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Abstract In this paper we consider discrete symplectic systems with analytic
dependence on the spectral parameter. We derive the Lagrange identity, which plays
a fundamental role in the spectral theory of discrete symplectic and Hamiltonian
systems. We compare it to several special cases well known in the literature. We
also examine the applications of this identity in the theory of Weyl disks and square
summable solutions for such systems. As an example we show that a symplectic
system with the exponential coefficient matrix is in the limit point case.

1 Introduction

In this paper we consider a 2n-dimensional discrete symplectic system

zk+1(λ) = Sk(λ) zk(λ), (Sλ)

whose coefficient matrix Sk(λ) ∈ C
2n×2n is analytic in the spectral parameter λ ∈ C

in a neighborhood of 0 and satisfies a symplectic-type identity, i.e.,

Sk(λ) =
∞∑

j=0

λ jS
[ j]

k , S
∗
k(λ)J Sk(λ̄) = J , J =

(
0 I

−I 0

)
. (1)
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The superscript ∗ denotes the conjugate transpose and M∗(λ) := [M(λ)]∗. For the
applications we will in addition assume that a certain weight matrix Ψ (λ) ∈ C

2n×2n

is positive semidefinite. The terminology “symplectic system” refers to the fact that
Sk(λ) and the fundamental matrix of system (Sλ) are complex symplectic (also called
conjugate symplectic or J-unitary) when λ is real, i.e., they satisfy the identity
M∗J M = J .

For convenience we write system (Sλ) as two n-dimensional equations with

zk(λ) = (x∗
k (λ), u∗

k(λ))∗ and Sk(λ) =
(

Ak(λ) Bk(λ)

Ck(λ) Dk(λ)

)
. System (Sλ) was studied

in the literature in several special cases. In [2–4, 6, 9] the first equation in (Sλ) does
not depend on λ and the second equation is linear in λ, which by [2, Remark 3(iii)]
gives the form

zk+1(λ) =
(

Ak Bk

Ck − λWkAk Dk − λWkBk

)
zk(λ), (2)

where Sk :=
(

Ak Bk

Ck Dk

)
is complex symplectic, Wk is Hermitian, and Wk ≥ 0. Note

that system (2) covers also the classical second order Sturm–Liouville equation

− Δ(RkΔyk(λ)) + Qk yk+1(λ) = λWk yk+1(λ) (3)

with Hermitian matrices Rk, Qk, Wk ∈ C
n×n , invertible Rk , and Wk > 0, see Exam-

ple 1. System (Sλ) with a general linear dependence on λ

zk+1(λ) = (Sk + λVk) zk(λ) (4)

was studied in [18, 19], where the matrix Sk is complex symplectic, V ∗
k J Sk

is Hermitian and positive semidefinite, and V ∗
k J Vk = 0. In [15, 16] the linear

Hamiltonian difference system

Δ

(
xk(λ)

uk(λ)

)
=

(
Ak Bk + λW [1]

k
Ck − λW [2]

k −A∗
k

)(
xk+1(λ)

uk(λ)

)
(5)

is considered with the matrices Ak, Bk, Ck, W [1]
k , W [2]

k ∈ C
n×n , Ãk := (I − Ak)

−1

exists, Bk, Ck, W [1]
k , W [2]

k are Hermitian, and W [1]
k ≥ 0, W [2]

k ≥ 0. Upon expanding
the forward difference in (5), we can verify that system (5) corresponds to a discrete
symplectic system (Sλ) with quadratic dependence on λ. Another linear Hamiltonian
system

Δ

(
xk(λ)

uk(λ)

)
= λJ Hk

(
xk+1(λ)

uk(λ)

)
, Hk :=

(−Ck A∗
k

Ak Bk

)
, (6)
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with Hk ∈ C
2n×2n Hermitian and Ãk(λ) := (I − λAk)

−1 is studied in [13, 14].
Upon expanding the latter inverse into a power series we get the analytic dependence
on λ in the coefficient matrix of system (6). More generally, the linear Hamiltonian
system corresponding to

Δ

(
xk(λ)

uk(λ)

)
= J (H [0]

k + λH [1]
k )

(
xk+1(λ)

uk(λ)

)

with Hermitian H [0]
k , H [1]

k ∈ C
2n×2n is considered in [5]. Finally, a discrete sym-

plectic system (Sλ) with analytic dependence on λ and S [0]
k = I is studied in [7].

The latter paper also motivated the present study.
All the above mentioned references are devoted to various results in the spectral

theory of the corresponding system. As it is known, the Lagrange identity plays a
fundamental role in these investigations. This identity connects the J-skew-product
of two solutions of system (Sλ) with the associated weight matrix Ψk(λ). In this
paper we prove a general form of the Lagrange identity for system (Sλ) with analytic
dependence on λ ∈ C and calculate the corresponding weight matrix explicitly in
terms of the coefficients of (Sλ). This result includes the Lagrange identities for the
above mentioned special systems. As a consequence we obtain the J-monotonicity
of the fundamental matrix Φk(λ) of (Sλ), which is used in [7] for proving the Krein
traffic rules for the eigenvalues of Φk(λ). We also investigate applications of the
generalized Lagrange identity in the discrete Weyl–Titchmarsh theory. In particular,
we show that under an appropriate Atkinson condition involving the weight matrix
Ψk(λ), the theory of eigenvalues, Weyl disks, and square summable solutions devel-
oped in [18, 19] for system (4) remains valid without any change also for system
(Sλ) with the analytic dependence on λ.

2 Lagrange Identity

Consider system (Sλ) with complex 2n × 2n matrix Sk(λ) such that (1) holds. The
parameter λ ∈ C is restricted to |λ| < ε for some ε > 0 (ε = ∞ is allowed), which
bounds the region of convergence of Sk(λ) in (1) for all k ∈ [0,∞)Z := [0,∞) ∩ Z.
It follows that the matrices S

[ j]
k , j ∈ [0,∞)Z, satisfy the identities

S [0]∗
k J S [0]

k = J (7)
m∑

j=0

S
[ j]∗

k J S
[m− j]

k = 0, m ∈ N (8)

for all k ∈ [0,∞)Z. We note that | det S [0]
k | = 1, as the determinant of any complex

symplectic matrix is a complex unit. The second identity in (1) implies that Sk(λ) is
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invertible and hence

S
−1
k (λ) = −J S

∗
k(λ̄)J = −

∞∑

j=0

λ jJ S
[ j]∗

k J .

Remark 1 From Sk(λ) S
−1
k (λ) = I we then obtain the identity Sk(λ)J S

∗
k(λ̄) = J

or equivalently

S [0]
k J S [0]∗

k = J ,

m∑

j=0

S
[ j]

k J S
[m− j]∗

k = 0, m ∈ N.

First we study the J-skew product of two coefficient matrices with different
values of the spectral parameter. This lemma gives a main tool for the proof of the
Lagrange identity.

Lemma 1 Assume (7)–(8). Then for every λ, ν ∈ C with |λ| < ε, |ν| < ε,

S
∗
k(λ)J Sk(ν) = J + (λ̄ − ν)Ωk(λ̄, ν),

k ∈ [0,∞)Z, where the 2n × 2n matrix Ω(λ̄, ν) is defined by

Ωk(λ̄, ν) :=
∞∑

m=0

m∑

j=0

λ̄m− jν j
j∑

l=0

S [m−l+1]∗
k J S [l]

k . (9)

Moreover, for ν = λ the matrix Ωk(λ̄, λ) is Hermitian for all k ∈ [0,∞)Z.

Proof We fix |λ| < ε, |ν| < ε, and k ∈ [0,∞)Z. The power series for S
∗
k(λ) and

Sk(ν) converge absolutely, so that the terms in the product S
∗
k(λ)J Sk(ν) can be

re-arranged to the separate powers of λ̄m− jν j , that is,

S
∗
k(λ)J Sk(ν) =

∞∑

m=0

m∑

j=0

λ̄m− jν jS
[m− j]∗

k J S
[ j]

k .

By using identity (8) for each m ∈ N, we replace the term νmS [0]∗
k J S [m]

k by

−νm (
S [m]∗

k J S [0]
k + S [m−1]∗

k J S [1]
k + · · · + S [1]∗

k J S [m−1]
k

)
.

Thus, with the aid of (7) we get

S
∗
k(λ)J Sk(ν) = J +

∞∑

m=1

m∑

j=1

(λ̄ j − ν j ) νm− jS
[ j]∗

k J S
[m− j]

k .
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Upon factoring λ̄ − ν out of each term λ̄ j − ν j and collecting the remaining
products with the same powers of λ̄ and ν, we get

S
∗
k(λ)J Sk(ν) = J + (λ̄ − ν)

∞∑

m=1

m∑

j=1

( j∑

l=1

λ̄ j−lνl−1
)

νm− jS
[ j]∗

k J S
[m− j]

k

= J + (λ̄ − ν)Ωk(λ̄, ν),

where Ωk(λ̄, ν) is given in (9). Finally, for ν := λ we get by using J ∗ = −J and
identities (8) that the matrix Ωk(λ̄, λ) is Hermitian. This latter fact is also shown in
[7, Proposition 1]. ��

The following theorem provides the main result of this section. Its relationship to
known discrete Lagrange identities in the literature is discussed in Sect. 3.

Theorem 1 (Lagrange identity) Assume (7)–(8) and fix λ, ν ∈ C with |λ| < ε,
|ν| < ε. For any two solutions z(λ) and z(ν) of systems (Sλ) and (Sν), respectively,
we have for all k ∈ [0,∞)Z

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄ − ν) z∗

k (λ)Ωk(λ̄, ν) zk(ν), (10)

z∗
k+1(λ)J zk+1(ν) = z∗

0(λ)J z0(ν) + (λ̄ − ν)

k∑

j=0

z∗
j (λ)Ω j (λ̄, ν) z j (ν). (11)

Proof Given that zk+1(λ) = Sk(λ) zk(λ) and zk+1(ν) = Sk(ν) zk(ν) for all k ∈
[0,∞)Z, we obtain from Lemma 1 that

Δ
(
z∗

k (λ)J zk(ν)
) = z∗

k (λ)
[
S

∗
k(λ)J Sk(ν) − J

]
zk(ν)

= (λ̄ − ν) z∗
k (λ)Ωk(λ̄, ν) zk(ν).

The summation of (10) over the interval [0, k]Z then yields (11). ��
Motivated by Lemma 1, we define for k ∈ [0,∞)Z the Hermitian 2n × 2n matrix

Ψk(λ) := Ωk(λ̄, λ) =
∞∑

m=0

m∑

j=0

λ̄m− jλ j
j∑

l=0

S [m−l+1]∗
k J S [l]

k . (12)

The following identities show that Ψk(λ) is the correct weight matrix for the
spectral theory of system (Sλ), see the examples and applications in Sects. 3 and 4.

Corollary 1 For every λ ∈ C with |λ| < ε and k ∈ [0,∞)Z we have



192 R. Šimon Hilscher and P. Zemánek

Δ
(
z∗

k (λ)J zk(λ)
) = −2i im(λ) z∗

k (λ) Ψk(λ) zk(λ), (13)

z∗
k+1(λ)J zk+1(λ) = z∗

0(λ)J z0(λ) − 2i im(λ)

k∑

j=0

z∗
j (λ) Ψ j (λ) z j (λ), (14)

z∗
k (λ)J zk(λ̄) = z∗

0(λ)J z0(λ̄). (15)

Remark 2 When |λ| < ε and λ ∈ R, we have

Ψk(λ) =
∞∑

m=0

m∑

j=0

λm
j∑

l=0

S [m−l+1]∗
k J S [l]

k = −S
∗
k(λ)J Ṡk(λ) = Ṡ

∗
k(λ)J Sk(λ),

where the dot denotes the derivative with respect to λ. The weight matrix

J Ṡk(λ)J S
∗
k(λ)J = S

∗−1
k (λ) Ψk(λ) S

−1
k (λ)

was used in [11, 17] in the oscillation theory of systems (Sλ) with general nonlinear
dependence on λ.

3 Special Examples

In this section we show the connection of the generalized Lagrange identity in
Theorem 1 to several special cases known in the literature. We also demonstrate
that a positive definite weight matrix Ψk(λ) can be obtained when Sk(λ) is quadratic
in λ.

Example 1 In the simplest case, i.e., for the second order Sturm–Liouville difference
equation (3), the Lagrange identity is

Δ
[
y∗

k (λ) RkΔyk(ν) − (Δy∗
k (λ)) Rk yk(ν)

] = (λ̄ − ν) y∗
k+1(λ) Wk yk+1(ν),

see e.g. [1, Theorem 4.2.1] or [10, Theorem 2.2.3]. This can be seen from (10) and
(9), in which ε = ∞, xk := yk , uk := RkΔyk , zk = (x∗

k , u∗
k)

∗, and use the formula
xk+1 = xk + R−1

k uk . The coefficient matrix of (Sλ) is Sk(λ) := Sk + λVk with

Sk := S [0]
k =

(
I R−1

k
Qk I + Qk R−1

k

)
, Vk := S [1]

k = −
(

0 0
Wk Wk R−1

k

)
,

Ω(λ̄, ν) = V ∗
kJ Sk = (

I, R−1
k

)∗
Wk

(
I, R−1

k

) = Ψk(λ),

and S
[ j]

k := 0 for j ≥ 2. Note that Eqs. (7) and (8) with m ∈ {1, 2} hold, since
Rk, Qk, Wk are assumed to be Hermitian.
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Example 2 Consider system (4) with general linear dependence on λ. In this case
S [0]

k := Sk , S [1]
k := Vk , S [ j]

k := 0 for j ≥ 2, ε = ∞, and Ωk(λ̄, ν) = V ∗
kJ Sk =

Ψk(λ) is constant in λ and Hermitian. Identities (7) and (8) with m ∈ {1, 2} are

S ∗
kJ Sk = J , S ∗

kJ Vk + V ∗
kJ Sk = 0, V ∗

kJ Vk = 0. (16)

The Lagrange identity in (10) is, compare with [19, Theorem 2.6],

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄ − ν) z∗

k (λ)V ∗
kJ Sk zk(ν)

= (λ̄ − ν) z∗
k+1(λ)J VkJ S ∗

kJ zk+1(ν). (17)

Observe that by (16) the matrix Vk is singular. Hence, Ωk(λ̄, ν) and Ψk(λ) are in
this case singular as well. Moreover, det Sk(λ) = det Sk and thus | det Sk(λ)| = 1.

Example 3 System (2) represents a special case of Example 2, namely

Sk := S [0]
k =

(
Ak Bk

Ck Dk

)
, Vk := S [1]

k = −
(

0 0
WkAk WkBk

)
,

Ωk(λ̄, ν) = V ∗
kJ Sk = (

Ak, Bk
)∗

Wk
(
Ak, Bk

) = Ψk(λ).

In this case the Lagrange identity in (10) or (17) has the form

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄ − ν) x∗

k+1(λ) Wk xk+1(ν), (18)

where z(λ) = (x∗(λ), u∗(λ))∗ and z(ν) = (x∗(ν), u∗(ν))∗. Identity (18) is used in
[6, Lemma 2.3] and [4, Lemma 2.6].

Example 4 In this example we discuss the symplectic analogue (or a generalization
to the symplectic system) of the linear Hamiltonian system (5), which was studied
in [15, 16]. We take system (Sλ) with a special quadratic dependence on λ

zk+1(λ) =
(

Ak Bk + λAk W [2]
k

Ck − λW [1]
k Ak Dk + λCk W [2]

k − λW [1]
k (Bk + λAk W [2]

k )

)
zk(λ),

(19)
where W [1]

k and W [2]
k are Hermitian. That is, Sk(λ) = Sk +λVk +λ2Wk with ε = ∞,

Sk := S [0]
k =

(
Ak Bk
Ck Dk

)
, Wk := S [2]

k = J W̃kSkJ Ŵk =
(

0 0

0 −W [1]
k Ak W [2]

k

)
,

Vk := S [1]
k = J W̃kSk + SkJ Ŵk =

(
0 Ak W [2]

k
−W [1]

k Ak Ck W [2]
k − W [1]

k Bk

)
,

Ωk(λ̄, ν) = Ŵk + (I − λ̄ŴkJ )S ∗
k W̃k Sk (I + νJ Ŵk),
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and S
[ j]

k := 0 for j ≥ 3. The Hermitian 2n × 2n matrices W̃k := diag{W [1]
k , 0}

and Ŵk := diag{0, W [2]
k } are block diagonal. We can see that in this case Ψk(λ) =

Ωk(λ̄, λ) is Hermitian but no longer constant in λ, as was the case in Examples 1–3.
The above coefficients satisfy identities (7) and (8) with m ∈ {1, 2, 3, 4}, i.e.,

S ∗
kJ Sk = J , S ∗

kJ Vk + V ∗
kJ Sk = 0, V ∗

kJ Wk + W ∗
k J Vk = 0

S ∗
kJ Wk + V ∗

kJ Vk + W ∗
kJ Sk = 0, W ∗

kJ Wk = 0.

The Lagrange identity in (10) now reads as

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄ − ν)

[
x∗

k+1(λ) W [1]
k xk+1(ν) + u∗

k(λ) W [2]
k uk(ν)

]
, (20)

where z(λ) = (x∗(λ), u∗(λ))∗ and z(ν) = (x∗(ν), u∗(ν))∗. Identity (20) can be
found in [16, Lemma 2.2]. We note that we can factorize Sk(λ) and Ωk(λ̄, ν) as

Sk(λ) =
(

I 0
−λW [1]

k I

)(
Ak Bk

Ck Dk

) (
I λW [2]

k
0 I

)
,

Ωk(λ̄, ν) =
(

A ∗
k 0

B∗
k + λ̄W [2]

k A ∗
k I

)(
W [1]

k 0
0 W [2]

k

) (
Ak Bk + νAk W [2]

k
0 I

)
.

Therefore, det Sk(λ) = det Sk and | det Sk(λ)| = 1 as in Example 2, and

det Ψk(λ) = det Ωk(λ̄, ν) = | det Ak |2 × det W [1]
k × det W [2]

k . (21)

Equation (21) shows that the determinant of the weight matrix Ψk(λ) does not depend
on λ. Moreover, Ψk(λ) is invertible if and only if Ak , W [1]

k , W [2]
k are invertible.

And in this case the matrix Ψk(λ) is positive definite if and only if W [1]
k and W [2]

k
are positive definite. However, an invertible (positive definite) weight matrix Ψk(λ)

can occur only when system (19) corresponds to a linear Hamiltonian system (5)
with invertible (positive definite) W [1]

k and W [2]
k , because in this case Ak = Ãk is

invertible. The other coefficients of (19) are then given by Bk = Ãk Bk , Ck = Ck Ãk ,
and Dk = Ck Ãk Bk + I − A∗

k , see [16, Formula (2.3)].

Example 5 Consider the linear Hamiltonian difference system (6), in which

Sco[0]
k : = I, S [1]

k := J Hk, S
[ j]

k :=
(

A j
k A j−1

k Bk

Ck A j−1
k Ck A j−2

k Bk

)
, j ≥ 2,

Ωk(λ̄, ν) = D∗
k (λ) Hk Dk(ν), Dk(λ) :=

(
Ãk(λ) λ Ãk(λ) Bk

0 I

)
,

where Ãk(λ) := (I − λAk)
−1, see [7, p. 5]. Therefore, the dependence of Sk(λ)

on λ is analytic with ε = inf{1/sprad(Ak), k ∈ [0,∞)Z}, provided this infimum is
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positive, where sprad(M) = max{|μ|, μ is an eigenvalue of M} denotes the spectral
radius of M . The Lagrange identity in (10) is, compare with [13, Formula (9)],

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄ − ν)

(
xk+1(λ)

uk(λ)

)∗
Hk

(
xk+1(ν)

uk(ν)

)
.

Example 6 In [7, 8], the discrete symplectic system (Sλ) with S
[ j]

k := (1/j !) R j
k

for j ∈ [0,∞)Z is studied, where Rk ∈ C
2n×2n satisfies R∗

k J + J Rk = 0. This
means that the coefficient matrix Sk(λ) is of exponential type, i.e., ε = ∞ and

Sk(λ) =
∞∑

j=0

λ j

j ! R j
k = exp(λRk). (22)

By [7, p. 6] or [8, Sect. 2], we then have

Ωk(λ̄, ν)=
∞∑

j=1

(−1) j (λ̄ − ν)2 j−1

(2 j)! (R∗
k ) jJ R j

k −
∞∑

j=0

(−1) j (λ̄ − ν)2 j

(2 j + 1)! (R∗
k ) jJ R j+1

k .

The Lagrange identity has the same form as in (10) with the above Ωk(λ̄, ν).

4 Weyl–Titchmarsh Theory

In this section we discuss the applications of the Lagrange identity from Theorem 1
in the Weyl–Titchmarsh theory for system (Sλ) with analytic dependence on λ. We
assume that the Hermitian weight matrix Ψk(λ) defined in (12) satisfies

Ψk(λ) ≥ 0, k ∈ [0,∞)Z. (23)

In [19] we have recently developed the Weyl–Titchmarsh theory for system (4),
i.e., for system (Sλ) with general linear dependence on λ. In this section we show that
most of the results in [19] remain valid also for the analytic dependence on λ, when
we modify the corresponding Atkinson-type condition to this more general setting.
One of the crucial properties is that the fundamental matrix Φk(λ) of (Sλ) satisfies

Φ∗
k (λ)J Φk(λ̄) = J (24)

for all k ∈ [0,∞)Z whenever (24) holds at the initial point k = 0. Note that identity
(24) now follows from (15) in Corollary 1. In the subsequent paragraphs we review
the most important results, which are in particular connected to the theory of square
summable solutions of (Sλ).
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In [19] we identified the minimal requirements for the solutions of (Sλ) to satisfy
the Atkinson condition. In this way we obtained the weak and strong Atkinson
conditions, which are needed for different statements in the Weyl–Titchmarsh theory.
For completeness we reformulate these conditions in the setting of this paper. Let
Φk(λ) = (Zk(λ), Z̃k(λ)) be the partition of the fundamental matrix of system (Sλ)
into 2n × n solutions, which are given by the initial conditions Z0(λ) = α∗ and
Z̃0(λ) = −J α∗ for some fixed α ∈ C

n×2n with αJ α∗ = 0 and αα∗ = I . The
solution Z̃(λ) is called the natural conjoined basis of (Sλ) and the spectral properties
of the associated eigenvalue problem are formulated in terms of this natural conjoined
basis. Let us fix for a moment an index N ∈ [1,∞)Z.

Hypothesis 1 (Finite weak Atkinson condition) For all λ ∈ C with |λ| < ε and
every column z(λ) of the natural conjoined basis Z̃(λ) of (Sλ) we assume that

N∑

k=0

z∗
k (λ) Ψk(λ) zk(λ) > 0. (25)

If β ∈ C
n×2n with βJ β∗ = 0 and ββ∗ = I is also fixed, then we consider the

symplectic eigenvalue problem

(Sλ), k ∈ [0, N ]Z, α z0(λ) = 0, β zN+1(λ) = 0. (26)

It follows as in [19, Theorem 2.8] that under Hypothesis 1 the eigenvalues of (26)
are real, isolated, and they are characterized by det β Z̃ N+1(λ) = 0. The correspond-
ing eigenfunctions are then of the form Z̃(λ) d with nonzero d ∈ Kerβ Z̃ N+1(λ).

The M(λ)-function for system (Sλ) is defined by Mk(λ) := −[β Z̃k(λ)]−1β Zk(λ)

and it satisfies the properties in [19, Lemma 2.10 and Theorem 2.13]. In particular,
M∗

k (λ) = Mk(λ̄) and Mk(λ) is analytic in λ. Define the Weyl solution χ(λ, M) of
(Sλ) corresponding to M ∈ C

n×n and the Hermitian matrix function E (λ, M) by

χk(λ, M) := Φk(λ)
(
I, M∗)∗ , Ek(λ, M) := i δ(λ) χ∗

k (λ, M)J χk(λ, M),

(27)
where δ(λ) := sgn im(λ). The Weyl disk Dk(λ) and the Weyl circle Ck(λ) are then
defined as the sets

Dk(λ) := {
M ∈ C

n×n, Ek(λ, M) ≤ 0
}
, Ck(λ) := {

M ∈ C
n×n, Ek(λ, M) = 0

}
.

It follows that the results in [19, Sect. 3] regarding the Weyl disks and Weyl circles
hold exactly in the same form, but now under the following assumption.

Hypothesis 2 (Infinite weak Atkinson condition) There exists N0 ∈ N such that for
all λ ∈ C with |λ| < ε every column z(λ) of Z̃(λ) satisfies (25) with N = N0.

We summarize the main properties of the Weyl disks in the following.
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Theorem 2 Let λ ∈ C \ R with |λ| < ε and suppose that (23) and Hypothesis 2
hold. Then for every k ≥ N0 + 1 the Weyl disk and Weyl circle satisfy

Dk(λ) = {
Pk(λ) + Rk(λ) V Rk(λ̄), V ∈ C

n×n, V ∗V ≤ I
}
,

Ck(λ) = {
Pk(λ) + Rk(λ) U Rk(λ̄), U ∈ C

n×n, U∗U = I
}
,

where the center Pk(λ) and the matrix radius Rk(λ) are defined by

Pk(λ) := −H −1
k (λ)Gk(λ), Rk(λ) := H

−1/2
k (λ) (28)

with Hk(λ) and Gk(λ) given by Hk(λ) := i δ(λ) Z̃∗
k (λ)J Z̃k(λ) and Gk(λ) :=

i δ(λ) Z̃∗
k (λ)J Zk(λ). Moreover, the Weyl disks Dk(λ) are closed, convex, and

Dk+1(λ) ⊆ Dk(λ) for all k ≥ N0 + 1.

Proof The proof follows the same arguments as in [19, Theorem 3.8]. We note that
by (14) in Corollary 1 we have

Hk(λ) = 2 |im(λ)|
k−1∑

j=0

Z̃∗
j (λ) Ψ j (λ) Z̃ j (λ). (29)

This shows that under Hypothesis 2 the matrices Hk(λ) are Hermitian and positive
definite for k ≥ N0 + 1, so that the center Pk(λ) and the matrix radius Rk(λ) are
well defined. ��

The properties of the Weyl disks Dk(λ) in Theorem 2 and formula (29) imply that
for k → ∞ there exists the limiting Weyl disk D+(λ) := ⋂

k≥N0+1 Dk(λ), which is
closed and convex and which satisfies

D+(λ) = {
P+(λ) + R+(λ) V R+(λ̄), V ∈ C

n×n, V ∗V ≤ I
}
,

where the limiting center and the limiting matrix radius are complex n × n matrices

P+(λ) := lim
k→∞ Pk(λ), R+(λ) := lim

k→∞ Rk(λ) ≥ 0,

compare with [19, Theorem 3.9 and Corollary 3.11]. The elements of the limiting
Weyl disk are characterized in the following result.

Theorem 3 Let λ ∈ C \ R with |λ| < ε and suppose that (23) and Hypothesis 2
hold. The matrix M ∈ C

n×n belongs to D+(λ) if and only if

∞∑

k=0

χ∗
k (λ, M) Ψk(λ) χk(λ, M) ≤ im(M)

im(λ)
, (30)

where χ(λ, M) is the Weyl solution of (Sλ) corresponding to M defined in (27).
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Proof The proof follows by applying identity (14) in Corollary 1 to Ek(λ, M), see
also [19, Corollary 3.12]. ��

We now discuss the number of square summable solutions of (Sλ) with analytic
dependence on λ. As the weight matrix Ψk(λ) now depends on λ, we define for λ ∈ C

with |λ| < ε the semi-inner product and the semi-norm

〈z, z̃〉Ψ (λ) :=
∞∑

k=0

z∗
k Ψk(λ) z̃k, ‖z‖Ψ (λ) := √〈z, z〉Ψ (λ) =

( ∞∑

k=0

z∗
k Ψk(λ) zk

)1/2

,

and the corresponding space of all square summable sequences with respect to Ψ (λ)


2
Ψ (λ) := {{zk}∞k=0, zk ∈ C

2n, ‖z‖Ψ (λ) < ∞}
. (31)

Observe that the space 
2
Ψ (λ) now also depends on λ. However, in some special cases

this space can be taken independent on λ, as it is shown for systems (2), (3), (4) in
Examples 1–3. Also, in view of (20) in Example 4 we may consider for systems (19)
or (5) the space


2
W [1],W [2] :=

{{
zk = (x∗

k , u∗
k)

∗}∞
k=0,

∞∑

k=0

(
x∗

k+1 W [1]
k xk+1 + u∗

k W [2]
k uk

)
< ∞

}
,

which does not depend on λ. Given the space 
2
Ψ (λ) in (31), its subspace of all square

summable solutions of (Sλ) is denoted by

N (λ) := {
z ∈ 
2

Ψ (λ), z = {zk}∞k=0 solves(Sλ)
}
.

Under assumption (23) and Hypothesis 2, the result in Theorem 3 implies that n ≤
dim N (λ) ≤ 2n for all λ ∈ C \ R with |λ| < ε, see also [19, Theorem 4.2].
The two extreme cases are then called as the limit point case when dim N (λ) =
n, and the limit circle case when dim N (λ) = 2n. The cases when dim N (λ) is
between n + 1 and 2n − 1 are called intermediate. It follows that the results in [19,
Theorem 4.2, Corollary 4.15] hold for system (Sλ) with analytic dependence on λ in
exactly the same form under the appropriate weak or strong Atkinson type condition.
We summarize the main result regarding the number of linearly independent square
summable solutions of (Sλ) in the following theorem.

Theorem 4 Let λ ∈ C\R with |λ| < ε and suppose that (23) and Hypothesis 2 hold.
Then system (Sλ) has exactly n +rank R+(λ) linearly independent square summable
solutions, i.e.,

dim N (λ) = n + rank R+(λ),

where R+(λ) is the matrix radius of the limiting Weyl disk D+(λ).

Proof We refer to the proof of [19, Theorem 4.9] for the details. ��
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As a consequence of Theorem 4 we obtain the characterization of the limit point
case and limit circle case for system (Sλ) with analytic dependence on λ in terms of
the limiting matrix radius R+(λ).

Corollary 2 Let λ ∈ C \ R with |λ| < ε and suppose that (23) and Hypothesis 2
hold. System (Sλ) is in the limit point case if and only if R+(λ) = 0, and in this case
D+(λ) = {P+(λ)} and D+(λ̄) = {P+(λ̄)}. System (Sλ) is in the limit circle case if
and only if R+(λ) is invertible.

In a similar way, the results in [18] regarding the Weyl–Titchmarsh theory for
system (Sλ) with jointly varying endpoints remain valid also for the analytic depen-
dence on λ, when we assume the following finite or infinite strong Atkinson type
condition.

Hypothesis 3 (Finite strong Atkinson condition) For all λ ∈ C with |λ| < ε, every
nontrivial solution z(λ) of (Sλ) satisfies (25).

Hypothesis 4 (Infinite strong Atkinson condition) There exists N0 ∈ N such that
for all λ ∈ C with |λ| < ε every nontrivial solution z(λ) of (Sλ) satisfies (25) with
N = N0.

We illustrate the Weyl–Titchmarsh theory of system (Sλ) with analytic dependence
on λ by the following interesting example.

Example 7 In this example we show that the discrete symplectic system

zk+1(λ) = exp(λJ ) zk(λ). (32)

is in the limit point case for every λ ∈ C \ R. Moreover, we calculate the unique
2n × n solution (up to an invertible multiple) of (32) whose columns lie in 
2

Ψ (λ) and
thus form a basis of N (λ). System (32) is an exponential symplectic system from
Example 6, where ε = ∞, Sk(λ) := exp(λJ ) is given in (22) with Rk := J . This
matrix satisfies the conditions R∗

k J + J Rk = 0 in Example 6, so that by (22)
we have Sk(λ) = exp(λJ ) = (cos λ) I + (sin λ)J . Note that this matrix does not
depend on k.

For simplicity we perform the calculations below in the scalar case, i.e., for n = 1.
The general case follows with the same arguments upon multiplication by the n × n
or 2n × 2n identity matrices at appropriate places. The fundamental matrix Φk(λ)

of (32) with Φ0(λ) = I is given by

Φk(λ) = exp(kλJ ) = (cos kλ) I + (sin kλ)J =
(

cos kλ sin kλ

− sin kλ cos kλ

)

for every k ∈ [0,∞)Z. Since Φ0(λ) = I , we take α := (1, 0), so that αJ α∗ = 0 and
αα∗ = 1 are satisfied. It follows that the natural conjoined basis of (32) is determined
by the second column of Φ(λ), i.e., Z̃k(λ) = ((cos kλ)∗, (sin kλ)∗)∗. Since the
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powers of J repeat in a cycle of length four, the weight matrix Ψk(λ) = Ω(λ̄, λ) is
given in Example 6 as (we substitute x := im(λ))

Ψk(λ) = 1

2x

∞∑

j=0

(2x)2 j+1

(2 j + 1)! I + 1

2x

∞∑

j=1

(2x)2 j

(2 j)! iJ = sinh 2x

2x
I + cosh 2x − 1

2x
iJ

= sinh x

x

[
(cosh x) I + (sinh x) iJ

] = sinh x

x

(
cosh x i sinh x

−i sinh x cosh x

)
> 0,

where we used the formulas for hyperbolic functions sinh 2x = 2 sinh x cosh x ,
cosh 2x = 2 cosh2 x − 1, and the identity cosh2 x − sinh2 x = 1. By the definition
of Hk(λ) and Gk(λ) in Theorem 2,

Hk(λ) = i δ(λ) (sin kλ̄ cos kλ − cos kλ̄ sin kλ) = sinh (2k |im(λ)|),
Gk(λ) = −i δ(λ) (sin kλ̄ sin kλ + cos kλ̄ cos kλ) = −i δ(λ) cosh (2k im(λ)),

where we used the identities cosh x = cos i x and i sinh x = sin i x relating the
hyperbolic and trigonometric functions. The same value for Hk(λ) is of course
obtained from formula (29) after some calculations. Therefore, Hypothesis 2 is sat-
isfied with N0 = 1, and by (28)

Pk(λ) = i coth (2k im(λ)), Rk(λ) = 1/
√

sinh (2k |im(λ)|).

The center and radius of the limiting disk D+(λ) are then

P+(λ) = lim
k→∞ Pk(λ) = i δ(λ), R+(λ) = lim

k→∞ Rk(λ) = 0,

so that system (32) is in the limit point case for every λ ∈ C\R. From Corollary 2 and
Theorem 3 we obtain that dim N (λ) = 1, and the space N (λ) of square integrable
solutions of system (32) is generated by the Weyl solution

χk(λ, P+(λ)) = Φk(λ)

(
I

P+(λ)

)
=

(
cos kλ + i δ(λ) sin kλ

− sin kλ + i δ(λ) cos kλ

)

=
(

1
i δ(λ)

)
e i δ(λ) kλ,

for which (we again substitute x := im(λ))

∥∥χ(λ, P+(λ))
∥∥2

Ψ (λ)
=

∞∑

k=0

χ∗
k (λ, P+(λ)) Ψk(λ) χk(λ, P+(λ))

= 2 sinh x

x
× [cosh x − δ(λ) sinh x] ×

∞∑

k=0

e−2 |x |k
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= 2 sinh x

x
× [cosh x − δ(λ) sinh x] × 1

1 − e−2 |x | = 1

| x | .

This shows that
∥∥χ(λ, P+(λ))

∥∥
Ψ (λ)

= 1/
√|im(λ)| < ∞, and so indeed we have

χ(λ, P+(λ)) ∈ 
2
Ψ (λ) for every λ ∈ C \ R. On the other hand, we also have

∥∥ Z̃(λ)
∥∥2

Ψ (λ)
=

∞∑

k=0

Z̃∗
k (λ) Ψk(λ) Z̃k(λ)

(29)= 1

2 |im(λ)| lim
k→∞ Hk(λ)

= 1

2 |im(λ)| lim
k→∞ sinh(2k |im(λ)|) = ∞,

so that Z̃(λ) �∈ 
2
Ψ (λ). Thus, again we get that dim N (λ) = 1. Similarly, in arbi-

trary dimension n we get that the n columns of the Weyl solution χ(λ, P+(λ)) are
linearly independent and they belong to 
2

Ψ (λ), while the n columns of the natural

conjoined basis Z̃(λ) are linearly independent and they do not belong to 
2
Ψ (λ). Hence,

dim N (λ) = n and system (32) is in the limit point case for all λ ∈ C \ R.

Finally, as a consequence of (14) we obtain the J-monotonicity of the funda-
mental matrix of (Sλ). We recall the terminology from [12, p. 7] saying that a matrix
M ∈ C

2n×2n is J-nondecreasing if i M∗J M ≥ iJ , and it is J-nonincreasing if
i M∗J M ≤ iJ . Similarly we define the corresponding notions of a J-increasing
and J-decreasing matrix. These concepts are used in [12] to study the stability zones
for continuous time periodic linear Hamiltonian systems. In a similar way, such sta-
bility zones are studied in [13, 14] for discrete linear Hamiltonian systems (6) and
in [7] for discrete symplectic systems (Sλ) with S [0]

k = I .

Corollary 3 Fix λ ∈ C with |λ| < ε and assume (23). Let Φ(λ) be a fundamental
matrix of system (Sλ) such that Φ0(λ) is complex symplectic, i.e., Φ∗

0 (λ)J Φ0(λ) =
J . Then for every k ∈ [0,∞)Z the matrix Φk(λ) is J-nondecreasing or
J-nonincreasing depending on whether im(λ) > 0 or im(λ) < 0. Moreover, under
Hypothesis 4 the J-monotonicity of Φk(λ) is strict for k ≥ N0 + 1.

Proof By applying (14) to the fundamental matrix Φk(λ) we get

i Φ∗
k (λ)J Φk(λ) − iJ = 2 im(λ)

k−1∑

j=0

Φ∗
j (λ) Ψ j (λ)Φ j (λ). (33)

By (23), the sum in (33) is nonnegative, so that Φk(λ) is J-nondecreasing when
im(λ) > 0, and it is J-nonincreasing when im(λ) < 0. Moreover, under Hypothe-
sis 4 the sum in (33) is positive definite for k ≥ N0 +1, so that Φk(λ) is J-increasing
when im(λ) > 0, and it is J-decreasing when im(λ) < 0. ��
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14. Răsvan, V.: On stability zones for discrete-time periodic linear Hamiltonian systems. Adv.
Differ. Equ. 2006, Art. 80757, 1–13 (2006)

15. Shi, Y.: Spectral theory of discrete linear Hamiltonian systems. J. Math. Anal. Appl. 289(2),
554–570 (2004)

16. Shi, Y.: Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems. Linear
Algebra Appl. 416, 452–519 (2006)

17. Šimon Hilscher, R.: Oscillation theorems for discrete symplectic systems with nonlinear depen-
dence in spectral parameter. Linear Algebra Appl. 437(12), 2922–2960 (2012)

18. Šimon Hilscher, R., Zemánek, P.: Weyl disks and square summable solutions for discrete
symplectic systems with jointly varying endpoints. Adv. Differ. Equ. 2013(232), 18 (2013)

19. Šimon Hilscher, R., Zemánek, P.: Weyl–Titchmarsh theory for discrete symplectic systems with
general linear dependence on spectral parameter. J. Differ. Equ. Appl 20(1), 84–117 (2014)


	10 Generalized Lagrange Identity for Discrete Symplectic Systems and Applications  in Weyl--Titchmarsh Theory
	1 Introduction
	2 Lagrange Identity
	3 Special Examples
	4 Weyl--Titchmarsh Theory
	References


