL
∂γ

= 0, (7)

one can obtain the following polynomial system,

eq1 = i− bα+ hα− iα2 − eβ − 2gαβ + eα2β + iβ2 − bαβ2 + dαβ2−
eβ3 − aγ − 2fαγ + aα2γ + 2cαβγ − aβ2γ + Nαγ2,

eq2 = g − eα+ gα2 − eα3 − dβ + hβ − 2iαβ + bα2β − dα2β − gβ2+
eαβ2 − cγ − cα2γ − 2fβγ + 2aαβγ + cβ2γ + Nβγ2,

eq3 = f − aα− cβ − Nγ,

(8)

where the constants depending on the measured values, are:
a =

∑N

i=1 xi, b =
∑N

i=1 xi
2, c =

∑N

i=1 yi, d =
∑N

i=1 yi
2, e =

∑N

i=1 xiyi, f =∑N

i=1 zi, g =
∑N

i=1 yizi, h =
∑N

i=1 zi
2, i =

∑N

i=1 xizi.

To get a symbolic solution, we reduce the multivariate polynomial system to
univariate of higher order. Since the last equation in Eq. (8) is linear, γ can
be solved and substituted into the other two equations (i.e., eq1 and eq2). The
system is reduced to a system of two equations with two unknowns (α, β) that
can be solved using reduced Groebner basis to yield

pα =

7∑
i=0

ciα
i = 0, pβ =

7∑
i=0

c̃iβ
i = 0, (9)

where ci and c̃i are quite complicated expressions of the constants introduced
above, see [6]. If α and β are known, then γ can be computed from eq3. We
consider the triplet {α, β, γ} as the solution of the parameter estimation problem,
if it is real and provides the maximum of Eq.(6) compared to the other triplet
variations of real solutions. Now, to illustrate the method, let us consider a toy
example in [10]. Let us estimate the parameters of the plane on the basis of four
non co-planar points. The polynomials in normalized form are
pα = −72260849539547136 + 134691541606563840α + 1622138196787200α2 −
110673082039468032α3+ 106433894218530816α4 − 146349308114141184α5+
42586534792986624α6+ 75483497423831040α7

and
pβ = 4844786081071104− 58829545270149120β+ 240076453124505600β2−
336928917727346688β3+ 37871519767658496β4+ 4250002075582464β5−
133685815924555776β6+ 75483497423831040β7,
with the real solutions as

α = −2, −0.857775, 0.757775

and
β = 2, −1.35777, 0.257775.
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Now, let us consider the log likelihood estimator in compact form using the
constants. Substituting γ from Eq.(8), yields

LogL(α, β) = − h
2(1+α2+β2)σ2 + iα

(1+α2+β2)σ2 + afα
N(1+α2+β2)σ2 −

bα2

2(1+α2+β2)σ2 − 3a2α2

2N(1+α2+β2)σ2 + gβ
(1+α2+β2)σ2 − cfβ

N(1+α2+β2)σ2 − eαβ
(1+α2+β2)σ2 +

acαβ
N(1+α2+β2)σ2 − dβ2

2(1+α2+β2)σ2 +
c2β2

2N(1+α2+β2)σ2 − 1
2NLog[2]−

1
2NLog[π]−NLog[σ].

We select one combination of the real α, β pair that gives the highest value
for LogL(α, β) above. In our case α, β = (−2, 2). Then from Eq.(8) we get γ =
15. From a practical point of view, the best way is to carry out the computation
using numerical Groebner basis solver ofMathematica (NSolve) since in that case
the selection of the proper triplet α, β, γ is automatic. Employing Mathematica,
the real solutions are

solαβγ = {α = −0.857775, β = −1.35777, γ = 105.109}, {α = −2, β = 2, γ = 15,

{α = 0.757775, β = 0.257775, γ = 9.79129}.
The values of the log-likelihood function at these solutions are,

LogL(α, β, γ) = {−829.275,−165.676,−393.077}.

Since the second triplet gives the highest values, its solution gives the loca-
tion of the global maximum. This result represents the well known fact that
log-likelihood functions may have many local maximums, therefore direct max-
imization is difficult and it can be successful only via global optimization tech-
niques, which are quite time consuming. The implementation of our algebraic
method is carried out in Mathematica.

3 Robust Parameter Estimation

Modern range sensing technologies, like laser scanners, enable detailed scans of
complex objects to be made, thus generating point cloud data. The majority of
point cloud data are acquired by various measurement processes using a number
of sensors. The physical limitations of the sensors, boundaries between 3D fea-
tures, occlusions, multiple reflectance and noise can produce off-surface points
that appear to be outliers. In this study, a widespread robust technique is used
for embedding the algebraic solution, namely the RANdom Sample Consensus
(RANSAC) algorithm. Let us apply the RANSAC method, given in [9], which
has proved to be successful for detecting outliers. The basic RANSAC algorithm
is as follows:
1) Pick up a model type (M)
2) Input data as

- data - data corrupted with outliers (cardinality (data) = n)
- s - number of data elements required per subset
- N - number of subsets to draw the data from
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- τ - threshold, which defines if data element, di∈ data agrees with
the model M.
Remarks
In general s can be the minimal number of the data which results in a closed
form system for the unknown parameters of the model. The number of subsets
to draw the data from N is chosen high enough to ensure that at least one of the
subsets of the random examples does not include an outlier (with the probability
p, which is usually set to 0.99). Let u represent the probability that any selected
data point is an inlier, and v = 1 − u the probability of observing an outlier.
Then, the iterations N can be computed as

N =
log(1− p)

log (1− (1− v)s)
. (10)

3) maximalConsensusSet ← ∅
4) Iterate N times:

a) ConsensusSet ← ∅
b) Randomly draw a subset containing s elements and estimate the pa-

rameters of the model M via algebraic method
c) For each data element, di∈ data:
if (di,M, τ) agree, ConsensusSet ← di

d) if cardinality (maximalConsensusSet) < cardinality(ConsensusSet),
maximalConsensusSet ← ConsensusSet

5) Estimate model parameters using maximalConsensusSet.
One of the important advantage of this algorithm is that the task of step 4
can be carried out in parallel. In step 4 (b) we can employ our algebraic solu-
tion. The RANSAC implementation with the integrated algebraic solution can
be undertaken in Mathematica.

4 Application to Real Laser Scanner Measurements

Outdoor laser scanning measurements have been carried out in a hilly park in
Budapest, see Fig. (1, right). The test area is on a steep slope, covered with
dense but low vegetation. The experiment was carried out with a Faro Focus 3D
terrestrial laser scanner, see Fig. (1, left). The test also aimed at investigating
the tie point detection capabilities of the scanner processing software; different
types of spheres were deployed all over the test area. In case of multiple scanning
positions, these spheres can be used for registering the point clouds, see Fig. 1.
The scanning parameters were set to 1/2 resolution, which equals 3 mm/10
m point spacing. This measurement resulted in 178.8 million points that were
acquired in 5 and half minutes, see Fig. (2, left). The test data set was cropped
from the point cloud; moreover, further resampling was applied in order to reduce
the data size. The final data set composed of 33292 points in ASCII format, and
only the x, y, z coordinates were kept (no intensity values).

Employing the final data set, our algebraic method implemented in RANSAC
provided the result in Fig. (2, right). In order to assess the efficiency of our
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Fig. 1. The test area covered by dense, but low vegetation

Fig. 2. Left: The test data set extracted from the laser scanner point cloud. Right:
fitted plane by RANSAC algebraic technique: blue points are inliers, red points are
outliers, and green is the fitted plane.

Table 1. Results of the computations for real data

Method Computation
time �sec�

Size of
Inlier Set

Α Β Γ Min of
error �cm�

Max of
error �cm�

Mean of
error �cm�

Standard

deviation

�cm�

RANSAC

Algebraic

11.64 24 382 0.106 0.503 202.66 �22.4 28.31 0.00 6.4

Danish

Algebraic

29.39 24 576 0.106 0.505 202.66 �22.0 37.0 0.00 7.0

Danish

PCA

70.57 26089 0.103 0.567 202.54 �46.0 94.6 0 18.6

algebraic method, we carried out further computations with two other robust
estimation techniques, see Table 1. The values of the run time represent parallel
evaluation. Undoubtedly, the RANSAC method with algebraic maximization of
the likelihood equation provided the best performance, see Table 1.
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5 Conclusions

This study has presented an algebraic technique that can be embedded into
estimation methods such as RANSAC and Danish to offer robust solutions that
adequately manage outliers. The results of the numerical tests show remarkable
improvement in computational time when the algebraic method is incorporated
compared to that of TLS and PCA. In addition, the algebraic method proved
to have practically zero complexity considering the number of measured data
points. However, if the application of the TLS error model is inevitable, and the
statistical approach is not advisable, then it can be a good choice for robust
estimation, since it avoids direct global maximization of the likelihood function.
This is TIGeR publ. No. 571.
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Gröbner Basis, e-publication. Wolf. Res. Inf. Center, MathSource/8491 (2013)
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Abstract. In geodesy and geoinformatics, most problems are nonlin-
ear in nature and often require the solution of systems of polynomial
equations. Before 2002, solutions of such systems of polynomial equa-
tions, especially of higher degree remained a bottleneck, with iterative
solutions being the preferred approach. With the entry of Groebner basis
as algebraic solution to nonlinear systems of equations in geodesy and
geoinformatics in the pioneering work “Gröbner bases, multipolynomial
resultants and the Gauss Jacobi combinatorial algorithms : adjustment of
nonlinear GPS/LPS observations”, the playing field changed. Most of the
hitherto unsolved nonlinear problems, e.g., coordinate transformation,
global navigation satellite systems (GNSS)’s pseudoranges, resection-
intersection in photogrammetry, and most recently, plane fitting in point
clouds in laser scanning have been solved. A comprehensive overview of
such applications are captured in the first and second editions of our
book Algebraic Geodesy and Geoinformatics published by Springer. In
the coming third edition, an updated summary of the newest techniques
and methods of combination of Groenbner basis with symbolic as well as
numeric methods will be treated. To quench the appetite of the reader,
this presentation considers an illustrative example of a two-dimension
coordinate transformation problem solved through the combination of
symbolic regression and Groebner basis.

Keywords: Groebner basis, nonlinear polynomial systems, transforma-
tion problems, GNSS, Geodesy, Geoinformatics.

1 Introduction

The solution of nonlinear systems of equations is an indispensable task in almost
all geosciences, such as geodesy and geoinformatics. The rapid development of
computer algebra in the last half century, with one of the most important mile-
stones in 1965, i.e., the publication of the Groebner Basis theory, as well as the
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enormous improvement of computer algebra systems (CAS) such as Mathemat-
ica and Maple (just to mention two) starting 30 years ago, have provided the
ability to solve many of these systems of polynomial equations in the field of
geodesy and geoinformatics in analytical (exact) form.

In 2002, in a pioneering dissertation “Gröbner bases, multipolynomial resul-
tants and the Gauss Jacobi combinatorial algorithms : adjustment of nonlinear
GPS/LPS observations” [1], Groebner basis made its maiden entry into the
fields of geodesy and geoinformatics as a powerful technique for solving systems
of polynomial equations (comparable perhaps to resultant methods). Since then,
problems which hitherto were unsolved, e.g., coordinate transformation, pseu-
doranges in global navigation satellite systems (GNSS), resection-intersection in
photogrammetry, and most recently plane fitting in point clouds in laser scanning
have been solved. Increased use of Groebner basis and other developed methods
thereafter motivated the publication of our first book with Springer Verlag, e.g.,
“Solving algebraic computational problems in geodesy and geoinformatics” [2].
Wide usage of the book together with more development in computer algebraic
systems (CAS) led to the writing of the second edition of the book in 2010,
where both algebraic (“exact”) and numerical (“approximate”) methods (such
as linear homotopy) were treated, see [3]. This edition was also accompanied
by an electronic supplement providing the algorithms, functions, and solutions
of the problems discussed in the book, in Mathematica code. This book, whose
foreword was written by Prof. Bruno Buchberger (the father of Groebner basis)
was a great success in the geodetic and geoinformatic society to an extend that
the publisher have requested for its third edition currently under preparation.
The Mathematica codes were also inspiring for many scientist and students and
are stored permanently in the Wolfram Library Archive.

In the meantime, new technologies have arisen in geosciences, such as laser
scanning, and new techniques have been developed in CAS software, like sym-
bolic regression. This has led to the introduction or revision of many methods,
such as robust parameter estimation, error models other than the well known
least squares, Pareto optimization, parallel symbolic computation, and satel-
lite control algorithms. Computer algebra methods can be effectively utilized in
most of these techniques. Here, we present a simple illustrative example based
on inverse coordinate transformation problem and refer the reader to [5] and the
books mentioned above for numerous examples of application of Groebner basis
to geodesy and geoinformatics.

2 The Inverse Coordinate Transformation Problem

In photogrammetry and computer vision, one is often required to perform trans-
formation between coordinates of fiducial marks on a comparator plate and those
of the corresponding points on the reseau plate during the interior orientation
process, where film and lens distortions and other errors are corrected using cam-
era calibration parameters. This process is often undertaken using two-dimension
(2D) similarity, affine, or projective transformations, see e.g., [4]. Besides the so-
lution of the 2D transformation (x, y) =⇒ (X,Y ), where x, y,X, Y ∈ R2 using
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the methods above, symbolic regression can also be used to find a better model
where the structure as well as the coefficients of the model are computed si-
multaneously. To find the inverse transformation, symbolic regression can be
applied in the reverse way (X,Y ) =⇒ (x, y). The problems with this procedure
are two-fold:

1. The two transformation are not really inverse of each other.

2. Symbolic regression requires a considerable computational power.

To overcome both problems, Groebner basis solution is applied. If the result of
the direct symbolic regression is a multivariate polynomial, the correct inverse
transformation can be computed via Greobner basis instead of using one more
symbolic regression in a reversed direction. A symbolic regression combined with
Groebner basis therefore may provide a mixed technique for computing a good
transformation with its true inverse.

3 Two-Dimensional Transformation Models

3.1 Similarity Transformation

The advantage of this model is that it is linear in the coordinates as well as
in the parameters. Consequently an iterative solution is not required and the
inverse transformation is easy. This transformation can be parametrized in the
following form, (

x
y

)
=

(
a b
−b a

)(
X
Y

)
+

(
c
d

)
.

For each observed ith point, the following pair of observation equations for the
residuals (rxi) and (ryi) can be written as,

(
Xi Yi
Yi −Xi

1 0
0 1

)⎛⎜⎜⎝
a
b
c
d

⎞⎟⎟⎠+

(
−xi
−yi

)
=

(
rxi

ryi

)
.

A minimum of two fiducial marks or reseau crosses are required for a unique
solution. If more observation points are available, linear least squares can be
directly applied.

3.2 Affine Transformation

This is also a linear model although it needs six parameters. Therefore, a min-
imum of 3 fiducial marks or reseau crosses are required for a unique solution.
Iterative solution is not required and the inverse transformation is easy. This
model can be parametrized in the following form
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For each observed ith point the following pair of observation equations for the
residuals (rxi) and (ryi) can be written as,
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3.3 Projective Transformation

The projective transformation can be expressed by the following two equations,

x =
a1X + a2Y + a3
c1X + c2Y + 1

, (3)

and

y =
b1X + b2Y + a3
c1X + c2Y + 1

. (4)

These equations are a special case of the collinearity condition for mapping of
2D points from one plane onto another. There are 8 unknown parameters, so if
only four fiducial marks are available, the solution is not unique. This is perhaps
the main reason why it is not frequently used. However, it is relevant for systems
that have been retro-fitted with a reseau plate, such as the Hasselblad camera.
The least square solution is nonlinear due to the rational nature of the functions.
However, an approximate linear solution can be implemented if both sides of the
equations are multiplied by the denominator and partial derivatives with respect
to the observable (as in the combined adjustment model) ignored. The inverse
of the transformation can also be computed by solving the system of equation
in symbolic form for X and Y , i.e.,

X =
a2 (−y + a3) + (x− a3) b2 + (−x+ y)a3c2

−xb2c1 + a2 (−b1 + yc1) + xb1c2 + a1 (b2 − yc2)
, (5)

and

Y =
a1 (y − a3) + (−x+ a3) b1 + (x− y)a3c1

−xb2c1 + a2 (−b1 + yc1) + xb1c2 + a1 (b2 − yc2)
. (6)

If more than 4 observation points are available, nonlinear least squares can be
applied.
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3.4 Application of Symbolic Regression

Per definition, neither the form nor the parameters of the model are known. How-
ever, in order to have a chance of computing the inverse of the transformation,
trigonometrical functions are excluded from the functional set. Applying sym-
bolic regression using Eureqa1, the Pareto sets for x = x(X,Y ) and y = y(X,Y )
are computed and the models closest to the ideal point selected resulting into;

x = a0+Xa1+Y a2+X
2a3+Y

2a4+XY a5+X
3a6+Y

3a7+X
2Y a8+X

4a9, (7)

and

y = b0+Xb1+Y b2+X
2b3+Y

2b4+XY b5+X
3b6+Y

3b7+X
2Y b8+X

4b9. (8)

3.5 Comparison of the Different Transformation Models

In this example, a 2D transformations is performed using similarity, affine,
projective, and symbolic regression transformations. 16 observed (x, y) and cal-
ibrated reseau (X,Y ) coordinates are used. Table 1 summarizes the results.
Although the nonlinear transformation obtained using symbolic regression gives
the best fit, to compute the inverse of the transformation is not an easy task.

Table 1. Some statistical values of the different transformation models

Transformation model Max of Standard Deviation RMSE

Absolute Errors of the Absolute Errors of Residual Errors

mm mm mm

Similarity 0.0268663 0.0088264 0.0106

Affine 0.0180314 0.00518175 0.0089

Projective 0.0128281 0.00342605 0.0066

Symbolic Regression 0.007906 0.00258456 0.0037

3.6 Computing Inverse Transformation via Groebner Basis

To get the inverse transformation, we should solve the model equations of the
nonlinear transformation for values X and Y with input x and y as parameters.
Namely, the following algebraic equations should be solved

a0+Xa1+Y a2+X
2a3+Y

2a4+XY a5+X
3a6+Y

3a7+X
2Y a8+X

4a9−x = 0,
(9)

1 http://ccsl.mae.cornell.edu/eureqa
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Table 2. Exponents of the variables in the polynomials of the Groebner basis

Polynomials Exponent of Exponent of

X Y

1 0 12

2 1 11

3 1 11

4 1 11

5 1 11

6 2 11

7 2 11

8 2 11

9 3 3

and

b0+Xb1+Y b2+X
2b3+Y

2b4+XY b5+X
3b6+Y

3b7+X
2Y b8+X

4b9−y = 0. (10)

Employing numerical Groebner basis solves the system with the actual numer-
ical values of the model parameters (ai, bi). In order to avoid round-off errors,
the actual values of the parameters should be rationalized. A Groebner basis
of this system consists of 9 polynomials having the exponents of X and Y in
Table 2.

In Table 2, the first polynomial of the basis is a univariate polynomial of
the variable Y of order 12. The roots of this univariate polynomial provide the
values of Y , which upon the selection of the proper value can be substitute into
the second polynomial of the basis and solved for X . To illustrate the inverse
computation, let x = -113.767 and y = -107.400. The actual univariate becomes,
p(Y ) = −1.83807×1044−1.67014×1042Y +7.4902×1036Y 2+7.87106×1031Y 3−
5.30945 × 1028Y 4 − 7.1523 × 1024Y 5 + 1.95557 × 1021Y 6 + 1.8312 × 1018Y 7 +
4.95224× 1013Y 8 − 8.27685× 1010Y 9 − 8.67742× 106Y 10 − 360.976Y 11 +1.Y 12.

The real roots of this polynomial are Y= -110.001 and Y = 7137.73, with the
first solution being the proper one. Now employing Y= -110.001, we get for the
second polynomial of the Groebner basis, p(X) = 2.022687353909516× 10728 +
1.83885524266834369805× 10726X , leading to the corresponding X coordinate
as X = -109.997.

4 Conclusions

Groebner basis certainly is a powerful tool in solving systems of polynomial
equations in geodesy and geoinformatics besides resultants and other methods
being developed. This is demonstrated in the example above. This is a TIGeR
publ. No. 570.
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Abstract. In this talk we show how the theory of Groebner bases can
be represented in the computer system Theorema, a system initiated by
Bruno Buchberger in the mid-nineties. The main purpose of Theorema
is to serve mathematical theory exploration and, in particular, auto-
mated reasoning. However, it is also an essential aspect of the Theorema
philosophy that the system also provides good facilities for carrying out
computations. The main difference between Theorema and ordinary com-
puter algebra systems is that in Theorema one can both program (and,
hence, compute) and prove (generate and verify proofs of theorems and
algorithms). In fact, algorithms / programs in Theorema are just equa-
tional (recursive) statements in predicate logic and their application to
data is just a special case of simplification w. r. t. equational logic as part
of predicate logic.

We present one representation of Groebner bases theory among many
possible “views” on the theory. In this representation, we use functors to
construct hierarchies of domains (e. g. for power products, monomials,
polynomials, etc.) in a nicely structured way, which is meant to be a
model for gradually more efficient implementations based on more refined
and powerful theorems or at least programming tricks, data structures,
etc.

Keywords: Groebner basis, Buchberger algorithm, mathematical the-
ory exploration, Theorema.

1 Introduction

After Bruno Buchberger introduced the concept of Groebner bases and an algo-
rithm for computing them in his 1965 PhD thesis [1,4], there has ever since been
a lot of effort to implement his algorithm in various programming languages
(Buchberger’s thesis already contains an implementation in a version of FOR-
TRAN and in machine language). Nowadays, there are many different computer

� This research was funded by the Austrian Science Fund (FWF): grant no. W1214-
N15, project DK1.
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systems that have either been partially inspired by or are devoted especially
to the computation of Groebner bases, among them particularly successful sys-
tems such as CoCoA [8], Magma [9], Maple [10], Mathematica [11], Sage [12],
Singular [13] and many others.

In our talk we want to focus on our Theorema system: Theorema [16,7] is a
system which was initiated by Bruno Buchberger and developed in his Theorema
group at RISC since the the mid-nineties. It uses the computer algebra system
Mathematica [11] as software frame. Its user-interface is currently re-designed
and -implemented (Theorema Version 2.0).

The main difference between Theorema and other computer algebra systems
(like the ones mentioned above) is that in Theorema one can both compute and
prove within one single system, at exactly the same level: There is no need to
first implement programs and then lift them to some level of abstraction for
reasoning about them, or vice versa, but programs in Theorema are themselves
just formulas. This works because the language and internal logic of Theorema
is an elegant version of (higher-order) predicate logic, where computation is
realized by repeated simplification w. r. t. equational theories.

We will present our view on how (an algorithmic treatment of) Groebner
bases theory, but also mathematics in general, can be developed in a structured,
generic, machine-checked, but nonetheless natural and intuitive way following
the philosophy of domains, functors and categories in Theorema. Also, we will
of course dedicate a big part to explaining how computations can effectively be
carried out in Theorema.

2 Domains, Functors and Categories in Theorema

Before explaining the presentation of Groebner bases theory in Theorema we will
briefly explain the Theorema view of domains, functors and categories for a hier-
archical build-up of mathematics (introduced in [3], supplementary information
can also be found in [17,5]).

One of many possible ways to represent domains in Theorema is by consid-
ering them as interpretations of (operator) symbols, mimicking the concept of
“interpretation” in model theory. This means that, unlike in most algebra books,
a domain is not characterized by a carrier set and a set of operations. Rather, a
domain is simply a mapping that maps symbols to operators (i. e. functions and
predicates). In Theorema, interpretations of operators in domains are indicated
by underscripts, e. g. consider a domain D that maps the symbol f to a concrete
function that is applied to arguments:

f
D
[x, y]

After having introduced the concept of domains in Theorema, the role of
functors can be explained in a few words: Functors, in our view, map domains
to domains by defining the meaning of symbols in the new domain by formulas
involving the meaning of symbols in the given domain(s). A simple example of
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a functor is the functor that maps a domain D to its two-fold Cartesian product,
denoted by N: N consists of all pairs of elements of D, and the symbol “+” might
be interpreted in N as component-wise addition in D of such pairs:

〈x1, x2〉 +
N
〈y1, y2〉 := 〈x1 +

D
y1, x2 +

D
y2〉

The significance of functors in mathematical theory exploration is:

– Building up algorithmic mathematics in a generic way: The formulation
(programs for the operations) of a new domain has to be given only once
independent of the domains from which the new domain is built.

– Constructing towers of domains in a structured way.
– Transforming (non-) algorithmic properties of the input domains to (non-)

algorithmic properties of the output domain.

Please also note that arguments of functors are not restricted to domains. For
instance, one can define a functor that maps a domain D and a natural number
n to the polynomial ring in n indeterminates over D.

Finally, categories (in Theorema) describe properties of domains. Since do-
mains are completely characterized by the interpretations they give to symbols,
properties of domains are in fact properties of those interpretations: For in-
stance, the category of Abelian groups would possibly require domains to have
an interpretation of symbol “+” with all the well-known properties (associativity,
commutativity, etc.).

There are many interesting interrelations between functors and categories;
Some of the most important ones are so-called conservation theorems : If domains
D1, . . . , Dk are in categories C1, . . . , Ck, and F is a functor, then one may try to
prove that the domain F[D1, . . . , Dk] is in category C. In all areas of mathematics,
many of the theorems are exactly of that kind, as they describe precisely the
essence of a functor.

3 Reduction- and Groebner Rings

In our approach for representing and formalizing Groebner bases in Theorema
we strove to be as generic as possible: Neither do we want to only treat poly-
nomial rings over fields, nor do we even want to restrict ourselves to one single
representation of the individual components of Groebner bases theory (such as
power products, monomials, polynomials, . . . ). Although this might sound very
ambitious, thanks to the powerful concept of functors in Theorema, it turns out
to be quite natural and intuitive.

The theoretical foundations for a generic development of Groebner bases the-
ory were laid in [2,14,15]. Also in the present elaboration, we follow this approach.
This means that the elementary domains under consideration are so-called reduc-
tion rings : Reduction rings are unitary commutative rings with some additional
properties; In particular, they have to be equipped with
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– a Noetherian partial order relation <,
– a binary function rdm (read: “reduction multiplier”), and
– a binary function lcrd (read: “least common non-trivial reducible”)

that have to be related in some non-trivial way to each other.
If a domain provides all these operations (together with the usual ring oper-

ations), then all the remaining operations needed for an algorithmic treatment
of Groebner bases (S-polynomial, total reduction, etc.) can be defined in terms
of them1.

3.1 The Functor-Approach to a Generic Treatment of Groebner
Bases

Presenting Groebner bases theory in a generic way as described above fits nicely
into the functor paradigm of Theorema: One basically only needs one single
functor, GroebnerExtension, which maps a domain D to the Groebner ring of
D. A Groebner ring is a reduction ring providing in addition also a function Gb

for computing Groebner bases (of ideals in) D by means of the rdm- and lcrd

functions. The Theorema-definition of function Gb according to our present work
can be found in figure 1 in section 5.

Here it is important to note that in a structured development of mathematics
in Theorema, in our view, it is not the task of functors to check whether their
input domains satisfy all required properties; In particular, in our case of the
GroebnerExtension functor, the input domain D might not even be a ring, leav-
ing functions like +

D
undefined. If some operators are undefined, other operations

defined in terms of them (like Gb) will simply not behave as expected.
The interesting cases, however, are those where the input domains do satisfy

the required properties, i. e. in our case the input domains are reduction rings.
Since correctness of an algorithm is always relative to the validity of the in-
put anyway, statements of correctness of algorithms of a functor are typically
conservation theorems (see section 2). In our case of the GroebnerExtension

functor:

If domain D is in category ReductionRing, then domain
GroebnerExtension[D] is in category GroebnerRing.

ReductionRing and GroebnerRing are the categories of reduction rings and
Groebner rings, respectively. Proving statements like the one above can then
be done using the automated proving facilities of Theorema, and after having
established the validity of one such statement, correctness of a whole class of
algorithms follows (one algorithm for each instantiation of the input domain).

Another integral part of a generic presentation of Groebner bases theory are
conservation theorems of the form

If D is a reduction ring, then so is F[D].

1 “S-polynomial” is meant to refer to the respective object in reduction rings (where
the S-polynomial is not necessarily a polynomial.
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where F is yet another functor, for instance a functor that maps a domain R

to the univariate polynomial ring over R. Examples of functors that satisfy the
above statement can be found in [15].

4 Structure of the Formalized Theory

After having described the main functor GroebnerExtension which maps re-
duction rings to Groebner rings, the next question is how reduction rings can
be created in Theorema, and the answer is the same as before: Using functors.
Whenever one is given some domain D which possesses all the necessary proper-
ties in order to be turned into a reduction ring, one can do so using a functor that
maps the domain to a new domain where <, rdm and lcrd are interpreted prop-
erly. This does not only work for single domains, but also for whole categories:
Every field K, for instance, can always be turned into a reduction ring [2].

Following our paradigm of a systematic development of Groebner bases theory,
fields provide a good starting point for moving to the “next level” by considering
polynomial rings. Constructing the polynomial ring over some domain R is again
achieved by a functor, called reductionPolynomials. This functor does not
only construct (one particular representation of) univariate polynomial rings
(viewed as reduction rings), but is much more sophisticated: In addition to the
coefficient domain it takes a second input domain which is meant to be the
domain of power products, in arbitrarily many indeterminates. This means that
for the functor it is completely irrelevant how power products are represented,
as long as they provide operations like divisibility, multiplication, and an order
relation. The advantage of such an approach is obvious: One single functor (and
one single conservation theorem) is sufficient for dealing with all the infinitely
many different representations of power products, and this is exactly the purpose
of working with functors!

In our elaboration, we decided to represent polynomials as tuples of pairs,
where each pair constitutes a monomial: The first component of each pair is a
non-zero coefficient taken from the coefficient domain, and the second compo-
nent is a power product taken from the domain of power products. It is clear
that this representation is only one among infinitely many isomorphic ones,
which are all indistinguishable from the algebraic point of view, but it proved
to be quite convenient from the algorithmic point of view. Also do we provide
one particular representation of power products as tuples of exponents, where
x1

e1 · · ·xnen is represented as 〈e1, . . . , en〉. Still, we allow an arbitrary number of
indeterminates and also provide several built-in order relations: Lexicographic,
degree-lexicographic and degree-reverse-lexicographic. Other order relations and
other representations of polynomials and power products, e. g. where the order
relation is given by weight matrices, can easily be added as well.

It has to be mentioned that apart from fields and polynomial rings over fields
there are several other reduction rings, too. Most notably, Z and Zm (quotient
ring of integers modulo m) can be made reduction rings [14], even if m is non-
prime. Z is already included in the present state of the formalization, whereas
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adding Zm is work in progress. Due to the properties of reduction rings and our
implementation of functor reductionPolynomials, Z[X ] (and, in the future,
Zm[X ]) can be dealt with as well without any further effort.

5 Computations

The computing-facility of Theorema builds upon the fact that (higher-order)
equational predicate logic can be regarded a rewrite mechanism: In order to
perform a computation, successively replace equals by equals (in a directed way)
until no more such replacements are possible. Computations, hence, are sim-
ply transformations of syntactic expressions. The equations (and equivalences)
that give rise to such rewrite rules are once again just formulas that can be en-
tered by the user, and programs are eventually given by collections of formulas.
An example can be found in figure 1, where an implementation of function Gb

in Groebner rings is shown. This implementation follows Buchberger’s original
critical-pair/completion algorithm.

Fig. 1. Implementation of function Gb by means of predicate logic formulas

Please note the following regarding notions and notation in figure 1:

– Since the whole definition is inside a functor (GroebnerExtension), most
of the operations that appear need to refer to the output domain; This is
accomplished by adding the domain underscript N2.

– Tuples (denoted by angle brackets) are used rather than sets for representing
the input basis, the collection of critical pairs that still have to be considered,
as well as the output basis. This allows us to have control over the order of
elements.

– pairs is a function that computes all pairs of elements of a tuple.

2 Further details are omitted here for the sake of simplicity.
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– p... is a so-called sequence variable, i. e. a variable that can be instantiated
by any sequence of expressions.

– trd
N

is an auxiliary function defined by functor GroebnerExtension, which

totally reduces its first argument modulo its second argument (making use
of function rdm of the underlying reduction ring).

– cpd
N

is an auxiliary function defined by functor GroebnerExtension, which

computes the critical pair - difference of its arguments (making use of func-
tions lcrd and rdm of the underlying reduction ring).

– Xk refers to the k-th element of tuple X, |X| denotes the length of tuple X.
– � and �� denote appending an element to a tuple and concatenating two

tuples, respectively.

If the functor is applied to some concrete domain which provides (algorith-
mic) interpretations for the three symbols <, rdm and lcrd, then function Gb is
also algorithmic in the sense that it computes some tuple of elements for each
input tuple. If the underlying domain, in addition to giving interpretation to
the aforementioned symbols, really is a reduction ring (i. e. has all the necessary
properties), then the tuples computed by function Gb are indeed Groebner bases
of the ideals generated by the tuples given as input to the function.

Apparently, the implementation of function Gb is certainly not the most effi-
cient one, but it is not the purpose of our talk to present highly sophisticated,
fine-tuned methods for computing Groebner bases anyway, but just to illustrate
how all this can be done in principle in Theorema. Since, in Theorema, algo-
rithms and theorems can be formulated within the same language and, also,
proving and computing is basically the same (computing is a special case of
proving), one now can proceed to prove theorems about Groebner bases auto-
matically or semi-automatically, for example the correctness of the algorithm for
computing Groebner bases under certain assumptions on the domain in which
Groebner bases are considered or, for example, theorems on the complexity of
Groebner bases computation or theorems on the functors that construct new
domains from domains in which Groebner bases exist. Some progress on this
has been made, see the companion paper “Complexity Analysis of the Bivariate
Buchberger Algorithm in Theorema” in the session on Mathematical Theory
Exploration, in which we give a completely formal and semi-automated proof of
a complexity result on Groebner bases.

Properties of the polynomial functor (in particular the existence of Groebner
bases in the domain generated by the polynomial functor under the existence of
Groebner bases in the coefficient domain) have been proved completely formal
in [2,14,15] as a preparation to what should be possible in Theorema in a semi-
automated way. We also had a completely formal proof for the correctness of
the Groebner bases algorithm quite early (see [2]), and we are now working on
building up appropriate provers for this in Theorema.

The most significant progress along the intention of the Theorema project so
far was the automated synthesis of the Groebner bases algorithm, see [6]. More
about this will be presented in the invited talk “Soft Math / Math Soft” by
Buchberger at this conference.
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Abstract. The most expensive part of the known algorithms in the
calculation of primary fundamental invariants (of rings of polynomial
invariants of finite linear groups over an arbitrary field) is the computa-
tion of the radicals of complete intersection ideals. Thus, in this paper,
we develop effective methods for such calculation. For this purpose, we
introduce first a new notion of genericity (called D-quasi stable position)
and exhibit a novel deterministic algorithm to put an ideal in Nœther
position (we show that this new notion of genericity is equivalent to
Nœther position). Then, we use this algorithm and also the algorithm
due to Krick and Logar (to compute radicals of ideals) to present an ef-
ficient algorithm to calculate the radical of a complete intersection ideal.
Furthermore, we apply this algorithm, to improve the classical methods
of computing primary invariants which are based on radical computa-
tion. Finally, we have implemented in Maple the mentioned algorithms
(to put an ideal in Nœther position, to compute the radical of ideals and
also primary invariants) and compare the proposed algorithms, via a set
of benchmarks, with the corresponding functions in Maple and Magma.
The experiments we made seem to show that these first implementations
are already more efficient than the corresponding functions of Maple

and Magma.

Keywords: Polynomial rings, Regular sequences, Radical of ideals, Nœ-
ther position, Deterministic algorithms.

1 Introduction

Invariant theory is a classical subject in mathematics with a long tradition
which many applications to problems in diverse areas of mathematics such as
algebraic geometry, combinatorics, statistics and so on. On the other hand, al-
gebraic invariant theory is the study of constructive algebraic methods for find-
ing all (polynomial) invariants under the action of a group. More precisely, let
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R = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K.
We consider a group G acting on R as degree preserving automorphisms. The
ring of invariants, RG, is the subalgebra in R of polynomials that is fixed by
this action. Algebraic invariant theory is interested in the algebraic structure of
RG and in finding connections between properties of G and RG. Hilbert’s 14th
problem (proposed at the beginning of the 20th century by Hilbert) is central in
this direction: ”Is RG finitely generated as a K-algebra?”. Due to some results
of Hilbert, Nagata, Haboush and Popov, it is known that this question has an
affirmative answer iff G is reductive. The algorithmic side of the problem is to
find the generators of RG when it is finitely generated as a K-algebra. The com-
putational methods based on Gröbner bases (we refer to the original references
[5,7,6] as well as the textbook [3] for details on Gröbner bases) give rise to more
efficient algorithms in invariant theory which make many calculations now fea-
sible. Several approaches followed for example in [27,10]. Sturmfels in his book
[27, page 53] described an algorithm to compute a set of primary invariants, i.e.,
algebraically independent homogeneous invariant polynomials p1, . . . , pn so that
RG is a finitely generated module over K[p1, . . . , pn]. A full generating set of RG

(as a K-algebra) is obtained by augmenting the set of primary invariants with
secondary invariants (a generating set of RG as a module over K[p1, . . . , pn]).
This algorithm relies on the fact that p1, . . . , pn is a regular sequence of homo-
geneous polynomials and therefore to construct pi we shall compute the radical
of the ideal 〈p1, . . . , pi−1〉. The most expensive part of this algorithm is the
computation of the radicals of polynomial ideals generated by regular sequences
(see [17, page 355]). Motivated by this problem, we develop effective methods to
compute the radical of an ideal generated by a regular sequence.

On the other hand, the computation of the radical of a polynomial ideal is an
important problem in constructive polynomial ideal theory. The first construc-
tive solution to the problem of computing the radical of an ideal was given by
Hermann [16]. Mostly the approaches to compute radicals of (positive dimen-
sional) ideals reduce the problem to the zero-dimensional case, see for example
[1,11,21]. For a nice presentation of this method, we refer also the reader to the
book [3]. Kemper in [18] presented an algorithm for the zero-dimensional case
and when the base field is finitely generated over a perfect field. Further, if the
characteristic of K is positive, an algorithm was proposed by Matsumoto [22]
to compute the radicals of ideals. Finally, a direct method was given by Eisen-
bud et al. [9] by using Jacobian techniques to the problem in the case that the
characteristic of the ground field K is zero.

In this paper, wewill adhere to the technique of reducing to the zero-dimensional
case, and apply the approach of Krick and Logar in [21]. In their method the au-
thors first proposed to put the ideal inNœther position and then to reduce the com-
putation to the zero-dimensional case. This notion of genericity has been studied
by many authors in different contexts: for example by Giusti et al. to compute the
dimension of a variety [12] and by Lecerf to solve a system of polynomial equations
and inequations [19]. A general algorithm for the computation of a Nœther nor-
malizationwas given byVasconcelos [28]. Over the recent years, several algorithms
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have been proposed to put an ideal in Nœther position (see [20,23,4,14,13,24]),
however, all these algorithms are probabilistic and use random changes of coordi-
nates. Further, some of them use Gröbner basis calculations in the lexicographical
monomial ordering which may lead to large coefficient growth and heavy calcula-
tions. For more details on Nœther normalization, we refer to [23,8].

In this paper, we introduce a new notion of genericity, so-called D-quasi stable
position and using it, we present a new deterministic algorithm to put an ideal
in Nœther position. The advantage of our algorithm with respect to the other
algorithms is that, it uses sparser coordinate changes and seems more efficient.
Furthermore, it computes the Gröbner bases only with respect to the degree
reverse lexicographical ordering. Applying this algorithm and the one of Krick
and Logar, we present an efficient algorithm to calculate the radical of a complete
intersection ideal, i.e. an ideal generated by a regular sequence. We show that this
algorithm may improve the classical methods of computing primary invariants
which use radical computation. Finally, we have implemented in Maple the
mentioned algorithms (to put an ideal in Nœther position, to compute the radical
of ideals and also primary invariants) and compare the proposed algorithms, via
a set of benchmarks, with the corresponding functions in Maple and Magma.
The experiments we made seem to show that these first implementations are
more efficient than the corresponding functions of Maple and Magma.

The paper is organized as follows. In Section 2, we introduce the notion of D-
quasi stable position, and compare it with different notions of genericity. Further,
we describe a deterministic algorithm to put a given ideal in Nœther position,
and compare its results with those obtained by the package Involutive due to
Robertz [24] and also by Magma function NotherNormalization. Due to space
restriction, we only present the main results in this section, and the proofs are
omitted. Finally, in Section 3, we discuss the functionality of the implemented
package. It should be noted that we leave the description of our main results
to compute the radical of complete intersection ideals and its applications in
invariant theory for the full version of paper.

2 D-Quasi Stable Position

In this section, we introduce the notion of D-quasi stable position for polynomial
ideals, and then compare it with some other notions of genericity like quasi-stable
and D-stable position.

Let us fix the notations used throughout this paper. Let R = K[x1, . . . , xn] be
a polynomial ring over a fieldK with char(K) = 0 and 0 �= I ⊂ R a homogeneous
ideal. We denote by A = R/I the corresponding factor ring and by D = dim(A)
the dimension of I. Further, we consider the monomial ordering ≺ on R given
by the reverse degree lexicographic ordering with xn ≺ · · · ≺ x1. Finally, We
denote by lt(I) the initial ideal (leading term ideal) of I.
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Definition 1. A monomial ideal J of dimension D is called D-quasi stable if for
each monomial m ∈ J , for each j = n−D+1, . . . , n and for each integer s with
xsj | m, an integer t exists so that we have xti(m/x

s
j) ∈ J for all i = 1, . . . , n−D.

Equivalently, a monomial ideal J is in D-quasi stable position if for each j =
n−D + 1, . . . , n we have J : x∞j ⊂ J : 〈x1, . . . , xn−D〉∞.

Lemma 1. D-quasi stability for a monomial ideal J can be checked by a given
generating set of J .

Example 1. Let J = 〈x44, x34x3, x34x2, x24x1, x23, x3x2, x3x1, x22, x2x1, x21〉 in the pol-
ynomial ring K[x1, . . . , x4]. Then, we can see easily that J is zero-dimensional
and D-quasi stable.

Based on Definition 1, we give here an algorithm to decide whether or not a
monomial ideal is weakly D-stable.

Algorithm 1. DQS-test

Input: A monomial ideal J ⊂ R
Output: The answer to: Is J D-quasi stable?
G := {m1, . . . ,mk} a minimal system of generators for J
Deg := max{deg(m1), . . . ,deg(mk)}
D := the highest integer � so that xDeg

i ∈ J for i = 1, . . . , �
for each xe1

1 · · ·xeh
h ∈ G with h > n−D and eh > 0 do

for j = 1, . . . , n−D do
if xe1

1 · · ·xeh−1

h−1 xDeg
j /∈ J then

return(false,xh , xj)
end if

end for
end for
return(true)

Theorem 1. The DQS-test algorithm terminates in finitely many steps and
decides whether or not the input monomial ideal is D-quasi stable.

We recall that an ideal I is in Nœther position if K[xn−D+1, . . . , xn] ↪→ R/I
is an integral ring extension, i.e. the image in R/I of xi for any i = 1, . . . , n−D
is a root of a polynomial Xs + g1X

s−1 + · · ·+ gs = 0 where s is an integer and
g1, . . . , gs ∈ K[xn−D+1, . . . , xn], see [8] for example.

Theorem 2. A monomial ideal is D-quasi stable iff it is in Nœther position.

It is worth noting that this result shows that the notion of D-quasi stable ideal
is an equivalent notion of genericity to Nœther position. D-quasi stable position
may be considered as a proper extension of quasi-stable position. The notion
of quasi-stable ideals has been used by Bayer and Stillman [2] and Bermejo
and Gimenez [4] to calculate the satiety and Castelnuovo-Mumford regularity of



386 A. Hashemi

ideals. Further, Seiler in [26] studied the relation between quasi-stable ideals and
Pommaret bases, and outlined a deterministic algorithm to put a given ideal in
quasi-stable position.

Definition 2. A monomial ideal J is called quasi-stable if for any monomial
m ∈ J and all integers i, j, s with 1 ≤ j < i ≤ n and s > 0, if xsi | m there exists
an integer t ≥ 0 such that xtjm/x

s
i ∈ J .

We can see easily that every quasi stable monomial ideal is D-quasi stable,
however, the converse does not hold in general, as demonstrated by the following
example.

Example 2. Let us consider the monomial ideal J=〈x1, x22, x3x5x2, x3x24, x3x4x2,
x33, x

2
3x2, x3x

2
5x6, x3x4x5x6, x5x6x

2
3, x4x6x

2
3, x

3
5x3, x4x

2
5x3, x

2
5x

2
3, x4x5x

2
3, x3x

3
6x7,

x3x5x
2
6x7, x3x4x

2
6x7, x

2
3x

2
6x7, x2x3x

2
6x7, x3x

4
6, x3x5x

3
6, x3x4x

3
6, x

3
6x

2
3, x2x3x

3
6,

x26x
2
3h

2, x2x3x
2
6h

2, x23x6x
2
7h, x2x3x6x

2
7h, x

2
3x5x

2
7h, x3x

2
6x

3
7, x3x5x6x

3
7, x3x4x6x

3
7,

x23x6x
3
7, x

2
3x4h

4, x3x
3
6h

3, x3x5x
2
6h

3, x3x4x
2
6h

3, x3x4x6x
2
7h

2, x3x
2
5x

2
7h

2,x3x4x5x
2
7h

2,
x23x4x

2
7h

2, x23h
5x5, x3x6x

3
7h

3, x3x
2
6x

2
7h

3, x3x5x6x
2
7h

3, x3x6x
4
7h

2, x3x5x
3
7h

4,
x3x4x

3
7h

4, x23x
3
7h

4, x2x3x
3
7h

4, x3x4x5x7h
6, x3x

4
7h

6〉 in K[x1, . . . , x7, h] which is
the leading term ideal of the homogeneization w.r.t. h of Eco7 ideal1 after per-
forming the linear changes h = h − x2, x7 = x7 + x3 . We can observe that
dim(J) = 5 and it is D-quasi stable. However, it is not quasi stable because
x2x3x6x

2
7 ∈ J : h∞ and x2x3x6x

2
7 /∈ J : x∞7 .

It should be noted that Seiler in [25, Theorem 2.6] showed that a monomial
ideal is quasi stable iff the ideal and all its primary components are in Nœther
position. A weaker form of this result holds for D-quasi stable ideals.

Theorem 3. A monomial ideal is D-quasi stable iff all its highest dimensional
primary components are in Nœther position.

Example 3. There exists a monomial ideal in D-quasi stable position so that at
least one of its primary components is not in Nœther position. Let us consider
the monomial ideal J given in Example 2. The associated prime ideals of J are
〈x1, x2, x3〉, 〈h, x1, x2, x3, x4, x5, x6〉, 〈x1, x2, x3, x4, x5, x6, x7〉, 〈h, x1, x2, x3, x4,
x5, x6, x7〉. We can see that the second component has dimension one, and it is
not in Nœther position.

Definition 3. An ideal I is called D-quasi stable if lt(I) is D-quasi stable.

Since the generic initial ideal of an ideal is (strongly stable and therefore)
D-quasi stable, from Galligo’s theorem we conclude that:

Proposition 1. Let I ⊂ R be a homogeneous ideal. Then, exists a nonempty
Zariski open subset U ⊂ GL(n,K) such that A.I is D-quasi stable with A ∈ U .

1 See http://homepages.math.uic.edu/∼jan/
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In the following, we describe a deterministic algorithm to transform a given ideal
into a D-quasi stable ideal.

Algorithm 2. DQS-transformation

Input: I ⊂ R a homogeneous ideal
Output: A linear transformation Ψ so that Ψ(I) is D-quasi stable
J := lt(I)
D := dim(I)
while DQS-test(J) �=true do

DQS-test(J)=(false,xh, xj)
ψ := The map xh �−→ xh + ajxj with aj ∈ K a random element
J := lt(ψ(I))
if DQS-test(J)=true then

Ψ := Ψ ∪ {ψ}
I := ψ(I)

end if
end while
return(Ψ)

Theorem 4. The DQS-transformation algorithm terminates and outputs
deterministically a linear transformation Ψ so that Ψ(I) is D-quasi stable (and
therefore in Nœther position).

3 Implementation

We have implemented the Maple package Noether.mpl containing a prototype
implementation of the DQS-transformation algorithm which is available at
the address http://amirhashemi.iut.ac.ir/software.html. In what follows
we describe the functionality of the package as well as some achieved tests. After
loading the package, we enter the generating set of the ideal and call the main
function of the package, as follows, to compute a linear transformation to put
the given ideal in D-quasi stable position.
>F:=[x2x1, x3x1, x3x2, x3x4, x4x1, x4x2];
>LinearChange(F, [x1, x2, x3, x4]);
Some information about the computation:

The cpu time is: 0.0468003000000863 sec

The used memory: 277613 bytes

List of variables:[x1, x2, x3, x4]
Dimension : 1

Noether position: true

Delta regularity: true

WeakDstablity : true

Dstablity : true

Borel fixed: true
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Used change of variables:[x4 = x4 + 2x1, x4 = x4 + 2x2, x4 = x4 + 2x3]
These results show that after the linear change x4 �→ x4 + 2x1 + 2x2 + 2x3, the
leading term ideal of the new ideal is D-quasi stable (Nœther position), quasi
stable (δ-regular), weakly D-stable, D-stable and Borel fixed. For more details
on weakly D-stable and D-stable ideals we refer to [15]. It should be emphasized
that our algorithm is deterministic and it finds an sparse set of linear changes
to put the given ideal in Nœther position. We end this section by presenting an
example illustrating the efficiency of our algorithm.

Example 4. Let us consider the Butcher example, i.e. the ideal I generated by
the polynomials a+b+c+d, u+v+w+x, 3ab+3ac+3bc+3ad+3bd+3cd, bu+
cu+du+av+cv+dv+aw+bw+dw+ax+bx+cx, bcu+bdu+cdu+acv+adv+
cdv+abw+adw+bdw+abx+acx+bcx, abc+abd+acd+bcd, bcdu+acdv+abdw+
abcx in the polynomial ring K[a, b, c, d, x, w, u, v]. Our implementation of DQS-

transformation algorithm (after less than one second) suggests the linear
change v �−→ v−d. On the other hand, the linear transformation w �−→ w−d is
defined by the command NoetherNormalization from the package Involutive
2 and this computation takes 24 seconds. Finally, in less than one second and
using theMagma’s command NoetherNormalisation, we get the linear changes
w �→ w − 2a− b− c, u �→ 3b+ c+ x, v �→ −3a+ 4b− 2d+ 2x+ w + u.

The experiments we performed seem to show that this first implementation of our
new algorithm to put a given ideal in Nœther position is already very efficient.
According to our experiments for about 20 examples, we observe that the new
algorithm is faster than the function NoetherNormalization from the package
Involutive and the linear changes proposed by our algorithm is sparser than
those proposed by the Magma’s command NoetherNormalisation.
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struction of Gröbner Bases. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979.
LNCS, vol. 72, pp. 3–21. Springer, Heidelberg (1979)

8. Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry.
Springer, New York (1995)

9. Eisenbud, D., Huneke, C., Vasconcelos, W.V.: Direct Methods for Primary Decom-
position. Invent. Math. 110, 207–235 (1992)

10. Derksen, H., Kemper, G.: Computational Invariant Theory. Springer, Berlin (2002)
11. Gianni, P., Trager, B., Zacharias, G.: Gröbner Bases and Primary Decomposition
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Abstract. We present generic, type safe Groebner bases software. The
implemented algorithms distinguish Groebner base computation in poly-
nomials rings over fields, rings with pseudo division, parameter rings,
regular rings, Euclidean rings, non-commutative fields in commuting,
solvable and free-non-commuting main variables. The interface, class or-
ganization is described in the object-oriented programming environment
of the Java Algebra System (JAS). Different critical pair selection strate-
gies and reduction algorithms can be provided by dependency injection.
Different implementations can be selected for the mentioned coefficient
rings through factory classes and methods. Groebner bases algorithms
can be composed according to application needs and/or hardware avail-
ability. For example, versions for shared memory sequential or parallel
computation, term order optimization or fraction free coefficient ring
computation can be composed. For distributed memory compute clusters
there are OpenMPI and MPJ implementations of Buchberger’s algorithm
with optimized distributed storage of reduction polynomials.

Keywords: generic multivariate polynomials, generic Groebner bases,
algorithm composition, parallel computation.

1 Introduction

As introductory example we consider the polynomial ring

R = E[y, z] = Q(
√
2)(x)(

√
x)[y, z],

in y and z over the field E, where E is an extension of Q by a square-root of
2, a transcendent x and the square-root of x. In full generality the Java type of
the JAS coefficients of E = Q(

√
2)(x)(

√
x) would be

AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>

It consists of two nested algebraic number types AlgebraicNumber and a
polynomial quotient Quotient over the rational numbers BigRational. The
corresponding ‘factory’, a means to provide methods to create new elements
of this type, has to be constructed as a Java object, referenced by cfac, with
the type AlgebraicNumberRing<.>.
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AlgebraicNumberRing<Quotient<AlgebraicNumber<BigRational>>> cfac = ...

A Gröbner base could then be constructed by first obtaining a suitable imple-
mentation via method getImplementation(cfac) of class GBFactory. cfac ref-
erences a constructed object, representing the field extension E. The constructed
algorithm is referenced by variable bb, which is declared as interface Groebner-
Base with the given polynomial coefficient type. In the next step, method GB()
of the constructed algorithm will actually do the computation. Method isGB()
is used to test if the result polynomial list in G is a Gröbner base.

GroebnerBase<AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>> bb;

bb = GBFactory.getImplementation(cfac);

List<

GenPolynomial<AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>>>

> G, F = ...;

G = bb.GB(F);

System.out.println("isGB(G) = " + bb.isGB(G));

This example seems to be too complicated. A simpler polynomial ring could
suffice, for example the polynomial ring R′ = Q[w2, xi, x, wx, y, z], over the field
Q would do, together with adding the polynomials w2

2 − 2, w2
x−x and xix− 1 to

the list of polynomials F. However, with ring R′ it is not possible to simplify the
inverse xi of x in the result polynomials in all cases. So a better polynomial ring
is R′′ = Q(x)[w2, wx, y, z], over the field Q with transcendent extension by x.

The simplification of
√
2 and

√
x is achieved by adding the polynomials w2

2 − 2
and w2

x − x to the the list F. The type of the coefficients then simplifies to

Quotient<BigRational>

The corresponding factory is referenced by variable qfac.

QuotientRing<BigRational> qfac = ...;

The Gröbner base construction with the simpler types is then as follows.

GroebnerBaseAbstract<Quotient<BigRational>> bb;

bb = GBFactory.getImplementation(qfac);

List<GenPolynomial<Quotient<BigRational>>> G, F = ...;

// add w2^2 - 2 and wx^2 - x to F

G = bb.GB(F);

The examples show the JAS generic polynomials with different coefficient
types. The generic Gröbner base implementation will, in this cases, work for
different coefficient rings. As various coefficient rings are available and several
Gröbner base implementations suitable for specific kinds of coefficients are avail-
able, a means to select an appropriate algorithm is mandatory.

Generic multivariate polynomials are provided by the object oriented Java
computer algebra system (called JAS) as a type safe and thread safe approach to
computer algebra, see [8,5,6]. JAS provides a well designed software library using
generic types for algebraic computations implemented in the Java programming
language thus leveraging software and hardware improvements over time. For an
introduction to JAS see the cited articles.

In section 2 we will sketch some generic Gröbner base implementations and in
section 3 we discuss the problem of implementation selection and composition.
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2 Generic Gröbner Bases

In this section we explain the implementations behind the Gröbner base selection
facilities of class GBFactory. Part of the algorithm relations and the interface and
class layout is depicted in figure 1. It shows some of the Gröbner base implemen-
tations for polynomial rings over fields. Not shown are further implementations
and also implementations for coefficients from unique factorization domains or
Euclidean domains. Gröbner bases implementations for non-commutative poly-
nomial rings or regular rings are also not discussed.

Fig. 1. UML diagram of Gröbner base classes

Figure 1 starts with the interface GroebnerBase on the top. It defines the most
important methods for the usage of Gröbner base algorithms: method isGB()

tests if a list of generic polynomials is in fact a Gröbner base, method GB()
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computes a Gröbner base for a list of generic polynomials, method extGB()

computes an extended Gröbner base (returning the back and forth transfor-
mations between the given polynomial list and the Gröbner base in container
ExtendedGB) and method minimalGB() computes a minimal reduced Gröbner
base from an arbitrary Gröbner base. The interface is parametrized by a type
C, which is restricted to implement the RingElem interface. The RingElem in-
terface is itself parametrized by the type C. This allows for recursive coefficient
types. The RingElem interface defines all methods needed for ring arithmetic. It
includes also a method inverse() to compute inverses of ring elements. In case
of fields, all non-zero elements will have inverses, for arbitrary rings only some
elements will have inverses.

The class GroebnerBaseAbstract implements all methods of the interface
GroebnerBase and defines the abstract method GB(modv: int,.). This method
has a parameter modv which is used for module Gröbner bases via an embed-
ding of a module over a polynomial ring into an polynomial ring. modv accounts
for the number of polynomial variables to be treated as module variables. This
class also defines a constructor GroebnerBaseAbstract(red, pl) which accepts
a reduction parameter red of type Reduction and a pair-list parameter pl of
type PairList. By this parameters dependencies on different implementations
are injected into the algorithm. Reduction provides a polynomial reduction im-
plementation consisting of methods like normalform() and SPolynomial() to
compute reductions of a polynomial with respect to a list of polynomials and a S-
polynomial, respectively. The PairList parameter provides an implementation
of the basic book keeping of critical pairs during a Gröbner base construction.
For example the application of the reduction avoiding strategies like the Buch-
berger criteria or the Gebauer-Möller criteria [2,4]. PairList provides methods
like put() to add all critical pairs for a new polynomial, removeNext() to obtain
the next critical pair according to the implemented strategy and hasNext() to
test if there are remaining critical pairs.

The class GroebnerBaseSeq implements method GB(modv,.) as a sequen-
tial Buchberger algorithm. It inherits all other methods from GroebnerBase-

Abstract.
A parallel implementation of the Buchberger algorithm is provided by the

class GroebnerBaseParallel, also with method GB(modv,.). All other meth-
ods are again inherited from GroebnerBaseAbstract. The implementation of
GB(modv,.) uses Java Threads and keeps the polynomial list in shared mem-
ory. The ReductionPar class is tailored to tolerate asynchronous updates of the
polynomial list during a reduction. For the classes implementing PairList it
is now important that the methods put(), removeNext() and hasNext() are
thread safe. So multiple threads will not interfere with the book keeping of the
critical pairs. Some care is needed to correctly check for the termination of the
algorithm, since a single remaining thread may finally produce a new non-zero
polynomial, thus potentially generating a new cascade of critical pairs. Note, that
since polynomials produced by the multiple threads may appear in a different se-
quence order than in the sequential algorithm. The constructor has additionally
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a parameter th which specifies the number of threads to use. So the sequential
algorithm can be easily replaced by the parallel algorithm, just by using the
constructor of this class. This leverages the ubiquitous multi-core computers of
our time.

There are several implementations for distributed memory computers, like
compute clusters consisting of multi-core nodes. One is using Java TCP/IP
Sockets as transport layer, an other uses the OpenMPI Java bindings, here
we sketch only one pure Java implementation based on the MPJ API, FastMPJ
[9,7]. FastMPJ is thread safe if used with the newio device (OpenMPI is not
thread safe at the moment, Sockets are thread safe). The class GroebnerBase-
HybridMPJ extends GroebnerBaseAbstract and implements the missing method
GB(modv,.). The constructor has two additional parameters: th, the number of
MPJ processes to use (must match MPI.Size()), and tpn, the number of threads
to use per MPJ process. The number of MPJ processes should match the number
of available compute nodes. The constructor obtains the MPJ run-time system,
i.e. the program must be run within the MPJ environment, and eventually calls
MPI.Init(). The method GB(modv,.) now uses a case distinction whether it is
running on the MPJ master node (MPI.Rank()==0), or one a worker node. The
master node does the initialization and book keeping of the critical pairs. The
polynomial list is replicated to all MPJ processes via class DistHashTableMPJ

and updated asynchronously to the normal communication between master and
worker. On the worker nodes method GB(modv,.) starts the requested number
of threads and connects to the replicated polynomial list. Each thread requests
a critical pair from the master node, performs the normalform() reduction and
sends the reduced polynomial back to the master. On the master node the crit-
ical pairs are eventually updated. The transport of polynomials between the
MPJ processes uses Java’s object serialization. Critical pairs are only commu-
nicated as indexes into the replicated polynomial list. Termination detection is
more complicated since a last thread on a worker node could produce a non-zero
polynomial and so generate new critical pairs.

3 Implementation Selection and Composition

As there are many implemented Gröbner base algorithms it is not always evident
for users which one to choose. Moreover there are further optimizations which
can be composed with these basic algorithms. As solution for the first problem
we provide a factory class GBFactory, which selects an implementation based
on the coefficient ring of the polynomials. The composition problem is resolved
with an algorithm builder class GBAlgorithmBuilder.

3.1 Selection of an Implementation

The GBFactory, see figure 2, provides static methods getImplementation()

and getProxy(). These method are polymorphic for various coefficient rings,
for example BigInteger, BigRational, ModInteger, QuotientRing<C> or von
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Most methods also allow a PairList<C> parameter, which is omitted in the diagram.

Fig. 2. UML diagram of Gröbner base factory

Neumann regular rings ProductRing<C>. Additionally there is a general one for
arbitrary Ringfactory<C> coefficients. In each of these methods an appropri-
ate Gröbner base implementation is selected and returned as a GroebnerBase-

Abstract with corresponding type parameter. In cases where the coefficient type
alone is not sufficient to select an implementation there is an additional param-
eter GBFactory.Algo, see figure 3. Via this parameter, one can choose between
computation with fractional coefficients (qgb) or fraction free coefficients (ffgb)
(by multiplying all polynomials with the least common multiple of the denom-
inators of the coefficients and using polynomial pseudo division algorithms).
Further, for the coefficients BigInteger and univariate GenPolynomial<C>, it
is possible to choose between pseudo division algorithms (igb) or between d-
and e-Gröbner bases (egb, dgb).

Fig. 3. Gröbner base algorithm enumeration

Method getProxy() in figure 2 returns a GBProxy object. The class GBProxy
also extends GroebnerBaseAbstract and implements method GB(modv,.). The
constructor takes two Gröbner base implementations as parameters

GBProxy(GroebnerBaseAbstract<C> e1, GroebnerBaseAbstract<C> e2).
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The GB() method then executes two Gröbner base algorithms in parallel and
returns result of the first finished computation. Therefore it uses the method
invokeAny() from class ExecutorService in package java.util.concurrent.
In the case of getProxy(), the GBProxy is constructed with a sequential and
a parallel Gröbner base implementation (as available). So, in case the sequen-
tial algorithm runs faster, its result will be returned. But if the parallel algo-
rithm is faster, its result will be taken. The usage is as simple as with get-
Implementation().

GroebnerBaseAbstract<Quotient<BigRational>> bb;

bb = GBFactory.getProxy(qfac); // get a parallel implementation

List<GenPolynomial<Quotient<BigRational>>> G, F = ...;

G = bb.GB(F);

3.2 Composition of Implementations

There exist further variants of Gröbner base algorithms. One example is the
FGLM algorithm [3] to compute a Gröbner base with respect to a graded term
order and to construct one with respect to a lexicographic term order from it.
A second example is an optimization of the variable order [1]. The selection of
such variants is implemented in the class GBAlgorithmBuilder, see figure 4.

Fig. 4. UML diagram of Gröbner base algorithm builder

One starts with the definition of the used polynomial ring by method poly-
nomialRing() (not the coefficient ring) and ends with the build() method,
which returns the desired Gröbner base implementation. Method optimize()
will add a variable order optimization layer, graded() will add an FGLM algo-
rithm, the *Pairlist()methods select between critical pair selection strategies
and euclideanDomain() will select a e-Gröbner base computation. For example
a fraction-free and parallel algorithm using 5 threads can be selected as follows.

GenPolynomialRing<Quotient<BigRational>> pfac = ...;

bb = GBAlgorithmBuilder.polynomialRing(pfac)
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.fractionFree()

.parallel(5)

.build();

List<GenPolynomial> G, F = ...;

G = bb.GB(F);

The composition uses the same concept as shown in class GBProxy above:
the constructor has an additional parameter for a backing implementation of a
Gröbner base algorithm. In case of the FGLM algorithm it is

GroebnerBaseFGLM(GroebnerBaseAbstract<C> gb).

Here, the gb implementation will be used to compute the Gröbner base with
respect to the graded term order to which the FGLM algorithm is then applied.

There are various implemented applications of Gröbner bases, for example
ideal constructions, syzygies, real and complex roots or primary decomposition,
which can not be presented here in the available space.
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Abstract. The application of the Groebner basis methodology to four
nonlinear mechanics problems is discussed. The MAPLE software pack-
age is used in all cases to implement the Groebner basis calculation
which converts a set of coupled polynomial algebraic equations into an
equivalent set of uncoupled polynomial algebraic equations (the reduced
Groebner basis). Observations concerning implementation of Groebner
basis methodology are reported.

Keywords: Groebner basis, Computational algebraic geometry, Cable
statics, Plate vibrations, Steady state vibrations, Free vibrations.

1 Introduction

With the increasing capability of symbolic computation in recent years, con-
siderable progress has been made in the area of advanced computational alge-
braic geometry. One such advanced computational method is the methodology
of Groebner bases which was introduced in 1965 by Buchberger [1], who was the
first to provide a useful algorithm for the determination of Groebner bases. It is
primarily because this algorithm has been implemented in many mathematical
symbolic computational software packages that the implementation of Groebner
basis methodology in science and engineering is now feasible. The purpose of
this paper is to demonstrate the utility of the Groebner basis methodology in
the analysis of four nonlinear mechanics problems to be described in Sections 2–
5 below. Because of the variety of applications involved each of these sections
employs a separate notation. This should cause no difficulty because there is no
interaction between these sections. The MAPLE software package has been used
in all cases to implement the conversion of a set of coupled polynomial alge-
braic equations into an equivalent set of uncoupled polynomial algebraic equa-
tions (the reduced Groebner basis). The details of the mathematical background
underlying the methodology can be found in books such as Cox et al. [2].
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For a fixed elimination order, the application of Groebner basis methodology
produces one polynomial equation containing only one unknown (primary equa-
tion) together with additional polynomial equations (secondary equations) that
can be solved sequentially to obtain the other unknowns one at a time. If the pri-
mary equation is of the fourth order or lower this process produces a closed form
solution containing all the system parameters in symbolic form. If the primary
equation is of the fifth order or higher the uncoupled polynomial equations must
be solved numerically with specified numerical values for all system parameters.
Here the potential benefit of Groebner basis methodology is the possibility that
the effectiveness of iterative numerical methods could be improved by uncou-
pling (since iteration is performed on one equation at a time rather than on a
highly coupled set).

2 Static Cable Analysis

The problem

(T (1 + u′))′r − 1

2
r′T (1 + u′) +Qv′r = 0 (1)

(Tv′)′r − 1

2
r′Tv′ −Q(1 + u′)r = 0 (2)

r = (1 + u′)2 + v′2 (3)

T = T0 +
1

2
EA (r − 1) (4)

u(0) = u(L) = v(0) = v(L) = 0 (5)

arises in the analysis of large plane static deflections of initially straight pre-
tensioned linearly elastic cables fixed at both ends (see Liu et al. [3] and the
references contained therein). In (1)–(5), L is the initial cable length, x is co-
incident with the initial cable position, y is perpendicular to x, T is the cable
tension, u and v are displacements in the respective x and y directions, Q is a
constant force per unit of undeformed length which initially acts the negative
y direction and remains perpendicular to the deformed cable, T0 is the initial
cable pre-tension, E is the cable material Young’s modulus, A is the cable cross-
sectional area, and a superposed prime denotes differentiation with respect to x.
The use of the Galerkin method in conjunction with the trial functions

u = a0x
( x
L

− 1
)(x

L
− 1

2

)
(6)

v = b0x
( x
L

− 1
)

(7)
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with a0 and b0 being unknown constants then leads to the system of polynomial
algebraic equations

286QLb0a
2
0 + 159EAa50 + 10296EAa30 + 48048EAa0 + 1144QLb0a0

+ 1560EAa40 + 13728EAa20 + 32032EAb20 + 25168EAa0b
2
0

+ 12012EAa20b
2
0 + 6864EAb40 + 8008QLb0 + 1768EAa30b

2
0

+ 6848EAa0b
4
0 + 9152T0a0b

2
0 + 3432QLb30 − 16016T0b

2
0 = 0 (8)

− 3080QL+ 924QLa0 − 330QLa20 + 1628EAa20b0 + 28EAa40b0

+ 11QLa30 − 44QLa0b
2
0 + 2464EAa0b0 + 3696EAb30

+ 110EAa30b0 + 264EAa20b
3
0 + 88T0a

2
0b0 + 1320EAa0b

3
0

− 616QLb20 + 1056EAb50 − 3080T0a0b0 + 6160T0b0 = 0 (9)

Equations (8) and (9) (and subsequent similar equations) have been written in
the un-simplified forms characteristic of MAPLE output.

The MAPLE Groebner basis module was used to uncouple (8) and (9) into
one twenty-fifth order primary equation containing only b0 and a secondary
equation containing both a0 and b0 and linear in the former. These equations
(which contain all the system parameters in symbolic form) are very lengthy
and are not shown for the sake of brevity. Tables 1 and 2 contain some typical
numerical results obtained from the uncoupled equations. Only a small amount
of computer time was needed to generate these results, despite the large number
of extraneous solutions inherent in the process.

Table 1. Coefficients appearing in (6), (7) (QL/T0 = 0.5)

T0/EA = 0.1 T0/EA = 1 T0/EA = 5

−a0 b0 −a0 b0 −a0 b0
0.0355 0.230 0.0410 0.249 0.0406 0.251

Table 2. Coefficients appearing in (6), (7) (QL/T0 = 5)

T0/EA = 0.1 T0/EA = 1 T0/EA = 5

−a0 b0 −a0 b0 −a0 b0
0.646 0.977 1.88 1.80 3.31 2.68
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3 Forced Damped Vibration

The differential equation

ẍ+Qẋx2 + ω2x = X0ω
2 cos(Ωt) (10)

arises in the analysis of harmonically forced vibration of a mass attached to
a linear spring and a van der Pol damper (see Liu and Peddieson [4] and the
references contained therein). In (10), x is the position of the mass, a superposed
dot denotes differentiation with respect to the time t, ω is the undamped natural
frequency, Ω is the forcing frequency, X0 is the static deflection, and Q is a
constant indicating the strength of the damping. Substituting the two-harmonic
approximate steady state solution

x = C1 cos(Ωt) +D1 sin(Ωt) + C3 cos(3Ωt) +D3 sin(3Ωt) (11)

(with the C’s and D’s being constants) into (10) and performing harmonic bal-
ance (a well-known procedure for obtaining approximate harmonic solutions to
nonlinear vibration problems, see Nayfeh and Mook [5]) in the usual way (using
the capability of MAPLE to evaluate the required orthogonalization integrals)
yields the system of polynomial algebraic equations

4ω2C1 − 4Ω2C1 +ΩQC2
1D1 +ΩQD3

1 − 2ΩQC1C3D1 + 2ΩQC3
3D1

+ 2ΩQD1D
2
3 −ΩQD2

1D3 +ΩQC2
1D3 − 4X0ω

2 = 0 (12)

4ω2D1 − 4Ω2D1 −ΩQC1D
2
1 − ΩQC3

1 − 2ΩQC1C3D1 + 2ΩQC2
3D1

+ 2ΩQD1D
2
3 −ΩQD2

1D3 +ΩQC2
1D3 − 4X0ω

2 = 0 (13)

4ω2C3 − 36Ω2C3 + 3ΩQC2
1D1 + 3ΩQC2

3D3 −ΩQD3
1 + 3ΩQD3

3

+ 6ΩQC2
1D3 + 6ΩQD2

1D3 = 0 (14)

4ω2D3 − 36Ω2D3 + 3ΩQC1D
2
1 − 3ΩQC3D

2
3 −ΩQC3

1 − 3ΩQC3
3

− 6ΩQC2
1C3 − 6ΩQC3D

2
1 = 0 (15)

to solve for the C’s and D’s. The MAPLE Groebner basis module produces an
alternate set of four equations which are omitted from this document because of
their length. The primary equation contains only C1 and is of the ninth order.
Of the secondary equations, one contains only C1 and C3, one only C1 and D1,
and one only C1 and D3. All four contain the system parameters ω, Ω, Q, and
X0. The equation for C1 must be solved numerically for each combination of
system parameters. Some typical numerical results are presented in Table 3 for
the amplitudes of the respective first and second harmonics A1 = (C2

1 +D2
1)

1/2

and A3 = (C2
3 +D2

3)
1/2. The computing time needed to generate these results
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was very small despite the large number of extraneous solutions inherent in
the process. It can be seen that the amplitude of the second harmonic is small
compared to the amplitude of the first harmonic for all tabulated cases.

The corresponding single harmonic approximation (C3 = 0,D3 = 0 in (11)) to
the steady state solution of (10) can be recovered from (12)–(15) by omitting (14)
and (15) and equating C3 andD3 to zero in (12) and (13). This produces a system
of two polynomial algebraic equations to determine C1 and D1. The MAPLE
Groebner basis module transforms these equations to a cubic primary equation
containing only C1 and a secondary equation containing C1 and D1 and linear
in the latter. Here the known closed form solution for a cubic equation can be
used to produce a solution valid for any combination of system parameters.

The Groebner bases associated with one and two harmonic solutions were
easily obtained. When, however, a three harmonic solution was attempted the
MAPLE Groebner basis module was unable to generate the Groebner basis
because all the storage of the standard PC being used was exhausted. This would
appear to signify a major limitation on the practical utility of the Groebner basis
approach.

Table 3. Coefficients appearing in (11) (QX2
0/(4ω) = 1.5)

Ω/ω

1/10 1/2 1 3/2 2 5/2 3 7/2 4
A1 0.98846 1.00819 0.88724 0.63555 0.33102 0.19040 0.12499 0.08889 0.06667
A3 0.11411 0.16016 0.09776 0.02887 0.00310 0.00047 0.00011 0.00003 0.00001

4 Free Undamped Vibration

The problem
X ′′ +X + εX3 = 0, X(0) = 1, X ′(0) = 0 (16)

arises in the analysis of free vibration of a mass attached to a cubically non-
linear spring. The differential equation is an example of a free Duffing equation
(see [5]). This problem is chosen because it has a closed form solution in terms of
elliptic functions that can be used as a standard of comparison for the harmonic
balance approximation employed herein. In (16) X is the ratio of the mass’s cur-
rent position to its initial position, a superposed prime denotes differentiation
with respect to the product of linear natural frequency and time T , and ε is
a dimensionless measure of the importance of nonlinearity. In the previous two
sections the equations were stated in dimensional forms in order to illustrate
the capability of the Groebner basis methodology to deal with large numbers of
parameters. The number of parameters needed to characterize a physical prob-
lem can, of course, be minimized by using a dimensionless formulation. That has
been done in this section. Substituting the harmonic solution

X = C1 cos(rT ) + C3 cos(3rT ) + C5 cos(5rT ) (17)
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(r being the ratio of the natural frequency of the nonlinear system to that of the
corresponding linear system) into (16) and performing harmonic balance in the
usual way yields the three polynomial equations

6εC1C3C5 + 4C1 + 6εC1C
2
5 + 6εC1C

2
3 + 3εC2

3C5 + 3εC3
1

+ 3εC2
1C3 − 4r2C1 = 0 (18)

6εC1C3C5 + 4C3 + 6εC3C
2
5 + 6εC3C

2
1 + 3εC2

1C5 + 3εC3
3

+ εC3
1 − 36r2C3 = 0 (19)

6εC1C3C5 + 4C5 + 6εC5C
2
1 + 6εC5C

2
1 + 3εC2

3C1 + 3εC2
1C3

+ 3εC3
5 − 100r2C5 = 0 (20)

together with
C1 + C3 + C5 − 1 = 0 (21)

If only the first term is retained in (17) (N = 1) the simple closed form solution

C1 = 1, r = (1 + 3ε/4)1/2 (22)

results. If two terms are retained in (17) the primary equation is found to be
cubic and a closed form solution exists. If all three terms are retained the MAPLE
Groebner basis module is able to generate the Groebner basis with an eleventh
order primary equation. No closed form solution exists but numerical results are
easily obtained. A representative sample of these results is presented in Table 4,
together with exact frequency ratio values based on the closed form solution in
terms of elliptic functions. It can be seen that two terms of (17) appear adequate
to reproduce the exact solution over the entire range of ε displayed. The value
ε = −1/3 was chosen for inclusion in Table 4 because it is the negative value of
this parameter exhibiting the largest absolute value for which the absolute value
of the spring force will increase with the absolute value of the displacement in
the entire permissible range of −1 ≤ X ≤ +1. Even the single harmonic solution
produces quite accurate values with the greatest error being about 2.2%. This
lack of need for the higher harmonics is indeed fortunate because when a solution
was attempted using five harmonics the MAPLE Groebner basis module could
not generate the Groebner basis due to insufficient storage of the standard PC
being used. This was true despite the fact that only the single parameter ε was
present in the equations. In addition, attempts to generate the Groebner basis
using specific numerical values of ε also failed. This is a second example of the
limitation mentioned earlier.
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Table 4. Coefficients and frequency ratio appearing in (17)

C1 C3 C5 r

ε N = 1 N = 2 N = 3 N = 2 N = 3 N = 3 N = 1 N = 2 N = 3 Exact
-1/3 1.0000 1.0139 1.0137 -0.0139 -0.0139 0.0002 0.866 0.864 0.864 0.864
1/2 1.0000 0.9886 0.9884 0.0114 0.0114 0.0001 1.173 1.171 1.171 1.171
1 1.0000 0.9820 0.9817 0.0180 0.0180 0.0003 1.323 1.318 1.318 1.318

3/2 1.0000 0.9778 0.9772 0.0222 0.0223 0.0005 1.458 1.445 1.449 1.449
2 1.0000 0.9747 0.9741 0.0253 0.0253 0.0006 1.581 1.570 1.569 1.569
20 1.0000 0.9599 0.9582 0.0401 0.0402 0.0016 4.000 3.930 3.924 3.925
100 1.0000 0.9577 0.9557 0.0423 0.0424 0.0018 8.718 8.550 8.534 8.533

5 Free Orthotropic Plate Vibrations

Equations having the form of (16) arise in many nonlinear vibration problems.
One class of such problems is that of determining the fundamental frequencies
of moderately large amplitude free vibrations of linearly elastic thin plate and
shell structures. A specific example of such a structure selected for considera-
tion herein is a rectangular orthotropic plate having thickness h; side lengths
a and b; four independent elastic constants EL, ET, GLT, and νLT; and initial
central displacementW0. It can then be shown that the use of the Rayleigh/Ritz
method in conjunction with a particular set of trial functions leads to (22) with
r representing the ratio of the plate’s lowest natural frequency to its small de-
flection counterpart and ε being a function of the dimensionless ratios W0/h,
a/b, EL/ET, GLT/ET, and νLT. The details of the required analysis are omitted
for the sake of brevity and the interested reader is referred to Shanmugasun-
daram [6]. Some typical fundamental frequency ratio results are reported in
Table 5 in terms of the dimensionless ratios listed above. Predictions obtained
for two types of trial functions can be seen to be in good agreement. Based on
the discussion contained in Sections 3 and 4 it is to be expected that attempts
to calculate higher natural frequencies of the plate will quickly exceed the ca-
pabilities of a standard PC to generate the corresponding Groebner bases using
the MAPLE Groebner basis module.

Table 5. Frequency ratios for free orthotropic plate vibrations (EL/ET = 10,
GLT/ET = 0.5, νLT = 0.25, P: polynomial trial functions, T: trigonometric trial
functions)

r

a/b = 1 a/b = 2 a/b = 4

W0/h P T P T P T
0.5 1.2286 1.2193 1.3255 1.3149 1.3546 1.3432
1 1.7430 1.7168 1.9035 1.8754 1.9620 1.9326
1.5 2.3634 2.3199 2.5688 2.5228 2.6540 2.6061
2 3.0254 2.9649 3.2685 3.2049 3.3789 3.3128
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6 Conclusion

The foregoing has presented four examples of the application of Groebner basis
methodology to nonlinear mechanics problems. Two of these demonstrated the
apparent inability of the MAPLE Groebner basis module to generate a Groeb-
ner basis using a standard PC once a relative modest number of unknowns are
exceeded. Low order Rayleigh/Ritz, Galerkin, and similar approximate meth-
ods of weighted residuals tend to produce correspondingly low order systems of
polynomial algebraic equations. In such cases the Groebner basis methodology
is of great value in generating closed form solutions that might not be obvious
to a human analyst. In that sense there is a useful connection between methods
of weighted residuals and Groebner basis methodology.
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Abstract. We present the canonical Gröbner Cover method for dis-
cussing parametric polynomial systems of equations. Its objective is to
decompose the parameter space into subsets (segments) for which it ex-
ists a generalized reduced Gröbner basis in the whole segment with fixed
set of leading power products on it. Wibmer’s Theorem guarantees its ex-
istence. The Gröbner Cover is designed in a joint paper of the authors,
and the Singular grobcov.lib library [15] implementing it, is developed
by Montes. The algorithm is canonic and groups the solutions having
the same kind of properties into different disjoint segments. Even if the
algorithms involved have high complexity, we show how in practice it is
effective in many applications of medium difficulty. An interesting appli-
cation to automatic deduction of geometric theorems is roughly described
here, and another one to provide a taxonomy for exact geometrical loci
computations, that is experimentally implemented in a web based appli-
cation using the dynamic geometry software Geogebra, is explained in
another session.

Keywords: Groebner cover, parametric polynomial, canonical algorithm,
automatic theorem discovering.

1 The Gröbner Cover

The Gröbner Cover algorithm for discussing parametric polynomial ideals
gives a canonical description, classifying the solutions by their characteristics
(number of solutions, dimension, etc.).

The Gröbner Cover is the analog of the reduced Gröbner basis of an ideal
for parametric ideals. Its existence was proved by Wibmer’s Theorem [14], and
the method and algorithms were developed in [8]. Montes implemented in Sin-
gular the grobcov.lib library [15], whose actual version incorporates Kapur-Sun-
Wang algorithm [3] for computing the initial Gröbner System used in grobcov

algorithm, as described in [6], and recently also the Locus algorithm used in
Dynamical Geometry software as described in [1] and in another session.

Let x = x1, . . . , xn be the set of variables and a = a1, . . . , am the set of
parameters. Given a generating set F = {f1, · · · , fs} ⊂ Q[a][x] of the parametric

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 406–413, 2014.
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ideal I = 〈F 〉 and a monomial order (x in the variables, the grobcov algorithm
determines

– the unique canonical partition of the parameter space Cm into locally closed
sets (segments) with associated generalized reduced Gröbner basis:

GC = {(S1, B1, lpp1), . . . , (Sr, Br, lppr)}.

– The segments Si are disjoint locally closed subsets of Cm and ⊕iSi = Cm.
– The basisBi of a segment Si has fixed set of leading power products (lpp), who

ensures that the type of solutions is the same over all points of the segment,
and is the generalized reduced Gröbner basis of 〈F 〉 over the segment Si.

– The lpp’s are included in the output, even if they they are given by the basis,
to characterize the segments and facilitate the applications.

– Moreover, if the ideal is homogeneous, the lpp’s are characteristic of the
segment as no other segment has the same lpp’s.

The generalized reduced Gröbner basis Bi of a segment Si is formed by a set of
monic I-regular functions over Si. An I-regular function, representing an element
of the basis, allows a full-representation in terms of a set of polynomials that
specialize for every point a0 of the segment, either to the corresponding element
of the reduced Gröbner basis of the specialized ideal Ia0 after normalization, or
to zero. It also allows a generic representation given by a single polynomial that
specializes well on an open subset of the segment and to zero on the remaining
points of it. Usually the generic representation is sufficient, and we can, if needed,
compute the full representation from it using the extend algorithm.

The segments Si are expressed in canonical P-representation, given by a set
of prime ideals of the form

Prep(S) = {{pi, {pij : 1 ≤ j ≤ ri}} : 1 ≤ i ≤ s}

representing the set:

S =

s⋃
i=1

⎛⎝V(pi) \
ri⋃
j=1

V(pij)

⎞⎠ .
Each V(pi) \

⋃ri
j=1 V(pij) is a component of the segment, and its representative

{pi, {pij : 1 ≤ j ≤ ri}}, by abuse of language, is also denoted a component when
there is no ambiguity. pi is called the top of the component, and {pij : 1 ≤ j ≤ ri}
the holes.

1.1 Historical Development of the Theory of Gröbner Bases for
Parametric Polynomial Ideals

The first steps in the algebraic study of parametric polynomial ideals where made
by V. Weispfenning (1992) in [12], who proved the existence of a Comprehensive
Gröbner System (CGS) and a Comprehensive Gröbner Basis (CGB). Progress
were made in two directions:
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1. Improving the output: Montes (2002) [5],Weispfenning (2003) [13], Manubens
& Montes (2009) [4], Montes & Wibmer (2010) [8], Montes (2012) [6].

2. Speed up the algorithms: Kapur (1995), Kalkbrenner (1997), Sato (2005),
Suzuki & Sato (2006) [11], Nabeshima (2007) [9], Kapur & Sun & Wang
(2010) [3].

The Gröbner Cover [8] is the final state of the research of point 1., and
the actual implementation of the GC algorithm incorporates the best speed up
algorithm [3] of point 2. as described in [6].

1.2 The Gröbner Cover Algorithm

The algorithm for computing the Gröbner Cover has the following steps:

1. Homogenize the input ideal wrt the variables.
2. Compute a disjoint reduced Comprehensive Gröbner System (DRCGS).1

3. Compute the P-representation of the segments.
4. Add together the segments with common lpp using LCUnion algorithm,

knowing that the union is locally closed by Wibmer’s Theorem.
5. Dehomogenize the bases.
6. For every GC-segment, compute the generic representation of the generalized

reduced Gröbner basis using Combine algorithm.
7. Optionally, one can also compute the full representation of the bases using

Extend algorithm after computing the generic GC

When the GC algorithm [8] was introduced in 2010, the DRCGS used for step
2. in the implementation was our own algorithm buildtree [8]. But its use is
not strictly necessary. We only need to compute a DRCGS. In the new 2012
implementation of the GC the DRCGS used in step 2. was Kapur-Sun-Wang

algorithm [3] because it is simpler and generally faster. This is described in [6].

1.3 Example

To fix ideas on the use of the grobcov algorithm of the Singular “grobcov.lib”
library [15], let us consider a very simple example: the inverse kinematic problem
of the robot arm of Figure 1. The problem consist of determining the angles
θ1 and θ2 and the length � to reach the point of coordinates (r, z). Setting
ci = cos(θi) and si = sin(θi) the equations are obviously:

F = s1s2�− c1c2�− c1 + r, s1c2�− s1 − c1s2�+ z, s21 + c21 − 1, s22 + c22 − 1.

The call for solving the problem using Singular grobvcov is:

1 A DRCGS is a CGS whose segments are dijoint and the bases specialize to the
reduced Gröbner basis and have fixed lpp over the whole segment.
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(r, z)

θ1

θ2

1 l

Fig. 1. Simple robot arm

Input:

LIB "grobcov.lib";

ring R=(0,r,z),(s1,c1,s2,c2,l),lp;

ideal F= s1*s2*l-c1*c2*l-c1+(r), s1*c2*l-s1-c1*s2*l+(z),

s1^2+c1^2-1, s2^2+c2^2-1;

def G=grobcov(F);

"grobcov(F)=" G;

Output: We summarize the output in the following table

S. lpp Basis Segment

1 c2�, s
2
2, 2c2�+ �2 + (−r2 − z2 + 1), s22 + c22 − 1,

c1, (2r2 + 2z2)c1 + (−2z)s2�+ r�2 + (−r3 − rz2 − r), C2 \ V(r2 + z2)
s1. (2r2 + 2z2)s1 + (2r)s2�+ (z)�2 + (−r2z − z3 − z).

2 c2�s2, 2c2�+ �2 + 1, (z)s2 + (−r)c2 + (−r)l,
c1�

2, (4z2)c1�
2 + (−4z2)c1 + (−r)�4 + (2r)�2 + (4rz2 − r), V(r2 + z2) \ V(z, r)

c1c2, (8z2)c1c2 + (8z2)c1�+ (−8rz2 + 2r)c2 + (−r)�3+
s1. +(−4rz2 + 3r)�, (2z)s1 + (2r)c1 + �2 − 1.

3 �2, c2, s2, s
2
1 �2 − 1, c2 + 1, s2, s

2
1 + c21 − 1. V(z, r)

There are 3 segments, and for each segment there are 4 arguments: 1) the
lpp, 2) the basis, 3) the P-representation of the segment, 4) the lpp of the
homogenized ideal. The fourth argument is purely informative to verify that each
segment has a characteristic lpp of the homogenized ideal. It can be discarded,
and we deleted it form the output. The output is to be read as follows:

1) The first segment represents the generic case: the solution is valid for every
values of the parameters r, z, except when r2 + z2 = 0. We have one-degree of
freedom in the variables. One can choose � free. For each value of � �= 0 there
are two angle solutions with opposite value of θ2. For fixed � we have

c2 =
r2 + z2 − �2 − 1

2�
, s2 = ±

√
1− c22,

c1 =
2zs2�+ r(r2 + z2 + 1− �2)

2(r2 + z2)
, s1 =

−2rs2� + z(r2 + z2 + 1− �2)

2(r2 + z2)
.
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As we want real solutions, we must choose � such that |c2| ≤ 1. We set � > 0.
The limits for cos(θ2) imply |� − 1| ≤

√
r2 + z2 ≤ � + 1. With this choice the

angles are real.
2) The second segment is purely complex and can be discarded in practice.
3) There is only one special position (r, z) = (0, 0) for which necessarily � = ±1

and in practice � = 1. Then θ2 = π, and θ1 free.
These results correspond accurately to the geometry.

2 Applications

The Gröbner Cover has many applications. Let us highlight one interest-
ing problem that can be solved using it: automatic discovering of geometrical
theorems. In the “Parametric Polynomial Systems” session we show its use for
determining and classifying geometrical loci that can be used by Dynamical
Geometry software [1].

2.1 Automatic Deduction of Geometrical Theorems

Consider a generally false geometrical statement depending on some variable
points for which we want to find the conditions in order to make the statement
to hold true. Consider the coordinates of the free points of a construction as
parameters and the remaining coordinates or values as variables. Then apply
grobcov to the system defining the statement and the construction, and find
the conditions over the parameters that makes the statement hold true. We show
an interesting example: the generalization of the classical XIX-century known
Steiner-Lehmus Theorem [10] that is described in [7]. Let us summarize here the
results.

Classical Theorem states that the length of the inner bisectors of a triangle
are equal if and only if the triangle is isosceles. Consider the triangle ABC of

A B

C

R R′PP ′

S S′T

T ′

QQ′ M

M ′

Fig. 2. Bisectors of the triangle ABC
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Figure 2, and take coordinates A(−1, 0), B(1, 0) and C(a, b). Trace the circles
with center A and radius AC that intersects line AB (i.e the x-axis) at P (p, 0)
and P ′, and the circle with center B and radius BC intersecting line AB at
R(r, 0) and R′. The equation (a+ 1)2 + b2 − (p+ 1)2 determining p in terms of
a, b does not distinguish between P and P ′. The same happens for the points R
and R′ and for the equations determining M and T (or T ′) and M (or M ′), so

that the statement AM
2
= BT

2
, i.e. (x1 + 1)2 + y21 = (x2 − 1)2 + y22, does not

distinguish between inner and outer bisectors. System F only implies that one
bisector (inner or outer) of A is equal to one bisector of B. The system is

F = (a+ 1)2 + b2 − (p+ 1)2, (a− 1)2 + b2 − (r − 1)2,
ay1 − bx1 − y1 + b, ay2 − bx2 + y2 − b,
−2y1 + bx1 − (a+ p)y1 + b, , 2y2 + bx2 − (a+ r)y2 − b,
(x1 + 1)2 + y21 − (x2 − 1)2 − y22 .

Applying grobcov in the ring R=(0,a,b),(x1,y1,x2,y2,p,r),dp to the ideal
generated by F it outputs 9 segments. Table 1 gives the 3 curves and 9 point
varieties representing real and complex points in the parameter space appearing
in the description of the grobcov(F). We do not detail the complex points as
we are not interested in. Table 2 summarizes the relevant characteristics of the
output of grobcov(F) for our purposes.

Table 1. Curves and point varieties appearing in grobcov(F)

Curves

C1 = V((8a2 + 9b2)(a2 + b2)4 − 4(14a4 + 13a2b2 − 3b4)(a2 + b2)2

+2(72a6 + 43a4b2 − 74a2b4 − 37b6)− 4(44a4 − 39a2b2 + 43b4) + 104a2 + 137b2 − 24),
C2 = V(a),
C3 = V(b).

Point varieties real points numerical values

V1 = V(b.a+ 1) P1 = (−1, 0)
V2 = V(b, a− 1) P2 = (1, 0)
V3 = V(a, b) P4 = (0, 0)

V4 = V(b, a2 − 3) P42, P41 = (±√
3, 0)

V5 = V(3b2 − 1, a) P52, P51 = (0,±√
3/3)

V6 = V(b2 − 3, a) P62, P61 = (0,±√
3)

V7 = V(b4 + 5b2 + 8, a) no real roots

V8 = V(b4 + 44b2 − 16, 5a+ b2 + 7) P82, P81 = (3− 2
√
5,±

√
−22 + 10

√
5)

V9 = V(b4 + 44b2 − 16, 5a− b2 − 7) P92, P91 = (−3 + 2
√
5,±

√
−22 + 10

√
5)

Curves and points can be visualized on Figure 3. The fourth column in Table
2 is direct consequence of the lpp in column 3. We need the basis to determine
the fifth column, who indicates which bisectors (internal i or external e) are
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C1

P1 P2P3P41 P42

P51

P52

P61

P62

P91

P92

P81

P82

iA = iB , eA = eB
eA = eB

iA = eB
eA = iB

C2

C3

Fig. 3. Generalized Steiner-Lehmus Theorem

equal for the different solutions. From the basis we can determine the signs of
p+ 1 and of r − 1 for each point of the solution.

p > −1 corresponds to the inner bisector iA and p < −1 to the external eA,
r < 1 corresponds to the inner bisector iB and r > 1 to the external eB.

The line C3, i.e. the x-axis, corresponds to degenerate triangles, and so the seg-
ments 4,7,8 can be discarded. The remaining segments give the whole informa-
tion on the generalized Theorem. The curve C1 has different colors, that can
change only at the special self intersecting points. To determine its color it suf-
fices to evaluate p and r on an intermediate point of the interval. The curve C2
corresponds to the classical Theorem and with the Gröbner Cover we can
appreciate also more details on it. On the whole line (isosceles triangles) we
have iA = iB and also eA = eB except for special points P51 and P52 where all
bisectors are equal and special points P61 and P62 where the external bisectors
become infinity. The Gröbner Cover reveals the generalized Theorem over
the curve C1 with all the details.
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Table 2. Segments of grobcov(F). (Bases are not explicitely given)

Nr. Segment lpp Num. S. Bisectors

1 C2 \ (C1 ∪ C2 ∪ C3) {1} 0 -

2 C1 \
((⋃2

i=1 Vi

) ∪ (⋃9
i=4 Vi

)) }{r, p, y2, x2, y1, x1} 1 depends on sector

3 (C2 \ (V3 ∪ V5 ∪ V6)) ∪ {p, y2, x2, y1, x1, r
2} 2 iA = iB , eA = eB

∪ V8 eA = eB = iB
4 C3 \ (V1 ∪ V2) {y2, y1, r2, p2, x2

1} ∞
5 V5 {y2, x2, y1, x1, r

2, p2} 4 iA = iB = eA = eB
6 V6 {r, p, y2, x2, y1, x1} 1 iA = iB
7 V1 {y1, r2, y2r, p2x2

1} ∞
8 V2 {y2, r2, p2, y1p, x12} ∞
9 V9 {r, y2, x2, y1, x1, p

2} 2 eA = eB = iA
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Alcalá de Henares (2012)

7. Montes, A., Recio, T.: Generalizing the Steiner-Lehmus theorem using the
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Abstract. An algorithm is introduced for transforming a standard ba-
sis of a zero-dimensional ideal, in the formal power series ring, into an-
other standard basis with respect to any given local ordering. The key
ingredient of the proposed algorithm is an efficient method for solving
membership problems for Jacobi ideals in local rings, that utilizes the
Grothendieck local duality theorem. Namely, a new algorithm for com-
puting a standard basis of a given zero-dimensional ideal with respect to
any given local ordering, is derived by using algebraic local cohomology.
Its implementation is introduced, too.

Keywords: standard bases, algebraic local cohomology, singularities.

1 Introduction

Let f ∈ C[x1, . . . , xn] be a polynomial with an isolated singularity at the ori-
gin. In singularity theory, we sometimes need to compute standard bases of the
Jacobi ideal J = 〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉 w.r.t. a local ordering to analyze properties of

singularities. In [8], we have introduced algorithms for computing a basis of al-
gebraic local cohomology classes w.r.t. f , and a standard basis for J w.r.t. a
local degree lexicographic ordering. In [2], we have considered the case where f
is a semi-quasihomogeneous polynomial. In this case, we have also introduced
algorithms for computing a basis of algebraic local cohomology classes w.r.t. f ,
and a standard basis for J w.r.t. a local weighted lexicographic ordering.

In this paper, we present an algorithm for computing the reduced standard
basis of J w.r.t. “any given local ordering” by using algebraic local cohomology
and its implementation. The main part of the proposed algorithm is changing
of ordering from a local degree lexicographic ordering or weighted lexicographic
ordering. Hence, the proposed algorithm is based on our previous algorithms
[2,8]. There are two main advantages of the proposed algorithm. First, the algo-
rithm always outputs the reduced standard bases. Other implementation does
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not have this property. Second, the proposed algorithm is free fromMora’s reduc-
tion (tangent cone algorithms). The computation consists of only linear algebra
computation.

2 Functionality

Let f ∈ C[x1, . . . , xn] be a polynomial with an isolated singularity at the origin.
Our implementation works for computing a standard basis of the Jacobi ideal
J = 〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉 w.r.t. a local ordering, in a local ring C[[x1, . . . , xn]]. In

particular, our implementation always outputs the reduced standard basis of J
w.r.t. a given local ordering. The proposed algorithm is implemented in the CA
system Risa/Asir[4].

Example 1. A polynomial f = x3y + xy4 + x2y3 ∈ C[x, y] has an isolated sin-
gularity at the origin. Set J = 〈∂f∂x ,

∂f
∂y 〉. Our implementation outputs a basis

of Hf and the reduced standard basis of J w.r.t. the local degree lexicographic
ordering ( such that x ( y, where Hf will be introduced in section 3.

stand_coho(x^3*y+x*y^4+x^2*y^3,[x,y],1,1,1);

Basis of Algebraic cohomo. 12

[y^(-1)*x^(-1),y^(-2)*x^(-1),y^(-1)*x^(-2),y^(-3)*x^(-1),y^(-2)*x^

(-2),y^(-1)*x^(-3),y^(-4)*x^(-1),y^(-3)*x^(-2)],[y^(-5)*x^(-1)-1/3

*y^(-2)*x^(-3),y^(-4)*x^(-2)-2/3*y^(-2)*x^(-3)-4*y^(-1)*x^(-4),y^(

-6)*x^(-1)-1/3*y^(-3)*x^(-3)+y^(-1)*x^(-4),y^(-7)*x^(-1)+7/33*y^(-

5)*x^(-2)+(-14/99*y^(-3)-1/3*y^(-4))*x^(-3)+(14/33*y^(-1)+5/33*y^(

-2))*x^(-4)+4/3*y^(-1)*x^(-5)]

Standard Basis

[y*x^2+2/3*y^3*x+1/3*y^4,x^3+4*y^3*x-14/33*y^6-y^5,y^4*x-7/33*y^6,

y^7]

The meaning of the output is the following. A basis of the vector space Hf is
{[ 1

yx ], [
1

y2x ], [
1

yx2 ], [
1

y3x ], [
1

y2x2 ], [
1

yx3 ], [
1

y4x ], [
1

y3x2 ], [
1

y5x ]−
1
3 [

1
y2x3 ], [

1
y4x2 ]− 2

3 [
1

y2x3 ]−
4[ 1

yx4 ], [
1

y6x ]−
1
3 [

1
y3x3 ] + [ 1

yx4 ], [
1

y7x ] +
7
33 [

1
y5x2 ]− 14

99 [
1

y3x3 ]− 1
3 [

1
y4x3 ] +

14
33 [

1
y1x4 ] +

5
33 [

1
y2x4 ] +

4
3 [

1
yx5 ]}. The reduced standard basis of J w.r.t. ( is {yx2 + 2

3y
3x +

1
3y

4, x3 + 4y3x− 14
33y

6 − y5, y4x− 7
33y

6, y7}.

Example 2. Let consider Z12 singularity defined by f = x3y + xy4 + x2y3. Set
J = 〈∂f∂x ,

∂f
∂y 〉. Our implementation also can output only the reduced standard

basis w.r.t. a local lexicographic ordering such that y ( x (i.e., 1 ( y ( y2 (
· · · ( x ( xy ( · · ·).
stand_coho(x^3*y+x*y^4+x^2*y^3,[x,y],2,0,0);

[y^4+3*x^2*y-3/2*x^2*y^2-1/2*x^3, x*y^3+3/4*x^*y^2+1/4*x^3, x^3*y

-5/44*x^4, x^5]

The CA system Singular has a command “std” which computes a standard
basis of J . Let us compare the output of our implementation with Singular’s
one. Singular outputs the following as a standard basis of J w.r.t. (.



416 K. Nabeshima and S. Tajima

> ring A=0, (x,y),ls;

> polynomial f=x^3*y+x*y^4+x^2*y^3;

> poly f=x^3*y+x*y^4+x^2*y^3;

> ideal I=diff(f,x),diff(f,y);

> std(I);

_[1]=y4+2xy3+3x2y

_[2]=4xy3+3x2y2+x3

_[3]=44x3y-15x3y2-5x4

_[4]=x5

It is easy to see that the output is not the reduced standard basis w.r.t. (.

Our implementation has the command “groeb_coho” which computes the
reduced Gröbner basis of a primary component at the origin of a primary ideal
decomposition of J .

3 Underlying Theory

Let X be an open neighborhood of the origin O of the n-dimensional com-
plex space Cm with coordinates x = (x1, x2, . . . , xn) and let OX be the sheaf
on X of holomorphic functions. Let f be a holomorphic function defined on
X with an isolated singularity at the origin O and let J denote the Jacobi

ideal J =
〈

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

〉
in OX,O generated by the partial derivatives

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

, where OX,O is the stalk at O of the sheaf OX . Let Hn
[O](OX)

denote the set of algebraic local cohomology classes, defined by Hn
[O](OX) =

lim
k→∞

ExtnOX
(OX/〈x1, x2, .., xn〉k,OX) where 〈x1, x2, . . . , xn〉 is the maximal

ideal generated by x1, x2, . . . , xn. We define a vector space Hf to be the set
of algebraic local cohomology classes in Hn

[O](OX) that are annihilated by the
Jacobi ideal J

Hf =
{
ψ ∈ Hn

[O](OX)
∣∣∣ ∂f
∂x1

(x)ψ = ∂f
∂x2

(x)ψ = · · · = ∂f
∂xn

(x)ψ = 0
}
.

Any algebraic local cohomology class in Hn
[O](OX) can be represented as a finite

sum of the form (called: Čech representation)
∑
cλ
[

1
xλ+1

]
=
∑
cλ

[
1

x
λ1+1
1 ···xλn+1

n

]
where cλ ∈ C and λ = (λ1, λ2, . . . , λn) ∈ Nn. We can define a ordering of
the term [ 1

xα ] = [ 1
x
α1
1 ,...,xαn

n
] like a ordering of the (normal) term xα. Let us

fix a term order (. The details are in [3,5,6,7,8]. For an algebraic local co-
homology class ψ of the form ψ = cλ

[
1
xλ

]
+
∑

λ�λ′ cλ′
[

1
xλ

]
, cλ �= 0, we

call
[

1
xλ

]
the head term and [ 1

xλ′ ], λ ( λ′ the lower terms. We denote
the head term of a cohomology class ψ by ht(ψ). We define the set of terms
of ψ as T (ψ) = {[ 1

xλ ]|ψ =
∑

λ∈Nn cλ[
1
xλ ], cλ �= 0, cλ ∈ C}. Moreover, for

the set Ψ , T (Ψ) =
⋃

ψ∈Ψ T (ψ). Let Ψ be a set of algebraic local cohomology
classes. We define the set of monomial elements of Ψ as ML(Ψ), and the set
of linear combination elements as SL(Ψi), i.e., Ψ = ML(Ψ) ∪ SL(Ψ). We de-
fine the set of head terms of Ψ as ht(Ψ) and the set of lower terms of Ψ as
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LL(Ψ) = {[ 1
xλ ] ∈ T (Ψ)|[ 1

xλ ] /∈ ht(Ψ)}. If we know a basis of Hf , then we can
compute a normal form modulo J by using the basis.

Theorem 1 (Normal forms[6,8]). Using the same notations as in the above
argument, let Ψ be a basis of Hf . Suppose that SL(Ψ) has an element whose

form is

[
1

xτ+1

]
+

∑
τ+1�κ+1

c(τ+1,κ+1)

[
1

xκ+1

]
where c(τ+1,κ+1) ∈ C and xλ+1 =

(λ1 + 1, . . . , λn + 1) ∈ Nn. Then, the following relations hold :

if [ 1
xλ+1 ] ∈ LL(Ψ), then xλ ≡

∑
[ 1

xκ+1 ]∈ht(Ψ)

c(κ+1,λ+1)x
κ mod J ,

if [ 1
xλ+1 ] /∈ LL(Ψ) and [ 1

xλ+1 ] /∈ ht(Ψ), then xλ ≡ 0 mod J , and

if [ 1
xλ+1 ] ∈ ht(Ψ), then xλ ≡ xλ mod J .

By Theorem 1, we can easily compute a normal form of a polynomial.

Example 3. Let us consider f = x3 + xy5. Then, a basis of Hf w.r.t. the weight
lexicographic ordering such that y ( x, is {[ 1

xy ], [
1

x2y ], [
1

xy2 ], [
1

x2y2 ], [
1

xy3 ], [
1

x2y3 ],

[ 1
xy4 ], [

1
x2y4 ], [

1
xy5 ], [

1
x3y4 ]−3[ 1

xy9 ], [
1

x3y3 ]−3[ 1
xy8 ], [

1
x3y2 ]−3[ 1

xy7 ], [
1

x3y ]−3[ 1
xy6 ]}. By

Theorem 1, we have the following relations: y8 ≡ −3x2y3 mod J , y7 ≡ −3x2y2

mod J , y6 ≡ −3x2y mod J and y5 ≡ −3x2 mod J .

In order to introduce our new algorithm for computing a basis of Hf , we
require the following lemma which are from [3,8].

Lemma 1 ([8]). Let ΛHf
denote the set of exponents of head monomials in Hf

and λ = (λ1, . . . , λn) ∈ Nn. Let Λ
(λ)
Hf

denote a subset of ΛHf
: ΛHf

= {λ ∈
Nn|∃ψ ∈ Hf such that ht(ψ) = [ 1

xλ+1 ]} and Λ
(λ)
H = {λ′ ∈ ΛHf

|λ′ ≺ λ}.
(C): “If λ ∈ ΛHf

, then, for each j = 1, 2, . . . , n, (λ1, λ2, . . . , λj−1, λj −
1, λj+1, . . . , λn) is in Λ

(λ)
Hf

, provided λj ≥ 1.”

Definition 1 (inverse orderings). Let ( be a local or global term ordering.
Then, the inverse ordering (−1 of ( is defined by xα ( xβ ⇐⇒ xβ (−1 xα.
Therefore, if ( is a global ordering (( 1), then (−1 is the local ordering (1 (−1).
Conversely, if ( is a local ordering, then (−1 is the global ordering.

Our algorithm for change of ordering of standard bases, is essentially same as
FGLM algorithm[1] in local ring. However, we do not need Mora’s reduction, as
we know Theorem 1.

Algorithm 1. [Standard Bases]

Input: f ∈ C[x1, . . . , xn] a polynomial with an isolated singularity at the origin.
( is a local ordering.
Output: S: the reduced standardbasis of 〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉w.r.t.( inC[[x1 , . . . , xn]].

BEGIN
Ψ ← Compute a basis of Hf by the algorithm [2] or [8]. (∗1)
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T ← all terms of ∂f
∂x1

, . . . , ∂f
∂xn

; C ← Compute the reduced Gröbner basis of T
S ← ∅; Φ← ∅
while C �= ∅ do
select the BIGGEST element p from C w.r.t. a global ordering (−1

C ← C\{p}
if (p ≡ p′ mod J) is linearly independent of the vectors in Φ then
Φ← Φ ∪ {p′}; M ← {xip|1 ≤ i ≤ n}
while M �= ∅ do
select an element q from M ; M ←M\{q}
if q satisfies (C) then C ← C ∪ {q}
end-if
end-while
else if p ≡ 0 mod J then S ← S ∪ {p}
else then from this dependence we get a new element g
S ← S ∪ {g}
end-if
end-while
END

Let us remark that at (∗1), we need a basis Ψ = {ψ1, . . . , ψs} which can
be written A · T (Ψ) = 0, to compute the reduced standard basis where A is a
matrix in reduced row echelon form. The algorithms of [2,8] are able to output
such matrices.
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Abstract. We propose a modular method for verifying the correctness
of a Gröbner basis candidate. For an inhomogeneous ideal I , we propose
to check that a Gröbner basis candidate G is a subset of I by computing
an exact generating relation for each g in G by the given generating
set of I via a modular method. The whole procedure is implemented
in Risa/Asir, which is an open source general computer algebra system.
By applying this method we succeeded in verifying the correctness of a
Gröbner basis candidate computed in Romanovski et al (2007). In their
paper the candidate was computed by a black-box software system and it
has been necessary to verify the candidate for ensuring the mathematical
correctness of the paper.

Keywords: Gröbner basis, modular algorithm, verification.

1 Introduction

When it is difficult to compute a Gröbner basis of the ideal I = 〈F 〉 generated
by a given generating set F = {f1, . . . , fm} by the Buchberger algorithm or the
F4 algorithm over the rationals, it is often useful to apply modular methods
such as Hensel lifting or Chinese remainder theorem. In most cases the obtained
result G is merely a candidate of a Gröbner basis of I and we have to verify the
correctness of the candidate. If it is proven thatG ⊂ I then the verification is easy
by checking if G is a Gröbner basis of 〈G〉 and F ⊂ 〈G〉. Otherwise it becomes
difficult in general. Arnold[3] showed that if I is homogeneous the verification
is essentially reduced to check whether G is a Gröbner basis of 〈G〉. Idrees et
al.[5] tried to extend this result to inhomogeneous ideals but their criterion is
applicable to a limited case. Yokoyama [7] gives an improved criterion that can
be applied to general inhomogeneous ideals but it is necessary to compute the
Gröbner basis of 〈Fh〉 over a finite field, where Fh is the homogenization of the
given generating set F . In many cases these methods work well. However there
still exist cases where the Gröbner basis computation of 〈Fh〉 over a finite field is
still hard to complete. Even in such cases, if we can compute the Gröbner bases
of 〈F 〉 over finite fields, then we will be able to get a probable Gröbner basis
candidate G by Chinese remainder computation. For verifying the correctness of
G, we propose to check the inclusion G ⊂ I by computing an exact generating
relation g = h1f1 + · · · + hmfm for all g ∈ G via modular computation. After
computing the “coefficient polynomials” h1, . . . , hm over a finite field, we reduce
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the number of terms in hi’s so that their coefficients are uniquely determined.
Then we replace the coefficients by variables and we get a system of linear
equations with respect to the variables. This system has at most one solution
over the rationals and we can apply Hensel lifting to solve this system. If we can
get the solution, then it directly gives the evidence of g ∈ I. The whole procedure
is implemented in Risa/Asir. By applying this method we succeeded in verifying
the correctness of a Gröbner basis candidate computed in Romanovski et al.
[4]. In their paper the candidate was computed by a black-box software system
and it has been necessary to verify the candidate for ensuring the mathematical
correctness of the paper.

2 Verification of Gröbner Basis

Let p be a prime, X = {x1, . . . , xn} and φp the canonical projection from Z to
Fp. φp is naturally extended to Z0

p = {a/b | p � |b} and Z0
p[X ]. LC(f) denotes the

leading coefficient of f .

Definition 1. Let p be a prime. G ⊂ Z0
p[X ] is a p-GB candidate for F ⊂ Z[X ]

if φp(LC(g)) �= 0 for all g ∈ G and φp(G) is a Gröbner basis of 〈φp(F )〉.
Let F be a subset of Z[X ] and G a p-GB candidate for F . If G ⊂ 〈F 〉 then the
verification of G is easy:

G is a Gröbner basis of 〈F 〉 ⇔ G is a Gröbner basis of 〈G〉 and F ⊂ 〈G〉.

If G is a Gröbner basis of 〈G〉 then it is easy to check F ⊂ 〈G〉 by the division
algorithm, that is the normal form computation with respect G. However it is
not easy to show 〈G〉 ⊂ 〈F 〉 in general. If F is homogeneous, Arnold showed
that

G is a Gröbner basis of 〈G〉 ⇒ G is a Gröbner basis of 〈F 〉.

We denote the homogenization of a polynomial f by fh. For a set of polynomials
F we set Fh = {fh | f ∈ F}. For an inhomogeneous ideal I = 〈F 〉, we have a
criterion:

Theorem 1 ([7]). Let G ⊂ Z0
p[X ] be a p-GB candidate for F ⊂ Z[X ] with

respect to a degree compatible order ≺ s.t. I = 〈F 〉 ⊂ 〈G〉 and G is a Gröbner
basis of 〈G〉. Let k be a positive integer such that 〈φp(F )h〉 : tk = 〈φp(F )h〉 : t∞,
and H ⊂ Q[X ] the reduced Gröbner basis of Fh ∪ {tk} with respect to ≺h, the
homogenization of ≺. If H ⊂ Z0

p[X ] and φp(LC(h)) �= 0 for all h ∈ H then
I = 〈G〉.
We can cut off terms divisible by tk during the Gröbner computation for 〈Fh ∪
{tk}〉. Thus it is expected that the Gröbner computation of 〈Fh ∪{tk}〉 is easier
than that of 〈Fh〉 if k is small. However, in order to compute k, we have to
compute a Gröbner basis of 〈φp(F )h〉 and there are cases where the computation
is much harder that that of 〈φp(F )〉. A typical case is an ideal in Romanovski
et al. [4]. In order to solve this case, we tried directly showing g ∈ 〈F 〉 for g ∈ G
by constructing a generating relation for g by F .
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3 Deciding Ideal Membership of Elements of a Candidate

Construction of a generating relation for g by F = {f1, . . . , fm}, that is finding
h1, . . . , hm s.t. g = h1f1 + . . . + hmfm, is not a new idea. Theoretically it can
be constructed by gathering quotients obtained during remainder computations.
But if we cannot complete an execution of the Buchberger algorithm, we cannot
construct h1, . . . , hm. In such a case it is useful to apply modular methods and
there are several works on this direction [1–3]. We note that these works propose
lifting methods for constructing a Gröbner basis candidate. In order to do this,
the whole generating relations have to be lifted together and the time and space
cost may be huge. In contrast to them, our method is to verify a Gröbner basis
candidate. For this purpose, we only have to construct a system of linear equa-
tions per an element of the candidate from a generating relation over a finite
field. Then we apply Hensel lifting for efficiently solving the system of linear
equations.

3.1 A Modular Algorithm for Computing a Generating Relation

Algorithm 1 is a modular algorithm for computing a generating relation of a
polynomial g by a set of polynomials F . T denotes the set of all monomials.

Algorithm 1. generating relation(F,G, g)

Input : F = {f1, . . . , fm}, G ⊂ Z[X ] s.t. G is a p-GB candidate for F
and F ⊂ 〈G〉, g ∈ G

Output : h1, . . . , hm ⊂ Q[X ] satisfying g = h1f1 + · · ·+ hmfm, or failure
Gp = φp(G) ← the reduced Gröbner basis of 〈φp(F )〉
(H1, . . . , Hm) ←Hi =

∑
j aijtij s.t. φp(g) = H1φp(f1) + · · ·+Hmφp(fm)

(i = 1, . . . ,m, aij ∈ Fp, tij are monomials)
E ←(

∑
j c1jt1j)f1 + · · ·+ (

∑
j cljtmj)fm − g

(cij are indeterminate coefficients)

Write E as E =
k∑

i=1

eiti (ti ∈ T , ei is a linear form of cij)

Z ←the variables expressed by homogeneous linear forms of the free variables
in the solution of e1 = · · · = ek = 0 over Fp.

Ē ← (
∑

j,c1j /∈Z c1jtij)f1 + · · ·+ (
∑

j,cmj /∈Z cmjtij)fm − g

Write Ē as Ē =
k∑

i=1

ēisi (si ∈ T , ēi is a linear form of cij /∈ Z)

if ē1 = · · · = ēl = 0 has a solution cij = bij over Q then

return (
∑

j,c1j /∈Z

b1jtij , . . . ,
∑

j,cmj /∈Z

bmjtij)

else
return failure

end if
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In Algorithm 1, we first compute the coefficient polynomialsH1, . . . , Hm ∈ Fp[X ]
s.t. φp(g) = H1φp(f1)+ · · ·+φp(fm). Then the coefficients of Hi are replaced by
indeterminate coefficients cij , and φp(g) and φp(f1), . . . , φp(fm) are replaced by
g and f1, . . . fm respectively to obtain a system of linear equations over Q with
respect to cij . We call it the initial system. If we solve the initial system over Fp,
then the solution contains free variables in general due to certain syzygies among
φp(f1), . . . , φp(fm). By setting them to zero, the dependent variables represented
by homogeneous linear forms with respect to the free variables are also set to
zero. By setting all such variables to zero, we obtain a reduced system of linear
equations. In general this system is over-determined and it is not ensured that
it has a solution over Q. Therefore Algorithm 1 is probabilistic in the sense that
it may return failure even if g ∈ 〈F 〉. However, if it successfully returns a set of
polynomials, then it surely gives a generating relation of g by F over Q.

The reason why we reduce the number of the variables are as follows.

1. The general solution of the initial system over Q, if it exists, contains many
free variables due to syzygies. Since we need only a single solution, it is
inefficient to find the general solution.

2. By reducing the number of variables, the solution of the reduced system can
be made unique. Then we can apply Hensel lifting for solving the reduced
system over Q.

3.2 Solving a Linear System by Hensel Lifting

The map φp is naturally extended to vectors or matrices over Z0
p. We suppose

that the solution of φp(A)x = φp(b) is unique for an m× n integer matrix A =
(aij) (m ≥ n), an m-dimensional column vector b = (bi) and an n-dimensional
unknown column vector x = (xj). Then the solution of Ax = b is unique or it
has no solution. Algorithm 2 is well known and it gives the solution of Ax = b
if it exists. In the algorithm inttorat(x,m) tries to find a rational number a

b

s.t. bx ≡ a mod m, |a|, |b| <
√

m
2 .

Algorithm 2. solve linear equation by hensel(A, b)

Input : an n×m integer matrix s.t. rank(A) = n, an integer vector of size m
Output : the unique solution of Ax = b or failure
A′ ← an n× n sub matrix of A s.t. det(φp(A

′)) �= 0
b′ ← the sub-vector of b corresponding with the rows of A′

(x, r, k) ← (0, b′, 0)
loop

y ← inttorat(x,pk)
ify �= failure and A′y = b′

if
Ay = b then return y

else
return failure

end if
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end if
s← φp(A

′)−1φp(r)
x← x+ pks

r← r−A′s
p

k ← k + 1
end loop

4 Implementation in Risa/Asir

We experimentally implemented Algorithm 1 in Risa/Asir. The detail of the
implementation is as follows. We use the same notations in Algorithm 1.

1. Computation of a generating relation over a given finite field
During computation of a Gröbner basis, at each step we keep the data
which show how each intermediate basis element is represented by the previ-
ously computed ones. This is done by a built-in function nd_gr with options
gentrace=1 and gensyz=1. A built-in function nd_btog computes a matrix
which represents the Gröbner basis computed by nd_gr for the input poly-
nomial set. The computation of this matrix over Q is hard in general and we
apply nd_btog over a finite field for computing (H1, . . . , Hm) in Algorithm
1.

2. Computation of e1, . . . , ek
In general each polynomial hi =

∑
j cijtij contains many terms but its coef-

ficients are individual variables. Therefore each el can be computed as a sum
of act where a is a coefficient of some f ∈ F , c is one of the variables cij and
t is a monomial. In the current implementation, after computing t1, . . . , tk
appearing in E, we apply a hash algorithm to efficiently find the monomial
ti s.t. t = ti for a particular act.

3. Computation of e1, . . . , el
After computing the general solution of e1 = · · · = ek = 0 over Fp, a special
solution is obtained by setting all free variables to zero. This procedure is
done by an external program written in C. Then we repeat Step 2 for the
reduced variables and we get e1, . . . , el.

4. Solving e1 = · · · = el = 0 over Q
This is done by Algorithm 2. By computing LU factorization of φp(A

′) over
Fp, φp(A

′)−1φp(r) is computed efficiently.

4.1 An Application

The motivation of this work was to verify a Gröbner basis candidate G =
{g1, . . . , g69} given in Romanovski et al. [4]. G is a Gröbner basis candidate
of an ideal I = 〈F 〉 ⊂ Q[a40, a31, a13, a04, b40, b31, b13, b04]. F consists of inhomo-
geneous polynomials and I ⊂ 〈G〉. It is easy to compute a Gröbner basis of 〈F 〉
over a finite field and G can be easily computed by CRT. However it is very hard
at least in Risa/Asir to compute a Gröbner basis of 〈Fh〉 even over a finite field
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and it does not finish within a month. Some preliminary experiments show that
a Gröbner basis of 〈F ∪{g60, g61}〉 can be computed rather easily by an ordinary
method and it coincides with G, where

g60 = 349a31a40 + 333b31a40 − 333b04a13 − 349b04b13,
g61 = 555b31a40 + 349a04a13 − 555b04a13 − 349b31b40.

Therefore if we can show g60, g61 ∈ 〈F 〉 then we can conclude that G is a Gröbner
basis of I. We could compute generating relations for g60 and g61 by executing
Algorithm 1 with Algorithm 2. The computation was done on Intel Xeon X5675
3.07GHz with 192GB of memory. The required memory was 32GB. We only
show computational statics for g60 because those of g60 and g61 are almost the
same. In the second table of Table 1, Hi, ei, Z and ēi show the timing for the

Table 1. Computation of a generating relation of g60

matrix size(initial/reduced) 182300× 440525 / 117585× 116556

computing time 9.7× 104 sec

number of required steps in Hensel lifting 5030 steps

size of coefficients about 20000digits

Hi ei Z ēi LU Hensel

time (sec) 4000 150 26000 50 3100 63000

corresponding objects in Algorithm 1. LU and Hensel show the timing for LU
factorization of φp(A

′) and for the main loop in Algorithm 2, where inttorat

was executed every 10 iterations. This result shows that the Hensel lifting is very
successful because we could not solve the same system of linear equations within
10 months by a non-modular method.
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Abstract. Cylindrical algebraic decomposition (CAD) is a fundamen-
tal tool in computational real algebraic geometry and has been imple-
mented in several software. While existing implementations are all based
on Collins’ projection-lifting scheme and its subsequent ameliorations,
the implementation of CAD in the RegularChains library is based on
triangular decomposition of polynomial systems and real root isolation of
regular chains. The function in the RegularChains library for computing
CAD is called CylindricalAlgebraicDecompose. In this paper, we illustrate
by examples the functionality, the underlying theory and algorithm, as
well the implementation techniques of CylindricalAlgebraicDecompose. An
application of it is also provided.

Keywords: Cylindrical algebraic decomposition, triangular decomposi-
tion, RegularChains.

1 Introduction

Cylindrical Algebraic Decomposition (CAD) was introduced by Collins [6] for
solving the real quantifier elimination (QE) problem. A CAD is a partition of
the real space Rn into finitely many connected semi-algebraic subsets, called
cells, such that any two cells are cylindrically arranged, that is the projection of
them onto any low dimensional space are either disjoint or identical. Let F be a
set of polynomials with real number coefficients in n variables. A CAD is called
F -invariant if any polynomial of F is sign-invariant on any cell of the CAD.
The rich properties of CAD make it become a fundamental tool in studying real
algebraic geometry. Despite of the doubly exponential running time complexity
in the worst case, the practical performance of CAD has been improved by
many researchers [1]. Accompanying with these improvements, many software
have been implemented to compute CADs, among which the best known are
QEPCAD, Mathematica and Reduce.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 425–433, 2014.
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Most of the implementations for computing CADs are based on the original
projection-lifting framework of Collins. In the projection phase, starting from an
input set F of polynomials in n variables, one applies a pre-defined projection
operator P to F and obtains a set P (F ) of polynomials in n− 1 variables. This
process is recursively done for P (F ) until a set of univariate polynomials are
computed. Let A be the set of all polynomials generated in such process. The
projection phase guarantees that the zero sets of polynomials in A naturally
defines a CAD of Rn. The work of the lifting phase is to compute an explicit
representation from such an implicitly defined CAD. In the base case, the real
zeros of univariate polynomials in A are isolated, which divides the real line into
disjoint open intervals. The real zeros and the intervals together form a CAD of
R1. Assume a CAD of Rn−1 is computed. For each cell C of it, one evaluates the
polynomials of A in n variables at a sample point of the cell and obtains a set
of univariate polynomials. Isolating the real roots of them allows one to deduce
all the cells of the CAD of Rn whose projection are C.

In [4], a different method for computing CADs was proposed. It first produces
a cylindrical decomposition of the complex space (CCD) through the computa-
tion of regular GCDs, and then refines the CCD into a CAD of the real space
by isolating real roots of univariate polynomials with real algebraic number co-
efficients encoded by regular chains and isolating boxes. The efficiency of it
was greatly improved in [2], where the computation of CCD is replaced by a
new incremental algorithm. Both algorithms are based on triangular decom-
position of polynomial systems and real root isolation of regular chains. For
this reason, we call the CAD as computed in [4,3] RC-CAD. The algorithm
of [4] was firstly implemented in the RegularChains library of Maple 14. The
implementation was revised in Maple 16 and has remained the same in the
subsequent versions of Maple. The algorithm of [3] was implemented in the
RegularChains library, but not shipped with Maple. Any update of the im-
plementation of both algorithms are now available through the RegularChains

library (http://www.regularchains.org).
The purpose of this paper is to lift the veil of the implementation of RC-CAD.

In the RegularChains library, the function for computing CCD and CAD are re-
spectively CylindricalDecompose and CylindricalAlgebraicDecompose. In Section 2,
we illustrate by examples how to use the two functions. In Section 3, we explain
the underlying theory and algorithms of RC-CAD. The technical challenges for
implementing the algorithms and our solutions are also discussed. Finally, in
Section 4, we report on an application of our software.

2 Functionality

A cylindrical decomposition of the complex space, or complex cylindrical decom-
position (CCD) is a partition of the complex space into cylindrically arranged
constructible sets, each of which is the zero set of a regular system. Figure 1
shows a CCD represented in a piecewise format. Here the variable order is x < y.
The “1’s” in the formula are placeholders having no meanings. Such format can

http://www.regularchains.org
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Fig. 1. Compute complex cylindrical decomposition by CylindricalDecompose

Fig. 2. A complex cylindrical tree

be interpreted as a tree shown in Figure 2, where each branch in the piecewise
format corresponds to a path of the tree. The constraints on a path of the tree
form a regular system. Such a CCD is sign-invariant w.r.t. f := x2+ y2− 1, that
is for a given path of the tree from the root to a leaf, either f vanishes at all
points of the path or f vanishes at none of the points of the path.

An F -sign invariant CAD is depicted in Figure 3. The CylindricalAlgebraicDe-
compose command supports several different input and output formats. The
input can be a list of polynomials, as shown in Figure 1, as well as a list of poly-
nomial constraints, as shown in Figure 5. The format ‘output’=‘cadcell’ allows
only true cells satisfying the input constraints are displayed. To get a sample
point of a CAD cell, the function SamplePoints can be called. Here no cost occurs
since sample points are computed along the computation of the CAD and are
stored in the type cad cell. A sample point is encoded by the type box, which
is represented by a regular chain and an isolation cube. Such a representation
allows one to easily test if the sign of a polynomial at the sample point by calling
the function SignAtBox.

Due to the intrinsic doubly exponential complexity of CAD, it is not un-
common that the number of CAD cells is numerous. To get a compact output
for the purpose of “solving” the input semi-algebraic system, the option ‘out-
put’=‘rootof’ can be used. In this case, the solver will try to merge the adjacent
CAD cells as much as possible in order to get a simple formula. See Figure 4 for
an example.
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Fig. 3. Compute CAD by CylindricalAlgebraicDecompose

Fig. 4. Solve semi-algebraic systems by CylindricalAlgebraicDecompose

Fig. 5. Compute CAD of a semi-algebraic system
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3 Underlying Theory and Technical Contribution

In this section, we explain the algorithms and theory underlying RC-CAD as
well as a universe tree data structure for implementing RC-CAD. There are two
important ingredients in RC-CAD, namely a routine for computing CCD, and
a routine for turning a CCD into a CAD.

Two algorithms have been proposed for computing CCD. The first one was
proposed in [4]. It has two phases: InitialPartition and MakeCylindrical. Let F
be a set of polynomials in n variables. InitialPartition partitions Cn into a family
C of constructible sets, called cells, each of which is the zero set of a regular sys-
tem. Moreover, for a given cell C and any polynomial f ∈ F , either f vanishes at
all points of C or f vanishes at no points of C. The cells in the output of Initial-
Partition are not necessarily cylindrically arranged. The cylindricity is achieved
in a top-down fashion. The collection C of constructible sets is refined into a new
family D of disjoint constructible sets, such that the projection of any two cells
of D onto Cn−1 are either identically equal or disjoint. By making a recursive
call to MakeCylindrical on the projection of D on Cn−1, one finally deduces a
collection of cylindrically arranged cells. If the option ‘method’=‘recursive’ is
enabled, CylindricalDecompose will use such an algorithm.

A second one was proposed in [3]. Let F be a set of m polynomials in n
variables. The algorithm first builds an initial CCD C0, which consists of only
one cell Cn. It then pops a polynomial f1 from F and refines C0 into C1 such that
C1 is sign-invariant w.r.t. f1. If F is not empty, a new polynomial f2 is popped
and C1 is refined w.r.t. f2. This process is repeated until F gets empty. Making
a CCD sign-invariant w.r.t. a polynomial is reduced to making every cell of the
CCD sign-invariant w.r.t. a polynomial. This process has to preserve cylindricity,
which is achieved by a refinement operation called IntersectPath in [3].

Let’s illustrate this incremental algorithm by an example. Let F := {y2 −
x, x2 + y2 − 1}, where f1 = y2 − x, f2 = x2 + y2 − 1. The evolution of the
CCD tree during the computation is depicted by Figure 6. The first one is the
initial tree. In the second tree, the node “any x” splits into two nodes to make
the discriminant of f1 w.r.t. y sign-invariant. In the third tree, the nodes “any
y” split to make f1 sign-invariant. Moreover, when x = 0, f1 is replaced by its
squarefree part modulo x = 0. In the fourth tree, the node y �= 0 splits to make
f2 sign-invariant. In the fifth tree, the node x �= 0 splits to make the resultant
of f1 and f2 w.r.t. y sign-invariant. In the sixth tree, the node x(x2 + x− 1) �= 0
splits to make the discriminant of f2 w.r.t. y sign-invariant. Finally the nodes
f1 �= 0 splits to make f2 sign-invariant.

The operation turning a CCD into a CAD is called MakeSemiAlgebraic. It
is implemented in a recursive manner. For the base case n = 1, it collects all
the polynomials in the equational nodes of the CCD tree, does univariate real
root isolation, and picks sample points. Let Cn−1 be a CAD of Rn−1 derived
from a CCD T of Cn−1. Let C be a cell of Cn−1 derived from a cell D of
T . Let s be a sample point of C. Let P be the set of polynomials appearing
in the equational children of D. To compute the cells of a CAD of Rn whose
projection onto Rn−1 is C (these cells form a stack over C), one isolates the real
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Fig. 6. The process of computing a CCD
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roots of univariate polynomials p̃ := p([x1, . . . , xn−1] = s, xn), p ∈ P . Here the
substitution is carried with interval arithmetic since the coordinate of s may be
irrational real algebraic numbers. As a result, the coefficients of the univariate
polynomials p̃ are approximated by intervals whose width can be reduced to
arbitrarily small. If the width of the intervals are sufficiently small, the real roots
of p̃ can be deduced from its sleeve polynomials, which are univariate polynomials
with rational number coefficients, thanks to the fact that s is encoded by a
regular chain and a box [8,9,5].

The data structure supporting the implementations of CCD and CAD is a
universe tree [3]. It is a tree data structure equipped with a Split operation
(7). The Split operation is frequently used in the incremental algorithm [3] for
computed CCDs, where the nodes in a complex cylindrical tree are split to
make new added or generated polynomials sign-invariant and maintain the tree
cylindrical. This process is illustrated by Figure 6. As a result, the universe tree
is always kept to be updated. Suppose now we’d like to do several operations
on a sub-tree. In order to maintain data consistency, the sub-tree has to been
updated according to the universe. Note that it is fine to only update the node to
be immediately worked on. The update of the sub-tree is illustrated by Figure 8.

4 Application

In this section, we show the application of RC-CAD on solving two challenges [7].

Fig. 9. Use CAD to solve Problem Joukowski-a
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Challenge 1. Demonstrate automatically the truth of Formula 1 over reals.

∀x1∀x2∀y1∀y2 (x21 + y21 > 1 ∧ x22 + y22 > 1 ∧ x1 + x1

x2
1+y2

1
= x2 +

x2

x2
2+y2

2
∧

y1 − y1

x2
1+y2

1
= y2 − y2

x2
2+y2

2
=⇒ (x1 = x2 ∧ y1 = y2))

(1)

Challenge 2. Demonstrate automatically the truth of Formula 2 over reals.

∀x1∀x2∀y1∀y2 (y1 > 0 ∧ y2 > 0 ∧ x1 + x1

x2
1+y2

1
= x2 +

x2

x2
2+y2

2
∧

y1 − y1

x2
1+y2

1
= y2 − y2

x2
2+y2

2
=⇒ (x1 = x2 ∧ y1 = y2))

(2)

The first challenge is solved by RC-CAD within one minute on a laptop (Intel
i7, 8Gb RAM, Ubuntu), as shown by Figure 9. The second challenge can be
solved in a similar way in about 20 seconds, which is not shown here limited to
space. Both answers are true. To achieve this, a universal quantifier elimination
problem is converted to an existential one using the following equivalence:

∀x(A =⇒ (B ∧ C)) iff ¬∃x¬(A =⇒ (B ∧ C)) iff ¬∃x ((A ∧ ¬B) ∨ (A ∧ ¬C))

As a result, Formula 1 is true if and only if none of the two semi-algebraic sys-
tems sys1 and sys2 in Figure 9 has solutions. To solve a semi-algebraic system,
the command CylindricalAlgebraicDecompose is called with three options. The
option ‘precondition’=‘TD’ allows to precondition the input system by means
of triangular decomposition. The option ‘partial’=‘true’ uses partial lifting.
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Abstract. The concept of comprehensive triangular decomposition
(CTD) was first introduced by Chen et al. in their CASC’2007 paper
and could be viewed as an analogue of comprehensive Gröbner sys-
tems for parametric polynomial systems. The first complete algorithm
for computing CTD was also proposed in that paper and implemented
in the RegularChains library in Maple. Following our previous work on
generic regular decomposition for parametric polynomial systems, we
introduce in this paper a so-called hierarchical strategy for computing
CTDs. Roughly speaking, for a given parametric system, the parametric
space is divided into several sub-spaces of different dimensions and we
compute CTDs over those sub-spaces one by one. So, it is possible that,
for some benchmarks, it is difficult to compute CTDs in reasonable time
while this strategy can obtain some “partial” solutions over some para-
metric sub-spaces. The program based on this strategy has been tested
on a number of benchmarks from the literature. Experimental results on
these benchmarks with comparison to RegularChains are reported and
may be valuable for developing more efficient triangularization tools.

Keywords: Comprehensive triangular decomposition, regular chain, hi-
erarchical, generic regular decomposition, parametric polynomial system.

1 Introduction

Solving parametric polynomial system plays a key role in many areas such as
automated geometry theorem deduction, stability analysis of dynamical systems,
robotics and so on. For an arbitrary parametric system, in symbolic computation,
solving this system is to convert equivalently the parametric system into new
systems with special structures so that it is easier to analyze or solve the solutions
to the new systems. There are two main kinds of symbolic methods to solve
parametric systems, i.e., the algorithms based on Gröbner bases [12, 14–17, 23]
and those based on triangular decompositions [1, 2, 5, 9, 11, 13, 19, 20, 24–27].

The methods based on triangular decompositions have been studied by many
researchers since Wu’s work [24] on characteristic sets. A significant concept
in the theories of triangular sets is regular chain (or normal chain) introduced

� The work was supported by National Science Foundation of China (Grants 11290141
and 11271034).

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 434–441, 2014.
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by Yang and Zhang [27] and Kalkbrener [11] independently. Gao and Chou
proposed a method in [9] for identifying all parametric values for which a given
system has solutions and giving the solutions by p−chains without a partition
of the parameter space. Wang generalized the concept of regular chain to regular
system and gave an efficient algorithm for computing it [20–22]. It should be
noticed that, due to their strong projection property, the regular systems or
series may also be used as representations for parametric systems. Chen et. al.
introduced the concept of comprehensive triangular decomposition (CTD) [5] to
solve parametric systems, which could be viewed as an analogue of comprehensive
Gröbner systems. Algorithm CTD for computing CTD was also proposed in [5].

There are several implementations based on the above triangularization meth-
ods, such as Epsilon [22], RegularChains [6] and wsolve [19].

Suppose P ⊂ Q[U ][X ] is a parametric polynomial system where X = (x1, . . . ,
xn) are variables and U = (u1, . . . , ud) are parameters. The above mentioned
algorithms all solve the system in Cd+n directly. That means all the unknowns
(U and X) are viewed as variables and triangular decompositions are computed
over Q. It may happen that no triangular decompositions overQ can be obtained
in a reasonable time for some systems while a triangular decomposition overQ[U ]
is much easier to be computed.

Based on this observation, we propose a strategy which computes CTDs for
given parametric systems hierarchically and the CTDs are called hierarchical
comprehensive triangular decompositions (HCTD). By “hierarchical” we mean
that, roughly speaking, a generic regular decomposition is computed first over
Q[U ] and a parametric polynomial B(U) is obtained at the same time such that
the solutions to the original system in Cd+n can be expressed as the union of solu-
tions to those regular systems in the decomposition provided that the parameter
values satisfying B(U) �= 0. Then, by applying similar procedure recursively, the
solutions satisfying B(U) = 0 are obtained through adding B(U) = 0 to the sys-
tem and treating some parameters as variables. We give an algorithm based on
this hierarchical strategy which computes CTDs for given parametric systems.
The algorithm has been implemented with Maple and tested on a number of
benchmarks from the literature. Experimental results on these benchmarks with
comparison to RegularChains are reported (see Tables 2) and may be valuable
for developing more efficient triangularization tools. For some benchmarks, it
is difficult to compute CTDs in reasonable time while our program can output
“partial solutions” (see Table 4).

The rest part of this extended abstract is organized as follows. Section 2 in-
troduces an algorithm, Algorithm HCTD, for computing CTDs hierarchically and
an example is illustrated there. Section 3 compares the Algorithm HCTD and the
Algrotihm CTD in [5] by experiments. Section 4 introduces another hierarchical
strategy for computing CTD and the comparing experiments are also shown.
Section 5 shows the benefit of the hierarchical strategy by experiments.
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2 Algorithm HCTD

For the concepts and notations without definitions, please see [2, 6, 21].
Suppose T is a regular chain in Q[U ][X ] and H ⊂ Q[U ][X ]. [T,H] is said

to be a regular system [5] if res(H,T) �= 0 for any H ∈ H. For any B ⊂ Q[U ],
VU (B) denotes the set {(a1, . . . , ad) ∈ Cd|B(a1, . . . , ad) = 0, ∀B ∈ B}. For any
P ⊂ C[X ], V(P) denotes the set {(b1, . . . , bn) ∈ Cn|P (b1, . . . , bn) = 0, ∀P ∈
P}. For any P ⊂ Q[U ][X ], V(P) denotes the set {(a1, . . . , ad, b1, . . . , bn) ∈
Cd+n|P (a1, . . . , ad, b1, . . . , bn) = 0, ∀P ∈ P}. For D ⊂ Cd+n, denote by ΠU (D)
the set {(a1, . . . , ad) ∈ Cd|(a1, . . . , ad, b1, . . . , bn) ∈ D}. Suppose [T,H] is a reg-
ular system in Q[U ][X ]. If H = {H}, then [T,H] is denoted by [T, H ] for short.

Due to page limitation, we only present the specification of an algorithm for
computing CTDs hierarchically.

Algorithm HCTD
Input: a finite set P ⊂ Q[U ][X ], a non-negative integer m (0 ≤ m ≤ d)
output: finitely many 3-tuples [Ai,Bi,Ti], a polynomial B, where

– B ∈ Q[um+1, . . . , ud], Ai,Bi ⊂ Q[U ]
– Ti is a finite set of regular systems in Q[U ][X ]

such that

– ∪iV
U (Ai\Bi) =

(
Cd\VU (B)

)
∩ΠU (V(P))

– for any i, j (i �= j), VU (Ai\Bi) ∩ VU (Aj\Bj) = ∅
– for any i, if a ∈ VU (Ai\Bi), then [T(a),H(a)] is a regular

system in C[X ] for any [T,H] ∈ Ti

– for any i, if a ∈ VU (Ai\Bi), then
V(P(a)) = ∪[T,H]∈Ti

V(T(a)\H(a)).

The output of HCTD(P,m) is called the m-HCTD of P. Each [Ai,Bi,Ti] in
the m-HCTD is called a branch. Each regular system in the set ∪Ti is called
a grape. By Algorithm HCTD, for any P, if m = 0, the output is the so-called
generic regular decomposition [8] of P; if m = d, the output is the comprehensive
triangular decomposition [5] of P. The Example 1 below shows how to get m-
HCTD (m = 0, . . . , d).

Example 1. Consider the parametric system

P =

⎧
⎪⎪⎨

⎪⎪⎩

2x2
2(x

2
2 + x2

1) + (u2
2 − 3u2

1)x
2
2 − 2u2x

2
2(x2 + x1) + 2u2

1u2(x2 + x1)
− u2

1x
2
1 + u2

1(u
2
1 − u2

2),
4x3

2 + 4x2(x
2
2 + x2

1)− 2u2x
2
2 − 4u2x2(x2 + x1) + 2(u2

2 − 3u2
1)x2 + 2u2

1u2,
4x1x

2
2 − 2u2x

2
2 − 2u2

1x1 + 2u2
1u2.

where x1, x2 are variables and u1, u2 are parameters.
1. By the Algorithm RDU in [8], we compute a set T1 of regular systems and a

polynomial B1(u1, u2) such that if B1(u1, u2) �= 0, then the solution set of P = 0
is equal to the union of the solution sets of the regular systems in T1. Then we
obtain the 0-HCTD of P: [A1,B1,T1].
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2. Let P1 = P ∪ {B1}. Regard {u1, x1, x2} as the new variable set. By the
Algorithm RDU, we compute a set S1 of regular systems and a polynomial B2(u2)
such that if B1(u1, u2) = 0 and B2(u2) �= 0, then the solution set of P = 0 is equal
to the union of the solution sets of the regular systems in S1. For S1, applying the
similar method as the Algorithm RegSer in [20] and the Algorithms Difference
and CTD in [6], we obtain the 1-HCTD of P: [A1,B1,T1], . . . , [A4,B4,T4].

3. Let P2 = P1∪{B2}. Regard {u2, u1, x1, x2} as the new variable set. By the
Algorithm RDU, we compute a set of regular systems S2 and a polynomial B3 = 1
such that if B1(u1, u2) = 0, B2(u2) = 0 and B3 �= 0, then the solution set of
P = 0 is equal to the union of the solution sets of the regular systems in S2.
For S2, applying the similar method as the Algorithms RegSer, Difference and
CTD, we obtain the 2-HCTD of P: [A1,B1,T1], . . . , [A6,B6,T6].

Table 1. [Ai,Bi,Ti]

i Ai Bi Ti

1 ∅ {u1u2(u
2
1 − u2

2)} {[{−2x2
1 + 3x1u2 − u2

2 + u2
1, 2x1x2 + u2

1 − u2x2}, u1]}
2 {u1} {u2} {[{−2x1 + u2, u2 − 2x2}, 1]}
3 {u1 − u2} {u2} {[{x1, x2 − u2}, 1], [{2x1 − 3u2, x2 + u2}, 1]}
4 {u1 + u2} {u2} {[{x1, x2 − u2}, 1], [{2x1 − 3u2, 2x2 + u2}, 1]}
5 {u2} {u1} {[{2x2

1 − u2
1, 2x

2
2 − u2

1}, 1]}
6 {u1, u2} {1} {[{x2}, 1], [{x1, x2}, 1], [{2x2

1 − u2
1, 2x

2
2 − u2

1}, 1]}

3 Experiment of Comparison

We have implemented the Algorithm HCTD as a Maple function HCTD and tested
a great many benchmarks from the references [5, 7, 12, 14]. Throughout this
paper, all the computational results are obtained in Maple 17 using an Intel(R)
Core(TM) i5 processor (3.20GHz CPU), 2.5 GB RAM and Windows 7 (32 bit).
All the timings are given by seconds. The “timeout” mark means the time is
greater than 1000 seconds. The Table 2 compares the functions HCTD (when
m = d) and ComprehensiveTriangularize (CTD) in RegularChains.

In Table 2, the column “time” lists the timings of HCTD (m = d) and CTD; the
column “branch” lists the numbers of branches output by HCTD and CTD; and
the column “grape” lists the numbers of grapes output by HCTD and CTD. It is
indicated by Table 2 that

– for the benchmarks 3–27, HCTD runs faster than CTD, especially, for the bench-
mark 27, CTD is timeout and HCTD completes the computation in time; for
the benchmarks 28–40, CTD runs faster than HCTD, especially, for the bench-
marks 38–40, HCTD is timeout and CTD solves the systems efficiently; for the
benchmarks 41–49, both HCTD and CTD are timeout;

– for the benchmarks 14, 31, 32, 35 and 36, the number of branches output by
HCTD is much bigger than that output by CTD;

– for the benchmarks 6, 10, 12, 29, 30, 32, 35 and 37, the number of grapes
output by HCTD is much bigger than that output by CTD.
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4 Different Hierarchical Strategy

To compute a m-HCTD for a given parametric system, as shown by Example 1,
we first take {x1, . . . , xn} as variable set and then add one parameter into the
variable set at each recursive step. A different hierarchical strategy may be that
we add a prescribed number (say s) of parameters into the variable set at the
first step and each recursive step.

The algorithm applying this different hierarchical strategy is called HCTDA

and has been implemented as a function HCTDA. The comparing data of HCTD
and HCTDA (for s = 1) is shown in Table 3. It is indicated by Table 3 that

– for the benchmarks 3–11, HCTD runs faster than HCTDA, especially, for the
benchmarks 10–11, HCTDA is timeout and HCTD completes the computation
in time; for the benchmarks 12–18, HCTDA runs faster than HCTD, especially,
for the benchmarks 19–20, HCTD is timeout and HCTDA completes the com-
putation in time;

– the difference of the numbers of branches (grapes) output by HCTD and HCTDA

is not striking.

In fact, we can input different s when calling HCTDA. For many benchmarks in
Table 2, the timings of different s are similar. There are some benchmarks on
which the timings of HCTDA differ greatly for different s. Due to page limitation,
we do not report the timings here.

5 Benefit of Hierarchical Strategy

We see that the benchmarks 41–49 in Table 2 are timeout when using both CTD

and HCTD (m = d). In fact, for some polynomial systems from practical areas,
the complexity of computing comprehensive triangular decomposition is way
beyond current computing capabilities. However for these systems (especially
the systems with many parameters), we may try to compute the m-HCTD for
m = 0, . . . , d − 1. In this way, although we cannot solve the system completely,
we may still get partial solutions.

We have tried the timeout benchmarks 41-49 in Table 2. The experimental
results are shown in Table 4, where the columns “m = 0”, “m = 1”, “m = 2”,
“m = 3” and “m = 4” denote the timings of calling Algorithm HCTD for m =
0, 1, 2, 3, 4; and the “error” mark means Maple returns an error message and
stops computing. It is seen from the Table 4 that

– for all the benchmarks, we successfully get partial solutions;
– for most of the benchmarks, such as the benchmark 1 and benchmarks 3–7,

we get results only when m = 0.
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Table 2. Comparing HCTD and CTD

benchmark d n
time branch grape

HCTD CTD HCTD CTD HCTD CTD

1. MontesS2 1 3 0. 0. 1 1 1 1
2. MontesS4 2 2 0. 0. 1 1 1 1
3. F8 4 4 0.437 1.014 18 14 14 9
4. Hereman-2 1 7 0.093 0.468 2 2 10 6
5. MontesS3 1 2 0. 0.031 3 2 2 2
6. MontesS5 4 4 0.078 0.187 6 8 13 6
7. MontesS6 2 2 0.015 0.047 4 3 5 4
8. MontesS7 1 3 0.046 0.156 4 4 6 8
9. MontesS8 2 2 0. 0.094 2 2 2 2
10. MontesS12 2 6 0.593 7.925 5 5 61 27
11. MontesS13 3 2 0.078 0.265 6 9 9 8
12. MontesS14 1 4 0.452 4.353 6 3 28 12
13. MontesS15 4 8 0.187 0.889 5 5 14 12
14. MontesS16 3 12 1.198 1.825 37 8 11 7
15. Bronstein 2 2 0.015 0.219 6 7 7 7
16. AlkashiSinus 3 6 0.094 0.437 8 6 8 6
17. Lanconelli 7 4 0.28 0.546 14 11 7 5
18. zhou1 3 4 0.047 0.156 5 5 5 5
19. zhou2 6 7 0.671 2.09 17 18 19 16
20. zhou6 3 3 0.031 0.218 6 4 6 5
21. SBCD13 1 3 0.015 0.094 2 2 9 6
22. SBCD23 1 3 0.202 0.344 4 2 15 12
23. F2 2 2 0.032 0.234 3 3 3 3
24. F3 4 1 0.063 0.905 5 6 5 6
25. F5 3 2 0.046 0.11 6 3 3 3
26. F7 3 2 0. 0.016 2 2 2 2
27. S2 4 1 44.544 timeout 150 92
28. MontesS9 3 3 0.693 0.468 21 13 16 13
29. MontesS10 3 4 0.421 0.359 13 6 19 6
30. MontesS11 3 3 0.858 0.655 12 16 20 10
31. F4 4 2 11.637 0.375 20 3 3 3
32. zhou5 4 5 5.616 2.902 51 19 97 22
33. F6 4 1 0.296 0.14 13 3 11 3
34. MontesS1 2 2 0.016 0. 4 2 3 3
35. Hereman-8-8 3 5 96.439 10.468 108 9 161 14
36. S3 4 3 2.618 1.436 35 13 17 11
37. Maclane 3 7 5.242 4.009 17 9 155 27
38. S1 3 2 timeout 4.04 10 10
39. Neural 1 3 timeout 0.188 2 7
40. Gerdt 3 4 timeout 0.842 4 6
41. Lazard-ascm2001 3 4 timeout timeout

42. Leykin-1 4 4 timeout timeout

43. Cheaters-homotopy-easy 4 3 timeout timeout

44. Cheaters-homotopy-hard 5 2 timeout timeout

45. Lazard-ascm2001 3 4 timeout timeout

46. MontesS18 2 3 timeout timeout

47. Pavelle 4 4 timeout timeout

48. p3p 5 2 timeout timeout

49. z3 6 11 timeout timeout



440 Z. Chen, X. Tang, and B. Xia

Table 3. Comparing HCTD and HCTDA (for s = 1)

benchmark d n
time branch grape

HCTD HCTDA HCTD HCTDA HCTD HCTDA

1. MontesS5 4 4 0.078 0.078 6 6 13 13
2. zhou1 3 4 0.047 0.047 5 5 5 6
3. MontesS9 3 3 0.693 0.796 21 21 16 27
4. MontesS11 3 3 0.858 1.207 12 24 20 38
5. MontesS12 2 6 0.593 0.671 5 5 61 60
6. AlkashiSinus 3 6 0.094 0.109 8 10 8 10
7. Bronstein 2 2 0.015 0.031 6 5 7 6
8. MontesS7 2 2 0.046 0.266 4 6 4 6
9. SBCD13 1 3 0.015 0.031 2 2 9 7
10. F6 4 1 0.296 timeout 13 11
11. S2 4 1 44.544 timeout 150 92
12. Maclane 3 7 5.242 2.605 17 13 155 122
13. SBCD23 1 3 0.202 0.109 4 2 15 13
14. F4 4 2 11.637 1.653 20 26 3 3
15. MontesS15 4 8 0.187 0.124 5 5 14 14
16. F8 4 4 0.437 0.358 18 16 14 11
17. MontesS16 3 12 1.198 0.951 37 21 11 8
18. S3 4 3 2.618 1.81 35 29 17 15
19. Neural 1 3 timeout 0.296 6 15
20. Gerdt 3 4 timeout 288.352 4 11

Table 4. Timings of m-HCTD for different m

benchmark d n
time

m = 0 m = 1 m = 2 m = 3 m = 4

1. Lazard-ascm2001 3 4 0.936 timeout

2. Leykin-1 4 4 0.203 20.436 timeout

3. Cheaters-homotopy-easy 4 3 3.681 timeout

4. Cheaters-homotopy-hard 5 2 39.640 timeout

5. Lazard-ascm2001 3 4 0.858 timeout

6. MontesS18 2 3 0.327 timeout

7. Pavelle 4 4 0.234 timeout

8. p3p 5 2 0. 0. 0.015 6.549 timeout

9. z3 6 11 0.094 error
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systems. In: Proc. ISSAC, pp. 299–306 (2007)

16. Suzuki, A., Sato, Y.: An alternative approach to comprehensive gröbner bases. In:
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In: Proc. ISSAC, pp. 326–331 (2006)

18. Tang, X., Chen, Z., Xia, B.: Generic regular decompositions for generic zero-
dimensional systems. Accepted by Science China: Information Sciences (2012),
doi: 10.1007/s11432-013-5057-5

19. Wang, D.K.: Zero decomposition algorithms for system of polynomial equations.
In: Computer Mathematics, pp. 67–70. World Scientific (2000)

20. Wang, D.M.: Computing triangular systems and regular systems. J. Symb.
Comp. 30, 221–236 (2000)

21. Wang, D.M.: Elimination methods. Springer (2001)
22. Wang, D.M.: Elimination practice: software yools and applications. Imperial Col-

lege Press (2004)
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Abstract. Motivated by the problem of determining the Jordan andWeyr
canonical forms of parametric matrices, we present a Maple package for
doing symbolic linear algebra. The coefficients of our input matrices are
multivariate rational functions, whose indeterminates are regarded as pa-
rameters and are subject to a system of polynomial equations and inequal-
ities. Our proposed algorithms rely on the theory of regular chains and are
implemented on top of the RegularChains library.

1 Introduction

This work is initially motivated by a desire to compute the Frobenius (rational)
canonical forms of parametric matrices for applications in dynamical system the-
ory. The Frobenius form can easily be extended to the Jordan and Weyr (see [15])
canonical forms. Additionally, the minimal polynomial is easily extracted form
the Frobenius form.

Currently, computations on parametric matrices are considered difficult and
costly because canonical forms such as the Frobenius, Jordan and Weyr forms
are discontinuous; this requires special cases for completeness, and exhaustive
analysis produces combinatorially many cases. Some papers considering special
cases with parameters include [1] and [4]. There are a large number of methods
for computing the Frobenius form of a constant matrix such as in [2], [11], [12],
[13], [14] and [16]. We instead modify the algorithm of Storjohann from [17]
and [18] for computations on parametric matrices, see Section 4. This algorithm
requires the computation of the so-called zig-zag form before the Frobenius form
can be computed. The zig-zag form itself is not directly useful for applications
but provides a matrix from which the Frobenius form can easily be obtained.
This will be discussed in detail in a forthcoming paper.

Determining the rank of a matrix is an even simpler problem than the compu-
tation of matrix canonical forms. Unfortunately, the computation for parametric
matrices is a tedious process which, although of ongoing research interest by
many groups, does not yet have a completely satisfactory solution implemented
in any computer algebra system (CAS) that we are aware of. For instance, ask-
ing for the Jordan canonical form of a 5 × 5 integer matrix containing a single
parameter fails in the computer algebra systems that we have tried.
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In Section 2, we present an algorithmic approach to extending methods of rank
computation to parametric matrices with polynomial entries. External equality
and inequality conditions on the parameters may be inherited in the problem
being solved and will be considered in the computations. This proposed method
is tailored to the problem of parametric matrix rank computation. That is, we
avoid the usage of general tools for solving parametric polynomial systems, such
as comprehensive Gröbner bases [19] comprehensive triangular decomposition [6],
or dynamic evaluation [8,3]. In fact, we rely on the non-comprehensive triangular
decomposition algorithms presented in [7] and [5] for the complex and real cases,
respectively.

Our parametric computations of zig-zag forms and matrix ranks are imple-
mented on top of the RegularChains library and are illustrated by screen shots
of Maple sessions.

2 Preliminaries

Let K be either an algebraically closed field or a real closed field. Let α1 < · · · <
αm be m ≥ 1 ordered variables. We denote by K[α] = K[α1, . . . , αm] the ring of
polynomials in the variables α = α1, . . . , αm with coefficients in K. We denote by
K(α) the quotient field of K[α], that is, the field of multivariate rational functions
in α with coefficients in K. If K is algebraically closed, we call a constructible set
S of K[α] the solution set of any polynomial system of the form

f1(α) = · · · = fa(α) = 0, g(α) �= 0

where f1(α), . . . , fa(α), g(α) belong to K[α]. If f1(α), . . . , fa(α) form a regular
chain of K[α] (see [7]) and if the polynomial g(α) is regular (i.e. neither zero nor
a zero-divisor) modulo the saturated ideal of this regular chain, then the above
system is called a regular system (see [6]). When this holds, we have S �= ∅.

If K is a real closed field, we call a semi-algebraic set S of K[α] the solution
set of any polynomial system of the form

f1(α) = · · · = fa(α) = 0, g(α) �= 0, p1(α) > 0, . . . , pb(α) > 0, q1(α) ≥ 0, . . . , qc(α) ≥ 0

where f1(α), . . . , fa(α), g(α), p1(α), . . . , pb(α), q1(α), . . . , qc(α) are in K[α]. Un-
der some technical assumptions (in particular assuming that f1(α), . . . , fa(α) is
a regular chain and that each of the polynomial p1(α), . . . , pb(α) is regular mod-
ulo the saturated ideal of this regular chain, see [5]) then the above system is
called a regular semi-algebraic system. When this holds, we have S �= ∅.

Theorem 1 ([6,5]). Assume K is algebraically closed (resp. real closed). Then,
for every constructible set (resp. semi-algebraic set) S ⊆ Km one can compute
finitely many regular systems (resp. regular semi-algebraic system) Σ1, . . . , Σ�

such that the union of their solution sets equals S; we call Σ1, . . . , Σ� a triangu-
lar decomposition of S. Moreover, for two constructible sets (resp. semi-algebraic
sets) S1, S2 ⊂ Km, one can compute a triangular decomposition of their inter-
section S1 ∩ S2, their union S1 ∪ S2 and the set theoretical difference S1 \ S2.
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3 Parametric Rank

In this section, we discusses the computation of the rank of a matrix A(α) ∈
Km×n(α), where the parameters α are subject to a system S of polynomial
constraints. The set S is defined by polynomials of K[α] containing inequations
implying that the denominator of every coefficient ofA(α) is non-zero everywhere
in this set. We define the polynomial system S′ by adding to S the equations of
A(α)X = 0. The triangular decomposition of S′ is denoted as T .

The following procedure computes a decomposition of the zero set Σ ⊆ Kk of
S into cells C0, C1, . . . , Cn such that for all 0 ≤ r ≤ n and all α ∈ Ci the rank of
the specialized matrix A(α) is r. We use of the commands of the RegularChains
library to state our algorithm. Assume first that K is algebraically closed.

Step 1: Let T := Triangularize(S′, K[α1 < · · · < αk < x1 < · · · < xn])
Step 2: For 0 ≤ r ≤ n, let Cr be the constructible set of Kk given by all regular

systems [Tj ∩ K[α1 < · · · < αk], hj ] such that [Tj , hj] ∈ T and the number
of polynomials of Tj of positive degree in (at least) one of the variables
x1 < · · · < xn is exactly n− r.

Step 3: For r := n down to 1 do

Cr := Difference(Cr, Cr−1 ∪ · · · ∪ C0)

Now, we state the algorithm for the case where K is real closed.

Step 1: Let T := RealTriangularize(S′, K[α1 < · · · < αk < x1 < · · · < xn])
Step 2: For 0 ≤ r ≤ n, let Cr be the semi-algebraic set of Kk given by all

regular semi-algebraic systems [Tj ∩ K[α1 < · · · < αk], Qj,∅] such that
[Tj , Qj,∅] ∈ T and the number of polynomials of Tj of positive degree in
(at least) one of the variables x1 < · · · < xn is exactly n− r.

Step 3: For r := n down to 1 do

Cr := Difference(Cr, Cr−1 ∪ · · · ∪ C0)

Theorem 2. Whether K is algebraically closed or real closed, the above proce-
dure satisfies the claimed specification.

We provide examples to which we have successfully applied the Maple im-
plementation of the above procedure.

Example 1. Taking an example from [10] from control theory, we look for the
conditions on the parameters such that the matrix is full rank. When it is full
rank we know we have a controllable system.

E =

⎛⎝1 3 1
3 1 1
0 0 0

⎞⎠ A1 =

⎛⎝1 1 3
1 3 1
0 0 0

⎞⎠ , A2 =

⎛⎝ λ 3λ λ
3λ+ μ λ+ μ λ+ 3μ

0 0 0

⎞⎠ , B =

⎛⎝1
0
1

⎞⎠
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> > 

> > 
> > 

> > 

> > 

> > z3d ZeroMatrix 3 : z1d ZeroMatrix 3, 1 :

E, Bd Matrix 1, 3, 1 , 3, 1, 1, , 0, 0, 0 , Matrix 0 , 0 , 1 ;

E, Bd

1 3 1

3 1 1

0 0 0
,

0

0

1

A1, A2d Matrix 1, 1, 3 , 1, 3, 1 , 0, 0, 0 , Matrix λ, 3$λ, λ , 3

$λCμ, λCμ, λC3$μ , 0, 0, 0 ;

A1, A2d

1 1 3

1 3 1

0 0 0
,

λ 3 λ λ

3 λCμ λCμ λC 3 μ

0 0 0

Ad Matrix KE, z3, z3, z3, B, z1, z1, z1, z1, z1 , KA1, KE, z3,
 z3, z1, B, z1, z1, z1, z1 , A2, A1, KE, z3, z1, z1, B, z1, z1,
 z1 , z3, A2, KA1, KE, z1, z1, z1, B, z1, z1 , z3, z3, A2, KA1,
 z1, z1, z1, z1, B, z1 , z3, z3, z3, A2, z1, z1, z1, z1, z1, B
:

rank, Rd ParametricMatrixTools:-ComplexRank A, , :
seq print i, Display rank i , R , i = 15..18 ;

15,
λ = 0

μC 1 = 0

16,
λ = 0

μK 1 = 0
,

λ = 0

μK 1 s 0

μC 1 s 0

17,

2 μK 1 = 0

λ s 0

8 λC 1 s 0

,
8 λC 1 = 0

16 μK 8 = 0

18,
μK 1 = 0

λ s 0
,

λ s 0

μK 1 s 0

μC 1 s 0

2 μK 1 s 0

,
μC 1 = 0

λ s 0

Fig. 1. Rank values and corresponding conditions on the parameters for Example 1

C =

⎛⎜⎜⎜⎜⎜⎜⎝
−E 0 0 0 B 0 0 0 0 0
−A1 −E 0 0 0 B 0 0 0 0
A2 −A1 −E 0 0 0 B 0 0 0
0 A2 −A1 −E 0 0 0 B 0 0
0 0 A2 −A1 0 0 0 0 B 0
0 0 0 A2 0 0 0 0 0 B

⎞⎟⎟⎟⎟⎟⎟⎠
As stated in [10], the matrix C only has full rank if λ �= 0. We verify this by
using our method to compute the set of all rank values. The case where C has
full rank is displayed below; we also notice conditions on the value of μ for C to
be full rank. Figure 1 gives the complete output with all possible rank values.⎧⎪⎪⎪⎨⎪⎪⎪⎩

{
μ− 1 = 0

λ �= 0
,

{
μ+ 1 = 0

λ �= 0
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ �= 0

μ− 1 �= 0

μ+ 1 �= 0

2μ− 1 �= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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> > 

> > 

> > 

Ad Matrix K1, 1, 1, 1, 1, 0, 1 , 0, 0, 1, 0, 1, 0, 0 , 0,
1
2
, 0,

1
2
, 0, 1,

0 , 0, c$a, 0, a, 0, 0, 0 , 0, 0,Kc$a, 0,Ka, 0, 1 , 0, 0, 1, 0, 0, 0, 0 ,

1, 1, 0, 0, 0, 0, 0 ;

Ad

K1 1 1 1 1 0 1

0 0 1 0 1 0 0

0
1
2

0
1
2

0 1 0

0 c a 0 a 0 0 0

0 0 Kc a 0 Ka 0 1

0 0 1 0 0 0 0

1 1 0 0 0 0 0

rank, Rd ParametricMatrixTools:-RealRank A, , aK
1
5
,
6
5
Ka , c ,

:

seq print i, map Display, rank i , R , i = 6..7 ;

6,
cK 2 = 0

5 a! 6 and 5 aK 1 O 0
,

5 aK 1 = 0

cK 2 = 0
,

5 aK 6 = 0

cK 2 = 0

7,
5 aK 1 = 0

cO 0 and cK 2 s 0
,

5 aK 6 = 0

cO 0 and cK 2 s 0
, 5 a! 6 and 5 aK 1 O 0 and cO 0

and cK 2 s 0

Fig. 2. Rank values and corresponding conditions on the parameters for Example 2

Example 2. This is a modified version of the example in [9] where we introduce
a new parameter c such that c > 0 and maintain the condition that 0.2 ≤ a ≤ 1.2.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 1 1 0 1

0 0 1 0 1 0 0

0 1/2 0 1/2 0 1 0

0 ca 0 a 0 0 0

0 0 −ca 0 −a 0 1

0 0 1 0 0 0 0

1 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We find that a rank of 6 or 7 is possible. The resulting conditions on a and c to
have a rank of 6 are: {

c = 2
1
5 ≤ a ≤ 6

5

and the conditions for rank 7 are⎧⎪⎨⎪⎩
c > 0

c �= 2
1
5 ≤ a ≤ 6

5

while the commands executed are displayed in Figure 2.
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4 Parametric Zig-zag Form

Parametric Polynomial. Let f(x;α) be a monic polynomial of degree r w.r.t. x.
We write:

f(x;α) = f0(α) + f1(α)x + · · ·+ fr−1(α)x
r−1 + xr (1)

with coefficients f0(α), . . . , fr−1(α) ∈ K(α). The α-values are constrained to
belong to a constructible (resp. semi-algebraic) set S such that the denominator
of every coefficient f0(α), . . . , fr−1(α) is nonzero everywhere on S.

Zigzag Matrix. A parametric Zigzag matrix takes the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cc1(x;α) B1

CT
c2(x;α)

B2 Cc3(x;α) B3

CT
c4(x;α)

. . .

CT
ck−2(x;α)

Bk−2 Cck−1(x;α) Bk−1

CT
ck(x;α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for k even. Each polynomial c1(x;α), . . . , ck(x;α) takes the same form as Equa-
tion (1) and Cci(x;α) is the companion matrix of ci(x;α). The blocks Bi have all
entries zero except those in the upper left corner which are either 0 or 1; each
block Bi has its size determined by its neighboring companion blocks. If there
is an odd number of diagonal blocks we allow deg ck = 0 while deg ci ≥ 1 holds
for 1 ≤ i < k. This permits the kth diagonal block to have dimension zero and
hence the block Bk−1 above CT

ck(x;α)
will also have dimension zero.

Theorem 3. For every matrix A(α) ∈ Kn×n[α], there exists a partition (S1, . . . ,
SN ) of input constructible (resp. semi-algebraic) set S such that for each Si,
there exists a matrix Zi(α) ∼ A(α) in Zigzag form where the denominators of
the coefficients of the entries of Zi(α) are all non-zero everywhere on Si.

We follow the same algorithm presented in Section 2 of [17]. Stages 1 and 3
must be modified for finding pivots vanishing nowhere on the underlying con-
structible (resp. semi-algebraic) set S. Once computation has split into two
branches (one, called Sneq, where a pivot has been found and the set S has
been replaced with Sneq, and another, called Seq, where the pivot has not yet
been found and the search for a pivot continues with S replaced by Seq) the
computations proceed in parallel (or by stack execution sequentially).

A sequential implementation has been written in Maple to compute the set
of Zigzag forms similar to an input parametric matrix under algebraic or semi-
algebraic constraints. The RegularChains library in Maple contains many use-
ful procedures and sub-packages for performing polynomial computations with
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parameters. See www.regularchains.org for details. The ConstructibleSet-

Tools and SemiAlgebraicSetTools sub-packages of RegularChains are use-
ful for representing constructible sets and semi-algebraic sets respectively and,
performing set operations on them, as mentioned in Theorem 1. The General-

Construct procedure from the ConstructibleSetTools sub-package obtains
a triangular decomposition of an input system of polynomial equations and
inequations. Analogously, the RealTriangularize procedure computes a
triangular decomposition of a semi-algebraic set given by an input system of
polynomial equations, inequations and inequalities. The intersection and set the-
oretical difference computations needed are performed by the Intersection and
Difference commands of the ConstructibleSetTools and SemiAlgebraic-

SetTools sub-packages.

Example 1. Consider the 3×3 matrix with a single parameter α over the complex
numbers C:

A(α) =

⎡⎣ −1 −α− 1 0
−1/2 α− 2 1/2
−2 3α+ 1 −1

⎤⎦
with no input conditions on α. The Zigzag forms similar to this matrix are

Z1(α) =

⎡⎣0 0 4α
1 0 4(α− 1)
0 1 α− 4

⎤⎦ α+ 3 �= 0, Z2(α) =

⎡⎣0 −4 1
1 −4 0
0 0 −3

⎤⎦ α+ 3 = 0 .

Clearly, Z1(α) is already in Frobenius form whereas Z2(α) requires additional
work to obtain the Frobenius form. This example turns out to have a continuous
Frobenius form in the parameter, hence the Frobenius form is Z1(α) for all values
of α.

5 Future Implementation

Our aim with this software package is to be able to compute canonical forms
of parametric matrices. Specifically, we would like to be able to compute the
Frobenius (rational), Jordan and Weyr (see [15]) canonical forms of square ma-
trices. Current research is being conducted on computing the Frobenius form
by computing a GCD free basis of the polynomials represented by the blocks
of the zig-zag form. This will later be extended into both the Jordan and Weyr
canonical forms.
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10. Garćıa-Planas, M.I., Clotet, J.: Analyzing the set of uncontrollable second order
generalized linear systems. International Journal of Applied Mathematics and In-
formatics 1(2), 76–83 (2007)

11. Giesbrecht, M.: Fast algorithms for matrix normal forms. In: Proceedings of 33rd
Annual Symposium on Foundations of Computer Science, pp. 121–130. IEEE
(1992)

12. Giesbrecht, M.: Nearly optimal algorithms for canonical matrix forms. SIAM Jour-
nal on Computing 24(5), 948–969 (1995)

13. Kaltofen, E., Krishnamoorthy, M.S., Saunders, B.D.: Parallel algorithms for matrix
normal forms. Linear Algebra and its Applications 136, 189–208 (1990)

14. Matthews, K.R.: A rational canonical form algorithm. Mathematica Bohem-
ica 117(3), 315–324 (1992)

15. O’Meara, K., Clark, J., Vinsonhaler, C.: Advanced Topics in Linear Algebra: Weav-
ing Matrix Problems Through the Weyr Form. Oxford University Press (2011)

16. Ozello, P.: Calcul exact des formes de Jordan et de Frobenius d’une matrice. PhD
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Abstract. Cylindrical algebraic decomposition (CAD) is a key tool for
solving problems in real algebraic geometry and beyond. In recent years
a new approach has been developed, where regular chains technology is
used to first build a decomposition in complex space. We consider the lat-
est variant of this which builds the complex decomposition incrementally
by polynomial and produces CADs on whose cells a sequence of formu-
lae are truth-invariant. Like all CAD algorithms the user must provide a
variable ordering which can have a profound impact on the tractability
of a problem. We evaluate existing heuristics to help with the choice for
this algorithm, suggest improvements and then derive a new heuristic
more closely aligned with the mechanics of the new algorithm.

1 Introduction

A cylindrical algebraic decomposition (CAD) is: a decomposition of Rn, meaning
a collection of cells which do not intersect and whose union is Rn; cylindrical,
meaning the projections of any pair of cells with respect to a given variable
ordering are either equal or disjoint; and, (semi)-algebraic, meaning each cell can
be described using a finite sequence of polynomial relations. The original CAD
by Collins [1] was introduced as a tool for quantifier elimination over the reals.
Since then CAD has also been applied to problems including epidemic modelling
[9], parametric optimisation [18], theorem proving [22], motion planning [23] and
reasoning with multi-valued functions and their branch cuts [14].

Traditionally, a CAD is built sign-invariant with respect to a set of polyno-
mials such that each one has constant sign in each cell, meaning only one sample
point per cell need be tested to determine behaviour. Collins’ algorithm works
in two phases. In the projection phase an operator is repeatedly applied to poly-
nomials each time producing a set in one fewer variables. Then in the lifting
phase CADs of real space are built incrementally by dimension according to the
real roots of these polynomials. A full description is in [1] and [13] summarises
improvements from the first 20 years ([4] references more recent developments).

In 2009 an approach to CAD was introduced which broke with the projection
and lifting framework [12]. Instead, a complex cylindrical decomposition (CCD)
of Cn is built using triangular decomposition by regular chains, and then real

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 450–457, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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root isolation is applied to move to a CAD of Rn. We can view the CCD as
an enhanced projection since gcds are calculated as well as resultants. It means
the second phase is less expensive than lifting since case distinction can avoid
identifying unnecessary roots. We use PL-CAD for CADs built by projection and
lifting and RC-CAD for CADs built with the new approach. The initial work
was improved in [11] by introducing purpose-built algorithms to refine a CCD
incrementally by constraint whilst maintaining cylindricity and recycling subre-
sultant calculations. A modification of the incremental algorithm to work with
relations instead of polynomials then allowed for simplification in the presence
of equational constraints (ECs): equations whose satisfaction is logically implied
by the input. The output was no longer sign-invariant for polynomials but truth-
invariant for a formula (the conjunction of relations). Similar ideas had been
developed for PL-CAD [21] but were difficult to generalise to multiple ECs.

In [2], a new variant of RC-CAD was presented. Here, instead of building a CAD
for a set of polynomials or relations we build one for a sequence of quantifier free
formulae (QFFs) such that each formula has constant truth value on each cell: a
truth-table invariant CAD or TTICAD. It followed the development of TTICAD
theory for PL-CAD (see [4], [5]) and combined it with the benefits of RC-CAD. The
CCD is built using a tree structure incrementally refined by constraint. ECs are
dealt with first, with branches refined for other constraints in a formula only if
the EC is satisfied. Further, when there are multiple ECs in a formula branches
can be removed when the constraints are not all satisfied. See [2] and [11] for full
details. Building a TTICAD is often the best way to obtain a truth-invariant
CAD for a single formula (if the formula has disjunctions then treating each
conjunctive clause as a subformula allows simplification in the presence of any
ECs) but is also the object required for applications like simplification of complex
functions via branch cut analysis (see [3] [17]). The implementation of [2] in the
RegularChains Library [24] (denoted RC-TTICAD) is our topic here.

All CAD algorithms require the user to specify an ordering on the variables.
For PL-CAD this determines the order of projection and thus the sequence of
Euclidean spaces considered en-route to Rn. For RC-CAD if determines both the
triangular decompositions performed and the refinement to Rn. Depending on
the application there may be a free or constrained choice. For example, in quan-
tifier elimination we must order the variables as they are quantified but may
change the ordering within quantifier blocks. Problems easy in one variable or-
dering can be infeasible in another, with [8] giving problems where one ordering
leads to a cell count constant in the number of variables and another to one
doubly exponential (irrespective of the algorithm used). Hence any choice must
be made intelligently. We write y ( x if y is greater than x in an ordering (noting
that PL-CAD eliminates variables from greatest to lowest in the ordering).

We start in Section 2 by evaluating (with respect to RC-TTICAD) existing
heuristics for choosing the variable ordering. Then in Section 3 we suggest some
extensions to improve their use before developing our own heuristic more closely
aligned to RC-TTICAD. We give our conclusions in Section 4.
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2 Evaluating Existing Heuristics

In what follows we assume f is a polynomial, v a variable and P the set of
polynomials defining the input to RC-TTICAD. Let deg(f, v) be the degree of f
in v, tdeg(f) the total degree of f and lcoeff(f, v) the leading coefficient of
f when considered as a univariate polynomial in v. For a set let max be the
maximum value, sum the sum of values and # the number of values. We start
by considering two heuristics already in use for choosing the variable ordering
in algorithms from the RegularChains Library [24].

Triangular: Start with the first criteria, breaking ties with successive ones.
1. Let v[1] = max({deg(f, v), | f ∈ P}). Then set y ( x if y[1] < x[1].
2. Let v[2] = max({tdeg(lcoeff(f, v)), | f ∈ P (containing v)}).

Then set y ( x if y[2] < x[2].
3. Let v[3] = sum({deg(f, v), | f ∈ P}). Then set y ( x if y[3] < x[3].

Brown: Start with the first criteria, breaking ties with successive ones.
1. Set y ( x if y[1] < x[1] (as defined in the heuristic above).
2. Let v[4] = max({tdeg(t), | t is a monomial (containing v) from a

polynomial in P}). Then set y ( x if y[4] < x[4].
3. Let v[5] = #({t, | t is a monomial (containing v) from a polynomial

in P}). Then set y ( x if y[5] < x[5].

These use only simple measures on the input. The first was implemented for [10]
(although not detailed there) and is used for various algorithms in the Regu-

larChains Library (being the default for SuggestVariableOrder). The second
was first described in the CAD tutorial notes [7] and in [19] was shown to do
well in choosing a variable ordering for Qepcad (an implementation of PL-CAD).

The next two heuristics were developed for PL-CAD and work by running
the projection phase for each possible variable ordering and picking an optimal
ordering using a measure of the projection set. Our implementations use the
projection polynomials generated by McCallum’s operator [20] on P .

Sotd: Select the variable ordering with the lowest sum of total degrees for each
of the monomials in each of the polynomials in the projection set.

Ndrr: Select the variable ordering with the lowest number of distinct real roots
of the univariate projection polynomials.

Sotd was suggested in [15] where it was found to be a good heuristic for CAD
in Redlog (another implementation of PL-CAD). Ndrr was suggested in [6] as
a means to identify differences occurring only in real space and thus missed by
measures on degree. These heuristics are clearly more expensive but note that
the lifting phase does the bulk of the work for PL-CAD, with the projection phase
often trivial (and if not then the lifting phase is likely infeasible).

To evaluate the heuristics we generated 600 random examples, each with two
QFFs themselves a conjunction of two constraints. There were 100 for each
of six system types: 00, 10, 20, 11, 12, 22. Each digit in these labels refers
to the number of those constraints which are equalities (with the others strict
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inequalities). The polynomials defining the constraints were sparse and in three
variables, generated using Maple’s randpoly function. RC-TTICAD was applied
to build CADs for the problems using each of the six possible variable orderings.
A time out of 12 minutes a problem was used affecting only six examples (one
with system type 20, two with 10 and three with 00). For the others, the cell
count and computation time (in seconds) for each CAD was recorded.

Table 1 summarises this data, showing the average and median values for
each system. As expected RC-TTICAD does better in the presence of ECs. We
note the anomaly between system types 10 and 20: it seems the savings from
truncating branches where ECs are not simultaneously satisfied are wiped out
by the costs of doing so. The savings would probably be restored if the QFFs
contained further non-ECs requiring more processing per branch.

Next we note that the median cell counts and timings are considerably less
than the mean average for every system type, indicating the presence of outliers.
We provided a third piece of data: the median of the values for each problem when
averaged over the six possible orderings. This will still avoid outlier problems but
not outlier orderings. In every case this value is much closer to the mean average,
indicating that most outlying data comes from bad orderings rather than bad
problems, and thus highlighting the practical importance of the ordering.

We performed the following calculations for each problem and each heuristic:

1. Calculate the average cell count and timing for the problem from the six
possible variable orderings.

2. Run and time each heuristic for choosing a variable ordering for the problem.
3. Record the cell count and timing of the heuristic’s choice. If a heuristic

chooses multiple orderings we take the first lexicographically.
4. Calculate the saving from using the heuristic’s choice compared to the prob-

lem average, i.e. (1)− (3) for cell counts and (1)− (2)− (3) for timings.
5. Evaluate the savings as percentages of the problem average, i.e. 100(4)/(1).

Table 2 (the first four rows) shows averages of the values in (5) over problems of
the same system type and the whole problem set. All four existing heuristics offer
significant cell savings and so are making good selections of variable ordering.
Although Sotd offers the highest cell savings overall, its higher costs means the
Triangular heuristic is the most time efficient. The heuristics’ costs decrease as

Table 1. The performance of RC-TTICAD over all variable orderings. Displayed are the
mean and median values and the median of the values after averaging over orderings.

System
Cell Count Computation Time

Mean Median Median of av. Mean Median Median of av.

22 750.13 478 612.67 1.84 1.37 1.58
12 934.42 682 861.50 2.73 2.12 2.47
11 1355.45 839 1212.33 3.41 2.10 2.99
20 3271.51 2193 2918 8.90 6.02 7.92
10 2949.02 1528 2275 8.44 4.71 6.62
00 9838.76 4874 8566.67 34.46 17.05 29.88
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a percentage of the CAD computation time for systems with fewer ECs and so
Sotd can achieve a much higher saving for problems of type 00 than 22. But
there are other differences between systems not explained by running times, such
as Brown generally saving more cells than Triangular but not for systems 20.

3 Extensions, Improvements and a New Heuristic

Combining Measures. In [6] Ndrr was developed to help with problems where
Sotd could not due to differences occurring in real space only. Hence a logical
extension is to use their measures in tandem. We have used the same evaluation
for heuristics SN (where Ndrr is used as a tie-break for Sotd) and NS (where
Sotd is the tie-break) with results given in Table 2. In both cases the tie-breaker
gives marginally higher cell savings than using the single heuristic, with NS
giving the highest cell saving so far, but Brown remaining the most efficient
for computation time. The costs of running these heuristics will be higher than
using the single measure (at least for problems where the first measure tied) but
these extra costs are usually less than the extra time savings obtained.

Greedy Heuristics. A greedy variant of Sotd was also suggested in [15] with
the variable ordering decided alongside the projection phase. At each step the
projection operator is evaluated with respect to all unallocated variables and the
variable whose set has lowest sum of total degree of each monomial of each new
polynomial is fixed in the ordering. We denote this GS in Table 2 where we see
it offers less cell savings than full Sotd (though still competitive) but has lower
costs and so gives more time savings. The cost of Sotd will increase alongside
the number of admissible variable orderings and so for such problems the greedy
variant may offer the only sensible approach. A greedy variant of Ndrr is not
possible since that measure is on the univariate polynomials only.

Using Information from PL-TTICAD. The projection sets used so far are those
for a sign-invariant PL-CAD, thus considering not the input constraints but the
polynomials defining them. Since RC-TTICAD is building a TTICAD (smaller for
all except systems 00), a sensible extension is to use the projection phase from
PL-TTICAD [5]. However, we cannot match the declared output structure exactly:
PL-TTICAD uses (at most) one declared EC per QFF (with others treated the
same as non-ECs). Hence, for QFFs with 2 ECs we will run the projection phase
with the first of these declared (so for example, systems 20 are treated the same
as 10). We denote the heuristics applying Sotd and Ndrr with this projection
set as S-TTI and N-TTI. From Table 2 we see they offer substantially more
cell savings than their standard versions. They also achieve higher time savings:
both due to the improved choices and lower running costs (since the TTICAD
projection operator is a subset of the sign-invariant one). We can also run the
greedy variant of Sotd with the PL-TTICAD projection phase (denoted GS-TTI
in Table 2) which will lose some of the cell savings but increase the time savings.

Developing a New Heuristic. We now aim to develop a new heuristic, which
considers more algebraic information than the input but is tailored to RC-TTICAD
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itself rather than a PL-CAD algorithm. The main saving offered by the regular
chains approach is case distinction meaning that not all projection factors are
considered universally. For example, the second coefficient in a polynomial is
only considered when the first vanishes (and then only evaluated modulo that
constraint). Consider a set of polynomials consisting of the following:

– the discriminants, leading coefficients and cross-resultants of the polynomials
forming the first constraint in each QFF;

– if a QFF has no EC then also the (other) discriminants, leading coefficients
and cross resultants of all polynomials defining constraints there;

– if a QFF has more than one EC then also the resultant of the polynomial
defining the first with that of the second.

Here the resultants, discriminants and coefficients are taken with respect to the
first variable in the ordering. These polynomials will all be sign-invariant in the
output: see [2], [11] for the algorithm specifications and [16] for a fuller discussion
and examples (from a study in the context of choosing the constraint ordering).
This set does not contain all polynomials computed by RC-TTICAD, but those
which are considered in their own right rather than modulo others.

We define a new heuristic to pick an orderings in two stages: First variables
are ordered according to maximum degree of the polynomials forming the input
(as with Triangular and Brown). Then ties are broke by calculating the set of
polynomials above for each unallocated variable and ordering according to sum
of degree (in that variable). This is denoted NewH in Table 2 and we see it
achieves almost as many savings as S-TTI despite using fewer polynomials.

We could go further by including some more of the missing information. For
example, we can use the degree of the omitted discriminants, resultants and

Table 2. Comparing the savings (as a percentage of the problem average) in cells (C)
and net timings (NT) from various heuristics

Heuristic
22 12 11 20 10 00 All

C NT C NT C NT C NT C NT C NT C NT

Triangular 32.6 33.9 33.9 34.0 40.9 41.3 47.9 46.8 47.7 47.2 56.0 58.8 43.0 43.6
Brown 37.6 39.1 39.3 39.8 45.9 47.1 45.0 44.3 51.6 50.9 61.9 64.5 46.8 47.5
Sotd 36.7 23.9 37.9 27.7 49.4 40.4 42.8 39.5 56.3 53.9 59.9 61.8 47.1 41.0
Ndrr 40.1 21.2 44.1 33.0 40.2 30.7 35.7 34.4 54.8 51.3 54.0 54.3 44.9 37.4

SN 37.0 24.3 37.2 27.4 49.2 40.4 42.5 39.6 56.0 53.5 60.4 62.5 47.0 41.1
NS 41.3 22.6 41.2 30.7 47.8 37.1 38.7 36.0 57.1 51.7 58.4 60.2 47.3 39.6

GS 35.0 32.7 33.7 32.5 49.5 46.5 39.8 38.9 52.3 52.1 52.5 55.9 43.8 43.3

S-TTI 42.7 40.4 46.4 43.2 55.0 49.1 48.4 48.1 61.2 60.2 59.9 61.7 52.2 50.3
N-TTI 48.5 37.1 46.8 40.5 48.6 42.3 47.8 46.9 59.0 55.3 54.0 54.3 50.7 46.0
GS-TTI 46.4 47.2 44.9 44.5 56.7 54.7 49.3 50.2 56.7 57.5 52.8 55.9 51.1 51.6

NewH 45.9 45.5 41.8 43.5 51.4 50.8 48.2 47.6 56.4 52.4 67.0 68.5 51.7 51.3
NewH-ext 46.2 45.9 42.2 43.3 51.6 51.4 49.3 49.5 55.9 52.0 67.0 68.5 52.0 51.7
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leading coefficients as a third tie-break. This heuristic is denoted NewH-ext and
the results of its evaluation are in the final row of Table 2. We see it achieves
even higher cell savings (and the greatest time savings of any heuristic).

4 Conclusions

We have demonstrated that the variable ordering is important for RC-TTICAD

and using any heuristic is advantageous. Simple measures on the input can be
effective, but more cell savings can be obtained by using additional information.
Existing heuristics obtained this from the projection phase of PL-CAD and we
have suggested a new heuristic aligned to RC-TTICAD which identifies polyno-
mials of most importance to the algorithm. It was sufficient for allocating two
variables (and hence ordering three) as required by our problem set. Extending
to problems with more variables is a topic of future work.

The heuristics performance varied with the system classes and so heuristics
that changed along with this performed better. The precise relationships at work
here are not always clear to see. Machine learning on the set of measures used
by the heuristics may offer a meta-heuristic greater than the sum of its parts (as
was found to be the case recently when choosing a variable ordering for Qepcad

[19]). Finally, we note that when using RC-TTICAD there are questions of problem
formulation other that the variable ordering to use. As implied in Section 3, the
order the constraints are presented affects the output. Advice on making this
choice intelligently was recently derived in [16].
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Abstract. Cylindrical algebraic decomposition (CAD) is an important
tool, both for quantifier elimination over the reals and a range of other
applications. Traditionally, a CAD is built through a process of projec-
tion and lifting to move the problem within Euclidean spaces of changing
dimension. Recently, an alternative approach which first decomposes com-
plex space using triangular decomposition before refining to real space has
been introduced and implemented within theRegularChains Library of
Maple. We here describe a freely available package ProjectionCAD which
utilises the routines within the RegularChains Library to build CADs
by projection and lifting. We detail how the projection and lifting algo-
rithms were modified to allow this, discuss the motivation and survey the
functionality of the package.

1 Introduction

A cylindrical algebraic decomposition (CAD) is: a decomposition of Rn, meaning
a collection of cells which do not intersect and whose union is Rn; cylindrical,
meaning the projections of any pair of cells with respect to a given variable
ordering are either equal or disjoint; and, (semi)-algebraic, meaning each cell can
be described using a finite sequence of polynomial relations. CAD is best known
for quantifier elimination over the reals, but has also found diverse applications
such as motion planning [25] and reasoning with multi-valued functions [13].

The RegularChains Library [26] in Maple contains procedures to build
CAD by first building a complex cylindrical decomposition (CCD) of Cn using
triangular decomposition by regular chains, then refining to a CAD of Rn. The
core algorithm was developed in [11] with improvements detailed in [10] and [3].

These CAD algorithms are in contrast to the traditional approach of pro-
jection and lifting followed since Collins’ original work [12]. Here, a projection
phase repeatedly applies an operator to a set of polynomials (starting with those
forming the input) each time producing another set in one fewer variables. Then
the lifting phase builds CADs of Ri, i = 1 . . . n. R is decomposed into points
and intervals corresponding to the real roots of the univariate polynomials. R2

is decomposed by repeating the process over each cell in R1 using the bivariate
polynomials at a sample point. The output over each cell consists of sections
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(where a polynomial vanishes) and sectors (the regions between) which together
form a stack. The union of these stacks gives the CAD of R2 and the process is
repeated until a CAD of Rn is produced. Collins defined the projection operator
so the CAD of Rn produced using sample points this way could be concluded
sign-invariant for the input polynomials: each polynomial has constant sign on
each cell. The key tool in the proof was showing polynomials to be delineable in
a cell, meaning the zero set of individual polynomials are disjoint sections and
the zero sets of different polynomials are identical or disjoint. For developments
to Collins’ algorithm see for example the introduction of [4].

We use PL-CAD for CADs built by projection and lifting and RC-CAD for CADs
built via CCDs. We will discuss a freely available Maple package Projection-
CAD which builds PL-CADs by utilising routines developed for RC-CAD. We con-
tinue in Section 2 by describing the motivation for coupling these approaches
before explaining the workings of the package in Section 3 and describing the
current functionality in Section 4. Earlier versions of the package can be down-
loaded alongside [14] [15], with the latest version available from the authors.
There are plans for its integration into the RegularChains Library [26] itself.

2 Motivation

ProjectionCAD uses routines in the RegularChains Library to build cells
in the lifting phase. The advantages of utilising the routines are multiple:

– It avoids many costly algebraic number calculations by using efficient algo-
rithms for triangular decomposition. When algebraic numbers are required
(as sample points for lower dimension cells) they are represented as the
unique root of a regular chain in a bounding box.

– It ensures ProjectionCAD will always use the best available sub-algorithms
in Maple, such as the recently improved routines for real root isolation.

– It allows ProjectionCAD to match output formats with the RC-CAD algo-
rithms. In particular, it allows for the use of the sophisticated piecewise
interface [9] which highlights the tree-like structure of a CAD.

The ProjectionCAD package was developed to implement new theory for
PL-CAD, most notably the work in [4], [5], [6] and [24]. More details of the func-
tionality are given in Section 4. However, it has also allowed for easy comparison
of PL-CAD and RC-CAD, leading to new developments for RC-CAD [3] [16]. A future
aim is identification of problem classes suitable for one approach or the other.

3 CAD Construction in ProjectionCAD

The pseudo code in Algorithm 1 describes the framework which the main algo-
rithms in ProjectionCAD follow. They apply to either polynomials or formu-
lae. If the former then the CAD produced is sign-invariant for each polynomial.
If the latter then each formula will have constant Boolean truth value on each
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cell and the CAD is said to be truth table invariant for the formulae: a TTI-
CAD. The user may also have to supply additional information (such as which
projection operator to use or which equational constraint to designate [21]). All
algorithms require a specified variable ordering, which can have a significant af-
fect on the tractability of using CAD [8]. We use ordered variables x1 ≺ . . . ≺ xn
and say the main variable is the highest ordered variable present.

Algorithm 1. PL-CAD

Input : A variable ordering x1 ≺ . . . ≺ xn and F a sequence of
polynomials (or quantifier-free formulae).

Output: A CAD of Rn sign-invariant for the polynomials (or truth
invariant for the formulae) F ; or FAIL if F is not well-oriented.

1 Run the projection phase using an appropriate projection operator on F .
2 for i = 1, . . . , n do
3 Assign to Pi the set of projection polynomials with main variable xi.

4 Set C1 to be a CAD of R1 formed by the decomposition of the real line
according to the real roots of the polynomials in P1.

5 for i = 2, . . . , n do
6 for each cell c ∈ Ci−1 do
7 Check any necessary well-orientedness conditions.
8 if the input is not well oriented then
9 if dim(c) = 0 then

10 Assign to L a set containing the polynomials in Pi and any
(non-constant) minimal delineating polynomials.

11 else
12 return FAIL.

13 else
14 Set L := Pi.

15 Set Sc := GenerateStack(c, L). // Apply Algorithm 2.

16 Set Ci :=
⋃

c Sc.

17 return Cn.

All algorithms in ProjectionCAD start with a projection phase (step 1)
which uses a projection operator appropriate to the input to derive a set of
projection polynomials. In steps 2−3 we sort these into sets Pi according to
their main variables. The remainder of the algorithm defines the lifting phase.
We start by decomposing R1 into cells according to the real roots of P1 (step 4)
and then repeatedly lift by generating stacks over cells until we have a CAD of
Rn. All cells are equipped with a sample point and a cell index. The index is an
n-tuple of positive integers that corresponds to the location of the cell relative to
the CAD. Cells are numbered in each stack during the lifting stage (from most
negative to most positive), with sectors having odd numbers and sections having
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even numbers. Therefore the dimension of a given cell can be easily determined
from its index: simply the number of odd indices in the n-tuple.

Before lifting over a cell we check any conditions necessary for the correctness
of the theory being implemented (step 7). These are collectively refereed to as
the input being well-oriented and require that projection polynomials are not
nullified (meaning a polynomial with main variable xi is not identically zero over
a cell in Ri−1). Which polynomials must be checked varies with the algorithm
(see [20], [21], [4], [5] for details). If the conditions are not satisfied then an error
message is returned in step 12, unless the cell in question is zero-dimensional
when correctness can be restored by generating the stack with respect to minimal
delineating polynomials (see [7]) as well as the projection polynomials in Pi (step
10). Note that input not well-oriented for one operator may be for another, and
that Collins’ operator is always successful (given sufficient resources).

Stacks are built by Algorithm 2 in step 15. These are collected together in step
16 to form a CAD of Ri, with the final CAD of Rn returned. The correctness of
Algorithm 1 follows from the correctness of Algorithm 2 and the correctness of
the various PL-CAD theories implemented (see the citations in Section 4).

Algorithm 2. Stacks are generated following Algorithm 2. It finishes with a call
to RegularChains:-GenerateStack, described in Section 5.2 of [11] (and imple-
mented in Maple’s RegularChains library). Algorithm 2 requires the input be
projection polynomials: implying they satisfy the delineability conditions neces-
sary for the cells produced when lifting to have the required invariance condi-
tion. The regular chains algorithm has stricter criteria, requiring in addition that
the polynomials separate above the cell, meaning they are coprime and squarefree
throughout. Hence Algorithm 2 must first pre-process to meet this condition.

In steps 1 and 2 we extract information from c. We identify those dimensions
of the cell which are restricted to a point by consulting the cell index (indices
with even integers) and collect together the equations defining these restrictions
in steps 3 − 7. There is no ambiguity in the ordering of the polynomials in E
since a regular chain is defined by polynomials of different main variables [1]. If
the cell is of full dimension then there is no need to process since the polynomials
are delineable and taken from a squarefree basis. Otherwise, we process using
Algorithms 3 and 4 in steps 10 and 11. The restriction is identified using a regular
chain r̂c (step 9) together with the original bounding box. Note that Ê defines
a single regular chain since the equations were extracted from one.

Algorithm 3. In order to make the polynomials coprime we use repeated calls
to a triangular decomposition algorithm in step 3 (described in [19] and part of
the RegularChains Library). Given lists of polynomials L1 and L2 and a regular
chain, it returns a decomposition of the zeros of L1 which are also also zeros of
the regular chain but not zeros of L2. We use r̂c for the regular chain, so we
work on the restriction, and build up a list of coprime polynomials by ensuring
existing ones (L2) are not zeros in decompositions of the next one (L1). Each
time the decomposition is a list of either regular chains or regular systems (a
regular chain and an inequality regular with respect to the chain [23]).
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Algorithm 2. GenerateStack

Input : A cell c from a CAD of Rk and a set P of projection
polynomials in x1 . . . xk+1 (part of a squarefree basis).

Output: A set of cells S of Rk+1 comprising a stack over c. The
polynomials in P are sign-invariant on each cell of S.

1 Set I and sp to be the cell index and sample point of c.
2 Set rc and bb to be the regular chain and bounding box encoding sp.
3 Set E to be the set of k polynomials whose zeros define rc, ordered by
increasing main variable.

4 Set Ê := { }.
5 for i = 1, . . . , k do
6 if the i’th integer in I is even then

7 Add the ith polynomial in E to Ê.

8 if Ê �= { } then

9 Set r̂c to be the regular chain formed by Ê.

10 P̂ := MakeCoprime(P, r̂c, c). // Apply Algorithm 3.

11 P̂ := MakeSquareFree(P, r̂c, c). // Apply Algorithm 4.

12 S := RegularChains:-GenerateStack(c, P̂ , k + 1) // From [11].

13 return S.

Algorithm 3. MakeCoprime

Input : A set of polynomials P , a regular chain r̂c and a cell c.
Output: A set of polynomials P̂ which describe the same set of varieties,

but which are coprime over c.

1 Set P̂ = { }.
2 for polynomial p ∈ P do

3 T := Triangularize([p], P̂ , r̂c). // From [19].

4 for component C of T do
5 if mvar(C) �= mvar(p) then
6 next C.
7 if C has a zero compatible with the sample point of c then

8 Add the polynomial in C with same main variable as p to P̂ .

9 return P̂ .

We consider each of these components in turn. If the main variable is lower
then the solution is discarded. Otherwise we check if the component has a so-
lution compatible with the sample point for the cell (as it may be a solution
of r̂c other than one isolated by bb). This means isolating the real solutions (of
the component excluding the top dimension) and refining their bounding boxes
until they are either within bb or do not intersect at all. It is achieved using the
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RealRootIsolate command in the RegularChains Library (see [2]). Finally if
the component passes these tests then the polynomial in the main variable is
extracted and added to the set returned from Algorithm 3 in step 8.

Algorithm 4. In order to make the polynomials squarefree we use repeated
calls to an algorithm which does this modulo a regular chain (r̂c: so that we
are working on the restriction). It is an analogue of Musser’s [22] with the gcd
calculations performed modulo the regular chain as described in [18]. It assumes
the polynomial is regular modulo the chain and so we first test for this. If not
regular (the leading coefficient vanishes) then we consider the tail (polynomial
minus the leading term) in step 5, if still in the main variable. The output of
the factorization is either: rc and a list of polynomials forming a squarefree
decomposition of p modulo rc; or a list of pairs of regular chains and squarefree
decompositions where the regular chains are a decomposition of rc. In the latter
case only one will be relevant for the root isolated by bb and we identify which
using the RealRootIsolate command, similarly to Algorithm 3.

Algorithm 4. MakeSquareFree

Input : A set of polynomials P , a regular chain r̂c and a cell c.
Output: A set of polynomials P̂ which describe the same set of varieties,

but which are each squarefree over c.

1 Set P̂ = { }.
2 while P is not empty do
3 Remove a polynomial p from P .
4 if p is not regular over r̂c then
5 Set p̂ = tail(p)
6 if mvar(p̂) = mvar(p) then
7 Add p̂ to P and continue from step 2.

8 T := SquarefreeFactorization(p, r̂c).
9 Select C as the component in T compatible with the sample point of c.

10 Set p̂ to be the product of polynomials in the decomposition in C.
11 Add p̂ to P̂ .

12 return P̂ .

4 Functionality of ProjectionCAD

We finish by listing some of the functionality of within ProjectionCAD, fo-
cusing on aspects not usually found in other CAD implementations:

– Sign-invariant CADs can be built using the Collins [12] or McCallum [20]
projection operators.

– CADs can be built with the stronger property of order-invariance (where
each polynomial has constant order of vanishing on each cell) [20].
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– Equational constraints (ECs) are equations logically implied by the formula.
They can be utilised via McCallum’s reduced projection [21] and a more
efficient lifting phased (detailed in Section 5 of [5]).

– TTICADs can be built for sequences of formulae, making use of ECs in each
[4] [5]. TTICAD can be both a desired structure for applications [17] and an
efficient way to build a truth-invariant CAD (allowing savings from ECs for
conjunctive sub-formulae, not ECs of the whole formula).

– Minimal delineating polynomials [7] are built automatically, avoiding un-
necessary failure declarations (which can occur in Qepcad). See [14] for an
example of this.

– User commands for stack generation and the construction of induced CADs
(a CAD of Ri, i < n produced en route to a CAD of Rn), allowing for easy
experimentation with the theory.

– Layered CADs contain cells of only a certain dimension or higher. They can
be produced (more efficiently than a full CAD) [24].

– Variety CADs contain only those cells that lie on the variety defined by an
EC. They can be produced (more efficiently than a full CAD) [24].

– Layered and manifold TTICADs as well as layered-manifold CADs can be
produced [24] (combining the savings from the different theories).

– Heuristics are available to help with choices such as variable ordering, EC
designation and breaking up parent formulae for TTICAD [6].

Details can be found in the citations above and the technical reports [14], [15].
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Algorithm

Amir Hashemi1,2 and Zahra Touraji1

1 Department of Mathematical Sciences,
Isfahan University of Technology Isfahan, 84156-83111, Iran

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
Tehran, P.O. Box: 19395-5746, Iran

Amir.Hashemi@cc.iut.ac.ir, z.tooraji@math.iut.ac.ir
http://amirhashemi.iut.ac.ir/

Abstract. In their paper Boulier et al. (2009) described the Rosenfeld-
Gröbner algorithm for computing a regular decomposition of a radical
differential ideal generated by a set of polynomial differential equations,
ordinary or with partial derivatives. In order to enhance the efficiency
of this algorithm, they proposed their analog of Buchberger’s criteria to
avoid useless reductions to zero. For example, they showed that if p and
q are two differential polynomials which are linear, homogeneous, in one
differential indeterminate, with constant coefficients and with leaders
θu and φu, respectively so that θ and φ are disjoint then the delta-
polynomial of p and q reduces to zero w.r.t. the set {p, q}. In this paper
we generalize this result showing that it remains true if p and q are
products of differential polynomials which are linear, homogeneous, in
the same differential indeterminate, with constant coefficients and θ and
φ are disjoint where θu and φu are leaders of p and q, respectively.
We have implemented the Rosenfeld-Gröbner algorithm and our refined
version on the same platform in Maple and compare them via a set of
benchmarks.

Keywords: Differential algebra, Rosenfeld-Gröbner, Buchberger first
criterion.

1 Introduction

Differential algebra, founded by Ritt, is a very interesting subject to use methods
from abstract algebra to study solutions of systems of polynomial nonlinear ordi-
nary and partial differential equations (PDE’s). One of the most important tools
of differential algebra is the Ritt algorithm [14] which gives rise to algorithmic
methods appear in this field. In this direction, several approaches and relative
packages have been developed to employ these methods. Carra-Ferro and Ollivier
developed the concept of differential Gröbner bases in [6,13], however the bases
that they defined may be infinite. On the other hand, Mansfield [11] developed
another concept of differential Gröbner bases. She has developed the Maple

package diffgrob2 which is an effective and powerful package for simplifying

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 466–471, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



An Improvement of Rosenfeld-Gröbner Algorithm 467

systems of linear or nonlinear PDEs. It can construct differential Gröbner bases
for general linear systems and some nonlinear systems. Finally, Boulier et al. [4]
presented Rosenfeld-Gröbner which takes as input a differential system and a
ranking and outputs represents the radical of the differential ideal generated by
the input system as a finite intersection of radical differential ideals presented
by characteristic sets. The Maple package DifferentialAlgebra designed by
Boulier et al. which computes such representation is now embedded in Maple.
As an application of this theory in finding the Lie symmetries of differential
equations we refer to [12,9]. For a comprehensive introduction of differential al-
gebra and its computational aspects, we refer to Kolchin’s book [10] and [15,8],
respectively.

The main goal of this paper is to improve the Rosenfeld-Gröbner algorithm. In
this direction, Boulier et al. [4] proposed their analog of Buchberger’s criteria to
avoid useless reductions to zero. They showed that if p and q are two differential
polynomials which are linear, homogeneous, in one differential indeterminate,
with constant coefficients and with leaders θu and φu, respectively so that θ and
φ are disjoint then the delta-polynomial of p and q reduces to zero w.r.t. the set
{p, q}. In this paper, we generalize this result showing that it remains true if p
and q are products of differential polynomials which are linear, homogeneous, in
the same differential indeterminate, with constant coefficients and θ and φ are
disjoint where θu and φu are leaders of p and q, respectively. We have imple-
mented the Rosenfeld-Gröbner algorithm and our refined version on the same
platform in Maple and compare them via a set of benchmarks.

The paper is organized as follows. Section 2 contains an overview of the nec-
essary background concerning the theory of differential algebras. In Section 3,
we will state our main result and discuss the implementation issue of Rosenfeld-
Gröbner algorithm equipped with the new analog of Buchberger first criterion.

2 Preliminaries

In this section, we present a brief overview of basic definitions and notations in
differential algebra. For more details we refer the reader to [10,14].

Definition 1. An operator δ : R → R over the algebraic ring R is called a
derivation operator, if for each a, b ∈ R we have:

δ(a+ b) = δ(a) + δ(b)

δ(ab) = δ(a)b+ aδ(b).

A differential ring is a pair (R,Δ) where R is a ring equipped with a collection
Δ = {δ1, . . . , δm} of commuting derivations operators over it, satisfying:

δiδja = δjδia.

For simplicity, we suppress the dependence on Δ in the notation and denote a
differential ring just by R. If m = 1, then R is called an ordinary differential
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ring; otherwise it will be called partially. An algebraic ideal I of R is called a
differential ideal when it is closed under the action of derivations of R, namely
δa ∈ I for each δ ∈ Δ and a ∈ I.

For example, the ring of polynomials C[x1, . . . , xm] together with the set of
operators ∂/∂x1, . . . , ∂/∂xm is a differential ring. Let R be a differential ring
with Δ = {δ1, . . . , δm}.

• We denote by Θ the free multiplicative commutative semigroup generated
by the elements of Δ, namely

Θ :=
{
δt11 δ

t2
2 . . . δ

tm
m | t1, . . . , tm ∈ N

}
.

Each element θ = δα1
1 · · · δαm

m of Θ is called a derivation operator of R and
furthermore the sum ord(θ) :=

∑m
i=1 ti is called the order of θ. Then θa is

said to be a derivative of a ∈ R of order ord(θ).

• For an arbitrary subset S of R, we define ΘS := {θs | s ∈ S, θ ∈ Θ}. It is
the smallest subset of R containing S which is stable under derivation.

• An algebraic ideal of R is called a differential ideal, if it is closed under the
derivation operators. We denote by (S) and [S] respectively, the smallest
algebraic and differential ideals of R containing S. In fact, [S] = (ΘS). This
fact provides an algebraic approach to differential ideals which enables one
to employ algebraic tools.

• For a field of characteristic zero K, a differential polynomial ring:

R := K{u1, . . . , un} := K
[
ΘU

]
is the usual commutative polynomial ring generated by ΘU over K, where
U := {u1, . . . , un} is the set of differential indeterminate.

• For two certain derivatives θu and φu of a same differential indeterminate
u, we denote by lcd(θu, φu) the least common derivative between θu and φu,
easily seen to be:

lcd(θu, φu) = lcm(θ, φ)u.

In this paper we let K be a differential field of characteristic zero.

Definition 2. Let R = K{U} be a differential polynomial ring with the set of
indeterminates U = {u1, . . . , un}. A ranking > is an ordering over ΘU compat-
ible with the derivation act over ΘU , i.e. for each derivation δ ∈ Θ and for each
v, w ∈ ΘU we have:

• δv > v,
• if v > w then δv > δw.

For each θ, φ ∈ Θ and v, w ∈ U , a ranking > for which the statement ord(θ) >
ord(φ) implies that θv > φw is called orderly. Simultaneously, if the assumption
v > w gives θv > φw, then > is called elimination. Moreover, for a fixed ranking
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> over ΘU and for a differential polynomial p ∈ R = K{u1, . . . , un}, the leader
ld(p) of p is the highest derivative appearing in p with respect to >. If ld(p) = u
and d is the degree of u in p then, the initial in(p) ∈ R is defined to be the
coefficient of ud in p. The separant sp of p is the polynomial ∂p/∂u. Finally, ud

is called the rank of p and we denote it by rank(p).

To analyze a given PDE system Σ, we use the Rosenfeld-Gröbner algorithm to
decompose the radical of [Σ], into some new PDE systems, presented by explicit
generators. These generators have novel properties which leads to do a complete
analysis of Σ. We can consider this algorithm as a differential analogues to
Buchberger’s algorithm. One of the main functions that we need in the Rosenfeld-
Gröbner algorithm is Δ-polynomial which plays a similar role to S-polynomial
in Buchberger algorithm.

Definition 3. Let us consider two differential polynomials p1 and p2 with ld(pi)
= θi ui, i = 1, 2. Then, the Δ-polynomial of p1 and p2 is defined as

Δ(p1, p2) =

{
sp2

θ1,2
θ1
p1 − sp1

θ1,2
θ2
p2 u1 = u2,

0 u1 �= u2,

where θ1,2 = lcd(θ1, θ2).

The aim of calculating the Δ-polynomial of two differential polynomials is
in fact to remove their leading derivatives to obtain (probably) a new leading
derivative.

3 Statement of the Main Results

Buchberger’s first criterion states that if the leading terms of two polynomials p
and q are disjoint then the S-polynomial of p and q reduces to zero by {p, q}, see
[1, Lemma 5.66]. The following differential analogues to this criterion was given
in [4, Prop. 4].

Proposition 1. Let p and q be two differential polynomials which are linear,
homogeneous, in one differential indeterminate and with constant coefficients.
Further, suppose that we have lcd(θu, φu) = θφu where ld(p) = θu and ld(q) =
φu. Then the full differential remainder of Δ(p, q) w.r.t {p, q} is zero.

Now we state the main result of this paper.

Theorem 1. Let p and q be two differential polynomials which are products of
differential polynomials which are linear, homogeneous, in the same differential
indeterminate and with constant coefficients. Furthermore, let θ and φ are dis-
joint where θu and φu are leaders of p and q. Then the full differential remainder
of Δ(p, q) w.r.t {p, q} is zero.
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Proof. Due to space restriction, we only give the general idea of the proof for
the case that p and q are products of two polynomials, and leave the detailed
proof for the full version of paper. Let p = f1f2 and q = g1g2 where f1, f2, g1, g2
are differential polynomial which are linear, homogeneous and in one differential
indeterminate with constant coefficients. Further, let ld(f1) = θu and ld(g1) =
φu. We prove that Δ(p, q)full−rem{p, q} = 0. Suppose ld(f1) > ld(g1), ld(f1) >
ld(f2) and ld(g1) > ld(g2). Then sp = ip = f2 and sq = iq = g2 and

Δ(p, q) = g2φp− f2θq

= g2
∑

φiφj=φ

φif1φjf2 − f2
∑

θlθk=θ

θlg1θkg2

= g2f2φf1 − g2f2θg2 + g2
∑

φiφj=φ,ord(φj)>0

φif1φjf2 − f2
∑

θlθk=θ,ord(θk)>0

θlg1θkg2.

Since f1 and g1 satisfy the conditions of Proposition 1, then g2f2φf1 − g2f2θg2
reduces to zero. Let us call r the rest of the above polynomial. To show that r
reduces to zero, we consider two cases for the appearance of ld(f1) in r and we
show that in both cases r reduces to zero. 3%

We have implemented the Maple package RosenfeldGrobner.mpl containing a
prototype implementation of the improved Rosenfeld-Gröbner algorithm which
is available at the address http://amirhashemi.iut.ac.ir/software.html. In
what follows we provide an example illustrating the efficiency of our algorithm.

> with(diffalg):

> R := differential−ring(derivations = [x, y], ranking = [u]):

> p := (ux,x,x,x − u)7(ux,x + ux)
5:

> q:=(uy,y,y − uy,y)
4(uy + u)5:

> r := delta−polynomial(p, q, R):

> a1, b1 := kernelopts(cputime, bytesused):

> differential−sprem(r, [p, q], R);

0

> a2, b2 := kernelopts(cputime, bytesused):

> a2-a1, b2-b1;

70.52, 598229337

These results show that the maple function differential−sprem takes 70.52
sec. to compute the full differential remainder of the polynomials p and q which
satisfy the conditions of the above theorem.

Acknowledgements. The research of the first author was in part supported
by a grant from IPM (No. 92550420).
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References
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Abstract. Traditionally, Groebner bases and cylindrical algebraic de-
composition are the fundamental tools of computational algebraic geome-
try. Recent progress in the theory of regular chains has exhibited efficient
algorithms for doing local analysis on algebraic varieties. In this note,
we present the implementation of these new ideas within the module
AlgebraicGeometryTools of the RegularChains library. The function-
alities of this new module include the computation of the (non-trivial)
limit points of the quasi-component of a regular chain. This type of cal-
culation has several applications like computing the Zarisky closure of a
constructible set as well as computing tangent cones of space curves, thus
providing an alternative to the standard approaches based on Groebner
bases and standard bases, respectively. From there, we have derived an
algorithm which, under genericity assumptions, computes the intersec-
tion multiplicity of a zero-dimensional variety at any of its points. This
algorithm relies only on the manipulations of regular chains.

Keywords: Algebraic geometry, regular chains, local analysis.

1 Overview

Today, regular chains are at the core of algorithms computing triangular de-
composition of polynomial systems and which are available in several software
packages [7,9,10]. Moreover, those algorithms provide back-engines for computer
algebra system front-end solvers, such as Maple’s solve command.

One of the algorithmic strengths of the theory of regular chains is its regu-
larity test procedure. Given a polynomial p and a regular chain R, both in a
polynomial ring k[X1, . . . , Xn] over a field k, this procedure computes regular
chains R1, . . . , Re such that R1, . . . , Re is a decomposition of R in some tech-
nical sense1 and for each 1 ≤ i ≤ e the polynomial p is either null or regular

1 The radical of the saturated ideal sat(R) of R is equal to the intersection of the
radicals of the saturated ideals of R1, . . . , Re.
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modulo the saturated ideal of Ri. In algebraic terms, this procedure decides
whether the hypersurface V (p) contains at least one irreducible component of
the variety V (sat(R)). Thanks to the D5 Principle [4], this regularity test avoids
factorization into irreducible polynomials and involves only polynomial GCD
computations. This is a core routine in most operations on regular chains.

One of the technical difficulties of regular chain theory, however, is the fact
that regular chains do not fit well in the “usual algebraic-geometric dictionary”
(Chapter 4, [3]). Indeed, the “good” zero set encoded by a regular chain R is a
constructible set W (R), called the quasi-component of R, which does not corre-
spond exactly to the “good” ideal encoded by R, namely sat(R), the saturated
ideal of R. In fact, the affine variety defined by sat(R) equals W (R), that is, the
Zariski closure ofW (R). This difficulty probably explains why the use of regular
chains in computational algebraic geometry remains limited, despite their nice
algorithmic properties such as the above mentioned regularity test.

In [1], three of the co-authors of this note have recently proposed a procedure
for computing the non-trivial limit points of the quasi-component W (R), that
is, the set lim(W (R)) := W (R) \W (R) as a finite union of quasi-components
of some other regular chains. This procedure, currently implemented in the case
where sat(R) has dimension one, relies only on operations on regular chains,
like the regularity test. As a byproduct, it becomes possible to compute W (R)
without any Gröbner basis computations. We illustrate this feature in Section 2.

The regularity test for regular chains is a powerful tool which has been studied
and applied within many situations including polynomial algebra [6], differential
algebra [2,5], and computing with algebraic numbers [4], etc. Broadly speaking,
it allows to extend an algorithm working over a field into an algorithm working
over a direct product of fields. Or, to phrase it in another way, it allows to extend
an algorithm working at point into an algorithm working at a group of points.

Following that strategy, three of the co-authors of this note have proposed,
in another recent work [8], an extension of Fulton’s algorithm for computing the
intersection multiplicity of two plane curves at any of their intersection points.
Indeed, as pointed out by Fulton in his Intersection Theory, the intersection
multiplicity of two plane curves V (f) and V (g) satisfy a series of seven properties
which uniquely define I(p; f, g) at each point p ∈ V (f, g). Moreover, the proof
of this remarkable fact is constructive, which leads to an algorithm, that we call
Fulton’s algorithm. Unfortunately, this algorithm implicitly assumes that the
coordinates of the point p are rational numbers.

Another limitation of Fulton’s algorithm is that it does not generalize to n
polynomials f1, . . . , fn in n variables x1, . . . , xn. In [8], two extensions of Fulton’s
algorithm are proposed. First, thanks to the regularity test for regular chains,
the construction is adapted such that it can work correctly at any point of
V (f, g), rational or not. Secondly, thanks to the above mentioned procedure
for computing the limit points of a quasi-component, an algorithmic criterion
is proposed for reducing the case of n variables to the bivariate one. These
algorithmic tools are now implemented in the module AlgebraicGeometryTools
and are illustrated in Sections 3 and 4.
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2 Computation of Limit Points

For a regular chain 2 R ⊂ k[X1, . . . , Xn], recall that the quasi-component of R
is W (R) := V (R) \ V (hR), that is, the common zeros of R that do not cancel
the product hR of the initials of R. As mentioned in Section 1, computing the
non-trivial limit points, that is, the set lim(W (R)) := W (R) \W (R) has many
applications. The algorithm proposed in [1] relies on the Puiseux series solutions
of the quasi-component W (R).

Fig. 1. Limit points of one-dimensional regular chain

Fig. 2. Limit point computation with AlgebraicGeometryTools

2 We refer to [1] for the basic concepts and properties of regular chain theory.
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TheMaple session displayed on Figure 2 illustrates a limit point computation
with R = {ty2+y+1, (t+2)tx2+(y+1)(x+1)} for the variable ordering t < y < x.
Thus we have hR = t(t − 2). As shown in Figure 1, there are four limit points
- see the yellow dots - which are returned by the command LimitPoints in the
form of regular chains. Other formats are possible; they are controlled by the
last two arguments of the LimitPoints command.

3 Intersection Multiplicity in the Plane

Let us now turn to intersection multiplicity computation. We start with the
bivariate case, illustrating it with the two plane curves depicted on Figure 3.
The command TriangularizeWithMultiplicity, see Figure 4, computes the
five intersection points of these curves and, for each of them, returns the cor-
responding intersection multiplicity. Observe that four of these five points are

Fig. 3. Two plane curves with an intersection multiplicity of 14 at the origin

Fig. 4. Intersection multiplicity computation with AlgebraicGeometryTools



476 P. Alvandi et al.

described by a single regular chain; moreover, at each of those, the intersection
multiplicity is 1. In fact, the computation of their intersection multiplicity is
performed as a single computation since there is no need to write explicitly the
coordinates of each of these points.

4 Intersection Multiplicity in Higher Dimension and
Computation of Tangent Cones

Fulton’s algorithm does not apply directly to n polynomials f1, . . . , fn in n
variables x1, . . . , xn. However, the criterion proved in [8] allows to reduce the
computation of the intersection multiplicity of f1, . . . , fn at a point p to an in-
tersection multiplicity calculation in a lower dimension space. We recall this
criterion. Assume that hn = V (fn) is non-singular at p. Let vn be tangent hy-
perplane of hn at p. Assume that hn meets each component (through p) of the
curve C = V (f1, . . . , fn−1) transversally (that is, the tangent cone TCp(C) inter-
sects vn only at the point p). Let g ∈ k[x1, . . . , xn] be the degree 1 polynomial
defining vn. Then, we have

I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, g).

Assume3 that the coefficient of xn in g is non-zero, thus g = xn − g′,
where g′ ∈ k[x1, . . . , xn−1]. Hence, we can rewrite the ideal 〈f1, . . . , fn−1, g〉
as 〈g1, . . . , gn−1, g

′〉 where gi is obtained from fi by substituting xn with g′.
Then, we have

In(p; f1, . . . , fn) = In−1(p|x1,...,xn−1; g1, . . . , gn−1).

In the example from Figure 5, the tangent hyperplane y = 0 of V (y−z3) at the
origin and each component (through the origin) of the curve C := V (x, x+ y2 −
z2) = V (x, (y−z)(y+z)) meet transversally. Therefore, we have I3((0, 0, 0);x, x+
y2−z2, y−z3) = I2((0, 0);x, x−z2) = 2, as shown by the calculation on Figure 6.

Verifying this transversality condition requires the computation of tangent
cones of and tangent planes. The module AlgebraicGeometryTools provides
commands TangentCone (of space curves) and TangentPlane for that purpose.
Each tangent cone is computed as a limit of secants and reduces to compute
limit points of quasi-components of one-dimensional regular chains.

In Figure 8, the transversality condition does not hold. This is detected using
the TangentCone and TangentPlane commands. Another strategy is then at-
tempted, we call it cylindrification. We explain its principle under simplifying as-
sumptions. Assume that among f1, . . . , fn one polynomial, say fn has degree one
in xn and assume that its coefficient in xn is invertible in the local ring at p. Then,
one replaces f1, . . . , fn−1 by g1, . . . , gn−1 where gi is the pseudo-remainder of fi
by fn w.r.t xn. It is not hard to see that I(p; f1, . . . , fn) = I(p; g1, . . . , gn−1, fn)
holds. Moreover, the transversality condition clearly holds for g1, . . . , gn−1, fn.
Therefore, we are back in the above case where we could reduce computations
from n to n− 1 variables. Returning to the example of Figure 8, cylindrification
replaces the three surfaces on the left of Figure 7 with the surfaces on the right.

3 One can always reduce to this case by means of a linear change of coordinates.
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Fig. 5. Three surfaces: case where reduction 3D to 2D is straightforward

Fig. 6. Intersection multiplicity computation with AlgebraicGeometryTools

Fig. 7. Three surfaces: case where reduction 3D to 2D requires cylindrification
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Fig. 8. Intersection multiplicity computation with AlgebraicGeometryTools

5 Concluding Remarks

The new module AlgebraicGeometryTools of the RegularChains library per-
forms various operations on one-dimensional objects (computation of limit points
of constructible sets, tangent cones of space curves) as well as intersection multi-
plicity computation for zero-dimensional varieties. All these operations rely only
on regular chain techniques, that is, no calculations of Gröbner bases or standard
bases are performed.

Extending limit point computations to higher dimension is work in progress.
The cylindrification strategy (for reducing intersection multiplicity calculation
from n to n− 1 variables) may fail in some situations; improving this situation
is also work in progress.

Benchmarks reported in the PhD dissertation of the last author shows that
the command TriangularizeWithMultiplicity is computationally efficient in
the sense that it can process almost all examples which can be processed by the
Triangularize4

The RegularChains library is available at www.regularchains.org.

Acknowledgments. This work was supported by the NSFC (11301524) and
the CSTC (cstc2013jjys0002).
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Abstract. Multivariate Birkhoff rational interpolation is the most
general algebraic interpolation scheme. There is few literature on this
problem due to the complex structure of the rational function and the
non-continuity of the orders of the derivative interpolating conditions. In
this paper, by adding the lacking derivative conditions and setting the
artificial interpolating values as undetermined parameters, we propose
a parametric linearization method to convert the problem of finding a
multivariate Birkhoff rational interpolation function into solving a para-
metric polynomial system in which the coefficients in the numerator and
denominator are the unknowns. We use the parametric triangular decom-
position to solve the system and prove the solution provides a Birkhoff
rational interpolation function as long as there exist proper parameters
such that the denominator does not vanish at each interpolating point.
The algorithm is implemented in Maple 15.

Keywords: Birkhoff rational interpolation, triangular decomposition,
parametric polynomial system.

1 Introduction

Birkhoff interpolation is one of the most general and important polynomial inter-
polation problems. There exists a rich literature on the existence, uniqueness and
representations of the problem, such as [1–5]. In recent years, many scholars ap-
plied the Birkhoff interpolation in numerically solving boundary value problems
[6] and initial-value problems [7].

Rational functions sometimes are superior to polynomials with the same in-
terpolation data because they can achieve more accurate approximations with
the same amount of computation [8]. In addition, rational interpolation has a
natural way in interpolating poles whereas polynomial interpolation does not
[9]. In this paper, we study the Birkhoff rational interpolation problem. The
interpolation scheme consists of two components.
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a) A set of nodes Z, Z = {Yi}mi=1 = {(yi,1, . . . , yi,n)}mi=1, where Yi ∈ Kn, K is
a field.

b) The derivative conditions Si at each node Yi, i = 1, . . . ,m, where Si is a
subsets of Nn

0 . Some Si (i = 1, . . . ,m) may not be lower sets.

The multivariate Birkhoff rational interpolation problem is to find a rational

function r(X) =
p(X)

q(X)
satisfying

Li,α = Dαr(Yi) =
∂α1+···+αn

∂xα1
1 · · · ∂xαn

n
r(Yi) = ci,α, ∀α ∈ Si, (1)

where p(X) ∈ PT1 =
{
p | p(X) = p(x1, . . . , xn) =

∑
αi∈T1

aix
α1
1 · · ·xαn

n

}
, q(X) ∈

QT2 =
{
q | q(X) = q(x1, . . . , xn) =

∑
βi∈T2

bix
β1

1 · · ·xβn
n

}
, ai, bi ∈ K, T1, T2 are

subsets of Nn
0 , ci,α ∈ K are given constants, Li,α are functionals related to the

corresponding interpolation conditions.
The key character of multivariate Birkhoff rational interpolation is that the or-

ders of the derivative conditions at some nodes are non-continuous. Without the
non-continuity, i.e. all the Si’s are lower sets (i = 1, . . . ,m), the problem degen-
erates into an Hermit rational interpolation. Salzer [10] proposed a linearization
technique to deal with univariate Hermit rational interpolation. Whereas there is
no similar results for multivariate Hermit case, not even for Birkhoff rational in-
terpolation. In this paper, we propose a parametric linearization method to solve
the problem of multivariate Birkhoff rational interpolation and implement the
algorithm in Maple 15. The function is described in section 2 and one example
is shown in section 3. In section 4 the main idea of the algorithm is introduced.

2 Functionality

We created a function BirkhoffRationalInterp(Y,F) in Maple to implement the
multivariate Birkhoff rational interpolation algorithm.

Calling sequence
BirkhoffRationalInterp(Y,F).

Parameters
Y–list of points. Each point is represented as a row vector.

F–list of matrices. The i-th matrix is determined by the interpolation con-
ditions corresponding to the i-th point Yi. The number of the rows of the i-th
matrix equals to the number of the interpolation conditions according to the
i-th point. Each row of the i-th matrix [α1, . . . , αn, ci,α] denotes a interpolation
condition Dαr(Yi) = ci,α where α = (α1, . . . , αn).

Description
The BirkhoffRationalInterp command constructs the multivariate Birkhoff ra-
tional interpolation functions in a field K (default is R). The output of this
command is a list of the rational functions.

The packages “Groebner” and “RegularChains” are required.
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3 Example

Given a interpolation problem (see Table 1). Let Y := [[0, 0], [0, 1], [1, 0], [1, 1]];

Table 1. Interpolation problem

Yi (0,0) (0,1) (1,0) (1,1)

Si {(0, 0), (0, 1), (1, 1)}; {(0, 0), (1, 0), (1, 1)}; {(0, 0), (1, 1)}; {(0, 0), (1, 0), (0, 1)}
ci,α { 6 , 5 , 0 }; { 7 , 2 , -2 }; { 6 , -5/2 }; {20/3, -7/9 , 16/9}

F1 :=Matrix([[0, 0, 6], [0, 1, 5], [1, 1, 0]]), F2 :=Matrix([[0, 0, 7], [1, 0, 2], [1, 1,−2]]),
F3 :=Matrix([[0, 0, 6], [1, 1,− 5

2 ]]), F4 :=Matrix([[0, 0, 203 ], [1, 0, 169 ], [0, 1,− 7
9 ]]).

The output of the command BirkhoffRationalInterp(Y,[F1, F2, F3, F4]) is a
list [r1(x, y), r2(x, y)], where

r1(x, y) =
6− 44.217y+ 233.040x+ 77.917y2 − 221.333xy− 108.216x2

1− 8.203y+ 35.048x+ 12.874y2 − 34.997xy− 14.244x2
,

r2(x, y) =
6− 37.464y+ 2887.787x− 196.995y2 − 261.344xy− 2552.415x2

1− 7.077y + 430.953x+−26.560y2 − 46.423xy − 375.057x2
.

4 Underlying Theory

The main idea of the algorithm is as follows.
We firstly generalize the univariate linearization method proposed by Salzer in

[10] to multivariate Hermite case. Let L(α) = {β ∈ Nn
0 : βi < αi, i = 1, . . . , n}.

Lemma 1. If q(Yi) �= 0 (i = 1, . . . ,m), the Hermite rational interpolation sys-
tems

Dα
(
p/q
)
(Yi) = fi,α, i = 1, . . . ,m, α ∈ Ai (2)

is equivalent to the system

Dαp(Yi) =
∑

σ∈L(α)

fi,σD
α−σq(Yi), i = 1, . . . ,m, α ∈ Ai, (3)

where Ai, i = 1, . . . ,m, are lower sets, fi,σ, σ ∈ L(α), i = 1, . . . ,m, are the
given derivative values.

Secondly, for a given Birkhoff interpolation problem, we add the lacking
derivative conditions and setting the artificial interpolating values as undeter-
mined parameters, then we obtain a parametric Hermit rational interpolation
problem.
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Let S̃i = Si. For each α ∈ S̃i, if ∃β ∈ L(α) and β /∈ S̃i, then we add β

to S̃i, and set ci,β as an undetermined parameter. Finally, a parametric Hermit
rational system is derived.

Dα(p/q) = ci,α, ∀α ∈ S̃i, i = 1, . . . ,m, (4)

where ci,α, is a given constant if α ∈ Si, an undetermined parameter otherwise.
Now the original problem reduces to solving a parametric polynomial system.

We use the parametric triangular decomposition to solve the system and the
following theorem proves the solution provides a Birkhoff rational interpolation
function as long as there exist proper parameters such that the denominator
does not vanish at each interpolating point.

Theorem 1. If p/q is a solution of (1), then there exist some parameters ci,β
such that p, q satisfy

Dαp(Yi) =
∑

σ∈L(α)

ci,σD
α−σq(Yi), i = 1, . . . ,m, α ∈ S̃i. (5)

Conversely, if p, q ∈ K[X ] is a solution of (5), and q satisfies q(Yi) �= 0,
i = 1, . . . , n, then p/q satisfies (1).

Acknowledgements. The authors would like to thank Dr. Changbo Chen for
his valuable suggestions on solving the parametric polynomial system.
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Abstract. In this paper we define and discuss the generalized inverse
and Moore-Penrose inverse for Ore polynomial matrices. Based on GCD
computations and Leverrier-Faddeeva method, some fast algorithms for
computing these inverses are constructed, and the corresponding Maple
package including quaternion case is developed.

Keywords: Moore-Penrose inverse,Ore polynomialmatrices,Quaternion.

1 Introduction

Ore polynomial matrices are matrices over Ore algebras (including differential
operators and difference operators). It has a long research history, at least dated
back to Jacobson’s seminal work in 1940s. In past ten years, Ore matrices have
attracted more and more people in computer algebra area, and many important
properties of Ore matrices have been discussed by using symbolic computation
methods, for example, various fast algorithms for computing Hermite forms and
Smith forms, fraction-free algorithms for computing Popov forms (see, for ex-
ample, [2] and [8]).

It is well-known that the generalized inverse of matrices over commutative
rings (or fields), especially the Moore-Penrose inverse, play important roles in
matrix theory and have applications in many areas: solving matrix equations,
statistics, engineering, etc. This motivates us to consider the generalized inverse
of Ore polynomial matrices.

First we define the generalized inverse and the Moore-Penrose inverse for
Ore polynomial matrices, and prove some basic properties including uniqueness.
Unlike the commutative case, the generalized inverse for a given Ore polynomial
matrix may not exist. We use blocked matrices and greatest common right (left)
divisor computations to give some sufficient and necessary conditions for Ore
polynomial matrices to have the generalized inverses and the Moore-Penrose
inverses. Moreover when these inverses exist, we construct algorithms to compute
them. In quaternion case, we define generalized characteristic polynomials and
give an analogy version of Leverrier-Faddeeva algorithm.

All our algorithms are implemented in the symbolic programming language
Maple, and tested on examples. Our aim is to develop a Maple package for com-
puting the generalized inverses and the Moore-Penrose inverse of Ore polynomial

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 484–491, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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matrices, in particular, for quaternion case. To our best knowledge, it is the first
Maple package in this direction.

2 Definitions, Properties and Algorithms

Let D be a division ring (or called skew field) and σ : D → D be an auto-
morphism of D. A σ-derivation δ : D → D is a mapping satisfying: for any
a, b ∈ D,

δ(a+ b) = δ(a) + δ(b), δ(ab) = σ(a)δ(b) + δ(a)b.

The Ore polynomial ring R = D[x;σ, δ] is defined as the set of usual polyno-
mials in D[x] under the usual addition, but with multiplication defined by

xa = σ(a)x + δ(a), for any a ∈ D.

The Ore polynomial matrices Rm×n will be the set of all m × n matrices
with Ore polynomial entries. More properties can be found in, for example,
Jacobson[12] and Lam[14].

To consider Moore-Penrose inverses, we assume that D has an involution “∗”,
that is, “ ∗ ” is an anti-automorphism of order 1 or 2 on D. It is easy to check
that “ ∗ ” can be extended to D[x;σ, δ] as an involution as follows. For any
f =

∑n
i=0 aix

i ∈ R = D[x;σ, δ], we define

f∗ =
n∑

i=0

a∗i x
i.

Furthermore, “ ∗ ” can be extended to Ore polynomial matrices Rm×n in a
common way. Hence for any A ∈ Rm×n we can define the involution of transpose
AT of A as: AT = (A∗

ij)
T ∈ Rn×m.

Next we give the definition of Moore-Penrose inverses, and refer the reader to
[3] and [21] for details in commutative case.

Definition 1. A matrix A† ∈ Rn×m is called a Moore-Penrose inverse of A ∈
Rm×n if A† satisfies:

(i) AA†A = A (ii) A†AA† = A† (iii) (AA†)T = AA† (iv) (A†A)T = A†A.

People are also interested in the matrices which only satisfy some of the above
equations. If a matrix A{1} satisfies (i), then we say that A{1} is a {1}-inverse
of A or a generalized inverse of A. Similarly, {1, 2}-inverse (or more generally
{i, j, k}-inverse) can be defined.

Recall that A ∈ Dm×m is unitary if AAT = ATA = Im. One can prove the
following elementary properties that will be often used throughout this paper.
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Theorem 1. Let A ∈ Rm×n and B ∈ Rn×l. Then

(i) (AB)
T
= BTAT and AAT = (AAT )T .

(ii) If A has a Moore-Penrose inverse A†, then (AT )† =
(
A†)T , A† (A†)T AT =

A† = AT
(
A†)T A† and A†AAT = AT = ATAA†.

(iii) If A has a Moore-Penrose inverse A†, then A† is unique.
(iv) Let A have the Moore-Penrose inverse A†. If U ∈ Dm×m is a unitary

matrix, then (UA)† = A†UT .

Rao condition is a common assumption in commutative case. Now we can
define it over division ring D with an involution “ ∗ ”: for any a1, . . . , as ∈ R,

a1 = a1 · a∗1 + · · ·+ as · a∗s implies a2 = · · · = as = 0.

Clearly, Ore polynomial ring R = D[x;σ, δ] also satisfies Rao condition, in par-
ticular, when D = C(x) rational function field over complex number field C or
D = H(x) quotient skew field over quaternion polynomial ring H[x].

Throughout this paper, we assume that D is a division ring with an involution
“ ∗ ” which satisfies Rao condition, and R = D[x;σ, δ] is an Ore polynomial ring
over D.

Note that we require that A† (and other generalized inverses) must be in
Rn×m, not in matrices over its quotient skew fieldQ(R). Thus unlike the matrices
over fields, the Moore-Penrose inverse for some Ore polynomial matrices might
not exist.

In this paper, we first discuss the existence of the Moore-Penrose inverses
including using Jacobson normal forms. Some interesting results in commutative
case (see [3] and [22]) can be extended to Ore polynomial matrices. Here we just
list two interesting results.

Theorem 2. If E ∈ Rm×m is a symmetric projection, that is, E = E2 = ET ,
then E ∈ Dm×m.

Theorem 3. Let A ∈ Rm×n. Then A has the Moore-Penrose inverse A† if and

only if A = U

[
A1 A2

0 0

]
with U ∈ Dm×m unitary and A1A

T
1 + A2A

T
2 a unit in

Rr×r with r ≤ min {m, n}. Moreover,

A† =

[
AT

1

(
A1A

∗
1 +A2A

T
2

)−1
0

AT
2

(
A1A

T
1 +A2A

T
2

)−1
0

]
UT .

Next we outline how to use computing greatest common right (and left) di-
visors (gcrd) methods to find generalized inverses. First, from Section 3.7 of
Jacobson[12], we know that for a, b ∈ R, not both zero, we can compute the



Computing MP Inverses 487

GCRD g = gcrd(a, b), and u, v ∈ R such that ua + vb = g, and s, t ∈ R such
that sa = −tb = lclm(a, b). Furthermore we have

U =

[
u v
s t

]
∈ R2×2 such that U

[
a
b

]
=

[
g
0

]
.

Similarly, using greatest common left divisors and least common right multi-
plies, we can find a V ∈ R2×2 such that

[
a b
]
V =

[
d 0
]
. For general matrices,

using the above fact, we can prove the following theorem by induction:

Theorem 4. Given A = (aij) ∈ Rm×n, let r, c ∈ R be the gcrd of the entries
on the first column and the gcld of the entries on the first row of A, respectively,
that is, r = gcrd(a11, . . . , am1) and c = gcld(a11, a12, . . . , an1). Then there exist
unimodular matrices U ∈ Rm×m, V ∈ Rn×n such that

UA =

[
r ∗
0 ∗

]
, AV =

[
c 0
∗ ∗

]
.

Note that R is noetherian, a right inverse of A ∈ Rn×n is also a left inverse of
A. The following theorem provides a recursive method to compute {1}-inverse.

Theorem 5. Suppose that 0 �= a ∈ R, b = (b1, . . . , bn) ∈ R1×n and A ∈ Rm×n.

(i) If

[
a b
0 A

]
∈ R(m+1)×(n+1) has a {1}-inverse, then gcld(a, b1, . . . , bn) = 1.

(ii) If

[
a 0
0 A

]
∈ R(m+1)×(n+1) has a {1}-inverse, then a ∈ D and A has a {1}-

inverse.

Now we give an algorithm to compute {1}-inverse. The advantages of our
algorithm is that we could use some well-known fast algorithms for computing
gcrd, gcld, lclm and lcdm (see, for example, [4] and [15]).

Algorithm: Computing {1}-inverse

Input: A ∈ Rm×n.

Output: {1}-inverse A{1} of A or no such {1}-inverse exists.

1. Compute a unimodular U ∈ Rm×m such that

UA =

[
r ∗
0 ∗

]
.

2. Compute the gcld of the first row of UA. If gcld�= 1, return “no such {1}-
invere exists”. Otherwise goto next step.

3. Compute a unimodular V ∈ Rn×n such that

UAV =

[
1 0
∗ ∗

]
.
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4. Do row transformations, find a unimodular U1 ∈ Rm×m such that

U1UAV =

[
1 0
0 A1

]
.

5. Recursively apply Step 1 for A1, and so on.
6. Finally we have two unimodular matrices U0, V0 such that

U0AV0 = A0,

where (A0)ii = 1 or 0, i = 1, . . . ,min{m,n} and other entries equal zero.
7. return A{1} = V0A

T
0 U0.

In fact, in Step 6, we could rearrange the rows and columns of A0 such that
(A0)ii = 1, i = 1, . . . , r ≤ min{n,m}, and other entries are equal to zero.
Moreover, we can prove that r is equal to the rank of A.

Using above algorithm, we can compute other kinds of inverses. For example,
to compute {1, 2}-inverse of A, we first use above algorithm to find U0, V0 such
that

U0AV0 =

[
I 0
0 0

]
.

Then any {1, 2}-inverse of A is of the form V0

[
I S
T TS

]
U0, where S, T are arbi-

trary matrices with appropriate sizes.

As one of most important subclasses of Ore polynomials over division rings,
we are interested in quaternion (skew) polynomial rings. The algebra H of real
quaternion was discovered by Sir Rowan Hamilton in 1843, which is a four-
dimensional non-commutative algebra over real number field R with canonical
basis 1, i, j,k satisfying the conditions:

i2 = j2 = k2 = ijk = −1,

that implies

ij = −ji = k, jk = −kj = i, and ki = −ik = j.

Elements in H can be written as a unique way α = a + bi + cj + dk, where
a, b, c and d are real numbers, that is, H = {a+ bi+ cj+ dk | a, b, c, d ∈ R}. The
conjugate of α is defined as ᾱ = a− bi− cj− dk.

Since H is a skew field, there are several forms of quaternion polynomials de-
pending on the positions of coefficients. In our case, we will use one which put
the coefficients on the left side of a variable x, which it is also called regular
quaternion polynomials in [5] or quaternion simple polynomials in [17]. Further-
more, some Ore polynomials over H can be defined in a natural way, for example,
H[x;−] and H(t)[x; ∂

∂t ]. Some properties of quaternion (skew) polynomials and
matrices over them have been discussed with many applications in control theory
and physics (see, for example, [18] and [14]).
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Based on the special properties of quaternion, we give another method to com-
pute the Moore-Penrose inverse in quaternion case. First we define and discuss
generalized characteristic polynomial for quaternion polynomials, and then con-
sider the Leverrier-Faddeeva algorithm (see, [1], [6] and [7]) in quaternion case.
Finally we explore the interpolation for quaternion polynomials and quaternion
polynomial matrices and construct a fast algorithm. The detailed results will be
included in a full paper after the conference.

3 Implementation

Our Maple package includes two parts: general Ore polynomial matrices and
quaternion polynomial matrices.

In Part I, dedicated to general Ore polynomial matrices, all commands are
compatible with OreTools and OreAlgebras in Maple 17. We use the same com-
mands to set up Ore polynomials over fields and do basic computations including
gcrd, gcld, lclm and lcdm. Here are a few key commands in our package:

– OreMat(A,m, n): set up an m× n Ore matrix.
– Rgcrd(A, 1, j): compute gcrd((A)11, (A)j1) and make row transformation

such that (A)11 = gcrd((A)11, (A)j1) and (A)j1 = 0.
– Cgcld(A, 1, j): compute gcld((A)11, (A)1j) and make column transformation

such that (A)11 = gcld((A)11, (A)1j) and (A)1j = 0.
– Iinverse(A) returns {1}-inverse of A.
– MPinverse(A) returns the Moore-Penrose inverse of A.

Note that our methods work for Ore polynomials over division rings, in par-
ticular, over quaternions. As we know that there are no quaternion package
in Maple 17. Although there is a quaternion package available on Maple Help
website, it only includes some basic operations. No quaternion polynomials and
matrices are included. This motivates us to develop a Maple package for quater-
nion polynomials and matrices.

In Part II, dedicated to quaternion polynomial matrices, we develop this pack-
age from the beginning to keep consistence, that is, set up Maple commands for
quaternion operations first, which include norm, conjugate, similar, etc.

Secondly we set up Maple commands for quaternion polynomial operations.
Simple quaternion polynomials and quaternion skew polynomials with conjugate
“− ” are pre-defined. People can use the SetQuaternionRing command to define
various quaternion (skew) polynomials.

We prove that the Extended Euclidean Algorithm also works for quaternion
polynomials and use it to compute gcrd, lclm, etc. Some commands are as follows:

– qGCRD(f, g) returns the monic GCRD of quaternion polynomials of f and g.
– qExtendedGCRD(f, g, A, ’u’, ’v’) returns the monic GCRD of quaternion

polynomials of f and g, and two pairs {u1, v1} and {u2, v2} such that

u1f + u2g = GCRD(f, g), v1f + v2g = 0.

where v1f is the LCLM of f and g. The parameter A presents a quaternion
polynomial defined by the SetQuaternionRing function.
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Regarding matrices over quaternion (skew) polynomials, we develop basic
matrix operations and three kinds of row (column) transformations. Combing
Part I and Part II, we can compute the generalized inverses for quaternion (skew)
polynomial matrices.

In the final part of our package, we implement the Leverrier-Faddeeva algo-
rithm for quaternion polynomials and use Lagrange interpolation in quaternion
to construct a fast algorithm. Here are some key commands:

– LFMPinverse(A) returns the Moore-Penrose inverse of quaternion polyno-
mial matrix A by using Leverrier-Faddeeva algorithm.

– Linterpolation([a1, .., an], [b1, .., bn]) returns a quaternion polynomial f such
that f(ai) = bi.

– LLFMPinverse(A) returns the Moore-Penrose inverse of quaternion poly-
nomial matrix A by using Lagrange interpolation and Leverrier-Faddeeva
algorithm.

Acknowledgment. This research was supported by the grants from the Na-
tional Sciences and Engineering Research Council (NSERC) of Canada and
URGP from the University of Manitoba.
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Abstract. We describe here a properly recent application of the
Gröbner Cover algorithm (GC) providing an algebraic support to
Dynamic Geometry computations of geometrical loci. It provides a com-
plete algebraic solution of locus computation as well as a suitable taxon-
omy allowing to distinguish the nature of the different components. We
included a new algorithm Locus into the Singular grobcov.lib library
for this purpose. A web prototype has been implemented using it in
Geogebra.

Keywords: Locus, Taxonomy, Dynamical Geometry, Groebner Cover.

1 Introduction

1 One of the defining characteristics of Dynamical Geometry (DG) is obtaining
geometrical loci problems. Neverthless, the existing DG software are not able to
give a satisfactory answer. This is the case for the first standard DG systems
developed in the late 80’s (such as Cabri and The Geometer’s Sketchpad), as
well as for more recent ones, such as GeoGebra or Java Geometry Expert. In
DG systems, it is often the case that locus determination is purely graphical,
producing an output that is not robust enough and not reusable by the given
software. Moreover, extraneous objects are frequently appended to the true locus
as side products of the locus determination process.
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Using the Gröbner Cover we are able to give an exact algebraic result,
allowing moreover to give a taxonomy of the different locus components. In
section 2 we give a summary of the Gröbner Cover. In section 3 we give
the locus taxonomy obtained using it, and describe the new Locus algorithm.
Finally, in section 4 we show characteristic examples justifying the taxonomy
and showing its functionality. A web prototype [3] has been implemented using
the new algorithm in Geogebra.

2 The Gröbner Cover

The Gröbner Cover algorithm for discussing parametric polynomial ideals
gives a canonical description, classifying the solutions by their characteristics
(number of solutions, dimension, etc.). This is used here for defining a taxon-
omy of geometrical loci and to implement it in the new algorithm Locus. It is
included in the Singular grobcov.lib library allowing its use by DG software.

The Gröbner Cover provides the analog of the reduced Gröbner basis of
an ideal for parametric ideals. Its existence was proved by Wibmer’s Theorem
[6], and the method and algorithms were developed in [5]. Montes implemented
in Singular the grobcov.lib library [7], whose actual version incorporates Kapur-
Sun-Wang algorithm [2] for computing the initial Gröbner System used in grob-

cov algorithm, as described in [4], and recently also the Locus algorithm de-
scribed here. A more detailed description can be seen in [1].

Let y = y1, . . . , yn be the set of variables and u = u1, . . . , um the set of
parameters. Given a generating set F = {f1, · · · , fs} ⊂ Q[u][y] of the parametric
ideal I = 〈F 〉 and a monomial order (y in the variables, the grobcov algorithm
determines

– the unique canonical partition of the parameter space Cm into locally closed
sets (segments) with associated generalized reduced Gröbner basis:

GC = {(S1, B1, lpp1), . . . , (Sr, Br, lppr)}.

– The segments Si are disjoint locally closed subsets of Cm and ⊕iSi = Cm.
– The basisBi of a segment Si has fixed set of leading power products (lpp), who

ensures that the type of solutions is the same over all points of the segment,
and is the generalized reduced Gröbner basis of 〈F 〉 over the segment Si.

– The lpp’s are included in the output, even if they can be seen on the basis,
to characterize the segments and facilitate the applications.

– Moreover, if the ideal is homogeneous, the lpp’s are characteristic of the
segment, no other segment having the same lpp’s.

The generalized reduced Gröbner basis Bi of a segment Si is formed by a set of
monic I-regular functions over Si. An I-regular function, representing an element
of the basis, allows a full-representation in terms of a set of polynomials that
specialize for every point u0 of the segment, either to the corresponding element
of the reduced Gröbner basis of the specialized ideal Iu0 after normalization, or
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to zero. It also allows a generic representation given by a single polynomial that
specializes well on an open subset of the segment and to zero on the remaining
points of it. Usually it is sufficient with the generic representation, and we can,
if needed, compute the full representation from it using the extend algorithm.

The segments Si are given in canonical P-representation, given by a set of
prime ideals of the form

Prep(S) = {{pi, {pij : 1 ≤ j ≤ ri}} : 1 ≤ i ≤ s}
representing the set:

S =
s⋃

i=1

⎛⎝V(pi) \
ri⋃
j=1

V(pij)

⎞⎠ .
Each V(pi) \

⋃ri
j=1 V(pij) is a component of the segment, and its representative

{pi, {pij : 1 ≤ j ≤ ri}}, by abuse of language, is also denoted a component when
there is no ambiguity. pi is called the top of the component, and {pij : 1 ≤ j ≤ ri}
the holes.

3 Locus Taxonomy

A geometric locus is a set of points satisfying some conditions. Locus computa-
tion is an important issue in Dynamic Geometry, where the term locus generally
refers to loci of the following kind: determine the trajectory determined by the
different positions of a point P (tracer), corresponding to the different positions
of a second point M (mover) along the path where it is constrained by the con-
struction. Nevertheless, the actual existing DG software do not provide correct
algebraic solutions.

Using the Gröbner Cover we are able to give a precise algebraic answer.
We shall consider more general locus problems in the plane with a tracer point
P (u1, u2), whose coordinates u = (u1, u2) are considered as parameters and
the remaining coordinates, distances, etc. y = y1, . . . , yn of the construction as
variables. The locus problem will give rise to a system F ⊂ Q[u][y]. The locus
determination consists now in obtaining the conditions over the parameters u
for which there are solutions for the y.

In the Gröbner Cover the values of the parameters and variables are con-
sidered over C. Thus we can provide only locus solutions over the complex C,
whereas DG is interested in the real projection, who is not always obvious. More-
over, we consider only problems that can be be formulated exactly in terms of
equations with coefficients in Q. We also restrict the study to plane loci problems,
even if it can be generalized to higher dimensional spaces. Let

V(F ) = {(u,y) ⊂ C2+n : ∀f ∈ F, f(u,y) = 0}
be the set of solutions of F . Denote π1 and π2 the projections onto the parameter
and variable spaces:

π1 : C2+n −→ C2 π2 : C2+n −→ Cn

(u,y) �→ u (u,y) �→ y
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Table 1. Locus algorithm

L ← Locus(G)
Input: G = {(Si, Bi, lppi) : i ≤ i ≤ s} the Gröbner cover of an ideal in Q[u][y],

where Si = ∪jCij and Cij = {(pij , {pijk : 1 ≤ k ≤ rij}) : 1 ≤ j ≤ ri}.
Output: L, the components of the P-representation of the locus

L = {{qi, {qij : 1 ≤ j ≤ si}, typei} : 1 ≤ i ≤ s}
begin
C1 = Select the segments of G with dim(lppi) = 0 # normal-segments
C1 = Specialize the basis on every component of C1 and mark the component
‘Normal’ if the basis continues to depend on the u’s and ‘Special’ if not

C2 = Select all the components of the segments of G with dim(lppi) > 0
# non-normal segments

L1 = LCUnion(C1), marking the components of L1 as
‘Normal’ or ‘Special’ inheriting the character of the full

L2 = LCUnion(C2);
Mark the components of L2 of dim(C) = 0 and dim(C) > 0 respectively as
‘Accumulation’ and ‘Degenerate’ components

L = L1 ∪ L2

end

The taxonomy that we give is motivated by the interpretation of the solutions
in a lot of loci problems of different kind (see [1]):

Generic Locus L. associated to the parametric polynomial system F (u,y) is
the set L = π1(V(F )) ⊂ C2,(i.e. the set of values of the coordinates of the tracer
for which there exist solutions).

Taxonomy

- Normal locus: are the points u ∈ C2 of the locus L for which
dim(π2(V(F ) ∩ π−1

1 (u))) = 0 (i.e. the set of points in the parameter space
that correspond to a single (or a finite number of) positions of the variables).

- Normal components: A component Cs of the normal locus is normal
if dim(Cs) = dim(π2(V(F ) ∩ π−1

1 (Cs))) (i.e. the components of the nor-
mal locus whose different points are generated by different points of the
variables).

- Special components: A component Cs of the normal locus is special
if dim(Cs) > 0 and dim(π2(V(F ) ∩ π−1

1 (Cs))) = 0 (i.e. the components
of the normal locus of dimension 1 that are generated by a single (or a
finite number of) points of the variables).

- Non-normal locus: are the points u ∈ C2 of the locus L for which
dim(π2(V(F ) ∩ π−1

1 (u))) > 0 (i.e. the set of points in the parameter space
that correspond to infinite positions of the variables).

- Degenerate components: are the components Cd of the non-normal
locus with dim(Cd) > 0 (i.e. the components of the non-normal locus of
dimension 1).
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- Accumulation components (points): are the components Ca of the
non-normal locus with dim(Ca) = 0 (i.e. the zero dimensional compo-
nents of the non-normal locus).

Problems in section 4 are chosen to justify the taxonomy. The geometric re-
levance of this algebraic classification of the different components of a locus is
open to interpretation by the user. Dynamic Geometry systems could present the
collection of different parts (with the corresponding typology) of the computed
locus, letting to the user the decision of which pieces are to be considered or
discarded in a particular context.

Based on our experience (see section 4), we tend to discard the degenerate
components as geometrically irrelevant, as they usually correspond to degenerate
instances of a construction, such as two coincident vertices in a triangle. However,
we consider the accumulation points as forming part of the (geometric) locus,
since they represent special points that are determined by infinitely many values
of the variables. The special components are generally also discarded, as they are
generated by a single position of the mover, but sometimes they can be useful.

We designed the Locus algorithm (Table 1) that takes the output of the
grobcov and classifies the appropriated components of the segments following
the defined taxonomy. We show now some examples justifying our taxonomy
and its functionality.

4 Applications and Functionality

4.1 Pascal’s Limaçon

The following Problem is considered here to justify the definitions of “Normal”
and “Special” components of the “Normal Locus”. Consider the following locus
problem. Let O be a fixed point on a circle c of radius r, and l be a line passing

O

Q
c

P

P ′

Fig. 1. Pascal limaçon



Gröbner Cover for Locus Computation 497

through O(0, r) and Q(y1, y2), a general point on c. Let P (u1, u2) be a point on
l such that distance(P,Q) = k, where k is a constant. The limaçon of Pascal
is the locus set traced by P as Q moves along c, as shown on Figure 1. Setting
r = 2 and k = 1, the ideal (set of equations) determining the locus is:

F = 〈y21 + y22 − 4, (u1 − y1)
2 + (u2 − y2)

2 − 1, (2− y2)u1 + y1(u2 − 2)〉

Computing the solution using grobcov and locus algorithms in Singular we do
the following:
Input:

LIB "grobcov.lib";

ring R=(0,u1,u2),(y1,y2),lp;

short=0;

ideal F= y1^2+y2^2-4, (u1-y1)^2+(u2-y2)^2-1, (2-y2)*u1+y1*(u2-2);

def L=locus(grobcov(F));

"locus(grobcov(F))="; L;

Output:

locus(grobcov(F))=

[1]:

[1]:

_[1]=(u1^4+2*u1^2*u2^2-9*u1^2+u2^4-9*u2^2+4*u2+12)

[2]:

[1]:

_[1]=1

[3]:

Normal

[2]:

[1]:

_[1]=(u1^2+u2^2-4*u2+3)

[2]:

[1]:

_[1]=1

[3]:

Special

Locus algorithm determines and characterizes two components: a “Normal”
component that is the Pascal limaçon’s concoid, and a “Special” circle generated
by the single mover point O, for which the construction is degenerate. Usually
these Special components are to be discarded by Dynamical Geometry software,
and the algorithm returns it as “Special” letting to the user the decision about
its consideration.

4.2 Offset of a Circle

Now we want to justify the definition of “Accumulation” and “Degenerate” com-
ponents of a locus considering the locus of the offset of a circle of radius 1 at
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distance 1. The given circle has as equation g : y21 + y
2
2 − 1. The family of circles

who generate the envelope is F = (u1 − y1)
2 + (u2 − y2)

2 − 1, where (u1, u2) is
some point of the envelope. To compute the envelope we have to add the equa-

tion
∂F

∂y1

∂g

∂y2
− ∂F

∂y2

∂g

∂y1
, ensuring that the envelope is tangent in each point to

a curve of the family. We have to consider thus the following ideal:

H = 〈y21 + y22 − 1, (u1 − y1)
2 + (u2 − y2)

2 − 1, y1u2 − y2u1〉.

The standard method will eliminate (y1, y2) to obtain the envelope. But we can
consider (y1, y2) as the mover and take (u1, u2) as the tracer using the ring
R=(0,u1,u2),(y1,y2),lp; and the command locus(grobcov(H)).

Doing so we also obtain two components: The “Normal” component consisting
of the circle u21+u

2
2−4, plus the “Accumulation” point component (u1, u2) at the

center generated by all the circles. The accumulation points are to be considered
as part of the offset by Dynamical Geometry software,.

4.3 Improvements: Detecting Bad Mover Positions

Locus algorithm as described in Table 1 is incomplete, and must be improved.
It assumes that the generic segment of the Gröbner Cover has basis {1}, as
we do not expect a locus that contents the whole plane except some curves.
Nevertheless, in the next example the generic segment does not have basis {1}.
The reason is that there is a point of the mover for which the construction is
degenerate, and would give rise to a bidimensional solution. It is necessary to
eliminate this point of the mover to obtain the correct expected locus.

A(3, 4)

O(3, 1)

T (x, y)

M(y1, y2)

B(3,−2)

P (y3, y4)

Fig. 2. Locus described by T (and P ) as M runs along its circle
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We programmed our algorithm to be able to detect and eliminate such bad
mover point positions producing degenerate solutions in the locus.

Consider the following locus construction (see Figure 2). The moverM(y1, y2)
runs over the circle with center at O(3, 1) and radius OA, where A = (3, 4).
We consider the line parallel to the line AM passing through O and the line
perpendicular to it passing through the point B = (3,−2). Both lines intersect
at point P (y3, y3). Consider the line AP and the circle with centerM and radius
MP . We consider this intersection as the tracer point(s): T (x, y) and T ′ = P .

The polynomial system describing the problem is the ideal F given by

F = 〈(y1 − 3)2 + (y2 − 1)2 − 9, (4− y2)(y3 − 3) + (y1 − 3)(y4 − 1),
(y1 − 3)(x1 − y1)− (4− y2)(y4 − y2),
(y4 − 4)x− (y3 − 3)y + 4y3 − 3y4,
(x− y1)

2 + (y − y2)
2 − (y1 − y3)

2 − (y2 − y4)
2〉

For the computation we use the ring ing R=(0,x,y),(x1,x2,y1,y2),lp;.With
this improvement we obtain the proper two irreducible “Normal” components

V(x2 − 6x+ y2 + y + 7),
V(x4 − 12x3 + 2x2y2 − 13x2y + 236x2 − 12xy2 + 78xy − 1200x+ y4

−13y3 + 60y2 − 85y + 1495).

The output produced by the algorithm includes a message informing of the
removal of bad mover positions (point A(3, 4) in our case).

Geometrically, the problem is that when the mover is on the point (y1 =
3, y2 = 4), the line AM is not defined. The algorithm eliminates the segments of
the Gröbner Cover containing this point that is detected on the generic segment.

This locus is example 9 in our prototype [3]. By clicking the Find locus button,
we obtain the locus description shown on Figure 2.
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Abstract. We report a preliminary discussion on the usability of the
RegularChains library of Maple for the automatic computation of plane
geometric loci and envelopes in graphical interactive environments. We
describe a simple implementation of a recently proposed taxonomy of
algebraic loci, and its extension to envelopes of families of curves is also
discussed. Furthermore, we sketch how currently unsolvable problems in
interactive environments can be approached by using the RegularChains
library.

Keywords: parametrical systems solving, constructible sets, dynamic
geometry.

1 Introduction

A Dynamic Geometry System (DGS) is a computer program that allows an
accurate on–screen drawing of geometric diagrams and their interactive manip-
ulation by mouse dragging or similar device. A key issue of these systems is
their ability to display the trajectory of a point that depends on another one
bound to a linear path, that is, a geometric locus. Traditionaly, DGS strategy to
display loci consists of sampling the linear path and, for each sample, plotting
the corresponding position of the locus point. Some ad–hoc heuristics are then
applied to join contiguous points, ending with a visually continuous locus.

A locus can be seen as the projection on the space of its coordinates of the
surface defined by the problem constraints, and Gröbner based elimination was
proposed as a technique to find algebraic knowledge about loci [1]. Nevertheless,
since Zariski closures are obtained as result, loci equations can include spurious
points, and complete 1–dimensional objects can even appear due to construction
degeneracies. A finer analysis of loci problems can be done through a recently
proposed taxonomy [2], and it has been implemented using the GröbnerCover
algorithm [3]. Here we describe an alternative implementation of the taxonomy
using Maple’s RegularChains library. The results seem to be competitive when
dealing with the above class of loci. Despite license problems can emerge when
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linking Maple with widespread free DGSs as GeoGebra, the special attention
given by RegularChains to constructible sets justifies considering this library.
Furthermore, other subpackages will allow extending dynamic geometry issues
to real geometry.

2 Loci as Parametric Problems

We consider a locus problem where all constraints can be described as poly-
nomials. Let (x, y) the coordinates of a generic locus point, and x1, . . . , xn the
remaining variables. So, the problem can be seen as a parametric polynomial sys-
tem F ⊂ Q[x, y][x1, . . . , xn], where x, y are parameters and x1, . . . , xn variables.
See [4] for an precise setting description and a full account on the taxonomy.
Roughly speaking, the taxonomy classifies locus points as

– normal: if for these parameter values the system has finite number of solu-
tions;

– non-normal: if the system has infinite solutions for these parameter values.

Thus, in order to perform this classification we can count the number of solutions
of F in RegularChains by using the command ComplexRootClassification. For
the sake of illustration, we consider the limaçon of Pascal, an algebraic curve
obtained as a locus as follows. Let Q(x1, x2) be a point on the circle centered
at the origin and with radius 2, O(0, 2) and P (x, y) a point at distance 1 from
Q and lying on the line OQ. As Q glides on the circle, P describes the limaçon.
The polynomial system is

F = {x21+x22−4, (y−2)x1−x2x+2x, x21+x
2
2+(−2x)x1+(−2y)x2+x

2+y2−1},

and the Maple code for classifying the locus points,

with(RegularChains); with(ConstructibleSetTools):

with(ParametricSystemTools); R := PolynomialRing([x1, x2, x, y]):

F := [x1^2+x2^2-4,(y-2)*x1-x2*x+2*x,..

..x1^2+x2^2-2*x*x1-2*y*x2+x^2+y^2-1]:

crc := ComplexRootClassification(F, 2, R):

map(x -> [Info(x[1],R),x[2]],crc);

returns three constructible sets where the system has exactly one complex solu-
tion,

[[x4 + (2y2 − 9)x2 + y4 − 9y2 + 4y + 12], [y − 2, x2 + y2 − 4y + 4, 2y − 3]],

[[4x2 − 15, 2y − 3], [1]], [[x2 + y2 − 4y + 3], [2y − 3]],

and two other constructible sets determining two system solutions

[[x, y − 2], [1]], [[4x2 − 3, 2y − 3], [1]].
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Therefore, all locus points are normal. In order to further analyze these points
(recall the taxonomy [4]), we count the number of solutions of the original system
plus each constructible set, once inverted the roles of parameters and variables.
If we get infinite solutions for a constructible set, we declare it as a special locus
part. In the case we are dealing with, that happens for the third constructible
set, [[x2 + y2 − 4y + 3], [2y − 3]]:

R := PolynomialRing([x, y, x1, x2]):

F := [x1^2+x2^2-4,(y-2)*x1-x2*x+2*x,..

..x1^2+x2^2-2*x*x1-2*y*x2+x^2+y^2-1,x^2+y^2-4*y+3]:

H := [2*y-3]:

crc := ComplexRootClassification(F, H, 2, R):

map(x -> [Info(x[1],R),x[2]],crc);

returns

[[[[x1, x2 − 2], [1]],∞]],

meaning that the circle centered at O must be labeled as a special locus part.
Note that, although algebraically pertinent, this circle comes from a degeneracy
in the construction, since it stems from the coincidence of points O and Q.

3 Envelopes as Loci

Envelope computation can be also seen as solving a parametric system. As in loci,
elimination can include spurious factors. Thus, applying the taxonomy can drive
to improvements when automatically computing envelopes in a DGS. Envelope
points are classified as normal or non–normal points as in loci. Consider, for
instance, the envelope of horizontal lines through a point on the unit circle.
Using the above Maple commands we obtain

R := PolynomialRing([x, y, x1, x2]):

F := [x1^2+x2^2-1, y-x2, x1]:

crc := ComplexRootClassification(F, 2, R):

map(x -> [Info(x[1],R),x[2]],crc);

[[[[y + 1], [1]], [[y − 1], [1]], 1]],

that is, the envelope is y = ±1, where all points are normal. Nevertheless, study-
ing the number of solutions of the system, interchanging roles of parameter and
variables, we get for the first constructible set

R := PolynomialRing([x, y, x1, x2]):

F := [x1^2+x2^2-1, y-x2, x1,y+1]:

H := [1]:

crc := ComplexRootClassification(F, H, 2, R):

map(x -> [Info(x[1],R),x[2]],crc);
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[[[[x1, x2 + 1], [1]],∞]].

Thus, strictly following the taxonomy, the line y = −1 should be declared as
special, while it is an ordinary part of the envelope. On the contrary, the en-
velope of lines passing through A(0, 1) and a point gliding along the unit circle
exactly consists of A, whereas Maple finds a constructible set where all points
are normal, [[y−1], [x]], and another one with a non–normal point, [[x, y−1], [1]],
that is, the point A. Note that the first constructible set should be removed from
the envelope result (it comes from a construction degeneration) while the taxon-
omy would label it as special. Currently, we do not know how to automatically
distinguish the two cases.

4 Further Work

Many dynamic geometry constructions can only be expressed in a essential semi-
algebraic way. Each time a segment is used in a locus construction, for example,
it is highly probable that the above computations include extra parts, since tra-
ditionally DGSs using these methods replace the segment by the whole line.
Also, envelopes are defined in R, while we work in C. The subpackage SemiAlge-
braicSetTools will allow to extend the class of dynamic geometry problems able
to be automatically solved. As a simple illustration, consider two circles each
one with a point gliding along it. The locus of their midpoint is a 2–dimensional
part of the plane, currently only descriptible in any DGS by displaying a more
or less accurate screen. There are techniques and algorithms capable of giving
more precise answers. Our future work will study such problems in the context
of dynamic geometry.

Acknowledgment. Both authors were partially supported by the Spanish Min-
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ment Fund (ERDF), under the Project MTM2011–25816–C02–02.
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Abstract. In the authors’ previous work, the concept of comprehensive
triangular decomposition of parametric semi-algebraic systems (RCTD
for short) was introduced. For a given parametric semi-algebraic sys-
tem, say S, an RCTD partitions the parametric space into disjoint semi-
algebraic sets, above each of which the real solutions of S are described
by a finite family of triangular systems. Such a decomposition permits to
easily count the number of distinct real solutions depending on different
parameter values as well as to conveniently describe the real solutions
as continuous functions of the parameters. In this paper, we present the
implementation of RCTD in the RegularChains library, namely the Re-
alComprehensiveTriangularize command. The use of RCTD is illustrated
by the stability analysis of several biological systems.

Keywords: Parametric polynomial system, real comprehensive trian-
gular decomposition, RegularChains.

1 Introduction

Parametric polynomial systems arise naturally in many applications. For this
reason, the computer algebra community has contributed many techniques to
deal with such systems, by means of various tools such as cylindrical algebraic
decomposition [9], quantifier elimination [2,1], comprehensive Gröbner bases [14],
discriminant varieties [11] or border polynomials [15], as well as comprehensive
triangular decomposition (CTD).

The concept of comprehensive triangular decomposition was introduced in [5]
in order to study the specialization properties of regular chains. As a byproduct,
one can determine for which parameter values, a parametric polynomial system
has complex solutions, or, in general, compute the projection of a constructible
set, or do quantifier elimination over an algebraically closed field. In [3], differ-
ent variants of CTDs were proposed, including disjoint squarefree CTD and real
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CTD (RCTD). The former is used to count and describe distinct complex solu-
tions depending on parameters, whereas the latter is used to count and describe
distinct real solutions depending on parameters.

Informally speaking, an RCTD of a parametric semi-algebraic system S is a
partition of the parametric space into disjoint semi-algebraic sets together with
a family of triangular systems, such that above each cell in the partition, the real
solutions of S are disjoint (if finitely many) and are described by a sub-family of
the triangular systems. RCTD is implemented as RealComprehensiveTriangularize
in the RegularChains library.

In Section 2, we illustrate the functionality of RCTD through the analysis
of the stability of a simple dynamical system. In Section 3, we present some
more advanced applications of RCTD. In Sections 4 and 5, we briefly explain
the theory behind RCTD and list the related RegularChains commands.

2 Functionality

In the field of biology, a very important problem is to study the stability of the
equilibria (or steady states) of a biological system. For a biological system, say
BS, modeled by a system of autonomous differential equations, say

DS :
dx(t)

dt
= F (u,x),

the equilibria of BS (or DS) are defined as the real zeros of F (u,x). Here u
denotes parameters.

Assuming that F is a vector of rational functions in Q[u,x], the study of the
equilibria of BS can often be reduced to solving a parametric semi-algebraic
system. Taking also into consideration the fact that certain degenerated behav-
iors have no practical interest, in [6,3], the authors introduced the concept of
real comprehensive triangular decomposition (RCTD). Broadly speaking, for a
parametric semi-algebraic system S, a RCTD is given by

(a) a partition of the whole parameter space such that above each cell
(i) either the corresponding constructible system induced by S has infinitely

many complex solutions,
(ii) or S has no real solutions,
(iii) or S has finitely many real solutions which are continuous functions of

the parameters and with disjoint graphs.
(b) in Case (iii), a description of the solutions of S as functions of the parameters

by means of triangular systems.

RealComprehensiveTriangularize is the RegularChains command computing
RCTDs. We apply it to the stability analysis of the dynamical system below, an
instance of the multiple switch model proposed in [8] by Cinquin and Demongeot:

dx

dt
= −x+ s

1 + y2

dy

dt
= −y + s

1 + x2
,
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where x, y denote concentrations of two proteins and s denotes the strength of
unprocessed protein expression. One wishes to determine the values of the pa-
rameter s for which this system is bistable, that is, those parameter values for
which the system has two asymptotically stable equilibria. Figure 1 shows how
to set up the problem while Figure 2 illustrates the stability analysis conducted
through RCTD computation. On this latter, one can see that the biological
system is bistable if and only if s > 2 holds. Moreover, in this case, the concen-
trations x and y are expressed as functions of s. The following plots illustrate
the bi-stability.

Let us explain now the usage of RealComprehensiveTriangularize as shown in
Figure 2. The function takes three arguments: (1) a semi-algebraic system, (2)
the number of its parameters and (3) a polynomial ring for which the list of its
variables are sorted in descending order. For this example, the second argument
“1” means that the last variable, that is s, is the only parameter. The output
consists of (i) two squarefree semi-algebraic systems in a triangular shape and,
(ii) three semi-algebraic sets forming the partition of the parameter space. In this
output, the list of indices following a semi-algebraic set C specifies the triangular
systems describing the solutions above C. If this list of indices is empty, then
the input parametric system has no real solutions above C.

After an RCTD is computed, the different numbers of real solutions (de-
pending on the parameter values) are stored in a data-structure. To know the
parameter values corresponding to a particular number of real solutions, one can
call RealComprehensiveTriangularize with the computed RCTD as input, as well
as the polynomial ring and the prescribed number of real solutions.

The real solutions are encoded by squarefree semi-algebraic systems. As we
can see on Figure 2, such system consists of a set of equations in a triangular
shape and a set of positive inequalities. Moreover, the (real) zero set of any
squarefree semi-algebraic system is non-empty and, its dimension is the same as
the number of parameters.
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Fig. 1. Study of the stability of equilibria of a biological system: problem set-up

3 Application

In this section, we show how RealComprehensiveTriangularize is used to analyze
the stability of a real life biological system from [13], which was also solved by
other parametric solving tools in [12].

The system models the antagonistic interactions between cyclin-dependent
kinases and the anaphase promoting complex. It is described by the following
dynamical system.

dx
dt = k1 − (k′2 + k

′′
2 y)x

dy
dt =

(k′
3+k

′′
3 A)(1−y)

J3+1−y − k4mxy
J4+y ,

where x and y denotes the concentrations of cyclin B/Cdk dimers and ac-
tive Cdh1/APC complexes, k1, k

′
2, k

′′
2 , k

′
3, k

′′
3 , k4 are rate constants, J3, J4 are

Michaelis constants, and m is a real parameter representing cell “mass”. Fig-
ure 3 shows how to compute conditions on m such that the system is bistable
by RealComprehensiveTriangularize. The whole computational process is similar
to that of Section 2. Isolating the real roots of the univariate polynomial in
the output, we obtain three real roots: 0.1097139798, 0.5273193027, 1.132028425.
So the system is bistable if and only if 0.1097139798 < m < 0.5273193027 or
m > 1.132028425.

4 Related Notions and Commands

The notion of a regular chain, introduced independently in [10] and [16], is closely
related to that of a triangular decomposition of a polynomial system. Broadly
speaking, a triangular decomposition1 of a polynomial system S is a set of simpler
(in a precise sense) polynomial systems S1, . . . , Se such that

1 http://en.wikipedia.org/wiki/Triangular_decomposition

http://en.wikipedia.org/wiki/Triangular_decomposition
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p is a solution of S ⇔ ∃i : p is a solution of Si. (1)

When the purpose is to describe all the solutions of S, whether their coordi-
nates are real numbers or not, (in which case S is said to be algebraic) those
simpler systems are required to be regular chains2. If the coefficients of S are
real numbers and if only the real solutions are required (in which case S is said
to be semi-algebraic), then those real solutions can be obtained by a triangular
decomposition into so-called regular semi-algebraic systems, a notion introduced
in [4]. In both cases, each of these simpler systems has a triangular shape and re-
markable properties, which justifies the terminology. We refer to [7] for a formal
presentation on the concepts of a regular chain and a triangular decomposition
of a polynomial system

Fig. 2. Study of the stability of equilibria of biological system: solution with RealCom-
prehensiveTriangularize

Consider a multivariate semi-algebraic system

f1 = 0, . . . , fm = 0, h1 �= 0, . . . , ht �= 0, p1 > 0, . . . , ps > 0, (2)

with f1, . . . , fm, h1, . . . , ht, p1, . . . , ps ∈ Q[u1, . . . , ud, y1, . . . , y�]. where u1, . . . , ud
are regarded as parameters and y1, . . . , y� are regarded as unknowns. Various
ways of solving System (2) are available and implemented in the RegularChains
library.

One may want to express y1, . . . , y� as functions of u1, . . . , ud. This is es-
sentially done by the command RealComprehensiveTriangularize which was
presented in the previous sections.

2 More generally, a triangular decomposition into regular chains of a polynomial
system S with coefficients in an arbitrary field K describes the solutions of S whose
coordinates are in the algebraic closure of K.
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Fig. 3. Determine when a biological system is bistable

Alternatively, one may want to simply determine the (u1, . . . , ud)-values for
which there exists at least one (y1, . . . , y�)-value satisfying System (2). This
question is often refered as existential quantifier elimination and can be an-
swered by RealComprehensiveTriangularize as well. However, the commands
QuantifierElimination and Projection are more specialized answers to this
question. In some circumstances, they may run faster than RealComprehensive-

Triangularize or provide more compact answers.
Of practical interest is a variant of the previous question, which is specified

as follows. Given a non-negative integer range [k1, k2], with k1 ≤ k2, deter-
mine the (u1, . . . , ud)-values for which there exist at least k1 and at most k2
(y1, . . . , y�)-values satisfying System (2). This question is often refered as real
root classification [15] and can be answered by the RealRootClassification

command of the RegularChains library.
Finally, we observe that, in practice, parametric semi-algebraic systems are

often given by linear polynomials, that is, multivariate polynomials of total de-
gree 1. For this case, the LinearSolve command of the RegularChains library
implements a variant of the Fourier-Motzkin Algorithm.

5 Theoretical Concepts Underlying RCTDs

This section gathers the mathematical definitions and properties underlying the
notion of RCTD. Recall that K is a field; we denote by K its algebraic closure. A
(squarefree) regular chain T of K[u,y] specializes well at a point u ∈ Kd if T (u)
is a (squarefree) regular chain of K[y] and init(T )(u) �= 0 holds, where init(T )
denotes the product of the initials of T .
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For instance, the regular chain T =

⎧⎨⎩
(s+ 1)z
(x + 1)y + s
x2 + x+ s

with s < x < y < z

does not specialize well at s = 0 or s = −1. Indeed, we have:

T (0) =

⎧⎨⎩
z
(x+ 1)y
(x+ 1)x

T (1) =

⎧⎨⎩
0
(x+ 1)y − 1
x2 + x− 1

.

Definition 1. Let F ⊂ K[u,y]. A CTD of the zero set V (F ) of F is given by:

– a finite partition C of the parameter space into constructible sets,
– above each C ∈ C, there is a set of regular chains TC such that:

• each regular chain T ∈ TC specializes well at any u ∈ C and
• for any u ∈ C, we have V (F (u)) =

⋃
T∈TC

W (T (u)).

where W (T (u)) denotes the zeros of T (u) which do not cancel init(T )(u).

Example 1. A CTD of F := {x2(1 + y)− s, y2(1 + x)− s} is as follows:

1. s �= 0 −→ {T1, T2}
2. s = 0 −→ {T2, T3}
where

T1 =

{
x2y + x2 − s
x3 + x2 − s

T2 =

{
(x+ 1)y + x
x2 − sx− s

T3 =

⎧
⎨

⎩

y + 1
x+ 1
s

.

Definition 2. Let F ⊂ K[u,y]. A DSCTD of V (F ) is given by :

– a finite partition C of the parameter space,
– each cell C ∈ C is associated with a set of squarefree regular chains TC such

that:
• each squarefree regular chain T ∈ TC specializes well at any u ∈ C and
• for any u ∈ C, V (F (u)) = ·∪T∈TCW (T (u)), where ·∪ denotes disjoint
union.

Example 2. A DSCTD of F := {x2(1 + y) − s, y2(1 + x) − s} is as follows
(where T1, T2, T3 are as above):

1. s �= 0, s �= 4/27 and s �= −4 −→ {T1, T2}
2. s = −4 −→ {T1}
3. s = 0 −→ {T3, T4}
4. s = 4/27 −→ {T2, T5, T6}

T4 =

⎧
⎨

⎩

y
x
s

T5 =

⎧
⎨

⎩

3y − 1
3x− 1
27s− 4

T6 =

⎧
⎨

⎩

3y + 2
3x+ 2
27s − 4

.

We conclude by stating a sketch of the algorithm computing an RCTD. Let
S ⊂ Q[u][y] be a parametric semi-algebraic system. For simplicity, we assume
that S consists of equations only.
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(1) Compute a DSCTD (C, (TC , C ∈ C)) of S.
(2) Refine each constructible set cell C ∈ C into connected semi-algebraic sets

by cylindrical algebraic decomposition.
(3) For each connected cell C above which S has finitely many complex solutions:

compute the number of real solutions of T ∈ TC at a sample point u of C
and remove those T s which have no real solutions at u.

Acknowledgments. This work was supported by the NSFC (11301524) and
the CSTC (cstc2013jjys0002).
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1 Introduction

In recent years several drastic improvements have been achieved for the compu-
tation of a comprehensive Gröbner system(CGS) [5,6,12,9,7,8,3,4,10]. We now
have satisfactorily practical algorithms to compute CGS’s. In particular, the al-
gorithm introduced in [10] produces a concise CGS very often. In this paper,
we introduce our two quantifier elimination(QE) implementations based on the
computation of CGS’s, one is in the domain of an algebraically closed field(ACF)
and the other is of a real closed field(RCF). We simply call them ACF-QE and
RCF-QE in this paper.

It is rather straightforward to construct a ACF-QE algorithm using CGS
computations. As long as a corresponding CGS computation terminates, we can
immediately obtain an equivalent quantifier free formula. If we use the CGS
computation algorithm of [10], the obtained formula has a simple form in most
cases. In case the corresponding CGS computation does not terminate in a re-
alistic length of time, we have to abandon this approach if we use a CGS com-
putation as a black box tool. Looking at the recent CGS algorithms in deep,
we have found that we can replace a component of the CGS computation by
another computation. This observation leads us to a new ACF-QE algorithm
which consists of hybrid computations of CGS’s and parametric unary GCD’s.
Our implementation on the computer algebra system Risa/Asir[1] is superior to
other existing ACF-QE implementations in most cases.

We have also implemented RCF-QE algorithm on Risa/Asir. Our algorithm
is essentially based on the RCF-QE algorithm of Weispfenning introduced in the
early 1990’s[14]. Since his algorithm is based on comprehensive Gröbner bases
and there existed no efficient algorithm to compute comprehensive Gröbner sys-
tems at that time, there have been very few implementation to date. Though our
work on RFC-QE is still ongoing, our implementation is superior to other ex-
isting RFC-QE implementations in many cases. Our implementation only deals
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with the following basic formulas (1) for ACF-QE and (2) for RCF-QE:

(1) ∃X̄(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0∧ g1(Ȳ , X̄) �= 0 ∧ · · · ∧ gt(Ȳ , X̄) �= 0)

(2) ∃X̄(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0∧ g1(Ȳ , X̄) �= 0 ∧ · · · ∧ gt(Ȳ , X̄) �= 0
∧h1(Ȳ , X̄) > 0 ∧ · · · ∧ hu(Ȳ , X̄) > 0)

where X̄ and Ȳ denote variables and fi, gj , hk are polynomials in Q[X̄, Ȳ ].

In section 2, we give a rough sketch of our new ACF-QE algorithm together
with a quick review of underlying theory of CGS. In section 3, we review the
important result on real root counting introduced in [11] which is a base for the
RCF-QE algorithm of [14]. The novelty of our work is just employing recent
CGS computation algorithm instead of CGB(comprehensive Gröbner basis)[13]
computation, nevertheless our implementation achieves remarkable success in
some examples. In section 4, we report on some experimental results.

2 ACF-QE

In this section, we use the following notations.
K denotes a field and C its algebraic closure. K[Ȳ , X̄] denotes a polynomial

ring with variables Ȳ = Y1, . . . , Ym and X̄ = X1, . . . , Xn. σ denotes a homomor-
phism from K[Ȳ ] to C, i.e. a specialization of Ȳ with elements c1, . . . , cm of C,
it is also naturally extended to a homomorphism from K[Ȳ , X̄] to C[X̄ ]. T (X̄)
denotes the set of terms consisting of X̄. An admissible term order on T (Ȳ , X̄)
such that each Xi is greater than any term in T (Ȳ ) is denotes by X̄ 2 Ȳ . We
fix an admissible term order > on T (X̄), LM(h), LT (h) and LC(h) denotes the
leading monomial, the leading term and the leading coefficient respectively of
h ∈ K[Ȳ , X̄] w.r.t. > regarding K[Ȳ , X̄] as a polynomial ring (K[Ȳ ])[X̄ ] over
the coefficient ring K[Ȳ ]. Note that LM(h) = LC(h)LT (h). For an ideal I of a
polynomial ring over K, its variety in C is denoted by VC(I).

We begin with the following result concerning stability of Gröbner basis, which
is an easy consequence of Theorem 3.1 of [2] as observed in [3,4].

Theorem 1. Let I be an ideal of K[Ȳ , X̄] and G be its Gröbner basis w.r.t. >
regarding K[Ȳ , X̄ ] as a polynomial ring (K[Ȳ ])[X̄]. Let G = {g1, . . . , gs, . . . , gt}
be indexed so that the following properties (i) and (ii) hold :
(i) G ∩K[Ȳ ] = {gs+1, . . . , gt}
(ii) σ(gs+1) = σ(gs+2) = · · · = σ(gt) = 0

Let {LT (gn1), . . . , LT (gnl
)} be the minimal subset of {LT (g1), . . . , LT (gs)} con-

cerning the order of divisibility, that is each term of {LT (g1), . . . , LT (gs)} is
divisible by some term of {LT (gn1), . . . , LT (gnl

)} and any term of {LT (gn1)
, . . . , LT (gnl

)} is not divisible each other.
If σ(LM(gn1)) �= 0, . . . , σ(LM(gnl

)) �= 0, then G′ = {σ(gn1), . . . , σ(gnl
)} is a

Gröbner basis of 〈σ(I)〉 w.r.t. > regardless whether σ(LM(gi)) = 0 or not for
each i ∈ {1, . . . , s} − {n1, . . . , nl}.
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Definition 1. A finite set {P1, . . . ,Ps} of subsets of K
m

is called an algebraic
partition of K

m
if it satisfies the following:

(i) ∪s
i=1Pi = K

m

(ii) Pi ∩ Pj = ∅ for each distinct i, j.
(iii) Each Pi is a basic constructible set, that is Pi = V(〈Pi〉)−V(〈Qi〉) for some
finite subsets Pi, Qi of K[Ȳ ].

Definition 2. Let > be an admissible term order on T (X̄). For a finite subset
F of K[Ȳ , X̄], a finite set G = {(P1, G1) , . . . , (Ps, Gs)} which satisfies the
following properties (i)-(iii) is called a CGS(comprehensive Gröbner system) of
F with parameters Ȳ and main variables X̄ w.r.t. >.

(i) Each Gi is a finite subset of K[Ȳ , X̄].
(ii) {P1, . . . ,Ps} is an algebraic partition of K

m
.

(iii) For each c̄ ∈ Ps, Gi(c̄, X̄) = {g(c̄, X̄) : g ∈ Gi} is a Gröbner basis of the
ideal 〈F (c̄, X̄)〉 in K[X̄ ] w.r.t. >.

In addition, if each Gi(c̄, X̄) is a reduced(minimal) Gröbner basis, G is said to
be reduced(minimal). (We do not require the polynomials to be monic.) Each
Pi is called a segment of G.

We can eliminate all quantifiers from the basic formula (1) of the introduction
by computing only one CGS.

Algorithm
Input: A basic formula in a form of (1)
Output: An equivalent quantifier free formula
Let Z̄ = Z1, . . . , Zt be new variables. Compute a minimal CGS G = {(G1, P1, Q1),
. . . , (Gr, Pr, Qr)} of {f1(Ȳ , X̄), . . . , fs(Ȳ , X̄), g1(Ȳ , X̄)Z1 − 1, . . . , gt(Ȳ , X̄)Zt −
1} with parameters Ȳ and main variables X̄, Z̄. We order Gi’s, so that each
G1, . . . , Gk contains at least one polynomial including some main variable, and
each Gk+1, . . . , Gr contains only polynomials of parameters. When k = r, the
output is true, otherwise the output formula is given by φ1∨· · ·∨φk∨θk+1∨· · ·∨θr ,
where each φi and θj is given as follows. Let Pi = {p1(Ȳ ), . . . , pa(Ȳ )}, Qi =
{q1(Ȳ ), . . . , qb(Ȳ )}, then φi ≡ p1(Ȳ ) = 0 ∧ · · · ∧ pa(Ȳ ) = 0 ∧ (q1(Ȳ ) �= 0 ∨
· · · ∨ qb(Ȳ ) �= 0). For j = k + 1, . . . , r, let Pj = {p1(Ȳ ), . . . , pa(Ȳ )}, Qj =
{q1(Ȳ ), . . . , qb(Ȳ )} and Gj = {h1(Ȳ ), . . . , hc(Ȳ )}, then θj ≡ p1(Ȳ ) = 0 ∧ · · · ∧
pa(Ȳ ) = 0 ∧ (q1(Ȳ ) �= 0 ∨ · · · ∨ qb(Ȳ ) �= 0) ∧ h1(Ȳ ) = 0 ∧ · · · ∧ hc(Ȳ ) = 0.

This algorithm deeply depends on the computation of the minimal CGS. If
it does not terminate, what we can do is just waiting. In order to handle a
hard case where the corresponding CGS computation does not terminate in a
realistic length of time, we introduce a new algorithm which consists of hybrid
computations of CGS’s and parametric unary GCD’s.

Each of the algorithms of CGS introduced in [9,3,4,10] is a modification of
Suzuki-Sato’s CGS algorithm [12]. In those algorithms, we incrementally divide
parametric spaces, and proceed a Gröbner basis computation for each space in
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parallel. According to our experiments, when the CGS computation does not ter-
minate in a realistic length of time, in many cases there are only a few Gröbner
bases computations which do not terminate. For a quantifier elimination, we do
not actually need a CGS. For a divided parametric space, if the Gröbner bases
computation does not terminate, we can quit it and consider the original formula
with the additional condition used for the divided parametric space. In the CGS
algorithm of [10], the divided parametric space is given in a form of V(P )−V(Q)
for finite subsets P and Q of K[Ȳ ]. In this parametric space, the original formula
is equivalent to the following form:

∃X̄(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0 ∧ g1(Ȳ , X̄) �= 0 ∧ · · · ∧ gt(Ȳ , X̄) �= 0
∧p1(Ȳ ) = 0 ∧ · · · ∧ pa(Ȳ ) = 0)

where P = {p1(Ȳ ) . . . , pa(Ȳ )}. In our new algorithm, we proceed ACF-QE al-
gorithm only by using the computation of parametric unary GCD’s. Since we
have new extra conditions p1(Ȳ ) = 0 ∧ · · · ∧ pa(Ȳ ) = 0, there is a much better
chance that the computation terminates than the computation for the original
formula. This rather simple idea leads us to a drastic improvement as described
in the introduction.

3 RCF-QE

The following theorem introduced in [11] is a base for the RCF-QE algorithm
of [14].

Theorem 2. Let K denote a field, R a real closed field such that K ⊂ R. Let I
be a zero-dimensional ideal of a polynomial ring K[X̄]. VR(I) denotes an affine
variety of I in R. Considering K[X̄]/I as a K linear space, for f ∈ K[X̄] let mf

denotes a linear map K[X̄]/I → K[X̄]/I defined by mf ([h]) = [f ][h] = [fh]. Let
B be a symmetric bilinear form K[X̄]/I ×K[X̄]/I → K defined by B([f ], [g]) =
Tr(mf · mg) and Bh be a symmetric bilinear form K[X̄]/I × K[X̄]/I → K
defined by Bh(f, g) = B(hf, g) for h ∈ K[X̄]. Let Qh be the quadratic form of
coefficients matrix Bh and σ(Qh) be its signature. Then we have the following
property.

σ(Qh) = #{x̄ ∈ VR(I) : h(x̄) > 0} −#{x̄ ∈ VR(I) : h(x̄) < 0}

The RCF-QE algorithm of [14] employs comprehensive Gröbner bases. For the
application to RCF-QE we need parametric monomial reductions. Though the
concept of comprehensive Gröbner bases is mathematically interesting itself, in
the computations of parametric monomial reductions, we need useless compu-
tations of polynomials of parameters which vanish in a segment. For avoiding
such unnecessary computations, the use of minimal CGS’s is suitable. We have
implemented RCF-QE algorithm on Risa/Asir using also the CGS computation
algorithm of [10] . Though our algorithm is rather naive, our implementation is
superior to other existing RFC-QE implementations in many cases.
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4 Experimental Data

We give some computation data of two examples, one is for ACF-QE and an-
other for RCF-QE. Each computation is done on a standard laptop computer
with a CPU Intel Core i5 2GHZ and Memory 4GB.

ACF-QE

∃x∃y∃z∃w(ax5 + by5 + abz5 +w5 − 1 = 0∧ xy + azw− 1 = 0∧ abx5 + y5 − 1 =
0 ∧ ax+ by �= 0)

Computation is done by 6 programs. In the following tables CGS-QE and Hybrid-
QE denote our implementation on Risa/Asir. CGS-QE is the implementation
of a naive algorithm based CGS computation, Hybrid-QE is our improved im-
plementation. Resolve and Reduce denote ACF-QE packages based on GCD
computations of parametric unary polynomials implemented in Mathematica 9,
Projection denotes a ACF-QE package based on regular chain computations im-
plemented in Maple 17. Table 1 contains the computation time(seconds). Table
2 contains the number of segments which can be considered as a measure how
the output formula is complicated.

Table 1. Computation time

Hybrid-QE CGS-QE Resolve Reduce Projection

4sec. > 1hour > 1hour > 1hour 860sec.

Table 2. Expression length

Hybrid-QE CGS-QE Resolve Reduce Projection

10 - - - 38

RCF-QE
∃x∃y∃z(xy + axz + yz = 1 ∧ xyz + xz + xy + b = 0 ∧ xz + yz − az − x− y = 1)

Our implementation on Risa/Asir terminates within 2 seconds, whereas any
of the other existing packages for RCF-QE do not terminate within one hour.
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Abstract. We introduce various aspects of the design and the imple-
mentation of a symbolic/symbolic-numeric computation toolbox, called
SyNRAC. SyNRAC is a package of commands written in the Maple lan-
guage and the C language. This package indeed provides an environment
for dealing with first-order formulas over the reals.

Keywords: quantifier elimination.

1 Introduction

Many mathematical and engineering problems can be naturally translated to
formulas consisting of polynomial equations and inequalities, quantifiers and
logical operators. Such formulas construct sentences in the first-order theory of
real closed fields (RCFs) and are called first-order formulas (FOFs). Quantifier
elimination (QE) is an algorithm for computing an equivalent quantifier-free
formula for a given FOF. In the 1930’s, A. Tarski [13] showed that an RCF
allows QE and gave the first QE procedure for RCFs. For example, the formula
∃x(x2 + bx + c = 0) can be reduced to a quantifier-free formula b2 − 4c ≥ 0 by
QE. If all variables are quantified, QE decides whether the given formula is true
or false (this is a decision problem).

QE over the reals is a very powerful concept for solving problems contain-
ing real algebraic constraints. One of the big advantages of QE is that it can
deal with parametric and non-convex constraints. For example, QE can exactly
prove real theorems, perform geometric reasoning, solve polynomial optimization
problems, transportation problems, scheduling problems, mechanical engineer-
ing, and stability analysis, and so on. Practically efficient software systems for
QE have been developed on several computer algebra systems, such as QEP-
CAD [3], REDLOG [6], Mathematica [12], and SyNRAC[18,10,8].

We started the development of SyNRAC in 2002, first appeared in a literature
in 2003, with a focus on the implementation of purely symbolic QE. The solver

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 518–522, 2014.
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Fig. 1. Logo of SyNRAC

Table 1. Notations of quantifiers and logi-
cal operators in SyNRAC

quantifiers/operators notation in SyNRAC

∃xf Ex([x], f)

∀xf All([x], f)

f ∧ g And(f, g)

f ∨ g Or(f, g)

¬f Not(f)

f → g Impl(f, g)

f ← g Repl(f, g)

f ↔ g Equiv(f, g)

to be addressed includes several symbolic-numeric QE algorithms that have re-
cently been implemented to improve the efficiency of its symbolic counterparts
without loss of exactness. SyNRAC stands for a Symbolic-Numeric toolbox for
Real Algebraic Constraints. SyNRAC can be freely downloaded from

http://jp.fujitsu.com/group/labs/en/techinfo/freeware/synrac/.

2 Commands in SyNRAC

In this section we show some examples to illustrate how to use commands in
SyNRAC. The SyNRAC library provides the four commands:

– qe which does QE over the reals,
– synsimpl which simplifies a given FOF [16,5], and
– RegionPlot and RegionPlot3d which draw the feasible regions of the input

quantifier-free formula with two and three variables, respectively.

We first need to load the SyNRAC library by the with command in Maple.

> with(SyNRAC):

The qe command takes only one argument which is an FOF. The next example
shows how to use the command to solve the problems ∃x(x2 + bx+ c = 0) and
∀x(ax2 + bx + c > 0). The notations of the quantifier symbols and the logical
operators are shown in Table 1.

> qe(Ex([x], x^2 + b*x + c = 0));

-b^2+4*c <= 0

> qe(All([x], a*x^2+b*x+c>0));

Or(And(-a < 0,-4*a*c+b^2 < 0),And(-a = 0,-b = 0,-c < 0))

Next, we consider the following FOF:

∃x1∃x2 (y1 = x21 + x22 ∧ y2 = 5 + x22 − x1 ∧−5 ≤ x1 ≤ 5 ∧ −5 ≤ x2 ≤ 5).

Using the qe command we obtain the following quantifier-free formula.
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> F := qe(Ex([x1,x2], And(y1=x1^2+x2^2,y2=x2^2-x1+5,

-5<=x1,x1<=5,-5<=x2,x2<=5)));

F := Or(And(y2^2-y1-10*y2 <= -25,-4*y1+4*y2 <= 21,y1-y2 <= 25,-y2^2+y1

+60*y2-925 = 0,2*y2 <= 61),And(y2^2-y1-10*y2 <= -25,-4*y1+4*y2 <= 21,

y1-y2 <= 25,-y2^2+y1+60*y2 <= 925,2*y2 < 61),And(-2*y2 < -11,-4*y1+4*

y2 <= 21,y1-y2 <= 25,-y2^2+y1+60*y2-925 = 0,2*y2 <= 61),And(-2*y2 <

-11,-4*y1+4*y2 <= 21,y1-y2 <= 25,-y2^2+y1+60*y2 <= 925,2*y2 < 61),And(

y2^2-y1-60*y2 <= -925,-4*y1+4*y2 <= 21,-y2^2+y1+10*y2-25 = 0,-2*y2 <=

-11,y1-y2 <= 15),And(2*y2 < 61,-4*y1+4*y2 <= 21,-y2^2+y1+10*y2-25 = 0,

-2*y2 <= -11,y1-y2 <= 15),And(y2^2-y1-60*y2 <= -925,-4*y1+4*y2 <= 21,

-y2^2+y1+10*y2 <= 25,-2*y2 < -11,y1-y2 <= 15),And(2*y2 < 61,-4*y1+4*y2

<= 21,-y2^2+y1+10*y2 <= 25,-2*y2 < -11,y1-y2 <= 15))

Although the qe command may return a redundant formula, we can obtain a
simpler equivalent formula by the synsimpl command.

> synsimpl(F);

And(-4*y1+4*y2 <= 21,Or(And(y1-y2 <= 25,y2^2-y1-10*y2 <= -25),And(y2

<= 26,-2*y2 < -11,y1-y2 <= 15),And(y2 <= 25,-y2 <= -10,y1-y2 <= 25),

And(y2 <= 26,-y2 <= -25,-y2^2+y1+60*y2 <= 925),And(y1-y2 <= 15,y2^2-

y1-60*y2 <= -925),And(-y2 <= -26,2*y2 < 61,y1-y2 <= 15)))

By RegionPlot, we can draw feasible regions (see Fig. 2). In the following
example the fourth argument ‘gridrefine’ of RegionPlot has the same meaning
of an option of the Maple built-in command plots[implicitplot]. Please see the
help of plots[implicitplot] for more details. We can also use the other options of
plots[implicitplot].

> with(plots):

> display(RegionPlot(F, y1=0..30, y2=0..10, gridrefine=5));

3 QE Algorithms

The focus of the implemented QE algorithms is on practically effective QE for
certain industrial/engineering problems [17,9,11]. In this section we show the
algorithms utilized in the qe command.

3.1 Special QE by the Sturm-Habicht Sequence

The Sturm-Habicht sequence associated to a polynomial in R[x] tells us the num-
ber of real zeros in the given intervals. In 1993, by using this L. González-Vega [7]
proposed a new QE algorithm in the form ∀x(f(x) > 0) where f(x) ∈ R[x].

In 2000, H. Anai and S. Hara [1] proposed a special QE algorithm for a similar
type of formulas ∀x(x ≥ 0 → f(x) > 0) and called this condition the sign definite
condition (SDC). They also showed that many important design specifications
such as H∞ norm constraints, stability margins etc, which are frequently used
as indices of the robustness, reduce to SDCs [2].

We have developed improved algorithms that construct more concise formulas
by logical formula manipulation [8].
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Fig. 2. Examples of SyNRAC

3.2 Special QE by Virtual Substitution

V. Weispfenning [14,15] gave specialized QE algorithms that are applicable to
the formulas with a low degree with respect to the quantified variables. These
algorithms have been developed and applied to various problems. We have im-
plemented the algorithms for the linear and quadratic cases.

3.3 QE by Cylindrical Algebraic Decomposition

In 1975, G. E. Collins [4] discovered a new general QE algorithm based on cylin-
drical algebraic decomposition (CAD) that was far more efficient than any pre-
vious approach. However, QE based on CAD is not considered to be practical
on computers, since CAD usually consists of many purely symbolic computa-
tions and has high computational complexity. We have implemented a symbolic-
numeric CAD which avoids heavy symbolic computation by interval arithmetic
techniques without loss of exactness [10].
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Abstract. Algebraic local cohomology classes attached to semi-quasiho-
mogeneous hypersurface isolated singularities are considered. A new algo-
rithm, that utilizes local cohomology classes with parameter, is proposed
to compute Tjurina stratifications associated with μ-constant deforma-
tions of weighted homogeneous isolated singularities. The proposed al-
gorithm has been implemented in a computer algebra system. Usage of
the implementation is also described.

Keywords: μ-constant deformations, local cohomology, singularities.

1 Introduction

We introduce an algorithm for computing Tjurina stratifications of μ-constant
deformations, and its implementation.

Let f ∈ C[x1, . . . , xn] be a semi-quasihomogeneous polynomial (with parame-
ters). Assume that the weighted homogeneous part of f has an isolated singular-
ity at the origin. Then, f can be regarded as a μ-constant deformation. In this
paper, we consider Tjurina numbers of μ-constant deformations by using local
cohomology classes with parameters.

Let HJf
be a set of local cohomology classes, which is annihilated by the Ja-

cobi ideal Jf = 〈 ∂f
∂x1

, . . . , ∂f
∂xn

〉. Then, HJf
is a vector space and the dimension

of the vector space HJf
is equal to the Milnor number of the isolated singu-

larity. Let HTf
be a set of local cohomology classes, which is annihilated by

the ideal 〈f, ∂f
∂x1

, . . . , ∂f
∂xn

〉. Then, HTf
is a vector space and the dimension of

the vector space HTf
is equal to the Tjurina number of the isolated singularity

[9]. By utilizing the relation between HJf
and HTf

, we are able to analyze the
properties of the μ-constant deformation. We construct in particular, by using
local cohomology classes with parameters, an algorithm for computing Tjurina
stratifications of μ-constant deformations.
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The existing algorithm due to B. Martin and G. Pfister[3] is based on the
deformation theory and utilizes the Kodaira-Spencer maps. In contrast, the pro-
posed algorithm, which has been implemented in the computer algebra system
Risa/Asir [7], is free from the Kodaira-Spencer maps.

2 Preliminaries

Here, we briefly recall the notion of semi-quasihomogeneity, Milnor number,
Tjurina number and the notion of algebraic local cohomology supported at a
point. For details, we refer the reader to [2,5,6,10,11,12,13]. The set of natural
numbers N includes zero. C is the field of complex numbers.

Let us fix a weight vector w = (w1, w2, . . . , wn) in Nn for a fixed coordinate
system x = (x1, x2, . . . , xn). We define a weighted degree of the term xα =
xα1
1 xα2

2 · · · xαn
n , with respect to w by |xα|w =

∑n
i=1 wiαi.

Definition 1 ([1]). A nonzero polynomial f in C[x] is quasihomogeneous of
type (d;w) if all terms of f have the same weighted degree d with respect to
w, i.e., f =

∑
|xα|w=d cαx

α where cα ∈ C. We define a weighted degree of f by

degw(f) = max{|xα|w|xα is a term of f}.
We define ordw(f) = min{|xα|w |xα is a term of f} (ordw(0) = −1). The

polynomial f is called semi-quasihomogeneous of type (d;w) if f is of the
form f = f0 + g where f0 is a quasihomogeneous polynomials of type (d;w)
with an isolated singularity at the origin, f = f0 or ordw(f − f0) > d. The
polynomial f0 is called quasihomogeneous part of f and a term of g is called
upper monomial.

Let X be an open neighborhood of the origin O of the n-dimensional complex
space Cn with coordinates x = (x1, x2, . . . , xn) and let OX be the sheaf on
X of holomorphic functions. Let f be a holomorphic function defined on X
with an isolated singularity at the origin O and let Jf denote the Jacobi ideal〈

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

〉
in OX,O generated by the partial derivatives ∂f

∂x1
, ∂f
∂x2

, . . . ,
∂f
∂xn

, where OX,O is the stalk at O of the sheaf OX . Let 〈f, Jf 〉 denote the

ideal
〈
f, ∂f

∂x1
, ∂f
∂x2

, . . . , ∂f
∂xn

〉
in OX,O generated by f and ∂f

∂x1
, ∂f
∂x2

, . . . , ∂f
∂xn

. The

Milnor number of the singularity, denoted μ, is given by

μ = dimC(OX,O/Jf ).

The Tjurina number of the singularity, denoted τ , is given by

τ = dimC(OX,O/ 〈f, Jf 〉) .

It is known that the Milnor number μ is a topological invariant and the Tjurina
number τ is an analytic invariant of the singularity. In general, the Tjurina num-
ber τ is less than or equal to the Milnor number μ (τ ≤ μ). If f ∈ C[x1, . . . , xn]
is a quasihomogeneous polynomial, then the Milnor number μ is equal to the
Tjurina number τ . Conversely, if the Milnor number μ is equal to the Tjurina
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number τ , then there exists a holomorphic coordinate transformation such that
f is represented as a quasihomogeneous polynomial ([8]). According to this fact,
the numerical invariant μ − τ can be regarded as a complex analytic invariant
that measures non quasihomogeneity of a hypersurface isolated singularity.

Next we quickly review algebraic local cohomology. Let Hn
[O](OX) denote the

set of algebraic local cohomology classes, defined by

Hn
[O](OX) = lim

k→∞
ExtnOX

(OX/〈x1, x2, . . . , xn〉k,OX),

where 〈x1, x2, . . . , xn〉 is the maximal ideal generated by x1, x2, . . . , xn. Con-
sider the pair (X,X − O) and its relative Čech covering. Then, any section of
Hn

[O](OX) can be represented as an element of relative Čech cohomology. Any al-

gebraic local cohomology class in Hn
[O](OX) can be represented as a finite sum of

the form (called: Čech representation)
∑
cλ
[

1
xλ+1

]
=
∑
cλ

[
1

x
λ1+1
1 x

λ2+1
2 ···xλn+1

n

]
where cλ ∈ C and λ = (λ1, λ2, . . . , λn) ∈ Nn. Note that the multiplication is
defined as

xα
[

1

xλ+1

]
=

⎧⎪⎪⎨⎪⎪⎩
[

1

xλ+1−α

]
, λi ≥ αi, i = 1, . . . , n,

0, otherwise,

where α = (α1, . . . , αn) ∈ Nn and λ+ 1− α = (λ1 + 1− α1, . . . , λn + 1− αn).
We introduce a vector space HJf

defined to be the set of algebraic local
cohomology classes in Hn

[O](OX) that are annihilated by the Jacobi ideal Jf

HJf
:=

{
ψ ∈ Hn

[O](OX)

∣∣∣∣ ∂f∂x1 (x)ψ =
∂f

∂x2
(x)ψ = · · · = ∂f

∂xn
(x)ψ = 0

}
.

We also introduce a vector space HTf
defined to be the set of algebraic local

cohomology classes in Hn
[O](OX) that are annihilated by the ideal 〈f, Jf 〉

HTf
:=

{
ψ ∈ Hn

[O](OX)

∣∣∣∣ f(x)ψ =
∂f

∂x1
(x)ψ = · · · = ∂f

∂xn
(x)ψ = 0

}
.

It is known that HJf
and HTf

are finite dimensional vector spaces. Moreover,
dimC(HJf

) = μ (Milnor number) and dimC(HT ) = τ (Tjurina number). In [4,13],
algorithms for computing a basis of HJf

(and HTf
) are introduced.

We represent an algebraic local cohomology class
∑
cλ
[

1
xλ+1

]
as a polyno-

mial in n variables
∑
cλx

λ (called: polynomial representation) to manipu-
late algebraic local cohomology classes efficiently (see [4,13]). Hereafter, we adapt
“polynomial representation” to represent an algebraic local cohomology class.

3 Basic Facts

Here, we describe some basic facts which are utilized for constructing our new
algorithm. Let ϕ : HJf

→ HJf
be a map defined by ϕ(η) = fη. Since the kernel

of the map ϕ, Ker(ϕ) = {η ∈ HJf
| fη = 0} is equal to the vector space HTf

,
we have the following results ([9]).
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Proposition 1. The sequence 0 −→ HTf
−→ HJf

−→ ϕ(HJf
) −→ 0 of vector

spaces defined by ϕ is exact where ϕ(HJf
) = {fη|η ∈ HJf

}.

Corollary 1. dimC(HTf
)− dimC(HJf

) + dimC(ϕ(HJf
)) = 0.

Proposition 2. The annihilator ideal, in the local ring OX,O, of ϕ(HJf
) is the

ideal quotient {h ∈ OX,O | fh ∈ Jf}:
AnnOX,O(ϕ(HJf

)) = {h ∈ OX,O | fh ∈ Jf } .

Proposition 1 says that ϕ(HJf
) can be regarded as a vector space representing

the non-quasihomogeneity of the singularities. Corollary 1 says that the dimen-
sion of the vector space ϕ(HJf

) coincides with μ − τ. Proposition 1 tells us
that the ideal quotient {h ∈ OX,O | fh ∈ Jf} can be explicitly determined by
computing the annihilator in OX,O of ϕ(HJf

).
As an algorithm introduced in [4] can compute algebraic local cohomology

classes with parameters in HJf
associated with a μ-constant deformation f of an

weighted homogeneous isolated singularity, we are able to analyze the parameter
dependency of Tjurina numbers by computing the space ϕ(HJf

).
Before describing the main algorithm, we see in the next section the imple-

mentation of [4] for computing local cohomology classes with parameters.

4 Local Cohomology with Parameters

In [4], we have introduced an algorithm for computing parametric local cohomol-
ogy classes associated with the Jacobi ideals of semi-quasihomogeneous hypersur-
face isolated singularities. There are two main advantages of the algorithm.First,
it generates a nice decomposition, in the context of deformation theory, of the
parameter space according to a structure of local cohomology and second, it
efficiently computes parametric local cohomology. This algorithm has been im-
plemented in a computer algebra system Risa/Asir1. Here, we quickly see how
the implementation works.

Let (s, t) = (s1, s2, . . . , sm1 , t1, t2, . . . , tm2) be parameters in Cm with m =
m1 +m2. In the outputs of the algorithm, a list of two list [[p1, . . . , pk], [q1,
. . . , ql]] is used to represent algebraically constructible set (stratum) V(p1, . . . ,
pk)\V(q1, . . . , ql) in Cm, where p1, . . . , pk, q1, . . . , ql ∈ C[s, t] and V(p1, . . . , pk) =
{ā ∈ Cm|p1(ā) = · · · = pk(ā) = 0}. The list represents conditions of parameters.

Example 1. A polynomial f = x3 + y9 + sx2y3 + ty10 ∈ (C[s, t])[x, y] is semi-
quasihomogeneous of type (9; (3, 1)) where x, y are variables and s, t are parame-
ters. Then, x3+y9+tx2y3 is the quasihomogeneous part of f . Set Jf = 〈∂f∂x ,

∂f
∂y 〉.

Our implementation outputs a basis of HJf
as follows:

[676] para_qhcoho(x^3+y^9+s*x^2*y^3,t*y^10,[3,1],[s,t],[x,y],1);

non-zero dim. are [[[4*s^3+27],[1]]]

1 Risa/Asir([7]) is an open source general computer algebra system.
http://www.math.kobe-u.ac.jp/Asir/asir.html

http://www.math.kobe-u.ac.jp/Asir/asir.html
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No. of segments is 3

[[s],[1]]

[[y^7*x,y^6*x,y^5*x,y^4*x,y^3*x,y^2*x,y*x,x,y^7,y^6,y^5,y^4,y^3,y^

2,y,1],[]]

[[0],[4*t*s^4+27*t*s]]

[[y^2*x,y*x,x,y^7,y^6,y^5,y^4,y^3,y^2,y,1],[(s^2*y*x^3-3/2*s*y^4*x

^2+9/4*y^7*x+1/2*s^2*y^10-5/9*t*s^2*y^9+50/81*t^2*s^2*y^8)/(s^2),(

s^2*x^3-3/2*s*y^3*x^2+9/4*y^6*x+1/2*s^2*y^9-5/9*t*s^2*y^8)/(s^2),(

s*y^2*x^2-3/2*y^5*x-1/3*s^2*y^8)/(s),(s*y*x^2-3/2*y^4*x)/(s),(s*x^

2-3/2*y^3*x)/(s)]]

[[t],[4*s^4+27*s,t]]

[[y^2*x,y*x,x,y^7,y^6,y^5,y^4,y^3,y^2,y,1],[(s^2*y*x^3-3/2*s*y^4*x

^2+9/4*y^7*x+1/2*s^2*y^10)/(s^2),(s^2*x^3-3/2*s*y^3*x^2+9/4*y^6*x+

1/2*s^2*y^9)/(s^2),(s*y^2*x^2-3/2*y^5*x-1/3*s^2*y^8)/(s),(s*y*x^2-

3/2*y^4*x)/(s),(s*x^2-3/2*y^3*x)/(s)]]

The meaning of the output is the following.

- if parameters s, t belong to V(4s3 + 27), the quasihomogeneous part of f has
non isolated singularities,

- if parameters s, t belong to V(s), then a basis ofHJf
is {y7x, y6x, y5x, y4x, y3x,

y2x, yx, x, y7, y6, y5, y4, y3, y2, y, 1},
- if parameters s, t belong to C2\V(4ts4+27ts), then a basis of HJf

is {y2x, yx,
x, y7, y6, y5, y4, y3, y2, y, 1, yx3− 3

2sy
4x2 + 9

4s2 y
7x+ 1

2y
10 − 5

9 ty
9 + 50

81 t
2y8, x3 −

3
2sy

3x2 + 9
4s2 y

6x+ 1
2y

9 − 5
9 ty

8, y2x2 − 3
2sy

5x− 1
3sy

8, yx2 − 3
2sy

4x, x2 − 3
2sy

3x},
and

- if parameters s, t belong to V(t)\V(4s4+27s, t), then a basis ofHJf
is {y2x, yx,

x, y7, y6, y5, y4, y3, y2, y, 1, yx3− 3
2sy

4x2+ 9
4y

7x+ 1
2y

10, x3− 3
2sy

3x2+ 9
4s2 y

6x+
1
2y

9, y2x2 − 3
2sy

5x− 1
3sy

8, yx2 − 3
2sy

4x, x2 − 3
2sy

3x}.

Now, as we have seen local cohomology classes with parameters, can be com-
puted by the implementation[4].

5 The Main Algorithm and Examples

Corollary 1 together with the algorithm [4] allows us to design an algorithm to
compute Tjurina Stratifications.

Here, we give the resulting algorithm for computing Tjurina stratifications.

Algorithm 1. [Tjurina Stratification]
Input: f ∈ (C[s1, . . . , sm1 , t1, . . . , tm2 ])[x1, . . . , xn] a semi-quasihomogeneous
polynomial with parameters s1, . . . , sm1 , t1, . . . , tm2 .
Output: a Tjurina stratification of μ-constant deformations.
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Step 1: Compute a basis of HJf
by the algorithm [4].

Step 2: Compute a basisQ of ϕ(HJf
) for each stratum where ϕ is from section 3.

(This is possible to compute. For example, Gaussian elimination method
can be extendable to handle the parametric cases.)

Step 3: For each stratum, compute μ− *(Q) where μ is the Milnor number and
*(Q) is the cardinality of the set Q. Then, μ−*(Q) is the Tjurina number
in the stratum.

Algorithm 1 has been implemented in the computer algebra system Risa/Asir.
There exists a command “tjurinast” in the implementation, which outputs the
Tjurina number and a basis of ϕ(HJf

) for each stratum. We see some examples.

Example 2. A polynomial f = x3 + sx2y4 + y12 + ty13 + uy14 ∈ (C[s, t, u])[x, y]
is semi-quasihomogeneous of type (12; (4, 1)) where x, y are variables and s, t, u
are parameters. Then, x3 + sx2y4+ y12 is the quasihomogeneous part of f . Note
that the quasihomogeneous part of f contains a parameter s. Set Jf = 〈∂f∂x ,

∂f
∂y 〉.

Our implementation outputs a Tjurina stratification of f as follows:

tjurinast(x^3+s*x^2*y^4+y^12,t*y^13+u*y^14,[4,1],[s,t,u],[x,y]);

zero dim. [[[4*s^3+27],[1]]]

-----------

[[s],[1]]

basis

[]

22-0=22

-----------

[[0],[4*t*s^4+27*t*s]]

basis

[1,(t*y-13/12*t^2+2*u)/(t)]

22-2=20

-----------

[[t],[4*u*s^4+27*u*s,t]]

basis

[1]

22-1=21

-----------

[[t,u],[4*s^4+27*s,t]]

basis

[]

22-0=22

The meaning of the output is the following.

- if parameters s, t, u belong to V(4s3 + 27), then the quasihomogeneous part
of f has non isolated singularities,

- if parameters s, t, u belong to V(s), then ϕ(HJf
) = {0} and the Tjurina

number of the isolated singularity is 22,
- if parameters s, t, u belong to C3\V(4ts4 + 27ts), then a basis of ϕ(HJf

) is
{1, y − 13

12 t+
2u
t } and the Tjurina number of the isolated singularity is 20,
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- if parameters s, t, u belong to V(t)\V(4us4+27us, t), then a basis of ϕ(HJf
)

is {1} and the Tjurina number of the isolated singularity is 21, and
- if parameters s, t, u belong to V(t, u)\V(4s4+27s, t), then ϕ(HJf

) = {0} and
the Tjurina number of the isolated singularity is 22.

There exists a command “tjurinast1” in the implementation, which outputs
only a Tjurina stratification of μ-constant deformations.

Example 3. A polynomial f = x5 + y11 + txy9 + ux2y7 ∈ (C[t, u])[x, y] is semi-
quasihomogeneous of type (55; (11, 5)) where x, y are variables and t, u are pa-
rameters. Then, x5+y11 is the quasihomogeneous part of f . Our implementation
outputs a Tjurina stratification of f as follows:

[3562] tjurinast1(x^5+y^11,t*x*y^9+u*x^2*y^7,[11,5],[t,u],[x,y]);

zero dim. []

-----------

[[0],[-9*u*t^5+58*u^2*t^3-88*u^3*t]]

40-6=34

-----------

[[t^2-4*u],[t,u]]

40-5=35

-----------

[[u],[t,u]]

40-5=35

-----------

[[9*t^2-22*u],[t,u]]

40-6=34

-----------

[[t],[t,u]]

40-6=34

-----------

[[t,u],[1]]

40-0=40

The meaning of the output is the following.
· The polynomial f always has an isolated singularity at the origin.

conditions of parameters Tjurina numbers
C2\V(−9ut5 + 58u2t3 − 88u3t) 34

V(t2 − 4u)\V(t, u) 35
V(u)\V(t, u) 35

V(9t2 − 22u)\V(t, u) 34
V(t)\V(t, u) 34

V(t, u) 40

As we described in Example 2, the proposed algorithm can handle the case
where even the quasihomogeneous part contains parameters. An algorithm of
Martin and Pfister[3] can not handle such case. As the basic structures of Tjurina
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stratifications are determined by the structures of parametric local cohomology
classes, the proposed algorithm outputs a nice decomposition of the parameter
spaces. This is one of the advantages. Another advantage is that the computation
consists of only linear algebra computation. Therefore, the proposed algorithm
is more efficient than an existing algorithm, in computational complexity.
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Bases on General Computer Algebra Systems

Akira Nagai and Shutaro Inoue

Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, Japan
1414703@ed.tus.ac.jp, sinoue@rs.kagu.tus.ac.jp

Abstract. We study an implementation method to compute Boolean
Gröbner bases introduced in our previous work [15] in more detail. We
extend our method for computing comprehensive Boolean Gröbner bases
with a technique introduced in [10]. Our work has been implemented on
the computer algebra system Risa/Asir. It enables us to do our recent
work of a non-trivial application of Boolean Gröbner bases.

Keywords: Boolean Gröbner Bases, Boolean rings.

1 Introduction

A commutative ring B such that ∀a ∈ B a2 = a is called a Boolean ring. A
residue class ring B/I of the polynomial ring B[X1, . . . , Xn] by the ideal I =
〈X2

1 +X1, . . . , X
2
n+Xn〉 denoted by B(X1, . . . , Xn) also becomes a Boolean ring

which is called a Boolean polynomial ring. A Gröbner basis in a Boolean polyno-
mial ring is called a Boolean Gröbner basis. The notion of Boolean Gröbner basis
was first introduced in [5],[6] together with an algorithm using special monomial
reductions. The first implementation of Boolean Gröbner bases is written by the
programming language Prolog([7]), two years later an improved version was also
written by the parallel logic programming language KLIC([8]). Since we have to
prepare a special data structure for representing Boolean polynomials and their
special monomial reductions, it was extremely hard to implement the computa-
tion of Boolean Gröbner bases on a general computer algebra system. In [15],
we introduced a computation method of Boolean Gröbner bases which can be
easily implemented on most computer algebra system with a facility to compute
Gröbner bases in polynomial rings over the Galois field GF2. Our method is also
applicable for the computation of comprehensive Boolean Gröbner bases. In this
short paper, we give a more detailed description of our method together with an
improved version of our method for the computation of comprehensive Boolean
Gröbner bases. Our work has been implemented on the computer algebra system
Risa/Asir([14]). It enables us to do our recent work of a non-trivial application
of Boolean Gröbner bases. The reader is referred to [13] for detailed descriptions
of Boolean Gröbner bases.
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2 Computation of Boolean Gröbner Bases

Throughout of the paper we use B to represent some Boolean ring. X̄ denotes
some variables X1, . . . , Xn.

Definition 1. Let St denote an enumerable set of strings (of some computer
language). PFC(St) denotes the set of all finite or co-finite subsets of St, i.e.
PFC(St) = {S ⊂ St|S is finite or St \ S is finite}.

In the rest of the paper we consider PFC(St) as a Boolean ring and we con-
centrate on this Boolean ring for the computation of Boolean Gröbner bases.
Note that an atomic element in this Boolean ring is nothing but a singleton of
a string.

Let f1(X̄), . . . , fl(X̄) ∈ PFC(St)(X̄). When we compute a Boolean Gröbner
basis of the ideal 〈f1(X̄), . . . , fl(X̄)〉, we do not need to use whole PFC(St)
(which is infinite). Let {s1, s2, . . . , sk} be the set of all string that is contained
in a coefficient of some fi and e1 = {s1}, e2 = {s2}, . . . , ek = {sk}. Then, the
finite Boolean subring B generate by e1, . . . , ek is enough to work. By Stone’s
representation theorem B is isomorphic to some direct product of GF2, more
precisely it is isomorphic to GFk+1

2 . Note that we have an extra atomic element
1 + e1 + e2 + · · ·+ ek of B.

Definition 2. For any element b ∈ B, we can express b in the form b = b1e1 +
b2e2 + · · ·+ bkek + bk+1(1 + e1 + e2 + · · ·+ ek), where bi ∈ {0, 1}, 1 ≤ i ≤ k + 1.
Let θ be an isomorphism from B to GFk+1

2 defined by θ(b) = (b1, . . . , bk+1). For
each i = 1, . . . , k + 1, a projection πi is an epimorphism from B to GF2 defined
by πi(b) = θ(b)i(the i-th component of θ(b)). We also define a monomorphism
π−1
i from GF2 to B by π−1

i (0) = 0 and π−1
i (1) = ei for each i = 1, . . . , k

and π−1
k+1(1) = 1 + e1 + · · · + ek. θ, πi and π−1

i are naturally extended to an

isomorphisms from B(X̄) to GFk+1(X̄), an epimorphism from B(X̄) to GF(X̄)
and a monomorphism from GF(X̄) to B(X̄) respectively.

We can easily prove the following lemma.

Lemma 3. For each f ∈ B(X̄) f = π−1
1 (π1(f)) + · · ·+ π−1

k+1(πk+1(f)).

Since GF2 is a field, a Boolean Gröbner basis in the Boolean polynomial ring
GF2(X̄) can be computed by a usual Buchberger algorithm and we can compute
it in most computer algebra system which has a facility to compute Gröbner
bases in a polynomial ring over GF2.

For a finite set of polynomials F = {f1, . . . , fl} ⊂ PFC(St)(X̄), let e1, . . . , ek
and B be as above. We abuse the notations πi and π

−1
i for a set, i.e. πi(P ) =

{πi(f)|f ∈ P} and π−1
i (Q) = {π−1

i (f)|f ∈ Q}.
Now we are ready to describe our implementation method.

Algorithm: Boolean GB
input: F a finite subset of PFC(St)(X̄) and a term order > on T (X̄)
output: G a reduced Boolean Gröbner basis of 〈F 〉 w.r.t. >
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For each i = 1, . . . , k + 1 compute the reduced Boolean Gröbner basis Gi of the
ideal 〈πi(F )〉 in GF2(X̄).
Set G = ∪k+1

i=1 π
−1
i (Gi).

In order to get a stratified Boolean Gröbner basis, we further need the follow-
ing manipulation.

Algorithm: Stratification
input: G a reduced Boolean Gröbner basis in PFC(St)(X̄)
output: G′ a stratified Boolean Gröbner basis
Let {t1, . . . , ts} be the set of all leading terms(i.e. initials) of some polynomial
in G. For each i = 1 . . . , ts gi =

∑
LT (g)=ti,g∈G g. Set G

′ = {g1, . . . , gs}.

Example 1. Compute the stratified Boolean Gröbner basis of F = {({s1, s2}+
1)(XY +X + Y ), {s1}(X +1), XY } in PFC(St)(X,Y ) w.r.t. the lex term order
such that X > Y .
We apply projection map for F.
π1(F ) = {0, X + 1, XY }, π2(F ) = {0, 0, XY }, π3(F ) = {XY +X + Y, 0, XY }
Compute the reduced Boolean Gröbner basis Gi of πi(F ) for each i.
G1 = {X,Y }, G2 = {XY }, G3 = {X + 1, Y }.
Compute π−1

1 (G1) = {{s1}X, {s1}Y }, π−1
2 (G2) = {{s2}XY } and π−1

3 (G3) =
{(1 + {s1, s2})X + (1 + {s1, s2}), (1 + {s1, s2})Y }.
We obtain a reduced Boolean Gröbner basis
G = {{s1}X, {s1}Y, {s2}XY, (1 + {s1, s2})X + (1 + {s1, s2}), (1 + {s1, s2})Y }.
Applying the stratification to G we finally produce the stratified Boolean Gröbner
basis G′ = {{s2}XY, ({s2}+ 1)X + {s1}, ({s2}+ 1)Y }.

3 Comprehensive Boolean Gröbner Bases

In this section we concentrate on the computation of comprehensive Boolean
Gröbner bases. Unlike the construction of comprehensive Gröbner bases (or com-
prehensive Gröbner systems) in polynomial rings over fields, the construction of
comprehensive Boolean Gröbner bases is extremely easy.

Theorem 4. Let F be a finite set of Boolean polynomials in B(Ā, X̄) with vari-
ables Ā and X̄. Regarding B(Ā, X̄) as a Boolean polynomial rings B(Ā)(X̄)
with variables X̄ over the coefficient Boolean ring B(Ā), compute a(stratified)
Boolean Gröbner basis of F in this Boolean polynomial ring. Then it becomes
a(stratified) comprehensive Boolean Gröbner basis of F with parameters Ā.

The free software [8] contains an implementation to compute comprehensive
Boolean Gröbner bases based on this theorem. Unfortunately, when we have
many parameters this implementation is not practical. We can not apply our
method presented in the previous section either, since the number of the atomic
elements of B(Ā) is equal to pq where p is the number of the atomic element of
B and q is the number of variables in Ā.

The following theorem introduced in [11] enables us to have a more practical
algorithm.
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Theorem 5. Let F be a finite set of Boolean polynomials in B(Ā, X̄) with vari-
ables Ā and X̄. Give a term order > of T (X̄), compute a Boolean Gröbner basis
G of F in B(Ā, X̄) w.r.t. a term order of T (Ā, X̄) which extends > so that X̄
is lexicographically greater than Ā. Then it becomes a comprehensive Boolean
Gröbner basis of F with parameters Ā on the variety of B(Ā) ∩ 〈F 〉.

Note that the obtained comprehensive Boolean Gröbner basis is not stratified
nor even reduced after a specialization in general.

Of course we can apply our method to compute a Boolean Gröbner basis G
for the computation of a comprehensive Boolean Gröbner basis by this theorem.
This observation was given in our previous paper [15].

When the computation of the Boolean Gröbner basis G does not terminate
in a realistic length of time, we have to give up. In [10] we gave a computa-
tion method to compute an elimination ideal B(Ā) ∩ 〈F 〉 without computing a
Boolean Gröbner basis of the whole ideal 〈F 〉. This technique leads us to have
an alternative method to compute comprehensive Boolean Gröbner bases based
on our method.

Algorithm: Comprehensive Boolean GB
input: A finite set F of PFC(St)(Ā, X̄) and a term order >
output: G a comprehensive stratified Boolean Gröbner basis w.r.t. >

on the variety of 〈F 〉 ∩ PFC(St)(Ā)
Compute the elimination ideal 〈F 〉 ∩ PFC(St)(Ā).
Compute atomic elements e1, . . . , ek of the Boolean ring

PFC(St)(Ā)/〈F 〉 ∩ PFC(St)(Ā).
For each i = 1, . . . , k compute the reduced Boolean Gröbner basis Gi of the ideal
〈πi(F )〉 in GF2(X̄). Set G = Stratification(∪k

i=1π
−1
i (Gi)).

Unless the elimination ideal 〈F 〉 ∩ PFC(St)(Ā) is rich enough, this algorithm
is not practical. For example, when 〈F 〉 ∩ PFC(St)(Ā) is a trivial ideal {0} the
ideal PFC(St)(Ā)/〈F 〉∩PFC(St)(Ā) is nothing but the whole ideal PFC(St)(Ā).
In such a case the number k would be extremely big as mentioned right after
the theorem 4.

4 Conclusion and Remarks

We can compute a Boolean Gröbner basis by the computation of Gröbner bases
of GF2 with a proper term order. Look at the Example 1. Using extra variables
S1 and S2 to represent singletons {s1} and {s2}, F is translated into the set of
polynomials {(S1+S2+1)(XY +Y +X), S1(X+1), XY, S1S2, S1+S2+1} in
GF2(X,Y, S1, S2). The reduced Boolean Gröbner basis of 〈(S1+S2+ 1)(XY +
Y +X), S1(X + 1), XY, S1S2, S1+ S2 + 1〉 in GF2(X,Y, S1, S2) w.r.t. the lex
term order such X > Y > S2 > S1 has the form:

{XY, S2X +X + S1, S1X + S1, S2Y + Y, S1Y, S2S1}.
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By Theorem 5, it is a comprehensive Boolean Gröbner basis of {(S1 + S2 +
1)(XY + Y + X), S1(X + 1), XY, S1S2, S1 + S2 + 1} in GF2(X,Y ) with pa-
rameters S1, S2. Obvious it is also a comprehensive Boolean Gröbner basis in
PFC(St)(X,Y ). Hence, {XY, {s2}X+X+{s1}, {s1}X+{s1}, {s2}Y+Y, {s1}Y }
is a Boolean Gröbner basis of F = {({s1, s2}+1)(XY +X+Y ), {s1}(X+1), XY }
in PFC(St)(X,Y ) w.r.t. the lex term order such that X > Y .

When we have many strings, this computation will be extremely slow compar-
ing it with our method. The obtained Boolean Gröbner basis is not even reduced
in general.

We conclude this paper with the following remark. There are many sophis-
ticated implementations to compute Boolean Gröbner bases such as [1,2,3].
Though any of them deals with only Boolean polynomials over GF2, we can
implement our method on those systems.
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In: Proceedings of the 7th Asian Symposium on Computer Mathematics (ASCM
2005), pp. 145–148 (2005)

10. Sato, Y., Nagai, A., Inoue, S.: On the computation of elimination ideals of boolean
polynomial rings. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp.
334–348. Springer, Heidelberg (2008)

11. Inoue, S.: On the Computation of Comprehensive Boolean Gröbner Bases. In:
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Abstract. The comprehensive Gröbner systems of parametric polyno-
mial ideal were first introduced by Volker Weispfenning. Since then, many
improvements have been made to improve these algorithms to make them
useful for different applications. In contract to reduced Groebner bases,
which is uniquely determined by the polynomial ideal and the term order-
ing, however, comprehensive Groebner systems do not have such a good
property. Different algorithm may give different results even for a same
parametric polynomial ideal. In order to treat this issue, we give a deci-
sion method to determine whether two comprehensive Groebner systems
are equal. The polynomial ideal membership problem has been solved
for the non-parametric case by the classical Groebner bases method,
but there is little progress on this problem for the parametric case until
now. An algorithm is given for solving this problem through comput-
ing comprehensive Groebner systems. What’s more, for two parametric
polynomial ideals and a constraint over the parameters defined by a con-
structible set, an algorithm will be given to decide whether one ideal
contains the other under the constraint.

Keywords: Constructible Set, Quasi-algebraic set, Gröbner Bases,
Comprehensive Gröbner System.

1 Introduction

The comprehensive Gröbner systems of parametric polynomial ideal were in-
troduced by Volker Weispfenning in 1992 [12]. Many engineering problems are
parameterized and have to be repeatedly solved for different values of param-
eters. The comprehensive Gröbner systems can give the structure of solution
space(finitely many, infinitely many, or the dimension of the solutions), which is
similar to the properties of the Gröbner bases.

Let k be a field, k[U ][X ] be the polynomial ring with the parameters U =
{u1, . . . , um} and the variables X = {x1, . . . , xn}, where U and X are disjoint.
K is an algebraically closed field of k, F be a subset of k[U ][X ]. A specialization
σ is the homomorphism from k[U ][X ] to K[X ]. The comprehensive Gröbner
systems for F is a finite set G = {(A1, G1), . . . , (Al, Gl)}, which satisfy σā(Gi)
is a Gröbner basis for the ideal 〈σā(F )〉 in K[X ] for any ā ∈ Ai and i = 1, . . . , l.

Many algorithmshave been provided for computing the comprehensiveGröbner
systems, including CGB (V.Weispfenning, 1992)[12], CCGB(V.Weispfenning,

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 537–544, 2014.
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2003)[13], ACGB(Y.Sato and A.Suzuki, 2003)[9], SACGB(Y.Sato and A.Suzuki,
2006)[10], HSGB(González-Vega et al., 2005)[2] and BUILDTREE (A.Montes,
2002)[5]. A speed-up of the algorithm was given by Nabeshima [7]. A newest ver-
sion for computing CSG was provided by Kapur, Sun and Wang by removing re-
dundant segments [3]. There is an related concept of Gröbner cover introduced by
Montes and Wibmer in 2010 [6]. In contract to reduced Gröbner bases, which is
uniquely determined by the polynomial ideal and the term ordering, however, the
comprehensive Gröbner systems do not have such a good property. Different algo-
rithm may output different results. Weispfenning[13], Manubens and Montes[4],
Wibmer[14] have done some researches about the canonical Gröbner system. In
this paper, we compare two CGS from another aspect.

In ISSAC’09, Suzuki and Sato[8] gave a method to compute the inverses in
residue class rings of parametric polynomial ideals. For a given parametric ideal
I ⊂ k[U ][X ], and a polynomial f ∈ k[U ][X ], they first compute a CGS G of
I + 〈fy − 1〉. For any branch (A,G) ∈ G. if there is a polynomial which can be
expressed as y − h, where h ∈ k[U ][X ], then f is invertible in K[X ]/(I : f∞)
under the constraint A. In order to judge whether f is invertible in K[X ]/I, it
still need to decide whether I and I : f∞ are equal under the constraint A. This
is the motivation of the paper.

The ideal membership problem of non-parametric case has been totally solved
in the past[1]. But there is little research about the problem of parametric case
until now. This paper can solve this problem through computing CGS of the
parametric polynomial ideal. In the paper, we also give a method to decide
whether two comprehensive Gröbner systems are equal. As a consequence, for
two parametric polynomial ideals and a constructible set, the method can judge
whether one of ideals is contained in the other one under the constraint of the
constructible set.

This paper is organized as follow. Section 2 gives some preliminaries about
the constructible set and the quasi-algebraic set. In section 3, the method of
solving the ideal membership problem is presented. The inclusion and equiva-
lence relation about two parametric ideal are also given in this section. Finally,
some conclusions are given in section 4.

2 Notations and Preliminary

2.1 Notations

Let k be a field, K be the algebraic closure of k, R be a polynomial ring k[U ]
in parameters U = {u1, . . . , um}, and R[X ] be a polynomial ring over R in
variables X = {x1, . . . , xn} where X and U are disjoint. Let PP (X) be the
sets of power products of X , and ≺ be an admissible monomial ordering on
PP (X). As before, for a polynomial f ∈ R[X ] = k[U ][X ], the leading power
product, leading coefficient and leading monomial of f w.r.t. the ordering ≺ are
denoted by lpp(f), lc(f) and lm(f) respectively. Note that lc(f) ∈ k[U ] and
lm(f) = lc(f)lpp(f).
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For arbitrary ā ∈ Km, a specialization ofR induced by ā is a homomorphism
σā : R −→ K. That is, for ā ∈ Km, the induced specialization σā is defined as
follows:

σā : f −→ f(ā),

where f ∈ R. Every specialization σā : R −→ K extends canonically to a
specialization σā : R[X ] −→ K[X ] by applying σā coefficient-wise. For a subset
F of k[U ][X ], σa(F ) = {σa(f) | f ∈ F}.

Definition 1 (Member). Let F be an subsets of parametric polynomial ring
k[U ][X ], f ∈ k[U ][X ]. We say f is a member of the ideal generated by E, if
for any a in Km, σa(f) is a member of the ideal generated by σa(E) in K[X ].

Definition 2 (Contain). Let E,F be two subsets of the parametric polynomial
ring k[U ][X ]. We say E contains F , if the ideal generated by σā(E) contains
the ideal generated by 〈σā(F ) in K[X ] for any ā ∈ Km. If E contains F , and F
contains E, we say E and F are equal.

For any ā ∈ Km, if every element in the Gröbner bases of 〈σā(F )〉 is contained
in the ideal 〈σā(E)〉, it is obvious that E contains F . For different ā ∈ Km,
the Gröbner bases of 〈σā(F )〉 may be different, so we need to study the struc-
ture of the Gröbner bases of 〈σā(F )〉 with respect to the parametric space Km.
Before that, we introduce the notations about quasi-algebraic set and the con-
structible set.

For any subset E = {e1, . . . , es} of k[U ], the set of common zeros in Km of
E is a Zariski closed set, denoted by V(E). For a single polynomial h in R, we
denote the complement of V(h) in Km by V(h)c, which is a basic Zariski open
set. A quasi-algebraic set is the intersection of a Zariski closed set with a basic
Zariski open set, and a constructible set is a finite union of quasi-algebraic set
[11]. We denote V(E) ∩ V(h)c by V(E)\V(h).

In this paper, we only consider the constructible set has a form V(E)\V(N),
where E = {e1, . . . , es} and N = {n1, . . . , nt} are subsets of R. It is obvious
that V(E)\V(N) = ∪t

i=1(V(E)\V(ni)). We say a constructible set V(E)\V(N)
is consistent if it is not empty.

Now we can describe the structure of the Gröbner bases of a parametric ideal.
For a parametric polynomial system F ⊂ R[X ], a comprehensive Gröbner system
of F is defined below.

Definition 3 (CGS). Let F be a subset of R[X ], A1, . . . , Al be algebraical
constructible subsets of Km, G1, . . . , Gl be subsets of R[X ], and S be a subset of
Km such that S ⊂ A1∪· · ·∪Al. A finite set G = {(A1, G1), . . . , (Al, Gl)} is called
a comprehensive Gröbner system on S for F , if σā(Gi) is a Gröbner basis
for the ideal 〈σā(F )〉 in K[X ] for any ā ∈ Ai and i = 1, . . . , l. Each (Ai, Gi) is
called a branch of G. Particularly, if S = Km, then G is called a comprehensive
Gröbner system for F .

In above, the constructible set Ai can be expressed as Ai = V(Ei) \ V(Ni),
where Ei, Ni are subsets of k[U ].
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Notes that, for many algorithm of computing CGS, such as the algorithm
given in [3,7], the output of these algorithm has the following property: for any
branch (A,G) of a CGS, for each g ∈ G, σā(lc(g)) �= 0 for any ā ∈ A. So in the
paper, we always assume the CGS has the above property.

2.2 Some Preliminaries

Given two polynomial f, g in k[U ][X ], and a term ordering “ ≺ ”. If there is a
term cαX

α in f with the coefficient cα �= 0, and Xα is a multiple of lpp(g), we
say f can be reduced by g, and r = lc(g)f−cαXγg is the remainder of f reduced
by g through one step reduction, where Xγ = Xα

lpp(g) . Continuing reduce r by g

until no term of the remainder is a multiple of lpp(g), assume the remainder is
r0, we say the r0 is the remainder of f reduced by g.

For a subset F of k[U ][X ], and a polynomial g ∈ k[U ][X ], we can define
the reduction of g by F as the following lemma. The pseudo division algorithm
in k[U ][X ] is similar to the division algorithm in k[X ], more details about the
division algorithm can refer to the book [1].

Lemma 1. Let F = {f1, . . . , fs} be a subset of k[U ][X ], and “ ≺ ” be a term
ordering. Then every g ∈ k[U ][X ] can be represented as:

s∏
i=1

lc(fi)
δig = p1f1 + · · ·+ psfs + r,

for some elements h1, . . . , hs, r in k[U ][X ], nonnegative integers δ1, . . . , δs, such
that:

i.) pi = 0 or lpp(pifi) 4 lpp(g),
ii.) r = 0 or no term of r is a multiple of any lpp(fi), i = 1, . . . , s.

At the end of this part, we review some properties about the constructible set
and the quasi-algebraic set.

For a constructible set A = V(E) \ V(N), where E,N = {n1, . . . , nl} are
subsets of k[U ]. We are only interested in those constructible sets which are

consistent. Since A = V(E)\V(N) =
⋃l

i=1(V(E)\V(ni)), we only need to know
whether the quasi-algebraic set V(E) \ V(ni) is empty, for i = 1, . . . , l.

Lemma 2. Let A = V(E) \ V(h) be a quasi-algebraic set, where E is a subset
of k[U ] and h is a polynomial in k[U ]. Then A is consistent if and only if h is
not in the radical ideal generated by E in k[U ].

In the following lemma, we show any finite intersection of quasi-algebraic set
is a quasi-algebraic set.

Lemma 3 ([11]). Let A1 = V(E1) \ V(h1), A2 = V(E2) \ V(h2) be two quasi-
algebraic sets, where E1, E2 are subsets of k[U ], and h1, h2 are polynomials in
k[U ]. Then A1 ∩ A2 is also a quasi-algebraic set, and A1 ∩ A2 = V(E1, E2) \
V(h1h2).
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Given a quasi-algebraic set A = V(E)\V(h) ⊂ Km, and a parametric poly-
nomial f = c1X

α1 + · · ·+ ctX
αt ∈ k[U ][X ], ci ∈ k[U ] for i = 1, . . . , t. If for any

a ∈ A, the specialization σa(f) = 0, then A must be a subset of the common
zeros of the coefficients, i.e. A ⊂ V(c1, . . . , ct). Let A be the Zarisiki closure of A,

V(〈E〉 : h∞) = V(〈E〉)\V(h) = A ⊂ V(c1, . . . , ct) = V(c1, . . . , ct),

so ci is in the radical ideal generated by the saturated ideal 〈E〉 : h∞ in k[U ] for
i = 1, . . . , t. On the other hand, we can regard the polynomials in E and h as
polynomial in k[U,X ], then f is in the radical ideal generated by the saturated
ideal 〈E〉 : h∞ in k[U,X ].

Lemma 4. Given a quasi-algebraic set A = V(E)\V(h) ⊂ Km, and a paramet-
ric polynomial f ∈ k[U ][X ]. If for any a ∈ A, the specialization σa(f) = 0, then
〈E, fhv − 1〉 = 〈1〉 = k[v, U,X ], where v is an auxiliary variable different from
X an U .

3 The Computations about Two Parametric Ideals

In this section, first we give the method to judge whether a parametric polyno-
mial is a member of a parametric polynomial ideal. Then we give the method
to determine the inclusion and equivalence relationship about two parametric
polynomial ideals. Several examples will be given for illustrating our methods.

3.1 The Membership Problem of Parametric Ideal

Given a subset F of parametric polynomial ring k[U ][X ], and a parametric poly-
nomial f in k[U ][X ]. If f is a member of the ideal generated by F in k[U,X ],
it is obvious for any a ∈ Km, σa(f) is a member of the ideal generated by
σa(F ). But there are some situations, f is not a member of the ideal gener-
ated by F in k[U,X ], f is still a member of ideal generated by F . For example,
F = {a3b2x2 − y2, ab2x2 − b2xy2}, f = abx2 − b3y6, it is easy to check f is not
in the ideal generated by F in k[a, b, x, y]. But we will see, for any (a, b) ∈ C2,
σa(f) is a member of the ideal generated by σa(F ), so f is a member of the ideal
generated by F .

In order to check whether a parametric polynomial is a member of a para-
metric ideal, we have following theorem.

Theorem 4. Let F be a subset of parametric polynomial ring k[U ][X ], and f
be a parametric polynomial in k[U ][X ]. Assume G = {(A1, G1), . . . , (Al, Gl)} be
a comprehensive Gröbner system of F w.r.t. a term ordering “ ≺ ”. For any
branch (A,G) in G, r is the remainder of f reduced by G. If for any a ∈ A,
σa(r) = 0, then f is a member of the parametric ideal generated by F .

We continue the above example to illustrate the result given in Theorem 1.
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Example 1. Let F = {a3b2x2 − y2, ab2x2 − b2xy2} be a subset of Q[a, b][x, y],
and f = abx2 − b3y6 in Q[a, b][x, y]. Check whether f is a member of the ideal
generated by F .

First, a CGS G of F w.r.t. a lexicographic ordering x ( y is computed.

G = {(A1, G1), (A2, G2), (A3, G3)},

where A1 = V(∅)\V(ab), G1 = {ab2y4 − y2, xy2 − b2y6, ab2x2 − b2xy2};A2 =
V(a)\V(1), G2 = {y2};A3 = V(b)\V(a), G3 = {y2}.

For branch (A1, G1), f is reduced by G1 to 0. For branch (A2, G2), f is
reduced by G2 to abx2. Since under the constraint A2, a = 0, so for any a ∈ A2,
σa(abx

2) = 0. For branch (A3, G3), f is reduced by G3 to abx2. Since under the
constraint A3, b = 0, so for any a ∈ A3, σa(abx

2) = 0. By the Theorem 1, f is a
member of parametric ideal generated by F .

3.2 The Equivalence Relationship about Two Parametric Ideal

In this part, we give the method to determine whether a parametric polynomial
ideal E contains another parametric polynomial ideal F .

Let G1 = {(A1, G1), . . . , (Al, Gl)} be a CGS of E w.r.t. a term ordering “ ≺1 ”,
and G2 = {(B1, H1), . . . , (Br, Hr)} be a CGS of F w.r.t. a term ordering “ ≺2 ”.
For any branch (A,G) ∈ G1, if σa(F ) is contained in 〈σa(E〉, it is obvious E
contains F . We have the following theorem.

Theorem 5. Let G1,G2 be as above. For any branch (A,G) ∈ G1 and (B,H) ∈
G2, assume G = {g1, . . . , gs}, H = {h1, . . . , ht}, and ri be the remainder of hi
reduced by G for i = 1, . . . , t. If for any a ∈ A ∩B, σa(ri) = 0, then E contains
F , where i = 1, . . . , t.

Remark 1. If we only need to know whether F is contained in E under some
constructible set A, we only need to compute a CGS of F on A, then use the
Theorem 2.

If E contains F and F contains E, E and F are equal. We have the following
consequence of Theorem 2.

Corollary 6. Let G1,G2 be as above. For any branch (A,G) ∈ G1 and (B,H) ∈
G2, assume G = {g1, . . . , gs}, H = {h1, . . . , ht}, ri be the remainder of hi reduced
by G w.r.t. “ ≺1 ” , and qj be the remainder of gj reduced by H w.r.t. “ ≺2 ” .
If for any a ∈ A∩B, σa(ri) = 0 and σa(qj) = 0, then E and F are equal, where
i = 1, . . . , t, j = 1, . . . s.

In the ISSAC’09, Suzuki and Sato give a method to compute the inverse in
residue class rings of parametric polynomial ideals. Given a parametric polyno-
mial ideal I ⊂ k[U ][X ], and f ∈ k[U ][X ], they first compute a CGS of 〈I+fy−1〉
w.r.t. a block order “y >> X >> U” in k[U ][X, y]. By their method, it only
can decide whether f is invertible in K[X ]/(I : f∞) in every branch directly.
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In order to judge whether f is invertible in K[X ]/I, it still need to compare
whether I and I : f∞ are equal in every branch. The following is the example
come from [8].

Example 2. Let I = {ax23+2x2x3+bx
2
1x3+(−b+d)x1x3−dx3+ax22+abx21x2+

adx1x2 + x
2
1 + cx1 + e, ax2 + ax1x2 + x1x3} be a set of parametric polynomials,

f = x1+ax2+x3 be a parametric polynomial in Q[U ][X ], where U = {a, b, c, d, e}
are parameters and X = {x1, x2, x3} are variables. We need to check under what
specialization σ from Q[U ] to C, σ(f) is invertible in C[X ]/〈σ(I)〉, where C is
the complex field.

Suzuki and Sato computes a CGS of I+ 〈fy−1〉 in Q[a, b, c, d, e][x1, x2, x3, y]
w.r.t. a lexicographic term ordering y ( x1 ( x2 ( x3. There are six branches
where f is invertible in C[X ]/(I : f∞). We only choose two of them to study
whether I and I : f∞ are equal in these branch.

Branch 1: (A1, G1)
A1 = V(a)\V(e(c+ d)(b− c− d+ 2)),
G1 = {(2x2−d)x3+x21+cx1+e, x1x3, (−2x2+d)x

2
3−ex3, (4x22+(−2c−4d)x2+

dc+ d2)x3 − ex1 − e2y − ec};
Branch 6: (A6, G6)
A6 = V(e, c+ d, b+ 2, a− 1)\V(d),
G6 = {−x23 + (−2x2 + d)x3 − x22 + (d+ 1)x2,−x3 − x2 − x1 + d,−dy + 1}.

In the branch (A1, G1), G
′
1 = G1 ∩ Q[U ][X ] = {(2x2 − d)x3 + x21 + cx1 +

e, x1x3, (−2x2 + d)x
2
3 − ex3} is the Gröbner basis of I : f∞ under the constraint

of A1. We first compute a CGS G1 of I under the constraint A1,

G1 = {V(a)\V(e(c+d)(b−c−d+2)), {(2x2−d)x3+x2
1+cx1+e, x1x3, (−2x2+d)x2

3−ex3}}.

It is obvious I and I : f∞ are equal under the constraint A1, so σa(f) is invertible
in C[X ]/〈σa(I)〉 for a ∈ A1.

In the branch (A6, G6), G
′
6 = G6 ∩ Q[U ][X ] = {−x23 + (−2x2 + d)x3 − x22 +

(d + 1)x2,−x3 − x2 − x1 + d} = {g1, g2} is the Gröbner basis of I : f∞ under
the constraint of A6. We first compute a CGS G2 of I under the constraint A6:
G2 = {V(e, c+ d, b+2, a− 1)\V(d), {x42 +4x32x3 − dx32 − 2x32 +6x22x

2
3 − 3dx22x3 −

4x22x3 + dx22 + x22 + 4x2x
3
3 − 3dx2x

3
3 − 2x2x

2
3 + dx2x3 + x43 − dx33, x1x3 + x32 +

3x22x3 − dx32 − 2x22 + 3x2x
2
3 − 2dx2x3 − 2x2x3 + dx2 + x2 + x33 − dx23, x1x2 +

x1x3 + x2, x
2
1 − dx1 + x22 + 2x2x3 − dx2 + x23 − dx3}} = {A6, {h1, h2, h3, h4}}.

It is obvious there is no term of g1 = −x23 + (−2x2 + d)x3 − x22 + (d + 1)x2,
or g2 = −x3 − x2 − x1 + d ∈ G′

6 can be reduced by {h1, h2, h3, h4}, so the
remainder of g1, g2 reduced by {h1, h2, h3, h4} are r1 = g1, r2 = g2 respectively.
For a = (1,−2, 1,−1, 0) ∈ A6, σa(r1) = −x23 + (−2x2 − 1)x3 − x22 �= 0. So I
and I : f∞ are not equal under the constraint A6. That is, σa(f) is invertible in
C[X ]/〈σa(I : f∞)〉 but not invertible in C[X ]/〈σa(I)〉 for a ∈ A6.
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4 Conclusions

In this paper, we give the method to solve the membership problem about para-
metric polynomial ideals, and determine whether two parametric polynomial
ideal are equal.

Given a parametric polynomial f and an ideal F in k[U ][X ], before computing
a CGS of F , we can first compute a Gröbner bases G of F in k[U,X ] and the
remainder of f reduced by G. If the remainder is zero, then f is obvious the
member of F . Otherwise, we use the theorem 4 to decide whether f is a member
of F . Similarly, for two subset I, J of k[U ][X ], if the reduced Gröbner bases of I
and J in k[U,X ] are same, I and J must equal.
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Journal of Symbolic Computation 44(5), 463–478 (2009)

5. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. Journal
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systems. In: Proc. ISSAC 2010, pp. 299–306. ACM Press, New York (2007)

8. Sato, Y., Suzuki, A.: Computation of inverses in residue class rings of parametric
polynomial ideal. In: Proc. ISSAC 2009, pp. 311–316. ACM Press, New York (2009)

9. Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases.
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Abstract. Most of computer algebra systems were designed to have
a command line interface. However, the interaction with CAS engine
through terminal on tablets is too inefficient. A user have to switch the
software keyboard over and over again to complete the input operation.
We need a GUI for computer algebra system on tablets. This article
describes an implementation method of a handwriting CAS app.

Keywords: tablet devices, CAS, GUI, handwriting recognition.

1 Introduction

The author developed AsirPad [1], a computer algebra system on Linux PDA
Zaurus. It has a handwriting interface for mathematical expressions and can com-
municate with a CAS engine Risa/Asir [2] through the OpenXM protocol [3]. It
was used to present a lecture on RSA cryptography at a junior high school [4].
Ordinary calculator is not available because encryption and decryption in RSA
use division of large numbers. The students learned how to encrypt/decrypt their
messages through calculations by AsirPad. They could input mathematical ex-
pressions and calculate without any special training. This experience encouraged
us to explore the possibility of mobile devices in math classroom.

In 2010, we started a project to develop a Math e-Learning system Mathellan
for pen-based mobile devices [5]. We are planning to rebuild AsirPad for a client
of Mathellan. However, the mainstream of the current mobile devices is shifting
from PDA to smartphones or tablet devices. Therefore, we needed a new devel-
opment environment. AsirPad consists of two main components: a CAS engine
and a handwriting interface. We used a cross-build environment by QEMU and
chroot to make an executable binary of Risa/Asir for the Android platform.
Furthermore, we adopted a cross-platform application framework Qt to build
the handwriting interface of AsirPad. Qt can be used to build applications for
various operating systems. We can develop GUI for various mobile devices with
the same source code by Qt.

2 Use of CAS from Tablet Devices

There are four methods to access to computer algebra systems from tablet
devices. The first method is to use a native application including a computer

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 545–548, 2014.
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algebra engine on tablets (Method 1). The second method is to access to a com-
puter algebra system on the other machine through an application on tablets
(Method 2). The third method is to access to a computer algebra system on the
other machine through a web browser on tablets (Method 3). The last method
is to use a work sheet including a computer algebra kernel (Method 4). The
following is a table for computer algebra systems on tablets we investigated.

Table 1. CASs on tablet devices

Method App name CAS engine OS Paid

MathStudio original Android/iOS �
Mathomatic Mathomatic Android/iOS �
PariDroid PARI Android
Maxima on Android Maxima Android

Method 1 JavaYacas Yacas Android
(Native CAS App) Yacas for iPhone Yacas iOS �

iCAS Reduce iOS �
PocketCAS Giac/Xcas iOS �
Pi Cubed original iOS �
Python Math SymPy iOS

Method 2 WolframAlpha Mathematica Android/iOS �
(CAS through App) SageMath GAP, Maxima, etc. Android/iOS

WolframAlpha Mathematica N/A
Method 3 Sage GAP, Maxima, etc. N/A

(CAS through Web) FriCAS Axiom N/A
Omega Maxima N/A

Method 4 Maple Player Maple iOS
(CAS work sheet) Wolfram CDF Player Mathematica iOS (not yet)

3 Implementation of a CAS Engine for Tablet Devices

A CAS engine / GUI / communication mechanism with CAS engine / internal
form for mathematical expressions are needed to realize a handwriting CAS app.
In this section, we concentrate on building a CAS engine by Method 1. Android
is a UNIX-based operating system. Thus, UNIX-based computer algebra systems
are suitable for Android platform.

Most of computer algebra systems need some external libraries, e.g., garbage
collector or arbitrary-precision arithmetic library. Some of them are not pre-
sumed to be built by cross-build environments. In such a case, self-build en-
vironment is the best way to avoid troubles with building. Risa/Asir needs a
garbage collector Boehm-GC. We made a binary of Risa/Asir for Zaurus as the
CAS engine of AsirPad by this way since a self-build environment for Zaurus
was available. Unfortunately, this way is unavailable for Android. Thus, we need
a cross-build environment to get an executable binary for Android. We rec-
ommend a cross-build environment constructed by QEMU and chroot to avoid
troublesome issues.
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3.1 Cross-Build Environment by QEMU and Chroot

By the following commands, Debian/ARM root filesystem is created in a Debian
Linux machine.

1. Execute debootstrap
$ sudo debootstrap --foreign --arch armel squeeze armel_squeeze

http://ftp.jp.debian.org/debian/
2. Copy a statically-linked version of QEMU to rootfs:

$ sudo cp /usr/bin/qemu-arm-static armel_squeeze/usr/bin/
3. Execute debootstrap again:

$ sudo chroot armel_squeeze /debootstrap/debootstrap

--second-stage

3.2 Cross-Build of a CAS Engine

QEMU is a machine emulator, and a developer can login to Debian/ARM en-
vironment by chroot: $ sudo chroot ./armel_squeeze. We can build source
codes in this environment as if we are in a self-build environment. It means that
we do not need to modify source codes for cross-build.

Now, we shall compile the Risa/Asir’s source code for Android platform by
this cross-build environment.

# cd /home/devel

# export CFLAGS="-O2 -Wall -D ANDROID -fsigned-char -static"

# cd asir2000

# ./configure

# make

# make install

# make install-lib

In case of this method, it is important to use statically-linked libraries by
-static option for GCC because Android OS does not have GLIBC, a standard
C library.

4 Creation of GUI

Console based computer algebra systems are useful as CAS engines. However,
the interaction with CAS engine through terminal on tablets is too inefficient.
We need a GUI for computer algebra system on tablets.

The GUI of ‘Maxima on Android’ [6] by Y. Honda was developed using
WebView, a GUI framework of Android. This GUI uses MathJax to display
mathematical expressions, and can output computational results beautifully.
WebView is a core class in the WebKit. This method can be used to develop ap-
plications for iOS having WebKit as a standard framework. We think that GUI
should be developed by the method not depending on platform like this. On the
other hand, the GUI of AsirPad was developed using Qt. Qt is a cross-platform
application framework, and can be used to build applications for various oper-
ating systems: Windows, MacOS X, Linux, Android and iOS.
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Fig. 1. GUI of AsirPad created by Qt

References

1. Fujimoto, M., Suzuki, M.: AsirPad - A Computer Algebra System with a Pen-based
Interface on PDA. In: Proceedings of the Seventh Asian Symposium on Computer
Mathematics, Korea Institute for Advanced Study, pp. 259–262 (2005), Demo movie,
http://www.inftyproject.org/demo/AsirPad_Demo.zip

2. Noro, M., et al.: A computer algebra system Risa/Asir,
http://www.math.kobe-u.ac.jp/Asir/asir.html

3. Maekawa, M., Noro, M., Takayama, N., Tamura, Y., Ohara, K.: The Design and
Implementation of OpenXM-RFC 100 and 101. In: Computer Mathematics (Pro-
ceedings of the Fifth Asian Symposium on Computer Mathematics), pp. 102–111.
World Scientific (2001)

4. Fujimoto, M., Suzuki, M., Kanahori, T.: On a classroom experiment using PDA
and handwriting interface (in Japanese). IPSJ Symposium Series 2006(8), 331–338
(2006)

5. Fujimoto, M., Watt, S.M.: An Interface for Math e-Learning on Pen-Based Mobile
Devices. In: Proceedings of the Workshop on Mathematical User-Interfaces (2010),
http://www.activemath.org/workshops/MathUI/10/proc/FujimotoWatt.html

6. Honda, Y.: Maxima on Android (2012),
https://sites.google.com/site/maximaonandroid/

http://www.inftyproject.org/demo/AsirPad_Demo.zip
http://www.math.kobe-u.ac.jp/Asir/asir.html
http://www.activemath.org/workshops/MathUI/10/proc/FujimotoWatt.html
https://sites.google.com/site/maximaonandroid/


New Way of Explanation of the Stochastic

Interpretation of Wave Functions and Its
Teaching Materials Using KETpic

Kenji Fukazawa

National Institute of Technology, Kure, Japan
fukazawa@kure-nct.ac.jp

http://www.kure-nct.ac.jp/global/index.html

Abstract. Many students face problems when studying Quantum Me-
chanics to grasp the stochastic interpretation of the wave functions. In
this talk, we show the special solutions of Schrödinger equations, and
describe our approach to explain the stochastic interpretation, which is
based on these special solutions. We also present some examples of the
special solutions, and the teaching materials we developed concerning
such solutions, which have been obtained by using a special software
called KETpic.
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1 Introduction

In Quantum Mechanics, the interpretation of wave functions is a subject that
students find traditionally problems to grasp, because one cannot introduce the
stochastic interpretation logically. Historically speaking, Born could not find any
other reasonable interpretation, and had no choice but to insist the stochastic
one. In many textbooks of Quantum Mechanics[1], they explain that Nature has
the stochastic character, and that is the reason of the stochastic interpretation of
wave functions. Many students fail to accept such an explanation. In this talk,
we show the special solutions of Schrödinger equations, and give our way to
explain the stochastic interpretation, which is based on the special solutions. We
also present some examples of the special solutions, and the teaching materials
concerning the solutions by the use of KETpic[2].

KETpic is a tool to insert mathematical figures in LATEX documents, and is
implemented as an add-on of many popular Computer Algebra Systems (CAS)
such as Scilab, Mathematica, and many others.

The structure of this paper is as follows: in Sect. 2, we explain the special
solutions in the simple case and our approach to explain the interpretation of
wave functions. In Sect. 3, we present some examples of the special solutions,
and the related teaching materials by using KETpic.
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2 Special Solutions for Schrödinger Equations and the
Interpretation of Wave Functions

We have found the special solutions for Schrödinger equations, whose spatial
width at arbitrary time is equal to the wave length multiplied by a positive
integer or half-integer. Note that the ordinary plane wave solutions are wide
infinitely in spatial directions. The simplest case is that of a free particle with
mass m, and one can easily verify that the plane wave solution with one wave
length wide

Ψ = N [θ(ωt− k · r + π)− θ(ωt− k · r − π)] e−i(ωt−k·r) (1)

satisfies the Schrödinger equations

i�
∂Ψ

∂t
= − �2

2m
∇2Ψ (2)

where N denotes the normalization constant and θ denotes the unit step
function.

When one considers the meaning of wave functions, one should note that the
squared amplitude of a wave is proportional to its energy in classical physics.
If this applies to wave functions, the squared absolute value of wave function
|Ψ (t, r)|2 is proportional to its mass density, according to Special relativity.
Hence, you can define the position of the center of mass of a wave function, in
the same manner as the definition of that of a rigid body:

r =

∫∫∫
D

r′ |Ψ(t, r′)|2 dr′∫∫∫
D

|Ψ(t, r′)|2 dr′
(3)

where D denotes the region of the wave function. If one accepts the assumption
that this position is equal to the position of a particle, one has the method to
calculate the position of the particle from a wave function at arbitrary time.

Note that the definition of the center of mass of the body with the infinite
length loses its meaning, because of its infinitude. Thus one finds that in the
case of the ordinary plane wave solutions, the center of mass of a wave function
cannot be defined, and one cannot adapt the above asuumption to the wave
functions.

Other physical quantities of the particle can be calculated in the same manner.
One finds that the obtained formulas are equivalent to the formulas based on
the ordinary stochastic interpretation. In this way, we think that students are
able to accept the stochastic interpretation of wave functions smoothly.

3 Examples of the Special Solutions and Teaching
Materials

We consider some concrete examples of the special solutions and present the
teaching materials in relation to such solutions.
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As a first example, we consider a popular problem in many textbooks and
show how to solve it in a straightforward way. We consider the particle between
two walls in one dimension, and shows the dynamic solutions of this problem.
The potential in this case is:

U(x) =

{
0 (0 < x < L)

+∞ (others)
(4)

where L is the distance of two walls. The Schrödinger equation reads

i�
∂Ψ

∂t
= − �2

2m

∂2Ψ

∂x2
(5)

between the walls, and has the dynamic solutions

Ψ(t, x) =

{
ψ1(t, x) − ψ1(t, 2L− x) (0 � t < T )
ψ1(t, 2L+ x)− ψ1(t, 2L− x) (T � t < 2T )

(6)

where
ψ1(t, x) = A [θ(ωt− kx+ π)− θ(ωt− kx− π)] e−i(ωt−kx) (7)

with an amplitude A, and T is the time to move from one wall to another:
T = L/v = kL/ω. Note that the periodic boundary condition restricts the wave
length as λ/2 = L/n (n: positive integer). Note also that Eq. (6) satisfies the
boundary conditions

Ψ(t, x) = 0 at x = 0, L. (8)

The solution (6) is the dynamic solution, which corresponds to the classical
solution of a moving particle between two walls, and has the discrete energy
level

En =
π2�2

2mL2
n2. (9)

Note that this solution is not usually stated in ordinary textbooks. The solution
stated in them is the stationary wave solution only, which has the same energy
level (9), and does not corresponds to the classical solution.

A sequence of figures reported in the teaching materials we developed con-
cerning the dynamic solution (6) is shown from Fig. 1 to Fig. 5. In this sample,
we pick up the only imaginary part of the wave function, because we cannot
draw both parts simultaneously. We also draw only the half period of its imagi-
nary part for simplicity. In these figures, the wave functions are drawn at several
times, where the parameters are set as L = 10, λ = L, v = 1, A = 1, so that
k = 2π/λ = π/5, ω = kv = π/5, T = L/v = 10. Furthermore, we append a dot
and a dashed line in each figure, which show the position of the center of mass
of the imaginary part of the wave function.

We have used KETpic to generate this sample for our teaching materials. The
reason to use KETpic is that this software works as a plug-in of a popular CAS of
our choice. Briefly, KETpic is a library of macros to generate LATEX source codes
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x
O

Fig. 1. Wave function at t = 4 and its center of mass

x
O

Fig. 2. Wave function at t = 6 and its center of mass

x
O

Fig. 3. Wave function at t = 8 and its center of mass

for high-quality scientific artwork. Such macros can be implemented in different
Computer Algebra Systems (CAS), thus, yielding different versions (plug-ins) of
the program. Depending on the CAS they are based on, these plug-ins typically
run in a quite different way, but this process is usually transparent to end-users.
Once KETpic is loaded, users are simply requested to execute commands in the
CAS of their choice in order to plot graphs and other mathematical data. KETpic
commands generate additional source code and files, which are subsequently
compiled in LATEX in the usual manner. As a result, accurate graphical figures
can be obtained.

In this example, the drawn function is well known, so that one can use other
tools, such as Tikz or Asymptote. But drawing the dot at the position of the
center of mass is not so easy with these tools, because one must calculate the
position by integrating the squared wave function, with dividing the interval of
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x
O

Fig. 4. Wave function at t = 10 and its center of mass

x
O

Fig. 5. Wave function at t = 10 and its center of mass

integration. Utilizing KETpic, one can write a scripting code and accomplish this
task very easily by taking advantage of the programming features it provides.
This flexibility is the primary benefit of KETpic, and that is the main reason to
explain why we choose it for producing the figures of our teaching material.

As other examples, we consider two-dimensional versions of the first example,
the case surrounded by four walls and the case surrounded by a circular wall,
which will be presented in our talk.
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Abstract. This paper presents a new interactive, user-friendly graphi-
cal user interface (GUI) for generation and visualization of IFS. The pro-
gram, called IFSGen4LaTeX, is particularly designed for proper LATEX
editing in a WYSIWYG mode. During a working session, IFS are created
interactively from scratch and visualized by using the IFSGen4LaTeX
GUI; simultaneously, its engine generates source code that, once inserted
in LATEX and compiled, displays the same fractal images in LATEX. This
process leads to substantial savings in CPU time and memory storage,
since the resulting source code is astonishingly small, but still of excellent
visual quality because the number of iterations is decided by the user.

Keywords: Mathematical editing, fractal images, iterated function
systems, graphical user interface, LATEX.

1 Introduction

Fractals are among the most exciting and intriguing mathematical objects ever
discovered. In addition to their impressive visual beauty, they have many re-
markable mathematical properties [1, 3, 22]. The development of fractal geome-
try provides rigorous concepts and techniques for the mathematical analysis of
irregular processes [20]. For example, the fractal dimension of strange attractors
associated with chaotic dynamical systems gives very valuable information about
the irregular evolution observed in such systems [5–7, 10, 11, 15, 17–19].

Owing to these reasons, fractals are receiving great interest from the mathe-
matical community. In fact, several computer tools for generating fractal images
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have been developed during the last few decades, see e.g. [8, 12, 14]. However,
their manipulation and visualization for mathematical editing purposes is still
challenging, since the typical approach of embedding them as figures is not very
flexible and do not always perform properly in terms of computer storage and
visual quality. An illustrative example of this problem is given by LATEX, the
standard computer editor for high-quality typesetting of scientific documents.
As good as it is for automating most aspects of typesetting and publishing,
including numbering, cross-referencing, tables, figures, page layout, table of con-
tents and handling of bibliographic entries, it only provides a basic and very
limited set of graphical capabilities to yield drawings. The only feasible alter-
native is to use a graphical editor to generate our artwork and then invoke the
resulting image file from LATEX. Typically, this option produces a large collection
of heavy images files, thus requiring huge storing capacity and preventing users
from their transferring on the web. Further, incompatibilities may arise as image
files should comply with a limited set of prescribed formats.

These problems are exacerbated for irregular objects such as fractals, which
are not suited for vectorization, leading to large bitmap files. A particular type
of fractals are the Iterated Function Systems (IFS), defined by a finite number
of affine transformations (rotations, translations, and scalings), and therefore
represented by a relatively small set of input data. Instead of storing the bitmap
information of the image, the IFS image is generated from successive iterations of
affine functions, with the great advantage that the final image becomes resolution
independent. In this paper we claim that the code to generate such images by
using IFS can readily be embedded into a LATEX source file and compiled in
the usual way. The resulting text files are astonishingly small when compared
with their image file counterparts but still offer high-resolution quality, as the
resolution only depends on the number of iterations, which can be performed in
real-time. As a result, this process leads to much higher compression ratios than
other conventional formats such as JPEG, GIF, PNG, EPS, and the like.

A clear drawback is that some expertise is required to perform this process.
To overcome this limitation, in this paper we present a new interactive, user-
friendly graphical user interface (GUI) for generation and visualization of IFS.
The program, called IFSGen4LaTeX, is particularly designed for proper LATEX
editing in a WYSIWYG (what you see is what you get) mode. During the work-
ing session, IFS are created interactively from scratch and visualized by using
the IFSGen4LaTeX GUI; simultaneously, its engine generates source code that,
once inserted in LATEX and compiled, generates the same fractal images in LATEX.
The resulting source files are astonishingly small, and still of very high quality, as
the number of iterations is decided by the user. This process leads to substantial
savings in CPU time and memory storage with excellent visual quality.

The structure of this talk is as follows: Section 2 describes the main concepts
and definitions about IFS. Section 3 reports technical details of our program.
Three examples of its application to generate IFS images and its associated
source code to be embedded into LATEX are given in Section 4. The paper closes
with the main conclusions and some future work.
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2 Mathematical Background

Several fractal modeling and generation methods have been developed during
the last decades. Among them, the IFS models popularized by Barnsley in the
80s, are particularly interesting due to their mathematical simplicity [1]. IFS
have been applied in many disciplines, such as artificial landscape modeling in
computer graphics [3, 22]. In short, an IFS consists of a collection of functions
that map a region onto smaller parts. Iteration of these mappings results in
convergence to a self-similar fractal that is called the attractor of the IFS.

2.1 Basic Concepts and Definitions

Since we are interested in 2D images, we restrict our attention to contractive
affine transformations on the Euclidean (complete) metric space (R2, d2), while
the contractive affine transformations wi are of the form:[

x∗

y∗

]
= wi

[
x
y

]
=

[
ai bi
ci di

]
.

[
x
y

]
+

[
ei
fi

]
(1)

or, equivalently, wi(x) = Ai.x+ bi where bi is a translation vector and Ai is a
2 × 2 matrix with eigenvalues λ1, λ2, such that |λi| < 1. In fact, |det(Ai)| < 1
meaning that wi shrinks distances between points. In other words, the fractal is
made up of the union of several copies of itself, where each copy is transformed
by a function wi. Such a function is mathematically a 2D affine transformation,
so the IFS is defined by a finite number of affine transformations (rotations,
translations, and scalings), and therefore represented by a relatively small set of
input data. From now on, an IFS will be represented by a list of the pairs (A,b).
Let us now define a transformation, T , in the compact subsets of X, H(X),

by: T (A) =

n⋃
i=1

wi(A). If all the wi are contractions, T is also a contraction in

H(X) with the induced Hausdorff metric. Then, T has a unique fixed point, |W|,
called the attractor of the IFS. Considering a set of probabilities p1, . . . , pn ∈

(0, 1), with

n∑
i=1

pi = 1, |W| supports several measures in a natural way. We refer

to {X ;w1, . . . , wn; p1, . . . , pn} as an IFS with Probabilities (IFSP). Given a set
{p1, . . . , pn}, there exists an unique Borel regular measure ν ∈ M(X), called the

invariant measure of the IFSP, such that ν(S) =
n∑

i=1

piν(w
−1
i (S)), S ∈ B(X),

where B(X) denotes the Borel subsets of X . Using the Hutchinson metric on
M(X), it is possible to show that the Markov operator M : M(X) −→ M(X)

associated to the IFSP and defined by: (Mν)(S) =
n∑

i=1

piν(w
−1
i (S)), where S

is a Borel subset of X is a contraction with a unique fixed point, ν ∈ M(X)
[16]. Furthermore, support(ν) = |W|. Thus, given an arbitrary initial measure
ν0 ∈ M(X) the sequence {νk}k=0,1,2,... constructed as νk+1 = M(νk) converges
to the invariant measure of the IFSP. Also, a similar iterative deterministic
scheme can be derived to obtain |W|.
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2.2 Fractal Image Rendering: The Chaos Game

In addition to this deterministic algorithm, there exists a more efficient method
for the generation of the attractor of an IFS, known as the probabilistic algorithm
(also referred to as the chaos game). This algorithm follows from the result
{xk}k>0 = |W| provided that x0 ∈ |W|, where: xk = wi(xk−1) with probability
pi > 0 (see, for instance, [2]).

The fractal image is determined only by the set of contractive mappings; the
set of probabilities gives the efficiency of the rendering process. Thus, one of
the main problems of the chaos game algorithm is to find the optimal set of
probabilities to render the fractal attractor associated with an IFS at a given
resolution with the minimum number of iterations. Several heuristic methods
for this problem have been proposed in the literature, but none of them solves
the general case [3, 4, 9]. The most standard was suggested by Barnsley [1] and
has been widely used in the literature. For each of the mappings, this method
(called Barnsley’s algorithm) selects a probability value that is proportional to
the area of the figure associated with the mapping. Taking into account that
the area filled by a linear mapping wi is proportional to its contractive factor,
si, this algorithm proposes the following set of probabilities: pi = si/S, (i =

1, . . . , n), with S =
n∑

j=1

sj. However, this choice of the probabilities is far from

being the most efficient in some situations. Another algorithm, proposed in 1996
and known as multifractal algorithm, provides a method for obtaining the most
efficient choice for the probabilities in the case of non-overlapping IFS models
[13]. Intuitively, a non-overlapping IFS is one whose self-similar parts do not
overlap each other. The basic idea of the proposed method consists of using
a multifractal analysis to characterize the performance of the different sets of
probabilities in the rendering process [12, 13]. As a result, the standard choice
for the probabilities described above do not correspond to the best choice, given
by a multifractal measure with the smallest strength of singularities, under the
condition: log(pi) = Dlog(wi) ⇔ pi = wD

i , where D is the unique real number
satisfying

∑n
i=1 w

D
i = 1 [13, 14]. Then, the most efficient choice corresponds

to: pi = sDi , (i = 1, . . . , n), where D denotes the similarity dimension. If the
contractive mappings are non-overlapping, the only real number satisfying this
constraint is the fractal dimension of the fractal. Otherwise, the number obtained
will be an approximation of such dimension.

3 The Program

The program IFSGen4LATEX consists basically of two major components:

1. a computational library (toolbox): it contains a collection of functions and
routines implemented to perform the numerical and graphical tasks.

2. a graphical user interface (GUI): although this toolbox is enough to meet all
our computation needs, potential end-users might be challenged for using it
properly unless they are really proficient on Matlab’s syntax and functional-
ities and the toolbox routines. To overcome these limitations, we created a
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Fig. 1. Screenshot of the IFSGen4LATEX program for the leaf IFS

GUI providing recognizable visual cues to help the user navigate efficiently
through information. Matlab provides a mechanism to generate GUIs by us-
ing the so-called guide (GUI development environment). In our program we
do an effective use of powerful interface tools (e.g., drop-down menus for
choice lists, radio buttons for single choice from multiple options, text boxes
for displaying messages, list boxes and edit boxes for input/output user in-
teraction, push buttons, etc.) designed according to the type of values being
used. Although its implementation requires - for complex interfaces - a high
level of expertise, it allows end-users to deal with the toolbox with a minimal
knowledge and input, thus facilitating its use and dissemination.

Regarding the implementation, our program has been implemented in Matlab
v2013a [21] by using the native Matlab programming language on a 2.6 GHz.
Intel Core i7 processor with 8 GB of RAM. It supports major computer operating
systems (Microsoft Windows, Linux, and Mac OS X).

4 Illustrative Examples

Figures 1 to 3 show three screenshots of our graphical user interface and its
application to three different examples. In all cases, the user has to input the
IFS code of the contractive functions (top-left area) following the pattern in
Eq. (1), an initial position, the unit length used for conversion into LATEX code,
the number of iterations (bottom-left), and the graphical options (bottom-right
area) such as the color (single color or one color per function) and size (according
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Fig. 2. Screenshot of the IFSGen4LATEX program for the curve of Koch IFS

to LATEX syntax). Note that the list of functions can be modified by removing
all or some previous functions and adding new ones by using a set of five push
buttons. The list of functions along with their IFS codes appear in the text box
below such buttons. Our program also allows the user to choose between the
deterministic or the probabilistic method. In the latter case, the probabilities
can be automatically computed by our program by using either Barnsley’s or
the optimal methods. Additionally, the user has also the option to select any set
of probabilities of his/her choice. Finally, we can also select different elements
for the graphical representation: points, letters, and LATEX symbols (our three
examples have actually been chosen to represent these three cases, respectively).
Those elements have different options, such as point size and filling (on/off), the
typeface of the letter (normal, bold, italic, etc.), and others. The program also
accepts a sequence of LATEX or any other usual expression commonly accepted
in the $...$ environment. The fractal images are displayed in the top-right
area. The user can also save the output figure into supported graphical formats
(including JPG, PNG, GIF, EPS, and others) and inMatlab’s native FIG format.

First example in Fig. 1 shows the leaf IFS, obtained with 2 contractive func-
tions and 20000 iterations with a filled point primitive of point size 2 by using a
single green color and the Barnsley method for the probabilities. Second example
in Fig. 2 shows the curve of Koch IFS, obtained with 4 contractive functions and
150 iterations with the A letter primitive in blue color, font style italic, font size
\LARGE, and the optimal set of probabilities. Finally, third example in Figure
3(left) shows the crystal IFS generated by 400 iterations from the initial LATEX
symbol \heartsuit, with red color, and font size \footnotesize. In all cases,
simultaneously to displaying the fractal on the graphical area of the working
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Fig. 3. (left) Screenshot of the IFSGen4LATEX program for the crystal IFS; (right)
LATEX figure obtained after compilation of the source code generated by our program.
Note the visual similarity between the output figures in both cases.

window of our program, IFSGen4LATEX also generates source code that can be
subsequently inserted into a LATEX file and compiled to generate the same graph-
ical image in LATEX automatically. For instance, Fig. 3(right) shows the similar
figure to that on the left as it appears in LATEX after compilation. The resulting
file size is incredibly small, requiring only 398 LATEX words in text format to
generate the image. Of course, similar results can be obtained with the previous
examples, which are omitted here for the sake of limitations of space.

5 Conclusions and Future Work

This paper introduces a new program, called IFSGen4LaTeX, for generation and
graphical visualization of IFS fractals in LATEX. In our setup the IFS are created
interactively by using a graphical interface; simultaneously, it generates source
code that, once inserted in LATEX and compiled, displays the same fractal images
in LATEX. This process leads to substantial savings in CPU time and memory
storage, while preserving an excellent visual quality. Future work includes the
extension of this program to other types of fractals and other relevant math-
ematical objects. This research has been supported by the Computer Science
National Program of the Spanish Ministry of Economy and Competitiveness,
Project Ref. TIN2012-30768, University of Cantabria (Santander, Spain), Ko-
gakuin University (Tokyo, Japan), and Toho University (Funabashi, Japan).
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of fractal images. The Mathematica Journal 7(1), 7–14 (1997)

15. Gutiérrez, J.M., Iglesias, A.: A Mathematica package for the analysis and control
of chaos in nonlinear systems. Computers in Physics 12(6), 608–619 (1998)

16. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. Jour. 30, 713–747
(1981)

17. Iglesias, A., Gálvez, A.: Analyzing the synchronization of chaotic dynamical sys-
tems with Mathematica: Part I. In: Gervasi, O., Gavrilova, M.L., Kumar, V., La-
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1 Université Paris Dauphine, France
m.gubinelli@gmail.com
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Abstract. GNU TEXMACS is a free mathematical text editor, which
can also be used as an interface for several computer algebra systems and
other mathematical software, such as Scilab, GNU R, etc. Its primary aim
is to offer an alternative to LATEX, which achieves a similar typesetting
quality, but also provides a user friendly WYSIWYG interface. This user
friendliness makes TEXMACS suitable for a broader audience, such as high
school education.

1 Introduction

The GNU TEXMACS project aims to provide a free, polyvalent and user-friendly
scientific office suite, which can easily be interfaced with a wide range of external
mathematical software. The system can be downloaded from www.texmacs.org.
It should be noticed that TEXMACS has been developed from scratch in C++
and Scheme. In particular, the software does not rely on TEX or LATEX.

With respect to standard office suites such as Microsoft Word or Open Of-
fice, we offer better support for mathematical typesetting, formula editing, and
other features useful for scientists. With respect to TEX/LATEX [4],[5] and its var-
ious front-ends, TEXMACS has the advantage of being completely wysiwyg (what
you see is what you get). Indeed, the development of our system was initially
motivated by the following reasons:

– An editor should allow the author to concentrate on what is written and not
on how it is written. In particular, editors should be as wysiwyg as possible.

– With the advent of a wide variety of mathematical software, it should be
possible to make documents more active. One might wish to incorporate
computer algebra sessions and spreadsheets, for instance.

– Scientific editors should become more integrated, taking example on office
suits for non-scientific users. For instance, they should provide tools for draw-
ing technical pictures, making presentations from a laptop, annotating texts,
etc.

In this paper, we will present a quick survey of the traditional features of
TEXMACS and continue with more recent improvements and new features. The
next major release of TEXMACS 2.1 is planned for later this year.
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The core of TEXMACS consists of a free wysiwyg scientific text editor, which
includes a mathematical formula editor, the possibility to write structured texts,
and to extend the editor using personal style files or customizations of the user
interface. Advanced typesetting algorithms are used, which allow for the creation
of high quality documents.

Gradually, more and more features have been added to the software, thereby
moving towards our goal to provide a fully fledged scientific office suite. TEXMACS

currently offers an editor for graphical pictures, a presentation mode, a rudimen-
tary spreadsheet facility, integrated version control, etc. In addition, TEXMACS

has been interfaced to many external mathematical computation systems. These
interfaces can be used either in shell like sessions, inside spreadsheets, or on the
fly inside regular text.

Our main objectives for the next major version TEXMACS 2.1 are to increase
the portability of the software and to further improve the user experience. For
these reasons, we completely redesigned the graphical user interface (see Figure
1), which is now based on Qt instead of Xwindows. Recent versions of TEXMACS

are available under Linux, MacOS and Windows. We took special care at fol-
lowing standard user interface conventions for each of these operating systems
(regarding keyboard shortcuts, for instance). The existing LATEX converters were
also greatly improved and we now provide a native converter to Pdf. We finally
improved the font support and the internationalization of TEXMACS.

Fig. 1. The new graphical user interface of TEXMACS under MacOS

2 TEXMACS as a Structured Text Editor

The backbone of TEXMACS is a wysiwyg structured text editor. The user interface
is redundant by design, so as to make the software suitable for users with diverse
backgrounds. For instance, in order to create a new section, the user has the
following options:
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1. Use the Insert→Section→Section menu item.
2. In the second icon bar, click on the icon, followed by a click on Section.
3. As in LATEX, type followed by .
4. Use the keyboard shortcut .

In a similar way as in LATEX, authors are invited to concentrate on intent rather
than presentation. Nevertheless, most tags have a sufficiently distinctive pre-
sentation for making the structure apparent from the mere rendering of the
document.

All documents are internally represented and manipulated as trees. The struc-
ture of the documentation is made more visible to the user by putting non in-
trusive boxes around all tags which contain the cursor. The innermost tag is
called the current focus and is highlighted using a special color. Various editing
operations allow the user to directly operate on the structure of the document.
For instance, if the current focus is a section title, then there are actions for
changing it into a subsection title, to jump to the next and the previous section,
to toggle the numbering, or to get contextual help on the section tag.

An analogue of the “LATEX source code” is available in TEXMACS using Docu-

ment→Source→Edit source tree. However, from our standpoint, there is no
real concept of the “source code”. In reality, documents are trees, which can
be rendered in different ways so as to make certain tags more or less explicit.
In particular, the presentation of the “source code” can be customized using
Document→Source→Preferences. Furthermore, we consider

√
x to be just as

good (and arguably even better) a “source code” as \sqrt{x}.
TEXMACS also allows the user to create new style sheets or to modify the

definitions of existing presentation macros. In recent versions, this kind of cus-
tomizations have been made even easier: we both provide simplified widgets for
editing macros and the possibility to jump directly to the definition of the macro
corresponding to the current focus.

3 Mathematical Formulas

Special care has been taken so as to make the input of mathematical formulas
particularly efficient. First of all, we designed a special input method which
allows users to enter most mathematical symbols are obtained using a small set
of basic rules:

– Characters which are naturally obtained as “superpositions” or “concatena-
tions” of symbols on your keyboard are entered in a straightforward way.
For instance, yields →, yields , yields ± and yields #.

– The “variant” key may be used in order to obtain variants of a given
symbol or keyboard shortcut. For instance, yields ≤, yields ⇐,

yields ≺ and yields �. All Greek letters can be obtained as variants
of the Roman ones: yields α, yields λ and so on. Sometimes, addi-

tional variants are available: yields � and yields the mathematical
constant e.
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– The and keys are used for obtaining negations and symbols inside other
symbols. For instance, yields and yields ⊕. More elaborated

examples are and , which yield resp.

Efficient shortcuts are also available for most mathematical constructs:
starts a fraction, a square root, a subscript, a superscript, etc.
Being faithful to the principle of redundancy, these actions can also be performed
through the menus, the icons, or via LATEX equivalents.

Inside a mathematical formula, the cursor keys allow you to move around in a
graphically intuitive way. In particular, when done with a particular subformula,
it usually suffices to press the right arrow key in order to return to the main
formula.

Wysiwyg editors are especially interesting for more complex formulas. For
instance, it is easy to insert new rows and columns inside a matrix, or to copy
and paste submatrices (and not only rows).

Another particular feature of TEXMACS is that formulas carry more semantics
than in LATEX, when entered appropriately. For instance, “invisible” multiplica-
tion (as in x y) should be entered explicitly using , whereas function application
(as in sin x) should be entered using .

Recent versions of TEXMACS integrate a parser for mathematical formulas and

a syntax checker. When activating “semantic editing” from the icon menu,
the focus box indicates the arguments of mathematical operators and its color
changes to red whenever a formula is syntactically incorrect. The mathematical
formula parser is based on a fixed grammar which works on a wide variety of
mathematical texts. Nevertheless, the user can explicitly modify binding forces
when needed and define specific notations using the standard macro mechanism.
We refer to [2] for more details.

4 Interfaces with External Software

TEXMACS has been interfaced with many external systems [1]. In particular, we
have interfaces for the computer algebra systems Axiom, Macaulay2, Maple,
Mathemgix, Mathematica, Maxima, Pari, Reduce, Sage, etc. We also
have interfaces for other mathematical software, such as Octave, R, Scilab,
etc.

The traditional way to use “plug-ins” is through “shell sessions”:

TEXMACS also supports two-dimensional input, through toggling of Focus→
Input options→Mathematical input:
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The semantics of the mathematical output depends on the plug-in. For wellde-
signed plug-ins, it is possible to copy and paste formulas between different systems.

Recent versions of TEXMACS feature several additional ways to use external
software in a more implicit way. For instance, after selecting Maxima as the
“scripting language” in Document→ Scripts, one may evaluate a mathemat-
ical formula such as 1 + 2 + 3 by putting the cursor inside it and pressing

. For the preparation of interactive class material, one may also insert

“executable switches” such as . We may toggle the states of

such tags between evaluated and unevaluated. Table 1 finally shows an example
of a Mathemagix spreadsheet inside TEXMACS.

Table 1. Computation of successive derivatives in a spreadsheet

5 Towards a Scientific Office Suite

We have seen that TEXMACS integrates a structured text editor, a formula editor,
a spreadsheet facility and many interfaces to external programs. Let us describe
a few other tools that are available nowadays inside our system, which make
TEXMACS a fairly complete scientific office suite.

5.1 Presentation Mode

A wysiwyg editor such as TEXMACS is particularly useful for preparing laptop
presentations. For this, it suffices to select beamer as the document style in
the Document→Style menu. In addition, several standard themes can be used.
Presentations are organized as successions of “screens”.

Special markup is provided for showing and hiding content in specified orders.
For instance, the “unroll” tag allows item lists to be unrolled progressively. There
is also support for general “overlays”, where the user has full control over the
order in which content appears and disappears on specified ranges of overlays.
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The Insert→Animation menu allows for the insertion of animated content.
For the moment, only simple animations are implemented, but more elaborate
graphical effects and artwork are planned for future versions, as well as support
for embedded videos.

5.2 Technical Pictures

Existing pictures can be embedded inside a document using Insert→Image→
Insert image or Insert→Image→Link image. In addition, TEXMACS includes
a native editor for drawing simple technical pictures. One advantage of this inte-
grated drawing tool is that it is easy to include mathematical formulas or other
TEXMACS markup inside the picture. One may use Insert→Image→Draw image

to start a new drawing and Insert→Image→Draw over selection to draw a
picture on top of the current selection (typically an external picture, or a mathe-
matical formula). Currently, TEXMACS implements the most basic primitives for
drawing vector graphics. We have plans to extend the TEXMACS macro mecha-
nism to graphics and to offer full support for the SVG standard.

Fig. 2. Toy example of a technical picture created with the drawing tool

5.3 Version Control

TEXMACS comes with an efficient tool for computing and visualizing “structured
differences” between two versions of a document. The default way to visualize
changes is to show the old and new versions side by side in different colors.
Authors may quickly go trough the changes introduced by a coauthor and select
which versions they prefer. TEXMACS also integrates support for external ver-
sioning software. For the moment, we only provide an interface for Svn, but it
would be easy to add interfaces for other systems.

6 Compatibility with Other Formats

Unfortunately, TEXMACS is not yet as wide-spread as LATEX. For the sake of
backward compatibility, TEXMACS provides high quality converters from and to
LATEX. However, these converters cannot be perfect for several reasons.
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The main reason is that LATEX is not a format, like Html, but rather a pro-
gramming language. In particular, the only program which parses all LATEX files
correctly is LATEX itself. Since TEXMACS is not a LATEX front-end, it follows that
we can only ensure correct conversions for a (quite large) sublanguage of LATEX.

The other main reason is that TEXMACS has a more powerful typesetting
engine than LATEX and that it provides several extensions (like a graphical editor
or animations) which are not available in LATEX. Therefore, a conversion to LATEX
may downgrade your document, both in typesetting quality and in structure. For
instance, TEXMACS pictures are exported as postscript images, so their structure
is lost.

Nevertheless, during recent years, we have invested a lot of energy in making
the LATEX converters as good as possible, in both directions. In particular, we
support the most frequently used LATEX styles. The behaviour of the converters
can be fine-tuned for specific needs via the user preferences. For instance, should
macros be expanded or not during conversions? Are preambles allowed to contain
additional macro definitions? Etc.

An interesting recent addition is the possibility to use the converters in a
“conservative” fashion [3]. For instance, assume that Alice writes a document in
LATEX and sends it to Bob. Bob opens the document in TEXMACS, makes a few
modifications and exports the document back to LATEX. Conservative converters
have the property that the exported document will be almost the same as the
Alice’s original version: ideally speaking, only Bob’s changes will really be ex-
ported. Besides LATEX, reasonably good converters for Html and MathML have
also been implemented, again in both directions. For instance, the TEXMACS

website is entirely generated from TEXMACS documents. Last but not least,
TEXMACS is wysiwyg, which means that TEXMACS traditionally features a loss-
less converter to Postscript. More recently, a native converter to Pdf has also
been implemented. This new converter includes an improved support for images,
fonts and certain types of graphics. In particular, the quality of Pdf documents
with oriental languages is much better nowadays.

7 Customization

TEXMACS can be customized in many ways. Besides the possibility to write your
own style files for the presentation of documents, it is also possible to customize
the behaviour of the editor, or to write new plug-ins for external software. We
will briefly give a few examples below. Questions can be asked on our mailing
lists:

http://www.texmacs.org/tmweb/home/ml.en.html

7.1 User-Defined Macros

The user may define new typesetting constructs or customize the rendering of
the standard styles using a special macro language. For instance, one may define
a macro cd for square commutative diagrams using
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This macro may then be used by typing as in

For more information, we refer to Help→Manual→Writing your own style

files and Help→Reference guide.

7.2 Customizing the Interface and Scheme Extensions

Following the example of GNU Emacs, the user interface and most of the editing
functions of TEXMACS are written in Scheme, a high level “extension language”.
This makes it possible for the user to customize the behaviour of TEXMACS and
write extensions to the editor. Simple customizations can be put in the file my-

init-texmacs.scm of the .TeXmacs/progs subdirectory of your home directory.
For instance, assume that this file contains the following code:

Then the keyboard shortcuts and can be used inside text mode in
order to insert a theorem resp. a definition. In a similar way, you may customize
the menus, or add more complex extensions to the editor. For more details, we
refer to Help→Scheme extensions.
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Abstract. Free-form parametric curves are becoming increasingly pop-
ular in many theoretical and applied domains because of their ability
to model a wide variety of complex shapes. In real-world applications
those shapes are usually given in terms of data points, for which a fitting
curve is to be obtained. Unfortunately, this is a very difficult task for
classical optimization techniques. Recently, it has been shown that bio-
inspired optimization techniques can be successfully applied to overcome
this limitation. This paper introduces a new interactive, user-friendly
computer software program for the representation and visualization of
free-form parametric curves from sets of data points. Given a cloud of
data points as initial input, the user is prompted to a graphical interface
where he/she can choose the bio-inspired technique of his/her preference,
set up the control parameters interactively, and obtain the mathemat-
ical representation and graphical visualization of the underlying shape.
The paper discusses the main features of this software. An illustrative
example of its application is also briefly reported.

Keywords: computer software, mathematical representation, scientific
visualization, free-form curves, bio-inspired optimization.

1 Introduction

Free-form parametric curves are becoming increasingly popular in many the-
oretical and applied domains. They are a key tool, for instance, to obtain an
accurate approximating curve to sets of data points in theoretical fields such as
numerical analysis, data fitting, approximation theory, and geometric modeling
and processing [1,2,3,4,5,6]. They are also widely used in industrial and ap-
plied domains such as computer-aided design and manufacturing (CAD/CAM),
computer-numerically-controlled milling and machining, automotive, aerospace
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and ship hull building industries, computer graphics and animation, entertain-
ment industries (video-games, computer movies), and many others.

The immense popularity of free-form curves can be mostly attributed to their
ability to model a wide variety of complex shapes. In real-world applications
those shapes are usually given in terms of data points acquired by using tech-
nologies such as 3D laser scanners, and other digitizing devices. The resulting
cloud of data points is then approximated by using mathematical entities such as
curves and surfaces, leading to a least-squares minimization problem [6,7,8,9,10].
Unfortunately, this problem is very difficult to deal with, as it usually requires to
solve a highly nonlinear continuous optimization problem. This problem is also
multivariate, as it typically involves a large number of unknown variables for
massive sets of data points, a case that happens very often in real-world exam-
ples. It is also overdetermined, because we expect to obtain the approximating
curve with many fewer parameters that the number of data points. Finally, the
problem is known to be multimodal; that is, the least-squares objective function
can exhibit several (global and/or local) good solutions.

A number of different techniques have been developed during the last decades
to tackle this issue (see [3,11,12,13] for a comprehensive introduction to the field).
However, the problem has proved to be more elusive than it appeared at first
sight, and the scientific community is still looking for new mathematical and
computational methods to solve it. Among the myriad of methods proposed in
the field, those based on bio-inspired optimization techniques are receiving in-
creasing attention during the last few years, owing to their ability to perform well
under very unfavorable conditions, such as multimodal, multivariate, nonlinear
optimization problems, noisy data points, little knowledge about the problem to
be solved, and many others [14]. As a result, a number of bio-inspired optimiza-
tion methods have been applied to the problem of data fitting through free-form
parametric curves and surfaces [15,16,17,18,19,20,21,22,23,24,25,26,27]. Unfor-
tunately, such methods are hard to use and require a certain level of expertise in
order to apply them efficiently. Consequently, there is an increasing demand of
computer solutions for user-friendly manipulation of these methods. The com-
puter software program presented in this paper is aimed at filling this gap.

The structure of this paper is as follows: our program and its main features
(implementation, architecture, installation, and workflow) are discussed in Sec-
tion 2. Then, an illustrative example about the application of this software is
briefly reported in Section 3. The paper closes with the main conclusions and
our plans for future work.

2 The Program

In this paper we introduce a new interactive, user-friendly computer software
program called BioFit (version 1.0) for the representation and visualization
of free-form parametric curves from sets of data points by using different bio-
inspired optimization techniques. Given an input data consisting of a cloud of
data points (acquired through a 3D laser scanner or other digitizing devices),
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Fig. 1. Workflow for generation of C/C++-based standalone BioFit application and
the application installer from the original Matlab source code.

our program allows the user to choose the bio-inspired technique of his/her pref-
erence, set up the control parameters interactively through a user graphical in-
terface, and obtain the mathematical representation and graphical visualization
of the underlying shape. This section describes its main features in detail.

2.1 Implementation

Our program has been originally developed by the authors in Matlab v2013a by
using a a 2.6 GHz. Intel Core i7 processor with 8 GB of RAM. In our develop-
ment, we took advantage of a very useful functionality of Matlab: the possibility
of compile and link its different modules and windows along with their associ-
ated libraries and underlying code to generate standalone applications. Figure
1 shows the different steps of this process. The top-down arrows indicate the
compilation flow while the dotted curved rectangles enclose the different pro-
gramming environments required for each step indicated within. Roughly, this
process can be summarized as follows: firstly, the chosen module is compiled by
using the Matlab compiler. The result is a set of multiple C or C++ source code
modules that are actually versions in C/C++ of the initial M-files implemented
in Matlab. These files are subsequently compiled in a C/C++ environment to
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Fig. 2. Main window for choice of the bio-inspired method for curve fitting

generate the object files. Then, those files are linked with the C++ graphics
library, M-file library, Built-In library, API library and ANSI C/C++ library
files. The final result is an executable program running on our computer.

We remark here the excellent integration of all these tools to generate op-
timized code that can easily be invoked from different programming environ-
ments for several operating systems, providing both great portability and opti-
mal communication between all modules. Complementary, we also constructed
an installer for our program by using both Visual C++ and Visual Basic.

Regarding the operating system, our program supports many platforms, in-
cluding Microsoft Windows (XP, Vista, 7, and 8), Linux and Mac OS X. Figures
in this paper correspond to the Mac OS X v10.8 platform version.

2.2 Architecture of the Program

Our program consists of two major components:

– a computational kernel, comprised of a set of libraries for several bio-inspired
optimization techniques. This kernel allows the user to compute an accurate
mathematical representation of the shape in terms of free-form curves be-
longing to a parametric family of his/her choice. The kernel has a modular
structure, in the sense that each library is associated with a particular bio-
inspired optimization technique, and libraries operate in a fully independent
way. As a consequence, modification of a particular library does not affect
the performance of any other. In addition, the kernel is also extensible, as
new libraries for other bio-inspired methods can be added as add-ons at any
time. Consequently, the system can be continuously enhanced with new fea-
tures and functionalities. All features in this paper correspond to the version
1.0 of this software.

– a powerful graphical user interface (GUI). The main goal of this user inter-
face is to allow unexperienced users to be able to apply different bio-inspired
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Fig. 3. Screenshot of the window for the particle swarm optimization method

techniques in a very friendly way, without really being proficient in the sub-
ject. Figures 2 to 4 show three screenshots of our graphical interface (see
Sections 2.4 and 3 for details).

2.3 Installation

The program has been created as an standalone application working on major
computer operating systems (Microsoft Windows, Linux, and Mac OS X). It
comes with an installer so that it can readily be installed in your computer by
double clicking on the installer icon and then following the traditional Next >
Next > . . . installation sequence.

2.4 Workflow

Once installed, the user simply has to double click on the application icon to
reach the graphical interface shown in Figure 2. In that window, the user in-
troduces the initial input (a file containing the collection of data points to be
fitted) by using a button to select the file and its corresponding file path. Then,
the user selects the bio-inspired optimization method of his/her choice from a
list of radio buttons, one for each method included in the application. So far,
the following methods (or families of methods) are included in our program:

– ant colony optimization



Representation and Visualization of Free-Form Curves 575

Fig. 4. Example of application of the particle swarm optimization method to an in-
dustrial workpiece (a paint spray gun model).

– artificial bee colony
– artificial immune systems
– cuckoo search
– differential evolution
– firefly algorithm
– genetic algorithms
– particle swarm optimization

Clicking on the OK button the user is prompted to a new window where he/she
can set up the control parameters interactively, and obtain the mathematical
representation and graphical visualization of the underlying shape. The configu-
ration and options available in that window depend on the particular technique
chosen by the user. Figure 3 shows the window for the case of the particle swarm
optimization method. As the reader can see, the window contains a number of
interactive tools and controls (menus, radio buttons, check buttons, push but-
tons, editable text boxes, and so on) to define even the more subtle details. Note
also that our user-oriented design minimizes the time required for the user to
get accustomed to the program and all its functionalities.
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3 An Illustrative Example

In this section we describe an illustrative example of the use of our program. The
example, shown in Figure 4, corresponds to the outline curves of an industrial
workpiece: a paint spray gun model consisting of two different curves for the outer
and inner boundary lines, with 542 and 276 data points, respectively. Both sets
are fitted with fourth-order B-spline curves. The figure shows the values assigned
to the different control parameters of the method along with the options selected
for visualization. The corresponding output appears in the rightmost section of
the window, which is organized into three parts. In the upper part, the data
points (as red cross symbols) and its B-spline fitting curve (as a solid blue line)
are drawn; the middle part shows the mathematical equations for the parametric
coordinates x(t) and y(t); finally, the lower part shows other relevant information
related to the problem, such as the type of fitting curve (a clamped fourth-order
B-spline curve with non-periodic knot vector), the error criterion used (AIC with
overfitting control in this case), the stopping criterion (no improvement after 50
consecutive iterations), and the fitting error obtained.

4 Conclusions and Future Work

This paper introduces a new interactive, user-friendly computer software pro-
gram for the representation and visualization of free-form parametric curves
from sets of data points. The paper discusses the main features of this soft-
ware. An illustrative example of its application is also briefly reported. Future
work includes the extension of this work to other bio-inspired techniques such
as bacterial foraging, bat algorithm, and many others. We are also interested to
apply this program to real-world problems. This research has been supported by
the Computer Science National Program of the Spanish Ministry of Economy
and Competitiveness, Project Ref. TIN2012-30768, Toho University (Funabashi,
Japan), and University of Cantabria (Santander, Spain).
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Abstract. In this paper, we will show some of our attempts to ver-
ify the effect of using high-quality graphics in collegiate mathematics
education through two types of experiments. In the first experiment,
we gave a lesson on the law of logarithms usually done without using
graphics. We used teaching materials containing graphics to give stu-
dents some hints. To prepare the graphics, we utilized an extension of
TeX capabilities for flexible page layout. Then we estimated the effects
of the lesson through a statistical approach. In the second experiment,
we detected the change of students’ brain activity by making behavioral
observation and neuroimaging simultaneously. For this lesson, we chose
the comparison of the degree of growth between two functions as the
theme, and prepared some graphs for them. To generate these graphs,
we utilized the programmability of the computer algebra system for au-
tomatically changing the scale. We showed them to three students and
observed their responses. Simultaneously we monitored their brain activ-
ities through EEG (ElectroEncephaloGram) measurements. We observed
that the judgment of these students changed when they saw a triggering
figure, and some change in the trend of the EEG signal was observed at
that time. From the results of these experiments, it is indicated that us-
ing effective figures in materials might have a great influence on learners’
reasoning processes.

Keywords: graphics, TeX, computer algebra system, brain activity.

1 Introduction

According to the results of our questionnaire survey, one major opinion of col-
legiate mathematics teachers in Japan is that there is no necessity to use high-
quality graphics in education[1]. However, from our experiences, graphics use
seems to play a crucial role in some classroom situations. Therefore, we usually
try to use various graphics in teaching materials edited by the popular TEX tool.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 578–585, 2014.
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Moreover, we have been trying to verify the effect of using graphics by compar-
ing students’ responses in cases when high-quality graphics are used and in cases
when they are not used[2].

To generate high-quality graphics, the computer algebra system (CAS) should
be the most preferred tool due to its computing and programming capabilities.
However it is not always easy to handle the resulting graphical images in the
documents edited by TEX. For instance, some elaborations are needed to put
the generated image in a suitable position and to flexibly arrange the layout of
other components in a harmonious way. Though there exist some TEX graphic
systems such as PStricks[3] and TikZ[4], their computing capabilities are fairly
limited. As a handy tool for both generation of high-quality graphics with CAS
and easy arrangement of the components in TEX documents, we have been using
KETpic. KETpic is a macro package designed to generate TEX-readable code for
CAS creating graphical output. Its package and related documentations can
be freely downloaded at the website: http://ketpic.com. The procedure to
generate graphics with KETpic is summarized in Figure 1. Applicable CASs
are Mathematica, Maple, Matlab, Scilab and R. Here we mainly use the Scilab
version. To make a flexible page layout in step III possible, the TEX macro
package named “ketlayer” has also been prepared[5].

The aim of this presentation is to show some of our new attempts to verify
the effect of using high-quality graphics in collegiate mathematics education.
From the two kinds of experiments conducted to verify the effectiveness of us-
ing graphics in mathematics education, we can claim that these methodologies
have a great possibility to become objective ways to verify the effect of various
mathematical software.

2 Estimating the Effect Statistically

In this section, we will show the method and result of conducting a lesson which
aims to teach the law of logarithmic functions:

loga xy = loga x+ loga y
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This topic is usually taught through deduction based on the definition of loga-
rithm without using graphics. We planned some alternative approach to explain
this law, using material with graphs to help students visualize the law. The sub-
jects are 56 students at a university in Japan who have already studied this law
through the deductive method. Our strategy is to compare the precise graphs
of functions y = loga x and y = loga(cx) in two ways. As an example, we gave
students the graphs in Figure 2 contained in printed teaching materials.

By observing the first figure, students can understand that the graph of y =
log2(3x) can be obtained by reducing the graph of y = log2 x by 1

3 in the x
direction. Then, by comparing to the second figure, students can observe that
the graph of y = log2(3x) coincides with the result of parallel translation in
the y direction. The key fact of our strategy is that the distance of this parallel
translation is equal to log2 3. It is not so easy for most students to understand this
fact only by observing Figure 2. Therefore, to support students’ understanding,
we showed each of the graphs in Figure 3 at one time on a PC screen and
projector. In these graphs, the rays are parallel translated until their initial
points are located on the x axis. Especially, the last graph (6) indicates that the
ray at the position x = 1 should be given most attention. Since this explanation
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is also applicable to the case of y = loga(cx) for any positive value of c, students
will be able to grasp the mechanism of this law.

To show these graphs, it is essential that they are located in exactly the
same position on each page. Moreover, it is desirable that comments and other
graphical components be put on the preferred position as shown in (6). Using
the ketlayer environment, we can readily meet these requirements. In fact, we
only used the following simple commands in Step III of KETpic cycle (Figure 1):

\begin{layer}{130}{0}

\putnotes{60}{35}{{\input{fig6.tex}}}

%specifying the preferred position for putting the graph

\arrowline{62}{85}{40}{145}

\putnotee{15}{40}{Rays have}

\putnotee{17}{44}{the same length}

\end{layer}
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After the lesson, we asked students whether this explanation is easier to un-
derstand compared to the deductive one or not. The result is shown in Table 1.
Also some students commented that this lesson helped them to understand the
mechanism of this law.

The responses from students show that the teaching material used in this
lesson can be considered effective for improving their understanding.

3 Detecting Brain Activity

Although the statistical approach stated above provides an easily accessible way
to verify the effect of various methodologies for teaching and learning, it is not
so easy to establish an obvious cause-and-effect relationship through this ap-
proach. Therefore, a more objective verification is desirable. In this section, we
will demonstrate a neuroscientific approach which we are now trying. At this
stage, our goal is to detect changes in students’ brain activity while they see
high-quality graphics.

The graphics were used to teach a lesson on the comparison of growth degree
between the exponential function y = 2x and the polynomial function y = x4.
The students were expected to understand that the growth degree of y = 2x is
greater than that of y = x4 when x becomes sufficiently large. For that purpose,
we prepared some graphs of these functions as shown in Figure 4. They are
generated by gradually changing the scale in the y direction. In fact, the unit
lengths of x and y axes are the same in graph (1), and those in the y direction
of graphs (2) (3) (4) and (5) are reduced to the ratios 1

10 ,
1

100 ,
1

1000 and 1
10000

respectively. To generate these graphs, we used the following simple commands
of the Scilab version for KETpic.

We showed these graphs one by one to three students. The students were
asked which function they thought increased more rapidly. We observed their
behavior and monitored their brain activities through EEG measurement. We
used the EEG devise “Polymate V” and attached two electrodes to the positions
displayed in Figure 5. These are positions F3 and F4 in the international 10-20
system.
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In the lesson, the students first answered that y = x4 grew more rapidly. But,
when they saw triggering figure (4) or (5), they changed their answers. Moreover,
in the case of one student, some trend change of EEG signal was observed at
that time. In the rest of this section, we will look at this case in more detail.

This student changed his answer after he saw graph (4). In the interview after
the experiment, he stated as follows:

1. “Seeing graph (3), I became uncertain whether or not my answer was cor-
rect.” (In fact, he took relatively more time (45 seconds) to give an answer.)

2. “Just after seeing graph (4), I became convinced that my answer had been
wrong.” (In fact, he took only 15 seconds to change his answer.)

Some samples of his EEG signal are shown in Figure 6. The original signal is
obtained with time resolution of milliseconds. The signal in Figure 6 is obtained
by subtracting the running average of nearby 100 points from the original signal
at the point F3, so that low-frequency trends can be eliminated.

In Figure 6, the EEG graph on the left shows fluctuations of EEG signal during
a second he saw graph (3), and one on the right shows fluctuations of EEG signal
during a second he saw graph (4). There is a fairly large difference in standard
deviation between these two cases. In fact, its realized value is 4.4000[μV] for
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the left one, and 3.8661[μV] for the right one. This result might indicate that
some change in brain activity was induced by his seeing triggering figure (4).

It is not easy to interpret this difference in EEG signal, since the relation-
ship between specific brain activity and its influence on electric potential over
the scalp has not been fully understood. There are at least two possibilities to
interpret the above mentioned difference:
1. Recognizing the difference between graph (3) and (4), the student repeated

the reasoning process for comparing growth degree. The difference was caused
by the occurrence of this new process.

2. According to the student’s statement, there is a difference in his emotional
state between these two cases. The difference was caused by this transition
from uncertainty to certainty.

Since both of these new developments in reasoning and emotion can be regarded
as the result of using figure (4), it is reasonable to claim that the effect of using
high-quality graphics can be verified through this experiment.

4 Conclusions and Future Study

The results of this study show that using effective graphics can greatly influence
students’ reasoning. The verification method used here should be applicable to
various educational resources. In future, we must clarify the following points
through similar experiments:
1. Among the many topics in collegiate mathematics education, for which ones

are graphics effective?
2. How can we evaluate (or compare) the effect of various graphics through the

neuroscientific approach?
3. Among the many methodologies to generate graphics, which ones are suitable

for each theme?
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Abstract. New technologies and interfaces are changing the way users
engage with technology, mathematicians are no exception. In a previ-
ous study we found some interesting attitudes/practices of professional
mathematicians with respect to search interfaces, that sets them apart
from other web searchers. In a nutshell, this study explores whether and
if so, how math search interfaces are distinctly perceived by younger and
older mathematicians and we offer first design implications.

Keywords: math search interfaces, repertory grid analysis, generation
gap.

1 Introduction

In [Koh14] we presented ten behavioral patterns of mathematicians with respect
to math search interfaces. Note that in this paper, mathematicians are people
with a research interest in mathematics. We were able to show that mathemati-
cians and non-mathematicians do approach math search very differently.

For instance, mathematicians strategically use the search engine “Google”
for finding specific objects of interest, i.e., specifically looking for identifiable
information. This comprises that mathematicians not only know previous to
the search what exactly they are looking for and thus, anticipating the exact
search result, but also that they know how to formalize the search query. In
contrast, Google is best-known for its browsing quality, i.e., getting an impression
of what data are available (e.g., for an overview or for inspiration) and possibly
refining the search as a consequence. Very simply put, mathematicians would
look for a definition of “Cauchy sequence” instead of looking for information
about “Cauchy sequence”.

But there were noticeable differences: some expected the Google experience
in all text-based math search interfaces, others restricted it purely to Google
itself. It was conjectured that the generation gap in the math community could
account for this. This would have the particular consequence that math search
interfaces for the new generation of mathematicians have to be different as the
usability criteria in-between generations are not shared.

To verify that there indeed is a “generation gap” between older and younger
mathematicians, we looked closer into the available data from the study done
in [Koh14].

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 586–593, 2014.
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2 The Study

We used repertory grid interviews (“RGI” ;see for example [HW00, Jan03,
Kel03]) as main methodology to elicit evaluation schemes (“constructs”) with
respect to selected math search interfaces (“mathUI”) and to understand how
mathematicians classify those mathUIs. The main advantage of the method is
its semi-empirical nature. On the one hand, it allows to get deep insights into
the topic at hand through deconstruction and intense discussion. On the other
hand, the grids produced in such RGI sessions can be analyzed with a General
Procrustes Analysis to obtain statistically significant correlations between the
elicited constructs or the given mathUIs.

We decided to use 12 RGIs from the set of interviews conducted in [Koh14].
All interviewees were mathematicians, but 6 we assigned to the ’older’ group
“mathPROFs” and 6 to the ’younger’ one “mathSTUDs”. Our criterion for
assigning a group did not rest on the age of the interviewees, but on their social-
ization time within the math community. We considered a subject ’old’ when he
or she were longer than five years in a leading position in the community, e.g.
as a professor. The underlying reason consisted in our interest in differences in
mathematical practices, which depend more on community status than on life
age. Nevertheless, the distinct criteria coincided in most cases.

3 The Generation Gap for Mathematicians

In this study we are using the same analysis tools as in [Koh14], therefore we like
to ask the reader to look for details of the method there. Basically, we obtained
a total of 67 evaluation schemes by 12 participants for the following 17 mathUIs:

zbMathNew zbMath.org: a mathematical abstracting and reviewing service
zbMathOld : a former version of zbMathNew

MathSciNet ams.org/mathscinet: a mathematical abstracting and reviewing
service

Google-Scholar scholar.google.com: search for scholarly literature on the Web
Google google.com: search on the Web
TIB tib.uni-hannover.de: a university online catalogue
vifamath vifamath.de: a virtual library of mathematics
arXiv arxiv.org: a (mathematical) open e-print archive
ResearchGate researchgate.net: a scientific network platform
mathoverflow mathoverflow.net: a mathematical answer and question plat-

form
MSC-Map map.mathweb.org: an interactive map for mathematics based on the

math subject classification (MSC)
arxiv-Catchup arxiv.org/catchup: catching up with newest mathematical up-

loads to arXiv

FormulaSearch zbmath.org/formulae: searching for formulae in the zbMathNew

database
myLibrary : a physical library as math search interface

zbMath.org
ams.org/mathscinet
scholar.google.com
google.com
tib.uni-hannover.de
vifamath.de
arxiv.org
researchgate.net
mathoverflow.net
map.mathweb.org
arxiv.org/catchup
zbmath.org/formulae
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myOffice : the personal office as math search interface
myColleagues : personal colleagues as math search interface
Bibliography : a bibliography as math search interface

The General Procrustes analysis on the elicited data was done with Idiogrid
[Gri02], the biplots and cluster dendrograms were generated with OpenRep-
Grid [Ope].

Fig. 1. Element Clusters for all Mathematicians

Recall that dendrograms are a visual representation of correlation data.
Two elements, e.g., in Fig. 1, are closely correlated, if their scores on the RGI

elements are similar. The distance to the next upper level of two elements/groups
of elements indicates this relative closeness.

In Fig. 1 we see the result of the cluster analysis of elements of all mathemati-
cians, the so-called “inMATH” group, as analyzed in [Koh14]. To be able to
better compare the distinct elements, the colors in all dendrograms are adapted
to the ones used in the left-hand side of Fig. 2 for the results of the ’purest’
mathematical group, i.e., the mathPROFs group.

We can derive directly that MathSciNet, zbMathOld and zbMathNew are corre-
lated very closely and that the innovative interfaces FormulaSearch and MSC-Map

are perceived by the mathematicians as potential mathematical search tools,
thus, they are close to the former ones. All of them are considered specifically
fit math search tools, so we called this the “math search cluster”. In another
main cluster, the “personal search cluster”, all the mathUIs are comprised that
offer very fine-grained, personal math search interfaces. The third main “general
search cluster” contains more general search tools, here, particularly Google resp.
Google-Scholar were marked by many interviewees.

To understand what the differences in the mathPROFs versus the mathSTUDs

group are, we split up the group and obtain the two separate dendrograms in
Fig. 2.
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The ’Pure’ Math Cluster It is obvious that both groups agree on the yellow
cluster within the math search cluster: MathSciNet, zbMathOld and zbMathNew do
have similar ratings across the generation boundary. Thus, they are considered
undisputedly as interfaces for math search of similar quality. Note that we have
to check for the corresponding evaluation schemes to decide whether this means
a fitting, good quality or not.

The “Innovative” and “Standard Search” Clusters. The closeness of the innova-
tive interfaces FormulaSearch and MSC-Map respectively the standard web search
interfaces Google and Google-Scholar is unchallenged as well. This is surprising
as such as the innovative interfaces are very different interfaces, as one, e.g.,
accepts only LATEX input, the other is a map service with zoom in and out facil-
ities. The standard web search interfaces cluster, even though one is responsible
for search on the entire net, whereas the other only considers scholarly objects
as search data, thus, it is interesting per se that they cluster.

Nevertheless, their clustering has changed. For the mathPROFs group the
innovative, but math specific interfaces are still closer to the ’pure’, yellow math-
UIs than all others, but they are themselves considered a little bit closer to the
standard search cluster.

Fig. 2. Element Clusters for mathPROFs resp. mathSTUDs Group

The Personal Search Cluster. Another immediate observation consists in the
differences between the mathPROFs group and the mathSTUDs group with
respect to the red personal search cluster.

The former perceives them as most different from all the other mathUIs (see
left-hand side of Fig. 2). Note that there was also a strong personal search cluster
in the inMATH group (Fig. 1), but ResearchGate was replaced by myLibrary.
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The mathUI ResearchGate Here, the connection with real people seems to be
the critical difference. Even though the ’older’ mathematicians appreciated the
personal flavor of a scientific network like ResearchGate, they did not appreciate
the network itself as being valuable for their search behavior. The library, on
the other side, (even though only seldom used) was associated with a librarian,
which filtered the available information for them in a very directed way.

In contrast, the mathSTUDs group experiences people and networks as per-
sonal support. They also visit only infrequently the real library, but they do
associate a rather inconvenient, even inaccessible pool of information with it.
Note that all the physical mathUIs (and such that have a physical component
like people) are in one cluster on the right-hand side of Fig. 2, all the virtual
ones in the other.

The mathUIs arxiv-Catchup and TIB. The exception is the arxiv-Catchup service.
We suspect that the service of “catching up with new information” itself is based
on physical world metaphors and doesn’t fit to the information strategy of the
’younger’ generation. Note that for the mathPROFs group arxiv-Catchup and
TIB are placed similarly, but we believe that other reasons underly this fact. In
the interviews it became clear that the three mathUIs ResearchGate, TIB and
arxiv-Catchup were the least appreciated math search services, so they might be
the least functional for the ’older’ generation.

The mathUIs arXiv and vifamath. With respect to all dendrograms in Figures 1
and 2, the elements arXiv and vifamath not only cluster themselves but they
are in the same relative cluster.

4 Design Implications

The analysis of our data suggest a different appreciation of

– the standard web search engines like Google for math,
– the physical condition of mathematical information, e.g., whether it is rep-

resented in a book or in an online portal, and
– the social gathering of information

by older and younger mathematicians. What does this mean now for the design
of math search interfaces?

4.1 The Google Search Design Factor

One best practice of a well-known set of usability guidelines [NM90] states that
“any extra unit of information in a dialogue competes with the relevant units of infor-

mation” and therefore a minimalist design is to be preferred (see also [Nie99]).
For a search interface Google’s layout is a prototypical example. But Google
has achieved more than good design, it turned itself into the “Google search
design factor”, consisting according to Jarvis in [Jar09, 391ff.] of
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Fig. 3. Biplot for mathPROFs Group

1. Aesthetics of simplicity turns into an ethics of simplicity. Simplicity stands
for successfully elaborated complexity.

2. Google rewards openness.
3. The effects of the long tail.

For the mathematicians in general part (1) of the Google factor was not relevant
at all (see Patterns 6 and 7 in [Koh14]). They evaluated Google according to its ca-
pability of finding (Pattern 3) as fit for math, but not for its aesthetics. In Fig. 3 we
can see how the mathUIs are distributed according to their structure coefficients
in the plane spanned by the first principal components in the mathPROFs group.
Only the more relevant constructs are shown. Note the rather negative connota-
tions close to Google. In contrast, in Fig. 4, you can see the ones for the math-
STUDs group. Here, Google and co. are clearly more positively connotated, we
thus suspect that they do care for the Google search design factor.

Older mathematicians were and still are astonished about what the Google
search engine can accomplish. They might associate the plainness of the main
page with simplicity. This is not the case for the younger mathematicians. They
care for the Google factor, but do not depend on it. Minimalistic design does not
necessarily mean non-complex design, but rather a clear and focused structure.
For the main page of Google this has been done, but it doesn’t mean that a one-
line search box is wanted everywhere. It is important though that the reduction is
transparent (see Pattern 9 in [Koh14]), that is, that mathematicians can retrace
the simplifications. Especially older mathematicians handle the tools at hand
very deliberately. So, one part of the Google factor can be translated to

Implication 1: “The interface complexity has to be reduced as much as possi-

ble, but at the same time the reductions need to be as transparent as possible.”

The mathSTUDs group do stress the accessibility to the original doc and the
currentness of information when using, for example, Google. Google aims for
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Fig. 4. Biplot for mathSTUDs Group

completeness of data at any point in time by the means of rewarding openness
(2.) of the Google factor). Therefore, we suggest that mathUIs should evaluate
openness higher than completeness. More precisely:

Implication 2: “To draw younger mathematicians in, math search interfaces

should strive for and reward up-to-dateness and accessibility.”

The third part (3) of the Google factor refers to Google’s capacity to find even
the rarest items. This is extremely important for mathematicians as Pattern 3
in [Koh14] indicated. In Fig. 3 as well as Fig. 4 the constructs indicate that
this search mode is important for mathPROFs (e.g., “anonymous results” as
evaluation of Google) as well as mathSTUDs (e.g., “specific results” for the ’pure’
math cluster).

4.2 The Library Design Factor

We already argued above that physicality of information objects as offered by
libraries, for instance, doesn’t seem to be especially attractive to younger math-
ematicians any longer. Moreover, even for the mathPROFs group the mere ex-
istence in the real world, its embodiment, doesn’t count as much as its func-
tionality. Moreover, mathematicians seem to believe that there is nothing lost,
when turning to virtual facilities. So, we conclude very simply (but for different
reasons in each generation):

Implication 3: “Math search doesn’t have to take physical forms of informa-

tion objects into account. Mathematical information transition does not depend

on its embodiment.”
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4.3 The ResearchGate Design Factor

In HCI it is said that Social Media become more and more important for social
interaction among people. In [Koh14] Pattern 4 verified that mathematicians
make use of social interaction in their math workflows as mathematical prac-
tices. Therefore, it is not astounding that younger mathematicians turn towards
social media and try to initiate exactly those kind of social interactions as math-
ematical practices that are common among the traditional math community.
Some mathUIs like mathoverflow have already succeeded to even convince older
mathematicians, others like ResearchGate still have to win them over. As of now
networking is not included in mathematical practices, so a new task for math
search interfaces include:

Implication 4: “Math search interfaces need to understand networking and

its use for mathematical practices to integrate them into their services.”

5 Conclusion

We have presented a study concerned with the generation gap of mathematicians
with respect to math search interfaces. We found differences and suggested first
design implications for future math search interfaces. Note that some of the
implications can be generalized to math interfaces.
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Abstract. PISA survey research revealed that Japanese high school stu-
dents have difficulty using mathematics. Responding to those survey re-
sults and aiming at improving this situation, the Japanese Ministry of
Education, Culture, Sports, Science and Technology created a new sub-
ject designated as “Application of Mathematics” in which mathematics
is developed with close involvement in culture. The design of the sub-
ject “Application of Mathematics” is based on two fundamental pillars:
“human activity and mathematics”, and “mathematical considerations
for social life”. In this talk, the author wants to add a new perspec-
tive: “Application of Mathematics to Mathematics”. Accordingly, the
talk will present some examples from WASAN problems of this concept
using Computer Algebra Systems (CAS), such as Mathematica, Maple,
Maxima, Scilab and R, and TeX documents used as classroom materi-
als through KETpic. The talk encompasses the author’s practice in the
teacher-training course and high school classes with CAS. This approach
is particularly effective for students in the field of geometry.

Keywords: Application of Mathematics, Scilab, KETpic, WASAN.

1 Introduction

The PISA survey identified that Japanese high school students have difficulty
related to their attitudes about and capabilities for application of mathematics.
In fact, the author, as a teacher of mathematics, feels that although students are
good at solving mathematical problems listed in a textbook, many students are
puzzled when faced with a scene to discuss or with daily situations that must be
resolved mathematically. This state of affairs, which is regarded as attributable to
the fact that they get bewildered at how to apply mathematics to daily problems,
has been researched. In fact, educational materials dealing with actual scenarios
that can be resolved by mathematics are rarely used in conventional classes,
which might explain some of the bewildered feeling of many students.

Given that background, the Ministry of Education, Culture, Sports, Science
and Technology newly created a mathematical subject called “Application of
Mathematics” that includes “mathematics and human activities” and “mathe-
matical consideration for social life” as a mathematical subject for high schools.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 594–600, 2014.
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As described in this paper, the author insists that for cultivation of student’s
capability to use mathematics subjectively, mathematics should be visible all the
time. To achieve this, it is considered that teachers should teach students and
develop educational materials with emphasis on “Application of Mathematics to
Mathematics”.

Then, such research becomes important for development of educational ma-
terials with the perspective that mathematics is practically applicable to math-
ematics. That point is demonstrated at lesson studies to be used in designing
a future curriculum. At the same time, teachers who can practice and teach
application of mathematics should be cultivated to an urgent degree.

As a concrete example of the author’s idea of “Application of Mathematics to
Mathematics”, roles of mathematics as a language for describing an event using
formula manipulation software Scilab and KETpic are presented in this paper.
This perspective is derived from the perspective of drawing figures. Section 2
presents and explanation of how to draw an inner center and an inscribed circle
of a triangle is shown. Section 3 shows how to draw a third circle mathematically
in the problem of WASAN using the relation between two circumscribed circles
and common tangent.

2 Language for Describing Events: Expression by CAS

Bisectors of three inner angles of a triangle meet at one point. This is designated
as the inner center, which is located an equal distance from three sides; a circle
contacting the three sides can be drawn around the inner center. Such a circle
is designated as an inscribed circle.

University students of the teacher-training course for aspiring mathematics
teachers of high schools were once requested to find an inner center of a triangle.
Using a ruler and a compass, they were able to draw one accurately based on
the definition. According to the author, this is a category of solving an ordinary
mathematical problem.

They were then asked to draw an inner center using other mathematical struc-
tures without using a ruler or a compass on the assumption of using CAS. Many
did not know at all how to do it. Although equations of a straight line and a
circle were taught in high school in the course unit “Graphics and equations”,
with instruction in the functions of the ruler and compass, their understanding
of structures through mathematical concepts might have been insufficient.

The benefits of “Application of Mathematics to Mathematics” are acquired
by replacing an issue by another mathematical structure as performed using the
ruler and compass. CAS is suited to experiences of an actual sensation of roles of
mathematics as a language for describing phenomena. Therefore, it might be said
that it is also suited for acquisition of the concept and attitude of “Application
of Mathematics to Mathematics”, which the author proposes.
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2.1 Drawing Inner Center of Triangle

To draw an inner center of a triangle using CAS and without using a ruler and
a compass, the goal here is how to create a bisector of the inner angle.

Here, based on the contents of mathematics that are studied up until high
school, drawing an inner center of a triangle using two methods from elementary
geometry and vectors are proposed.

2.2 Bisecting Angle Using Elementary Geometry (Diagonal Line of
Rhombus)

As properties of graphics, we studied the properties of a rhombus as follows:

Using two diagonal lines of the rhombus, it is divided into four congruent right
triangles. From this, as Fig.2, if a rhombus OGJH is created around � GOH to
include vertex O, then the bisector of � GOH is generated as its diagonal line.

2.3 Bisecting Angle Using Elementary Geometry

Students have already studied the following theorem:

Theorem 1. As Fig.1, in triangle OAB, the intersection point of bisector of
� AOB and side AB is designated as D, |AD| : |BD| = |OA| : |OB| is established.
The opposite is also true. The opposite of the theorem used here is also true.

Fig. 1. Fig. 2.

This famous problem is frequently selected as a practice exercise presented in
high school textbooks in Japan.

When the lengths of three sides of triangle OAB are given, the intersection
point D of side AB can be obtained using the opposite of this proposition and
bisector OD of � AOB is obtained. Similarly, a bisector is obtained for the other
two angles. An intersection point of bisectors of three angles is sought as the
inner center.

2.4 Method Using Unit Vector Sum

Theorem 2. As Fig.2, a bisector of an angle can be expressed using the sum of
two nonparallel unit vectors. That is to say, for two vectors

−→
OA and

−→
OB, the sum

of each vector
−→
OA−−→|OA|

and
−→
OB−−→|OB|

, i.e.,
−→
OA−−→|OA|

+
−→
OB−−→|OB|

becomes a bisector of � AOB.
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2.5 Method Using Position Vector

Theorem 3. If the vertex of triangle ABC is expressed by position vectors

A(
−→
a ), B(

−→
b ), and C(

−→
c ), then the position vector of the center of gravity G(

−→
g )

is expressed by the following well-known expression.

−→
g =

−→
a +

−→
b +

−→
c

3

This expression appears in the mathematics textbook of Japanese high schools.
This theorem is famous for every student.

2.6 Position Vector of Inner Center

In Japan, students learn a circumcenter, an orthocenter and excenters in addi-
tion to the inner center, center of gravity, constituting a total of five centers of
triangle. Here, the inner center position is described.

Theorem 4. If the vertex of triangle ABC is expressed by position vectors

A(
−→
a ), B(

−→
b ), and C(

−→
c ), then the position vector of inner center I(

−→
i ) is ex-

pressed as follows: However, BC = a, CA = b, AB = c.

−→
i =

a
−→
a + b

−→
b + c

−→
c

a+ b+ c

2.7 How to Find the the Radius of an Inscribed Circle of Triangle

If the area of triangle ABC is S, the lengths of sides are a,b,c and the radius of
an inscribed circle of triangle ABC measures r, the relationship shown on the
follow is satisfied. where 2s = a+ b+ c.

S = sr

There is a formula for areas of triangle which depends on only lengths of sides.
(Heron’s formula) :

S =
√
s(s− a)(s− b)(s− c)

We can compute the the radius of an inscribed circle of triangle by 2 formulas.

r =
S

s
=

√
(s− a)(s− b)(s− c)

s

Fig. 3.
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2.8 How to Use the Scilab and KETpic in Finding the Inner Center
and the Radius of an Inscribed Circle of Triangle

Scilab includes many of mathematical functions. It has a high level programming
language 2-D and 3-D graphical functions.

Scilab prepares graphics functions to visualize, annotate and export data and
many ways to create and customize various types of plots and charts. KETpic has
been developed as a plug-in based on CAS. Mathematics teachers create a figure
using KETpic program in CAS along with mathematical drawing procedures.

In this section, the author shows how to compute the inner center of triangle
and the radius of an inscribed circle of triangle by Scilab. Here is an algorithm
to find the inner center and the radius of an inscribed circle of triangle.

Scilab mathematical meaning
function Out=fn(A,B,C); ← A,B,C express the position vector.

a=norm(B-C); ← a = |−→CB|
b=norm(C-A); ← b = |−→AC|
c=norm(A-B); ← c = |−→BA|
I=(a*A+b*B+c*C)/(a+b+c); ← Point I is expressed as the inner center.
s=(a+b+c)/2;
S=sqrt(s*(s-a)*(s-b)*(s-c)); ← Heron’s Formula

Out=S/s; ← S

s
means the radius of an inscribed circle.

endfunction

3 Using CAS in WASAN

Japanese old Mathematics, known as WASAN, is well known to have evolved
uniquely, especially during the Edo period (1603–1868). It includes numerous
problems related to geometry and beautiful figures.The term Sangaku as Fig.4
refers to Ema (votive tablets) on which mathematical problems were written and
which were dedicated to shrines and temples. It is often said that the custom of
offering Sangaku began in 1660’s.

3.1 Translation of the Problem

Question: As the Fig.5 shows, if the medium circle diameter is 9 sun and the
small circle diameter is 4 sun, what is the large circle diameter?
Answer: 36 sun.
Explanation (formula): First divide the diameter of the medium circle by that of
the small circle and take the square root of that number. Then, subtract 1 from
that number and square the result. Last divide the diameter of the medium circle
by that number, one can find the diameter of the large circle; then simplified.
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Fig. 4. Fig. 5.

3.2 Explanation

Many problems related to the construction of a figure are solvable using the loci
of points. When one wants to find the position of a point, one can draw two loci
which respectively satisfy the two given conditions, and find where they intersect.
Such a method is called the intersection of loci. This Sangaku introduces how
to describe the circle O3 by the intersection of loci with Scilab and KETpic. The
following shows its process. The Fig.6 shows it also, letting the line � be the
common tangent line.

(1) First, describe the circle O1, and de-
scribe the parabola C1 at O1 as a focal
point.

(2) Secondly, describe the circle O2, and
describe the parabola C2 at O2 as a fo-
cal point.

(3) The parabola C1 meets the parabola
C2 at O3. Finally, one can describe cir-
cle O3 at an intersection point O3. Fig. 6.

This section is cited from my paper as follows [1], but those figures are drawn
by Scilab and KETpic except Fig.4.

4 Conclusion and Future Work

With CAS, if the respective diameters of a large circle, medium circle, and a
small circle are known, as is true also of the Sangaku shown in Section 3, then
a drawing can be produced easily by designating a center and radius.

Drawing the Sangaku described in Section 3 is performed such that the third
circle is drawn mathematically using the relation between two circumscribed
circles and common tangent, with characteristics of a parabola. This problem is
used in the lesson of quadratic curve for a Japanese high school. CAS is good at
drawing such graphics. As described above, the use of CAS such as Scilab and
KETpic for mathematical drawing is effective to encourage students to experi-
ence the application of mathematics to mathematical problems, which will also



600 H. Makishita

be beneficial for students to ascertain the meaning of learning mathematics in-
cluding the usability of mathematics. Furthermore, it will attract student interest
in mathematics and act favorably in emotional aspects of learning mathemat-
ics. This is the real meaning of “Application of Mathematics to Mathematics”,
which the author proposes.

Students aiming at becoming teachers of mathematics in the future were able
to recognize that CAS such as Scilab and KETpic including use of LATEX are
useful. As an example of application of mathematics to mathematics, the author
intends to apply Scilab and KETpic to the drawing of figures used in WASAN and
to Sangaku in the future, with eventual disclosure of the results to the public.

Acknowledgements. This research is supported in part by Grant-in-Aid for
Scientific Research (C) 26350198. The author would like to thank his colleagues
for their valuable comments and input. In addition, the author has received
significant advice from KETpic research members.
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Appendix

If the vertex of triangle ABC is expressed by position vectors A(
−→
a ), B(

−→
b ), and

C(
−→
c ), then the position vector of the center of circumcenter O, orthocenter H,

excenters IA, IB, and IC are expressed by the following well-known expression.

(1) Circumcenter : O

(
sin 2A

−→
a + sin 2B

−→
b + sin 2C

−→
c

sin 2A+ sin 2B + sin 2C

)

(2) Orthocenter : H

(
tanA

−→
a + tanB

−→
b + tanC

−→
c

tanA+ tanB + tanC

)

(3) Excenters : IA

(
−a−→a + b

−→
b + c

−→
c

−a+ b+ c

)
, IB

(
a
−→
a − b

−→
b + c

−→
c

a− b+ c

)

IC

(
a
−→
a + b

−→
b − c

−→
c

a+ b− c

)
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Abstract. We have evaluated the orthant probabilities (i.e., all compo-
nents are positive) and the upper probabilities of bivariate normal dis-
tributions by using Scilab software. The calculated values are presented
here in a tabular form. They may be used as a teaching aid material
in statistics courses at colleges. We have explained the orthant and up-
per probabilities using 3D diagrams as a visual aid teaching material
in the present work. Moreover, we have evaluated probabilities for more
generalized domains by using Scilab software.

Keywords: Scilab software, orthant probability, 2-dimensional normal
distribution, Gaussian function, teaching statistical material.

1 Introduction

It is well known that the random errors often have normal distributions which are
also called by Gaussian distributions or bell shaped distributions. But it is very
difficult to calculate the probabilities of normal distributions by definite integra-
tion of Gaussian functions. So we use the numerical values of upper probabilities
of standard normal distribution which are obtained by using some computer
software. In our previous work (2013) we [1] have investigated the table of the
probabilities of the standard normal distribution by using Scilab software. How-
ever, it is desirable to treat two random variables which have two-dimensional
probability distribution in the case of two factors in the collegiate study. Toda
and Ono [2] (1978) introduced the algorism of computing the upper probabil-
ities of two-dimensional standard normal distribution. Furthermore Miwa et.al
[3] (2003) evaluated orthant probabilities of multi-dimensional normal distri-
bution. Here we have evaluated the orthant probabilities of bivariate standard
normal distribution, i.e. all components are positive, by using Scilab software.
We present and explain the tables of upper probabilities of two-dimensional stan-
dard normal distribution by applying Scilab software. Especially in the present
paper we explain these probabilities with making 3-dimentional diagrams as vi-
sual teaching collegiate materials. The visual technique is based on LaTeX, using
Scilab software.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 601–606, 2014.
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Besides that in this work, we have evaluated the probabilities for more gen-
eralized domains of the two-dimensional standard normal distribution by using
Scilab software, without previous tables.

2 Orthant Probabilities

The orthant probability is the probability that all random variables of the proba-
bility distribution are positive. In this paper, we treat only the bivariate normal
distributions. Bivariate probability distributions may involve with both two-
dimension and one-dimension. In the present work we assume a bivariate stan-
dard normal random vector (U, V ) has a mean vector (0, 0) and a correlation
coefficient ρ. That is the orthant probability is P (U > 0, V > 0 ; ρ).

Fig. 1. Two-dimensional Standard Normal Distribution with ρ = 0 and 0.5

Fig. 2. Area of (y = x, x > 0) and Normal Ortham Probabirity for ρ = 1

It is well known that P (U > 0, V > 0 ; ρ) =
1

2
(
1

2
+

1

π
sin−1 ρ).

We have dealt with the following three cases.
For Case 1, ρ = 1 and {U > 0}. Then {V > 0} with probability 1. Therefore,

as seen in Fig. 2, P (U > 0, V > 0 ; 1) = P (U > 0) = P (V > 0) =
1

2
.
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Fig. 3. Area of (U > 0, V > 0) and Two-dimensional Normal Ortham Probabirity for
ρ = 0

For Case 2, ρ = 0 then U and V are independent mutually. Then as seen in

Fig. 3, P (U > 0, V > 0; 0) = P (U < 0) · P (V < 0) =
1

4
.

For Case 3, we assume 0 < ρ < 1 without loss of generality. We have evaluated
these values by using Scilab software. The computational method is described
in the following section and the results from the calculation using the software
are given in tabular form in the appendix.

Especially, it is easily seen that for ρ = 0.5 the corresponding probability is
0.3333 that matches the results up to fourth-order.

Fig. 4. Area of (U > 0, V > 0) and Two-dimensional Normal Ortham Probabirity for
ρ = 0.5

3 Upper Probabilities

This section describes the method we used to compute the upper probabilities
of the probability distribution i.e., P (U > x, V > y ; ρ) for any x and y.

Without loss of generality may assume x and y are non-negative. In the case
of x = 0 and y = 0, the upper probability is an orthant probability. The algo-
rism of computing the upper probabilities of two-dimensional standard normal
distribution is well known. Let L(x, y ; ρ) = P (U > x, V > y ; ρ). The standard
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normal upper probability is Q(h) = 1−
∫ h

−∞

1√
2π

exp(−z
2

2
) dz, i.e., Q(h) is the

standard normal upper probability. Then

L(x, y; ρ) =

∫ ρ

0

1

2π
√
1− t2

exp

[
− 1

2(1− t2)
(x2 − 2xyt+ y2)

]
dt+Q(x)Q(y).

Fig. 5. P (U > x, V > y; ρ) and P (a � U � b, c � V � d; ρ)

We have calculated these integrations by using cdfnor (Cumulated Distribu-
tion Functions) in Scilab software. The calculated values of the upper proba-
bilities are given in the appendix in tabular form. In the case of ρ = 0.5 and
x = 0 and y = 0, the upper probability is an orthant probability whose value
is equal to 0.3333. This shows us the results match up to the fourth order.
We can obtain the probabilities of any bounding box straightforwardly by us-
ing the tables in the appendix as follows: P (a < U < b, c < V < d; ρ) =
L(a, c; ρ) − L(b, c; ρ) − L(a, d; ρ) + L(b, d; ρ). For example, for a = 0.7, b =
1.4, c = 0.5, and d = 0.8, we have P (0.7 < U < 1.4, 0.5 < V < 0.8; ρ =
0.5) = L(0.7, 0.5; 0.5) − L(1.4, 0.5; 0.5) − L(0.7, 0.8; 0.5) + L(1.4, 0.8; 0.5) =
0.0747− 0.0513− 0.0249 + 0.0171 = 0.0156.

4 Curved Area

After having obtained the probabilities for any rectangular area, we considered
polynomial expressions besides the ones for rectangular area. Here we evalu-
ated the probability for {y > x2} by using the function int2d(X,Y, f) in Scilab
software.

First we divided the inside area into four triangles (A1, A2, A3, A4) as shown
in the Fig. 6. A calculation gives a result equal to 0.2298967. It is of interest
to validate the accuracy of the calculation. Without loss of generality, we may
restrict the area only to positive components. In other words, it is possible to
evaluate the probability for an area of {y > x2} and x > 0. So next we divided
the corresponding area over with three triangles B1, B2, B3. The value of in-
tegration for B3 is 0.0000168, which is very small one. The value of integration
corresponding to B1, B2 and B3 is 0.192226. However the value of integration
corresponding to A1 and A2 is 0.147533.
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The values of integration for A1 is 0.1236266 and for B1 is (0.1356191), respec-
tively. The values of integration for A2 is 0.0239064, and corresponding to B2
and B3 is (0.0355147), respectively. The differences are 0.0119925 and 0.0116079.

Fig. 6. Area of {Y > X2} and {Y > X2, X > 0, Y > 0} for ρ = 0.5

5 Conclusion

In the present work, we have examined a feasible way to explicitly introduce
college students the bivariate normal orthant probabilities. First by using Scilab
software, we have evaluated the normal probabilities for rectangular domains
with fourth-order or in other words the calculation results match up to the
fourth digits after the decimal point. Then by applying the results, bell shaped
3D-figures like Mt. Fuji were formed. For general domains we have obtained the
numerical integration values of Gaussian function with second-order by using
the function (int2d) in Scilab software. As further work, we have to develop in
order to improve the calculation accuracy and to automatically form the bell
shaped 3D-figures.
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Appendix

Table 1. L(u, v; ρ = 0.5): Upper Probabilities of Standard 2-dimensional Normal
Distribution
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Abstract. In teaching mathematics, there are instances when we need
to graphically present mathematical concepts and solid figures to clar-
ify students’ understanding of them. For the last few years, we have
been creating graphics that illustrate these various concepts dynami-
cally through careful utilization of KETpic. Examples we will look at
include an interactive graphic developed to clearly illustrate the line of
intersection of two solid surfaces. In this case, we can easily show the
cross-section of the intersection following the cut. A second example is
of an interactive graphic produced in order to dynamically present the
correspondence relation between the z−plane and w−plane in a complex
function w = f(z). Here, by using the navigation buttons embedded in
the graphic, we can demonstrate how the regions on the w−plane change
in relation to the z−plane. Other graphics we have produced will also be
introduced.

Keywords: computer algebra systems, Scilab, interactive graphics,
mathematics education, hyperlink, TEX, KETpic

1 Introduction

Our project team has been developing effective teaching materials for mathemat-
ics (including statistics) education, predominately at the early grades of tertiary
education, through careful utilization of KETpic.

Briefly, KETpic consists of a library of macros to generate LATEX source codes
for high-quality scientific artwork. Such macros can be implemented in different
Computer Algebra Systems (CAS) such as Scilab, Maple and R, thus providing
different plug-ins for the program. How the plug-ins run may vary based on
the specific CAS, but as this process is transparent to the end-user, it should
minimize the time required to learn the program. After loading KETpic in the
CAS, users simply need to execute commands following system requests in order
to plot graphs and other mathematical data. CAS-embedded KETpic commands

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 607–613, 2014.
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generate additional LATEX source code and files, this generated output can then
easily be compiled in LATEX. As a result, precise and visually compelling graphical
figures can be obtained either on a PC display or as printed output [2], [3].

For the last few years, we have been creating graphics that illustrate mathe-
matical concepts and solid figures dynamically for mathematics education, here
referred to as interactive graphics [1]. We will introduce interactive graphics we
have created to date and outline programs for creating the graphics.

2 How to Create Interactive Graphics

The idea of creating interactive graphics is based on that of producing a flip book.
We produce a PDF file of multiple slides including graphics using a CAS-based
KETpic plug-in and advance those slides by using software capable of viewing
PDF files.

ketslide and ketlayer are KETpic style files which can easily produce PDF
slides incorporating high-quality graphics. ketlayer enables us to precisely embed
graphics and symbols in LATEX documents in the exact position we wish them
to be included. We introduce two examples of interactive graphics. The aim
in creating the first example is to better illustrate the fact that the function
z = x2 − y2 has a saddle point at the origin. Initially we create multiple (in
this case 244) graphs showing the intersection of the surface z = x2 − y2 and
a plane parallel to the coordinate plane. Next we make a PDF file of multiple
slides incorporating these graphs. Figure 1 to 3 show a sample of the graphs.

Fig. 1. Intersection of surface z = x2 − y2 and plane x = c
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Fig. 2. Intersection of surface z = x2 − y2 and plane y = c

Fig. 3. Intersection of surface z = x2 − y2 and plane z = c

The second example was designed to help the learner better understand the
Gibbs phenomenon. The function f defined by

, f(x+ 2) = f(x)f(x) =

{
0 (−1 ≤ x < 0)
1 (0 ≤ x < 1)

is discontinuous at x = k for all integer values of k.

fN(x) =
1

2
+

N∑
n=1

1

nπ

(
1− (−1)n

)
sinnπx
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is the sum of the first N Fourier series terms for the function f(x). Figure 4
shows the graphs of fN (x) for N = 10, 55, 100 and their enlarged views near
at the discontinuity point x = 1. Advancing these graphs’ slides by using PDF
document viewing software dynamically presents the behavior of the oscillations
of fN (x) near to x = 1.

Fig. 4. Displaying Gibbs phenomenon

3 Outline of the Program to Create Interactive Graphics

In this section, we outline the main part of the program for creating interactive
graphics utilizing the Scilab-based KETpic plug-in. The program is composed of
two parts:
(1) produces TEX files for graphs.
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Ketinit(); //initialize global variables

Fname=’filename’;

cd(’c:/work/figs/’); //folder containing stored graph data

//here, insert program for initialization

//define size of graph,number of graphs,etc

for k=1:L //L is number of graphs

Openfile(Fname+’_’+string(k)+’.tex’);

Program for producing the k-th graph

Closefile();

end

(2) making multiple slides including the graphs produced in part (1).

cd(’c:/work/pages/’); //folder containing stored slide data

Openfile(Fname+’.tex’);

Texcom(’\newslide{\bf\color{NavyBlue}\title});

//create new slide

for k=1:L

if k<>1 then

Texcom(’\sameslide’)

end

Texcom(’\begin{layer}{110}{0}’);

Texcom(’\putnotese{\Xichi}{\Yichi}

{\input{\zu/’+Fname+’_’+string(k)+’.tex}}’);

//\Xichi and \Yichi are parameters to determine

where to locate graph on slide

Texcom(’\end{layer}’);

Texcom(’\bun’); //\bun is description about graph

end

Closefile();

The arguments that are passed to the program above are specified in the follow-
ing LATEX document.

\newcommand{\honbun}[3]{ //display description on slide

\begin{layer}{100}{0}

\putnotese{#1}{#2}{

\begin{minipage}{35zw}{\large #3}

\end{minipage}}

\end{layer}}

\begin{document}

\def\dai{title name}

\def\bun{\honbun{x-coord}{y-coord} //location of description below

{ //here, insert description about the contents of the slide

}}
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\def\Xichi{x-coordinate of place to put graph}

\def\Yichi{y-coordinate of place to put graph}

\input{page/slide file name}

\end{document}

4 Interactive Graphics with Embedded Hyperlinks

Finally, we introduce interactive graphics enhanced by using the TEX macro
package hyperref. The example given here is a graphic which dynamically presents
the correspondence relation between the z−plane and w−plane in a complex
function w = f(z). Figure 5 is a sample of the graphs to be incorporated in the
interactive graphic.

Fig. 5. Correspondence relation between z – plane and w – planein function w = e2
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All rectangular regions on the z−plane are hyperlinked to the corresponding
regions (the images making up the graphic) on the w−plane and the navigation
buttons, shown as “5”, “6”, “	” and “�” in figure 5. This allows us to explore
how the corresponding regions on the w−plane change for a rectangular grid
representing the z−plane by clicking the buttons.

5 Conclusion

The interactive graphics outlined here are relatively simple to create, and once
produced can easily be utilized in the classroom. We plan to produce further
examples in the future.
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Abstract. Mathematical novices – including students in introductory
mathematics and statistics service courses – increasingly need to engage
in online mathematical collaboration. Using currently-available interfaces
for their mobile and touch-enabled devices, however, this group faces
difficulties, for those interfaces are text-based and not directly suitable
for mathematical communication and collaboration.

To address the deficiency of digital input methods and interfaces for
mathematics, we introduce a cross-platform synchronous communication
interface for mathematical collaboration. The interface is designed to be
intuitive for multiple user groups ranging from novices to experts. We
demonstrate that it is possible to create a Web-based communication in-
terface that simultaneously incorporates TeX-, palette- and pen-based in-
put methods, and that is compatible with both touch-enabled tablet and
traditional keyboard-mouse user interface principles. The design princi-
ples we introduce may be valuable for the design of other mathematical
user interfaces on touch-enabled devices, such as with Computer Algebra
System interaction.

Keywords: Mathematical Collaboration, Mathematical User Interfaces,
Formula Input

1 Introduction

Communication technologies are now used to great effect in post-secondary ed-
ucation, increasing, for example, outside-the-classroom student-teacher contact.
This type of interaction correlates positively with key educational indicators,
including academic performance, student retention and student satisfaction [8].
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Fig. 1. BrEdiMa: A Structure-based Editor for Mathematical Input [9]

The use of technology for the communication of mathematical ideas can be
a particularly effective pedagogical tool [4]. Its potential, however, has yet to
be fully realized. This may be due to two factors: most internet communication
technologies are text-based and both the text and non-text based mathematics
input methods that have been developed have been designed mostly for experts,
rather than for the increasingly novice student user-base.

2 Barriers to Communication

Communicating mathematics online using text-based technologies is problematic
for two reasons. There are hundreds of commonly used mathematical symbols,
many of which have no commonly accepted textual equivalent and must there-
fore be described. The inherently two-dimensional structure of mathematical
notation requires spatial relationships between symbols; such relationships are
difficult to communicate in inline text. Consequently, the standards that exist
for the text-based entry of mathematics suffer from having a steep learning curve
and very low human readability. For instance,

\lim_{x\to\infty}\frac{\sqrt{8+x} - 3x^{1/3}}{x^2 -3x +2}

and
\int_0^2 r \sqrt{ 5 - \sqrt{ 4-r^2}} dr}

are LATEX representations for the two first-year university calculus expressions

lim
x→∞

√
8 + x− 3x1/3

x2 − 3x+ 2
and

∫ 2

0

r

√
5−

√
4− r2dr .

Neither LATEX string is intuitive for novices, and small errors in either can seri-
ously affect the mathematical meaning.

The main alternative to inline text-based input is structure-based direct-
manipulation editors, such as those found in Microsoft Word or in BrEdiMa
(Figure 1).

In such an editor, the user inserts individual symbols and mathematical struc-
tures from palettes of symbols. As with inline text editors, however, structure-
based direct-manipulation editors suffer from severe usability problems [12]. In
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Fig. 2. Schematic of iCE UI Layout and Communication

[14] it is argued that structure-based editors usually force a user to write a for-
mula in a different manner than they would on paper. For example, consider
the expression

√
x/y. The default behavior of a structure-based editor forces the

user to input the fraction first, followed by the square root symbol, and then the
x and y. Intuitively, however, somebody writing this expression with pen and
paper would probably write the square root of x first followed by the fraction
bar and then the y. So in essence, the user of a structure based editor has to
use an unintuitive order to input the expression. This requires the user to have
the ability to mentally parse the desired mathematical expression and reorder
for input, which can be difficult for students and other novice users. The user
must adapt to the technology as it is non-intuitive and has not been designed
with casual users in mind.

While digital pen-based input methods would allow users to write mathemat-
ics as they would on paper, their use introduces new problems. For instance,
robust handwriting recognition algorithms for mathematics are still in their in-
fancy, and pen-input typically requires special hardware that most students do
not possess.

In this paper we outline the development of a real-time multi-modal web-based
open-source mathematics collaboration interface that works on all commonly
available computing devices, ranging from computers to tablets to smartphones,
and is intuitive for first-time users who are mathematical novices.

3 Interface Choice

The goal of iCE (interface for Collaborative Equations) is to be a hybrid envi-
ronment that allows users familiar with any mathematical editor input model
(e.g. palette/structure based, TEX, or pen-based) to communicate and collab-
orate mathematically as quickly and effortlessly as possible. It is structured as
a shared SVG document simultaneously being edited by multiple users in a
collaborative whiteboard model with a chat-pane on the side to emulate ver-
bal conversation. This model best replicates the usual in-person mathematical
collaboration model where a mathematical conversation is usually assisted by
facilitating technology, such as a piece of paper or chalkboard [3].
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iCE allows for unconstrained input, permitting users to enter mathematical
symbols in any order. This approach has been shown to allow faster input, has
a minimal learning curve ([3] and [15]) and allows users to enter mathematics
as they usually do on a chalkboard and thus minimizes destructive interference
and cognitive load [11].

4 Browser-Based Interfaces

With the advent of Web 2.0 and cloud computing, the web browser is increas-
ingly becoming the standard interface to access full-featured applications. In
particular, Google Docs and Office 365 have become mainstream browser-based
environments for collaborative documents. Thus, in developing a cross-platform
mathematics collaboration environment, it is natural for it to be browser-based
as well.

The goal of iCE is to create a communication interface that can incorporate
collaboration into a variety of web applications through any major browser (In-
ternet Explorer, Chrome, Firefox, Safari) across multiple platforms (PC, Mac,
Linux, iPad, iPhone, and Android Smartphones) without installing any software
or plugins.

Web-based applications can be difficult to develop due to the application
being embedded in an existing browser interface; the browser framework leads to
many UI restrictions, limited protocol support, and sandbox restrictions. A cross-
browser application must also deal with many API inconsistencies. When both
personal computers and mobile devices are to be supported, the application’s
design must take into account a number of major differences between client
instances: keyboard/mouse versus touch UI, screen size, and input accuracy. In
addition, mobile devices typically have limited computational power and so CPU
intensive operations must be delegated to web services.

Browser-based applications for communication of or editing of mathematical
content face additional difficulties, as in-browser layout and display of mathe-
matical expressions is problematic, and even more so if the content is made to
be interactive: copied, scaled, and manipulated. While Mathematical Markup
Language (MathML) was intended to be the standard for mathematics on the
internet, it is thus far not fully supported [1]. For these reasons, iCE has been
designed around a front-end of Javascript/SVG (based on SVG-Edit [16]) with
calls to several web services to keep it lightweight.

5 User-Interface Interactions

iCE implements an unconstrained direct editor equation model based on a dia-
gram editor. Users are free to place elements anywhere on a whiteboard canvas.
However, in this case the elements are not restricted to geometric objects, but
include resizable mathematical symbols. This approach is consistent with both
mouse and touch-based UI interactions and elements may be manipulated as
follows:
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Fig. 3. Object manipulation in iCE: (a) selecting a group of symbols; (b) the symbol
group after selection; (c) resizing widgets on a PC; (d) resizing widgets on an iPad.

Moving a Symbol: Individual symbols on the canvas may easily be dragged
to any location.

Group Selection: By pressing down (via mouse or finger) on an empty spot of
the canvas and dragging out a rectangular outline, all symbols falling inside the
rectangle are selected. They will then be treated as a group until unselected by
clicking or tapping on a blank section of the canvas. The group of symbols in a
selection may, collectively, be dragged to a new location, have their attributes
changed, or be deleted.

Resizing: By clicking or tapping on a symbol, resizing widgets appear and that
individual symbol may be resized by dragging these widgets. Due to the limited
precision of the finger on a touch-based device, the size of these widgets will vary
depending on the device. See Figure 3.

In any equation input system the keyboard plays an important role. Since
hardware keyboards have fixed keys this makes the symbol mapping complicated.
On the other hand, touch-based devices rely on virtual keyboards. While custom
virtual keyboards can include mathematics symbols, virtual keyboards on touch
devices generally occupy a large percentage of the screen and have problems with
users accurately selecting the correct symbol.

Keyboard input on iCE takes one of three forms: text-mode, symbol-mode,
and TEX mode. Consistent with a diagram editor, text-mode may be selected and
a corresponding text-box may be placed anywhere on the screen. Within each
text-box, the text may use different fonts with attributes appropriate for labeling
a diagram, such as size, style, color, etc. Synchronization across participants
occurs only upon completion of the entire text.

On the other hand, the symbol mode incorporates a persistent on-screen cur-
sor that can input text or symbols using shortcuts from the keyboard while it is
in almost any mode. The cursor may be placed anywhere on the canvas by cursor
keys or by clicking (tapping) on an empty space. Unlike text-mode, symbol-mode
is synchronized across participants in real time.

To accommodate the large number of possible math symbols, many symbols
are mapped to the same key. By pressing a key in rapid succession a number
of different symbols are cycled through (for example, aside from its usual use,
the keyboard key ‘A’ cycles through ‘A’, alpha (α), for all (∀), logical ‘and’ (∧),
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aleph (ℵ), and the angle symbol (� ). When the mapping is not obvious, symbols
may also be inserted by selecting them from a palette.

The final keyboard mode is a variation of the text-box mode. Users enter TEX
code into a text-box and on completion the TEX code is compiled and turned
into symbolic content through a web service call. This symbolic content is then
redistributed to all users.

6 Web Services

iCE is a collaborative interface and thus makes use of several network compo-
nents. In its implementation, it relies on a server built using node.js [10] for
communication synchronization. To keep iCE lightweight, additional web ser-
vices can be utilized for CPU-intensive tasks. Currently, TEX code is converted
to SVG content through the use of MathJax [6] as a web service. In addition,
selections of symbols may also be converted to TEX through a web service call
to the spatial recognition algorithm Xpress [14].

7 Further Enhancements

Other web services we plan to implement to make the interface truly multi-
modal:

Handwriting Recognition: iCE allows for pen input (if available on the plat-
form). However, this is maintained as a digital ink layer and is not processed
further. There are a number of handwriting recognition approaches (e.g., [17])
for mathematics that could be explored in the future. Much like the current call
to Xpress for TEX rendering, this intensive task is best left on the server and
not implemented in client-side Javascript.

Voice Recognition: The HTML5 API [5] allows for Javascript to access a
browser’s audio stream which may allow iCE input to be paired with mathemat-
ical voice recognition [2].

CAS Assistance: It may be possible to make communication faster and more
effortless by allowing calls to a server-side Computer Algebra System (CAS) to
assist with calculations. This would involve an additional parsing component,
since this requires using content markup as opposed to the use of presentation-
oriented markup like TEX.

8 Conclusion / Discussion

Communication technology in mathematics lags far behind its use in other aca-
demic disciplines. In this paper we introduce a multi-modal mathematics collab-
oration interface that is designed to be fast and intuitive for both novice and
expert users. We hope that this new interface approach will lead to improve-
ments in the design of future interfaces for mathematical input that will have a
positive impact on mathematical education and collaboration.
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Abstract. We present a web-based drill system named DIGITAL-
WORK which assists learners in mastering some basic formulae using
a new interactive math input method. This method enables users to
format any mathematical expression in WYSIWYG by converting from
colloquial style strings in fuzzy mathematical notation. The purpose of
this study is to investigate whether students can smoothly learn basic
math formulae with our drill system. In this paper, we report the results
from a field survey that was conducted in an actual remedial math class
of 20 junior high school students. The results of our survey showed that
85% of them found this system to be more fun than learning on paper.

Keywords: math e-assessment systems, mathematics interfaces.

1 Introduction

Online testing is an important function of e-assessment systems. Available types
of tests on most e-assessment systems are binary or multiple choice, matching
types, or (numerical) completion types. However, in the field of math and science
education, it is preferable that learners be able to respond to mathematical ques-
tions directly with mathematical expressions. In recent years, a few e-assessment
systems have enabled responses with mathematical expressions by using a com-
puter algebra system (CAS) [8,9]. These systems have been used for instruction
to students as drills and as homework at many universities.

As of 2014, there are two ways for learners to respond with mathematical ex-
pressions on these e-assessment systems, by text-based interfaces or by template-
based interfaces. Text-based interface for math input is very familiar in that it
operates with a keyboard. However, learners must input an answer according
to CAS command syntax such as Maple and Maxima. Thus, novice learners of
mathematics must learn not only the mathematics but also the CAS command
syntax which is unrelated to mathematics. Furthermore, when learners input a

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 621–628, 2014.
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CAS command string with this interface, it is difficult for them to imagine the
two-dimensional desired mathematical expressions (e.g., super and subscripts,
fractions). Therefore, such a situation is not educationally ideal.

Template-based interface for math input has the advantage that learners are
able to operate clearly in WYSIWYG by using GUI math template icons (e.g.,
mathematical symbol icons). However, this interface has disadvantages in that
learners must use both keyboard and mouse in turns and look for a mathematical
operator or special symbol from a large number of templates. As a result, this
interface often strains learners when they repeatedly have to enter their answers
with mathematical expressions such as when doing drill work.

The troublesome math input operations may not be a problem in the case
of advanced mathematics when a learner spends a long time thinking about a
particular mathematical question in comparison with the time it takes to input
the answer. However, in the case of mental arithmetic such as math drills to
practice basic formulae, the complicated math input operation may disturb the
learning process. Furthermore, our preliminary examination reveals that many
students feel the procedure of submitting an answer by shifting from keyboard
to mouse and clicking the submission icon to be troublesome on an e-assessment
system. Therefore, there are the following two problems with using the current
e-assessment systems for drill work instruction to practice basic formulae.

1. It is troublesome to input mathematical expressions as an answer using the
current math input methods.

2. In a cycle of repetitive drill work, the procedure of submitting an answer
becomes a bottleneck (In other words, it stops the learning temporarily).

To improve these problems, we have adopted an interactive math input method
in terms of conversion from fuzzy mathematical strings in WYSIWYG and devel-
oped an original assessment system, named DIGITAL-WORK that specialized
in drill work to assist learners in mastering some basic formulae. An interactive
math input method has been proposed by Fukui in 2012 [3]. This method imple-
mented a math input interface, named MathTOUCH [10] which enables users
to format any mathematical expression by inputting a colloquial style string in
fuzzy mathematical notation and by selecting the desired candidate shown by
the system. Therefore, we expect that this interface is user-friendly for novice
mathematics learners because the user will be able to easily input a mathemat-
ical formula with only the keyboard, without having to learn a new language or
syntax [4,5].

The purpose of this study is to investigate whether students can smoothly
learn some basic mathematics formulae with our drill system. In this paper,
we report the results from a field survey that was conducted in a ninth grade
remedial math class.

This paper is organized as follows. Section 2 describes the outlines of this
input method and MathTOUCH. Section 3 introduces the whole of our drill
system (DIGITAL-WORK). Section 4 describes the results of our investigation
regarding learner’s reaction to our drill system. A final section concludes.
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2 The Interactive Math Input Method [3]-[7]

2.1 Math Conversion Procedure from a Fuzzy Mathematical String

Math conversion procedure from a fuzzy mathematical string is a procedure sim-
ilar to conversion of kana spelling (phonetic representation) into kanji (Chinese
characters) when we input a Japanese sentence on a computer. The math conver-
sion procedure enables mathematical expression input on a computer according
to the procedures outlined in steps 1-3 below.

(Step 1) First, the system accepts input of the character string written by a
user in fuzzy mathematical notation.

(Step 2) The system predictively calculates candidates for the two dimen-
sional mathematical expression which the user wishes to appear and shows
them in WYSIWYG.

(Step 3) Next this system accepts an adoption operation for each math ele-
ment which the user wishes for from the list of corresponding candidates; and
finally when all the elements are chosen, the formatting expression process
is complete.

Here, the procedure is described with the fuzzy mathematical notation for a
mathematical expression as follows:

Fuzzy mathematical notation for a mathematical expression
Set the fuzzy key letters (or words) corresponding to the elements of a
mathematical expression linearly in order of colloquial (or reading) style,
without considering two-dimensional placement and delimiter.

In other words, a fuzzy key letter (or word) consists of the ASCII code(s) cor-
responding to the initial or the clipped form (like LATEX-form) of the objective
mathematical symbol. Therefore, one fuzzy key often supports many mathemat-
ical symbols. For example, when a user wants to input α2, the fuzzy string is
denoted by “a2” where “a” stands for the “alpha” symbol and it is unnecessary
to include a power sign (like the caret letter (ˆ)). In the case of 1

α2+2 , the fuzzy
string is denoted by “1/a2+2” where it is not necessary to surround the de-
nominator (which is generally the operand of an operator) in parentheses since
such parentheses are never printed. Table 1 presents other examples in fuzzy
mathematical notation.

Thanks to fuzzy mathematical notation, the user will be able to input almost
any mathematical expression with only a keyboard, without learning a new lan-
guage or syntax. Therefore, this method poses less operating trouble than a
text-based method using a CAS command.

2.2 Characteristics of the Math Input Interface with Fuzzy
Mathematical Notation

The math input interface implementing the above math conversion method with
the fuzzy mathematical notation is called MathTOUCH. Figure 1 presents the
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Table 1. Examples of mathematical expression using fuzzy string notation

Mathematical category Examples of math expression Strings of fuzzy mathematical notation
fraction 2

3 2/3
polynomial 5x2 + 2 5x2+2
equation (x − 1

2 )
2 = x2 − x + 1

4 (x-1/2)2=x2-x+1/4

square root
√
3 root3

       《 Step1 》
Input fuzzy texts 
using a colloquial
style.

Space
key

Start of
conversion

       《 Step3 》
Fix operand of 
math operator.
(red line: operand)

   《 Step4 》
   Process
   completed. 

        《 Step2 》
Fix the type of variable.
 (background color:
  object conversion)

Select

Enter
key

Select

Enter
key

Fig. 1. Conversion procedure from fuzzy mathematical text using MathTOUCH

procedure for inputting a2 with MathTOUCH. In Step 1, type in the fuzzy string
as “a2” on the keyboard. Then hit the space key to start the math formatting
process with MathTOUCH. Perform the conversion procedure for all elements
in order from left to right in the fuzzy mathematical string. In Step 2, a list of
the conversion candidates, in this case a and α, is shown directly under the first
target letter “a”. The current (marked) candidate is switched by the space or
arrow key and adopted by using the enter key. In Step 3, if a highlighted element
is adopted, then the current target moves on to next element to the right. In
this case, the target is an unexpressed operator - a power sign between a and
2 in a2. Then the list of candidates is presented a2, a2, a2 and so on. When all
the elements in the mathematical expression are fixed by sequential adoption
operations as in Step2, the math formatting process is complete (Step4).

Characteristics of MathTOUCH are described as follows:

– It enables users to input the desired mathematical expressions in WYSIWYG
with only a keyboard, without learning a complex syntax.

– It allows users to input any expression dealt with in the widespread categories
of mathematics from a junior high school level to a university level.

– Math input performance with MathTOUCH is better than with a template-
based interface [4].

– Its input performance improves by the learning function of the fuzzy key
dictionary data after users have used MathTOUCH repeatedly [5,6].
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3 A Web-Based Drill System

3.1 Development Policies

As stated in section 1, the goal of this system is to support novices in basic
mathematics on computers by reducing user stress. Specifically, we assume the
following three policies for a math e-assessment system in developing this.

1. The type of learners which the system is designed to support are novices in
elementary mathematics. They will be junior high or high school students.

2. We wish to minimize the trouble with inputting operations with mathemat-
ical expressions.

3. The specialized web-based drill system will enable students to master basic
formulae by repetitively entering answers for problems they have solved in
their heads.

As a result, we have adopted MathTOUCH as the math input interface for
our system in order to enable doing repetitive drill work smoothly with only the
keyboard.

3.2 System Configurations and Features

This system has been developed as a web application system using Tomcat with
MySQL. Hence, it will be able to be used by most computers across the Internet.
In other words, this drill system will enable us to provide services not only to
schools but also to homes.

Additionally, DIGITAL-WORK has the following three features that would
be necessary for math drills.

Learning history function Learners will be able to check their own learning
history consisting of learning date, content, score, and question numbers
where they got wrong answers.

Learning function specialized in the case of wrong answers Learners
will be able to relearn the specialized set of questions which they previously
got wrong answers to.

Randomized question generator function This system will make questions
randomly for learners from the prepared question bank.

3.3 The Learning Cycle on this Drill System

First, learners look at a question displayed in the question and assessment area
(Figure 2(1)). They are also able to read some hints in the same area if necessary.
Next, they input an answer as a mathematical expression using MathTOUCH
which is displayed in the response area (Figure 2(2)). After that, if the learners
submit their answer by pushing the enter key on the keyboard, the feedback
of their assessment is shown in the question and assessment area immediately.
Pushing the enter key again, the learning cycle proceeds to the next question. In
this way, a cycle of repeating drill work with this system is achieved using only
the keyboard by virtue of MathTOUCH math input interface as tailored to our
e-assessment system.



626 S. Shirai and T. Fukui

(2) Response area

(1) Question and
      assessment area

Fig. 2. Screenshot of DIGITAL-WORK

4 Experimental Evaluation

4.1 Design and Procedure

To evaluate our system, we conducted a field survey with junior high school
students in a summer remedial class in math at Mukogawa Women’s Univer-
sity Junior & Senior High School to measure their subjective satisfaction with
DIGITAL-WORK. The class was carried out over two days (each lesson was
50 minutes), and twenty students were taking this class. On the first day, we
introduced DIGITAL-WORK to the students and showed them how to use it,
especially how to input their answer for a math drill question with MathTOUCH.
On the second day, the students worked drills for basic math formulae which were
taught in their junior high school class in the first semester. Therefore, the math
drill questions were prepared based on the authorized textbook Mathematics
in Junior High School 3 [2] as in Table 2. After the drill work, we gave them
a questionnaire regarding subjective satisfaction about DIGITAL-WORK and
MathTOUCH using a 5-point rating scale from 1(strongly disagree) to 5(strongly
agree). Our questionnaire consisted of ten questions (See the second column of
Table 3).

4.2 Results and Discussion

An overview of the results of the questionnaire is given in Table 3. Regarding
DIGITAL-WORK, the mean overall score from students was 4.12. This result
represents a high evaluation because the mean value was significantly higher
than the average score on a 1-5 rating scale for subjective satisfaction (3.6) [1].
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Table 2. Example of Math drill questions

Example of questions Suggested answer

Expand the following expression: −3(2x+ 3) −6x− 9
Expand the following expression: (x+ 1)(x+ 4) x2 + 5x+ 4
Expand the following expression: (x− 5)2 x2 − 10x+ 25
Expand the following expression: (x+ 1)(x− 1) x2 − 1

Table 3. Result of the questionnaire regarding subjective satisfaction (N=20)

System Contents of the questionnaire Mean SD
I could master the basic formulae. 4.05 1.00
The function repeating missed questions was useful. 4.35 1.04

DIGITAL Being able check the result of drills was helpful. 4.40 1.05
-WORK I like the design. 3.55 1.05

Learning the basic formulae on DIGITAL-WORK is more fun than learn-
ing on paper.

4.25 1.02

It was easy to master the use of MathTOUCH. (Learnability) 3.80 1.47
Math Mathematical expressions could be inputted smoothly. (Efficiency) 3.65 1.23

TOUCH I remember how to use MathTOUCH even 1 day later. (Memorability) 3.90 1.07
It was easy for me to correct mis-entered operations. (Error) 4.00 1.03

Comprehensive
Evaluation

Would you like to learn the basic formulae on DIGITAL-WORK again in
class?

4.05 1.32

Overall mean questionnaire rating for DIGITAL-WORK 4.12 1.06
Overall mean questionnaire rating for MathTOUCH 3.84 1.20

The results showed that 85% of students found DIGITAL-WORK to be more
fun than learning basic formulae on paper. Most of the mean scores to the five
questions regarding DIGITAL-WORK are over 4.0, except the satisfaction with
the screen design where the result was 3.55. Hence, it is necessary to improve
the screen design of our system because it is an important factor for learning
motivation. With respect to MathTOUCH, all of the mean scores to the four
questions asked of students were above 3.6, with the overall mean result at 3.84.
However, satisfaction regarding efficiency was 3.65 because an error happened
in the system when the students struck the enter key repeatedly. We need to
improve the system so that it is stable under any user operations.

The total results of DIGITAL-WORK and MathTOUCH indicated that stu-
dents were able to work drills themselves smoothly. The result of the compre-
hensive evaluation shows that 70% of students answered that they would like to
learn basic math drills again with our system in the future. In fact, many of the
free responses to this questionnaire from the students showed that they felt our
system to be more fun than learning on paper because they were able to work
drills smoothly.

5 Conclusion and Future Work

We have developed a web-based drill system to master basic math formulae
using an interactive math input method with fuzzy mathematical notation. We
have also investigated whether students can smoothly learn the same basic math
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formulae with our drill system in a field survey which was conducted in an actual
remedial math class.

The results showed that 85% of students found DIGITAL-WORK to be more
fun than learning basic formulae on paper and that 70% of students answered
that they would like to learn basic math drills again using our system. There-
fore, this has shown that our drill system was accepted by novice learners of
mathematics in the case of mental arithmetic such as repeated drills.

Finally, we expect that our web-based drill system will assist many students in
learning basic mathematics. The most important avenues for future research are
to improve the screen design in our system and to prepare a sufficient amount
of content for math drill questions for junior and high school mathematics.
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Abstract. KETpic has the capability to create graphic objects which
are used in LATEX documents. These features alone make KETpic an
ideal portable code language for printing mathematical materials for in-
class use or textbooks for publication, and are available at no cost. The
latest version of KETpic supports the making of easy-to-use 3D graphs.
Recently new commands for generating data in obj format have been
introduced in KETpic. The data is easily converted to stl format, making
prints of 3D models possible. As a result, a LATEX document with a figure
and a 3D model are obtained simultaneously. It is the view of the authors
that combining printed materials and 3D models is the preferred mode
of approach in math education.

Keywords: LATEX, 3D printer, Teaching Materials.

1 Introduction

Teachers at the collegiate level often need various 3D figures in their math classes.
For example, in calculus classes, teachers can better explain the meanings of
double integral and repeated integral using Fig. 1 and Fig. 2

Fig. 1. Fig. 2.
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Additionally, figures such as Fig. 3 and Fig. 4 are used in linear algebra and
vector analysis classes.

Fig. 3. Fig. 4.

It is hard for ordinary teachers to draw these figures precisely on the black
board, and moreover, students may have great difficulty in copying them down
in their notebooks.

KETpic[1,2] is a macro package which is based on CASs, such as Mathematica,
Maple, Scilab, R, and generates a sequence of graphical codes for LATEX. KETpic
also includes functions for making tables in flexible formatting, creating LATEX
macros with graphical elements, and placing components freely on LATEX sheets.
Therefore, suitable mathematical figures for use in printed materials and math
textbooks are easily generated with LATEX and KETpic together. The plotting
and manipulation of three dimensional figures are supported as well. The plotting
is basically constructed with skeleton, silhouette, and boundary lines.

Recently, new commands for generating data in obj format have been imple-
mented in KETpic. The data can be immediately converted to stl format, with
which 3D printers can make 3D models. It should be noted that the definition
of a mathematical figure is the same as that for making printed material with
LATEX plotting. Only the path for generating plotting data has to be changed.
For example, “G=Spacecurve(...)” defines the graph of a parametric function.
Subsequently, “Drwline(Projpara(G))” is used when putting it into a LATEX doc-
ument, whereas “Objcurve(G)” is used when generating obj data. As a result, a
LATEX document with the figure and the 3D model are obtained simultaneously.
In the following sections, we describe some commands for making 3D models, and
compare printed materials and 3D models from the perspective of educational
impact. In this article, Scilab will be used.

2 Commands for 3D Data

KETpic can generate LATEX figures of surfaces, space curves, and polyhedra.
We take the graph of z = cos

√
x2 + y2 as an example in explaining how to

make a figure of a surface. This function can be defined parametrically as,

x = v cosu, y = v sinu, z = cos v. (1)

We follow the process below.
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(1) Define the function:

Fd=list("p","x=V*cos(U)","y=V*sin(U)","z=cos(V)",

"U=[0,2*%pi]","V=[0,4*%pi]","n");

(2) Find the boundaries and carry out hidden line elimination:

G1=Sfbdparadata(Fd);

(3) Generate the output file:

Openfile(Filename.tex);

Drwline(Projpara(G1));

Closefile();

(4) Input the file into a LATEX document:

\input{filename.tex};

From this, Fig. 5a is obtained. Also we can add details such as wireframes.

Fig. 5a. Fig. 5b.

Meanwhile, the procedures for making 3D models are as follows:
(1) The definition of the function is the same as above.
(2) The above-mentioned step (2) is unnecessary.
(3) Make the obj-formatted data file:

Openobj(Filename.obj);

Objsurf(Fd,1);

Closeobj();

Here, the last parameter (1 or −1) is for setting the outside of the surface.

(4) Use 3D viewing software such as
Meshlab[3], Blender[4], or i3dViewer[5] for iPad.

to display it on computer or tablet screens.
Fig. 5 is a screenshot in Meshlab.

(5) Use the command “Objthicksurf” at (3) to solidify the surface.

Openobj(Filename.obj);

Objthicksurf(Fd,0.02,-0.02,1,"n+");

Closeobj();

Converting obj format to stl format, we obtain data for 3D printers.

Fig. 6. Fig. 7.
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Fig. 8 is a photo of the printed-out 3D model.
The process for space curves is similar to that of surfaces.
(1) Define and make the space curve data:

Sc=Spacecurve("[cos(t),sin(t),0.1*t)","t=[0,4*%pi]");

(2) Use “Drwline” to make the LATEX file.
Drwline(Projpara(Sc));

Use “Objcurve” to make the obj-formatted file.
Objcurve(Sc);

Fig. 8. Fig. 9.

3 Comparison of Impact

KETpic has now grown into a tool that gives teachers the ability to make mate-
rials with mathematical 3D figures that can be used in different ways. They may
be distributed as printed materials, 3D data may be sent to students’ tablets,
and actual 3D models may be shown. In this section we compare these.

Needless to say, real 3D models contain much more information, which some-
times hinders students from understanding the nature of the point being ex-
plained. Moreover, it might be hard to add the necessary expressions, symbols,
lines, and notes, etc.

For example, to find the volume of the intersection of two cylinders mutually
crossing at a right-angle is a typical problem in calculus classes. Teachers often
want to show the shape to students. Fig. 11 is the 3D model, which cannot be
said to be better than the figure in the printed materials in Fig. 10. Students
will fail to grasp the shape of the inside body with only Fig. 11.

Fig. 10. Fig. 11.
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It should be noted here that examples of the 3D figures may be shown on
tablets. In Fig. 12a and Fig. 12b, the outside parts have been separated so that
the inside body may be seen.

Fig. 12a. Fig. 12b.

In the case of more complicated 3D shapes, on the other hand, a 3D model is
probably more effective. For example, the function defined by

z =
x2 − y2

x2 + y2
(2)

is discontinuous at (x, y) = (0, 0). Accordingly, the graph of the function has a
complex shape near the origin. Fig. 13 and Fig. 14, respectively, are the figure
for printed materials or presentations and the 3D model.

Fig. 13. Fig. 14.

4 Conclusions and Future Work

KETpic has implemented functionality to generate data for 3D printers, which
enables teachers to make materials with 3D models in various ways:

1. To distribute printed materials
2. To present slides on the screen
3. To have students manipulate figures on their tablets
4. To show or let students touch solid models
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5. To use some combination of the above-mentioned

Though we can choose other tools such as Blender to generate data for 3D
printers, KETpic has the advantages of

1. the ability to make complicated mathematical figures.
2. similarity to LATEX in generating figures, which is effective when used to-

gether.

Solid models have the most information about the real objects, and they may
impact math classes accordingly. However, they sometimes hinder students from
grasping the point under discussion. There are definitely more than a few cases
when printed materials have more impact in raising students’ insight.

The solid models that have been used until now have practical limitations as
teaching materials.

1. It can be said that it is impossible to distribute them to all students consid-
ering the high cost of making them.

2. Shown from the front of the classroom, they may be too small for all to see.
3. Transparent models are not so good.
4. The weight makes it hard to make models such as space curves.

Nevertheless, teachers may experiment with combinations of materials, which
should prompt them to investigate how to make effective use of solid models in
conjunction with other materials.
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Abstract. MathEdit is an interactive tool for creating and editing math-
ematical expressions on the Web. It is an open-source program imple-
mented in standard XHTML and JavaScript to run in regular browsers.
The tool supports both WYSIWYG editing and command-line editing
operations. Recently, a touch version of MathEdit is under development.
In MathEdit touch version, we design a virtual mathematical keyboard
for users to enter mathematical symbols and expression templates con-
veniently. The navigation method of highlighting current node instead
of blinking cursor is used in MathEdit. Users can select a sub-expression
via a virtual key or touch move operation.

1 Introduction

The Web-based Mathematics Education (WME) project [9] at the Institute for
Computational Mathematics (ICM/Kent) was started in the mid 1990’s to build
an innovative on-Web mathematics education environment for middle school
teachers and students. As part of WME, work also began on an interactive
visual editor for mathematical expressions that runs in standard Web browsers
and works with standard mathematics representations such as MathML [19],
infix, and LATEX.

In this direction, Lanzhou University and Kent State University jointly have
developed MathEdit [13,18], an open-source tool running in standard browsers
for entering and editing mathematical expressions for the Web. MathEdit can
be accessed on http://www.mathedit.org. MathEdit allows users to create and
edit mathematical expressions with a convenient and intuitive graphical user
interface (GUI) as well as an efficient command-line environment with character-
string input. Using well-defined API functions, MathEdit can also be embedded
in the interactive Web application systems by authors to create mathematical
expressions.

Through the GUI and character-string input box, user actions, mouse clicks,
and keyboard input, are treated as commands. Commands invoke JavaScript
functions that operate on HTML and MathML DOM trees to support editing
and visual navigation of mathematical expressions. MathML Presentation and
Content codes are basic to the internal operations of MathEdit. But MathEdit
also provides format conversion that can convert the format for the expressions
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among MathML, OpenMath [15], LATEX, and infix. Each edit operation basically
adjusts the DOM tree of MathML markup kept internally for the mathematical
expression being constructed or edited. The effect of each editing operation is
reflected in the visual display immediately.

MathEdit provides different user input modes, convenient API for the host
webpage. Preference settings and customizations at the user and program levels
make it possible to use MathEdit for different purposes and at different levels of
mathematics.

2 Comparing MathEdit with Other Systems

In the past decade, many companies and research institutes have developed
mathematical expression editors [1,5,6,8,10,11,16,17,20]. Table 1 compare ser-
val state-of-the-art editors with MathEdit in direct-manipulation input, linear-
format input, output format, editing mode.

Firstly, let us focus on input method and output format. Most of the editors
can support visual direct-manipulation: they provide well-defined template, vi-
sual navigation by mouse and arrow cursor, and shortcut key. But MathEdit,

Table 1. Compare the other editors with MathEdit

Item M
a
th

T
y
p
e

W
e
b
E
Q

M
a
th

E
X

A
m
a
y
a

L
y
x

T
E
X
m
a
c
s

A
S
C
II
M

a
th

M
L

M
a
th

E
d
it

Direct- Template
√ √ √ √ √ √

manipulation Visual Navigation
√ √ √ √ √ √

Shortcut Key
√ √ √ √ √ √

Linear- Infix
√ √

format MML Content
√ √ √

Input MML Presentation
√ √ √ √

OpenMath
√

LaTeX
√ √∗ √ √ √

Output Infix
√ √

Format MML Content
√ √ √ √

MML Presentation
√ √ √ √ √ √

OpenMath
√ √

LaTeX
√ √∗ √ √ √ √

Picture
√ √ √ √

Content-based Editing
√ √

Presentation-based Editing
√ √ √ √ √ √ √

Web-based
√ √ √ √
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MathEX [12], and WebEQ [17] support more flexible customizable templates.
Though most people prefer to use templates and a mouse when first learning
an application, in the long run it is often more convenient to use keyboard
shortcuts for common operations. All the editors use either MathML Presenta-
tion, or LaTeX, or both as their main mathematical representation format. For
linear-format input, LaTeX are most popular input format which is supported in
MathEdit, MathType [4] (MathType Version 6 begin to support LaTeX input),
TeXmacs [14], ASCIIMathML [2] and WebEQ (WebEQ use WebTeX which syn-
tax and commands are similar to the mathematics mode part of LaTeX). The
table also shows us supporting for directly editing MathML Presentation are
also an important feature for the modern mathematical expression editor. Only
MathEdit and MathEX can support OpenMath which is a semantic markup
language. MathEdit is only one which supports combination of infix and direct-
manipulation input editing method.

For the editing mode, the other editors usually aim either to capture the
meaning or to describe the visual appearance. The Amaya [1], LyX [7], TeX-
macs and MathType using MathML Presentation, LaTeX, or native formats to
store expressions are suitable for describing the expression appearance. Most
Computer Algebra Systems, such as Maple and Maxima, and a few independent
editors, such as MathEX, use infix and MathML Content to capture the mean-
ing of expressions. MathEdit is different which satisfies both the need for visual
display and the need for expression processing.

Otherwise in the Web-based editors, MathEX and WebEQ use Java Applet to
embed into other Web application. While MathEdit, developed by JavaScript,
is the only visual editor in the table 1 which can be seamless fused into other
Web application such as Web-based text editor.

3 Touch-Based Operation for Mathematical Expression
Editing

The rapidly-developing world of multi-touch tabletop and surface computing is
opening up new possibilities for editing mathematical expressions. Recently, a
touch version of MathEdit is under development. Figure 1 shows the user in-
terface of MathEdit touch version. Instead of a physical keyboard and mouse,
the user of multi-touch device interacts directly with a virtual keyboard and
touch-sensitive screen. In MathEdit touch version, we design a virtual mathe-
matical keyboard for users to enter mathematical symbols and expression tem-
plates conveniently. Figure 2 shows us the screenshot of virtual keyboard. The
virtual keyboard consists of digits, English letters, Greek letters, special letters,
mathematical operators, transcendental functions and expression templates. The
literature [3] analyzes 20,000 mathematical documents from the mathematical
arXiv server from 2000-2004, the period corresponding to the new mathematical
subject classification. It quantify empirically the use of common expressions in
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the mathematical literature and gives us a statistical result of usage frequency
of mathematical notations. The layout of each key on the virtual mathematical
keyboard of MathEdit touch version is based on the utilization rate of mathe-
matical symbols and templates in [3]. Such a layout of keys could make users
enter the expressions more easily and quickly.

Fig. 1. The User Interface of MathEdit

Another important user interface aspect of a WYSIWYG editor is navigating
to the precise point within the expression where an editing operation is to take
place. Windowing environments have taught users to experience computers with
one hand, focusing on a single point. However the size of human fingers and
the lack of sensing precision make precise touch screen interactions difficult. In
MathEdit, editing operations, such as insert, edit, delete, covert, and replace, are
relative to the current node, which is highlighted visually and visual navigation
refers to moving the current expression to different positions in the expression be-
ing edited. The current node could be either a single mathematical notation or a
sub-expression. A single mathematical notation can be selected by a finger touch
operation. There are two methods for selecting a sub-expression in MathEdit. A
sub-expression could be selected by press a virtual key (See Figure 3). As shown
in Figure 4, another method of selecting a sub-expression is to move your finger
from current selected area to your desired area. The minimum sub-expression
which covers all the touched symbols by moving finger will be selected. For cur-
rent node, there are three different operation statuses: entry before, entry after,
and replace the current node. The operation status can be switched by touching
on space area of work canvas after a sub-expression is selected. The highlighted
current node will show different colors for different operation status.
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Fig. 2. The virtual keyboard of MathEdit

Fig. 3. Selecting a sub-expression by pressing a virtual key

Fig. 4. Selecting a sub-expression by touch move

4 Conclusion

In the paper, MathEdit, a Web-based open source mathematical expression ed-
itor is introduced. The design and implementation of MathEdit are presented
together with a comparison with several other mathematical expression editors.
A new feature of MathEdit, editing mathematical expression on multi-touch de-
vice, is addressed in the paper. The screens of touch mobile devices are generally
small, which limits the size of displayed pages and the space that can be devoted
to user operation interface such as menu, toolbar. In MathEdit, we integrate the
general virtual touch keyboard with mathematical symbols and templates and
design a virtual mathematical keyboard. The virtual mathematical keyboard
can save the display space and also improve the expression input efficiency. The
navigation method of highlighting current node instead of blinking cursor is used
in MathEdit. Users can select a sub-expression via a virtual key or touch move
operation. In a certain degree, it overcomes the difficulty of precise interactions
on a touch screen with human fingers.
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Abstract. When collegiate mathematics teachers make their original
teaching materials, they often use TeX and CAS in order to insert figures
and tables into the materials. TeX and CAS have their own programming
languages, respectively. Programs must be written in a good style so
that other people can read them. KETpic is a plug-in based on CAS to
enable teachers to create figures as they like. KETpic has a programming
language for drawing but its programming style is not yet established as
a good programming style. In this paper we propose the requirements
for a good KETpic programming style.

1 Introduction

When collegiate mathematics teachers make their students understand a new
mathematical concept, the teachers often hand out their original teaching ma-
terials to the students. The materials need to include accurate and impressive
figures and tables which urge the students to understand the concept. In order to
create accurate figures, teachers often use Computer Algebra System (in short,
CAS), such as Mathematica, Maple, Maxima, Matlab, Scilab and R, and they
often use TeX to make the manuscript of the materials. The figures created by
CAS are changed into the graphics files formatted into EPS or PDF, and are
inserted in a TeX document. It is difficult for teachers to insert satisfactory ac-
cessories, such as characters, expressions, ticks and scales, in graphics files. Since
2006 we have developed KETpic as a plug-in based on CAS to enable teachers to
create figures as they like. Because the figures created by KETpic are accurate
and impressive line drawing, students can understand the concept, writing nec-
essary information in the figures of their teaching material. We think that these
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figures are suitable for mathematics class materials. In Section 2 we explain the
usage and the characteristic of KETpic. We are going to clarify the necessary
functions for creating figures in mathematics class materials by questionnaire
and interview to collegiate mathematics teachers.

To produce a figure using KETpic, teachers create a KETpic program in CAS
along with mathematical drawing procedures. During this creation they must
recognize the global image of the figure clearly and concentrate their energy on
qualitative improvement of the figure. This thinking activity is called ???sym-
bolic thinking???. In order to perform symbolic thinking, they have to master
the programming manner of writing for drawing. By doing so, other teachers
can also use the KETpic program to create their original figures. To realize
the above, both the TeX document of the class materials and the KETpic pro-
gram for drawing must be written in code which every teacher can read. TeX
programming styles by Knuth, Larrabee and Roberts[1] and the programming
styles for programming languages by Kernighan and Plauger[2] are famous as
good programming styles. However, a good programming style for drawing is
not yet known. It is necessary to establish KETpic programming style as a good
programming style for drawing. We investigated many KETpic programs for
drawing which were written by collegiate mathematics teachers. In Section 3 we
introduce the manner of this investigation and show requirements for a good
programming style for drawing.

Moreover, based on KETpic programming styles for drawing, we are going to
start the portal site for supporting creation of mathematics class materials with
figures. In Section 4 we show future works on KETpic programming styles.

2 The Characteristic of KETpic

KETpic has been developed as a plug-in based on CAS in order to create figures
inserted into a TeX document. We explain the usage of KETpic by the case
where OS is Microsoft Windows and CAS is Scilab. You set the folder for work
as “c:/work” and you can use KETpic as follows:

1. Start a CAS (Scilab) and load KETpic (ketpicsciL5) into the CAS. Initialize
KETpic and define a figure file name “Figure tex”. The first chracter of a
KETpic command is capital.
1. cd("c:/work");

2. Ketlib=lib("ketpicsciL5");

3. Ketinit();

4. Fname=Figure tex;

2. Make plotting data of a figure using KETpic commands as follows:
6. Setangle(60,30);

7. Fd=list("z=sin(2*sqrt(abs(x^2+y^2)))","x=R*cos(T)",...

8. "y=R*sin(T)","R=[0,4]","T=[0,2*%pi]","e");

9. S=Sfbdparadata(Fd);

10. Ax=Xyzax3data("x=[0,5]","y=[0,5]","z=[0,4]");
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11. Axo=Crvsfparadata(Ax,S,Fd);

12. Axi=CrvsfHiddenData();

13.

14. Setwindow([-5,5],[-2.5,4]);

15. Ps=Skeletonparadata(S,list(Axo));

16. Paxo=Projpara(Axo);

17. Paxi=Projpara(Axi);

18. Windisp(Ps,Paxo,"c")

A space figure is drawn as a figure projected on the plane defined by line 6.
On line 6 the normal vector of the plane projected space figures is defined
by (sin 60◦ cos 30◦, sin 60◦ sin 30◦, cos 60◦). From line 7 to line 12 you can
make plotting data of a surface and the axis of coordinates in space. From
line 7 to line 8 a surface z = sin(2

√
x2 + y2) is defined and on line 9 you can

get plotting data of the ridgeline of the surface by the projection defined by
line 6. On line 10 the axis of coordinates are defined. On line 11 the portions
of the axis which are sticking out of the surface are defined and on line 12
the portions of axis which hide in the surface are defined. From line 15 to
line 17 you can obtain plotting data of the figures projected these figures
on the plane defined by line 6. In the usual projection, the projection of the
ridgeline of the surface S and the projection of the axis Axo may overlap in
one point. In order to express depth perception at the point, the projection
of the ridgeline of the surface S removes the far portion from the axis Axo.

3. Produce tpic specials codes, which are the TeX codes for drawing, of figures
using KETpic commands and write out them into a figure file “Figure tex”
as follows:
20. Openfile(Fname,"0.5cm");

21. Drwline(Ps,Paxo);

22. Dottedline(Paxi);

23. Xyzaxparaname(Ax);

24. Expr([1,3.5],"se","z=\sin(2\sqrt{x^2+y^2}));

25. Closefile("0");

On line 20 "0.5cm" means the unit length of the output display. On line
25 the argument "0" means that the axis of coordinates which the plane
projected space figures has are not displayed ("1" means that they are dis-
played).

You should just insert the figure file “Figure tex” into a TeX document by not
using a TeX command \includegraphics but using \input. We have developed
“ketlayer.sty” as a TeX style file to arrange a figure file in the position which
you want to put. You can use the layer environment defined by “ketlayer.sty” as
follows:
1. \documentclass{article}

2. \usepackage{amsmath,amssymb}

3. \usepackage{ketlayer}

4.
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5. \begin{document}

6. \begin{layer}{60}{40}

7. \putnotese{0}{0}{\input{Figure tex}}

8. \end{layer}

9. \end{document}

On line 3 you can use the style file “ketlayer.sty”. From line 6 to line 8 you
can put coordinates into the output display. On line 7 you can place a figure
file on the southeast direction on the basis of coordinates (0, 0) as is shown in
Figure 1. If you change the 2nd argument on line 6 into 0 from 40, you can erase
coordinates from the output display (see Figure 2).

As is shown in Figure 2, the figure produced by using KETpic has the following
characteristics:

– The figure is drawn by the simple line like comics.
– The figure has accurate length and position.
– In order to express space figures in the plane projected them, the skelton

method and the ridgeline method are used in the figure.

Fig. 1. The output display Fig. 2. A surface in space

3 The Investigation of KETpic Programs

In 2012 we investigated KETpic programs which drew the ellipse. The makers of
these KETpic programs were 8 mathematics teachers of program beginners, 12
mathematics teachers of KETpic users and 4 students of KETpic beginners. As
a result, the following requirements for a good programming style for drawing
became clear[3]:

– The maker has to know the basic knowledge of programming.
– The maker has to know the basic knowledge of mathematics.
– The maker has to know the basic knowledge of KETpic commands.

Since 2013 we have investigated 104 KETpic programs which were written by
two collegiate mathematics teachers; 51 programs were written by a program be-
ginner and 53 programs were written by a programmer. As a result, the following
9 requirements for a good programming style for drawing became clear:
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1. The maker has to arrange a command in a suitable position.
2. The maker has to attach the suitable name for a variable or plotting data.
3. The maker has to use the calculation function of CAS.
4. The maker has to use KETpic commands appropriately.
5. The maker has to divide a program into readable blocks.
6. The maker has to use a reference point in order to arrange a character and

an expression in a suitable position.
7. The maker has to use list structure appropriately.
8. The maker has to use for syntax appropriately.
9. The maker has to define local variables.

Results of the program investigation became as in Table 1. The beginner was bad
on all requirements other than the 3rd requirement. The programmer did not use
the calculation function ofCASbut used the approximate value calculatedby hand
calculation. We think that, when he made figures by using KETpic, he did not
notice that he could use the calculation function of CAS. The requirements which
the programmer was bad exceeding 50% were the 4th “KETpic commands” and
the 9th “Local variable”. It shows that the programmer would not master KETpic
and not try to tune finely in order to create the optimal figures.

Table 1. Results of the program investigation

4 Future Works

We found 9 requirements for a good programming style for drawing. In Section
2 we showed an ideal KETpic program based on a good programming style for
drawing. This KETpic program is satisfied with 9 requirements and it is proved
that other persons can read it. We will continue investigating a program further
and will check whether 9 requirements are enough. Finally, future works are as
follows:
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– We are going to clarify the necessary functions for creating figures in math-
ematics class materials by questionnaire and interview to collegiate mathe-
matics teachers.

– We are going to start the portal site for supporting creation of mathematics
class materials with figures.
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Abstract. libnormaliz is a C++ library for computations with rational
cones and affine monoids and CoCoALib/CoCoA-5 offers a general envi-
ronment for computations in Commutative Algebra. For mutual benefit
we have developed a simple and fast interface between the two software
libraries.

We present how this integration was designed, and then describe in
detail the Normaliz functions we have made available in CoCoALib (and
also in CoCoA-5).

1 Introduction

libnormaliz [4] is a C++ library for computations with rational cones and affine
monoids; Normaliz is a simple, stand-alone system built on top of libnormaliz.
CoCoALib [1] is a C++ library designed to offer an easy-to-use, general en-
vironment for efficient computations in Commutative Algebra; CoCoA-5 [3] is
an interactive system built on top of CoCoALib.

For mutual benefit we have developed a simple and fast interface between
the two libraries; thus, for instance, in the presence of libnormaliz, CoCoALib
acquires new data-structures and operations giving almost direct access to lib-
normaliz capabilities. These extensions also appear in CoCoA-5, so libnormaliz
operations become accessible when working on rings and monoid algebras in
CoCoA-5; in this way CoCoA-5 becomes a convenient, sophisticated front-end
for libnormaliz.

There are several different approaches for software interoperation: the system
Normaliz communicates with the systems Singular and Macaulay2 via files and
using their respective user-interface languages. A more flexible approach has been
adopted by Sage [8]: it is built on top of many existing open-source packages and
accesses their combined power through a common, Python-based language. Yet
another possibility is typified by CoCoAServer (of which an advanced prototype
already existed in the CoCoA distribution): it follows the client-server model, and
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offers symbolic computation services over a socket and using an OpenMath1-like
language.

For combining Normaliz and CoCoALib we opted for direct integration by
adding the relevant interface code in C++. This approach makes the communica-
tion costs much lower, and also facilitates a “symmetric/symbiotic integration”:
for instance the newly developed extension to Normaliz, called nmzIntegrate
(see Sec. 5), uses features from CoCoALib. An object oriented design allows for
efficient management of transported values and the corresponding representation
transformations.

In Sections 2 and 3 we present how this integration was designed and how
the same simple design techniques can be used for integrating other external
libraries into CoCoALib (and also subsequently into CoCoA-5); indeed we have
applied the same structure for integrating the software libraries Frobby and GSL
(in part).

Then in Section 4 we describe in detail the Normaliz functions we have made
available in CoCoALib (and also in CoCoA-5). We offer specific ring theoretic
functions applicable to monomial subalgebras, monomial ideals and binomial ide-
als in polynomial rings. Additionally, we provide direct access to libnormaliz via
a general function NmzComputation which faithfully reflects the internal struc-
ture of the libnormaliz design.

2 Integrating an External Library in CoCoALib

Using the case of libnormaliz as a guide example, here we show the general
guidelines for integrating an (optional) external library into CoCoALib.

The code for the communication between the two libraries is all enclosed in
the file ExternalLibs-Normaliz.C (and its corresponding .H file). It contains
the definition of the (CoCoALib) class cone, which embodies the libnormaliz
class, the functions performing the data conversions between the two libraries,
and the functions and constructors actually available to the CoCoALib user.

Other libraries are integrated in CoCoALib with a similar structure through
the files ExternalLibs-Frobby and ExternalLibs-GSL (see [2] in this volume).

The only mathematical library which is necessary for the compilation of Co-
CoALib is GMP [6]: it plays a fundamental rôle in CoCoA, Normaliz, and in a lot
of other mathematical software. Apart from GMP no external library is linked
by default. A CoCoALib user who wants to access libnormaliz functions must
download and compile libnormaliz (which also requires the BOOST library), and
then configure and compile CoCoALib simply by giving the two commands

./configure --with-libnormaliz=<path-to-libnormaliz.a>

make

then the code contained in ExternalLibs-Normaliz.C will actually be com-
piled, together with its dedicated test suites (in the CoCoALib test directory

1 OpenMath [7] is a standard for representing the semantics of mathematical objects,
so they can be reliably communicated between programs.
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src/tests/) and its explanatory examples (in the CoCoALib example direc-
tory examples/).

Currently we are working on a simple design to generate a meaningful compi-
lation error message in the case some CoCoALib/C++ program calls a Normaliz
function when libnormaliz is not present (and similarly for any other optional
external library).

3 Porting a CoCoALib Function to CoCoA-5

One of the main goals in the design of the new interpreter for CoCoA-5, the
interactive system based on CoCoALib, was that it should be easy to expose a
CoCoALib function to a user of the interactive CoCoA-5 system.

The old CoCoA-4 interpreter made this operation quite cumbersome, con-
sequently very many functions offered by CoCoA-4 were actually implemented
using the interpreted CoCoA-4 language, and resided in CoCoA “packages”.
Some packages still persist in CoCoA-5, but their functions are gradually being
translated into C++ with the double benefit of making them faster and mak-
ing them available in CoCoALib; so CoCoALib users will have access to all the
mathematical capabilities of CoCoA.

An obvious pleasant consequence is that it is just as easy to make any function
defined in ExternalLibs-Normaliz available in CoCoA-5. In this way CoCoA-5
becomes a convenient, sophisticated front-end for libnormaliz.

Also at this level we are working on a simple design to generate a meaningful
CoCoA-5 error message in the case a CoCoA-5 user calls a Normaliz function
when CoCoA-5 has been compiled without libnormaliz being linked in (and
similarly for any other optional external library).

3.1 Some Implementation Specifics

The code related to the CoCoA-5 built-in functions from libnormaliz is imple-
mented in BuiltInFunctions-Normaliz.C.

There are three ways to make a built-in function in CoCoA-5:

One-Liner Built-in Function
This quick approach is applicable when the CoCoA-5 function name is the
same as the CoCoALib function name, and the arguments are the same (with
simple types). For instance, the function NmzHilbertBasis expects a matrix
and outputs a matrix. Mathematically the input is a set of vectors, but by
requiring them to be in a matrix we have an automatic guarantee that all the
vectors have the same length, and that their coordinates are “compatible”.
In this specific case the coordinates are all integers, but for simplicity we
use CoCoA-5’s default ring Q for matrix entries. So the input (and output)
is a matrix over Q, which is a CoCoA-5 object directly represented by a
CoCoALib object. So the code to port this to CoCoA-5 is just one line
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DECLARE_COCOALIBFORC5_FUNCTION1(NmzHilbertBasis, MatrixValue)

This is a very handy macro saying in just one line that the CoCoA-5 func-
tion NmzHilbertBasis has 1 argument of type MatrixValue (the intepreter
wrapper for the CoCoALib type matrix). The output type is automatically
determined and wrapped up and sent to CoCoA-5 (in this case again a
matrix which is wrapped into a MatrixValue).

Standard Builtin Function
This method is for functions with a fixed number of arguments, but whose
types are not fixed or where the CoCoALib function has a different name.
For instance the function NmzNormalToricRing expects as input a list of
power-products, but lists in CoCoA-5 can have elements of any type (even
mixed types), so they are far more flexible than the corresponding C++
counterparts. The implementation is

DECLARE_STD_BUILTIN_FUNCTION(NmzNormalToricRing, 1)

{ vector<RingElem> v=runtimeEnv->evalArgAsRingElemList(ARG(0));

return Value::from(NmzNormalToricRing_forC5(v));

}

END_STD_BUILTIN_FUNCTION

meaning that the CoCoA-5 function NmzNormalToricRing has 1 argument
which is expected to be a CoCoA-5 “list of ring elements”. In case no error
is thrown (and automatically caught, generating a CoCoA-5 error message),
this list is stored into a C++ vector<RingElem> to be used by CoCoALib.
The return value type is again automatically determined and wrapped up for
CoCoA-5 by the handy function Value::from (which in this case a converts
the CoCoALib output vector<RingElem> into a ListValue for CoCoA-5).

Functions with a Variable Number of Arguments
The function NmzComputation takes either one or two arguments, and this
requires a little more hand-work. It intimately reflects the design of libnor-
maliz: to render its structure the input and output in CoCoA-5 is via a
record (see Sec. 4.4) and again this aspect does require some ad hoc code.

4 Normaliz Functions in CoCoA

In this section we describe in detail the Normaliz functions we have made avail-
able in CoCoALib and also in CoCoA-5. We offer (almost) the complete func-
tionality of libnormaliz, and additionally, specific ring theoretic functions applied
to monomial subalgebras and monomial ideals in polynomial rings.

4.1 Datatypes in CoCoALib

The fundamental cone object of libnormaliz has as template parameter the in-
teger type used in the computations. In CoCoALib we implemented a “double
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cone” object which contains two libnormaliz cones: one cone with template pa-
rameter long and one for the arbitrary precision type mpz class from the GMP
library. For many computations machine integer precision is sufficient; and if it
suffices, it is much faster than using mpz class; we observed speed differences
of a factor 5 or more.

For this reason the CoCoALib “double cone” tries first to execute the re-
quested computation with long. If libnormaliz reports an arithmetic overflow
it switches to the mpz class cone and sets a flag indicating long arithmetic is
not sufficient in this case. The user of CoCoALib does not have to worry about
overflow problems, it is handled completely automatically by the “double cone”.

4.2 Functions in CoCoALib

The cone object is accompanied by several functions which return a single prop-
erty of the cone, e.g. HilbertBasis(c) for a previously created cone c. These
functions trigger a computation if necessary, otherwise they just return the al-
ready computed cached result. The computed answer is stored inside the libnor-
maliz cone, which also handles what has to be computed and what is already
known. The cone also has a myCompute method which allows the user to initi-
ate the computation of multiple properties at once, for example to compute the
Hilbert basis and the Hilbert series, this combined computation is faster than
two separate computations since they have a large common part.

Input and output is realized with CoCoALib data types, e.g. a list of genera-
tors as std::vector< std::vector<BigInt> >. The Hilbert series is returned
as the specialized CoCoALib class HPSeries and the Hilbert polynomial as a Co-
CoALib polynomial (RingElem). This allows easy application of other CoCoALib
functions.

Additionally to the full functionality of libnormaliz via the flexible member
function myCompute, we offer more direct specialized functions to work with
monomial subalgebras and monomial ideals. They work directly with CoCoALib
data-structures, instead of a cone, and are themselves used by the corresponding
CoCoA-5 functions described in the next subsection. They communicate via the
CoCoALib class PPVectorwhich represents a list of power-products in a “power-
product monoid” (PPMonoid), monomials in a given polynomial ring.

4.3 Datatypes in CoCoA-5

CoCoA-5 has fewer datatypes than CoCoALib, but they are very flexible. For
the input and output of the Normaliz functions we use

MATRIX for representing a list of vectors of integers

LIST for representing a list of monomials

RECORD for representing the full flexibility of a libnormaliz/CoCoALib cone.
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4.4 Functions in CoCoA-5

In CoCoA-5 we have functions to work with toric rings. A toric ring S is a mono-
mial subalgebra of a polynomial ring generated by a set of monomials. The func-
tions NmzNormalToricRing and NmzIntClosureToricRing compute the normal-
ization and integral closure of the toric ring generated by the given monomials.
NmzIntClosureMonIdeal takes a list of monomials which generate a monomial
ideal I and computes its integral closure. In all cases the result is returned as
a list of monomials representing the monomial subalgebra or monomial ideal,
respectively.

Additionally, we provide direct access to libnormaliz via the general function
NmzComputationwhich faithfully reflects the internal structure of the libnormaliz
design.

We show the usage of NmzComputation via an example. First we create a
record, which is a CoCoA-5 construct to store labeled data. In the following ex-
ample the record C represents the cone and has only a single entry, the generators
for which we want to consider the normalization. In general we can combine mul-
tiple fields like inequalities and equations. The possible input combinations
are exactly the same as for input files of Normaliz itself.

M := mat([[0,0,0,1],[2,0,0,1],[0,3,0,1],[0,0,5,1],[-1,-1,0,1]]);

C := record[ normalization := M];

Now we use NmzComputation with the record C as argument, to perform the
most complete computation libnormaliz can do. The result is a record again,
containing all interesting data that was computed.

indent(NmzComputation(C));

If we are just interested in special properties we can use NmzComputationwith
a list of properties that we want to get computed as second argument. To see a
special field use a command like

NmzComputation(C,["HilbertBasis"]).HilbertBasis;

to get just the Hilbert basis. For simplicity this common special task can also
be done by calling

NmzHilbertBasis(M);

which will give you the same information as the command above.

5 Using CoCoALib in NmzIntegrate

So far we have described how Normaliz functions have extended the capabilities
of CoCoALib/CoCoA-5. Here we look at the converse: the newly developed ex-
tension to Normaliz, called NmzIntegrate, which uses features from CoCoALib.
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NmzIntegrate is a program to compute the generalized Ehrhart function

E(f, k) =
∑

x∈M,degx=k

f(x),

of a normal affine monoid M with grading deg and with respect to the polyno-
mial f . This is done via the generalized Ehrhart series, which is the ordinary
generating function

Ef (t) =
∞∑
k=0

E(f, k)tk.

Normaliz itself handles the special case f = 1, where the points in each degree
are simply counted. See [5] for more background on this topic.

In the generalized Ehrhart series computation we need to handle multivari-
ate polynomials. NmzIntegrate uses CoCoALib for representing and operating
on multivariate polynomial operations, most importantly multiplications and
(linear) substitutions. These operations are the most time consuming part in
NmzIntegrate and therefore it profits directly from their sophisticated handling
in CoCoALib. Without this “help” from CoCoALib, it would have been much
harder to develop NmzIntegrate (and it is unlikely that the result would be so
refined).
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Abstract. We describe in this paper new design techniques used in the
C++ exact linear algebra library LinBox, intended to make the library
safer and easier to use, while keeping it generic and efficient. First, we
review the new simplified structure for containers, based on our found-
ing scope allocation model. We explain design choices and their impact
on coding: unification of our matrix classes, clearer model for matrices
and submatrices, etc. Then we present a variation of the strategy design
pattern that is comprised of a controller–plugin system: the controller
(solution) chooses among plug-ins (algorithms) that always call back the
controllers for subtasks. We give examples using the solution mul. Finally
we present a benchmark architecture that serves two purposes: Providing
the user with easier ways to produce graphs; Creating a framework for
automatically tuning the library and supporting regression testing.

Keywords: LinBox, design pattern, algorithms and containers, bench-
marking, matrix multiplication algorithms, exact linear algebra.

1 Introduction

This article follows several papers and memoirs concerning LinBox1 (cf. [2, 7,
8, 13, 19]) and builds upon them. LinBox is a C++ template library for fast and
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exact linear algebra, designed with generality and efficiency in mind. The LinBox
library is under constant evolution, driven by new problems and algorithms, by
new computing paradigms, new compilers and architectures. This poses many
challenges: we are incrementally updating the design of the library towards a
2.0 release. The evolution is also motivated by developing a high-performance
mathematical library available for researchers and engineers that is easy to use
and help produce quality reliable results and quality research papers.

Let us start from a basic consideration: we show in the Table 1 the increase
in the “lines of code” size2 of LinBox and its coevolved dependencies Givaro and
Fflas–Ffpack3.

Table 1. Evolution of the number of lines of code in LinBox

LinBox 1.0.0†‡ 1.1.0†‡ 1.1.6‡ 1.1.7‡ 1.2.0 1.2.2 1.3.0 1.4.0
loc (×1000) 77.3 85.8 93.5 103 108 109 112 135
Fflas–Ffpack n/a n/a n/a 1.3.3 1.4.0 1.4.3 1.5.0 1.8.0
loc — — — 11.6 23.9 25.2 25.5 32.1
Givaro n/a n/a 3.2.16 3.3.3 3.4.3 3.5.0 3.6.0 3.8.0
loc — — 30.8 33.6 39.4 41.1 41.4 42.8
total 77.3 85.8 124 137 171 175 179 210

This increase affects the library in several ways. First, it demands a stricter
development model, and we are going to list some techniques we used. For in-
stance, we have transformed Fflas–Ffpack (cf. [10]) into a new standalone header
library, resulting in more visibility for the Fflas–Ffpack project and also in better
structure and maintainability of the library. A larger template library is harder
to manage. There is more difficulty to trace, debug, and write new code. Tech-
niques employed for easier development include reducing compile times, enforc-
ing stricter warnings and checks, supporting more compilers and architectures,
simplifying and automating version number changes, automating memory leak
checks, and setting up buildbots to check the code frequently.

This size increase also requires more efforts to make the library user friendly.
For instance, we have: Developed scripts that install automatically the latest sta-
ble/development versions of the trio, resolving version dependencies; Eased the
discovery of Blas/Lapack libraries; Simplified and sped up the checking process,
covering more of the library; Updated the documentation and distinguished user
and developer oriented docs; Added comprehensive benchmarking tools.

Developing generic high performance libraries is difficult. We can find a large
literature on coding standards and software design references in (cf. [1, 11, 15, 17,
18]), and draw from many internet sources and experience acquired by/from free
software projects. We describe advances in the design of LinBox in the next three
sections. We will first describe the new container framework in Section 2, then, in

2 Using sloccount, available at http://sourceforge.net/projects/sloccount/
3 Symbol † when Givaro is included and † when contains Fflas–Ffpack.

http://sourceforge.net/projects/sloccount/
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Section 3, the improved matrix multiplication algorithms made by contributing
special purpose matrix multiplication plugins, and, finally, we present the new
benchmark/optimization architecture (Section 4).

2 Containers Architecture

LinBox is mainly conceived around the RAII (Resource Acquisition Is Initial-
ization, see [17]) concept with reentrant function. We also follow the founding
scope allocation model (or mother model) of [8] which ensures that the memory
used by objects is allocated in the constructor and freed only at its destruction.
The management of the memory allocated by an object is exclusively reserved
to it.

LinBox uses a variety of container types (representations) for matrix and vec-
tors over fields and rings. The fragmentation of the containers into various matrix
and blackbox types has been addressed and simplified. The many different ma-
trix and vector types with different interfaces has been reduced into only two
containers: Matrix and Vector.

2.1 General Interface for Matrices

First, in order to allow operations on its elements, a container is parameterized
by a field object (Listing 1.1), not the field’s element type. This is simpler and
more general. Indeed, the field element type can be inferred from a value_type

type definition within the field type. Then, the storage type is given by a second
template parameter that can use defaults, e.g. dense Blas matrices (stride and
leading dimension or increment), or some sparse format.

template < class _Field , class _Storage = denseDefault >
class Vector ;

Listing: Matrix or Vector classes in LinBox.

In the founding scope allocation model, we must distinguish containers that
own (responsible for dynamically allocated memory) and containers that share
memory of another. SubMatrix and SubVector types share the memory; Matrix
and Vector own it. All matrix containers share the common BlackBox interface
described in the next paragraphs, it accommodates both owner and sharer con-
tainer types, and defines the minimal methods required for a template BlackBox
matrix type: Input/Output. Our matrix containers all read and write from Ma-
trix Market format4 which is well established in the numerical linear algebra
community and facilitates sharing matrices with other software tools. The Ma-
trixMarket header comment provides space for metadata about the provenance
of a matrix and our interest in it. However, because of our many entry domains

4 See http://math.nist.gov/MatrixMarket/.

http://math.nist.gov/MatrixMarket/
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and matrix representations, extensions are necessary to the MatrixMarket for-
mat. For instance, the header comment records the modulus and irreducible
polynomial defining the representation of a matrix over GF(pe). We can further
adapt the header to suit our needs, for instance create new file formats that
save space (e.g. CSR fashion saves roughly a third space over COO, cf. Harwell-
Boeing format). Structured matrices (Toeplitz, Vandermonde, etc.) can have file
representations specified.

Apply method. This is essential in the BlackBox interface (Sections 2.2 and 3).

Rebind/Conversions. In addition to the rebind mechanism (convert from one
field to the other), we add conversion mechanisms between formats, for instance
all sparse matrix formats can convert to/from CSR format: this ‘star’ mechanism
can simplify the code (to the expense of memory usage) and may speed it up
when some central formats are well tuned for some task.

This is a common minimal interface to all our matrix containers that can
be used by all algorithms. This interface provides the basic external function-
ality of a matrix as a “linear mapping” (black box). This interface is shared
by: dense containers (Blas-like,...); permutation containers (compressed Lapack
or cycle representation); sparse containers (based on common formats or on
STL containers such as map, deque,...); structured containers (Diagonal, Hankel,
Butterfly,...); compound containers (Compose, Submatrix,...). Additional func-
tions of a container can be added, and flagged with a trait, for example those
that support internal changes as for Gaussian elimination.

2.2 The apply Method

The apply method (left or right) is arguably the most important feature in the
matrix interface and the LinBox library. It performs what a linear application is
defined for: apply to a vector (and by extension a block of vectors, i.e. a matrix).

We propose the new interface (Listing 1.2), where In and Out are vector
or matrices, and Side is Tag::Right or Tag::Left, whether the operation y ←
Ax or y ← Ax is performed. We also generalize to the operation y ← αAx+βy.

template < class _In , class _Out >
_Out& apply(_Out &y, const _In& x, enum Side) ;

Listing: Apply methods.

This method is fundamental as it is the building block of the BlackBox algo-
rithms (for instance block-Wiedemann) and as the matrix multiplication, main
operation in linear algebra, needs to be extremely efficient (Section 3). The im-
plementation of the apply method can be left to a mul solution, which can include
a helper/method argument if the apply parameters are specialized enough.
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3 Improving LinBox Matrix Multiplication

We propose a design pattern (the closest pattern to our knowledge is the strategy
one, see [6, Fig 2.]) in Section 3.1 and we show a variety of new algorithms where
it is used in the mul solution (Section 3.2).

3.1 Plugin Structure

We propose in Figure 1 a generalization of the strategy design pattern of [6,
Fig 2.], where distinct algorithms (modules) can solve the same problem and are
combined, recursively, by a controller. The main advantage of our pattern is that
the modules always call the controller of a function so that the best version will
be chosen at each level. An analogy can be drawn with dynamic systems — once
the controller sends a correction to the system, it receives back a new measure
that allows for a new correction.

Controllers

Modules

input output

call

call back

Fig. 1. Controller/Module design
pattern

For instance, we can write (Figure 2) the
standard cascade algorithms (see [10]) in
that model. Cascade algorithms are used
to combine several algorithms that are
switched using thresholds, ensuring better
efficiency than that of any of the algorithms
individually. This method allows for the
reuse of modules and ensures efficiency. It is
then possible to adapt to the architecture,
the available modules, the resources. The
only limitation is that the choice of module
must be fast. On top of this design, we have Method objects that allow caller
selection of preferred algorithms, shortcutting the strategy selection.

This infrastructure supports modular code. For instance, Fflas–Ffpack has
seen major modularization (addition, scaling, reduction,...) Not only does it
enable code to be hardly longer than the corresponding pseudocode listings,

Algorithm 1. Algo: controller

Input: A and B, dense, with
resp. dimensions n× k
and k × n.

Input: H Helper
Output: C = A×B
if min(m,k, n) < H.threshold()
then

Algo(C,A,B,BaseCase()) ;
else

Algo(C,A,B,RecursiveCase())
end

Algorithm 2. Algo: recursive
module
Input: A, B, C as in controller.
Input: H , RecursiveCase Helper
Output: C = A×B
Cut A,B,C in Si, Ti

...
Pi = Algo(Si, Ti,H)
...

Fig. 2. Conception of a recursive controlled algorithm
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[5], (compared to ≈ 2.5× on some routines before) but it also automatically
brings performance, because we can separately improve individual modules and
immediately have the benefit throughout the whole library.

3.2 New Algorithms for the mul Solution

New algorithms and techniques improve on matrix multiplication in several ways:
reducing memory consumption, reducing runtime, using graphics capabilities,
generalizing the Blas to integer routines.

Reduced memory. The routine fgemm in Fflas uses by default the classic sched-
ules for the multiplication and the product with accumulation (cf. [5]), but we
also implement the low memory routines therein. The new algorithms are com-
petitive and can reach sizes that were limiting. One difficulty consists in using
the memory contained in a submatrix of the original matrix, that one cannot
free or reallocate.

Using Bini’s approximate formula. In [3], we use Bini’s approximate matrix
multiplication formula to derive a new algorithms that is more efficient that the
Strassen–Winograd implementation in fgemm by ≈ 5− 10% on sizes 1500–3000.
This is a cascade of Bini’s algorithm and Strassen–Winograd algorithm and/or
the nave algorithm (using Blas). The idea is to analyze precisely the error term
in the approximate formula and make it vanish.

Integer Blas. In order to provide fast matrix multiplication with multiprecision
integers, we rely on multimodular approach through the Chinese remainder the-
orem. Our approach is to reduce as much as possible to fgemm. Despite, the
existence of fast multimodular reduction (resp. reconstruction) algorithm [12],
the nave quadratic approach can be reduced to fgemm which makes it more effi-
cient into practice. Note that providing optimized fast multimodular reduction
remains challenging. This code is directly integrated into Fflas.

Polynomial Matrix Multiplication over small prime fields. The situation is similar
to integer matrices since one can use evaluation/interpolation techniques through
DFT transforms. However, the optimized Fast Fourier Transform of [16] makes
fast evaluation (resp. interpolation) competitive into practice. We thus rely on
this scheme together with fgemm for pointwise matrix multiplications. One can
find some benchmark of our code in [14].

Sparse Matrix–Vector Multiplication. For sparse matrices a main issue is that
the notion of sparsity is too general vs. the specificity of real world sparse ma-
trices: the algorithms have to adapt to the shape of the sparse matrices. There
is a huge literature from numerical linear algebra on SpMV (Sparse Matrix Vec-
tor multiplication) and on sparse matrix formats, some of which are becoming
standard (COO, CSR, BCSR, SKY,...). In [4] we developed some techniques
to improve the SpMV operation in LinBox. Ideas include the separation of the
±1 for removing multiplications, splitting in a sum (HYB for hybrid format) of
sparse matrix whose formats are independent and using specific routines. For
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instance, on Z/pZ with word size p, one can split the matrix ensuring no re-
duction is needed in the dot product and call Sparse Blas (from Intel MKL or
Nvidia cuBLAS for instance) on each matrix. One tradeoff is as usual between
available memory, time spent on optimizing vs. time spent on apply, and all the
more so because we allow the concurrent storage of the transpose in an opti-
mized fashion, usually yielding huge speedups. This can be decided by ad hoc.
optimizers.

Work on parallelizations using OpenCL, OpenMP or XKaapi for dense or sparse
matrix multiplication include [4, 9, 20].

4 Benchmarking for Automated Tuning and Regression
Testing

Benchmarking was introduced in LinBox for several reasons. First, It gives the
user a convenient way to produce quality graphs with the help of a graphing
library like gnuplot5 and provides the LinBox website with automatically updated
tables and graphs. Second, it can be used for regression testing. Finally, it will
be used for selecting default methods and setting thresholds in installation time
autotuning.

4.1 Performance Evaluation and Automated Regression Testing

Our plotting mechanism is based on two structures: PlotStyle and PlotData.
The PlotGraph structure uses the style and data to manage the output. We allow
plotting in standard image formats, html and LATEXtables, but also in raw csv or
xml for file exchange, data comparisons and extrapolation. This mechanism can
also automatically create benchmarks in LinBox feature matrix (this is a table
that describes what solutions we support, on which the fields).

Saving graphs in raw format can also enable automatic regression testing on
the buildbots that already checked our code. For some specifically determined
matrices (of various shapes and sizes and over several fields), we can accumulate
the timings for key solutions such as (rank, det, mul,...) over time. At each new
release, when the documentation is updated, we can check any regression on
these base cases and automatically update the regression plots.

4.2 Automated Tuning and Method Selection

Some of the code in LinBox is already automatically tuned (such as thresholds
in fgemm), but we improve on it.

Instead of searching for a threshold using fast dichotomous techniques, for
instance, we propose to interpolate curves and find the intersection. Using least
squares fitting, we may even tolerate outliers (but this is time consuming).

5 http://www.gnuplot.info/.

http://www.gnuplot.info/
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Automatically tuning a library is not only about thresholds, it may also in-
volve method/algorithm selection. Our strategy is the following: a given algo-
rithm is tuned for each Helper (method) it has. Then the solution (that uses
these algorithms) is tuned for selecting the best methods. At each stage, defaults
are given, but can be overridden by the optimizer. The areas where a method is
better are extrapolated from the benchmark curves.
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Abstract. The software Normaliz implements algorithms for rational
cones and affine monoids. In this note we present recent developments.
They include the support for (unbounded) polyhedra and semi-open
cones. Furthermore, we report on improved algorithms and paralleliza-
tion, which allow us to compute significantly larger examples.

Keywords: Hilbert basis, Hilbert series, rational cone, polyhedron.

1 Introduction

Normaliz [2] is a software for computations with rational cones and affine mon-
oids. It pursues two main computational goals: finding the Hilbert basis, a min-
imal generating system of the monoid of lattice points of a cone; and counting
elements degree-wise in a generating function, the Hilbert series. For the math-
ematical background we refer the reader to [1].

Normaliz (present public version 2.11) is written in C++ (using Boost and
GMP/MPIR), parallelized with OpenMP, and runs under Linux, MacOs and
MS Windows. It bases on its C++ library libnormaliz which offers the full func-
tionality of Normaliz. There are file based interfaces for Singular, Macaulay 2
and Sage, and C++ level interfaces for CoCoA, polymake, Regina and GAP (in
progress). There is also the GUI interface jNormaliz.

Normaliz has found applications in commutative algebra, toric geometry, com-
binatorics, integer programming, invariant theory, elimination theory, mathe-
matical logic, algebraic topology and even theoretical physics.

2 Hilbert Bases and Hilbert Series

We will first describe the main functionality of Normaliz. The basic objects that
constitute the input of Normaliz are a finitely generated rational cone C in Rd

together with a sublattice L of Zd.

Definition 1. A (rational) polyhedron P is the intersection of finitely many
(rational) halfspaces. If it is bounded, then it is called a polytope. If all the
halfspaces are linear, then P is a cone.
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The dimension of P is the dimension of the smallest affine subspace aff(P )
containing P .

An affine monoid is a finitely generated submonoid of Zd for some d.

By the theorem of Minkowski-Weyl, C ⊂ Rd is a (rational) cone if and only if
there exist finitely many (rational) vectors x1, . . . , xn such that

C = {a1x1 + · · ·+ anxn : a1, . . . , an ∈ R+}.

For Normaliz, cones C and lattices L can either be specified by generators
x1, . . . , xn ∈ Zd or by constraints, i.e., homogeneous systems of diophantine
linear inequalities, equations and congruences. Normaliz also offers to define an
affine monoid as the quotient of Zn

+ modulo the intersection with a sublattice of
Zn. From version 2.11 on, Normaliz can handle rational polyhedra. This recent
extension is described in Section 3.

In the following we will assume that C is pointed, i.e. x,−x ∈ C ⇒ x = 0. By
Gordan’s lemma the monoidM = C∩L is finitely generated. This affine monoid
has a (unique) minimal generating system called the Hilbert basis Hilb(M), see
Figure 1 for an example. The computation of the Hilbert basis is the first main
tasks of Normaliz.

One application is the computation of the normalization of an affine monoid
N ; this explains the name Normaliz. The normalization is the intersection of the
cone generated by M with the sublattice gp(M) generated by M . One calls M
normal, if it coincides with its normalization.

0
x1

x2

0

Fig. 1. A cone with the Hilbert basis (circled points) and grading

The second main task is to compute the Hilbert (or Ehrhart) series of a graded
monoid. A grading of a monoid M is simply a homomorphism deg : M → Zg

where Zg contains the degrees. The Hilbert series of M with respect to the
grading is the formal Laurent series

H(t) =
∑
u∈Zg

#{x ∈M : deg x = u}tu1
1 · · · tug

g =
∑
x∈M

tdegx,

provided all sets {x ∈ M : deg x = u} are finite. At the moment, Normaliz
can only handle the case g = 1, and therefore we restrict ourselves to this case.
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We assume in the following that deg x > 0 for all nonzero x ∈M and that there
exists an x ∈ gp(M) such that deg x = 1. (Normaliz always rescales the grading
accordingly.)

The basic fact about H(t) in the Z-graded case is that it is the Laurent
expansion of a rational function at the origin:

Theorem 1 (Hilbert, Serre; Ehrhart). Suppose that M is a normal affine
monoid. Then

H(t) =
R(t)

(1− te)r
, R(t) ∈ Z[t],

where r is the rank of M and e is the least common multiple of the degrees of
the extreme integral generators of cone(M). As a rational function, H(t) has
negative degree.

Usually one can find denominators for H(t) of much lower degree than that in
the theorem, and Normaliz tries to give a more economical presentation of H(t)
as a quotient of two polynomials. One should note that it is not clear what the
most natural presentation of H(t) is in general (when e > 1).

A rational cone C and a grading together define the rational polytope Q =
C ∩ A1 where A1 = {x : deg x = 1}. In this sense the Hilbert series is nothing
but the Ehrhart series of Q.

Note that the coefficients of the Hilbert series are computed by a quasi-
polynomial. Its leading coefficient is the suitably normed volume of Q.

3 Polyhedra and Inhomogeneous Systems

A main addition to the functionality of Normaliz is the direct support for (un-
bounded) polyhedra. For computations it is useful to homogenize coordinates by
embedding Rd as a hyperplane in Rd+1, namely via

κ : Rd → Rd+1, κ(x) = (x, 1).

If P is a (rational) polyhedron, then the closure of the union of the rays from
0 through the points of κ(P ) is a (rational) cone C(P ), called the cone over P .
The intersection C(P )∩ (Rd ×{0}) can be identified with the recession (or tail)
cone

rec(P ) = {x ∈ Rd : y + x ∈ P for all y ∈ P}.
It is the cone of unbounded directions in P . The recession cone is pointed if and
only if P has a vertex. The theorem of Minkowski-Weyl can then be generalized
as follows:

Theorem 2 (Motzkin). The following are equivalent for P ⊂ Rd, P �= ∅:

1. P is a (rational) polyhedron;
2. P = Q+ C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the convex hull of its vertices,
and C = rec(P ) is uniquely determined.
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Clearly, P is a polytope if and only if rec(P ) = {0}. Normaliz computes the
recession cone and the polytope Q if P is defined by constraints. Conversely it
finds the constraints if the vertices of Q and the generators of C are specified.

Suppose that P is given by a system

Ax ≥ b, A ∈ Rm×d, b ∈ Rm,

of linear inequalities (equations are replaced by two inequalities). Then C(P ) is
defined by the homogenized system

Ax− xd+1b ≥ 0,

whereas the rec(P ) is given by the associated homogeneous system Ax ≥ 0. The
solution set of the associated homogeneous system is always called the recession
cone of the system, even if P is empty.

Via the concept of dehomogenization, Normaliz allows for a more general
approach. The dehomogenization is a linear form δ on Rd+1. For a cone C̃ in
Rd+1 and a dehomogenization δ, Normaliz computes the polyhedron P = {x ∈
C̃ : δ(x) = 1} and the recession cone C = {x ∈ C̃ : δ(x) = 0}. In particular, this
allows other choices of the homogenizing coordinate.

Let P ⊂ Rd be a rational polyhedron and L ⊂ Zd be an affine sublattice,
i.e., a subset w + L0 where w ∈ Zd and L0 ⊂ Zd is a sublattice. In order to
investigate (and compute) P ∩ L one again uses homogenization: P is extended
to C(P ) and L is extended to L = L0 + Z(w, 1). Then one computes C(P ) ∩ L.
Via this “bridge” one obtains the following inhomogeneous version of Gordan’s
lemma:

Theorem 3. Let P be a rational polyhedron with vertices and L = w + L0 an
affine lattice as above. Set recL(P ) = rec(P )∩L0. Then there exist x1, . . . , xm ∈
P ∩ L such that

P ∩ L = {(x1 + recL(P )) ∩ · · · ∩ (xm + recL(P ))}.

If the union is irredundant, then x1, . . . , xm are uniquely determined.

The Hilbert basis of recL(P ) is given by {x : (x, 0) ∈ Hilb(C(P )∩L)} and the
minimal system of generators can also be read off the Hilbert basis of C(P )∩L:
it is given by those x for which (x, 1) belongs to Hilb(C(P ) ∩ L). Normaliz
computes the Hilbert basis of C(P ) ∩ L only at “levels” 0 and 1.

We callM = recL(P ) the recession monoid of P with respect to L (or L0). It
is justified to say that P ∩L a module over recL(P ). In the light of the theorem,
it is a finitely generated module with a unique minimal system of generators.

After the introduction of coefficients from a field K, recL(P ) is turned into an
affine monoid algebra, andN = P∩L into a finitely generated torsionfree module
over it. As such it has a well-defined module rank mrank(N), which is computed
by Normaliz via the following combinatorial description: Let x1, . . . , xm be a
system of generators of N as above; then mrank(N) is the cardinality of the set
of residue classes of x1, . . . , xm modulo recL(P ).
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Clearly, to model P ∩ L we need linear diophantine systems of inequalities,
equations and congruences which now will be inhomogeneous in general. Con-
versely, the set of solutions of such a system is of type P ∩ L.

If Zd is endowed with a grading whose restriction toM satisfies our conditions,
then the Hilbert series

HN (t) =
∑
x∈N

tdeg x

is well-defined, and the qualitative statement above about rationality remains
valid. However, the degree may now be ≥ 0. Again, one has an associated
quasipolynomial with constant leading coefficient given by

qr−1 = mrank(N)
vol(Q)

(r − 1)!
, Q = rec(P ) ∩ A1.

The multiplicity of N is mrank(N) vol(Q).

4 Further Extensions

Normaliz now can compute the Hilbert function of a semiopen cone. Such a
semiopen cone is given by C′ = C \ F , where C is a cone and F is a union of
faces (not necessarily facets) of C. Typical applications come from mixed systems
of homogeneous inequalities and strict inequalities. This situation could also be
modeled by inhomogeneous constraints, but if only few faces are excluded it is
beneficial to compute in the original cone and just exclude F .

Additionally, we implemented two new methods of computing the lattice
points of a rational polytope. One is a specialization of the so-called dual mode
Hilbert basis computation to this case. The other one approximates the rational
polytope by a lattice polytope.

The extension NmzIntegrate (introduced in 2.9) counts lattice points with a
polynomial weight to compute the generalized Ehrhart series, see [4].

5 Algorithmic Improvements

Most of the algorithms in Normaliz base on a triangulation of the cone, i.e.
a subdivision into simplicial cones. Simplicial cones are generated by linearly
independent vectors and therefore they are much easier to handle than general
cones. The improvements focus on handling large triangulations.

A triangulation is a non-disjoint decomposition of the cone, the simplicial
cones intersect in lower dimensional cones. Especially for Hilbert series compu-
tations an exact (disjoint) decomposition is needed. Since version 2.7 a principle
described by Köppe and Verdoolaege in [5] is used to gain it from the triangula-
tion Γ . It allows the independent handling of the simplicial cones in Γ and thus
is superior over the old method, where the simplicial cones had to be compared
with each other. This exact decomposition of the cone is then used to obtain a
disjoint decomposition of the monoid M = C ∩ L of the form
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M =
⋃
σ∈Γ

⋃
y

(y +Mσ),

where y runs over a special finite subset of σ ∩ L and the Mσ are free monoids.
Such a disjoint union is called Stanley decomposition, named after R. Stanley
who proved its existence in 1982.

The pyramid decomposition is a newly developed method to compute huge
triangulations. It splits the cone in smaller pieces, the pyramids, and handles
them completely independent of each other. The result is an algorithm following
the “divide-and-conquerer” principle. It gives formidable improvements for larger
examples, both in computation time and memory usage, and enables Normaliz to
handle triangulations with more than 1011 simplicial cones. We refer the reader
to [3] for an exact description.

For Hilbert basis computations of combinatorial examples we had introduced
a partial triangulation in version 2.5. It has now been tuned to check the nor-
mality of even larger monoids. For example, the exact decomposition is used to
avoid duplicate points in the intersections of the simplicial cones. It reduces com-
putation time and memory requirements, together with intermediate reductions;
see [7] for more details.

Together with the parallelization of the algorithms, these improvements enable
us to compute significantly larger examples. One interesting class are the cut
monoids of graphs for which Sturmfels and Sullivant conjecture normality if the
graph is free of K5-minors (K5 is the complete graph on 5 vertices). With the
partial triangulation implementation of Normaliz 2.5 we were able to validate
the conjecture for all graphs up to 8 vertices. The recent version could verify the
conjecture for all graphs up to 10 vertices (see [7]), using a result of Ohsugi [6].
The biggest of these examples produced a partial triangulation with more than
15 ·109 simplicial cones, almost 7 ·108 candidates for the Hilbert basis, and took
30 hours with 20 threads on our compute server.
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Abstract. The Basic Polynomial Algebra Subprograms (BPAS) provides
arithmetic operations (multiplication, division, root isolation, etc.) for
univariate and multivariate polynomials over prime fields or with integer
coefficients. The code is mainly written in CilkPlus [10] targeting mul-
ticore processors. The current distribution focuses on dense polynomials
and the sparse case is work in progress. A strong emphasis is put on
adaptive algorithms as the library aims at supporting a wide variety of
situations in terms of problem sizes and available computing resources.
One of the purposes of the BPAS project is to take advantage of hardware
accelerators in the development of polynomial systems solvers. The BPAS

library is publicly available in source at www.bpaslib.org.

Keywords: Polynomial arithmetic, parallel processing, multi-core pro-
cessors, Fast Fourier Transforms (FFTs).

1 Design and Specification

Inspired by the Basic Linear Algebra Subprograms (BLAS), BPAS functionalities
are organized into three levels. At Level 1, one finds basic arithmetic operations
that are specific to a polynomial representation or specific to a coefficient ring.
Examples of Level-1 operations are multi-dimensional FFTs/TFTs and univari-
ate real root isolation. At Level 2, arithmetic operations are implemented for
all types of coefficients rings that BPAS supports (prime fields, ring of integers,
field of rational numbers). Level 3 gathers advanced arithmetic operations tak-
ing as input a zero-dimensional regular chain, e.g. normal form of a polynomial,
multivariate real root isolation.
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Level 1 functions are highly optimized in terms of data locality and par-
allelism. In particular, the underlying algorithms are nearly optimal in terms
of cache complexity [5]. This is the case, for instance, for our modular multi-
dimensional FFTs/TFTs [14], modular dense polynomial arithmetic [15] and
Taylor shift [3] algorithms.

At Level 2, the user can choose between algorithms that either minimizes
work (at the possible expense of decreasing parallelism) or maximizes parallelism
(at the possible expense of increasing work). For instance, five different integer
polynomial multiplication algorithms are available, namely: Schönhage-Strassen,
8-way Toom-Cook, 4-way Toom-Cook, divide-and-conquer plain multiplication
and the two-convolution method [2].

– The first one has optimal work (i.e. algebraic complexity) but is purely serial
due to the difficulties of parallelizing 1D FFTs on multicore processors.

– The next three algorithms are parallelized but their parallelism is static,
that is, independent of the input data size; these algorithms are practically
efficient when both the input data size and the number of available cores are
small, see [12] for details.

– The fifth algorithm relies on modular 2D FFTs which are computed by means
of the row-column scheme; this algorithm delivers high scalability and can
fully utilize the hardware on fat multicore nodes.

Another example of Level 2 functionality is parallel Taylor shift computation
for which four different algorithms are available: the two plain algorithms pre-
sented in [3], Algorithm (E) of [7] and an optimized version of Algorithm (F)
of [7].

– The first two are highly effective when both the input data size and the
number of available cores are small.

– The third algorithm creates parallelism by means of a divide-and-conquer
procedure and relies on polynomial multiplication; this approach is effective
when 8-way Toom-Cook multiplication is selected.

– The fourth algorithm reduces a Taylor shift computation to a single poly-
nomial multiplication; this latter approach outperforms the other three, as
soon as the two-convolution multiplication dominates its counterparts, that
is, when either input data size and the number of available cores become
large.

This variety of parallel solutions leads, at Level 3, to adaptive algorithms
which select appropriate Level 2 functions depending on available resources
(number of cores, input data size). An example is parallel real root isolation.
Many procedures for this purpose are based on a subdivision scheme. However,
on many examples, this scheme exposes only a limited amount of opportunities
for concurrent execution, see [3]. It is, therefore, essential to extract as much as
parallelism from the underlying routines, such as Taylor shift computations.
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2 User Interface

Inspired by computer algebra systems like AXIOM [9] and Magma [1], the BPAS

library makes use of type constructors so as to provide genericity. For instance
SparseUnivariatePolynomial (SUP) can be instantiated over any BPAS ring.
On the other hand, for efficiency consideration, certain polynomial type construc-
tors, like DistributedDenseMultivariateModularPolynomia (DDMMP), are
only available over finite fields in order to ensure that the data encoding a DDMMP

polynomial consists only of consecutive memory cells.
For the same efficiency consideration, the most frequently used polynomial

rings, like DenseUnivariateIntegerPolynomial (DUZP) and DenseUnivariate-

RationalNumberPolynomial (DUQP) are primitive types. Consequently, DUZP
and SUP<Integer> implement the same functionalities; however the implemen-
tation of the former is further optimized.

Fig. 1. A snapshot of BPAS algebraic data structures

Figure 1 shows a subset of BPAS’s tree of algebraic data structures. Dark and
blue boxes correspond respectively to abstract and concrete classes. BPAS counts
many other classes for instance Intervals and RegularChains.

Figure 2 first shows how two dense univariate polynomials are read from a file
and how their product is computed. Then, on the same code fragment, a (zero-
dimensional) regular chain is read from a file and its real roots are isolated.

3 Implementation Techniques

Modular FFTs are at the core of asymptotically fast algorithms for dense poly-
nomial arithmetic operations. A substantial body of code of the BPAS library is,
therefore, devoted to the computation of one-dimensional and multi-dimensional
FFTs over finite fields. In the current release, the characteristic of those fields is
of machine word size while larger characteristics are work in progress.

The techniques used for the multi-dimensional FFTs are described in [14,15]
while those for one-dimensional FFTs are inspired by the design of the FFTW [4].
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Fig. 2. A snapshot of BPAS code

BPAS one-dimensional FFTs code is optimized in terms of cache complexity
and register usage. To achieve this, the FFT of a vector of size n is computed in
a divide-and-conquer manner until the vector size is smaller than a threshold,
at which point FFTs are computed using a tiling strategy. This threshold can
be specified by the user through an environment variable HTHRESHOLD or deter-
mined automatically when installing the library. At compile time, this threshold
is used to generate and optimize the code. For instance, the code of all FFTs of
size less or equal to HTHRESHOLD are decomposed into blocks (typically perform-
ing FFTs on 8 or 16 points) for which straight-line program (SLP) machine code
is generated. Instruction level parallelism (ILP) is carefully considered: vector-
ized instructions are explicitly used (SSE2, SSE4) and instruction pipeline usage
is highly optimized. Other environment variables are available for the user to
control different parameters in the code generation.

Table 1. One-dimensional modular FFTs: Modpn vs BPAS

Size Modpn BPAS Speedup

16777216 6.232 1.391 4.48
33554432 12.987 2.957 4.392
67108864 26.783 6.266 4.274
134217728 55.329 13.235 4.181
268435456 113.8 27.901 4.079

Table 1 compares running times (in sec. on Intel Xeon 5600) of one-dimensional
modular FFTs computed by the Modpn library [11] and BPAS, both using serial C
code in this case. The first column of Table 1 gives the size of the input vector;
coefficients are in a prime field whose characteristic is a 57-bit prime.

Modular FFTs support the implementation of several algorithms performing
dense polynomial arithmetic. As an example, we consider parallel multiplication
of dense polynomials with integer coefficients by means of the two-convolution
method [2] and which is illustrated on Figure 3. Given two univariate polynomials
a(y), b(y) with integer coefficients, their product c(y) is computed as follows.
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(S1) Convert a(y), b(y) to bivariate integer polynomials A(x, y), B(x, y) s.t.
a(y) = A(β, y) and b(y) = B(β, y) hold at β = 2M , K = deg(A, x) =
deg(B, x), where M is essentially the maximum bit size of a coefficient in
a and b.

(S2) Consider C+(x, y) ≡ A(x, y) B(x, y) mod 〈xK +1〉 and C−(x, y) ≡ A(x, y)
B(x, y) mod 〈xK − 1〉. Compute C+(x, y) and C−(x, y) modulo machine-
word primes so as to use modular 2D FFTs.

(S3) Consider C(x, y) = C+(x,y)
2 (xK−1)+ C−(x,y)

2 (xK+1) and evaluate C(x, y)
at x = β, which finally gives c(y) = a(y) b(y).

Fig. 3. Multiplication scheme for dense univariate integer polynomials

The conversions from the univariate polynomials a(y), b(y) to the bivariate
polynomials A(x, y), B(x, y) in Step (S1) as well as the conversions from the
bivariate polynomials C+(x, y) and C−(x, y) in Step (S3) require only additions
and shift operations on machine words. Moreover, the polynomials C+(x, y) and
C−(x, y) are reconstructed from their modular images (in practice two modular
images are sufficient) within Step (S3). Consequently, the data produced by
2D FFT computations is converted in a single pass into the final result c(y).
Similarly the bivariate polynomials A(x, y), B(x, y) are obtained from a(y), b(y)
(here again by means of additions and shift operations on machine words) in
a single pass. Since BPAS’ 2D FFT computations are optimal in terms of cache
complexity [15], the whole multiplication procedure is optimal for that same
complexity measure. Last, but not least, BPAS’ 2D FFTs are computed by the
row-column scheme which provides lots of parallelism with limited overheads
on multicore architectures. As a result, our multiplication code, based on this
two-convolution method scales well on multicores as illustrated hereafter.
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4 Experimental Evaluation

As mentioned above, one of the main purposes of the BPAS library is to take ad-
vantage of hardware accelerators and support the implementation of polynomial
system solvers. With this goal, polynomial multiplication plays a central role.
Moreover, both sparse and dense representations are important. Indeed, input
polynomial systems are often sparse while many algebraic transactions, like sub-
stitution, tend to densify data. Parallel sparse polynomial arithmetic has been
studied by Gastineau and Laskar in [6] and by Monagan and Pearce in [13].

Fig. 4. Dense integer polynomial multiplication: BPAS vs FLINT vs Maple

Up to our knowledge, BPAS is the first publicly available library for parallel
dense integer polynomial arithmetic. For this reason, we compare BPAS’ parallel
dense polynomial multiplication against state-of-the-art counterpart implemen-
tation in FLINT 2.4.3 and Maple 18. On Figure 4, the input of each test case is
a pair of polynomials of degree d where each coefficient has bit size N . Two plots
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are provided: one for which d = N holds and one for which d is much smaller
than N.

The BPAS library is implemented with the multi-threaded language CilkPlus
[10] and we compiled our code with the CilkPlus branch of GCC1. Our ex-
perimental results were obtained on an 48-core AMD Opteron 6168, running at
900Mhz with 256 GB of RAM and 512KB of L2 cache.

Table 2 shows that the work overhead (measured by Cilkview, the perfor-
mance analysis tool of CilkPlus) of the BPAS method w.r.t. to a method based on
Schönhage & Strassen algorithm (KS) is only around 2 (see Column 3), whereas
BPAS provides large amount of parallelism (see Column 2).

Table 2. Cilkview analysis of BPAS and KS (∗ shows the number of instructions)

Size Work(KS)∗ Work(BPAS)∗ Span(BPAS)∗ Work(BPAS)
Span(BPAS)

Work(BPAS)
Work(KS)

2048 795,549,545 1,364,160,088 41,143,119 33.16 1.715
4096 4,302,927,423 5,663,423,709 96,032,325 58.97 1.316
8192 16,782,031,611 23,827,123,688 292,735,521 81.39 1.420
16384 63,573,232,166 100,688,072,711 1,017,726,160 98.93 1.584
32768 269,887,534,779 425,149,529,176 3,804,178,563 111.76 1.575

5 Application

Turning to parallel univariate real root isolation, we have integrated our parallel
integer polynomial multiplication into the algorithm proposed in [3]. To this end,
we perform the Taylor Shift operation, that is, the map f(x) �−→ f(x + 1), by
means of Algorithm (E) in [7], which reduces calculations to integer polynomial
multiplication in large degrees and to using algorithm of [3] in small degrees. In
Table 3, we call BPAS this adaptive algorithm combining FFT-based arithmetic
(via Algorithm (E)) and plain arithmetic (via [3]).

Table 3. Univariate real root isolation running time for four examples

Size BPAS CMY [3] realroot #Roots

Cnd 32768 18.141 125.902 816.134 1
65536 66.436 664.438 7,526.428 1

Chebycheff 2048 608.738 594.82 1,378.444 2047
4096 8,194.06 10,014 35,880.069 4095

Laguerre 2048 1,336.14 1,324.33 3,706.749 2047
4096 20,727.9 23,605.7 91,668.577 4095

Wilkinson 2048 630.481 614.94 1,031.36 2047
4096 9,359.25 10,733.3 26,496.979 4095

We run these two parallel real root algorithms, BPAS and CMY [3], which
are both implemented in CilkPlus, against Maple 18 serial realroot command,
which implements a state-of-the-art algorithm. Table 3 shows the running times

1 http://gcc.gnu.org/svn/gcc/branches/cilkplus/

http://gcc.gnu.org/svn/gcc/branches/cilkplus/
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(in sec.) of four well-known test problems, including Cnd, Chebycheff, Laguerre
and Wilkinson. Moreover, for each test problem, the degree of the input poly-
nomial varies in a range. The results reported in Table 3 show that integrating
parallel integer polynomial multiplication into our real root isolation code has
substantially improved the performance of the latter.

Acknowledgments. This work was supported by the NSFC (11301524) and
the CSTC (cstc2013jjys0002).
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1 jan@duracz.net

http://duracz.net/jan
2 School of Computer Science, University of Nottingham Ningbo, China

Amin.Farjudian@nottingham.edu.cn

www.cs.nott.ac.uk/~avf
3 School of Engineering and Applied Science, Aston University, Birmingham, UK

M.Konecny@aston.ac.uk

www-users.aston.ac.uk/~konecnym
4 Halmstadt University, Sweden & Rice University, Houston, Texas, USA

Walid.Taha@hh.se

http://bit.ly/WT-EMG

Abstract. We propose an arithmetic of function intervals as a basis
for convenient rigorous numerical computation. Function intervals can
be used as mathematical objects in their own right or as enclosures of
functions over the reals. We present two areas of application of func-
tion interval arithmetic and associated software that implements the
arithmetic: (1) Validated ordinary differential equation solving using the
AERN library and within the Acumen hybrid system modeling tool. (2)
Numerical theorem proving using the PolyPaver prover.

Keywords: Validated Numeric Computation, ODEs, Theorem Proving.

1 Background

In validated numerical computation, all values are computed together with rig-
orous upper bounds on their errors or uncertainty. Applications of this approach
range from pure mathematics to the development of safety-critical systems.

Using more conventional methods, one can achieve such level of reliability by
a combination of: (1) Approximate numerical computation based on floating-
point numbers; (2) a specification of error bounds and a formal proof that the
implementation of the algorithm stays within the bounds. While the conven-
tional approach is appropriate in many applications, a formally proved numer-
ical analysis can easily become too complex. Validated numerical computation
often offers a viable alternative in such cases.

Keeping the derived error bounds relatively small is essential. We are inter-
ested in methods that support reducing the bounds arbitrarily close to their
theoretical limits.
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Interval Computation. It is impossible to represent all real numbers or func-
tions in finite space. Computation over these objects is realizable only through
computation over their valid finite representations. For the purposes of validated
computation, the most widely used approach is to represent a real number by an
interval with floating-point endpoints that enclose the real number, bounding it
from below and from above.

A driving force behind the development of interval computation has been a
number of notable applications to rigorous differential equation solving, global
optimization, and theorem proving. In the past couple of decades these applica-
tion areas have also been combined in the construction of rigorous algorithms for
reachability analysis of dynamical systems. A famous example of such advances
is Tucker’s proof that the Lorenz attractor is a strange attractor [Tuc02]. Inter-
val computation has gained more recognition since the formation of the IEEE
Interval Standard Working Group P1788 in 2008.

Interval computations use and produce enclosures of numerical quantities and
functions. In their simplest form, such enclosures are just real intervals, most
often used to bound single real values. Cartesian products of real intervals are
interval vectors, or boxes. A box can be used to approximate a single real vector,
a geometric entity, or a part of a function graph. Our focus is the approximation
of functions, using enclosures that are more refined than boxes.

Function intervals are intervals whose endpoints are functions and can serve as
enclosures of functions in the same way that real intervals can serve as enclosures
of numbers. More formally, a function interval is a pair

[f(x1, . . . , xn), g(x1, . . . , xn)]

where f and g belong to the set D → R of real-valued functions on a box domain
D ⊂ Rn. A function interval [f, g] is typically used to enclose a single continuous
function h in D → R—i. e., f ≤ h ≤ g—and its accuracy increases as its width
—i. e., ||g − f ||∞—decreases.

Established special cases of function intervals include Berz and Makino’s Tay-
lor Models (TMs) [MB02] and affine forms [CS93]. Arithmetics of TMs and affine
forms have been used with considerable success to bound rounding errors in
floating-point computations [DK14a] and to approximate the solutions of dif-
ferential equations in beam physics simulations [MB09]. Our implementation of
function intervals is more general than TMs and affine forms.

2 Functionality

The AERN library1 formally defines functional interval arithmetic as an alge-
braic structure over function intervals and provides an implementation based on
polynomials. The algebraic structure includes the following operations:

– constructors : constant functions 0, π, [0, 1], projections, such as λ(x, y).x

1 AERN is freely available from https://github.com/michalkonecny/aern

https://github.com/michalkonecny/aern
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Fig. 1. Enclosures of erf(x) computed
by AERN with various effort settings

Fig. 2. The product [−1, 1]·x, its outer
and inner approximations by AERN

– pointwise operations : the field operations +,−, ∗, /, common elementary func-
tions such as ex,

√
x, minimum, maximum and absolute value

– analytic operations : integration, such as
∫ x

0 f(ξ, y) dξ
– domain-changing operations : evaluation (e. g., f(1), f([0, 1])),

composition (e. g., f(g(1, x), x)), adding a variable (e. g., f(x) �→ f(x, y)),
restricting the domain of a variable (e. g., f(x, y)|x∈[0,1])

Most of these operations can be computed only approximately, producing
enclosures of the exact results. Each approximate operation has an optional
parameter that gives the user control over the trade-off between computation
effort and accuracy. For example, consider the task of approximating the error
function

erf(x) =
2√
π

∫ x

0

e−t2 dt

over the domain x ∈ [0, 2]. In our implementation of this function using AERN2,
the following parameters are available to control the approximation effort:

– The precision of polynomial coefficients and constants such as π
– An upper bound on the polynomial degree
– The Taylor degree for approximating ex

Fig. 1 shows the enclosures of the error function computed by AERN for
several settings of the above effort parameters. The only parameter that changes
is the upper bound on the polynomial degree and it ranges from 5 to 25.

Defaults are available for these effort parameters. There is also an iRRAM-
style [Mül01] adaptive mode, in which the user specifies the desired accuracy
of the result and the library adaptively increases effort parameters until the
accuracy is reached.

AERN provides facilities to approximate not only real functions but also real
interval functions, such as the product

[−1, 1] · x = [min(−x, x),max(−x, x)] . (1)

2 The code is available at https://github.com/michalkonecny/aern/blob/master/
aern-poly-plot-gtk/demos/erf.hs

https://github.com/michalkonecny/aern/blob/master/aern-poly-plot-gtk/demos/erf.hs
https://github.com/michalkonecny/aern/blob/master/aern-poly-plot-gtk/demos/erf.hs
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When approximating such intervals, it is often not sufficient to provide an en-
closure. For example, to prove 0 ∈ [−ε, ε] + [−1, 1] · x, it is useful to compute
an inner approximation of the right-hand-side interval function. If the inner ap-
proximation contains 0, so will the exact function. Fig. 2 shows an outer and an
inner approximation of the function (1) computed within AERN3. Near x = 0
the plotted inner enclosure is slightly inverted. Adding [−ε, ε] turns the enclosure
into a consistent function interval containing 0.

3 Applications

We demonstrate the practical utility of function interval arithmetic via three
concrete applications in computational mathematics.

Solving ODE IVPs. The arithmetic was used to compute enclosures for solutions
of ordinary differential equation initial value problems (ODE IVPs) by means of
a direct implementation of the interval Picard operator of Edalat and Pattinson
[EP07]. Moreover, function interval arithmetic provides a conceptually simple
way of extending Edalat and Pattinson’s work to the case of uncertain initial
conditions. Fig. 3 shows a parametric plot of an enclosure produced by AERN
for the following Lorenz IVP with an uncertain initial value:{

y′1 = 10(y2 − y1) y′2 = y1(28− y3)− y2 y′3 = y1y2 − 8y3/3

y(0) ∈ (15± 0.01, 15± 0.01, 36± 0.01)
(2)

Note that the rectangular initial value uncertainty results in a non-rectangular
intermediate value uncertainty as time progresses. The short elongated shapes
visible in Fig. 3 are enclosures of the uncertainty sets for sample time points.

Enclosing Zeno Behavior. A restricted version of function interval arithmetic
and our ODE solving method are included in the Acumen4 tool for modeling
and rigorous simulation of hybrid dynamical systems. In combination with a
novel method for event processing [KTD+13], the Acumen tool can compute
a tight enclosure of a trajectory that contains infinitely many events due to
so-called Zeno behavior. An example of such enclosure is shown in Fig. 4.

Theorem Proving. The arithmetic has been used to automatically prove the-
orems that take the form of inclusions of non-linear interval expressions, such
as:

1− ex
2
(

0.3480242

1 + 0.47047x
− 0.0958798

(1 + 0.47047x)2
+

0.7478556

(1 + 0.47047x)3

)
∈ 2√

π

∫ x

0
e−t2dt± 0.00005

(3)

3 The code is available at https://github.com/michalkonecny/aern/blob/master/
aern-poly-plot-gtk/demos/thickprod.hs

4 Freely available from www.acumen-language.org

https://github.com/michalkonecny/aern/blob/master/aern-poly-plot-gtk/demos/thickprod.hs
https://github.com/michalkonecny/aern/blob/master/aern-poly-plot-gtk/demos/thickprod.hs
www.acumen-language.org
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Fig. 3. An AERN enclosure of all solu-
tions of the Lorenz IVP (2)

Fig. 4. An Acumen enclosure of a tra-
jectory with Zeno behavior at time 3

A version of AERN has been embedded in our numerical theorem prover Poly-
Paver5. PolyPaver proves such inclusions by constructing an outer approxima-
tion of the contained function and an inner approximation of the containing
interval function and showing that the inclusion holds for the approximations.
(Fig. 2 gives an example of an inner approximation.) PolyPaver has been suc-
cessfully applied to proving correctness theorems for tight accuracy properties
of floating-point programs [DK14b]. For example, we proved that a Riemann
integrator produces a value close to the exact integral.

4 Underlying Theory

In this section we first give an overview of the main types available in the AERN
library, and then explain why these types feature a generalized notion of interval.
This is followed by a description of the role of abstract types in specifying and
checking the reliability of our implementation. Finally, we highlight some aspects
of Domain Theory, which inspires and models the essence of our approach to
approximating real numbers, intervals and functions.

Types. The main types provided by the AERN library and their relationships
within and outside AERN are outlined in Fig. 5. Specifically, there are two
abstract types, one defining an algebraic structure of approximations to the real
numbers and intervals and the other one defining a structure of approximations
to continuous real functions and function intervals. The former is implemented by
a floating-point interval arithmetic and the latter is implemented by a polynomial
interval arithmetic.

Generalized Intervals. The two algebraic structures are closely linked to the
continuous lattice of generalized real intervals. A generalized interval (sometimes
called directed or modal interval) [Kau80] is a pair [c, d] with no requirement

5 Freely available from www.github.com/michalkonecny/polypaver

www.github.com/michalkonecny/polypaver
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Fig. 5. Main abstract and concrete types in AERN

that c ≤ d. If c > d, the interval has no canonical set interpretation. The lattice
is ordered by the refinement relation, denoted 8 and defined as follows:

[a, b] 8 [c, d] ⇐⇒ (a ≤ c and d ≤ b)

If c ≤ d, then the relation 8 can be intuitively interpreted as “[a, b] contains less
information than [c, d]”. The intuition is that the more points an approximat-
ing set has, the less it is saying about the location of the approximated object.
We consider inconsistent intervals, i. e., intervals [c, d] where c �≤ d because an
inner approximation of a normal interval can lead to the bounds of the inter-
val crossing. This happens, for example, near point 0 in Fig. 2 and also when
approximating π when proving inclusion (3).

Properties. The abstract types are formalized in the Haskell programming lan-
guage using its type class feature. A type class is somewhat similar to an in-
terface in object-oriented languages. It facilitates the specification of operations
and their signatures. Moreover, AERN also specifies a comprehensive list of alge-
braic laws that each implementation of the type class should satisfy. For example,
one of these laws is the commutativity of addition, modified as follows to suit
approximate operations:

(x 〈+〉 y) 8 (y 〉+〈 x)

where 〈+〉 and 〉+〈 produce outer and inner approximations of the exact sum,
respectively. AERN randomly generates thousands of tests for dozens of such
properties using the Haskell QuickCheck library, giving the implementation a
very thorough check.

Domain Theory. One of the strongest features of interval-based frameworks
is their solid theoretical foundation. In particular, we rely on the rich theory
of continuous lattices and continuous partial orders [GHK+03], which possess
useful order-theoretic, algebraic, and topological properties.

The types in Fig 5 implement an algebraic structure on the set of gener-
alized real and function intervals. The operations are all isotonic with respect
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to the refinement relation 8, which facilitates reasoning about soundness and
convergence of the resulting algorithm implementations.

One of the most important properties of continuous lattices is that they form
a Cartesian-closed category. This means that the function spaces in the category
are also continuous lattices and we can use the rich mathematical theory of such
lattices over the function spaces as well.

For example, take the space of continuous generalized interval functions. To
approximate elements of this space in software, a countable basis is required. The
set Bbox of “box approximations”—i. e., piece-wise constant interval functions
that have finitely many “steps” and rational coordinates—is a suitable basis for
this space.

Nonetheless, from a practical point of view, the basis Bbox is far from ideal.
For example, to enclose a linear function y(x) = a0 + a1x with accuracy ≤
2−n, one generally needs O(2n) boxes, while a more succinct representation
could be devised, such as the pair (a0, a1). A similar argument can be made
using a quadratic function approximated by affine intervals except that one
needs O(

√
2n) intervals to get accuracy ≤ 2−n. The trade-off between space and

accuracy improves with increasing polynomial degree.
The above observation suggests that polynomial approximations provide a

more practical basis for enclosing functions than Bbox. This view is also sup-
ported by the result that, using a specific polynomial approximation, the ODE
IVP y′(x) = f(x), y(0) = 0 can be solved in polynomial time if f is a polynomial-
time computable real function [MM93].

5 Technical Contribution

A number of challenges in developing AERN have been related to polynomial
approximation of various operations. Perhaps surprisingly, the most complex
operation to implement was multiplication. A multiplication of generalized in-
tervals was first introduced by Warmus [War56], but the 8-isotonic version that
we have adapted was given by Kaucher [Kau80]. The operation is defined in 16
cases, distinguished by the signs of the endpoints of the two interval operands.
The challenge is that when the operands are function intervals, the sign of their
endpoints may be changing at different places over the domain of their variables.
Thus an arbitrary subset of the 16 cases can arise for one pair of functions. This
problem is solved in AERN by merging the formulas for the results in all cases
that cannot be ruled out using pointwise min and max. Two of Kaucher’s 16
original cases also contain min and max in the formulas.

The challenge of implementing pointwise approximate min and max for poly-
nomials has been addressed by a combination of Bernstein approximation and
domain translation. The degree of Bernstein approximation used for min and
max is one of the effort parameters for any expression that includes multiplica-
tion. The enclosures of the product in Fig. 2 have been computed with the use
of pointwise min and max.
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Almost all polynomial operations have the potential of exceeding the maxi-
mum degree and maximum term size limits. To approximate a polynomial by
another with lower degree or fewer terms, some terms are carefully eliminated.
The version of AERN used in PolyPaver uses the Chebyshev basis to reduce the
loss of accuracy due to degree reductions. We plan to port this feature to the
main AERN library.

Another challenge was implementing random generation of floating-point in-
tervals and polynomial intervals required for randomized testing of algebraic
properties. The generation in AERN produces a distribution of intervals that
contains singletons, consistent non-singletons and anti-consistent non-singletons
with equal probability. Moreover, special values such as 0 and 1 are generated
with a relatively high probability.
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Abstract. Sparse Matrix Vector multiplication (SpMV) is one of the
most important operation for exact sparse linear algebra. A lot of re-
search has been done by the numerical community to provide efficient
sparse matrix formats. However, when computing over finite fields, one
need to deal with multi-precision values and more complex operations.
In order to provide highly efficient SpMV kernel over finite field, we pro-
pose a code generation tool that uses heuristics to automatically choose
the underlying matrix representation and the corresponding arithmetic.

Keywords: sparse linear algebra, finite fields, SpMV.

1 Introduction

Modern sparse linear algebra is fundamentally relying on iterative approaches
such as Wiedemann or Lanczos. The main idea is to replace the direct manip-
ulation of a sparse matrix with its Krylov subspace. In such approach, the cost
is therefore dominated by the computation of the Krylov subspace, which is
done by successive matrix-vector products. Let A ∈ Fn×n be a sparse matrix
with O(n logo(1) n) non zero entries where F is a finite field. The matrix-vector

product y = Ax where y, x ∈ Fn costs O(n logo(1) n) operations in F . We call
this operation SpMV in the rest of this paper. SpMV is a particular opera-
tion in the linear algebra framework, since it requires as much memory accesses
as arithmetic operations. Basically, one entry in the matrix contributes to the
SpMV computation only once. Therefore, on modern processor where memory
hierarchy has a larger impact then arithmetical operations, data access is a major
challenge to reach good performances. This challenge has been widely studied by
the numerical community, and led to many different matrix storage for floating
point numbers.

Over finite fields the situation is slightly different. Basically, the underlying
arithmetic is more complex. Indeed, modern processor does not provide efficient
support for modular operations. Furthermore, finite fields can be large and then
requiring multiple precision arithmetic. Our main concern is weather the numer-
ical formats are still satisfying when computing over finite fields and which arith-
metic strategy is the most suited to the particularity of SpMV. This question has

1 This work has been supported by the Agence Nationale pour la Recherche under
Grants ANR-11-BS02-013 HPAC, ANR-12-BS02-001 CATREL.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 685–690, 2014.
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been already addressed in many papers, as in [3,6], but no general optimization
approach has been designed. In this paper, we propose a general framework which
incorporates most of the optimization techniques for SpMV over finite field. We
provide a software tool, available at www.lirmm.fr/~vialla/spmv.html, that
emphasizes our approach for prime fields at any precision.

2 General Optimization Approach

It is well know that SpMV performance is limited by memory accesses. Indeed,
the irregularity access of the x[i]’s during SpMV does not allow the processor
to prefetch data to the cache memory in advance. In order to minimize cache
misses, one need to minimize the memory footprint of the matrix while preserving
a cache aware structure. To further speed-up SpMV over finite field, one need
to minimize the number of clock cycle per arithmetic operation. This could be
done by minimizing the modular reductions or taking care of particular entries
in the matrix, i.e. ones and minus ones. One can evaluate a priori the impact of
these optimizations by using the roofline model of [9].

Preprocessing the matrix in advance is a key tool to detect the most suited
optimization. This can be done at runtime, as in the OSKI library [8]. Our
proposed approach is to do this at compile time through two steps: 1) prepro-
cessing the matrix to provide an optimization profile.; 2) generating an optimized
SpMV with this profile.

3 Optimized SpMV Generator

The workflow of our generator is given
in Figure 1. It receives a matrix A
and a prime number p such that the
SpMV with A is performed over Fp. De-
pending on the prime p and some char-
acteristics of A, such as the number
of ±1 or the dimension, the generator
choose the best suited matrix format
and an arithmetic strategy. Then, it
generates an optimization profile that
can be used to compile a SpMV imple-
mentation for A over Fp.

Generator

Matrix

p

Optimized SpMV

Arith

mod p

Matrix formats

Z

RNS

CSR
SELL-C
...

Fig. 1. Generator workflow

3.1 Matrix Formats

A lot of matrix format have been proposed by the numerical community for
SpMV: e.g. CSR, COO, BlockCSR[8], Compress Sparse Block [4]. In general,
matrices over finite fields do not have any structural properties than can be
used to improve performances. Therefore, we choose to focus on the CSR and

www.lirmm.fr/~vialla/spmv.html


Generating Optimized Sparse Matrix Vector Product over Finite Fields 687

SELL-C format [7], and some adaptation avoiding the storage of ±1. However,
our approach is generic and more format can be added if necessary.

The CSR format compress data according to the row indices. It needs three
arrays: val[] for the matrix entries; idx[] for the column indices; ptr[] for
the number of non-zero entries per row. The SELL-C format is a variant of CSR
which is designed to incorporate SIMD operations. It sorts the rows according
to their sparsity and split the matrix by chunk of size C. Each chunk is padded
with zeros such that each row in a same chunck has exactly the same sparsity.
The parameter C is a chosen to be a multiple of the SIMD unit’s width. In order
to minimize the memory footprint, our generator adapt the data types of every
arrays, e.g. 4 bytes for idx[] when column dimension is < 65 536. It also choose
a data type related to ||A||∞ rather than p for val[].

3.2 Delayed Modular Reduction

As demonstrated in [5], performing modular reductions only when necessary
leads to better performances. Hence, the computation is relaxed over the integer
and needs that no overflow occurs.

Depending on the finite field, our generator will compute a priori the maxi-
mum value of k such that k(p− 1)||A||∞ does not overflow. Note that knowing
k at compile time will allow the compiler to perform loop unrolling. As delayed
modular reduction is fundamentally tied with the underlying data type, our ap-
proach is to use the best suited one to reduce the number of modular reductions.
Nevertheless, some compromises must be done between the cost of the standard
operations (+,×) vs the number of reductions.

3.3 Hybrid

In most applications over finite fields, many matrix entries are ±1. Thus, one can
avoid superfluous multiplication within SpMV and further reduce the memory
footprint of the matrix. This approach have been developed in [3] using a splitting
of the matrix A in 3 matrices: A1 storing only 1’s , A−1 storing −1’s and finally,
Aλ store the rest of the entries. SpMV is then computed independently for each
matrices and the results are sum up, i.e. y = Ax = A1x+A−1x+Aλx.

The drawback of this method is to amplify the number of cache misses arising
during the reading of the vector x. Indeed, most of the matrices have a spatial
locality in their row entries which is useful to avoid cache misses.

Our proposed hybrid approach is to keep this spatial locality such that SpMV
still can be performed row by row. CSR format is well designed for this approach.
Indeed, for each row we can store in idx[], the column indices of the entries
different ±1, then the indices of ones and the minus ones. We can do exactly
the same for ptr[], and val[] only stores the entries different from ±1. We call
this hybrid format CSRHyb. Note this approach, cannot be directly applied to
SELL-C since the zero padding may introduce too much memory overhead. To
circumvent this, one must store entries different from ±1 in SELL-C format and
the ±1 in CSR format, but these two formats must be interleaved by row.
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4 Benchmarks

Our benchmarks have been done on matrices arising in mathematical appli-
cations. The Table 1 gives the characteristic of such matrices (available at
http://hpac.imag.fr). In this table, nnz is the number of non zero entries,
nnzrow is the average number of non zero entries in a row, and kmax is the
maximum number of non zero entries in a row.

Table 1. List of matrices arising in mathematical applications

Name Dimensions nnz nnzrow kmax ±1 �= ±1 Problems

cis.mk8-8.b5 564 480 × 376 320 3.3M 6 6 3.3M 0 (A)

GL7d17 1 548 650 × 955 128 25M 16 69 25M 382K (B)

GL7d19 1 911 130 × 1 955 309 37M 19 121 36M 491K (B)

GL7d22 349 443 × 822 922 8.2M 23 403 7M 307K (B)

M06-D9 1 274 688 × 1 395 840 9.2M 7 10 9.2M 0 (E)

rel9 5 921 785 × 274 669 23M 3 4 23M 19K (C)

relat9 9 746 231 × 549 336 38M 3 4 23M 29K (C)

wheel 601 902 103 × 723 605 2.1M 2 602 38M 29K (F)

ffs619 653 365 × 653 365 65M 100 413 60M 5M (D)

ffs809 3 602 667 × 3 602 667 360M 100 452 335M 25M (D)

(A) Simplicial complexes from homology; (B) Differentials of the Voronöı complex of
the perfect forms (C) Relations;(D) Function field sieve ; (E) Homology of the moduli
space of smooth algebraic curves Mg,n ; (F) Combinatorial optimization problems.

We used g++ 4.8.2 and an Intel bi-Xeon E5-2620, 16GB of RAM for our
benchmarks. We performed a comparison with the best SpMV available at this
time in the LinBox library1 (rev 4901) based on the work of [3].

4.1 Prime Field Fpwith Small p

In this section we consider the case where (p− 1)2 fits the mantissa of a double
floating point number, e.g. 53 bits. In this case, the modular reduction is costly
compare to the standard operations. However, it does not worth it to extend the
precision beyond 53 bits to avoid most of the reductions. Our strategy is then to
use double and to find the largest k such that k||A||∞(p− 1) < 253 and perform
reduction at least every k entries in a row. If the matrix does not have too many
±1, the SELL-C format will be chosen to better exploit the SIMD vectorization,
otherwise the CSRHyb format will be preferred.

The Figure 2 gives the relative performances of our optimized SpMV against
the one of LinBox for the prime field F1048583. One can see that our code is
always faster than the CSR implementation of LinBox, up to a speed-up of 2.2.

1 www.linalg.org

http://hpac.imag.fr
www.linalg.org
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Indeed, this can be explain by the
fact that most matrices have a
many ±1 entries and that the CSR
of LinBox is not handling such par-
ticularity. The implementation of
the hybrid format from [3] is not
yet fully operational in LinBox and
we did not get the chance yet to
compare to it. However, following
the speed-up of the hybrid format
vs the CRS one given in [3, Figure
3], which is less than 1.5, we are
confident in the performance of our
optimized SpMV.

Fig. 2. Speed-up of our generated
SpMV against LinBox over F1048583

4.2 Prime Field Fpwith p Multiple Precision

Our motivations come primarily from the computation of discrete logarithms
over finite fields [1]. We focus only on matrices which have small entries compare
to the prime p, e.g. less than a machine word, since it is mostly the case in
mathematical applications.

In order to compute with multiple precision integers, one can use the well
known GMP library2 which is the fastest one for each single arithmetic oper-
ations. However, when dealing with vectors of small integers, e.g. ≈ 1024 bits,
the GMP representation through pointer makes it difficult to exploit cache lo-
cality. In such a case, one should prefer to use a fixed precision representation
through a residue number system [2], called RNS for short. Such approach pro-
vides intrinsic data locality and parallelism which are good for SpMV and its
SIMD vectorization. The difficulty is then transferred to the reduction modulo p
that cannot be done in the RNS basis. However, one can use the explicit chinese
remainder theorem [2,6] to provide a reduction that can use SIMD instructions.
Furthermore, one can use matrix multiplication to perform modular reduction
of a vector of RNS values and then better exploit data locality and SIMD.

In order to minimize the memory footprint of the matrix, we propose to store
the matrix entries in double and convert them to RNS on the fly. The mi’s
are chosen so that (mi − 1)2 fits in 53-bits to allow floating point SIMD in the
RNS arithmetic. Larger mi’s could be chosen to reduce the RNS basis but this
would induce a more complex SIMD vectorization which makes it harder to reach
sustainable performances. In our multiple precision SpMV, the mi’s are chosen
so that kmax(mi − 1)2 < 253 and M =

∏
imi > (p− 1) · kmax · ||A||∞. This both

ensures that the modular reduction mod mi and mod p can be done only once
per row. The matrix format is CSRHyb since the SIMD vectorization is done
over the arithmetic rather then being on SpMV operations.

2 https://gmplib.org/

https://gmplib.org/
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Fig. 3. Speed-up of our generated multiple precision SpMV over LinBox

The Figure 3 gives the relative performances of our optimized SpMV against
the one of LinBox for prime fields of bitsize, 64, 128, 256, 512, and 1024. One can
see that our code is always faster than LinBox one, up to a speed-up of 67. In-
deed, this can be explain by the fact that most matrices have many ±1 entries.
But, mainly because LinBox stores matrix entries as GMP integers while our
SpMV stores them as double. This has two consequences on LinBox SpMV per-
formances. First, matrix entries are not store contiguously and then many cache
misses are done. Secondly, LinBox use the arithmetic of GMP which is not using
any SIMD vectorizations for mixed precision arithmetic.
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Abstract. swMATH is a novel information service for mathematical
software. It offers open access to a comprehensive database with infor-
mation on mathematical software and provides a systematic collection of
references and linking to software-relevant mathematical publications.

1 Introduction

Efficient knowledge services are the bridge for the dissemination and acceptance
of research results, hidden knowledge is a barrier for use. In view of the growing
number of publications the mathematics community became aware of the rele-
vance of information about publications long time ago. The ’Jahrbuch über die
Fortschritte der Mathematik’ (JFM) [1], founded in 1868, was the first math-
ematical information service. The JFM collected reviews of the mathematical
literature, and printed and disseminated them annually in special volumes. The
’Zentralblatt für Mathematik und ihre Grenzgebiete’ [2] (and later the Math-
ematical Reviews) took over and speeded up this process until nowadays the
electronic databases zbMATH and MathSciNet [3] have replaced Zentralblatt
resp. Mathematical Reviews, still providing short reviews of published papers.
They are important and widely used tools for searching, browsing and filtering
information on mathematical publications, authors and journals. MathSciNet
and zbMATH together provide and develop the Mathematics Subject Classi-
fication (MSC) scheme for structuring the mathematical publications by their
topic.

But in the 21th century, the situation of mathematical knowledge is more com-
plex and goes much beyond publication of scientific articles and books. ‘Mathe-
matics inside’ this is valid today for all key technologies, not only in the sciences.
And mathematical software is the nexus. When David Hilbert says ”The tool
implementing the mediation between theory and practice, between thought and
observation is mathematics”, we can continue to say that mathematical software
is the connecting bridge between mathematical theories and concrete applica-
tions.

Thus, mathematical software has become an emerging domain of mathemat-
ical knowledge. However, in contrast to mathematical literature, no complete
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database providing metadata or short reviews of mathematical software exists.
In fact, developing an efficient information service for mathematical software is
a challenging task. The existing portals or linked lists for mathematical software
are not sufficient for several reasons: they do not aim to cover all existing soft-
ware, either they provide a platform just for developers, or they are restricted to
special mathematical topics, e.g., the portal for optimisation software Plato [4].
Information about software is often sparse and insufficient for the user. Moreover,
in many cases these platforms are outdated after some time.

In this article we report on the new database swMATH [5] on mathematical
software and describe the principles behind this novel kind of information ser-
vice. A core feature of our approach is to systematically connect mathematical
software with publications that either describe or use the software.

2 Mathematical Software

By mathematical software we understand computer programs that implement
mathematical objects and relations and which are used to analyse, solve, simu-
late or model a mathematical problem. It usually relies on mathematical publi-
cations that provide methods and algorithms describing a concrete path to solve
a mathematical problem. Software represents, often quite deep, mathematical
knowledge in an active way, including automated mathematical reasoning and
conclusions.

Therefore, mathematical software has its own characteristics that differs sub-
stantially from mathematical literature:

– Mathematical software has often experimental character.
– It is focused more on modelling, simulating and solving mathematical prob-

lems rather than on structural description of mathematical concepts and
theories.

– Mathematical software is of dynamic nature and a ’living’ object under per-
manent development by improvement and extension. It can ’die’ and lose its
usefulness, in contrast to mathematical publications which remain valid for
ever.

– Implementation of mathematical software depends on the environmental fea-
tures: hardware, operating system, programming language, interfaces, other
software.

– Hence, mathematical software cannot be combined in a free way as this is
valid for theoretical results. Therefore, the software must provide appropriate
interfaces.

– Quality of mathematical software can’t be simple evaluated as ’correct’ or
’non-correct’, it also depends on a lot of other factors such as performance,
ease of use, operating system and programming language, and special fea-
tures. The evaluation of the quality of software is a difficult and complex
problem.

– Granularity of software varies from big general purpose systems or libraries
to specialised and small packages.
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– Typically, software modules are developed by groups and not by individuals
such that the authorship is often not transparent or unknown.

– Some portals for mathematical software are well established in the Web.
Each of these portals uses its own description scheme. No widely accepted
standards for metadata and content analysis of mathematical software exist
until now.

These characteristics show already that it is impossible to use similar methods
for providing information about mathematical software as for mathematical lit-
erature. Moreover, some general remarks show the difficulties to find information
about mathematical software.

– Direct information about software is often sparse.
– Many software packages do not have a homepage or a reasonable documen-

tation.
– The information about a software is, in the same way as the software itself,

under permanent change.
– The dependency of software from the technical environment leads to prob-

lems with evaluation, long-term availability, and reproducibility of results.
– Software can have internal structures, e.g., subroutines, function calls, etc.

These can be important, but up to now, software information services don’t
use or don’t have such internal information.

Major challenges that arise from this analysis are: to develop methods and
tools for a (machine-based) content analysis of software and to develop a model
for a standardised description of software as a basis for retrieval.

3 Content Analysis and Retrieval in the Digital Age

Models for a unified description and content analysis of digital objects were (and
are) widely discussed, e.g., the Dublin Core Metadata Initiative (DCMI) [6]. The
DCMI Initiative bases on the century-old methods and experiences of librarians
in the organisation of traditional libraries. The Dublin Core (DC) metadata
scheme for an object consists of an identifier and a simple set of elements such
as creator, title, subject, date etc. (for more information see [7]). It can be
easily extended and adapted to other information objects corresponding to the
requirements of specific user communities. Thus, more specific information about
a document going beyond the document level of library catalogs can be given.

Moreover, Semantic Web technologies, e.g., the Resource Description Frame-
work (RDF), provide methods and tools to encode the information in machine-
understandable way. Also description models for software are under develop-
ment, like the SoftWare Ontology Project (SWOP) [8]. But up to now, a widely
accepted model for the description of software is missing.

Therefore, we had to develop an own description model for the database
swMATH. The following list seems to cover most aspects of interesting infor-
mation about a specific software package:
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– bibliographic and content information about the software: title, author(s),
mathematical subjects, keywords, classification, documentation, homepage

– technical parameters of the software: hardware specification, operating sys-
tem, programming language

– versioning of the software
– licensing and usability conditions of the software
– dependencies from and to other software
– references to related publications
– references to similar software
– applications for which the software is used
– special features of the software
– acceptance and use of the software

A database as an information service for mathematical software in general
should fulfil the following requirements:

– ’weak’ completeness (an information service of mathematical software should
cover the currently most important mathematical software)

– structured (a well-organized and structured collection of mathematical soft-
ware)

– usefulness (relevant information about objects of type ’mathematical soft-
ware’)

– flexibility (the description scheme has to be extensible)
– maintainability (it should be mainly maintained automatically)

The needs and expectations of the user community to information services
and retrieval functionalities are permanently increasing. Users need efficient re-
trieval tools for the growing flood of publications. Therefore, content analysis of
objects must be permanently improved and extended. In the case of mathemat-
ical software, we face the special problem that the desired information is often
hard to find or even not available. But even if the information is somewhere
available, it must be found, collected and put into a uniform format.

Our approach, described below, tried to meet the above requirements and
the expectations of the user community. However, sometimes these expectations
are unrealistic because the users are either unaware on the inherent difficulties,
or because they are used to the powerful and sophisticated tools offered by
the big search engines like Google with almost unlimited financial and personal
resources. Nevertheless we believe that the database swMATH provides a service
with information on mathematical software which is otherwise, including the big
search engines, hard to find.

4 A Publication-Based Approach

The aim of our initiative was not to create a repository of mathematical soft-
ware but to collect information on mathematical software with useful searching,
browsing and filtering functionalities.
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Our idea was, to systematically analyse the links between a software and all
available publications that describe, use, or cite the software. Of course, the
problem arises, how to get access to the relevant mathematical publications.
A worldwide repository of all mathematical publications does not exist. Only a
small percentage of the publications is Open Access and freely digitally available,
but scattered on various home pages or preprint servers in all possible kinds of
formats. Already this shows that an Internet search, trying to continuously find
and use the publications relevant to mathematical software is hopeless.

Therefore, we chose an approach based on the reviewing and abstracting
database zbMATH for mathematical publications. zbMATH lists basically all
peer-reviewed mathematical publications since 1868. Of course, for mathemati-
cal software only the last, say, twenty five years are relevant. Although zbMATH
does not contain the full texts of the publications, it contains in many cases
enough information on a publication that allows to identify relevant software.
A reference to a software in the bibliographic data means that the software is
essential for the publication. We use the software references in publications in-
dexed in zbMATH in two ways: for detecting software and also for describing the
software. From the publications, reviews or abstracts we use the classification
code, key words and phrases and also (partially) information about authors, as
information about the software.

4.1 Advantage of the Publication-Based Approach

This approach has several advantages. Today, more and more mathematical
knowledge results from the usage of mathematical software. Mathematical the-
ory and software are combined to solve or analyse mathematical objects, e.g.,
numerical methods for partial differential equations, symbolic methods for struc-
tural knowledge about algebraic or geometric objects, statistical methods for
random data, but also formal methods for theorem proving. This is reflected in
the database zbMATH through the permanently increasing number of references
in publications to software. Moreover, as the database zbMATH is continuously
growing and always up to date, the provided data referring to software are also
continuously growing and up to date.

Another advantage of our approach is, that the required peer-reviewing for
publications indexed in zbMATH is an (indirect) quality filter for the used soft-
ware. The number of publications referencing a software is also an indicator for
the acceptance and usefulness of a software. Direct methods for evaluating the
quality of a software are under development, but they are difficult. For example,
the guidelines for peer reviewing of contributions to the journal ’Mathematical
Programming Computation’ [9] require also the evaluation of the software’ [10]
but these are currently yet in an experimental stage. In any case, direct full and
fair evaluation is almost impossible for just one large software system, and it is
completely out of range to do this for several thousand software packages.

swMATH is mainly targeted to full software packages or software libraries
(in the following called modules), but not to single routines, as, e.g., in the
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netlib [11]. But if a mathematical software is referenced in zbMATH, the software
is also listed in swMATH.

Large software systems like ’Maple’, ’Mathematica’, ’Matlab’ or ’R’ are not
a monolith but have an internal structure, like special libraries for different
mathematical disciplines and tasks. Such sub-libraries are also listed in zbMATH
but up to now without explicitly declaring hierarchical structures.

The general approach which finally led to the existing swMATH service con-
sists of several steps:

1. Using mathematical publications for identifying mathematical software.
2. Extracting and analysing the existing information in publications about the

software.
3. Searching for further information about the software (e.g., the homepage of

the software).

4.2 Detecting Software

Software names are heterogeneous, many software packages have artificial names
as ’BayesTree’ or ’r2d2lri’: such artificial tokens are easy to identify and they are
identified in the first step. But software names referring to famous persons like
’KANT’ or ’EDISON’ or to mathematical terms like ’SINGULAR’ or ’ellipse’
or to not mathematic-specifics terms like ’race’ or ’Sage’ are ambiguous and its
meaning is context-sensitive. Hence, some heuristic methods had to be developed
for a term-based search by characteristic tokens for software such as ’package’
or ’module’ in the zbMATH data. We searched especially in the fields ’reviews
or abstracts’, ’title’, ’keywords’ and increasingly also in the field ’references’ of
a publication. The resulting candidates had then to be checked manually.

Up to now, more than 6,600 mathematical software packages could be iden-
tified. The list of identified software is continuously updated following the daily
update of zbMATH. Typically, the number of software modules is increasing
but sometimes the number decreases by removing falsely identified software or
duplicates.

4.3 Software References in Publications

As said above, software references in publications are a central method of our
approach. Heuristic methods search daily for references to software in the zb-
MATH data. At the moment, more than 68.000 publications containing software
references are identified. Note that publications with references to software have
different roles, depending of the type of the publication.

4.4 Standard Publications and User Publications

If a software itself is the subject of a publication we call it ’standard publication’
(for this software). If a software is just used and applied in a publication, we call
the article a ’user publication’. The type of a publication (standard publication
or user publication) is relevant for the metadata extraction.



swMATH – An Information Service for Mathematical Software 697

4.5 Content Metadata

Standard Publications: The bibliographic information of a standard publication
is nearly optimal for a high-quality description of the content of a software. Re-
view or abstracts and key phrases of standard publications can often be used
directly for the description of the referenced software. Also, the authors of stan-
dard publications are useful, at least as contact persons. The MSC code of the
publication is not optimal for the classification of the software but it is helpful
to characterise the mathematical subject. So, also the MSC codes are collected.

User Publications: User publications provide valuable additional information
about a software, especially links to theoretical foundations and links to appli-
cation areas. In other words, user publications provide important information
for embedding the software in a broader context. Key phrases and MSC codes
of the user publications are also integrated into the content analysis.

4.6 Homepages

Homepages of a software are an important source for more information about
the software. They often cover detailed technical parameters, license and usabil-
ity conditions and available versions (e.g. actual and out-to-dated versions or
versions depending on license conditions). But content, structure and form of
the information on the homepages are very heterogeneous. If a software is iden-
tified, we know at least the name of the software. The name, also in combination
with other terms (especially the term ’software’), is the starting point to search
and identify the homepage (if it exists) in the Web. Unfortunately, the hetero-
geneity makes an automatic analysis difficult. Up to now, the information from
homepages is only partially used in zbMATH.

4.7 Remarks

1. Support: swMATH is planned as a community-driven open-access service.
It was developed in a joint project by Oberwolfach, FIZ Karlsruhe and in
cooperation with the Berlin Research Center of Mathematics MATHEON,
ZIB Berlin, WIAS Berlin and the Felix-Klein Center for Mathematics in
Kaiserslautern from 2012 to 2014. The project was funded by the Leibniz-
Association for a period of three years. After the end of project, the service
is continued by FIZ Karlsruhe.

2. zbMATH Database: All data in zbMATH are stored and maintained in a
relational database. No indexed item will ever be removed.

3. Persistent Identifiers: Each software item in swMATH has a unique identi-
fier. This could be used for referencing.

4. Out-of-Date Software and Actuality: The homepages of the software are
checked periodically. Principally, out-of-date software can be removed from
the swMATH Web site.
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5. Benefits: Anyone interested in information about a specific software or in
finding a software which helps to solve a problem benefits in an obvious way.
But also software developers benefit, in particular form the list of publica-
tions using their software. They might be unaware of some of them and the
context of the usage gives them interesting feedback. Moreover, the list is
an obvious and independent indication of the usefulness of the software and
helps the developers to get their work acknowledged. It is well known that
software developers in mathematics do often not receive the credits they de-
serve. It is hoped that the visibility in swMATH may help to improve the
situation.

6. Social Networking: A living service like swMATH needs the support of the
mathematical community. We invite the community to help us to main-
tain and improve the swMATH service by information about missing soft-
ware or to send us corrections and additional information about a software.
Software developers and providers of specialised portals for mathematical
software are specially invited to help to improve swMATH. As an exam-
ple, the portal Oberwolfach References to Mathematical Software (ORMS)
is linked to swMATH. ORMS provides manually-curated high-quality in-
formation of selected software modules and provides additional information
going beyond swMATH. On the other hand, swMATH extends ORMS by
information about related publications, which is not contained in ORMS.

7. zbMATH-Links to Mathematical Software: The publication items in zbMATH
referencing mathematical software are linked with the corresponding items
in swMATH. In this way swMATH enhances the information fo articles in
zbMATH with reference to a software in a substantial way.

8. Further Data Bases: Most swMATH items result from the analysis of the
zbMATH database. Besides zbMATH also the databases ioport [12] and
MathEduc [13] are used.

5 The Web Site of swMATH

It was the intention of swMATH to provide a general, simple, and easy-to-use
information service about mathematical software.

The swMATH database has a clear structure: the homepage with the basic
searching functionality. A search leads to a result list with short information.
Clicking on a software on the list leads to the Web page with detailed information
of the software. In the following, the swMATH Web site is discussed in detail.

5.1 swMATH Homepage

The swMATH homepage is a search interface with a search field for simple search
(full-text search about all information in swMATH) and buttons for advanced
search and browsing. Further buttons lead to useful information of the service,
especially for feedback, help, and links to the swMATH providers and further
mathematical information services.
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Fig. 1. The homepage of swMATH, searching for ’Sage’

5.2 Search Result: The Result List

As usually, a list of software packages related to ” Sage” will be presented,
containing the identified software and short description of it. In more detail, the
results cover

– the name of the software
– the number of papers referencing the software
– a (persistent) swMATH identifier of the form sw????? , where ? stands for

a digit
– a snippet of the description text of the software

Search terms are emphasized in the result list written in ’bold’.
Ranking: The list can be sorted both alphabetically or by relevance. The

relevance ranking is based on different factors, especially on the number of pub-
lications referencing a software and key phrases. Hence, large software packages
will be usually listed on the top of the list.
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5.3 Web Page of a Software

The swMATH web page of a software covers detailed information (if available):

– a short description of the software
– a key phrase cloud generated by key phrases of publications in zbMATH

referencing a software; the key phrases are weighted by frequencies
– URL of the homepage
– authors / creators
– dependencies on other software, e.g., Simulink is a Matlab package
– similar software (this list is automatically created by using the publication

lists, MSC codes and key phrases)
– subject (a list of MSC codes based on the key phrase list of the publications)
– citation trend as measure for the use of the software (a graphical presentation

of the number of references to a software as a function of time)
– a button to add further information

6 Conclusion and Open Problems

Currently, the swMATH service is by far the most comprehensive existing in-
formation service for mathematical software with about 6.600 software packages
and links to more than 68.000 publications. The service is provided and main-
tained by FIZ Karlsruhe by using a machine-based concept for maintenance and
by manual work of the field-editors of zbMATH. Of course, the current service
is only a first step, a lot of questions are open:

– How can we improve citations of software? A citation standard would im-
prove the willingness to cite a software in a paper and would significantly
improve the results of our publication-based approach.

– How can we get more relevant data of the software, e.g., license conditions?
– Which features should be used as quality parameters?
– What is the long-term information of software?
– How should we present applications of a software?
– What is with other types of mathematical software, e.g., benchmarks, test-

data collections, mathematical models, visualizations, etc.?
– ...

Also, the heuristic concepts used in swMATH need further development. Never-
theless, we regard swMATH as a useful service to the mathematical community
to get information about mathematical software and also as a contribution to
strengthen the area of mathematical software by developing a suitable informa-
tion infrastructure.

With this paper we like to initiate a discussion about the concept, methods,
and usability of the swMATH service. You are invited to use the swMATH service
and send us your feedback and comments. Enjoy!
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Fig. 2. A cutout of the Web page of the software ’Sage’
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Abstract. MathLibre is a project to archive open source mathematical
software and documents and offer them with a Live Linux. Anyone can
build modified and localized version of MathLibre, very easily.
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1 Introduction

In the early days, the symbolic computation was investigated in the field of Ar-
tificial Intelligence and Physics. Macsyma and Reduce were the famous products
of the first generation of computer algebra systems. For the last 20 years, a lot
of mathematical research systems developed by mathematicians. For example,
KANT and PARI/GP for the number theory, GAP for the finite groups, Sin-
gular and Macaulay2 for the commutative algebra. Recently, we can find SAGE
system, it is a very famous project leaded by the community of mathematicians.
We can find the characteristic properties that many systems are published with
open source software licenses. Now, we can use Maxi-ma (the direct descendant
of Macsyma) and Reduce, freely.

In mathematical investigations, these professional systems has become more
important, but installing them are bothersome for many people. We want to
introduce these systems for our colleagues and students without non-essential
troubles.

2 MathLibre Is a Bootable Linux

MathLibre1 is a project to archive open source mathematical software and docu-
ments. It’s a direct descendant of KNOPPIX/Math (cf. [1]). These are collabora-
tive works with OpenXM (cf. [2]). KNOPPIX/Math project began in February
2003. After that, every spring, we distributed 1000 pieces of CD/DVD of KNOP-
PIX/Math in the annual meeting of Mathematical Society of Japan.

In ASCM2005 in Seoul, we introduced KNOPPIX/Math Korean edition. We
changed the project name in March 2012, and distributed MathLibre at ICME-
12 in Seoul and AMC2013 in Busan. The current product is MathLibre 2014.

1 http://www.mathlibre.org/

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 702–705, 2014.
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It’s supporting the virtual machine, USB bootable stick and hard disk instal-
lation. KNOPPIX is a Live Linux, developed by Klaus Knopper in Germany,
KNOPPIX is a branch of a distribution, Debian GNU/Linux. Debian always
has some releases in active maintaining: “stable”, “testing”, “unstable”, and the
alpha testing version: “experimental”. KNOPPIX is a mixed distribution of these
four releases, so it’s little bit complicated of customizing and upgrading. So, we
changed the base to another live distribution, it’s Live Systems Project2. Live
Systems Project was used for the official Debian Live images. It’s developed by
Daniel Baumann and Live Systems Team.

We created the easy mechanism of language setting, so we can freely distribute
the localized system for your colleagues and students. In the last years, we were
making the localized version of MathLibre, and introduced these systems in
some congresses held in China, Hungary, Japan, Korea and Taiwan. We have
experiences of distributing over 10000 pieces of DVDs in these years. We will
describe the practices of MathLibre and how to modify this system.

3 Practices of Distributing Mathematical Software

We participated ICM2006 Madrid in Spain and ICM2010 Hyderabad in India.
We had exhibition booths of “mathsoftware.org” in these congresses, and we
will have an exhibition booth in ICM2014 Seoul. In India, we prepared 1000
pieces of DVDs for participants, but, we had finished to distribute all DVDs in
the first three days. In India, Linux system is popular, so KNOPPIX/Math was
very attractive for them. When we stayed in Hyderabad, we had new colleagues
in India. Now, we have a collaborative work with MTTS. MTTS:Mathematics
Training and Talent Search programme is a national level four weeks intensive
summer training programmed in mathematics and has been running since 1993
in India.

4 How to Use MathLibre

MathLibre is a bootable Live Linux, after successfully making and rebooting
the MathLibre DVD, we can find the boot menu (Fig. 1). Press the Enter key
and, after a display of the boot-sequence messages, the desktop environment of
MathLibre will be displayed (Fig. 2). In some cases, it will reboot Windows;
if this is the case, the BIOS settings need to be reconfigured. When a PC is
rebooted, the message “BIOS Setup” is briefly displayed. After pressing the
correct function key, usually <F2> or <F8>, we can find the “Boot” menu in the
BIOS configuration. By changing the order of booting, we can boot from a DVD
or a USB storage device.

MathLibre includes over 100 mathematical software packages, such as Co-
CoA, GAP, GeoGebra, gfan, KSEG, Macaulay2, Maxima, Octave, OpenXM,
PARI/GP, Polymake, R, Risa/Asir, Singular, SAGE, and others. Select the

2 http://live.debian.net/

http://live.debian.net/


704 T. Hamada

Math menu from the start menu at the bottom left-hand side of the screen,
as you would do for Windows Start. Alternatively, double click the “Math Soft-
ware” icon; there is a collection of start-up icons for mathematical software and
a “MathLibre Start” button, which leads to an HTML file that contains short
introductions and links to the developers of the various software packages.

We can use DVD as an install media for Debian GNU/Linux. When you boot
MathLibre, you can find menus of “Live” and “Install”. Selecting the menu “In-
stall”, you can install a Linux system with many mathematical systems with
using whole area of your hard disk drive. If you want to use MathLibre with
Windows or Mac OS simultaneously, we recommend to use a virtual machine,
for example, Oracle VirtualBox, VMware Player for Windows or VMware Fu-
sion for Mac OS. MathLibre includes Windows Application InfraRecorder and
VirtualBox in DVD. Both of them are open source software. InfraRecorder is
developed by Christian Kindahl, and VirtualBox was created by innotek GmbH,
purchased in 2008 by Sun Microsystems, and now developed by Oracle coop-
eration. We can create a disk copy with InfraRecorder to use the boot image
with VirtualBox. In DVD you can find the setting file for VirtualBox in vbox

directory. You can easily make your environment for daily use.
Another method of using MathLibre, we can create bootable USB stick. We

made a short experimental script “mkusbmath”, when you boot with MathLibre
and input the command with sudo, you will get bootable USB stick with persis-
tent home directory. In any cases, you can install additional software packages
on it, because it’s using aufs, the union file system.

Fig. 1. Booting MathLibre Fig. 2. MathLibre Desktop

5 How to Customize MathLibre

For customizing, we need Debian GNU/Linux for building MathLibre, of course,
you can use MathLibre as an alternative. For building, you need “live-build”
and “git” package. Making a clone repository from GitHub, and make it, you
will build an ISO hybrid image for DVD and USB stick.
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% git clone https://github.com/knxm/mathlibre

% cd mathlibre

% make

Live Systems Project is well developed and maintained project, but it’s not
supporting easy localization, we created some sample settings. If you want to
localized version of MathLibre, for example you would like to build Korean
language edition, please input the following:

% make lang=ko

You can find more configuration files in the directory “lang”. If you can’t find
the setting file your want, you can make new one based with other setting files.

The list of packages are in “config/package-lists”. You can add or remove
package name in the files ∗.list.chroot. If you want to some additional soft-
ware, but it’s not included in the Debian official packages, the easiest way is
to use “config/includes.chroot”. For example, SAGE is a very huge system,
we are putting sage directory in config/includes.chroot/usr/local. If you
would like to know the details of customizing, please refer [3].

6 Conclusion

We can find similar projects, Sage Debian Live3, it’s using the same base system,
but the main target is USB stick only. And lmonade4 is a light-weight meta
distribution which does not need administration mode. It’s building with Gentoo
Prefix. And Mathemagix5 has a plan to provide a new high level language, it’s
an ambitious project.

MathLibre is supporting various environments, Live DVD and USB, virtual
machine, hard disk installation, and some language settings. Considering the
portability and customizability, MathLibre is meaningful for researchers, edu-
cators and students. Especially, even if it does not have the Internet connec-
tions, anyone can explore the world of mathematics and mathematical software
systems.
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Abstract. We present software packages for the holonomic gradient
method (HGM). These packages compute normalizing constants and the
probabilities of some regions. While many algorithms which compute in-
tegrals over high-dimensional regions utilize the Monte-Carlo method,
our HGM utilizes algorithms for solving ordinary differential equations
such as the Runge-Kutta-Fehlberg method. As a result, our HGM can
evaluate many integrals with a high degree of accuracy and moderate
computational time. The source code of our packages is distributed on
our web page [12].

Keywords: holonomic gradient method, normalizing constant, region
probability, Bingham prior, R project.

1 Introduction

The numerical evaluation of the normalizing constant for a given statistical dis-
tribution is a fundamental problem in statistics. For example, the normalizing
constant of the Gaussian distribution is expressed in terms of a rational expres-
sion of a parameter of the distribution named the standard deviation. However,
normalizing constants of many interesting statistical distributions do not have
such closed expressions.

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 706–712, 2014.
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The holonomic gradient method, HGM in short, is a general method to eval-
uate normalizing constant numerically for several parameters in the framework
of Zeilberger’s holonomic systems approach [11]. In fact, broad classes of nor-
malizing constants are holonomic functions with respect to parameters. Then,
such normalizing constants satisfy holonomic systems of linear partial differential
equations.

The HGM consists of three steps for a given normalizing constant. (1) Finding
a holonomic system satisfied by the normalizing constant. We may use compu-
tational or theoretical methods to find it. Gröbner basis and related methods
are used. (2) Finding an initial value vector for the holonomic system. This is
equivalent to evaluating the normalizing constant and its derivatives at a point.
This step is usually performed by a series expansion. (3) Solving the holonomic
system numerically. We utilize several methods in numerical analysis such as
the Runge-Kutta method of solving ordinary differential equations and solvers
of systems of linear equations.

The HGM was proposed in 2011 by a group of people including us [6] and has
given several new results. For example, the orthant probability is the normalizing
constant of the multivariate normal distribution restricted to the first orthant.
The HGM can evaluate it in a high accuracy up to the 20 dimensional case when
the mean vector is near the origin. In the 20 dimensional case, we numerically
solve an ordinary differential equation of rank 220 = 20, 148, 576.

We have developed software packages for the HGM. Packages based on com-
puter algebra systems help us to solve steps (1) and (2). We have implemented
the step (3) for the Fisher-Bingham distribution, the Bingham distribution, the
orthant probability, the Fisher distribution on SO(3), some of A-distributions,
and the distribution function of the largest root of a Wishart matrix in the
language C and/or in the system for statistics R [7]. An implementation for
the polyhedral probability is a project in progress. We find an interesting inter-
play with systems for polytopes in the project. Further references and current
implementations are listed in [12].

This paper is dedicated to Kenta Nishiyama in our memory.

2 Distributions and Algorithms

We give a brief discussion on the Bingham distribution and the orthant prob-
ability in view of the HGM in this section. As to the Fisher distributions on
SO(3), the largest roots of Wishart matrices, Fisher-Bingham distributions, and
A-distributions, we refer to papers in [12].

2.1 Bingham Distribution

The Bingham distribution is a probability distribution on the (p-1)-dimensional
sphere defined as

1

Z(Σ)
exp(xΣ−1x)μ(dx) (x ∈ Sp−1)
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where Σ is a p times p positive definite matrix, μ(dx) is the uniform measure
on the sphere, and Z(Σ) is the normalizing constant (Z(Σ) is also denoted
by c(Σ) in literatures). We denote by x the transpose of x. We can assume
without loss of generality that the matrix Σ−1 is a diagonal matrix such as
diag(θ1, . . . , θp−1, 0)

.
In [9], the HGM for this normalizing constant is discussed, and an explicit

form of a Pfaffian equation associated with the normalizing constant has been
given. The size of the matrix in the Pfaffian equation is p. In the current im-
plementation, we evaluate the initial value for the HGM by a series expansion.
The complexity to evaluate it is proportional to the number of the terms in the
truncated series. Hence, the complexity is O(pN ). Here, we denote by N the
degree of the truncated series. Thus, the computational complexity of the HGM
for this problem is estimated as

Theorem 1. The complexity of the series expansion method and the HGM for
the normalizing constant of the Bingham distribution on the (p− 1)-dimensional
sphere is bounded by

O(pN ) +O(p2)× (steps of the Runge-Kutta method).

Note that the holonomic system for the normalizing constant of the Bingham
distribution and it’s holonomic rank are not determined rigorously. There might
exist a smaller system than that in [9]. Thus, the complexity in the above the-
orem is the upper bound of the complexity. We conjecture that the above com-
plexity gives the lower bound of the complexity of the HGM for the Bingham
distributions.

We provide a package of the HGM for the system for statistics R [7]. The
function hgm.ncBingham(th, ...) in our R package hgm performs the HGM for
Bingham distributions with the deSolve package. The initial value for the HGM is
computed by the power series expansion. This function also computes derivatives
of the normalizing constant of the Bingham distribution at any specified point.
The variable th is a (p − 1)-dimensional vector which specifies the first (p − 1)
components of the parameter vector of the Bingham distribution on the (p− 1)-
dimensional sphere. The p-th parameter is assumed to be zero.

For Σ−1 = diag(1, 3, 5, 0), we can obtain the normalizing constant as

hgm.ncBingham(c(1,3,5))

after loading the package with the command library(’hgm’)

2.2 The Orthant Probability

The orthant probability is the probability with which the random vector, which
is normally distributed with the mean vector μ and the covariance matrix Σ,
falls in the first orthant, and it can be written as∫ ∞

0

· · ·
∫ ∞

0

1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x − μ)Σ−1(x− μ)

)
dx1 . . . dxd.

where we denote by d the dimension.
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In [3], the HGM for the orthant probability is discussed, and an explicit form
of a holonomic system and a Pfaffian equation associated with the probability is
given. The holonomic rank of the system, which equals to the size of the Pfaffian
equation, is 2d. The initial value of the HGM for the orthant probability can
be given exactly at a point and the computational complexity of the evalua-
tion of the initial value is O(1). The following complexity statement is an easy
consequence of Theorem 15 in [3], but it is fundamental.

Theorem 2. The complexity of evaluating the d-dimensional orthant probability
by the HGM is

O(22d)× (steps of the Runge-Kutta method).

The function hgm.ncorthant(sigma, mu, ...) in our R package evaluates
the orthant probability by the HGM. The first variable sigma is the covariance
matrix, and the second variable mu is the mean vector. This function calls a pro-
gram written by the language C internally, which solves an ordinary differential
equation with rank 2d by a routine in the GNU scientific library (GSL) [2].

For example, when

d = 2, Σ =

(
1 1/2

1/2 1

)
, μ =

(
1
2

)
,

the orthant probability can be computed by the following script of R:

sigma <- matrix(c(1, 0.5, 0.5, 1), nrow =2)

mu <- c(1,2)

hgm.ncorthant(sigma,mu)

In this example, the rank of the ordinary differential equation equals to 22 = 4.
The performance of our implementation for larger d will be illustrated in 3.3.

3 Implementations

3.1 Building Blocks of Our Package

Our algorithms for the holonomic gradient method require efficient and reliable
numerical implementations of the Runge-Kutta method and solving numerically
systems of linear equations. Our package uses the GSL [2], the deSolve package
in R, BLAS, and LAPACK for this purpose.

Most of our algorithms are implemented in the language C. We provide two
interfaces for our C-code. One is a command line interface and the other interface
is R, which is a software system for statistics [7]. For example, in the problem mh
(the largest roots of Wishart matrices), the function mh cwishart gen performs
the HGM for mh. The both of the main function for the command line interface
and the interface module Rmh cwishart gen for R call the common function
mh cwishart gen.
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The system R provides an easy and strong mechanism to include C code into
the R system [10]. It is recommended by the CRAN repository policy to minimize
the size of code and make effort to provide cross-platform code. Then, we have
extracted the source code of some of the functions defined in odeiv.h in GSL for
solving ordinary differential equations, and include them in our HGM package.

In the current implementation, both of command line interface and R interface
are available for the problems mh, orthant, and so3. We provide only a command
line interface for the Fisher-Bingham distribution. Because, our implementation
relies on linear algebra functions of the GSL and extracting these functions
for R or rewriting them in BLAS and LAPACK need some works, which will
generate some new bugs without taking relatively long time of careful porting
and debugging. We hope that R officially supports the GSL in a future.

3.2 Use of Computer Algebra Systems for a Reliable
Implementation

Since some ordinary differential equations for the HGM contain complicated ex-
pressions and also evaluation formulas of initial values are complicated, we utilize
computer algebra systems to avoid bugs caused by writing programs by hand
and to provide correct code. For example, our C implementation for the HGD
(holonomic gradient descent) of the Fisher-Bingham distribution is automati-
cally generated by code in Risa/Asir [8], which is a computer algebra system.
Our implementation for the Wishart distribution is firstly written in Risa/Asir
and contains several debugging and checking code of correctness of each steps
(see tk jack.rr in our package). After the code by Risa/Asir works correctly,
we translate it into code in C.

3.3 Performance

We illustrate the performance of our implementation of the orthant probability.
We evaluate the orthant probability by the HGM for Σ = ((1 + δij)/2) and

μ = 0 where δij is the Kronecker’s delta. In this case, it is known that the orthant
probability equals to 1/(d + 1). The table 1 shows the result of the HGM, the
exact value of the orthant probability, and the CPU time for each d. The HGM
is performed by the command hgm ko orthant, and it is compiled by the GNU
C compiler v.4.7.2. We performed the experiments on an Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz with 252GB RAM, running Linux.

The computational time of hgm ko orthant increases rapidly when the di-
mension increases. This is a consequence of our complexity result (Theorem 2).
However, our algorithm and implementation are faster in comparison with the
existing software systems which evaluate the orthant probability with high accu-
racy. For example, the CPU time to compute the same problem by pmvnorm [5],
which is in the R package, for the case d = 10 is 61.991 seconds. The function
pmvnorm dissects an orthant probability into (d− 1)! orthoscheme probabilities,
and apply an effective iterative integration whose complexity is O(d). Thus, the
theoretical complexity of pmvnorm is proportional to d!. No other algorithms and
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Table 1. Computational experiments on hgm ko orthant

dimension HGM exact CPU time

2 0.333333331 0.333333333 0.00
3 0.249999998 0.250000000 0.00
4 0.199999998 0.200000000 0.00
5 0.166666666 0.166666667 0.02
6 0.142857142 0.142857143 0.06
7 0.125000000 0.125000000 0.14
8 0.111111111 0.111111111 0.39
9 0.100000000 0.100000000 0.91
10 0.090909091 0.090909091 2.40
20 0.047619048 0.047619048 22721.30

implementations achieve our timing with more than the 9 digits accuracy as far
as we know.

4 Applications

Normalizing constants are fundamental in statistics. In [6], we demonstrate that
Fisher’s maximal likelihood estimate can be performed by utilizing the HGM to
evaluate normalizing constants and its derivatives. The orthant probability of
multivariate normal distribution is also used in various area of statistics. In this
section, we sketch an application to Bayesian analysis.

Consider the multinomial distribution of size n

f(y|π) = n!

y1! · · · yp!
πy1

1 · · ·πyp
p , y = (y1, . . . , yp) ∈ Zp

≥0,

p∑
i=1

yi = n,

where π = (π1, . . . , πp) belongs to the simplex Δp−1 = {π ≥ 0 |
∑

i πi = 1}.
For the multinomial distribution, the Dirichlet prior density is often used in the
Bayesian context (e.g. [1]).

We introduce a different class of prior densities. Put Σ−1 = diag(θ1, . . . , θp)
and πi = x2i for each i in the Bingham distribution defined in Section 2. The
random variable π = (π1, . . . , πp) has the density function

f(π) =
2π

−1/2
1 · · ·π−1/2

p e
∑p

i=1 θiπi

c(θ)
, π ∈ Δp−1,

with respect to dπ = dπ1 · · · dπp−1, where c(θ) = Z(Σ) is the Bingham normal-
izing constant. We call it the Bingham prior density.

One of important quantities in Bayesian analysis is the marginal likelihood
fmar(y) =

∫
f(y|π)f(π)dπ (see e.g. Section 3.4 of [1]). For the Bingham prior, it

is shown that

fmar(y) =
n!

y1! · · · yp!

∏p
i=1 Γ (yi +

1
2 )

πn+p/2

c(θ, 2y + 1p)

c(θ)
, (1)
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where 1p = (1, . . . , 1) ∈ Rp, and c(θ, d) for d = (d1, . . . , dp) denotes the Bingham
normalizing constant on the (

∑p
i=1 di − 1)-dimensional sphere with the multi-

plicity index d, that is, c(θ, d) = c((θ1, . . . , θ1, . . . , θp, . . . , θp)), where θi appears
di times. The formula (1) is proved in the same way as Proposition 1 of [4]. The
other quantities such as posterior density and predictive density are written in
terms of c(θ, d) as well.

For example, if p = 4, θ = (1, 3, 5, 0) and y = (2, 0, 3, 1), then the marginal
likelihood is evaluated by the following R script

y = c(2,0,3,1); th = c(1,3,5); n = sum(y); p = length(y)

a0 = lfactorial(n) - sum(lfactorial(y))

a1 = sum(lgamma(y+1/2)) - (n+p/2)*log(pi)

a2 = hgm.ncBingham(th, d=2*y+1, withvol=TRUE, logarithm=TRUE)[1]

a3 = hgm.ncBingham(th, withvol=TRUE, logarithm=TRUE)[1]

exp(a0 + a1 + a2 - a3)

where the withvol option specifies that the total uniform measure on the sphere
is its volume (not normalized to 1) and the logarithm option specifies the output
is in the logarithmic scale. The result of the script is 0.008963549. One can check
that the total of fmar(y) over possible y’s given n is 1 (up to numerical error).

For a given data y, the hyper-parameter θ in (1) can be selected by maximizing
the marginal likelihood. This maximization problem is analogous to the maxi-
mum likelihood estimation and then the HGD [6] can be applied in principle,
but details have not been studied and this MLE has not been implemented yet
in our package. It is also an interesting project in progress to derive a holonomic
system and a Pfaffian system for other prior densities.
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Abstract. There are several different libraries with code for mathemat-
ical functions such as exp, log, sin, cos, etc. They provide only one im-
plementation for each function. As there is a link between accuracy and
performance, that approach is not optimal. Sometimes there is a need
to rewrite a function’s implementation with the respect to a particular
specification.

In this paper we present a code generator for parametrized imple-
mentations of mathematical functions. We discuss the benefits of code
generation for mathematical libraries and present how to implement
mathematical functions. We also explain how the mathematical func-
tions are usually implemented and generalize this idea for the case of
arbitrary function with implementation parameters.

Our code generator produces C code for parametrized functions within
a known scheme: range reduction (domain splitting), polynomial approx-
imation and reconstruction. This approach can be expanded to generate
code for black-box functions, e.g. defined only by differential equations.

Keywords: code generation, elementary functions, mathematical
libraries.

1 Introduction

Each time we evaluate mathematical functions in some programming language
a corresponding function from a mathematical library (libm) is called. There
are several examples of existing libms: glibc libm [1], crlibm by ENS-Lyon [2],
libmcr by Sun1, libultim by IBM2, etc. They differ not only by the developer
company or supported language but also by final accuracy. The common fact for
all the versions is that they provide only one manually coded implementation of
each supported function and precision. As the codes for elementary functions are

1 http://www.math.utah.edu/cgi-bin/man2html.cgi?/usr/local/man/man3/

libmcr.3
2 http://www.math.utah.edu/cgi-bin/man2html.cgi?/usr/local/man/man3/

libultim.3
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Metalibm

implementation.c

polynomial coefficients
constants
table(s)
rangeReduction(...)
subdomainsApprox(...)
reconstruction(...)

problemdef.sollya

function
domain
target accuracy
max poly degree
min subdomain width
table size

Fig. 1. Metalibm scheme

used in various applications, the implementations are done for the widest pos-
sible domain, for maximum possible accuracy, etc. However, such generalization
complicates the algorithms and leads to poor performance: for some particular
tasks there is no need to compute a precise result. For example, most physi-
cal measurements have only small number of digits after the decimal point, so
computation of the result with 53 mantissa bits (about 15 decimal digits) is a
waste of time. Another example is a small domain known beforehand, which
means that that the result is a finite number (no overflows/underflows are pos-
sible). In this case, handling the special values like NaNs (Not-A-Number [3])
or infinities in the beginning of the implementation can be skipped, hence the
implementation gets faster.

There is also a link between speed and accuracy, so when we process big
amounts of data and the needed accuracy is only about several bits, there is no
reason to compute a precise result [4].

So, there is a growing need to provide several different versions (flavors) for
each libms function. Manual implementation of different function flavors is al-
most impossible due to the quantity of all the possible parameters and coding
time. Thus, we propose to write a code generator that produces parametrized
implementations. The name of this prototype is Metalibm3. Besides producing
different versions of standard libm functions, Metalibm generates implementa-
tions for composite functions as well.

The paper is organized as following: in Section 2 we explain in general the gen-
eration of “black-box” parametrized functions, Section 3 explains the workflow
of the generator, in Section 4 we show how to detect a known type of function,
and finally Section 5 shows the importance of the Metalibm, future work on the
project and its possible application.

2 A Black-box Function Generator

The Metalibm code is a collection of scripts written in Sollya4, a software tool
for safe floating-point (FP) development with plenty of rigorous numerical algo-
rithms [5].

Among the existing versions of mathematical libraries we are mostly interested
in improvement of the current glibc libm. It runs on all *nix-powered machines

3 http://lipforge.ens-lyon.fr/www/metalibm/
4 http://sollya.gforge.inria.fr/

http://lipforge.ens-lyon.fr/www/metalibm/
http://sollya.gforge.inria.fr/
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(from supercomputers to mobile phones), so tends to be the most used one. Thus,
Metalibm generates implementations in C. For each input set of parameters
Metalibm generates the C code within the same scheme. On Fig. 1 there is an
illustration of Metalibm routine. Metalibm computes and stores the constants
with the needed accuracy, and as we use table-driven methods [4], it computes
and stores the tables. Then Metalibm generates the code for range reduction
(domain splitting), polynomial approximation on each of the small domains, and
the final reconstruction procedure. The purpose of these procedures is explained
later in the paper.

As all the computations for the code generation are done in Sollya, a function
to be implemented can be considered as black-box. On the step of range reduc-
tion we need to evaluate the function in some values. Sollya provides elementary
functions and theirs combinations. The generation of code for some “exotic func-
tions” like functions purely defined by differential equations (e.g. Dickman’s) gets
possible as soon as we have a corresponding Sollya implementation, even if it is
bound to Sollya only dynamically [6].

Precision of all the constants and accuracy of the interim computations are
specially selected in order to obtain the final result of the specified accuracy
(target accuracy parameter). Besides the generated code, Metalibm verifies the
final results accuracy and generates a Gappa proof [7].

A simple example of the parametrization file is provided in Listing 1.1. The
sense of all the parameters will be explained later with the implementation details
of Metalibm.

f = exp(x); //we want to get the code for exp(x)
dom = [-70, 70]; //on domain [-70, 70]
target = 2−42; //the final error has to be not more that 2−42

maxDegree = 5; //degree of approximating polynomials is not more than 5
minWidth = (sup(dom) - inf(dom)) * 1/4096; //minimal size of the subdomain
tableIndexWidth = 5; //the size of table index is 5 bits, so 32 entries in table

Listing 1.1. Example of the parametrization file

3 Function Generation Workflow

In order to implement a mathematical function on a given domain we have to
care first about special cases (NaNs and infinities). So, the first or even pre-
computing step is always filtering the special inputs, handling exceptions, too
large or too small inputs unless the domain is so small that these special cases
cannot occur.

When designing algorithms for mathematical functions evaluation we usually
start with writing the inputs and output in a form of floating-point (FP) numbers
2Em and trying to separate all the factors into two groups: a power of two n = 2E

that represents the results exponential part and one non-integer number with
values in a small range to represent significand. This technique of emphasizing a
non-integer part with a small range (results significand) is usually called range
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reduction [8]. The next step is building an approximation. There are different
approximation techniques, but we only consider polynomial ones. The larger the
range of argument is, the higher polynomial degrees are required. This means
that the computation time will be high and the error analysis becomes more
difficult with the growing number of FP operations. This is the main reason why
we need argument reduction. In Metalibm, we use a parameter maxDegree to
limit the maximal degree of constructed approximations. These polynomials are
computed with Remez algorithm that is implemented in Sollya [6], [9].

All the transformations on the first step fully depend on mathematical prop-
erties of the implemented function, i.e. ea+b = eaeb [10]. It can happen that it is
impossible to reduce the range using only mathematical properties. In this situa-
tion the required domain for the implementation is divided into subdomains. On
each of the subdomains the argument range is small and the degree of the ap-
proximating polynomial gets lower. In this case, one has to build approximations
for each of the subdomains and then the reconstruction step gets more complex.
In Metalibm we bound minimal size of subdomain by a parameter minWidth.

Once the generation process is launched, Metalibm checks whether it is
possible to build a polynomial for the specified function, domain and other pa-
rameters. If it is not possible, it tries to reduce argument for the set of known
functions (exponential, logarithm, periodic). Then there is symmetry detection
and expression decomposition for composite functions. When it is still not possi-
ble to build a polynomial approximation for the reduced domain, domain split-
ting is performed. Metalibm adapts computational precision [11] in order to get
the needed accuracy, so in some cases it uses double-double or triple-double
arithmetic [12], [13].

4 Some Technical Details

As it was already mentioned, Metalibm tries to detect some known properties of
the function to perform range reduction. For example, let us have a look on how
Metalibm tests hypothesis that the function is exponential and finds its base.

In order to detect the exponential function and to perform the appropriate
argument reduction we accept the hypothesis that the function has a form of
f(x) = bx on the implementation domain I with the unknown base b. It means
that we can determine the base from the following:

b = exp

(
ln f(x)

x

)
= const ∀x ∈ I.

The base b can be computed in Sollya without any information about the func-
tion f(x). Sollya will provide the needed value for the function. This is why we
were talking about “black-box” functions: we do not know what code are we
generating, but we have a mean to evaluate some function values.

As we have accepted the function type as f(x) = bx, it means that for another
argument x1 from the implementation domain the function value is f(x1) = bx1 .
Of course the base b stays the same if the hypothesis was correct and we know
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that we can perform the exponential argument reduction now. If the value ε̃ =∥∥∥ bx

f(x) − 1
∥∥∥I
∞

is sufficiently small we accept the initial hypothesis.

The detection of other types of functions is done in the analogous way.

5 Conclusions

The Metalibm code generator is still under development, but it already produces
code for basic functions. The next goals are an optimized domain splitting pro-
cedure, producing vectorizable implementations and addition of range reduction
for other functions.

As it was told, the generated code tends to improve and expand current glibc
libm. So, we will try to provide generated code on the whole code generator to
the GNU community for integration with the glibc libm.
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Abstract. Using mathematics within computer software almost always
includes the necessity to compute with real (or complex) numbers. How-
ever, implementations often just use the 64-bit double precision data
type. This may lead to serious stability problems even for mathemati-
cally correct algorithms. There are many ways to reduce these software-
induced stability problems, for example quadruple or multiple-precision
data types, interval arithmetic, or even symbolic computation. We prop-
agate Exact Real Arithmetic (ERA) as a both convenient and practically
efficient framework for rigorous numerical algorithms.

Keywords: Recursive Analysis, Rigorous Numerics.

1 Introduction and Motivation

With numerical methods reaching unprecedented levels of sophistication, there
arises the need for a systematic approach to software development over real
numbers, smooth functions, Euclidean domains, and operators – accompanied
and guided by a sound yet practical theory of computing over continuous uni-
verses. Indeed, contemporary algorithms for advanced applications like PDEs
regularly involve, and – often only implicitly – build on reliable solutions to,
an entire hierarchy of intermediate problems: ODEs (method of characteristics),
Riemann integration, Taylor and Fourier expansion, mesh generation and inter-
polation, computational linear algebra, down to basic operations on single num-
bers. (’Best’?) Practice in Numerical Engineering generally neglects questions of
correctness of such advanced functionality modularly combined and composed
from elementary ones, leading to a mix of criticism and fatalism [Linz88, p.412]:

How do engineers deal with the problem of assigning some measure of
reliability to the numbers that the computer produces? Over the years, I
have sat on many Ph.D. qualifying examinations or dissertation defenses
for engineering students whose work involved a significant amount of nu-
merical computing. In one form or another, I invariably ask two ques-
tions “Why did you choose that particular algorithm?” and ”How do you

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 718–724, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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know that your answers are as accurate as you claim?”. The first ques-
tion is usually answered confidently, using such terms as ”second-order
convergence” or “von Neumann stability criterion”. The next question,
alas, tends to be embarrassing. After an initial blank or hostile stare, I
usually get an answer like ”I tested the method with some simple exam-
ples and it worked”, ”I repeated the computation with several values of
n and the results agreed to three decimal places”, or more lamely, ”the
answers looked like what I expected”. So far, I have not faulted any stu-
dent for the unsatisfactory nature of such a response. One reason for
my reluctance to criticize is that I have really nothing better to offer.
Rigorous analysis is out of the question. [. . . ] What I do find disturbing
is the pragmatics that are used are often ill-considered. Take for example
the common practice of repeating the computations with several values
of the discretization parameters. The reasoning behind this is that, if the
method converges and we observe that the solution has ”settled down” in
the first few decimal digits, we can be confident that it is actually exact
to this accuracy. Sometimes this makes good sense, but unfortunately it
does not always work. For example, it may not catch systematic errors
such as a wrong sign somewhere or a dropped factor of two. But such
errors are very common, particularly in the computer programs that are
eventually written. There are many instances of programs that delivered
incorrect results for a considerable period of time before the error was
found.

We propagate Exact Real Arithmetic (ERA) as a both convenient and practi-
cally efficient framework for rigorous numerical algorithms. ERA consists of, and
combines, four aspects:

i) Recursive Analysis — the Theory of Computing over real numbers, (smooth)
functions, and (closed) Euclidean subsets — and its uniform generalization
to generic continuous universes [Weih00] called Type-2 Theory of Effectivity
(TTE).

ii) Real Complexity Theory as resource-oriented refinement of (i), including
asymptotic runtime analyses and formal proofs of algorithmic optimality
[Ko91, Ko98, Weih03].

iii) An imperative programming language with rigorous semantics of computable
operations on continuous objects appearing as entities (ERA) [BrHe98].

iv) A C++ library [Müll01] implementing, and efficiently realizing, (much of) the
semantics according to (iii).

ERA differs from Exact Geometric Computation [LPY05] in permitting both
output and input being approximated up to prescribable absolute error, thus
achieving closure under composition [Yap04, p.325]. The sequel of this work
recalls the computability and complexity theoretic foundations (i+ii) to ERA
and their implications to a rigorous semantics — particularly of tests/branches,
that (necessarily!) differs from the näıve one in the discrete case. We demonstrate
the ease and convenience of coding in said language, obtaining both efficient
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and validated implementations for turnkey calculations and rapid prototyping
in transcendental arithmetic. This will lead to a revolution of numerical software
development.

2 Algorithmic Foundations of Real Computing

Recursive Analysis was initiated by Alan Turing (1937) in the very same work
that introduced ‘his’ machine — 11 years before he invented matrix condition
numbers. It is the theory of computation of real numbers and functions by ratio-
nal approximations up to prescribable absolute error 2−n. This field provides for
a sound algorithmic foundation to numerical calculations — and contains some
of the too blatant folklore claims about their performance. For instance [Spec49]
constructed an increasing, recursive sequence of fractions converging (with neces-
sarily non-recursive rate of convergence) to a real number that encodes the halt-
ing problem. Or [Spec59] constructed a (polynomial-time) computable smooth
function f : [0; 1] → [0; 1] attaining its minimum/zero (frequently, but) at no
computable point. Observe how both debunk (allusions behind) the ’specifica-
tion’ of nag opt one var deriv to normally compute(s) a sequence of x values
which tend in the limit to a minimum of Fx subject to the given bounds. In
fact Recursive Analysis has since then developed a rich variety of formal no-
tions of computability over various specific and general continuous universes X .
TTE unifies and facilitates comparing and uniformly classifying such notions:
for example for continuous functions [Weih00, §6], for closed Euclidean subsets
[BrWe99], or for advanced spaces [ZhWe03].

3 Theory and Implementation

By the Main Theorem of Recursive Analysis every computable function is neces-
sarily continuous. This renders the sign function, and thus also tests/branches,
incomputable. However two concepts from logic permit to avoid this obstacle:

Non-extensional (a.k.a. multivalued) computation may return different values
y ∈ f(x) for the same argument x, depending on which (sequence of) approx-
imations to x is given [Weih08]. Consider for instance a computable version of
the Fundamental Theorem of Algebra [Spec69]:

Given (a0, . . . , ad−1) ∈ X := Cd, output some d-tuple z1, . . . , zd ∈ C
such that a0 + a1z + · · ·+ ad−1z

d−1 + zd = (z − z1) · · · (z − zd).

Any tuple (z1, . . . , zd) with this property is an admissible output of such a compu-
tation! Or consider for k ∈ N the multivalued — a.k.a. soft [YSS13] — test ”x >k

0?” may return true in case x ≥ 2−k and false in case x ≤ −2−k and any of
false,true in case |x| < 2−k. Only such a modified semantics renders tests (total
and) computable. ERA supports multivalued tests in many forms. A simple ver-
sion in the iRRAM library is the statement choose(x>0,y>0): returning 1 in case
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x > 0 and y ≤ 0, 2 in case x ≤ 0 and y > 0, and any 1 or 2 in case x > 0 and
y > 0. It is the programmers responsibility to prevent the case x ≤ 0 and y ≤ 0
(similarly to division by zero). See §4.2 for a practical application. . .

Discrete enrichment captures the effect that some practical real (multi-)functions
f are incomputable due to discontinuity [PaZi13] — yet become both continuous
and computable when providing, in addition to approximations to the continu-
ous argument x, some suitable integer [KrMa82, p.238/239]. For example from
the entries of a real symmetric d× d–matrix A one cannot continuously deduce
some (!) basis of eigenvectors; whereas restricted to non-degenerate A and, more
generally, when given the number k := Cardσ(A) ∈ {1, . . . , d} of distinct eigen-
values, one can [ZiBr04, §3.5]! Such necessary and sufficient discrete enrichment
yield canonical interface declarations in ERA. The following C++ fragment for
example cannot belong to an implementation returning some eigenvector to any
given real symmetric 2× 2–matrix:

void EV(REAL A11, REAL A12, REAL A22, REAL &EVecY, REAL &EVecY);

See §4.5 for another practical example. . .

Based on the above multivalued semantics and enrichment, iRRAM imple-
ments data types for real numbers and functions: internally based on sequences
of intervals with endpoints in unbounded precision, but appearing to the user as
single and exact entities.

4 Seven Examples of Practical Programming in ERA

In the sequel we illustrate some core ideas where ERA can be of advantage
when compared to algorithms using double precision or even multiple preci-
sion. They all have been implemented in the iRRAM library freely available at
http://irram.uni-trier.de/.

4.1 Simple Algorithms: Range Reduction and Logistic Map

In the evaluation of transcendental functions, identities like ex = (ex/2)2 or
sin(x) = 3 · sin(x/3) − 4 · sin(x/3)3 are frequently used for range reduction.
In ERA, such identities can be used without worrying about loss of precision.
This is even true for iterated functions systems like the logistic map, where the
iteration xi+1 = 3.75 · xi · (1−xi) (implemented just as x= c*x*(REAL(1)-x))
can be carried out 100000 times for an initial value like x0 = 0.5 within less than
three minutes in spite of its chaotic behavior, whereas a double precision

computation gives nonsense already after 100 iterations.

4.2 Gaussian Elimination and Inverting Ill-Conditioned Matrices

Gaussian elimination needs some kind of pivoting, i.e. a non-continuous choice
of an integer index from two (or more) real parameters. In the iRRAM li-
brary such choices can be implemented as a multivalued function in the form
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choose(x>0,y>0), where a return value of 1 ensures x > 0, while 2 ensures
y > 0. Based on this, matrix inversion turns out to be a simple programming
example. A Hilbert matrix of dimension 200× 200 can be inverted in about two
minutes, where double precision arithmetic would already fail for dimension
20× 20.

4.3 Root Finding and Wilkinson’s Polynomials

Traditional algorithms for root finding have problems when applied to Wilkin-
son’s polynomials, as their coefficients quickly get very large. Of course, ERA
allows numbers much bigger that the maximal double precision number of
approximately 10308. Nevertheless, ERA would also fail if a simple bisection
algorithm were used and accidentally hit one of the roots. Using the choose

method mentioned before, a multi-valued k-section can easily be implemented,
using k larger than the degree of the polynomial under consideration.

4.4 Transcendental Calculations: Power Series and Matrix
Exponentials

A central component of ERA is the ability to get limits of converging computable
sequences, in case an upper bound for the speed of convergence can be computed:
If a sequence (xn) converges to the limit y with |xn−y| ≤ 2−n, then the statement
y=limit(x) will give this limit in iRRAM.

If (xn) is not just a simple sequence of real numbers, but even a sequence of
functions with a limit function f (and the same speed of convergence as before),
then fz=limit(x,z) will compute f(z). An important application are power
series

∑
ajx

j , where a lower bound R for the radius of convergence and an upper
bound M for

∑
|aj |Rj lead to a rigorous bound for the speed of convergence,

such that f=taylor_sum(a,R,M) in iRRAM really computes the Taylor sum
f(z) =

∑
ajz

j for |z| < R.
This can also be applied in higher dimensions, leading to a usable implemen-

tation of the matrix exponential that is known to be hard to compute otherwise.

4.5 Algorithms with Discrete Enrichment

Evaluating a power series
∑

j ajx
j , say converging on the closed interval [−1; 1],

provably requires information in addition to the coefficient sequence (aj)j
[Müll95]. In fact it suffices to provide an integer k satisfying the following form
of the Cauchy–Hadamard Bound: |aj | ≤ (2j)k. Moreover this integer governs, in
addition to the output precision n, the running time of natural operations on an-
alytic functions: evaluation, addition, multiplication, differentiation, integration,
and maximization [Müll87, KMRZ14].

4.6 High-Degree Newton–Cotes Quadrature

The paradigmatic chains to hardware-supported double precision induces a
blind spot against possibly more efficient algorithms that involve intermediate
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of higher accuracy [MüKo10]. Newton–Cotes Quadrature for instance is gener-
ally considered ‘unstable’ in high degrees, but performs rather well on iRRAM:
which, transparent to the user, automatically takes care of, and adjusts, said
intermediate precision; see §4.7.

4.7 Tuning

The enrichment mentioned before can also be used efficiently for speeding up
computations: One such type of enrichment are Lipschitz bounds which can
easily be used to reduce error propagation in the underlying multiple precision
interval arithmetic to a minimum, which in reduces computation time. For the
logistic map for above the use the Lipschitz bound 3.75 − 7.5 · x reduces the
computation speed by a factor of 3.
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Abstract. CUMODP is a CUDA library for exact computations with
dense polynomials over finite fields. A variety of operations like multi-
plication, division, computation of subresultants, multi-point evaluation,
interpolation and many others are provided. These routines are primarily
designed to offer GPU support to polynomial system solvers and a bivari-
ate system solver is part of the library. Algorithms combine FFT-based
and plain arithmetic, while the implementation strategy emphasizes re-
ducing parallelism overheads and optimizing hardware usage.

Keywords: Polynomial arithmetic, parallel processing, many-core GPUs.

1 Overview

Polynomial multiplication and matrix multiplication are at the core of many al-
gorithms in symbolic computation. Expressing, in terms of multiplication time,
the algebraic complexity of an operation like univariate polynomial division or
the computation of a characteristic polynomial is a standard practice, see for in-
stance the landmark book [4]. At the software level, the motto “reducing every-
thing to multiplication”1 is also common, see for instance the computer algebra
systems Magma2 [1], NTL3 or FLINT4.

1 Quoting a talk title by Allan Steel, from the Magma Project.
2 Magma: http://magma.maths.usyd.edu.au/magma/
3 NTL: http://www.shoup.net/ntl/
4 FLINT: http://www.flintlib.org/
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With the advent of hardware accelerator technologies, multi-core processors
and Graphics Processing Units (GPUs), this reduction to multiplication is, of
course, still desirable, but becomes more complex since both algebraic complex-
ity and parallelism need to be considered when selecting and implementing a
multiplication algorithm. In fact, other performance factors, such as cache usage
or CPU pipeline optimization, should be taken into account on modern comput-
ers, even on single-core processors. These observations guide the developers of
projects like SPIRAL5 [16] or FFTW6 [3].

The CUMODP library provides arithmetic operations for dense matrices and
dense polynomials primarily with modular integer coefficients, targeting many-
core GPUs. Some operations are available for integer or floating point coefficients
as well. A large portion of the CUMODP library code is devoted to polynomial
multiplication and the integration of that operation into higher-level algorithms.

Typical CUMODP operations are matrix determinant computation, polyno-
mial multiplication (both plain and FFT-based), univariate polynomial division,
the Euclidean algorithm for univariate polynomial GCDs, subproduct tree tech-
niques for multi-point evaluation and interpolation, subresultant chain compu-
tation for multivariate polynomials, bivariate system solving. The CUMODP
library is written in CUDA [15] and its source code is publicly available at
www.cumodp.org.

In this note, we give an overview of the implementation techniques of the
CUMODP library. In Section 2, we discuss a model of multithreaded computa-
tion, combining fork-join and single-instruction-multiple-data parallelisms, with
an emphasis on estimating parallelism overheads of programs written for mod-
ern many-core architectures. For each key routine of the CUMODP library this
model is used to minimize parallelism overheads by determining an appropriate
value range for a given program parameter, e.g. number of threads per block.
Experimentation confirms the effectiveness of this model.

Secondly, the design of the CUMODP library emphasizes the importance of
adaptive algorithms in the context of many-core GPUs, see Section 3. that is,
algorithms which adapt their behavior according to the available computing re-
sources. Based on these techniques, we have obtained the first GPU implementa-
tion of subproduct tree techniques for multi-point evaluation and interpolation
of univariate polynomials. Hence we compare our code against probably the best
serial C code, namely the FLINT library, for the same operations. For sufficiently
large input data and on NVIDIA Tesla C2050, our code outperforms its serial
counterpart by a factor ranging between 20 to 30.

We conclude in Section 4 by presenting an application of the CUMODP library
to bivariate system solving.

5 http://www.spiral.net/
6 http://www.fftw.org/

www.cumodp.org
http://www.spiral.net/
http://www.fftw.org/
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2 A Many-Core Machine Model for Designing Algorithms
with Minimum Parallelism Overheads

Our model of multithreaded computation [9] extends the following previous
works for which we summarize key features and limitations. The PRAM (parallel
random access machine) model [5] supports data parallelism but not task par-
allelism. Moreover, this model cannot support memory traffic issues like cache
complexity and memory contention. The Queue Read Queue Write PRAM [6]
considers memory contention, however, it unifies in a single quantity time spent
in arithmetic operations and time spent in read/write accesses. We believe that
this unification is not appropriate for recent many-core processors, such as GPUs,
for which the ratio between one global memory read/write access and one floating
point operation can be in the 100’s. The TMM (Threaded Many-core Memory)
model [12] retains many important characteristics of GPU-type architectures,
however, the running time estimate on P cores is not given by a Graham-Brent
theorem [7]. We believe that, for the purpose of code optimization, this latter
theorem is an essential tool.

Our proposed many-core machine model (MMM) aims at optimizing algo-
rithms targeting implementation on GPUs. Our abstract machine possesses an
unbounded number of streaming multiprocessors (SMs). However, each SM has
a finite number of processing cores and a fixed-size local memory. An MMM
machine has a two-level memory hierarchy, comprising an unbounded global
memory with high latency and low throughput while SMs local memories have
low latency and high throughput. Similarly to a CUDA program, an MMM pro-
gram specifies for each kernel the number of thread-blocks and the number of
threads per thread-block. An MMM machine has two parameters:

U : time (expressed in clock cycles) to transfer one machine word between the
global memory and the local memory of any SM,

Z: size (expressed in machine words) of the local memory of any SM.

An MMM program P is a directed acyclic graph (DAG), called the kernel DAG,
whose vertices are kernels and edges indicate serial dependencies. Since each
kernel of the program P decomposes into a finite number of thread-blocks, we
map P to a second graph, called the thread-block DAG of P , whose vertex set
consists of all thread-blocks of P . We consider three complexity measures:

– the workW (P), which is the total number of local operations (arithmetic op-
eration, read/write requests in the local memory) performed by all threads,

– the span S(P), which is the longest path, counting the weight (span) of each
vertex (kernel), in the kernel DAG,

– the parallelism overhead O(P), which is the total data transfer time (between
global and local memories) of all its kernels.

Using these complexity measures, we derive a Graham-Brent theorem with par-
allelism overhead.
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Theorem 1. Let K be the maximum number of thread blocks along an anti-
chain of the thread-block DAG of P. Then the running time TP of the program
P satisfies:

TP ≤ (N(P)/K+ L(P))C(P). (1)

where N(P), L(P) and C(P) are respectively: the number of vertices in the
thread-block DAG, the critical path length (where length of a path is the number
of edges in that path) in the thread-block DAG and the maximum running time
of local operations by a thread among all the thread-blocks.

We have applied the MMMmodel for optimizing the CUDA implementation of
operations like plain univariate polynomial division, plain univariate polynomial
multiplication and the Euclidean algorithm. for dense polynomials over small
prime fields. In each case, a program P(s) depends on a parameter s which
varies in a range S around an initial value s0, such that the work ratio Ws0/Ws

remains essentially constant meanwhile the parallelism overhead Os varies more
substantially, say Os0/Os ∈ Θ(s − s0). Then, we determine a value smin ∈ S
maximizing the ratioOs0/Os. Next, we use our version of Graham-Brent theorem
to check whether the upper bound for the running time of P(smin) is less than
that of P(so). If this holds, we view P(smin) as a solution of our problem of
algorithm optimization (in terms of parallelism overheads).

Fig. 1. Naive division algorithm of a
thread-block with s = 1: each kernel
performs 1 division step

Fig. 2. Optimized division algorithm a
thread-block with s > 1: each kernel
performs s division steps

For each operation, the program parameter s controls the amount of work
and parallelism overheads of a thread-block. Figures 1 and 2 illustrate the role
of this parameter in our implementation of plain division. See [9] for details.

Applying the optimization strategy described above lead us to determine an
optimum value of s among those implied by constraints like the size of the local
memory Z or the data transfer time U . For plain polynomial multiplication, this
analysis suggested to minimize s which was verified experimentally, as illustrated
by Figure 3. For the Euclidean algorithm, our analysis suggested to maximize
the program parameter s, which was again verified experimentally, as illustrated
by Figure 4. Our experimental results were obtained on a GPU card NVIDIA
Tesla C2050.
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Fig. 3. Plain polynomial multiplication:
varying the program parameter s

Fig. 4. Euclidean algorithm: varying the
program parameter s

Fig. 5. CUMODP plain polynomial divi-
sion vs NTL FFT-based (asymptotically
fast) polynomial division.

Fig. 6. CUMODP plain Euclidean al-
gorithm vs NTL FFT-based polyno-
mial GCD

Figures 5 and 6 show that the optimized CUMODP implementation of the
plain division and the Euclidean algorithm outperforms the NTL implemen-
tation of the FFT-based plain division and polynomial GCD computation. Of
course, CUMODP code is multithreaded while NTL code is serial. On the other
hand, NTL uses asymptotically fast algorithms. The key observation is that
optimized implementation of multithreaded plain algorithms provide useful al-
ternative to any serial code. In fact, as we will see in the next section, multi-
threaded plain algorithms play an essential in higher-level applications targeting
many-core GPUs.

3 Adaptive Algorithms

Up to our knowledge, the CUMODP library offers the first GPU implementation
of subproduct tree techniques [4][Chapter 10] for multi-point evaluation and
interpolation of univariate polynomials. The parallelization of those techniques
raises the following challenges on hardware accelerators.

1. The divide-and-conquer formulation of operations on subproduct-trees is
not sufficient to provide enough parallelism and one must also parallelize
the underlying polynomial arithmetic operations, in particular polynomial
multiplication.



730 S.A. Haque et al.

2. During the course of the execution of a subproduct tree operation (con-
struction, evaluation, interpolation), the degrees of the involved polynomials
vary greatly; thus, so does the work load of the tasks, which makes those
algorithms complex to implement on many-core GPUs.

To address the first challenge on many-core GPUs, we combine parallel plain
arithmetic and parallel fast arithmetic. For the former we rely on [8] and, for the
latter we extend the work of [13]. Indeed, parallel fast arithmetic alone would not
suffice to provide good speedup factors since subproduct tree operations require
lots of calculations with low-degree polynomials.

To address the second challenge, we employ adaptive algorithms. That is, algo-
rithms that adapt their behavior according to the available computing resources.
For instance, each plain multiplication is performed by a single streaming mul-
tiprocessor (SM), since plain arithmetic is used for input polynomials of small
sizes. Meanwhile, each FFT-based multiplication is computed by a kernel call,
thus using several SMs. In fact, this kernel computes a number of FFT-based
products concurrently.

To evaluate our implementation of subproduct tree techniques, we measured
the effective memory bandwidth of our GPU code for parallel multi-point evalua-
tion and interpolation on a card with a theoretical maximum memory bandwidth
of 148 GB/S, our code reaches peaks at 64 GB/S. Since the arithmetic intensity
of our algorithms is high, we believe that this is a promising result.

All implementation of subproduct tree techniques that we are aware of are
pure serial code. This includes [2] for GF (2)[x], the FLINT library [10] and the
Modpn library [11]. Hence we compare our code against probably the best serial
C code (namely the FLINT library). For sufficiently large input data, running
on NVIDIA Tesla C2050, our code outperforms its serial counterpart by a factor
ranging between 20 to 30. Experimental data can be found in Table 1.

Table 1. Multi-point evaluation and interpolation: FLINT vs CUMODP

Evaluation Interpolation
Deg. CUMODP FLINT SpeedUp CUMODP FLINT SpeedUp

212 0.1361 0.02 0.1468 0.1671 0.03 0.1794
213 0.1580 0.07 0.4429 0.1963 0.09 0.4584
214 0.2034 0.17 0.8354 0.2548 0.22 0.8631
215 0.2415 0.41 1.6971 0.3073 0.53 1.7242
216 0.3126 0.99 3.1666 0.4026 1.26 3.1294
217 0.4285 2.33 5.4375 0.5677 2.94 5.1780
218 0.7106 5.43 7.6404 0.9034 6.81 7.5379
219 1.0936 12.63 11.5484 1.3931 15.85 11.3768
220 1.9412 29.2 15.0420 2.4363 36.61 15.0268
221 3.6927 67.18 18.1923 4.5965 83.98 18.2702
222 7.4855 153.07 20.4486 9.2940 191.32 20.5851
223 15.796 346.44 21.9321 19.6923 432.13 21.9441
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4 Application

In [14], two of the co-authors of this note reported on the implementation of a
bivariate polynomial system solver (based on the theory of regular chains and
working with coefficients in small prime fields) partially written in CUDA and
partially written in C. In that implementation, polynomial subresultant chains
were calculated in CUDA while univariate polynomial GCDs were computed in
C either by means of the plain Euclidean algorithm or an asymptotically fast
algorithm).

The authors observed that about 90% of the overall running time of their
solver was spent in univariate GCD computations. They also noted that most of
these GCD calculations were using the plain algorithm since the degrees of the
input polynomials were not large enough for using the FFT-based algorithm.

Table 2. Bivariate system solving over a small prime field: timings in sec

System Pure C Mostly CUDA code SpeedUp

dense-70 5.22 0.50 10.26
dense-80 6.63 0.77 8.59
dense-90 8.39 1.16 7.19
dense-100 19.53 1.80 10.79
dense-110 21.41 2.57 8.33
dense-120 25.71 3.48 7.39
sparse-70 0.89 0.31 2.81
sparse-80 3.64 1.18 3.09
sparse-90 3.13 0.92 3.40
sparse-100 8.86 1.20 7.38

These observations have lead to a CUDA implementation of the plain Eu-
clidean algorithm which is reported in [8]. More recently, the same authors have
put together in a single CUDA application the work reported in [14] and [8], lead-
ing to a bivariate polynomial system solver which is mostly written in CUDA.
Table 2 compares this latter with an implementation of our bivariate system
solver (presented in [14]) entirely written in C. Some of the input systems are
random dense and the others are sparse. The number attached to each system
name is the total degree of each input polynomial. For each system, the total
number of solutions is essentially the square of that degree.

One can see that for a complex application like a polynomial system solver,
a CUDA implementation can provide substantial benefit w.r.t. a pure C imple-
mentation. We should also point out that our CUDA implementation can be
further improved. In particular, the top-level algorithm is still implemented in C
and lots of data transfers are still taking place between the host (CPU) and the
device (GPU). This performance bottleneck can be removed by using the latest
programming model of CUDA.
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Yalçınkaya, Şükrü 53
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