
On the Value of Variables

Beniamino Accattoli and Claudio Sacerdoti Coen

Department of Computer Science and Engineering,
University of Bologna, Italy

Abstract. Call-by-value and call-by-need λ-calculi are defined using the
distinguished syntactic category of values. In theoretical studies, values
are variables and abstractions. In more practical works, values are usually
defined simply as abstractions. This paper shows that practical values
lead to a more efficient process of substitution—for both call-by-value
and call-by-need—once the usual hypothesis for implementations hold
(terms are closed, reduction does not go under abstraction, and substi-
tution is done in micro steps, replacing one variable occurrence at the
time). Namely, the number of substitution steps becomes linear in the
number of β-redexes, while theoretical values only provide a quadratic
bound.

1 Introduction

The theory and the practice of functional programming languages are sometimes
far apart. For instance, the theory is based on the λ-calculus, where terms may
have free variables, reduction is non-deterministic (but confluent), and can take
place everywhere in the term. In practice—i.e. in the implementation of func-
tional languages—only closed λ-terms are considered, reduction is deterministic,
and weak, i.e. it does not take place under abstraction.

Theoretical and Practical Values. Plotkin’s call-by-value λ-calculus [1] is a the-
oretical object of study introduced to model a concrete case, Landin’s SECD
machine [2]. In such a calculus there is a primitive notion of value and β-redexes
can fire only when the argument is a value. For Plotkin—and for most of the
huge theoretical literature that followed—values are variables and abstractions ;
let us call them theoretical values. However, most call-by-value abstract machines
(or imperative extensions of Plotkin’s calculus [3]) employ a notion of practical
value that includes abstractions and excludes variables. For instance, Paolini and
Ronchi della Rocca’s book [4] on the parametric λ-calculus, a generalization of
Plotkin’s calculus based on a parametric notion of value, requires that the given
notion of value is theoretical (i.e. that it includes variables), while Pierce’s book
[5], driven by programming and implementations, uses practical values. Under
the usual practical hypotheses—terms are closed, reduction does not go under
abstraction—the difference between the two notions of value is not extensionally
observable, as it does not affect the result of evaluation.

In this paper we close the gap between theory and practice, providing a theo-
retical justification for practical values. We show that the difference between the

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 36–50, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On the Value of Variables 37

two notions of value is intensionally observable: the practical variant leads to
a more efficient implementation of substitution, where efficiency is measured in
relation to the number of β-redexes. To state and prove our claim it is necessary
to switch to a refinement of the call-by-value λ-calculus where the usual small-
step semantics is decomposed in a micro-step semantics, in which substitution
acts on a variable occurrence at the time, i.e. with the granularity of abstract
machines (or of that of substructural operational semantics [6]).

The Linear Substitution Calculus. Our framework is the Linear Substitution
Calculus (LSC) [7,8,9], a calculus with explicit substitutions that is in between
theory and practice. It is theoretically well-founded, as it arises from graphical
and logical studies on the λ-calculus (of which it is a refinement), and practically
useful, as it faithfully models most environment-based abstract machines [10],
and—remarkably—the number of evaluation steps in the LSC is a reasonable
measure of the time complexity of a λ-term [8,11]. One of its key features is its
simplicity: it can model an abstract machine using only two rules, correspond-
ing to multiplicative and exponential cut-elimination in linear logic. The first
rule, the multiplicative one �m, deals with β-redexes, replacing them with an
explicit substitution. The second rule, the exponential one �e, replaces a single
occurrence of a variable with the content of its associated explicit substitution,
mimicking the mechanism at work in abstract machines.

Call-by-Name. Call-by-name does not rely on values, or, equivalently, every-
thing, including variables, is a value. Using the call-by-name LSC, in [8] it is
shown that the number of substitutions steps (�e) is quadratic in the number
of β steps (�m). The worst cases, i.e. those reaching the quadratic bound, are
given by sequences where between any two multiplicative steps (corresponding
to β-redexes) there is a chain of substitution steps of length linear in the number
of preceding multiplicative steps.

Call-by-Value. In the call-by-value LSC, if values are theoretical then the chains
of substitution steps at work in call-by-name case are still possible, and so the
bound is quadratic. On the other hand, we show that it is enough to remove
variables from values—therefore switching to practical values—to avoid these
expensive chains and obtain a globally linear relationship between the number
of substitution steps (�e) and the number of β steps (�m). The proof of the
bound is particularly simple and, curiously, it holds only under the assumption
that evaluation terminates.

Call-by-Need. We then deal with call-by-need evaluation, that is usually defined
using practical values [12,13,14,15,16] and that can be modularly expressed in
the LSC. As for call-by-value, theoretical values induce a quadratic bound, while
practical values provide a linear bound. The proof, however, is inherently dif-
ferent. It is technically more involved and it does not require the termination
assumption.

38 B. Accattoli and C. Sacerdoti Coen

New Speed-Up. Summing up, the two contributions of the paper are the lin-
ear bounds for call-by-value and call-by-need. These evaluation strategies are
usually considered to speed up call-by-name evaluation because they reduce re-
dexes in arguments before the arguments are substituted, implementing a form
of sharing. Our results show that they also provide a subtler and deeper speed-up
with respect to call-by-name: there are terms that take the same number k of
β-steps to evaluate to normal form in call-by-name/value, and yet their micro-
step evaluation takes O(k2) steps in call-by-name and O(k) steps in call-by-
value/need.

Justifying Practical Values. One of the motivations of this work is to find a
theoretical justification for practical values, that escape usual argument based
on logic or rewriting. Indeed, while both call-by-value and call-by-need have a
logical foundation in the so-called boring translation of λ-calculus into linear
logic [17,18], such translation wraps both variables and abstractions inside the !
modality—the connective allowing non-linear behaviour—thus enabling the sub-
stitution of both. At the rewriting level, the strategies implemented by abstract
machines can be justified as being standard strategies, in the sense of the stan-
dardization theorem. Now, the strategies with practical values are not standard
in the wider calculi with theoretical values, so that the switch to practical val-
ues cannot be justified that way. Our results provide an alternative explanation,
based on the relative complexity of the substitution process.

Abstract Machines. Let us conclude pointing out a companion paper [10], where
for the LSC calculi considered here and several abstract machines from the lit-
erature, we show that the number of execution steps of the abstract machine is
linear in the number of steps in the calculus. Via that work, our bounds apply
to concrete implementation models.

Related Work. The only similar work we are aware of is Dal Lago and Mar-
tini’s [19], where it is shown that evaluation in the call-by-value λ-calculus (cor-
responding to our �m) and evaluation in a related graph-rewriting formalism
(playing the role of the LSC, and accounting for �m and �e) are linearly re-
lated (and so �e is linear in �m). They do not discuss the difference between
theoretical and practical values, however they employ practical values at the
graphical level, exactly as our results prescribe.

2 Call-by-Name Analysis

Terms and Contexts. The language of the linear substitution calculus, that will
be shared by all the calculi treated in the paper, is generated by the following
grammar:

t, u, w, r ::= x | λx.t | tu | t[x�u]

On the Value of Variables 39

The constructor t[x�u] is called an explicit substitution (of u for x in t). Both λx.t
and t[x�u] bind x in t, with the usual notion of α-equivalence and of free/bound
variable (occurrence).

An initial term is a closed term (i.e. without free variables) with no explicit
substitutions.

The operational semantics is defined using contexts, i.e. terms with one occur-
rence of the hole 〈·〉, an additional constant. For call-by-name (shortened CBN),
evaluation contexts are defined by the following grammar:

H ::= 〈·〉 | Ht | H [x�t]

The plugging H〈t〉 (resp. H〈H ′〉) of a term t (resp. context H ′) in a context
H is defined as 〈t〉 := t (resp. 〈H ′〉 := H ′), (Ht)〈u〉 := H〈u〉t (resp. (Ht)〈H ′〉 :=
H〈H ′〉t), and so on. Substitution contexts are defined by L ::= 〈·〉 | L[x�t].

Rewriting Rules. As usual, the rewriting rules are obtained by first defining the
rewriting rules at top level, and then taking their closure by evaluation contexts.
A peculiar aspect of the LSC is that contexts are also used to define the rules
at top level. Such a use of contexts is how locality on proof nets (the graphical
language for linear logic proofs) is reflected on terms. For CBN, the rewriting
relation is �:=�m ∪ �e, where �m and �e are given by:

Rule at Top Level Contextual Closure
L〈λx.t〉u �→m L〈t[x�u]〉 H〈t〉 �m H〈u〉 iff t �→m u

H〈x〉[x�u] �→e H〈u〉[x�u] H〈t〉 �e H〈u〉 iff t �→e u

We silently work modulo α-equivalence to avoid variable capture in the rewriting
rules, and in �→e we assume that the context H does not capture the variable x
nor the free variables of u.

In the literature, � is known as weak linear head reduction. The rule �m,
turning (generalized) β-redexes into explicit substitutions, corresponds to the
multiplicative case of cut-elimination in proof nets, while �e, implementing
substitution in micro steps, corresponds to the exponential case.

Exponential vs Multiplicative Analysis. For CBN, the relationship between �m

and �e is already well-known from the literature [8,11]. Given a derivation
d : t �∗ u let us note |d|e and |d|m the number of exponential and multiplicative
steps, respectively. Then:

Theorem 1 (Quadratic Bound [8]). Let d : t �∗ u be a CBN derivation
from an initial term t. Then |d|e = O(|d|2m) (and so |d| = O(|d|2m)).

In [11] this result is generalized and its proof is axiomatized. In fact, it holds
for any strategy having the two following abstract properties of � (using the
notation of the theorem):

1. Trace: the number |u|[] of explicit substitutions in u is exactly |d|m.
2. Syntactic Bound : the length of a sequence of �e steps from u is ≤ |u|[].

40 B. Accattoli and C. Sacerdoti Coen

Their proof for � can be found in [8] or—in a more general form—in [11]. Then
the bound can be proved easily.

Proof. Note that �m terminates, as the number of constructors decreases. The
syntactic bound property gives termination of �e. Then d has the shape:

t = w1 �a1
m r1 �b1

e w2 �a2
m r2 �b2

e . . . wk �ak
m rk �bk

e u.

By the syntactic bound property, we obtain bi ≤ |ri|[]. By the trace property

we obtain |ri|[] =
∑i

j=1 aj , and so bi ≤
∑i

j=1 aj . Then:

|d|e =
∑k

i=1 bi ≤
∑k

i=1

∑i
j=1 aj .

Note that
∑i

j=1 aj ≤
∑k

j=1 aj = |d|m and k ≤ |d|m. So

|d|e ≤ ∑k
i=1

∑i
j=1 aj ≤

∑k
i=1 |d|m ≤ |d|2m. �	

The bound is tight, as it is reached for instance by δδ (where δ = λx.(xx)).
In particular, its evaluation has subsequences of variable renamings of the form:

(xnxn)[xn�xn−1] . . . [x2�x1][x1�δ] �e

(xn−1xn)[xn�xn−1] . . . [x2�x1][x1�δ] �e

. . .
(x1xn)[xn�xn−1] . . . [x2�x1][x1�δ] �e

(δxn)[xn�xn−1] . . . [x2�x1][x1�δ] �m

(xn+1xn+1)[xn+1�xn][xn�xn−1] . . . [x2�x1][x1�δ] �e . . .

(1)

where it takes n renaming steps to obtain a multiplicative redex, that in turn
generates a new sequence of n + 1 renamings, and so on. In other words, these
sequences meet the bound in the syntactic bound property.

Let us point out that the bound is reached also by some normalizing terms.
Consider ττn where τ = λx.λn.(n(λy.y)(xx)) and n is any Scott’s numeral [20],
defined by [[0]] = λx.λy.x and [[n + 1]] = λx.λy.y[[n]]. Evaluating the term takes
(n+ 1)(n+ 4)/2 exponential steps but only 4(n+ 1) multiplicative steps.

The trace and syntactic bound properties can be proved also for call-by-value
and call-by-need variants of the calculus, obtaining a quadratic bound. But the
next sections will show that for the variants of these strategies that employ
practical values a finer analysis is possible, leading to a linear bound. These two
results are new, and surprising in various ways:

1. Variables : for the linear bound it is crucial that values do not include vari-
ables. For instance, if variables are values δδ has exactly the same reductions
in the three evaluation scheme considered, matching the quadratic bound.
What is surprising is that it is enough to remove variables from values to
decrease the asymptotic complexity of substitution.

2. New Speed-Up: the terms of the form ττn mentioned before take the same
number k of β-steps to evaluate to normal form in call-by-name and call-by-
value, and yet their micro-step evaluation takes O(k2) steps in call-by-name
and O(k) steps in call-by-value.

On the Value of Variables 41

3. Linear Logic: from a linear logic perspective the bound is quite unexpected.
The exponentials (i.e. the substitutions), responsible for duplications, are
expected to capture most of the computing time, while the multiplicatives
are somehow negligible in terms of cost. One may suspect that the number of
steps is not a good complexity measure, as substitution may be very costly
to implement. But it is not the case here, as our exponential steps can be
implemented in time linear in the size of the initial term (because of the
properties of the micro-step evaluation strategy we consider), and can thus
be taken as a realistic measure of complexity, see [8,11].

3 Call-by-Value Analysis

For call-by-value (CBV), the underlying language is the same as for call-by-name,
but we distinguish (practical) values, noted v, that are given only by abstractions,
and answers L〈v〉, given by a value in a substitution context (see Sect. 2).
Evaluation contexts for CBV, implementing left-to-right CBV, are defined as:

V ::= 〈·〉 | V t | L〈v〉V | V [x�t]

In CBV, it can be easily shown that a closed term either diverges or produces
an answer (but this property will not play a role in our analysis), and moreover
the definiens of substitutions are also answers.

Rewriting Rules. We re-define �m and �e as follows:

Rule at Top Level Contextual closure
L〈λx.t〉L′〈v〉 �→m L〈t[x�L′〈v〉]〉 V 〈t〉 �m V 〈u〉 iff t �→m u
V 〈x〉[x�L〈v〉] �→e L〈V 〈v〉[x�v]〉 V 〈t〉 �e V 〈u〉 iff t �→e u

As for call-by-name, we silently work modulo α-equivalence and in �→e the
context V does not capture x nor the free variables of v. We also still use the
notation �:=�m ∪ �e.

Let us revisit the δδ example of Sect. 2, used to show that the quadratic
bound is strict for CBN. Using CBV and theoretical values one obtains the
same evaluation sequence. Practical values, instead, give:

δδ �m (x1x1)[x1�δ] �e

(δx1)[x1�δ] �e

(δδ)[x1�δ] �m

(x2x2)[x2�δ][x1�δ] �e

(δx2)[x2�δ][x1�δ] �e

(δδ)[x2�δ][x1�δ] �m

(x3x3)[x3�δ][x2�δ][x1�δ] �e . . .

(2)

Where it is easily seen that for any d : δδ �∗ t we have the linear relation-
ship |d|e ≤ 2 · |d|m. This fact suggests that any CBV derivation d verifies
|d|e = O(|d|m). Curiously, this is not true in general. In particular, in CBV

42 B. Accattoli and C. Sacerdoti Coen

a chain of substitution steps can be arbitrarily longer than the number of pre-
vious multiplicative steps. Let us give an example. Let tn stay for t applied to
itself n times, associating to the right, i.e. tn := t(t(t(t . . .))) n times, and set
I := λy.y. We have

(λx.xn)I �m x
n[x�I] �n

e In

So n substitution steps �e after just one multiplicative step �m. It seems even
worse than in CBN, while instead, globally, it is a faster mechanism, of a different
nature (note that the steps in the sequence are independent, i.e. they are not
generated by chains of substitutions occurring one in the other as in CBN).
The idea is that the substituted values create or will create new multiplicative
redexes, so that if we keep reducing the term we will match the substitution
steps in excess (if evaluation terminates, as in the example) and obtain a linear
relationship between the two. The point is that in CBV the linear bound holds
only for evaluation to normal form, otherwise the gap between |d|e and |d|m can
be arbitrarily big.

Exponential vs Multiplicative Analysis. We first need some easy invariants.

Lemma 1 (CBV Invariants). Let t be initial and d : t �∗ u.

1. Subterm: every value in u is a value in t;
2. Trace: the number |u|[] of explicit substitutions in u is exactly |d|m;
3. Proper: every substitution in u contains an answer.

Proof. Easy inductions on the length of d. Point 1 is used to prove Point 2. �	
Let us provide an intuition for the forthcoming proof of the linear bound. An

exponential step makes a new copy of a value that will be eventually consumed by
a multiplicative step, unless the term is divergent. A multiplicative step consumes
the value in its left subterm. Therefore it is possible to bound the number of
exponential steps with the number of consumed values (that is the number of
multiplicative steps) plus the number of values in the term, what we call the
value size of the term.

Definition 1 (Value Size). The value size | · |λ of a term counts the number
of values that are not inside another value. It is defined recursively as follows:
|x|λ = 0, |v|λ = 1, |t[x�u]|λ = |t|λ + |u|λ, |tu|λ = |t|λ + |u|λ.

In just one surprisingly simple lemma we obtain the main invariant relat-
ing �e, �m, and the value size. The corollary uses the previous invariants to
instantiate it in the terminating case, obtaining the linear bound.

Lemma 2 (Main Invariant). Let d : t �n u. Then |d|e ≤ |d|m + |u|λ − |t|λ.
Proof. By induction over n. Case n = 0 is obvious. Otherwise t � w and
e : w �n−1 u and, by inductive hypothesis, |e|e ≤ |e|m + |u|λ − |w|λ. Cases:

On the Value of Variables 43

– the first step is exponential. Then

t = V 〈V ′〈x〉[x�L〈v〉]〉 �e V 〈L〈V ′〈v〉[x�v]〉〉 = w

and |w|λ = |t|λ + 1. Thus

|d|e = |e|e + 1 ≤i.h. |e|m + |u|λ − |w|λ + 1
= |d|m + |u|λ − (|t|λ + 1) + 1 = |d|m + |u|λ − |t|λ

– the first step is multiplicative. Then

t = V 〈L〈λx.r〉L′〈v〉〉 �m V 〈L〈r[x�L′〈v〉]〉〉 = w

and |w|λ = |t|λ − 1 + |r|λ. Thus
|d|e = |e|e ≤i.h. |e|m + |u|λ − |w|λ

= |d|m − 1 + |u|λ − (|t|λ − 1 + |r|λ)
= |d|m + |u|λ − |t|λ − |r|λ ≤ |d|m + |u|λ − |t|λ �	

Corollary 1 (Linear Bound for CBV). Let t be initial and d : t �∗ L〈v〉.
Then |d|e ≤ 2·|d|m + 1.

Proof. By the proper invariant every substitution contains a value plus some
substitutions, each one recursively having the same shape, so |L〈v〉|λ = |L〈v〉|[]+
1, where 1 accounts for the value v. By the trace invariant |L〈v〉|[] = |d|m, and
so |L〈v〉|λ ≤ |d|m+1. Then the main invariant gives: |d|e ≤ |d|m+|L〈v〉|λ−|t|λ ≤
|d|m + |L〈v〉|λ ≤ |d|m + |d|m + 1 = 2 · |d|m + 1. �	
Invariance of the CEK machine. Our result on CBV has an implicit by-product.
In [19] it is shown that Plotkin’s calculus, whose steps can be identified with our
�m steps, is invariant, i.e. polynomially related to models like Turing machines
or random access machines, see the introduction of [11] for a presentation of
the topic. Then, our result implies that the CBV LSC is invariant. In [10] it is
shown that the CEK abstract machine [21] is linearly related to the CBV LSC.
Therefore, the CEK is invariant. Such a result—albeit expected—is new.

Right-to-Left CBV. In this section we studied left-to-right CBV. The dual right-
to-left strategy can be obtained by simply redefining the grammar of evaluation
context as

V ::= 〈·〉 | V L〈v〉 | tV | V [x�t]

Our proof for the bound with practical values holds unchanged also for the
right-to-left strategy. However, it is unclear how right-to-left CBV behaves with
theoretical values, as the typical quadratic example for theoretical left-to-right
CBV, given by δδ, is linear when evaluated with theoretical right-to-left CBV:

δδ �m (x1x1)[x1�δ] �e

(x1δ)[x1�δ] �e

(δδ)[x1�δ] �m

(x2x2)[x2�δ][x1�δ] �e

(x2δ)[x2�δ][x1�δ] �e

(δδ)[x2�δ][x1�δ] �m

(x3x3)[x3�δ][x2�δ][x1�δ] �e . . .

(3)

44 B. Accattoli and C. Sacerdoti Coen

Note indeed that this is essentially the same evaluation as in (2). We do not
know if for theoretical right-to-left CBV �m and �e are linearly related. We
believe so, but the two proof techniques developed in this paper do not apply.

4 Call-by-Need Analysis

For call-by-need (CBNeed), the analysis is different and technically more in-
volved. At first sight, CBNeed is very similar to call-by-name: the length of
substitution sequences is bounded by the number |d|m of multiplicative steps
previously performed, and the bound is easily reached. There is however a fun-
damental difference. While in CBN any substitution sequence can have length
|d|m, in CBNeed it is the concatenation of all chains that is bound by (twice)
|d|m. As for call-by-value, there is a matching, or consumption phenomenon: fir-
ing a substitution chain of length k consumes k preceding multiplicative steps,
decreasing the bound for the chains to come (note that in CBV multiplicative
steps consume exponential steps, while here it is the other way around). More
precisely, the chains are bound by the number of unevaluated substitutions rather
than by the number of preceding multiplicative steps, according to the following
scheme, that can be seen as a simple form of amortized analysis:

1. every multiplicative step produces an unevaluated substitution;
2. the first time an unevaluated substitution substitutes somewhere it changes

status and becomes evaluated ;
3. chains of substitution steps are bound by the number of unevaluated substi-

tutions, that is always ≤ |d|m and only globally equal to |d|m.

Our proof will use a calculus enriched with labels on substitutions, to explicitly
trace unevaluated substitutions. The labels will have no effect on the dynamics
of the calculus, and are only meant as an aid for the proof.

The CBNeed Calculus. For the sake of clarity, we start by introducing the cal-
culus, and then we start over introducing its labeled version. Terms, values, and
answers are defined as before. CBNeed evaluation contexts are defined by:

N ::= 〈·〉 | Nt | N [x�t] | N ′〈x〉[x�N]

Note that CBNeed evaluation contexts extend the weak head contexts for call-
by-name with a clause (N ′〈x〉[x�N]) that turns them into hereditarily weak head
contexts. This new clause is how sharing will be implemented by the strategy
�:=�m ∪ �e defined by:

Rule at Top Level Contextual closure
L〈λx.t〉u �→m L〈t[x�u]〉 N〈t〉 �m N〈u〉 iff t �→m u

N〈x〉[x�L〈v〉] �→e L〈N〈v〉[x�v]〉 N〈t〉 �e N〈u〉 iff t �→e u

The multiplicative rule is taken from the CBN calculus. Therefore the definiens
of a substitution is not necessarily an answer. The exponential rule come instead
from the CBV calculus, and requires arguments to be evaluated to answers before
being substituted, reflecting the by need content of the strategy.

On the Value of Variables 45

Now that the calculus is defined, let us evaluate again δδ. Using CBNeed
and theoretical values it would evaluate exactly in the same way as for CBN.
Practical values, instead, give:

δδ �m (x1x1)[x1�δ] �e

(δx1)[x1�δ] �m

(x2x2)[x2�x1][x1�δ] �e

(x2x2)[x2�δ][x1�δ] �e

(δx2)[x2�δ][x1�δ] �m

(x3x3)[x3�x2][x2�δ][x1�δ] �e

(x3x3)[x3�δ][x2�δ][x1�δ] �e

(δx3)[x3�δ][x2�δ][x1�δ] �m . . .

(4)

Where it is easily seen that for any d : δδ �∗ t we have |d|e ≤ 2 · |d|m. We
are going to show that—in contrast to CBV—this bound holds for any CBNeed
derivation, i.e. the derivation does not need to end on a normal form.

The labeled CBNeed Calculus. The labeled language is:

t, u, w, r ::= x | v | tu | t[x�u]◦ | t[x�u]•; v ::= λx.t;

A white substitution t[x�u]◦ represents an unevaluated substitution, that has
never substituted its content yet. A black substitution t[x�u]• instead is an
already evaluated substitution, i.e. one that has already acted on some variable
occurrence. An invariant of evaluation will be that black substitutions contain
values. We use t[x�u]∗ for t[x�u]◦ or t[x�u]•. Of course, we need to redefine
also substitution and evaluation contexts, duplicating the cases for substitution:

L ::= 〈·〉 | L[x�t]◦ | L[x�t]•;
N,M ::= 〈·〉 | Nt | N [x�t]◦ | N [x�t]• | N〈x〉[x�N]◦ | N〈x〉[x�N]•.

According to the informal semantics, the rewriting rules are:

Rule at Top Level Contextual closure
L〈λx.t〉u �→m L〈t[x�u]◦〉 N〈t〉 �m N〈u〉 iff t �→m u

N〈x〉[x�L〈v〉]◦ �→e◦ L〈N〈v〉[x�v]•〉 N〈t〉 →e◦ N〈u〉 iff t �→e◦ u
N〈x〉[x�L〈v〉]• �→e• L〈N〈v〉[x�v]•〉 N〈t〉 →e• N〈u〉 iff t �→e• u

The rewriting relation is �:=�m ∪ →e◦ ∪ →e•. Let →e∗ stay for →e◦ or
→e•. A term is black-proper if every black substitution contains a value.

Lemma 3 (Invariants). Let t be a λ-term and d : t �∗ u.

1. Subterm: every value in u is a value in t.
2. Black-Proper: u is black-proper.

Proof. By induction on the length k of t �k u. �	
Since the reduction rules only duplicate values, we obtain that every dupli-

cated subterm along a �-execution is a subterm of the initial term.

46 B. Accattoli and C. Sacerdoti Coen

Multiplicative vs Exponential Analysis. Essentially, we prove two facts that refine
the abstract properties providing the quadratic bound for CBN.We use |t|◦ for the
number of white substitutions in t and |d|e◦ for the number of →e◦ steps in d.

Lemma 4 (White Trace). Let t be initial and d : t �∗ u. Then |u|◦ =
|d|m − |d|e◦.

Proof. By induction on the length k of d.

1. Base case, i.e. k = 0. Then |u|◦ = 0 because t is a λ-term (it has no explicit
substitution) and |d|◦ = |d|e◦ = 0, so the statement holds.

2. Inductive case, i.e. k > 0. Then t �k−1 w � u and let e be the derivation
t �k−1 w. By i.h., |w|◦ = |e|m − |e|e◦. Cases of w � u:

(a) w �m u. The step creates a new white substitution and does not du-
plicate/erase any other white substitution, so |u|◦ = |w|◦ + 1. Since
|d|m = |e|m + 1 and |d|e◦ = |e|e◦, the statement holds.

(b) w →e◦ u. By the subterm property (Lemma 3.1) the copied value has
no substitution, so we have |u|◦ = |w|◦ − 1. Since |d|m = |e|m and
|d|e◦ = |e|e◦ + 1, the statement holds.

(c) w →e• u. By the subterm property the copied value has no substitution,
so |u|◦ = |w|◦. Since |d|m = |e|m and |d|e◦ = |e|e◦, the statement holds.

�	
By means of an omitted lemma (Lemma 6, page 48, in the appendix) we

obtain the following bounds on substitution sequences.

Lemma 5. Let t be an initial term and t �∗ u.

1. Black Constant Bound: If u →e∗→e∗ w then the second step is not black.
2. White Syntactic Bound: If u →k

e◦ w then k ≤ |u|◦.
The first point states that sequences of →e• steps are degenerated, as they

have at most length one, and can only appear after multiplicative steps. The
second point is a refined version of the syntactic bound for CBN (see Sect. 2).

Proof. The first point is given by the omitted Lemma 6.4. The second point is
by induction on k. If k = 0 the statement trivially holds. If u →e◦ r →k−1

e◦ w
by the subterm property (Lemma 3.1) the substitution step does not duplicate
any substitution and turns exactly one white substitution into a black one. So,
|r|◦ = |u|◦ − 1. By i.h. we obtain k − 1 ≤ |u|◦ − 1 and so k ≤ |u|◦. �	

Theorem 2 (Linear Bound for CBNeed). Let t be initial and d : t �∗ u.
Then |d|e ≤ 2 · |d|m.

Proof. Given that �m is evidently terminating, and according to Lemma 5, d

writes uniquely as (where →(1)
e• means 0 or 1 steps of →e•):

t = t1 �a1
m w1 →(1)

e• u1 →b1
e◦ t2 . . . tk �ak

m wk →(1)
e• uk →bk

e◦ u

On the Value of Variables 47

Clearly |d|e• ≤ |d|m. Since |d|e = |d|e◦ + |d|e•, we are left to show that |d|e◦ ≤
|d|m. Let di : t �∗ wi be the prefix of d ending on wi (including aj and bj for

j < i, plus ai, but not bi). Note that defining b0 := 0 we obtain |di|e◦ =
∑i−1

j=0 bj
for i ∈ {1, . . . , k}. Now we can easily estimate the generic term bi and conclude:

bi ≤Lemma 5 |ui|◦ =Lemma 4 |di|m − |di|e◦ = |di|m −∑i−1
j=0 bj

|d|e◦ =
∑k

i=0 bi = bk+
∑k−1

i=0 bi ≤ |dk|m−∑k−1
j=0 bj +

∑k−1
i=0 bi = |dk|m = |d|m �	

On the Need of Labels. In fact, labels are not strictly necessary. It is possible to
prove a linear relationship on the original CBNeed calculus, and the proof, along
the same lines, is also slightly simpler (the role of white substitutions is played
by those substitution whose content is a term of the form L〈x〉). The price to
pay however is that such an alternative analysis provides only a laxer—despite
always linear—bound, as the multiplicative constant is higher (3 instead of 2).
We preferred to use labels because the analysis they provide is tight, as it is
shown by the δδ example, that reaches the bound given by Theorem 2.

Let us conclude with a comment. The call-by-need LSC can be seen as a vari-
ant of Chang and Felleisen’s calculus [15], that is a λ-calculus without explicit
substitutions implementing call-by-need by micro-step evaluation and only one
contextual rewriting rule. The result we just obtained shows that a syntax hav-
ing an explicit constructor for substitutions may provide insights that are not
accessible using the traditional syntax of λ-calculus.

Acknowledgements. To Pablo Barenbaum, for discussions and help with some
technical details.

References

1. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

2. Landin, P.J.: The Mechanical Evaluation of Expressions. The Computer Jour-
nal 6(4), 308–320 (1964)

3. Crank, E., Felleisen, M.: Parameter-passing and the lambda calculus. In: POPL,
pp. 233–244 (1991)

4. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus. Springer, Heidel-
berg (2004)

5. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
6. Pfenning, F., Simmons, R.J.: Substructural operational semantics as ordered logic

programming. In: LICS, pp. 101–110 (2009)
7. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: RTA,

pp. 6–21 (2012)
8. Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head

reduction. In: RTA, pp. 22–37 (2012)
9. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization

theorem. In: POPL, pp. 659–670 (2014)

48 B. Accattoli and C. Sacerdoti Coen

10. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP
2014 (accepted, 2014)

11. Accattoli, B., Dal Lago, U.: Beta Reduction is Invariant, Indeed. In: LICS/CSL
2014 (accepted, 2014)

12. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL, pp. 144–154
(1993)

13. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Pro-
gram. 7(3), 265–301 (1997)

14. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

15. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl,
H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 128–147.
Springer, Heidelberg (2012)

16. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation.
In: PPDP, pp. 97–108 (2013)

17. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
18. Accattoli, B.: Proof nets and the call-by-value lambda-calculus. In: LSFA, pp. 11–

26 (2012)
19. Dal Lago, U., Martini, S.: On constructor rewrite systems and the lambda-calculus.

In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 163–174. Springer, Heidelberg
(2009)

20. Wadsworth, C.P.: Some unusual λ-calculus numeral systems. In: Seldin, J., Hindley,
J. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Academic Press (1980)

21. Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine, and the
lambda-calculus. In: 3rd Working Conference on the Formal Description of Pro-
gramming Concepts (August 1986)

Proofs Appendix

Lemma 6. Let N be a call-by-need context.

1. If N〈x〉 = M〈y〉 with x not bound by N and y not bound by M , then N = M
and x = y.

2. A term of the form N〈x〉, with x not bound by N , is not of the form M〈v〉.
3. Suppose N〈x0〉 is black-proper for some variable x0, and N〈v〉 →e∗ t. Then

the step is not →e•.
4. If t →e∗→e∗ u then the second step is not black.

Proof.

1. By induction on N .
(a) Empty context, i.e. N = 〈·〉: then M must be 〈·〉 and x = y.
(b) Left of an application, i.e. N = N ′ t: suppose N ′〈x〉 t is of the formM〈y〉.

Then N ′〈x〉 must be of the form M ′〈y〉, with M = M ′ t, and we conclude
by i.h..

(c) Left of a white or black substitution, i.e. N = N ′[z�t]∗: suppose the
N〈x〉 = N ′〈x〉[z�t]∗ is also of the formM〈y〉. There are two possibilities:

On the Value of Variables 49

i. The hole of M is on the left of the substitution. That is, M =
M ′[z�t]∗ and N ′〈x〉 = M ′〈y〉. We conclude by i.h..

ii. The hole of M is inside the substitution. Then it must be that M =
M ′〈z〉[z�M ′′]∗. It follows N ′〈x〉 = M ′〈z〉, with z not bound by M ′.
By i.h., we conclude x = z, which is absurd since x is not bound by
N . Hence this case is impossible.

(d) Inside a white or black substitution, i.e. N = N ′〈z〉[z�N ′′]∗: suppose
that N〈x〉 = N ′〈z〉[z�N ′′〈x〉]∗ is also of the form M〈y〉. As in the pre-
vious case, there are two possibilities:
i. The hole of M is on the left of the substitution. That is, M =

M ′[z�t]∗. In particular, we must have N ′〈z〉 = M ′〈y〉 with z now
not bound by N ′. By i.h., we conclude y = z which is absurd. Hence
this case is impossible.

ii. The hole of M is inside the substitution. That is, M=M ′〈z〉[z�M ′′]∗.
Hence we have that N ′〈z〉[z�N ′′〈x〉]∗ = M ′〈z〉[z�M ′′〈y〉]∗. On one
hand, this implies N ′〈z〉 = M ′〈z〉 with z now free on both sides,
which by i.h. gives us N ′ = M ′. On the other, we obtain that
N ′′〈x〉 = M ′′〈y〉, that lets us conclude by resorting again to the
i.h..

2. By induction on N .
(a) Empty context, i.e. N = 〈·〉: a variable cannot be of the form M〈v〉.
(b) Left of an application, i.e. N = N ′ t: suppose N〈x〉 = N ′〈x〉 t is also

of the form M〈v〉. Then N ′〈x〉 must be of the form M ′〈v〉, which is
impossible by i.h..

(c) Left of a white or black substitution, i.e. N = N ′[z�t]∗: suppose that
N〈x〉 = N ′〈x〉[z�t]∗ is also of the formM〈v〉. There are two possibilities:
i. The hole of M is on the left of the substitution. That is, M =

M ′[z�t]∗ and N ′〈x〉 = M ′〈v〉. This is impossible by i.h..
ii. The hole of M is inside the substitution. That is, M=M ′〈z〉[z�M ′′]∗.

It follows that N ′〈x〉 = M ′〈z〉, with z not bound by M ′. By point
1 of this lemma, we conclude x = z, which is absurd since x is not
bound by N . Hence this case is impossible.

(d) Inside a white or black substitution, i.e. N = N ′〈z〉[z�N ′′]∗: suppose
that N〈x〉 = N ′〈z〉[z�N ′′〈x〉]∗ is also of the form M〈v〉. There are two
possibilities:
i. The hole of M is on the left of the substitution. That is, M =

M ′[z�t]∗. In particular, we must have N ′〈z〉 = M ′〈v〉 with z now
not bound by N ′. By i.h., this is impossible.

ii. The hole of M is inside the substitution.That is,M=M ′〈z〉[z�M ′′]∗.
Hence we have that N ′〈z〉[z�N ′′〈x〉]∗ = M ′〈z〉[z�M ′′〈v〉]∗. From
this we obtain that N ′′〈x〉 = M ′′〈v〉 that is impossible by i.h..

3. By induction on N .
(a) Empty context, i.e. N = 〈·〉: trivial, since v is a normal form.
(b) Left of an application, i.e. N = N ′ u: any →e• redex in N ′〈v〉u must be

internal to N ′〈v〉, and we conclude this is impossible by i.h..
(c) Left of a white or black substitution, i.e. N = N ′[x�u]∗: so N〈v〉 is a

substitution N ′〈v〉[x�u]∗. There are three possibilities for a →e• step:

50 B. Accattoli and C. Sacerdoti Coen

i. The →e• step takes place on the left of the substitution, i.e. internal
to N ′〈v〉. This is impossible by i.h..

ii. The →e• step takes place inside the substitution. It must then be
that N ′〈v〉 is of the form M ′〈x〉. By point 2 of this lemma, this is
impossible.

iii. The →e• step is at the root. In this case the substitution is black.
Suppose N ′〈v〉[x�u]• �→e• t. Then N ′〈v〉 must be of the form M ′〈x〉,
which is impossible by point 2 of this lemma.

(d) Inside a white or black substitution, i.e. N = N ′〈x〉[x�N ′′]∗: so N〈v〉 is
N ′〈x〉[x�N ′′〈v〉]∗. There are three possibilities for a →e• step:
i. The →e• step takes place on the left of the substitution. i.e. internal

to N ′〈x〉. This means N ′〈x〉 can be written as M〈M ′〈y〉[y�u]•〉.
Since the term is black-proper, u must be a value v′. Note also that
M ′′ := M〈M ′〈y〉[y�〈·〉]•〉 is a call-by-need context. Then N ′〈x〉 can
be written as of the form M ′′〈v′〉. This is impossible by point 2 of
this lemma.

ii. The →e• step takes place inside the substitution. i.e. internal to
N ′′〈v〉. This is impossible by i.h..

iii. The →e• step is at the root. In this situation the substitution is black.
SinceN ′〈x〉[x�N ′′〈v〉]• is black-proper by hypothesis, we knowN ′′〈v〉
must be a value, which implies that N ′′ = 〈·〉. By hypothesis we also
know that N〈x0〉 = N ′〈x〉[x�N ′′〈x0〉]• = N ′〈x〉[x�x0]

• is black-
proper for some variable x0. This is absurd, as the term is supposed to
be black-proper but the black substitution contains a variable. Hence
this case is impossible.

4. Let t = N ′〈N〈x〉[x�L〈v〉]∗〉 →e∗ N ′〈L〈N〈v〉[x�v]•〉〉 →e∗ u. By induction
on N ′. Cases:
(a) Empty context, i.e. N ′ = 〈·〉 and

t = N〈x〉[x�L〈v〉]∗ →e∗ L〈N〈v〉[x�v]•〉 →e∗ u

It is easily seen that L〈N〈v〉[x�v]•〉 →e∗ u because there exists w s.t.
N〈v〉[x�v]• →e∗ w and L〈w〉 = u (variables bound by L can only occur
in v and evaluation contexts do not go under abstractions). Then we are
in the hypotheses of Point 3, that allows to conclude.

(b) Left of an application, i.e. N ′ = N ′′ u: then any →e∗ redex in
N ′′〈L〈N〈v〉[x�v]•〉〉u is internal to the left subterm, and we conclude
using the i.h..

(c) Left of a white or black substitution, i.e. N ′ = N ′′[y�w]∗. Note that the
second step cannot be an action of the substitution [y�w]∗, because its
left term is N ′′〈L〈N〈v〉[x�v]•〉〉 — i.e. a value in a CBNeed context —
and by Point 2 it cannot be of the form N ′′′〈y〉. Then the second step
takes place in the left subterm and we conclude by the i.h..

(d) Inside a white or black substitution, i.e. N ′ = N ′′〈x〉[x�N ′′′]∗. Note
that [x�N ′′′]∗ is necessarily white, as reduction took place inside it. If
the second substitution step takes place inside N ′′′ we conclude by the
i.h.. Otherwise, the step is an action of [x�N ′′′]◦, that is a white step.

	On the Value of Variables
	1 Introduction
	2 Call-by-Name Analysis
	3 Call-by-Value Analysis
	4 Call-by-Need Analysis
	References
	Proofs Appendix

