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Preface

This volume contains the papers presented at the 21st Workshop on Logic,
Language, Information and Computation (WoLLIC 2014) held during Septem-
ber 1–4, 2014, at the Department of Informatics, Universidad Técnica Federico
Santa Maria in Valparaiso, Chile.

The WoLLIC series of workshops started in 1994 with the aim of fostering
interdisciplinary research in pure and applied logic. The idea is to have a forum
that is large enough for the number of possible interactions between logic and
the sciences related to information and computation, and yet is small enough to
allow for concrete and useful interaction among participants.

There were 34 submissions of which five were withdrawn. Each of the re-
maining 29 submissions was reviewed by at least three Program Committee
(PC) members who were assisted by 25 external reviewers. The committee de-
cided to accept 15 papers. We very much like to thank all PC members and
external reviewers for the work they put into reviewing the submissions. The
help provided by the EasyChair system created by Andrei Vorokonkov is hardly
to be overestimated.

The program also included six invited lectures by Verónica Becher (Univer-
sidad de Buenos Aires), Juha Kontinen (University of Helsinki), Aarne Ranta
(University of Gothenburg), Kazushige Terui (Kyoto University), Luca Vigano
(King’s College London), and Thomas Wilke (Christian-Albrechts-Universität
zu Kiel).

We would like to thank the entire Organizing Committee (Anjolina G. de
Oliveira, Juan Reutter, and Cristian Riveros) for making WoLLIC 2014 a suc-
cess. Finally, we would like to acknowledge the generous financial support pro-
vided by NIC (Chile) and the Pontificia Universidad Católica de Chile as well as
the scientific sponsorship of the following organizations: Interest Group in Pure
and Applied Logics (IGPL), The Association for Logic, Language and Informa-
tion (FoLLI), Association for Symbolic Logic (ASL), European Association for
Theoretical Computer Science (EATCS), European Association for Computer
Science Logic (EACSL), Sociedade Brasileira de Computação (SBC), and So-
ciedade Brasileira de Lógica (SBL).

By the time this volume was to be delivered to the publishers, we heard
the sad news of the passing away of Prof Grigory Mints (Stanford University).
Grisha, as he was usually known by colleagues and students alike, was an en-
thusiastic and very active member of WoLLIC community, having also acted in
past instances of the meeting as an invited speaker, member of steering commit-
tee, member of Programme Committee, chair of Programme Committee, guest
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editor of proceedings as well as of a special issue, and chair of the organizing
committee. Grisha will be missed for all his intellectual and personal leadership
qualities. This volume is dedicated to his memory.

May 2014 Ulrich Kohlenbach
Pablo Barceló

Ruy de Queiroz
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On Normal Numbers

Verónica Becher

Universidad de Buenos Aires and CONICET
Argentina

vbecher@dc.uba.ar

Normality is a basic form of randomness. A real number is simply normal to a
given base if each digit occurs in the expansion with the same limit frequency.
A real number is normal to a given base if each block of digits of equal length
occurs in the expansion with the same limit frequency. And a real is absolutely
normal if it is normal to all bases. This definition was introduced by Émile Borel
more than one hundred years ago, but still not much is known about normal
numbers. One of the famous open problems is whether the usual mathematical
constants, as π, e and

√
2, are simply normal to any base.

In this talk I will summarize some recent results on normal numbers that
answer the following questions:

• How does simple normality (respectively normality) to one base relates to
simple normality (respectively normality) to other bases?

• How does normality relates to compressibility on different automata?
• How can we efficiently compute the expansion of absolutely normal numbers?
• How can we construct absolutely normal Liouville numbers?

The proofs integrate logical, combinatorial and number-theoretic tools.

This research has been done partly with Yann Bugeaud, Olivier Carton, Pablo
Heiber and Theodore Slaman.



Dependence Logic

Juha Kontinen

University of Helsinki, Department of Mathematics and Statistics, Finland

juha.kontinen@helsinki.fi

Abstract. Dependence logic, introduced by Jouko Väänänen in 2007,
is a new logic incorporating the concept of dependence into first-order
logic. In the past few years, the team semantics of dependence logic has
grown into a new framework in which various notions of dependence and
independence can be formalized and studied. We review recent results
on dependence logic and its applications.



Syntax and Semantics for Translation

Aarne Ranta

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract. Translation is expected to preserve the semantics of the source
text and produce correct syntax in the target language. Obvious as this
is for human translators, machine translation usually involves shortcuts
that compromise both of these requirements. In this talk, we will take
a look at what is needed to fulfil them. In particular, we will see how
formal grammars should be written in order to help translation preserve
semantics. The syntax and semantics that result are in many ways differ-
ent from grammars that are written in a monolingual perspective. The
question has its roots in the old ideas of a Universal Grammar, and has
in modern times been suggested by Curry. Translation-oriented gram-
mars were put to use in the Rosetta system at Philips in the 1980’s, and
are used today in the Grammatical Framework (GF). This talk will start
from the basic concepts of syntax, semantics, and translation, and end
up discussing some recent developments in GF.

References

1. Angelov, K., Bringert, B., Ranta, A.: Speech-enabled hybrid multilingual transla-
tion for mobile devices. In: EACL 2014, System Demonstration, pp. 41–44 (2014)

2. Curry, H.B.: Some logical aspects of grammatical structure. In: Jakobson, R. (ed.)
Structure of Language and its Mathematical Aspects: Proceedings of the Twelfth
Symposium in Applied Mathematics, pp. 56–68. American Mathematical Society
(1961)

3. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

4. Ranta, A.: Machine Translation and Type Theory. In: Dybjer, P., Lindströom, S.,
Palmgren, E., Sundholm, G. (eds.) Epistemology versus Ontology. Essays on the
Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf, pp.
281–312. Springer, Heidelberg (2012)

5. Rosetta, M.T.: Compositional Translation. Springer, Heidelberg (1994)



Intersection Types for Normalization

and Verification

Kazushige Terui

RIMS, Kyoto University,

Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

One of the basic principles in typed lambda calculi is that typable lambda terms
are normalizable. Since the converse direction does not hold for simply typed
lambda calculus, people have been studying its extensions. This gave birth to
the intersection type systems, that exactly characterize various classes of lambda
terms, such as strongly/weakly normalizable terms and solvable ones (see e.g.
[6] for a survey).

There is another, more recent trend: intersection types are not only useful
for extending simple types but also for refining them [4]. One thus obtains finer
information on simply typed terms by assigning intersection types. This in par-
ticular leads to the concept of normalization by typing, that turns out to be quite
efficient in some situations [5]. Moreover, intersection types are invariant under
βη-equivalence (when assigned to simply typed terms), so that they constitute
a denotational semantics (the Scott model of linear logic [1]), that provides a
seemingly more direct interpretation of lambda terms than the traditional filter
model. Finally, intersection types also work in an infinitary setting, where terms
may represent infinite trees and types play the role of automata. This leads to
a model checking framework for higher order recursion schemes via intersection
types [2, 3].

The purpose of this talk is to outline the recent development of intersec-
tion types described above. In particular, we explain how an efficient evaluation
algorithm is obtained by combining normalization by typing, β-reduction and
Krivine’s abstract machine, to result in the following complexity characteriza-
tion. Consider simply typed lambda terms of boolean type o → o → o and of
order r. Then the problem of deciding whether a given term evaluates to “true”
is complete for n-EXPTIME if r = 2n+ 2, and complete for n-EXPSPACE if
r = 2n+ 3 [5].

References

1. Ehrhard, T.: Collapsing non-idempotent intersection types. In: Proceedings of 26th
CSL, pp. 259–273 (2012)

2. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of 36th POPL, pp. 416–428 (2009)
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3. Kobayashi, N., Luke Ong, C.-H.: A type system equivalent to the modal mu-
calculus model checking of higher-order recursion schemes. In: Proceedings of 24th
LICS, pp. 179–188 (2009)

4. Salvati, S.: On the membership problem for non-linear abstract categorial gram-
mars. Journal of Logic, Language and Information 19(2), 163–183 (2010)

5. Terui, K.: Semantic evaluation, intersection types and complexity of simply typed
lambda calculus. In: Proceedings of 23rd RTA, pp. 323–338 (2012)

6. van Bakel, S.: Intersection type assignment systems. Theoretical Computer Sci-
ence 151(2), 385–435 (1995)



Backward Deterministic Büchi Automata

Thomas Wilke∗

Department of Computer Science, Kiel University

thomas.wilke@email.uni-kiel.de

Finite words are symmetric: they have a first and a last letter. Opposed to this,
ω-words are not symmetric: they have a first letter, but no last letter. This is
why forward and backward deterministic finite-state ω-automata are fundamen-
tally different. For instance, a theorem by Olivier Carton and Max Michel [1]
states that for every regular ω-language there exists a reverse deterministic Büchi
automaton recognizing this language, whereas this is not true for ordinary for-
ward deterministic Büchi automata. The talk gives an overview of the theory of
backward deterministic ω-automata, focusing on Büchi automata.

Reference

1. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci.
297(1-3), 37–81 (2003)

* Work supported by DFG.



Quantum State Transformations and

Branching Distributed Temporal Logic*

Luca Viganò1, Marco Volpe2, and Margherita Zorzi2

1 Department of Informatics, King’s College London, UK
2 Dipartimento di Informatica, Università di Verona, Italy

Abstract. The Distributed Temporal Logic DTL allows one to reason
about temporal properties of a distributed system from the local point of
view of the system’s agents, which are assumed to execute independently
and to interact by means of event sharing. In this paper, we introduce
the Quantum Branching Distributed Temporal Logic QBDTL, a variant
of DTL able to represent quantum state transformations in an abstract,
qualitative way. In QBDTL, each agent represents a distinct quantum bit
(the unit of quantum information theory), which evolves bymeans of quan-
tum transformations and possibly interacts with other agents, and n-ary
quantumoperators act as communication/synchronization points between
agents. We endow QBDTL with a DTL-style semantics, which fits the in-
trinsically distributed nature of quantum computing, we formalize a la-
beled deduction system for QBDTL, and we prove the soundness of this
deduction system with respect to the given semantics. Finally, we discuss
possible extensions of our system in order to reason about entanglement
phenomena.

* The work presented in this paper was partially supported by the EU FP7 Marie Curie
PIRSES-GA-2012-318986 project “GeTFun: Generalizing Truth-Functionality”.
Part of this work was carried out while Luca Viganò was at the Dipartimento di
Informatica, Università di Verona, Italy.
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Quantum State Transformations
and Branching Distributed Temporal Logic�

(Invited Paper)

Luca Viganò1, Marco Volpe2, and Margherita Zorzi2

1 Department of Informatics, King’s College London, UK
2 Dipartimento di Informatica, Università di Verona, Italy

Abstract. The Distributed Temporal Logic DTL allows one to reason about tem-
poral properties of a distributed system from the local point of view of the sys-
tem’s agents, which are assumed to execute independently and to interact by means
of event sharing. In this paper, we introduce the Quantum Branching Distributed
Temporal Logic QBDTL, a variant of DTL able to represent quantum state trans-
formations in an abstract, qualitative way. In QBDTL, each agent represents a
distinct quantum bit (the unit of quantum information theory), which evolves by
means of quantum transformations and possibly interacts with other agents, and
n-ary quantum operators act as communication/synchronization points between
agents. We endow QBDTL with a DTL-style semantics, which fits the intrinsi-
cally distributed nature of quantum computing, we formalize a labeled deduction
system for QBDTL, and we prove the soundness of this deduction system with re-
spect to the given semantics. Finally, we discuss possible extensions of our system
in order to reason about entanglement phenomena.

1 Introduction

Background and Motivation. The Distributed Temporal Logic DTL [12, 5, 6] allows
one to reason about temporal properties of a distributed system from the local point of
view of the system’s agents: each asynchronous agent executes independently, evolves
linearly along a time-line built upon some local events, and can interact with the other
agents by means of event sharing. Distribution is implicit and properties of an entire
system are formulated in terms of the local properties of the system’s agents and their
interaction. DTL’s semantics was inspired by a conflict-free version of Winskel’s event
structures (see, e.g., [26]), enriched with information about sequential agents.

DTL has been initially proposed as a logic for specifying and reasoning about dis-
tributed information [12], but it has also been used in the context of security protocol
analysis to reason about the interplay between protocol models and security proper-
ties [6]. In this paper, we show that, after a proper extension of the logic’s syntax and
semantics, DTL is also able to formally model quantum state transformations in an
abstract, qualitative way.

� The work presented in this paper was partially supported by the EU FP7 Marie Curie PIRSES-
GA-2012-318986 project “GeTFun: Generalizing Truth-Functionality”. Part of this work was
carried out while Luca Viganò was at the Dipartimento di Informatica, Università di Verona,
Italy.

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 1–19, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 L. Viganò, M. Volpe, and M. Zorzi

Quantum computing is one of the most promising research fields of computer sci-
ence as well as a concrete future technology (see [22] for a useful introduction to the
basic notions of quantum computing as we here only very briefly summarize the no-
tions that are relevant to our work in this paper). However, at least from the point of
view of theoretical computer science, a number of foundational aspects are still under-
developed: quantum complexity, quantum computability, quantum programming the-
ory (and its logical account), quantum cryptography and security are all active but open
research areas, which still require the development of ad hoc formal methods. These
issues are complex to face since the physical model quantum computing is based on
is sophisticated and all basic definitions and formal tools have to be reformulated in a
non-standard way.

To illustrate this, and our contributions in this paper, in more detail, let us focus our
attention on quantum data, in particular on the unit of quantum information, the quantum
bit or qubit, for short. The qubit is the quantum counterpart of the classical bit and,
mathematically, it is simply a normalized vector of the Hilbert Space C2. Qubits can
assume both classical values 0 and 1 (as the classical bit) and all their superpositional
values, i.e., linear combinations such asα|0〉+β|1〉, whereα, β ∈ C are called amplitudes,
|α|2 + |β|2 = 1 and |c〉, for c ∈ {0, 1}, is the so called Dirac Notation, which is simply a
denotation of basis states (which corresponds to the classical values a bit can assume).

Intuitively, whereas a classical bit can only be 0 or 1, a quantum bit can assume both
the value 0 and the value 1 (with a certain associated probability) at the same time. It is
possible to modify a quantum bit in two ways:

– by means of a suitable class of algebraic operators called unitary transformations
(that are also called quantum gates and are a class of algebraic operators enjoying
some good properties, which represent the pure quantum computational steps) or

– by measuring it, i.e., probabilistically reducing it to 0 or 1.

In this paper, we deal only with unitary transformations, leaving measurement for future
work.

The definition of a qubit can, of course, be generalized: a quantum register or quan-
tum state is the representation of a system of n qubits (mathematically, it is a normalized
vector of the Hilbert spaceC2n

). As for the single qubit, a quantum state can be modified
by means of unitary algebraic operators.

Abstracting from any notion of control and considering only pure quantum transfor-
mations (i.e., unitary evolution of quantum states as computational steps), it seems to
be interesting to provide a logical account of such a computation. The question then is:
what is a logical approach suitable to represent quantum state evolution?

Contributions. The main contribution of this paper is the formalization of a logic and
of an associated deduction system that allows one to formally represent and reason
about unitary transformations of quantum states from a temporal multi-agent system
perspective. More specifically, we view our contributions as two-fold.

First, we define the Quantum Branching Distributed Temporal Logic QBDTL, a sig-
nificant variant of DTL that we introduce here to represent quantum state transforma-
tions in an abstract, qualitative way. In QBDTL, we abstract from the value of the qubits:
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we are not interested in encoding into our system syntactical and semantical informa-
tion about amplitudes or basis values 0 and 1 (in this way, we avoid any quantitative
information) and we focus instead on the way qubits evolve by means of unitary trans-
formations. Following DTL’s central notion, in QBDTL we do not only consider glob-
ally quantum states but also, and in particular, the single unit of information, i.e., we
maintain the local perspective of the qubit in the quantum computation.

In other words, in QBDTL each agent represents a distinct qubit, which is the ob-
ject/subject of computation and which evolves in time by means of quantum transfor-
mations and possibly interacts with other agents/qubits.

There is a crucial difference between our QBDTL and the original DTL formulation.
DTL is based on linear time life-cycles for agents. In QBDTL, we go beyond linearity
and consider branching time since we want to be as general as possible: at each step
of the temporal evolution of an agent/qubit, the accessibility relation between worlds in
the subtended Kripke-style model aims to capture each possible unitary transformation
that can be applied to the qubit. A world (a state in the temporal life-cycle of an agent)
represents (an abstraction of) a 1-qubit quantum state. n-ary quantum operators, which
act simultaneously on more than one qubit (such as control operators, which play a cru-
cial role in quantum computing), act as communication/synchronization points between
agents/qubits.

Second, we give a deduction system N(QBDTL) for QBDTL. In order to deal with
all the semantical notions—temporal, quantum and synchronization information—, we
follow the style of labeled deduction [15, 24, 25], a framework for giving uniform pre-
sentations of different non-classical logics, where labels allow one to explicitly encode
in the syntax additional information, of a semantic or proof-theoretical nature, that is
otherwise implicit in the logic one wants to capture.

In addition to the works on DTL, and in particular the labeled tableaux system given
in [5], our starting points for N(QBDTL) are the labeled natural deduction system for
the logic UB (i.e., the until-free fragment of CTL) given in [10] and the approach de-
veloped in [19, 20], where a labeled modal deduction system with specific modalities
able to describe quantum state transformations is given. Fittingly, in N(QBDTL), we
consider composed labels (i, x, q) that represent an agent/qubit i, a time instant x, and
the quantum information q in the underlying semantics. A further class of labels is used
to represent paths in the life-cycles of the agents.

The rules of N(QBDTL) can then be divided into rules that formalize the local tem-
poral evolution of an agent/qubit, and synchronization rules that are, in a sense, global
as they lift the reasoning from the local perspective of the agent to the distributed per-
spective induced by agent’s synchronizations.

It is important to observe that our QBDTL is not a quantum logic. Since the work
of Birkhoff and von Neumann [9], various logics have been investigated as a means to
formalize reasoning about propositions taking into account the principles of quantum
theory, e.g., [11]. In general, it is possible to view quantum logic as a logical axiom-
atization of quantum theory, which provides an adequate foundation for a theory of
reversible quantum processes, e.g., [21, 1–4, 13, 14]. Research has focused also on au-
tomated reasoning (e.g., model checking for quantum systems as considered in [16])
and on formal analysis of quantum protocols (e.g., [18]). Our work moves from quite
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a different point of view, which, to reiterate, is the wish to provide a deduction system
able to represent and reason about unitary transformations of quantum states from a
temporal multi-agent system perspective and, as will become clear below, thereby pro-
vide a basis to reason about other, more complex properties of quantum states such as
entanglement.

Organization. After a preliminary discussion about aims and motivations of our ap-
proach (Section 2), in Section 3 we introduce the logic QBDTL and a DTL-style seman-
tics. In Section 4 we define the natural deduction system N(QBDTL), providing some
example derivations, and in Section 5 we state and prove the Soundness Theorem (of
N(QBDTL) with respect to the semantics). Section 6 is devoted to discussions about
our ongoing and future works.

2 Why Branching Temporal Logic and Synchronization?

In this section, we describe how it is possible to use temporal logic and synchronization
rules (the core of the DTL approach) to reason in a simple way about quantum state
transformations, whenever one is not interested in the encoding of the mathematical
object that represents a quantum state (i.e., a vector in a suitable Hilbert Space) but in
the evolution itself as a sequence of transformations and in a notion of synchronization
between different quantum bits.

Modal logics are a flexible instrument to describe qualitatively state transformations
as they allow one to put the emphasis on the underlying “transition system”—the set
of possible worlds of the Kripke semantics and the properties of the accessibility rela-
tions between them, which model the dynamical behavior of the system—rather than
on the concrete meaning of the internal structures of possible worlds. This intuition was
followed in [19, 20], where two pure modal systems were introduced and studied. In
such systems, a world represents the abstraction of a quantum state and modal operators
reflect general properties of quantum state transformations, since the subtended models
are S5-models. The accessibility relation between worlds is therefore an equivalence re-
lation, i.e., it enjoys reflexivity, symmetry and transitivity. This captures, in an abstract
way, key properties of unary quantum operators: roughly speaking, reflexivity says that
the class of the unitary operators includes the identity transformation; symmetry cap-
tures reversibility (it is always possible to reverse a quantum transformation, since the
inverse operator is easily definable and is unitary); finally, transitivity models algebraic
compositionality, i.e., the composition of two or more unitary operators is always a
unitary operator [22].

The main difference between the modal systems proposed in [19, 20] and QBDTL
is that whereas in the former case a world represents the abstraction of an arbitrary
quantum state (i.e., a state that describes an arbitrary number n of qubits), in the case
of QBDTL we focus on the single qubit and on its transformation by means of unary
quantum operators and on a notion of local formula built upon a local language. More-
over, we move from a modal to a temporal system: in some sense we “unfold” the
accessibility relation between worlds obtaining, for each agent, a tree-like structure that
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represents the agent’s local life-cycle. In this way, we “link” the subtended branch-
ing temporal model to the abstract transition system induced by all the unary quantum
transformations possibly occurring in each world, which are uniformly modeled in the
semantics and in the deduction system by an equivalence relation. Reflexivity, symme-
try and transitivity can be plainly expressed in QBDTL: for example, symmetry can be
abstractly captured by the labeled formula (i, x, q) : p ⊃ ∃�∃�p, where p is a proposi-
tional symbol, ⊃ is implication and ∃�A expresses that the formula A is true at the next
time instant in some possible future.

A licit question at this stage is what is the meaning of the set of propositional symbols
QBDTL formulas are built upon. We maintain an abstract definition of the set (we sim-
ply say that is a set of syntactic objects), following the style of DTL and also in the spirit
of modal/temporal logic as we discussed above. Then, working with labeled expressions
like (i, x, q) : A, where the formula A is built by temporal operators, synchronization and
propositional symbols, it is not actually crucial to say what propositional symbols stand
for.1 Still, it is important to consider what modal/temporal formulas, possible worlds
and the accessibility relation stand for.

One could even choose to instantiate the set of propositional symbols to capture
quantitative information about quantum states or general properties that permit one to
reason about them. We provide here a simple example (partially related to the examples
that we will provide later in Fig. 5). A possible choice is to fix a set of atomic propo-
sitions representing mathematical descriptions of the qubit, i.e., a normalized vector
in C2. In other words, given a qubit a = α|0〉 + β|1〉, the encoding �a� of this mathe-
matical description is an atomic proposition. Let si stand for a label (i, x, q), take p as
�a� and consider the labeled formula si : p ⊃ ∃�p (whose derivation will be given in
Fig. 5 and where ∃�p expresses that p is true at every time instant in some possible
future). This labeled formula can be intuitively interpreted as follows: a (potentially in-
finite) sequence of identity unitary transformations does not change the mathematical
description of the qubit.

Let p still be the encoding �a� of a state a = α|0〉 + β|1〉 and let us consider again
the labeled formula (i, x, q) : p ⊃ ∃�∃�p, which fits a peculiar feature of quantum
computation, i.e., reversibility. This labeled formula says that: if p holds for i in some
state x, then there exists a temporal path such that, in two steps, i reaches a new state
in which p still holds (i.e., the mathematical description of such a state is again α|0〉 +
β|1〉). This models the fact that if one transforms a qubit state by means of a unitary
operator U, then one can obtain again the same state by applying the adjoint U∗ of
U, where, in the class of unitary operators, the adjoint corresponds to the inverse U−1,
and algebraically, one has U∗(U(α|0〉 + β|1〉)) = U(U∗(α|0〉 + β|1〉)) = α|0〉 + β|1〉, i.e.,
U∗U = UU∗ = I, where I is the identity operator. Looking for a concrete example, we

can take α = 1√
3

and β =
√

2√
3

and instantiate U to X, the complementation gate, which
corresponds to an exchange between amplitudes of basis states. Among the temporal
states reachable from x there exists, in particular, the successor state in which p and

∃�p hold, where p = �
√

2√
3
|0〉 + 1√

3
|1〉�.

1 In analogy, note, e.g., that temporal logics developed to deal with concurrent systems do not
possess any concurrent feature.
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In quantum computing it is useful to compose small states in order to obtain bigger
quantum states (this operation has a precise algebraic meaning, see [22]). Collecting
agents, one can model quantum systems of n qubits. In some sense, we can see a quan-
tum state of n qubits as a global state built upon the local states of the single qubits.
Each qubit evolves independently but, in a realistic perspective, different qubits do not
always evolve asynchronously, and so sometimes they interact, by means of n-ary quan-
tum gates. This is modeled, in our system, by means of ad hoc “tools”, properly adapted
from DTL: by a special construct in the local language (an operator c© named calling), it
is possible to express the fact that an agent/qubit i synchronizes with another agent/qubit
j. This choice has a precise quantum meaning. In quantum computing, one can of course
globally modify a set of n qubits by means of n-ary algebraic operators. We view n-ary
quantum gates as synchronization points between states of different life-cycles, i.e., be-
tween states of different qubits. The inputs of an n-ary quantum gate may each have
previously been subject to a sequence of other transformations, i.e., in DTL terms, a
sequence of events, and the gate itself then can be seen as a transformation event that is
shared by the inputs. In this paper, we model this synchronization mechanism abstractly
(since, as we said, we model unitary transformations by an equivalence relation), but
it is possible to plan a concrete research direction based on the further development of
this interpretation of n-ary gates as synchronization mechanisms. See Section 6 for a
more detailed discussion of our ongoing and future works.

3 The Logic QBDTL

We introduce the Quantum Branching Distributed Temporal Logic QBDTL by present-
ing its syntax and semantics.

3.1 Syntax

Given a finite set Id = {i, j, . . .} of agent identifiers and a set Prop = {p, p1, p2, . . .}
of atomic propositions (which characterize the current local states of the agents), we
define the local language of an agent i ∈ Id by the following grammar:

Li ::= p | ⊥ | Li ⊃ Li | ∃�Li | ∃�Li | ∀�Li | c© jL j ,

where p ∈ Prop and j ∈ Id with i � j. Local formulas, as their names suggest, hold
locally for the different agents. ⊥ is falsum and ⊃ is implication. As in DTL, the com-
munication formula c© j A means that agent i has just communicated (i.e., synchronized)
with agent j, for whom A holds. We follow here the Peircean branching temporal logic
UB [7] and only consider the temporal operators that are obtained as a combination
of one single linear-time operator immediately preceded by one single path quantifier.
More specifically, we consider here the Peircean operators

– ∃� (as we noted previously, ∃�A expresses that the formula A in the scope of this
operator is true at the next time instant in some possible future),

– ∃� (“it is true at every time instant in some possible future”) and
– ∀� (“it is true at every time instant in every possible future”).
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For simplicity, in this work we do not consider the temporal operator until, although
such an extension would not be problematic. Moreover, as usual, other connectives and
temporal operators can be defined as abbreviations.

The global language of QBDTL is defined by the grammar:

L ::= @i1Li1 | . . . | @inLin ,

where i1, . . . , in ∈ Id. The global formula @ik A means that A holds for agent ik.

3.2 Semantics

The models of QBDTL are inspired by those of DTL and built upon a form of Winskel’s
event structures (cf. [26], where also the relationship to other concurrency models is
discussed). There is, however, a fundamental difference with respect to the semantics
that has (actually, with respect to the slightly different semantics that in the literature
have) been given for DTL, which is based on distributed families of linear life-cycles
local to each agent, i.e., countable, discrete and totally ordered local events. Since our
logic QBDTL is inherently branching, we need to define its semantics accordingly, and
we thus modify DTL’s semantics as follows.

Given an agent i ∈ Id, a branching local life-cycle of i is an ω-tree, i.e., a pair
λi = 〈Evi, <i〉, where Evi is the set of local events of i and <i ⊆ Evi × Evi is a binary
relation such that:

(i) <i is transitive and irreflexive;

(ii) for each e ∈ Evi, the set {e′ ∈ Evi | e′ <i e} is linearly ordered by <i;

(iii) there is a <i-smallest element 0i called the root of λi;

(iv) each maximal linearly <i-ordered subset of Evi is order-isomorphic to the natural
numbers.

We write e→i e′ to denote the fact that e′ is an immediate local successor of e, i.e., e <i

e′ and there is no e′′ such that e <i e′′ <i e′. A →i-path is a sequence of local events
(e0, . . . , en) such that ek →i ek+1 for 0 ≤ k ≤ n − 1. An e-branch b of i is an infinite
→i-path b = (e0, e1, . . .) such that e = e0 and we write→b

i to denote the restriction of
→i to b, i.e., e′ →b

i e′′ iff e′ = ek and e′′ = ek+1 for some k, and denote with Bi the set
of all such→b

i . Further, we denote with→b∗
i the reflexive and transitive closure of→b

i .
A local state is a finite set ξ ∈ Evi down-closed for local causality, i.e., if e <i e′

and e′ ∈ ξ then also e ∈ ξ. In general, each non-empty local state ξ is reached by
the occurrence of an event that we call last(ξ), from the local state ξ \ {last(ξ)}. Given
e ∈ Evi, the set e↓i = {e′ ∈ Evi|e′ ≤i e}, where ≤i denotes the reflexive closure of <i, is
always a local state. Moreover, if ξ is non-empty, then last(ξ)↓i = ξ.

A branching distributed life-cycle is a family of local life-cycles

λ = {λi = 〈Evi, <i〉}i∈Id
such that:

(i) ≤ = (
⋃

i∈Id ≤i)∗ defines a partial order of global causality on the set of events
Ev =

⋃
i∈Id Evi;

(ii) if e, e′ ∈ Evi and e ≤ e′ then e ≤i e′.
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Condition (i) ensures that a distributed life-cycle respects global compatibility, i.e., there
is no e ∈ Evi ∩ Ev j such that e <i e′ but e′ < j e, while condition (ii) ensures that
synchronization ≤-relates two events of an agent i only if there exists a 0i-branch in
which both the events occur.

An S5 Kripke frame is a pair 〈Q,U〉, where Q is a non-empty set of qubit states and
U is a binary equivalence relation on Q, i.e., U : Q → Q is reflexive, symmetric and
transitive. An S5 Kripke model is a tripleM = 〈Q,U,V〉, where 〈Q,U〉 is an S5 Kripke
frame andV : Q → P(Prop) is a valuation function assigning to each qubit state in Q
a set of atomic propositions.

A QBDTL model is a triple μ = 〈λ,M, π〉, where λ = {λi}i∈Id is a distributed life-
cycle, M = 〈Q,U,V〉 is an S5 Kripke model and π = {πi}i∈Id is a family of local
functions associating to each local state a qubit state in Q; for each i ∈ Id and set Ξi of
local states of i, the function πi : Ξi → Q is such that:

(i) if ξ, ξ′ ∈ Ξi, last(ξ)→i last(ξ′), π(ξ) = q and π(ξ′) = q′, then qUq′;

(ii) if q, q′ ∈ Q, qUq′ and π(ξ) = q, then there exists ξ′ ∈ Ξi such that last(ξ) →i

last(ξ′) and π(ξ′) = q′.

In what follows, we denote 〈λi,M, πi〉 by μi.
The global satisfaction relation is defined by:

|=μ @iA iff |=μi

i A iff |=μi ,ξ
i A for every ξ ∈ Ξi ,

where the local satisfaction relation at a local state ξ of i is defined by:

�|=μi ,ξ
i ⊥
|=μi ,ξ

i p iff p ∈ V(πi(ξ)), for p ∈ Prop
|=μi ,ξ

i A ⊃ B iff |=μi,ξ
i A implies |=μi ,ξ

i B
|=μi ,ξ

i ∀�A iff for all ξ′, last(ξ) ≤i last(ξ′) implies |=μi ,ξ
′

i A
|=μi ,ξ

i ∃�A iff there exists a last(ξ)-branch b such that for all ξ′,
last(ξ)→b∗

i last(ξ′) implies |=μi,ξ
′

i A
|=μi ,ξ

i ∃�A iff there exists ξ′ such that last(ξ) →i last(ξ′) and |=μi ,ξ
′

i A

|=μi ,ξ
i c© jA iff last(ξ) ∈ Ev j and |=μ j ,last(ξ)↓ j

j A

By extension, we define:

|=μ Γ iff |=μ A for all A ∈ Γ
Γ |=μ A iff |=μ Γ implies |=μ A
Γ |= A iff Γ |=μ A for each QBDTL model μ

4 A Deduction System for QBDTL

4.1 Syntax of the Labeled Logic

In order to formalize our labeled natural deduction system N(QBDTL), we extend the
syntax and semantics of QBDTL by introducing four kinds of labels (that represent
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agents, states, quantum information and paths in the underlying semantics) and by
defining labeled and relational formulas.

First of all, we use the agent identifiers in Id as labels. Further, we assume given
two fixed denumerable sets of labels LabS and LabQ. Intuitively, the labels x, y, z, . . . in
LabS refer to local states of an agent, whereas the labels q, q′, q1, . . . in LabQ refer to
the quantum information concerning an agent.

A labeled formula is then a formula of the form

(i, x, q) : A ,

where (i, x, q) is a composed label with i ∈ Id, x ∈ LabS and q ∈ LabQ, and A is a
formula in the local language Li of the agent i. Note that we do not use the operator @
inside labeled formulas as it is implicitly expressed by the first element of the composed
label. For instance, in order to show that a global formula @iA is valid, we will prove
that the labeled formula (i, x, q) : A, for arbitrary x and q, is derivable in our system.

In N(QBDTL), we also need formulas modeling the relation between the states re-
ferred by the labels. We thus assume given a further set of labels LabB, whose elements
will be denoted by �,�1,�2, . . ., which intuitively refer to the successor relation be-
tween local states in the local life-cycle of an agent i along a given branch.

We define

Lab+B = LabB ∪ {r(i, x,�A) | i ∈ Id, x ∈ LabS ,� ∈ {�,�}, A ∈ Li} .

The labels in Lab+B \ LabB will be used to refer to successor relations between local
states along distinct branches. We will write R, R1, R2, . . . to denote generic elements of
Lab+B and we will use R∗ to refer to the reflexive and transitive closure of R. Finally, we
will use the symbol U to refer to the relation modeling unary quantum transformations
and the symbol � to denote that the local states of two agents are synchronized on a
given event.

A relational formula is then a formula of the form

– (i, x, q) R (i, y, q′), or
– (i, x, q) R∗ (i, y, q′), or
– (i, x, q) � ( j, y, q′), or
– q U q′,

where i, j ∈ Id, x, y ∈ LabS , R ∈ Lab+B, q, q′ ∈ LabQ. In the following, for simplicity,
we will sometimes use metavariables of the form si, possibly superscripted, to refer to
composed labels of the form (i, x, q).

4.2 Semantics of the Labeled Logic

In order to give a semantics for our labeled system, we need to define explicitly an
interpretation of the labels. Given a QBDTL model μ, an interpretation function is a
triple I = 〈IS ,IQ,IB〉, where:

– IS = {I
i
S }i∈Id is a set of functions such that Ii

S : LabS → Ξi for each i ∈ Id;
– IQ : LabQ → Q;
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– IB = {I
i
B}i∈Id is a set of functions such that Ii

B : Lab+B → Bi for each i ∈ Id, and if
r(i, x,�A) ∈ Lab+B \ LabB, then:
• Ii

B(r(i, x,�A)) =→b
i for some Ii

S (x)-branch b;
• if |=μ,Ii

S (x) ∃�A, then for all ξ ∈ Ξi:
∗ if� = �, then last(Ii

S(x)) Ii
B(r(i, x,�A)) last(ξ) implies |=μ,ξ A;

∗ if� = �, then last(Ii
S(x))Ii

B(r(i, x,�A))∗ last(ξ) implies |=μ,ξ A.

The notion of interpretation allows us to extend the truth relation to labeled formulas,
as well as define truth of relational formulas. Given a QBDTL model μ and an interpre-
tation function I = 〈IS ,IQ,IB〉 on it, truth for a labeled or relational formula γ is
defined as follows:

|=μ,I (i, x, q) : A iff μi,Ii
S (x) |=i A and πi(Ii

S (x)) = IQ(q)

|=μ,I (i, x, q) R (i, y, q′) iff last(Ii
S(x)) Ii

B(R) last(Ii
S(y)), πi(Ii

S (x)) = IQ(q) and

πi(Ii
S (y)) = IQ(q′)

|=μ,I (i, x, q) R∗ (i, y, q′) iff last(Ii
S(x)) Ii

B(R)∗ last(Ii
S(y)), πi(Ii

S (x)) = IQ(q) and

πi(Ii
S (y)) = IQ(q′)

|=μ,I (i, x, q) � ( j, y, q′) iff last(Ii
S(x)) = last(Ij

S(y)), πi(Ii
S (x)) = IQ(q) and

π j(I j
S (y)) = IQ(q′)

|=μ,I q U q′ iff IQ(q)UIQ(q′)

When |=μ,I γ, for γ a labeled or relational formula, we say that γ is true in μ according
to I. By extension:

|=μ,I Γ iff |=μ,I γ for all γ ∈ Γ
Γ |=μ,I γ iff |=μ,I Γ implies |=μ,I γ
|=μ γ iff for every interpretation function I, |=μ,I γ
|=μ Γ iff for every interpretation function I, |=μ,I Γ
Γ |= γ iff for every QBDTL modelM and interpretation function I, Γ |=μ,I γ

4.3 The Rules ofN(QBDTL)

The rules of N(QBDTL) are given in Fig. 1–4. We can classify them into four cate-
gories: (i) local life-cycle rules (inspired to the deduction system for the logic UB given
in [10]), (ii) distributed life-cycle rules (reminiscent of the global labeled tableaux de-
veloped for DTL in [5]), (iii) quantum transformations rules (actually a fragment of the
deduction systems studied in [20]) and (iv) interaction rules.

Local Life-Cycle Rules (Fig. 1). These rules all infer formulas “local” to an agent
i, i.e., labeled with si. We can divide them further into rules for classical connectives
(⊥E, ⊃I and ⊃E), rules for temporal operators (∀�I, ∀�E, ∃�I, ∃�E, ∃�I and ∃�E),
relational rules (ser�, sersk, baseR, lin�, reflR, transR and compR) and induction rules
(ind∀ and ind∃).

Rules for classical connectives. The rule ⊥ E is a labeled version of reductio ad
absurdum, where we do not enforce Prawitz’s side condition that A �⊥ and we do
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[si : A ⊃⊥]....
s j :⊥
si : A ⊥E

[si : A]....
si : B

si : A ⊃ B ⊃I
si : A ⊃ B si : A

si : B ⊃E

[si �∗ s′i]....
s′i : A

si : ∀�A
∀�I

s′i : ∀�A s′iR
∗si

si : A ∀�E

[siR∗s′i ]....
s′i : A siRs′′i

si : ∃�A ∃�I
(i, x, q) : ∃�A (i, x, q) r(i, x,�A)∗ si

si : A ∃�E

[siRs′i]....
s′i : A siRs′′i

si : ∃�A
∃�I

(i, x, q) : ∃�A (i, x, q) r(i, x,�A) si

si : A
∃�E

[s j � s′j]....
si : A
si : A

ser�

[( j, x, q) r( j, x,�B) s j]....
si : A
si : A

sersk

s jRs′j

[s jR∗s′j]....
si : A

si : A
baseR

si � s′i si � s′′i s′i : α

s′′i : α
lin�

s jRs′j

[s jR∗s j]....
si : A

si : A
reflR

s jR∗s′j s′jR
∗s′′j

[s jR∗s′′j ]
....

si : A

si : A
transR

s jR∗1 s′j s′jR
∗
2 s′′j

[s j �∗ s′′j ]
....

si : A

si : A
compR

s′i : A s′iR
∗si

[s′i �
∗
1 s′′′i ] [s′′′i �2 s′′i ] [s′′′i : A]

....
s′′i : A

si : A ind∀

(i, x, q) : A (i, x, q) r(i, x,�A)∗ si

[(i, x, q) �∗ (i, y, q′)] [(i, y, q′) r(i, y,�A) s′i] [(i, y, q′) : A]
....

s′i : A

si : A ind∃

In ∀�I, ∃�I and ∃�I, where s′i ≡ (i, x, q), the labels x and q are fresh. Moreover, in ∀�I, � is
fresh.
In ser�, where s′j ≡ ( j, x, q), the labels x, q and � are fresh.
In sersk , where s j ≡ ( j, y, q′), the labels y and q′ are fresh.
In compR, � is fresh.
In ind∀, where s′′i ≡ (i, x, q) and s′′′i ≡ (i, y, q′), the labels x, y, q, q′, �1 and �2 are fresh.
In ind∃, where s′i ≡ (i, z, q′′), the labels y, z, q′, q′′ and � are fresh.

Fig. 1. The rules of N(QBDTL): local life-cycle rules
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s j : A si � s j

si : c© j A
c©I

si : c© jA

[si � s j][s j : A]
....

sk : A

sk : A
c©E

sj � sk

[sk � s j]....
si : A

si : A
symm�

s j � sk sk � sl

[s j � sl]....
si : A

si : A
trans�

si � s j s jR∗s′j s′j � s′i

[si �∗ s′i]....
sk : A

sk : A
comp�

In c©I and c©E, i � j. In c©E, where s j ≡ ( j, x, q), the labels x and q are fresh.
In comp�, � is fresh.

Fig. 2. The rules of N(QBDTL): distributed life-cycle rules

[q U q]....
si : A
si : A

reflU

q U q′

[q′ U q]....
si : A

si : A
symmU

q U q′ q′ U q′′

[q U q′′]....
si : A

si : A
transU

(i, x, q) : p γ( j, y, q)
( j, y, q) : p

prop

In prop, γ( j, y, q) is a (labeled or relational) formula where ( j, y, q) occurs and p ∈ Prop is an
atomic proposition.

Fig. 3. The rules of N(QBDTL): quantum transformation rules

not constrain the “world” in which we derive a contradiction to be the same as in the
assumption. The rules ⊃I and ⊃E are the labeled version of the standard [23] natural
deduction rules for implication introduction and elimination.

Rules for temporal operators. The rules for the introduction and the elimination of
∀�, ∃� and ∃� follow the same structure as the rules for introduction and elimination of
� in labeled systems for modal logics. Let us consider ∀�I; the idea is that the meaning
of si : ∀�A is given by the metalevel implication si �∗ s′i =⇒ s′i : A for an arbitrary path
denoted by the relation � and an arbitrary s′i �

∗-accessible from si. The arbitrariness,
i.e., the freshness, of both the path denoted by � and s′i is ensured by the side-conditions
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q U q′ γ(i, x, q)

[(i, x, q) � (i, y, q′)]....
s j : A

sj : A U⇒R
(i, x, q) � (i, y, q′)

[q U q′]....
s j : A

sj : A R⇒U

In U⇒R, γ(i, x, q) is a (labeled or relational) formula where (i, x, q) occurs. Moreover, y is fresh.

Fig. 4. The rules of N(QBDTL): interaction rules

of the rule, e.g., si must be different from si and not occur in any assumption on which
s′i : A depends other than the discharged assumption si �∗ s′i .

Introductions of ∃� and ∃� follow the same principle, but relax the freshness con-
dition on the label denoting the relation, thus allowing us to reason on a single specific
path. Note that in this case a further premise (siRs′′i ) is required: such a premise works
as a “witness”, in the sense that it ensures that the relation R considered is indeed a
relation passing through the state si.

For what concerns the elimination rules, the intuition behind ∀�E is that if ∀�A
holds in a state s′i and si is accessible from s′i (along some path), then it is possible to
conclude that A holds in si. The case of ∃�E and ∃�E is similar but complicated by the
fact that the universal linear-time operator (� or �) is preceded by an existential path
quantifier (∃), which prevents us from inferring the conclusion for a successor along
an arbitrary relation. Our solution is based on the idea (originally proposed in [10])
of using Skolem functions as names for particular relations, e.g., r(i, x,�A) denotes a
relation passing at x and such that if ∃�A holds in x, then A holds at each successor of
x along r(x,�A).

Relational rules. Relational rules allow for modeling properties of the accessibility
relations.2 The rule baseR expresses the fact that for each relation R, R∗ contains R;
i.e., baseR says that if (i) s j is such that there is some R-accessible s′j and (ii) from
the assumption that s′j is also R∗-accessible from s j we can infer some labeled formula
si : A (where si might be different from s j and s′j), then we can discharge the assumption
s jR∗s′j and conclude that indeed si : A holds. reflR and transR model reflexivity and
transitivity of each relation, respectively, whereas compR states that it is possible to
compose two relations, i.e., if s jR∗1s′j and s′jR

∗
2s′′j , then there exists a third relation �∗

such that s j�∗ s′′j . We also have two rules capturing two different aspects of the seriality
of the relations. ser� captures the fact that, given a state s j, there is at least a relation
passing through s j and a successor along that relation. sersk says that, given a state s j

and a Skolem function r( j, x,�B), there exists a successor of s j along that relation.
Induction rules. Finally, we have two rules that model the induction principle un-

derlying the relation between R and R∗. This modeling of the induction principle is in-
spired to the one proposed in [10] and it is reminiscent of deduction systems for Peano

2 Note that in these rules we use relational formulas as auxiliary formulas in order to derive
labeled formulas. Rules treating relational formulas as full-fledged first class formulas, which
can be assumed and derived in the rules, could also be defined in the style of [25].
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Arthimetic. An example of use of the rule ind∃ can be found in Fig. 5, as we discuss
below.

Distributed Life-Cycle Rules (Fig. 2). The rules for communication ( c©I and c©E)
follow quite closely the semantics. Consider, e.g., c©I: if agent i in state si synchronizes
with agent j in state s j, and A holds for j in that state, then i just communicated with
agent j. The rules for synchronization are also quite intuitive, except maybe comp�.
Intuitively, comp� models a notion of compatibility between different synchronizations
that involves the same agents and reflects condition (ii) in the definition of branching
distributed life-cycle.

Quantum Transformations Rules (Fig. 3). The rules reflU , symmU , transU formalize,
quite straightforwardly, the reflexivity, symmetry and transitivity of the U relation, in
order to uniformly model the class of algebraic unitary operators as an equivalence re-
lation. This captures, in an abstract way, key properties of quantum operators. Roughly
speaking: reflexivity says that the class of the unitary operators includes the identity
transformation; symmetry captures reversibility (it is always possible to reverse a quan-
tum transformation, since the inverse operator is easily definable and is unitary [22]);
finally, transitivity models algebraic compositionality, i.e., the composition of two or
more unitary operators is always a unitary operator.

The rule prop says that the third element in a composed label fully captures the quan-
tum information contained in a state: thus if two composed labels (i, x, q) and ( j, y, q)
share the same q, each atomic proposition holding in (i, x, q) must also hold in ( j, y, q).

Interaction Rules (Fig. 4). The rules U⇒R and R⇒U model the interaction between
U and R and express respectively the conditions (i) and (ii) in the definition of function
πi of QBDTL models. More specifically, U⇒R says that if qUq′ and the label (i, x, q) oc-
curs in the labeled or relational formula γ( j, x, q), then (i, x, q) has a �-successor (i, y, q′);
this means that the local state labeled by y is an immediate successor of the state labeled
by x in local life-cycle of the agent i, along a given branch. The rule R⇒U captures the
fact that if (i, y, q′) is a �-successor of (i, x, q) then also the quantum labels q and q′ have
to be related by U.

4.4 Derivations

Given the rules in Fig. 1–4, the notions of derivation, conclusion, open and discharged
assumption are the standard ones for natural deduction systems (see, e.g., [17], pp. 127-
129). We write

Γ �N(QBDTL) (i, x, q) : A

to say that there exists a derivation of (i, x, q) : A in the system N(QBDTL) whose
open assumptions are all contained in the set of (labeled and relational) formulas Γ. A
derivation of (i, x, q) : A in N(QBDTL) where all the assumptions are discharged is a
proof of (i, x, q) : A in N(QBDTL) and we then say that (i, x, q) : A is a theorem of
N(QBDTL) and write �N(QBDTL) (i, x, q) : A.



Quantum State Transformations and Branching Distributed Temporal Logic 15

[si : p]1 [si r(i, x,�p)∗ sa
i ]3

[q′Uq′]5 [(i, y, q′) : p]4

[(i, y, q′) � (i, z, q′)]6 [(i, y, q′) � sd
i ]7

[(i, y, q′) : p]4 [(i, y, q′) � (i, z,q′)]6

(i, z, q′) : p
prop

sd
i : p

lin�
[(i, y, q′) � (i, z, q′)]6

(i, y, q′) : ∃�p
∃�I7

(i, y, q′) : ∃�p
U⇒R6

(i, y, q′) : ∃�p
refl5

U [(i, y, q′) r(i, y,�p)sc
i ]4

sc
i : p

∃�E

sa
i : p ind∃4

[si r(i, x,�p)sb
i ]2

si : ∃�p ∃�I3

si : ∃�p
sersk

2

si : p ⊃ ∃�p ⊃I1

[si : c© j �]2

[s′j : c©i �]5

[si � s j]3 [s j �∗ s′j]
4 [s′j � s′i ]

6

[si : ∀�p]1 [si �∗1 s′i ]
7

s′i : p
∀�E

s′i : p
comp7

� [s′j � s′i ]
6

s′j : c©i p
c©I

s′j : c©i p
c©E6

s′j : c©i � ⊃ c©i p
⊃I5

s j : ∀�( c©i � ⊃ c©i p) ∀�I4
[si � s j]3

si : c© j ∀�( c©i � ⊃ c©i p)
c©I

si : c© j ∀�( c©i � ⊃ c©i p)
c©E3

si : c© j � ⊃ c© j ∀�( c©i � ⊃ c©i p) ⊃I2

si : ∀�p ⊃ ( c© j � ⊃ c© j ∀�( c©i � ⊃ c©i p)) ⊃I1

Fig. 5. Example derivations

Fig. 5 contains two examples of derivations (actually, proofs). The first is based on
the fact that it is always possible to apply the identity transformation to a qubit. It
follows that if a qubit is in a state where an atomic proposition p holds, then there exists
a path along which p always holds.

The formula derived in the second example describes a property of the synchroniza-
tion between qubits and can be read as a consequence of condition (ii) in the definition
of a distributed life-cycle. If the qubit i is in a state from which a proposition p always
holds in the future, then if i synchronizes with j, i.e., the two qubits are combined by
means of some n-ary quantum operator, and after that, j synchronizes with i again, we
end up in a state of i where p still holds. Note that in this derivation we use the verum
� as an abbreviation for ⊥⊃⊥.

5 Soundness

N(QBDTL) is sound with respect to the given semantics.

Theorem 1 (Soundness). For every set Γ of labeled and relational formulas and every
labeled formula (i, x, q) : A, it holds that Γ �N(QBDTL) (i, x, q) : A ⇒ Γ |= (i, x, q) : A.
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This theorem can be shown by adapting standard proof techniques for labeled natural
deduction systems [25]. The proof proceeds by induction on the structure of the deriva-
tion of (i, x, q) : A. The base case is when (i, x, q) : A ∈ Γ and is trivial. There is
one step case for every rule (where, for what concerns local life-cycle rules, we refer
to [10], whose treatment can be quite easily adapted to work here). We show a few
representative step cases.

Consider the case when the last rule applied is prop:

Π1
(i, x, q) : p

Π2
γ( j, y, q)

( j, y, q) : p
prop

where Π1 is a proof of (i, x, q) : p from hypotheses in Γ1 and Π2 is a proof of γ( j, y, q)
from hypotheses in Γ2, for some sets Γ1, Γ2 of formulas. By the induction hypoth-
esis, for each model μ = 〈λ,M, π〉 and interpretation function I, if |=μ,I Γ1 then
|=μ,I (i, x, q) : p and if |=μ,I Γ2 then |=μ,I γ( j, y, q). We consider an I and a μ such that
|=μ,I Γ = Γ1 ∪ Γ2, and show that |=μ,I ( j, y, q) : p. As a consequence of the induction

hypothesis, we get: (i) |=μi,Ii
S (x)

i p; (ii) πi(Ii
S (x)) = IQ(q); and (iii) π j(I j

S (y)) = IQ(q).
It follows from (i) that p ∈ V(πi(Ii

S (x))), i.e., by (ii), p ∈ V(IQ(q)) and, by (iii), p ∈
V(π j(I j

S (y))). By definition, we have |=μ,I
j
S (y) p, from which we infer |=μ,I ( j, y, q) : p.

Now consider the case of an application of c©I:

Π
( j, y, q′) : A (i, x, q) � ( j, y, q′)

(i, x, q) : c© j A
c©I

where Π is a proof of ( j, y, q′) : A from hypotheses in Γ1. By the induction hypothesis,
we have Γ1 |= ( j, y, q′) : A. We want to show that Γ = Γ1 ∪ {(i, x, q) � ( j, y, q′)} |=
(i, x, q) : c© j A. Let us consider an arbitrary QBDTL model μ = 〈λ,M, π〉 and an
interpretation function I, and assume that |=μ,I Γ holds. This implies last(Ii

S(x)) =

last(Ij
S(y)) and πi(Ii

S (x)) = IQ(q). By the induction hypothesis, we also obtain |=μ,I

( j, y, q′) : A, which yields |=μ j ,I j
S (y)

j A. By the definition of local satisfaction relation, we

infer |=μi ,Ii
S (x)

i c© j A and then |=μ,I (i, x, q) : c© j A. Since μ and I are arbitrary, we can
conclude Γ |= (i, x, q) : c© j A.

Finally, consider the case of an application of R⇒U:

(i, y, q′) � (i, z, q′′)

[q′Uq′′]
Π

( j, x, q) : A
( j, x, q) : A

R⇒U

where Π is a proof of ( j, x, q) : A from hypotheses in Γ1 ∪ {q′Uq′′} for some set
Γ1 of formulas. By the induction hypothesis, we have Γ1 ∪ {q′Uq′′} |= ( j, x, q) : A.
We want to show that Γ = Γ1 ∪ {(i, y, q′) � (i, z, q′′)} |= ( j, x, q) : A. Let us con-
sider arbitrary μ = 〈λ,M, π〉 and I, and assume that |=μ,I Γ holds. This implies
|=μ,I (i, y, q′)�(i, z, q′′), from which we infer: last(Ii

S(y)) Ii
B(�) last(Ii

S(z)); πi(Ii
S (y)) =

IQ(q′); and πi(Ii
S (z)) = IQ(q′′). By condition (i) in the definition of a QBDTL model,



Quantum State Transformations and Branching Distributed Temporal Logic 17

this yields IQ(q′)UIQ(q′′) and thus |=μ,I q′Uq′′. By the induction hypothesis, we ob-
tain |=μ,I ( j, x, q) : A. Since μ and I are arbitrary, we can conclude Γ |= ( j, x, q) : A.

6 Concluding Remarks

We have proved that the system N(QBDTL) is sound with respect to the given seman-
tics. We expectN(QBDTL) to be also complete, since it is “built” by composing subsys-
tems that are complete with respect to the semantics of the sublogics that they capture
[10, 5, 20], with the addition of rules tightly related to the interactions between those
subsystems. A thorough proof, however, requires a non-trivial use of refining techniques
to get appropriate models from those obtained by a standard canonical-model construc-
tion, similarly to what happens with related temporal logics. We have thus left it for
future work.

We are also working at extending QBDTL in order to deal with peculiar properties
of quantum states such as entanglement. Roughly speaking, in physics, an entangled
state is a quantum state where two or more qubits behave as connected, independently
of their real physical distance. As a consequence, operations on an entangled qubit can
(possibly) have side-effects on other entangled qubits. This phenomenon (that does not
have a classical counterpart) plays a major role in quantum computing (see, e.g., the
teleportation protocol [22]).

In this paper, we have modeled quantum state transformations from an abstract per-
spective: in QBDTL, no reference to a specific quantum computation or to a notion of
input/output of values is required. This allowed us to design a manageable high-level
formalization oriented to modeling the behavior of quantum systems, but it is proba-
bly not enough if one wants to capture more complex properties such as entanglement.
This does not mean that one has to completely convert the qualitative approach into a
quantitative one (following the “philosophy” of quantum logic, cf. the discussion in the
introduction). We believe that a distributed logic is a promising tool not only for the
simple description of quantum states, but also to model the correct amount of quanti-
tative information needed to capture properties like entanglement. In some sense, we
aim at integrating into the QBDTL high-level perspective, able to model the “control”
of quantum computation (which treats qubits and quantum gates as black-boxes), more
detailed information about quantum data, so that it is possible to “look inside” the qubits
and specifically model the quantitative behavior of some interesting unitary operators.

In QBDTL, we are as general as possible with respect to the application of transfor-
mations: in a local-life cycle the subtended temporal transition tree represents at each
step all the possible unary gates that can be applied to the current state, while the syn-
chronization mechanism between agents models all possible n-ary operators. It is well
known that one can fix a complete computational basis (finite or infinite) of unitary
operators and represent other operators in terms of the elements of such a basis. An
infinite complete basis can be defined by taking all unary operators and a particular bi-
nary quantum gate called controlled-not (or cnot). Intuitively, the cnot acts as follows:
it takes in input two distinct qubits and complements the target qubit (the second one)
if the control qubit (the first one) is different from 0; otherwise, it does not perform
any action. Noticeably, when the control qubit assumes some specific superpositional
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value (e.g., 1√
2
|0〉 + 1√

2
|1〉), the output of the cnot is an entangled state. This suggests

that restricting our perspective about arbitrary n-ary gates as synchronization operators
to a single binary gate, the cnot, and lifting syntax and semantics to capture its behav-
ior would provide us with all the ingredients needed to model entanglement. Following
this standpoint, one can now view synchronizations exactly as control operators: a target
qubit has to synchronize (by sharing an event) with the control qubit in order to perform
its own, controlled evolution. Moreover, we observe that the notion of synchronization,
in presence of entanglement, assumes a non-local (with respect to time) meaning: a
synchronization that creates entanglement does not only represent the sharing of local
events, but it also influences the subsequent events in the local life cycle of the involved
agents. We thus aim to make the connection between agent synchronization and (possi-
ble) entanglement of qubits explicit.

Finally, we are considering the explicit modeling inside QBDTL of measurement
steps, which can be seen as a further class of transformations. We believe that these
extensions will also enable the use of our approach for the analysis of quantum security
protocols, which are based on entanglement phenomena [8], along the lines of what has
been done with respect to classical security protocols by using DTL [6].
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Abstract. We study the expressive power of the downward and vertical
fragments of XPath equipped with (in)equality tests over data trees. We
give necessary and sufficient conditions for a class of pointed data trees
to be definable by a set of formulas or by a single formula of each of
the studied logics. To do so, we introduce a notion of saturation, and
show that over saturated data trees bisimulation coincides with logical
equivalence.

Keywords: XPath, data tree, bisimulation, definability, first-order logic,
ultraproduct, saturation.

1 Introduction

The abstraction of an XML document is a data tree, i.e. a tree whose every
node contains a tag or label (such as LastName) from a finite domain, and a
data value (such as Smith) from an infinite domain. XPath is the most widely
used query language for XML documents; it is an open standard and consti-
tutes a World Wide Web Consortium (W3C) Recommendation [5]. XPath has
syntactic operators to navigate the tree using the ‘child’, ‘parent’, ‘sibling’, etc.
accessibility relations, and can make tests on intermediate nodes. Core-XPath [9]
is the fragment of XPath 1.0 containing only the navigational behavior of XPath.
It can express properties of the underlying tree structure of the XML document,
such as “the root of the tree has a child labeled a and a child labeled b”, but it
cannot express conditions on the actual data contained in the attributes, such as
“the root of the tree has two children with same tag a but different data value”.
However, Core-Data-XPath [3], here called XPath=, can. Indeed, XPath= is the
extension of Core-XPath with (in)equality tests between attributes of elements
in an XML document.

In a recent paper [8], the expressive power of XPath= was studied, from a
logical and modal model theoretical point of view. A notion of bisimulation is
introduced for some fragments of XPath=, and a van Benthem like characteri-
zation theorem is shown for some of them. In this work we show a definability
theorem, which answers the basic question of when a class of data trees is defin-
able by a set of formulas, or by a single formula, over two fragments of XPath=:
the downward fragment (which only has the ‘child’ accessibility relation) and the
vertical fragment (which has both ‘child’ and ‘parent’ axes).

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 20–35, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Our main result is the analog of the classic first-order definability theorem
(see, e.g.[4, Cor. 6.1.16]), which can be stated as follows:

A class of models K is definable by means of a set of first-order formulas
if and only if K is closed under ultraproducts and isomorphisms, and the
complement of K is closed under ultrapowers. Also K is definable by a
single first-order formula if and only if both K and its complement are
closed under ultraproducts and isomorphisms.

The above result was adapted to the context of many modal logics, where the
notion of isomorphism is replaced by the weaker concept of bisimulation (the
one which turns to be adequate for the chosen modal logic). Thus definability
theorems were established for the basic modal logic [6], for temporal logics with
since and until operators [11], for negation-free modal languages [12], etc. A
global counterpart was studied in [7], and a general framework stating sufficient
conditions for an arbitrary (modal) logic L to verify it was given in [1]. One of
those requirements is that the models of L are closed under ultraproducts, which
is true for the aforementioned logics, but not for XPath=: models of XPath= are
data trees, which may not remain connected under ultraproducts. Hence one
cannot expect to use that framework in this case.

Though we take as motivation the current relevance of XML documents
(which of course are finite) and the logics for reasoning over them, we do not
restrict ourselves to the finite case. Indeed, an infinite set of formulas may force
all its data tree models to be infinite. Hence, since we aim at working with ar-
bitrary sets of formulas, we must consider arbitrary (i.e. finite or infinite) data
trees.

Our definability theorems for XPath= themselves are shown using rather
known techniques. The main contribution, however, is to devise and calibrate
the adequate notions to be used in the XPath= scenario, and to study the subtle
interaction between them:

– Bisimulation: already introduced in [8], it is the counterpart of isomorphisms
in the classical theorem for first-order logic. In [8] it is shown that if two
(possibly infinite) data trees are bisimilar then they are logically equivalent
(that is, they are not distinguishable by an XPath= formula) but that the
converse is not true in general.

– Saturation: we define and study the new notion of XPath=-saturation. We
show that for XPath=-saturated data trees being bisimilar is the same as
being logically equivalent. It is also shown that a 2-saturated data tree (re-
garded as a first-order structure) is already XPath=-saturated.

– Utlraproducts: contrary to other adaptations of the classical first-order defin-
ability theorem to modal logics, in our case we have to adjust also the notion
of ultraproduct, and so we work with a variant of it called quasi-ultraproduct.
The reason is that we must not abandon the universe of data trees, as these
are the only allowed models of XPath=.

There are many works in the literature studying the expressive power of
Core-XPath (see e.g. [10,13,14]). All these consider the navigational fragment
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x : (a, 0)

y : (a, 1) z : (b, 2)

u : (a, 0) v : (a, 1) w : (b, 0)

– ϕ1 = 〈↓[a]〉 ∧ 〈↓[b]〉, [[ϕ1]]
T = {x, z}

(“nodes with a child labeled a and a child la-
beled b”)

– ϕ2 = 〈↓[a] �= ↓[a]〉, [[ϕ2]]
T = {z}

(“nodes with two children with same tag a but
different data value”)

– ϕ3 = 〈ε �= ↑[〈ε �= ↑〉]〉, [[ϕ3]] = {u, v, w}
(“nodes with a data value different from the
one of his parent, who, in turn, has a data
value different from his parent”)

– ϕ4 = 〈ε �= ↓↓[ϕ3]〉, [[ϕ4]] = {x}
(“nodes with a downward path of length 2,
with all distinct data values”)

Fig. 1. A data tree T ∈ Trees({a, b} × N) and the meaning of some XPath�
=-formulas

of XPath. A first step towards the study of the expressive power of XPath when
equipped with (in)equality test over data trees, is the recent paper [8]. We aim
to shed more light in this direction.

The paper is organized as follows, In §2 we introduce the formal syntax and
semantics of the downward and vertical fragments of XPath=, together with no-
tions of bisimulations from [8]. Suitable notions of saturation for both fragments
are given in §3, where it is also shown that for saturated trees bisimilarity coin-
cides with logical equivalence. In §4 we explain the connection between XPath=
and first-order logic, and we introduce the idea of quasi-ultraproducts for the
downward and vertical fragments. In §5 we state the theorems on definability,
and we close in §6 with a few words about future research and show some appli-
cations of the definability results.

2 Preliminaries

Data trees. Let Trees(A) be the set of ordered and unranked (finite or infinite)
trees over an arbitrary alphabet A. We say that T is a data tree if it is a tree
from Trees(A × D), where A is a finite set of labels and D is an infinite set of
data values (see Figure 1 for an example). A data tree is finitely branching if
every node has finitely many children. For any given data tree T , we denote by T
its set of nodes. We use letters x, y, z, u, v, w as variables for nodes. Given a node
x ∈ T of T , we write label (x) ∈ A to denote the node’s label, and data(x) ∈ D
to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child of x, and x
n→y if y is a

descendant of x at distance n. In particular,
1→ is the same as →, and

0→ is the
identity relation. (

n→y) denotes the sole ancestor of y at distance n (assuming it
has one).

Vertical and Downward XPath with data tests. We work with a simplification
of XPath, stripped of its syntactic sugar. We consider fragments of XPath that
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correspond to the navigational part of XPath 1.0 with data equality and inequal-
ity. XPath= is a two-sorted language, with path expressions (that we write
α, β, γ) and node expressions (that we write ϕ, ψ, η). The vertical XPath,

notated XPath�= is defined by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ {ε, ↑, ↓}
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α �= β〉 a ∈ A

We call downward XPath, notated XPath↓=, to the syntactic fragment which

only uses the navigation axis ↓, but not ↑. AnXPath�
=-formula [resp.XPath↓

=-

formula] is simply a node expression of XPath�= [resp. XPath↓=].

Semantics of XPath�= in a given data tree T are defined as follows:

[[↓]]T = {(x, y) | x→y}
[[↑]]T = {(x, y) | y→x}
[[ε]]T = {(x, x) | x ∈ T}

[[¬ϕ]]T = T \ [[ϕ]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[a]]T = {x ∈ T | label(x) = a}
[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }

[[αβ]]T = {(x, z) | (∃y ∈ T ) (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }
[[〈α〉]]T = {x ∈ T | (∃y ∈ T ) (x, y) ∈ [[α]]T }

[[〈α = β〉]]T = {x ∈ T | (∃y,z ∈ T )(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}
[[〈α �= β〉]]T = {x ∈ T | (∃y,z ∈ T )(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) �= data(z)}

See Figure 1 for the semantics of some formulas. For a data tree T and u ∈ T , we
write T , u |= ϕ to denote u ∈ [[ϕ]]T , and we say that T , u satisfies ϕ or that ϕ is

true at T , u. Let Th�(T , u) [resp. Th↓(T , u)] be the set of all XPath�=-formulas

[resp. XPath↓=-formulas] true at T , u. In terms of expressive power, it is easy to
see that ∪ is unessential (see [8, §2.2]). We will henceforth assume that formulas
do not contain union of path expressions.

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′. We say that T , u and
T ′, u′ are equivalent for XPath�

= [resp. equivalent for XPath↓
=] (notation:

T , u ≡� T ′, u′ [resp. T , u ≡↓ T ′, u′]) iff for all formulas ϕ ∈ XPath�= [resp.
ϕ ∈ XPath↓=], we have T , u |= ϕ iff T ′, u′ |= ϕ.

Bisimulations. In [8] the notions of downward and vertical bisimulations are
introduced. We reproduce them here, as they are key concepts for our results.

We say that u ∈ T and u′ ∈ T ′ are bisimilar for XPath↓
= (or ↓-bisimilar;

notation: T , u↔↓ T ′, u′) iff there is a relation Z ⊆ T × T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

– Harmony: If xZx′ then label (x) = label(x′).

– Zig: If xZx′, x
n→v and x

m→w then there are v′, w′ ∈ T ′ such that x′ n→v′,
x′ m→w′ and
1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and



24 S. Abriola, M.E. Descotte, and S. Figueira

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

– Zag: If xZx′, x′ n→v′ and x′ m→w′ then there are v, w ∈ T such that x
n→v,

x
m→w and items 1, 2 and 3 above are verified.

We say that u ∈ T and u′ ∈ T ′ are bisimilar for XPath�
= (or �-bisimilar;

notation: T , u↔� T ′, u′) iff there is a relation Z ⊆ T × T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

– Harmony: If xZx′ then label (x) = label(x′),

– Zig: If xZx′, y
n→x and y

m→z then there are y′, z′ ∈ T ′ such that y′
n→x′,

y′
m→z′, data(z) = data(x)⇔ data(z′) = data(x′), and zZz′.

– Zag: If xZx′, y′
n→x′ and y′

m→z′ then there are y, z ∈ T such that y
n→x, y

m→z,
data(z) = data(x)⇔ data(z′) = data(x′), and zZz′.

The main results establishing the connection between bisimulation and equiva-
lence is the following:

Theorem 1 ([8]). If T , u↔↓ T ′, u′ then T , u ≡↓ T ′, u′, and if T , u↔� T ′, u′,
then T , u ≡� T ′, u′.

3 Saturation

In [8] is is shown that the reverse implications of Theorem 1 hold over finitely
branching trees. However, they do not hold in general. In this section we intro-
duce notions of saturation for the downward and vertical fragments of XPath,
and show that the reverse implications of Theorem 1 are true over saturated
data trees.

Saturation for the downward fragment. Let 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 be
tuples of sets of XPath↓=-formulas. Given a data tree T and u ∈ T , we say that
〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓

n,m-satisfiable [resp. �=↓
n,m-satisfiable ]

at T , u if there exist v0 → v1 → · · · → vn ∈ T and w0 → w1 → · · · → wm ∈ T
such that u = v0 = w0 and

1. for all i ∈ {1, . . . , n}, T , vi |= Σi;
2. for all j ∈ {1, . . . ,m}, T , wj |= Γj ; and
3. data(vn) = data(wm) [resp. data(vn) �= data(wm)].

We say that 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓
n,m-finitely satisfiable [resp.

�=↓
n,m-finitely satisfiable ] at T , u if for every finite Σ′

i ⊆ Σi and finite Γ ′
j ⊆ Γj ,

we have that 〈Σ′
1, . . . , Σ

′
n〉 and 〈Γ ′

1, . . . , Γ
′
m〉 are =↓

n,m-satisfiable [resp. �=↓
n,m-

satisfiable] at T , u.

Definition 2. We say that a data tree T is ↓-saturated if for every n,m ∈ N,
every pair of tuples 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 of sets of XPath↓=-formulas,
every u ∈ T , and  ∈ {=, �=}, the following is true:

if 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are ↓n,m-finitely satisfiable at T , u then

〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are ↓n,m-satisfiable at T , u.
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Proposition 3. Any finitely branching data tree is ↓-saturated.

Proof. Suppose by contradiction that there is u ∈ T and tuples 〈Σ1, . . . , Σn〉
and 〈Γ1, . . . , Γm〉 of sets of XPath↓=-formulas which are finitely =↓

n,m-satisfiable

at T , u but not =↓
n,m-satisfiable at T , u (the case for T being �=↓

n,m-satisfiable is
analogous). Let

P = {(v, w) ∈ T 2 | u n→v ∧ u
m→w ∧ data(v) = data(w)}.

Observe that P is finite because T is finitely branching. It is clear that if (v, w) ∈
P , so that u = v0 → v1 → · · · → vn = v ∈ T , and u = w0 → w1 → · · · → wm =
w ∈ T then either

1. there is i ∈ {1, . . . , n} such that T , vi �|= Σi, or
2. there is j ∈ {1, . . . ,m} such that T , wj �|= Γj .

We will define sets (Σi,v,w)1≤i≤n and (Γj,v,w)1≤j≤m, each one of them with
at most one element, as follows: If case 1 holds, assume i0 is the least such
number and define Σi0,v,w as {ρ} for some formula ρ ∈ Σi0 such that T , vi0 �|= ρ,
define Σi,v,w = ∅ for any i ∈ {1, . . . , n} \ {i0}, and define Γj,v,w = ∅ for any j ∈
{1, . . . ,m}. If case 1 does not hold then case 2 holds, so assume j0 is the least such
number and define Γj0,v,w as {ρ} for some formula ρ ∈ Γj0 such that T , wj0 �|= ρ,
define Γj,v,w = ∅ for any j ∈ {1, . . . ,m} \ {j0}, and define Σi,v,w = ∅ for any
i ∈ {1, . . . , n}. Finally, define the finite sets Σ′

i =
⋃

(v,w)∈P Σi,v,w and Γ ′
j =⋃

(v,w)∈P Γj,v,w. By construction, we have Σ′
i ⊆ Σi, Γ

′
j ⊆ Γj and 〈Σ′

1, . . . , Σ
′
n〉

and 〈Γ ′
1, . . . , Γ

′
m〉 are not =↓

n,m-satisfiable at T , u which is a contradiction. ��

Proposition 4. Let T and T ′ be ↓-saturated data trees, and let u ∈ T and
u′ ∈ T ′. If T , u ≡↓ T ′, u′, then T , u↔↓ T ′, u′.

Proof. We show that Z, defined by xZx′ iff T , x ≡↓ T ′, x′ is a ↓-bisimulation
between T , u and T ′, u′. Clearly uZu′, and Harmony holds. We only need to
show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous.

Suppose xZx′, x = v0 → v1 → · · · → vn and x = w0 → w1 → · · · → wm are
paths on T , and data(vn) = data(wm) (the case data(vn) �= data(wm) is shown
analogously). For i ∈ {1, . . . , n}, let Σi = Th↓(T , vi), and for j ∈ {1, . . . ,m}, let
Γj = Th↓(T , wj). Furthermore, let Σ′

i be a finite subset of Σi, and let Γ ′
j be a

finite subset of Γj . Define

ϕ = 〈↓[∧Σ′
1]↓ . . . ↓ [∧Σ′

n] = ↓[∧Γ ′
1]↓ . . . ↓ [∧Γ ′

m]〉.

It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡↓ T ′, x′,
we conclude that T ′, x′ |= ϕ. Hence 〈Σ′

1, . . . , Σ
′
n〉 and 〈Γ ′

1, . . . , Γ
′
m〉 are =↓

n,m-
satisfiable at x′. This holds for any finite sets Σ′

i ⊆ Σi and Γ ′
j ⊆ Γj , and so

〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓
n,m-finitely satisfiable at x′, Since T ′ is ↓-

saturated, 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓
n,m-satisfiable at T ′, x′, so there

are paths x′ = v′0 → v′1 → · · · → v′n and x′ = w′
0 → w′

1 → · · · → w′
m on T ′ such

that
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i. data(v′n) = data(w′
m);

ii. for all 1 ≤ i ≤ n, T ′, v′i |= Th↓(T , vi), i.e. T , vi ≡↓ T ′, v′i; and
iii. for all 1 ≤ j ≤ m, T ′, w′

j |= Th↓(T , wj), i.e T , wj ≡↓ T ′, w′
j .

By the definition of Z, conditions i, ii and iii above imply items 1, 2 and 3 of
the Zig clause for ↓-bisimulation. ��

Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that

the set of XPath�=-formulas Γ is =
�
n,m-satisfiable [resp. �=�

n,m-satisfiable ] at

T , u if there exist v, w ∈ T such that v
n→u, v

m→w, w |= Γ and data(u) = data(w)

[resp. data(u) �= data(w)]. We say that Γ is =
�
n,m-finitely satisfiable [resp.

�=�
n,m-finitely satisfiable ] at T , u if for every finite Γ ′ ⊆ Γ , we have that Γ ′

is =
�
n,m-satisfiable [resp. =

�
n,m-satisfiable] at T , u.

Definition 5. We say that a data tree T is -saturated if for every set of
XPath�=-formulas Γ , every u ∈ T , every n,m ∈ N, and  ∈ {=, �=}, the following
is true:

if Γ is 
�
n,m-finitely satisfiable at T , u then Γ is 

�
n,m-satisfiable at T , u.

Proposition 6. Let T and T ′ be -saturated data trees, and let u ∈ T and
u′ ∈ T ′. If T , u ≡� T ′, u′, then T , u↔� T ′, u′.

Proof. We show that Z ⊆ T × T ′, defined by xZx′ iff T , x ≡� T ′, x′ is a -
bisimulation between T , u and T ′, u′. Clearly uZu′, and Harmony also holds, so
we only need to show that Zig and Zag are satisfied. We see only Zig, as Zag is
analogous.

Suppose xZx′, y
n→x and y

m→z are in T , and data(x) = data(z) (the case
data(x) �= data(z) can be shown analogously). Let Γ = Th�(T , z), and let Γ ′ be
a finite subset of Γ . Define

ϕ = 〈ε = ↑n ↓m [∧Γ ′]〉.

It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡� T ′, x′,

we conclude that T ′, x′ |= ϕ. Hence Γ ′ is =
�
n,m-satisfiable at x′. This holds for

any finite set Γ ′ ⊆ Γ , and so Γ is =
�
n,m-finitely satisfiable at x′. Since T ′ is

-saturated, Γ is =
�
n,m-satisfiable at x′, and thus there are y′

n→x′ and y′
m→z′ on

T ′ such that data(x′) = data(z′) and T ′, z′ |= Th�(T , z), i.e T , z ≡� T ′, z′. By
the definition of Z, we have zZz′ and hence the Zig clause for -bisimulation is
verified. ��

4 Weak Data Trees and Quasi-ultraproducts

We fix the signature σ with binary relations� and ∼, and a unary predicate Pa

for each a ∈ A. Any data tree T can be seen as a first-order σ-structure, where

�T = {(x, y) ∈ T 2 | x→ y in T };
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∼T = {(x, y) ∈ T 2 | data(x) = data(y)};
P T
a = {x ∈ T | label (x) = a}.

If ϕ(x) is a first-order formula with a free variable x, we use T |= ϕ[a], as
usual, to denote that that ϕ is true in T under the valuation which maps x to
a ∈ T . In [8] it is shown a truth preserving translation Trx mapping XPath�=-
formulas into first-order σ-formulas with one free variable x. By truth preserving
we mean that for ϕ ∈ XPath�= we have T , u |= ϕ iff T |= Trx(ϕ)[u].

For reasons that will become clearer later on, we will need to work with σ-
structures which are slightly more general than data trees.

Definition 7. A σ-structure T is a weak data tree if ∼ is an equivalence
relation; there is exactly one node r with no u such that u� r (r is called root
of T ); for all nodes x �= r there is exactly one y such that y � x; and for each
n ≥ 0 the relation � has no cycles of length n.

Observe that a weak data tree need not be connected, and that the class of weak
data trees is elementary, i.e. definable by a set of first-order σ-sentences (with
equality). For a weak data tree T and u ∈ T , let T |u denote the substructure of
T induced by {v ∈ T | u�∗ v}. Observe that in this case T |u is a data tree.

The following proposition shows the ‘local’ aspect of XPath↓= and XPath�=. It
is stated in terms of first-order because models are weak data trees.

Proposition 8. Let T be a weak data tree and let r �∗ u in T .
1. If ϕ ∈ XPath↓=-formula then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

2. If r is the root of T and ϕ ∈ XPath�= then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

Observe that the condition of r being the root in the second item is needed.
Suppose for example we are on the data tree with only 2 nodes, the root r and its
child u, with same data value. Consider now ϕ = 〈ε = ↑〉. Clearly T |= Trx(ϕ)[u],
but T |u �|= Trx(ϕ)[u].

If M is a first-order σ-structure and A ⊆ M , we denote by σA the lan-
guage obtained by adding to σ constant symbols for each a ∈ A. M can be
seen as a σA structure by interpreting the new symbols in the obvious way.
Let ThA(M) be the set of all σA-sentences true in M. Let κ be a cardinal.
We recall the definition of κ-saturated first-order structures. We say that the
σ-structure M is κ-saturated if for all A ⊆ M and all n, if |A| < κ and
Γ (x1, . . . , xn) is a set of σA-formulas with free variables among x1, . . . , xn such
that Γ (x1, . . . , xn) ∪ ThA(M) is satisfiable, then Γ (x1, . . . , xn) is realized inM.

We now show that 2-saturated data trees are already both downward and
vertical saturated. For technical reasons we state these results in the more general
setting of weak data trees.

Proposition 9. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a ↓-saturated data tree.
2. If r is the root of T then T |r is a -saturated data tree.
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Proof. Let T ′ = T |r and let u ∈ T ′. For item 1, let 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉
be tuples of sets of XPath↓=-formulas. Suppose 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are
=↓

n,m-finitely satisfiable at T ′, u (the case for �=↓
n,m-finitely satisfiable is analo-

gous). We show that 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓
n,m-satisfiable at T ′, u.

Consider the following first-order σ{u}-formula with free variables x̄ = x1, . . . , xn

and ȳ = y1, . . . , ym:

ϕ(x̄, ȳ) = u� x1 ∧
n−1∧
i=1

xi � xi+1 ∧ u� y1 ∧
m−1∧
j=1

yj � yj+1 ∧ xn ∼ ym.

Define the following set of first-order σ{u}-formulas:

Δ(x̄, ȳ) = {ϕ(x̄, ȳ)} ∪
n⋃

i=1

Trxi(Σi) ∪
m⋃
j=1

Tryj (Γj).

Let Δ′(x̄, ȳ) be a finite subset of Δ(x̄, ȳ). Since 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉
are =↓

n,m-finitely satisfiable at T ′, u, then Δ′(x̄, ȳ) is satisfiable and, by item 1 of
Proposition 8, consistent with Th{u}(T ). By compactness, Δ(x̄, ȳ) is satisfiable
and consistent with Th{u}(T ). By 2-saturation, we conclude that Δ(x̄, ȳ) is
realizable in T , say at v̄ = v1, . . . , vn and w̄ = w1, . . . , wm. Thus we have:

i. u� v1 � · · ·� vn and u� w1 � · · ·� wm in T , and hence in T ′;
ii. for all i ∈ {1, . . . , n}, T |= Trxi(Σi)[vi], and for all j ∈ {1, . . . ,m}, T |=

Tryj (Γj)[wj ]; by item 1 of Proposition 8 this implies that T ′ |= Trxi(Σi)[vi]
and T ′ |= Tryj (Γj)[wj ];

iii. vn ∼ wm in T , and hence in T ′.

Since Tr is truth preserving, we have that for all i ∈ {1, . . . , n}, T ′, vi |= Σi,
and for all j ∈ {1, . . . ,m}, T ′, wi |= Γi. Together with i and iii we conclude that
〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓

n,m-satisfiable at T ′, u.

For item 2, let Γ be a set of XPath�=-formulas. Suppose Γ is =
�
n,m-finitely

satisfiable at T ′, u (the case for �=�
n,m-finitely satisfiable is analogous). We show

that Γ are =
�
n,m-satisfiable at T ′, u.

Consider the following first-order σ{u}-formula with free variable y:

ϕ(y) = (∃x0 . . .∃xn)(∃y0 . . .∃ym)[xn = u ∧ y = ym ∧ x0 = y0 ∧
n−1∧
i=0

xi � xi+1 ∧
m−1∧
j=0

yj � yj+1 ∧ xn ∼ ym]

Define the following set of first-order σ{u}-formulas:Δ(y) = {ϕ(y)}∪Try(Γ ). Let

Δ′(y) be a finite subset of Δ(y). Since Γ is =
�
n,m-finitely satisfiable at T ′, u, then

Δ′(y) is satisfiable and, by item 2 of Proposition 8, consistent with Th{u}(T ). By
compactness, Δ(y) is satisfiable and consistent with Th{u}(T ). By 2-saturation,
we conclude that Δ(y) is realizable in T , say at w. Thus we have:
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iv. There is v ∈ T such that v
n→u and v

m→w in T and hence in T ′.
v. T |= Try(Γ )[w]; by item 2 of Proposition 8 this implies that T ′ |= Try(Γ )[w];
vi. u ∼ w in T , and hence in T ′.

Since Tr is truth preserving, we have that T ′, w |= Γ . Together with iv and vi

we conclude that Γ is =
�
n,m-satisfiable at T ′, u. ��

In what follows, we introduce the notion of quasi-ultraproduct, a variant of the
usual notion of first-order model theory, which will be needed for the definability
theorems.

Let I �= ∅, let U be an ultrafilter over I and let (Ti)i∈I be a family of data
trees. As usual, we denote with

∏
U Ti the ultraproduct of (Ti)i∈I modulo U .

Observe that by the fundamental theorem of ultraproducts (see e.g. [4, Thm.
4.1.9]),

∏
U Ti is a weak data tree σ-structure —though it may not be a data

tree because it may be disconnected, as it is shown next:

Example 10. For i ∈ N, let Ti as any data tree of height at least n, and let ui

as any node of Ti at distance n from the root of Ti. Let ϕn(x) be the first-order
property “x is at distance at least n from the root”. It is clear that Tm |= ϕn[um]
for every m ≥ n. Let u∗ be the ultralimit of (ui)i∈I modulo U . Since {m | m ≥
n} ∈ U for any non-principal U , we conclude that

∏
U Ti |= ϕn[u

∗] for every n,
and so u∗ is disconnected from the root of

∏
U Ti.

Let (Ti, ui)i∈I be a family of pointed data trees. The ultraproduct of such pointed
data trees is defined, as usual, by (

∏
U Ti, u∗), where u∗ is the ultralimit of (ui)i∈I

modulo U .

Definition 11. Suppose (Ti, ui)i∈I is a family of pointed data trees, ri is the root
of Ti, U is an ultrafilter over I, T ∗ =

∏
U Ti, and u∗ and r∗ are the ultralimits

of (ui)i∈I and (ri)i∈I modulo U respectively.

1. The ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pointed data tree
(T ∗|u∗, u∗).

2. The -quasi ultraproduct of (Ti, ui)i∈I modulo U is the pair (T ∗|r∗, u∗).

Observe that both T ∗|u∗ and T ∗|r∗ are data trees. However, while u∗ is in the
domain of the former, it may not be in the domain of the latter (cf. Example 10).
Hence, in general, pointed data trees are not closed under -quasi ultraproduct.
Let k ≥ 0, let T be a data tree and let u ∈ T . We say that (T , u) is a k-bounded
pointed data tree if u is at distance at most k from the root of T . In particular,
if r is the root of T (as it is often the case) then (T , r) is a 0-bounded pointed
data tree. The following proposition states that k-bounded data trees are closed
under -quasi ultraproducts.

Proposition 12. Let (Ti, ui)i∈I be a family of k-bounded pointed data trees.
Then the -quasi ultraproduct of (Ti, ui)i∈I is a k-bounded pointed data tree.

Proof. Let (T �, u∗) be the -quasi ultraproduct of (Ti, ui)i∈I modulo U . By
definition it is clear that T � is a data tree. To see that u∗ ∈ T �, let

ϕ(x) = (∃r) [¬(∃y)y � r ∧ [r = x ∨ r � x ∨
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∨
1≤i<k

(∃z1 . . . ∃zi)[r � z1 ∧ zi−1 � x ∧
∧

1≤j<i−1

zj � zj+1]]],

which is a first-order formula for “r is the root and x is at distance at most k
from r”. Since for every i ∈ I we have Ti |= ϕ[ui], we conclude that T � |= ϕ[u∗]
and hence u∗ is at distance at most k from the root of T �. ��

As a particular case one has the notion of ↓-quasi ultrapower and -quasi
ultrapower of a family of pointed data trees. Observe that if (T �, u∗) is the
-quasi ultrapower of (T , u)i∈I then u∗ belongs to the domain of T � and so
(T �, u∗) is a pointed data tree.

5 Definability

In this section we state the main results. If K is a class of pointed data trees,
we denote its complement by K. We begin with the downward fragment.

Lemma 13. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↓

T ′, u′. Then there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗) of (T , u) and
(T ′, u′) respectively such that (T ↓, u∗)↔↓ (T ′↓, u′∗)

Proof. It is known that there is a suitable ultrafilter U such that
∏

U T and∏
U T ′ are ω-saturated (see e.g. [2, Lem. 2.7.3]). By item 1 Proposition 9, T ↓ =

(
∏

U T )|u∗ and T ↓ = (
∏

U T ′)|u′∗ are ↓-saturated data trees. By hypothesis
T , u ≡↓ T ′, u′, and hence T ↓, u∗ ≡↓ T ′↓, u′∗. Finally, by Proposition 4, T ↓, u∗↔↓

T ′↓, u′∗. ��

Lemma 14. Let K be a class of pointed data trees and let Σ be a set of XPath↓=-
formulas finitely satisfiable in K. Then Σ is satisfiable in some ↓-quasi ultra-
product of pointed data trees in K.

Proof. Let I = {Σ0 ⊂ Σ | Σ0 is finite} and for each ϕ ∈ Σ, let ϕ̂ = {i ∈ I |
ϕ ∈ i}. Then the set E = {ϕ̂ | ϕ ∈ Σ} has the finite intersection property:
{ϕ1, . . . , ϕn} ∈ ϕ̂1 ∩ · · · ∩ ϕ̂n. By the Ultrafilter Theorem (see [4, Prop. 4.1.3]) E
can be extended to an ultrafilter U over I.

Since Σ is finitely satisfiable in K, for each i ∈ I there is (Ti, ui) ∈ K such that
Ti, ui |= i. Let (T ↓, u∗) be the ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U . We
show that T ↓, u∗ |= Σ: let ϕ ∈ Σ. Then ϕ̂ ∈ E ⊆ U and ϕ̂ ⊂ {i ∈ I | Ti, ui |= ϕ}.
Hence {i ∈ I | Ti, ui |= ϕ} ∈ U , which implies that

∏
U Ti |= Trx(ϕ)[u

∗], where
u∗ is the ultralimit of (ui)i∈I . Since T ↓ = (

∏
U Ti)|u∗, by item 1 of Proposition 8

we conclude that T ↓, u∗ |= ϕ. ��

Theorem 15. Let K be a class of pointed data trees. Then K is definable by a
set of XPath↓=-formulas iff K is closed under ↓-bisimulations and ↓-quasi ultra-
products, and K is closed under ↓-quasi ultrapowers.
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Proof. For (⇒), suppose that K is definable by a set of XPath↓=-formulas. By
Theorem 1 it is clear that K is closed under ↓-bisimulations. By the fundamental
theorem of ultraproducts together with item 1 of Proposition 8 it is clear that
K is closed under ↓-quasi ultraproducts. It is also clear that the fundamental
theorem of ultraproducts and the fact that any XPath↓=-formula is expressible
in first-order imply that T , u ≡↓ T ↓, u∗ for any (T ↓, u∗) ↓-quasi ultrapower
modulo U , and therefore that K is closed under ↓-quasi ultrapowers.

For (⇐), suppose K is closed under bisimulations and ↓-quasi ultraproducts,
andK is closed under ↓-quasi ultrapowers.We show that Γ =

⋂
(T ,u)∈K Th↓(T , u)

defines K. It is clear that if (T , u) ∈ K then T , u |= Γ .
Now suppose that T , u |= Γ and consider Σ = Th↓(T , u). Let Δ be a finite

subset of Σ, and assume that Δ is not satisfiable in K. Then ¬ ∧Δ is true in
every pointed data tree of K, so ¬ ∧Δ ∈ Γ . Therefore T , u |= ¬ ∧Δ which is a
contradiction because Δ ⊆ Σ. This shows that Σ is finitely satisfiable in K.

By Lemma 14, Σ is satisfiable in some ↓-quasi ultraproduct of pointed data
trees in K, and since K is closed under ↓-quasi ultraproducts, Σ is satisfiable in
K. Then there exists (T ′, u′) ∈ K such that T ′, u′ |= Σ and therefore T , u ≡↓

T ′, u′. By Lemma 13, there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗)
of (T , u) and (T ′, u′) respectively such that (T ↓, u∗)↔↓ (T ′↓, u′∗). Since K is
closed under ↓-bisimulations, (T ↓, u∗) ∈ K. Suppose (T , u) ∈ K. Since K is
closed under ↓-quasi ultrapowers, (T ↓, u∗) ∈ K, and this is a contradiction.
Hence we conclude (T , u) ∈ K. ��

Theorem 16. Let K be a class of pointed data trees. Then K is definable by an
XPath↓=-formula iff both K and K are closed under ↓-bisimulations and ↓-quasi
ultraproducts.

Proof. For (⇒) suppose that K is definable by an XPath↓=-formula. By Theo-
rem 1 it is clear that K and K are closed under bisimulations. By the funda-
mental theorem of ultraproducts together with item 1 of Proposition 8 it is clear
that K and K are closed under ↓-quasi ultraproducts.

For (⇐) suppose K and K are closed under bisimulations and ↓-quasi ultra-
products. Then, by Theorem 15, there exist sets Γ1 and Γ2 of XPath↓=-formulas
defining K and K respectively. Consider the set of XPath↓=-formulas Γ1 ∪ Γ2.
This set is clearly inconsistent and so, by compactness, there are finite sets Δ1

and Δ2 such that Δi ⊆ Γi (i = 1, 2) and

T , u |= ∧Δ1 → ¬∧Δ2 (1)

for any pointed data tree (T , u). We show that ϕ = ∧Δ1 defines K. On the one
hand, it is clear that if (T , u) ∈ K then T , u |= ϕ. On the other hand, suppose
that T , u |= ϕ. From (1) we conclude T , u |= ¬ ∧Δ2 and so T , u �|= Γ2. Then
(T , u) /∈ K as we wanted to prove. ��

In [8, §3.1.1] a restricted version of ↓-bisimulations, called �-bisimulation, is
introduced. It is shown to coincide with the notion of �-equivalence, which infor-
mally means indistinguishable by XPath↓= formulas that cannot “see” beyond �
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‘child’-steps from the current point of evaluation. Like Theorem 16, the following
result characterizes when a class of pointed data trees is definable by a single
XPath↓=-formula. However, instead of using the rather abstract notion of ↓-quasi
ultraproducts, it uses the perhaps more natural notion of �-bisimulation.

Theorem 17. Let K be a class of pointed data trees. Then K is definable by a
formula of XPath↓= iff K is closed by �-bisimulations for XPath↓= for some �.

Proof. (⇒) is a direct consequence of Theorem 1. Let us see (⇐). We know [8,

Cor. 3.2] that {T ′, u′ | T , u ≡↓
� T ′, u′} is definable by an XPath↓=-formula χ�,T ,u

of downward depth ≤ �. We show that

ϕ =
∨

(T ,u)∈K

χ�,T ,u

defines K. In [8, Prop. 3.1] it is shown that ≡↓
� has finite index, and therefore the

above disjunction is equivalent to a finite one. On the one hand, if T ′, u′ ∈ K
then it is clear that T ′, u′ |= χ�,T ′,u′ and so T ′, u′ |= ϕ. On the other hand,
we have T ′, u′ |= ϕ iff there is (T , u) ∈ K such that T ′, u′ |= χ�,T ,u iff there

is (T , u) ∈ K such that T , u↔↓
� T ′, u′. Hence since K is closed under↔↓

� , if
T ′, u′ |= ϕ we have T ′, u′ ∈ K. ��

We turn to the vertical fragment.

Lemma 18. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡�

T ′, u′. Then there exist -quasi ultrapowers (T �, u∗) and (T ′�, u′∗) of (T , u) and
(T ′, u′) respectively such that (T �, u∗)↔� (T ′�, u′∗)

Proof. The proof is analogous to the proof of Lemma 13 but using item 2 instead
of item 1 of Proposition 9 and Proposition 6 instead of Proposition 4. ��

Lemma 19. Let K be a class of k-bounded pointed data trees and let Σ be a
set of XPath�=-formulas finitely satisfiable in K. Then Σ is satisfiable in some
-quasi ultraproduct of pointed data trees in K.

Proof. The proof is analogous to the proof of Lemma 14 but taking -quasi
ultraproducts instead of ↓-quasi ultraproducts and using item 2 instead of item 1
of Proposition 8. To apply this Proposition, one has to note that u∗ ∈ T � since
the Ti, ui are k-bounded pointed. ��

In the next two theorems, the universe of pointed data trees is restricted to
those which are k-bounded (for any fixed k). Therefore, the operations of closure
and complement must be taken with respect to this universe.
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Theorem 20. Over k-bounded pointed data trees: K is definable by a set of
XPath�=-formulas iff K is closed under -bisimulations and -quasi ultraproducts,
and K is closed under -quasi ultrapowers.

Proof. The proof is analogous to the proof of Theorem 15 but replacing pointed
data trees for k-bounded pointed data trees and every occurrence of ↓ for �.
Also, for (⇒), one has to use item 2 instead of item 1 of Proposition 8 and for
(⇐), Lemmas 19 and 18 instead of Lemmas 14 and 13. ��

Theorem 21. Over k-bounded pointed data trees: K is definable by an XPath�=-
formula iff both K and K are closed under -bisimulations and -quasi ultraprod-
ucts.

As in Theorem 17, one can also restate Theorem 21 in terms of (r, s, k)-bisim-

ulations for XPath�= (see [8, §3.2.3] for a definition).

Theorem 22. Let K be a class of pointed data trees. Then K is definable by a
formula of XPath�= iff K is closed by (r, s, k)-bisimulations for XPath�= for some
r, s, k.

6 Future Research and Applications

In this work we introduced new tools for showing definability results for the
downward and vertical fragments of XPath with (in)equality tests over data
trees. The general road to prove these theorems themselves is somewhat similar
to the one used for the basic modal logic BML (namely, a detour to first-order),
but the new concepts (and their interactions) needed to be used in the context
of XPath= are more sophisticated. The notions of ↓-saturation and -saturation
are more refined than the usual notions of BML, as they need to take care of the
(in)equality tests over the data. Another difference with respect to the models of
BML, namely Krike models, is that models of XPath= are trees (in particular,
connected) and so they are not closed under ultraproducts. Thus the notions
of ↓-quasi and -quasi ultraproducts arise. These are variants of the classical
first-order ultraproducts, and they are, of course, absent in the BML framework.

Our development may be useful for showing other basic model theoretical
results such as separation or interpolation of XPath↓= and XPath�=. We plan to
study those and other properties using the tools introduced in this work.

An interesting question is what can be said about other fragments of XPath=
such as XPath↓↓∗

= (‘child’ and ‘descendant’ axes) or XPath��
∗

= (‘child’, ‘parent’,
‘descendant’ and ‘ancestor’ axes). As it is mentioned in [8, §5], the bisimulation

notions of these two fragments correspond to those for XPath↓= and XPath�=
respectively. However, in the case of XPath↓↓∗

= and XPath��
∗

= , the connection to
first-order logic is not clear, as we cannot express transitive closure.

We finish with some applications:

Example 23. Let K be the class of pointed data trees (T , u) where u is the root
of T and T has some node labeled a. On the one hand, K is definable by a
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first-order σ-sentence. On the other, K is closed under XPath�=-bisimulations
but not closed under -quasi ultraproducts: for i ∈ N define Ti as any tree of
height i whose only node labeled a is at distance i from the root, and define ui

as the root of Ti. By an argument similar to the one used in Example 10 one can
show that if (T �, u∗) is any -quasi ultraproduct of (Ti, ui)i∈N then no node of

T � has label a. By Theorem 20, K is not definable by a set of XPath�=-formulas.

Example 24. Let dist3(x) be the property stating that there are nodes y, z so
that x→y→z and x, y, z have pairwise distinct data values. It can be checked
that the XPath�=-formula ϕ4 from Figure 1 expresses dist3(x). Let K be the
class of pointed data trees (T , u), where u is the root of T , and for all v ∈ T we

have dist3(v). On the one hand, K is definable by the set of XPath�=-formulas
{¬〈↓n [¬ϕ4]〉 | n ≥ 0}. On the other, for i ∈ N, let (Ti, ui) be any pointed data
tree not in K, of height at least i + 1, where ui is the root of Ti, and such that
for all v ∈ Ti at distance at most i from ui we have dist3(v). Let (T �, u∗) be
any -quasi ultraproduct of (Ti, ui)i∈N. One can see that all nodes of v ∈ T �

satisfy dist3(v), and so (T �, u∗) ∈ K. Therefore K is not closed under -quasi
ultraproducts and by Theorem 21, K is not definable by an XPath�=-formula.
The reader can verify that K is not closed under ↓-bisimulations (see [8, Prop.
7.5]) and hence, by Theorem 15, K is not definable by a set of XPath↓=-formulas.
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Abstract. Call-by-value and call-by-need λ-calculi are defined using the
distinguished syntactic category of values. In theoretical studies, values
are variables and abstractions. In more practical works, values are usually
defined simply as abstractions. This paper shows that practical values
lead to a more efficient process of substitution—for both call-by-value
and call-by-need—once the usual hypothesis for implementations hold
(terms are closed, reduction does not go under abstraction, and substi-
tution is done in micro steps, replacing one variable occurrence at the
time). Namely, the number of substitution steps becomes linear in the
number of β-redexes, while theoretical values only provide a quadratic
bound.

1 Introduction

The theory and the practice of functional programming languages are sometimes
far apart. For instance, the theory is based on the λ-calculus, where terms may
have free variables, reduction is non-deterministic (but confluent), and can take
place everywhere in the term. In practice—i.e. in the implementation of func-
tional languages—only closed λ-terms are considered, reduction is deterministic,
and weak, i.e. it does not take place under abstraction.

Theoretical and Practical Values. Plotkin’s call-by-value λ-calculus [1] is a the-
oretical object of study introduced to model a concrete case, Landin’s SECD
machine [2]. In such a calculus there is a primitive notion of value and β-redexes
can fire only when the argument is a value. For Plotkin—and for most of the
huge theoretical literature that followed—values are variables and abstractions ;
let us call them theoretical values. However, most call-by-value abstract machines
(or imperative extensions of Plotkin’s calculus [3]) employ a notion of practical
value that includes abstractions and excludes variables. For instance, Paolini and
Ronchi della Rocca’s book [4] on the parametric λ-calculus, a generalization of
Plotkin’s calculus based on a parametric notion of value, requires that the given
notion of value is theoretical (i.e. that it includes variables), while Pierce’s book
[5], driven by programming and implementations, uses practical values. Under
the usual practical hypotheses—terms are closed, reduction does not go under
abstraction—the difference between the two notions of value is not extensionally
observable, as it does not affect the result of evaluation.

In this paper we close the gap between theory and practice, providing a theo-
retical justification for practical values. We show that the difference between the
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two notions of value is intensionally observable: the practical variant leads to
a more efficient implementation of substitution, where efficiency is measured in
relation to the number of β-redexes. To state and prove our claim it is necessary
to switch to a refinement of the call-by-value λ-calculus where the usual small-
step semantics is decomposed in a micro-step semantics, in which substitution
acts on a variable occurrence at the time, i.e. with the granularity of abstract
machines (or of that of substructural operational semantics [6]).

The Linear Substitution Calculus. Our framework is the Linear Substitution
Calculus (LSC) [7,8,9], a calculus with explicit substitutions that is in between
theory and practice. It is theoretically well-founded, as it arises from graphical
and logical studies on the λ-calculus (of which it is a refinement), and practically
useful, as it faithfully models most environment-based abstract machines [10],
and—remarkably—the number of evaluation steps in the LSC is a reasonable
measure of the time complexity of a λ-term [8,11]. One of its key features is its
simplicity: it can model an abstract machine using only two rules, correspond-
ing to multiplicative and exponential cut-elimination in linear logic. The first
rule, the multiplicative one �m, deals with β-redexes, replacing them with an
explicit substitution. The second rule, the exponential one�e, replaces a single
occurrence of a variable with the content of its associated explicit substitution,
mimicking the mechanism at work in abstract machines.

Call-by-Name. Call-by-name does not rely on values, or, equivalently, every-
thing, including variables, is a value. Using the call-by-name LSC, in [8] it is
shown that the number of substitutions steps (�e) is quadratic in the number
of β steps (�m). The worst cases, i.e. those reaching the quadratic bound, are
given by sequences where between any two multiplicative steps (corresponding
to β-redexes) there is a chain of substitution steps of length linear in the number
of preceding multiplicative steps.

Call-by-Value. In the call-by-value LSC, if values are theoretical then the chains
of substitution steps at work in call-by-name case are still possible, and so the
bound is quadratic. On the other hand, we show that it is enough to remove
variables from values—therefore switching to practical values—to avoid these
expensive chains and obtain a globally linear relationship between the number
of substitution steps (�e) and the number of β steps (�m). The proof of the
bound is particularly simple and, curiously, it holds only under the assumption
that evaluation terminates.

Call-by-Need. We then deal with call-by-need evaluation, that is usually defined
using practical values [12,13,14,15,16] and that can be modularly expressed in
the LSC. As for call-by-value, theoretical values induce a quadratic bound, while
practical values provide a linear bound. The proof, however, is inherently dif-
ferent. It is technically more involved and it does not require the termination
assumption.
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New Speed-Up. Summing up, the two contributions of the paper are the lin-
ear bounds for call-by-value and call-by-need. These evaluation strategies are
usually considered to speed up call-by-name evaluation because they reduce re-
dexes in arguments before the arguments are substituted, implementing a form
of sharing. Our results show that they also provide a subtler and deeper speed-up
with respect to call-by-name: there are terms that take the same number k of
β-steps to evaluate to normal form in call-by-name/value, and yet their micro-
step evaluation takes O(k2) steps in call-by-name and O(k) steps in call-by-
value/need.

Justifying Practical Values. One of the motivations of this work is to find a
theoretical justification for practical values, that escape usual argument based
on logic or rewriting. Indeed, while both call-by-value and call-by-need have a
logical foundation in the so-called boring translation of λ-calculus into linear
logic [17,18], such translation wraps both variables and abstractions inside the !
modality—the connective allowing non-linear behaviour—thus enabling the sub-
stitution of both. At the rewriting level, the strategies implemented by abstract
machines can be justified as being standard strategies, in the sense of the stan-
dardization theorem. Now, the strategies with practical values are not standard
in the wider calculi with theoretical values, so that the switch to practical val-
ues cannot be justified that way. Our results provide an alternative explanation,
based on the relative complexity of the substitution process.

Abstract Machines. Let us conclude pointing out a companion paper [10], where
for the LSC calculi considered here and several abstract machines from the lit-
erature, we show that the number of execution steps of the abstract machine is
linear in the number of steps in the calculus. Via that work, our bounds apply
to concrete implementation models.

Related Work. The only similar work we are aware of is Dal Lago and Mar-
tini’s [19], where it is shown that evaluation in the call-by-value λ-calculus (cor-
responding to our �m) and evaluation in a related graph-rewriting formalism
(playing the role of the LSC, and accounting for �m and �e) are linearly re-
lated (and so �e is linear in �m). They do not discuss the difference between
theoretical and practical values, however they employ practical values at the
graphical level, exactly as our results prescribe.

2 Call-by-Name Analysis

Terms and Contexts. The language of the linear substitution calculus, that will
be shared by all the calculi treated in the paper, is generated by the following
grammar:

t, u, w, r ::= x | λx.t | tu | t[x�u]



On the Value of Variables 39

The constructor t[x�u] is called an explicit substitution (of u for x in t). Both λx.t
and t[x�u] bind x in t, with the usual notion of α-equivalence and of free/bound
variable (occurrence).

An initial term is a closed term (i.e. without free variables) with no explicit
substitutions.

The operational semantics is defined using contexts, i.e. terms with one occur-
rence of the hole 〈·〉, an additional constant. For call-by-name (shortened CBN),
evaluation contexts are defined by the following grammar:

H ::= 〈·〉 | Ht | H [x�t]

The plugging H〈t〉 (resp. H〈H ′〉) of a term t (resp. context H ′) in a context
H is defined as 〈t〉 := t (resp. 〈H ′〉 := H ′), (Ht)〈u〉 := H〈u〉t (resp. (Ht)〈H ′〉 :=
H〈H ′〉t), and so on. Substitution contexts are defined by L ::= 〈·〉 | L[x�t].

Rewriting Rules. As usual, the rewriting rules are obtained by first defining the
rewriting rules at top level, and then taking their closure by evaluation contexts.
A peculiar aspect of the LSC is that contexts are also used to define the rules
at top level. Such a use of contexts is how locality on proof nets (the graphical
language for linear logic proofs) is reflected on terms. For CBN, the rewriting
relation is�:=�m ∪�e, where�m and�e are given by:

Rule at Top Level Contextual Closure
L〈λx.t〉u �→m L〈t[x�u]〉 H〈t〉�m H〈u〉 iff t �→m u

H〈x〉[x�u] �→e H〈u〉[x�u] H〈t〉�e H〈u〉 iff t �→e u

We silently work modulo α-equivalence to avoid variable capture in the rewriting
rules, and in �→e we assume that the context H does not capture the variable x
nor the free variables of u.

In the literature, � is known as weak linear head reduction. The rule �m,
turning (generalized) β-redexes into explicit substitutions, corresponds to the
multiplicative case of cut-elimination in proof nets, while �e, implementing
substitution in micro steps, corresponds to the exponential case.

Exponential vs Multiplicative Analysis. For CBN, the relationship between �m

and �e is already well-known from the literature [8,11]. Given a derivation
d : t�∗ u let us note |d|e and |d|m the number of exponential and multiplicative
steps, respectively. Then:

Theorem 1 (Quadratic Bound [8]). Let d : t �∗ u be a CBN derivation
from an initial term t. Then |d|e = O(|d|2m) (and so |d| = O(|d|2m)).

In [11] this result is generalized and its proof is axiomatized. In fact, it holds
for any strategy having the two following abstract properties of � (using the
notation of the theorem):

1. Trace: the number |u|[ ] of explicit substitutions in u is exactly |d|m.
2. Syntactic Bound : the length of a sequence of �e steps from u is ≤ |u|[ ].
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Their proof for� can be found in [8] or—in a more general form—in [11]. Then
the bound can be proved easily.

Proof. Note that �m terminates, as the number of constructors decreases. The
syntactic bound property gives termination of�e. Then d has the shape:

t = w1 �a1
m r1�b1

e w2 �a2
m r2�b2

e . . . wk �ak
m rk �bk

e u.

By the syntactic bound property, we obtain bi ≤ |ri|[ ]. By the trace property

we obtain |ri|[ ] =
∑i

j=1 aj , and so bi ≤
∑i

j=1 aj . Then:

|d|e =
∑k

i=1 bi ≤
∑k

i=1

∑i
j=1 aj .

Note that
∑i

j=1 aj ≤
∑k

j=1 aj = |d|m and k ≤ |d|m. So

|d|e ≤
∑k

i=1

∑i
j=1 aj ≤

∑k
i=1 |d|m ≤ |d|2m. ��

The bound is tight, as it is reached for instance by δδ (where δ = λx.(xx)).
In particular, its evaluation has subsequences of variable renamings of the form:

(xnxn)[xn�xn−1] . . . [x2�x1][x1�δ] �e

(xn−1xn)[xn�xn−1] . . . [x2�x1][x1�δ] �e

. . .
(x1xn)[xn�xn−1] . . . [x2�x1][x1�δ] �e

(δxn)[xn�xn−1] . . . [x2�x1][x1�δ] �m

(xn+1xn+1)[xn+1�xn][xn�xn−1] . . . [x2�x1][x1�δ]�e . . .

(1)

where it takes n renaming steps to obtain a multiplicative redex, that in turn
generates a new sequence of n + 1 renamings, and so on. In other words, these
sequences meet the bound in the syntactic bound property.

Let us point out that the bound is reached also by some normalizing terms.
Consider ττn where τ = λx.λn.(n(λy.y)(xx)) and n is any Scott’s numeral [20],
defined by [[0]] = λx.λy.x and [[n + 1]] = λx.λy.y[[n]]. Evaluating the term takes
(n+ 1)(n+ 4)/2 exponential steps but only 4(n+ 1) multiplicative steps.

The trace and syntactic bound properties can be proved also for call-by-value
and call-by-need variants of the calculus, obtaining a quadratic bound. But the
next sections will show that for the variants of these strategies that employ
practical values a finer analysis is possible, leading to a linear bound. These two
results are new, and surprising in various ways:

1. Variables : for the linear bound it is crucial that values do not include vari-
ables. For instance, if variables are values δδ has exactly the same reductions
in the three evaluation scheme considered, matching the quadratic bound.
What is surprising is that it is enough to remove variables from values to
decrease the asymptotic complexity of substitution.

2. New Speed-Up: the terms of the form ττn mentioned before take the same
number k of β-steps to evaluate to normal form in call-by-name and call-by-
value, and yet their micro-step evaluation takes O(k2) steps in call-by-name
and O(k) steps in call-by-value.
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3. Linear Logic: from a linear logic perspective the bound is quite unexpected.
The exponentials (i.e. the substitutions), responsible for duplications, are
expected to capture most of the computing time, while the multiplicatives
are somehow negligible in terms of cost. One may suspect that the number of
steps is not a good complexity measure, as substitution may be very costly
to implement. But it is not the case here, as our exponential steps can be
implemented in time linear in the size of the initial term (because of the
properties of the micro-step evaluation strategy we consider), and can thus
be taken as a realistic measure of complexity, see [8,11].

3 Call-by-Value Analysis

For call-by-value (CBV), the underlying language is the same as for call-by-name,
but we distinguish (practical) values, noted v, that are given only by abstractions,
and answers L〈v〉, given by a value in a substitution context (see Sect. 2).
Evaluation contexts for CBV, implementing left-to-right CBV, are defined as:

V ::= 〈·〉 | V t | L〈v〉V | V [x�t]

In CBV, it can be easily shown that a closed term either diverges or produces
an answer (but this property will not play a role in our analysis), and moreover
the definiens of substitutions are also answers.

Rewriting Rules. We re-define�m and�e as follows:

Rule at Top Level Contextual closure
L〈λx.t〉L′〈v〉 �→m L〈t[x�L′〈v〉]〉 V 〈t〉�m V 〈u〉 iff t �→m u
V 〈x〉[x�L〈v〉] �→e L〈V 〈v〉[x�v]〉 V 〈t〉�e V 〈u〉 iff t �→e u

As for call-by-name, we silently work modulo α-equivalence and in �→e the
context V does not capture x nor the free variables of v. We also still use the
notation�:=�m ∪�e.

Let us revisit the δδ example of Sect. 2, used to show that the quadratic
bound is strict for CBN. Using CBV and theoretical values one obtains the
same evaluation sequence. Practical values, instead, give:

δδ�m (x1x1)[x1�δ] �e

(δx1)[x1�δ] �e

(δδ)[x1�δ] �m

(x2x2)[x2�δ][x1�δ] �e

(δx2)[x2�δ][x1�δ] �e

(δδ)[x2�δ][x1�δ] �m

(x3x3)[x3�δ][x2�δ][x1�δ]�e . . .

(2)

Where it is easily seen that for any d : δδ �∗ t we have the linear relation-
ship |d|e ≤ 2 · |d|m. This fact suggests that any CBV derivation d verifies
|d|e = O(|d|m). Curiously, this is not true in general. In particular, in CBV
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a chain of substitution steps can be arbitrarily longer than the number of pre-
vious multiplicative steps. Let us give an example. Let tn stay for t applied to
itself n times, associating to the right, i.e. tn := t(t(t(t . . .))) n times, and set
I := λy.y. We have

(λx.xn)I �m xn[x�I]�n
e In

So n substitution steps�e after just one multiplicative step�m. It seems even
worse than in CBN, while instead, globally, it is a faster mechanism, of a different
nature (note that the steps in the sequence are independent, i.e. they are not
generated by chains of substitutions occurring one in the other as in CBN).
The idea is that the substituted values create or will create new multiplicative
redexes, so that if we keep reducing the term we will match the substitution
steps in excess (if evaluation terminates, as in the example) and obtain a linear
relationship between the two. The point is that in CBV the linear bound holds
only for evaluation to normal form, otherwise the gap between |d|e and |d|m can
be arbitrarily big.

Exponential vs Multiplicative Analysis. We first need some easy invariants.

Lemma 1 (CBV Invariants). Let t be initial and d : t�∗ u.

1. Subterm: every value in u is a value in t;
2. Trace: the number |u|[ ] of explicit substitutions in u is exactly |d|m;
3. Proper: every substitution in u contains an answer.

Proof. Easy inductions on the length of d. Point 1 is used to prove Point 2. ��

Let us provide an intuition for the forthcoming proof of the linear bound. An
exponential step makes a new copy of a value that will be eventually consumed by
a multiplicative step, unless the term is divergent. A multiplicative step consumes
the value in its left subterm. Therefore it is possible to bound the number of
exponential steps with the number of consumed values (that is the number of
multiplicative steps) plus the number of values in the term, what we call the
value size of the term.

Definition 1 (Value Size). The value size | · |λ of a term counts the number
of values that are not inside another value. It is defined recursively as follows:
|x|λ = 0, |v|λ = 1, |t[x�u]|λ = |t|λ + |u|λ, |tu|λ = |t|λ + |u|λ.

In just one surprisingly simple lemma we obtain the main invariant relat-
ing �e, �m, and the value size. The corollary uses the previous invariants to
instantiate it in the terminating case, obtaining the linear bound.

Lemma 2 (Main Invariant). Let d : t�n u. Then |d|e ≤ |d|m + |u|λ − |t|λ.

Proof. By induction over n. Case n = 0 is obvious. Otherwise t � w and
e : w�n−1 u and, by inductive hypothesis, |e|e ≤ |e|m + |u|λ − |w|λ. Cases:
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– the first step is exponential. Then

t = V 〈V ′〈x〉[x�L〈v〉]〉�e V 〈L〈V ′〈v〉[x�v]〉〉 = w

and |w|λ = |t|λ + 1. Thus

|d|e = |e|e + 1 ≤i.h. |e|m + |u|λ − |w|λ + 1
= |d|m + |u|λ − (|t|λ + 1) + 1 = |d|m + |u|λ − |t|λ

– the first step is multiplicative. Then

t = V 〈L〈λx.r〉L′〈v〉〉�m V 〈L〈r[x�L′〈v〉]〉〉 = w

and |w|λ = |t|λ − 1 + |r|λ. Thus
|d|e = |e|e ≤i.h. |e|m + |u|λ − |w|λ

= |d|m − 1 + |u|λ − (|t|λ − 1 + |r|λ)
= |d|m + |u|λ − |t|λ − |r|λ ≤ |d|m + |u|λ − |t|λ ��

Corollary 1 (Linear Bound for CBV). Let t be initial and d : t �∗ L〈v〉.
Then |d|e ≤ 2·|d|m + 1.

Proof. By the proper invariant every substitution contains a value plus some
substitutions, each one recursively having the same shape, so |L〈v〉|λ = |L〈v〉|[ ]+
1, where 1 accounts for the value v. By the trace invariant |L〈v〉|[ ] = |d|m, and
so |L〈v〉|λ ≤ |d|m+1. Then the main invariant gives: |d|e ≤ |d|m+|L〈v〉|λ−|t|λ ≤
|d|m + |L〈v〉|λ ≤ |d|m + |d|m + 1 = 2 · |d|m + 1. ��

Invariance of the CEK machine. Our result on CBV has an implicit by-product.
In [19] it is shown that Plotkin’s calculus, whose steps can be identified with our
�m steps, is invariant, i.e. polynomially related to models like Turing machines
or random access machines, see the introduction of [11] for a presentation of
the topic. Then, our result implies that the CBV LSC is invariant. In [10] it is
shown that the CEK abstract machine [21] is linearly related to the CBV LSC.
Therefore, the CEK is invariant. Such a result—albeit expected—is new.

Right-to-Left CBV. In this section we studied left-to-right CBV. The dual right-
to-left strategy can be obtained by simply redefining the grammar of evaluation
context as

V ::= 〈·〉 | V L〈v〉 | tV | V [x�t]

Our proof for the bound with practical values holds unchanged also for the
right-to-left strategy. However, it is unclear how right-to-left CBV behaves with
theoretical values, as the typical quadratic example for theoretical left-to-right
CBV, given by δδ, is linear when evaluated with theoretical right-to-left CBV:

δδ�m (x1x1)[x1�δ] �e

(x1δ)[x1�δ] �e

(δδ)[x1�δ] �m

(x2x2)[x2�δ][x1�δ] �e

(x2δ)[x2�δ][x1�δ] �e

(δδ)[x2�δ][x1�δ] �m

(x3x3)[x3�δ][x2�δ][x1�δ]�e . . .

(3)
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Note indeed that this is essentially the same evaluation as in (2). We do not
know if for theoretical right-to-left CBV �m and �e are linearly related. We
believe so, but the two proof techniques developed in this paper do not apply.

4 Call-by-Need Analysis

For call-by-need (CBNeed), the analysis is different and technically more in-
volved. At first sight, CBNeed is very similar to call-by-name: the length of
substitution sequences is bounded by the number |d|m of multiplicative steps
previously performed, and the bound is easily reached. There is however a fun-
damental difference. While in CBN any substitution sequence can have length
|d|m, in CBNeed it is the concatenation of all chains that is bound by (twice)
|d|m. As for call-by-value, there is a matching, or consumption phenomenon: fir-
ing a substitution chain of length k consumes k preceding multiplicative steps,
decreasing the bound for the chains to come (note that in CBV multiplicative
steps consume exponential steps, while here it is the other way around). More
precisely, the chains are bound by the number of unevaluated substitutions rather
than by the number of preceding multiplicative steps, according to the following
scheme, that can be seen as a simple form of amortized analysis:

1. every multiplicative step produces an unevaluated substitution;
2. the first time an unevaluated substitution substitutes somewhere it changes

status and becomes evaluated ;
3. chains of substitution steps are bound by the number of unevaluated substi-

tutions, that is always ≤ |d|m and only globally equal to |d|m.

Our proof will use a calculus enriched with labels on substitutions, to explicitly
trace unevaluated substitutions. The labels will have no effect on the dynamics
of the calculus, and are only meant as an aid for the proof.

The CBNeed Calculus. For the sake of clarity, we start by introducing the cal-
culus, and then we start over introducing its labeled version. Terms, values, and
answers are defined as before. CBNeed evaluation contexts are defined by:

N ::= 〈·〉 | Nt | N [x�t] | N ′〈x〉[x�N ]

Note that CBNeed evaluation contexts extend the weak head contexts for call-
by-name with a clause (N ′〈x〉[x�N ]) that turns them into hereditarily weak head
contexts. This new clause is how sharing will be implemented by the strategy
�:=�m ∪�e defined by:

Rule at Top Level Contextual closure
L〈λx.t〉u �→m L〈t[x�u]〉 N〈t〉�m N〈u〉 iff t �→m u

N〈x〉[x�L〈v〉] �→e L〈N〈v〉[x�v]〉 N〈t〉�e N〈u〉 iff t �→e u

The multiplicative rule is taken from the CBN calculus. Therefore the definiens
of a substitution is not necessarily an answer. The exponential rule come instead
from the CBV calculus, and requires arguments to be evaluated to answers before
being substituted, reflecting the by need content of the strategy.
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Now that the calculus is defined, let us evaluate again δδ. Using CBNeed
and theoretical values it would evaluate exactly in the same way as for CBN.
Practical values, instead, give:

δδ�m (x1x1)[x1�δ] �e

(δx1)[x1�δ] �m

(x2x2)[x2�x1][x1�δ] �e

(x2x2)[x2�δ][x1�δ] �e

(δx2)[x2�δ][x1�δ] �m

(x3x3)[x3�x2][x2�δ][x1�δ]�e

(x3x3)[x3�δ][x2�δ][x1�δ] �e

(δx3)[x3�δ][x2�δ][x1�δ] �m . . .

(4)

Where it is easily seen that for any d : δδ �∗ t we have |d|e ≤ 2 · |d|m. We
are going to show that—in contrast to CBV—this bound holds for any CBNeed
derivation, i.e. the derivation does not need to end on a normal form.

The labeled CBNeed Calculus. The labeled language is:

t, u, w, r ::= x | v | tu | t[x�u]◦ | t[x�u]•; v ::= λx.t;

A white substitution t[x�u]◦ represents an unevaluated substitution, that has
never substituted its content yet. A black substitution t[x�u]• instead is an
already evaluated substitution, i.e. one that has already acted on some variable
occurrence. An invariant of evaluation will be that black substitutions contain
values. We use t[x�u]∗ for t[x�u]◦ or t[x�u]•. Of course, we need to redefine
also substitution and evaluation contexts, duplicating the cases for substitution:

L ::= 〈·〉 | L[x�t]◦ | L[x�t]•;
N,M ::= 〈·〉 | Nt | N [x�t]◦ | N [x�t]• | N〈x〉[x�N ]◦ | N〈x〉[x�N ]•.

According to the informal semantics, the rewriting rules are:

Rule at Top Level Contextual closure
L〈λx.t〉u �→m L〈t[x�u]◦〉 N〈t〉�m N〈u〉 iff t �→m u

N〈x〉[x�L〈v〉]◦ �→e◦ L〈N〈v〉[x�v]•〉 N〈t〉 →e◦ N〈u〉 iff t �→e◦ u
N〈x〉[x�L〈v〉]• �→e• L〈N〈v〉[x�v]•〉 N〈t〉 →e• N〈u〉 iff t �→e• u

The rewriting relation is �:=�m ∪ →e◦ ∪ →e•. Let →e∗ stay for →e◦ or
→e•. A term is black-proper if every black substitution contains a value.

Lemma 3 (Invariants). Let t be a λ-term and d : t�∗ u.

1. Subterm: every value in u is a value in t.
2. Black-Proper: u is black-proper.

Proof. By induction on the length k of t�k u. ��

Since the reduction rules only duplicate values, we obtain that every dupli-
cated subterm along a�-execution is a subterm of the initial term.
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Multiplicative vs Exponential Analysis. Essentially, we prove two facts that refine
the abstract properties providing the quadratic bound for CBN.We use |t|◦ for the
number of white substitutions in t and |d|e◦ for the number of→e◦ steps in d.

Lemma 4 (White Trace). Let t be initial and d : t �∗ u. Then |u|◦ =
|d|m − |d|e◦.

Proof. By induction on the length k of d.

1. Base case, i.e. k = 0. Then |u|◦ = 0 because t is a λ-term (it has no explicit
substitution) and |d|◦ = |d|e◦ = 0, so the statement holds.

2. Inductive case, i.e. k > 0. Then t�k−1 w� u and let e be the derivation
t�k−1 w. By i.h., |w|◦ = |e|m − |e|e◦. Cases of w� u:

(a) w �m u. The step creates a new white substitution and does not du-
plicate/erase any other white substitution, so |u|◦ = |w|◦ + 1. Since
|d|m = |e|m + 1 and |d|e◦ = |e|e◦, the statement holds.

(b) w →e◦ u. By the subterm property (Lemma 3.1) the copied value has
no substitution, so we have |u|◦ = |w|◦ − 1. Since |d|m = |e|m and
|d|e◦ = |e|e◦ + 1, the statement holds.

(c) w →e• u. By the subterm property the copied value has no substitution,
so |u|◦ = |w|◦. Since |d|m = |e|m and |d|e◦ = |e|e◦, the statement holds.

��

By means of an omitted lemma (Lemma 6, page 48, in the appendix) we
obtain the following bounds on substitution sequences.

Lemma 5. Let t be an initial term and t�∗ u.

1. Black Constant Bound: If u→e∗→e∗ w then the second step is not black.
2. White Syntactic Bound: If u→k

e◦ w then k ≤ |u|◦.

The first point states that sequences of →e• steps are degenerated, as they
have at most length one, and can only appear after multiplicative steps. The
second point is a refined version of the syntactic bound for CBN (see Sect. 2).

Proof. The first point is given by the omitted Lemma 6.4. The second point is
by induction on k. If k = 0 the statement trivially holds. If u →e◦ r →k−1

e◦ w
by the subterm property (Lemma 3.1) the substitution step does not duplicate
any substitution and turns exactly one white substitution into a black one. So,
|r|◦ = |u|◦ − 1. By i.h. we obtain k − 1 ≤ |u|◦ − 1 and so k ≤ |u|◦. ��

Theorem 2 (Linear Bound for CBNeed). Let t be initial and d : t �∗ u.
Then |d|e ≤ 2 · |d|m.

Proof. Given that �m is evidently terminating, and according to Lemma 5, d

writes uniquely as (where →(1)
e• means 0 or 1 steps of →e•):

t = t1 �a1
m w1 →(1)

e• u1 →b1
e◦ t2 . . . tk �ak

m wk →(1)
e• uk →bk

e◦ u
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Clearly |d|e• ≤ |d|m. Since |d|e = |d|e◦ + |d|e•, we are left to show that |d|e◦ ≤
|d|m. Let di : t �∗ wi be the prefix of d ending on wi (including aj and bj for

j < i, plus ai, but not bi). Note that defining b0 := 0 we obtain |di|e◦ =
∑i−1

j=0 bj
for i ∈ {1, . . . , k}. Now we can easily estimate the generic term bi and conclude:

bi ≤Lemma 5 |ui|◦ =Lemma 4 |di|m − |di|e◦ = |di|m −
∑i−1

j=0 bj

|d|e◦ =
∑k

i=0 bi = bk+
∑k−1

i=0 bi ≤ |dk|m−
∑k−1

j=0 bj +
∑k−1

i=0 bi = |dk|m = |d|m ��

On the Need of Labels. In fact, labels are not strictly necessary. It is possible to
prove a linear relationship on the original CBNeed calculus, and the proof, along
the same lines, is also slightly simpler (the role of white substitutions is played
by those substitution whose content is a term of the form L〈x〉). The price to
pay however is that such an alternative analysis provides only a laxer—despite
always linear—bound, as the multiplicative constant is higher (3 instead of 2).
We preferred to use labels because the analysis they provide is tight, as it is
shown by the δδ example, that reaches the bound given by Theorem 2.

Let us conclude with a comment. The call-by-need LSC can be seen as a vari-
ant of Chang and Felleisen’s calculus [15], that is a λ-calculus without explicit
substitutions implementing call-by-need by micro-step evaluation and only one
contextual rewriting rule. The result we just obtained shows that a syntax hav-
ing an explicit constructor for substitutions may provide insights that are not
accessible using the traditional syntax of λ-calculus.

Acknowledgements. To Pablo Barenbaum, for discussions and help with some
technical details.
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Proofs Appendix

Lemma 6. Let N be a call-by-need context.

1. If N〈x〉 = M〈y〉 with x not bound by N and y not bound by M , then N = M
and x = y.

2. A term of the form N〈x〉, with x not bound by N , is not of the form M〈v〉.
3. Suppose N〈x0〉 is black-proper for some variable x0, and N〈v〉 →e∗ t. Then

the step is not →e•.
4. If t→e∗→e∗ u then the second step is not black.

Proof.

1. By induction on N .
(a) Empty context, i.e. N = 〈·〉: then M must be 〈·〉 and x = y.
(b) Left of an application, i.e. N = N ′ t: suppose N ′〈x〉 t is of the form M〈y〉.

Then N ′〈x〉 must be of the form M ′〈y〉, with M = M ′ t, and we conclude
by i.h..

(c) Left of a white or black substitution, i.e. N = N ′[z�t]∗: suppose the
N〈x〉 = N ′〈x〉[z�t]∗ is also of the form M〈y〉. There are two possibilities:
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i. The hole of M is on the left of the substitution. That is, M =
M ′[z�t]∗ and N ′〈x〉 = M ′〈y〉. We conclude by i.h..

ii. The hole of M is inside the substitution. Then it must be that M =
M ′〈z〉[z�M ′′]∗. It follows N ′〈x〉 = M ′〈z〉, with z not bound by M ′.
By i.h., we conclude x = z, which is absurd since x is not bound by
N . Hence this case is impossible.

(d) Inside a white or black substitution, i.e. N = N ′〈z〉[z�N ′′]∗: suppose
that N〈x〉 = N ′〈z〉[z�N ′′〈x〉]∗ is also of the form M〈y〉. As in the pre-
vious case, there are two possibilities:
i. The hole of M is on the left of the substitution. That is, M =

M ′[z�t]∗. In particular, we must have N ′〈z〉 = M ′〈y〉 with z now
not bound by N ′. By i.h., we conclude y = z which is absurd. Hence
this case is impossible.

ii. The hole of M is inside the substitution. That is, M=M ′〈z〉[z�M ′′]∗.
Hence we have that N ′〈z〉[z�N ′′〈x〉]∗ = M ′〈z〉[z�M ′′〈y〉]∗. On one
hand, this implies N ′〈z〉 = M ′〈z〉 with z now free on both sides,
which by i.h. gives us N ′ = M ′. On the other, we obtain that
N ′′〈x〉 = M ′′〈y〉, that lets us conclude by resorting again to the
i.h..

2. By induction on N .
(a) Empty context, i.e. N = 〈·〉: a variable cannot be of the form M〈v〉.
(b) Left of an application, i.e. N = N ′ t: suppose N〈x〉 = N ′〈x〉 t is also

of the form M〈v〉. Then N ′〈x〉 must be of the form M ′〈v〉, which is
impossible by i.h..

(c) Left of a white or black substitution, i.e. N = N ′[z�t]∗: suppose that
N〈x〉 = N ′〈x〉[z�t]∗ is also of the form M〈v〉. There are two possibilities:
i. The hole of M is on the left of the substitution. That is, M =

M ′[z�t]∗ and N ′〈x〉 = M ′〈v〉. This is impossible by i.h..
ii. The hole of M is inside the substitution. That is, M=M ′〈z〉[z�M ′′]∗.

It follows that N ′〈x〉 = M ′〈z〉, with z not bound by M ′. By point
1 of this lemma, we conclude x = z, which is absurd since x is not
bound by N . Hence this case is impossible.

(d) Inside a white or black substitution, i.e. N = N ′〈z〉[z�N ′′]∗: suppose
that N〈x〉 = N ′〈z〉[z�N ′′〈x〉]∗ is also of the form M〈v〉. There are two
possibilities:
i. The hole of M is on the left of the substitution. That is, M =

M ′[z�t]∗. In particular, we must have N ′〈z〉 = M ′〈v〉 with z now
not bound by N ′. By i.h., this is impossible.

ii. The hole of M is inside the substitution.That is,M=M ′〈z〉[z�M ′′]∗.
Hence we have that N ′〈z〉[z�N ′′〈x〉]∗ = M ′〈z〉[z�M ′′〈v〉]∗. From
this we obtain that N ′′〈x〉 = M ′′〈v〉 that is impossible by i.h..

3. By induction on N .
(a) Empty context, i.e. N = 〈·〉: trivial, since v is a normal form.
(b) Left of an application, i.e. N = N ′ u: any →e• redex in N ′〈v〉u must be

internal to N ′〈v〉, and we conclude this is impossible by i.h..
(c) Left of a white or black substitution, i.e. N = N ′[x�u]∗: so N〈v〉 is a

substitution N ′〈v〉[x�u]∗. There are three possibilities for a →e• step:
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i. The →e• step takes place on the left of the substitution, i.e. internal
to N ′〈v〉. This is impossible by i.h..

ii. The →e• step takes place inside the substitution. It must then be
that N ′〈v〉 is of the form M ′〈x〉. By point 2 of this lemma, this is
impossible.

iii. The →e• step is at the root. In this case the substitution is black.
Suppose N ′〈v〉[x�u]• �→e• t. Then N ′〈v〉 must be of the form M ′〈x〉,
which is impossible by point 2 of this lemma.

(d) Inside a white or black substitution, i.e. N = N ′〈x〉[x�N ′′]∗: so N〈v〉 is
N ′〈x〉[x�N ′′〈v〉]∗. There are three possibilities for a →e• step:
i. The →e• step takes place on the left of the substitution. i.e. internal

to N ′〈x〉. This means N ′〈x〉 can be written as M〈M ′〈y〉[y�u]•〉.
Since the term is black-proper, u must be a value v′. Note also that
M ′′ := M〈M ′〈y〉[y�〈·〉]•〉 is a call-by-need context. Then N ′〈x〉 can
be written as of the form M ′′〈v′〉. This is impossible by point 2 of
this lemma.

ii. The →e• step takes place inside the substitution. i.e. internal to
N ′′〈v〉. This is impossible by i.h..

iii. The→e• step is at the root. In this situation the substitution is black.
SinceN ′〈x〉[x�N ′′〈v〉]• is black-proper by hypothesis, we knowN ′′〈v〉
must be a value, which implies that N ′′ = 〈·〉. By hypothesis we also
know that N〈x0〉 = N ′〈x〉[x�N ′′〈x0〉]• = N ′〈x〉[x�x0]

• is black-
proper for some variable x0. This is absurd, as the term is supposed to
be black-proper but the black substitution contains a variable. Hence
this case is impossible.

4. Let t = N ′〈N〈x〉[x�L〈v〉]∗〉 →e∗ N ′〈L〈N〈v〉[x�v]•〉〉 →e∗ u. By induction
on N ′. Cases:
(a) Empty context, i.e. N ′ = 〈·〉 and

t = N〈x〉[x�L〈v〉]∗ →e∗ L〈N〈v〉[x�v]•〉 →e∗ u

It is easily seen that L〈N〈v〉[x�v]•〉 →e∗ u because there exists w s.t.
N〈v〉[x�v]• →e∗ w and L〈w〉 = u (variables bound by L can only occur
in v and evaluation contexts do not go under abstractions). Then we are
in the hypotheses of Point 3, that allows to conclude.

(b) Left of an application, i.e. N ′ = N ′′ u: then any →e∗ redex in
N ′′〈L〈N〈v〉[x�v]•〉〉u is internal to the left subterm, and we conclude
using the i.h..

(c) Left of a white or black substitution, i.e. N ′ = N ′′[y�w]∗. Note that the
second step cannot be an action of the substitution [y�w]∗, because its
left term is N ′′〈L〈N〈v〉[x�v]•〉〉 — i.e. a value in a CBNeed context —
and by Point 2 it cannot be of the form N ′′′〈y〉. Then the second step
takes place in the left subterm and we conclude by the i.h..

(d) Inside a white or black substitution, i.e. N ′ = N ′′〈x〉[x�N ′′′]∗. Note
that [x�N ′′′]∗ is necessarily white, as reduction took place inside it. If
the second substitution step takes place inside N ′′′ we conclude by the
i.h.. Otherwise, the step is an action of [x�N ′′′]◦, that is a white step.
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Abstract. We propose a logic with the dynamic modal operators copy
and remove. The copy operator replicates a given model, and the remove
operator removes paths in a given model. We show that the product
update by an action model (with Boolean pre-conditions) in dynamic
epistemic logic decomposes in copy and remove operations. We also show
that copy and remove operators (of path of length 1) can be expressed by
action models. We investigate the complexity of the satisfiability problem
of syntactic fragments of the logic with copy and remove operations.

Keywords: modal logic, dynamic epistemic logic, complexity,
expressivity.

1 Introduction

In modal logic we interpret a modal operator by way of an accessibility rela-
tion in a given model. Over the past decades some logics have been proposed
in which the modality is, instead, interpreted by a transformation of the model.
In such logics the modality can be seen as interpreted by a binary relation be-
tween pointed Kripke models, where the second argument of the relation is the
transformed model. We could mention sabotage logic here [10], wherein states or
arrows are deleted from a model. Or we could mention dynamic epistemic log-
ics [13] that focus on such model changing operators in view of modeling change
of knowledge or belief (the standard interpretation for the basic modalities in
that setting). In [1,2,6] a new line of contributions to model-transforming log-
ics, motivated by van Benthem’s sabotage logic is developed. Our contribution
advances that last line of work, while linking it to dynamic epistemic logics.

Action model logic (AML) [4] is a well-known dynamic epistemic logic to
model information change. Action model logic is an extension of basic epistemic
logic with a dynamic modal operator for the execution of actions. This operator
is parameterized by an action model, a semantic object which typically models
a multi-agent information changing scenario. These actions models are treated
as syntactic objects in modal operators. Action models are complex structures,
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Fig. 2. The result of one copy and two remove operations on the epistemic
model of Figure 1, again resulting in the same (bisimilar) updated model

which also leads to high computational complexity (deciding model checking is
PSpace-complete, while deciding satisfiability is NExpTime-complete [3]).

In this contribution we propose modal logics with primitive actions called
copy and remove. We investigate some of their model theoretic properties and
their complexity, and, as an example of what one can do with such logics, we
give an embedding of action model logic into our logic: we show that every action
model (with propositional pre-conditions) can be simulated by a combination of
the copy and remove operators. This is in line with the previously known result
that, on the class of finite models, action model execution corresponds to model
restriction (‘remove’) on a bisimilar copy (‘copy’) of the initial model [11]. The
delete we propose is akin to the generalized arrow updates of [9], continuing
the work started in [8], that are also known to have equal expressivity as action
model logic. But the copy and remove operators we propose are more procedural,
whereas these mentioned results are more of a declarative nature.

In Figure 1 we show an epistemic model (a Kripkemodel), an action model, and
the result of executing that action model in that epistemic model. The epistemic
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model represents that agents a and b are uncertain whether an atomic proposi-
tion p is true (and that they have common knowledge of that uncertainty). The
actual world, or designated state, of the model is where p is true (shown with a
thick circle in the Figure). The action model represents that agent a learns that p
is true, whereas agent b (incorrectly) believes that nothing happens—of which a is
aware. In short: a privately learns that p. In actionmodels, the valuations of propo-
sitional variables are replaced by pre-conditions, in this case p and� (the formula
that is always true). Action models update Kripke models by mean of a restricted
modal product, where the domain is limited to the state-action pairs where the
pre-conditions of the actions hold. Therefore, there are only three (and not four)
such pairs in the updated model: the pair (w, e1) is missing as the pre-condition of
e1, the formula p, is not true in the state w. The arrows in the product are updated
according to the principle that there is a (labeled) arrow between two state-action
pairs if there was such an arrow linking both the first arguments and the second ar-
guments. One can now establish that in the resulting model a knows that p (there
is only an a-arrow from w to itself), whereas b still believes that a, b are ignorant
whether p.

By means of the copy and remove actions of the logics that we propose, we can
alternatively describe the effect of this action model. This is depicted in Figure 2.
First, we replicate the original epistemic model as many times as there are actions
in the action model (twice in this case). We identify each copy with a (fresh)
propositional variable corresponding to an action in the action model (e.g., pe1
corresponds to e1). Thus we obtain the leftmost model in Figure 2. Then, we
first remove all the edges (arrows) that point to state-action alternatives wherein
the action cannot be executed in the state. Finally, between the remaining state-
action pairs we remove all edges that are ruled out according to the accessibility
relation in the action model. Thus we obtain the rightmost model in Figure 2.

2 Copy and Remove

In this section we introduce ML(cp, rm), a language which can remove edges
and create copies of a model.

Definition 1 (Syntax). Given PROP, an infinite and countable set of propo-
sitional symbols, and AGT, a finite set of agents, let us define the set FORM of
ML(cp, rm)-formulas, together with a set PATH of path expressions.

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ′ | ♦aϕ | rm(π)ϕ | cp(p̄, q)ϕ,

where p̄ = 〈p1, . . . , pn〉 is any finite sequence of propositional symbols (all distinct
among them) that do not appear in any occurrence of cp in ϕ, q ∈ p̄, a ∈
AGT, ϕ, ϕ′ ∈ FORM, and π ∈ PATH.

PATH ::= a | π;π′ | ϕ?,

where a ∈ AGT, π, π′ ∈ PATH and ϕ is a Boolean formula.
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We also define the following syntactic fragments:ML(cp), the fragment with
the cp operator but without rm; ML(rm), the fragment with the rm operator
but without cp; ML(rm−), the fragment with rm with path expressions only of
the form π = ϕ?; a;ψ? but without cp; andML(cp, rm−), the fragment with rm
with path expressions only of the form π = ϕ?; a;ψ? and with cp.

Definition 2 (Models). A model M is a triple M = 〈W,R, V 〉, where W is
a non-empty set; R ⊆ AGT×W 2 is an accessibility relation (we will often write
Ra to refer to the set {(w, v) ∈W 2 | (a, w, v) ∈ R}); and V : PROP→ P(W ) is
a valuation. A pair M, w where w is a state in M is called a pointed model.

We represent a path as a sequence w0a0w1a1 . . . wn−1an−1wn where wi are
states and ai are agents. Let us now define the set PM(π) of π-paths in the model
M by induction on π. PM(a) contains paths representing a-edges. PM(π;π′)
contains concatenations of a π-path and a π′-path. In such a concatenation,
the last state w of the π-path has to be the first state of the π′-path. PM(ϕ?)
contains paths of length 0, made of one state, which satisfies ϕ.

Definition 3 (Paths and Updated Models). Let M = 〈W,R, V 〉 a model
and π ∈ PATH. We define the set of π-paths PM

π of M inductively as

PM(a) = {wau | (w, u) ∈ Ra}
PM(π;π′) = {SwS′ | Sw ∈ PM(π) and wS′ ∈ PM(π′)}
PM(ϕ?) = {w | M, w |= ϕ}.

Let a ∈ AGT, we define edgesa(P ) that is the set of a-edges of the path P .
Formally, edgesa(P ) = {(a, w, u) | wau is a subsequence of P}.

Given a model M = 〈W,R, V 〉, a path expression π, and p̄ = 〈p1, . . . , pn〉, we
define the updated models

Mrm(π) = 〈W,Rrm(π), V 〉, where
Rrm(π) = R \

⋃
a∈AGT,P∈PM(π) edgesa(P )

Mcp(p̄) = 〈Wcp(p̄), Rcp(p̄), Vcp(p̄)〉, where
Wcp(p̄) = {(w, q) | w ∈W and q ∈ p̄}
Rcp(p̄) = {(a, (w, q), (w′, q′)) | (a, w,w′) ∈ R}
Vcp(p̄)(p) = {(w, q) | w ∈ V (p)} for p �= q
Vcp(p̄)(q) = {(w, q) | w ∈W}.

Now we can define the semantics of the operators introduced in Definition 1.

Definition 4 (Semantics). Given a pointed model M, w and a formula ϕ we
say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w �|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦aϕ iff for some v ∈ W s.t. (w, v) ∈ Ra, M, v |= ϕ
M, w |= rm(π)ϕ iff Mrm(π), w |= ϕ
M, w |= cp(p̄, q)ϕ iff Mcp(p̄), (w, q) |= ϕ.
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ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ. When
the left side is empty, |= ϕ means that ϕ holds in any model. We further define
cp(p̄)ϕ as an abbreviation for

∧
q∈p̄ cp(p̄, q)ϕ.

Bisimulation is a classical notion introduced to investigate the expressive
power of modal languages. The conditions required for ML(cp, rm) turn out
to be very natural: paths deleted via rm traversing a particular state are charac-
terized by the information in successors and predecessors of such point. Hence,
it is enough to consider the conditions for the basic temporal logic ML(♦−1)
(see [5]):

(Atomic Harmony) for all p ∈ PROP, w ∈ V (p) iff w′ ∈ V ′(p);
(Zig) if (w, v) ∈ R then for some v′, (w′, v′) ∈ R′ and vZv′;
(Zag) if (w′, v′) ∈ R′ then for some v, (w, v) ∈ R and vZv′.
(Zig−1) if (v, w) ∈ Ra then for some v′, (v′, w′) ∈ R′

a and vZv′;
(Zag−1) if (v′, w′) ∈ R′

a then for some v, (v, w) ∈ Ra and vZv′.

Let �ML(cp,rm) refer to bisimulations for the language ML(cp, rm). We can
prove that ML(cp, rm)-bisimilar models satisfy the same formulas.

Theorem 1 (Invariance under bisimulation.). For allML(cp, rm)-formula
ϕ, we have M, w �ML(cp,rm) M′, w′ implies M, w |= ϕ iff M′, w′ |= ϕ.

From the tree model property for ML(♦−1) it immediately follows:

Corollary 1. The language ML(cp, rm) has the tree model property.

3 Relation between Action Models and ML(cp, rm−)

In this section we start by formally introducing action model logic and then
define an embedding into ML(cp, rm−). We restrict ourselves to the case where
preconditions in action models are Boolean.

Definition 5 (Action Models). Let B be the set of Boolean formulas over
certain set PROP of propositional symbols. An action model E is a structure
E = 〈E,→, pre, post〉, where E is a non-empty finite set whose elements are
called action points; for each a ∈ AGT, → (a) ⊆ E×E is an equivalence relation
(we will often write →a rather than → (a)); pre : E → B is a pre-condition
function; and post : E → PROP→ {�,⊥} is a post-condition function. Let e be
an action point in E, the pair (E , e) is a pointed action model.

Action models in action model logic appear as modalities. We will call AML
the fragment where action models have only pre-conditions, i.e., action models
of the shape 〈E,→, pre〉, and use AML+ for the full language.

Definition 6 (Syntax). Let PROP be a countable, infinite set of propositional
symbols and AGT a finite set of agent symbols. The set FORM of formulas of
AML and AML+ over PROP and AGT is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦aϕ | [α]ϕ,
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where p ∈ PROP, a ∈ AGT, ϕ, ψ ∈ FORM and α ∈ ACT. The set of actions
ACT is defined as ACT ::= E , e | α ∪ β, with E , e an action pointed model and
α, β ∈ ACT. 〈α〉ϕ is a shorthand for ¬[α]¬ϕ.

Definition 7 (Semantics). Given an epistemic pointed modelM, w withM =
〈W,R, V 〉, an action pointed model E , e with E = 〈E,→, pre, post〉, and a formula
ϕ we say that M, w |= ϕ when

M, w |= [α]ϕ iff for all M′, w′ s.t. M, w�α�M′, w′ we have M′, w′ |= ϕ
M, w�E , e�M′, w′ iffM, w |= pre(e) and M′, w′ = (M⊗E), (w, e)
�α ∪ β� = �α� ∪ �β�.

where (M⊗E) is defined as 〈W ′, R′, V ′〉, with:

W ′ = {(v, d) ∈W × E | M, v |= pre(d)}
((v, d), (u, f)) ∈ R′

a iff (v, u) ∈ Ra and d→a f
V ′(p) = {(v, d) | M, v |= post(e)(p)}.

If E does not have post-conditions then V ′(p) = {(v, d) | v ∈ V (p)}.

We now show how to embed AML intoML(cp, rm−). First, define the short-
hand rm(π1!π2)ϕ for rm(π1)rm(π2)ϕ. Notice that if π1 and π2 are paths of size
1, and given that we are only considering Boolean tests, then ! is commutative.

Definition 8. Let E = 〈E,→, pre〉 be an action model with E = {e1, . . . , en}.
We define the translation Tr from AML-formulas toML(cp, rm−)-formulas as:

Tr([E , e1]ϕ) = pre(e1)→ cp(〈pe1 . . . pen〉)rm(ρ)rm(σ)Tr(ϕ),

where

ρ ≡
⊙

e∈E,a∈AGT

�?; a; (pei ∧ ¬pre(ei))?

σ ≡
⊙

ei,ej∈E,a∈AGT

pei?; a; pej? if ei �→a ej.

Tr commutes with all other formulas.

Proposition 1. Let ϕ be an AML-formula, then ϕ and Tr(ϕ) are equivalent.

Proof (Sketch). The antecedent pre(e1) is exactly the same clause as for model
updates (considering the pointed action model E , e1 as the desired update).
For each action ei ∈ E, we consider a propositional symbol pei . The opera-
tion cp(〈pe1 . . . pen〉) replicates the original model as many times as actions in
E (notice that we can always use isomorphic action models to ensure that the
propositional symbols used by cp are new). This operation generates the carte-
sian product W × E. However, the model M⊗ E does not consider the whole
cartesian product. To cut the unwanted part of the model we introduce rm(ρ).
The path expression ρ characterizes all the edges we introduced by the previous
cp(〈pe1 . . . pen〉) pointing to pei -states which do not satisfy the corresponding
pre(ei). In the same way that it is done in AML product updates, we remove
all arrows pointing to those states. Once we have constructed the domain, it
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remains to restrict the obtained accessibility relation. This is done by rm(σ).
Remember that ((v, d), (u, f)) ∈ R′

a in M⊗ E if and only if (v, u) ∈ Ra and
d →a f . The first part trivially holds in the translation, because cp does not
introduce edges between copies of elements that were not related in the original
model. Then rm(σ) deletes all the a-edges (wi, wj) such that in the action model
there is no a-edge from ei to ej , for all a ∈ AGT.

The obtained model is notM⊗E , but it is bisimilar according to bisimulation
forML, which is the notion used in AML. As a result, they represent the same
information for the agents. ��

In Figure 2 we see the encoding above applied to a concrete update. The first
step of the translation replicates as many copies of the original epistemic model,
as actions belonging to the domain of the action model, obtaining the leftmost
model. This is done via a copy operation. Next, evaluating rm(ρ) (defined as
in Definition 8), we remove all the edges pointing to states where at the same
time pe1 holds and pre(e1) does not hold, and we get the model in the center of
Figure 2. Last, we need to evaluate rm(σ). This removes those edges that have
been added by the copy operation, but are not connected in the original action
model. Thereby, we remove all the undesirable accessibility edges, obtaining the
rightmost model, which is bisimilar to the updated model of Figure 1 (the state
labeled by {pe1 ,¬p} is not longer accessible).

We show now that copy and remove can be seen as action models in AML+.
This is valuable, as it demonstrates that action models have a certain decomposi-
tion: an action model can be described as the composition of simpler action mod-
els. This decomposition can be obtained by translating first into ML(cp, rm−)
and then considering copy and remove again as basic action models.

Consider the copy action cp(p̄), and let Q be the set of all propositional
symbols occurring in p. The copy operator can be modeled as an action model
E(cp(p̄)) = 〈E,→, pre, post〉 such that (for all q ∈ E = Q, a ∈ AGT):

E = Q pre(q) = �
→a = E × E post(q)(q) = �

post(q)(p) = ⊥ for p ∈ Q \ {q}.

We note that for all r ∈ PROP \Q the value is not affected at the execution
of this action, as the finite subset of propositional symbols that is assigned a
post-condition is the set Q. Consider the translation ′ :ML(cp)→ AML such
that (cp(p̄)φ)′ = [E(cp(p̄))]φ′ and commutes with all other operators. Then:

Proposition 2. For all ϕ ∈ML(cp), ϕ and ϕ′ are equivalent.

Next, we study the remove action. The action model E(rm(φ?; a;ψ?)) =
〈E,→, pre〉 is defined as

E = {00, 10, 01, 11} pre(00) = ¬φ ∧ ¬ψ,
→a = (E × E) \ {(10, 01), (10, 11), (11, 01), (11, 11)} pre(10) = φ ∧ ¬ψ,
→b = (E × E) for all b �= a pre(01) = ¬φ ∧ ψ,

pre(11) = φ ∧ ψ.
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This action model corresponds to the operation of removing all φ
a→ ψ arrows.

Consider the translation ′′ : ML(rm) → AML such that (rm(φ?; a;ψ?)θ)′′ =
[E(rm(φ?; a;ψ?))]θ′′ and commutes with all other operators.

Proposition 3. For all ϕ ∈ML(rm), ϕ and ϕ′′ are equivalent.

4 Complexity of Deciding Satisfiability

The following result has been proved already in [6]:

Theorem 2. Deciding if a formula inML(cp) is satisfiable is PSpace-complete.

We will show thatML(rm) can be translated intoML(♦−1), the basic modal
logicML with the past operator ♦−1. It is easy to see that as tests are Boolean,
if two tests are consecutive in a path expression (e.g., ϕ1?;ϕ2?), we can replace
them by a single test (e.g., (ϕ1 ∧ ϕ2)?). If two agents are consecutive in a path
expression (e.g., a1; a2) we can add a trivial test between them (e.g., a1;�?; a2).
Thus, without loss of generality we assume that all delete operators have the
form

rm(ϕ1?; a1;ϕ2?; a2; . . . ; an−1;ϕn?)ψ,

where ϕi? are arbitrary Boolean formulas, and ai ∈ AGT. We introduce reduction
axioms to get an ML(♦−1)-formula, and conclude that any ML(rm)-formula,
is equivalent to an ML(♦−1)-formula.

First, let us define the abbreviations ♦i,j , ♦−1
i,j , for a fix path expression π =

ϕ1?; a1; . . . ; an−1;ϕn?:

♦i,j =

⎧⎪⎨
⎪⎩
� j < i

♦aiϕi+1 i = j

♦ai(ϕi+1 ∧ ♦i+1,j) i < j

♦−1
i,j =

⎧⎪⎨
⎪⎩
� j < i

♦−1
ai

ϕi i = j

♦−1
aj

(♦−1
i,j−1 ∧ ϕj) i < j

Now define rmπ
i = ♦−1

1,i−1 ∧ ϕi ∧ ♦i,n−1. Informally rmπ
i means “the current

state is at position i in a path that matches π = ϕ1?; a1;ϕ2?; a2; . . . ; an−1;ϕn?
which is going to be deleted”. For instance, rmπ

i , 1 ≤ i ≤ n are defined as:

rmπ
1 = ϕ1 ∧ (♦a1ϕ2 ∧ (♦a2ϕ3 . . . ∧ ♦an−2(ϕn−1 ∧ ♦an−1ϕn) . . .))

rmπ
2 = ♦−1

a1
ϕ1 ∧ ϕ2 ∧ (♦a2ϕ3 . . . ∧ ♦an−2(ϕn−1 ∧ ♦an−1ϕn) . . .)

. . .
rmπ

n−1 = ♦−1
an−2

(♦−1
an−3

(. . . (♦−1
a1

ϕ1 ∧ ϕ2) ∧ ϕ3) . . .) ∧ ϕn−1 ∧ ♦an−1ϕn

rmπ
n = ♦−1

an−1
(♦−1

an−2
(. . . (♦−1

a1
ϕ1 ∧ ϕ2) ∧ ϕ3 . . .) ∧ ϕn−1) ∧ ϕn.

Lemma 3. LetM=〈W,R, V 〉 be a model, w ∈ W and π = ϕ1?; a1;ϕ2?; . . . ;ϕn?
a path expression. Let i be such that 0 ≤ i ≤ n, then

M, w |= rmπ
i iff there is some P ∈ PM

π s.t. P = w1a1w2 . . . wn, wi = w

and for all wj ∈ P we have M, wj |= ϕj.
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Definition 9. Let π = ϕ1?; a1;ϕ2?; . . . ;ϕn?, ϕ = rm(π)θ be an ML(rm,♦−1)-
formula1. We define Tr(ϕ) as the ML(♦−1)-formula resulting of repeatedly ap-
plying the following reduction axioms to ϕ (we assume that ♦aψ is written as
¬�a¬ψ, and similarly for ♦−1).

(1) rm(π)p ↔ p, p ∈ PROP
(2) rm(π)¬ψ ↔ ¬rm(π)ψ
(3) rm(π)(ψ ∧ ψ′)↔ (rm(π)ψ ∧ rm(π)ψ′)
(4) rm(π)�aψ ↔ �arm(π)ψ, if a /∈ π
(5) rm(π)�−1

a ψ ↔ �−1
a rm(π)ψ, if a /∈ π

(6) rm(π)�aψ ↔ (
∧

i∈{1,...,n−1 | ai=a} ¬rmπ
i → �airm(π)ψ)∧

(
∧

i∈{1,...,n−1 | ai=a}(rm
π
i → �ai(rm

π
i+1 ∨ rm(π)ψ)))

(7) rm(π)�−1
a ϕ ↔ (

∧
i∈{1,...,n−1 | ai=a} ¬rmπ

i → �−1
ai

rm(π)ψ)∧
(
∧

i∈{1,...,n−1 | ai=a}(rm
π
i → �−1

ai
(rmπ

i−1 ∨ rm(π)ψ))).

Notice that the resulting formula only contains �a and �−1
a , and does not

contain rm. We will prove that the reduction axioms preserves equivalence. The
reduction axioms introduced in Definition 9 are justified by the next proposition.

Proposition 4. Formulas (1) to (7) in Definition 9 are valid.

The next proposition establishes that we can reduce ML(rm,♦−1)-formulas
according to axioms of Definition 9, obtaining an equivalentML(♦−1)-formula.
The proof is a direct corollary of Proposition 4.

Proposition 5. Let M = 〈W,R, V 〉 a model, w ∈ W and ϕ a ML(rm,♦−1)-
formula. Then M, w |= ϕ iff M, w |= Tr(ϕ).

The next theorem now follows.

Theorem 3. The satisfiability problem for ML(rm) is decidable.

The reduction axioms that relate �a and rm(π) produce an exponential blow
up in the size of the formula. If we consider only path expressions π of size 1,
i.e., we consider the fragmentML(rm−), we can avoid the exponential blow up,
and prove that the satisfiability problem is PSpace-complete.

Proposition 6. Let M = 〈W,R, V 〉 be a model, θ, ϕ and ψ be ML(rm−)-
formulas and a ∈ AGT. Then

M, w |= rm(ϕ?; a;ψ?)�aθ iff M, w |= �a((ψ ∧ ♦−1ϕ) ∨ rm(ϕ?; a;ψ?)θ).

We showed that there is a polynomial translation from ML(cp, rm−) into
a dynamic epistemic modal logic with action models with both pre-conditions
and post-conditions, that preserves satisfiability. In [3], it is proved that the
satisfiability problem for dynamic epistemic modal logic with action models with
pre-conditions and without post-conditions is in NExpTime. We can handle
post-conditions in NExpTime adapting the tableau method of [3]2.

1 Let ML(rm,♦−1) be the fragment ML(rm) extended with the past operator ♦−1.
2 A similar result was shown in [12] for public announcement enriched with public
assignments which are similar to post-conditions.
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Theorem 4. The satisfiability problem for AML+ is in NExpTime.

Then we can state:

Corollary 2. The satisfiability problem for ML(cp, rm−) is in NExpTime.

As there is a polynomial translation from dynamic epistemic modal logic
without post-conditions AML into ML(cp, rm−) that preserves satisfiability,
the satisfiability problem of a formula in ML(cp, rm−) is NExpTime-hard.

Theorem 5. The satisfiability problem for ML(cp, rm−) is NExpTime-com-
plete.

5 Conclusion

We proposed the dynamic modal logic ML(cp, rm) which contains copy and
remove operators: the copy operator copies an input model, and the remove
operator deletes all paths from an input model that are characterized by a given
expression. We investigated some model theoretic properties ofML(cp, rm) such
as bisimulations. In order to give an appropriate notion of bisimulation, we need
the same conditions as for the ♦−1 operator, because we need to differentiate
states with respect to the paths that traverse them.

We showed that the action model logic AML, one of the best-known dynamic
epistemic logics, can be polynomially embedded in the fragment ML(cp, rm−)
when we consider action models with only Boolean pre-conditions. The restric-
tion to Boolean pre-conditions is certainly a limitation. We consider this to be
the first step into a complete understanding of the full language. The embedding
simulates every finite action model with a combination of copy and remove op-
erators. As we mentioned, the embedding can be done withinML(cp, rm−) as it
only requires single step removals (i.e., only paths of length one are needed). We
showed that the copy and one-step removal themselves correspond to particular
action models. As a result we obtain a kind of normal form for action models.
By decomposing product updates in sequences of copy and remove operators,
it would be possible to characterize large syntactic fragments of AML with
interesting complexities for the satisfiability problem.

We demonstrated that the complexity of the satisfiability of the full language
ML(cp, rm) is NExpTime-hard. The upper bound of this satisfiability problem
is still open, but we conjecture that it is decidable. We proved that satisfiability
for the fragmentML(rm−) is decidable, that it is PSpace-complete forML(cp),
and that it is NExpTime-complete for ML(cp, rm−).

As future work, we plan to extend the analysis of AML via its embedding
in ML(cp, rm). In particular, we will address the general case in which action
model pre-conditions can be arbitrary formulas of lower complexity. The main
challenge when considering the full language is that when pre-conditions are not
Boolean, successive applications of the rm operator are no longer independent
of each other, and a more involved mapping into ML(cp, rm) is required.



Logics with Copy and Remove 61

Acknowledgments. We thank the reviewers for their comments, and for their en-

couragement to address the fully modal version. We acknowledge support from ERC

project EPS 313360, from EU 7th Framework Programme under grant agreement no.

295261 (MEALS), and the Laboratoire Internationale Associé “INFINIS”.
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Appendix

Proofs of Section 2

Without loss of generality we assume that all remove operators have the normal
form rm(ϕ1?; a1;ϕ2?; a2; . . . ; an−1;ϕn?)ψ, where ϕi? are arbitrary Boolean for-
mulas, and ai ∈ AGT (we can always add �? and conjunctions to get this normal
form). We introduce two lemmas that will be helpful in the proof Theorem 1.

Lemma 1. LetM = 〈W,R, V 〉 andM′ = 〈W ′, R′, V ′〉 be models, w ∈ W , w′ ∈
W ′, be such thatM, w �ML(cp,rm) M′, w′, and π=ϕ1?; a1;ϕ2?; a2; . . . ; an−1;ϕn?.
Then, for all P ∈ PM(π) such that P = w0a0 . . .wai . . . wn, there is some
P ′ ∈ PM′

(π), with P ′ = w′
0a0 . . .w

′ai . . . w
′
n and for all j ∈ {1, . . . , n} we have

M, wj �ML(cp,rm) M′, w′
j.

Proof. Given some P ∈ PM
π , we need to find some P ′ ∈ PM′

π satisfying the
lemma. Let us construct such P ′.

Suppose P = w0a0 . . . wai . . . wn. Notice that we have the subpath waiwi+1,
which means (w,wi+1) ∈ Rai . Because M, w �ML(cp,rm) M′, w′, by (zig) there
is some w′

i+1 such that (w′, w′
i+1) ∈ R′

ai
andM, wi+1 �ML(cp,rm) M′, w′

i+1. For
this reason, M, wi+1 |= ψ if and only if M′, w′

i+1 |= ψ, for all ψ (in particular
ϕi+1). Then, wi+1 is a good choice in order to construct P ′. We can repeat this
process to build the subpath w′aiw

′
i+1 . . . w

′
n. In order to choose wi−1, we can

proceed in the same way but using (zig−1), and repeating the process until we
reach w′

1. Putting all together, we have constructed the right P ′.
For the other direction use (zag) and (zag−1). ��

Lemma 2. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two models, w ∈ W
and w′ ∈ W ′. Then M, w �ML(cp,rm) M′, w′ implies Mcp(p̄), (w, q) �ML(cp,rm)

M′
cp(p̄), (w

′, q).

Proof. We have to define a bisimulation Z ⊆Wcp(p̄) ×W ′
cp(p̄). Because we have

M, w �ML(cp,rm) M′, w′, we define:

Z = {((v, q), (v′, q)) | (v, q), (v′, q) ∈Wcp(p̄), s.t. M, v �ML(cp,rm) M′, v′}.

(atomic harmony) holds because (v, q)Z(v′, q) if and only if v and v′ satisfy
(atomic harmony) in the original models, and (v, q) and (v′, q) are both labeled
by the symbol q. For (zig), suppose we have (v, q)Z(v′, q) and ((v, q), (u, r)) ∈
(Rcp(p̄))a. Then we know (v, u) ∈ Ra. Because M, v �ML(cp,rm) M′, v′, by
(zig) there is some u′ such that (v′, u′) ∈ R′

a. Hence, we have ((v′, q), (u′, r)) ∈
(R′

cp(p̄))a. (zag) is straightforward. ��

Then we can state:

Theorem 1 (Invariance under bisimulation.). For allML(cp, rm)-formula
ϕ, we have M, w �ML(cp,rm) M′, w′ implies M, w |= ϕ iff M′, w′ |= ϕ.
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Proof. The proof is by structural induction. Let M = 〈W,R, V 〉 and M′ =
〈W ′, R′, V ′〉, such that M, w �ML(cp,rm) M′, w′.

We only prove the inductive cases for rm and cp.

rm(π)ϕ: Suppose M, w |= rm(π)ϕ, then Mrm(π), w |= ϕ, where Mrm(π) =
〈W,Rrm(π), V 〉, Rrm(π) = R \

⋃
P∈PM

π ,a∈AGT edgesa(P ). M, w �ML(cp,rm)

M′, w′ by hypothesis, then (by Lemma 1) there is P ∈ PM
π iff there is P ′ ∈

PM′
π . Hence Mrm(π), w �ML(cp,rm) M′

rm(π), w
′, and by I.H. M′

rm(π), w
′ |= ϕ.

As a result, M′, w′ |= rm(π)ϕ.
cp(p̄, q)ϕ: Suppose M, w |= cp(p̄, q)ϕ. Then we have Mcp(p̄), (w, q) |= ϕ. By
M, w �ML(cp,rm) M′, w′ and Lemma 2, we have Mcp(p̄), (w, q) �ML(cp,rm)

M′
cp(p̄), (w

′, q). By I.H.M′
cp(p̄), (w

′, q) |= ϕ. Therefore,M′, w′ |= cp(p̄, q)ϕ.

��

Proofs of Section 4

Theorem 3. Deciding if a formula inML(cp) is satisfiable is PSpace-complete.

Proof (Sketch). Adapt the classic tableau-based algorithm for the basic modal
logic (see [7]) to manage sequences of propositional symbols which represent
possible copies of the model. As for the original algorithm, it takes polynomial
time. ��

Lemma 3. LetM=〈W,R, V 〉 be a model, w ∈ W and π = ϕ1?; a1;ϕ2?; . . . ;ϕn?
a path expression. Let i be such that 0 ≤ i ≤ n, then

M, w |= rmπ
i iff there is some P ∈ PM

π s.t. P = w1a1w2 . . . wn, wi = w

and for all wj ∈ P we have M, wj |= ϕj.

Proof. The proof is by induction on the length of π:

π = ϕ1?: M, w |= rmπ
1 if and only if M, w |= ϕ1 (by definition of rmπ

i ). But
PM
ϕ1?

= {v | M, v |= ϕ1} (all the paths are singletons satisfying ϕ1), then

w ∈ PM
ϕ1?

.
π = ϕ1?;a1;ϕ2?; . . . ;ϕn?: Suppose M, w |= rmπ

i . By definition of rmπ , we
haveM, w |= ♦−1

1,i−1 ∧ ϕi ∧ ♦i,n−1. Now, we know:
1. M, w |= ϕi.
2.M, w |= ♦−1

1,i−1, then by definition of ♦−1
i,j we haveM, w |= ♦−1

ai−1
(♦−1

1,i−2 ∧
ϕi−1). By definition of |=, there is some v ∈ W such that (v, w) ∈ Rai−1

andM, v |= ♦−1
1,i−2 ∧ϕi−1. Let us define π1 = ϕ1?; a1;ϕ2?; . . . ;ϕi−1?. Then,

by definition of rmπ
i , we have M, v |= rmπ1

i−1, and by I.H., there is a path

P1 ∈ PM
π1

such that P1 = w1a1 . . . wi−1, with wi−1 = v and for all wj ∈ P1,
M, wj |= ϕj (0 ≤ j ≤ i− 1).
3. M, w |= ♦i,n−1, then by definition of ♦i,j we have M, w |= ♦ai(ϕi+1 ∧
♦i+1,n−1). By definition of |=, there is some t ∈ W such that (w, t) ∈ Rai
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and M, t |= ϕi+1 ∧ ♦i+1,n−1. Let us define π2 = ϕi+1?; ai+1; . . . ;ϕn?. Then,
by definition of rmπ

i , we have M, t |= rmπ2

i+1, and by I.H., there is a path

P2 ∈ PM
π2

such that P2 = wi+1ai+1 . . . wn, with wi+1 = t and for all wj ∈ P2,
M, wj |= ϕj (i+ 1 ≤ j ≤ n).
Notice that π = π1; ai−1;ϕi?; ai;π2. It remains to choose P = P1ai−1wiaiP2

and we have what we wanted.

��

Proposition 4. Formulas (1) to (7) in Definition 9 are valid.

Proof. We prove each of them separately:

1. Suppose M, w |= rm(π)p. By definition of |=, we have Mrm(π), w |= p.
Because rm(π) keeps the same valuation in the updated model, w ∈ V (p). Then
(by |=), M, w |= p.

2. Follows from the self-duality of rm, which is trivial given that it is a global
operator.

3. Suppose M, w |= rm(π)(ψ ∧ ψ′). Then, by definition of |=, Mrm(π), w |=
(ψ ∧ ψ′), which means Mrm(π), w |= ψ and Mrm(π), w |= ψ′. Applying again
definition of |=, we have M, w |= rm(π)ψ and M, w |= rm(π)ψ′, iff M, w |=
rm(π)ψ ∧ rm(π)ψ′.

4. (5 is straightforward). SupposeM, w |= rm(π)�aiψ. Applying definition of
|= twice, we have that for all v such that (w, v) ∈ (Rrm(π))ai , Mrm(π), v |= ψ.
We assume ai /∈ π, then (w, v) ∈ (Rrm(π))ai iff (w, v) ∈ Rai , then we have for
all v such that (w, v) ∈ Rai , Mrm(π), v |= ψ, iff for all v such that (w, v) ∈ Rai ,
M, v |= rm(π)ψ. Hence by |=, M, w |= �airm(π)ψ.

6. (7 is straightforward). Let M = 〈W,R, V 〉 be a model, w ∈ W , and let
rm(π)�aiψ be an ML(rm,♦−1)-formula with π = ϕ1?; a1;ϕ2?; . . . ;ϕn?, such
that ai ∈ π. We want to prove

M, w |= rm(π)�aiψ iff M, w |= δ ∧ δ′

where
δ =

∧
k∈{1,...,n−1 | ak=ai} ¬rm

π
k → �ak

rm(π)ψ

δ′ =
∧

k∈{1,...,n−1 | ak=ai}(rm
π
k → �ak

(rmπ
k+1 ∨ rm(π)ψ)).

Let us suppose that M, w |= rm(π)�aiψ. Then, by definition of |=, we have
that for all v ∈ W such that (w, v) ∈ (Rrm(π))ai , Mrm(π), v |= ψ. We will check
the two conjuncts δ and δ′ separately (for the other direction of the iff, we can
assume the two conjuncts together and use the same steps):
1. Suppose M, w |=

∧
k∈{1,...,n−1 | ak=ai} ¬rm

π
k . By definition of |=, we have

M, w �|=
∨

k∈{1,...,n−1 | ak=ai} rm
π
k . It means that there is no P∈PM

π satisfying
Lemma 3, such that w ∈ P , hence no deletions have been done traversing w.
Then for all v ∈ W , (w, v) ∈ Rai iff (w, v) ∈ (Rrm(π))ai . Because we have for all
v ∈ W such that (w, v) ∈ (Rrm(π))ai , Mrm(π), v |= ψ, then for all v ∈ W such
that (w, v) ∈ Rai , Mrm(π), v |= ψ. Therefore, we have for all v ∈ W such that
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(w, v) ∈ Rai , M, v |= rm(π)ψ, then (by |=) M, w |= �airm(π)ψ.
2. Suppose now for some arbitrary k,M, w |= rmπ

k , where k ∈ {1, . . . , n−1 | ak =
ai}. By Lemma 3 it means that there is a path traversingw that has been deleted.
We also know Mrm(π), w |= �ak

ψ by assumption and k = i, then for all v ∈ W
such that (w, v) ∈ (Rrm(π))ak

, Mrm(π), v |= ψ. Then, for all u ∈ W such that
(w, u) ∈ Rak

, eitherMrm(π), u |= ψ or u ∈ P , with P ∈ PM
π , and u is at position

k + 1 (because w is at position k = i), i.e., M, u |= rmπ
k+1 (by Lemma 3).

Therefore,M, w |= �ak
(rmπ

k+1 ∨ rm(π)ψ). ��

Proposition 6. Let M = 〈W,R, V 〉 be a model, θ be a ML(rm−)-formula, ϕ
and ψ be Boolean formulas and a ∈ AGT. Then

M, w |= rm(ϕ?; a;ψ?)�aθ iff M, w |= �a((ψ ∧ ♦−1ϕ) ∨ rm(ϕ?; a;ψ?)θ).

Proof. Let us suppose that M, w |= rm(ϕ?; a;ψ?)�aθ. Then, we have that for
all v ∈ W s.t. (w, v) ∈ (Rrm(ϕ?;a;ψ?))a, Mrm(ϕ?;a;ψ?), w |= θ ⊗. Let u be s.t.
(w, u) ∈ Ra, and let suppose M, u |= ¬(ψ ∧ ♦−1ϕ). This means that (w, u) ∈
R iff (w, u) ∈ (Rrm(ϕ?;a;ψ?))a. Then (by ⊗)Mrm(ϕ?;a;ψ?), u |= θ iff (by |=)M, u |=
rm(ϕ?; a;ψ?)θ, iff M, w |= �a(¬(ψ ∧ ♦−1

a ϕ)→ rm(ϕ?; a;ψ?)θ). ��

Theorem 4. The satisfiability problem for AML+ (i.e., action models with
postconditions) is in NExpTime.

Proof (Sketch). In the following σ denotes a symbol for worlds. Σ′, Σ′′, etc.
denote sequences of pointed action models. The symbol � means that the world
survives a sequence of pointed action models.

– (σ Σ′ p)
(σ ε p) is replaced by (σ Σ′ p)

(σ Σ′′ p) and (σ Σ′ ¬p)
(σ ε ¬p) is replaced by (σ Σ′ ¬p)

(σ Σ′′ ¬p) where

Σ′ = Σ′′;Σ′′′ such that Σ′′′ is the longest sequence of pointed action models
where p is not modified in the preconditions of current actions;

– Add the rules: (σ Σ′ �)
(σ Σ′ p) if the post-condition in the initial action of the last

pointed action model in Σ′ makes p true and (σ Σ′ �)
(σ Σ′ ¬p) if it makes p false.

The resulting tableau method can still be turned into a non-deterministic
algorithm running in exponential time. ��
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Abstract. In this work we study anti-unification for unranked hedges, permit-
ting context and hedge variables. Hedges are sequences of unranked terms. The
anti-unification problem of two hedges s̃ and q̃ is concerned with finding their
generalization, a hedge g̃ such that both s̃ and q̃ are substitution instances of g̃.
Second-order power is gained by using context variables to generalize vertical
differences at the input hedges. Hedge variables are used to generalize horizontal
differences. An anti-unification algorithm is presented, which computes a gener-
alization of input hedges and records all the differences. The computed general-
izations are least general among a certain class of generalizations.

1 Introduction

The anti-unification problem for two terms t1 and t2 requires finding their generaliza-
tion: a term such that both t1 and t2 are instances of it under some substitutions. The
interesting generalizations are least general ones (lggs). Anti-unification algorithms are
supposed to compute lggs.

In 1970, Plotkin [20] and Reynolds [21] independently came up with essentially
the same anti-unification algorithm. It was designed for first-order ranked terms (i.e.,
where function symbols have a fixed arity) in the syntactic case. Since then, a number
of algorithms and their modifications have been developed, addressing the problem in
various theories (e.g., [1, 2, 5, 7, 10, 13, 19]) and from the point of view of different
applications (e.g., [4, 9, 11, 15, 17, 18, 22]).

In this paper, we consider anti-unification for hedges, which are finite sequences of
unranked terms. Such terms are constructed from function symbols that do not have a
fixed arity. We permit two kinds of variables: first-order, for hedges, and second-order,
for contexts. Contexts that we consider here are hedges with a single occurrence of the
distinguished symbol “hole”. They are functions which can apply to another context or
to a hedge, which are then “plugged” in the place of the hole.

Some applications of anti-unification indeed require higher-order features. For in-
stance, reuse of proofs in program verification needs anti-unification with higher-order
variables [18]. A restricted use of higher-order variables in generalizations turned out
to be helpful for analogy making with Heuristic-Driven Theory Projection [15]. Anti-
unification with combinator terms plays a role in replaying program derivations [12].

First-order anti-unification for ranked terms has been used to detect software code
clones [9, 17]. It helps to achieve high-precision for clones obtained, essentially, by
renaming and reformatting, but ranked anti-unification is not strong enough to detect

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 66–80, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Unranked Second-Order Anti-Unification 67

clones obtained by omitting/inserting pieces of statements in the code. Unranked anti-
unification can detect similarities not only between renamed parts of a hedge, but also
between parts which differ from each other by inserting or omitting subparts, as was
indicated in [16]. These features can be useful also for comparison of XML documents,
which can be abstracted by unranked trees.

However, one important restriction of existing hedge anti-unification algorithms,
such as, e.g., [8, 16, 23], is that the languages used in these algorithms do not permit
higher-order variables. This imposes a natural restriction on solutions: The computed
lggs do not reflect similarities between input hedges, if those similar pieces are located
under distinct heads or at different depths. For instance, f�a, b� and g�h�a, b�� are gen-
eralized by a single variable, although both terms contain a and b and a more natural
generalization could be, e.g. X�a, b�, where X is a higher-order variable. In applica-
tions, it is often desirable to detect these similarities.

This is the problem we address here, permitting the use of context variables to ab-
stract vertical differences between trees, and hedge variables used to abstract horizontal
differences. The algorithm described in this paper first constructs a “skeleton” of a
generalization of the input hedges, which corresponds to a hedge embedded into each
of the input hedges. Next, it inserts context and/or hedge variables into the skeleton,
which are supposed to uniformly generalize (vertical and horizontal) differences be-
tween input hedges, to obtain an lgg (with respect to the given skeleton). The skeleton
computation function is the parameter of the algorithm: One can compute an lgg which
contains, for instance, a constrained longest common subforest [3], or an agreement
subhedge/subtree [14] of the input hedges.

In this paper we focus on the step of computing an lgg of two hedges, when the
skeleton is already constructed. We assume that the latter is given in the form of an
admissible alignment, which is a certain sequence of symbols occurring in both hedges,
together with the positions these symbols occur in. We need to restrict variable occur-
rences in the generalization to guarantee that for each admissible alignment a unique
lgg is computed, leading to the notion of rigid generalizations. We develop an algorithm
which takes two hedges and an admissible alignment and computes a rigid lgg of the
hedges with respect to that alignment. The computed lgg is unique modulo variable re-
naming. Moreover, we can return not only the generalization, but also the differences
between the input hedges, which tells us how one can obtain the original hedges from
the generalization. The algorithm runs in quadratic time and requires linear space with
respect to the size of the input. This result means that, for instance, if the skeleton is
a constrained longest common subhedge of the input hedges in the sense of [24], then
both skeleton and generalization computation can be done in quadratic time, because
the time complexity of computing a constrained lcs is quadratic.

In some cases, the skeleton can be constructed in multiple ways, giving rise to several
admissible alignments. It requires that the generalizations computed for each alignment
should be compared to each other, to make the obtained set minimal. This problem
requires matching with context and hedge variables in the minimization step and goes
beyond the scope of this paper.

A prototype implementation of the algorithm is available from http://
www.risc.jku.at/projects/stout/software/urauc.php.

http://www.risc.jku.at/projects/stout/software/urauc.php
http://www.risc.jku.at/projects/stout/software/urauc.php
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Example 1. The hedge �X�a�, f�X�g�a, x�, c�, x�� is a generalization of two hedges
�h�a�, f�h�g�a, b, b�, c�, b, b�� and �a, f�g�a, d�, c, d��. Dotted and dashed nodes indi-
cate differences, while the solid ones form the admissible alignment. The first hedge
can be obtained from the generalization by replacing the context variable X with the
context h��� and the hedge variable x with the hedge �a, b�. To obtain the second hedge,
we need to replace X with the hole (i.e., to eliminate X) and to replace x by d.

2 Preliminaries

Given pairwise disjoint countable sets of unranked function symbols F (symbols with-
out fixed arity), hedge variables VH, unranked context variables VC, and a special sym-
bol � (the hole), we define terms, hedges, and contexts by the following grammar:

t :� x � f�s̃� � X�s̃� (terms)
s̃ :� t1, . . . , tn (hedges)
c̃ :� s̃1, �, s̃2 � s̃1, f�c̃�, s̃2 � s̃1, X�c̃�, s̃2 (contexts)

where x � VH, f � F , X � VC, and n � 0.
Hedges are finite sequences of terms, constructed overF and VH�VC. A term can be

seen as a singleton hedge. A context can be seen as a hedge over F �	�
 and VH�VC,
where the hole occurs exactly once. A singleton context is then a term overF�	�
 and
VH � VC with a single hole in it. To improve readability, we put non-singleton hedges
and contexts between parenthesis.

We use the letters x, y, z for hedge variables and X,Y, Z for context variables. By
f, g, h, a, b, c, d, e we denote function symbols, by s̃, q̃, r̃, g̃, h̃ hedges, by c̃, d̃ arbitrary
contexts and by �c, �d singleton contexts. We use φ, ψ for a context variable or a func-
tion symbol. The empty hedge is denoted by ε. Terms of the form a�ε� are written
as just a. Examples of a term, a hedge, and a context are, respectively, f�f�a�, b�,
�x,X�a, x�, f�f�a�, b��, and �x,X�a, x�, f�f���, b��.

A context c̃ can apply to a hedge s̃, denoted by c̃�s̃�, obtaining a hedge by replacing
the hole in c̃ with s̃. For example, �x,X�a, x�, f�f���, b���a,X�a�� � �x,X�a, x�,
f�f�a,X�a��, b��. Application of a context to a context is defined similarly.

The length of a hedge s̃, denoted �s̃�, is the number of elements in it. We denote by
s̃�i the ith element of s̃ and by s̃�ji the subhedge �s̃�i, . . . , s̃�j�. If i  j then s̃�ji is the
empty hedge. The set of all function symbols which appear in a hedge s̃ (resp., in a
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context c̃) is denoted by F�s̃� (resp., by F�c̃�). We overload the notation F�A� for the
set of all function symbols which appear in a set of hedges and contexts A.

A substitution is a mapping from hedge variables to hedges and from context vari-
ables to contexts, which is identity almost everywhere. When substituting a context
variable X by a context, the context will be applied to the argument hedge of X . The
symbols σ, ϑ are used to denote a substitution. Substitutions can be applied to hedges
and contexts in the usual way. We use postfix notation for application, writing, e.g., s̃σ
for the application of σ to s̃. For example, if σ � 	x �� ε, y �� �a, x�, X �� g���
 is a
substitution, then �X�x�, y, f�X�y�, c��σ � �g, a, x, f�g�a, x�, c��. The notion range
of a substitution σ is standard and denoted by Ran�σ�.

A hedge s̃ is the instance of a hedge q̃ if there exists a substitution σ with q̃σ � s̃.
We say that q̃ is more general than s̃ if s̃ is an instance of q̃ and denote this by q̃ � s̃. If
q̃ � s̃ and s̃ � q̃, then we write q̃ � s̃. If q̃ � s̃ and q̃ � s̃, then we say that q̃ is strictly
more general than s̃ and write q̃ � s̃. A hedge g̃ is a generalization of the hedges s̃ and
q̃ if s̃ and q̃ are instances of g̃.

The word representation of a hedge is defined by the concatenation of the depth-first
pre-order traversal of the constituent terms. For instance, afgagbbc is the word repre-
sentation of �a, f�g�a, g�b, b��, c��. Generalizations contain a common subsequence of
the word representation of the input hedges. We will use this property in the formulation
of our anti-unification algorithm. Observe, e.g., the hedges from example 1:

� h�a�, f� h�g�a, b, b�, c�,b, b��
� a , f� g�a,d �, c ,d ��
�X�a�, f�X�g�a,x �, c�,x ��

The set of positions of a hedge s̃ � �t1, . . . tn�, denoted pos�s̃�, is a set of strings of
positive integers. It is defined as pos�s̃� :�

�n
i�1	i�p � p � posT�ti�
, where � stands for

concatenation. posT�t� is defined as posT�x� :� 	λ
 and posT�φ�q̃�� :� 	λ
� pos�q̃�,
whereλ is the empty string. For example, pos�f�a, g�b, c��� � 	1, 1�1, 1�2, 1�2�1, 1�2�2

and pos�a, f�b, g�c��, d� � 	1, 2, 2�1, 2�2, 2�2�1, 3
. In the latter hedge, the symbol g
stands at the position 2�2 and c occurs at the position 2�2�1.

– Two symbols s1, s2 � F�VH�VC of a hedge are horizontal consecutive if the corre-
sponding positions Is1 �is1 and Is2 �is2 are in the relation Is1 � Is1 and is1 � 1 � is2 .

– Two symbols s1, s2 � F � VH � VC of a hedge s̃ are in a vertical chain if their
positions Is1 and Is2 are in the relation Is1 �1 � Is2 and Is1 �2 � pos�s̃�.

For example, in �a, f�X�a, b���, the occurrence of a at position 1 and the occurrence of
f at 2 are horizontal consecutive, as well as a at 2�1�1 and b at 2�1�2. The occurrence of
f at 2 and the occurrence of X at 2�1 are in vertical chain.

With� we denote the (strict) lexicographic ordering and with� the (strict) ancestor
relation on positions, e.g., 1�2�1 � 1�2�2, 1�2�1 � 1�2�1�2, and 1�2�1 � 1�2�1�2. The
relation � is defined as � � �.

Given three positions I1, I2 and I3, the ternary relation � is defined as

I1 �I3 I2 :�� there is I4 � λ such that I4 � I1 and I4 � I2 and I4 �� I3 and
I1, I2, I3 are pairwise not in � .
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This relation tests whether I1 and I2 have a common ancestor which is not an ancestor
of I3. None of these positions should be an ancestor of another. For instance, 1�1 �2 1�2,
but not 1 �3 2, 1�1 �2 1�1�2, 1�1 �2 1�1, and 1�1 �1�3 1�2. A real world example of
this relation would be two sisters and one of their uncles.

3 The Skeletons: Admissible Alignments

In this section we introduce the concept of admissible alignments, which are used later
as skeletons to compute corresponding generalizations. For simplicity, we formulate all
the notions and the algorithm for two hedges. The extension to more hedges is straight-
forward. Hedges to be generalized are assumed to be variable disjoint.

Given two hedges s̃ and q̃, an alignment is a sequence of the form a1�I1, J1� . . .
am�Im, Jm� such that I1 � � � � � Im, J1 � � � � � Jm, and ak is the symbol at position
Ik in s̃ and at position Jk in q̃ for all 1 � k � m.

An alignment represents common function symbols inside of two hedges with the
corresponding positions, respecting the ordering �. It is a common subsequence of
the word representation of those hedges with some additional information about the
positions. The empty alignment is denoted by e.

Collisions in an alignment a of two hedges are defined as follows:

– A collision appears at two elements ak�Ik, Jk�, al�Il, Jl� of a if either �Ik � Il
and Jk �� Jl� or �Ik �� Il and Jk � Jl�.

– A collision appears at three elements ak�Ik, Jk�, al�Il, Jl�, an�In, Jn� of a if
Ik �In Il and Jl �Jk

Jn.

For instance, the alignment f�2, 1�b�2�1, 1�2�c�2�2, 2� of the hedges �a, f�b, c�� and
�f�a, b�, c� contains a collision at the two elements f�2, 1� and c�2�2, 2�. The alignment
a�1, 1�1�b�2�1, 1�2�c�2�2, 2� of the same hedges has a collision at its three elements.

An alignment a is called admissible if there are no collisions in it. Note that for any
two elements ak�Ik, Jk�, al�Il, Jl� of an admissible alignment a, Ik � Il iff Jk � Jl

and Ik � Il iff Jk � Jl.
Admissible alignments are related to generalization by the following theorem:

Theorem 1. Let a � a1�I1, J1� . . . am�Im, Jm� be an alignment of s̃ and q̃ such that
for all 1 � k � m the function symbol ak is unique in s̃ and unique in q̃. a is admissible
iff there exists a generalization g̃ of s̃ and q̃ with F�g̃� � 	a1, . . . , am
.

Notice that requiring uniqueness of the function symbols a1, . . . , am in theorem 1
does not impose a loss of generality. One can simply rename those symbols with fresh
ones and restore the original function symbols afterwards.

From this theorem, we get that for any admissible alignment a of two hedges there
exists a generalization g̃ of those hedges which contains all the corresponding function
symbols. The other direction is also true: For any generalization g̃ of two hedges there
exists their admissible alignment containing all the function symbols which appear in g̃.

We call such a g̃ a supporting generalization of s̃ and q̃ with respect to a.
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Example 2. Let s̃ � �a, a�b, b�� and q̃ � �a�a�b�b���, b, b�.
– b�2�2, 1�1�1� a�1, 1� is not an alignment of s̃, q̃.
– a�1, 1� a�2, 1�1� b�2�1, 1�1�1� b�2�2, 3� is a non-

admissible alignment of s̃, q̃.
– a�1, 1�1� b�2�1, 2� b�2�2, 3� is an admissible

alignment of s̃, q̃, with �X�a�x��, Y �b, b�� be-
ing a corresponding supporting generalization.

– �x, a�y, Y �b��, z� is a supporting generalization
of s̃, q̃, with respect to a�2, 1� b�2�2, 1�1�1�1�.

4 Computing Least General Rigid Generalizations

We aim at solving the following problem: Given two hedges s̃ and q̃ and their admis-
sible alignment a, compute a least general supporting generalization g̃ of s̃ and q̃ with
respect to a. However, least general supporting generalizations might not be unique.
For instance, for �a, b, a� and �b, c� with the admissible alignment b�2, 1�, we have two
supporting lggs �x, b, x, y� and �x, b, y, x�.

Therefore, we are interested in a special class of supporting generalizations, which
we call rigid generalizations. Given two hedges s̃, q̃ and their admissible alignment a, a
hedge g̃ is called a rigid generalization of s̃ and q̃ with respect to a, if g̃ is a supporting
generalization of s̃ and q̃ with respect to a such that the following conditions hold:

– There exist substitutions σ, ϑ with g̃σ � s̃ and g̃ϑ � q̃ such that all the contexts in
σ and ϑ are singleton contexts.

– No context variable in g̃ applies to the empty hedge.
– g̃ doesn’t contain horizontal consecutive hedge variables.
– g̃ doesn’t contain vertical chains of variables.
– g̃ doesn’t contain context variables with a hedge variable as the first or the last

argument (i.e., no subterms of the form X�x, . . . � and X�. . . , x��.

This definition puts some restrictions on the usage of the variables. Especially, our
very general concept of context variables demands for some restrictions. For instance,
X�a, b� is a rigid generalization of f�g�a, b, c�� and �a, b� with respect to a�1�1�1, 1�
b�1�1�2, 2�, while X�a, b, x� and X�Y �a, b�� are not rigid generalizations.

A rigid generalization g̃ of s̃ and q̃ with respect to a is called a rigid lgg of s̃ and q̃
with respect to a, if there is no rigid generalization h̃ of s̃ and q̃ with respect to a which
satisfies g̃ � h̃.

Note that two hedges might have a supporting generalization which is less gen-
eral than their rigid lgg with respect to the same admissible alignment. For instance,
X�a� � X�X�a�� and both of them are generalizations of f�f�a�� and g�g�g�g�a����
with respect to a�1�1�1, 1�1�1�1�1�, but only X�a� is a rigid generalization.

From now on, we concentrate on computing least general rigid generalizations of
two variable-disjoint hedges with respect to an admissible alignment.

An anti-unification problem (AUP) is a triple of the form x: s̃ � q̃;X : c̃ � d̃; a, where

– x is a hedge variable and s̃, q̃ are hedges,
– X is a context variable and c̃, d̃ are contexts,
– a is an admissible alignment of s̃ and q̃.
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We present our anti-unification algorithm as a rule-based algorithm that works on
triples P ; S; σ, where the problem set P is a set of AUPs, the store S is a set of AUPs
with empty alignments, σ is a substitution which keeps track of the generalization com-
puted so far, and for all pairs of AUPs 	x: s̃1 � q̃1; X : c̃1 � d̃1; a1, y: s̃2 � q̃2; Y :
c̃2 � d̃2; a2
 � P � S holds x � y and X � Y .

As all the AUPs in S have the empty alignment, we write x : s̃ � q̃; X : c̃ � d̃ instead
of x : s̃ � q̃; X : c̃ � d̃; e for an AUP of S. In the rules below, we use the symbols Y, Z
for fresh context variables and y, z for fresh hedge variables. The brackets � �, as before,
are used for context application. The symbol �� stands for disjoint union. Furthermore,
i - - denotes i� 1 and i�� denotes i� 1.

Spl-H: Split Hedge

	x : s̃ � q̃; X : c̃ � d̃; a1�i1�I1, j1�J1� . . . ak�ik�Ik, jk�Jk�
ak�1�ik�1�Ik�1, jk�1�Jk�1� . . . am�im�Im, jm�Jm�
 ��P ; S; σ ��
	y : s̃�iki1 � q̃�jkj1 ; Y : � � �; a1��i1 � i - -

1 ��I1, �j1 � j - -
1 ��J1� . . .

ak��ik � i - -
1 ��Ik, �jk � j - -

1 ��Jk�
 �
	z : s̃�im

i��k

� q̃�jm
j��k

; Z : � � �; ak�1��ik�1 � ik��Ik�1, �jk�1 � jk��Jk�1� . . .

am��im � ik��Im, �jm � jk��Jm�
 � P ;

	x : ε � ε; X : c̃�s̃�
i - -
1
1 , �, s̃�

�s̃�

i��m
� � d̃�q̃�

j - -
1
1 , �, q̃�

�q̃�

j��m
�
 � S; σ	x �� �Y �y�, Z�z��
,

If i1 � ik�1 and j1 � jk�1, and, moreover, i1 � ik or j1 � jk, for 1 � k � m.

Abs-L: Abstract Left Context

	x : �s̃l, φ�s̃�, s̃r� � q̃; X : c̃ � d̃; a1�i�I1, J1� . . . am�i�Im, Jm�
 ��P ; S; σ ��
	x : s̃ � q̃; X : c̃�s̃l, φ���, s̃r� � d̃; a1�I1, J1� . . . am�Im, Jm�
 � P ; S; σ,

where I1 � λ, φ�s̃� is the term at position i in �s̃l, φ�s̃�, s̃r�, and s̃l, s̃r are hedges.

Abs-R: Abstract Right Context

	x : s̃ � �q̃l, φ�q̃�, q̃r�; X : c̃ � d̃; a1�I1, j�J1� . . . am�Im, j�Jm�
 ��P ; S; σ ��
	x : s̃ � q̃; X : c̃ � d̃�q̃l, φ���, q̃r�; a1�I1, J1� . . . am�Im, Jm�
 � P ; S; σ,

where J1 � λ, φ�q̃� is the term at position j in �q̃l, φ�q̃�, q̃r�, and q̃l, q̃r are hedges.

App-A: Apply Alignment

	x : �s̃l, a1�s̃�, s̃r� � �q̃l, a1�q̃�, q̃r�; X : c̃ � d̃;
a1�i, j�a2�i�I2, j�J2� . . . am�i�Im, j�Jm�
 ��P ; S; σ ��
	y : s̃ � q̃; Y : � � �; a2�I2, J2� . . . am�Im, Jm�
 � P ;
	x : ε � ε; X : c̃�s̃l, �, s̃r� � d̃�q̃l, �, q̃r�
 � S; σ	x �� a1�Y �y��
,

where a1�s̃�, a1�q̃� are the terms at the positions i, j and s̃l, s̃r, q̃l, q̃r are hedges.

Sol-H: Solve Hedge

	x: s̃ � q̃; X : � � �; e
 ��P ; S; σ �� P ; 	x: s̃ � q̃; X : � � �
 � S; σ	X �� �
.
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Res-C: Restore Context

P ; 	x : ε � ε; X : �s̃l, �c, s̃r� � �q̃l, �d, q̃r�
 ��S; σ ��

P ; 	x : ε � ε; X : �c � �d, y : s̃l � q̃l; Y : � � �, z : s̃r � q̃r; Z : � � �
 � S;
σ	X �� �y,X���, z�
,

if not ε � s̃l � s̃r � q̃l � q̃r. �c, �d are singleton contexts.

Mer-S: Merge Store

P ; 	x1 : s̃ � q̃; X1 : c̃ � d̃, x2 : s̃ � q̃; X2 : c̃ � d̃
 ��S; σ ��
P ; 	x1 : s̃ � q̃; X1 : c̃ � d̃
 � S; σ	x2 �� x1, X2 �� X1
.

Clr-S: Clear Store

P ; 	x : ε � ε; X : � � �
 ��S; σ �� P ; S; σ	x �� ε,X �� �
.

The idea of the store is to keep track of already solved AUPs in order to generalize
the same AUPs in the same way, as it is illustrated in the Mer-S rule.

To compute generalizations of s̃ and q̃ with respect to an admissible alignment a, the
procedure starts with 	x : s̃ � q̃; X : � � �; a
;  ; ε, where x and X are fresh vari-
ables, and applies the rules exhaustively. We denote this procedure by G. The intuition
is that at i’s step of such a derivation, X�x�σi is supposed to be a generalization of s̃
and q̃, with the idea that when the process stops with σ in the last step, then X�x�σ is a
rigid lgg of s̃ and q̃ with respect to a.

Before discussing the properties of G, we briefly explain informally what the rules
do. At each step, each AUP x : s̃ � q̃; X : c̃ � d̃; a in P represents the hedges c̃�s̃�
and d̃�q̃� which are to be generalized, such that the generalization contains the function
symbols from a. They are split according to the occurrences of alignment elements: All
symbols from a are in s̃ and q̃. None of them appear in c̃ and d̃.

Such an AUP can be transformed by one of the first four rules: Spl-H, Abs-L, Abs-R,
or App-A. The eventual goal of these transformations is to reach the occurrences of the
first alignment element in s̃ and q̃. In the course of the transformation, c̃ and d̃ are
getting extended with contexts above those occurrences.

When the symbols in a are distributed in more than one term both in s̃ and in q̃, then
we use the Spl-H rule to select subhedges of s̃ and q̃ which contain all the alignment el-
ements. (The other parts of s̃ and q̃ are moved to the store, since they will not contribute
a symbol to the generalization.) Furthermore, by this rule, each of these subhedges are
split into two smaller subhedges: From the s̃ side these are s̃�iki1 and s̃�im

i��
k

, and from the

q̃ side they are q̃�jkj1 and q̃�jm
j��k

. The split point k is decided by the following criteria:

– s̃�iki1 and q̃�jkj1 contain the first k  0 elements of a.

– s̃�im
i��k

and q̃�jm
j��k

contain the elements of a starting from k � 1. There exists at least

one such element.
– s̃�iki1 or q̃�jkj1 is a term (a singleton hedge), and the k � 1’st element of a does not

belong to it.

The process will continue by generalizing s̃�iki1 and q̃�jkj1 with respect to the first k-

element prefix of a, and generalizing s̃�im
i��k

and q̃�jm
j��k

with respect to the elements of a
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starting from k � 1. Note that in the next step Spl-H is not applicable to the AUP with
s̃�iki1 and q̃�jkj1 . This is because at least one of them is a single term which completely
contains the alignment elements. Therefore either Abs-L, Abs-R, or App-A applies.

Consider the hedges �g�a�, f�a, g�b��, c, g�b�, e� and �e, e, h�a, e�, f�b�, a, c, d, b�
and the admissible alignment a�2�1, 3�1�b�2�2�1, 4�1�c�3, 6�b�4�1, 8� of them.

f

a g

b

h

a be

eeg c

b

e a c d bg

a

f

The dashed nodes in the figure above denote the parts which are moved into the store.
The dashed rectangle denotes s̃�iki1 and q̃�jkj1 and the dotted one denotes s̃�im

i��k

and q̃�jm
j��k

.

When all symbols in a belong to one term in s̃ or in q̃ (or maybe both), but the root
of that term is not the symbol a1 from the first element of a, then an attempt is made to
get deeper to that term, to reach the subterm whose top symbol is the a1 from a. This
descent is carried out by Abs-L or Abs-R, depending whether we are searching for the
subterm with a1 in the top in s̃ or in q̃.

When all symbols in a belong to one term in s̃ and one term in q̃, and these terms
have the same root symbol which is exactly the a1 from the first element of a, then
a1 is moved to the generalization. This is what the App-A rule does. The process will
continue with generalizing the hedges under the occurrences of a1 in s̃ and q̃.

When the alignment is empty in x : s̃ � q̃; X : c̃ � d̃; e in P , then the hedge there
will not contribute a symbol in the generalization. Moreover, both c̃ and d̃ are holes,
because only App-A can make the alignment empty, and it makes the contexts in the
obtained AUP the hole. Such AUPs are considered solved, as their generalization is
just x they contain. They should be put in the store, which keeps information about the
differences between the hedges to be generalized. At the same time, the context variable
X can be deleted, as it just stand for the hole. This is what the Sol-H rule does.

The other three rules work on the store. Clr-S removes the empty AUP from the store
and eliminates the corresponding variables form the generalization. Mer-S guarantees
that the same AUPs are generalized with the same variables, making sure that the same
differences in the input hedges are generalized uniformly. Finally, the Res-C rule guar-
antees that each context variable in the generalization generalizes singleton contexts in
the input hedges: A property required for rigid generalizations.

We define two substitutions obtained by a set S of AUPs:

σL �S� ::� 	x �� s̃, X �� c̃ � x : s̃ � q̃; X : c̃ � d̃; a � S


σR�S� ::� 	x �� q̃, X �� d̃ � x : s̃ � q̃; X : c̃ � d̃; a � S


Example 3. Let s̃ � f�a, f�b, b�� and q̃ � �b, f�a, b�, b� be the input hedges with the
admissible alignment a � f�1, 2�a�1�1, 2�1�b�1�2�1, 2�2�. Then the algorithm G starts
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with the initial system

	x: f�a, f�b, b�� � �b, f�a, b�, b�; X : � � �; f�1, 2�a�1�1, 2�1�b�1�2�1, 2�2�
;  ; ε

and computes ;S;σ, where

S � 	y: ε � ε; Y : f��, b� � �, z: ε � b; Z: � � �
,

σ � 	x �� �z, f�a, Y �b��, z�, X �� �, . . .
.

X�x�σ � �z, f�a, Y �b��, z� generalizes s̃ and q̃ with respect to a. From the store S we
can read σL�S� � 	z �� ε, Y �� f��, b�, . . .
 and σR�S� � 	z �� b, Y �� �, . . .
. Then
we have X�x�σσL �S� � s̃ and X�x�σσR�S� � q̃.

Now we turn to discussing the properties of G. Termination is the first of them:

Theorem 2 (Termination of G). The system G terminates on any input.

The substitutions σL�S� and σR�S� are used to characterize the invariant of G:

Lemma 1 (Generalization Invariant). Let P0; S0; σ0 such that for all x0 : s̃0 � q̃0;
X0 : c̃0 � d̃0; a0 � P0 the variables x0, X0 only appear together as term X0�x0� in
σ0. If P0; S0; σ0 ��

� Pn; Sn; σn is a derivation in G then for all x0 : s̃0 � q̃0; X0 :
c̃0 � d̃0; a0 � P0 � S0 holds

– X0�x0�σ0σL�P0 � S0� � X0�x0�σnσL�Pn � Sn�,
– X0�x0�σ0σR�P0 � S0� � X0�x0�σnσR�Pn � Sn�.

This lemma has a corollary which states that for the invariant, the initial substitution
is irrelevant:

Corollary 1. If P0; S0; ϑ0 ��
� Pn; Sn; ϑ0ϑ1 . . . ϑn is a derivation in G then for all

x0 : s̃0 � q̃0; X0 : c̃0 � d̃0; a0 � P0 � S0 holds

– X0�x0�σL�P0 � S0� � X0�x0�ϑ1 . . . ϑnσL�Pn � Sn�,
– X0�x0�σR�P0 � S0� � X0�x0�ϑ1 . . . ϑnσR�Pn � Sn�.

The soundness theorem shows that G indeed computes rigid generalizations. Be-
sides, the store keeps the information which indicates how to obtain the initial hedges
from the generalization:

Theorem 3 (Soundness of G). Let P be a set of AUPs of the form 	x : s̃ � q̃; X : � �
�; a
. Every exhaustive rule application in G yields a derivation P ;  ; ε ���  ; S;
σ where g̃ � X�x�σ is a rigid generalization of s̃ and q̃ with respect to a and the store
S records all the differences such that g̃σL�S� � s̃ and g̃σR�S� � q̃.

The next theorem is the Completeness Theorem. It, essentially, says that for the
given alignment, a rigid generalization G computes is least general among all rigid
generalizations of the input hedges.
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Theorem 4 (Completeness of G). Let g̃ be a rigid generalization of s̃ and q̃ with re-
spect to a. Then there exists a derivation 	x : s̃ � q̃; X : � � �; a
;  ; ε ���  ; S;
σ obtained by G such that g̃ � X�x�σ.

There is a nondeterminism in the algorithm. The Uniqueness Theorem says that dif-
ferent transformations compute generalizations which are equivalent modulo �, i.e.,
differ from each other only by variable renaming:

Theorem 5 (Uniqueness modulo �). Let a be an admissible alignment of s̃ and q̃. If
	x1 : s̃ � q̃; X1 : � � �; a
;  ; ε ���  ; S1; σ1 and 	x2 : s̃ � q̃; X2 : � � �;
a
;  ; ε ���  ; S2; σ2 are two exhaustive derivations in G, then X1�x1�σ1 �
X2�x2�σ2.

Finally, the complexity analysis reveals that the algorithm runs in quadratic time and
requires linear space:

Theorem 6 (Complexity of G). The anti-unification algorithm G has O�n2� time
complexity and O�n� space complexity, where n is the number of symbols in the input.
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A Appendix

We first illustrate, step by step, how the algorithm G computes the rigid lgg for the
anti-unification problem in Example 3:

�x: f�a, f�b, b�� � �b, f�a, b�, b�; X: � � �; f�1, 2�a�1�1, 2�1�b�1�2�1, 2�2��; 	; ε


App-A �y1: �a, f�b, b�� � �a, b�; Y1: � � �; a�1, 1�b�2�1, 2��;

�x: ε � ε; X: � � �b, �, b��; �x �� f�Y1�y1���


Res-C �y1: �a, f�b, b�� � �a, b�; Y1: � � �; a�1, 1�b�2�1, 2��;

�z1: ε � b; Z1: � � �, z2: ε � b; Z2: � � ��; �x �� �z1, f�Y1�y1��, z2�, X �� ��


Mer-S �y1: �a, f�b, b�� � �a, b�; Y1: � � �; a�1, 1�b�2�1, 2��;

�z1: ε � b; Z1: � � ��; �x �� �z1, f�Y1�y1��, z1�, X �� ��


Spl-H
Clr-S �y2: a � a; Y2: � � �; a�1, 1�, y3: �f�b, b�� � b; Y3: � � �; b�1�1, 1��;

�z1: ε � b; Z1: � � ��; �x �� �z1, f�Y2�y2�, Y3�y3��, z1�, X �� ��


App-A
Clr-S �y4: ε � ε; Y4: � � �; e, y3: �f�b, b�� � �b�; Y3: � � �; b�1�1, 1��;

�z1: ε � b; Z1: � � ��; �x �� �z1, f�a�Y4�y4��, Y3�y3��, z1�, X �� ��


Sol-H
Clr-S �y3: f�b, b� � b; Y3: � � �; b�1�1, 1��;

�z1: ε � b; Z1: � � ��; �x �� �z1, f�a, Y3�y3��, z1�,X �� ��


Abs-L �y3: �b, b� � b; Y3: f��� � �; b�1, 1��;

�z1: ε � b; Z1: � � ��; �x �� �z1, f�a, Y3�y3��, z1�,X �� ��


App-A �y5: ε � ε; Y5: � � �; e�; �y3: ε � ε; Y3: f��, b� � �, z1: ε � b; Z1: � � ��;

�x �� �z1, f�a, Y3�b�Y5�y5����, z1�, X �� ��


Sol-H
Clr-S 	; �y3: ε � ε; Y3: f��, b� � �, z1: ε � b; Z1: � � ��;

�x �� �z1, f�a, Y3�b��, z1�, X �� ��.

The proofs of the properties (e.g. termination, soundness, completeness and unique-
ness) of G can be found in the technical report [6]. Here we give only the proof of
theorem 1 and the complexity result.

Theorem 1. Let a � a1�I1, J1� . . . am�Im, Jm� be an alignment of s̃ and q̃ such that
for all 1 � k � m the function symbol ak is unique in s̃ and unique in q̃. a is admissible
iff there exists a generalization g̃ of s̃ and q̃ with F�g̃� � 	a1, . . . , am
.

Proof. Let a � a1�I1, J1� . . . am�Im, Jm� be an alignment of s̃ and q̃ such that for all
1 � k � m the function symbol ak is unique in s̃ and unique in q̃.

(�) Assume g̃ is a generalization of s̃ and q̃ with F�g̃� � 	a1, . . . , am
. We will
prove by contradiction that there are no collisions in a (see definition of admissible
alignment). Furthermore we assume that there are at least two elements in a because
the other cases are trivial by definition.

Case 1: Assume there is a collision at two elements of a. Then there exists ai, aj �
	a1, . . . , am
 such that ai is an ancestor of aj in s̃ while it is not an ancestor of aj in q̃.
We know that g̃ contains both symbols ai and aj .
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Case 1.1: ai is an ancestor of aj in g̃. Then we have ai�r̃1, t, r̃2� being a subterm of
g̃ where t is the term which contains aj and r̃1, r̃2 are arbitrary hedges. By assumption
there exists a substitution σ with ai, aj � F�Ran�σ�� such that ai is not an ancestor
of aj in g̃σ but by the rule of substitution application ai�r̃1, t, r̃2�σ � ai�r̃1σ, tσ, r̃2σ�
the ancestor-descendant relation is preserved which is a contradiction.

Case 1.2: ai is not an ancestor of aj in g̃. Then we have �r̃1, t1, r̃2, t2, r̃3� being a
subhedge of g̃ where t1 is the term which contains ai, t2 is the term which contains
aj and r̃1, r̃2, r̃3 are arbitrary hedges. By assumption there exists a substitution σ with
ai, aj � F�Ran�σ�� such that ai is an ancestor of aj in g̃σ but this contradicts the rule
of substitution application �r̃1, t1, r̃2, t2, r̃3�σ � �r̃1σ, t1σ, r̃2σ, t2σ, r̃3σ� again.

Case 2: A collision appears at three elements. Let ai, aj , ak be those elements. With-
out loss of generality, assume that ai, aj have a common ancestor φ which is not an
ancestor of ak in s̃ and let aj , ak have a common ancestor ψ which is not an ancestor
of ai in q̃. By assumption, g̃ contains all three symbols exactly once. It follows that
there are substitutions σ1, σ2 with ai, aj, ak � F�Ran�σ1� � Ran�σ2�� where g̃σ1 � s̃
and g̃σ2 � q̃. By assumption, we know that g̃σ1 contains a subhedge �tij , s̃k�, with tij
being the term which contains the symbols φ, ai, aj , and s̃k being a hedge which con-
tains the symbol ak. This implies that g̃ contains either φ or a context variable which
can be instantiated to introduce φ. It follows that g̃ also contains a subhedge �t�ij , s̃

�
k�,

with t�ij being the term which contains the symbols ai, aj and s̃�k being a hedge which
contains the symbol ak. Similarly g̃σ2 contains a subhedge �q̃i, tjk�, with q̃i being a
hedge which contains the symbol ai and tjk being the term which contains the symbols
ψ, aj , ak. Further on g̃ either contains ψ or a context variable, say X , which can be
instantiated to introduce ψ. Let us call this metavariable χ. As ψ is an ancestor of both,
aj and ak in q̃, χ has to be above t�ij . This is a contradiction to the assumption that ψ is
not an ancestor of ai in q̃.

(�) Proof by construction of an algorithm which computes such a generalization for
a given admissible alignment of two hedges. In section 4 we described this algorithm
and proved its properties. !"

Theorem 6 (Complexity ofG). The anti-unification algorithmG has O�n2� time com-
plexity and O�n� space complexity, where n is the number of symbols in the input.

Proof. Let P0; S0; σ0 � 	x : s̃ � q̃; X : � � �; a
;  ; ε be the initial state of G and
Pi�1; Si�1; σi�1 �� Pi; Si; σi an arbitrary rule application. By theorem 5 we can
arrange the rule applications as we like to obtain a maximal derivation. First the rules
Spl-H, Abs-L/R, App-A and Sol-H are applied exhaustively. This are the only rules
that operate on Pi�1 and furthermore they do not have conditions on Si�1 or σi�1 such
that P0; S0; σ0 ��

�  ; Sj ; σj , for some j. Afterwards they are not applicable again
and Res-C is applied exhaustively  ; Sj ; σj ��

�
Res-C  ; Sk; σk. It transforms all

the contexts in the store to terms. The rules Clr-S and Mer-S operate on Sk but they
only remove AUPs from there, such that Res-C will not be applicable again. Finally
we postpone the application of Mer-S to the very end, leading to a partial derivation
 ; Sk; σk ��

�
Clr-S  ; Sl; σl ��

�
Mer-S  ; Sn; σn where no more rule is applicable

because Mer-S does not introduce any AUPs, to which another rule could apply.
Now we analyze the first phase P0; S0; σ0 ��

�  ; Sj ; σj . The rule Spl-H splits
an AUP into two AUPs and moves some parts into the store. The space overhead for
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one application is constant because the two new AUPs in Pi and the one in Si together
exactly cover the original one from Pi�1, and four new variables are introduced. It can
be applied O�n� many times because both of the new AUPs are nonempty. It needs lin-
ear time (by the length of the alignment) to check for applicability and find the position
for splitting the AUP. Also the context application needs linear time. The rules Abs-L/R
are also applicable O�n�many times. They strictly reduce the size of a hedge in Pi. The
space overhead is zero. The test for applicability, the context application as well as the
operations on the alignment need linear time. App-A is applicable O�n� many times
as well and one application needs linear time and constant space. It strictly reduces the
size of a hedge in Pi and one application needs linear time, for the same reasons as the
above rules. As Spl-H is applicable at most O�n� many times and doubles the elements
of Pi at each application and all the other rules do not increase the length of Pi, Sol-H
is applicable O�n� many times too. It follows that the number of introduced variables
is O�n� and the size of Sj is also bound by O�n�.

We compose the substitution σi immediately, but we only keep the mappings for x
and X in σi, such that σi � 	x �� r̃i, X �� c̃i
, for some r̃i, c̃i. As all the introduced
variables in Spl-H and App-A are fresh, they only appear once in r̃i or c̃i. This invariant
of the first phase leads to O�n� size of σi as well as O�n� time for the substitution
composition in Spl-H, App-A and Sol-H. All together we get O�n2� time complexity
and O�n� space complexity for the first phase.

The second phase is ; Sj ; σj ��
�
Res-C  ; Sk; σk . The rule Res-C is applicable

only once per AUP leading to O�n� many applications. The space overhead is con-
stant at each application, introducing four fresh variables. It needs linear time at each
application. We again compose σi immediately and for similar reasons as above, the
substitution composition in Res-C only needs O�n� time, leading to an overall time
complexity of O�n2� and space complexity O�n�.

From the O�n� size of the store, it follows that also the store cleaning rule is appli-
cable O�n� many times and the overall time complexity of this phase is O�n2�, as we
compose substitutions immediately like before. The space overhead for Clr-S is zero.

It remains to show that  ; Sl; σl ��
�
Mer-S  ; Sn; σn only needs O�n2� time.

Therefore we postpone the substitution composition. Comparing O�n� # O�n� AUPs
in the store needs O�n2� time and removing an AUP from the store needs constant time
using a linked list. As the size of the store is bound by O�n� and Mer-S removes one
AUP at each application, there are O�n� postponed substitution compositions. Each of
them of constant size as they all are just variable renamings. This leads to linear space
overhead and we have to compose O�n� substitutions where each composition needs
O�n� time. This concludes our complexity analysis where we showed that the algorithm
runs in O�n2� time using O�n� space. !"



Reinstatement and the Requirement of Maximal
Specificity in Argument Systems�

Gustavo A. Bodanza1 and Claudio Andrés Alessio2

1 Universidad Nacional del Sur and CONICET, Argentina
ccbodanz@criba.edu.ar

2 Universidad Católica de Cuyo and CONICET, Argentina
claudioalessio@uccuyo.edu.ar

Abstract. An argument is reinstated when all its defeaters are in turn ultimately
defeated. This is a kind of principle governing most argument systems in AI.
Nevertheless, some criticisms to this principle have been offered in the literature.
Assuming that reinstatement is prima facie acceptable, we analyze some coun-
terexamples in order to identify common causes. As a result, we found that
the problem arises when arguments in a chain of attacks are related by speci-
ficity. We argue that the reason is that non-maximally specific arguments can be
reinstated originating fallacious justifications. Following old intuitions by Carl
Hempel about inductive explanations, we propose a requirement of maximal
specificity on defeasible arguments and introduce “undermining defeaters” which,
in essence, facilitate the rejection of those arguments which do not satisfy the re-
quirement. This ideas are formally defined using the DeLP system for defeasible
logic programming.

1 Introduction: Problems with Argument Reinstatement

Argument reinstatement is at the core of most argument systems, especially those which
can be treated as instances of Dung’s argumentation frameworks ([4]). The intuition is
that an argument should be reinstated when all its possible defeaters are in turn de-
feated outright (cf. [1]). The example below, introduced by Dung as a motivation for
his admissibility semantics, illustrates the rationale of reinstating argument A given
argument C.

Example 1.
A: (Agent 1:) My government cannot negotiate with your government because your
gorvernment doesn’t even recognize my government.
B: (Agent 2:) Your government doesn’t recognize my government either.
C: (Agent 1:) But your government is a terrorist government.
Then accepting that A and B are mutually attacking arguments and that C attacks B
(but not the converse), the reinstatement of A by C makes sense.

On the other hand, other examples suggest that reinstatement cannot be taken as a
general principle:

� Partially supported by SeCyT of the Universidad Nacional del Sur, and Universidad Católica
de Cuyo, Argentina.

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 81–93, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



82 G.A. Bodanza and C.A. Alessio

Example 2.
A: Tweety flies because it is a bird, and birds tend to fly.
B: Tweety does not fly because it is a penguin, and penguins tend not to fly.
C: Tweety flies because it is a magic penguin, and magic penguins tend to fly.

Horty ([11]) has argued against reinstatement using a similar example. If A and C are
jointly admitted, then a sound conclusion (Tweety flies) could be justified on basis of a
weak reason (that flies because it is a bird). Clearly, a stronger reason is that Tweety has
a skill that specifically magic penguins have. The acceptance of A would be unsound if
the model is intended to offer the best explanation for the conclusion it yields. A would
be acceptable only if all subclasses of birds (including penguins and magic penguins)
are equally plausible to fly; but that is not the case here. The fact that C reinstates A’s
conclusion (which is also C’s own conclusion) cannot be a reason for C to reinstate the
whole argument A, because A does not meet that criterion.

A worse situation arises when the conclusion of the reinstated argument is stronger
than that of the reinstating argument, as in the following case (also introduced by
Horty):

Example 3.
A: Beth is millionaire because he is a Microsoft employee, and they tend to be million-
aire.
B: Beth has less than half a million because he is a new Microsoft employee, and they
tend to have less than half a million.
C: Beth has at least half a million because he is a new Microsoft employee in depart-
ment X , and they have at least half a million.

Here A’s conclusion is stronger than C’s conclusion, in the sense that the last one
is logically implied by the first one but not vice versa; that looks counterintuitive. Ar-
gument A would be reasonably accepted just in case that being millionaire be equally
plausible for any subclass of the class of Microsoft employees.

Curiously, all the counterexamples to reinstatement that we found in the literature
involve arguments that can be compared by specificity. That motivated the present study,
which tries to show that the problem is the way in which specificity is used to establish
defeat rather than a problem of the reinstatement principle.

The specificity criterion has been widely discussed in Philosophy of Science. Hempel
([9]) defended a requirement of maximal specificity as a condition for the acceptance of
probabilistic/inductive-statistical explanations. Early applications of specificity in non-
monotonic reasoning in AI were also aware of the intuition that only maximally specific
explanations should be accepted, so from the argumentative point of view ([16]) as from
the defeasible inheritance networks point of view ([6], [7], [10], [13], [18]). On the other
hand, a specificity-based preference criterion among arguments combined with a reins-
tatement-based warrant procedure was introduced in [19].

Prakken ([17]) argued that reinstatement cannot be applied when statistical reasoning
is at stake because more general arguments (like A in the above example) just cannot be
constructed in a right representation, since the pertinent defaults must be blocked, and
so only the most specific arguments remain; hence –Prakken concludes– the problem
here is not about reinstatement but one of representation. In our opinion, while finding
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general principles of representation could be a hard enterprise, the problem can instead
be solved by finding general conditions under which the arguments can compete and
defeat among them. Accordingly, we will argue that maximally specific arguments “un-
dermine” less specific arguments when their conclusions are not plausible given the
total evidence.

The paper is organized as follows. In section 2 a requirement of maximal specificity
is formally introduced in terms of the defeasible logic programming language DeLP
([8]). Sections 3 and 4 introduce “undermining” defeaters and their role in a skeptical
warrant procedure. Section 5 discuss the view of other authors through more examples,
and our conclusions are offered in section 6.

2 The Requirement of Maximal Secificity in Rule-Based
Argumentation Systems: The Case of DeLP

We introduce here the requirement of maximal specificity as a demarcation criterion for
the acceptance of arguments. As such, it should be used to filter the arguments which
are not maximally specific w.r.t. their conclusions as they can leave room for irrelevant
explanations. We will formally define our criterion in the context of the particular rule-
based argument system DeLP ([8]), where specificity is formally defined as a criterion
for argument comparison.

DeLP is based on a first-order language L that is partitioned in three disjoint sets: a
set of facts, a set of strict rules and a set of defeasible rules. Facts are literals, i.e. ground
atoms (L) or negated ground atoms (∼L, where ‘∼’ represents the classical negation);
facts represent particular knowledge. Both strict and defeasible rules are program rules.
Syntactically, strict rules are sequents of the form L← L1, . . . , Ln and defeasible rules
are sequents of the form L−−<L1, . . . , Ln, where L,L1, . . . , Ln are literals. Strict rules
represent general, non-defeasible knowledge while defeasible rules represent tentative,
defeasible knowledge. A defeasible logic program (de.l.p.) P is a pair (Π,Δ) where
Π is a set partitioned in two subsets ΠF , containing only facts, and ΠG, containing
only strict rules, and Δ is a set of defeasible rules. Given a de.l.p. P = (Π,Δ) we
say that a literal L is a defeasible derivation from Γ in P , in symbols, Γ |∼ PL iff
Γ ⊆ Π ∪ Δ and there exists a sequence of ground (instantiated) literals L1, . . . , Ln

such that Ln = L and for each Li, 1 ≤ i ≤ n, either Li ∈ Γ or there exists either
a strict rule (L ← L1, . . . , Lk) or a defeasible rule (L−−<L1, . . . , Lk) in Γ such that
{L1, . . . , Lk} ⊆ {L1, . . . , Li−1}. If all the rules used in the derivation of A are strict
then we say that L is a strict derivation from Γ , in symbols, Γ #P L. (From now on,
we will write ‘|∼ ’ and ‘#’ instead of ‘|∼ P ’ and ‘#P’, respectively, when the referenced
de.l.p. is obvious.)

Definition 1. (Argument structure ([8])) Given a de.l.p. P = (Π,Δ), an argument
structure (in P) is a pair 〈T, h〉, where T ⊆ Δ and h is a literal (the argument’s
conclusion), and

1. Π ∪ T |∼ h,
2. Π ∪ T � |∼ ⊥,
3. � ∃T ′ (T ′ ⊂ T ∧ Π ∪ T ′|∼ h).
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Definition 2. (Subargument ([8])) An argument structure 〈T, h〉 is a subargument struc-
ture of an argument structure 〈T ′, h′〉 if T ⊆ T ′.

Definition 3. (Strictly more specific ([8])) Let P=(Π,Δ) be a de.l.p. and let F be the
set of all literals that have a defeasible derivation from P . Let 〈T1, h1〉 and 〈T2, h2〉
be two argument structures obtained from P . 〈T1, h1〉 is strictly more specific than
〈T2, h2〉, in symbols, 〈T1, h1〉$spec

〈T2, h2〉 iff
1. for all H ⊆ F , if H ∪ΠG ∪ T1|∼ h1 and H ∪ΠG �# h1 then H ∪ΠG ∪ T2|∼ h2,

(every H that “activates” h1 also ‘activates’ h2), and
2. there exists H ⊆ F such that H ∪ΠG∪T2|∼ h2, H ∪ΠG �# h2 and H ∪ΠG∪T1

� |∼ h1 (some H “activates” h2 but not h1).

Using this same specificity criterion, Poole [16] proposes to choose the most specific
explanations, i.e. those arguments which are maximal with respect to$

spec
. In this way,

Poole leaves no room for reinstatement among arguments compared by specificity. This
criterion is near to what we will propose here, but so stated it can have the effect of
precluding acceptable arguments even when less specific arguments are not in conflict
with the maximally specific ones.

Example 4. Let P = (Π,Δ) be a de.l.p. representing the knowledge that all lapwings
are birds, birds tend to fly, lapwings tend to nest on the ground and Pedro is a lapwing:
Π = { bird(x)←lapwing(x), lapwing(pedro) }
Δ = { flies(x)−−<bird(x), nests_on_the_ground(x)−−<lapwing(x) }
Then we have the argument structures:
A = 〈{flies(pedro)−−<bird(pedro)}, f lies(pedro)〉,
B = 〈{nests_on_the_ground(pedro)−−<lapwing(pedro)},

nests_on_the_ground(pedro)〉
Since B$

spec
A, choosing only the maximal elements of$

spec
precludes the acceptable

argument A and its conclusion flies(pedro).

Indeed, selecting just the maximal elements of $
spec

does not seem to be a good ap-
proach to the requirement of maximal specificity as proposed in Philosophy of Science
for inductive-probabilistic explanations. The intuition in [9] is that what is inferred in a
maximally specific explanation about a class G taking into account the total evidence
must also be inferred about any subclass H of G with the same probability. Though
extrapolating this criterion to defeasible argumentation is difficult since inferences are
not obtained with probability measures, we propose that a maximally specific defeasi-
ble argument about a class G should at least not be contradictory with the defeasible
conclusions obtained about any subclass H of G, considering the total evidence, i.e.
the information represented in Π . In terms of DeLP, this means that maximally specific
arguments should not have “proper defeaters” as these are indicative of “undermining”
evidence.

Definition 4. (Proper defeater ([8])) An argument structure 〈S, j〉 is a proper defeater
of an argument structure 〈T, h〉 if for some sub-argument 〈T ′, h′〉 of 〈T, h〉, 〈S, j〉 $spec

〈T ′, h′〉 and Π ∪ {j, h′} # ⊥. Given a set of argument structures S we also define
defprop(S) =df {(A,B) : A,B ∈ S and A is a proper defeater of B}.
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Definition 5. (Undermining evidence) Given a de.l.p. P = (Π,Δ), a subset F of ΠF

is undermining evidence of an argument structure 〈T, h〉 if F ∪ T ′ ∪ ΠG |∼ h′ for
some proper defeater 〈T ′, h′〉 of 〈T, h〉 (i.e. F “activates” some proper defeater of the
argument).

Note that having a proper defeater is a sufficient condition for having undermining
evidence, though other conditions could be also found (more on this in section 5). Now
we can formally state the property of maximal specificity as follows:

Definition 6. (Maximal Specificity (MS)) Given a de.l.p P , we say that an argument
structure 〈T, h〉 is maximally specific (w.r.t. its conclusion h) in P iff there exists no
undermining evidence of 〈T, h〉 in P .

Requiring MS as a condition for argument warrant implies to reject any argument
structure which has some proper defeater. Note that it does not matter whether proper
defeaters are defeated or not to reject a non-maximally specific argument; that is why
we prefer to highlight the undermining evidence and to use proper defeaters just as a
way for detecting it.

Example 5. (Example 4 revisited) Both A and B satisfy MS, A w.r.t. flies(pedro) and
B w.r.t. nests_on_the_ground(pedro).

Example 6. (De.l.p. for representing Example 3) Let P = (Π,Δ) a de.l.p. such that

Π = { has_at_least_half_a_million(x)←millionaire(x),
ms_employee(x)← new_ms_employee(x),
new_ms_employee(x)← new_ms_employee_dept_x(x),
new_ms_employee_dept_x(beth)}

Δ = {millionaire(x)−−<ms_employee(x),
∼ has_at_least_half_a_million(x)−−<new_ms_employee(x),
has_at_least_half_a_million(x)−−<new_ms_employee_deptX(x)}

Then we have the argument structures:

A = 〈{millionaire(beth)−−<ms_employee(beth)}, millionaire(beth)〉,
B = 〈{∼ has_at_least_half_a_million(beth)−−<new_ms_employee(beth)},

∼ has_at_least_half_a_million(beth)〉,
C = 〈{has_at_least_half_a_million(beth)−−<new_ms_employee_deptX(beth)},

has_at_least_half_a_million(beth)〉.

Then C satisfies MS w.r.t. has_at_least_half_a_million(beth), and neither
A nor B satisfy MS because {new_ms_employee_dept_x(beth)} is undermining ev-
idence for them.

3 Undermining Defeaters

Systems in which arguments interact only through proper defeaters can lead to the ac-
ceptance of non-maximally specific arguments if the warrant procedure satisfies the
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reinstatement principle. But this does not necessarily imply that reinstatement is in-
valid. Those argument systems in which different kinds of defeat are used —including
proper defeaters— can be amended to sanction only maximally specific arguments. Our
proposal is simple and consists in the introduction of “undermining defeaters”, which
are based on the main result derived from the notion of ‘undermining evidence’:

Lemma 1. Let 〈T, h〉 and 〈T ′, h′〉 be two argument structures such that 〈T, h〉 is a
proper defeater of 〈T ′, h′〉. If H is undermining evidence for 〈T, h〉 then H is under-
mining evidence for 〈T ′, h′〉.
Proof. Let 〈T, h〉 be a proper defeater of 〈T ′, h′〉 and let H be undermining evidence
for 〈T, h〉. Then H activates some proper defeater 〈S, j〉 of 〈T, h〉. Since 〈S, j〉 is more
specific than 〈T, h〉, H activates 〈T, h〉. And since 〈T, h〉 is more specific than 〈T ′, h′〉,
H also activates 〈T ′, h′〉. Then, by Definition 5, H is undermining evidence for 〈T ′, h′〉.

��
Definition 7. (Undermining defeater) Given two arguments structures 〈T, h〉 and
〈T ′, h′〉, we say that 〈T, h〉 is an undermining defeater of 〈T ′, h′〉 iff for any subset
of facts F ⊆ ΠF , if F ∪ T ∪ΠG |∼ h then F ∪ S ∪ΠG |∼ j for some proper defeater
〈S, j〉 of 〈T ′, h′〉 (i.e. if F activates 〈T, h〉 then F also activates some proper defeater of
〈T ′, h′〉). We also define defund(S) =df {(A,B) : A,B ∈ S and A is an undermining
defeater of B}.

Undermining defeaters can be viewed as a kind of undercutting defeaters, at least
indirectly, since their acceptance implies the use of total evidence which gives the rea-
son that makes the conclusion of the defeated argument not inferable. They are clearly
not rebutting defeaters since it cuould be the case that the joint acceptance of both an
argument an its undermining defeater does not yield contradiction (for instance, in Ex-
ample 5 argument C is an undermining defeater of argument A, but it is not a rebutting
defeater. See, e.g., [15] for more on the distinction undercutting/rebutting defeater).

Clearly, from Lemma 1 and Definition 7 we have that undermining evidence ‘prop-
agate’ through a chain of proper defeaters.

Lemma 2. Let 〈T, h〉 be a proper defeater of 〈T ′, h′〉. Then for every proper defeater
〈S, j〉 of 〈T, h〉, 〈S, j〉 is an undermining defeater of 〈T ′, h′〉.
Proof. Immediate from Definition 7 and Lemma 1. ��

As a consequence, in cycles of proper defeaters the ensuing undermining defeaters
are indicative of undermining evidence for all the arguments involved in the cycle, in-
cluding themselves (Fig. 1). Finally, the previous lemmata lead immediately to the fol-
lowing equation.

Theorem 1. Let S be any set of argument structures, and defprop(S)
tr be the transitive

closure1 of defprop(S). Then defund(S) = defprop(S)
tr.

Proof. Immediate from Lemma 1 and Lemma 2. ��
In the next section, the above result will enable us to think of different ways of repre-
senting the rejection of non-maximally specific arguments.

1 The transitive closure of a binary relation R is the minimal (w.r.t. ⊆) transitive relation R′

such that R ⊆ R′.



Reinstatement and the Requirement of Maximal Specificity in Argument Systems 87

Fig. 1. Argumentation framework (a) with proper defeaters only and (b) with undermining de-
featers

4 Undermining Defeaters and a Warrant Procedure Satisfying
Reinstatement

Non-maximally specific arguments can be rejected through a warrant procedure sat-
isfying reinstatement, which means that reinstatement can be saved from the before
mentioned criticisms as a principle of defeasible argumentation. In DeLP, warrant can
be determined through a dialectical analysis represented by a two-party game, where
a proponent tries to defend an argument and an opponent tries to refute it (we define
this game as in [2]). Given the set Args of all the argument structures that can be
constructed in a de.l.p. P , and once all the defeat relations over Args are established,
argument warrant can be analyzed through a Dung’s style argumentation framework
([4]).

Definition 8. (Argumentation framework associated with a de.l.p.) Given a de.l.p. P ,
the argumentation framework associated with P is the pair (Args, attacks) where
Args is the set of all the argument structures obtained from P and attacks =⋃

DEF (Args), where DEF (Args) = {def1, . . . , defk}, is the set containing ev-
ery defeat criterion defi ⊆ Args × Args (1 ≤ i ≤ n) defined on Args. (We will
assume that defprop(Args) ∈ DEF (Args).)

Definition 9. (Argumentation game) An argumentation game on an argumentation
framework (Args, attacks) is a zero-sum extensive game in which:
1. There are two players, i and −i, who play the roles of P and O, respectively.
2. A history in the game is any sequence A0, A1,A2, . . . , A2k,A2k+1, . . . of choices of
arguments in Args made by the players in the game. A2k corresponds to P and A2k+1

to O, for k = 0, 1, . . .. At any history, A0 is the argument that player P intends to
defend.
3. In a history, the choices by a player i at a level k > 0 are Ci(k) = {A ∈ Args :
(A,Ak−1) ∈ attacks}.
4. A history of finite length K , A0, . . . , AK , is terminal if AK corresponds to player j
(j = i or j = −i) and C−j(K + 1) = ∅.
5. Payoffs are determined at terminal histories: at A0, . . . , AK , P’s payoff is 1 (rep-
resenting winning) if K is even (i.e., O cannot reply to P’s last argument), and −1
(representing loosing) otherwise. In turn, O’s payoff at A0, . . . , AK is 1 if K is odd and
−1 otherwise.
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Definition 10. (Strategy) A strategy for a player i is a function that assigns an element
Al+1 ∈ Ci(l) at each non-terminal history A0, . . . , Al where Al corresponds to player
−i. A strategy of player i is said a winning strategy for i if for every strategy chosen by
−i, the ensuing terminal history yields a payoff 1 for player i.

Definition 11. (Warrant) An argument A is warranted in (Args, attacks) iff P has a
winning strategy to defend A in the game associated to (Args, attacks).

Furthermore, different game protocols can be defined to obtain different behaviors.
Since we are interested here in the refutation of non-maximally specific arguments,
let us see how to do that in systems that incorporate undermining defeaters and in sys-
tems based only in proper defeaters. For the first approach we propose the following
protocol:

(1) The game ends if, at any level k, a player i advances an argument A such that
the argument B moved at level k − 1 by player −i is such that A is an undermining
defeater of B (i wins).

(2) P is not allowed to advance an argument that was already advanced by either
player in the same history.
Rule (1) says that once an undermining defeater is played the game ends (the player
who moved the non-maximally specific argument loses). The purpose of this rule is to
obligate the players to use only maximally specific arguments. Rule (2), in time, ensures
finite, skeptical games. Let us call this protocol PU .

On the other hand, an obvious way to obtain the same behavior in argumentation
frameworks where only proper defeaters are defined is by replacing the first rule as
follows:

(1’) The game ends if, at any level k, a player i advances an argument A such that
the argument B moved at level k − 1 by player −i is such that there exists a sequence
A1, . . . , An where A1 = A, An = B and (Ah, Ah+1) ∈ defprop for every h, 1 ≤ h <
n (i wins).
Let us call this protocol PP . Then Theorem 1 clearly ensures the same behavior under
protocol PU as under protocol PP .

Example 7. Given an argumentation framework (Args, attacks)whereArgs= {A,B,
C, D} and attacks = {(C,D)} ∪ defprop(Args), where defprop(Args) = {(A,B),

Fig. 2. Argumentation framework (a) without and (b) with undermining defeaters
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(B,C)}. Then defund(Args) = {(A,B), (B,C), (A,C)}. Note that while P has win-
ning strategies for defending both A and C in the game associated to (Args, attacks)
in the plain game (i.e. not having any added protocol) (Fig. 2, (a)), P has winning strate-
gies for defending both A and D so in the game associated to (Args, attacks) under
protocol PP as in the game associated to (Args, attacks∪defund) under protocol PU
(Fig. 2, (b)).

5 Discussion

The solution we have proposed here works well, in particular, for the simplest version
of DeLP [19] where the attack relation is defined only in terms of blocking and proper
defeaters. Given a de.l.p. P = (Π,Δ), 〈T, h〉 is a blocking defeater of 〈T ′, h′〉 iff there
exists some sub-argument 〈T ′′, h′′〉 of 〈T ′, h′〉 such that Π ∪ {h, h′′} # ⊥, and 〈T, h〉
and 〈T ′′, h′′〉 are not related by specificity. Define defblock =df {(A,B) : A is a block-
ing defeater of B}. Then defblock is clearly symmetric. Let us now analyze Example 7
in terms of this system. As the attack from C to D is not a case of proper defeater, it
must be a case of blocking defeater. Then, by the symmetry of defblock, D also attacks
C. But note that this does not change the resulting warrant of A and D under protocol
PP . On the other hand, some dubious cases that can arise under other specifications
of the attack relation are avoided in this system. For example, assume that A is a (non-
proper) defeater of B and B is a proper defeater of C. Then it could seem reasonable
the reinstatement of C by A, even when C is not maximally specific. Nevertheless, that
could not happen in DeLP because the assumption that A is a non-proper defeater of
B implies that A and B are blocking defeaters one of each other. Hence, it is easy to
see that the reinstatement of C by A is impossible under protocol PP as P lacks of a
winning strategy for A (O can repeat B to refute A, leaving P out of moves).

Similar examples would suggest that non-maximally specific arguments should be
reinstated anyway. For instance, consider again Example 2 but where argument C is
now: “It cannot be concluded that Tweety is a penguin since it was observed under
deficient sight conditions during a blizzard”. Now C could be seen as an undercutting
defeater of B and B as a proper defeater of A, what would lead to the reinstatement of
the non-maximally specific argument A. But note that the acceptance of C implies the
treatment of ‘Tweety is a penguin’ not as evidence but as a questionable presumption,
hence B should not be treated as a proper defeater of A strictly. Therefore, A is still a
maximally specific argument and its reinstatement seems right.

For other cases where C is a (unidirectional, non-proper) defeater of B and B is a
proper defeater of A, it is not clear whether A should be reinstated or not. Indeed, it is
difficult for us to conceive such an example.

The last example was introduced by Prakken ([17]) to show that, unlike direct rein-
statement, indirect reinstatement is valid. Direct reinstatement is when all three argu-
ments are in conflict on their final conclusions (e.g. Example 2). Indirect reinstatement,
on the other hand, is when the reinstating argument C defeats the ‘middle’ argument
B on one of its intermediary conclusions (e.g. Example 3). But this distinction is not
related to our solution as it does not focus on the kind of defeaters which are involved
and the role of undermining evidence on them, which is the key in the MS property.
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The following example was also introduced by Prakken to argue that reinstatement
depends “on the nature of the domain, the kind of knowledge involved and the context
in which this knowledge is used” ([17]: 93):

Example 8.
A: John will be imprisoned up to 6 years because for theft imprisonment up to 6 years
is acceptable, and John has been found guilty of theft.
B: John will be imprisoned for no more than 3 years because for theft out of poverty
imprisonment of more than 3 years is not acceptable, and evidence shows that John
stole motivated by poverty.
C: John will be imprisoned for more than 4 years because he stole during riots, and for
theft during riots, even when poverty is proved, only imprisonment of more than 4 years
is acceptable.

Prakken argues that the reinstatement of A by C is valid here and leads to accept an
imprisonment between 4 and 6 years. We disagree at this point since anyway, in our
opinion, C is a proper defeater of B and B is a proper defeater of A, hence C is an un-
dermining defeater of A. The total evidence considered in C about a more serious crime
than theft out of poverty leads to put a minimum of 4 years of imprisonment, leaving
the upper limit not established. Indeed, we can imagine even more serious crimes (e.g.
murder) which occurrence together with theft would rise the top above 6 years. Hence
we think that C is the only warranted argument and A should not be reinstated.

Nevertheless, there are still open problems to deal with. Our notion of undermining
defeat is not completely characterized as it lies on a concept of undermining evidence
for which we state sufficient but not necessary conditions. While having a proper de-
feater is a clear sign of an argument’s undermining evidence, in other cases the total ev-
idence should prevent some conclusion without sanctioning the contrary. Horty ([12])
analyses the following example. Assume that a population of ruffed finches, a kind of
birds, is distributed among a couple of islands. Their nests are mostly but not entirely
confined to Green Island, but there is a particular subspecies known as least ruffed
finches whose nests are distributed almost evenly between Green Island and Sand Is-
land. Now, consider a particular individual, Frank, who happens to be a least ruffed
finch. What should we conclude about the location of Frank’s nest? Though this situa-
tion cannot be represented in DeLP because disjunctions cannot occur in the head of a
rule, we can adjust the information to the formalism by considering that Green Island
and Sand Island conform a group of islands, call it ‘Two Islands’, so we can get the
following representation:

Example 9. LetP = (Π,Δ) be a de.l.p. representing the knowledge that all least ruffed
finches are ruffed finches, ruffed finches tend to nest on Green Island, least ruffed
finches tend to nest on Two Islands, nesting on Green Island implies nesting in Two
Islands, and Frank is a least ruffed finch:

Π = { ruffed_finch(x)← least_ruffed_finch(x),
nests_on_TwoIslands(x)← nests_on_GreenIsland(x),
least_ruffed_finch(frank) }
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Δ = { nests_on_GreenIsland(x)−−<ruffed_finch(x),
nests_on_TwoIslands(x) −−< least_ruffed_finch(x) }

Then we have, among others, the argument structures:
A = 〈{nests_on_GreenIsland(frank)−−<ruffed_finch(frank)},

nests_on_GreenIsland(frank)〉
B = 〈{nests_on_TwoIslands(frank) −−<least_ruffed_finch(frank)},

nests_on_TwoIslands(frank)〉

Though B is more specific than A it is not a proper defeater, hence the conclusion
that Frank nests on Green Island is obtained. The formalisms incurs in the fallacy of
exclusion, since the information that Frank is a least ruffed finch is obviated, treating
Frank just as a ruffed finch. To solve the problem, Horty proposes to add a (meta-
level) default expressing that cases of least ruffed finches exclude the application of the
default that connects ruffed finches with nesting on Green Island (a kind of undercutting
defeater). But this solution requires more representation, while we are inclined to less
representation dependence. In our opinion, this must be solved by defining a new kind
of undermining defeater which makes appropriate use of the total evidence, so that
argument B (or the evidence on which B is built) undercuts, in some specified way,
argument A.

More in the line of Horty’s solution, the work by Modgil on hierarchical argumen-
tation ([14]) offers another interesting turn to the problem of reinstatement introducing
arguments for (meta-level) preference criteria. The model develops a form of meta-ar-
gumentation where, for example, if A attacks B is established on basis of a preference
criterion P1, and B attacks A is established on basis of a preference criterion P2, an
argument C supporting the preference of P1 over P2 poses an attack on B attacks A,
A resulting reinstated. Note that, under this view, C is not attacking B but the attack of
B over A. The example of Tweety observed during a blizzard can be interpreted in this
terms assuming that the preference criterion is based on an ordering > on the evidence,
such that bird(tweety) > penguin(tweety). Then, while B is a proper defeater of A,
C expresses a preference of A over B based on >, so that C defends A. Examples
like Example 9, on the other hand, cannot be solved unless, again, a special kind of
undercutting defeater is defined.

This gives rise to the question of what kind of defeaters are undermining defeaters.
We have argued that they qualify as undercutting defeaters. As undermining defeaters
are based on a total-evidence requirement they can be considered a kind of –in Pollock’s
terms– subproperty defeaters, just the same as specificity (i.e. proper) defeaters. And
subproperty defeaters are all undercutting defeaters. Pollock’s words seem to confirm
our opinion:

To the best of my knowledge, there has never been an intuitive example of
specificity defeat presented anywhere in the literature that is not an example of
the operation of the total-evidence requirement in one of these special varieties
of defeasible inference [statistical syllogism, direct inference, various kinds of
legal and deontic reasoning], and the latter are all instances of undercutting
defeat. Accordingly, I will assume that undercutting defeaters and rebutting
defeaters are the only possible kinds of defeaters. ([15]: 236)
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Finally, several principles have been introduced in order to validate the argumen-
tation inference of rule-based argumentation systems, mainly consistency and closure
([3], [5]). A formal analysis of the relationship between maximal specificity and these
principles is planned as future work.

6 Conclusion

The issue of reinstatement as a principle for argument systems was the subject of a
serious criticism ([11]) while its defense (mainly that of [17]) has not been entirely
satisfactory in our opinion. The criticism focuses only cases in which specificity is
the comparison criterion among arguments. We argued here that the problem is that
specificity based argument systems do not incorporate a precise way of defeating all
non-maximally specific arguments. We proposed a formal criterion of maximal speci-
ficity which, in accordance with early researches about inductive explanations ([9]), is
based on the total evidence represented in the knowledge base. Moreover, we intro-
duced undermining defeaters and showed how they enable the warrant of only max-
imally specific arguments in the context of the DeLP system ([8]) defining particular
argumentation game protocols.

Acknowledgements. We thank three anonymous referees who made helpful criticisms
that improved this work.
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Abstract. Since proof-nets for MLL− were introduced by Girard (1987),
several studies have been made on its soundness proof. Bellin & Van de
Wiele (1995) produced an elegant proof based on properties of subnets
(empires and kingdoms) and Robinson (2003) proposed a straightfor-
ward generalization of this presentation for proof-nets from sequent cal-
culus for classical logic. This paper extends these studies to obtain a
proof of sequentialization theorem for N-Graphs, which is a symmetric
natural deduction calculus for classical propositional logic that adopts
Danos–Regnier’s criteria and has defocussing switchable links, via sub-
N-Graphs.

Keywords: N-Graphs, natural deduction, sequent calculus, MLL−,
subnets.

1 Preface

Since proof-nets for MLL− were introduced by Girard [11], several studies have
been made on its soundness proof. The first correctness criterion defined for
proof-nets was given with the definition of the no shorttrip condition: Girard
used trips to define empires and proved that if all terminal formulas in a proof-
net R are conclusions of times links, then there is at least one terminal which
splits R. After Danos–Regnier’s work [9] it has become possible to define em-
pires using their newly defined DR graphs and, with this new notion of empires,
Girard proved sequentialization for proof-nets with quantifiers [12]. Another im-
portant advance was achieved by the introduction of a new type of subnets,
namely kingdoms. Once the notion of kingdoms was introduced, Bellin & Van
de Wiele produced an elegant proof of the sequentialization theorem using simple
properties of subnets [5].

A straightforward generalization of this proofwas obtained byRobinson [19]. He
pointed out that Danos–Regnier’s technique relies only on the format of the rules
and does not depend on the logic involved. So he devised a proof system based on
the classical sequent calculus and applied the characterization of subnets and the
proof of sequentialization for MLL− to his proof-nets for classical logic. His proof
followed the model defined by Bellin & Van de Wiele [5].

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 94–108, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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However, this generalization does not cover the existence of so called switch-
able links with one premise and more than one conclusion, and also the absence
of axiom links. In such systems subnets are not necessarily closed under heredi-
tary premises. So, if a subnet contains a formula occurrence A and B is above1

A in the proof-net, then B may not be in this subnet. Other works in linear logic
related to these issues are Lafont’s interaction nets (which do not have axiom
links) [15] and the system of Blute et al, which contains such switchable links
[6] and inspired the proof-nets for classical logic proposed by Führman & Pym
[10]. Hughes also proposed a graphical proof system for classical logic where
proofs are combinatorial rather than syntactic: a proof of A is a homomorphism
between a coloured graph and a graph associated with A [13]. McKinley, on
the other hand, proposed the expansion nets, a system that focus on canonical
representation of cut-free proofs [16].

Here we present a new approach to perform the sequentialization for N-
Graphs, a multiple conclusion calculi inspired by the proof-nets for the propo-
sitional classical logic developed by de Oliveira [17,18], but with a switchable
defocussing link and without axiom links. One of the main results of this paper,
besides giving a new soundness proof for N-Graphs, is the definition of a gene-
ralized method to make surgical cuts in proofs for classical logic. This comes
with the fact that the presence of the split node in an N-Graph can occur essen-
tially anywhere in the proof, unlike proof-nets where the split node is always a
terminal formula.

The need to identify the split node is at the heart of our proof of the sequen-
tialization. In order to achive that we define the north, the south and the whole
empires of a formula occurrence A. The first one corresponds to the empires
notion of Girard’s and Robinson’s proof-nets. The second one is the largest sub-
N-Graph which has A as a premise (defined due to the presence of elimination
rules in N-Graphs). The last one is the union of the previously defined and it
induces a strict ordering over the graph nodes, which will be fundamental to find
the split node.

2 N-Graphs

Proposed by de Oliveira [17,18], N-Graphs is a symmetric natural deduction
(ND) calculus with the presence of structural rules, similar to the sequent cal-
culus. It is a multiple conclusion proof system for classical logic where proofs
are built in the form of directed graphs (“digraphs”). Several studies have been
developed on N-Graphs since its first publication in 2001 [17], like Alves’ de-
velopment on the geometric perspective and cycle treatment towards the nor-
malization of the system [3] and Cruz’s definition of intuitionistic N-Graphs [8].
A normalization algorithm was presented for classical N-Graphs [1], along with
the subformula and separation properties [2]. More recently a linear time proof
checking algorithm was proposed [4].

1 We say that B is above A when B is a hereditary premise of A.
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The system is defined somewhat like the proof-nets. There is the concept of
proof-graphs, which are all graphs constructed with the valid links where each
node is the premise and conclusion of at most one link, and the concept of
N-Graphs, which are the correct proof-graphs, i.e. the proof-graphs that repre-
sent valid proofs. These constructions are analogous to the definition of proof-
structure and proof-net, respectively.

The links represent atomic steps in a derivation. Focussing links are the
ones with two premises and one conclusion, as illustrated by Fig. 1(∧ − I,
⊥ − link, � − focussing weak and contraction). The defocussing links are the
ones with one premise and two conclusions, as shown in Fig. 1 (∨−E, �− link,
⊥− defocussing weak and expansion). All other links are called simple links and
have only one premise and one conclusion (Fig. 2). The indegree (outdegree) of a
vertex v is the number of edges oriented towards (away from) it. The set of ver-
tices with indegree (outdegree) equal to zero is the set of premises (conclusions)
of the proof-graph G, and is represented by PREMIS(G) (CONC(G)).

Fig. 1. Focussing and defocussing links

A logical link represents a derivation in ND (� − link acts as the law of the
excluded middle). A structural link expresses the application of a structural rule
as it is done in sequent calculus: it enables weakening a proof (�−focussing weak,
⊥−defocussing weak, �−simple weak and ⊥−simple weak), duplicating premises
(expansion link) and grouping conclusions in equivalence classes (contraction
link). There is no link to emulate the interchange rule because in a proof-graph
the order of the premises is not important for the application of derivation rules.

The axioms are represented by proof-graphs with one vertex and no edges.
Then, a single node labeled by A is already a valid derivation: it represents an
axiom in sequent calculus (A � A). So here it makes no sense to talk about the
smallest subgraph having A as a conclusion: it would be trivially the vertex v
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Fig. 2. Simple links

labeled by A. Therefore the notion of kingdoms, as defined and used by Bellin
& Van de Wiele [5] for their sequentialization, is useless for N-Graphs.

Similar to Danos-Regnier criterion [9], we define the following subgraphs as-
sociated to a proof-graph.

Definition 1 (Switching). Given a proof-graph G, a switching graph S(G)
associated with G is a spanning subgraph2 of G in which the following edges are
removed: one of the two edges of every expansion link and one of the two edges
of every contraction link.

Definition 2 (N-Graph derivation). A proof-graph G is a N-Graph deriva-
tion (or N-Graph for short) iff every switching graph associated with G is acyclic
and connected.

The focussing and defocussing links may also be classified according to their
semantics. The links ∧− I, ⊥− link, �−focussing weak and expansion are called
conjunctive. The disjunctive links are: ∨ − E, � − link, ⊥ − defocussing weak

and contraction. Here the switchable links (the ones that have one of its edge
removed in every switching) draws attention. The links where its geometry con-
tradicts their semantic are switchable. Although focussing, the contraction has a
disjunctive semantic; and the expansion is a conjunctive link, even though defo-
cussing. This means the formula occurences this links connect in a proof-graph
must be already connected some other way in order to the proof to be sound.

Soundness and completeness of the system were proved through a mapping
between N-Graphs and LK (sequent calculus for classical logic) [17,18] and in
Section 6 we give a new proof of sequentialization.

3 Sub-N-Graphs

Definition 3 (sub-N-Graph). We say that H is a subproof-graph of a proof-
graph G if H is a subgraph of G and H is a proof-graph. If a vertex v labeled by a
formula occurrence A is such that v ∈ PREMIS(H) (v ∈ CONC(H)), then A is
an upper ( lower) door of H. If H is also a N-Graph, then it is a sub-N-Graph.

Let N1 and N2 be sub-N-Graphs of a N-Graph N .

2 A spanning subgraph is a subgraph G1 of G containing all the vertices of G.
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Lemma 1 (Union [5]). N1 ∪N2 is a N-Graph iff N1 ∩N2 �= ∅.

Proof. Once N is a N-Graph, their switches do not have cycles, and so any
subgraph of N may not have a cyclic switch. Then we must prove only the
connectedness of all switches S associated with N1 ∪ N2. If N1 ∩ N2 = ∅, then
any switching associated with N1 ∪ N2 is not connected. Now let A ∈ N1, B ∈
N2, C ∈ N1 ∩ N2 and S(Ni) be the restriction of S(N1 ∪ N2) to S(Ni). Since N1

is a N-Graph, there is a path between A and C in S(N1). For the same reason,
there is a path between B and C in S(N2). Thus there is a path between A and
B in S(N1 ∩N2) once C ∈ N1 ∩N2. ��

Lemma 2 (Intersection [5]). If N1 ∩N2 �= ∅, then N1 ∩N2 is a N-Graph.

Proof. As in the previous lemma, it is sufficient to prove the connectivity of
N1 ∩ N2. Since N1 ∩ N2 �= ∅, let A ∈ N1 ∩ N2. If A is the only vertex present in
N1 ∩N2, then it is connected and so is a N-Graph (axiom). Otherwise, let B be
any other vertex in N1 ∩N2, S be a switching of N1 ∩N2 and Si be an extension
of S for Ni. Once N1 and N2 are sub-N-Graphs, there are a path π1 between
A and B in S(N1) and a path π2 in S(N2). If π1 �= π2, then S12 = S1 ∪ S2 is a
switching for N1 ∪N2 and S12(N1 ∪N2) has a cycle. So π1 = π2 and A and B are
connected. ��

Definition 4 (North, south and whole empires). Let A be a formula oc-
currence in a N-Graph N . The north ( south) empire of A, represented by eA∧

(eA∨) is the largest sub-N-Graph of N having A as a lower (upper) door. The
whole empire of A (wA) is the union of eA∧ and eA∨.

If we prove that eA∧ and eA∨ exist, then it is immediate the existence of wA

by lemma 1. In the following section we give two equivalent constructions of
empires and prove some properties.

4 North and South Empires

4.1 Constructions and Existence

Definition 5 (S∧(N,A) and S∨(N,A)). Let A be a formula occurrence in a N-
Graph N and S an associated switch of N . If A is a premise of a link with a
conclusion A′ and the edge (A,A′) belongs to S(N), then remove this edge and
S∧(N,A) is the component that contains A and S∧(N,A) is the other one (if A

is premise of a disjunctive defocussing link, then S∧(N,A) has two components).
If A is not premise of any link in S(N), then S∧(N,A) is S(N) (S∧(N,A) is
empty). S∨(N,A) is defined analogously: if A is a conclusion of a link with a
premise A′′ and the edge (A′′, A) belongs to S(N), then remove it and S∨(N,A)

is the component which has A and S∨(N,A) is the other one (if A is conclusion
of a conjunctive focussing link, then S∨(N,A) has two components). If A is not
conclusion of any link in S(N), then S∨(N,A) is equal to S(N) (S∨(N,A) is
empty).
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Definition 6 (Principal switching [11,12]). Let A be a formula occurrence.
We say that a switching S∧

p (Sp
∨) is principal for eA∧ (eA∨) when it chooses the

edges satisfying the following restrictions:

1.
Ap1 Ap2

Ac
is a contraction link and a premise Api is the formula occurrence A

( Ap

Ac1 Ac2
is an expansion link and a conclusion Aci is the formula occurrence

A): the switching chooses the edge with A.

2.
Xp1 Xp2

Xc
is a contraction link and only one premise Xpi belongs to eA∧ (eA∨):

the switching links the conclusion with the premise which is not in eA∧ (eA∨).
3. Xp

Xc1 Xc2
is an expansion link and only one conclusion Xci belongs to eA∧

(eA∨): S∧
p (Sp

∨) selects the edge which has the conclusion that is not in eA∧

(eA∨).

Lemma 3. The north (south) empire of A exists and is given by the two follow-
ing equivalent conditions:

1.
⋂

S S∧(N,A) (
⋂

S S∨(N,A)), where S ranges over all switches of N ;
2. the smallest set of formula occurrences of N closed under the following con-

ditions:
(a) A ∈ eA∧ (A ∈ eA∨);
(b) if X

Y
is a simple link and Y ∈ eA∧, then X ∈ eA∧ (if Y �= A and Y ∈ eA∨,

then X ∈ eA∨);
(c) if X Y

Z
is a conjunctive focussing link and Z ∈ eA∧, then X,Y ∈ eA∧ (if

Z �= A and Z ∈ eA∨, then X,Y ∈ eA∨);
(d) if X

Y Z
is a disjunctive defocussing link and Y ∈ eA∧ or Z ∈ eA∧, then

X ∈ eA∧ (if Y �= A �= Z and Y ∈ eA∨ or Z ∈ eA∨, then X ∈ eA∨);
(e) if Xp

Xc1 Xc2
is an expansion link and Xc1 , Xc2 ∈ eA∧, then Xp ∈ eA∧ (if

Xc1 �= A �= Xc2 and Xc1 , Xc2 ∈ eA∨, then Xp ∈ eA∨);

(f) if
Xp1 Xp2

Xc
is a contraction link and Xc ∈ eA∧, then Xp1 , Xp2 ∈ eA∧ (if

Xc �= A and Xc ∈ eA∨, then Xp1 , Xp2 ∈ eA∨);
(g) if X

Y
is a simple link, X �= A and X ∈ eA∧, then Y ∈ eA∧ (if X ∈ eA∨,

then Y ∈ eA∨);
(h) if X Y

Z
is a conjunctive focussing link, X �= A �= Y and X ∈ eA∧ or

Y ∈ eA∧, then Z ∈ eA∧ (if X ∈ eA∨ or Y ∈ eA∨, then Z ∈ eA∨);
(i) if X

Y Z
is a disjunctive defocussing link, X �= A and X ∈ eA∧, then Y,Z ∈

eA∧ (if X ∈ eA∨, then Y,Z ∈ eA∨);
(j) if Xp

Xc1 Xc2
is an expansion link, Xp �= A and Xp ∈ eA∧, then Xc1 , Xc2 ∈

eA∧ (if Xp ∈ eA∨, then Xc1 , Xc2 ∈ eA∨);

(k) if
Xp1 Xp2

Xc
is a contraction link, Xp1 �= A �= Xp2 and Xp1 , Xp2 ∈ eA∧, then

Xc ∈ eA∧ (if Xp1 , Xp2 ∈ eA∨, then Xc ∈ eA∨).

Proof. We will prove the case for eA∧ according to [5] (the case for eA∨ is similar)

I 2 ⊆ 1: we show that 1 is closed under conditions defining 2. Its imme-
diate A ∈

⋂
S S∧(N,A) (S∧(N,A) contains A for every switching S). If

B1 ∈
⋂

S S∧(N,A) and in all switches there is an edge (B1, B2), then we
conclude B2 ∈

⋂
S S∧(N,A) (imperialistic lemma [12]). So the construction
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is also closed under conditions 2b, 2c, 2d, 2g, 2h and 2i. Conditions 2e and 2k
are also simple. Now suppose that 1 does not respect 2f. Then there is a con-
traction link

Xp1 Xp2
Xc

such that Xc ∈
⋂

S S∧(N,A), but Xpi �∈
⋂

S S∧(N,A),
for i = 1 or i = 2. Consider the first one: Xp1 �∈ S∧(N,A) for some S.
Since Xc ∈ S∧(N,A), then (Xp2 , Xp) ∈ S(N,A) and so Xp2 ∈ S∧(N,A). Once
S∧(N,A) is not empty, A must be premise of a link whose one conclusion is
A′ and A′ ∈ S∧(N,A). Let π be the path between Xp1 and A′ in S∧(N,A).
Since (Xp1 , Xc) �∈ S(N), this edge does not belong to π. Consider now a
switch S′ like S, except that (Xp1 , Xc) ∈ S′(N). Note that π is in S′(N) too
and Xc ∈ S′∧(N,A) (because Xc ∈

⋂
S S∧(N,A)). Then we may extend π and

get a path between A′ and A without the edge (A,A′) in S′(N): we obtain a
cycle in S′(N), which is a contradiction. Therefore 1 is closed under 2f. For
similar reason, we conclude that 1 is closed under 2j too.

II 1 ⊆ 2: let S∧
p a principal switching for eA∧. We will prove S∧

p (N,A) ⊆ 2.
S∧
p (N,A)∩ 2 �= ∅, because both contain A. But definition 6 ensures that it

is impossible to leave eA∧ once we are in S∧
p (N,A). Since

⋂
S S∧(N,A) ⊆

S∧
p (N,A), we conclude that

⋂
S S∧(N,A) ⊆ eA∧.

��

Corollary 1. S∧
p = eA∧ and Sp

∨ = eA∨.

Corollary 2. Let A be a premise and B a conclusion. Then eA∨ = eB∧ = N .

Lemma 4. eA∧ and eA∨ are the largest sub-N-Graphs which contains A as a
lower and upper door, respectively.

Proof. The proof uses the same argument presented in [5] (see Proposition 2).
��

Fig. 3 illustrates some concepts about empires. For example, in the N-Graph
on left, we have eA∧ = {A, A∨C, C, C ∧Z, Z, ¬A∧Z} (formulas in green), and
eA∨ = {A, ⊥, ¬A, ¬A ∧ Z} (formulas in yellow). The formula occurrence in red
belongs to both empires. We can see that there is no sub-N-Graph which contains
A as conclusion (premise) and is larger than eA∧ (eA∨), as both conclusions of
a expansion link are needed to add its premise (condition 2e). For the second
N-Graph we have the same color scheme for A, and here we can not have the
conclusion of the contraction link because we need both premises (condition 2k).

4.2 Nesting Lemmas

Lemma 5 (Nesting of empires I [12]). Let A and B be distinct formula
occurrences in a N-Graph. If A ∈ eB∧ and B �∈ eA∧, then eA∧ � eB∧.

Lemma 6 (Nesting of empires II [12]). Let A and B be distinct formula
occurrences in a N-Graph. If A �∈ eB∧ and B �∈ eA∧, then eA∧ ∩ eB∧ = ∅.

Proof (I and II). Construct a principal switching S∧
p for eB∧ with some addi-

tional details:
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Fig. 3. N-Graphs for (¬A∧Z)∨B, A∨C � B, C∧Z and � A∧B, (¬A∨¬B)∧D, ¬D.

I contraction link whose conclusion belongs to eB∧: if the conclusion is not in
eA∧, then we proceed as we do for a principal switching for eA∧ (if only one
premise is in eA∧, choose the other premise);

II expansion link whose premise belongs to eB∧: if the premise is not in eA∧,
then we proceed as we do for a principal switching for eA∧ (if only one
conclusion is in eA∧, choose the other conclusion);

III if A is a premise of a link whose conclusion A′ is in eB∧: then we choose
the edge (A,A′).

First suppose A ∈ eB∧. We try to go from A to B without passing through
(A,A′). Since S∧

p is principal for eB∧ and A ∈ eB∧, all formulas in the path from
A to B belong to eB∧. But B �∈ eA∧ and sometime we leave eA∧. By construction
2 of lemma 3, there are only two ways of leaving eA∧ without passing through
(A,A′): passing through a contraction link whose only one premise belongs to
eA∧, or passing through an expansion link whose only one conclusion belongs to
eA∧; but, steps I and II avoid this cases, respectively.

Therefore it is impossible to leave eA∧ in S∧
p (N,B), unless (A,A′) ∈ S∧

p (N,B).
This implies S∧

p (N,A) � S∧
p (N,B). Since eA∧ ⊂ S∧

p (N,A) and eB∧ = S∧
p (N,B),

we conclude eA∧ � eB∧.
Now suppose A �∈ eB∧. I and II ensure we do not have any edges between eA∧

and eA∧3 in eB∧, except perhaps for (A,A′). But now A �∈ eB∧ and therefore
A �∈ S∧

p (N,B). So (A,A′) �∈ S∧
p (N,B). Since eB∧ = S∧

p and B �∈ eA∧, no formula
of eA∧ belongs to eB∧ and thus eA∧ ∩ eB∧ = ∅. ��

From these two previous lemmas we have nesting lemmas 7 and 8 for south
empires too (the proofs are similar to the previous ones) and from these four
nesting lemmas, it is possible to proof nesting lemmas between north and south
(9, 10 and 11).

3 eA∧ represents the set of all formula occurrenes which are not in eA∧.
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Lemma 7 (Nesting of empires III [12]). Let A and B be distinct formula
occurrences in a N-Graph. If A ∈ eB∨ and B �∈ eA∨, then eA∨ � eB∨.

Lemma 8 (Nesting of empires IV [12]). Let A and B be distinct formula
occurrences in a N-Graph. If A �∈ eB∨ and B �∈ eA∨, then eA∨ ∩ eB∨ = ∅.

Lemma 9 (Nesting of empires V). Let A and B be distinct formula occur-
rences in a N-Graph. If A ∈ eB∧ and B �∈ eA∨, then eA∨ � eB∧.

Lemma 10 (Nesting of empires VI). Let A and B be distinct formula oc-
currences in a N-Graph. If A ∈ eB∨ and B �∈ eA∧, then eA∧ � eB∨.

Lemma 11 (Nesting of empires VII). Let A and B be distinct formula oc-
currences in a N-Graph. If A �∈ eB∧ and B �∈ eA∨, then eA∨ ∩ eB∧ = ∅.

5 Whole Empires

We defined the whole empire of A as the union of the north and the south empires
of A. Now we use the north and south empires properties to find new ones about
whole empires.

Lemma 12. wA is a sub-N-graph.

Proof. Once we proved that eA∧ and eA∨ are N-graphs (lemma 4) and eA∧ ∩
eA∨ = {A}, we get wA = eA∧ ∪ eA∨ is a sub-N-graph by lemma 1. ��

Corollary 3. Let A be a premise and B a conclusion. Then wA = wB = N (by
corollary 2).

Lemma 13 (Nesting of whole empires I). Let A and B be distinct occur-
rences. If A �∈ wB and B �∈ wA, then wA ∩ wB = ∅.

Proof. Since A �∈ wB and B �∈ wA, we get: A �∈ eB∧, A �∈ eB∨, B �∈ eA∧ and
B �∈ eA∨. We apply nesting of empires lemmas:

1. if B �∈ eA∧ and A �∈ eB∧, then eA∧ ∩ eB∧ = ∅ (by lemma 6);
2. if B �∈ eA∨ and A �∈ eB∧, then eA∨ ∩ eB∧ = ∅ (by lemma 11);
3. uniting 1 and 2 and applying the distributive law: eB∧ ∩ (eA∧ ∪ eA∨) = ∅;
4. if B �∈ eA∧ and A �∈ eB∨, then eA∧ ∩ eB∨ = ∅ (by lemma 11);
5. if B �∈ eA∨ and A �∈ eB∨, then eA∨ ∩ eB∨ = ∅ (by lemma 8);
6. uniting 4 and 5 and applying the distributive law: eB∨ ∩ (eA∧ ∪ eA∨) = ∅;
7. uniting 3 and 6, the distributive law: (eA∧ ∪ eA∨) ∩ (eB∧ ∪ eB∨) = ∅.

��

Lemma 14 (Nesting of whole empires II). Let A and B be distinct occur-
rences. If A ∈ wB and B �∈ wA, then wA � wB.

Proof. Once B �∈ wA, we have B �∈ eA∧ and B �∈ eA∨. For A ∈ wB we get
A ∈ eB∧ or A ∈ eB∨. We will prove the lemma for A ∈ eB∧ (the case for south is
analogous):
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1. if A ∈ eB∧ and B �∈ eA∧, then eA∧ � eB∧ (by lemma 5);
2. if A ∈ eB∧ and B �∈ eA∨, then eA∨ � eB∧ (by lemma 9);
3. if eA∧ � eB∧ and eA∨ � eB∧ , then eA∧ ∪ eA∨ � eB∧;
4. if eA∧ ∪ eA∨ � eB∧, then eA∧ ∪ eA∨ � eB∧ ∪ eB∨.

��

Definition 7 (�). Let A and B be formula occurrences of N . We say A � B

iff wA � wB.

It is immediate that � is a strict ordering of formula occurrences of N which
are not premises neither conclusions, since we have for any domain set X and
any subset Q of P (X)4, (⊆, Q) is a poset. Maximal formulas with regard to � will
split N . Given that the whole empires of premises and conclusions are always
equal to N by corollary 3, we are not interested in these formulas. So they are
not in the domain of �. One may easily verify that if there are no contraction
and extension links, for all formula A of N , wA = N and so any formula would
be maximal. The next two following lemmas show how these links act on �.

Lemma 15. Let l = ...X...
...Y ...

be a link such that there is a formula-occurrence A

which X ∈ wA and Y �∈ wA. Then A � Y .

Proof. Once X ∈ eA∧ ∪ eA∨, we have two cases. If X ∈ eA∧, then since Y �∈
eA∧, l must be a contraction link and its other premise does not belong to eA∧

(contruction 2 in lemma 3). Therefore Y is a conclusion of a contraction link and
this implies X ∈ eY ∧ (by 2f in lemma 3). So eA∧ ∩ eY ∧ �= ∅. If A �∈ eY ∧, then we
will have eA∧ ∩ eY ∧ = ∅ (by lemma 6): a contradiction. Thus A ∈ eY ∧ and, by
lemma 14, we conclude wA � wY . The case for X ∈ eA∨ is analogous.

��

Next lemma is similar, but for expansion link:

Lemma 16. Let l = ...X...
...Y ...

be a link such that there is a formula-occurrence A

which X �∈ wA and Y ∈ wA. Then A � X.

6 Sequentialization

We saw in Sections 4 and 5 how to define empires for proof graphs with switchable
defocussing links (expansion) and proved some properties. Now we will show a
new proof of sequentialization for this proof-graphs (N-Graphs without “→”
connective). Without loss of generality, we assume � as A∨¬A and ⊥ as A∧¬A,
where the formula A belongs to the premise or conclusion of the link.

Theorem 1 (Sequentialization for fragment without “→” connective).
Given a N-Graph derivation N without “→” connective, there is a sequent calcu-
lus derivation SC(N) of A1, . . . , An � B1, . . . , Bm in the classical sequent calculus
whose occurrences of formulas A1, . . . , An and B1, . . . , Bm are in one-to-one cor-
respondence with the elements of PREMIS(N) and CONC(N), respectively.

4 P (X) is the power set of X.
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Proof. We proceed by induction on the number of links of N .

1. N does not have any link (it has only one vertex v labelled with A): this case
is immediate. SC(N) is A � A.

2. N has only one link : since N is a N-Graph, then this link is not a contraction
neither an expansion. This case is simple, once there is a simple mapping
between links and sequent calculus rules, which makes the construction of
SC(N) immediate (completeness proof [17,18]). For example, in case ∧ − I:

A # A B # B

A,B # A ∧B
∧ −R

3. N has an initial expansion link : the induction hypothesis has built a deriva-
tion Π ending with A,A, . . . , An � B1, . . . , Bm. Then SC(N) is achieved by
left contraction:

Π
A,A, . . . , An # B1, . . . , Bm

A, . . . , An # B1, . . . , Bm
LC

4. N has a final contraction link : here the induction hypothesis has built a
derivationΠ ending with A1, . . . , An � B,B, . . . , Bm. Hence SC(N) is obtained
by right contraction:

Π
A1, . . . , An # B,B, . . . , Bm

A1, . . . , An # B, . . . , Bm
RC

5. N has more than one link, but does not have initial expansion link neither a
final contraction link : this case is more complicated and is similar to that one
in MLL− in which all terminal links are ⊗. Yet here we have an additional
challenge: the split node is in the middle of the proof. Choose a formula
occurrence A which is maximal with respect to �. We claim that wA =

eA∧ ∪ eA∨ = N . That is, A labels the split node.
Suppose not. Then let Z be a formula occurrence such that Z ∈ N − (eA∧ ∪
eA∨) and S∧

p be a principal switching for eA∧. Given that Z �∈ eA∧, the path
ρ from A to Z in S∧

p (N) passes through a conclusion A′ of A. Let A∨ be the
last node which belongs to eA∨ in ρ and W the next one in ρ (i.e. W �∈ eA∨).
There are two cases for the edge incident to A∨ and W :

(a) (A∨,W ) belongs to a contraction link whose other premise is not in eA∨:
according to lemma 15 we have A � W , contradicting the maximality of
A in �.

(b) (W,A∨) belongs to an expansion link whose other conclusion is not in
eA∨: we apply lemma 16 and conclude A � W here too. We contradict
our choice again.

Thus wA = N . Let Γ1, Γ2, Δ1,Δ2 be sets of formula occurrences such that:
Γ1 ∪ Γ2 = {A1, . . . , An}, Δ1 ∪ Δ2 = {B1, . . . , Bm} and Γ1 ∩ Γ2 = Δ1 ∩ Δ2 = ∅.
Since eA∧ is a N-Graph and A is a lower door, the induction hypothesis built
SC(eA∧) ending with Γ1 � Δ1, A. Once eA∨ is a N-Graph and A is an upper
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door, the induction hypothesis made SC(eA∨) ending with A,Γ2 � Δ2. So
SC(N) is achieved by cut rule:

SC(eA∧)

Γ1 # Δ1, A

SC(eA∨)

A, Γ2 # Δ2

Γ1, Γ2 # Δ1, Δ2 ��

7 Conclusion

With N-Graphs, the structural links are based on the sequent calculus, but the
logical links emulate the rules of ND. Sequent calculus (classical and linear) have
only introduction rules. On the other hand, natural deduction and N-Graphs
present elimination rules, so we need to adapt the notion of empire from proof-
nets to account for multiple-conclusion ND. This was done with south empires.

Moving the definitions from sequent calculus to ND according to this way
we have been able to formulate a new and rather general method of performing
surgical cuts on proofs in multiple conclusion ND, producing subnets for classical
logic. In N-Graphs the split nodes, maximal with regards to the ordering induced
by the union of the empires, may be located anywhere in the proof, not only as
terminal node representing a conclusion.

We show an example in Fig. 3: every initial link is defocussing unswitchable
and every final link is focussing unswitchable in both N-Graphs. Their maximal
nodes are highlighted and they split the proofs into two also correct proofs. It
is illustrated in Fig. 4 for the N-Graph on the left (Fig. 3). The same procedure
could be applied to any of the two maximal nodes in the N-Graph on the right.

Fig. 4. Example of how to cut using the maximal node
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A N-Graphs Dealing with Cycles

In a multiple conclusion calculus we have rules with more than one conclusion
(∨− elimination) as well as rules with more than one premise (∧− introduction).
This allows the existence of cycles and makes soundness difficult to prove. In
order to deal with cycles, the proposed solution for N-Graphs [17,18] adopts
some ideas from Shoesmith & Smiley [20] and Ungar [22] for classical logic
and the simplicity of Danos & Regnier’s solution for MLL−. The main idea is to
distinguish a link that represents a logical operation from the one that represents
a structural operation. The second kind of links is represented by contraction
and expansion links. A proof may contain cycles5, which shall be controlled by
these two structural links.

An invalid cycle occurs when a conjunction is made on terms generated by
the same disjunction (Fig. 5). A valid cycle happens when a disjunction yields
to the same formula twice and they are contracted to a single occurrence. The
latter is similar to the ∨ − elimination rule in ND.

Fig. 5. Proof-graphs for A ∨A � A ∧A: a sound one is on the right

de Oliveira proposes grouping conclusions into equivalence classes using the
contraction link, and grouping assumptions similarly to single conclusion calculi
with the use of the expansion link. In the sequent calculus it is done by right and
left contractions, respectively. In Fig. 5, at the rightmost proof-graph, the cycle
involving A ∨ A is opened and closed only by disjunctive links, and therefore is

5 Sometimes we talk about “cycles” when in fact “semicycles” are meant (i.e. the
direction of edges is not relevant).
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valid. In the other hand, to allow the conjunction of a formula with itself (A∧A),
we need two instances of A, which may be joined by an expansion so we can
complete the proof of A ∨ A � A ∧ A. The cycle that includes A ∧ A in Fig. 5 is
also valid because it is opened and closed only by conjunctive links. Here the
importance of the switchable links is revealed, as we can see the necessity of such
structural links where the geometry and the semantic are contradictory in order
to create valid cycles in a proof.
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Abstract. This paper showshowdichotomous inquisitive semantics gives
rise to a general notion of entailment that unifies standard declarative
entailment with answerhood and interrogative dependency, the relation
holdingwhen an answer to a question determines an answer to another.We
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1 Introduction

Inquisitive semantics [9,1,14,4, a.o.] pursues a semantic framework that encom-
passes both information and issues, thus reflecting the primary function of lan-
guage as a tool for information exchange. The most standard logical incarnation
of the framework is basic inquisitive semantics, InqB [1,5], obtained associating
the connectives with the natural algebraic operations in the space of inquisitive
meanings [14]. Recently, a close relative of InqB has been investigated, the sys-
tem InqDπ of dichotomous inquisitive semantics [10,3], whose syntax enforces a
strict distinction of formulas into declaratives and interrogatives.

In the present paper, we take a closer look at the logic that arises from this
system. We point out that this logic subsumes standard declarative entailment,
answerhood, and interrogative dependencies as three particular cases of a unique,
cross-categorial entailment relation. We provide a new completeness proof, more
explicit and better suited to generalizations than the one given in [3]. On our way
to this proof, we establish a new result which brings out how inquisitive proofs
may be seen as encoding methods for computing interrogative dependencies.
Finally, we look at InqDπ from the perspective of dependence logic, pointing out
certain advantages of the inquisitive logical setup.
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2 Dichotomous Inquisitive Semantics

This section provides a minimal introduction to dichotomous inquisitive seman-
tics. For a comprehensive exposition and proofs, the reader is referred to [3].

Unlike basic inquisitive semantics InqB, which is based on a standard propo-
sitional language, dichotomous inquisitive semantics InqDπ enriches a proposi-
tional language, whose formulas are called declaratives, with a new syntactic
category of interrogative formulas. Given a set of atoms P , the set L! of declar-
atives and the set L? of interrogatives are defined recursively as follows:1

Definition 1 (Syntax).

1. for any p ∈ P, p ∈ L!

2. ⊥ ∈ L!

3. if α1, . . . , αn ∈ L!, then ?{α1, . . . , αn} ∈ L?

4. if ϕ, ψ ∈ L◦, then ϕ ∧ ψ ∈ L◦, where ◦ ∈ {!, ?}
5. if ϕ ∈ L! ∪ L? and ψ ∈ L◦, then ϕ→ ψ ∈ L◦, where ◦ ∈ {!, ?}

We will also make use of some abbreviations. We will write ¬ϕ for ϕ → ⊥
and ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ). Moreover, for α and β declaratives, we
will write α ∨ β for ¬(¬α ∧ ¬β) , and ?α for a polar interrogative ?{α,¬α}.

Throughout the paper, we let α, β, γ range over declaratives, μ, ν, λ over in-
terrogatives, and ϕ, ψ, χ over the whole language. Moreover, Γ ranges over sets
of declaratives, Λ over sets of interrogatives, and Φ over arbitrary sets.

The semantics is based on possible world models for propositional logic.2

Definition 2 (Models). A model for InqDπ is a pair M = 〈W , V 〉, where:

– W is a set whose elements we refer to as possible worlds;

– V : W → ℘(P) is a valuation map, yielding for each w ∈ W the set V (w)
of atoms true at w.

Usually, semantics is synonymous with truth-conditions. However, our language
now contains interrogatives as well. We do not lay out the meaning of an inter-
rogative by specifying what a state of affairs has to be like to make it true, but
rather by specifying what information is needed to resolve it. Thus, the natural
evaluation points for interrogatives are not possible worlds, but rather bodies of
information. These as referred to as information states and modeled formally by
identifying them with the set of worlds compatible with the information.

Definition 3 (Information states).
An information state in a model M is a set s ⊆ W of possible worlds.

1 Our language is richer than the one in [3], which does not allow interrogatives as an-
tecedents of an implication. This enrichment is essential: as we will see, interrogative
dependencies are expressed precisely by implications among two interrogatives.

2 In [3], a fixed model ω is assumed, consisting of all propositional valuations. Since
any possible world model is embeddable in ω, this difference is not an essential one.
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To retain uniform semantic notions, InqDπ lifts the interpretation of all sentences
in the language to the level of information states. The semantics is thus given
in the form of a relation of support between information states and formulas.
Intuitively, for a declarative being supported in a state s amounts to being
established in s, while for an interrogative it amounts to being resolved in s.

Definition 4 (Support). Let M be a model and s an information state in M .

1. M, s |= p ⇐⇒ p ∈ V (w) for all worlds w ∈ s

2. M, s |= ⊥ ⇐⇒ s = ∅
3. M, s |= ?{α1, . . . , αn} ⇐⇒ M, s |= α1 or . . . or M, s |= αn

4. M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ

5. M, s |= ϕ→ ψ ⇐⇒ for any t ⊆ s, if M, t |= ϕ then M, t |= ψ

A first, crucial feature of the semantics is that support is persistent.

Fact 1 (Persistence). If M, s |= ϕ and t ⊆ s, then M, t |= ϕ.

Second, although our semantics is defined in terms of support, we can recover
truth at worlds by defining it as support at the corresponding singleton state.

Definition 5 (Truth).
ϕ is true at a world w in M , notation M,w |= ϕ, in case M, {w} |= ϕ.

Computing the support clauses for singleton states, we find that the connectives
all get their standard truth-conditional clauses. Moreover, persistence implies
that a world makes a formula true iff it is contained in some supporting state.

Fact 2. M,w |= ϕ ⇐⇒ w ∈ s for some state s such that M, s |= ϕ.

In general, truth conditions do not determine support conditions. For instance,
the polar interrogatives ?p and ?q are both true everywhere, but clearly, in gen-
eral they have different support conditions. However, the semantics of declar-
atives is still completely determined by truth-conditions: for, a declarative is
supported in a state iff it is true at all the worlds in the state.

Fact 3. For any declarative α: M, s |= α ⇐⇒ (M,w |= α for all w ∈ s)

To any formula ϕ, we associate a set R(ϕ) of declaratives that we call the
resolutions of ϕ. This set is defined recursively as follows.

Definition 6 (Resolutions).

– R(p) = {p}
– R(⊥) = {⊥}
– R(?{α1, . . . , αn}) = {α1, . . . , αn}
– R(ϕ ∧ ψ) = {α ∧ β |α ∈ R(ϕ) and β ∈ R(ψ)}
– R(ϕ→ ψ) = {

∧
α∈R(ϕ) α→ f(α) | f : R(ϕ)→R(ψ)}
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It is easy to see that a declarative α has itself as unique resolution: R(α) = {α}.
As for an interrogative μ, we may think of its resolutions of as syntactically gen-
erated answers to it.3 Indeed, the next fact says that establishing some resolution
is a necessary and sufficient condition to resolve an interrogative.

Fact 4. For any M , s and ϕ, M, s |= ϕ ⇐⇒ M, s |= α for some α ∈ R(ϕ)

As a corollary, we get the following normal form result: every formula ϕ is equiv-
alent to a basic interrogative having the resolutions of ϕ as constituents.

Corollary 1 (Normal form). For any ϕ, ϕ ≡ ?R(ϕ).

In terms of resolutions we define the notion of presupposition of an interrogative.

Definition 7 (Presupposition of an interrogative).
The presupposition of an interrogative μ is the declarative πμ =

∨
R(μ).

Since the interrogative operator has the same truth conditions as a disjunction, it
follows from Corollary 1 that μ and πμ have the same truth conditions. Inciden-
tally, this tells us how truth should be read for interrogatives: an interrogative
μ is true in w iff some resolution to μ is true in w.

The notion of resolution may be generalized to sets of formulas as follows.

Definition 8 (Resolutions of a set).
The set R(Φ) of resolutions of a set Φ contains those sets Γ of declaratives s.t.:

– for all ϕ ∈ Φ there is an α ∈ Γ such that α ∈ R(ϕ)
– for all α ∈ Γ there is a ϕ ∈ Φ such that α ∈ R(ϕ)

That is, a resolution of Φ is a set of declaratives which is obtained by replacing
every formula in Φ by one or more of its resolutions. Since a declarative has itself
as unique resolution, we obtain a resolution of Φ by keeping all the declaratives
in Φ, and substituting each interrogative by one or more resolutions. Fact 4
generalizes to sets: writing M, s |= Φ for ‘M, s |= ϕ for all ϕ ∈ Φ’, we have:

Fact 5. For any M , s and Φ, M, s |= Φ ⇐⇒ M, s |= Γ for some Γ ∈ R(Φ)

We end this section by taking a closer look at the behavior of implication. First,
if the antecedent is declarative, the clause amounts to the following simpler one:

M, s |= α→ ϕ ⇐⇒ M, s ∩ {w ∈ W |M,w |= α} |= ϕ

That is, the conditional α → ϕ is established (resolved) in s iff ϕ is established
(resolved) in the state that results from augmenting s with the assumption that α
is true. For conditional declaratives, this delivers a standard material implication,
as predicted by Fact 3 together with the fact that truth-conditions are standard.

3 Our resolutions are a more general version of the basic answers in the interrogative
frameworks of Hintikka [11,12] and Wisniewski [16]. We use the term resolutions as
a reminder that this is a specific technical notion, sufficient for the present purposes.
Our notion of presupposition of a question is also shared with the mentioned theories.



Interrogative Dependencies and Inquisitive Proofs 113

11 10

01 00

(a) p

11 10

01 00

(b) q

11 10

01 00

(c) p ∧ q

11 10

01 00

(d) p → q

11 10

01 00

(e) ?p → q

11 10

01 00

(f) ?p

11 10

01 00

(g) ?q

11 10

01 00

(h) ?p ∧ ?q

11 10

01 00

(i) p → ?q

11 10

01 00

(j) ?p → ?q

Fig. 1. The meanings of some simple sentences. 11 represents a world where both p and
q are true, 10 a world where p is true and q is false, etc. For simplicity, only maximal
supporting states are depicted. Notice that, by Fact 3, the declaratives on the top row
have exactly one maximal supporting state: the set of all worlds where they are true.

At the same time, the clause also delivers conditional interrogatives like p→ ?q,
which is resolved precisely when one of p→ q and p→ ¬q is established.

Now consider the case of an interrogative antecedent μ. If the consequent is a
declarative α, the whole conditional is declarative, thus fully truth-conditional;
hence, μ may simply be replaced by its presupposition: μ→ α ≡ πμ → α.

If the consequent is itself an interrogative ν, on the other hand, the clause
says that μ → ν is resolved in s in case, if we extend s so as to resolve μ, the
resulting state resolves ν. So, we can resolve μ→ ν if we can resolve ν condition-
ally on having a resolution of μ, i.e., if our information is such that a resolution
of μ determines a resolution of ν. E.g., the conditional interrogative ?p → ?q is
resolved precisely in case at least one of the following declaratives is established:

1. (p→ q) ∧ (¬p→ q) ≡ q 3. (p→ ¬q) ∧ (¬p→ q) ≡ q ↔ ¬p
2. (p→ q) ∧ (¬p→ ¬q) ≡ q ↔ p 4. (p→ ¬q) ∧ (¬p→ ¬q) ≡ ¬q

which correspond precisely to the four ways in which a resolution to ?p may
determine a resolution to ?q. Thus, such a conditional interrogative asks for
enough information to establish a certain interrogative dependency.

3 Entailment and Interrogative Dependencies

Entailment in InqDπ is defined in the natural way, as preservation of support.

Definition 9 (Entailment).
Φ |= ψ ⇐⇒ for any model M and state s, if M, s |= Φ then M, s |= ψ.

To see what this notion captures, consider first entailment towards a declarative.
Fact 3 implies that, in this case, only truth-conditional content matters.
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Fact 6. Φ |= α ⇐⇒ for any M and any world w : if M,w |= Φ then M,
w |= α.

When the conclusion is a declarative, then, interrogative assumptions μ may
be replaced by their presuppositions πμ, which share the same truth conditions.
Thus, entailment towards declaratives is essentially a declarative business. More-
over, since truth-conditions are standard, our logic is a conservative extension
of classical logic.

Fact 7 (Conservativity). Let Γ, α be part of a standard propositional lan-
guage. Then Γ |= α ⇐⇒ Γ entails α in classical propositional logic.

Now consider entailment towards an interrogative. Recall that to support a for-
mula, or a set, is to support some resolution of it (facts 4 and 5). It is then easy
to see that Φ entails ψ iff every resolution of Φ entails some resolution of ψ.

Fact 8. Φ |= ψ ⇐⇒ for all Γ ∈ R(ϕ) there is an α ∈ R(ψ) s.t. Γ |= α.

Decomposing Φ into a set Γ of declaratives and a set Λ of interrogatives, and as-
suming ψ is an interrogative μ, this tells us that Γ,Λ |= μ holds iff any resolution
of all interrogatives in Λ, together with Γ , entails some resolution of μ; that is,
if given Γ , any resolution of the interrogatives in Λ determines some resolution
of μ. To illustrate this, consider the following example of valid entailment:

p↔ q ∧ r, ?q ∧ ?r |= ?p

Given the declarative p↔ q∧r, any resolution of the conjunctive question ?q ∧ ?r
determines a resolution of ?p: for instance, the resolution q ∧ r determines the
resolution p, the resolution q∧¬r determines the resolution ¬p, and so on. Thus,
an interrogative dependency is captured as a particular case of entailment in
InqDπ, involving an interrogative conclusion and some interrogative assumptions.

Now that we know that interrogative dependencies are a case of entailment,
it should no longer surprise us that they are internalized in the language as im-
plications, such as ?p → ?q. As we have seen, the resolutions of such formulas
embody precisely the different possible ways in which the consequent may be
determined by the antecedent. Notice that the specific way in which an inter-
rogative is determined by another may in turn be one of the variables on which
the resolution of a certain interrogative conclusion depends. For instance, the
following entailment captures the fact that a resolution of ?q is determined once
a resolution to ?p is given and a specific dependency of ?q on ?p is established.

?p, ?p→ ?q |= ?q

How about the case in which we have an interrogative conclusion and no inter-
rogative assumption? Since a set of declaratives Γ is the only resolution of itself,
Fact 8 has the following corollary: Γ entails an interrogative μ iff it establishes
some particular resolution of μ, i.e., in case it settles μ in a particular way.

Fact 9. If Γ is a set of declaratives, Γ |= ψ ⇐⇒ Γ |= α for some α ∈ R(ψ).

Summing up, then, inquisitive entailment brings under the same umbrella three
crucial and seemingly independent notions of a logic of information and issues:
standard declarative entailment, answerhood, and interrogative dependency.
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4 Derivation System

A natural deduction system for InqDπ is described in the table below. In this
system, the standard connectives—conjunction, implication, and falsum—are all
assigned their standard inference rules. Thus, the core logical features of the con-
nectives are preserved when these connectives are generalized to interrogatives.4

What does not generalize, by contrast, is the double negation axiom: for,
double negation elimination is valid only for formulas whose semantics is truth-
conditional, i.e., for which being supported amounts to being true at every world.

Fact 10 (Double negation characterizes truth-conditionality).
¬¬ϕ→ ϕ is valid iff for all M, s: M, s |= ϕ ⇐⇒ (M,w |= ϕ for all w ∈ s)

Conjunction Implication

ϕ ψ

ϕ ∧ ψ

ϕ ∧ ψ

ϕ

ϕ ∧ ψ

ψ

[ϕ]

...
ψ

ϕ → ψ

ϕ ϕ → ψ

ψ

Interrogative Falsum

αi

?{α1, . . . , αn}

[α1]

...
ϕ . . .

[αn]

...
ϕ ?{α1, . . . , αn}

ϕ

⊥
ϕ

Kreisel-Putnam axiom Double negation
(α → ?{β1, . . . , βn}) → ?{α → β1, . . . , α → βn} ¬¬α → α

The rules for the interrogative operator are simply the usual ones for a dis-
junction. This is hardly surprising, since the semantics of ? is disjunctive. The
introduction rule says that if we have established some αi, then we have resolved
?{α1, . . . , αn}. The elimination rule says that if we can infer ϕ from the assump-
tion that αi is established for each i, then we can infer ϕ from the assumption
that ?{α1, . . . , αn} is resolved.5 Finally, the last component of the system is the

4 We refer to the introduction and elimination rule for a connective ◦ as (◦i) and (◦e).
5 The standard rules for negation and disjunction, which are derived connectives in
our system, are admissible, with one caveat: a disjunction may only be eliminated
towards a declarative. This restriction marks the difference between ∨ and ? and
prevents unsound derivations such as p ∨ ¬p � ?p.
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Kreisel-Putnam axiom, which distributes an implication over an interrogative
consequent, provided the antecedent is a declarative.6

Definition 10.
We write P : Φ # ψ if P is a proof with conclusion ψ whose set of undischarged
assumptions is included in Φ. We write Φ # ψ if some proof P : Φ # ψ exists.
We say ϕ and ψ are provably equivalent, notation ϕ &# ψ, if ϕ # ψ and ψ # ϕ.

As usual, proving soundness is a tedious but straightforward matter.

Theorem 1 (Soundness). If Φ # ψ then Φ |= ψ.

Next, the normal form result of Corollary 1 is provable in the system. For the
lengthy but straightforward inductive proof, the reader is referred to [3].

Lemma 1. For any ϕ, ϕ &# ?R(ϕ).

As a corollary, (?i) ensures that a formula is derivable from any of its resolutions.

Corollary 2. If α ∈ R(ϕ), then α # ϕ.

The following theorem, central to the completeness proof, says that derivability
shares the property of entailment expressed by Fact 8: from Φ we can derive ψ
iff from any specific resolution Γ of Φ we can derive some resolution α of ψ.

Theorem 2 (Resolution theorem).
Φ # ψ ⇐⇒ for all Γ ∈ R(Φ) there exists some α ∈ R(ψ) s.t. Γ # α.

The proof is given in the appendix. The inductive proof of the left-to-right
direction of the theorem is constructive, providing an effective procedure that,
given a proof P : Φ # ψ and a resolution Γ of Φ, produces a new proof Q : Γ # α
of a specific resolution α of ψ. This procedure is illustrated in the next section.

Let us now turn to prove completeness. In [3], completeness was proved by
reducing it to the completeness of classical propositional logic. Here, by contrast,
we will provide an explicit canonical model construction. This strategy has the
merit of generalizing to extensions of the language, such as inquisitive epistemic
logic [6], for which a reduction strategy would not be viable [2].

The worlds in our canonical model will be complete theories of declaratives,
i.e., sets Γ of declaratives which are (i) closed under deduction of declaratives;
(ii) consistent; and (iii) complete: for any declarative α, either α or ¬α is in Γ .

Definition 11 (Canonical model).
The canonical model for InqDπ is the model M c = 〈Wc, V c〉, where:

– the elements of Wc are the complete theories of declaratives;
– V c :Wc → ℘(P) is the map V c(Γ ) = {p ∈ P | p ∈ Γ}

6 This axiom is tightly related to the axiom (¬ϕ → ψ ∨ χ) → (¬ϕ → ψ) ∨ (¬ϕ → χ)
first investigated in the context of intermediate logics in [13], whence the name.
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The bridge between derivability and semantics is given by the following support
lemma, stating that support at a state S in the canonical model amounts to
derivability from the intersection

⋂
S of all the theories in S (where

⋂
∅ is the

set of all formulas). The inductive proof is given in the appendix.

Lemma 2 (Support lemma). For any S and ϕ, M c, S |= ϕ ⇐⇒
⋂

S # ϕ.

As shown in the appendix, the support lemma allows us to use the canonical
model to give counterexamples to entailment, and thus to prove completeness.

Theorem 3 (Completeness theorem). If Φ |= ψ, then Φ # ψ.

5 Computational Content of Inquisitive Proofs

In this section we illustrate with an example the effective procedure described in
the proof of the resolution theorem, and discuss the significance of this procedure.
Consider again the example of valid entailment given in section 3:

p↔ q ∧ r, ?q ∧ ?r |= ?p

Let Φ = {p↔ q ∧ r, ?q ∧ ?r}. By Fact 8, the validity of this entailment implies
that any specific resolution Γ of Φ is bound to entail some resolution α of ?p.
The proof of the resolution theorem, then, tells us how to use a proof P : Φ # ?p
to produce a proof of some specific α ∈ R(ψ) from a given Γ ∈ R(Φ).

Below we have a proof P : Φ # ?p in our deduction system. Subproofs involving
only classical propositional logic have been omitted and denoted P1, P2, P3.

?q ∧ ?r

?q
(∧e)

?q ∧ ?r

?r
(∧e)

[q] [r] p ↔ q ∧ r

p
(P1)

?p
(?i)

[¬r] p ↔ q ∧ r

¬p
(P2)

?p
(?i)

?p
(?e)

[¬q] p ↔ q ∧ r

¬p
(P3)

?p
(?i)

?p
(?e)

Suppose now that we are given the specific resolution Γ = {p↔ q ∧ r, q ∧ r} of
Φ, that is, suppose ?q∧?r is resolved to q∧r, and let us see how we can use P to
build a proof Q from Γ which yields either p or ¬p, whichever is entailed by Γ .
The procedure builds the proof Q inductively on the structure of P , as follows:

1. replace assumptions of ?q ∧ ?r in P by the corresponding resolution q ∧ r;
2. where (∧e) was used in P to get ?q and ?r from ?p∧?r, use the same rules to

obtain q and r from q∧r; this gives us two proofs Q1 : Γ # q and Q2 : Γ # r;
3. the proofs P1, P2 and P3, which only involve declaratives, are left unchanged;
4. the step of ?-introduction right below these proofs is simply erased;
5. where in P the rule (?e) is used to eliminate from ?r, take the proof Q2 :

Γ # r obtained above and plug it in place of the assumption of r in P1 :
Γ ∪ {q, r} # p. In this way we obtain a proof Q3 : Γ ∪ {q} # p;
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6. similarly, where (?e) was used to eliminate from ?q, take the proof Q1 : Γ # q
that we have obtained and plug it in place of the assumption of q in Q3.

The outcome is the following proof Q : Γ # p, showing that Γ determines the
resolution p of ?p.

q ∧ r

q
(∧e)

q ∧ r

r
(∧e)

p↔ q ∧ r

p
(P1)

Thus, the proof P : Φ # ?p above does more than just witnessing the validity
of the entailment: it encodes the specific way in which a resolution of ?p may
be obtained, given p↔ q ∧ r, from a resolution of ?q ∧ ?r, that is, it provides a
method for turning a resolution of ?q ∧ ?r into a corresponding resolution of ?p.

Summing up, an inquisitive proof concluding with an interrogative μ builds up
a way of resolving μ, dependent on resolutions to certain interrogative assump-
tions. Hence, while the declarative fragment of the logic is completely classical,
when it comes to interrogatives, inquisitive proofs have a distinctive constructive
content. This resonates with the observation that, in the realm of interrogatives,
the double negation axiom is no longer valid. Indeed, our natural deduction
system is essentially a system for intuitionistic logic—where ? plays the role
of disjunction—with certain syntactic restrictions on formulas, and two extra
ingredients: declarative double negation, and the Kreisel-Putnam axiom.7

6 Inquisitive Logic as a Logic of Dependencies

We have seen how inquisitive logic captures interrogative dependencies as a
case of entailment. In recent years, the logical study of dependency, sparked
first by the study of bound variables in first-order logic, has received increasing
attention, leading to the development of dependence logic [15,7,8, a.o.]. Lately, it
has been realized [17] that propositional inquisitive semantics and propositional
dependence logic are close relatives: they have the same semantic structures,
identical expressive power, and differ only in their repertoire of logical operators.

Propositional dependence logic starts with dependence atoms =(p1, . . . , pn, q),
expressing the fact that the value of an atom q is determined by the values of
p1, . . . , pn. This is a particular kind of interrogative dependency, which may be
expressed in inquisitive semantics by means of the formula ?p1 ∧ . . .∧ ?pn → ?q.
So, in inquisitive semantics, the dependence atom actually has a complex logical
structure, consisting of an implication, a determining antecedent—a conjunction

7 The syntactic restrictions are only needed to keep the language dichotomous, and
are not essential: we could replace the operator ? by a binary inquisitive disjunction
∨, and allow the connectives to apply unrestrictedly. We would then end up with
the system InqB of basic inquisitive semantics [1,5] , based on a simple propositional
language. The results we have seen—in particular, the resolution theorem—translate,
mutatis mutandis, to the setting of InqB. Thus, the properties described in this paper
pertain to inquisitive logic at large, rather than just to the specific system InqDπ.
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of atomic polar interrogatives—and a determined consequent—an atomic polar
interrogative. I would like to argue here that, for a propositional logic of de-
pendencies, the inquisitive repertoire of logical operations is a mathematically
natural choice as well as a practically advantageous one.

First, once we recognize that dependencies are captured as a special case of
entailment, it seems natural to internalize them in the language by means of an
implication operation, especially since, perhaps surprisingly, such an operator
exists and enjoys a natural semantics and a standard proof-theory.

One practical advantage of expressing dependencies by means of an implica-
tion, in combination with other operators, is that it becomes immediately clear
that there is no need to restrict this operation to atomic polar interrogatives, or
to polar interrogatives. . . or even to interrogatives. Implication makes sense in a
much broader context, including the context of declaratives, in which we recover
standard material implication. This extra generality allows us to express easily
a wide spectrum of dependencies. For instance, the implication ?{p, q} → ?{r, s}
is supported in case every resolution to ?{p, q} determines a resolution to ?{r, s},
that is, in case establishing either of p and q determines one of r and s.

Second, if we look at the set of inquisitive propositions—the non-empty, down-
ward closed sets of states, which are the meaning objects of both inquisitive and
propositional dependence logic—and we consider them ordered by entailment,
we find that this space has a natural algebraic structure, namely, it forms a
Heyting algebra [14]; the connectives of inquisitive semantics perform precisely
the natural operations in this algebra: they express meet, join, and (algebraic)
implication, which are responsible for the logical properties of these connectives.

As a concrete advantage, this principled treatment of connectives yields the
well-behaved logical calculus described in this paper, and the one described in
[1,5] for the system InqB. Indeed, when it comes to proof theory, the dependence
atoms are not ruled by simple logical laws: to axiomatize their logic, syntactically
involved rules are needed, which essentially amount to an implicit stipulation of
their resolutions [17]. By contrast, in inquisitive logic, formulas expressing depen-
dencies are complex objects, built up by several logical operations—implication,
conjunction, and question mark/inquisitive disjunction—each of which has nat-
ural, even standard inference rules. Taken together, these simple rules determine
the complex logical properties manifested by dependence formulas. This lends
further support to the view that the operations expressed by these connectives
are the natural building blocks in the given semantic setting.

Conclusions I would like to close recapitulating the three main conclusions drawn
in this paper: first, the relation of interrogative dependency is a particular case
of entailment, involving interrogative conclusions and interrogative assumptions.
Second, as a case of entailment, dependencies are internalized in the logical lan-
guage as implications among interrogatives. Lastly, the associated logical calcu-
lus is a specific kind of constructive logic, whose proofs encode dependencies, and
provide methods to compute a resolution of the interrogative conclusion from
resolutions of the interrogative assumptions.



120 I. Ciardelli

Appendix

Proof of Theorem 2 (Resolution Theorem)
Let us start from the left-to-right direction of the theorem: if Φ derives ψ, then
any resolution Γ of Φ derives some resolution α of ψ.

The proof is a constructive one: given a proof P : Φ # ψ and a resolution Γ
of Φ, we show how to use P and Γ to build a proof Q : Γ # α of some resolution
α of ψ. The construction proceeds by induction on the structure of the proof P .
We distinguish a number of cases depending on the last rule applied in P .

– ψ is an undischarged assumption, ψ ∈ Φ. In this case, any resolution Γ of Φ
contains a resolution α of ψ by definition, so Γ # α.

– ψ is an axiom. If ψ is an instance of the double negation axiom, then it is a
declarative, and the claim is trivially true. If ψ is an instance of the Kreisel-
Putnam axiom, of the form (β → ?{γ1, . . . , γn}) → ?{β → γ1 . . . , β → γn},
take α =

∧
1≤i≤n((β → γi) → (β → γi)): α is a resolution of ψ and, being

a classical tautology, we have Γ # α for any set Γ whatsoever, in particular
for any Γ ∈ R(Φ).

– ψ = χ ∧ ξ was obtained by (∧i) from χ and ξ. Take any resolution Γ of Φ.
Since the set of undischarged assumptions above both χ and ξ is included
in Φ, by induction hypothesis from Γ we can deduce a resolution β of χ and
a resolution γ of ξ. But then, by applying a conjunction introduction rule,
from Γ we can deduce β ∧ γ, which is a resolution of ψ.

– ψ = χ → ξ was obtained by (→i). Then the immediate subproof of P is a
proof of ξ from the set of assumptions Φ ∪ {χ}. Take any resolution Γ of Φ.
Suppose α1, . . . , αn are the resolutions of χ. For any 1 ≤ i ≤ n, then, Γ∪{αi}
is a resolution of Φ ∪ {χ}, whence by induction hypothesis we have a proof
Qi : Γ ∪ {αi} # βi for some resolution βi of ξ. But then, extending Qi with
an implication introduction, we derive αi → βi from Γ . And since this is the
case for any 1 ≤ i ≤ n, from Γ we can derive (α1 → β1) ∧ . . . ∧ (αn → βn),
where {β1, . . . , βn} ⊆ R(ξ), which is a resolution of χ→ ξ = ψ.

– ψ = ?{α1, . . . , αn} was obtained by (?i) from αi. Thus, the immediate sub-
proof of P is a proof of αi from Φ. Take any resolution Γ of Φ. By induction
hypothesis, from Γ we can then derive a resolution of αi, that is to say, we
can derive αi, since a declarative is the only resolution of itself. So, the in-
duction hypothesis gives us a proof of αi from Γ , which is what we needed,
since αi is a resolution of ψ.

– ψ was obtained by (∧e) from ψ ∧ χ. Then the immediate subproof of P is
a proof of ψ ∧ χ from Φ. Take a resolution Γ of Φ. By induction hypothesis
there is a proof Q : Γ # α for some resolution α of ψ ∧χ. By definition, such
a resolution is of the form α = β ∧ γ where β is a resolution of ψ and γ is
a resolution of χ. Extending Q with a rule of conjunction elimination, then,
we have a proof of the resolution β of ψ from Γ . Of course, the argument is
analogous if ψ was obtained by (∧e) from a conjunction χ ∧ ψ.

– ψ was obtained by (→e) from χ and χ→ ψ. Then the immediate subproofs
of P are a proof of χ from Φ, and a proof of χ → ψ from Φ. Consider a
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resolution Γ of Φ. By induction hypothesis we have a proof Q1 : Γ # β
where β ∈ R(χ), and a proof Q2 : Γ # γ, where γ ∈ R(χ → ψ). Now,
if R(χ) = {β1, . . . , βn}, then β = βi for some i, and (by definition of the
resolutions of an implication) γ = (β1 → γ1) ∧ . . . ∧ (βn → γn) where
{γ1, . . . , γn} ⊆ R(ψ). Now, extending Q2 with an application of (∧e) we
get a proof of βi → γi from Γ . Finally, putting together this proof with
Q1 : Γ # βi and applying (→e), we obtain the resolution γi of R(ψ).

– ψ was obtained by (?e) from a basic interrogative ?{β1, . . . , βm}. Then the
immediate subproofs of P are a proof P0 : Φ # ?{β1, . . . , βm} and, for 1 ≤ i ≤
n a proof Pi : Φ ∪ {βi} # ψ. Now consider a resolution Γ of Φ. By induction
hypothesis we have a proof Q0 : Γ # β for some β ∈ R(?{β1, . . . , βm}).
Moreover, for any 1 ≤ i ≤ n, since Γ ∪ {βi} is a resolution of Φ ∪ {βi}, by
induction hypothesis we have a proof Qi : Γ ∪ {βi} # αi where αi ∈ R(ψ).
Now since β is a resolution of ?{β1, . . . , βm}, by definition β = βi for some
i. But then, substituting any undischarged assumption of βi in Qi with an
occurrence of the proof Q0 with conclusion βi, we obtain a proof of αi from
Γ , which is what we needed, since αi ∈ R(ψ).

– ψ was obtained by (⊥e). This means that the immediate subproof of P is
a proof of ⊥ from Φ. Take any resolution Γ of Φ. By induction hypothesis,
from Γ we can prove a resolution of ⊥, that is, since a declarative is the only
resolution of itself, we can prove ⊥. But then, by an application of (⊥e),
from Γ we can obtain any formula, in particular any of the resolutions of ψ
(crucially, the set of resolutions of a formula is always non-empty).

This completes the description of the inductive procedure to construct the re-
quired proof Q, and thus proves the left-to-right direction of the theorem. In or-
der to establish the converse, let us make a detour through the following lemma.

Lemma 3. If Φ �# ψ then there exists a Γ ∈ R(Φ) such that Γ �# ψ.

Proof. First assume Φ is finite. By induction on the number of formulas in Φ,
we prove that for any ψ, if Φ �# ψ there is some Γ ∈ R(Φ) such that Γ �# ψ.

If Φ = ∅, the claim is trivially true. Now make the inductive hypothesis that
the claim is true for sets of n formulas, and let us consider a set Φ of n + 1
formulas. Then Φ is of the form Ψ ∪ {χ} for some set Ψ of n formulas and
some formula χ. Now consider a formula ψ such that Ψ, χ �# ψ. By Lemma 1,
we must also have Ψ, ?R(χ) �# ψ whence, by the ?-introduction rule, we must
have Ψ, α �# ψ for some α ∈ R(χ). By the rules for implication, we must then
have Ψ �# α → ψ. So, by induction hypothesis there is a Γ ∈ R(Ψ) such that
Γ �# α → ψ. Finally, again by the rules for implication we have Γ, α �# ψ, which
proves the claim since Γ ∪ {α} is a resolution of Ψ ∪ {χ}.

Our inductive proof is thus complete, and the claim is proved for the case in
which Φ is finite. The conclusion can then be extended to the infinite case by an
argument using König’s lemma. For the details, we refer to [2].

Proof of theorem 2, continued. What remained to be shown is the right-
to-left direction of the theorem: if every resolution of Φ derives some resolution
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of ψ, then Φ # ψ. Contrapositively, suppose Φ �# ψ. By Lemma 3 there exists
a Γ ∈ R(Φ) such that Γ �# ψ. Now, since for any α ∈ R(ψ) we have α # ψ
(Corollary 2), Γ cannot derive any α ∈ R(ψ), otherwise it would derive ψ as
well. So, Γ is a resolution of Φ which does not derive any resolution of ψ. �

Lemma 4. For any state S ⊆ Wc and declarative α,
⋂

S # α ⇐⇒ α ∈
⋂

S

Proof. If α ∈
⋂

S then obviously
⋂

S # α. For the converse, suppose
⋂

S # α.
For any Γ ∈ S we have

⋂
S ⊆ Γ , so also Γ # α. But then, because Γ is closed

under deduction of declaratives, we must have α ∈ Γ . So, α ∈
⋂

S.

Proof of Lemma 2 (Support lemma)
The proof goes by induction on the complexity of ϕ. The straightforward cases
for atoms, falsum, and conjunction are omitted.

Implication Suppose
⋂

S # ϕ → ψ. Take any T ⊆ S: if T |= ϕ then by
induction hypothesis

⋂
T # ϕ. Since T ⊆ S, we have

⋂
T ⊇

⋂
S, and since⋂

S # ϕ→ ψ, also
⋂

T # ϕ→ ψ. By (→e), from
⋂

T # ϕ→ ψ and
⋂

T # ϕ
it follows

⋂
T # ψ, which by induction hypothesis implies T |= ψ. So, every

substate of S that supports ϕ also supports ψ, that is, S |= ϕ→ ψ.

Viceversa, suppose
⋂

S �# ϕ → ψ. By the introduction rule for implication,
this means that

⋂
S, ϕ �# ψ. Now by Lemma 3 there is a a resolution of

(
⋂

S) ∪ {ϕ} which does not derive ψ. Since
⋂

S is a set of declaratives, this
resolution must include a set of the form (

⋂
S)∪{α} where α is a resolution

of ϕ. Hence, there must exist a resolution α of ϕ such that
⋂

S, α �# ψ.

Now let T = {Γ ∈ S |α ∈ Γ}. First, by definition we have α ∈
⋂

T , whence⋂
T # ϕ by Corollary 2. By induction hypothesis we then have T |= ϕ. Now,

if we can show that
⋂

T �# ψ we are done. For then, the induction hypothesis
gives T �|= ψ, which means that T is a substate of S that supports ϕ but not
ψ, which shows that S �|= ϕ→ ψ.

So, we are left to show that
⋂

T �# ψ. Towards a contradiction, suppose that⋂
T # ψ. Since

⋂
T is a set of declaratives, Theorem 2 tells us that

⋂
T # β

for some resolution β of ψ, which by Lemma 4 amounts to β ∈
⋂

T . So, for
any Γ ∈ T we have β ∈ Γ and thus also α→ β ∈ Γ , since Γ is closed under
deduction of declaratives and β # α → β. Now consider any Γ ∈ S − T :
this means that α �∈ Γ ; then since Γ is complete we have ¬α ∈ Γ , whence
α → β ∈ Γ , again because Γ is closed under deduction of declaratives and
¬α # α → β. This would mean, then, that α → β ∈ Γ for any Γ ∈ S,
whether Γ ∈ T or Γ ∈ S − T . We can then conclude α → β ∈

⋂
S, whence⋂

S, α # β. And since β is a resolution of ψ we also have
⋂

S, α # ψ. But
this is a contradiction, since by assumption α is such that

⋂
S, α �# ψ.

Interrogative operator If S |= ?{α1, . . . , αn}, then S |= αi for some i, so by
induction hypothesis we have

⋂
S # αi and by ?-introduction also

⋂
S #

?{α1, . . . , αn}. Conversely, suppose
⋂

S # ?{α1, . . . , αn}. Since
⋂

S is a set
of declaratives, Theorem 2 implies

⋂
S # αi for some 1 ≤ i ≤ n. By induction

hypothesis we then have S |= αi, and thus also S |= ?{α1, . . . , αn}. �
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Proof of Theorem 3 (Completeness theorem)
Suppose Φ �# ψ. By Theorem 2, there is a resolution Θ of Φ which does not derive
any resolution of ψ. Let R(ψ) = {α1, . . . , αn}: for each i, since Θ �# αi, the set
Θ∪{¬αi} is consistent, and thus extendible to a complete theory of declaratives
Γi ∈ W c. Let S = {Γ1, . . . , Γn} be the set of theories obtained for 1 ≤ i ≤ n. It
is easy to verify that, by construction, S |= Φ but S �|= ψ, whence Φ �|= ψ. �
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Abstract. Modal logics with two syntactical layers (both governed by
classical logic) have been proposed as logics of uncertainty following
Hamblin’s seminal idea of reading the modal operator �ϕ as ‘probably
ϕ’, meaning that the probability of ϕ is bigger than a given threshold.

An interesting departure from that (classical) paradigm has been in-
troduced by Hájek with his fuzzy probability logic when, while still keeping
classical logic as interpretation of the lower syntactical layer, he proposed
to use �Lukasiewicz logic in the upper one, so that the truth degree of �ϕ
could be directly identified with the probability of ϕ. Later, other authors
have used the same formalism with different kinds of uncertainty measures
and other pairs of logics, allowing for a treatment of uncertainty of vague
events (i.e. also changing the logic in the lower layer).

The aim of this paper is to provide a general framework for two-
layer modal logics that encompasses all the previously studied two-layer
modal fuzzy logics, provides a general axiomatization and a semantics of
measured Kripke frames, and prove a general completeness theorem.

1 Introduction

Two-layer modal logics restrict the usage of modalities by employing a two-layer
syntax with: (i) non-modal formulae, (ii) atomic modal formulae obtained by
applying the modality operator(s) only to non-modal ones, and (iii) complex
modal formulae built from the atomic ones. Classical logic governs the behav-
ior of formulae of both modal and non-modal layers. This formalism has been
usefully exploited by Fagin, Halpern and many others (see e.g. [8,17]), in modal
logics of uncertainty following Hamblin’s seminal idea of reading the modal op-
erator �ϕ as ‘probably ϕ’ [18], meaning that the probability of ϕ is bigger than
a given threshold.

On the other hand, Mathematical Fuzzy Logic (MFL) studies many-valued
logics of comparable truth, i.e. logics with an intended algebraic semantics (typi-
cally over the real interval [0, 1]) where all truth degrees are comparable because
they are linearly ordered [3]. This feature makes fuzzy logics amenable to treat
some aspects of vagueness [22].

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 124–136, 2014.
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Also uncertainty, albeit conceptually clearly separated from vagueness, has
been addressed inside MFL. Hamblin’s main idea was rediscovered and refor-
mulated in the setting of many-valued logics by Hájek and Harmancová in [16]
and was later developed in Hájek’s monograph [15]. The main intuition was that
one could use probability to determine the truth degree of statements such as
‘tomorrow it will probably rain’ or ‘the probability that tomorrow it will rain
is high’. Indeed, one takes classical logic and its formulae ϕ to describe crisp
events, introduces a new modal operator � which can be applied on them to
create atomic modal formulae �ϕ which may be read as ‘probably ϕ’ (or ‘the
probability of ϕ is high’), and finally these atomic modal formulae are combined
by using the connectives of �Lukasiewicz logic Ł [2,20,3]. This yields a two-layer
syntax where modalities are never nested and can only be applied to formulae
of classical logic. Hájek proposed a calculus in that syntax consisting of:

– axioms of classical propositional logic for non-modal formulae and
axioms of �Lukasiewicz logic Ł for modal ones,

– modus ponens rules for both non-modal and modal formulae,
– additional axioms:

A1 �ϕ→Ł (�(ϕ→ ψ)→Ł �ψ)
A2 �¬ϕ↔Ł ¬Ł�ϕ
A3 �(ϕ ∨ ψ)↔Ł [(�ϕ→Ł �(ϕ ∧ ψ))→Ł �ψ]

– a modal rule of necessitation ϕ # �ϕ.1

The resulting logic is called FP(Ł). Its semantical counterpart are probability
Kripke frames, that is, structures F = 〈W,2, [0, 1]Ł, μ〉, where W is a set of
possible worlds, 2 is the Boolean algebra of two elements, [0, 1]Ł is the standard
�Lukasiewicz algebra2 and μ is a finitely additive probability measure. The idea is
that non-modal (classical) formulae are evaluated in 2, μ is the interpretation of
�, and modal formulae are interpreted in [0, 1]Ł. This is formally achieved by the
notion ofKripke model over a probability Kripke frame F, i.e.M = 〈F, 〈ew〉w∈W 〉
where:

– ew is a classical evaluation of non-modal formulae, for each w ∈ W ,
– {w | ew(ϕ) = 1} is in the domain of μ, for each non-modal formula ϕ.

The truth value of non-modal formulae in each world w ∈ W is interpreted
by the corresponding classical evaluation ew, the truth value of an atomic modal
formula �ϕ is uniformly defined as ||�ϕ||M = μ({w | ew(ϕ) = 1}), and truth
values of complex modal formulae are obtained by means of the operations in
[0, 1]Ł. This gives a semantics for both modal and non-modal formulae of FP(Ł).
1 All modal logics we consider in the paper are global modal logics in the sense that
necessitation is a rule of the system, not just an admissible rule of the form: ‘if ϕ is
a theorem, then so �ϕ’. This is the traditional approach in this research area. The
question whether it would make sense to study also their local variants is beyond
the scope of this paper.

2 I.e. the real unit interval endowed with �Lukasiewicz operations: a →Ł b = min{1, 1−
a+ b}, a ↔Ł b = min{a →Ł b, b →Ł a}, and ¬Ła = 1− a.
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The corresponding completeness theorem then says that, given finite sets Φ and
Γ of resp. non-modal and modal formulae and a modal formula γ, the following
are equivalent:

– Φ, Γ #FP(Ł) γ
– ||γ||M = 1 for all Kripke models M, satisfying Γ and Φ, over all probability

Kripke frames.

Several works have followed this idea with variations. In [13] Godo, Esteva and
Hájek replaced �Lukasiewicz logic on the second layer by the logic ŁΠ,3 but kept
classical logic for non-modal formulae. The logic ŁΠ, with its expanded language,
enabled them to deal with conditional probability. Flaminio and Montagna also
considered conditional probability in [11], and Godo and Marchioni investigated
coherent conditional probabilities in [14]. Marchioni also proposed a class of
logics of uncertainty in [19] with different kinds of measures besides probability
(e.g. possibility and necessity measures, see [6]) to quantify the uncertainty of
events. In all of these works classical logic has been kept as the underlying logic
for non-modal formulae.

However, if one wants to deal with uncertainty and vagueness at once, i.e. with
the probability of vague events, as in ‘tomorrow it will probably rain heavily’,
the two-layer paradigm can still be useful provided that the underlying classical
logic is substituted by a fuzzy logic. This idea has been also investigated in some
works, as [9] where finite �Lukasiewicz systems Łn are taken as the logics of vague
events. Other recent works along these lines are surveyed in [10]. There has even
been a first attempt at an abstract theory of two-layer modal fuzzy logics in [21],
but it is restricted to the family of core fuzzy logics which has become too narrow
to contain the current scope of MFL (see [3]).

The primary aim of this paper is to provide a new general framework for two-
layer modal fuzzy logics that encompasses the current state of the art and paves
the way for future development. Actually, we will obtain much more than this.
Indeed, we show how one can construct a modal logic (with arbitrary modali-
ties, not necessarily read as probability) over a wide class of non-classical logics
(satisfying certain weak technical requirements). Therefore, we need not assume
that the starting logic is fuzzy, and we can develop a general theory of two-layer
modal logics covering the known examples, showing how the methods used in
the literature can lead to completeness results using very few properties of the
underlying logics.

As a semantics, we propose particular kinds of measured Kripke Frames and
prove corresponding completeness theorems from which the previous ones in
the literature follow as particular instances. We will see that the strength of the
completeness we obtain depends on the strength of the completeness of the initial
logics. The proof is based on Hájek’s idea from [15] of translating formulae and
proofs of the two-layer modal logic to formulae and proofs of the upper logic.

3 ŁΠ is the expansion of Ł with two new connectives &Π and →Π whose standard
interpretation is, for each a, b ∈ [0, 1], a &Π b = a · b (product of real numbers),
a →Π b = b/a if a > b, and a →Π b = 1 if a ≤ b (see [7]).
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The paper is organized as follows: after this introduction, Section 2 gives the
logical framework of the paper, with the minimal assumptions we require for
the underlying propositional logics; then Section 3 gives the basic definitions
regarding syntax and semantics of two-layer modal logics and, finally, Sections 4
and 5 give their corresponding forms of completeness theorems.

2 The Logical Framework

This section presents the necessary basic definitions and notation (for further
information on Algebraic Logic notions see [12,5]). The definitions of a proposi-
tional language L, the free term algebra FmL over a denumerable set of gen-
erators (propositional variables), and finitary Hilbert-style proof systems are as
usual. Let us introduce the notion of propositional logic that we use in this paper.

Convention 1. Let L be a propositional language containing binary connectives
→ and ∧, a defined binary connective ϕ↔ ψ = (ϕ→ ψ)∧(ψ → ϕ), and a nullary
connective 1.4 In this paper a propositional logic L in propositional language L
is a finitary lattice-conjunctive weakly implicative logic with unit (as studied
in [4]).

In more details, this means that L is identified with the provability relation #L
on FmL given by a finitary Hilbert-style system such that the following formulae
(rules respectively) are theorems (resp. derived rules) of L:5

#L ϕ→ ϕ ϕ, ϕ→ ψ #L ψ ϕ→ ψ, ψ → χ #L ϕ→ χ ϕ #L 1→ ϕ

#L ϕ ∧ ψ → ϕ #L ϕ ∧ ψ → ψ χ→ ϕ, χ→ ψ #L χ→ ϕ ∧ ψ #L 1

{ϕi ↔ ψi | i ≤ n} #L c(ϕ1, . . . , ϕn)↔ c(ψ1, . . . , ψn) for every n-ary c ∈ L.

We recall now the basics of semantics.6 Let us fix a logic L in a language L;
then L-algebras are algebras with signature L and homomorphisms from FmL
to an L-algebra A are called A-evaluations. For an L-algebra A we define the
set FA = {x | x∧A 1̄A = 1̄A}.7 We say that A is an L-algebra,A ∈ L in symbols,
if

– for each Γ∪{ϕ} ⊆ FmL such that Γ #L ϕ, we have that for eachA-evaluation
e, if e[Γ ] ⊆ FA, then e(ϕ) ∈ FA,

– for each x, y ∈ A, if x↔A y ∈ FA, then x = y.

4 Also the connectives →, ∧, and 0 might be definable from primitive ones.
5 These theorems and rules capture, in a very elementary way, the minimal reasonable
behavior of basic connectives we need to assume for our results.

6 The reader familiar with the notion of algebraizable logics will note that our logics are
algebraizable in the sense of [1] with a truth definition given by the single equation
x ∧ 1 ≈ 1, and thus the following definitions and results are absolutely standard.

7 FA is usually called the filter of A and its members are the designated elements of
the algebra, i.e. those that represent the notion of truth to be preserved in correct
derivations.
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It can be easily shown that L is a quasivariety and the equivalent algebraic
semantics of L in the sense of [1], thus, in particular, L is strongly complete with
respect to the semantics given by L , i.e. the following are equivalent:

– Γ #L ϕ
– e(ϕ) ∈ FA for each A ∈ L and each A-evaluation e such that e[Γ ] ⊆ FA.

Of course some logics are strongly complete w.r.t. more specific classes of alge-
bras.8 Interestingly enough, in some prominent logics (e.g. �Lukasiewicz logic) one
can obtain a completeness result w.r.t. one intended algebra ([0, 1]Ł in the case
of �Lukasiewicz) only when restricting to derivation from finite theories. There-
fore we distinguish two forms of strong completeness. Namely, given a subclass
K ⊆ L, we say that L has (finite) strong K-completeness, SKC (or FSKC resp.)
whenever for each (finite) theory Γ ∪ {ϕ} holds that Γ #L ϕ iff for each A ∈ K
and each A-evaluation e, e(ϕ) ∈ FA whenever e[Γ ] ⊆ FA.

3 Syntax and Semantics of Two-Layer Modal Logics

Let us fix two logics L1 and L2 in languages L1 and L2 and modal language L (a
non-empty set of modalities together with their arities) such that L∩(L1∪L2) =
∅. We define three kinds of formulae of a two-level language FmVar

L2(L1) over a set
of variables Var :

– non-modal formulae from FmVar
L1

,

– atomic modal formulae of the form �(ϕ1, . . . , ϕn), for ϕ1, . . . , ϕn ∈ FmVar
L1

and an n-ary modality � ∈ L.
– modal formulae resulting from atomic ones by connectives from L2.

9

We use the following notational conventions:

non-modal modal
formulae ϕ, ψ, . . . γ, δ, . . .
sets of formulae Φ, Ψ, . . . Γ,Δ, . . .

We can extend any substitution10 σ of FmVar
L1

first to atomic modal for-
mulae as: σ�(ϕ1, . . . , ϕn) = �(σϕ1, . . . , σϕn), and then to all modal formu-
lae inductively, i.e., for each n-ary connective c ∈ L2 we set σc(γ1, . . . , γn) =
c(σγ1, . . . , σγn).

8 E.g. in classical logic L is the class of all Boolean algebras, but classical logic is also
strongly complete w.r.t. the Boolean algebra of two elements; also the �Lukasiewicz
logic is strongly complete w.r.t. the class of all linearly ordered algebras from L,
where the order is given by the semi-lattice conjunction ∧.

9 As illustrative examples, observe that given a non-modal formula ϕ the following are
not modal formulae in our sense: ϕ,ϕ → ψ,��ϕ, ϕ → �ϕ. Also note that we do not
exclude the possibility that L1 and L2 may share some connectives (e.g. →,∧, 1, and
↔), and hence they occur in both levels; the context will always settle any possible
ambiguity.

10 By substitution we mean an endomorphism on FmVar
L1

, i.e., a mapping σ : FmVar
L1

→
FmVar

L1
such that for each n-ary connective c ∈ L1 and each formulae ϕ1, . . . , ϕn, we

have σc(ϕ1, . . . , ϕn) = c(σϕ1, . . . , σϕn).
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Definition 1. The minimal L2-modal logic over logic L1 (denoted by L2(L1))
has formulae FmVar

L2(L1) and an axiomatic system consisting of

– the axioms and rules of L1 for non-modal formulae,

– axioms and rules of L2 for modal formulae,

– and the following congruence rule:

ϕ1 ↔ ψ1, . . . , ϕn ↔ ψn # �(ϕ1, . . . , ϕn)↔ �(ψ1, . . . , ψn) (CONGR)

A modal rule is a tuple 〈Φ, γ〉 for some finite set of non-modal premises Φ and a
modal conclusion γ (if Φ is empty we call it modal axiom instead). An L2-modal
logic over a logic L1 is an extension of L2(L1) by a set of modal rules.

We understand rules as schemata, i.e., for each substitution σ on FmVar
L1

, if
〈Φ, γ〉 is a modal rule, then 〈σ[Φ], σγ〉 is also a modal rule.

Definition 2. Let L be an L2-modal logic over a logic L1 given by a set of modal
rules R. A proof in L from a set of non-modal premises Φ and modal premises
Γ is a sequence of formulae where each element is either an axiom of Li,

11 a
modal axiom, an element of Φ ∪ Γ , or it follows from the previous formulae in
the sequence using a rule of Li, the rule (CONGR) or an additional modal rule
from R. We use the symbol #L to denote the provability relation in L.

One can imagine that the proof consists of three separate parts: proving non-
modal formulae, application of the modal rules on proved non-modal formulae,
and proving modal formulae. Note that provability of non-modal formulae is fully
determined by the logic L1 and non-modal premises, i.e., we have: Φ, Γ #L ϕ iff
Φ #L1 ϕ.

Observe that Hájek’s logic FP(Ł) (recall its definition in the introduction) is
an Ł-modal logic over classical logic (not the minimal one, as it will be obvious
when we introduce the semantics), as the congruence rule is easily derivable in
its proof system.

Let us fix sets Ki of Li-algebras for i ∈ {1, 2}. Now we define the general
notion of Kripke frame, which nicely illuminates the different nature of both
layers: the algebras from K1 are used to compute the local truth values of non-
modal formulae in particular possible words,12 the algebras from K2 are used to
compute the global truth degrees of modal formulae in a frame, where the truth
degrees of atomic formulae are obtained by measuring the collection of truth de-
grees in all possible worlds. Note that this measure is partial, i.e., not necessarily
all possible collections of truth values in all possible worlds are measurable.

11 When we speak about using an axiom γ of L2 we formally assume the existence of
a mapping τ from variables to atomic modal formulae and an axiom ϕ(v1, . . . , vn)
in FmVar

L2
such that γ = ϕ(τ (v1), . . . , τ (vn)); analogously for rules.

12 In order to prove our general completeness theorems we have to allow, unlike in the
traditional approach, possibly different algebras in different possible words.
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Definition 3. A K1-based K2-measured Kripke L-frame is defined as a tuple
F = 〈W, 〈Aw〉w∈W ,B, 〈μ�〉�∈L〉 where W is a set (of possible worlds), Aw ∈ K1

for each w ∈W , B ∈ K2, and for each n-ary � ∈ L, μ� is a partial mapping

μ� : (
∏

w∈W

Aw)
n → B.

Next we define Kripke models in the expected way: by providing evaluations of
non-modal formulae in all possible worlds. Note, however, that we also require
that any collection of truth degrees of a formula in all possible worlds (or n
formulae in the case of n-ary modalities) has be measurable. This assumption
will ensure that the truth degrees of modal formulae are always defined.

Definition 4. Let F = 〈W, 〈Aw〉w∈W ,B, 〈μ�〉�∈L〉 be a K1-based K2-measured
Kripke L-frame. For each w ∈W , take an evaluation ew : FmVar

L1
→ Aw and let

M be the tuple 〈F, 〈ew〉w∈W 〉. Given an L1-formula ϕ, we define ϕM ∈
∏

w∈W

Aw

as the function ϕM(w) = ew(ϕ).
We say say that M is a Kripke model M over F if for each n-ary � ∈ L and

non-modal formulae ϕ1, . . . , ϕn, the tuple 〈ϕM
1 , . . . , ϕM

n 〉 belongs to the domain
of μ�.

The truth value of an atomic modal formula is defined as ||�(ϕ1, . . . , ϕn)||M =
μ�(ϕM

1 , . . . , ϕM
n ). The truth value of non-atomic modal formulae is computed by

using operations from B, i.e., for each n-ary connective c ∈ L2 and each modal
formulae γ1, . . . , γn, we have ||c(γ1, . . . , γn)||M = cB(||γ1||M, . . . , ||γn||M).

We say that M is a model of a non-modal formula ϕ if ew(ϕ) ∈ FAw
for each

w ∈W; we say that it is a model of a modal formula γ if ||γ||M ∈ FB .

We conclude this section by defining Kripke frames for a given logic.

Definition 5. A measured Kripke L-frame F is a frame for an L2-modal logic
over a logic L1 if all its additional modal rules are valid in all Kripke models
over F, i.e. for any rule and any Kripke model over F which is a model of its
premises is also a model of its conclusion.

We can show that Hájek’s probability Kripke frames are exactly the {2}-
based {[0, 1]Ł}-measured frames for FP(Ł). Clearly any probability Kripke frame
is a {2}-based {[0, 1]Ł}-measured frame. We need to show that a Kripke frame
F = 〈W,2, [0, 1]Ł, μ〉 is frame of FP(Ł) iff μ finitely additive probability measure.
Both directions are relatively easy to prove, e.g. a Kripke model M is a model of
axiom A3 iff μ(ϕM∨ψM) = μ(ϕM)+μ(ψM)−μ(ϕM∧ψM) (this is equivalent with

finite additivity because necessitation and axiom A2 entails that μ(0
M
) = 0).

4 Strong Completeness Theorem

In this section we state and prove the first of our main results: the strong com-
pleteness of an L2-modal logic over a logic L1.
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Theorem 1. Let L be an L2-modal logic over a logic L1 such that Li has the
SKiC for i ∈ {1, 2}. Then the following are equivalent for each non-modal theory
Φ and modal theory Γ ∪ {γ}:

– Φ, Γ #L γ
– for each K1-based K2-measured Kripke frame F for L and each Kripke model

M over F, if M is a model of Φ ∪ Γ , then it is a model of γ.

The same equivalence holds if L1 has the FSK1C only, but only restricted to
finite sets Φ.

The proof of soundness is straightforward: the only non-trivial part is to show
the soundness of the rule (CONGR), which easily follows from the properties
of algebraic semantics (the behavior of ↔) and the fact that the interpretations
of modalities are (partial) functions.13 We prove the completeness in a series of
lemmata. The first step is to translate the modal logic L into the logic L2.

Definition 6. Take a new set of variables Varm = {p�ϕ1,...,ϕn
| � an n-ary

modality and ϕ1, . . . , ϕn non-modal formulae}. We define the translation of
modal formulae into FmVarm

L2
-formulae in the following way:

– (�(ϕ1, . . . , ϕn))
∗ = p�ϕ1,...,ϕn

, for any atomic modal formula �(ϕ1, . . . , ϕn)
– c(γ1, . . . , γn)

∗ = c(γ∗
1 , . . . , γ

∗
n), for any n-ary connective c in L2 and any

modal formulae γ1, . . . , γn

Finally, given a set Γ of modal formulae and a set Φ of non-modal formulae
we define (we write ‘Φ # Ψ ’ for ‘Φ # ψ for each ψ ∈ Ψ ’):

– Γ ∗ = {γ∗ | γ ∈ Γ}
– Φ∗ = {γ∗ | there is a set Ψ s.t. Φ #L1 Ψ and 〈Ψ, γ〉 is a modal rule of L}.

Observe that Φ∗ consists of ∗-translations of conclusions of modal rules whose
premises are provable from Φ (in particular Φ∗ always contains ∗-translations of
all modal axioms).

Lemma 1. For each set of non-modal formulae Φ and each set of modal formu-
lae Γ ∪ {γ} we have: Φ, Γ #L γ iff Φ∗, Γ ∗ #L2 γ∗.

Proof. From left to right: we take any proof of γ from Φ∪Γ in L and show that if
we omit all non-modal formulae from the proof and replace each modal formula
δ by δ∗ we obtain a proof of γ∗ from Φ∗ ∪ Γ ∗ in L2. Indeed, if δ is an axiom of
L2 or element of Γ the claim is obvious; if δ is a consequence of some modal rule
then δ∗ ∈ Φ∗; and finally if δ follows, by some rule of L2, from premises Δ, then
so does δ∗ from premises Δ∗.

From right to left: we take any proof of γ∗ from Φ∗∪Γ ∗ in L2 and construct a
new sequence of formulae. Note that for any FmVarm

L2
-formula A there is unique

modal formula δ such that δ∗ = A, i.e., we can assume that the proof consists
of formulae of the form δ∗. We distinguish the following two cases:

13 The partially of the interpretation of modalities should not come as a surprise, taking
into account the original probabilistic motivation of our work.
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– if δ∗ ∈ Φ∗ i.e., there is a modal rule 〈Ψ, δ〉 such that Φ #L1 Ψ : then we replace
δ∗ by δ preceded by a sequence of all proofs (in arbitrary order) of elements
of Ψ from Φ.

– otherwise we just replace δ∗ by δ.

Clearly, the resulting sequence is a proof of γ from Φ ∪ Γ in L. ��

For the next step of the proof of Theorem 1, let us assume that Φ, Γ �#L γ; thus,
by the previous lemma, Φ∗, Γ ∗ �#L2 γ∗. Therefore, using the assumption of SK2C
of L2, we obtain a K2-algebraB and a B-evaluation e such that e[Φ∗∪Γ ∗] ⊆ FB

and e(γ∗) /∈ FB.
Let us take W = {ϕ | Φ �#L1 ϕ}. For each ϕ ∈ W we have, by SK1C of L1,

a K1-algebra Aϕ and an Aϕ-evaluation eϕ s.t. eϕ[Φ] ⊆ FAϕ
and eϕ(ϕ) /∈ FAϕ

.
Note that if Φ is finite, then it is sufficient to assume FSK1C of L1.

Consider the structure F = 〈W, 〈Aϕ〉ϕ∈W ,B, 〈μ�〉�∈L〉, where for each n-ary
� ∈ L the corresponding partial mapping is defined as:

μ�(〈〈p1ϕ〉ϕ∈W , . . . , 〈pnϕ〉ϕ∈W 〉) =

⎧⎪⎨
⎪⎩

e((�(π1, . . . , πn))
∗) if there are πis s.t.

∀ϕ ∈ W, piϕ = eϕ(πi),

undefined otherwise.

Next we prove that we have indeed constructed a Kripke frame.

Lemma 2. F is a K1-based K2-measured Kripke frame.

Proof. We only need to show that the definition of each function μ� is sound.
Consider a measurable tuple 〈〈p1ϕ〉ϕ∈W , . . . , 〈pnϕ〉ϕ∈W 〉 such that, for each i and

each ϕ we have piϕ = eϕ(πi) = eϕ(π
′
i). To complete the proof we need to show

that e((�(π1, . . . , πn))
∗) = e((�(π′

1, . . . , π
′
n))

∗).
Our assumption entails, for each i, Φ #L1 πi ↔ π′

i (otherwise πi ↔ π′
i ∈ W

and eπi↔π′
i
(πi ↔ π′

i) /∈ FAπi↔π′
i
thus eπi↔π′

i
(πi) �= eπi↔π′

i
(π′

i), a contradiction)

and so, due to the rule (CONGR):

(�(π1, . . . , πn))
∗ ↔ (�(π′

1, . . . , π
′
n))

∗ ∈ Φ∗.

This entails that e((�(π1, . . . , πn))
∗ ↔ (�(π′

1, . . . , π
′
n))

∗) ∈ FB and, therefore,
e((�(π1, . . . , πn))

∗) = e((�(π′
1, . . . , π

′
n))

∗). ��

Thus M0 = 〈F, 〈eϕ〉ϕ∈W 〉 is a Kripke model over F; indeed the definability
condition is obviously satisfied: for each n-ary � ∈ L and non-modal formu-
lae χ1, . . . , χn, the element 〈χM0

1 , . . . , χM0
n 〉 = 〈〈eϕ(χ1)〉ϕ∈W , . . . , 〈eϕ(χn)〉ϕ∈W 〉

obviously belongs to the domain of μ�.
Note that μ� is defined only for arguments which can be uniformy described

by values of some non-modal formule in the fixed system of evaluations by
〈eϕ〉ϕ∈W ; thus it is almost always undefined. This peculiar feature of F is used
in the next lemma, which shows that all possible Kripke models over F can
be effectively described by a substitution and the model M0. The substitution
also determines the relation between truth value of a modal formula and its
∗-translation.
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Lemma 3. For each Kripke model M = 〈F, 〈êϕ〉ϕ∈W 〉 there is an L1-substitution
σ such that for each ϕ ∈W , non-modal ψ, and modal δ:

êϕ(ψ) = eϕ(σψ) and ||δ||M = e((σδ)∗).

Proof. Let v be an atomic L1-formula and take the atomic modal formula
�(v, . . . , v). By definition of Kripke model, 〈〈êϕ(v)〉ϕ∈W , . . . , 〈êϕ(v)〉ϕ∈W 〉 has
to be in the domain of μ�. Therefore, since the function is defined only in
such case, there has to be an L1-formula σ(v) such that for each ϕ ∈ W
êϕ(v) = eϕ(σ(v)) (actually, there might be many formulae σ(v) satisfying this
condition; just choose the first one in any fixed enumeration). We extend σ to
an L1-substitution and show the first claim by induction. The base case is clear.
Take ψ = c(χ1, . . . , χn). Then êϕ(c(χ1, . . . , χn)) = cAϕ(êϕ(χ1), . . . , êϕ(χn)) =
cAϕ(eϕ(σχ1), . . . , eϕ(σχn)) = eϕ(c(σχ1, . . . , σχn)) = eϕ(σc(χ1, . . . , χn)).

Now we prove the second claim first for atomic modal formulae; assume that
δ = �(χ1, . . . , χn). Then we have:

||δ||M = μ�(〈êϕ(χ1)〉ϕ∈W , . . . , 〈êϕ(χn)〉ϕ∈W)

= μ�(〈eϕ(σχ1)〉ϕ∈W , . . . , 〈eϕ(σχn)〉ϕ∈W)

= e((�(σχ1, . . . , σχn))
∗)

= e((σδ)∗).

The rest is a simple induction. ��
Having described all possible Kripke models over F we can easily prove that

F is a Kripke frame for the logic L.

Lemma 4. F is a Kripke frame for the logic L.

Proof. Consider a Kripke model M = 〈F, 〈êϕ〉ϕ∈W 〉 and a modal rule 〈Ψ, δ〉 such
that for each ϕ ∈ W we have êϕ[Ψ ] ⊆ FAϕ

. We show that Φ #L1 σ[Ψ ], where σ is
the substitution determined by the previous lemma: indeed, otherwise we would
have σψ ∈ W for some ψ ∈ Ψ and so eσψ(σψ) /∈ FAσψ

and, by the previous
lemma, êσψ(ψ) /∈ FAσψ

, a contradiction. Due to structurality we also have a
modal rule 〈σ[Ψ ], σδ〉 in L and thus (σδ)∗ ∈ Φ∗ and so ||δ||M = e((σδ)∗) ∈ FB
(the equality is due to the previous lemma). ��

Let us again consider the Kripke model M0 = 〈F, 〈eϕ〉ϕ∈W 〉 which we now
know is a model over a Kripke frame for L. Consider any world ϕ and observe
that from the definition of eϕ we know that eϕ[Φ] ⊆ FAϕ

. Furthermore observe
that for each modal formula δ we have ||δ||M0 = e(δ∗) (due to Lemma 3) and
so for each γ′ ∈ Γ we have ||γ′||M0 ∈ FB while ||γ||M0 /∈ FB . Thus we have
established that M0 is a model of Φ ∪ Γ but not of γ. This concludes the proof
of Theorem 1.

5 Finite Strong Completeness Theorem

As mentioned in the introduction several prominent logics enjoy only the finite
strong completeness theorem with respect to their intended semantics, including
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the �Lukasiewicz logic featuring in the prototypical example of Hájek’s probability
logic FP(Ł). Theorem 1 shows that if this is the case for L1, it is still not a huge
problem: we only need to restrict ourselves to finite sets of non-modal premises.
A more serious problem arises when the logic L2 does not enjoy the strong
completeness (as explained right after the next theorem).

The next theorem shows that we can obtain finite strong completeness for an
L2-modal logic over L1 even if both logics satisfy only the finite strong comple-
teness but at the price of adding some further conditions. One can easily observe
that Hájek’s probability logic FP(Ł) satisfies these conditions, thus the comple-
teness of FP(Ł) is a corollary (recalling that Hájek’s probability Kripke frames
are in fact 2-based [0, 1]Ł-measured frames for FP(Ł)).

Theorem 2. Let L be an L2-modal logic over a logic L1 such that Li has FSKiC,
L1 is locally finite and L has finitely many additional modal rules. Then the
following are equivalent for each finite non-modal theory Φ and each finite modal
theory Γ ∪ {γ}:

– Φ, Γ #L γ
– for each K1-based K2-measured Kripke frame F for L and each Kripke model

M over F, if M is a model of Φ ∪ Γ , then it is a model of γ.

Recall that, in the proof of Theorem 1, the SK2C of L2 was used to obtain a
witness showing that Φ∗, Γ ∗ �#L2 γ∗. Now we only have FSK2C so we need the
set Φ∗ ∪ Γ ∗ to be finite. The finiteness of Γ ∗ follows from the finiteness of Γ .
The analog is however not true for Φ∗: recall that Φ∗ consists of ∗-translations
of conclusions of modal rules whose premises are provable from Φ. To force this
set to be finite we need a different translation ∗. Note that for our purposes we
can safely assume that the set of propositional variables Var is finite (containing
only those occurring in Φ∪Γ ∪{γ}), therefore our assumption of local finiteness
entails that there are only finitely many non-equivalent non-modal formulae.
After we define the new translation and prove the analog of Lemma 1, the proof
of the present theorem is then the same as the proof of Theorem 1.

Definition 7. Given a non-formula ϕ, we denote the class of its equivalent
formulae as [ϕ] = {ψ | #L1ϕ ↔ ψ}. Take a new set of variables Varm =
{p�[ϕ1],...,[ϕn]

| � an n-ary modality and ϕ1, . . . , ϕn non-modal formulae}. Now
we define the translation of modal formulae into FmVarm

L2
-formulae as:

– (�(ϕ1, . . . , ϕn))
∗ = p�[ϕ1],...,[ϕn]

for any n-ary modality �
– c(γ1, . . . , γn)

∗ = c(γ∗
1 , . . . , γ

∗
n), where c is any n-connective from L2.

Finally, for any pair of sets Γ and Φ of formulae we define:

– Γ ∗ = {γ∗ | γ ∈ Γ}
– Φ∗ = {γ∗ | there is a set Ψ s.t. Φ #L1 Ψ and 〈Ψ, γ〉 is a modal rule of L}.
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Lemma 5. For each set of non-modal formulae Φ and each set of modal formu-
lae Γ ∪ {γ} we have: Φ, Γ #L γ iff Φ∗, Γ ∗ #L2 γ∗.

Furthermore Φ∗ is a finite set whenever the following conditions are met:

– Var is finite,

– L1 is locally finite, and

– L has only finitely many additional modal rules (up to substitutions).

Proof. The proof of the left-to-right direction is the same as in the proof of
Lemma 1. The converse direction is a bit more complicated; let us first fix a
‘pseudo preimage’ of ∗, i.e., any function σ assigning to each FmVarm

L2
-formula A

a modal formula σA such that (σA)∗ = A. This function has the following useful
properties:

– if 〈X,A〉 is an instance of some rule of L2, then so is 〈σ[X ], σA〉.
– Φ #L σδ∗ ↔ δ for each modal formula δ (indeed, we prove it by induction:

if δ = �(ϕ1, . . . , ϕn), then δ∗ = p�[ϕ1],...,[ϕn]
and so σδ∗ = �(ϕ′

1, . . . , ϕ
′
n) for

some ϕ′
1, . . . , ϕ

′
n such that #L1 ϕi ↔ ϕ′

i; the rule (CONGR) completes the
proof of the base case and the induction step is simple).

Next let us take any proof A1, . . . , An of γ∗ from Φ∗ ∪ Γ ∗ and construct a new
sequence of formulae by distinguishing three cases:

– Ai ∈ Φ∗ i.e., there is a modal rule 〈Ψ, δ〉 such that Φ #L1 Ψ and Ai = δ∗: we
replace Ai by σAi preceded by a sequence of proofs (in arbitrary order) of
all elements of Ψ from Φ, the formula δ and a proof of the formula δ → σAi.

– Ai ∈ Γ ∗ i.e., there is a modal formula δ ∈ Γ such that and Ai = δ∗: we
replace Ai by σAi preceded by δ and a proof of the formula δ → σAi.

– Otherwise we just replace A by σAi.

Then we add a proof of the formula σAn → γ and the formula γ. Clearly, the
resulting sequence is a proof of γ from Ψ ∪ Γ in the logic L.

It remains to be proved that Φ∗ is finite whenever the three conditions are
met. From the local finiteness of L1 and the finiteness of Var we know that
there are only finitely many non-equivalent formulae in L1. Observe that for
each modal rule 〈Ψ, γ〉 the set of formulae

{(ργ)∗ | ρ is a substitution such that Φ #L1 ρ[Ψ ]}

is finite. Since Φ∗ is a union of finitely many such sets, it has to be finite. ��
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13. Godo, L., Esteva, F., Hájek, P.: Reasoning about probability using fuzzy logic.
Neural Network World 10(5), 811–823 (2000), Special issue on SOFSEM 2000

14. Godo, L., Marchioni, E.: Coherent conditional probability in a fuzzy logic setting.
Logic Journal of the Interest Group of Pure and Applied Logic 14(3), 457–481
(2006)
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Abstract. Many efforts have been made in recent years to construct
formal systems for mechanizing mathematical reasoning. A framework
which seems particularly suitable for this task is ancestral logic – the
logic obtained by augmenting first-order logic with a transitive closure
operator. While the study of this logic has so far been mostly model-
theoretical, this work is devoted to its proof theory (which is much
more relevant for the task of mechanizing mathematics). We develop
a Gentzen-style proof system TCG which is sound for ancestral logic,
and prove its equivalence to previous systems for the reflexive transitive
closure operator by providing translation algorithms between them. We
further provide evidence that TCG indeed encompasses all forms of rea-
soning for this logic that are used in practice. The central rule of TCG is
an induction rule which generalizes that of Peano Arithmetic (PA). In
the case of arithmetics we show that the ordinal number of TCG is ε0.

1 Introduction

In light of recent advances in the field of automated reasoning, formal systems
for mechanizing mathematical reasoning are attracting a lot of interest (see, e.g.,
[10,5,6,15]). Most of these systems go beyond first-order logic (FOL), because the
latter is too weak for this task: one cannot even give in it a categorical character-
ization of the most basic concept of mathematics - the natural numbers. Using
second-order logic (SOL) for this task, however, has many disadvantages. SOL
has doubtful semantics, as it is based on debatable ontological commitments.
Moreover, it does not seem satisfactory that dealing with basic notions (such as
the natural numbers) requires using the strong notions involved in SOL, such as
quantifying over all subsets of infinite sets. In addition, SOL is difficult to deal
with from a proof-theoretical point of view.

The above considerations imply that the most suitable framework for mecha-
nizing mathematical reasoning should be provided by some logic between FOL
and SOL. A framework that seems particularly suitable for this task is ancestral
logic – the logic obtained by augmenting FOL with the concept of transitive
closure of a given relation. Indeed, ancestral logic provides a suitable framework
for the formalization of mathematics as it is appropriate for defining fundamen-
tal abstract formulations of transitive relations that occur commonly in basic
mathematics (see, e.g., [2,16,17]).
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Most of the works on ancestral logic have so far been carried out in the context
of finite model theory (see, e.g., [7]). Clearly, the focus on finite structures renders
these works irrelevant for the task of formalizing mathematics. Moreover, most
of this research has been dedicated to model theory, whereas for mechanizing
mathematics we need useful proof systems.

This work provides a proof-theoretical study of ancestral logic. In [2] a formal
proof system for ancestral logic was suggested. Therein it was stated that: “a
major research task here is to find out what other rules (if any) should be added
in order to make the system ’complete’ in some reasonable sense”. In this work
we provide an answer to this question. We show that the system proposed in [2]
is too weak, as it fails to prove certain fundamental properties of the transitive
closure operator. We then take further steps towards a useful proof system for
ancestral logic by proposing a stronger system, TCG, which is sound for this logic
and encompasses all forms of reasoning for this logic that are used in practice.
TCG is proven to be equivalent to systems previously suggested in the literature
for the reflexive transitive closure, in the sense that there are translation algo-
rithms between them that preserve provability. We further investigate the proof
theoretical method of constructive consistency proofs and show that in the case
of arithmetics the ordinal number of the system TCG is ε0.

2 Logics with a Transitive Closure Operator

In mathematics, the transitive closure of a binary relation R is defined as the
minimal transitive relation that contains R. In general, the transitive closure
operator, TC, is not first-order definable (see, e.g., [8,1]). Thus, we present an-
cestral logic, which is the logic obtained by augmenting FOL with a transitive
closure operator1. Below are the corresponding formal definitions of a first-order
language augmented by a transitive closure operator, and its semantics.

In this paper σ denotes a first-order signature with equality. A structure for
a first-order language based on σ is an ordered pair M = 〈D, I〉, where D is a
non-empty set of elements (the domain) and I is an interpretation function on
σ. To avoid confusion regarding parentheses, we use ( , ) for parentheses in a
formal language, and [ , ] for parentheses in the metalanguage.

Definition 1. Let σ be a signature for a first-order language with equality, and
let M = 〈D, I〉 be a structure for σ and v an assignment in M .

– The language LTC (σ) is defined as the first-order language based on σ, with
the addition of the TC operator defined by: for any formula ϕ in LTC (σ),
x, y distinct variables, and s, t terms, (TCx,yϕ) (s, t) is a formula in LTC (σ).
The free occurrences of x and y in ϕ are bound in this formula.

– The pair 〈M, v〉 is said to satisfy (TCx,yϕ) (s, t) if there exist a0, ..., an ∈ D
(n > 0) such that v[s] = a0, v[t] = an, and ϕ is satisfied by M and v[x :=
ai, y := ai+1]

2 for 0 ≤ i ≤ n− 1.
The logic obtained is called Ancestral Logic and it is denoted by LTC .

1 Such logics are also sometimes called Transitive Closure Logic.
2 v [x := a] denotes the x-variant of v which assigns to x the element a from D.
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In the semantics presented here, (TCx,yϕ) (s, t) requires that there should be
at least one ϕ-step between s and t. However, another well studied form of the
transitive closure operator [11,12,14] is the reflexive form, RTC.

Definition 2. Let σ be a first-order signature, and let M = 〈D, I〉 be a structure
for σ and v an assignment in M .

– The language LRTC (σ) is defined as LTC (σ) with TC replaced by RTC.
– The pair 〈M, v〉 is said to satisfy (RTCx,yϕ) (s, t) if s = t or there exist

ao, ..., an ∈ D (n > 0) such that v[s] = a0, v[t] = an, and ϕ is satisfied by M
and v[x := ai, y := ai+1] for 0 ≤ i ≤ n− 1.
Similarly, the obtained logic is denoted by LRTC .

Using equality, the two forms of the transitive closure operator are definable in
terms of each other. The reflexive transitive closure operator is definable using
the non-reflexive form by

(RTCx,yϕ) (s, t) := (TCx,yϕ) (s, t) ∨ s = t,

while the non-reflexive TC operator is definable, for example, by

(TCx,yϕ) (s, t) : = ∃z
(
ϕ

{
s

x
,
z

y

}
∧ (RTCx,yϕ) (z, t)

)

where z is a fresh variable.3
One difference between the two forms is the ability to define quantifiers. The

existential quantifier can be defined using the TC operator [2], however it cannot
be defined using the RTC operator, as we prove below.

Proposition 1. The existential quantifier is not definable in the quantifier-free
fragment of LRTC .

Proof. Take σ to consist of a constant symbol 0 and a unary predicate symbol
P . It can be easily shown by induction that each quantifier-free sentence ψ in
Lσ
RTC is logically equivalent to one of the following sentences: P (0), ¬P (0),

0 = 0, or 0 �= 0. Since ∃xP (x) is clearly not logically equivalent to any of these
four sentences, we conclude that the existential quantifier cannot be defined in
the quantifier-free fragment of LRTC . ��

The concept of the transitive closure operator is embedded in our understanding
of the natural numbers. Therefore, it is only natural to explore the expressive
power of various first-order languages for arithmetic augmented by the TC op-
erator. Let 0 be a constant symbol and s a unary function symbol. It is known
that in L{0,s}

TC together with the standard axioms for the successor function, the
following sentence categorically characterize the natural numbers:

∀x (x = 0 ∨ (TCw,u (s(w) = u)) (0, x)) (1)

3 ϕ
{

t1
x1

, ..., tn
xn

}
denotes the formula obtained from ϕ by substituting ti for each free

occurrence of xi in ϕ, assuming that t1, ..., tn are free for x1, ...xn in ϕ.
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In [2] it was also shown that all recursive functions and relations are definable
in L{0,s,+}

TC , where + is a binary function symbol. This implies that the upward
Lï¿œwenheim-Skolem theorem fails for ancestral logic, and that ancestral logic
is finitary, i.e. the compactness theorem fails for it. Moreover, ancestral logic is
not even arithmetic, thus any formal deductive system which is sound for it is
incomplete.

3 Gentzen-Style Proof Systems for Ancestral Logic

Ideally, we would like to have a consistent, sound, and complete axiomatic system
for ancestral logic. However, since there could be no sound and complete system
for ancestral logic, one should instead look for useful and effective partial for-
mal systems that are still adequate for formalizing mathematical reasoning. The
systems defined in this section are extensions of Gentzen’s system for classical
first-order logic with equality, LK= [9].

In what follows the letters Γ,Δ represent finite (possibly empty) multisets
of formulas, ϕ, ψ, φ arbitrary formulas, x, y, z, u, v, w variables, and r, s, t terms.
For convenience, we shall denote a sequent of the form Γ ⇒ {ϕ} by Γ ⇒ ϕ, and
employ other standard abbreviations, such as Γ,Δ instead of Γ ∪Δ. To improve
readability, in some derivations we omit the context from the sequents.

In [11,12,14] two equivalent Hilbert-style systems for ancestral logic in which
the reflexive transitive closure operator, RTC, was taken as primitive were sug-
gested. Below is a Gentzen-style proof system for the RTC operator which is
equivalent to the Hilbert-style systems presented in the original papers.

Definition 3. The system RTCG is defined by adding to LK= the axiom

Γ ⇒ Δ, (RTCx,yϕ) (s, s) (2)

and the following inference rules:

Γ ⇒ Δ,ϕ
{

s
x ,

t
y

}
Γ ⇒ Δ, (RTCx,yϕ) (s, t) (3)

Γ ⇒ Δ, (RTCx,yϕ) (s, r) Γ ⇒ Δ, (RTCx,yϕ) (r, t)

Γ ⇒ Δ, (RTCx,yϕ) (s, t) (4)

Γ, ψ (x) , ϕ (x, y)⇒ Δ,ψ
{

y
x

}
Γ, ψ

{
s
x

}
, (RTCx,yϕ) (s, t)⇒ Δ,ψ

{
t
x

}
(5)

In all three rules we assume that the terms which are substituted are free for
substitution and that no forbidden capturing occurs. In Rule (5) x should not
occur free in Γ and Δ, and y should not occur free in Γ,Δ and ψ.
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Rule (5) is a generalized induction principle which states that if t is a ϕ-
descendant of s (or equal to it), then if s has some property which is passed
down from one object to another if they are ϕ-related, then t also has that
property.4

We next show that RTCG is adequate for RTC, in the sense that it does give
the RTC operator the intended meaning of the reflexive transitive closure, and
can derive all fundamental rules concerning the RTC operator that have been
suggested in the literature (as far as we know).

Proposition 2. The following rules are derivable in RTCG:5

Γ ⇒ Δ,ϕ
{

s
x ,

r
y

}
Γ ⇒ Δ, (RTCx,yϕ) (r, t)

Γ ⇒ Δ, (RTCx,yϕ) (s, t)

Γ ⇒ Δ, (RTCx,yϕ) (s, r) Γ ⇒ Δ,ϕ
{

r
x ,

t
y

}
Γ ⇒ Δ, (RTCx,yϕ) (s, t)

(6)

Γ ⇒ Δ, (RTCx,yϕ) (s, t)

Γ ⇒ Δ, s = t, ∃z
(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z
x ,

t
y

})
Γ ⇒ Δ, (RTCx,yϕ) (s, t)

Γ ⇒ Δ, s = t, ∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
(7)

Γ ⇒ Δ, (RTCx,yϕ) (s, t)

Γ ⇒ Δ, (RTCy,xϕ) (t, s)

(RTCx,yϕ) (s, t) , Γ ⇒ Δ

(RTCy,xϕ) (t, s) , Γ ⇒ Δ
(8)

Γ ⇒ Δ, (RTCx,yϕ) (s, t)

Γ ⇒ Δ,
(
RTCu,vϕ

{
u
x
, v
y

})
(s, t)

(RTCx,yϕ) (s, t) , Γ ⇒ Δ(
RTCu,vϕ

{
u
x
, v
y

})
(s, t) , Γ ⇒ Δ

(9)

Γ, ϕ⇒ Δ,ψ

Γ, (RTCx,yϕ) (s, t)⇒ Δ, (RTCx,yψ) (s, t)
(10)

(RTCx,yϕ) (s, t) , Γ ⇒ Δ

(RTCu,v (RTCx,yϕ) (u, v)) (s, t) , Γ ⇒ Δ
(11)

ϕ
{

s
x

}
, Γ ⇒ Δ

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,Δ

ϕ
{

t
y

}
, Γ ⇒ Δ

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,Δ
(12)

Conditions:
– In all the rules we assume that the terms which are substituted are free

for substitution and that no forbidden capturing occurs.
4 For other works on sequent systems with induction see, e.g., [13,18].
5 These rules are counterparts of the Hilbert-style rules suggested in [11,12,14].
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– In (7) z should not occur free in Γ,Δ and ϕ
{

s
x ,

t
y

}
.

– In (9) the conditions are the usual ones concerning the α-rule.
– In (10) x, y should not occur free in Γ,Δ.
– In (11) u, v should not occur free in ϕ.
– In (12) y should not occur free in Γ,Δ or s in the left rule, and x should

not occur free in Γ,Δ or t in the right rule.

In [2] a Gentzen-style system for the non-reflexive transitive closure operator
was presented. Therein it was stated that: “a major research task here is to
find out what other rules (if any) should be added in order to make the system
’complete’ in some reasonable sense”. In this section we answer this (two part)
research question. First we show that the system in [2] is too weak for ancestral
logic, as it fails to prove certain fundamental properties of the transitive closure
operator. Then we present a stronger variation of the system which encompasses
all forms of reasoning for ancestral logic that are used in practice.

Below is the proof system for the TC operator suggested in [2].

Definition 4. The system TC′
G is defined by adding to LK= the following in-

ference rules:
Γ ⇒ Δ,ϕ

{
s
x ,

t
y

}
Γ ⇒ Δ, (TCx,yϕ) (s, t) (13)

Γ ⇒ Δ, (TCx,yϕ) (s, r) Γ ⇒ Δ, (TCx,yϕ) (r, t)

Γ ⇒ Δ, (TCx,yϕ) (s, t) (14)

Γ, ψ (x) , ϕ (x, y)⇒ Δ,ψ
{

y
x

}
Γ, ψ

{
s
x

}
, (TCx,yϕ) (s, t)⇒ Δ,ψ

{
t
x

}
(15)

The same restrictions on the rules in RTCG apply here.

While all fundamental rules concerning RTC that have been suggested in the
literature (as far as we know) are derivable in RTCG, as shown in Prop. 2, in
TC′

G this is not the case. There are fundamental properties of the TC operator
which are unprovable in TC′

G.

Proposition 3. The following valid sequents are unprovable in TC′
G:

(TCx,yϕ) (s, t)⇒ ϕ

{
s

x
,
t

y

}
, ∃z

(
(TCx,yϕ) (s, z) ∧ ϕ

{
z

x
,
t

y

})

(TCx,yϕ) (s, t)⇒ ϕ

{
s

x
,
t

y

}
, ∃z

(
ϕ

{
s

x
,
z

y

}
∧ (TCx,yϕ) (z, t)

)
(16)

(TCx,yϕ) (s, t)⇒ ϕ
{ s

x

}
(TCx,yϕ) (s, t)⇒ ϕ

{
t

y

}
(17)

where in (16) z is a fresh variable and in (17) y does not occur free in ϕ
{

s
x

}
in

the left sequent, and x does not occur free in ϕ
{

t
y

}
in the right sequent.
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Proof. Suppose the above sequents are derivable in TC′
G. It is easy to see that all

the rules in TC′
G remain valid and derivable in RTCG if we replace the operator

TC with RTC. Hence, the corresponding sequents for RTC are provable in
RTCG. However, they are obviously not valid, since (RTCx,yϕ) (s, s) holds for
all s and ϕ. ��

In general, any sequent which is valid only for the TC operator and not for the
RTC operator will not be derivable in TC′

G. The next natural question is how
should the system TC′

G be altered in order to be able to derive in it all the
basic rules for the TC operator that are used in practice. Recall that one of
the mathematical definitions of the transitive closure of a relation R is the least
transitive relation that contains R. Hence, we generalize TC′

G’s induction rule
in a way that correlates with the minimality requirement in the definition.

Definition 5. The system TCG is obtained from TC′
G by replacing Rule (15)

by:
Γ, ϕ (x, y)⇒ Δ,φ (x, y) Γ, φ

{
u
x ,

v
y

}
, φ

{
v
x ,

w
y

}
⇒ Δ,φ

{
u
x ,

w
y

}

Γ, (TCx,yϕ) (s, t)⇒ Δ,φ
{

s
x ,

t
y

}
(18)

where x, y should not occur free in Γ ∪Δ, and u, v, w should not occurr free in
Γ,Δ, φ and ϕ.

In what follows, we denote the sequent ψ
{

u
x ,

v
y

}
, ψ

{
v
x ,

w
y

}
⇒ ψ

{
u
x ,

w
y

}
by

Transx,y [ψ]. The next theorem proves that TCG is more adequate for ancestral
logic than TC′

G.

Theorem 1. TCG is an extension TC′
G and all the sequents from Proposition

3 are provable in it.

Proof. (Outline) In TCG Rule (15) is derivable by taking for φ in Rule (18) the
formula ψ (x)→ ψ

{
y
x

}
, for which Transx,y[φ] is clearly provable. To show that

the first sequent in (16) is provable in TCG, take for φ in Rule (18) the formula
ϕ (x, y) ∨ ∃z ((TCx,yϕ) (x, z) ∧ ϕ (z, y)). The provability of the other sequents
from Proposition 3 then easily follows. ��

Proposition 4. In TCG all the TC-counterparts of the rules in Proposition 2
are derivable.

Since each of the two forms of the transitive closure operator can be expressed in
terms of the other, it is interesting to explore the connection between RTCG and
TCG. Let ϕ be a formula in LTC . Define ϕ∗ to be its LRTC -translation by in-
duction as follows: for each formula ϕ in first-order language define ϕ∗ := ϕ, and
define ((TCx,yA) (s, t))

∗ to be the formula: ∃z
(
A∗

{
s
x ,

z
y

}
∧ (RTCx,yA

∗) (z, t)
)
.

Let ψ be a formula in LRTC . Then ψ′ is the formula in LTC defined by induc-
tion as follows: for each formula ψ in first-order language define ψ′ := ψ, and
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define ((RTCx,yA) (s, t))′ to be the formula (TCx,yA
′) (s, t) ∨ s = t. We use the

standard abbreviations: Γ ∗ for {ϕ∗|ϕ ∈ Γ} and Γ ′ for {ϕ′|ϕ ∈ Γ}.
First we show that any theorem of TCG can be translated into a theorem of

RTCG, and vice versa.

Proposition 5. The following holds:

1. #TCG Γ ⇒ Δ implies #RTCG Γ ∗ ⇒ Δ∗.
2. #RTCG Γ ⇒ Δ implies #TCG Γ

′ ⇒ Δ
′
.

Note that neither (ϕ′)
∗ nor (ϕ∗)

′ is syntactically equal to ϕ. For instance, for
ϕ = (TCx,yP (x, y)) (s, t), (ϕ∗)

′ is ∃z (P (s, z) ∧ ((TCx,yP (x, y)) (z, t) ∨ z = t)).
However, as the next proposition will show, (ϕ′)

∗ and (ϕ∗)′ are provably equiv-
alent to ϕ.

Proposition 6. The following holds:

1. #TCG (ϕ∗)
′ ⇒ ϕ and #TCG ϕ⇒ (ϕ∗)

′.
2. #RTCG (ϕ′)

∗ ⇒ ϕ and #RTCG ϕ⇒ (ϕ′)
∗.

Theorem 2. TCG and RTCG are equivalent, i.e. the following holds:

1. #RTCG Γ ⇒ Δ iff #TCG Γ
′ ⇒ Δ

′
.

2. #TCG Γ ⇒ Δ iff #RTCG Γ ∗ ⇒ Δ∗.

Proof. Follows immediately from Propositions 5 and 6. ��

Next we explore some proof-theoretical properties of the system TCG. A system
is said to be consistent if it does not admit a proof of the absurd, i.e. the empty
sequent. In LK=, as well as in TCG, formulas never disappear, except in cuts (the
only other simplification allowed is contraction, in which a repetition is reduced).
From this follows that there can be no cut-free proof of the empty sequent.
Thus, by proving a weak version of the cut elimination theorem which states cut
admissibility only for proofs ending with the empty sequent, one establishes the
consistency of the system.

In [9] Gentzen proved the consistency of PAG (Gentzen-style system for PA)6
by providing a constructive method for transforming any proof of the empty
sequent into a cut-free proof. A crucial step in the proof is the elimination of
all appearances of PAG’s induction rule from the end-piece of the proof.7 First,
all free variables which are not used as eigenvariables in the end-piece of the
proof are replaced by constants. Then, any application of the induction rule up
to a specific natural number is replaced by a corresponding number of structural

6 It should be noted that Gentzen did not prove full cut elimination for PAG, only
consistency.

7 The end-piece of a proof consists of all the sequents of the proof encountered if
we ascend each path starting from the end-sequent and stop when we arrive to an
operational inference rule. Thus the lower sequent of this inference rule belongs to
the end-piece, but its upper sequents do not.
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inference rules. The transformation is done in the following way. Assume that
the following application of PAG’s induction rule appears within an end-piece

.... P

ψ
{

a
x

}
⇒ ψ

{
s(a)
x

}

ψ
{

0
x

}
⇒ ψ

{
t
x

}

where P denotes the sub-proof ending with the sequent ψ
{

a
x

}
⇒ ψ

{
s(a)
x

}
. Since

all free variables were eliminated, t is a closed term and hence there is a term
s(. . . (s(0)) such that⇒ s(. . . (s(0)) = t is provable in PAG without essential cuts
or induction. Therefore, there is also a proof of ψ(s(. . . (s(0))) ⇒ ψ(t) without
essential cuts or induction. Let P (b) be the proof obtained from P by replacing
a by b throughout the proof. Replace any occurrence of the induction rule by

.... P (0)

ψ
{

0
x

}
⇒ ψ

{
s(0)
x

}
.... P (s(0))

ψ
{

s(0)
x

}
⇒ ψ

{
s(s(0))

x

}

ψ
{

0
x

}
⇒ ψ

{
s(s(0))

x

}
.... P (s(s(0)))

ψ
{

s(s(0))
x

}
⇒ ψ

{
s(s(s(0)))

x

}

ψ
{

0
x

}
⇒ ψ

{
s(s(s(0)))

x

}

These consecutive cuts are carried on up to the sequent ψ
{

0
x

}
⇒ ψ

{
s(. . . (s(0))

x

}
.

One more cut on ψ(s(. . . (s(0)))⇒ ψ(t) results in a proof of ψ
{

0
x

}
⇒ ψ

{
t
x

}
.

Can a similar method be applied to the TC-induction rule? The problem is
that Gentzen’s transformation of the induction rule uses special features of the
natural numbers that generally do not exist in TCG. To see this, notice that the
induction rule (Rule (18)) entails all instances of PAG’s induction rule by taking
ϕ to be s (x) = y and φ to be ψ (x)→ ψ

{
y
x

}
. However, in the general case ϕ is

an arbitrary formula. Thus, unlike in PAG, we do not have a “built in” measure
for the ϕ-distance between two arbitrary closed terms s and t. The ϕ-path from
s to t is not known apriori. Moreover, it does not have to be unique.

Unfortunately, this generalization of the induction principle renders this stan-
dard method for analyzing PAG inapplicable. Thus, one should look for useful
fragments of TCG in which cuts can be eliminated from proofs of the empty se-
quent. One such fragment can be obtained via restricting TCG’s induction rule
by allowing only ϕ’s of the form y = t, where x is the only free variable in t. In
this way we force a deterministic ϕ-path between any two closed terms, while
keeping the system strong enough for the task of mechanizing mathematics, as
its restricted induction rule still includes that of PAG. Exploring this direction
will be left for further research.

Another proof-theoretical method which arises from Gentzen’s constructive
consistency proofs is the assignment of ordinals to proof systems. In Gentzen’s
method, each system is assigned the least ordinal number needed for its con-
structive consistency proof. This provides a measure for a complexity of a system
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which is useful for comparing different proof systems. The constructive consis-
tency proof of PAG entails that the ordinal number of PAG is at most ε0, and
another theorem of Gentzen shows that it is exactly ε0.

Definition 6. The system TCA is obtained by augmenting TCG with the stan-
dard axioms for successor, addition, and multiplication, together with the axiom
characterizing the natural numbers in ancestral logic (Axiom (1)).

Proposition 7. TCA is equivalent to PAG.

Proof. (Outline) TCA is an extension of PAG, since Rule (18) entails all in-
stances of PAG’s induction rule. In [17] it was shown how it is possible, using a
β-function, to encode in PAG finite sequences and thus define the TC operator.
It is easy to see that the system TCA is equivalent to PAG, in the sense that
there are provability preserving translation algorithms between them. ��

Corollary 1. The ordinal number of the system TCA is ε0.

4 Conclusions and Further Research

In this paper we reviewed the expressive power of logics augmented by a transi-
tive closure operator and explored their reasoning potential. This work focused
on working out this potential by presenting effective sound proof systems for
ancestral logic that are strong enough for various mathematical needs. The next
goal is to improve the computational efficiency of these systems, in order to make
them suitable for mechanization.

We believe that ancestral logic should suffice for most of applicable mathe-
matics. Substantiating this claim by creating formal systems based on ancestral
logic and formalizing in them large portions of mathematics, is a further future
work. A promising candidate for serving as the basis for such system is the pred-
icative set theory PZF , presented in [3,4], which resembles ZF and is suitable
for mechanization. The key elements of PZF are that it uses syntactic safety
relations between formulas and sets of variables, and that its underlying logic is
ancestral logic, which makes it possible to provide inductive definitions of rela-
tions and functions. An important criterion for the adequacy of ancestral logic
for the task of formalizing mathematics is the extent to which such formalization
can be done in a natural way, as close as possible to real mathematical practice.
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Appendix

In what follows, for readability, we shall not distinguish between the sequents
ϕ ∧ ψ, Γ ⇒ Δ and ϕ, ψ, Γ ⇒ Δ as they are provable from one another.

Proof of Proposition 2:

– The first rule in (6) (The proof of the second rule in (6) is analogous.): From
Γ ⇒ Δ,ϕ

{
s
x ,

r
y

}
, using Rule (3), we can deduce Γ ⇒ Δ, (RTCx,yϕ) (s, r).

Applying Rule (4) on the last sequent and Γ ⇒ Δ, (RTCx,yϕ) (r, t) entails
a proof of Γ ⇒ Δ, (RTCx,yϕ) (s, t).

– The first rule in (7): Consider the following proof, P1:

⇒ (RTCx,yϕ) (y, y)

s = y ⇒ (RTCx,yϕ) (s, y) ϕ
{

y
x
, z
y

}
⇒ ϕ

{
y
x
, z
y

}

s = y, ϕ
{

y
x
, z
y

}
⇒ (RTCx,yϕ) (s, y) ∧ ϕ

{
y
x
, z
y

}

s = y, ϕ
{

y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})

The sequent (RTCx,yϕ) (s, w) , ϕ
{

w
x

}
⇒ (RTCx,yϕ) (s, y) is provable in RTCG

using (6). Thus, by applying standard LK= rules we can construct a proof, P2, of
∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x

})
, ϕ

{
y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
.

Denote by A (y) the formula ∃w
(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x

})
∨ s = y. From

P1 and P2 we obtain a proof of the sequent A (y) , ϕ
{

y
x ,

z
y

}
⇒ A

{
z
y

}
, from

which, using Rule (5), we deduce A
{

s
y

}
, (RTCx,yϕ) (s, t) ⇒ A

{
t
y

}
. Since

⇒ A
{

s
y

}
is derivable from the equality axiom, applying a cut on it results

in the desired end-sequent. The proof of the second rule in (7) is symmetric.
– The left rule in (8): The sequent ϕ (x, y) , (RTCy,xϕ) (x, s) ⇒ (RTCy,xϕ) (y, s)

is provable in RTCG using (6). Thus, we can construct the following proof:

ϕ
{

z
y
, s
x

}
⇒ ϕ

{
z
y
, s
x

}

ϕ
{

z
y
, s
x

}
⇒

(
RTCy,xϕ

)
(z, s)

(3)
ϕ (x, y) ,

(
RTCy,xϕ

)
(x, s) ⇒

(
RTCy,xϕ

)
(y, s)

(
RTCx,yϕ

)
(z, t) ,

(
RTCy,xϕ

)
(z, s) ⇒

(
RTCy,xϕ

)
(t, s)

(5)

ϕ
{

s
x
, z
y

}
∧

(
RTCx,yϕ

)
(z, t) ⇒

(
RTCy,xϕ

)
(t, s)

∃z
(
ϕ
{

s
x
, z
y

}
∧

(
RTCx,yϕ

)
(z, t)

)
⇒

(
RTCy,xϕ

)
(t, s)

The sequent (RTCx,yϕ) (s, t) ⇒ s = t, ∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
is

provable in RTCG using Rule (7) and s = t ⇒ (RTCy,xϕ) (t, s) is provable
using Axiom (2). From this, by cuts, we obtain a proof of (RTCx,yϕ) (s, t)⇒
(RTCy,xϕ) (t, s). The proof of the right rule is symmetric.

– The left rule in (9): In RTCG the sequent s = t⇒
(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t)

is provable. By a method similar to the one used in the proof of (8) we get the
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provability of ∃z
(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z
x ,

t
y

})
⇒

(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t).

The sequent (RTCx,yϕ) (s, t) ⇒
(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t) is then provable

by applying cuts and Rule (7). The proof of the right rule is symmetric.
– Rule (10): Consider the following proof:

(RTCx,yψ) (s, z) ⇒ (RTCx,yψ) (s, z)

ϕ ⇒ ψ

ϕ
{

z
x
, u
y

}
⇒ ψ

{
z
x
, u
y

}

(RTCx,yψ) (s, z) , ϕ
{

z
x
, u
y

}
⇒ (RTCx,yψ) (s, u)

(6)

(RTCx,yψ) (s, z) , (RTCx,yϕ) (z, t) ⇒ (RTCx,yψ) (s, t)
(5)

It is easy to see that ϕ
{

s
x ,

z
y

}
⇒ (RTCx,yψ) (s, z) is provable. From this

and the above proof, we can deduce ∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒

(RTCx,yψ) (s, t). Clearly, the sequent s = t ⇒ (RTCy,xψ) (s, t) is prov-
able in RTCG using Axiom (2). Using Rule (7) we get (RTCx,yϕ) (s, t) ⇒
s = t, ∃z

(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
, and two cuts result in a proof of

(RTCx,yϕ) (s, t)⇒ (RTCx,yψ) (s, t).
– Rule (11): The sequent (RTCx,yϕ) (s, u) , (RTCx,yϕ) (u, v) ⇒ (RTCx,yϕ) (s, v)

is provable in RTCG using Rule (4), from which, by Rule rule (5) we get
(RTCx,yϕ) (s, s) , (RTCu,v (RTCx,yϕ) (u, v)) (s, t)⇒ (RTCx,yϕ) (s, t). A cut
on the axiom ⇒ (RTCx,yϕ) (s, s) results in the desired proof.

– The left rule in (12): From ϕ
{

s
x

}
⇒, by standard LK= rules, we can derive

∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒. ByRule (7)wehave (RTCx,yϕ) (s, t)⇒

s = t, ∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
. Then, (RTCx,yϕ) (s, t) ⇒ s = t is

provable by a cut. The proof of the right rule in (12) is analogous. ��

Proof of Theorem 1:

Clearly Transx,y[ψ (x)→ ψ
{

y
x

}
] is provable. Thus, we derive Rule (15) by:

ψ (x) , ϕ (x, y) ⇒ ψ
{

y
x

}

ϕ (x, y) ⇒ ψ (x) → ψ
{

y
x

}
Transx,y[ψ (x) → ψ

{
y
x

}
]

(TCx,yϕ) (s, t) ⇒ ψ
{

s
x

}
→ ψ

{
t
x

} (18)

ψ
{

s
x

}
, (TCx,yϕ) (s, t) ⇒ ψ

{
t
x

}

To see that the first sequent in (16) is provable in TCG, take φ to be ϕ (x, y) ∨
∃z ((TCx,yϕ) (x, z) ∧ ϕ (z, y)). For any two terms r1, r2, denote by Ar1,r2 the for-
mula ∃z ((TCx,yϕ) (r1, z) ∧ ϕ (z, r2)). Clearly, ϕ (x, y)⇒ ϕ (x, y) ∨ Ax,y is prov-
able in TCG. We show that Transx,y [ϕ (x, y) ∨Ax,y] is also provable. Observe
the following sub-proof:

(TCx,yϕ) (u, v) , (TCx,yϕ) (v, a) ⇒ (TCx,yϕ) (u, a) (TCx,yϕ) (u, a) , ϕ (a,w) ⇒ Au,w

(TCx,yϕ) (u, v) , (TCx,yϕ) (v, a) ∧ ϕ (a,w) ⇒ Au,w

(TCx,yϕ) (u, v) , Av,w ⇒ Au,w
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It is easy to see that (TCx,yϕ) (u, v) , ϕ (v, w) ⇒ Au,w is provable in TCG, so
we can prove the sequent (TCx,yϕ) (u, v) , ϕ (v, w) ∨ Av,w ⇒ ϕ (u,w) ∨ Au,w.
The sequent ϕ (u, v) ∨ Au,v ⇒ (TCx,yϕ) (u, v) is also provable in TCG, hence,
φ (u, v) , φ (v, w) ⇒ φ (u,w) is provable using a cut. Now we can construct the
following derivation:

ϕ (x, y) ⇒ ϕ (x, y) ∨ ∃z ((TCx,yϕ) (x, z) ∧ ϕ (z, y)) Transx,y [φ]

(TCx,yϕ) (s, t) ⇒ ϕ
{

s
x
, t
y

}
, ∃z ((TCx,yϕ) (s, z) ∧ ϕ (z, t))

(18)

The proof of the second sequent in (16) is similar. To see that the sequents in (17)
are provable, notice that both ϕ

{
s
x ,

t
y

}
∨∃z ((TCx,yϕ) (s, z) ∧ ϕ (z, t))⇒ ϕ

{
t
y

}

and ϕ
{

s
x ,

t
y

}
∨ ∃w (ϕ (s, z) ∧ (TCx,yϕ) (z, t)) ⇒ ϕ

{
s
x

}
are provable in TCG.

From this, using (16) and cuts, we obtain the desired proofs. ��

Proof of Proposition 5:

Lemma 1. The following holds:

–
(
ϕ
{

s
x ,

t
y

})∗
= ϕ∗

{
s
x ,

t
y

}
and

(
ϕ
{

s
x ,

t
y

})′
= ϕ′

{
s
x ,

t
y

}
.

– (¬ϕ)∗ = ¬ϕ∗ and (¬ϕ)′ = ¬ϕ′.
– (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ and (ϕ ◦ ψ)′ = ϕ′ ◦ ψ′, where ◦ ∈ {∧,∨,→}.
– (Qxϕ)

∗
= Qxϕ∗ and (Qxϕ)

′
= Qxϕ′, where Q ∈ {∀, ∃}.

The proofs of (1) and (2) are carried out by induction, we state here only the
cases concerning the TC and RTC operators.

– Rule (13): By standard LK= rules derive from ⇒ ϕ∗
{

s
x ,

t
y

}
and the axiom

⇒ (RTCx,yϕ
∗) (t, t) the sequent ⇒ ∃z

(
ϕ∗

{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
.

– Rule (14): Rule (6) entails the existence of a proof in RTCG of the se-
quent ∃z

(
ϕ∗

{
r
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
⇒ (RTCx,yϕ

∗) (r, t). A cut on

the hypothesis ⇒ ∃z
(
ϕ∗

{
r
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)

results in a proof of
the sequent ⇒ (RTCx,yϕ

∗) (r, t). Applying Rule (4) on ⇒ (RTCx,yϕ
∗) (r, t)

and (RTCx,yϕ
∗) (z, r) ⇒ (RTCx,yϕ

∗) (z, r) results in a proof of the se-
quent (RTCx,yϕ

∗) (z, r)⇒ (RTCx,yϕ
∗) (z, t). By standard LK= rules derive

∃z
(
ϕ∗

{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, r)
)
⇒ ∃z

(
ϕ∗

{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
.

The desired sequent is obtained by one more cut on the hypothesis ⇒
∃z

(
ϕ∗

{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, r)
)
.

– Rule (18): From Transx,y [φ
∗] deduce φ∗ (s, x) , φ∗ (x, y) ⇒ φ∗ (s, y). Using

a cut on ϕ∗ (x, y) ⇒ φ∗ (x, y) we get φ∗ (s, x) , ϕ∗ (x, y) ⇒ φ∗ (s, y). Apply-
ing Rule (5) results in φ∗ (s, z) , (RTCx,yϕ

∗) (z, t) ⇒ φ∗ (s, t). Using a cut
on ϕ∗ (s, z) ⇒ φ∗ (s, z) we get ϕ∗ (s, z) , (RTCx,yϕ

∗) (z, t) ⇒ φ∗ (s, t), from
which ∃z (ϕ∗ (s, z) ∧ (RTCx,yϕ

∗) (z, t))⇒ φ∗ (s, t) is easily derivable.
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– Axiom (2): The translation of the axiom is ⇒ (TCx,yϕ
′) (s, s)∨ s = s, which

is easily derivable from the equality axioms.
– Rule (3): Using Rule and introduction of ∨ on the right we can deduce
⇒ (TCx,yϕ

′) (s, t) ∨ s = t from ⇒ ϕ′
{

s
x ,

t
y

}
.

– Rule (4): It is easy to see that ⇒ (TCx,yϕ
′) (s, t) , s = t can be proven from

⇒ (TCx,yϕ
′) (s, r) , s = r and ⇒ (TCx,yϕ

′) (r, t) , r = t using Rule (14) and
equality rules.

– Rule (5): Applying Rule (15), which is derivable in TCG, to the sequent
ψ′ (x) , ϕ′ (x, y) ⇒ ψ′ { y

x

}
results in the sequent ψ′ { s

x

}
, (TCx,yϕ

′) (s, t) ⇒
ψ′ { t

x

}
. Then, a cut on the provable sequent ψ′ { s

x

}
, s = t⇒ ψ′ { t

x

}
entails

a proof of ψ′ { s
x

}
, (TCx,yϕ

′) (s, t) ∨ s = t⇒ ψ′ { t
x

}
. ��

Proof of Proposition 6:

If ϕ does not contain the TC or RTC operator, then (ϕ′)∗ and (ϕ∗)
′

are syn-
tactically equal to ϕ, hence provably equivalent to it.

For (1) assume that ϕ := (RTCx,yA) (s, t). By the induction hypothesis
(A′)

∗ ⇒ A is provable in RTCG, thus
(
RTCx,y (A

′)
∗)

(s, t)⇒ (RTCx,yA) (s, t) is

provable by (10). It is easy to check that ∃z
(
(A′)

∗
{

s
x ,

z
y

}
∧RTCx,y (A

′)
∗
(z, t)

)
∨ s = t⇒

(
RTCx,y (A

′)
∗)

(s, t) is provable in RTCG (using (6) and (2)). Then,

∃z
(
(A′)

∗
{

s
x ,

z
y

}
∧RTCx,y (A

′)
∗
(z, t)

)
∨ s = t ⇒ (RTCx,yA) (s, t) is provable

by a cut on the last two sequents. For the converse, denote by ψ the sequent
∃z

(
(A′)

∗
{

u
x ,

z
y

}
∧RTCx,y (A

′)
∗
(z, w)

)
∨ s = t (notice that (ϕ′)

∗ is ψ
{

s
u ,

t
w

}
).

It is easy to see that ψ
{

s
u ,

x
w

}
, (A′)

∗ ⇒ ψ
{

s
u ,

y
w

}
is provable in RTCG. An ap-

plication of Rule (5) results in ψ
{

s
u ,

s
w

}
,
(
RTCx,y (A

′)∗
)
(s, t)⇒ ψ

{
s
u ,

t
w

}
. The

sequent ⇒ ψ
{

s
u ,

s
w

}
is provable using the equality axiom, thus, a cut entails a

proof of
(
RTCx,y (A

′)
∗)

(s, t)⇒ (ϕ′)
∗. By the induction hypothesis A⇒ (A′)

∗ is
provable in RTCG, so (RTCx,yA) (s, t) ⇒

(
RTCx,y (A

′)
∗)

(s, t) is also provable
in RTCG by (10) , and by one cut we obtain (RTCx,yA) (s, t)⇒ (ϕ′)

∗.
For (2) assume that ϕ := (TCx,yA) (s, t). It is easy to check that the sequent

∃z
(
(A∗)

′
{

s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
⇒

(
TCx,y (A

∗)
′)
(s, t) is prov-

able in TCG. By the induction hypothesis we have that #TCG (A∗)′ ⇒ A, so
by the TC-counterpart of (10) the sequent

(
TCx,y (A

∗)
′)
(s, t)⇒ (TCx,yA) (s, t)

is also provable in TCG. Now, applying a cut results in a proof of the sequent
∃z

(
(A∗)

′
{

s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
⇒ (TCx,yA) (s, t). For the con-

verse, notice that the derivability of (16) in TCG entails the provability of(
TCx,y (A

∗)
′)
(s, t) ⇒ (A∗)

′
{

s
x ,

t
y

}
∨ ∃z

(
(A∗)

′
{

s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′)
(z, t)

)
.

Clearly, the sequent (A∗)′
{

s
x ,

t
y

}
⇒ ∃z

(
(A∗)′

{
s
x ,

z
y

}
∧ z = t

)
is provable, and

again, using the induction hypothesis on A together with the TC-counterpart
of (10) we get that (TCx,yA) (s, t) ⇒

(
TCx,y (A

∗)′
)
(s, t) is provable in TCG.

Applying cuts results in a proof of the sequent (TCx,yA) (s, t)⇒ (ϕ∗)
′. ��
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Abstract. Recent developments in theoretical physics have highlighted interest-
ing topological features of some two-dimensional particles, so-called anyons, that
can be used to realise robust quantum computation. In this paper we show how
an anyon system can be defined as a calculus of quantum functions, i.e. linear
transformations on the space of all possible physical configurations of a set of
anyons. A computation in this calculus represents the braiding of anyons and the
final term of a computation corresponds to the outcome of a measurement of the
anyons final fusion state, i.e. in general a probability distribution on the set of
all possible outcomes. We show that this calculus describes a universal anyonic
quantum computer provided that the space of terms satisfies some topological
properties.

1 Introduction

The theory of computation has greatly evolved since its introduction that can be dated
back to the pioneering works by Church, Gödel, Turing, Kleene, von Neumann and
Shannon. Recent research has highlighted the role of the physical laws governing com-
putation and has discovered the world of Quantum Computation (see e.g. [4,15]). The
quantum theory of computation is a generalisation of the classical theory in the same
way as quantum physics is a generalisation of classical physics. Quantum computers
could outperform their classical counterparts if they were realisable [19,12]. Unfortu-
nately, the problem of implementing quantum computation that is resilient to errors
is enormously difficult, given that it has to obey the laws of quantum mechanics that
are easily broken by the environment interaction: local errors, thermic noise and de-
coherence are the the main obstacles that need to be overcome. Topological Quantum
Computation (TQC) was introduced in [14] (see also [7,8]) as an alternative paradigm
for quantum computation which offers the possibility to face these problems. It exploits
the topological properties of anyons, i.e. physical (quasi-)particles which are insensitive
to local perturbations. They exhibit richer exchange statistics than the particles used in
quantum circuits (fermions or bosons): when two anyons are exchanged then the sys-
tem’s wave function is altered, while taking an electron (or boson) around another elec-
tron (or boson) does not produce any modification. This implies that anyons can have a
richer set of statistical behaviours, possibly different from fermions or bosons. This dis-
covery opened up a new and promising branch in the research in quantum computation.

By focusing in particular on computability theory and formal languages, a formalism
similar to the Turing Machine was introduced in [4]. This formalism, called Quantum
Turing Machine (QTM), provides a model for quantum computation and a base for the
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definition of quantum complexity classes generalising the standard ones. In particular,
in [2] it is used to define the quantum analog of the class of effectively computable
functions on a classical computer, namely the class BQP of functions computable with
bounded error, given quantum resources, in polynomial time. The universality of the
QTM model was defined in [4] with respect to a ‘physical’ version of the classical
Church-Turing thesis. This states that Every finitely realisable physical system can be
perfectly simulated by a universal model computing machine operating by finite means.

Like in the classical case, the expressivity of any other quantum computational for-
malism is asserted by comparison with the QTM: it is universal if it can simulate the
universal QTM, and in general we could assert that all ‘reasonable’ computational mod-
els which add the resources of quantum mechanics (or quantum field theory) to clas-
sical computation yield classes that can (efficiently) simulate each other, so that there
is one quantum theory of computation [8]. Among the various models that have been
introduced so far, the quantum circuits [6,5] was shown (quantum) Turing-equivalent
in [16] and the quantum λ-calculus [3,18] in [3]. Computational universality has been
shown also for other quantum models, whose definition is strongly tied to the properties
of quantum mechanics and therefore with no classical analogues(measurement-based
quantum computation, adiabatic etc.). The model of TQC has also no direct counterpart
in the classical computability theory. It is additionally more distant from the other quan-
tum models which all share the idea of computing with elementary particles (qubits)
realisable from fermions or bosons. Moreover, its properties hint to some potentialities
that are new compared to qubit-based quantum computation.

The equivalence between TQC and the quantum circuits model is established in
[9,10] by showing that for any quantum circuit it is always possible to construct a modu-
lar functor (braiding) that approximate the circuit up to a given threshold δ > 0 in poly-
nomial time. In this paper we introduce a formalisation of TQC that we call anyonic
calculus. An anyonic calculus is essentially a rewriting system consisting of a single
transformation rule (variable substitution) and a single function definition scheme, just
like Church’s λ-calculus. However, differently from the latter, our calculus represents
an anyonic computer, that is a quantum system of anyons where computation occurs by
braiding a fixed number of anyons among them for some fixed time [21].

We investigate the question of computational universality for TQC, namely the exis-
tence of an anyonic quantum computer [21] that is able to simulate any program on any
other anyonic quantum computer, and we show that the anyonic calculus satisfies this
property.

2 The Anyonic Calculus

Computations with anyons is typically expressed in the languages of physics, abstract
algebra or category theory. However, the typical approach to expressing computation in
computer science is by means of programming languages and computational models.

For classical computation, the λ-calculus [1] can be seen as the smallest universal
programming language: it consists of a single transformation rule (variable substitu-
tion) and a single function definition scheme. It was introduced in the 1930s by Alonzo
Church as a way of formalising the concept of effective computability. The calculus
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is universal in the sense that any computable function can be expressed and evaluated
using this formalism. It is thus equivalent to Turing machines.

In this section we present a formal calculus for TQC which makes this new paradigm
more amenable to investigations in the realm of theoretical computer science (such as
the study of computability and complexity issues), and provides a more suitable base
for the design of quantum programming languages.

We define a calculus of anyons in analogy with the classical λ-calculus, i.e. as a
calculus of terms with operations on them corresponding to the lambda-abstraction and
function application. We therefore call this calculus the anyonic λ-calculus,Aλ.

For a background on TQC we refer to Appendix A.

2.1 Anyon Trees

In order to correctly re-produce the anyons behaviour in our calculus we need to have
a closer look at the Hilbert space of anyons, or fusion space, i.e. the space of states
that corresponds to the fusion process (see Appendix A). In order to manipulate anyons
we must consider the process dual to fusion, or splitting, that applies the same rules
but in reverse order. The splitting process creates trees of anyons that we can define as
follows:

Definition 1. An anyon tree is a tree where every internal node has two children la-
belled by the two anyons resulting from a splitting rule applied to the anyon labelling
the node.

We obtain different trees depending on

– the shape of the tree resulting from the choice of the anyon to which we apply the
fusion rules;

– the type of the anyons in the tree, resulting from the fusion rule chosen at every
step of the construction of the tree.

We call the anyons at the leaves of the tree leaf anyons, the anyon at the root root anyon
and the remaining anyons internal anyons. The pentagon and hexagon equations (see
Appendix A) relate the different trees obtained by fusing the same set of anyons to the
same result. The first are related to the associativity of the fusion rules and the second
to the clockwise exchange of two anyons a and b.

In physical terms a system of anyons consists of a closed oriented surface Σ with
anyons of types a1, . . . , am located at distinct points p1, . . . , pm, so as to form the desired
configuration. In our setting, we look at these anyons as the leaves of a tree constructed
according to the splitting rules of a given model, that is as the final configuration of
ground states at the end of the splitting process. This is the configuration to which
unitary transformations can now be applied in order to perform the desired elaboration
of the information encoded in the anyonic system. These final trees are the physical
counterparts of the terms of the anyonic calculus we are going to introduce.

There will be as many trees as the number of splitting rules for each internal anyon.
These trees representing the same global charge, the root, are orthogonal to each other
as they have different internal nodes. We use the orthogonal trees with the same shape
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as a base of our computational space and we consider a particular shape as the one
defining the standard form of anyon trees. This is obtained when the tree is constructed
by selecting at each level always the leftmost anyon as the splitting element.

In the following we will denote anyons by their types1, and we will refer to them by
a, b, . . . or 1, 2, . . . ,m, if T = {a, b, . . .} or one enumeration of them T = {a1, a2, . . . , am}
is used to indicate the set, respectively.

Definition 2 (Splitting space). Given an anyon model that specifies the set T of anyon
types and the set of fusion rules, the splitting space Vsplit is the set of all the anyon trees
obtained by fixing the number m and types of the leaf anyons and the root anyon.

Mm = Vsplit := Va0
a1⊗a2⊗a3···⊗am

, with ai ∈ T .

We can now introduce the notion of anyonic term and anyonic calculus. We call this
calculus AλT for its analogy to the classical lambda calculus. The index T indicates
the parametrical definition of the terms and the computational rules of the calculus with
respect to the types and the fusion rules of the anyonic system where the computation
physically takes place.

2.2 The Language of Terms

Intuitively, an anyonic term represents an element in (a subspace of) the Hilbert space
of fusion trees,M, associated to an anyon system.

In order to formally define an anyonic term we assume a fixed set of elementary
particles corresponding to the set of anyons that we want to operate on to perform a
given computation.

Syntax An anyonic term T in the Hilbert spaceMm associated to an anyon system of
m anyons is inductively defined by the following syntax:

T ::= v variable
| λv.T function abstraction
| T1T2 function application
| d1T1 ⊕ . . . ⊕ dnTn superposition

A variable v is any fusion tree inMk with k ≤ m, whereMk is a subspace ofMm.
Function abstraction is any anyonic term T with some un-specified sub-tree repre-

sented by the variable v. The fusion space of v is called the scope of the function T
and v is said to be bound in λv.T . Variables in a term T that are not bound are called
free, and an anyonic term with no free variables is called a closed term. We assume here
the standard definitions of free variables and variable renaming that can be find in any
treatment of the classical λ- calculus (see e.g. [1]).

Function application represents the basic operation of the calculus. It denotes the data
T1 considered as an algorithm applied to the data T2 considered as input. Operationally,

1 By ‘type’ we mean here the kind of physical charge of the particle and not the type of the term
in the sense of type theory.
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it captures the notion of reduction, i.e. the process of computation; semantically, it de-
scribes the output of this process. This will be discussed in Section 3 where we will
introduce an operational semantics for this calculus.

Superposition2 of terms can be seen as a choice among the terms Ti all belonging
to the Hilbert subspaceMm. The coefficients di are complex numbers whose physical
meaning is related to the dimensionality corresponding to the various fusion processes.

Since terms are vectors in a Hilbert space, the λ-abstraction can be seen as both a
vector and a linear operators; thus we can define

λv.(d1T1 ⊕ . . . ⊕ dnTn) = d1λv.T1 ⊕ . . . ⊕ dnλv.Tn.

Examples Consider an anyon system of four anyons of types T = {a, b, . . .}. Then
the following are anyonic terms in standard form (numerical subscripts indicates here a
position in the tree):

a0

a4

a6

a3

a5

a1 a2 ,

a0

a4

a6

a3

a5

a1 a2

⊕
a0

a4

b6

a3

b5

a1 a2

⊕ · · ·

, a1 a2

y

a3

x

The last term is a variable v representing any tree in the subspaceM3 ⊆ M4 (x and
y are place-holders for any type a, b, . . ., which is consistent with the fusion rules of the
anyon system).

An important notion for defining the meaning of function application is the notion
of substitution.

Definition 3. Given an abstraction λv.T and a superposition of terms T ′ = d1T ′1 ⊕
d2T ′2 ⊕ · · · ⊕ dkT ′k, the substitution of T ′ in T is defined by:

T [T ′/v] = d1T [T ′1/v] ⊕ d2T [T ′2/v] ⊕ · · · ⊕ dkT [T ′k/v].

Note that T can be a superposition too; in this case the linearity of the abstraction
operators applies, as explained before.

In a similar way as in classical λ-calculus, we can define an equivalence relation on
anyonic terms by means of a β-conversion rule.

Definition 4. Let T and T ′ be two anyonic terms. Then we define

(λv.T )T ′ = T [T ′/v],

where we assume that no variable occurring freely in T ′ becomes bound after its sub-
stitution into T.

2 Physicists denote the superposition with a single tree without specifying any internal anyon;
this is to stress that the anyon system is unique for all the trees.
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3 Operational Semantics

As in the pure λ-calculus, the only means to compute in the anyonic calculus is the
application of functions to their arguments. This is classically defined by the β-reduction
rule [1]. We introduce here a similar computational rule, although, as it will be clear
later, the resulting operational semantics is very different from the classical one.

Computational Space As mentioned before the pentagon and hexagon equations (se
Appendix A) induce a tree equivalence that we can define as follows.

Definition 5. T1 ∼ T2 iff the internal anyons of T1 and T2 have identical types.

We take as a representative of each equivalence class the tree in standard form in that
class. Thus we can define the computational space of our calculus as the quotient space
S = Vsplit |∼, and consider only trees in standard form in the definition of the computa-
tional process.

Example 1. The following trees are equivalent

a

c

b

o

a

b

e
∼

a

c

b

o

a

b

e

The internal anyons are produced by the same splitting rules and have the same types.
The term on the right hand side is in standard form and is the representative of this
equivalence class.

Physically a computation on a system of non-Abelian anyons is performed in three
basic steps:

1. Create anyons and arrange them in some initial configuration
2. Braid anyons
3. Detect anyonic charge by measuring the final configuration.

In our Aλ calculus we suppose that the initial term T encode the creation process;
thus T is the fusion state constructed by creating pairs of anyons from the vacuum and
successively splitting them until the anyon configuration is obtained that represent the
desired input. This term must then be rewritten into a new term by applying a reduction
step and so on until we reach a term encoding the desired result. Clearly, if we want
to model anyons evolution, we need to define the elementary step T → T ′ as a unitary
transformation on the leaves of the term T representing the pairwise anyon braiding.
This operator can be implemented by means of the F and R matrices of the given anyon
system (see Appendix A). Intuitively, the transformation F encodes the associativity
of the fusion rules by identifying the fusion spaces Vd

abc = Vd
(ab)c = Vd

a(bc) resulting

from the fusion process abc→ d. As the two descriptions Vd
(ab)c and Vd

a(bc) of the space

Vd
abc correspond to different orthogonal bases (trees have different shapes), F effectively

corresponds to a base change and define the probability of a fusion result. R performs
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the clockwise exchange of two particles they have a direct fusion channel (they are
‘contiguous’ leaves in our tree representation). The statistical evolution of the state
when this exchange occurs in two spatial dimensions results in a phase factor which
is used to calculate the final statistics. When the two particles have no direct fusion
channel then F allows us to transform the basis states so as to make them contiguous.
Thus the braiding operator Ba,b is in general a composition of R and F operators.

The notion of derivation we next introduce captures this stepwise evolution of an
anyons configuration.

Definition 6 (Reduction relation). Given an anyon system with types T , let T, T ′ ∈
AλT . We define the reduction relation ⇒ as the symmetric, reflexive and transitive
closure of the one-step relation→i j defined by

T →i j T ′ iff T ′ = Bi jT,

i.e. the anyon tree corresponding to T ′ is obtained by exchanging ai and a j in the anyon
tree for T .
We call a sequence σ of elementary steps Bi j a derivation in AλT . If T ⇒ T ′ holds
then we say that there exists a derivation inAλT for T and we call T ′ the result of the
derivation.

Note that the symmetry of the transition relation⇒ derives from the unitarity of the
transformation defining→i j.

We now define the core of our calculus, that is function application. Given an ab-
straction term λv.T and a term T ′, the application of λv.T to T ′ is obtained in three
steps: (1) ‘binding’ v to T ′, (2) ‘evaluate’ T after the instantiation, (3) ‘read’ the result.
In the classical lambda-calculus this is called the β-reduction, and is the base of its op-
erational semantics (in any of the different forms it is defined) [1]. In order to define
an operational semantics for our anyonic calculus we therefore only need to formally
define what ‘binding’, ‘evaluate’ and ‘read’ means when we work with anyonic terms.

Binding means that we instantiate the subtree v in T by substituting in the abstrac-
tion term v with T ′, i.e. the value of its argument. It represents the physical process of
performing in T all the splittings occurring in T ′i in the appropriate sequence.

Function application is realised by applying a braiding, i.e. a sequence of computa-
tional steps→i j, to the instantiated tree T [T ′/v]. Intuitively this braiding represents the
procedure T and realises the computation or term evaluation.

Definition 7. Let λv.T ∈ AλT be an abstraction term and let B = T ⇒ T1 be a
derivation inAλT . Then we define (λv.T )T ′ to be the term B(T [T ′/v]).

It is easy to see that this definition of function application is correct, i.e. the term
produced by this rule is indeed an anyon tree and therefore a AλT -term.

Proposition 1. Let λv.T ∈ AλT . Then for any T ′ ∈ AλT we have that (λv.T )T ′ ∈
AλT .

The last step of an anyonic computation consists of reading the result, which in
quantum computation essentially means measuring the final state. We can obtain this
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by applying the same fusion rules used for constructing the initial term (input) in the
reverse order and then extract the result produced by the phase introduced by braiding.
We illustrate this process in Section 5.

A feature of anyonic quantum computation that distinguishes the AλT from classi-
cal the λ-calculus is that braiding is an approximation process whose only termination
criterion is given by the level of precision one aims to achieve for a given computation.
Thus inAλT , classical notions such as confluence or normalisation play a different role.
Anyonic computation does not compute normal forms in the sense of closed terms to
which no more reduction steps can be applied, and is deterministic (as it is reversible).
Nevertheless, we can still impose a necessary condition on termination for the deriva-
tion in the AλT -calculus, namely that a derivation must always produce a closed term
as a result. This condition would allow us to guarantee that all functions have been
calculated by the anyonic computation.

4 Universality

A well-known result from classical computability theory is the existence of a universal
Turing machine that can calculate any recursive function, decide any recursive lan-
guage, and accept any recursively enumerable language. According to the Church-
Turing thesis, the problems solvable by a universal Turing machine are exactly those
problems solvable by an algorithm or an effective method of computation, for any rea-
sonable definition of those terms. For these reasons, a universal Turing machine serves
as a standard against which to compare computational systems, and a system that can
simulate a universal Turing machine is called Turing complete. All known Turing com-
plete systems for classical computation have been shown to be Turing equivalent, i.e.
they all compute precisely the same class of functions as do Turing machines. It is
well-known that the lambda-calculus is among these systems.

Although, the Quantum Turing Machine provides a formalism similar to the classi-
cal Turing Machine for quantum computability, the question of what a universal QTM
could be in the sense specified above is not yet completely solved. The extended Church-
Turing thesis proposed by Deutsch and mentioned in Section 1 allows us to assert when
a quantum model is universal in the sense that it can compute the same class of func-
tions as the Quantum Turing Machine. However, we are not able to say what happens
at Planck scale energies: at that level there may well be observables that are not even
computable functions in the sense of Turing.

Here we address the restricted notion of computational universality, i.e. the analog
of classical Turing-completeness. In quantum computation this is established in terms
of approximate realisations of a computable function, thus a Universal Quantum Com-
puter is a machine that is able to realise, at any accuracy, all the unitary operators in the
space SU(N), i.e. the space of all special unitary matrices N × N, representing all the
possible quantum circuits.

According to this notion, is theAλ-calculus introduced above universal? The follow-
ing proposition gives a condition for universality in terms of the property of the anyon
system that the calculus represent.
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Proposition 2. Given an anyonic system with types T , the anyonic calculus AλT is
universal iff the set of all elementary operators {Bi j}ai ,aj∈T generates a group that is
dense in SU(N).

Proof. This is a consequence of the result in [11] showing that if F and R span a dense
set of unitaries acting on the qubits , then the corresponding anyonic model supports
universal quantum computation implemented just by braiding anyons.

5 An Example

We describe an example that shows how anyonic computation can be expressed in our
calculus. We work with the Fibonacci anyon model [20]. In this model the set of anyons
types is T = {1, τ} and there is only one fusion rule with two possible results, namely
τ ⊗ τ = 1 ⊕ τ (τ is the only non-Abelian type). In [13] it is shown how to encode
quantum gates in the Fibonacci anyon model. In this encoding a qubit is simulated by
means of three τ anyons and a gate by a sequence of rotations on them. We consider
the simulation of the Controlled-Phase operation (CP operator), that works on a register
of two qubits: if the first (the controller) is set then a change of phase is applied to the
second (the target).

The implementation of the CP operator with anyons is given by means of the fol-
lowing two sequences of rotations, calculated in [13],

Controller = B2 ·B4
3 · B

2
2 · B

−4
3 · B

2
2 · B

2
3 · B

2
2 · B

6
3 · B

2
2 · B

−2
3 · B

2
2 · B

−2
3

·B4
2 · B

−4
3 · B

4
2 · B

−2
3 · B

−2
2 · B3

P = B−2
4 ·B

2
3 · B

4
4 · B

4
3 · B

2
4 · B

4
3 · B

4
4 · B

2
3 · B

−2
4 · B

2
3 · B

4
4 · B

4
3 · B

2
4 · B

4
3 · B

4
4.

The Bi operators are rotations and the whole sequence CP is the braid that encodes an
approximation of the Controlled-Phase operator. Each Bi is represented in the model
as a matrix of complex numbers, which works on the splitting space V1

τ⊗τ⊗τ⊗τ⊗τ⊗τ. This
space contains trees with six anyons of type τ for the leaves and an anyon of charge 1
as the root. The exponent in the Bi’s indicates the power of the matrix, i.e. the number
of times it has to be applied. Since the base of V1

τ⊗τ⊗τ⊗τ⊗τ⊗τ is composed by five vectors,
the Bi’s are 5x5 matrices. The sequence of rotations in the anyon model corresponds
to the product of all the generators occurring in the braid; thus by multiplying the Bi

matrices as expressed in CP we obtain the following matrix

CP :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eiα 0 0 0 0
0 eiα 0 0 0
0 0 1 0 0
0 0 0 e−iα 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The anyonic terms of our calculus for this computation are terms belonging to the
space of anyon trees with six τ anyon leaves and root anyon 1. Consider the following
variable term x and function abstraction term λx.T .

The second term represents the Controlled-Phase operation applied to a register of
two qubits of which the first one (the control qubit) is a variable. Depending on the
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x =

τ1 τ2

x1

τ3

x

x

τ3τ1 τ2

x1

τ

τ6τ4 τ5

τ

1

C

P

C−1

τ1 τ6τ2 τ3 τ4 τ5

value we will give to the variable x, the change of phase operation is applied or not. The
value of the variable x can be taken to simulate the qubit state 1, 0 or any superposition.

Consider the term u:

τ1 τ2

τ

τ3

τ

x = τ

τ3τ1 τ2

x1 = τ

τ

τ6τ4 τ5

τ

1

Controller

P

Controller−1

τ1 τ6τ2 τ3 τ4 τ5

τ τ

1

Fig. 1. Simulation of the CP operator
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This term belongs to the same splitting space of x and ca be taken to represent
the qubit state |1〉. The function application (λx.T )u simulates the application of the
Controlled-Phase operator to the qubit register |11〉. We obtain the term T [u/x], to which
we now apply the sequence of rotations, σ =CP resulting in the term αT ′[u/x].

In order to read the result we now measure the resulting term in the base {Ti} of the
splitting space, i.e. we apply the projection operators PTi . In our calculus the projection
operators are the terms in the fusion space V ((τ⊗τ)⊗τ)⊗(τ⊗(τ⊗τ))

1 (the dual of the splitting
space) and are represented by upside-down trees. The complete computation is depicted
in Figure 1. The reason why we need to construct a whole reverse tree instead of operat-
ing just on the leaf anyons is explained by the non-locality of TQC: we cannot fuse the
anyons and read the charge of the last anyon as the information is stored in the whole
system. After the measurement, we obtain α, the change of phase has been applied since
the controller has value 1.

6 Conclusions and Related Work

We have presented a formal calculus for topological quantum computation that captures
the essential mechanisms of programming and can therefore be used for the specifica-
tion of quantum programming languages features, quantum language design and imple-
mentation, and the study of quantum type systems. These are all directions we intend
to pursue as future work.

Other forms of λ-calculi have been introduced so far as a model for quantum com-
putation, which all refer to the paradigm of quantum circuit (unitary transformations)
on qubits. However, to the best of our knowledge, the Aλ-calculus introduced in this
paper is the first one which refers to the anyon-based quantum computation paradigm.
Among the various proposals of quantum λ-calculi, we mention the one introduced in
by [3] which extends the classical untyped lambda calculus with quantum variables and
unitary operators on them. The main structure of this calculus is the configuration, i.e.
a triple formed by a quantum register, a set of variables and a classical λ-term. The set
of variables indicates all the variables occurring in the term, while the register gives
the values of the variables. The authors use so-called ‘classical control paradigm’: at
each β-reduction there is a check on the variables which the reduction rule operates on;
this avoids to perform illegal quantum operations on the quantum variables. To avoid
the copy of quantum variables, the reductions under the scope of !-pattern is forbidden.
The computation proceeds by applying reduction rules to the term and terminates when
the term cannot be further reduced. Measurement of the result is performed by checking
the values of the variables in the register. This calculus has been shown to be equivalent
to the Quantum Turing Machine and therefore able to express all quantum programs
that can be executed on any quantum circuits.

Another quantum λ-calculus was introduced in [18]. Contrary to [3], this calculus is
a typed lambda calculus where a type system is used to statically avoid not permitted
operations on quantum data and the duplication of functions.

Differently from these calculi, which both use the so-called ‘quantum-data-classical-
control’ paradigm, in Aλ there is no classical component and all terms are purely
quantum.
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A Physics Background

Anyons are quasiparticles that live in a two-dimensional space. Their behaviour is
described by exchanging one particle with another. This exchange rotates the sys-
tem’s quantum state. They were discovered at the end of the 1970’s when Leinaas and
Myrheim observed that these particles did not obey either Bose-Einstein statistics or
Fermi-Dirac statistics and therefore could not be identified neither with bosons nor with
fermions, the only two physical particles known up to then.

From two anyons we can generate a new one by applying the fusion rules a ⊗ b =
Nc

a bc, where the number Nc
a b(∈ N) indicates the different ways of fusing a and b into

c. These rules give the charge of a composed particle in terms of its constituents, and
determine the particular anyonic model. We can use them in the opposite direction in
order to split c into a and b and obtain two anyons from one. In this case we refer to the
rules as splitting rules.

An anyon type a for which
∑

c Nc
a b > 1 is called non-Abelian. In other words, a

non-Abelian anyon is one for which the fusion with another anyon may result in anyons
of more than one type. This property is essential for computation because it implies
a quantum dimension greater than 1 and therefore allows us to construct non-trivial
computational spaces, i.e. spaces of dimension n ≥ 1 of ground states where to store
and elaborate information.

Considering the dual splitting process, a non-Abelian anyon can therefore have more
than one splitting rule that applies to it, e.g. a ⊗ b = c and e ⊗ b = c. Given an anyon
of type c we can split it into two new anyons a, b and obtain a tree, then we can apply
another rule and obtain a tree with leaf anyons c, d, b and root c. We can also split
c into e, b and, supposing that there exists a fusion rule that split e into c, d, we can
again split this state. The two resulting trees have leaf anyons and root anyon of same
type, and differ only for the internal anyon a, e. Since we have obtained a, e splitting
c, this two trees are orthogonal. Fixing the root and a fixed set of leaf anyon types, the
set of orthogonal trees forms a base of the splitting space. Applying all the possible
fusion rules that generate the leaf anyons we obtain also other (non orthogonal) trees
which have different shapes and contain only copies of information. This is because the
total charge is conserved by locally exchanging two anyons. Thus, trees with different
shapes which are obtained by applying the same splitting rules are ‘equivalent’ from a
computational viewpoint, since they have the same information content.

The dimension D(m) of a splitting space Hm is calculated from the fusion rules by
the formula

∑

x∈Types

Nxm+1
a1 a2

Nxm+2
xm+1 x3

· · ·Na0
x2m−1 am

,

where N
xm+1+ j
a j a j+1

is the coefficient of the fusion rule that fuses the anyons a j a j+1 in the
anyon xm+1+ j.

Example 2 (Splitting space dimension). Consider the Fibonacci anyon model [17]. In
this model the only types are { 1, τ }. The splitting space dimensions are calculated by
the formula (τ ⊗ τ) ⊗ τ = 2 · τ + 1 · 1. We therefore obtain the following spaces:
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– S τ3 of dimension 2 composed of the following two trees t1 and t2
τ

τ

1

τ τ

τ

τ

τ

τ τ

– S 1
3 of dimension 1 composed of the tree

τ

1

ττ τ

Consider now the Ising anyon model [17]. This model has types { 1, σ, ψ }. The split-
ting spaces are calculated by the formula (σ⊗σ)⊗σ = 0 ·σ+2 ·ψ+2 ·ψ. In this model
we can construct the spaces:

– S σ4 of dimension 0,
– S ψ4 of dimension 2 composed of the trees

σ

ψ

σ

ψ

σ

σ

σ σ

ψ

σ

1

σ

σ

σ

– S 1
4 of dimension 2 composed of the trees

σ

1

σ

ψ

σ

σ

σ σ

1

σ

1

σ

σ

σ

The different trees obtained by fusing the same set of anyons to the same result are
related by a set of equations, called the pentagon identities, expressing the associativity
of the fusion rules via the operator F:

(Fc
abz)

l
o(Fc

oae)z
b =

∑

o′
(Fl

bae)
c
e(Fc

ao′e)l
b(Fb

aba)o′
o .

To use an anyon system for performing computations essentially means to look at the
exchanges of the anyons of the system as a process evolving in time, i.e. looking at the
system as a 2+1 dimensional space. This corresponds to braiding the threads (world-
lines) starting from each anyon of the system. The braiding process causes non-trivial
unitary rotations of the fusion space that are governed by so-called hexagon equations
which relates the fusion of three anyons by a sequence of fusion rearrangements and
braiding operations:
∑

b

(F4
231)c

bR1b
4 (F4

123)b
a = R13

c (F4
213)c

aR12
a ,

where Rab
c is the phase given by the braiding operation between anyons a and b with

fusion outcome c. We refer to [17,21] for a more complete treatment of TQC.
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Abstract. We derive two novel theorems regarding pre-fixed points of
non-monotonic functions and demonstrate that they have immediate ap-
plications in logic programming and formal grammars. In particular, the
results of the paper lead to a natural generalization of the model inter-
section theorem for definite logic programs, to the more general class of
normal logic programs. Moreover, the obtained results also offer the first
(to our knowledge) model intersection result for Boolean grammars.

1 Introduction

The area of non-monotonicity has proven to be a quite fruitful one for Computer
Science. On the practical side, non-monotonicity has found numerous applica-
tions in artificial intelligence, databases, programming languages and formal lan-
guage theory. On the more theoretical side, the study of non-monotonicity has
triggered the extension of classical fixed-point theory in order to apply to the
case of non-monotonic functions [3,4].

This paper further contributes to the development of a novel non-monotonic
fixed point theory. Our starting point is a recently introduced formal frame-
work [5,6] for studying the properties of a broad class of non-monotonic func-
tions over specially structured complete lattices. The key objective of this new
framework is to obtain novel fixed point results regarding functions that are not
necessarily monotonic. More specifically, the starting point of the framework
developed in [5,6], is a complete lattice (L,≤) equipped with a family of pre-
orderings, that give rise to another ordering relation *. It was proved in [5,6]
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that if the preorderings over L obey certain simple and natural axioms, then the
structure (L,*) is also a complete lattice. Moreover, it was demonstrated that
a large class of functions f : L → L which may not be monotonic with respect
to *, possess a *-least fixed point. Finally, it was shown that the new fixed
point theorem generalizes both the Knaster-Tarski and the Kleene fixed point
theorems (when f is monotonic or continuous respectively).

In this paper we extend the study carried out in [5,6] and we obtain two novel
theorems regarding pre-fixed points of functions f : L → L. The first theorem
states that if L satisfies certain simple axioms and if X is a set of pre-fixed points
of f with respect to ≤, then the greatest lower bound of X with respect to the
relation * is also a pre-fixed point of f with respect to ≤. The second theorem
concerns the case where L satisfies fewer axioms. In this case it is demonstrated
that if X is a set of pre-fixed points of f with respect to * then the greatest
lower bound of X with respect to * is also a pre-fixed point of f with respect to
*. Dual versions of both theorems regarding post-fixed points, are also obtained.

The above results have direct implications in the study of two areas of research
where non-monotonicity plays an important role, namely in logic programming
with negation [8,1] and in Boolean grammars [9]. It is known that under the
infinite-valued semantics of logic programs with negation [10], the models of a
program correspond exactly to the set of pre-fixed points with respect to the
order relation ≤ of the immediate consequence operator of the program. Using
the theorems obtained in the present paper, we get a straightforward proof of
a model intersection theorem for logic programming with negation (a less direct
proof of this theorem has recently also been obtained in [2]). In particular, we
demonstrate that if X is an arbitrary set of models (in the sense of [10]) of a given
program, then the greatest lower bound of X with respect to the relation *, is
also a model of the program. In a similar way, we obtain a model intersection
theorem for Boolean grammars, which (to our knowledge) is the first such result
for this class of grammars.

Model intersection theorems are of foundational importance for recursive for-
malisms. When they hold, they demonstrate that for every instance of the recur-
sive formalism (eg. program, grammar, etc) the set of its models has a unique
minimum element, which can be taken as the intended meaning of the instance.
In other words, a model intersection theorem provides a pure, logical character-
ization of the semantics of the formalism under consideration.

2 Mathematical Preliminaries

In this section we provide some basic material from [5,6] that will be needed
throughout the paper.

We consider complete lattices (L,≤); the least and greatest element of L will
be denoted by ⊥ and � respectively and the least upper bound and the greatest
lower bound operation will be denoted by

∨
and

∧
respectively. The results of

this paper apply to every such complete lattice (L,≤) that has a special, refined
structure. More specifically, we require that there also exist certain preorderings
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defined on L, which offer to the lattice this more refined structure. We start by
the formal definitions and then give an intuitive description of the structure of
elements of L. Let κ > 0 be a fixed ordinal; the results of the paper hold for
every possible value of κ. More formally:

Definition 1. Let (L,≤) be a complete lattice, let κ > 0 be a fixed ordinal and
assume that for each ordinal α < κ there exists a preordering *α on L. We write
x =α y iff x *α y and y *α x. We write x �α y iff x *α y but x =α y does
not hold. We write x � y iff x �α y for some α < κ. We define x * y iff x � y
or x = y. Let x ∈ L and α < κ. We define (x]α = {y : ∀β < α x =β y} and
[x]α = {y ∈ L : x =α y}.

Intuitively, one can think of elements of L as consisting of “smaller compo-
nents”, one for every α < κ. Roughly speaking, the relations ≤ and * correspond
to two different ways of comparing elements of L: the relation ≤ corresponds to
a “pointwise” comparison of elements of L; the relation * corresponds to a “lex-
icographic” comparison, in which we start comparing the 0-th level components,
then the first level components, and so on, until we reach a decision. Therefore,
when we write x ≤ y, we mean that every component of x is less than or equal
to the corresponding component of y (at least when Axiom 6 holds, see below).
When we write x =α y we mean that x and y are equal for all components up
to level α. The relation x *α y means that x is equal to y for all β < α and it is
either equal or smaller than y at level α. Finally, x * y means that either x = y
or there exists some α such that x and y are equal in all components less than
α and x is genuinely smaller than y in the α-th component. The axioms that
will be given shortly express these intuitions (and certain additional properties
of our ordering relations).

A key property that will be used throughout the paper is that if the preorder-
ing relations defined above satisfy certain simple axioms, then (L,*) is also a
complete lattice; one can then derive certain novel fixed point results regarding
a class of (potentially) non-monotonic functions over this lattice. The first five
of the axioms given below, were introduced in [5,6]; the last one has been added
for the purposes of this paper. The following definition is needed before formally
presenting the axioms:

Definition 2. Let x ∈ L, α < κ, and X ⊆ (x]α. Assume there exists y ∈ (x]α
such that:

– X *α y, and
– for all z ∈ (x]α, if X *α z then y *α z and y ≤ z.

Then, y is unique and will be denoted by
⊔

α X. In the special case where X = {x}
we will denote

⊔
α X by x|α.

The element y specified by the above definition represents an element of L
that is an upper bound of the elements of X with respect to the *α relation;
since it is also ≤ than any possible other such upper bound, we can view it
as a special upper bound of the elements of X (and that’s why it is denoted
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by
⊔

α X). For every X , if such an element y exists, then it is clearly unique.
When X = {x} then the element x|α =

⊔
α{x} intuitively represents the α-th

component of x. We can now formally state the axioms:

1. Axiom 1: For all ordinals α < β < κ, *β is included in =α.
2. Axiom 2:

⋂
α<κ =α is the equality relation on L.

3. Axiom 3: For each x ∈ L, for every ordinal α < κ, and for any X ⊆ (x]α,⊔
α X exists.

4. Axiom 4: For every non-empty X ⊆ L and ordinal α < κ, if y =α x for all
x ∈ X , then y =α (

∨
X).

5. Axiom 5: For all x, y ∈ L and α < κ, if x ≤ y and x =β y for all β < α,
then x *α y.

6. Axiom 6: For all x, y ∈ L, if x ≤ y then x|α ≤ y|α for all α < κ.

As it has been demonstrated in [6], there exist many natural structures that
satisfy Axioms 1-5 above. In subsequent sections we will exhibit two well-known
structures that satisfy all the above axioms.

For all x, y ∈ L and α < κ, let us define x ≥ y iff y ≤ x and x +α y iff y *α x.
The dual of an axiom is obtained by replacing each occurrence of ≤ by ≥, each
occurrence of *α by +α, each occurrence of

∨
by

∧
, each occurrence of

⊔
α by�

α and finally each occurrence of |α by |α. We say that an axiom is self-dual
if every L that satisfies it, also satisfies the dual of the axiom. It is clear that
Axioms 1, 2 and 5 are self-dual.

We will call L a strong model if it satisfies Axioms 1–6. L will be called a dual
strong model if it satisfies the duals of these axioms. A symmetric strong model
is both a strong model and a dual strong model.

We now repeat two results that have been established in [6] and that will be
used in our subsequent exposition.

Lemma 1 (Lemma 3.11 of [6]). Suppose that L is a model satisfying Axioms
1–5. Then for all x ∈ L, α < κ and y, z ∈ (x]α, y|α ≤ z|α iff y|α *α z|α iff
y *α z.

In the rest of the paper we write X |α to denote the set {x|α : x ∈ X}.

Lemma 2 (Proposition 5.7 of [6]). Suppose that L is a model satisfying
Axioms 1–5. Then for all x ∈ L, α < κ and X ⊆ (x]α,

∨
X |α =

⊔
α X |α.

We will also use the easy fact that when X ⊆ L and Axioms 1–4 hold, then⊔
α X |α =

⊔
α X , and that by [6][Lemma 3.14], for all x, y ∈ L it holds x = y

iff x|α = y|α for all α < κ. In fact, x =
∨

α<κ x|α holds for all x ∈ L as shown
in [6][Lemma 3.16]. Thus, as it has been demonstrated in [6][Lemma 3.17], if L
satisfies Axioms 1–4 then for all x, y ∈ L, if for all α < κ it holds x|α ≤ y|α,
then x ≤ y. Therefore, if L satisfies Axioms 1–4 and additionally Axiom 6, then
for all x, y ∈ L, we have x ≤ y iff x|α ≤ y|α for all α < κ.

The following theorem has been established in [6]:

Theorem 1 (Theorem 4.1 of [6]). Assume that L satisfies Axioms 1-4. Then,
(L,*) is a complete lattice.
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It can be shown (see [6]) that the least and greatest elements of L with respect
to * are also ⊥ and � (ie., they coincide with the least and greatest elements
of L with respect to ≤). We will denote by

�
and

⊔
the corresponding glb and

lub operations of the lattice (L,*) implied by the above lemma. It was shown
in [6] that we can construct

�
and

⊔
in terms of

�
α and

⊔
α respectively. Given

X ⊆ L, we now demonstrate how we can construct
⊔

X . The construction of�
X is symmetric. Our exposition follows [6][Section 4]. We will make use of the

following definition:

Definition 3. A sequence (xα)α<κ of elements of L is called compatible if each
xα is the ≤-least element of [xα]α and if xα =α xβ for all α < β.

As shown in [6][Lemma 3.20 and Corollary 3.21], a sequence (xα)α<κ is com-
patible iff there exists (a necessarily unique) x ∈ L with x|α = xα for all α < κ.
In fact, this unique element is x =

∨
α<κ x|α. Moreover, if a sequence (xα)α<κ

is compatible, then xα =α xβ and xα ≤ xβ holds for all α ≤ β < κ. For each
ordinal α < κ we define the sets Xα, which are then used in order to obtain

⊔
X .

For each α, let Xα = {y ∈ X : ∀β < α y =β x} = {y ∈ X : ∀β < α y|β = x|β}.
Notice that X0 = X . It has been demonstrated in [6] that for all α < κ, if
Xα �= ∅ then x|α =

⊔
α Xα; moreover, if Xα = ∅ then x|α =

∨
β<α x|β and x|α is

a *α-least and the ≤-least element of (x|α]α. Finally, we define x∞ =
∨

α<κ x|α.
It can be shown (see [6][Theorem 4.1]) that x∞ =

⊔
X . Moreover, it is easy to

prove that by construction it holds x|α = x|β and x|β ≤ x|α for all β < α and
that the sequence (x|β)β<κ is compatible.

We will be considering functions that are generally non-monotonic with re-
spect to * (and also non-monotonic with respect to ≤) but exhibit a restricted
form of monotonicity with respect to the relations *α.

Definition 4. Let α < κ. A function f : L→ L is called α-monotonic if for all
x, y ∈ L, if x *α y then f(x) *α f(y).

The functions that will be the objects of our study will be α-monotonic for
all α < κ. However, it should be noted that even if a function is α-monotonic for
all α < κ, then it need not be necessarily monotonic with respect to the relation
* (for a counterexample, see [10, Example 5.7, pages 453–454]). Therefore, the
standard tools of classical fixed point theory do not suffice in order to establish
properties of such functions, and stronger tools need to be devised.

3 Pre-fixed Point and Post-fixed Point Theorems

In this section we develop two novel theorems regarding post-fixed points of
functions f : L→ L that are α-monotonic for all α < κ. Using duality, we obtain
respective results regarding pre-fixed points of such functions. Recall that:

Definition 5. Let L be a complete lattice, let ≤ be an ordering relation on L
and let f : L→ L. An element x ∈ L will be called a post-fixed point of f with
respect to ≤ (respectively pre-fixed point) if f(x) ≥ x (respectively f(x) ≤ x).
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The first of the theorems concerns the case where L is a strong model. In this
case it is demonstrated that if X is a set of post-fixed points of f with respect
to ≤ then

⊔
X is also a post-fixed point of f with respect to ≤. The dual of this

theorem states that if X is a set of pre-fixed points of f with respect to ≤ then�
X is also a pre-fixed point of f with respect to ≤. As it will be demonstrated

in subsequent sections, this last result will be used to obtain general model
intersection results for normal logic programs and for Boolean grammars. This
is due to the known fact that the set of models of a logic program coincides with
the sets of pre-fixed points of the immediate consequence operator for these
programs, which is an α-monotonic function for all countable ordinals α. A
similar result will also be demonstrated for Boolean grammars.

The second of the theorems concerns the case where L satisfies only Axioms
1-4. In this case it is demonstrated that if X is a set of post-fixed points of f
with respect to * then

⊔
X is also a post-fixed point of f with respect to *.

The dual of this theorem also immediately holds.
Our first theorem concerns post-fixed points of functions f : L→ L, where L

is a strong model and f is α-monotonic for all α < κ.

Theorem 2. Suppose that L is a strong model. Suppose that f : L → L is α-
monotonic for each α < κ. Let X ⊆ L be a set of post-fixed points of f with
respect to ≤. Then

⊔
X is also a post-fixed point of f with respect to ≤.

Proof. Our claim is clear when X is empty, since in that case
⊔

X = ⊥. But our
argument below works for all X , including the empty set.

Let x =
⊔

X . We want to show that x|α ≤ f(x)|α for all α < κ, since it then
follows that x =

∨
α<κ x|α ≤

∨
α<κ f(x)|α = f(x).

We argue by induction on α.
Recall now from the background material given in Section 2 that for each α,

Xα = {y ∈ X : ∀β < α y =β x} = {y ∈ X : ∀β < α y|β = x|β}. Also recall that
for all α < κ, if Xα �= ∅ then x|α =

⊔
α Xα =

⊔
α{y|α : y ∈ Xα} =

∨
{y|α : y ∈

Xα}, by Lemma 2 and since y|β = x|β for all y ∈ Xα and β < α, and if Xα = ∅
then x|α =

∨
β<α x|β . We distinguish cases based on whether Xα = ∅ or not.

Suppose that Xα �= ∅. Now y *α x =α x|α for all y ∈ Xα, and since f is
α-monotonic, f(y) *α f(x), or equivalently, f(y)|α *α f(x)|α for all y ∈ Xα.
Since f(y) *α f(x) for all y ∈ Xα, also f(y) =β f(x) and f(y)|β = f(x)|β for all
y ∈ Xα and β < α. It follows by Lemma 1 that f(y)|α ≤ f(x)|α for all y ∈ Xα.
Now also y ≤ f(y) for all y ∈ Xα, so that y|α ≤ f(y)|α for all y ∈ Xα by Axiom
6. We conclude that y|α ≤ f(x)|α for all y ∈ Xα. Since x|α =

∨
{y|α : y ∈ Xα}

and y|α ≤ f(x)|α for all y ∈ Xα, we conclude that x|α ≤ f(x)|α.
Suppose that Xα = ∅. Then x|α =

∨
β<α x|β ≤

∨
β<α f(x)|β ≤ f(x)|α, using

the induction hypothesis. ��
By duality, we get the following corollary regarding the greatest lower bound of
a set of pre-fixed points of f .

Corollary 1. Suppose that L is a dual strong model. Suppose that f : L → L
is α-monotonic for each α < κ. Let X ⊆ L be a set of pre-fixed points of f with
respect to ≤. Then

�
X is also a pre-fixed point of f with respect to ≤.
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Corollary 2. Suppose that L is a symmetric strong model. Suppose that f :
L→ L is α-monotonic for each α < κ. Let X be a set of pre-fixed points and Y
a set of post-fixed points of f with respect to ≤. Then

�
X is a pre-fixed point

and
⊔

Y is a post-fixed point of f with respect to ≤.

As it turns out, if we assume that L only satisfies Axioms 1-4, then we can
still get pre-fixed and post-fixed point results, but this time with respect to the
* relation. We will make use of the following lemma:

Lemma 3. Suppose that L satisfies Axioms 1–4 and f : L→ L is α-monotonic
for all α < κ. Suppose that X is a set of post-fixed points of f with respect to
the relation *. Let x =

⊔
X. Then for all α < κ, either there exists β < α such

that x|β �β f(x|β), or x|β =β f(x|β) for all β ≤ α.

Proof. Our claim is clear when X is empty since in that case x = ⊥ and ⊥ is
the least element of L w.r.t. the partial order *. So below we assume that X is
not empty. Recall now from the background material given in Section 2 that for
each α < κ, Xα = {y ∈ X : ∀β < α y =β x} = {y ∈ X : ∀β < α y|β = x|β}, so
that X0 = X . Recall also that for all α < κ, if Xα �= ∅ then x|α =

⊔
α Xα, and

if Xα = ∅ then x|α =
∨

β<α x|β and x|α is a *α-least and the ≤-least element
of (x|α]α.

Suppose that the claim does not hold and let α0 denote the least ordinal for
which it fails. Then x|β =β f(x|β) for all β < α0 and x|α0 �*α0 f(x|α0). Since
the sequence (x|α)α<κ is compatible, we have that x|β =β x|α0 and thus also
f(x|β) =β f(x|α0) for all β < α0. We conclude that x|β =β x|α0 =β f(x|α0) for
all β < α0.

Case 1: Xα0 = ∅. Then x|α0 is a *α0 -least element of (x|α0 ]α0 . Since x|β =β

x|α0 =β f(x|α0) for all β < α0, f(x|α0) ∈ (x|α0 ]α0 . It follows that x|α0 *α0

f(x|α0), a contradiction.
Case 2: Xα0 �= ∅. Then x|α0 =

⊔
α0

Xα0 . Recall that Xα0 = {z ∈ X : ∀β <
α0 z =β x|β}. But we know that x|β =β f(x|β) for all β < α0, and by our
assumption on f , also f(x|β) =β f(z) for all z ∈ Xα0 and β < α0. So we
conclude that z =β f(z) holds for all z ∈ Xα0 and β < α0. Since also z * f(z)
for all z ∈ Xα0 , we obtain that z *α0 f(z) for all z ∈ Xα0 .

But for all z ∈ Xα0 , z *α0 x|α0 and thus z *α0 f(z) *α0 f(x|α0). Thus,
f(x|α0) is an *α0-upper bound of Xα0 , and by the definition of x|α0 , we have
x|α0 *α0 f(x|α0), a contradiction again. ��

Now, the following theorem follows easily by the previous lemma:

Theorem 3. Suppose that L satisfies Axioms 1–4 and f : L→ L is α-monotonic
for all α < κ. Let X ⊆ L be a set of post-fixed points of f with respect to *.
Then

⊔
X is a post-fixed point of f with respect to *.

Proof. Let x =
⊔

X . If x =α f(x) for all α < κ, then x is a fixed point by Axiom
2. Otherwise, by Lemma 3, there is some α < κ with x =α x|α �α f(x|α) =α

f(x) and then x �α f(x) and x * f(x). ��
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By duality, we get the following corollary regarding the greatest lower bound
of a set of pre-fixed points of f (recall that the duals of Axioms 1 and 2 are the
Axioms 1 and 2 themselves).

Corollary 3. Suppose that L satisfies the duals of Axioms 1–4. Let f : L → L
be α-monotonic for all α < κ. Let X ⊆ L be a set of pre-fixed points of f with
respect to *. Then

�
X is also a pre-fixed point of f with respect to *.

Corollary 4. Suppose that L is a symmetric strong model. Let f : L → L be
α-monotonic for all α < κ. Suppose that X ⊆ L is a set of pre-fixed points of f
and Y is a set of post-fixed points of f with respect to *. Then

�
X is a pre-fixed

point and
⊔

Y is a post fixed-point of f with respect to *.

4 An Application to Non-Monotonic Logic Programming

In this section we demonstrate that the results of the previous section can be
used in order to obtain a novel result regarding logic programs with negation.
In particular, we obtain a model intersection theorem for these programs, which
generalizes the classical model intersection theorem [8] for definite (ie., negation-
less) logic programs.

In the rest of this section, we adopt a common assumption in the area of logic
programming and study programs that are propositional and have a countable
number of rules. Formally:

Definition 6. A normal program clause is a clause whose body is a conjunc-
tion of propositional literals, where a literal is either a propositional atom or
the negation of an atom. A normal logic program is a countable set of normal
program clauses.

In order to apply the results of the previous section to the semantics of normal
logic programs, it suffices to show that the set of interpretations of such programs
is a symmetric strong model. As it turns out, the infinite-valued approach for
logic programs [10], obeys this requirement. We start by presenting the main
ideas of this approach by following [10].

The basic idea behind the infinite-valued approach is to express the semantics
of normal logic programs using a refined multiple-valued logic which contains
one truth value Fα and one Tα for each countable ordinal α, with an element 0
in the middle. The ordering of the truth values is as follows:

F0 < F1 < · · · < Fα < · · · < 0 < · · · < Tα < · · · < T1 < T0

Intuitively, F0 and T0 are the classical False and True values and 0 is the un-
defined value. The intuition behind the new values is that they express different
levels of truth and falsity.

In the following we denote by V the set consisting of the above truth values,
ie., V = {Fα : α < Ω} ∪ {Tα : α < Ω} ∪ {0}, where Ω is the first uncountable
ordinal. We have the following definition:
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Definition 7. The order of a truth value is defined as follows: order(Tα) = α,
order(Fα) = α and order(0) = Ω.

Let Z be the set of propositional atoms that appear in program P . Interpre-
tations are defined as follows:

Definition 8. An (infinite-valued) interpretation I of a program P is a function
from the set Z of propositional atoms of P to V .

Interpretations can be extended to apply to literals and to conjunctions of
literals. The most interesting case is the handling of negation: in order to negate
a non-zero truth value, we take the symmetric truth value (with respect to zero)
and then move one further step towards zero. The intuition here is that cycles
through negation may lead to the zero truth value (eg. as in the case of the
program r ←∼ r). The interested reader can consult [10] for a more detailed
discussion on infinite-valued interpretations and their properties.

Definition 9. Let I ∈ V Z be an interpretation of a program P . Then, I can be
extended as follows:

– For every negative atom ∼p appearing in P :

I(∼p) =

⎧⎨
⎩

Tα+1 if I(p) = Fα

Fα+1 if I(p) = Tα

0 if I(p) = 0

– For every conjunction of literals l1, . . . , ln appearing as the body of a clause
in P :

I(l1, . . . , ln) = min{I(l1), . . . , I(ln)}

The notion of satisfiability of a clause can be defined in a direct manner:

Definition 10. Let P be a program and I ∈ V Z an interpretation of P . Then,
I satisfies a clause p ← l1, . . . , ln of P if I(p) ≥ I(l1, . . . , ln). Moreover, I is a
model of P if I satisfies all clauses of P .

Given an interpretation of P , we adopt a specific notation for the set of
propositional symbols of the program that are assigned a specific truth value
and for the subset of the interpretation that corresponds to a particular order:

Definition 11. Let P be a program, I ∈ V Z an interpretation of P and v ∈ V .
Then I ‖ v = {p ∈ Z | I(p) = v}.

We now proceed to define the relations ≤, *α for all α < Ω. Notice that since
V contains values indexed by countable ordinals, it suffices to define relations
*α for all α < Ω1. We do not need to define the � and * relations, because
their definition is immediate from the *α relations (see Section 2).

1 In other words, the ordinal κ introduced in the previous sections, is taken to be equal
to Ω for the particular application. At the end of this section we further discuss the
consequences of choosing an alternative value of κ.
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The definitions of the following relations are driven by the following goal.
Assume we are given a set X of infinite-valued models of a program. We would
like to find an interpretation that is the greatest lower bound of the set X and
that is also a model of the program. This interpretation must have the smallest
possible set of T0 values and the largest possible set of F0 values (as dictated
by the elements of X), and among the models having exactly these features, it
must have the smallest possible set of T1 values and the largest possible set of F1

values, and so forth, for every Tα, Fα and every countable ordinal α; all atoms
that do not receive a value in this way, are assigned the value 0. Therefore, our
relations must be defined in such a way that they allow this kind of “lexicographic
comparison”.

Definition 12. Let I, J ∈ V Z be interpretations of a given program P . We
write I ≤ J if for all p ∈ Z, I(p) ≤ J(p).

Definition 13. Let I, J ∈ V Z be interpretations of a given program P and
α < Ω. We write I =α J , if for all β ≤ α, I ‖ Tβ = J ‖ Tβ and I ‖ Fβ = J ‖ Fβ.

Definition 14. Let I, J ∈ V Z be interpretations of a given program P and
α < Ω. We write I �α J , if for all β < α, I =β J and either I ‖ Tα ⊂ J ‖ Tα

and I ‖ Fα ⊇ J ‖ Fα, or I ‖ Tα ⊆ J ‖ Tα and I ‖ Fα ⊃ J ‖ Fα. We write
I *α J if I =α J or I �α J .

We have the following lemma:

Lemma 4. The set V Z of infinite-valued interpretations IP of a normal logic
program P is a symmetric strong model.

Proof. It has been been demonstrated in [6] that V Z (the set of infinite-valued
interpretations of P ) satisfies Axioms 1-5. We first demonstrate that it also
satisfies Axiom 6, ie., that if I, J ∈ V Z with I ≤ J , then I|α ≤ J |α, for all
α < Ω.

Suppose that I ≤ J . We want to show that I|α(z) ≤ J |α(z) for all z ∈ Z. If
I|α(z) = I(z) and J |α(z) = J(z), our claim is clear. Suppose that I|α(z) �= I(z).
Then I|α(z) = Fα+1 and order (I(z)) > α. Thus, since I(z) ≤ J(z), either
order (J(z)) > α or J(z) ≥ Tα. In the first case J |α(z) = Fα+1, and in the
second case J |α(z) = J(z) ≥ Tα. In either case, I|α(z) ≤ J |α(z).

It remains to deal with the case I|α(z) = I(z) but J |α(z) �= J(z). In that case
Fα+1 < J(z) < Tα and I(z) ≤ Fα+1. Thus J |α(z) = Fα+1 and I|α(z) ≤ J |α(z)
again.

In conclusion, V Z is a strong model. Consider the bijection ϕ : V → V defined
by ϕ(Fα) = Tα, ϕ(Tα) = Fα, for all α < Ω, and ϕ(0) = 0. We extend ϕ to a
bijection V Z → V Z in the expected way so that ϕ(I)(z) = ϕ(I(z)) for all I ∈ V Z

and z ∈ Z. It is clear that for all interpretations I, J ∈ V Z and for all α < κ,
I ≤ J iff ϕ(J) ≤ ϕ(I) and ϕ(I) *α ϕ(J) iff ϕ(J) *α ϕ(I). It follows that I * J
iff ϕ(J) * ϕ(I). Thus, ϕ is a “dual isomorphism”. Since V Z is a strong model
and ϕ is a dual isomorphism, V Z is a dual strong model and thus a symmetric
strong model. ��
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Consider now the immediate consequence operator for normal logic programs
defined in [10]:

TP (I)(p) =
∨
{I(l1, . . . , ln) | (p← l1, . . . , ln) ∈ P}

It can easily be shown (see [10] as-well-as [6]) that TP is α-monotonic for each
α < Ω. Moreover, it is easy to check (see again [10]) that the set of models of a
program P coincides with the set of pre-fixed points of TP with respect to the
ordering ≤. Then, the following theorem follows directly from Corollary 1:

Theorem 4. Let P be a normal logic program and let X be a set of infinite-
valued models of P . Then, TP (

�
X) ≤

�
X, ie.,

�
X is also an infinite-valued

model of P .

As a direct consequence of Theorem 4, the greatest lower bound of the set of
all infinite-valued models of a program P , is the unique minimum (with respect
to *) infinite-valued model of P . Notice that this is an existence result and it
does not provide any direct way for actually constructing the minimum model;
a constructive way is given in [10]. However, in certain cases we can identify the
minimum model through the definition of

�
, as the following example illustrates.

Example 1. Consider the following program P :

p←∼q
r ←∼r

Let X be the set of all infinite-valued models of P . We calculate
�

X , ie., the
minimum infinite-valued model of P . We will make use of the construction of�

X in terms of its “approximations”
�

α Xα, as explained in Section 2.
By the definition of model (Definition 10) and from the syntax of the pro-

gram, we get that every model of P is of the form {(p, vp), (q, vq), (r, vr)} where
0 ≤ vr ≤ T0 (the values below 0 do not satisfy the second clause), F0 ≤
vq ≤ T0 and vp ≥∼ vq. Notice that there exists at least one model with vq =
F0 (for example, {(p, T0), (q, F0), (r, T0)}). Therefore, by the definition of

�
0

we get that (
�

0 X)(q) = F0 and therefore (
�

X)(q) = F0. Notice now that
there exists at least one model in X where p is equal to T1 (for example,
{(p, T1), (q, F0), (r, T0)}). By the definition of

�
0 we get that (

�
0 X)(p) = T1.

Notice now that in every model it must be vp ≥∼ vq and since (
�

X)(q) = F0,
we get that (

�
X)(p) = T1. Consider now the sets Xα used in the construction

of
�

X (see Section 2). It is easy to see that for all α ≥ 0 and 0 ≤ v ≤ Tα,
Xα has models with vr = v. This implies that (

�
X)(r) = 0. In conclusion,�

X = {(p, T1), (q, F0), (r, 0)}. ��
Theorem 4 generalizes the well-known model intersection theorem for logic

programs without negation (see for example [8]). To our knowledge, this is the
first completely general model intersection theorem for normal logic programs.
A weaker result of this form was reported in [10, Theorem 8.6], in which X was
the set of all the models of a program (and not an arbitrary subset of them).
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We close this section by discussing the fact that for the case of logic programs,
we actually chose κ to be equal to Ω and the set of truth values to be indexed
by ordinals α < Ω. It is natural to wonder what would be the effect of choosing
an alternative value of κ and correspondingly, a different set Vκ of truth values
that would be indexed by ordinals α < κ. Due to lack of space, our explanations
below are given at an intuitive level. First notice that due to the semantics of
the ∼ operator, κ must always be a limit ordinal. This is because if κ = β+1 for
some β, then the value ∼Tβ will not belong to Vκ. Assume therefore that κ is
a limit ordinal. Now, intuitively, if we choose a small κ then we “lose precision”
while if we choose a very large κ, then we “don’t gain any extra precision”.
More formally, if we choose a small κ, then in the minimum model of a program
certain variables would be forced to have the value 0 (due to the lack of truth
values of larger order). On the other hand, if we choose κ > Ω, then the extra
truth values will not contribute anything to the minimum model (which will
only use values of order less than Ω); this is due to the fact that, by definition,
our programs consist of a countable number of rules, and therefore a countable
number of truth values suffices in order to assign to them the correct meaning.

5 An Application to Non-Monotonic Formal Grammars

In this section we demonstrate that we can derive a model intersection theorem
for Boolean grammars [9], a relatively recent extension of context-free grammars
with conjunction and complementation. The semantics of Boolean grammars
was developed in [7] using a three-valued logic. In the rest of this section we
demonstrate that it can also be defined using an infinite-valued logic similar to
that of the previous section.

Definition 15 ([9]). A Boolean grammar is a quadruple G = (Σ,N, P, S),
where Σ and N are disjoint finite non-empty sets of terminal and non-terminal
symbols respectively, P is a finite set of rules, each of the form

A→ u1& · · ·&um&¬v1& · · ·&¬vn (m+ n ≥ 1, ui, vj ∈ (Σ ∪N)∗),

and S ∈ N is the start symbol of the grammar. We will call the non-terminal A
the head of the rule, the ui’s positive conjuncts and the ¬vj ’s negative ones.

As it was demonstrated in [7], in order to construct the three-valued semantics
of a Boolean grammar, it suffices to iterate an appropriate operator for ω times
(and not Ω times as is the case for logic programs with negation). Therefore,
the set of truth values now becomes: V = {Fα : α < ω} ∪ {Tα : α < ω} ∪ {0}
with the obvious ordering:

F0 < F1 < · · · < 0 < · · · < T1 < T0

We can now define the notion of an infinite-valued language:

Definition 16. Let Σ be a finite non-empty set of symbols. Then, an infinite-
valued language over Σ is a function from Σ∗ to the set V .
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The classical notion of concatenation also needs to be generalized:

Definition 17. Let Σ be a finite non-empty set of symbols and let L1, . . . , Ln

be infinite-valued languages over Σ. We define the infinite-valued concatenation
of the languages L1, . . . , Ln to be the language L such that:

L(w) = max
(w1,...,wn):
w=w1···wn

(
min

1≤i≤n
Li(wi)

)

for every w ∈ Σ∗.

Similarly to logic programs, we can define infinite-valued interpretations for
Boolean grammars:

Definition 18. An infinite-valued interpretation I of a Boolean grammar G =
(Σ,N, P, S) is a function I : (N × Σ∗)→ V .

Notice that an interpretation may also be viewed as an assignment of an
infinite-valued language to each nonterminal.

An interpretation I can be recursively extended to apply to expressions that
appear in the right-hand sides of Boolean grammar rules:

Definition 19. Let G = (Σ,N, P, S) be a Boolean grammar and let I be an
interpretation of G. Then, I can be extended as follows:

– For every w ∈ Σ∗, it is I(ε, w) = T0 if w = ε, and I(ε, w) = F0 otherwise.
– Let a ∈ Σ. Then, for every w ∈ Σ∗, it is I(a, w) = T0 if w = a, and

I(a, w) = F0 otherwise.
– Let u = u1 · · ·un, n ≥ 2, ui ∈ Σ ∪N . Then, for every w ∈ Σ∗, it is

I(u,w) = max
(w1,...,wn):
w=w1···wn

(
min

1≤i≤n
I(ui, wi)

)

– Let u ∈ (Σ ∪N)∗. Then, for every w ∈ Σ∗, it is:

I(¬u,w) =

⎧⎨
⎩

Tα+1 if I(u,w) = Fα

Fα+1 if I(u,w) = Tα

0 if I(u,w) = 0

– Let l1, . . . , ln be conjuncts. Then, for every w ∈ Σ∗, it is I(l1& · · ·&ln, w) =
min{I(l1, w), . . . , I(ln, w)}.

We are now in a position to define the notion of a model of a Boolean grammar:

Definition 20. Let G = (Σ,N, P, S) be a Boolean grammar and I an interpre-
tation of G. Then, I is a model of G if for every rule A→ l1& · · ·&ln in P and
for every w ∈ Σ∗, it is I(A,w) ≥ I(l1& · · ·&ln, w).

Definition 21. Let G = (Σ,N, P, S) be a Boolean grammar, I an interpretation
of G and v ∈ V . We define I ‖ v = {(A,w) ∈ N ×Σ∗ | I(A,w) = v}.
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The definitions of ≤, =α and *α are then identical to those given in Defini-
tions 12, 13 and 14. The following lemma can then be established in an entirely
analogous way as the corresponding one for logic programs (Lemma 4):

Lemma 5. The set of infinite-valued interpretations IG of a Boolean grammar
G is a symmetric strong model.

The immediate consequence operator for Boolean grammars can be defined
analogously to that for logic programs:

TG(I)(A,w) =
∨
{I(l1& · · ·&ln, w) | (A← l1& · · ·&ln) ∈ P}

By Corollary 7.8 of [6] it follows that TG is α-monotonic for all α < ω.
Moreover, it is straightforward to check that an interpretation I is a model of
a grammar G iff TG(I) ≤ I. Based on the above, the following theorem follows
directly using Corollary 1:

Theorem 5. Let G be a Boolean grammar and let X be a set of infinite-valued
models of G. Then, TG(

�
X) ≤

�
X, ie.,

�
X is also an infinite-valued model

of G.

Example 2. Consider the boolean grammar G given by the following rules:

S → ¬A
A→ ε
A→ aAb

Let U = {anbn | n ≥ 0}. Moreover, let X be the set of all infinite-valued models
of G. We calculate

�
X , ie., the minimum infinite-valued model of G. By the

definition of model of a grammar (Definition 20) and from the syntax of the
rules of the grammar, we get that every model M of G has the property that
for all w ∈ U , M(A,w) = T0. Notice now that there exists a model such that
for every w �∈ U , M(A,w) = F0. Therefore, by the definition of

�
0 we have

(
�

0 X)(A,w) = F0 for all w �∈ U and consequently (
�

X)(A,w) = F0 for all
w �∈ U . Consider now the set X1 used in the construction of

�
X (see Section 2).

Notice that there exists a model M1 ∈ X1 such that M1(S,w) = F1, for all w ∈
U . Therefore, by the definition of

�
1, we have (

�
1 X1)(S,w) = F1 and therefore

(
�

X)(S,w) = F1, for all w ∈ U . Similar arguments give (
�

X)(S,w) = T1, for
all w �∈ U . In conclusion, we have:

(
�

X)(S,w) =

{
F1 if w ∈ U
T1 if w �∈ U

(
�

X)(A,w) =

{
T0 if w ∈ U
F0 if w �∈ U

which is the minimum infinite-valued model for the given grammar. ��

Theorem 5 provides a new, infinite-valued characterization of the semantics of
Boolean grammars. Moreover, it is the first (to our knowledge) model intersection
theorem given for this class of formal grammars.
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6 Conclusions

We have derived two novel pre-fixed point theorems for non-monotonic func-
tions and have demonstrated that they have direct applications in the areas of
logic programming and formal language theory. In this way we have made a
further step towards the development of an abstract fixed point theory for non-
monotonicity, which we believe will have other interesting applications in the
future. We are currently investigating such alternative possibilities.

References

1. Krzysztof, R.: Apt. Logic programming. In: Handbook of Theoretical Computer
Science. Formal Models and Semantics, vol. B, pp. 493–574 (1990)
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Abstract. Armstrong’s axiomswere originally proposed todescribe func-
tional dependency between sets of attributes in relational databases. The
database semantics of these axioms can be easily rephrased in terms of dis-
tributedknowledge inmulti-agent systems.Thepaperproposes alternative
semantics of the same axioms in terms of common knowledge. The main
technical result of this work is soundness and completeness of Armstrong’s
axioms with respect to the proposed semantics. An important implication
of this result is an unexpected duality between notions of distributed and
common knowledge.

1 Introduction

1.1 Armstrong’s Axioms

For any two variables a and b, we say that a functionally determines b if for each
possible value of a there is a unique value of b. We denote this by a � b. For
example, the length of a side of an equilateral triangle functionally determines
the area of the triangle: length � area.

Similarly, one can define functional dependency between two sets of variables.
For example, two legs of a right triangle uniquely determine its hypotenuse and
area:

leg1, leg2 � hypotenuse, area.

The functional dependency relation has been first studied in the context of
database theory, where functional dependency is defined between two sets of
attributes. Armstrong [1] proposed the following axiomatization of this relation:

1. Reflexivity: A � B, if A ⊇ B,
2. Augmentation: A � B → A,C � B,C,
3. Transitivity: A � B → (B � C → A � C),

where here and everywhere below A,B denotes the union of sets A and B.
He proved soundness and completeness of this logical system with respect to a
database semantics. The above axioms became known in database literature as
Armstrong’s axioms [2, p. 81]. Beeri, Fagin, and Howard [3] suggested a variation
of Armstrong’s axioms that describes properties of multi-valued dependence.

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 181–194, 2014.
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Armstrong’s axioms also describe properties of functional dependency in set-
tings different from database theory. More and Naumov [4] investigated func-
tional dependency between secrets shared over a network with a fixed topology.
They presented a sound and complete axiomatization of this type of functional
dependency consisting of Armstrong’s axioms and one additional Gateway ax-
iom that captures properties specific to the topology of the network. Harjes and
Naumov [5] considered functional dependency between strategies of players in
a Nash equilibrium of a strategic game. They gave a sound a complete axiom-
atization of this relation for games with a fixed dependency graph of a pay-off
function. Their axiomatization also consists of Armstrong’s axioms and one ad-
ditional Contiguity axiom that captures properties specific to the topology of
the graph. In another work, they axiomatized functional dependency between
single strategies in Nash equilibria of cellular games [6]. Instead of considering
secrets shared over a network with a fixed topology, one can consider a fixed
group of symmetries of such a network. The complete axiomatization of func-
tional dependency in such a setting [7] also consists of Armstrong’s axioms and
two additional axioms specific to the group of symmetries.

A logical system that simultaneously describes properties of functional depen-
dency between single variables and properties of the nondeducibility relation [8]
has been proposed earlier [9]. A different type of dependency in strategic games
has been studied by Naumov and Nicholls [10]. They called it rationally func-
tional dependence. The axioms of rationally functional dependence are signifi-
cantly different from Armstrong’s axioms discussed in this paper.

1.2 Distributed Knowledge

In the original Armstrong setting, in the functional dependency predicate A�B,
sets A and B are sets of database attributes. Let us assume now that each of
the attributes in a database is known to a specific distinct agent and only to
this agent. Furthermore, suppose that each of these agents knows nothing else
but the value of the corresponding attribute. Under these assumptions, we can
informally identify attributes with the agents that know them. Thus, relation
A�B can now be viewed as a relation between sets of agents. Two sets of agents
are in this relation if agents in set A collectively know all what is known to each
agent in set B. In other words, everything distributively known to agents in set
B is also distributively known to agents in set A. To paraphrase it once again:
distributed knowledge of a set of agents B is a subset of distributed knowledge
of a set of agents A:

DK(A) ⊇ DK(B), (1)

where DK(A) informally represents distributed knowledge of set of agents A.
Later in this paper, we formally specify the meaning of statement (1) and claim
soundness and completeness of Armstrong’s axioms with respect to semantics
of distributed knowledge. The proofs are given in the appendix. These proofs
are, essentially, translations of Armstrong’s [1] arguments from database lan-
guage to Kripke semantics language. The main focus of this paper is on common
knowledge.
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1.3 Common Knowledge

Let CK(A), informally, denote all common knowledge [11] of set of agents A.
By analogy with relation (1), one can consider relation

CK(A) ⊇ CK(B)

between sets of agents A and B. This relation does not satisfy Armstrong’s
axioms since the Reflexivity axiom does not hold (common knowledge of a sub-
group, generally speaking, is not a common knowledge of a group). However, it
turns out that relation

CK(A) ⊆ CK(B) (2)

does satisfy Armstrong’s axioms. Furthermore, the main technical result of this
paper is the completeness theorem for Armstrong’s axioms with respect to com-
mon knowledge semantics informally specified by relation (2).

The significant implication of this result is the duality between distributed
knowledge and common knowledge captured by relations (1) and (2). Properties
of both of them are described by Armstrong’s axioms.

In the rest of the paper we first further discuss and formally define relation
(1) in terms of epistemic Kripke frames. We then show how this definition can be
modified to formally specify relation (2). We conclude the paper with the proof
of soundness and completeness of Armstrong’s axioms with respect to common
knowledge semantics. In the appendix we show soundness and completeness of
Armstrong’s axioms with respect to distributed knowledge semantics.

2 Distributed Knowledge Semantics

Definition 1. A Kripke frame is a triple (W,A, {∼a}a∈A), where

1. W is a nonempty set of “epistemic worlds”,
2. A is a set of “agents”,
3. ∼a is an (“indistinguishability”) equivalence relation on set W for each a ∈
A.

For any two epistemic worlds u, v ∈ W and any set of agents A ⊆ A, we write
u ∼A v if u ∼a v for each a ∈ A.

According to the standard Kripke semantics of distributed knowledge [12, p.
24], u � �Bp means that v � p for each v ∈ W such that u ∼B v. If we want
statement u � �Bp→ �Ap to be true no matter how propositional variable p is
evaluated over the given Kripke frame, we need to require that

{v ∈ W | u ∼A v} ⊆ {v ∈W | u ∼B v}. (3)

Epistemic logic usually studies the validity of formulas in a particular epistemic
world. In Armstrong’s database semantics, however, statement A�B means that
the values of the attributes in set B are functionally determined by the values of
attributes in set A for all possible values of the attributes in set A. Thus, under
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the corresponding distributed knowledge semantics, statement A � B should
mean that (3) is true for each u ∈ W . In other words, informal statement (1)
could be formally specified as

∀u, v ∈W (u ∼A v → u ∼B v). (4)

We use this specification in Definition 3.

Definition 2. For any set of “agents” A, by Φ(A) we mean the minimal set of
formulas such that

1. ⊥ ∈ Φ(A),
2. A � B ∈ Φ(A) for all finite subsets A,B ⊆ A,
3. if ϕ, ψ ∈ Φ(A), then ϕ→ ψ ∈ Φ(A).

Definition 3. For any Kripke frame K = (W,A, {∼a}a∈A) and any ϕ ∈ Φ(A),
we define relation K � ϕ recursively:

1. K � ⊥,
2. K � A � B iff for each u, v ∈W , if u ∼A v, then u ∼B v,
3. K � ϕ→ ψ iff K � ϕ or K � ψ.

Theorem 1 (Armstrong [1]). K � ϕ for each Kripke frame K whose set of
agents contains all agents from formula ϕ if and only if formula ϕ is provable
from Armstrong’s axioms and propositional tautologies using the Modus Ponens
inference rule.

This theorem has been originally proven by Armstrong for database semantics,
but, as we show in the appendix, his proof could be easily adopted to Kripke
frames.

3 Common Knowledge Semantics

As usual, common knowledge of p between a group of agents A means that
each agent knows p, each agent knows that each agent knows p, and so on
ad infinitum. In epistemic logic notations [13,12], in epistemic world u there is
a common knowledge of p between a group of agents A if for each sequence
a1, . . . , am of elements of A, possibly with repetitions,

u � �a1�a2 . . .�amp.

Thus, in a given epistemic world u there is a common knowledge of p by the
group of agents A if vm � p for each sequence a1, . . . , am of elements of A and
each sequence of worlds v0, v1, . . . , vm ∈ W such that

u = v0 ∼a1 v1 ∼a2 v2 ∼a3 · · · ∼am vm.
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If we want common knowledge of p by group A in epistemic world u to imply
common knowledge of p by group B in u no matter how propositional variable
p is evaluated over the given Kripke frame, we need to require that

{wk ∈ W | u = w0 ∼b1 w1 ∼b2 w2 ∼b3 · · · ∼bn wn and b1, . . . , bn ∈ B} ⊆
{vn ∈W | u = v0 ∼a1 v1 ∼a2 v2 ∼a3 · · · ∼am vm and a1, . . . , am ∈ A}.

Hence, for common knowledge by group A to imply common knowledge by group
B in each epistemic world u we need to require that for each x, y ∈ W , if there
exist n ≥ 0, w0, . . . , wn ∈W , and b1, . . . , bn ∈ B such that

x = w0 ∼b1 w1 ∼b2 w2 ∼b3 · · · ∼bn wn = y,

then there must exist m ≥ 0, v0, . . . , vm ∈W , and a1, . . . , am ∈ A such that

x = v0 ∼a1 v1 ∼a2 v2 ∼a3 · · · ∼am vm = y.

In the definition below, we take this requirement as the formalization of (2).

Definition 4. Let � be the relation between a Kripke frame K = (W,A, {∼a

}a∈A) and a propositional formula in Φ(A) such that:

1. K � ⊥,
2. K � A � B iff for each x, y ∈ W , if there exist n ≥ 0, w0, . . . , wn ∈ W , and

b1, . . . , bn ∈ B such that

x = w0 ∼b1 w1 ∼b2 w2 ∼b3 · · · ∼bn wn = y,

then there exist m ≥ 0, v0, . . . , vm ∈ W , a1, . . . , am ∈ A such that

x = v0 ∼a1 v1 ∼a2 v2 ∼a3 · · · ∼am vm = y,

3. K � ϕ→ ψ iff K � ϕ or K � ψ.

4 Axioms

For any given set of agents A, our logical system consists of all propositional
tautologies in language Φ(A), the Modus Ponens inference rule, and Armstrong’s
axioms:

1. Reflexivity: A � B, if A ⊇ B,
2. Transitivity: A � B → (B � C → A � C),
3. Augmentation: A � B → A,C � B,C,

where, as we have mentioned earlier, A,B stands for the union of sets A and B.
We write X # ϕ if statement ϕ is provable in our logical system using additional
set of axioms X . We abbreviate ∅ # ϕ as # ϕ.
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5 Example

The soundness of Armstrong’s axioms with respect to common knowledge se-
mantics will be shown in the next section. Note that soundness of the Reflexivity
and Transitivity axioms is intuitively clear, but soundness of the Augmentation
axiom is, perhaps, unexpected. Below we illustrate our logical system by stating
and proving from Armstrong’s axioms an even less intuitively clear property of
common knowledge:

Theorem 2. # A � B → (C � D → A,C � B,D).

Proof. Suppose that A � B and C � D. Thus, by the Augmentation axiom,
A,C�B,C and B,C �B,D. Therefore, by the Transitivity axiom, A,C �B,D.

��

6 Soundness

In this section we prove soundness of our logical system with respect to common
knowledge semantics. Soundness of propositional tautologies and the Modus Po-
nens inference rule is straightforward.We prove soundness of each of Armstrong’s
axioms as a separate lemma.

Lemma 1. K � A � B for each K = (W,A, {∼a}a∈A) and each B ⊆ A ⊆ A.

Proof. Consider any x, y ∈ W . Let there exist n ≥ 0, w0, . . . , wn ∈ W , and
b1, . . . ,
bn ∈ B such that

x = w0 ∼b1 w1 ∼b2 w2 ∼b3 · · · ∼bn wn = y.

Note that b1, . . . , bn ∈ A because B ⊆ A. ��

Lemma 2. For each K = (W,A, {∼a}a∈A) and each A,B,C ⊆ A, if K � A�B
and K � B � C, then K � A � C.

Proof. Consider any x, y ∈ W . Let there exist n ≥ 0, w0, . . . , wn ∈ W , and
c1, . . . ,
cn ∈ C such that

x = w0 ∼c1 w1 ∼c2 w2 ∼c3 · · · ∼cn wn = y.

Thus, by assumption K � B � C, there exist m ≥ 0, v0, . . . , vm ∈ W , and
b1, . . . , bm ∈ C such that

x = v0 ∼b1 v1 ∼b2 v2 ∼b3 · · · ∼bm vm = y.

Hence, by assumption K � A � B, there exist k ≥ 0, u0, . . . , uk ∈ W , and
a1, . . . , ak ∈ A such that

x = u0 ∼a1 u1 ∼a2 u2 ∼a3 · · · ∼ak
uk = y.

��
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Lemma 3. For each K = (W,A, {∼a}a∈A) and each A,B,C ⊆ A, if K �
A � B, then K � A,C � B,C.

Proof. Consider any x, y ∈ W . Let there exist n ≥ 0, w0, . . . , wn ∈ W , and
e1, . . . ,
en ∈ B ∪ C such that

x = w0 ∼e1 w1 ∼e2 w2 ∼e3 · · · ∼en−1 wn−1 ∼en wn = y.

We will show that there exist m ≥ 0, v0, . . . , vm ∈ W , and f1, . . . , fm ∈ A ∪ C
such that

x = v0 ∼f1 v1 ∼f2 v2 ∼f3 · · · ∼fm vm = y

by induction on n. If n = 0, then x = y and m = 0.
Let n > 0. By the induction hypothesis, there exist k ≥ 0, u0, . . . , uk ∈ W ,

and g1, . . . , gk ∈ A ∪ C such that

x = u0 ∼g1 u1 ∼g2 u2 ∼g3 · · · ∼gk uk = wn−1.

Case I: en ∈ C. Then,

x = u0 ∼g1 u1 ∼g2 · · · ∼gk uk = wn−1 ∼en wn = y

and g1, g2, . . . , gk, en ∈ A ∪ C.
Case II: en ∈ B. By assumption K � A�B, there exist � ≥ 0, t0, t1, . . . , t� ∈ W ,
and h0, h1, . . . , h� ∈ A such that

wk−1 = t0 ∼h1 t1 ∼h2 · · · ∼h�
t� = wn.

Therefore,

x = u0 ∼g1 u1 ∼g2 u2 ∼g3 · · · ∼gk uk = wn−1 = t0 ∼h1 t1 ∼h2 · · · ∼h�
t� = wn = y,

where g1, g2, . . . , gk, h1, h2, . . . , h� ∈ A ∪C. ��

7 Two-World Kripke Frames

In this section we define a simple two-world Kripke frame. Later, multiple in-
stances of such frames will be combined together to prove completeness of Arm-
strong’s axioms with respect to common knowledge semantics.

Definition 5. For any set of agents A and any subset D ⊆ A, let K(A, D) be
the Kripke frame (W,A, {∼a}a∈A) such that

1. W is the two-element set {w0, w1},
2. w0 ∼a w1 if and only if a /∈ D.

Informally, D is the set of all “distinguishers” who can distinguish world w0 from
world w1.
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Lemma 4. For any set of agents A and any subset D ⊆ A, K(A, D) � A � B
if and only if at least one of the following conditions is satisfied:

1. A � D,
2. B ⊆ D.

Proof. (⇒) Suppose K � A�B as well as A ⊆ D and B � D. Since B � D, there
exists b0 ∈ B such that b0 /∈ D. Thus, w0 ∼b0 w1, by Definition 5. Hence, by the
assumption K � A � B, there exist n ≥ 0, v0, . . . , vn ∈ W , and a1, . . . , an ∈ A
such that

w0 = v0 ∼a1 v1 ∼a2 · · · ∼an−1 vn−1 ∼an vn = w1,

which is a contradiction to A ⊆ D and Definition 5.
(⇐) First, assume that A � D. Thus, there exists a0 ∈ A such that a0 /∈ D.
Hence, by Definition 5, x ∼a0 y for each x, y ∈W . Thus, K(A, D) � A � B.

Next, suppose B ⊆ D. To prove K(A, D) � A � B, consider any x, y ∈ W .
Let n ≥ 0, v0, . . . , vn ∈W , and b1, . . . , bn ∈ B be such that

x = v0 ∼b1 v1 ∼b2 · · · ∼bn−1 vn−1 ∼bn vn = y.

Thus, x = y by the assumption B ⊆ D and Definition 5. ��

8 Product of Kripke Frames

In this section we define a composition operation on Kripke frames and prove a
fundamental property of this operation. Later we use this operation to combine
several different two-world frames, defined in the previous section, into a single
Kripke frame needed to prove completeness of Armstrong’s axioms with respect
to common knowledge semantics.

Definition 6. For any set of agents A and any family of Kripke frames {Ki}ni=0

= {(W i,A, {∼i
a}a∈A)}ni=0 we define the product

∏n
i=0 K

i to be the Kripke frame
K = (W,A, {∼a}a∈A), where

1. W is the Cartesian product
∏n

i=0 W
i of the sets of epistemic words of indi-

vidual frames,
2. for any 〈ui〉i≤n, 〈vi〉i≤n ∈ W , let 〈ui〉i≤n ∼a 〈vi〉i≤n if ui ∼i

a vi for each
i ≤ n.

Theorem 3. Let A be any set of agents. If A and B are any two finite subsets
of A and {Ki}ni=1 is any family of Kripke frames with set of agents A, then∏n

i=1 K
i � A � B if and only if Ki � A � B for each i ≤ n.

Proof. Let {Ki}ni=1 = {(W i,A, {∼i
a}a∈A)}ni=1.

(⇒) Assume i0 ≤ n and x, y ∈ W i0 are such that there exist k ≥ 0, v0, . . . , vk ∈
W , and b1, . . . , bk ∈ B such that

x = v0 ∼b1 v1 ∼b2 v2 ∼b3 · · · ∼bk vk = y.
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We will show that there exist m ≥ 0, u0, . . . , um ∈ W , and a1, . . . , am ∈ A such
that

x = u0 ∼a1 u1 ∼a2 u2 ∼a3 · · · ∼am um = y.

Indeed, due to Definition 1, for each i ≤ n there is at least one epistemic world
wi ∈ W i. Then,

〈w1, . . . , wi0−1, v0, wi0+1, . . . , wn〉 ∼b1 〈w1, . . . , wi0−1, v1, wi0+1, . . . , wn〉 ∼b2

〈w1, . . . , wi0−1, v2, wi0+1, . . . , wn〉 ∼b3 · · · ∼bk 〈w1, . . . , wi0−1, vk, wi0+1, . . . , wn〉

due to Definition 6 and reflexivity of relations {∼bi}ki=1. Hence, by the as-
sumption of the theorem, there exist m ≥ 0, 〈z10 , z20 , . . . , zn0 〉, 〈z11 , z21 , . . . , zn1 〉,
. . . , 〈z1m, z2m, . . . , znm〉 in

∏n
i=1 W

i, and a1, . . . , am in A such that

〈w1, . . . , wi0−1, v0, wi0+1, . . . , wn〉 = 〈z10 , z20 , . . . , zn0 〉 ∼a1 〈z11 , z21 , . . . , zn1 〉 ∼a2

· · · ∼am 〈z1m, z2m, . . . , znm〉 = 〈w1, . . . , wi0−1, vk, wi0+1, . . . , wn〉.
Therefore, by Definition 6,

x = v0 = zi00 ∼a1 zi01 ∼a2 zi02 ∼a3 · · · ∼am zi0m = vk = y.

(⇐) Consider any X,Y ∈
∏n

i=1 W
i. Suppose there exist m ≥ 0, b1, . . . , bm ∈ B,

and 〈w1
0 , . . . , w

n
0 〉, 〈w1

1 , . . . , w
n
1 〉, . . . , 〈w1

m, . . . , wn
m〉 in

∏n
i=1 W

i such that

X = 〈w1
0 , . . . , w

n
0 〉 ∼b1 〈w1

1 , . . . , w
n
1 〉 ∼b2

〈w1
2 , . . . , w

n
2 〉 ∼b3 · · · ∼bm 〈w1

m, . . . , wn
m〉 = Y.

Thus, by Definition 6, for each i ≤ n,

wi
0 ∼b1 wi

1 ∼b2 · · · ∼bm wi
m.

Hence, by the assumption of the theorem, for each i ≤ n there exist ki ≥ 0,
ui
0, . . . , u

i
ki ∈W i, and ai1, a

i
2, . . . , a

i
ki ∈ A such that

wi
0 = ui

0 ∼ai
1
ui
1 ∼ai

2
ui
2 ∼ai

3
· · · ∼ai

ki
ui
ki = wi

m.

Therefore, by Definition 6,

X = 〈w1
0 , w

2
0 , w

3
0 , . . . , w

n−1
0 , wn

0 〉 = 〈u1
0, w

2
0, w

3
0 , . . . , w

n−1
0 , wn

0 〉 ∼a1
1

〈u1
1, w

2
0 , w

3
0 , . . . , w

n−1
0 , wn

0 〉 ∼a1
2
〈u1

2, w
2
0 , w

3
0 , . . . , w

n−1
0 , wn

0 〉 ∼a1
3
· · · ∼a1

k1

〈u1
k1 , w2

0 , w
3
0, . . . , w

n−1
0 , wn

0 〉 = 〈w1
m, w2

0 , w
3
0 , . . . , w

n−1
0 , wn

0 〉 =
〈w1

m, u2
0, w

3
0, . . . , w

n−1
0 , wn

0 〉 ∼a2
1
〈w1

m, u2
1, w

3
0 , . . . , w

n−1
0 , wn

0 〉 ∼a2
2

〈w1
m, u2

2, w
3
0 , . . . , w

n−1
0 , wn

0 〉 ∼a2
3
· · · ∼a2

k2
〈w1

m, u2
k2 , w3

0 , . . . , w
n−1
0 , wn

0 〉 =

〈w1
m, w2

m, w3
0 , . . . , w

n−1
0 , wn

0 〉 = · · · = 〈w1
m, w2

m, w3
m, . . . , wn−1

m , wn
0 〉 =

〈w1
m, w2

m, w3
m, . . . , wn−1

m , un
0 〉 ∼an

1
〈w1

m, w2
m, w3

m, . . . , wn−1
m , un

1 〉 ∼an
2

〈w1
m, w2

m, w3
m, . . . , wn−1

m , un
2 〉 ∼an

3
· · · ∼an

kn
〈w1

m, w2
m, w3

m, . . . , wn−1
m , un

k1〉 =
〈w1

m, w2
m, w3

m, . . . , wn−1
m , wn

m〉 = Y.

��
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9 Star Closure

In this section we introduce a technical notion of A∗ closure of a set of agents A
and prove basic properties of this notion. The closure is used in the next section
to prove the completeness theorem.

Let A be any finite set of agents and M be any fixed subset of Φ(A).

Definition 7. For any subset A ⊆ A, let A∗ be the set

{a ∈ A |M # A � a}.

Set A∗ is finite due the assumption that set A is finite.

Lemma 5. A ⊆ A∗, for each A ⊆ A.

Proof. Let a ∈ A. By the Reflexivity axiom, # A � a. Hence, a ∈ A∗. ��

Lemma 6. M # A � A∗, for each A ⊆ A.

Proof. LetA∗ = {a1, . . . , an}. By the definition ofA∗,M # A� ai, for each i ≤ n.
We will prove, by induction on k, that M # (A � a1, . . . , ak) for each 0 ≤ k ≤ n.
Base Case: M # A � ∅ by the Reflexivity axiom.
Induction Step: Assume that M # (A�a1, . . . , ak). By the Augmentation axiom,

M # A, ak+1 � a1, . . . , ak, ak+1. (5)

Recall that M # A�ak+1. Again by the Augmentation axiom,M # (A�A, ak+1).
Hence, M # (A � a1, . . . , ak, ak+1), by (5) and the Transitivity axiom. ��

10 Completeness

We are now ready to prove completeness of Armstrong’s axioms with respect to
common knowledge semantics.

Theorem 4. If K � ϕ for each Kripke frame K whose set of agents contains
all agents in formula ϕ, then # ϕ.

Proof. Suppose � ϕ. Let A be the finite set of all agents mentioned in formula
ϕ and M be a maximal consistent subset of Φ(A) containing formula ¬ϕ.
Definition 8. Let Kripke frame K be

∏
A⊆A K(A, A∗).

Lemma 7. M # B �C if and only if K � B �C, for all subsets B and C of A.

Proof. (⇒) First, suppose that M # B�C and
∏

A⊆A K(A, A∗) � B�C. Thus,
by Theorem 3, there exists A0 ⊆ A such that K(A, A∗

0) � B � C. Hence, by
Lemma 4, B ⊆ A∗

0 and
C � A∗

0. (6)

Then, by the Reflexivity axiom, # A∗
0 � B. By assumption M # B � C and

the Transitivity axiom, M # A∗
0 � C. By Lemma 6, M # A0 � A∗

0. Thus, by the
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Transitivity axiom, X # A0 �C. By the Reflexivity axiom, # C � c for all c ∈ C.
Hence, by the Transitivity axiom, M # A0 � c for all c ∈ C. Then, c ∈ A∗

0 for all
c ∈ C. Thus, C ⊆ A∗

0, which is a contradiction to (6).
(⇐) Next, suppose

∏
A⊆A K(A, A∗) � B �C. Then, K(A, B∗) � B �C. Hence,

by Lemma 4, either B � B∗ or C ⊆ B∗. The former is not possible due to
Lemma 5. Thus, C ⊆ B∗. Hence, by the Reflexivity axiom, # B∗ �C. Note that
M # B�B∗, by Lemma 6. Therefore, by the Transitivity axiom, M # B�C. ��

Lemma 8. ψ ∈M if and only if K � ψ for each ψ ∈ Φ(A).

Proof. Induction on the structural complexity of formula ψ. The base case follows
from Lemma 7. The induction step follows from Definition 4 as well as maximally
and consistency of set M in the standard way. ��

Note that K � ψ due to assumption ¬ϕ ∈ M , Lemma 8, and consistency of set
M . This concludes the proof of Theorem 4. ��

11 Conclusion

In this paper we proposed common knowledge semantics for Armstrong’s ax-
ioms and proved corresponding soundness and completeness theorems. This
result shows that relations (1) and (2) have the same logical properties and,
thus, demonstrates a certain duality between common knowledge and distributed
knowledge.

A possible extension of our work could be developing a logical system that
deals with relations (1) and (2) at the same time. Another possible extension
of this work is to consider common knowledge on hypergraphs in the same way
that it has been done [4] for distributed knowledge.

A Appendix: Distributed Knowledge Semantics

In this appendix we prove soundness and completeness of Armstrong’s axioms
with respect to the distributed knowledge semantics specified by Definition 3.
Thus, everywhere in this section � refers to the relation from Definition 3 and not
the one from Definition 4. The main result of this section is the completeness
proof. In the presentation of this proof we follow the general outline of our
completeness proof with respect to common knowledge semantics. In particular,
we reuse earlier defined notions of two-world Kripke frames, product of Kripke
frames, and star closure.

A.1 Soundness

In this section we prove soundness of our logical system with respect to dis-
tributed knowledge semantics. Soundness of propositional tautologies and the
Modus Ponens inference rule is straightforward. We prove soundness of each of
Armstrong’s axioms as a separate lemma.
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Lemma 9. K � A � B for each K = (W,A, {∼a}a∈A) and each B ⊆ A ⊆ A.

Proof. Consider any x, y ∈ W . Suppose that x ∼A y. Therefore, x ∼B y due to
assumption B ⊆ A. ��

Lemma 10. For each K = (W,A, {∼a}a∈A) and each A,B,C ⊆ A, if K �
A � B and K � B � C, then K � A � C.

Proof. Consider any x, y ∈ W . Suppose that x ∼A y. Hence, x ∼B y by assump-
tion K � A � B. Thus, x ∼C y by assumption K � B � C. ��

Lemma 11. For each K = (W,A, {∼a}a∈A) and each A,B,C ⊆ A, if K �
A � B, then K � A,C � B,C.

Proof. Consider any x, y ∈ W . Suppose that x ∼A,C y. Thus, x ∼A y and
x ∼C y. Hence, x ∼B y by assumption K � A � B. Therefore, x ∼B,C y. ��

A.2 Completeness

We start with the distributed knowledge version of Lemma 4.

Lemma 12. For any set of agents A and any subset D ⊆ A, K(A, D) � A�B
if and only if at least one of the following conditions is satisfied:

1. A ∩D �= ∅,
2. B ∩D = ∅.

Proof. (⇒) Suppose that A∩D = ∅ and B∩D �= ∅. The former, by Definition 5,
implies that w0 ∼A w1, where w0 and w1 are the two worlds of Kripke frame
K(A, D). The latter implies that there exists b0 ∈ B ∩D. Thus, w0 ∼B w1 due
to assumption K(A, D) � A � B. Hence, w0 ∼b0 w1 because b0 ∈ B, which is a
contradiction to Definition 5 since b0 ∈ D.
(⇐) First, suppose that A ∩ D �= ∅. Thus, there exists d0 ∈ A ∩ D. To show
that K(A, D) � A � B, consider any x, y ∈ {w0, w1} and assume that x ∼A y.
We will show that x ∼B y. Indeed, x ∼A y implies that x ∼d0 y since d0 ∈ A.
Thus, x = y by Definition 5 and assumption d0 ∈ D. Therefore, x ∼B y due to
reflexivity of relation ∼B.

Second, assume that B ∩D = ∅. Thus, x ∼B y for each x, y ∈ {w0, w1} due
to Definition 5. Therefore, K(A, D) � A � B, by Definition 3. ��

Next is the distributed knowledge version of Theorem 3.

Theorem 5. Let A be any set of agents. If A and B are any two finite subsets
of A, and {Ki}ni=1 is any family of Kripke frames with set of agents A, then∏n

i=1 K
i � A � B if and only if Ki � A � B for each i ≤ n.

Proof. (⇒) Consider any i0 ≤ n and any x, y ∈ W i0 such that x ∼A y. We will
show that x ∼B y. By Definition 1, for each i ≤ n there is at least one epistemic
world wi ∈W i. Note that

〈w1, w2, . . . , wi0−1, x, wi0+1, . . . , wn〉 ∼A

〈w1, w2, . . . , wi0−1, y, wi0+1, . . . , wn〉
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due to Definition 6, assumption x ∼A y, and reflexivity of relation ∼A. Hence,

〈w1, w2, . . . , wi0−1, x, wi0+1, . . . , wn〉 ∼B

〈w1, w2, . . . , wi0−1, y, wi0+1, . . . , wn〉

by assumption
∏n

i=1 K
i � A � B. Therefore, x ∼B y by Definition 6.

(⇐) Consider any tuples 〈x1, x2, . . . , xn〉 and 〈y1, y2, . . . , yn〉 in
∏n

i=1 W
i such

that
〈x1, x2, . . . , xn〉 ∼A 〈y1, y2, . . . , yn〉.

By Definition 6, xi ∼A yi for each i ≤ n. Hence, xi ∼B yi for each i ≤ n, due to
the assumption of the theorem. Therefore, 〈x1, x2, . . . , xn〉 ∼B 〈y1, y2, . . . , yn〉.

��

We are now ready to prove completeness of Armstrong’s axioms with respect
to distributed knowledge semantics. This result has been earlier claimed as a
part of Theorem 1.

Theorem 6. If K � ϕ for each Kripke frame K whose set of agents contains
all agents in formula ϕ, then # ϕ.

Proof. Suppose � ϕ. Let A be the finite set of all agents mentioned in formula
ϕ and M be a maximal consistent subset of Φ(A) containing formula ¬ϕ.

Definition 9. Let Kripke frame K be

∏
A⊆A

K(A,A \A∗).

Lemma 13. M # B � C if and only if K � B � C, for all finite subsets B and
C of A.

Proof. (⇒) Suppose that M # B � C and

∏
A⊆A

K(A,A \B∗) � B � C.

Thus, by Theorem 5, there exists A0 ⊆ A such that K(A,A \ A∗
0) � B � C.

Hence, by Lemma 12,
B ∩ (A \A∗

0) = ∅

and
C ∩ (A \A∗

0) �= ∅.

In other words, B ⊆ A∗
0 and

C � A∗
0. (7)

Then, by the Reflexivity axiom, # A∗
0 � B. By assumption M # B � C and the

Transitivity axiom, M # A∗
0 � C. By Lemma 6, M # A0 � A∗

0. Thus, by the
Transitivity axiom, M # A0 �C. By the Reflexivity axiom, # C�c for all c ∈ C.
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Hence, by the Transitivity axiom, M # A0 � c for all c ∈ C. Then, c ∈ A∗
0 for all

c ∈ C. Thus, C ⊆ A∗
0, which is a contradiction to (7).

(⇐) Suppose
∏

A⊆A K(A,A \ A∗) � B � C. Then, K(A,A \ B∗) � B � C, by
Theorem 5. Hence, by Lemma 12, either B ∩ (A\B∗) �= ∅ or C ∩ (A\B∗) = ∅.
In other words, either B � B∗ or C ⊆ B∗. The former is not possible due to
Lemma 5. Thus, C ⊆ B∗. Hence, by the Reflexivity axiom, # B∗ �C. Note that
M # B�B∗ by Lemma 6. Therefore, by the Transitivity axiom, M # B�C. ��
Lemma 14. ψ ∈M if and only if K � ψ for each ψ ∈ Φ(A).
Proof. Induction on the structural complexity of formula ψ. The base case follows
from Lemma 13. The induction step follows from the maximally and consistency
of set M in the standard way. ��
Note that K � ψ due to assumption ¬ϕ ∈M , Lemma 14, and consistency of set
M . This concludes the proof of Theorem 6. ��
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Abstract. We introduce a family of logics for expressing and reasoning about
stochastic properties over mobile distributed systems. More specifically, to rea-
son about state properties, action sequences, location-based properties and differ-
entiate between local and global object-based behaviour, we define an ASMC+

extending an action and state-based Markov chain with object and location la-
bels. We introduce a distributed stochastic logic DSL interpreted over ASMC+s.
For an ASMC+ model M , we define quotient structures equivalent to M which
induce sublogics over DSL. The logics include a global stochastic logic GSL and
local stochastic logics LSL for locations in the system. In general, the logics can
be used to capture different quantitative dependability properties for distributed
mobile systems. We point out that the interpretation of the sublogics over equiv-
alence preserving state space aggregations brings considerable advantages for
verification.

1 Introduction

Service-oriented, cloud and mobile computing is changing the way applications are de-
veloped, as services and resources become more commonly distributed and accessed
over the internet. Consequently there is an increasing need for dedicated programming
and specification formalisms that address aspects such as (code and object) mobility,
remote execution, dynamic distribution of resources over a network, security, reliabil-
ity and performance. Ideally such high-level modelling languages allow us to select the
best design for a system, and rank alternatives on the basis of particular metrics for non-
functional properties of interest. For performance common metrics include response
time, throughput and utilisation. If specification formalisms allow the statement of re-
quired dependability and performance measures (the later for example are increasingly
used for service-level agreements), efficient and reliable computation of these measures
should then become common practice for distributed mobile application development.

There are a number of languages and frameworks that aim to address some of the
above challenges including ULM [1], KLAIM [2], StoKLAIM [3], and various process
algebra-based approaches including stochastic π-calculus [4], PEPA nets [5], and the
calculus of mobile ambients [6]. High-level performance languages such as PEPA nets

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 195–205, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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and StoKLAIM support the modelling of distributed mobile systems with notions of lo-
cation, context and evaluation environment. As such it is possible to clearly distinguish
computation at one of the locations from the movement of (code-containing) objects
from one location to another. Mobile objects behave in accordance with their location
and what other objects are available for interaction. In such languages actions have a
random duration governed by a negative exponential distribution. The resulting oper-
ational model is a Continuous-Time Markov Chain (CTMC), one of the most popular
models used for performance and dependability evaluation.

We introduce a family of stochastic logics suitable for expressing properties over
mobile distributed systems. We use CTMCs with actions and state labels (ASMCs) as
defined in [7] adapted to a distributed mobile system context. We extend the model with
object and location labels which we call ASMC+. We first introduce DSL, a distributed
stochastic logic interpreted over ASMC+. To separate global from local property spec-
ification, we define as sublogics a global stochastic logic GSL and a family of local
stochastic logics LSL for each location in the system. The sublogics share a seman-
tics at the level of the ASMC+ but can be interpreted directly over quotient structures
defined over the original model and reflecting the intended separation. The interpreta-
tion of the sublogics over equivalence preserving state space aggregations constitutes a
favourable approach for verification and is well known. GSL expresses global proper-
ties of the system such as how an object moves between locations, global reachability
properties, and how many resources there are at equilibrium in one or more locations of
the system. For each location l, LSLl describes individual properties of location l in the
system such as available resources, resource constraints, and local object interaction.

Many (temporal) logics have been proposed to express stochastic behaviour (e.g.,
[8,7] among many others) and separately system properties related to mobility (e.g.,
[9]). However, to the best of our knowledge there is only one probabilistic logic for
mobility called MOSL and additional variant MOSL+[3]. Stochastic logics such as CSL
[8] are not able to capture distribution and mobility properties directly, nor express both
state and action sequences. The logic asCSL [7] is an extension of CSL which allows
the specification of execution paths of Markov chains with actions and state labels. In
asCSL, path formulae are defined as regular expressions over an alphabet combining
state formulae and an action set. MOSL is an action-based stochastic extension of state-
based logic MOMO [9], whereby MOSL+ is both action and state-based.

The main logic we propose, the distributed stochastic logic DSL, is action and state-
based and can be used to describe global/local properties of distributed systems taking
into account system structure, locations and object mobility. Similarly to MOSL it de-
scribes path formulae using a bounded until operator equipped with action sets. The
logics DSL and MOSL+ have a comparable expressiveness, but differ in many crucial
ways. Syntactically MOSL+ is very closely linked to the specification language StoK-
LAIM [3] it was developed for which severely compromises its usability elsewhere.
MOSL operators reappear in SoSL to express properties over MarCaSPiS, a service-
oriented calculus developed within the SENSORIA project [10]. Our logic does not make
any assumption on the high-level formalism used and can be used in combination with
PEPA net specifications or other suitable modelling approaches. An advantage of our
approach is that we exploit quotient structures defined over an ASMC+ to represent
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different abstractions of the distributed mobile system. A high-level or global view of
the system is used directly by the global stochastic logic GSL and its semantics. Ad-
ditional location and object-based views can be constructed for localised behaviour
specification. The distributed nature and location awareness of a StoKLAIM specifica-
tion is lost in the actual verification process as MOSL+ flattens the underlying model
and hence loses explicit knowledge of location and structure in the underlying Markov-
based model. It is well known that retaining and exploiting the structure of the model
can bring considerable advantages for verification and lead to more efficient analysis of
large system models by reducing overall required state space.

Paper structure: Section 2 defines an ASMC+ as an extension of ASMCs with ob-
ject and location labels. In Section 3 we introduce the syntax and semantics of a dis-
tributed stochastic logic DSL for specifying properties over distributed mobile systems
and show some examples of its expressive power. In Section 4 we explore different
quotient structures over an ASMC+ and how these correspond to sublogics of DSL.
Section 5 concludes the paper.

2 Extending ASMCs for Mobile Systems

We consider a mobile system as a network of distributed locations, whereby the objects
in the system can move between locations and interact with other objects provided they
are at the same location when they interact. Objects move by performing a global action,
and interact with other objects by performing a shared local action. Synchronisation on
global actions is not allowed. Let L be a finite set of locations,O be a finite set of object
types, and Io be a finite set of object instances of type o ∈ O. We write I =

⋃
o∈O Io

for the overall set of instances (pairwise disjoint). Let Act = ActG.ActL be a finite set
of actions consisting of global and local actions respectively where ActG ∩ ActL = ∅.
In addition ActL =

⋃
l∈L ActL(l) where ActL(l) refers to the local actions in location

l, where we assume here that ActL(l1) ∩ ActL(l2) = ∅ for any two l1 �= l2 ∈ L. We
also write ActL(N) for the local actions in region N ⊆ L, and ActL,o for the local
actions of object type o ∈ O.

The model underlying the distributed mobile system can be represented using an
action and state-based Markov chain (ASMC) [7] extended here to be defined over a set
of object types O, set of locations L, and set of instances Io of object type o ∈ O. We
refer to our extension as an ASMC+. We assume O, L, and I fixed throughout.

Definition 1. An ASMC+ is a tupleM = (S,Act, AP, F,H,R) where:

– S is a finite set of states with initial state s0,
– Act is a finite set of action labels,
– AP is a finite set of atomic propositions,
– F : S × Io → 2AP is a labelling function which assigns to each state s ∈ S and

object instance i ∈ Io the set F (s, i) of atomic propositions that are assumed to be
valid in s for instance i.

– H : S × Io → L is a labelling function which assigns to each state s ∈ S and
object instance i ∈ Io a location H(s, i) ∈ L where i is located at state s.

– R : S ×Act× S → R≥0 is a rate matrix.
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In Definition 1, we extend the usual labelling function that assigns to each state s ∈ S
a set of atomic propositions that are (assumed) valid in s. Instead we refer in addition
to a specific object instance, and consider two functions F and H , where F associates
to each (s, i) pair the set of atomic propositions valid in that state for instance i, and
H specifies the location where i is residing at state s. It is possible for object instances
to remain in the same location throughout and for such instances H is a constant. For
a state s, the current number of instances of type o at a location l, can be inferred as
follows. Let Cs

o(l) ⊆ Io be the subset of instances of type o ∈ O at location l in state
s, i.e., Cs

o(l) = {c ∈ Io | H(s, c) = l}. The number of instances of type o in state s
at location l is given by |Cs

o(l)|. We make use of a function max : L × O → N which
returns the maximum number of instances of object type o possible at the location at
any moment in time. Similarly, we can consider a min function to denote the minimum
number of required instances of type o at a location.

A state change occurs when one object instance performs an action either on its own
or with another object. According to the rate matrix, if R(s, a, s′) = λ > 0 then there
is a transition labelled with action a from state s to state s′ whose delay is given by an
exponential distribution with rate λ. More precisely the meaning of R(s, a, s′) = λ > 0

is that the probability that transition s
a−→ s′ is enabled within the next t time units from

the current state s is given by 1− e−λ·t. If more than one state s′ can be reached from s
with rate greater than zero then there is a race between the outgoing transitions from s.

The underlying continuous-time Markov chain (CTMC) of an ASMC+ is straigth-
forward and defined as the tuple (S,AP, F,R′) that arises from M by removing the
action set and accumulating the rates of all transitions between the same two states in
S, i.e., R′(s, s′) =

∑
a∈Act R(s, a, s′) (cf. [7]).

Finite and infinite paths in an ASMC+ are as expected and correspond to finite and
infinite words over (S × Act × R>0). A finite path σ is written as a sequence of tran-

sitions σ = s0
a0,t0−→ s1

a1,t1−→ . . .
an−1,tn−1−→ sn where ti is the sojourn time in state si.

We denote |σ| the number of transitions in path σ and σ[i] = Si, the ith state of σ.
Moreover, we denote by T (σ) =

∑n−1
j=0 tj the execution time of σ, and σ(i, j) is the

part of the path starting at state si and ending at state sj . PathM
fin denotes the set of

all finite paths in M, and PathM
w denotes the set of infinite paths in M. Moreover,

by PathM
fin(si) and PathM

w (si) we denote the set of all finite and infinite paths inM
with initial state si.

3 The Logic DSL

The (stochastic) properties of interest for mobile distributed systems include quanti-
tative logical statements on their structure, resource distribution, object mobility as
well as local behaviour of objects and their interactions at given system locations. This
section describes a logic suitable for expressing stochastic properties over mobile dis-
tributed systems.

Stochastic logics such as CSL [8], aCSL [11] and asCSL [7] are interpreted over
Markov chains, action-labelled Markov chains, and action and state-labelled Markov
chains respectively. The underlying model used depends on the intention of the logic.
With an action-based logic such as aCSL, for instance, we want to specify properties
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such as “there is at least a 90% chance that action a occurs within 2 time units”. In
aCSL, we can only make statements about actions and not about the state the system
may be when something occurs, as this logic does not have atomic propositions to
describe states. The logic asCSL is action and state-based, and are thus more expressive
enabling both kinds of properties to be captured (over actions and over states). The
distributed stochastic logic DSL proposed here is also action and state-based.

In our setting, we distinguish between locations (L) and other atomic propositions
(AP ), as well as between local (ActL) and global (ActG) actions. In addition, we want
to express properties over objects and their local interactions. In line with our object-
based extension of ASMCs we define the grammar DSL as a location and object-based
extension of action and state-based CSL. Note that for the moment we do not differen-
tiate between local and global actions and behaviour. We come back to that later on.

We define the distributed stochastic logic DSL over sets L, O, Act and AP , which
we may write as DSL[L,O, Act, AP ] or just highlighting specific sets if the others are
clear from context.

Syntax. The symbols of DSL are:

Object types : o ∈ O
Instances of an object type : i, j ∈ Io
Locations : l ∈ L
Actions : a ∈ Act
Atomic propositions : ap ∈ AP
Probability values : p ∈ [0, 1]
Comparisons : $% ∈ {<,≤, >,≥}
Time interval : I = [t, t′] ⊆ R+

0

Sets of actions : A,B ⊆ Act

The formulae of DSL are defined by the grammar, where Φ is a state formula, Ψ is a
location formula, and ϕ is a path formula:

Φ ::= � | Φ ∧ Φ | ¬Φ | S��p(Φ) | P��p(ϕ) | l : Ψ
Ψ ::= ap | i.ap | i↔ j.a | l : o[ ] | o[−] | o[i]
ϕ ::= Φ UI

∗ B Φ | Φ UI
A B Φ | Φ UI

A ∗ Φ

The intended meanings of state formulae are:

� : true
∧ : conjunction
¬ : negation
S��p(Φ) : steady state operator, i.e., the probability of being in a Φ-state in the

long run obeys to the bound $% p
P��p(ϕ) : probabilistic operator, i.e., the probability measure of all infinite paths

satisfying ϕ obeys to the bound $% p
l : Ψ : location l satisfies property Ψ
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More specifically:

l : ap : ap holds in location l
l : i.ap : in location l object i satisfies ap
l : i↔ j.a : in location l objects i and j are synchronised on shared action a
l : o[ ] : location l has an available space for an object of type o
l : o[−] : an arbitrary object of type o is currently at location l
l : o[i] : instance i of type o is currently at location l

Finally, the intended meanings of path formulae are:

Φ1 UI
∗ B Φ2 : eventually, within time bound I , by performing an action in B,

we reach a state that satisfies Φ2, and until then all states satisfy Φ1

Φ1 UI
A B Φ2 : eventually, within time bound I , by performing an action in B,

we reach a state that satisfies Φ2, and until then all states satisfy
Φ1 and only actions in A can occur

Φ1 UI
A ∗ Φ2 : eventually, within time bound I , we reach a state that satisfies Φ2

and until then all states satisfy Φ1 and only actions in A can occur

In addition, we can extend location specific properties over regions N ⊆ L introduc-
ing shorthand notation:

〈N〉 : Ψ ≡ l1 : Ψ ∨ · · · ∨ ln : Ψ

and
[N ] : Ψ ≡ l1 : Ψ ∧ · · · ∧ ln : Ψ

The intended meanings of these defined operators are easy to grasp: 〈N〉 : Ψ means
that Ψ holds somewhere in the region N of the system, and [N ] : Ψ means that Ψ holds
everywhere in the region N of the system.

Semantics over an ASMC+. We define the semantics of DSL by means of a satis-
faction relation |= over the states of an ASMC+ M w.r.t. object types O and locations
L (cf. Definition 1).

The relation “state formula Φ is satisfied (holds) at a point s of a ASMC+ M”,
denotedM, s |= Φ, is defined as follows:

– M, s |= �
– M, s |= Φ1 ∧ Φ2 iffM, s |= Φ1 andM, s |= Φ2

– M, s |= ¬Φ iffM, s |= Φ does not hold
– M, s |= l : ap iff ap ∈ AP and there is an i ∈ Io with ap ∈ F (s, i) and

H(s, i) = l
– M, s |= l : i.ap iff ap ∈ F (s, i), i ∈ Io, ap ∈ AP , and H(s, i) = l
– M, s |= l : i ↔ j.a iff there is a path in M containing s such that there is a

transition labelled with a ∈ Act leaving s, a is a shared action between i and j and
H(s, i) = H(s, j) = l

– M, s |= l : o[ ] iff there is available space for an instance of type o in l, i.e.,
|Cs

o(l)| < max(l, o)
– M, s |= l : o[−] iff an instance of type o is currently in l, i.e., there exists an i ∈ Io

with H(s, i) = l
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– M, s |= l : o[i] iff H(s, i) = l and i ∈ Io
– M, s |= S��p(Φ) iff ΠM(s, SatM(Φ)) $% p
– M, s |= P��p(ϕ) iff ProbM(s, ϕ) $% p

Above, SatM(Φ) = {s ∈ S | s |= Φ}, and ΠM(s, S′) denotes the steady-
state probability to be in a state of set S′ when starting in s. It is defined in terms
of a probability measure PrM on the set of infinite paths η with initial state s. For-
mally, ΠM(s, S′) = limt→∞ PrM{η ∈ PathM

w (s) | η@t ∈ S′}. In addition,
ProbM(s, ϕ) is the probability measure of all infinite paths starting in s satisfying
ϕ, i.e., ProbM(s, ϕ) = PrM{η ∈ PathM

w (s) | η |= ϕ}.
Finally, the relation “path formula ϕ is satisfied (holds) at an infinite path η of a

ASMC+ M”, denotedM, η |= ϕ, is defined as follows:

– M, η |= Φ1 UI
∗ B Φ2 iff there is a finite prefix σ of η, with initial state sn and end

state sj , such that for n ≤ p ≤ j − 1, sp |= Φ1 and sj |= Φ2, and sj was reached
by the occurrence of an action in B

– M, η |= Φ1 UI
A B Φ2 iff there is a finite prefix σ of η, with initial state sn and end

state sj , such that for n ≤ p ≤ j − 1, sp |= Φ1 and sj |= Φ2, and only actions in A
occur up to sj−1 and sj was reached by the occurrence of an action in B

– M, η |= Φ1 UI
A ∗ Φ2 holds iff there is a finite prefix σ of η, with initial state sn and

end state sj , such that for n ≤ p ≤ j − 1,M, sp |= Φ1 andM, sj |= Φ2, and only
actions in A occur up to sj−1

A few examples of DSL properties we may want to express are described next.
In location l, object i1 interacts with i2 on action a is written

l : i1 ↔ i2.a (1)

There is an (arbitrary) object of type o1 in region N = {l1, l2} of the model is given by

〈N〉 : o1[−] (2)

An example of a DSL path formula states that if object i1 is at location l and satisfies
state1 then it will eventually do action a in less than 5 time units and satisfy state2 is
written

(l : i1.state1) U≤5
∗ {a}(l : i1.state2) (3)

We can capture as a path formula that if the system is currently in a state such that l1
has a space for an object of type o1 and l2 an occuppied space for an object of type o1
then a move can eventually occur and l1 will have an occuppied space for an object of
type o1 is written

(l1 : o1[] ∧ l2 : o1[−]) U∗ {move}(l1 : o1[−]) (4)

In equilibrium, the accumulated probability of both spaces of type o1 and o2 in l
being full at the same time is at least 0.8 is written

S≥0.8(l : o1[−] ∧ l : o2[−]) (5)

Finally, the next formula states that the probability of object i1 leaving location l
without performing action a is at most 0.5. Let A = Act \ {a} and R = L \ {l}, the
formula is given by

P≤0.5((l : i1) UA ∗(〈R〉 : o1[i1])) (6)
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4 The Global and Local Sublogics

From the previously defined syntax of DSL[L,O, Act, AP ], we now want to separate
what captures global behaviour from local behaviour and interactions at locations in
the distributed mobile system. This gives us two sublogics of DSL, namely a global
logic GSL and a family of local logics over the set of locations L given by {LSLl}l∈L.
We assume that L, O, ActG and ActL are nonempty sets.

The global logic GSL is a restriction of DSL to global actions ActG, i.e., GSL =
DSL[ActG]. This means that we cannot have properties of the kind l : i ↔ j.a in GSL
since a is necessarily a local action (recall that global actions cannot be shared). Any
formula in DSL which only makes use of global actions is a valid GSL formula.

The local logic LSLl for location l is a restriction of DSL to a set of locationsL = {l}
and local actions in ActL(l), i.e, LSLl = DSL[{l}, ActL(l)]. This means that we can
only refer to properties of l and not other locations in the system, and the behaviour of
objects within the location. Any formula in DSL which only makes use of local actions
to location l and properties over objects at l is a valid LSLl formula.

Proposition 1 GSL ⊆ DSL and LSLl ⊆ DSL

Proof. This follows directly from the definition of GSL and LSL. Since ActG ⊆ Act,
we have GSL = DSL[ActG] = DSL[L,O, ActG, AP ] ⊆ DSL[L,O, Act, AP ]. Simi-
larly for LSL. ��

Given our restrictions above, it is clear that from the formulae given in the previous
section: formulae (2), (4), (5) and (6) are GSL formulae, and formulae (1), (3) and (5)
are LSLl formulae. In particular, note that a formula may be both a local and a global
formula, as is the case with (5). However, this is only possible if the state formula does
not contain the occurrence of any action, as the logics use a disjoint set of actions. A
further comment relates to formula (6) which may be a global formula only if global
actions are used. Note that as a DSL formula, formula (6) can be more general as the
only restriction we made on the set A was that it excluded the local action a. If A
includes a mixture of local and global actions, this formula is not a GSL formula. This
shows that DSL is more expressive than GSL and LSL.

Since the sublogics are only syntactic restrictions on the sets over which DSL is
defined, their semantics is the same as for DSL when defined over the states of the
ASMC+ M. The semantics of the sublogics of DSL can, however, also be defined
directly over particular quotient structures defined overM. We describe how to obtain
the quotient associated to GSL first.

Definition 2. Let M = (S,Act, AP, F,H,R) be an ASMC+, let Γ be a set of GSL
formulae, and let ≡Γ be an equivalence relation on S defined via s1 ≡Γ s2 iff for all
ϕ ∈ Γ ,M, s1 |= ϕ iff M, s2 |= ϕ. Use /s0 to denote {s′ | s ≡Γ s′}. Then the global
quotient structure of M by ≡Γ is the structure M/≡Γ = (S′, ActG, AP, F ′, H ′, R′)
where S′ = {/s0 | s ∈ S}, F ′(/s0, i) = ∩s′∈�s�F (s′, i), H ′(/s0, i) = H(s, i), and
R′(/s0, a, /s′0) = R(s, a, s′).

We need to establish that the obtained distributed quotient agrees with M in the
equivalence of Γ .
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Proposition 2 LetM be an ASMC+ and ϕ ∈ Γ ⊆ GSL.

M, s |= ϕ iff M/≡Γ , /s0 |= ϕ

Proof. The proof can be done using structural induction on the syntax of state, location
and path properties. Most arguments from [12] for CSL, and [7] for asCSL apply for
state and path formula. We give a brief idea of how to address location-based properties.

We prove it by contradiction for ϕ = l : i.ap. Assume in one direction that M/≡Γ ,
/s0 |= ϕ holds, but that M, s �|= ϕ. The former means that ap ∈ F ′(/s0, i) =
∩s′∈�s�F (s′, i) and H ′(/s0, i) = l consequently since s ∈ /s0 necessarily, then we
must have ap ∈ F (s, i) and H(s, i) = l by definition of H ′. It then follows that
M, s |= l : i.ap which contradicts our assumption. The reverse case can also be proved
by contradiction. We proceed like this for all cases of location formulae allowed in GSL.
Notice that as mentioned before l : i↔ j.a is not a global formula and does not belong
to Γ . Consider ϕ = l : o[i]. Assume in one direction that M/≡Γ , /s0 |= ϕ holds, but
that M, s �|= ϕ. The former means that we have H ′(/s0, i) = l, and by definition of
H ′ we have H ′(/s0, i) = H(s, i) so we must have M, s |= ϕ which contradicts our
assumption. ��

The above result establishes that M and M/≡Γ are bisimilar wrt GSL formulae in
Γ . The fundamental advantage resulting from this is that we can reduce verification of
global properties to a quotient of the original model which corresponds to an equiva-
lence preserving state space aggregation. In other words, if a global property holds in
the global quotient structure of a modelM then it holds in the original modelM.

In exactly the same way, we can obtain quotient structures over M for subsets of
local formulae in LSLl for some location l ∈ L.

Definition 3. Let M = (S,Act, AP, F,H,R) be an ASMC+, let Δ be a set of LSLl
formulae, and let ≡Δ be an equivalence relation on S defined via s1 ≡Δ s2 iff for all
ϕ ∈ Δ,M, s1 |= ϕ iff M, s2 |= ϕ. Use /s0l to denote {s′ | s ≡Δ s′}. Then the local
quotient structure for l of M by ≡Δ is the structure M/≡Δ = (S′, ActL(l), AP, F ′,
H ′, R′) where S′ = {/s0l | s ∈ S}, F ′(/s0l, i) = ∪s′∈�s�lF (s′, i), H ′(/s0l, i) =
H(s, i) = l, and R′(/s0l, a, /s′0l) = R(s, a, s′).

In the above definition, the local quotient structure for l is such that all equivalence
classes over S contain (at most) state s with an object located at l.

A similar proposition can be formulated stating that the obtained local quotient for l
agrees withM in the equivalence of Δ.

5 Conclusion

We presented a family of stochastic logics for the performance analysis of distributed
mobile systems. We defined ASMC+s as an object and location-based extension of
action and state-based Markov chains, and introduced a new distributed stochastic logic
DSL interpreted over an ASMC+ M. The logic extends known stochastic logics with
the ability to express location and resource specific properties as well as both state
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and action-based properties. We then separated global and local properties and defined
two sublogics of DSL, namely a global stochastic logic GSL and a collection of local
stochastic logics LSLl over a location l ∈ L.

Our formulae capture properties of mobile distributed systems and can be used as
a reasoning framework for any high-level model representation which have an under-
lying CTMC model, such as PEPA nets, StoKLAIM and various stochastic Petri net
models. In general, the logic can be used to capture quantitative dependability and per-
formance properties for distributed mobile systems, and contributes to a more efficient
computation of dependability and performance measures of distributed mobile systems.

A further contribution in this paper is an initial attempt towards a method to achieve
state space aggregation in an ASMC+ model M induced by sets of formulae and the
quotient structure that they define on M. In particular, we defined how to obtain quo-
tient structures for GSL and LSLl (for a location l ∈ L). By exploring the structure ofM
and using that as an interpretation of the sublogics we obtain a more efficient approach
for property verification. We need to extend this research further, explore concrete ex-
amples and identify how we can exploit the sets of formulae further to obtain useful
state space aggregations with respect to the kinds of properties we are interested in ver-
ifying. In addition, we want to explore the formal relation between common notions of
strong and weak bisimulation equivalences and simulation pre-orders (see for example
[13,12,14]) or non-bisimulation-based Markovian behavioural equivalences (see [15])
in our setting.

Further considerations on verification and model checking are outside the scope of
the present paper. However, it can be noted that a general strategy for model checking
DSL over an ASMC+ M and its sublogics and associated models derived from M
follows the standard approach for verification of stochastic logics. For a given DSL
(GSL or LSLl) formula Φ, the model checking algorithm recursively computes the sets
of states satisfying the subformulas of Φ, and then obtains from them the sets of states
that satisfy the overall formula. Usually in the context of stochastic logics the difficulties
are in the steady-state properties and the probabilistic quantifier. Since our DSL logic
extends features from CSL [8] and aCSL [11], algorithms defined in that context can
be exploited. Indeed, we could consider using an existing state-based stochastic model-
checker such as MRMC[16] or PRISM[17], wrapping them on a DSL model-checking
algorithm.

Acknowledgements. We thank Joost-Pieter Katoen and the anonymous reviewers for
valuable comments on an earlier version of this paper.
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Abstract. We study the question of when a given set of derivable rules
in some basic analytic propositional sequent calculus forms itself an an-
alytic calculus. First, a general syntactic criterion for analyticity in the
family of pure sequent calculi is presented. Next, given a basic calculus
admitting this criterion, we provide a method to construct weaker pure
calculi by collecting simple derivable rules of the basic calculus. The ob-
tained calculi are analytic-by-construction. While the criterion and the
method are completely syntactic, our proofs are semantic, based on in-
terpretation of sequent calculi via non-deterministic valuation functions.
In particular, this method captures calculi for a wide variety of para-
consistent logics, as well as some extensions of Gurevich and Neeman’s
primal infon logic.

1 Introduction

Proof theory reveals a wide mosaic of possibilities for sub-classical logics. These
are logics that are strictly contained (as consequence relations) in classical logic.
Thus, by choosing a subset of axioms and derivation rules that are derivable in
(some proof system for) classical logic, one easily obtains a (proof system for
a) sub-classical logic. Various important and useful non-classical logics can be
formalized in this way, with the most prominent example being intuitionistic
logic. In general, the resulting logics come at first with no semantics. They
might be also unusable for computational purposes, since the new calculi might
not be analytic: it is often the case that proofs of some formula ϕ must contain
formulas that are not subformulas of ϕ. This is evident within the framework of
Hilbert-style calculi, that are rarely analytic. But, even for Gentzen-type sequent
calculi, where the initial proof system for classical logic LK is analytic, there is
no guarantee that an arbitrary collection of classically derivable sequent rules
constitutes an analytic sequent calculus.

In this paper, we focus on a general family of relatively simple sequent calculi
for propositional logics, called pure sequent calculi (originally studied in [2]),
of which (the propositional fragment of) LK is the prototype example. Our
contribution is twofold. First, we generalize the coherence condition from [4] to
provide a decidable sufficient syntactic criterion for analyticity of a given pure
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sequent calculus. Here we employ a general concept of analyticity, based on a
parametrized notion of a subformula, that shares the attractive features with the
usual subformula property. This criterion is useful in many cases, e.g. for proving
the analyticity of a sequent calculus for the logic of first-degree entailment [1],
and of course, the analyticity of the propositional fragment of LK. Second, we
show that calculi admitting this criterion can be utilized for constructing other
analytic sequent calculi. Taking a basic calculus B, we present a method for
obtaining other analytic-by-construction sub-calculi of B, by collecting derivable
rules of B that have a certain “safe” form.

The proposed method is general enough to capture a wide variety of known
sequent calculi for sub-classical logics. This includes:

– A large family of sequent calculi for propositional paraconsistent logics, orig-
inated from philosophical motivations, and obtained by replacing the usual
left introduction rule of negation with weaker rules, each of which is derivable
in LK.

– A sequent calculus for primal logic (without quotations) from [7], as well as
some natural extensions of it. This calculus originated from practical compu-
tational motivations, aiming to allow efficient proof search. It is obtained by
replacing the usual right introduction rule of implication with a weaker rule,
and discarding the rule for introducing disjunction on the left hand-side.

Our approach is semantic: We formulate and use a semantic property of sequent
calculi that is equivalent to analyticity. The semantics, however, plays a role only
in our arguments, while the actual use of the proposed methods includes only
syntactic considerations.

Related Work. The family of pure sequent calculi was defined in [2]. The se-
mantics for these calculi which lies in the basis of our proofs, is similar to the
one in [10] (and takes its inspiration from [6]). Nevertheless, [10] investigates
translations of derivability in analytic pure calculi to the classical satisfiability
problem, leaving open the tasks of constructing analytic calculi, and checking
whether a given calculus is analytic. In this paper we aim to fill this gap, by
providing simple sufficient conditions (that hold in various known cases) for an-
alyticity. Furthermore, we note that the notion of analyticity employed in [10]
is generalized in the current paper: (1) here we also consider derivations from
assumptions (also known as “non-logical axioms”); and (2) we use a more gen-
eral parametrized notion of a subformula. A particular well-behaved subfamily
of pure calculi, called canonical calculi was studied in [4]. For these calculi, it
was shown that analyticity and cut-admissibility are equivalent, and both were
precisely characterized by a simple and decidable coherence criterion. However,
various useful pure calculi (some of which are included in examples below) are
not canonical, and still their analyticity can be shown using the results of the
current paper. Finally, the general framework of [11] allows one to encode all
pure calculi in linear logic, and use linear logic to reason about them. Among
the pure calculi, it is again only the canonical ones for which a decidable criterion
for cut-admissibility is given in [11].
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2 Pure Sequent Calculi

In what follows, we assume a propositional language for classical logic, that
consists of a countably infinite set of atomic variables At = {p1, p2, . . .}, the
binary connectives ∧, ∨ and ⊃, the unary connective ¬, and the nullary con-
nectives � and ⊥. A sequent is a pair 〈Γ,Δ〉 (denoted by Γ ⇒ Δ) where
Γ and Δ are finite sets of formulas. We employ the standard sequent nota-
tions, e.g. when writing expressions like Γ, ψ ⇒ Δ or ⇒ ψ. The union of
sequents is defined by (Γ1 ⇒ Δ1) ∪ (Γ2 ⇒ Δ2) = Γ1 ∪ Γ2 ⇒ Δ1 ∪ Δ2.
For a sequent Γ ⇒ Δ, frm(Γ ⇒ Δ) = Γ ∪ Δ. This notation is naturally
extended to sets of sequents. Given a set F of formulas, we say that a se-
quent s is an F-sequent if frm(s) ⊆ F . A substitution is a function from At
to the set of formulas. A substitution σ is naturally extended to compound for-
mulas by σ(1(ψ1, . . . , ψn)) = 1(σ(ψ1), . . . , σ(ψn)) for every compound formula
1(ψ1, . . . , ψn). Substitutions are also naturally extended to sets of formulas, se-
quents and sets of sequents.

We focus on a general family of relatively simple sequent calculi, called pure
sequent calculi. Roughly speaking, these are propositional fully-structural calculi
(calculi that include the structural rules: exchange, contraction and weakening),1

whose derivation rules do not enforce any limitations on the context formulas
(following [2], the adjective “pure” stands for this requirement). We note that
additive applications are employed (i.e., all premises share one context sequent),
rather than multiplicative ones. In the context of this paper, this is just a matter
of taste, since the two options are obviously equivalent when all structural rules
are available.

Definition 1. A pure rule is a pair 〈S, s〉 (denoted by S / s) where S is a set
of sequents and s is a sequent. The elements of S are called the premises of the
rule and s is called the conclusion of the rule. The set S of premises of a pure
rule is usually written without set braces, and its elements are separated by “;”.

Definition 2. An application of a pure rule s1, . . . , sn / s is a pair of the form

〈{σ(s1) ∪ c, . . . , σ(sn) ∪ c} , σ(s) ∪ c〉 (denoted by
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
) where

σ is a substitution and c is a sequent (called a context sequent). The sequents
σ(si) ∪ c are called the premises of the application and σ(s) ∪ c is called the
conclusion of the application.

Note that every application of a pure rule is itself a pure rule. Moreover, every
pure rule is an application of itself, obtained by taking the identity substitution
and the empty context sequent. This duality will be exploited when we expand
analytic calculi with new rules in the form of applications of other rules.

1 Exchange and contraction are implicitly included, since sequents are taken to be
pairs of sets.
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Definition 3. A pure calculus is a finite set of pure rules. A proof in a pure
calculus G is defined as usual, where in addition to applications of the pure
rules of G, the following standard schemes may be used:

(weak)
Γ ⇒ Δ

Γ, Γ ′ ⇒ Δ′, Δ
(id)

Γ, ψ ⇒ ψ,Δ
(cut)

Γ ⇒ ψ,Δ Γ, ψ ⇒ Δ

Γ ⇒ Δ

Given a pure calculus G, a set F of formulas, a set of F -sequents S and an
F -sequent s, we write S #FG s if there is a proof of s from S in G consisting only
of F -sequents. When F is the set of all formulas, we write #G instead of #FG.

In what follows, all rules and calculi are pure. There are many sequent calculi
for non-classical logics (admitting cut-elimination) that fall in this framework.
These include calculi for three and four-valued logics, various calculi for para-
consistent logics, and all canonical sequent systems [3,4,6].

Example 1. The propositional fragment of Gentzen’s fundamental calculus for
classical logic can be directly presented as a pure calculus, denoted henceforth
by LK. It consists of the following rules:

(⊥ ⇒) ∅ /⊥ ⇒ (⇒ �) ∅ / ⇒ �
(¬ ⇒) ⇒ p1 /¬p1 ⇒ (⇒ ¬) p1 ⇒ / ⇒ ¬p1
(∧ ⇒) p1, p2 ⇒ / p1 ∧ p2 ⇒ (⇒ ∧) ⇒ p1;⇒ p2 / ⇒ p1 ∧ p2
(∨ ⇒) p1 ⇒; p2 ⇒ / p1 ∨ p2 ⇒ (⇒ ∨) ⇒ p1, p2 / ⇒ p1 ∨ p2
(⊃⇒) ⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ (⇒⊃) p1 ⇒ p2 / ⇒ p1 ⊃ p2

Example 2. The calculus from [3] for da Costa’s historical paraconsistent logic
C1 can be directly presented as a pure calculus, that we call GC1 . It consists of
the rules of LK except for (¬ ⇒) that is replaced by the following rules:

p1 ⇒ /¬¬p1 ⇒
⇒ p1;⇒ ¬p1 /¬(p1 ∧ ¬p1)⇒ ¬p1 ⇒;¬p2 ⇒ /¬(p1 ∧ p2)⇒
¬p1 ⇒; p2,¬p2 ⇒ /¬(p1 ∨ p2)⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ∨ p2)⇒
p1 ⇒; p2,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ⊃ p2)⇒

The following properties of pure calculi will be particularly useful below:

Proposition 1. Let G be a calculus, F a set of formulas, S a set of F-sequents,
and s an F-sequent. Suppose that S #FG s. Then, the following hold:

1. σ(S) #σ(F)
G σ(s) for every substitution σ.

2. {s′ ∪ c | s′ ∈ S} #FG s ∪ c for every F-sequent c.

2.1 Analyticity

Analyticity is a crucial property of proof systems. In the case of fully-structural
propositional sequent calculi it usually implies their decidability and consistency
(the fact that the empty sequent is not derivable). Roughly speaking, a calculus
is analytic if whenever a sequent s is provable in it from a set S of sequents, s can
be proven using only the “syntactic material available inside s and S”. Usually,
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this “material” is taken to consist of all subformulas occurring in s. Next, we
introduce a generalized analyticity property, based on a parametrized notion of
a subformula in which negation plays a special role.

Definition 4. Let k ≥ 0. A formula ϕ is an immediate k-subformula of a for-
mula ψ if either ψ = ¬ϕ, or ψ = ϕ1&ϕ2 and ϕ = ¬mϕi for some formulas ϕ1, ϕ2,
& ∈ {∧,∨,⊃}, 0 ≤ m ≤ k and i ∈ {1, 2}.2 The k-subformula relation is the reflex-
ive transitive closure of the immediate k-subformula relation. A k-subformula ϕ
of a formula ψ is called proper if ϕ �= ψ. We denote the set of k-subformulas of a
formula ψ by subk(ψ). This notation is naturally extended to sets of formulas,
sequents and sets of sequents.

Definition 5. A calculusG is called k-analytic if S #G s entails S #sub
k(S∪{s})

G s
for every set S of sequents and sequent s.

0-subformulas are usual subformulas, and thus 0-analyticity amounts to the
usual (global) subformula property of sequent calculi. Note that k-analyticity
(for any k) ensures the decidability and consistency of a calculus. The following
propositions will be useful in the sequel.

Proposition 2. If a formula ϕ is a (proper) k-subformula of a formula ψ, then
σ(ϕ) is a (proper) k-subformula of σ(ψ) for every substitution σ. Consequently,
σ(subk(ψ)) ⊆ subk(σ(ψ)) for every formula ψ and substitution σ.

Proposition 3. Suppose that a calculus G′ is obtained from a calculus G by
one of the following:

1. Replacing some rule S /Γ ⇒ ψ,Δ by S;ψ ⇒ /Γ ⇒ Δ.
2. Replacing some rule S /Γ, ψ ⇒ Δ by S;⇒ ψ /Γ ⇒ Δ.
3. Replacing two rules of the form S;Γ ⇒ Δ/s and S;Γ ′ ⇒ Δ′ / s by the rule

S;Γ ∪ Γ ′ ⇒ Δ ∪Δ′ / s, given that Γ ∪ Γ ′ ∪Δ ∪Δ′ ⊆ subk(S ∪ {s}).

Then #G′=#G and G′ is k-analytic iff G is k-analytic.

Proposition 4. Let G′ be a calculus obtained from a calculus G by adding a

premise s′ to some rule r = S / s of G. Suppose that S #sub
k(frm(r))

G′ s′. Then, G′

is k-analytic iff G is k-analytic.3

Proof. Suppose that S = {s1, . . . , sn} and let S′ = S ∪ {s′}. To show that G′

is k-analytic iff G is k-analytic, we prove that S0 #FG′ s0 iff S0 #FG s0 for every
set F of formulas that is closed under k-subformulas, set S0 of F -sequents, and
F -sequent s0:
(⇒): Trivially, a proof in G′ is also a proof in G with some redundant sequents.

(⇐): Suppose S0 #FG s0. Let r̂ =
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
be an application of

2 ¬mϕ is inductively defined by: ¬0ϕ = ϕ, and ¬m+1ϕ = ¬¬mϕ.
3 frm is extended to pure rules and their applications in the obvious way, e.g.
frm(S / s) = frm(S) ∪ frm(s).
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r in the proof of s0 from S0, such that frm(r̂) ⊆ F . Since S #sub
k(frm(S / s))

G′ s′,

by Proposition 1, we have σ(S) #σ(sub
k(frm(S / s)))

G′ σ(s′). Since frm(r̂) ⊆ F and

F is closed under k-subformulas, subk(σ(frm(S / s))) ⊆ F . By Proposition 2,
σ(subk(frm(S / s))) ⊆ F . Hence σ(S) #FG′ σ(s′). In addition, frm(c) ⊆ F , and
hence by Proposition 1, {σ(si) ∪ c | 1 ≤ i ≤ n} #FG′ σ(s′)∪ c. Hence we may add
σ(s′) ∪ c to the premises of r̂, and obtain an application of S′ / s that consists
only of formulas in F . This can be done for every application of S / s, and hence
S0 #FG′ s0. ��

3 Sufficient Criterion for Analyticity

In this section we generalize the coherence condition from [4], and show that the
generalized condition entails analyticity.

Definition 6. A rule r is called k-closed if its conclusion has the form ⇒ ϕ or
ϕ ⇒, and its premises consist only of proper k-subformulas of ϕ. A calculus is
called k-closed if it consists only of k-closed rules.

Notation 1. Given a k-closed rule r, we denote by ϕr the formula that appears
in the conclusion of r.

The calculus LK (Example 1) is 0-closed (and hence it is k-closed for any
k). For example, the rule r = (⇒⊃) of LK is 0-closed and ϕr = p1 ⊃ p2. The
calculus GC1 (Example 2) is 1-closed.

Definition 7. A k-closed calculus G is called (cut)-guarded if for every two
rules of G of the forms S1 / ⇒ ϕ1 and S2 /ϕ2 ⇒, and substitutions σ1, σ2

such that σ1(ϕ1) = σ2(ϕ2), we have that the empty sequent is derivable from
σ1(S1) ∪ σ2(S2) using only (cut).

Note that it is decidable whether a given calculus is (cut)-guarded or not.
Indeed, for each pair of rules S1 / ⇒ ϕ1 and S2 / ϕ2 ⇒, one can first rename
the atomic variables so that no atomic variable occurs in both rules, and then it
suffices to check the above condition for the most general unifier of ϕ1 and ϕ2.

Theorem 1. Every (cut)-guarded k-closed calculus is k-analytic.

This theorem is obtained as a corollary of Theorem 2 below. Next, we present
some examples of applications of it.

Example 3. LK is (cut)-guarded and 0-closed, and hence it is 0-analytic. Simi-
larly, every canonical system (as defined in [4]) in the language of classical logic
is 0-closed, and hence every (cut)-guarded canonical system is 0-analytic.

Example 4. The quotations-free fragment of the calculus from [5] for primal
infon logic (see [7]) can be directly presented as a pure calculus, that we call
P. It consists of the rules (∧ ⇒), (⇒ ∧), (⇒ ∨), (⊃⇒), (⇒ �) and (⊥ ⇒)
of LK, together with the rule ⇒ p2 / ⇒ p1 ⊃ p2. Clearly, P is 0-closed and
(cut)-guarded. By Theorem 1, it is 0-analytic.
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Remark 1. For the intended application of primal infon logic as a logic for access
control, it is necessary to extend the language with quotations (i.e., unary con-
nectives of the form “q said”), and add appropriate inference rules for them.
Following [10], we note that the 0-analyticity of any given pure calculus entails
the subformula property for its extension with quotations.

Example 5. The paper [8] investigates a hierarchy of weak double negations, by
presenting an infinite set

{
L2n+2 | n ∈ N

}
of calculi. For example, the calculus

L4, that captures the relevance logic of first-degree entailment (see [1]), can be
obtained by augmenting LK \ {(¬ ⇒), (⇒ ¬)} with the following rules:

p1,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ ⇒ p1;⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)
¬p1 ⇒;¬p2 ⇒ /¬(p1 ∧ p2)⇒ ⇒ ¬p1,¬p2 / ⇒ ¬(p1 ∧ p2)
¬p1,¬p2 ⇒ /¬(p1 ∨ p2)⇒ ⇒ ¬p1;⇒ ¬p2 / ⇒ ¬(p1 ∨ p2)
p1 ⇒ /¬¬p1 ⇒ ⇒ p1 / ⇒ ¬¬p1

This calculus is (cut)-guarded and 1-closed, and hence, by Theorem 1, it is 1-
analytic. Moreover, it can be easily observed that each L2n+2 is (cut)-guarded
and (n+ 1)-closed, and thus by Theorem 1, each L2n+2 is (n+ 1)-analytic.

4 Constructing Analytic Calculi

Theorem 1 allows us to prove that many calculi are k-analytic, by observing
that they are k-closed and (cut)-guarded. However, this criterion is not nec-
essary. For example, GC1 from Example 2 is 1-analytic (this can be shown
as a consequence of cut-elimination), but it is not (cut)-guarded. Indeed, for
the rules p1 ⇒ / ⇒ ¬p1 and p1 ⇒ /¬¬p1 ⇒, and the substitutions σ1, σ2 with
σ1(p1) = ¬p1 and σ2(p1) = p1, we have σ1(¬p1) = σ2(¬¬p1), but the empty
sequent is not provable from {(¬p1 ⇒), (p1 ⇒)} only with (cut). In order to cap-
ture GC1 and other useful calculi, we introduce a more general method to prove
analyticity. More precisely, we present a method for constructing k-analytic cal-
culi by joining applications of rules of a certain basic (cut)-guarded k-closed
calculus.

In what follows B denotes an arbitrary k-closed (cut)-guarded calculus, that
serves as a basic calculus.

Definition 8. An application of a rule s1, . . . , sn / s is called k-safe if it has the

form
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
for some substitution σ and sequent c, such that c

consists only of proper k-subformulas of formulas that occur in σ(s).

Example 6. The following are 0-safe, 1-safe and 2-safe applications of the rule
(⊃⇒) of LK (respectively):

p1 ⇒ p1 ∧ p2 p1, p2 ⇒
p1, (p1 ∧ p2) ⊃ p2 ⇒

¬p1 ⇒ p1 ∧ p2 ¬p1, p2 ⇒
¬p1, (p1 ∧ p2) ⊃ p2 ⇒

¬¬p3 ⇒ p1 ∧ p2,¬(p1 ∧ p2) ¬¬p3, p2 ⊃ p3 ⇒ ¬(p1 ∧ p2)

¬¬p3, (p1 ∧ p2) ⊃ (p2 ⊃ p3)⇒ ¬(p1 ∧ p2)



On the Construction of Analytic Sequent Calculi for Sub-classical Logics 213

Proposition 5. Consider a k-closed rule r = s1, . . . , sn / s, and a k-safe appli-

cation of r, r̂ =
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
. Then all formulas in subk(σ(si) ∪ c)

are proper k-subformulas of σ(ϕr) (and thus subk(frm(r̂)) ⊆ subk(σ(ϕr))).

Proof. Let ψ ∈ subk(σ(si) ∪ c) and let ϕ ∈ σ(frm(si)) ∪ frm(c) such that ψ
is a k-subformula of ϕ. We show that ϕ is a proper k-subformula of σ(ϕr).
Since ψ is a k-subformula of ϕ, it follows that ψ is also a proper k-subformula
of σ(ϕr). If ϕ = σ(ϕ′) for some ϕ′ ∈ frm(si), then since r is k-closed, ϕ′ is
a proper k-subformula of ϕr. By Proposition 2, ϕ is a proper k-subformula of
σ(ϕr). Otherwise, ϕ ∈ frm(c), and since r̂ is k-safe, ϕ is a proper k-subformula
of σ(ϕr). ��

Theorem 2. Every calculus that consists solely of k-safe applications of rules
of B is k-analytic.

Theorem 2 will be proved in the next section. First, observe that Theorem 1
is obtained as a corollary:

Proof (of Theorem 1). Every rule of B is a trivial k-safe application of itself,
and hence by Theorem 2, B itself is k-analytic. ��

Before proving Theorem 2, we present some consequences and examples of it.
For these examples, we take the basic calculus B to be LK (that is (cut)-guarded
and k-closed for every k).

Example 7. A sequent calculus GP1 for the atomic paraconsistent logic P1 from
[12] can be constructed using Theorem 2.4 Begin with LK \ {(¬ ⇒)}, and add
the following 0-safe applications of (¬ ⇒) to allow left-introduction of negation
for compound formulas:
⇒ ¬p1 /¬¬p1 ⇒ ⇒ p1 ∧ p2 /¬(p1 ∧ p2)⇒
⇒ p1 ∨ p2 /¬(p1 ∨ p2)⇒ ⇒ p1 ⊃ p2 /¬(p1 ⊃ p2)⇒

Note that the context sequent c is empty in each of these applications. By The-
orem 2, this calculus is 0-analytic. In GP1 we have �#GP1

p1,¬p1 ⇒ p2, but

#GP1
ϕ,¬ϕ⇒ ψ for every compound formula ϕ and formula ψ. Note that GP1

is also 0-closed and (cut)-guarded, and hence its analyticity directly follows from
Theorem 1.

In some cases, k-safe applications of rules of B turn out to have premises
that are already derivable. For example, suppose we would like to augment the
calculus P from Example 4 with the rule ⊥ ⇒ p1 / ⇒ ⊥ ⊃ p1, which is a 0-safe
application of (⇒⊃). Since the sequent ⊥ ⇒ p1 is provable in P, it is a redundant
premise. In this case, one can add the rule ∅ / ⇒ ⊥ ⊃ p1 directly. The following
proposition is used for omitting redundant premises in the examples below.

4 GP1 is equivalent to a sequent calculus for P1 given by Arnon Avron in an unpub-
lished manuscript.
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Proposition 6. Let G1 be a k-analytic calculus, and G2 be a calculus that
consist solely of k-safe applications of rules of B. Suppose that G1 ∪ G2 is a
k-analytic calculus, and that #G1

s for every premise s of a rule of G2. Let
G3 = {∅ / s | S / s ∈ G2}. Then G1 ∪G3 is k-analytic.

Proof. Let S / s ∈ G2 and s′ ∈ S. Since G1 is k-analytic and #G1
s′, we have

#sub
k(s′)

G1
s′. By Proposition 5, subk(s′) ⊆ subk(s). Therefore, #sub

k(s)
G1

s′, and so

#sub
k(s)

G1∪G3
s′. By repeatedly applying Proposition 4, since G1 ∪G2 is k-analytic,

we obtain that G1 ∪G3 is k-analytic as well. ��

Example 8. The calculus GC1 from Example 2 is 1-analytic. Using Proposi-
tion 6, we construct a 1-analytic equivalent calculus that we call G′

C1
. Let

G1 = LK \ {(¬ ⇒)}. G′
C1

is obtained by augmenting G1 with the following
rules:
∅ /¬¬p1 ⇒ p1
∅ / p1,¬p1,¬(p1 ∧ ¬p1)⇒ ∅ /¬(p1 ∧ p2)⇒ ¬p1,¬p2
∅ /¬(p1 ∨ p2)⇒ ¬p1, p2 ∅ /¬(p1 ∨ p2)⇒ ¬p1,¬p2
∅ /¬(p1 ∨ p2)⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2)⇒ p1, p2
∅ /¬(p1 ⊃ p2)⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2)⇒ ¬p1,¬p2

Every rule in this list has the form ∅ / s, where s is the conclusion of a 1-
safe application of the rule (¬ ⇒) of LK, whose premises are all provable
in G1. For example, the sequent ¬(p1 ∧ p2) ⇒ ¬p1,¬p2 is the conclusion of
⇒ p1 ∧ p2,¬p1,¬p2
¬(p1 ∧ p2)⇒ ¬p1,¬p2

, which is a 1-safe application of the rule (¬ ⇒) of LK,

and its premise ⇒ p1 ∧ p2,¬p1,¬p2 is derivable in G1. By Theorem 2, augment-
ing G1 with these applications results in a 1-analytic calculus. G′

C1
is obtained

by discarding their premises, and its 1-analyticity is guaranteed by Proposi-
tion 6. Using Proposition 3, it is easy to see that G′

C1
is equivalent to GC1 , and

furthermore, the 1-analyticity of G′
C1

entails the 1-analyticity of GC1 .

Example 9. The calculus P from Example 4 enjoys a linear time decision pro-
cedure (see, e.g., [7]). As shown in [10], it is possible to augment P with ad-
ditional rules in order to make it somewhat closer to LK, without compromis-
ing the linear time complexity.5 Such extension is obtained as follows. Begin
with a calculus G0 that consists of the rules (∧ ⇒), (⇒ ∧), (⇒ ∨), (⊃⇒),
(⇒ �) and (⊥ ⇒) of LK. Add the rule p2, p1 ⇒ p2 / p2 ⇒ p1 ⊃ p2 to ob-
tain a calculus that we call P′. This rule is a 0-safe application of the rule
(⇒⊃) of LK. Now, add the following set of rules to recover some natural
properties of the classical connectives (none of these rules is derivable in P′):
∅ / ⇒ ⊥ ⊃ p1 ∅ / p1 ∨ p1 ⇒ p1 ∅ / ⇒ p1 ⊃ p1
∅ /⊥ ∨ p1 ⇒ p1 ∅ / p1,¬p1 ⇒ ∅ / ⇒ (p1 ∧ p2) ⊃ p1
∅ / p1 ∨⊥ ⇒ p1 ∅ / p1 ∨ (p1 ∧ p2)⇒ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p2
∅ / (p1 ∧ p2) ∨ p1 ⇒ p1 ∅ / ⇒ p2 ⊃ (p1 ⊃ p2)
Every rule in this list has the form ∅ / s, where s is the conclusion of a 0-safe

5 A manual ad-hoc proof of analyticity of the extended calculus was needed in [10].
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application of a rule of LK, whose premises are all derivable in P′. For exam-
ple, the sequent ⇒ p2 ⊃ (p1 ⊃ p2) is the conclusion of the 0-safe application

p2 ⇒ p1 ⊃ p2
⇒ p2 ⊃ (p1 ⊃ p2)

of (⇒⊃), and its premise p2 ⇒ p1 ⊃ p2 is derivable in P′. By

Theorem 2, augmenting P′ with these applications results in a 0-analytic calcu-
lus. By Proposition 6, 0-analyticity is preserved when discarding their premises.
Using Proposition 6 again, we may also discard the premise p2, p1 ⇒ p2 of the
rule p2, p1 ⇒ p2 / p2 ⇒ p1 ⊃ p2. Using Proposition 3, it is easy to see that we
may replace the new rule ∅ / p2 ⇒ p1 ⊃ p2 by ⇒ p2 / ⇒ p1 ⊃ p2, which is the
original right introduction rule of implication in P.

5 Proof of Theorem 2

This section is devoted to prove Theorem 2. Our proof relies on a semantic
interpretation of pure calculi, that gives rise to a semantic characterization of
analyticity, as was shown in [10]. Note that we have to slightly strengthen the
soundness and completeness theorem given in [10] in order to cover derivations
with assumptions (i.e. S #FG s for non-empty set S).

Definition 9. A bivaluation is a function v from some set dom(v) of formulas
to {0, 1}. A bivaluation v is extended to dom(v)-sequents by: v(Γ ⇒ Δ) = 1 iff
v(ϕ) = 0 for some ϕ ∈ Γ or v(ϕ) = 1 for some ϕ ∈ Δ. v is extended to sets of
dom(v)-sequents by: v(S) = min {v(s) | s ∈ S}, where min ∅ = 1. Given a set
F of formulas, by an F-bivaluation we refer to a bivaluation v with dom(v) = F .
A bivaluation v whose domain dom(v) is the set of all formulas is called full.

Definition 10. A bivaluation v respects a rule S / s if v(σ(S)) ≤ v(σ(s)) for
every substitution σ such that σ(frm(S / s)) ⊆ dom(v). v is called G-legal for a
calculus G if it respects all rules of G.

Example 10. A {p1,¬¬p1}-bivaluation v respects the rule p1 ⇒ /¬¬p1 ⇒ iff
either v(p1) = v(¬¬p1) = 0 or v(p1) = 1. Note that LK-legal bivaluations are
exactly usual classical valuation functions.

Theorem 3 (Soundness and Completeness). Let G be a calculus, F be a
set of formulas, S be a set of F-sequents, and s be an F-sequent. Then, S #FG s
iff v(S) ≤ v(s) for every G-legal F-bivaluation v.

Proof. Soundness Assume S #FG s and let v be a G-legal F -bivaluation such
that v(S) = 1. We prove that v(s) = 1 by induction on the length of the
proof of s from S in G:
1. If s ∈ S or s is a conclusion of an application of (cut), (weak) or (id),

then this is obvious.
2. If s is the conclusion of an application of a rule of G, then there ex-

ist s1, . . . , sn / s0 ∈ G, an F -sequent c and a substitution σ such that
σ(frm({s1, . . . , sn, s0})) ⊆ F , s = σ(s0)∪ c, and S #FG σ(si)∪ c for every
1 ≤ i ≤ n. If v(c) = 1, then v(σ(s0) ∪ c) = 1. Otherwise, by the induc-
tion hypothesis, v(σ(si)) = 1 for every 1 ≤ i ≤ n. Since v is G-legal,
v(σ(s0)) = 1, and hence v(s) = v(σ(s0) ∪ c) = 1.
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Completeness Assume S �#FG s. We prove that there exists a G-legal F -
bivaluation v such that v(S) = 1 and v(s) = 0. Define an ω-F-sequent
to be a pair 〈L,R〉 (denoted by L ⇒ R) such that L and R are (possibly
infinite) subsets of F . We write S #FG L ⇒ R if there exist finite Γ ⊆ L
and Δ ⊆ R such that S #FG Γ ⇒ Δ. All other definitions for sequents are
naturally extended to ω-sequents. It is straightforward to extend s to an
ω-F -sequent L∗ ⇒ R∗ that has the following properties:

– Γ ′ ⊆ L∗ and Δ′ ⊆ R∗ where s = Γ ′ ⇒ Δ′.
– S �#FG L∗ ⇒ R∗.
– S #FG L∗ ⇒ R∗, ψ for every ψ ∈ F \R∗.
– S #FG L∗, ψ ⇒ R∗ for every ψ ∈ F \ L∗.

Since the identity axiom (id) is available, we obviously have L∗ ∩ R∗ = ∅.
Similarly, using (cut), it can be shown that F = frm(L∗ ⇒ R∗). Hence L∗

and R∗ partition F . Define an F -bivaluation v by: v(ψ) = 1 if ψ ∈ L∗, and
v(ψ) = 0 if ψ ∈ R∗. Clearly, v(L∗ ⇒ R∗) = 0 and therefore v(s) = 0. We
prove that v(S) = 1 and that v is G-legal. Let Γ ⇒ Δ ∈ S. Obviously,
S #FG Γ ⇒ Δ. Since S �#FG L∗ ⇒ R∗, we have either Γ �⊆ L∗ or Δ �⊆ R∗. If
there exists ϕ ∈ Γ \ L∗, then ϕ ∈ R∗ and hence v(ϕ) = 0. Otherwise, there
exists ϕ ∈ Δ \ R∗, and hence ϕ ∈ L∗, which means that v(ϕ) = 1. Either
way, v(Γ ⇒ Δ) = 1.
Let S0 / s0 ∈ G and σ be a substitution such that σ(frm(S0 / s0)) ⊆ F .
We assume that v(σ(S0)) = 1, and prove that v(σ(s0)) = 1. Suppose that
S0 = {Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn}. We construct the following sequent Γ ⇒ Δ:
For every 1 ≤ i ≤ n, there exists either ψi ∈ Γi such that v(σ(ψi)) = 0 or
ψi ∈ Δi such that v(σ(ψi)) = 1. If the first option holds, we add σ(ψi) to Δ.
If the second option holds, we add σ(ψi) to Γ . Clearly, v(σ(Γ ⇒ Δ)) = 0.
In addition, Γ ⊆ L∗ and Δ ⊆ R∗. Now, for every 1 ≤ i ≤ n, using (id) and
(weak), we get that S #FG σ(Γi ⇒ Δi) ∪ (Γ ⇒ Δ). Applying S0 / s0 with
Γ ⇒ Δ as a context sequent, we get that S #FG σ(s0) ∪ (Γ ⇒ Δ). Since
Γ ⊆ L∗ and Δ ⊆ R∗, S #FG σ(s0) ∪ (L∗ ⇒ R∗). Let σ(s0) = Γ0 ⇒ Δ0. It
follows that either Γ0 �⊆ L∗ or Δ0 �⊆ R∗. Hence, v(ψ) = 0 for some ψ ∈ Γ0

or v(ψ) = 1 for some ψ ∈ Δ0. Therefore, v(σ(s0)) = 1. ��

Using the theorem above, we formulate a semantic property of calculi that is
equivalent to k-analyticity.

Definition 11. A calculus G is called semantically k-analytic if every G-legal
bivaluation v can be extended to aG-legal full bivaluation, provided that dom(v)
is finite and closed under k-subformulas.

Theorem 4. A calculus G is k-analytic iff it is semantically k-analytic.

Proof. If G is not k-analytic, then there is a set S of sequents and a sequent s

such that S #G s and S �#sub
k(S∪{s})

G s. Hence, there exists finite S′ ⊆ S such that

S′ #G s, and S′ �#sub
k(S′∪{s})

G s. According to Theorem 3, there exists a G-legal

subk(S′ ∪{s})-bivaluation v such that v(S′) = 1 and v(s) = 0, and u(S′) ≤ u(s)
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for everyG-legal full bivaluation u. Therefore, v cannot be extended to a G-legal
full bivaluation. In addition, dom(v) = subk(S′ ∪ {s}) is finite and closed under
k-subformulas.

For the converse, suppose that v is a G-legal bivaluation, dom(v) is finite
and closed under k-subformulas, and v cannot be extended to a G-legal full
bivaluation. Let Γ = {ψ ∈ dom(v) | v(ψ) = 1}, Δ = {ψ ∈ dom(v) | v(ψ) = 0},
and s = Γ ⇒ Δ. Then dom(v) = subk(s) and v(s) = 0. We show that u(s) = 1
for every G-legal full bivaluation u. Indeed, every such u does not extend v.
Hence there is some ψ ∈ dom(v) such that u(ψ) �= v(ψ). Then, u(ψ) = 0 if

ψ ∈ Γ , and u(ψ) = 1 if ψ ∈ Δ. In either case, u(s) = 1. By Theorem 3, �#sub
k(s)

G s
and #G s. ��

We use the semantic characterization of analyticity given in Theorem 4 to
prove Theorem 2. Thus, we provide a method for extending bivaluations whose
domains are finite and closed under k-subformulas.

This method is iterative: in each step we extend a given bivaluation v with
a truth value for a single formula ψ, such that dom(v) ∪ {ψ} is closed under
k-subformulas. We call such formulas k-addable:

Definition 12. A formula ψ is called k-addable to a bivaluation v if dom(v)
contains all proper k-subformulas of ψ.

The extension of partial bivaluations is determined according to the basic
calculus B, as given in the following definition:

Definition 13. Let v be a bivaluation and ψ be a formula. The dom(v) ∪ {ψ}-
bivaluation vψB is defined as follows: 1) vψB(ϕ) = v(ϕ) for every ϕ ∈ dom(v).

2) If ψ /∈ dom(v): vψB(ψ) = 1 iff there exist a rule of the form S / ⇒ ϕ in B and
a substitution σ such that σ(frm(S)) ⊆ dom(v), σ(ϕ) = ψ and v(σ(S)) = 1.

If the above extension method “works” for a given calculus G, we say that G
is B-k-analytic. Formally, this is defined as follows.

Definition 14. A calculus G is called B-k-analytic if vψB is G-legal for every
G-legal bivaluation v whose domain is finite and closed under k-subformulas and
formula ψ that is k-addable to v.

Proposition 7. Every B-k-analytic calculus is k-analytic.

Proof. Let G be a B-k analytic calculus. By Theorem 4, it suffices to prove that
G is semantically k-analytic. Let v be a G-legal bivaluation whose domain is
finite and closed under k-subformulas. We extend v to a G-legal full bivaluation
v′. It is a routine matter to enumerate all formulas and obtain an infinite sequence
ψ1, ψ2, . . . such that: a) If ψi ∈ dom(v) and ψj /∈ dom(v) then i < j. b) If ψi is a
k-subformula of ψj then i ≤ j. We define a sequence of bivaluations v0, v1, . . . as

follows: v0 = v, and vi = vi−1
ψi

B for every i > 0. dom(vi) = dom(v)∪{ψ1, . . . , ψi}
for every i, and therefore each ψi is k-addable to vi−1. Since G is B-k-analytic,
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each vi is G-legal. The full bivaluation v′ is defined by v′(ψi) = vi(ψi) for
every i > 0. In order to see that v′ is G-legal, let S / s ∈ G and let σ be
a substitution. Let j = max {i | ψi ∈ σ(frm(S / s))}. Then v′(ψ) = vj(ψ) for
every ψ ∈ σ(frm(S / s)). Recall that vj is G-legal, and therefore we have that
v′(σ(S)) = vj(σ(S)) ≤ vj(σ(s)) = v′(σ(s)). ��

Next, we prove that B-k-analyticity is preserved when a calculus is augmented
with one k-safe application of a rule of B.

Theorem 5. Let G be a B-k-analytic calculus, and G′ be a calculus obtained
by augmenting G with a k-safe application r̂ of a rule r of B. Then G′ is B-k-
analytic.

Proof. Suppose r = S / s with S = {s1, . . . , sn}, and r̂ = Ŝ / ŝ. Let α be a
substitution and c be a sequent such that Ŝ = {α(s1) ∪ c, . . . , α(sn) ∪ c} and
ŝ = α(s) ∪ c. Now, let v be a G′-legal bivaluation whose domain is finite and
closed under k-subformulas, and ψ be a formula that is k-addable to v. We prove
that the bivaluation vψB is G′-legal. Let S0 / s0 ∈ G′ and σ be a substitution

such that σ(frm(S0 / s0)) ⊆ dom(vψB). We show that vψB(σ(S0)) ≤ vψB(σ(s0)). If
S0 / s0 ∈ G then this holds since G is B-k-analytic. If ψ /∈ σ(frm(S0 / s0)) or
ψ ∈ dom(v) then this holds since v is G′-legal. Assume now that S0 / s0 = r̂,
ψ ∈ σ(frm(S0 / s0)) and ψ /∈ dom(v).

We first prove that ψ = σ(α(ϕr)). Otherwise, σ(α(ϕr)) ∈ dom(v). By
Proposition 5, frm(r̂) ⊆ subk(α(ϕr)), and by Proposition 2, we also have that
σ(subk(α(ϕr))) ⊆ subk(σ(α(ϕr))), and hence σ(frm(r̂)) ⊆ subk(σ(α(ϕr))). Since
dom(v) is closed under k-subformulas and σ(α(ϕr)) ∈ dom(v), we have that
subk(σ(α(ϕr))) ⊆ dom(v), and hence σ(frm(r̂)) ⊆ dom(v). Since ψ ∈ σ(frm(r̂)),
it follows that ψ ∈ dom(v), which is a contradiction.

Similarly, we show that σ(frm(Ŝ)) ⊆ dom(v). Indeed, let ϕ ∈ σ(frm(Ŝ))
and let ϕ′ ∈ frm(Ŝ) such that ϕ = σ(ϕ′). By Proposition 5, ϕ′ is a proper k-
subformula of α(ϕr), and hence by Proposition 2, ϕ is a proper k-subformula of

ψ = σ(α(ϕr)). In particular, ϕ �= ψ. Since σ(frm(Ŝ)) ⊆ dom(vψB), it follows that
ϕ ∈ dom(v).

Now suppose vψB(σ(α(si) ∪ c)) = 1 for every 1 ≤ i ≤ n. We prove that

vψB(σ(α(s) ∪ c)) = 1. If vψB(σ(c)) = 1 then we are clearly done. Suppose other-

wise. Then we have vψB(σ(α(S))) = 1. We prove that vψB(σ(α(s))) = 1 (it would

then follow that vψB(σ(α(s) ∪ c)) = 1). Since σ(frm(Ŝ)) ⊆ dom(v), we also have
σ(α(frm(S))) ⊆ dom(v). Hence, v(σ(α(S))) = 1. We distinguish two cases. If s
is ⇒ ϕr then since σ(α(frm(S))) ⊆ dom(v), σ(α(ϕr)) = ψ and v(σ(α(S))) = 1,

by Definition 13, we have vψB(ψ) = 1, and so vψB(σ(α(s))) = 1. Otherwise s

is ϕr ⇒. To prove that vψB(σ(α(s))) = 1, we show that vψB(ψ) = 0. By Defi-
nition 13, it suffices to prove that for every rule of the form S′ / ⇒ ϕ′ in B
and substitution σ′ such that σ′(frm(S′)) ⊆ dom(v) and σ′(ϕ′) = ψ, we have
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v(σ′(S′)) = 0. Let S′ / ⇒ ϕ′ and σ′ as above. Since B is (cut)-guarded, the
empty sequent is derivable from σ(α(S)) ∪ σ′(S′) using only (cut). It easily

follows that σ(α(S)), σ′(S′) #dom(v)
G′ ⇒. By Theorem 3, since v is G′-legal and

v(σ(α(S))) = 1, we must have v(σ′(S′)) = 0. ��

Finally, we obtain Theorem 2 as a corollary:

Proof (of Theorem 2). Let G be a calculus that consists solely of k-safe appli-
cations of rules of B. Begin with the empty calculus and add the rules of G one
by one. The empty calculus is clearly B-k-analytic, and by Theorem 5, in each
step we obtain a B-k-analytic calculus. By Proposition 7, G is k-analytic. ��

6 Further Research

While we focused on the language of classical logic for the sake of simplicity and
clarity, the definitions and results of this paper can be straightforwardly adapted
for arbitrary propositional languages. In addition, the following extensions and
questions naturally arise and are left for a future work. First, unlike the case
of canonical calculi [4], the relations between cut-elimination and analyticity in
pure calculi are still unclear. We plan to apply semantic methods (see, e.g., [9])
to investigate cut-elimination in pure calculi. Second, while this paper studies
only pure calculi, that have a simple semantic interpretation, we believe that a
similar approach can be useful for more complicated families of sequent calculi.
In particular, the family of basic sequent calculi that was studied in [9], and
has a Kripke-style semantic interpretation, is an interesting subject for a similar
investigation of analyticity. Lastly, it will be interesting and useful to extend
the current method also for many-sided sequents (using many-valued valuation
functions), as well as for calculi for first-order logics.
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On the Broader Epistemological Significance

of Self-Justifying Axiom Systems

Dan E. Willard

University at Albany Computer Science and Mathematics Departments

Abstract. This article will be a continuation of our research into self-
justifying systems. It will introduce several new theorems (one of which
will transform our previous infinite-sized self-verifying logics into for-
malisms or purely finite size). It will explain how self-justification is use-
ful, even when the Incompleteness Theorem clearly limits its scope.

1 Introduction

Gödel’s Incompleteness Theorem has two parts. Its first half indicates no decision
procedure can identify arithmetic’s true statements. Its “Second Incompleteness”
result specifies sufficiently strong logics cannot verify their own consistency. Gödel
was careful to insert a caveat into his historic paper [11], indicating a diluted form
of Hilbert’s Consistency Program might have some success:

∗ “It must be expressly noted Proposition XI represents no contradiction
of the formalistic standpoint of Hilbert. For this standpoint presupposes
only the existence of a consistency proof by finite means, and there might
conceivably be finite proofs which cannot be stated in P or in ...”

Some scholars have interpreted ∗ as, possibly, anticipating attempts to confirm
Peano Arithmetic’s consistency, via either Gentzen’s formalism or Gödel’s Di-
aletica interpretation. On the other hand, the Stanford’s Encyclopedia’s entry
about Gödel quotes him, in its Section 2.2.4, stating he was hesitant to view the
Second Incompleteness Theorem as fully ubiquitous, until learning of Turing’s
work. Moreover, Yourgrau [45] states von Neumann “argued against Gödel him-
self” in the early 1930’s, about the definitive termination of Hilbert’s consistency
program, which “for several years” after [11]’s publication, Gödel “was cautious
not to prejudge”. Also, it is known [6,13,45] that Gödel did initially presume the
second theorem was false, before proving its stunning result.

In any case several year after he wrote ∗’s initial statement, Gödel gave a 1933
lecture [12], where he told his audience that Hilbert’s initial 1926 objectives,
summarized formally by ∗∗ below, had “unfortunately” no “hope of succeeding
along” its originally intended plans.

∗ ∗ (Hilbert [17] 1926): “Where else would reliability and truth be found
if even mathematical thinking fails? The definitive nature of the infinite
has become necessary, not merely for the special interests of individual
sciences, but rather for the honor of human understanding itself.”

U. Kohlenbach et al. (Eds.): WoLLIC 2014, LNCS 8652, pp. 221–236, 2014.
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Our research, in both the current article and prior papers [35–44], was stim-
ulated by the prospect that we find ∗∗ enticing, even though the Second Incom-
pleteness Theorem unequivocally demonstrates that logics cannot recognize their
own consistency in a robust sense. Accordingly, we have studied both general-
izations and boundary-case exceptions for the Second Incompleteness Theorem
in [35–44]. The current article will seek to both strengthen these prior results, in
the context of axiom systems with strictly finite cardinalities, and to also provide
a more intuitive explanation of the meaning behind [35–44]’s results.

The thesis of this article will be delicate because there can be no doubt that
the Second Incompleteness Theorem is sharply robust, when viewed from a con-
ventional purist mathematical perspective. On the other hand, we will argue that
there are certain facets of a “Self-Justifying Logics”, that are tempting under
a hard-nosed engineering perspective, contemplating sharply curtailed forms of
Hilbert’s goals. These results will be fragile but not fully immaterial.

2 Background Setting

Let (α, d) denote any axiom system and deduction method satisfying the simple
“Split Rule” below 1. This pair will be called “Self Justifying” when:

i one of α ’s theorems will state that the deduction method d, applied to the
system α, will produce a consistent set of theorems, and

ii the axiom system α is in fact consistent.

For any (α, d) , it is easy to construct a second αd ⊇ α that satisfies the Part-i
requirement. For instance, αd could consist of all of α ’s axioms plus an added
“SelfRef(α, d)” sentence, defined as stating:

• There is no proof (using d’s deduction method) of 0 = 1 from the union
of the system α with this sentence “SelfRef(α, d)” (looking at itself).

Kleene [20] noted how to encode rough analogs of “SelfRef(α, d)”. Each of Kleene,
Rogers and Jeroslow [19,20,29] noted αd may, however, be inconsistent (despite
SelfRef(α, d)’s assertion), thus causing it to violate Part-ii’s requirement.

This problem arises in many contexts besides Gödel’s paradigm, where α was
an extension of Peano Arithmetic (see [1–5,7,9,11,14–16,18,21–23,25–34,38,39,
43]). Such results formalize paradigms where self-justification is infeasible, due
to diagonalization issues. (It should, perhaps, be added that among this lengthy
list of articles, it was especially [1, 4, 11, 23, 27, 31, 34]’s incompleteness results
that influenced our work in [35–44].) In any case, the main point is that most
logicians have hesitated to employ an analog of a SelfRef(α, d) axiom because
αd = α+SelfRef(α, d) is typically inconsistent.

1 Our “Split Rule” is the trivial requirement that all the axiom sentences in α are
technically proper axioms, and that deduction method d is required to include
BOTH a finite number of rules of inference and whatever “logical axioms” are
needed (if any ? ) by d’s methodology. (This trivial notation convention is helpful.)
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Our research in [35,37,40–42] focused on paradigms where self-justification is
feasible. It involved weakening the properties a logic can prove about addition
and/or multiplication (to avoid potential difficulties). To be more precise, let
Add(x, y, z) and Mult(x, y, z) denote 3-way predicates specifying x + y = z
and x ∗ y = z. Then a logic will be said to recognize successor, addition and
multiplication as Total Functions iff it includes sentences 1-3 as axioms.

∀x ∃z Add(x, 1, z) (1)
∀x ∀y ∃z Add(x, y, z) (2)
∀x ∀y ∃z Mult(x, y, z) (3)

A logic α will be called Type-M iff it contains 1-3 as axioms, Type-A iff
it contains only (1) and (2) as axioms, Type-S iff it contains only (1) as an
axiom, and Type-NS iff it contains none of these axioms. The relationship of
these constructs to self-justification is explained by items (a) and (b):

a. The existence of Type-A systems that can recognize their own consistency
under semantic tableaux deduction, while proving analogs of all Peano Arith-
metic’s Π1 theorems (in a slightly different language), was demonstrated
in [40]. Also, [37,41] noted that some specialized forms of Type-NS systems
can likewise recognize their own Hilbert consistency.

b. The above evasions of the Second Incompleteness Theorem are known to
be near-maximal in a mathematical sense. This is because the combined
work of Pudlák, Solovay, Nelson and Wilkie-Paris [24, 27, 31, 34] implied no
natural Type-S system can recognize its Hilbert consistency, and Willard
subsequently [38, 43, 44] hybridized their formalisms with some techniques
of Adamowicz-Zbierski [1, 2] to establish that most Type-M systems cannot
recognize their own semantic tableaux consistency.

Other fascinating efforts to evade the Second Incompleteness Theorem have
used the Kreisel-Takeuti “CFA” system [22] or the the interpretational frame-
work of Friedman, Nelson, Pudlák and Visser [10, 24, 27, 33]. These systems are
unrelated to our approach because they do not use Kleene-like “I am consistent”
axiom-sentences. Instead, CFA uses the special properties of “second order” gen-
eralizations of Gentzen’s cut-free Sequent Calculus, and the interpretational ap-
proach formalizes how some systems recognize their Herbrand consistency on
localized sets of integers, which unbeknown to themselves, includes all integers.
(These alternate results are interesting but unrelated to our approach.)

3 Defining Notation and Earlier Results

A function F will be called Non-Growth iff F (a1...aj) ≤ Maximum(a1...aj)
holds. Six examples of non-growth functions are Integer Subtraction (where x−y
is defined to equal zero when x ≤ y ), Integer Division (where x÷ y equals x
when y = 0, and it equals / x/y 0 otherwise), Maximum(x, y), Logarithm(x)
Root(x, y) = 2x1/y 3 and Count(x, j) designating the number of “1” bits among
x’s rightmost j bits. The term U-Grounding Function referred in [40] to a set
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of primitives, which included the preceding functions plus the growth operations
of addition and Double(x) = x + x. Our language L∗ was built out of these
symbols, plus the primitives of “0”, “1”, “= ” and “≤ ”.

In a context where t is any term in [40]’s language L∗, the quantifiers in
the wffs ∀ v ≤ t Ψ(v) and ∃ v ≤ t Ψ(v) were called bounded quantifiers. Any
formula in L∗, all of whose quantifiers are bounded, was called a Δ∗

0 formula.
The Π∗

n and Σ∗
n formulae were then defined by the usual rules that:

1. Every Δ∗
0 formula is considered to be “ Π∗

0 ” and also “ Σ∗
0 ”.

2. A wff is called Π∗
n when it is encoded as ∀v1 ... ∀vk Φ with Φ being Σ∗

n−1
3. Also, a wff is called Σ∗

n when it is encoded as ∃v1..∃vk Φ, where Φ is Π∗
n−1.

Our article [40] used the symbol D to denote a deduction method. In addition
to using Fitting’s version of semantic tableaux methodology [8], it defined an
alternative, called Tab-k deduction, that consisted of a speeded-up version of
a tableaux, which permitted a limited analog of Gentzen-style deductive cuts for
Π∗

k and Σ∗
k formulae.

Thus, if H denotes a sequence of ordered pairs (t1, p1), (t2, p2), ... (tn, pn),
where pi is a Semantic Tableaux proof of the theorem ti, then H was called
a “Tab-k Proof” of a theorem T from α’s axioms iff T = tn and also:

1. Each of the “intermediately derived theorems” t1, t2, ... , tn−1 have a com-
plexity no greater than that of either a Π∗

k or Σ∗
k sentence.

2. Each axiom in pi’s proof either comes from α or is one of t1, t2, ... , ti−1.

Let us say an axiom system α has a Level-J Understanding of its own
consistency under a deduction method D iff α can prove that there exists no
proofs using its axioms and D’s deduction of both a Π∗

J theorem and its negation.
In this notation, items A and B summarize [36, 38–40,43]’s main results:

A. For any axiom system A using L∗ ’s U-Grounding language, [40] showed
its ISD(A) formalism could prove all A’s Π∗

1 theorems and simultaneously
verify its Level-1 consistency under Tab−1 deduction.

B. Two negative results, tightly complementing item A’s positive result, were
exhibited in [36, 38, 39, 43]. The first was that [36, 38, 43] showed most sys-
tems are unable to verify their Level-0 consistency under semantic tableaux
deduction, when they included statement (3)’s “Type-M” axiom that multi-
plication is a total function. Moreover, [39] offered an alternate form of this
incompleteness result, showing statement (2)’s far weaker Type-A systems
cannot verify their Level-0 consistency under Tab−2 deduction.

The contrast between these positive and negative results had led to our con-
jecture that automated theorem provers are likely to eventually achieve a frag-
mentary part of the ambitions that were suggested by Hilbert in ∗∗ . This is
because the question of whether a formalism can support an idealized Utopian
conception of its own consistency is different from exploring the degrees to which
theorem-provers can possess a fragmentary knowledge of their own consistency.
The Incompleteness Theorem has demonstrated an Utopian idealized form of
self-justification is unobtainable, but our research has found some diluted cousins
of this construct that are feasible
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4 The ISD(A) Axiom System

In a context where A denotes any axiom system using L∗ ’s U-Grounding
language, ISD(A) was defined in [40] to be an axiomatic formalism capable of
recognizing all of A’s Π∗

1 theorems and corroborating its own Level-1 consistency
under D’s deductive method. It consisted of the following four groups of axioms:

Group-Zero: Two of the Group-zero axioms will define the constant-symbols,
c̄0 and c̄1, designating the integers of 0 and 1. The Group-zero axioms will
also define the growth functions of addition and Double(x) = x+ x. The
net effect of these axioms will be to set up a machinery to define any integer
n ≥ 2 using fewer than 3 · 2Log n 3 logic symbols.

Group-1: This axiom group will consist of a finite set of Π∗
1 sentences, denoted

as F , which can prove any Δ∗
0 sentence that holds true under the standard

model of the natural numbers. (Any finite set of Π∗
1 sentences F with this

property may be used to define Group-1, as [40] noted.)
Group-2: Let 	Φ
 denote Φ’s Gödel Number, and HilbPrfA(	Φ
, p) denote a

Δ∗
0 formula indicating p is a Hilbert-styled proof of theorem Φ from

axiom system A. For each Π∗
1 sentence Φ, the Group-2 schema will contain

an axiom of form (4). (Thus ISD(A) can trivially prove all A’s Π∗
1 theorems.)

∀ p { HilbPrfA(	Φ
, p) ⇒ Φ } (4)

Group-3: The final part of the ISD(A) will be a self-referencing Π∗
1 axiom,

indicating ISD(A) meets §3’s criteria of being “Level-1 consistent” under
deductive method D. It is, thus, the following declaration:

# No two proofs exist for a Π∗
1 sentence and its negation, when D’s

deductive method is applied to an axiom system, consisting of the
union of Groups 0, 1 and 2 with this sentence (looking at itself).

One encoding of #, as a self-referencing Π∗
1 axiom, appears in [40]. Thus,

(5) is a Π∗
1 styled encoding for # when: 1) Prf ISD(A)(a, b) is a Δ∗

0

formula indicating that b is a proof of a theorem a under ISD(A)’s axiom
system and D’s deduction method, and 2) Pair(x, y) is a Δ∗

0 formula
indicating that x is a Π∗

1 sentence and that y represents x ’s negation.

∀ x ∀ y ∀ p ∀ q ¬ [ Pair(x, y) ∧ Prf ISD(A)(x, p) ∧ Prf ISD(A)(y, q) ] (5)

Notation. An operation I( • ) that maps an initial axiom system A onto
an alternate system I(A) will be called Consistency Preserving iff I(A) is
consistent whenever all of A’s axioms hold true under the standard model of the
natural numbers. In this context, [40] demonstrated:

Theorem 1. Suppose the symbol D denotes either semantic tableaux deduction
or its Tab−1 generalization. Then the ISD( • ) mapping operation is consistency
preserving (e.g. ISD(A) will be consistent whenever all of A’s axioms hold true
under the standard model of the natural numbers).
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We emphasize the most difficult part of [40]’s result was neither the definition
of its ISD(A)’s axiom system nor the Π∗

1 fixed-point encoding of (5)’s Group-3
axiom. Instead, the key challenge was the confirming of Theorem 1’s “Consis-
tency Preservation” property.

The confirming of this property is subtle because its invariant breaks down
when D is a deduction method only slightly stronger than either semantic
tableaux or Tab−1 deduction. Thus, Pudlák’s and Solovay’s work [27,31] implies
Theorem 1’s analog fails when D represents Hilbert deduction, and [39] showed
its generalization fails even when D represents Tab−2 deduction.

5 A Finitized Generalization of Theorem 1’s Methodology

One difficulty with ISD(A) is that it employs an infinite number of different
incarnations of sentence (4) in its Group-2 scheme (since it contains one in-
carnation of this sentence for each Π∗

1 sentence Φ in L∗ ’s language). Such a
Group-2 schema is awkward because it simulates A’s Π∗

1 knowledge almost via
a brute-force enumeration.

Our Definition 1 and Theorems 2 and 3 will show how to mostly overcome
this problem by compressing the infinite number of instances of sentence (4) in
ISD(A)’s Group-2 schema into a purely finite structure.

Definition 1. Let β denote any finite set of axioms that have Π∗
1 encodings.

Then IS#D(β) will denote an axiom system, similar to ISD(A), except its Group-2
scheme will employ β ’s set of axioms, instead of using an infinite number of
applications of statement (4)’s scheme. (Thus, the “I am consistent” statement

in IS#D(β)’s Group-3 axiom will be the same as before, except that the “I am”
fragment of its self-referencing statement will reflect these changes in Group-2
in the obvious manner.)

Theorem 2. Let D again denote either semantic tableaux or Tab−1 deduction,
and β again denote a set of Π∗

1 axioms. Then IS#
D(β) will be consistent whenever

all β’s axioms hold true under the standard model. (In other words, IS#
D(β) will

satisfy an analog of Theorem 1’s consistency preservation property for ISD(A).)

Theorem 2’s proof is almost identical to [40]’s proof of Theorem 1. It will. not
be repeated in this extended abstract. Instead, this section will apply Theorem 2
to show how finite-sized self-justifying logics can provide an infinite amount
of “kernelized” Π∗

1 information.

Definition 2. Let Testi(t, x) denote any Δ∗
0 formula, and 	Ψ
 denote Ψ ’s

Gödel number. Then Testi(t, x) will be called a Kernelized Formula iff Peano
Arithmetic can prove every Π∗

1 sentence Ψ satisfies (6)’s identity:

Ψ ⇐⇒ ∀ x Testi( 	 Ψ 
 , x ) (6)

There are infinitely many Δ∗
0 predicates Test1(t, x), Test2(t, x), Test3(t, x) ...

satisfying this kernelized condition (one of which is illustrated by Example 1).
An enumerated list of all the available kernels is called a Kernel-List.
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Example 1. The set of true Σ∗
1 sentences is r.e. This implies there exists a Δ∗

0

formula, called say Probe(g, x), such that g is the Gödel number of a Σ∗
1

statement that holds true in the Standard Model iff (7) is true:

∃ x Probe(g, x) ∧ x ≥ g (7)

Now, let Pair(t, g) denote a Δ∗
0 formula that specifies t is the Gödel number

of a Π∗
1 statement and g is the Σ∗

1 formula which is its negation. Then our
notation implies that t is a true Π∗

1 statement if and only if (8) holds true:

∀ x ¬ [ ∃ g ≤ x Pair(t, g) ∧ Probe(g, x) ] (8)

Thus if Test0(t, x) denotes theΔ
∗
0 formula of ¬ [ ∃ g ≤ x Pair(t, g) ∧ Probe(g, x)],

it is one example of what Definition 2 would call a “Kernelized Formula”.

Definition 3. Let us recall Definition 2 defined Kernel-List to be an enumera-
tion of all the kernelized formulae Test1(t, x), Test2(t, x), Test3(t, x)... . Assuming
Testi(t, x) is the i−th element in this list and Ψ is an arbitrary Π∗

1 sentence,
Ψ ’s i-th Kernel Image will be defined as the following Π∗

1 sentence:

∀ x Test i ( 	 Ψ 
 , x ) (9)

Example 2. The Definitions 2 and 3 suggest that there is a subtle relationship
between a sentence Ψ and its i−th Kernel Image. This is because Definition 2
indicates that Peano Arithmetic can prove the invariant (6), indicating that Ψ
is equivalent to its i−th Kernel Image. However, a weak axiom system can be
plausibly uncertain about whether this equivalence holds.

Thus if a weak axiom system proves statement (9) (rather than Ψ ), it may
not be able to equate these results. This problem will apply to Theorem 3’s
formalism. However, Theorem 3 will be still of much interest because §6 will
illustrate a methodology that overcomes many of Theorem 3’s limitations.

Theorem 3. Let A denote any system, whose axioms hold true in arithmetic’s
standard model, and i denote the index of any of Definition 2’s kernelized
formulae Testi(t, x). Then it is possible to construct a finite-sized collection of

Π∗
1 sentences, called say βA,i, where IS#

D(βA,i) satisfies the following invariant:

If Ψ is one of the Π∗
1 theorems of A then IS#

D(βA,i) can prove (9)’s
statement (e.g. it will prove the “the i−th kernelized image” of Ψ ).

Proof Sketch: Our justification of Theorem 3 will use the following notation:

1. Check(t) will denote a Δ∗
0 formula that produces a Boolean value of “True”

when t represents the Gödel number of a Π∗
1 sentence.

2. HilbPrfA (t, q) will denote a Δ∗
0 formula that indicates q is a Hilbert-style

proof of the theorem t from axiom system A .
3. For any kernelized Testi(t, x) formula, GlobSimi will denote (10)’s Π∗

1 sen-
tence. (It will be called A’s i−th “Global Simulation Sentence”.)
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∀ t ∀ q ∀ x { [ HilbPrfA (t, q) ∧ Check(t) ] =⇒ Testi(t, x) } (10)

In this notation, the requirements of Theorem 3 will be satisfied by any version
of the axiom system IS#D(β), whose Group-2 schema β is a finite sized consistent
set of Π∗

1 sentences that has (10) as an axiom. (This includes the minimal sized
such system, that has only (10) as an axiom.) This is because if Ψ is any Π∗

1

theorem of A, whose proof is denoted as p̄ , then both the Δ∗
0 predicates of

HilbPrfA (	Ψ
, p̄) and Check(	Ψ
) are true. Moreover, IS#D(β)’s Group-1 axiom
subgroup was defined so that it can automatically prove all Δ∗

0 sentences that

are true. Thus, IS#D(β) will prove these two statements and hence corroborate
(via axiom (10)) the further statement:

∀ x Test i ( 	Ψ
 , x ) (11)

Hence for each of the infinite number of Π∗
1 theorems that A proves, the above

defined formalism will prove a matching statement that corresponds to the i−th
kernelized image of each such proven theorem. �

6 L-Fold Generalizations of Theorem 3

Theorem 3 is of interest because every axiom system A will have its formalism
IS#D(βA,i) prove the i−th kernelized image of every Π∗

1 theorem that A proves.
This fact is helpful because (6)’s invariance holds for all Π∗

1 sentences. Moreover,
our “U-Grounded” Π∗

1 sentences capture all Conventional Arithmetic’s crucial
Π1 information because they can view multiplication as a 3-way Δ∗

0 predicate
Mult(x, y, z) via (12)’s encoding of this predicate.

[ (x = 0∨y = 0)⇒ z = 0 ] ∧ [ (x �= 0∧y �= 0 ) ⇒ (
z

x
= y ∧ z − 1

x
< y ) ] (12)

One difficulty with IS#D(β) and IS#D(βA,i) was mentioned by Example 2. It
was that while Peano Arithmetic can corroborate (6)’s invariance for every Π∗

1

sentence Ψ , these latter systems cannot also do so.
While there will probably never be a perfect method for fully resolving this

challenge, there is a pragmatic engineering-style solution that is often available.
This is essentially because our proof of Theorem 3 employed a formalism β
that used essentially only one axiom sentence (e.g. (10)’s Π∗

1 declaration ).

Since the IS#D(β) formalism was intended for use by any finite-sized system β,
it is clearly possible to include any finite number of formally true Π∗

1 sentences in
β. Thus for some fixed constant L, one can easily let β include L copies of (10)’s
axiom framework for a finite number of different Test1, Test2 ... TestL predicates,
each of which satisfy Definition 2’s criteria for being kernelized formulae. In this
case, IS#D(β) will formally map each initial Π∗

1 theorem Ψ of some axiom system
A onto L resulting different Π∗

1 theorems of the form (9).
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Remark 1. Our basic conjecture is, essentially, that a goodly number of issues,
concerning logic-based engineering applications called say E, may have conve-
nient solutions via self-justifying logics, that follow the preceding outlined L-fold
strategy. Thus, we are suggesting that if β is a large-but-finite set of axioms,
that consists of L copies of (10)’s axiom framework for different Test1...TestL
predicates, then some future engineering applications E may possibly have
their needs met by an IS#D(β) formalisms, when a software engineer meticulously
chooses an appropriately constructed finite-sized β.

Remark 2. The preceding was not meant to overlook that the Second Incom-
pleteness Theorem is a robust result, applying to all logics of sufficient strength.
Our suggestion, however, is that computers are becoming so powerful, in both
speed and memory size as the 21st century is progressing, that there will likely
emerge engineering-style applications E that will benefit from IS#D(β)’s self-
referencing formalisms when a large-but-finite-sized β is delicately chosen. More-
over, it is of interest to speculate whether such computers can partially imitate
a human being’s approximate instinctive conjectures about his own consistency
(that, as common colloquially held conjectures, seem to serve as essential pre-
requisites for humans to gain their motivation to cogitate).

Sections 7-9 will examine the preceding issues in further detail. One of their
themes will be that our exceptions to Gödel’s second theorem, while sometimes
nontrivial, clearly do not narrow the main intentions of Gödel’s result.

7 Comparing Type-M and Type-A Formalisms

Let us recall axioms (1)-(3) indicated Type-A systems differ from Type−M for-
malisms by treating Multiplication as a 3-way relation (rather than as a total
function). For the sake of accurately characterizing what our systems can and
cannot do, we have described our results as being fringe-like exceptions to the
Second Incompleteness Theorem, from the perspective of an Utopian view of
Mathematics, while perhaps being more significant results from an engineering-
style perspective of knowledge. Our goal in this section will be to amplify upon
this perspective by taking a closer look at Type-A and Type-M formalisms.

Let us assume that x0 = 2 = y0 and that x1, x2, x3, ... and y1, y2, y3, ... are
defined by the recurrence rules of:

xi+1 = xi + xi AND yi+1 = yi ∗ yi (13)

The sequences x0, x1, x2, ... and y0, y1, y2, ... will thus represent the growth rates
associated with the addition and multiplication primitives, lying in the state-
ments (2) and (3)’s “Type-A” and “Type-M” axioms.

Since x0 = 2 = y0 , the rule (13) implies yn = 22
n

and xn = 2n+1 . The
y0, y1, y2, ... sequence will, thus, grow much more quickly than the x0, x1, x2, ...
sequence (since yn ’s binary encoding will have an Log(yn) = 2n length while
xn ’s binary encoding will have a shorter length = Log(xn) = n+ 1 ).
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Our prior papers noted that the difference between these growth rates was the
reason that [36, 38, 43] showed all natural Type-M systems, recognizing integer-
multiplication as a total function, were unable to recognize their tableaux-styled
consistency — while [35, 37, 40] showed some Type-A systems could simulta-
neously prove all Peano Arithmetic Π∗

1 theorems and corroborate their own
tableaux consistency. Their gist was that a Gödel-like diagonalization argument,
which causes an axiom system to become inconsistent as soon as it proves a
theorem affirming its own tableaux consistency, stems, ultimately, from the ex-
ponential growth in the series y0, y1, y2, ... .

This growth, thus, facilitates an intense amount of self-referencing, using the
identity Log(yn) ∼= 2n , that will, ultimately, invoke the force of Gödel’s seminal
diagonalization machinery. It thus raises raises the following question:

∗∗∗ How natural are exponentially growing sequences, such as y0, y1, y2..,
whose n−th member needs 2n bits for its encoding, when such lengths
are greater than the number of atoms in the universe when merely
n > 100 ? Is such a sequence’s use, for corroborating the Second In-
completeness Effect, an inherently artificial construct ?

We will not attempt to derive a Yes-or-No answer to Question ∗ ∗ ∗ because
it is one of those epistemological questions that can be debated endlessly. Our
point is that ∗ ∗ ∗ probably does not require a definitive positive or negative
answer because both perspectives are useful. Thus, the theoretical existence of a
sequence integers of y0, y1, y2, ..., whose binary encodings are doubling in length,
is tempting from the perspective of an Utopian view of mathematics, while
awkward from an engineering styled perspective. We therefore ask: “Why not be
tolerant of both perspectives? ”

One virtue of this tolerance is it ushers in a greater understanding for the
statements ∗ and ∗∗ that Gödel and Hilbert made during 1926 and 1931. This
is because the Incompleteness Theorem demonstrates no formalism can display
an understanding of its own consistency in an idealized Utopian sense. On the
other hand, §6 suggested these remarks by Gödel and Hilbert might receive more
sympathetic interpretations, if one sought to explore such questions from a less
ambitious almost engineering-style perspective.

Our main thesis is supported by a theorem from [42]. It indicated that tableaux
variations of self-justifying systems have no difficulty in recognizing that an in-
finitized generalization of a computer’s floating point multiplication (with round-
ing) is a total function. The latter differs from integer-multiplication, by not
having its output become double the length of its input when a number is mul-
tiplied by itself. Thus, the intuitive reason [42]’s multiplication-with-rounding
operation is compatible with self-justification is because it avoids the inexorable
exponential growth under rule (13)’s sequence y0, y1, y2.. .

Also, Theorem 4 indicates self-justifying logics can view a double-precision
form of integer multiplication as likewise a total function. Its proof, exactly
analogous to [42]’s methodology, will appear in a longer version of this paper.
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Theorem 4. Let us assume the A in ISD(A) and IS#
D(βA,i) represents Peano

Arithmetic. Then ISD(A) and IS#
D(βA,i) can formalize two total functions, called

Left(a, b) and Right(a, b), where any pair of integers (a, b) is mapped onto the left
and right halves of a and b’s multiplicative product.

Remark 3. One slightly tricky aspect is that our positive results, involving [42]’s
floating point multiplication and Theorem 4’s double precision multiplication,
should not be confused with a different examination of Herbrandized consistency
in [44]. The latter took advantage of the fact that our Herbrand-styled proofs,
in [44]’s paradigm, are exponentially longer than their tableaux counterparts,
thus allowing [44] to formalize a limited use of multiplication (because its deduc-
tive methods was exponentially less efficient). Thus [44]’s results, while perhaps
theoretically interesting, are basically irrelevant to engineering environments,
e.g. the main concern of Theorems 1–4 (especially in regards to their particular
interpretations given in Remark 2).

8 A Different Type of Evidence Supporting Our Thesis

Let us recall Pudlák and Solovay [27, 31] observed that essentially all Type-
S systems, containing merely statement (1)’s axiom that successor is a total
function, cannot verify their own consistency under Hilbert deduction. (See also
related work by Buss-Ignjatovic [5], Švejdar [32] and the Appendix A of [37])

It turns out that [39] generalized these results to show that Equation (2)’s
Type-A systems are unable to verify their own consistency, under the Tab−2
deduction (defined in §3). At the same time, the ISD and IS#D frameworks, from
Sections 4 and 5, can verify their own consistency under Tab−1 deduction. Our
goal in this section will be to illustrate how the tight contrast between these
positive and negative results is analogous to the differing growth rates of the
sequences x0, x1, x2, ... and y0, y1, y2, ... from rule (13).

During our discussion Gi(v) will denote the scalar-multiplication operation

that maps an integer v onto 22
i ·v . Also, Υi will denote the statement, in the

U-Grounding language, that declares that Gi is a total function. Our paper [39]
proved that Υi has a Π∗

2 encoding. It is also implied that Gi satisfied:

Gi+1(v) = Gi( Gi(v) ) (14)

It was noted in [39] that this identity implies one can construct an axiom system
β, comprised of solely Π∗

1 sentences, where a semantic tableaux proof can estab-
lish Υi+1 from β+Υi in a constant number of steps. This implies, in turn, that a
Tab−2 proof from β will require no more that O(n) steps to prove Υn (when it
uses the obvious n-step process to confirm in chronological order Υ1 , Υ2 , ...Υn . )

These observations are significant because Gn(1) = 22
n

. Thus, [39] showed a
Tab−2 proof from β can verify in O(n) steps that this integer exists.

This example is helpful because it illustrates the difference between the growth
speeds under Tab−1 and Tab−2 deduction, is analogous to the differing growth
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rates of the sequences x0, x1, x2, ... and y0, y1, y2, ... from rule (13). Hence once
again, a faster growth-rate will usher in the Second Incompleteness Theorem’s
power (e.g. see [39]).

This analogy suggests that the Second Incompleteness Theorem has different
implications from the perspectives of Utopian and engineering theories about
the intended applications of mathematics. Thus, a Utopian may possibly be
comfortable with a perspective, that contemplates sequences y0, y1, y2, ... with
elements growing in length at an exponential speed, but many engineers may be
suspicious of such growths.

A hard-core engineer, in contrast, might surmise that the inability of self-
justifying formalisms to be compatible with Tab−2 deduction is not as disturbing
as it might initially appear to be. This is because Tab−2 differs from Tab−1
deduction by producing exponential growths that are so sharp that their material
realization has no analog in the everyday mechanical reality that is the focus of
an engineer’s interest.

Our personal preference is for a perspective lying half-way between that of
an Utopian mathematician and a hard-nosed engineer. Its dualistic approach
suggests some form of diluted partial agreement with Hilbert’s goals in ∗∗.

9 Related Reflection Principles

An added point is that there are many types of self-justifying systems available,
with some better suited for engineering environments than others.

Ideally, one would like to develop self-justifying systems S that could cor-
roborate the validity of (15)’s reflection principle for all sentences Φ.

∀p [ PrfD
S (	Φ
, p) ⇒ Φ ] (15)

Löb’s Theorem establishes, however, that all systems S, containing Peano Arith-
metic’s strength, are able to prove (15)’s invariant only in the degenerate case
where they prove Φ itself. Also, the Theorem 7.2 from [37] showed essentially all
axiom systems, weaker than Peano Arithmetic, are unable to prove (15) for all
Π∗

1 sentences Φ simultaneously. Thus, Theorem 5 will be near optimal:

Theorem 5. For any input axiom system A, it is possible to extend the self-
justifying ISD(A) and IS#

D(βA,i) systems, from Theorems 1 and 3, so that the
resulting self-justifying logics S can also:

1. Verify that Tab−1 deduction supports the following analog of (15)’s self-
reflection principle under S for any Δ∗

0 and Σ∗
1 sentences Φ :

∀p [ PrfTab−1
S (	Φ
, p) ⇒ Φ ] (16)

2. Verify (17)’s more general “root-diluted” reflection principle for S when-
ever θ is Σ ∗

1 and Φ is a Π∗
2 sentence of the form “ ∀u1...∀un θ(u1...un) ”.

∀p [ PrfTab−1
S (	Φ
, p) =⇒ ∀x ∀u1 <

√
x ... ∀un <

√
x θ(u1...un) ] (17)
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Theorem 5’s proof will rest upon hybridizing the techniques from [37]’s tangi-
bility reflection principle with Theorem 3’s methodologies, in a natural manner,
as will be demonstrated in a longer version of this article. Analogous to our other
results, Theorem 5 reinforces the theme about how exceptions to the Second In-
completeness Theorem may appear to be quite minor from the perspective of
an Utopian view of mathematics, while being significant from an engineering
standpoint. In Theorem 5’s particular case, this is because:

A. The ability of Theorem 5’s system S to support (16)’s self-reflection princi-
ple under Tab−1 proofs for any Δ∗

0 and Σ∗
1 sentence, as well as to support

(17)’s root reflection principle for Π∗
2 sentences, is clearly significant.

B. The incompleteness result of [37]’s Theorem 7.2 imposes, however, sharp
limitations upon Item A’s generality (in that it cannot be extended to fully
all Π∗

1 sentences, in an undiluted sense).

Thus, the tight fit between A and B is reminiscent of other slender borderlines,
that separated generalizations and boundary-case exceptions for the Incomplete-
ness Theorem, explored earlier. Once again, the Second Incompleteness Theorem
is seen as robust, from an idealized Utopian perspective on mathematics, while
permitting caveats from engineering styled perspectives.

This dualistic viewpoint allows one to nicely share partial (and not full) agree-
ment with Hilbert’s main aspirations in ∗∗, while also appreciating the stunning
achievement of the Second Incompleteness Theorem.

10 Concluding Remarks

At a purely technical level, this article has reached beyond our prior papers
in several respects, including §5’s demonstration that any initial system A can
have a kernelized image of its Π∗

1 knowledge duplicated by IS#D(βA,i)’s strictly
finite sized self-justifying system, and also by Section 6’s and Remark 2’s quite
pragmatic L-fold generalizations of this result.

These results help resolve the mystery that has enshrouded the Second Incom-
pleteness Theorem and the statements ∗ and ∗∗ of Gödel and Hilbert. This is
because we havemeticulously separated the goals of a pristine theoretical study of
mathematical logic from those of a finite-sized axiomatic subset of mathematics,
intended for modeling mostly an engineering environment.

There is no question that Gödel’s Second Theorem is ideally robust, relative
to a purely pristine approach to mathematics. On the other hand, we suspect
Hilbert was half-way correct by speculating in ∗∗ about humans possessing a
knowledge about their own consistency, in at least some strikingly weak and ten-
der sense, as essentially a fundamental prerequisite for psychologically motivating
their cogitations.

Thus in a context where the limitations of axiom systems, that fail to recog-
nize multiplication as a total function, are manifestly obvious, even when such
systems duplicate Peano Arithmetic’s central Π∗

1 knowledge, it is legitimate to
inquire whether posterity might find some partial-albeit-not-full redeeming value
in formalisms having weak-style knowledges of their Tab−1 consistency?
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More precisely, Sections 5-9 were intended to provide a unified broad-scale
interpretation of our diverse earlier results from [35–44]. In a context where the
Incompleteness Theorem is firmly understood to be sufficiently ubiquitous to
preclude Hilbert’s aspirations in ∗∗ from ever being fully realized, they show
how some fragmentary portion of Hilbert’s conjectures can be corroborated by
judiciously weakened logics, using a formalism, that is much less than ideally
robust, although not fully immaterial.
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