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Abstract. A smart learning environment (SLE) is characterized by the key 
provision of personalized learning experiences. To approach different degrees of 
personalization in online learning, this paper introduces a framework called SCALE 
that tracks finer level learning experiences and translates them into opportunities 
for custom feedback. A prototype version of the SCALE system has been used in 
a study to track the habits of novice programmers. Growth of coding competencies 
of first year engineering students has been captured in a continuous manner. 
Students have been provided with customized feedback to optimize their learning 
path in programming. This paper describes key aspects of our research with the 
SCALE system and highlights results of the study. 
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1. Introduction 

Smart learning could mean customized learning that optimizes learning pathways, 
engages learners in positive interactions and guides instruction in a goal-oriented 
fashion. While the why (optimal learning through customization), where (ubiquitous 
learning interactions), and how (technologies for goal-oriented learning) of smart 
learning environments are rather obvious at a coarser level, the degree of 
customization, the scalability of ubiquity, and the integration of learning-related data 
are still key challenges facing educational technologists. Smart learning 
environments encompass traditional classrooms as well as online and distance 
education. Taking learning anywhere and everywhere in a consistent fashion 
requires technologies that move such as the smart phones supported by 3G and 4G 
networks [4] as well as learning environments that move such as the flipped 
classrooms at homes. To provide context-aware learning, hardware and software 
sensors are necessary to recognize the context and the learning needs of the user to 
tailor learning content and activities. Smart learning environments are expected to be 
highly distributed and cloud-based to accommodate federated and goal-oriented 
study activities. To make a smart learning environment context-aware, technologies 
need to collaborate seamlessly and purposefully in order to recognize the context, 
translate the knowledge of the context in a proper learning recommendation and 
provide learning materials based on that recommendation. [9] provides an 
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interesting description of a context in e-learning: a user's prior knowledge, learning 
style, speed of learning, current activities, goals, available learning time, location 
and interests. In this paper, we will introduce the SCALE system and outline how it 
relates to smart learning environments following a short literature review on SLEs. 
Results of a preliminary study are described afterwards. 

2. Literature Review 

Smart learning environments involve context-awareness. However, context may 
involve almost anything. Different research projects on smart learning environments 
may analyze and focus on different aspects of a context. The precision with which a 
context is defined and recognized by an SLE will influence its overall performance 
significantly. 

computing framework has been developed according to a model called E4S (elastic 
four smarts) to provide smart learning services [2]. This model consists of four basic 
services: pull, prospect, content, and push. The researchers rely on built-in sensors in 
mobile devices to define the user's behavior or environment. The pull service will 
extract the type of content to be delivered to the user. The prospect service is 
responsible for the preparation of the learning content to comply with the user's 
context. The content service generates the content and establishes the connection 
between the server and the target device. Finally, the push service performs the 
synchronized delivery of the generated content to the target device. 

In order for systems to adapt to changes in environments, the Technical 
University of Cluj-Napoca designed a self-adapting algorithm for context-aware 
systems. "The algorithm is characterized by a closed feedback loop with four 
phases: monitoring, analyzing, planning, and execution," [6]. This algorithm uses 
the RAP (Resources, Actions, Policies) context model to programmatically describe 
the sensed environment, a task which is part of the monitoring phase. The analyzing 
phase involves evaluating the changes in the context using the context entropy 
concept in order to determine how much the context follows a predefined set of 
policies. The planning phase explores all the system's states to select the proper 
adaptation action which the system should take to respond to context changes. The 
execution phase implements the adaptation action as defined in the planning phase 
to change the system's state accordingly. 

Zhiwen Yu et al. [9] discuss about a semantic infrastructure, the Semantic 
Learning Space, for context-aware e-learning. The Semantic Learning Space 
"supports semantic knowledge representation, systematic context management, 
interoperable content integration, expressive knowledge query, and adaptive content 
recommendation". [9] recognizes the need to adapt the learning content to the user's 
context which is a challenge distinct from flexible content delivery. It also defines 
the e-learning context as "a user's prior knowledge, learning style, speed of 
learning, current activities, goals, available learning time, location and interests." 
For example, in a smart learning environment, the system will track the knowledge 
gap between the current user's knowledge and the targeted learning outcomes and 
provide the user with the proper learning content to fill that gap taking into account 
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the user's context. In another article, Zhiwen Yu et al. proposed an ontology-based 
approach for semantic content recommendation in order to get one step further 
toward sophisticated context-aware e-learning. The recommender takes into account 
knowledge about the learner, knowledge about content, and knowledge about the 
learning domain in order to offer the right thing to the right person in the right way 
at any time, at any place, and in the right form [10]. The recommender goes through 
the following sequence of steps: semantic relevance calculation, recommendation 
refining, learning path generation, and recommendation augmentation. 

Kosba and his associates have developed the Teacher ADVisor (TADV) 
framework which uses LCMS tracking data to elicit student, group, and class 
models, and using these models help educators gain better understanding of their 
distance students [17]. It uses a set of predefined conditions to recognize situations 

generates an advice for the educator, as well as a recommendation for what is to be 
-to-day activities, 

our approach aims at helping them rethink the quality of the employed learning 
content and learning design. Our approach also helps students share their 
experience, reuse additional learning resources collected by their peers, and get fine-
grained feedback about their progress. 

3. SCALE Framework and Smart Learning 

SCALE is a mixed-initiative learning analytics framework aimed at collecting 
learning traces from any learning domain and analyzing those learning traces to 
extract the underlying competency levels in the same learning domain. The SCALE 
framework has been designed for a full integration with a learning management 
system such as Moodle as well as a suite of automated grading and testing tools such 
as Web-CAT1 to make sensed learning traces reliable and associable to learning 
outcomes. SCALE does not focus as much on the physical context of a student as it 

t (i.e., background knowledge). 
SCALE  layered architecture consists of a sensing layer, an analysis layer, a 

competency layer and a visualization layer. The sensing layer is implemented 
through the Hackystat 2  framework which provides a collection of preset and 
customized sensors embedded in learning analytics tools. The analysis layer consists 
of parsers and analysis tools pertaining to the learning domain. For instance, 

 analysis layer applied in the programming domain will consist of 
compilers and static/dynamic code analysis tools. The output of the analysis will 
then be converted and stored in a comprehensive competency ontology. The 
competency layer will associate competencies with learning outcomes and show the 
evidences that the student is progressing or not toward those learning outcomes. 
Ontologies, implemented using Semantic Web technologies, along with inference 
engines will pave the way towards discovering new patterns and trends in the 
learning styles and learning paths of students. Competency ontologies will hold and 
define the knowledge background of students, a prerequisite to offer customized 

                                                 
1 Web-CAT (http://web-cat.org/group/web-cat) 
2 Hackystat (https://code.google.com/p/hackystat/) 

Smart Learning Analytics 291



learning materials. Finally, the visualization layer will provide a graphical interface 
consisting of a set of visualization and communication tools to play back the 
student's performance, display the student's competencies in relation to the latest 
learning activities, provide an environment where all learning stakeholders (i.e., 
instructors, students, peers, parents, recruiters, etc.) can meet and discuss how to set 
new goals and how to reach them, and give the student the opportunity to comment 
his/her learning to optimize the system's understanding of the student. We have 
designed the framework with a plug-and-play architecture to allow any data-centric 
learning-oriented application to be plugged in to SCALE. 

We aim at making SCALE context-aware in terms of user's prior knowledge, 
regulated learning (self-regulated and co-regulated), learning style, learning 
efficiency, current activities, goals, available learning time, location and interests, as 
partly defined by Zhiwen Yu [9]. Programming is by far one of those easily 
traceable (not necessarily analyzable) domains due to the availability of explicit data 
that identify stepwise progressions made by programmers as they complete their 
coding tasks. In other words, the number of sensing hours spent by the system to 
track and update the learning context of the student may be much greater than in a 
chemistry course (depending on how e-learning is applied to the chemistry field). 
Due to the great number of environments in which Hackystat sensors (one of the 
SCALE cornerstones) may be embedded, the system may have a better 
representation of the user context.  

One important question concerns the degree of ubiquity of SCALE. This may be 
a tricky question to answer. Consider the Java programming domain as an example. 
We have integrated three different programming tools within the SCALE system to 
capture coding related activities of learners  Eclipse IDE sensor, Virtual 
Programming Lab3 (VPL) IDE sensor, and MI-LATTE reflection and regulation 
sensor. The dilemma consists in reducing the physical learning environment to 
certain computing devices due to the specificity of the software to be used as well as 
the competencies that the student must develop to master coding habits and 
competencies. The mastery of the software may even be a learning outcome of the 
course so that the student may become proficient. Eclipse, which is a professional 
integrated development environment, cannot be run on mobile devices. However, in 
the setting of the experiments that will be conducted at Athabasca University and 
Madras Institute of Technology, students will have to work through the assignments 
and many of the programming exercises using Eclipse. On the other side, students 
may install Eclipse and work on as many computers as they wish. We intend to 
make the SCALE framework available everywhere on the planet where an Internet 
connection is available. The SCALE system will guarantee reliable data collection 
through the Hackystat sensors (contributing to context awareness) despite low-speed 
Internet connections and inevitable connectivity issues. On the other side, we have 
other tools which may be accessible through the Web (VPL and MI-LATTE). 
SCALE could offer programming exercises on smart phones through these 
alternative tool technologies. These programming tools will nevertheless support 
only small-scale programming exercises. 

In the future, we plan to provide students with a gamut of recommendations about 
which learning paths to take, which course or career to select, how to prepare for job 

                                                 
3 Virtual Programming Lab (http://vpl.dis.ulpgc.es/) 
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interviews, which students have similar cognitive profiles, and which steps to 
undertake to compete with top-level students. Currently, SCALE provides students 
with minimalist recommendations about the programming concepts that should be 
deepened in order to maximize their success in the upcoming assignments or exams. 
The SCALE framework is a work in progress and will implement more sophisticated 
recommendations as we develop the system further. 

4. Experiment with SCALE Forerunner e-Learning Technologies 

Athabasca University, Canada, and the Madras Institute of Technology (MIT), 
Anna University, India, have conducted an experiment to analyze the introduction of 
tracing-oriented learning technologies among first year engineering courses. The 
traces target enhancement of the student's learning experience and possibly his/her 
performance within a course. The experiment was conducted at the MIT campus in 
the setting of a C programming course among 767 participating students and 10 
professors (one professor per classroom). Students belonging to nine different 
classrooms received traditional lectures while a randomly chosen 10th classroom 
received a traceable online learning environment in Moodle in addition to classroom 
lectures. The e-learning technologies introduced in the course include the Moodle 
learning management system, the Virtual Programming Lab, the Eclipse IDE sensor, 
and CTAT tutors. The CTAT tutors guide students to solve programming exercises 
at a finer level of one line of code at a time. The study content was presented to 
students using a quadrant-based framework [18,19,20,21,22]. The new design 
followed a four-step process: watching, discussing, conceptualizing, and trying out. 
It also provided guidelines to the student as to how to study instead of what to study. 
All of these technologies trace study habits of learners at finer levels of granularity. 
Further, collected data were integrated in a singular framework to associate datasets 
originating from different sensors. 

The objective of this study consists in discovering new trends and examining how 
the student's performance behaves when elements of smart learning environments 
are part of his/her learning experience. Since this experiment did not occur in a 
controlled environment, the reader should note that we will not claim anything from 
the results of this experiment except that we will pay attention to potential patterns 
and confirm them in upcoming experiments which will include more state-of-the-art 
e-learning technologies and a cutting-edge design of the learning process oriented 
toward self-regulated and co-regulated learning. 

The experiment involved 10 different classrooms. Approximately 75 students 
attended each classroom and each classroom had a distinct professor. Classrooms 
were numbered from classroom0 to classroom9. Classroom3 is the classroom of 
interest in this experiment. The performance of classroom3 will be compared to the 
average performance of all the other classrooms. All classrooms teach the same 
course using the same structure. The course consists of three assessments, one 
theory exam, and one practical exam. Assessment1 consisted of theoretical questions 
while Assessment2 and Assessment3 consisted of programming exercises. Hence, 
classroom3's students were not yet exposed to the Virtual Programming Lab tool in 
Assessment1 while they had access to the entire course content in Moodle (in which 
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was implemented the new instructional design). We will analyze or rather observe 
the performance of classroom3 in comparison to the other classrooms at the end of 
the semester. 

Figure 1 displays the average marks for each assessment for both classroom3 and 
the other classrooms. Figure 2 shows the percentages of students who passed the 
assessments. Both figures show that classroom3 seemed to perform less well in the 
first assessment. We elaborate some hypotheses which could partially explain the 
reason(s) why classroom3 got inferior average grade marks. 1) Did it take 
classroom3 students more time to adapt to the new instructional design? 2) Was the 
new instructional design not optimal for theoretical parts? 3) Would the new 
instructional design have been optimal if it had been supported by the proper e-
learning technologies? We will strive to validate/invalidate these hypotheses in 
future experiments in more controlled environments. However, the graphs show that 

  
Fig. 1. Assessment Average Grade Marks Fig. 2. Assessment % Pass 

  
Fig. 3. Exam % Pass Fig. 4. Theory Exam % GPA 

 

 

Fig. 5. Practical Exam % GPA  
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average marks and pass percentages of classroom3 are significantly higher than 
those of the other classrooms in Assessments 2 and 3. We would like to validate if 
classroom3's students started benefitting from the new instructional design and new 
e-learning technologies after Assessment1. 

As for the theory and practical exams, Figure 3 denotes that the percentage of 
students in classroom3 who have passed the theory exam (almost 5% over) is greater 
than the percentage of students in the other classrooms. This observation may 
support the hypothesis that students took more time to adapt to the new instructional 

afterward. As for the practical exam, the percentage of students in the other 
classrooms who passed the practical exam is very slightly great
student pass percentage. However, both classroom3 and the other classrooms 
perform quite well in the practical exam. We may, nevertheless, observe that the 
pass percentage gap between the theory and practical exams is greater in the other 
classrooms. 

Finally, in Figures 4 and 5 we see that fewer students in classroom3 have GPAs 
C, D, or E, and more students in classroom3 get GPAs S, A, and B. Note that the 
order of GPAs from best to worst is S, A, B, C, D, and E. All these are mere 
observations and suggest some trends. More experiments will be conducted in the 
near future in several universities across the world to understand the impact of smart 
learning environments on student performance and to confirm our hypotheses 
following this experiment's results. 

5. Future Work and Conclusion 

SCALE will also incorporate a Causal Learning Analytics (CLEAN) extension to 
determine the causes of various learning-related occurrences. This will include 
among other things identifying the causes of the successes and failures in learning 
outcomes and determining the impact that those factors have on the learning 
outcomes to name a few. Furthermore, SCALE will track the type and sequence of 
programming activities (debugging, compiling, testing, documenting, code writing, 
etc.) typical for every student category (at risk, average, and top students). SCALE 
will also look for the learning approaches and behaviors which are the most 
effective as well as the conceptual causes of student's errors. The CLEAN extension 
will be implemented as a rule-based subsystem using pattern-matching techniques 
(i.e., production rules). In summary, SCALE aims at tracking a student's 
competencies in as much learning activities as possible and at explaining the factors 
contributing to the strengthening of those competencies. 
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