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Abstract. An argument is reinstated when all its defeaters are in turn ultimately
defeated. This is a kind of principle governing most argument systems in AI.
Nevertheless, some criticisms to this principle have been offered in the literature.
Assuming that reinstatement is prima facie acceptable, we analyze some coun-
terexamples in order to identify common causes. As a result, we found that
the problem arises when arguments in a chain of attacks are related by speci-
ficity. We argue that the reason is that non-maximally specific arguments can be
reinstated originating fallacious justifications. Following old intuitions by Carl
Hempel about inductive explanations, we propose a requirement of maximal
specificity on defeasible arguments and introduce “undermining defeaters” which,
in essence, facilitate the rejection of those arguments which do not satisfy the re-
quirement. This ideas are formally defined using the DeLP system for defeasible
logic programming.

1 Introduction: Problems with Argument Reinstatement

Argument reinstatement is at the core of most argument systems, especially those which
can be treated as instances of Dung’s argumentation frameworks ([4]). The intuition is
that an argument should be reinstated when all its possible defeaters are in turn de-
feated outright (cf. [1]). The example below, introduced by Dung as a motivation for
his admissibility semantics, illustrates the rationale of reinstating argument A given
argument C.

Example 1.
A: (Agent 1:) My government cannot negotiate with your government because your
gorvernment doesn’t even recognize my government.
B: (Agent 2:) Your government doesn’t recognize my government either.
C: (Agent 1:) But your government is a terrorist government.
Then accepting that A and B are mutually attacking arguments and that C attacks B
(but not the converse), the reinstatement of A by C makes sense.

On the other hand, other examples suggest that reinstatement cannot be taken as a
general principle:
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Example 2.
A: Tweety flies because it is a bird, and birds tend to fly.
B: Tweety does not fly because it is a penguin, and penguins tend not to fly.
C: Tweety flies because it is a magic penguin, and magic penguins tend to fly.

Horty ([11]) has argued against reinstatement using a similar example. If A and C are
jointly admitted, then a sound conclusion (Tweety flies) could be justified on basis of a
weak reason (that flies because it is a bird). Clearly, a stronger reason is that Tweety has
a skill that specifically magic penguins have. The acceptance of A would be unsound if
the model is intended to offer the best explanation for the conclusion it yields. A would
be acceptable only if all subclasses of birds (including penguins and magic penguins)
are equally plausible to fly; but that is not the case here. The fact that C reinstates A’s
conclusion (which is also C’s own conclusion) cannot be a reason for C to reinstate the
whole argument A, because A does not meet that criterion.

A worse situation arises when the conclusion of the reinstated argument is stronger
than that of the reinstating argument, as in the following case (also introduced by
Horty):

Example 3.
A: Beth is millionaire because he is a Microsoft employee, and they tend to be million-
aire.
B: Beth has less than half a million because he is a new Microsoft employee, and they
tend to have less than half a million.
C: Beth has at least half a million because he is a new Microsoft employee in depart-
ment X , and they have at least half a million.

Here A’s conclusion is stronger than C’s conclusion, in the sense that the last one
is logically implied by the first one but not vice versa; that looks counterintuitive. Ar-
gument A would be reasonably accepted just in case that being millionaire be equally
plausible for any subclass of the class of Microsoft employees.

Curiously, all the counterexamples to reinstatement that we found in the literature
involve arguments that can be compared by specificity. That motivated the present study,
which tries to show that the problem is the way in which specificity is used to establish
defeat rather than a problem of the reinstatement principle.

The specificity criterion has been widely discussed in Philosophy of Science. Hempel
([9]) defended a requirement of maximal specificity as a condition for the acceptance of
probabilistic/inductive-statistical explanations. Early applications of specificity in non-
monotonic reasoning in AI were also aware of the intuition that only maximally specific
explanations should be accepted, so from the argumentative point of view ([16]) as from
the defeasible inheritance networks point of view ([6], [7], [10], [13], [18]). On the other
hand, a specificity-based preference criterion among arguments combined with a reins-
tatement-based warrant procedure was introduced in [19].

Prakken ([17]) argued that reinstatement cannot be applied when statistical reasoning
is at stake because more general arguments (like A in the above example) just cannot be
constructed in a right representation, since the pertinent defaults must be blocked, and
so only the most specific arguments remain; hence –Prakken concludes– the problem
here is not about reinstatement but one of representation. In our opinion, while finding
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general principles of representation could be a hard enterprise, the problem can instead
be solved by finding general conditions under which the arguments can compete and
defeat among them. Accordingly, we will argue that maximally specific arguments “un-
dermine” less specific arguments when their conclusions are not plausible given the
total evidence.

The paper is organized as follows. In section 2 a requirement of maximal specificity
is formally introduced in terms of the defeasible logic programming language DeLP
([8]). Sections 3 and 4 introduce “undermining” defeaters and their role in a skeptical
warrant procedure. Section 5 discuss the view of other authors through more examples,
and our conclusions are offered in section 6.

2 The Requirement of Maximal Secificity in Rule-Based
Argumentation Systems: The Case of DeLP

We introduce here the requirement of maximal specificity as a demarcation criterion for
the acceptance of arguments. As such, it should be used to filter the arguments which
are not maximally specific w.r.t. their conclusions as they can leave room for irrelevant
explanations. We will formally define our criterion in the context of the particular rule-
based argument system DeLP ([8]), where specificity is formally defined as a criterion
for argument comparison.

DeLP is based on a first-order language L that is partitioned in three disjoint sets: a
set of facts, a set of strict rules and a set of defeasible rules. Facts are literals, i.e. ground
atoms (L) or negated ground atoms (∼L, where ‘∼’ represents the classical negation);
facts represent particular knowledge. Both strict and defeasible rules are program rules.
Syntactically, strict rules are sequents of the form L← L1, . . . , Ln and defeasible rules
are sequents of the form L−−<L1, . . . , Ln, where L,L1, . . . , Ln are literals. Strict rules
represent general, non-defeasible knowledge while defeasible rules represent tentative,
defeasible knowledge. A defeasible logic program (de.l.p.) P is a pair (Π,Δ) where
Π is a set partitioned in two subsets ΠF , containing only facts, and ΠG, containing
only strict rules, and Δ is a set of defeasible rules. Given a de.l.p. P = (Π,Δ) we
say that a literal L is a defeasible derivation from Γ in P , in symbols, Γ |∼ PL iff
Γ ⊆ Π ∪ Δ and there exists a sequence of ground (instantiated) literals L1, . . . , Ln

such that Ln = L and for each Li, 1 ≤ i ≤ n, either Li ∈ Γ or there exists either
a strict rule (L ← L1, . . . , Lk) or a defeasible rule (L−−<L1, . . . , Lk) in Γ such that
{L1, . . . , Lk} ⊆ {L1, . . . , Li−1}. If all the rules used in the derivation of A are strict
then we say that L is a strict derivation from Γ , in symbols, Γ �P L. (From now on,
we will write ‘|∼ ’ and ‘�’ instead of ‘|∼ P ’ and ‘�P’, respectively, when the referenced
de.l.p. is obvious.)

Definition 1. (Argument structure ([8])) Given a de.l.p. P = (Π,Δ), an argument
structure (in P) is a pair 〈T, h〉, where T ⊆ Δ and h is a literal (the argument’s
conclusion), and

1. Π ∪ T |∼ h,
2. Π ∪ T � |∼ ⊥,
3. � ∃T ′ (T ′ ⊂ T ∧ Π ∪ T ′|∼ h).
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Definition 2. (Subargument ([8])) An argument structure 〈T, h〉 is a subargument struc-
ture of an argument structure 〈T ′, h′〉 if T ⊆ T ′.

Definition 3. (Strictly more specific ([8])) Let P=(Π,Δ) be a de.l.p. and let F be the
set of all literals that have a defeasible derivation from P . Let 〈T1, h1〉 and 〈T2, h2〉
be two argument structures obtained from P . 〈T1, h1〉 is strictly more specific than
〈T2, h2〉, in symbols, 〈T1, h1〉�spec

〈T2, h2〉 iff
1. for all H ⊆ F , if H ∪ΠG ∪ T1|∼ h1 and H ∪ΠG �� h1 then H ∪ΠG ∪ T2|∼ h2,

(every H that “activates” h1 also ‘activates’ h2), and
2. there exists H ⊆ F such that H ∪ΠG∪T2|∼ h2, H ∪ΠG �� h2 and H ∪ΠG∪T1

� |∼ h1 (some H “activates” h2 but not h1).

Using this same specificity criterion, Poole [16] proposes to choose the most specific
explanations, i.e. those arguments which are maximal with respect to�

spec
. In this way,

Poole leaves no room for reinstatement among arguments compared by specificity. This
criterion is near to what we will propose here, but so stated it can have the effect of
precluding acceptable arguments even when less specific arguments are not in conflict
with the maximally specific ones.

Example 4. Let P = (Π,Δ) be a de.l.p. representing the knowledge that all lapwings
are birds, birds tend to fly, lapwings tend to nest on the ground and Pedro is a lapwing:
Π = { bird(x)←lapwing(x), lapwing(pedro) }
Δ = { flies(x)−−<bird(x), nests_on_the_ground(x)−−<lapwing(x) }
Then we have the argument structures:
A = 〈{flies(pedro)−−<bird(pedro)}, f lies(pedro)〉,
B = 〈{nests_on_the_ground(pedro)−−<lapwing(pedro)},

nests_on_the_ground(pedro)〉
Since B�

spec
A, choosing only the maximal elements of�

spec
precludes the acceptable

argument A and its conclusion flies(pedro).

Indeed, selecting just the maximal elements of �
spec

does not seem to be a good ap-
proach to the requirement of maximal specificity as proposed in Philosophy of Science
for inductive-probabilistic explanations. The intuition in [9] is that what is inferred in a
maximally specific explanation about a class G taking into account the total evidence
must also be inferred about any subclass H of G with the same probability. Though
extrapolating this criterion to defeasible argumentation is difficult since inferences are
not obtained with probability measures, we propose that a maximally specific defeasi-
ble argument about a class G should at least not be contradictory with the defeasible
conclusions obtained about any subclass H of G, considering the total evidence, i.e.
the information represented in Π . In terms of DeLP, this means that maximally specific
arguments should not have “proper defeaters” as these are indicative of “undermining”
evidence.

Definition 4. (Proper defeater ([8])) An argument structure 〈S, j〉 is a proper defeater
of an argument structure 〈T, h〉 if for some sub-argument 〈T ′, h′〉 of 〈T, h〉, 〈S, j〉 �spec

〈T ′, h′〉 and Π ∪ {j, h′} � ⊥. Given a set of argument structures S we also define
defprop(S) =df {(A,B) : A,B ∈ S and A is a proper defeater of B}.
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Definition 5. (Undermining evidence) Given a de.l.p. P = (Π,Δ), a subset F of ΠF

is undermining evidence of an argument structure 〈T, h〉 if F ∪ T ′ ∪ ΠG |∼ h′ for
some proper defeater 〈T ′, h′〉 of 〈T, h〉 (i.e. F “activates” some proper defeater of the
argument).

Note that having a proper defeater is a sufficient condition for having undermining
evidence, though other conditions could be also found (more on this in section 5). Now
we can formally state the property of maximal specificity as follows:

Definition 6. (Maximal Specificity (MS)) Given a de.l.p P , we say that an argument
structure 〈T, h〉 is maximally specific (w.r.t. its conclusion h) in P iff there exists no
undermining evidence of 〈T, h〉 in P .

Requiring MS as a condition for argument warrant implies to reject any argument
structure which has some proper defeater. Note that it does not matter whether proper
defeaters are defeated or not to reject a non-maximally specific argument; that is why
we prefer to highlight the undermining evidence and to use proper defeaters just as a
way for detecting it.

Example 5. (Example 4 revisited) Both A and B satisfy MS, A w.r.t. flies(pedro) and
B w.r.t. nests_on_the_ground(pedro).

Example 6. (De.l.p. for representing Example 3) Let P = (Π,Δ) a de.l.p. such that

Π = { has_at_least_half_a_million(x)←millionaire(x),
ms_employee(x)← new_ms_employee(x),
new_ms_employee(x)← new_ms_employee_dept_x(x),
new_ms_employee_dept_x(beth)}

Δ = {millionaire(x)−−<ms_employee(x),
∼ has_at_least_half_a_million(x)−−<new_ms_employee(x),
has_at_least_half_a_million(x)−−<new_ms_employee_deptX(x)}

Then we have the argument structures:

A = 〈{millionaire(beth)−−<ms_employee(beth)}, millionaire(beth)〉,
B = 〈{∼ has_at_least_half_a_million(beth)−−<new_ms_employee(beth)},

∼ has_at_least_half_a_million(beth)〉,
C = 〈{has_at_least_half_a_million(beth)−−<new_ms_employee_deptX(beth)},

has_at_least_half_a_million(beth)〉.
Then C satisfies MS w.r.t. has_at_least_half_a_million(beth), and neither
A nor B satisfy MS because {new_ms_employee_dept_x(beth)} is undermining ev-
idence for them.

3 Undermining Defeaters

Systems in which arguments interact only through proper defeaters can lead to the ac-
ceptance of non-maximally specific arguments if the warrant procedure satisfies the
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reinstatement principle. But this does not necessarily imply that reinstatement is in-
valid. Those argument systems in which different kinds of defeat are used —including
proper defeaters— can be amended to sanction only maximally specific arguments. Our
proposal is simple and consists in the introduction of “undermining defeaters”, which
are based on the main result derived from the notion of ‘undermining evidence’:

Lemma 1. Let 〈T, h〉 and 〈T ′, h′〉 be two argument structures such that 〈T, h〉 is a
proper defeater of 〈T ′, h′〉. If H is undermining evidence for 〈T, h〉 then H is under-
mining evidence for 〈T ′, h′〉.
Proof. Let 〈T, h〉 be a proper defeater of 〈T ′, h′〉 and let H be undermining evidence
for 〈T, h〉. Then H activates some proper defeater 〈S, j〉 of 〈T, h〉. Since 〈S, j〉 is more
specific than 〈T, h〉, H activates 〈T, h〉. And since 〈T, h〉 is more specific than 〈T ′, h′〉,
H also activates 〈T ′, h′〉. Then, by Definition 5, H is undermining evidence for 〈T ′, h′〉.

��
Definition 7. (Undermining defeater) Given two arguments structures 〈T, h〉 and
〈T ′, h′〉, we say that 〈T, h〉 is an undermining defeater of 〈T ′, h′〉 iff for any subset
of facts F ⊆ ΠF , if F ∪ T ∪ΠG |∼ h then F ∪ S ∪ΠG |∼ j for some proper defeater
〈S, j〉 of 〈T ′, h′〉 (i.e. if F activates 〈T, h〉 then F also activates some proper defeater of
〈T ′, h′〉). We also define defund(S) =df {(A,B) : A,B ∈ S and A is an undermining
defeater of B}.

Undermining defeaters can be viewed as a kind of undercutting defeaters, at least
indirectly, since their acceptance implies the use of total evidence which gives the rea-
son that makes the conclusion of the defeated argument not inferable. They are clearly
not rebutting defeaters since it cuould be the case that the joint acceptance of both an
argument an its undermining defeater does not yield contradiction (for instance, in Ex-
ample 5 argument C is an undermining defeater of argument A, but it is not a rebutting
defeater. See, e.g., [15] for more on the distinction undercutting/rebutting defeater).

Clearly, from Lemma 1 and Definition 7 we have that undermining evidence ‘prop-
agate’ through a chain of proper defeaters.

Lemma 2. Let 〈T, h〉 be a proper defeater of 〈T ′, h′〉. Then for every proper defeater
〈S, j〉 of 〈T, h〉, 〈S, j〉 is an undermining defeater of 〈T ′, h′〉.
Proof. Immediate from Definition 7 and Lemma 1. ��

As a consequence, in cycles of proper defeaters the ensuing undermining defeaters
are indicative of undermining evidence for all the arguments involved in the cycle, in-
cluding themselves (Fig. 1). Finally, the previous lemmata lead immediately to the fol-
lowing equation.

Theorem 1. Let S be any set of argument structures, and defprop(S)tr be the transitive
closure1 of defprop(S). Then defund(S) = defprop(S)

tr.

Proof. Immediate from Lemma 1 and Lemma 2. ��
In the next section, the above result will enable us to think of different ways of repre-
senting the rejection of non-maximally specific arguments.

1 The transitive closure of a binary relation R is the minimal (w.r.t. ⊆) transitive relation R′

such that R ⊆ R′.
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Fig. 1. Argumentation framework (a) with proper defeaters only and (b) with undermining de-
featers

4 Undermining Defeaters and a Warrant Procedure Satisfying
Reinstatement

Non-maximally specific arguments can be rejected through a warrant procedure sat-
isfying reinstatement, which means that reinstatement can be saved from the before
mentioned criticisms as a principle of defeasible argumentation. In DeLP, warrant can
be determined through a dialectical analysis represented by a two-party game, where
a proponent tries to defend an argument and an opponent tries to refute it (we define
this game as in [2]). Given the set Args of all the argument structures that can be
constructed in a de.l.p. P , and once all the defeat relations over Args are established,
argument warrant can be analyzed through a Dung’s style argumentation framework
([4]).

Definition 8. (Argumentation framework associated with a de.l.p.) Given a de.l.p. P ,
the argumentation framework associated with P is the pair (Args, attacks) where
Args is the set of all the argument structures obtained from P and attacks =⋃
DEF (Args), where DEF (Args) = {def1, . . . , defk}, is the set containing ev-

ery defeat criterion defi ⊆ Args × Args (1 ≤ i ≤ n) defined on Args. (We will
assume that defprop(Args) ∈ DEF (Args).)

Definition 9. (Argumentation game) An argumentation game on an argumentation
framework (Args, attacks) is a zero-sum extensive game in which:
1. There are two players, i and −i, who play the roles of P and O, respectively.
2. A history in the game is any sequence A0, A1,A2, . . . , A2k,A2k+1, . . . of choices of
arguments in Args made by the players in the game. A2k corresponds to P and A2k+1

to O, for k = 0, 1, . . .. At any history, A0 is the argument that player P intends to
defend.
3. In a history, the choices by a player i at a level k > 0 are Ci(k) = {A ∈ Args :
(A,Ak−1) ∈ attacks}.
4. A history of finite length K , A0, . . . , AK , is terminal if AK corresponds to player j
(j = i or j = −i) and C−j(K + 1) = ∅.
5. Payoffs are determined at terminal histories: at A0, . . . , AK , P’s payoff is 1 (rep-
resenting winning) if K is even (i.e., O cannot reply to P’s last argument), and −1
(representing loosing) otherwise. In turn, O’s payoff at A0, . . . , AK is 1 if K is odd and
−1 otherwise.
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Definition 10. (Strategy) A strategy for a player i is a function that assigns an element
Al+1 ∈ Ci(l) at each non-terminal history A0, . . . , Al where Al corresponds to player
−i. A strategy of player i is said a winning strategy for i if for every strategy chosen by
−i, the ensuing terminal history yields a payoff 1 for player i.

Definition 11. (Warrant) An argument A is warranted in (Args, attacks) iff P has a
winning strategy to defend A in the game associated to (Args, attacks).

Furthermore, different game protocols can be defined to obtain different behaviors.
Since we are interested here in the refutation of non-maximally specific arguments,
let us see how to do that in systems that incorporate undermining defeaters and in sys-
tems based only in proper defeaters. For the first approach we propose the following
protocol:

(1) The game ends if, at any level k, a player i advances an argument A such that
the argument B moved at level k − 1 by player −i is such that A is an undermining
defeater of B (i wins).

(2) P is not allowed to advance an argument that was already advanced by either
player in the same history.
Rule (1) says that once an undermining defeater is played the game ends (the player
who moved the non-maximally specific argument loses). The purpose of this rule is to
obligate the players to use only maximally specific arguments. Rule (2), in time, ensures
finite, skeptical games. Let us call this protocol PU .

On the other hand, an obvious way to obtain the same behavior in argumentation
frameworks where only proper defeaters are defined is by replacing the first rule as
follows:

(1’) The game ends if, at any level k, a player i advances an argument A such that
the argument B moved at level k − 1 by player −i is such that there exists a sequence
A1, . . . , An where A1 = A, An = B and (Ah, Ah+1) ∈ defprop for every h, 1 ≤ h <
n (i wins).
Let us call this protocol PP . Then Theorem 1 clearly ensures the same behavior under
protocol PU as under protocol PP .

Example 7. Given an argumentation framework (Args, attacks)whereArgs= {A,B,
C, D} and attacks = {(C,D)} ∪ defprop(Args), where defprop(Args) = {(A,B),

Fig. 2. Argumentation framework (a) without and (b) with undermining defeaters



Reinstatement and the Requirement of Maximal Specificity in Argument Systems 89

(B,C)}. Then defund(Args) = {(A,B), (B,C), (A,C)}. Note that while P has win-
ning strategies for defending both A and C in the game associated to (Args, attacks)
in the plain game (i.e. not having any added protocol) (Fig. 2, (a)), P has winning strate-
gies for defending both A and D so in the game associated to (Args, attacks) under
protocolPP as in the game associated to (Args, attacks∪defund) under protocolPU
(Fig. 2, (b)).

5 Discussion

The solution we have proposed here works well, in particular, for the simplest version
of DeLP [19] where the attack relation is defined only in terms of blocking and proper
defeaters. Given a de.l.p. P = (Π,Δ), 〈T, h〉 is a blocking defeater of 〈T ′, h′〉 iff there
exists some sub-argument 〈T ′′, h′′〉 of 〈T ′, h′〉 such that Π ∪ {h, h′′} � ⊥, and 〈T, h〉
and 〈T ′′, h′′〉 are not related by specificity. Define defblock =df {(A,B) : A is a block-
ing defeater of B}. Then defblock is clearly symmetric. Let us now analyze Example 7
in terms of this system. As the attack from C to D is not a case of proper defeater, it
must be a case of blocking defeater. Then, by the symmetry of defblock, D also attacks
C. But note that this does not change the resulting warrant of A and D under protocol
PP . On the other hand, some dubious cases that can arise under other specifications
of the attack relation are avoided in this system. For example, assume that A is a (non-
proper) defeater of B and B is a proper defeater of C. Then it could seem reasonable
the reinstatement of C by A, even when C is not maximally specific. Nevertheless, that
could not happen in DeLP because the assumption that A is a non-proper defeater of
B implies that A and B are blocking defeaters one of each other. Hence, it is easy to
see that the reinstatement of C by A is impossible under protocol PP as P lacks of a
winning strategy for A (O can repeat B to refute A, leaving P out of moves).

Similar examples would suggest that non-maximally specific arguments should be
reinstated anyway. For instance, consider again Example 2 but where argument C is
now: “It cannot be concluded that Tweety is a penguin since it was observed under
deficient sight conditions during a blizzard”. Now C could be seen as an undercutting
defeater of B and B as a proper defeater of A, what would lead to the reinstatement of
the non-maximally specific argument A. But note that the acceptance of C implies the
treatment of ‘Tweety is a penguin’ not as evidence but as a questionable presumption,
hence B should not be treated as a proper defeater of A strictly. Therefore, A is still a
maximally specific argument and its reinstatement seems right.

For other cases where C is a (unidirectional, non-proper) defeater of B and B is a
proper defeater of A, it is not clear whether A should be reinstated or not. Indeed, it is
difficult for us to conceive such an example.

The last example was introduced by Prakken ([17]) to show that, unlike direct rein-
statement, indirect reinstatement is valid. Direct reinstatement is when all three argu-
ments are in conflict on their final conclusions (e.g. Example 2). Indirect reinstatement,
on the other hand, is when the reinstating argument C defeats the ‘middle’ argument
B on one of its intermediary conclusions (e.g. Example 3). But this distinction is not
related to our solution as it does not focus on the kind of defeaters which are involved
and the role of undermining evidence on them, which is the key in the MS property.
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The following example was also introduced by Prakken to argue that reinstatement
depends “on the nature of the domain, the kind of knowledge involved and the context
in which this knowledge is used” ([17]: 93):

Example 8.
A: John will be imprisoned up to 6 years because for theft imprisonment up to 6 years
is acceptable, and John has been found guilty of theft.
B: John will be imprisoned for no more than 3 years because for theft out of poverty
imprisonment of more than 3 years is not acceptable, and evidence shows that John
stole motivated by poverty.
C: John will be imprisoned for more than 4 years because he stole during riots, and for
theft during riots, even when poverty is proved, only imprisonment of more than 4 years
is acceptable.

Prakken argues that the reinstatement of A by C is valid here and leads to accept an
imprisonment between 4 and 6 years. We disagree at this point since anyway, in our
opinion, C is a proper defeater of B and B is a proper defeater of A, hence C is an un-
dermining defeater of A. The total evidence considered in C about a more serious crime
than theft out of poverty leads to put a minimum of 4 years of imprisonment, leaving
the upper limit not established. Indeed, we can imagine even more serious crimes (e.g.
murder) which occurrence together with theft would rise the top above 6 years. Hence
we think that C is the only warranted argument and A should not be reinstated.

Nevertheless, there are still open problems to deal with. Our notion of undermining
defeat is not completely characterized as it lies on a concept of undermining evidence
for which we state sufficient but not necessary conditions. While having a proper de-
feater is a clear sign of an argument’s undermining evidence, in other cases the total ev-
idence should prevent some conclusion without sanctioning the contrary. Horty ([12])
analyses the following example. Assume that a population of ruffed finches, a kind of
birds, is distributed among a couple of islands. Their nests are mostly but not entirely
confined to Green Island, but there is a particular subspecies known as least ruffed
finches whose nests are distributed almost evenly between Green Island and Sand Is-
land. Now, consider a particular individual, Frank, who happens to be a least ruffed
finch. What should we conclude about the location of Frank’s nest? Though this situa-
tion cannot be represented in DeLP because disjunctions cannot occur in the head of a
rule, we can adjust the information to the formalism by considering that Green Island
and Sand Island conform a group of islands, call it ‘Two Islands’, so we can get the
following representation:

Example 9. LetP = (Π,Δ) be a de.l.p. representing the knowledge that all least ruffed
finches are ruffed finches, ruffed finches tend to nest on Green Island, least ruffed
finches tend to nest on Two Islands, nesting on Green Island implies nesting in Two
Islands, and Frank is a least ruffed finch:

Π = { ruffed_finch(x)← least_ruffed_finch(x),
nests_on_TwoIslands(x)← nests_on_GreenIsland(x),
least_ruffed_finch(frank) }
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Δ = { nests_on_GreenIsland(x)−−<ruffed_finch(x),
nests_on_TwoIslands(x) −−< least_ruffed_finch(x) }

Then we have, among others, the argument structures:
A = 〈{nests_on_GreenIsland(frank)−−<ruffed_finch(frank)},

nests_on_GreenIsland(frank)〉
B = 〈{nests_on_TwoIslands(frank) −−<least_ruffed_finch(frank)},

nests_on_TwoIslands(frank)〉
Though B is more specific than A it is not a proper defeater, hence the conclusion
that Frank nests on Green Island is obtained. The formalisms incurs in the fallacy of
exclusion, since the information that Frank is a least ruffed finch is obviated, treating
Frank just as a ruffed finch. To solve the problem, Horty proposes to add a (meta-
level) default expressing that cases of least ruffed finches exclude the application of the
default that connects ruffed finches with nesting on Green Island (a kind of undercutting
defeater). But this solution requires more representation, while we are inclined to less
representation dependence. In our opinion, this must be solved by defining a new kind
of undermining defeater which makes appropriate use of the total evidence, so that
argument B (or the evidence on which B is built) undercuts, in some specified way,
argument A.

More in the line of Horty’s solution, the work by Modgil on hierarchical argumen-
tation ([14]) offers another interesting turn to the problem of reinstatement introducing
arguments for (meta-level) preference criteria. The model develops a form of meta-ar-
gumentation where, for example, if A attacks B is established on basis of a preference
criterion P1, and B attacks A is established on basis of a preference criterion P2, an
argument C supporting the preference of P1 over P2 poses an attack on B attacks A,
A resulting reinstated. Note that, under this view, C is not attacking B but the attack of
B over A. The example of Tweety observed during a blizzard can be interpreted in this
terms assuming that the preference criterion is based on an ordering > on the evidence,
such that bird(tweety) > penguin(tweety). Then, while B is a proper defeater of A,
C expresses a preference of A over B based on >, so that C defends A. Examples
like Example 9, on the other hand, cannot be solved unless, again, a special kind of
undercutting defeater is defined.

This gives rise to the question of what kind of defeaters are undermining defeaters.
We have argued that they qualify as undercutting defeaters. As undermining defeaters
are based on a total-evidence requirement they can be considered a kind of –in Pollock’s
terms– subproperty defeaters, just the same as specificity (i.e. proper) defeaters. And
subproperty defeaters are all undercutting defeaters. Pollock’s words seem to confirm
our opinion:

To the best of my knowledge, there has never been an intuitive example of
specificity defeat presented anywhere in the literature that is not an example of
the operation of the total-evidence requirement in one of these special varieties
of defeasible inference [statistical syllogism, direct inference, various kinds of
legal and deontic reasoning], and the latter are all instances of undercutting
defeat. Accordingly, I will assume that undercutting defeaters and rebutting
defeaters are the only possible kinds of defeaters. ([15]: 236)
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Finally, several principles have been introduced in order to validate the argumen-
tation inference of rule-based argumentation systems, mainly consistency and closure
([3], [5]). A formal analysis of the relationship between maximal specificity and these
principles is planned as future work.

6 Conclusion

The issue of reinstatement as a principle for argument systems was the subject of a
serious criticism ([11]) while its defense (mainly that of [17]) has not been entirely
satisfactory in our opinion. The criticism focuses only cases in which specificity is
the comparison criterion among arguments. We argued here that the problem is that
specificity based argument systems do not incorporate a precise way of defeating all
non-maximally specific arguments. We proposed a formal criterion of maximal speci-
ficity which, in accordance with early researches about inductive explanations ([9]), is
based on the total evidence represented in the knowledge base. Moreover, we intro-
duced undermining defeaters and showed how they enable the warrant of only max-
imally specific arguments in the context of the DeLP system ([8]) defining particular
argumentation game protocols.
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