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Abstract This contribution provides a geometric perspective on the type of chaotic
dynamics that one finds in the original Lorenz system and in a higher-dimensional
Lorenz-type system. The latter provides an example of a system that features
robustness of homoclinic tangencies; one also speaks of ‘wild chaos’ in contrast
to the ‘classical chaos’ where homoclinic tangencies accumulate on one another,
but do not occur robustly in open intervals in parameter space. Specifically, we dis-
cuss the manifestation of chaotic dynamics in the three-dimensional phase space
of the Lorenz system, and illustrate the geometry behind the process that results in
its description by a one-dimensional noninvertible map. For the higher-dimensional
Lorenz-type system, the corresponding reduction process leads to a two-dimensional
noninvertible map introduced in 2006 by Bamón, Kiwi, and Rivera-Letelier [arXiv
0508045] as a system displaying wild chaos. We present the geometric ingredients—
in the form of different types of tangency bifurcations—that one encounters on the
route to wild chaos.

1 Introduction

The Lorenz system was introduced and studied by meteorologist Edward Lorenz in
the 1960s as an extremely simplified model for atmospheric convection dynamics
[35]. Famously, Lorenz discovered sensitive dependence on the initial condition, and
the Lorenz system has arguably become the best-known example of a chaotic system.
It is given as the vector field
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⎨

⎩

ẋ = σ(y − x),

ẏ = ρx − y − xz,
ż = −βz + xy.

(1)

The system is invariant under the symmetry of a rotation about the z-axis by π . The
now classical choice of the parameters for which Lorenz found a chaotic attractor is

σ = 10, ρ = 28, β = 2
2

3
. (2)

For these parameters, (1) has three equilibria: the origin 0 and a symmetrically re-
lated pair of secondary equilibria p±, which are all saddles. The chaotic attractor is
often called the Lorenz or butterfly attractor. It has two ‘wings,’ which are centred
at p− and p+ (which are not part of the attractor). Importantly, the Lorenz attractor
contains 0 and its one-dimensional unstable manifold W u(0), that is, the two trajec-
tories that converge to 0 in backward time. The Lorenz attractor actually consists of
infinitely many layers or sheets that are connected along W u(0), which forms the
‘outer boundary’ of the attractor. This is already sketched and studied in the original
paper by Lorenz [35]; an illustration of the different layers of the Lorenz attractor
can be found in the paper by Perelló [40] and it is reproduced in [14].

Figure 1 shows a computed version of the Lorenz attractor, which was rendered as
a surface from computed orbit segments of several suitably chosen families; see [14]
for details of this computation. Also shown in Fig. 1 is the one-dimensional unstable
manifold W u(0), with its left and right branches rendered in different shades; observe
how W u(0) forms the outer boundary of the Lorenz attractor. Our visualisation in
Fig. 1 is quite different from most images of the Lorenz attractor that are obtained
with numerical simulation. Starting from some initial condition, and letting transients
die down, the Lorenz attractor is typically visualised by plotting (a long part of) the
remaining trajectory. In this way, the part of the Lorenz attractor closest to the origin
is generally missed, as it is not ‘visited’ very often by trajectories; hence, most
published images show a considerably smaller part of the Lorenz attractor.

The Lorenz system (1) has been studied since the 1970s via the concept of the
geometric Lorenz attractor, which is an abstract geometric model introduced by
Guckenheimer [24], Guckenheimer and Williams [26], and Afrajmovich, Bykov and
Shilnikov [1, 2]; see also [8, 44]. The key is that the geometric Lorenz attractor
displays all the features observed in the Lorenz system, and that it can be reduced
rigorously to a one-dimensional noninvertible map. This reduction is done in two
steps. First of all, one considers the Poincaré return map to the horizontal section
through the points p± (given by z = ρ − 1). Locally this map is a diffeomorphism
that has a stable foliation (near the classic parameter values), that is, an invariant
foliation that is uniformly contracted by the Poincaré return map. The map on the
quotient space of this foliation is a one-dimensional noninvertible map, called the
Lorenz map, and it describes the dynamics on the geometric Lorenz attractor exactly.
It can be shown with standard methods that the Lorenz map has chaotic dynamics;
see, for example, [25]. In 1999 Tucker [45] famously provided a computer-assisted
proof that, for the classical parameter values (2), the Lorenz system (1) satisfies the
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Fig. 1 The Lorenz attractor as computed and rendered as a surface, with the equilibria 0 and p±
and the manifold W u(0)

technical conditions of this geometric construction, thereby showing that the Lorenz
attractor is indeed a chaotic attractor.

The question how chaos arises in the Lorenz system has also been considered,
where ρ is chosen traditionally as the parameter that is varied [15, 43]. For small
ρ > 1 all typical initial conditions simply end up at either p− or p+, which are
the only attractors of (1). As ρ is increased, a first homoclinic bifurcation at ρ ≈
13.9265 is encountered; here both branches of the one-dimensional unstable manifold
W u(0) of the origin return to 0 to form a pair of homoclinic connections. This
global bifurcation creates not only a pair of (symmetrically related) saddle periodic
orbits, but also a hyperbolic set of saddle type. The result is what has been called
preturbulence [29], which is characterised by the existence of arbitrarily long chaotic
transients before the system settles down to either p− or p+ (still the only attractors).
At ρ ≈ 24.0579 one encounters a pair of heteroclinic cycles between the origin and
the pair of saddle periodic orbits, and this results in the creation of a chaotic attractor.
The chaotic attractor, which is the closure of W u(0), coexists with the two stable
equilibria until they become saddles in a Hopf bifurcation at ρ = 470/19 ≈ 24.7368.
After the Hopf bifurcation and up to ρ = 28, the chaotic attractor is the only attractor.

A crucial role in the organisation of the dynamics of the Lorenz system (1) is
played by the stable manifold W s(0) of the origin 0, which we refer to as the Lorenz
manifold. The origin 0 is a saddle equilibrium (for ρ > 1) with two stable directions



78 H.M. Osinga et al.

and one unstable direction, and W s(0) is a smooth surface that consists of all points
in R

3 that end up at 0. Before the first homoclinic bifurcation, W s(0) forms the
boundary between the two attractors p− and p+. In the preturbulent regime after the
first homoclinic bifurcation W s(0) is still part of the basin boundary of p±, but it is
much more complicated topologically as it is involved in organising arbitrarily long
transients.

More importantly for the purpose of this paper, the Lorenz manifold W s(0) organ-
ises the dynamics in the chaotic regime [14, 15]. Owing to the sensitive dependence
on the initial condition, W s(0) is dense in phase space. Moreover, the interaction of
the Lorenz manifold W s(0) with the unstable manifold W u(0) gives rise to infinitely
many further homoclinic bifurcations when ρ is varied. Closely related is the fact
that there are infinitely many homoclinic tangencies between the two-dimensional
stable and unstable manifolds of the saddle periodic orbits that lie dense in the chaotic
Lorenz attractor. More generally, such tangencies of a three-dimensional vector field
correspond directly (by taking a Poincaré return map) to homoclinic tangencies of the
one-dimensional stable and unstable manifolds of fixed or periodic points of a planar
diffeomorphism such as the Hénon map [27], which is another well-known chaotic
system. Near a homoclinic tangency one can construct Smale horseshoe dynamics,
that is, a chaotic hyperbolic set of saddle type. Moreover, any homoclinic tangency
of a one-parameter family of three-dimensional vector fields, or planar diffeomor-
phisms, is accumulated in parameter space by other homoclinic tangencies [39],
leading to an infinite sequence of homoclinic tangency points accumulating on other
homoclinic tangency points. This is one of the characterising properties of ‘clas-
sical chaos’ that arises in vector fields of dimension three and in diffeomorphisms
of dimension two, for which the Lorenz system and the Hénon map are standard
examples; see, for example, textbooks such as [4, 25, 42].

At a homoclinic tangency of a hyperbolic set (such as a periodic orbit) there
is a nontransversal intersection of its stable and unstable manifolds. In particular,
the point of homoclinic tangency is nonwandering and its tangent bundle cannot be
decomposed into stable and unstable subspaces. As a result, the system is not uni-
formly hyperbolic, or simply, it is nonhyperbolic at a homoclinic tangency. In other
words, in ‘classical chaos’ one finds infinitely many accumulating points of nonhy-
perbolicity. A property is said to be robust (in the C1-topology) if there is an open
neighbourhood in the space of vector fields or diffeomorphisms such that all these
systems have said property. As it turns out, it has been argued that nonhyperbolicity
and homoclinic tangencies do not occur robustly in three-dimensional vector fields
or two-dimensional diffeomorphisms [36].

On the other hand, robust homoclinic tangencies and, hence, robust nonhyperbol-
icity can be found in vector fields of dimension at least four and in diffeomorphisms
of dimension at least three [11]. Any system with this property is said to display
wild chaos [37]. There are several constructions of diffeomorphisms that feature
robust nonhyperbolicity [3, 6, 7, 21, 22]. Moreover, in [49] it is shown that a four-
dimensional vector field model of calcium dynamics in a neuronal cell has a heterodi-
mensional cycle between two saddle periodic orbits, which is directly associated with
robust hyperbolicity [11, 29]. It is also possible to construct an n-dimensional vector
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field with robust homoclinic tangencies of a singular attractor and, hence, with wild
chaos. Turaev and Shilnikov presented such an example for n ≥ 4 in [46, 47]. We
consider here the example for n ≥ 5 due to Bamón, Kiwi, and Rivera-Letelier [9],
which is constructed as a Lorenz-type system. It suffices to consider their construc-
tion for n = 5; the associated attractor is called Lorenz-like because it is effectively
a higher-dimensional version of the geometric Lorenz attractor. The dynamics of the
five-dimensional Lorenz-type vector field is described by a four-dimensional diffeo-
morphism given as the Poincaré return map to a suitable codimension-one section.
On this section there is a two-dimensional stable foliation, and the resulting quotient
map is now a noninvertible map of the plane. This map is given in [9] in explicit form;
in fact, Bamón, Kiwi, and Rivera-Letelier construct their example by starting from
the noninvertible map, lifting it to the four-dimensional Poincaré return map and then
suspending this diffeomorphism to obtain an abstract five-dimensional Lorenz-type
vector field. In a small neighbourhood of a specific point in parameter space, they
then show that the planar noninvertible map is robustly nonhyperbolic.

The goal of this paper is to determine and illustrate the geometry behind chaos in
the Lorenz system and wild chaos in the five-dimensional Lorenz-type system. This
study is made possible by advanced numerical methods—based on solving families of
boundary value problems—for the computation of two-dimensional global manifolds
of vector fields [15, 30, 31, 33] and tangency bifurcations involving stable and
unstable sets of noninvertible planar maps [10, 28]; their implementation is done
in the packages AUTO [13] and Cl_MatContM [18, 23], respectively. Section 2 is
concerned with the Lorenz system. Our starting point in Sect. 2.1 is the discussion of
how the three-dimensional phase space is organised globally by the two-dimensional
Lorenz manifold W s(0) of the origin in the presence of the classical Lorenz attractor.
We then discuss in Sect. 2.2 the geometry behind the description of the dynamics
on the Lorenz attractor by the one-dimensional Lorenz map. The two-dimensional
Lorenz-like map is introduced in Sect. 3 and its basic properties are discussed. The
transition from simple to wild chaos is the subject of Sect. 3.1, where we show
how different types of tangency bifurcations are involved in creating increasingly
complicated dynamics. In Sect. 3.2 we present a two-parameter bifurcation diagram
with curves of the different tangency bifurcations, which allows us to identify a large
region where we conjecture wild chaos to be found. Finally, Sect. 4 summarises the
results and briefly discusses avenues for future research.

2 Chaos in the Lorenz System

In this section we consider the chaotic dynamics of the Lorenz system (1) for the
classical parameter values given in (2). We first consider the organisation of the
full phase space and then illustrate the geometry behind the reduction to the one-
dimensional Lorenz map.
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2.1 Global Organisation of the Phase Space

The Lorenz attractor is the only attractor of (1) for ρ = 28. Its basin is the entire
phase space R

3 with the exception of the symmetric pair of secondary equilibria p±
and their one-dimensional stable manifolds W s(p±). Recall that the origin 0 and
its one-dimensional unstable manifold W u(0) are part of the chaotic attractor. This
also means that the two-dimensional stable manifold W s(0) lies in the basin of the
Lorenz attractor. Moreover, locally near 0 the invariant surface W s(0) determines the
dynamics in the following sense: initial conditions on one side of W s(0) flow away
from the origin into the left wing of the attractor (towards negative values of x) and
those on the other side flow away from the origin into the right wing of the attractor
(towards positive values of x). The sensitive dependence on initial conditions of
the dynamics on the Lorenz attractor has global consequences throughout the phase
space. Any open sphere in phase space, no matter how small, must contain two points
that eventually move over the Lorenz attractor differently: at some point in time one
trajectory is, say, on the left wing, while the other is on the right wing. This means
that, locally near the attractor, the two trajectories are on either side of W s(0). This
implies that W s(0) must divide the open sphere into two open halves, each containing
one of the two initial conditions. In turn this proves that W s(0) lies dense in the basin
of the Lorenz attractor and, hence, also in R

3.
According to the stable and unstable manifold theorem [38], locally near 0 the

surface W s(0) is a small topological disk that is tangent to the two-dimensional
stable linear eigenspace Es(0) spanned by the eigenvectors of the two negative real
eigenvalues. This disk can be imagined to grow while its boundary maintains a fixed
geodesic distance (arclength of the shortest path on W s(0)) to the origin 0. At any
stage of this growth process one is dealing with a smooth embedding of the standard
unit disk into R

3 yet, as it grows, this topological disk fills out R
3 densely. Hence,

loosely speaking, one can imagine the surface W s(0) as a growing, space-filling
pancake.

We developed a numerical method for the computation of two-dimensional stable
and unstable manifolds, called the geodesic level set (GLS) method [30]. This method
is based on the idea of growing such a manifold by adding geodesic bands to it at each
step. With the GLS method we are able to compute a first part of W s(0) as a surface
up to a considerable geodesic distance. On the other hand, in order to examine the
denseness of W s(0) in R

3 a different approach is needed. Namely, we consider the
intersection set Ŵ s(0) := W s(0) ∩ SR with a suitably chosen sphere SR , which is
then computed directly by defining a boundary value problem such that its solutions
are orbit segments with begin point on SR and end point in Es(0) near 0; see [5, 15]
for details. More specifically, we choose the centre of SR as the point (0, 0, ρ −1) on
the z-axis, which lies exactly in the middle of the line that connects the two equilibria
p±. The radius R of SR is chosen such that the Lorenz attractor is well inside SR , and
the second intersection points in Ŵ s(p±) := W s(p±) ∩ SR of the small-amplitude
branches of W s(p±) lie on the ‘equator’ of SR—for ρ = 28 as considered here, this
gives R = 70.7099; see [15] for details.
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W s( p+ )

W s( p− )

W s(0)

W s(0)

0

p−

SR

Fig. 2 The Lorenz manifold W s(0) for ρ = 28 intersecting the sphere SR with R = 70.7099 in
the set Ŵ s(0); also shown are the equilibria 0 and p− and the one-dimensional manifolds W u(0)

and W s(p±)

Figure 2 illustrates the geometry of how W s(0) intersects the sphere SR . The view
is from a point with negative x- and y-coordinates, and only one half of the computed
part of the surface W s(0) is shown, namely, the part with y ≥ 0. The sphere SR is
rendered transparent. Inside SR , we can clearly see the equilibria 0 and p−, with
p+ obscured by W s(0). The one-dimensional unstable manifold W u(0), with its left
and right branches rendered in different shades, gives an idea of the location of the
Lorenz attractor. Also shown in Fig. 2 are the two one-dimensional stable manifolds
W s(p±), each drawn in different shades. Note that the small-amplitude branch of
W s(p−) indeed intersects SR along its equator, while the large-amplitude branch
of W s(p+) intersects SR at a point higher up and closer to the z-axis. Recall that
p±∪W s(p±) forms the complement of the basin of the Lorenz attractor. The surface
W s(0) can be seen to wrap around the curves W s(p±), which it cannot intersect.
The part of W s(0) that is shown, which was computed up to geodesic distance 162.5,
generates the beginnings of what appear to be only three intersection curves in Ŵ s(0).
It is clear that an impractically large piece of W s(0) would need to be computed to
generate the many curves in Ŵ s(0) that are shown in Fig. 2; this is why Ŵ s(0) is
computed directly.
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W s( p+ )

W s( p− )

W s( p+ )

W s( p− )

(a) (b)

(c) (d)

Fig. 3 The set Ŵ s(0) for ρ = 28 on the sphere SR with R = 70.7099; also shown are Ŵ s(p±)

Figure 3 shows four different views of the computed intersection curves in Ŵ s(0)

on the sphere SR ; also shown on SR are the points in Ŵ s(p±). In all views, the
vertical axis is the z-axis of (1). In Fig. 3a, the horizontal axis is the direction defined
by (cos θ,−sin θ), with θ = 3π/10 (in other words, the (x, y)-plane was rotated
clockwise by 3π/10 about the z-axis). The view points in panels (b)–(d) are consec-
utively rotated by a further π/4 radians about the z-axis; note that a further rotation
over π/4 would show the symmetrical version of Fig. 3a with Ŵ s(p−) and Ŵ s(p+)

interchanged. Figure 3 is designed to illustrate how W s(0) fills the phase space R
3

by showing the intersection set Ŵ s(0) on the sphere SR . Notice the intricate struc-
ture of how the curves in Ŵ s(0) fill up SR ; see also [15]. As one might expect, the
computed curves in Ŵ s(0) are not distributed evenly on SR , and there are several
larger regions on SR without computed curves in Ŵ s(0). This is due to the fact that
a finite computation is performed to show an infinite process. More specifically, the
curves in Ŵ s(0) that are shown in Fig. 3 have the property that the overall integration
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time of the associated computed orbit segments is no larger than 7.0; see [15] for
details of the computational setup. This bound already leads to a considerable com-
putation generating 350 MB of AUTO data and 377 individual curves in Ŵ s(0). As
we have checked, these regions fill up with additional curves in Ŵ s(0) if one allows
for a larger bound on the integration time of orbit segments; however, the number of
curves thus obtained and, hence, the duration and data produced grow exponentially
with the bound on the integration time. Figure 3 provides a good illustration of the
space-filling nature of the surface W s(0) in phase space that, in turn, constitutes a
global geometric interpretation of the sensitive dependence of the Lorenz system (1)
on the initial conditions.

2.2 From Lorenz Attractor to Lorenz Map

The first step in the reduction process resulting in the description of the dynamics
on the Lorenz attractor by the Lorenz map is to consider the Poincaré return map to
the horizontal plane Σρ through the secondary equilibria p±, which is given by

Σρ := {(x, y, z) ∈ R
3 | z = ρ − 1}. (3)

Geometrically, this means that one needs to consider the intersection sets with Σρ of
the relevant invariant objects of the vector field (1). Figure 4 illustrates the situation.
The Lorenz attractor, represented by the unstable manifold W u(0) accumulating on
it, can be found in the middle of the image. It is intersected by Σρ , which is rendered
transparent, at the height of the equilibria p±. The stable manifold W s(0) is shown
as computed up to geodesic distance 162.5; the parts of W s(0) below and above
the plane Σρ are rendered solid and transparent, respectively. The outer boundary
of the computed part of W s(0) (the geodesic level set of geodesic distance 162.5)
is highlighted to help illustrate the complicated geometry of this surface, which is
topologically a disk. The surface W s(0) can be seen in Fig. 4 to intersect Σρ in several
curves of the set W

s
(0) := W s(0) ∩ Σρ . One of them is the primary intersection

curve W
s
0(0), which is invariant under the symmetry of a rotation by π about the z-

axis and contains the point (0, 0, ρ−1). Also shown in Fig. 4 are the one-dimensional
manifolds W s(p±), which intersect Σρ in discrete points.

It is important to realise, as can easily be checked from (1), that the flow is tangent
to Σρ along the tangency locus

C = {(x, y, ρ − 1) ∈ R
3 | x y = β(ρ − 1)}. (4)

The set C consists of two hyperbolas, which contain the equilibria p± ∈ Σρ , re-
specively. In between the two hyperbolas the vector field points downward (towards
negative z), which is indicated by the symbol ⊗ in Fig. 4. In the regions to the other
side of C the vector field points upward (towards positive z), which is indicated by
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W s(p+) W s(p−)

W s(0)

0

C
Σρ W

s
0(0)

Fig. 4 The manifold W s(0) for ρ = 28 computed up to geodesic distance 162.5 and its intersection
with the plane Σρ ; the section Σρ and the part of W s(0) above it are rendered transparent. Also
shown are the equilibria 0 and p±, the one-dimensional manifolds W u(0) and W s(p±), and the
tangency locus C on Σρ

the symbol �. As a result, the Poincaré return map, defined as the first return to the
section, is not a diffeomorphism on the entire plane Σρ . This is why one defines the
local Poincaré return map only on the central region of Σρ where the direction of
the flow is downward [24], that is, in between the two hyperbolas of C ; technically,
this means that one considers the second return to Σρ .

However, this local Poincaré map on the central region is still not a diffeomor-
phism. Namely, points along the primary intersection curve W

s
0(0) converge to

0 	∈ Σρ under the flow and, hence, do not return to the section Σρ . This means
that the Poincaré map is not defined on W

s
0(0). Trajectories through points to the

left of W
s
0(0) spiral around p− while those through points to the right of W

s
0(0)

spiral around p+ before intersecting the central region of Σρ again. Hence, the local
Poincaré map has a discontinuity across the curve W

s
0(0), and it maps each of the two

complimentary regions either side of W
s
0(0) over the entire central region between

the two hyperbolas in C .
Figure 5 shows the respective invariant objects in the plane Σρ , which can be

identified with the (x, y)-plane (with fixed z = ρ−1). By construction, the equilibria
p± lie in Σρ and on the tangency locus C that bounds the central region indicated
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Fig. 5 The invariant objects of (1) for ρ = 28 in the plane Σρ ; compare with Fig. 4. Shown are
the equilibria p±, the tangency locus C , the intersection set of the Lorenz attractor as represented
by W

u
(0), and curves in W

s
(0); the primary intersection curve W

s
0(0) is highlighted, and it divides

the central region labelled ⊗ where the direction of the flow is downward

by the symbol ⊗. The Lorenz attractor is represented by the intersection points
W

u
(0) := W u(0) ∩ Σρ of the unstable manifold W u(0). These intersection points

appear to intersect Σρ in four disjoint curves, two of which lie in the central region;
note that the Lorenz attractor does not contain the points p± and compare with Fig. 1.
Also shown in Fig. 5 are many curves of the intersection set W

s
(0), and the primary

curve W
s
0(0) is highligthed. Curves in the set W

s
(0) were computed directly by

imposing the boundary condition that the corresponding orbit segments have their
begin point in Σρ ; by contrast, in Fig. 4 the shown curves in W

s
(0) were obtained

from the computed part of the two-dimensional manifold W s(0).
The reduction of the Poincaré map to the Lorenz map for ρ = 28 relies on

the fact that the geometric Lorenz system—the abstract version of the Lorenz
system—admits an invariant stable foliation in some neighbourhood of the chaotic
attractor [1, 26, 41, 48]. This means that leaves of this foliation are mapped to leaves,
and the dynamics on the leaves is a contraction. When restricted to said neighbour-
hood of the attractor, the curves in W

s
(0) generate the stable foliation by means of
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taking their closure. Hence, Fig. 5 provides an illustration of the stable foliation by
showing a large number of curves in W

s
(0). The leaves of this foliation intersect the

segment of the diagonal between p− and p+ in unique points. The one-dimensional
Lorenz map is defined on this diagonal segment—or, rather, on the corresponding
interval of the variable x—and it describes how leaves are mapped to leaves under the
Poincaré map on the central region of Σρ . The Lorenz map is topologically conjugate
to the map

x 
→
{

1 − η | x |α, x ∈ [−1, 0),

−1 + η | x |α, x ∈ (0, 1], (5)

with 0 < α < 1, η ∈ (1, 2) and α η > 1; see [25]. Here, α is the ratio between
the magnitudes of the weak stable and unstable eigenvalues of the equilibrium 0
of the Lorenz system (1). The Lorenz map is not invertible because it maps the
subinterval [−1, 0) to a much larger subinterval in [−1, 1]; due to symmetry, the
same is true for the subinterval (0, 1]. Moreover, the Lorenz map has a discontinuity
at 0, which is also referred to as the critical point; note that 0 corresponds to the point
(0, 0, ρ−1) ∈ W

s
(0) that never returns to Σρ . The critical point 0 has infinitely many

preimages under the Lorenz map, because all points on W
s
(0) eventually map to 0;

compare with Fig. 5. One can also take the point of view that the critical point 0 of
the Lorenz map represents the origin 0 of the Lorenz system; then the (symmetrically
related) first intersection points of W

u
(0) in the central region of Σρ can be thought

of as the forward (set-valued) image of the critical point 0. In particular, whenever
these two points map to the critical point 0 under some iterate of the Lorenz map
then this corresponds to a homoclinic orbit of 0 in the full Lorenz system.

The Lorenz map of the form (5) is a rigorous description of the dynamics of the
Lorenz system (1) provided that there is an invariant stable foliation. There is every
indication that this is indeed the case in this entire ρ-range of 0 < ρ ≤ 30.1 [43].
Indeed, the Lorenz map has been used to study the (emergence of) chaotic dynamics
for increasing ρ up to ρ = 28 [24, 29, 43]. On the other hand, it is known that for
larger values of ρ the Lorenz system has ‘cusped horseshoes,’ the dynamics of which
is definitely not represented faithfully by the one-dimensional Lorenz map [24, 43].
By which mechanism the stable foliation is lost near ρ ≈ 30.1 is the subject of
ongoing research [12].

A closely-related concept is the so-called Lorenz template [19, 20, 24, 35]. Geo-
metrically, the Lorenz template is obtained from the Lorenz attractor in Fig. 1 by the
identification of points on the diagonal segment in between p− and p+ with points
on the Lorenz attractor via the projection along leaves of the stable foliation in Σρ .
More specifically, consider the points corresponding to the stable projections of the
first intersection points of the two sides of W u(0) with Σρ in the central region where
the direction of the flow is downward. The diagonal segment connecting these two
points contains the point (0, 0, ρ − 1). Initial conditions on the diagonal segment on
either side of (0, 0, ρ − 1) sweep out two surfaces as the flow takes them around p−
and p+, respectively, until they return to the central region of Σρ as two curves (that
are very close to the intersection of the Lorenz attractor with Σρ). Projection along
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stable leaves then identifies these two end curves with the initial diagonal segment.
This segment can, hence, be thought of as the start and finish line on a branched
two-manifold, that is, the topological object obtained by ‘glueing’ the two surfaces
together along the diagonal in the central region of Σρ ; this branched two-manifold
is the Lorenz template. In particular, the Lorenz template allows one to describe
the symbolic dynamics of the knot-types in R

3 of periodic orbits in the Lorenz sys-
tem [19]. Notice that the dynamics from start to finish on the Lorenz template is
exactly given by the Lorenz map.

3 Wild Chaos in a Lorenz-Type System of Dimension Five

The reduction process for the three-dimensional (geometric) Lorenz system can also
be applied to systems with phase-space dimension n ≥ 4. In direct analogy, one
obtains an invariant foliation in a suitable (n − 1)-dimensional cross-section with
leaves of codimension one and dimension n − 2; this would require that, near the
Lorenz attractor, the additional directions are all stronger than those on the Lorenz
attractor. Projection along stable leaves then results in a one-dimensional Lorenz
map, meaning that the dynamics of such a vector field for n ≥ 4 is just like that of
the Lorenz system (1) itself.

To obtain a Lorenz-type vector field in higher dimensions with different dynamics
from that of the Lorenz system (1), one needs to consider an example where the
Poincaré map in a cross-section admits an invariant stable foliation of codimension
at least two. In 2006, Bamón, Kiwi, and Rivera-Letelier [9] constructed such an
abstract n-dimensional Lorenz-type vector field for n ≥ 5 with a stable foliation
of codimension two and dimension n − 3 in the (n − 1)-dimensional cross-section;
the minimal case n = 5 contains all the geometric ingredients, and we restrict
to it for simplicity in the discussion that follows. The central object in [9] is the
corresponding two-dimensional noninvertible quotient map, which is given on the
punctured complex plane as

f : C\{0} → C

z 
→ (1 − λ + λ | z |a)

( z
| z |

)2

+ 1,
(6)

with parameters a, λ ∈ R in the ranges 0 < a < 1 and 0 < λ < 1. Notice the term
|z|a , indicating a clear similarity with the form (5) of the one-dimensional Lorenz
map.

A planar noninvertible map can have richer dynamics than a one-dimensional
noninvertible map, where homoclinic tangencies can be at most dense in parameter
space. Indeed, [9] provides a proof that there exists a small open region near the
point (a, λ) = (1, 1) in the (a, λ)-plane, such that the map (6) has a homoclinic
tangency for every point from this parameter region; hence, homoclinic tangencies
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occur robustly, and the map, as well as the associated Lorenz-type vector field in R
5,

exhibit wild chaos.
As is the case for the one-dimensional Lorenz map, the origin in C does not have

a well-defined image under (6). Hence, this point is a critical point, which we refer to
as J0. The critical point J0 arises, as in Sect. 2.2, from the fact that it lies on the three-
dimensional stable manifold of an equilibrium e of the five-dimensional Lorenz-type
vector field, where e does not lie in the cross-section on which the four-dimensional
Poincaré map is defined. The equilibrium e has a two-dimensional unstable manifold
that corresponds in the planar map (6) to the critical circle

J1 = {z ∈ C | | z − 1 | = 1 − λ }, (7)

with radius 1 − λ around the point z = 1. The equilibrium e plays the role of the
origin 0 of the Lorenz system (1) and, in complete analogy, the critical circle J1 can
be interpreted as the set-valued image of the critical point J0. The map (6) maps the
punctured complex plane C\J0 in a two-to-one fashion—by angle doubling due to
the term (z/|z|)2—to the region outside the circle J1; the centre of the angle-doubling
is shifted by 1 with respect to J0 = 0. Dynamics and bifurcations of this type of map
are the subject of [28], where we consider a more general family with an additional
complex parameter c for the shift; it is set to c = 1 in (6) for simplicity and in
accordance with the formulation of the map in [9].

Our goal here is to present geometric mechanisms that are involved in the transi-
tion from simple dynamics to wild chaos in the map (6) as the point (a, λ) = (1, 1)

is approached. Key ingredients in this transition are different types of global bifurca-
tions. The map (6) has fixed points and periodic points, which correspond to periodic
orbits of the associated vector field. If they are saddles then these points have sta-
ble and unstable invariant sets, which are the generalisations of stable and unstable
manifolds to the context of noninvertible maps; see, for example, [16, 17, 32] for
more details. Points on the stable set W s(p) of a saddle periodic point p converge to
p under iteration of f k where k is the (minimal) period of p; note that k = 1 if p is a
fixed point. Similarly, points on the unstable set W u(p) of p converge to p via a par-
ticular sequence of preimages of f k . Note that W s(p) and W u(p) of the map (6) are
one-dimensional objects, but they are typically not manifolds. The stable set W s(p)

consists of a primary manifold W s
0 (p) that contains p, and all preimages of W s

0 (p),
so that the stable set is typically a disjoint family of infinitely many one-dimensional
manifolds. The unstable set may be an immersed one-dimensional manifold; how-
ever, the sequence of preimages of points in W u(p) may not be unique, in which case
W u(p) has self-intersections. The stable and unstable sets of a saddle fixed or peri-
odic point of the map (6) correspond to four-dimensional stable and two-dimensional
unstable manifolds of the corresponding saddle periodic orbit in the five-dimensional
Lorenz-type vector field.

Clearly, the stable and unstable sets of a fixed or periodic point p can become
tangent, which is referred to as a homoclinic tangency and corresponds to a tangency
between the respective manifolds of the associated periodic orbit in the five-
dimensional Lorenz-type vector field. To characterise the additional global
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bifurcations that arise in the map (6) it is convenient to consider the backward critical
set

J − := ∪∞
k=0 f −k(J0),

of all preimages of the critical point J0, and the forward critical set

J + := ∪∞
k=0 f k(J1),

of all images of the critical circle J1. Note that J − consists of potentially
infinitely many discrete points, while J + consists of infinitely many closed curves;
we refer to J = J − ∪ J + as the critical set. With this notation, we can define
three further tangency bifurcations: the forward critical tangency where the sta-
ble set W s(p) becomes tangent to the circles in the forward critical set J +; the
backward critical tangency where a sequence of points in the backward critical set
J − lies on the unstable set W u(p); and the forward-backward critical tangency
where a sequence of points in the backward critical set J − lies on the forward criti-
cal set J +. These three global bifurcation involving the critical set J , as well as the
homoclinic bifurcation, are encountered and discussed here as part of the transition
to wild chaos. They are of codimension one, that is, they are encountered generically
at isolated points when a single parameter is changed; their unfoldings are presented
in detail in [28]. Note that a forward or backward critical tangency corresponds to
a heteroclinic bifurcation between the corresponding periodic orbit and the equilib-
rium e of the Lorenz-type vector field. The forward-backward critical tangency, on
the other hand, corresponds to the existence of an isolated homoclinic orbit of the
saddle equilibrium e of the five-dimensional Lorenz-type vector field; it is the higher-
dimensional analogue of how a homoclinic bifurcation in the Lorenz system (1) is
described by the one-dimensional Lorenz map.

3.1 The Transition for Increasing a = λ

We now show a series of phase portraits as panels (a)–(l) of Fig. 6 that illustrate the
bifurcations that are encountered in the transition to wild chaos and generate the
robustness of homoclinic tangencies; more specifically, we increase a and λ along
the diagonal a = λ towards the point (a, λ) = (1, 1), near which wild chaos was
proven to exist [9]. To facilitate the visualisations, we project the complex plane
C onto the Poincaré disk by stereographic projection, where the unit circle, that
is, the boundary of the Poincaré disk represents the directions to infinity. In each
phase portrait we show a suitable number of points in the backward critical set
J − (as dots) and the closed curves in the forward critical set J +. We remark that
the circle J1 with radius 1 − λ appears distorted in all phase portraits as a result
of stereographic projection. For the values a, λ ∈ R that we consider, the map (6)
has one fixed point p on the positive real line and a complex-conjugate pair of fixed
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points q±. We plot these fixed points p and q±, as well as the stable set W s(p) and
unstable set W u(p) of the saddle point p; throughout, the points in J − are branch
points of the stable set W s(p). Notice that all phase portraits are symmetric with
respect to complex conjugation, owing to the fact that a, λ ∈ R. The phase portraits
in Fig. 6 were obtained from computations of the transformed map on the Poincaré
disk as follows: the fixed points p and q± can be found readily; J − is represented
by all backward images of J0 under up to eleven backward iterations, that is, by
∪11

k=0 f −k(J0); similarly, J + is represented by J1 and its next fourteen forward
iterations; to obtain W s(p), we take advantage of the complex-conjugate symmetry
and note that the primary manifold W s

0 (p) is the real halfline (0,∞), which is the
real interval (0, 1] on the Poincaré disk; we computed eleven backward iterates of
W s

0 (p); finally, W u(p) was found by computing a first piece of arclength 5 and then
plotting it and its next six iterates (in this way, we ensure that W u(p) maintains a
suitable and comparable arclength as parameters are changed).

Figure 6a is for a = λ = 0.7, when the map (6) does not have chaotic dynamics,
and all typical orbits converge to one of the two attracting fixed points q±. The two
branches of the unstable set W u(p) (which is an immersed manifold in this case)
spiral towards q+ and q−, respectively. The preimages of W s

0 (p) are organised in
such a way that every point in the backward critical set J − connects four branches
of W s(p). Moreover, J − accumulates on the boundary of the Poincaré disk. The
forward critical set J +, on the other hand, accumulates on the unstable set W u(p).
Figure 6b shows the phase portrait for a = λ = 0.72, just after a Neimark-Sacker
bifurcation (or Hopf bifurcation for maps) [34]. The fixed points q± are now repel-
lors and W u(p) and J + accumulate on two invariant closed curves (not shown),
which correspond to invariant tori in the associated Lorenz-type vector field. As a
and λ change, these invariant closed curves undergo various bifurcations (associ-
ated with resonance phenomena) that we do not discuss here. Figure 6c shows the
phase portrait for a = λ = 0.73277, approximately at the moment that W s(p) and
W u(p) have a first homoclinic tangency. Since W u(p) accumulates on itself, this first
homoclinic tangency is accumulated in parameter space, on the side of larger a = λ,
by infinitely many homoclinic tangencies. As is shown in Fig. 6d for a = λ = 0.745,
after the first homoclinic tangency there is a homoclinic tangle between W s(p)

and W u(p). Therefore, the system is now chaotic in the classical sense, mean-
ing that any homoclinic tangency between W s(p) and W u(p) is accumulated by
further homoclinic tangencies with associated saddle hyperbolic sets and horseshoe
dynamics; see, for example, [11, 39]. Notice also that W s(p) accumulates on itself
and the two branches of the unstable set W u(p) now intersect. Moreover, the forward
critical set J + accumulates on W u(p), so that the first homoclinic tangency is also
accumulated in parameter space, on the side of larger a = λ, by infinitely many
forward critical tangencies; indeed, in Fig. 6d there is a tangle between W s(p) and
J + as a result. Furthermore, the forward critical tangencies have the effect that
the points in J − are branch points to infinitely many, instead of four branches of
W s(p); see also [28]. In Fig. 6d, this can be seen at the origin, where an additional
eight branches are shown to connect to 0; these are preimages of the two additional
branches of W s(p) that intersect J1.
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J0
J1 p

q+

q−

W s( p)

W u( p)

(a) (b)

(d)(c)

Fig. 6 The objects p (cross), q± (triangles when attracting, and squares when repelling), W s(p),
W u(p), J − and J + on the Poincaré disk; from (a) to (d) a = λ take the values 0.7, 0.72, 0.73277
and 0.745; from (e) to (h) a = λ take the values 0.76302, 0.765, 0.77 and 0.8; and from (i) to (l)
a = λ take the values 0.85, 0.87, 0.9 and 0.95

In Fig. 6e for a = λ = 0.76302 one encounters the first backward critical tan-
gency, where the unstable set W u(p) goes through the critical point J0 = 0, which
implies that W u(p) contains two sequences of preimages of J0 (two because of sym-
metry). Since W u(p) accumulates on itself, this first backward critical tangency is
accumulated in parameter space, on the side of larger a = λ, by infinitely many
backward critical tangencies. Observe from Fig. 6f for a = λ = 0.765 how these
interactions with J0 induce effects near J1 and its images. As a result of this first
backward critical tangency, W u(p) has points of self-intersection on each of its two
branches (in addition to the intersections between the two branches). Consider the
region A enclosed by the first segments of the two branches of W u(p) up to when
they meet on the real line. Before the backward critical tangency all points of J −
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(e) (f)

(g) (h)

Fig. 6 (continued)

lie outside the region A . In this and the accumulating further backward critical tan-
gencies, more and more points of J − move inside this region; see also Fig. 6g and
h for a = λ = 0.77 and a = λ = 0.8, respectively. Moreover, the map (6) has a
chaotic attractor in the region A , which is the closure of the unstable set W u(p)

and, hence, also contains p. Because the forward critical set J + accumulates on
W u(p), the first backward critical tangency is also accumulated in parameter space,
on the side of larger a = λ, by infinitely many forward-backward critical tangencies
between J + and J −. The forward-backward critical tangencies lead to the disap-
pearance of certain sequences of backward orbits of J0 from the backward critical set
J −; moreover, the closed curves in J + develop self-intersections in the process.
These effects of the forward-backward critical tangencies are difficult to discern in
the phase portraits (f)–(l) of Fig. 6; see [28] for details and illustrations.



Chaos and Wild Chaos in Lorenz-Type Systems 93

(i) (j)

(k) (l)

Fig. 6 (continued)

When a = λ is increased further, W u(p) and, thus, the region A grows and
incorporates more and more points of J −; see Fig. 6i–k for a = λ = 0.85, a =
λ = 0.87 and a = λ = 0.9, respectively. At the same time, the sets W s(p), W u(p)

and J seem to become denser in the Poincaré disk, leading to ever more associated
tangency bifurcations when a = λ is increased. As Bamón, Kiwi, and Rivera-Letelier
showed in [9], near a = λ = 1 the tangency bifurcations between stable and unstable
sets of the hyperbolic saddle of (6) occur robustly. This means that there exists
0 � w∗ < 1, such that one finds a homoclinic tangency of the hyperbolic saddle
for every point (a, λ) ∈ (w∗, 1) × (w∗, 1). We believe that Fig. 6l for a = λ = 0.95
gives some impression of what wild chaos, that is, the robustness of homoclinic
tangencies might look like. The saddle point p is only one of uncountably infinitely
many nonwandering points; yet the sets W s(p) and W u(p) and the critical set J
already fill out the Poincaré disk increasingly densely.
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Fig. 7 Bifurcation diagram of (6) in the (a, λ)-plane for a, λ ∈ R. Shown are the curve NS of
Neimarck-Sacker bifurcation of q±, the curve H0 of first homoclinic tangency and two further
nearby curves of homoclinic tangencies, the curves Fk for k ∈ {8, 10, 12, 14, 16} of forward critical
tangencies, the curve B0 of first backward critical tangency and two further nearby curves of
backward critical tangencies (one of which is labelled B2), the curve FB10 of forward-backward
critical tangency, and the curve A (cyan) along which det(D f (p)) = 1. The labelled points along
the diagonal a = λ correspond to the panels of Fig. 6

3.2 The Bifurcation Diagram in the (a, λ)-plane

The bifurcations that are encountered as a = λ is increased towards a = λ = 1 can
be continued as curves when a and λ are allowed to vary independently. For tangency
bifurcations this is done via the formulation of a suitable boundary value problem.
These computations are based on the technique for continuing a locus of homoclinic
tangency described in [10], which has been implemented in Cl_MatContM [18, 23];
details on how we adapted this method can be found in [28]. Figure 7 shows the
resulting bifurcation diagram of (6) in the (a, λ)-plane; the points labelled (a)–(l)
along the diagonal are the parameter points of the phase portraits of Fig. 6. Starting
from the lower-left corner, one first encounters the Neimarck-Sacker bifurcation
NS. The system then becomes chaotic when the curve H0 of homoclinic tangency
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between W s(p) and W u(p) is crossed. As we already discussed, there are many
more homoclinic tangencies that accumulate on H0 and two of them are shown in
Fig. 7. These curves of secondary homoclinic tangencies turn around and cross the
diagonal at least twice, between the points (c) and (d) and between the points (d)
and (e); they each end on the curve B0 of first backward critical tangency where
W u(p) interacts with J −. Also shown in Fig. 7 are five curves Fk of forward critical
tangency between the primary manifold W s

0 (p) and f (k−1)(J1), namely, those for
k = 8, 10, 12, 14 and 16. Observe how each curve Fk passes very close to H0 before
turning away towards the right boundary of Fig. 7 and note that Fk for k = 12, 14
and 16 cross the diagonal very close to the curve H0. The curve B0 is accumulated by
curves of further backward critical tangencies, for example, the curve B2. Figure 7
also shows the curve FB10 of forward-backward critical tangency between J0 and
f 9(J1), which lies very close to B0.

While the proof in [9] is valid only very close to the point a = λ = 1, the
bifurcation diagram in Fig. 7 suggests that one might expect to encounter wild chaos
in a much larger region of the (a, λ)-plane. As soon as B0 is crossed, infinitely
many forward-backward critical tangencies have occured, which are codimension-
one homoclinic bifurcations of the equilibrium e of the five-dimensional Lorenz-type
vector field; as such, they play the role of the homoclinic bifurcation in the Lorenz
system (1). Apart from this geometric ingredient, the proof in [9] also requires that
the parameters are such that (6) is area-expanding in a neighbourhood of the chaotic
attractor. In [28] we conjecture that homoclinic tangencies occur robustly to the right
of the first backward critical tangency B0; this region is shaded in Fig. 7. This is
based on the suggestion that (6) is area-expanding in a neighbourhood of a subset of
the attractor in this region. A sufficient (but not necessary) condition to ensure this
area-expanding property is that the product of the eigenvalues of p exceeds 1. The
curve A in Fig. 7 is the locus where det(D f (p)) = 1, and (6) is area-expanding in a
neighbourhood of the chaotic attractor in the darker shaded region to the right of A.
Hence, in this darker region wild chaos should certainly be expected. In particular,
this means that the phase portraits of Fig. 6k and l, and possibly also those of Fig. 6g–j,
are already from the regime of wild chaos.

4 Conclusions

We presented a geometric perspective of the techniques used to prove the existence
of chaos in the Lorenz system (1). The same approach can also be applied to the study
of wild chaos in higher-dimensional Lorenz-type vector fields. We focussed here on
the two-dimensional noninvertible map (6) by Bámon, Kiwi and Rivera-Letelier [9]
and discussed how interactions between its invariant objects are directly related to
homoclinic and heteroclinic bifurcations of the associated five-dimensional Lorenz-
type vector field. In this way, we were able to describe geometric changes in (6)
during the transition from non-chaotic, via chaotic to wild chaotic dynamics. Our
numerical results provide guidance for further theoretical study. In particular, we
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proposed the conjecture that the wild chaotic regime for (6) starts as soon as the
first backward critical tangency bifurcation has occurred. Due to the accumulative
nature of the respective objects, the first backward critical tangency induces infinitely
many forward-backward critical tangencies, which emerge as a main ingredient for
wild chaos. It remains to show that, in this regime, the attractor has the necessary
area-expanding properties. The numerical methods we employed can be used to
investigate other two-dimensional noninvertible maps and associated vector fields.
In particular, it is of interest to explore possible routes to wild chaos in these other
examples.

Acknowledgments The work on the Lorenz system presented here has been performed in collab-
oration with Eusebius Doedel. We acknowlegde his contribution to the computation of the Lorenz
attractor as shown in Fig. 1 and of the Lorenz manifold on the sphere in Figs. 2 and 3; moreover,
the leaves of the stable foliation in Fig. 5 were computed with AUTO demo files that he devel-
oped recently. HMO and BK thank the organisers of ICDEA 2013 for their support, financial and
otherwise.

References

1. Afrajmovich, V.S., Bykov, V.V., Sil′nikov, L.P.: The origin and structure of the Lorenz attractor,
(Trans: Dokl. Akad. Nauk SSSR 234(2), 336–339 (1977)). Sov. Phys. Dokl. 22, 253–255 (1977)

2. Afrajmovich, V.S., Bykov, V.V., Sil′nikov, L.P.: On structurally unstable attracting limit sets of
Lorenz attractor type. Trans. Mosc. Math. Soc. 44, 153–216 (1983)

3. Alligood, K.T., Sander, E., Yorke, J.A.: Crossing bifurcations and unstable dimension variabil-
ity. Phys. Rev. Lett. 96, 244103 (2006)

4. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos—An Introduction to Dynamical Systems.
Springer, New York (1996)

5. Aguirre, P., Doedel, E.J., Krauskopf, B., Osinga, H.M.: Investigating the consequences of global
bifurcations for two-dimensional invariant manifolds of vector fields. Discr. Contin. Dynam.
Syst.—Ser. A 29(4), 1309–1344 (2011)

6. Asaoka, M.: Hyperbolic sets exhibiting C1-persistent homoclinic tangency for higher dimen-
sions. Proc. Amer. Math. Soc. 136, 677–686 (2008)

7. Asaoka, M.: Erratum to Hyperbolic sets exhibiting C1-persistent homoclinic tangency for
higher dimensions. Proc. Amer. Math. Soc. 138, 1533 (2010)

8. Bunimovich, L.A., Sinai, J.G.: Stochasticity of the attractor in the Lorenz model. In: Gaponov-
Grekhov, A.V. (ed.) Nonlinear Waves, Proceedings of Winter School, pp. 212–226. Nauka
Press, Moscow (1979)

9. Bamón, R., Kiwi, J., Rivera-Letelier, J.: Wild Lorenz like attractors. arXiv 0508045 (2006)
10. Beyn, W.-J., Kleinkauf, J.-M.: The numerical computation of homoclinic orbits for maps. SIAM

J. Numer. Anal. 34, 1207–1236 (1997)
11. Bonatti, C., Díaz, L., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. A global geometric

and probabilistic perspective. Encycl. Math. Sci. 102. (2005)
12. Creaser, J., Krauskopf, B., Osinga, H.M.: α-flips in the Lorenz System. The University of

Auckland, Auckland (2014)
13. Doedel, E. J.: AUTO-07P: Continuation and bifurcation software for ordinary differential

equations. with major contributions from Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu.
A., Oldeman, B. E., Paffenroth, R. C., Sandstede, B., Wang, X. J., Zhang, C. Available at http://
cmvl.cs.concordia.ca/auto

http://arxiv.org/abs/math/0508045
http://cmvl.cs.concordia.ca/auto
http://cmvl.cs.concordia.ca/auto


Chaos and Wild Chaos in Lorenz-Type Systems 97

14. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global bifurcations of the Lorenz manifold. Non-
linearity 19(12), 2947–2972 (2006)

15. Doedel, E. J., Krauskopf, B., Osinga, H. M.: Global invariant manifolds in the transition to
preturbulence in the Lorenz system. Indag. Math. (N.S.) 22(3–4), 222–240 (2011)

16. England, J.P., Krauskopf, B., Osinga, H.M.: Computing one-dimensional stable manifolds and
stable sets of planar maps without the inverse. SIAM J. Appl. Dynam. Syst. 3(2), 161–190
(2004)

17. England, J.P., Krauskopf, B., Osinga, H.M.: Bifurcations of stable sets in noninvertible planar
maps. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 891–904 (2005)

18. Ghaziani, R.K., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E.: Numerical continuation of
connecting orbits of maps in Matlab. J. Differ. Equ. Appl. 15, 849–875 (2009)

19. Ghrist, R., Holmes, P. J., Sullivan, M. C.: Knots and Links in Three-Dimensional Flows. Lecture
Notes in Mathematics 1654. Springer, Berlin (1997)

20. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeeze Land. Wiley-
Interscience, New York (2004)

21. Gonchenko, S.V., Ovsyannikov, I.I., Simó, C., Turaev, D.: Three-dimensional Hénon-like maps
and wild Lorenz-like attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15, 3493–3508
(2005)

22. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.: On global bifurcations in three-dimensional
diffeomorphisms leading to wild Lorenz-like attractors. Regul. Chaotic Dyn. 14, 137–147
(2009)

23. Govaerts, W., Kuznetsov, Y.A., Ghaziani, R.K., Meijer, H.G.E.: Cl_MatContM: a toolbox for
continuation and bifurcation of cycles of maps (2008). Available via http://sourceforge.net/
projects/matcont

24. Guckenheimer, J.: A strange strange attractor. In: Marsden, J.E., McCracken, M. (eds.) The
Hopf Bifurcation and its Applications, pp. 368–382. Springer, New York (1976)

25. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of
Vector Fields, 2nd edn. Springer, New York (1986)

26. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES
50, 59–72 (1979)

27. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1),
69–77 (1976)

28. Hittmeyer, S., Krauskopf, B., Osinga, H.M.: Interacting global invariant sets in a planar map
model of wild chaos. SIAM J. Appl. Dynam. Syst. 12(3), 1280–1329 (2013)

29. Kaplan, J.L., Yorke, J.A.: Preturbulence: a regime observed in a fluid flow model of Lorenz.
Commun. Math. Phys. 67, 93–108 (1979)

30. Krauskopf, B., Osinga, H.M.: Computing geodesic level sets on global (un)stable manifolds
of vector fields. SIAM J. Appl. Dynam. Sys. 2(4), 546–569 (2003)

31. Krauskopf, B., Osinga, H.M.: Computing invariant manifolds via the continuation of orbit
segments. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation
Methods for Dynamical Systems. Understanding Complex Systems, pp. 117–157. Springer,
New York (2007)

32. Krauskopf, B., Osinga, H.M., Peckham, B.B.: Unfolding the cusp-cusp bifurcation of planar
endomorphisms. SIAM J. Appl. Dynam. Syst. 6(2), 403–440 (2007)

33. Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky,
A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector
fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 763–791 (2005)

34. Kuznetsov, Yu, A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York
(1998)

35. Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmosph. Sci. 20, 130–141 (1963)
36. Moreira, C.G.: There are no C1-stable intersections of regular Cantor sets. Acta Math. 206,

311–323 (2011)
37. Newhouse, S.E.: The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeo-

morphisms. Publ. Math. IHES 50(1), 101–151 (1979)

http://sourceforge.net/projects/matcont
http://sourceforge.net/projects/matcont


98 H.M. Osinga et al.

38. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York (1982)
39. Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations.

Cambridge University Press, Cambridge (1993)
40. Perelló, C.: Intertwining invariant manifolds and Lorenz attractor. In: Global theory of dynami-

cal systems. Proceedings of International Conference, Northwestern University, Evanston, Ill.,
1979, Lecture Notes in Math, vol. 819, pp. 375–378. Springer, Berlin (1979)

41. Rand, D.: The topological classification of Lorenz attractors. Math. Proc. Cambridge Philos.
Soc. 83, 451–460 (1978)

42. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC
Press LLC, Boca Raton (1999)

43. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer, New
York (1982)

44. Sinai, J.G., Vul, E.B.: Hyperbolicity conditions for the Lorenz model. Physica D 2, 3–7 (1981)
45. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197–1202

(1999)
46. Turaev, D.V., Shilnikov, L.P.: An example of a wild strange attractor. Mat. Sb. 189, 291–314

(1998)
47. Turaev, D.V., Shilnikov, L.P.: Pseudo-hyperbolicity and the problem on periodic perturbations

of Lorenz-like attractors. Russian Dokl. Math. 77, 17–21 (2008)
48. Williams, R.F.: The structure of Lorenz attractors. Publ. Math. IHES 50, 101–152 (1979)
49. Zhang, W., Krauskopf, B., Kirk, V.: How to find a codimension-one heteroclinic cycle between

two periodic orbits. Discr. Contin. Dynam. Syst.–Ser. A 32(8), 2825–2851 (2012)


	4 Chaos and Wild Chaos in Lorenz-Type Systems
	1 Introduction
	2 Chaos in the Lorenz System
	2.1 Global Organisation of the Phase Space
	2.2 From Lorenz Attractor to Lorenz Map

	3 Wild Chaos in a Lorenz-Type System of Dimension Five
	3.1 The Transition for Increasing a = λ
	3.2 The Bifurcation Diagram in the (a, λ)-plane

	4 Conclusions
	References


