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Preface

The International Conference on Difference Equations and Applications (ICDEA)
is held annually under the auspices of the International Society of Difference
Equations. At these conferences, leading mathematicians from around the world
assemble to discuss and present their research in the theory, analysis, and appli-
cations of difference equations, discrete time dynamical systems, and related
disciplines. The 19th annual conference (ICDEA 2013) was held at Sultan Qaboos
University, Muscat, Oman, May 26–30, 2013.

At ICDEA 2013, ten invited speakers delivered plenary talks on various topics
of discrete dynamical systems and difference equations and their applications to
natural sciences. The opening plenary address was given by Professor Michal
Misiurewicz who was awarded, at the conference, the second biannual Aulbach
Prize by the International Society of Difference Equations in recognition of his
significant contributions to difference equations and discrete dynamical systems.
Included among the more than 60 talks presented at the conference were those in
four special sessions on Applications of Dynamical Systems with Delays,
Difference Equation Applications in the Biological Sciences, Continuous
Dynamical Systems, and Topological Dynamics.

These proceedings contain articles written by participants at ICDEA 2013 and
were selected by our panel of referees to ensure quality of scientific content. Four
of the articles are survey papers prepared by the plenary speakers Azmy Ackleh,
Arno Berger, Eduardo Liz, and Hinke Osinga.
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Our gratitude and appreciation go to the organizers for their efforts that made
possible the success of the conference; the members of the scientific committee
who ensured the high standards of the conference’s scientific activities; the
administration of Sultan Qaboos University for providing its facilities and
resources to conference participants; and last but not least, the sponsors for their
generous financial contributions.
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Zdeněk Pospíšil

Asymptotic Equivalence of Difference Equations in Banach Space. . . . 215
Andrejs Reinfelds

x Contents

http://dx.doi.org/10.1007/978-3-662-44140-4_9
http://dx.doi.org/10.1007/978-3-662-44140-4_9
http://dx.doi.org/10.1007/978-3-662-44140-4_10
http://dx.doi.org/10.1007/978-3-662-44140-4_10
http://dx.doi.org/10.1007/978-3-662-44140-4_11
http://dx.doi.org/10.1007/978-3-662-44140-4_12


Speakers at ICDEA 2013

Syed Abbas
Indian Institute of Technology Mandi
School of Basic Sciences
Mandi, H.P.
175001, India
sabbas.iitk@iitmandi.ac.in

Duaa H. Abdelrahman
United Arab Emirates University
Department of Mathematical
Sciences
P.O. Box 15551
Al Ain, UAE
duaa-abdelrahman@uaeu.ac.ae

Azmy S. Ackleh
Department of Mathematics
University of Louisiana at Lafayette
Lafayette, Louisiana 70504-1010
USA
ackleh@louisiana.edu

Afaq Ahmad
Sultan Qaboos University
Electrical and Computer Engineering
P.O. Box 33, PC 123
Al Khod, Muscat, Oman
afaq@squ.edu.om

Mehiddin Al-Baali
Sultan Qaboos University
Department of Mathematics
and Statistics
P.O. Box 36, PC 123
Al Khod, Muscat, Oman
albaali@squ.edu.om

Muna A. Alhalawa
Technical University of Lisbon
Department of Mathematics
Av. Rovisco Pais, 1049-001 Lisboa
Portugal
muna.alhalawa@ist.utl.pt

Aija Anisimova
University of Latvia
Department of Mathematics
Latvia, Riga
Zellu 8, LV-1002
aija-anisimova@inbox.lv

M. Naim Anwar
United Arab Emirates University
Department of Mathematical Sciences
P.O. Box 15551
Al Ain, UAE
m.anwar@uaeu.ac.ae

xi



Jaromír Baštinec
Brno University of Technology
Department of Mathematics
Technická 10, 616 00 Brno
Czech Republic
bastinec@feec.vutbr.cz

Arno Berger
University of Alberta
Mathematical and Statistical Sciences
Edmonton, Alberta T6G 2G1
Canada
berger@ualberta.ca

Fatema Berrabah
Djillali Liabès University
Department of Mathematics
P.O. Box 89
Sidi Bel Abbes, Algeria
berrabah_f@yahoo.fr

Henk Bruin
University of Vienna
Faculty of Mathematics
Nordbergstraße 15
1090 Vienna, Austria
henk.bruin@univie.ac.at

Jose S. Cánovas
Technical University of Cartagena
Applied Mathematics and Statistics
Cartagena, Murcia, Spain
jose.canovas@upct.es

Jim M. Cushing
University of Arizona
Department of Mathematics
617 N. Santa Rita
Tucson, Arizona 85721, USA
cushing@math.arizona.edu

Josef Diblík
Brno University of Technology
Department of Mathematics
Technická 10, 616 00 Brno
Czech Republic
diblik.j@fce.vutbr.cz

Yiming Ding
Chinese Academy
of Sciences
Wuhan Institute of Physics
and Mathematics
P.O. Box 71010
Wuhan 430071, China
ding@wipm.ac.cn

Matúš Dirbák
Matej Bel University
Department of Mathematics
Tajovského 40
Banská Bystrica, Slovakia
matus.dirbak@umb.sk

Zuzana Došlá
Masaryk University
Department of Mathematics
and Statistics
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Masaryk University
Department of Mathematics
and Statistics
Kotlářská 2, CZ-611 37
Brno, Czech Republic
michal.vesely@mail.muni.cz
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Competitive Exclusion Through Discrete Time
Models

Azmy S. Ackleh and Paul L. Salceanu

Abstract In biology, the principle of competitive exclusion, largely attributed to
the Russian biologist G. F. Gause, states that two species competing for common
resources (food, territory etc.) cannot coexist, and that one of the species drives the
other to extinction. We make a survey of discrete-time mathematical models that
address this issue and point out the main mathematical methods used to prove the
occurrence of competitive exclusion in these models. We also offer examples of
models in which competitive exclusion fails to take place, or at least it is not the only
outcome. Finally, we present an extension of the competitive exclusion results in
[1, 5] to a more general model.

1 Introduction

An important tenet in mathematical biology is the principle of competitive exclusion.
According to this tenet any two species that compete for common limited resources
cannot coexist in the long term; one of the species will drive the other to extinction.
This principle is attributed to the Russian biologist Gause [18] who, through lab
experiments, studied many scenarios of interaction for competing species, among
which some resulted in competitive exclusion. The principle was first illustrated by
the Lotka-Volterra competition model and ever since it has been extensively studied
in the literature.

In the field of mathematical biology (especially in ecology and epidemiology)
numerous continuous time mathematical models, such as ordinary, partial and delay
differential equations, have been dedicated to this idea. However, discrete time

A.S. Ackleh (B) · P.L. Salceanu
University of Louisiana at Lafayette, Lafayette, LA 70504, USA
e-mail: ackleh@louisiana.edu

P.L. Salceanu
e-mail: salceanu@louisiana.edu

© Springer-Verlag Berlin Heidelberg 2014
Z. AlSharawi et al. (eds.), Theory and Applications of Difference Equations and Discrete
Dynamical Systems, Springer Proceedings in Mathematics & Statistics 102,
DOI 10.1007/978-3-662-44140-4_1
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4 A.S. Ackleh and P.L. Salceanu

models have been used much less in the study competitive exclusion. Discrete time
models allow for interesting and more general cases of coexistence (such as nontrivial
interior attractors); thus contradicting the principle of competitive exclusion.

Cushing et al. [11] considers two discrete models for competition between two
species. One model (a Leslie-Gower model), with Beverton-Holt-type nonlinearities
(which we will, hereafter, also refer to as weak nonlinearities), has dynamics analo-
gous to the Lotka-Volterra competition model. Namely, if the competition between
the two species is strong, then every orbit converges either to the extinction equilib-
rium, or to one of the two boundary equilibria (thus competitive exclusion occurs
in the latter case). On the other hand, if the competition is weak, then both species
survive at the unique interior equilibrium. The other competition model considered
assumes age structure in one of the two species and Ricker-type nonlinearities, and
in this model coexistence can occur in the form of an asymptotically stable 2-cycle.
Strong nonlinearities (involving exponential functions) in the species growth func-
tions could even lead to “mixed-type” attractors, such as a stable coexistence 2-cycle
and a stable exclusion equilibrium [12], or even to multiple coexistence attractors,
some of which are chaotic, if structure is also added into the model [16, 17].

An interesting idea, exploited by Rael et al. [30], is to investigate if evolution that
happens on a fast time scale (commensurate with that of population dynamics) can
change the outcome of competition. Namely if, through evolution, it is possible to
change the winner between two competing species, or to go from competitive exclu-
sion to coexistence, thus explaining the “anomalies” observed in the lab experiments
of Dawson [15], respectively Park et al. [24], involving two species of flour beetle
insects (Tribolium castaneum and Tribolium confusum).

In [4], AlSharawi and Rhouma study an n-species Leslie-Gower model, but
assume that competition impacts equally each species. They show that competi-
tive exclusion is the only outcome, with one species surviving (at the equilibrium)
and driving the rest of the species to extinction. In order to look for possibilities of
coexistence among species, they modify the model by considering stocking and/or
harvesting. Inspired by a paper of Ackleh et al. [1], Chow and Hsieh [5] show that
competitive exclusion occurs in the n-species Leslie-Gower model from [4], even
when the impact of competition is not the same for each species, but assuming that
the mortality for species i is proportional to the size of the population. This result
for two species (n = 2) can also be found in [1]. Ackleh et al. [2] further extend this
model so that to allow for selection and mutation. This modification complicates the
mathematics, but competitive exclusion still remains possible.

The work of Hsu et al. [21] addresses the issue of competitive exclusion in a
more general framework, that of ordered Banach spaces. Under a set of assumptions
made on the map defining the dynamics of the system, the authors show that the
omega limit set of any interior point is either an interior equilibrium, if such an
equilibrium exists, or a boundary equilibrium. One of the assumptions is that the map
is strictly order-preserving. This assumption, in most cases, is difficult to verify in
applications and general conditions sufficient to imply it are not known to the authors
(see Smith [31] for planar systems). Ackleh and Zhang [3] use the results in [21] to
analyze competition between two species of iris (a plant that produces sexually and
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asexually), each species being also structured by stage (seeds, juveniles and adults).
The authors show that each species, in the absence of the other, can survive at an
equilibrium with all coordinates positive, and that when they compete, the species
the species having the largest equilibrium value drives the other species to extinction;
provided the intraspecific competition efficiencies of both species are similar. When
they consider different intraspecific competition efficiencies between the species
they show that coexistence in the form of globally asymptotically stable equilibrium
(in the interior of R

6+) is possible [34]. Cushing et al. [13] also consider a structured
model (juveniles and adults) with two competing species, having similar boundary
dynamics as in [3]. In their model they also obtain besides competitive exclusion,
a globally asymptotically stable (in the interior of R

4+) interior equilibrium due
to allowing for different interspecific competition efficiencies between the juvenile
classes.

Smith and Zhao [33] investigate competitive exclusion among multiple microbial
populations feeding on the same nutrient and prove that the microbial species with
the break-even nutrient concentration wins the competition, driving all the other
microbial population to extinction. A particular case of this model, containing only
two microbial strains was previously analyzed in [32].

This survey is far from being a comprehensive one and it is mainly organized
by considering two classes of competition models, with and without (age/stage)
structure. This is because, especially with regard to the first class, there is no
“general method” available to approach the issue of competitive exclusion in discrete
time models. Another reason is that adding structure into a competition model has
the potential of enriching model dynamics by violating the principle of competitive
exclusion, thus allowing for (multiple) interior attractors [13]. Thus, our primary
goals here are to observe the principle of competitive exclusion “at work” in differ-
ent types of such models and to point out the main mathematical tools (specific to
each model) used to investigate it.

2 Unstructured Models

In unstructured models each species is regarded as an aggregation of identical indi-
viduals, without taking into account different characteristics of individuals within the
species. The majority of the unstructured competition models in discrete time, that
predict competitive exclusion, use a Beverton-Holt-type population growth func-
tion, and this class of models is known as Leslie-Gower-type models [23]. Thus
we begin with a survey of these models. In unstructured Leslie-Gower models with
pure selection (individuals of one species produce individuals of the same species
only), competitive exclusion is the most probable outcome. The following model,
considered in [4], accounts for such a case:

xi (t + 1) = bi xi (t)

1 + ∑n
j=1 c j x j (t)

, i = 1, . . . , n. (1)
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In this model, competition affects each species equally [notice that the right-hand
side in every equation in (1) has the same denominator]. Then the largest of the
“growth coefficients” b1, . . . , bn dictates whether all species go extinct, or just one
of them survives and all the other die out. More exactly, if b1 > b2 > · · · > bn ,
then b1 < 1 implies xi (t) → 0 as t → ∞, for all i = 1, . . . , n, and b1 > 1 implies
xi (t) → 0 as t → ∞, for all i = 2, . . . , n, and x1(t) → (b1 − 1)/c1. Although, the
strict inequalities among bi ’s, i = 2, . . . , n (assumed in [4]), could be replaced by
weak inequalities, so that the assumption b1 > b2 ≥ · · · ≥ bn would produce the
same result (see also [2, 5]).

In [1], Ackleh et al. consider a modified version of (1), when the effect of compe-
tition is not the same for all species, but the mortality rate for each species is propor-
tional to the sum total of the population sizes of all species (that is, the intraspecific
competition is the same as any interspecific competition).

xi (t + 1) = ai xi (t)

1 + bi
∑n

j=1 x j (t)
, i = 1, . . . , n. (2)

If
a1 − 1

b1
>

ai − 1

bi
> 0, for all i = 2, . . . , n, (3)

then the boundary equilibrium E1 = ((a1−1)/b1, 0, . . . , 0) is asymptotically stable,
while all the other nontrivial boundary equilibria Ei = (0, . . . , (ai −1)/bi , 0, . . . , 0)
are unstable. This follows directly from the eigenvalues of the Jacobian matrix eval-
uated at these equilibria, which are easy to calculate. Further, it is shown that, when
n = 2, E1 also attracts all solutions with x1(0) > 0. For this, the authors use
Bendixson-Dulac criteria for difference equations, but also mention that the same
result could be achieved by using the theory of competitive planar systems of differ-
ence equations. This result is extended to arbitrary n in [2, 5] (with different proofs).
In [5] the proof is tedious and requires quite a few preliminary results (lemmas) in
order to prepare it. Ackleh et al. offer a much shorter proof, based on the fact that the
set {x ∈ R

n+ | |x | ≤ (a1−1)/b1} is positively invariant and attracts all solutions. This
follows by noting that the maximum of | f (x)|, where f denotes the map that gives
the right hand side in (2), over the set Hc := {x ∈ R

n+ | |x | = c ≤ (a1 − 1)/b1} is
attained at a point x = (0, . . . 0, c, 0 . . . 0), hence it is equal to cai/(1+bi c), for some
i ∈ {1, . . . , n}. Further, based on (3), it follows that maxx∈Hc | f (x)| ≤ (a1 − 1)/b1,
which implies that the set {x ∈ R

n+ | |x | ≤ (a1 − 1)/b1} is positively invariant. We
present this idea in more detail in Sect. 4, when we prove a similar result for more
general growth functions. Above, by abusing notation, |x | denotes the L1 norm of x .
That is, |x | = |x1| + · · · + |xn|, where |xi | is the absolute value of the real number
xi . The same notation will be used several times throughout this paper.

In case that some of the maximum carrying capacities corresponding to some of
the species are equal, say when (a1 − 1)/b1 = (a2 − 1)/b2 = · · · = (ak − 1)/bk >

(ak+1 −1)/bk+1 ≥ · · · ≥ (an −1)/bn (for some k ∈ {1, . . . , n}), it is shown (both in
[2, 5]) that every solution of (2) with x1(0), . . . , xl(0) > 0 converges exponentially



Competitive Exclusion Through Discrete Time Models 7

to a point on the hyperplane {(x1, . . . , xk, 0, . . . , 0) | xi > 0, i = 1, …, k, and
x1 + · · · + xk = (a1 − 1)/b1}.

When intraspecific competition is different from the interspecific competition,
unstructured Leslie-Gower models still allow for competitive exclusion but also leave
the door open for coexistence. As Cushing et al. show in [11] for a two-dimensional
model of this type [see (4) below], the dynamics are similar to those predicted by
the Lotka-Volterra model.

xt+1 = b1
xt

1 + xt + c1 yt

yt+1 = b2
yt

1 + c2xt + yt

(4)

Here the intraspecific coefficients [that is, the coefficients of xt and yt from the
denominator in the first, respectively the second equation in (4)] are scaled to one. It
is shown that when the growth coefficients b1 and b2 are not both greater than one,
the model can have only boundary equilibria E0 = (0, 0), E1 = (b1 − 1, 0) and
E2 = (0, b2 − 1). In fact, if b1, b2 < 1 then E0 is globally asymptotically stable in
R

2+; if b1 > 1, b2 < 1 then E1 is globally asymptotically stable in {(x, y) | x > 0};
if b1 < 1, b2 > 1 then E2 is globally asymptotically stable in {(x, y) | y > 0}.
So in the last two cases the model predicts competitive exclusion. However, when
b1, b2 > 1, the two species can coexist at an interior equilibrium

E3 =
(

c1(b2 − 1)− (b1 − 1)

c1c2 − 1
,

c2(b1 − 1)− (b2 − 1)

c1c2 − 1

)

.

The main results are presented below.

1. c1 < (b1−1)/(b2−1) and c2 > (b2−1)/(b1−1)⇒ E1 is globally asymptotically
stable in {(x, y) | x > 0};

2. c1 > (b1−1)/(b2−1) and c2 < (b2−1)/(b1−1)⇒ E2 is globally asymptotically
stable in {(x, y) | y > 0};

3. c1 > (b1 −1)/(b2 −1) and c2 > (b2 −1)/(b1 −1)⇒ E3 is a saddle point, and all
solutions starting in {(x, y) | x > 0 and y > 0}, but not on the (one-dimensional)
global stable manifold of E3, converge either to E1 or to E2;

4. c1 < (b1−1)/(b2−1) and c2 < (b2−1)/(b1−1)⇒ E3 is globally asymptotically
stable in {(x, y) | x > 0 and y > 0}.
Thus, cases 1, 2 and 3 above give competitive exclusion, but when interspecific

competition is small, coexistence occurs (case 4).
As shown in [12], one of the “mechanisms” that can produce non-Lotka-Volterra

type dynamics is to consider stronger nonlinearities to model species growth, for
example by using Ricker-type functions.

xt+1 = b1xt e
−c11xt −c12 yt + s1xt

yt+1 = b2 yt e
−c21xt −c22 yt + s2 yt

(5)
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The parameters s1 and s2 in [0, 1) account for the survival rates of species x and
y, respectively. This model can have a coexistence equilibrium E = ((ln n1 −
c1 ln n2)/(1 − c1c2), (ln n2 − c2 ln n1)/(1 − c1c2)) (whenever ni = bi/(1 − si ) > 1,
i = 1, 2), but it is unstable. The single species dynamics (say for species y)
are given by

yt+1 = b2 yt e
−c22 yt + s2 yt . (6)

At the critical value bcr
2 = (1 − s2)e2/(1−s2) of the parameter b2, a period-doubling

bifurcation occurs, resulting in an asymptotically stable 2-cycle (y∗
0 , y∗

1 ) for (6),
which results in an extinction 2-cycle ((0, y∗

0 ), (0, y∗
1 )) for (5). Denoting r = c2/c1

and c = c1, model (5) becomes

xt+1 = n1(1 − s1)xt e
−xt −cyt + s1xt

yt+1 = n2(1 − s2)yt e
−rcxt −yt + s2 yt .

(7)

This is done in order to investigate the stability of the extinction 2-cycle as a function
of a single inter-specific competition c.

It is shown in [12] that the Jacobian matrix of (7) evaluated at ((0, y∗
0 ), (0, y∗

1 ))

has eigenvalues

λ1 = λ1(c) = [n1(1 − s1)e
−cy∗

1 + s1][n1(1 − s1)e
−cy∗

2 + s1]
λ2 = [n2(1 − s2)(1 − y∗

1 )e
−y∗

1 + s2][n2(1 − s2)(1 − y∗
2 )e

−y∗
2 + s2] (8)

But λ2 < 1 (based on b2 being greater than, but near bcr
2 , which represents the

existence condition for the extinction 2-cycle). Hence λ1 = λ1(c) determines the
stability of the extinction 2-cycle. Thus, since λ1 is decreasing in c and λ1(0) =
(n1(1 − s1) + s1)

2 > 1 and limc→∞ λ1(c) = s1s2 < 1, there exists a unique value
c = c∗ such that ((0, y∗

0 ), (0, y∗
1 )) is stable for c > c∗, and unstable for c < c∗.

The loss of stability of the extinction 2-cycle at the critical value of the parameter
c = c∗ suggests existence of coexistence 2-cycles for c < c∗. The authors show that
indeed this is the case, by Lyapunov-Schmidt expansions of ((0, y∗

0 ), (0, y∗
1 )), which

they use, in turn, to estimate the bifurcation value c∗ for the 2-cycles generated
by the solution branch (x, y, c) = (x, y(x), c(x)) that gives the fixed points of
the composite map for the right-hand side of (7). Also using Lyapunov-Schmidt
expansions, the authors further give conditions for the stability of the coexistence
2-cycle (that is, conditions for c′(0) to be negative), as well as for the existence of
a mixed attractor (stable coexistence 2-cycle and stable exclusion equilibrium) in
terms of the survival ratios s1 and s2. To complement their theoretical results, the
authors offer a series of numerical simulations in order to illustrate other scenarios
of mixed-type attractors, that include higher period cycles, quasi-periodic and even
chaotic attractors.

Even though model (5) has richer dynamics, as compared to the previous models
presented in this section, the performed mathematical analysis is a local one, thus
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conditions that differentiate in between global coexistence and competitive exclusion
are not determined.

A particular form of (7) (with s1 = s2 = 0) was analyzed in [25, 31], even though
the mixed attractor scenario (as mentioned above) was not observed (we give below
the system used in [25]).

xn+1 = xneK−xn−ayn

yn+1 = yneL−bxn−yn

(9)

Using results concerning the dynamics of planar competitive systems (also devel-
oped in [31]), Smith [31] proved that when the carrying capacities of both species are
smaller than one, either one of the two nonzero boundary equilibria, or the interior
equilibrium, attracts all solutions starting in the interior of R

2+. With respect to model
(9), these results say the following. Assume that K , L ≤ 1.

(a) If aL/K < 1 < bK/L then the equilibrium E1 = (K , 0) attracts all points not
on the y axis.

(b) If bK/L < 1 < aL/K then the equilibrium E2 = (0, L) attracts all points not
on the x axis.

(c) If aL/K , bK/L < 1 then the (unique) interior equilibrium E∗ attracts all
solutions starting in the interior of R

2+.

Further, for bK/L , aL/K > 1 (which corresponds to the interior equilibrium
being a saddle point), it is shown that there exists a smooth curve� through the origin
and E∗ (which is, in fact, the global stable manifold of E∗), that “separates” R

2+ into
two (disjoint) “relatively open” sets B1 and B2, that represent the basin of attraction
of E1 and E2, respectively. Hence, for K , L ≤ 1, (9) predicts Lotka-Volterra-type
dynamics.

In [25] the authors are mostly concerned with the local stability analysis for this
model by determining the regions in the parameter space that dictate the local sta-
bility of each of the four equilibrium points mentioned above. Of particular interest
are the non-hyperbolic cases, when the authors determine the stability of the non-
trivial boundary equilibria E1 and E2, as well as of the interior equilibrium E∗,
when one eigenvalue (but not both) of the Jacobian matrix evaluated at each of these
equilibria has modulus equal to one. The methods involve the approximation of the
(one-dimensional) center manifold near the equilibrium point using Taylor series,
and then studying the dynamics on the center manifold (the Schwarzian derivative
is also used for this). Further, using bifurcation analysis, the authors show that the
coexistence equilibrium undergoes a period-doubling bifurcation leading to asymp-
totically stable coexistence periodic orbits of arbitrarily large periods, and eventually
to chaos. Thus, as a consequence of strong nonlinearities, model (9) has the potential
of violating the principle of competitive exclusion.

We conclude this section with a look at the competitive exclusion—coexistence
dichotomy from the perspective of evolutionary game theory (EGT). Namely, we look
at how evolution that occurs on a time scale comparable to that of the dynamics of
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the population, can influence (change) the outcome of competition between species,
as discussed by Rael et al. in [30].

The mathematical model is a Leslie-Gower-type model of two competing species
x1 and x2, in which the competition coefficients are not constant, but depend on a
vector u, (with two components), that gives the phenotypic traits (or strategies) of
the two species. In turn, the vector u depends on how the two species evolve over
time, thus the full model consists of four difference equations:

x1(t + 1) = x1(t)
er

1 + c(u1(t), u1(t))x1(t)+ c(u1(t), u2(t))x2(t)

x2(t + 1) = x2(t)
er

1 + c(u2(t), u1(t))x1(t)+ c(u2(t), u2(t))x2(t)

u1(t + 1) = u1(t)− σ 2
1

[
∂
∂v

c(v, u1)x1(t)+ ∂
∂v

c(v, u2)x2(t)
]
(u1(t),u2(t))

1 + c(u1(t), u1(t))x1(t)+ c(u1(t), u2(t))x2(t)

u2(t + 1) = 21(t)− σ 2
2

[
∂
∂v

c(v, u1)x1(t)+ ∂
∂v

c(v, u2)x2(t)
]
(u1(t),u2(t))

1 + c(u2(t), u1(t))x1(t)+ c(u2(t), u2(t))x2(t)

(10)

This model considers two scenarios: with and without a boxer effect, meaning that
the maximal competitive intensity does not (respectively does) occur between species
having identical, or nearly identical, strategies. The main objective is to find out if it
is possible to start with a strategy that would lead to competitive exclusion (if u(t)
remained constant for all t ≥ 0) but that, in fact, evolves towards a strategy that results
in the coexistence of the two species. Mathematically, this translates into solutions
of (10) starting at (x0

1 , x0
2 , u0

1, u0
2) (at t = 0), such that (x1(t), x2(t), u1(t), u2(t)) →

(x∗
1 , x∗

2 , u∗
1, u∗

2) as t → ∞, where x∗
1 , x∗

2 > 0, but solutions of the subsystem formed
with the first two equations in (10) and keeping u1(t) = u0

1 and u1(t) = u0
2 constant

for all t , would approach an extinction equilibrium (thus, implying evolution would
change the outcome of the competition from competitive exclusion to coexistence).
Through numerical simulations it is shown that this situation can, indeed, take place,
but in the model without boxer effect it requires the initial trait to correspond to a
globally attracting extinction equilibrium (with one of the two species absent) and
not to a saddle interior equilibrium. The latter case is of special interest because it
corresponds to the Park’s “anomalous” experiment that showed coexistence of the
two species of Tribolium. Thus, it is concluded that a boxer effect can produce new
“evolutionary paths” and, in addition, it can give rise to coexistence equilibria that
are ESS (evolutionary stable strategy).
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3 Structured Models

From a pure mathematical perspective, competitive exclusion in structured
discrete-time competition models poses a much higher degree of difficulty, and a
general approach for this has not yet been established. However, Hsu et al. [21] offer
such an approach for monotone systems. The setup is as follows. Let X1 and X2 be
ordered Banach spaces with non-empty interiors, X = X1×X2, and X+ = X+

1 ×X+
2 .

Let K be the cone with nonempty interior int (K ) = I nt (X+
1 ) × (−I nt (X+

2 )),
that generates the following partial order relations. Thus, for any x = (x1, x2) and
x̄ = (x̄1, x̄2) in X+, we have:

x ≤K x̄ ⇔ x1 ≤ x̄1 and x2 ≥ x̄2;
x <K x̄ ⇔ x1 ≤ x̄1, x2 ≥ x̄2 and x �= x̄;
x �K x̄ ⇔ x1 < x̄1 and x2 > x̄2.

(11)

Let T : X+ → X+ be an order compact, continuous map, having the following
properties:

(H1) x <K x̄ ⇒ T (x) <K T (x̄);
(H2) T (0) = 0 and ∃ U a neighborhood of 0 such that ∀ x ∈ U\{0}, ∃ n = n(x)

such that T n(x) �∈ U .
(H3) T (X+

1 × {0}) ⊂ X+
1 × {0} and ∃ x̂1 � 0 such that T (x̂1, 0) = (x̂1, 0) and

T n(x1, 0) → (x̂1, 0), ∀ x1 > 0. Assume a symmetric condition for T on
{0} × X+

2 , with fixed point (0, x̃2).
(H4) If x, y ∈ X+ satisfy x <K y and either x or y belong to I nt (X+) then

T (x) �K T (y). If x = (x1, x2) ∈ X+ satisfies xi �= 0, i = 1, 2, then
T (x) � 0.

Under these assumptions, if the map T does not have a fixed point in I nt (X+),
then either E1 = (x̂1, 0), or E2 = (0, x̃2) attracts all solutions of xn+1 = T (xn)

starting in I nt (X+)∩ (I := [0, x̂1]× [0, x̃2]). For solutions starting in I nt (X+) \ I ,
solutions converge either to E1, or to E2, depending on the initial condition.

Thus, in a competition modeled by such a map T , if the two species (x1 and x2)
cannot coexist at an interior equilibrium, the outcome predicted by the model is
competitive exclusion. However, for solutions with both species present and starting
outside I , we do not know which species persists and which dies out.

The model of Ackleh and Zhang [3], used to investigate the competition between
the Louisiana blue flag iris (I. hexagona), which is a wild species of iris, and the
yellow flag iris (I. pseudacorus), which is a cultivated species, fits in the above
framework:

x A
t+1 = bA

1 z A
t

y A
t+1 = s A

1 x A
t + bA

2 z A
t

z A
t+1 = s A

2 (φt )y A
t + s A

3 (φt )z A
t

x B
t+1 = bB

1 zB
t

yB
t+1 = s B

1 x B
t + bB

2 zB
t

zB
t+1 = s B

2 (φt )yB
t + s B

3 (φt )zB
t

(12)
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The two species are denoted by A and B, while x, y and z stand for seeds,
juveniles and adults, respectively. φ denotes the total number of plants (juvenile
and adult) for both species together. The survivorship functions sk

i , k = A, B, are
assumed to satisfy sk

1 ∈ (0, 1), 0 < sk
2 (0) ≤ sk

3 (0) < 1 and (sk
2 )

′(x) ≤ (sk
3 )

′(x) < 0
for all x ≥ 0. In addition, for i = 2, 3, sk

1 ∈ C1[0,∞), (sk
2 (x)x)

′ > 0 for all x ≥ 0,
limx→∞ sk

i (x) = 0, limx→∞ sk
i (x)x < ∞.

In order to verify assumption (H3) above, Ackleh and Zhang use the fact
that the single species dynamics are given by a monotone system. The nontriv-
ial boundary equilibria are denoted by E1 = (x̂ A, ŷ A, ẑ A, 0, 0, 0), respectively
E2 = (0, 0, 0, x̂ B , ŷ B , ẑ B). The partial order relation ≤K is chosen such that
x = (x1, x2) y = (y1, y2) ∈ R

3+ × R
3+ satisfy x ≤K y if and only if x1 ≤ y1

and x2 ≥ y2. Assumption (H4) is replaced by the slightly weaker

(H4)’ If x = (x1, x2) or y = (y1, y2) are in I nt (R3+ × R
3+) and x <K y then

T l(x) � T l(y) for some l ≥ 0. If x = (x1, x2) ∈ R
3+ ×R

3+ and xi �= (0, 0, 0),
i = 1, 2, then T m � 0 for some m ≥ 0.

It is shown in [3] that, whenever locally asymptotically stable, E1 also attracts
all solutions having non-zero components corresponding to species A if and only if
ŷ A + ẑ A > ŷ B + ẑ B (with an analogous statement for species B), and that coexistence
occurs only in the extreme case ŷ A + ẑ A = ŷ B + ẑ B .

The authors then extend their model to allow for different intraspecific competition
efficiencies between the two species [34], where they consider the following discrete
two-species model:

x A
t+1 = bA

1 z A
t

y A
t+1 = s A

1 x A
t + bA

2 z A
t

z A
t+1 = s A

2 (φ1)y A
t + s A

3 (φ1)z A
t

x B
t+1 = bB

1 zB
t

yB
t+1 = s B

1 x B
t + bB

2 zB
t

zB
t+1 = s B

2 (φ2)yB
t + s B

3 (φ2)zB
t .

(13)

Here it is assumed, due to competition, that the survivorship of both juveniles and
adults for the two species depend on a weighted total number of plants, φ1 =:
φA

t + c1φ
B
t and φ2 =: c2φ

A
t + φB

t , respectively (where φA
t = y A

t + z A
t is the total

number of plants (juveniles and adults) for species A, and φB
t = yB

t + zB
t is the

total number of plants for species B, at time t). The competition coefficients c1 > 0,
c2 > 0 represent a measure of the strength of interspecific competition between the
two species.

Note that this model reduces to a model of type (12) in the case c1 = c2 = 1.
The main goal in [34] is to extend the analysis to the case c1, c2 > 0. In addition
to the global analysis of model (13) with weak nonlinear survivorship functions
(Beverton-Holt type), the authors also establish the local stability with Ricker type
survivorship functions and perform numerical bifurcation analysis on these strong
nonlinearities. They define the net reproductive number of species A and B at density
level φ by
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R A(φ) = bA
1 s A

1 s A
2 (φ)+ s A

2 (φ)b
A
2

1 − s A
3 (φ)

and RB(φ) = bB
1 s B

1 s B
2 (φ)+ s B

2 (φ)b
B
2

1 − s B
3 (φ)

.

The inherent net reproductive number of species A is R A(0) and of species B
is RB(0). Notice that R A(φ) and RB(φ) are decreasing functions with limφ→∞
R A(φ) = limφ→∞ RB(φ) = 0. Thus, if R A(0) > 1 and RB(0) > 1 then there exist
unique positive real numbers α1 and α2 such that R A(α1) = 1 and RB(α2) = 1.

Clearly, model (13) has the trivial equilibrium denoted by E0 = (0, 0, 0, 0, 0, 0).
Furthermore, if R A(0) > 1 and RB(0) > 1, then each species (living alone) has a
positive globally asymptotically stable interior fixed point. Denote this equilibrium
for species A by E A = (x̂ A, ŷ A, ẑ A) and for species B by E B = (x̂ B , ŷ B , ẑ B).
Thus, it follows that model (13) has two nontrivial boundary equilibria given by
E1 = (E A, 0) ∈ R

6+ and E2 = (0, E B) ∈ R
6+. Therefore, α1 = ŷ A + ẑ A and

α2 = ŷ B + ẑ B . Furthermore, if either

α2 < c2α1 and α1 < c1α2

or
α2 > c2α1 and α1 > c1α2 (14)

is satisfied, then system (13) has a unique interior equilibrium

E3 = (bA
1 z̄ A, (s A

1 bA
1 + bA

2 )z̄
A, z̄ A, bB

1 z̄ B, (s B
1 bB

1 + bB
2 )z̄

B, z̄ B),

where

z̄ A = φA

1 + s A
1 bA

1 + bA
2

, z̄ B = φB

1 + s B
1 bB

1 + bB
2

.

Relying on the monotonicity of the system when the nonlinearities are weak, and
using the theory of [21], Zhang and Ackleh establish the following:

(a) If c2 >
α2
α1

and c1 <
α1
α2

, then the boundary equilibrium E1 is globally asymptot-
ically stable;

(b) If c2 <
α2
α1

and c1 >
α1
α2

, then the boundary equilibrium E2 is globally asymptot-
ically stable;

(c) If c2 >
α2
α1

and c1 >
α1
α2

, then both boundary equilibria are locally asymptotically
stable;

(d) If c2 <
α2
α1

and c1 <
α1
α2

, then the unique interior equilibrium E3 is globally
attractive.

Then the authors study the local stability in the case of strong nonlinearities
and investigate the model dynamics by using numerical simulations and bifurcation
diagrams. The numerical results indicate that the criteria given in (a–d) above can
be used to predict the competition outcome even for strong nonlinearities. While
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under such strong nonlinearities competitive exclusion, coexistence and bistability
can be obtained, the surviving species may have richer dynamics including periodic
or chaotic attractors.

A slightly different competition model between two species, containing only two
age groups (juveniles and adults) for each species, has been considered by Cushing
et al. [13].

Jt+1 = b1
1

1 + d1 At
At

At+1 = s1
1

1 + Jt + c1 jt
Jt

jt+1 = b2
1

1 + d2at
at

at+1 = s2
1

1 + c2 Jt + jt
jt

(15)

A particular feature of this model, that facilitates its analysis, is that its variables
that are two time-steps apart form two decoupled, unstructured systems, one for each
species.

Jt+2 = b1s1
1

1 + (1 + d1s1)Jt + c1 jt
Jt

At+2 = b1s1
1

1 + (d1 + b1)At + c1b2at (1 + d1 At )/(1 + d2at )
At

jt+2 = b2s2
1

1 + c2 Jt + (1 + d2s2) jt
jt

at+2 = b2s2
1

1 + c2b1 At (1 + d2at )/(1 + d1 At )At + (d2 + b2)at
at

(16)

The two submodels corresponding to juveniles, respectively adults, in (16) are
of the form (4). Thus, they produce similar Lotka-Volterra-type dynamics for (15),
in the cases when the inter-specific competition coefficients c1 and c2 are not both
large. More exactly, assuming that bi si > 1, i = 1, 2, we have the following:

(a) if c1 < (1+d2s2)(b1s1 −1)/(b2s2 −1) and c2 < (1+d1s1)(b2s2 −1)/(b1s1 −1),
then there exists a coexistence equilibrium that is globally asymptotically stable
in I nt (R4+);

(b) if c1 < (1+d2s2)(b1s1 −1)/(b2s2 −1) and c2 > (1+d1s1)(b2s2 −1)/(b1s1 −1),
then the exclusion equilibrium (Je, Ae, 0, 0) = ((b1s1 − 1)/(1 + d1s1), (b1s1 −
1)/(b1+d1), 0, 0) is asymptotically stable and attracts all solutions of (15) starting
in I nt (R4+);
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(c) if c1 > (1+d2s2)(b1s1−1)/(b2s2 −1) and c2 < (1+d1s1)(b2s2 − 1)/(b1s1−1),
then the exclusion equilibrium (0, 0, je, ae) = (0, 0, (b2s2−1)/(1+d2s2), (b2s2−
1)/(b2 + d2)) is asymptotically stable and attracts all solutions of (15) starting
in I nt (R4+).

However, when both c1 and c2 are large, which corresponds to the case when the
interior equilibrium is unstable (saddle), there exists a nontrivial coexistence (local)
attractor. Thus,

(d) if c1 > (1+d2s2)(b1s1 −1)/(b2s2 −1) and c2 > (1+d1s1)(b2s2 −1)/(b1s1 −1),
then the coexistence equilibrium (for which explicit formula is given in [13]) is
a saddle and the 2-cycle {(Je, 0, 0, ae), (0, Ae, je, 0)} is locally asymptotically
(orbitally) stable.

Ackleh et al. [2] re-visited model (2), but this time allowing for mutation. That is,
individuals from species j can give birth, with probabilityγi j to individuals belonging
to other species, i . Thus, model (2) becomes

xi (t + 1) = (γi i ai + 1)xi (t)+ ∑
j �=i γi j a j x j (t)

1 + bi
∑

j x j (t)
, ai > 0, bi > 0. (17)

When the mutation matrix � is block-diagonal

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1 0 0 0 0
0 �2 0 0 0

0 0
. . . 0 0

...
... . . .

. . . 0
0 0 0 0 �l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (18)

(17) can be regarded as a structured model of the form

x (i)(t + 1) = Ai (x(t))x
(i)(t), i = 1, . . . , l, (19)

where x = (x (1), . . . , x (l)), x (i) ∈ R
ni . Hence n1 + · · · + nl = n, but we assume

that n1 ≥ 2 for some i , in order to have a model different from (2).
Let bM

1 = minn1
j=1 b j and bm

i = maxni
j=1, i = 2, . . . , l. Then from (19) we have

x (1)(t + 1) ≥ 1

1 + bM
1 |x(t)| Ã1x (1)(t)

x (i)(t + 1) ≤ 1

1 + bm
i |x(t)| Ãi x (i)(t), i = 2, . . . , l,

(20)

where Ã1 = (1+bM
1 |x |)Ai and Ãi = (1+bm

i |x |)Ai , i = 2, . . . , l. It is shown in [2]
that, when each �i , i = 1, . . . , n, is irreducible and (r j/r1)max{1, bM

1 /b
m
j } < 1 for
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j ≥ 2, where ri denotes the spectral radius of Ãi , i = 1, . . . , n, then x ( j)(t) → 0,
as t → ∞. This condition, which leads to competitive exclusion, is weaker than (3).
This is primarily due to the fact that the methods of proof for the unstructured model
(2) could not be extended to (17).

Modeling the growth functions using stronger nonlinearities in structured models
also complicate the global dynamics (as compared to the classical Lotka-Volterra
models). To illustrate this fact, the authors in [11] consider the following Ricker
competition model, when one of the two species is structured by age (juveniles and
adults).

Jt+1 = b1 At exp(−c11 At − c12 yt )

At+1 = (1 − μ)Jt

yt+1 = b2 yt exp(−c21 Jt − c22 yt ).

(21)

It is shown that this model does not produce Lotka-Volterra-type dynamics, in the
sense that local stability of the non-zero boundary equilibria does not necessarily
imply competitive exclusion (as in cases 1–3 on page XX). The authors prove the
existence of coexistence 2-cycles by showing that the composite map [that is F ◦ F ,
where F is the right-hand-side of (21)] has non negative fixed points. For this, they
set J = 0, and then the fixed points of F2 satisfy

b1(1 − μ) exp(−c11 A − c12 y) = 1

b2
2 exp(−c22 y − c21 A

1

1 − μ
− b2c22 ye−c22 y) = 1.

(22)

From (22), a scalar equation for y is obtained:

b2c22 ye−c22 y =
(

c12c21

(1 − μ)c11

)

y +
(

2 ln b2 − c21

(1 − μ)c11
ln b1(1 − μ)

)

. (23)

The graphs of the two functions given by the left and right-had-sides in (23) can
have at most two intersection points. Such an intersection point y∗ gives a fixed
point (A∗, y∗) for (22) which, in turn, yields a 2-cycle {(0, A∗, y∗), ( J̄ , 0, ȳ)} for
(21). For a particular set of parameters, a 2-cycle is computed numerically and then
verified to be asymptotically stable, while the corresponding boundary equilibria are
also asymptotically stable, hence model (21) exhibits a “multiple attractor”, making
coexistence possible.

Along the same lines, there is the age structured LPA (larvae, pupae, adult)
two-species competition model (see [8–10, 16, 17]).

lt+1 = bat e
−cel lt −ceaat −ceL Lt −ceA At

pt+1 = lt (1 − μl)

at+1 = pt e
−cpaat −cp A At + at (1 − μa)

Lt+1 = B At e
−cEl lt −cEaat −cE L Lt −cE A At

Pt+1 = Lt (1 − μL)

At+1 = Pt e
−cPaat −cP A At + At (1 − μA)

(24)
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This model is a natural extension of the well-known single species LPA model (see [6,
7, 14, 19, 20, 22]) and mainly developed to try to explain some of the “anomalies”
(multiple coexistence attractors) observed in the lab experiments of Park and his
collaborators (see [24, 26–29]) involving two closely related species, T. confusum
and T. castaneum.

Through a series of numerical simulations, Edmunds [16] and Edmunds et al.[17]
show that various scenarios can take place in regard to the global dynamics generated
by (24):

1. a globally attracting 2-cycle, with one of the species extinct;
2. two attractors: one 2-cycle with one of the species extinct and a coexistence

attractor (which could be periodic, or even chaotic);
3. three attractors: one 2-cycle with one of the species extinct and two coexistence

attractor (one of which being chaotic);
4. two extinction attractors (with one of the species “missing”): one 2-cycle and one

chaotic, and a coexistence 2-cycle;
5. two extinction attractors (with one of the species “missing”): one 2-cycle and one

chaotic.

However, the basins of attraction of these attractors have complicated structure,
some of them being fractals. Thus, predictions as to which species survives when the
initial population is near these boundaries is practically impossible, in the presence
of stochasticity.

Extending the work in [32], Smith and Zhao [33] consider a chemostat model
where m species compete for a common food source.

xi
n+1 = Ai (Sn)xi

n, i = 1, . . . ,m,

Sn+1 = (1 − E)

⎛

⎝Sn −
m∑

j=1

f j (Sn)U
j

n

⎞

⎠ + E S0.
(25)

Each species (at time step n) is structured by size and denoted in the model by the
vector xi

n ∈ R
ri , and Ui

n = |xi
n|. Sn denotes the nutrient concentration (at time

step n). The nutrient uptake rate f is of Michaelis-Menten form f (S) = M S/(a +
S), with M being the maximum uptake rate, and a being the half-saturation (or
Michaelis-Menten) constant (in fact, the paper allows more general forms of f , the
Michaelis-Menten form being just a particular case). The projection matrix for the
i th population is

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − Pi 0 . . . Mi Pi

Mi Pi 1 − Pi 0 . . . 0
0 Mi Pi 1 − Pi 0 . . . 0
...

. . .
...

0 · · · 0 Mi Pi 1 − Pi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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where Mi = 21/ri and Pi = fi (S)/(Mi − 1). It follows then that the total biomass
for the i th species satisfies the equation

Ui
n+1 = (1 − E)(1 + fi (Sn))U

i
n, i = 1, . . . ,m. (26)

Denoting Sn + ∑n
i=1 Ui

n by 	n , Eqs. (25) and (26) imply

	i
n+1 = (1 − E)	n + E S0. (27)

In turn, from (27) it follows that 	n → S0 as n → ∞. Thus, replacing Sn by
S0 − ∑n

i=1 Ui
n , (26) becomes an unstructured, limiting system. The assumptions

made on f guarantee that the equation

(1 − E)(1 + fi (S)) = 1

has at most one solution and, whenever such a solution exists, it is denoted by λi

(and referred to as the break-even nutrient concentration for the i th population).
Otherwise, λi is set to be ∞. It is shown then that the total biomass of the species
having the lowest λi , with λi < S0, settles at a positive equilibrium equal to S0 −λ1,
while all the other species go extinct. This is done using the Lyapunov function
W : R

m → R, W (x) = |x |, and the LaSalle invariance principle. Further, using
properties on internally chain transitive sets (omega limit sets of bounded solutions
being such sets) the above results regarding the limiting system are “lifted” back to
the system formed by (26) together with the second equation in (25), from where it
follows that every solution of (25) with x1

0 �= 0 converges to (x̄1, 0, . . . 0, λ1), where
x̄1 = ((S0 − λ1)/r1, . . . , (S0 − λ1)/r1).

4 Extending the Competitive Exclusion Result in [5]

In this section we revisit the model (2), but consider the growth functions to be of a
more general form. Specifically, we consider the model

xi (t + 1) = gi (|x(t)|)xi (t), i = 1, . . . , n. (28)

Each gi : R+ → R+ is assumed to be non increasing and to have the property
that there exists a unique value αi > 0 such that gi (αi ) = 1. We also assume that
y → ygi (y) is non decreasing for all i = 1, . . . , n and y ∈ [0,max αi ]. The proof
of the following result is in the spirit of the approach developed in [2].

Theorem 1 Assume that α1 = α2 = · · · = αk > αk+1 ≥ · · · ≥ αn, for some
k ∈ {1, . . . , n}. Then xi (t) → 0 as t → ∞, for all i = k + 1, . . . , n, and x(t) → x̄
as t → ∞, where x̄ = x̄(x(0)) is an equilibrium with |x̄ | = α1.
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Proof Let f = ( f1, . . . , fn), where fi (x) := gi (|x |)xi , i = 1, . . . , n. Let Hc =
{x ∈ R

n+ | |x | = c > 0} and assume c ≤ α1. Then, for x ∈ Hc, we have

| f (x)| =
n∑

i=1

gi (c)xi . (29)

Note that the right hand side in (29) is a linear function of x , hence the maximum of
| f (x)|, for x ∈ Hc, is attained at a point x = (0, . . . 0, c, 0 . . . 0).

max
x∈Hc

| f (x)| = gi (c)c, for some i ∈ {1, . . . , n}. (30)

But
gi (c)c ≤ gi (α1)α1 ≤ gi (αi )α1 = α1. (31)

This implies that S := {x ∈ R
n+ | |x | ≤ α1} is positively invariant for (28).

Now let x̃ ∈ R
n+ such that x̃1 +· · ·+ x̃k > 0 and consider the solution x(t) of (28)

with x(0) = x̃ . Without loss of generality we consider x̃i > 0 for all i = 1, . . . , k.
Then we have one of the following two cases:

(a) x̃ ∈ S . Then x(t) ∈ S for all t ≥ 0, which implies that xi (t + 1) ≥ xi (t),
i = 1, . . . , k, for all t ≥ 0. Hence xi (t) is convergent to an x̄i > 0, i = 1, . . . , k,
as t → ∞. Then, from the equation for x1 in (28), it follows that |x(t)| → α1.
This implies that limt→∞ xi (t +1)/xi (t) = gi (α1) < 1, for all i = k +1, . . . , n,
hence xi (t) → 0, i = k + 1, . . . , n. Thus, x(t) → x̄ = (x̄1, . . . , x̄k, 0, . . . , 0),
where x̄ must be an equilibrium with |x̄ | = α1.

(b) x̃ �∈ S . If x(t) �∈ S for all t ≥ 0 then

xi (t + 1) ≤ gi (α1)xi (t), ∀ t ≥ 0, i = 1, . . . , n. (32)

If i �∈ {1, . . . , k}, then (32) implies that xi (t) → 0 as t → ∞, because α1 > αi .
If i ∈ {1, . . . , k}, then (32) implies that xi (t + 1) ≤ xi (t) for all t ≥ 0, hence
xi (t) converges to some x̄i , as t → ∞. Then, from the equation for x1 in (28), it
follows that |x(t)| → α1. So again, x(t) → x̄ = (x̄1, . . . , x̄k, 0, . . . , 0), where
x̄ must be an equilibrium with |x̄ | = α1.
If x(t) ∈ S for some t > 0, then, without loss of generality we can consider
that we are in case (a) above.

��
Remark 1 Suppose that the growth function gi (y) = ai e−bi y , i.e., is of the Ricker
type. Then, if ln(a1)/b1 ≤ 1/bi , i = 1, . . . , n, the function gi (y)y is increasing on
the interval y ∈ [0, α1] and hence Theorem 1 applies.
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Benford Solutions of Linear Difference
Equations

Arno Berger and Gideon Eshun

Abstract Benford’s Law (BL), a notorious gem of mathematics folklore, asserts that
leading digits of numerical data are usually not equidistributed, as might be expected,
but rather follow one particular logarithmic distribution. Since first recorded by New-
comb in 1881, this apparently counter-intuitive phenomenon has attracted much inter-
est from scientists and mathematicians alike. This article presents a comprehensive
overview of the theory of BL for autonomous linear difference equations. Necessary
and sufficient conditions are given for solutions of such equations to conform to BL
in its strongest form. The results extend and unify previous results in the literature.
Their scope and limitations are illustrated by numerous instructive examples.

1 Introduction

The study of digits generated by dynamical processes is a classical and rather wide
subject that continues to attract interest from disciplines as diverse as ergodic and
number theory [1, 14, 15, 27, 30], statistics [18, 21, 32], political science [16, 31,
40], and accounting [12, 13, 33, 37, 38]. Across these disciplines, one recurring
theme is the surprising ubiquity of a logarithmic distribution of digits often referred
to as Benford’s Law (BL). The most well-known special case of BL is the so-called
first-digit law which asserts that

P (leading digit = d) = log
(

1 + d−1
)
, ∀d = 1, 2, . . . , 9, (1)
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Fig. 1 Different interpretations of (1) for sequences, datasets, and random variables, respectively,
and scenarios that may lead to conformance to the first-digit law

where leading digit refers to the first significant (decimal) digit (see Sect. 2 for rig-
orous definitions) and log is the base-10 logarithm; for example, the leading digit
of e = 2.718 is 2, whereas the leading digit of −ee = −15.15 is 1. Note that (1) is
heavily skewed towards the smaller digits: For instance, the leading digit is almost
seven times as likely to equal 1 (probability log 2 = 30.10 %) as it is to equal 9
(probability log 10

9 = 4.57 %).
Ever since first recorded by Newcomb [36] in 1881 and re-discovered by Benford

[3] in 1938, examples of data and systems conforming to (1) in one form or another
have been discussed extensively, for instance in real-life data (e.g. [19, 41]), stochastic
processes (e.g. [44]), and in deterministic sequences (e.g. (n!) and the prime numbers
[17]). There now exists a large body of literature devoted to the mechanisms whereby
mathematical objects, such as e.g. sequences or random variables, do or do not satisfy
(1) or variants thereof, see also Fig. 1. Beyond mathematics, BL has found diverse
applications throughout the sciences. Given that the ubiquity of BL in these fields
is still somewhat of a mystery [8], some BL-based tools (e.g. for fraud detection in
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Fig. 2 Already the first one-hundred Fibonacci numbers conform to BL quite well

tax, census, election or image processing data) have proved remarkably successful
in practice. This in turn has triggered further research on the many unique features
of BL [22, 23, 45]. It still rings true that, as Raimi [39] observed almost 40 years
ago,

[t]his particular logarithmic distribution of the first digits, while not universal, is so common
and yet so surprising at first glance that it has given rise to a varied literature, among the
authors of which are mathematicians, statisticians, economists, engineers, physicists and
amateurs.

As of this writing, an online database [4] devoted exclusively to BL lists more than
750 references.

Due to their important role as elementary models throughout science, linear
difference and differential equations have, from very early on, been studied for
their conformance to (1). A simple early example [11, 20, 28, 48] is the sequence
(xn) = (Fn) = (1, 1, 2, 3, 5, . . .) of Fibonacci numbers, i.e. F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for all n ≥ 3, which satisfies (1) in the sense that

limN→∞
#{1 ≤ n ≤ N : leading digit of xn = d}

N
= log(1 + d−1), ∀d = 1, 2, . . . , 9,

(2)
see also Fig. 2. Another simple case in point is (xn) = (2n) for which (2) also holds
[2, §24.4]. On the other hand, the sequence of primes (xn) = (2, 3, 5, 7, 11, . . .)
does not satisfy (2), as was in essence observed already by [47], yet may conform to
BL in some weaker sense [14, 42].
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Both positive examples mentioned above, i.e. the sequences (Fn) and (2n), are
obviously solutions of (very simple) autonomous linear difference equations. Build-
ing on earlier work, notably [5, 26, 35, 43], it is the purpose of this article to
provide a comprehensive overview of the theory of BL for such equations. Thus
the central question throughout is as follows: Given d ∈ N and real numbers
a1, a2, . . . , ad−1, ad with ad �= 0, consider the (autonomous, dth order) linear dif-
ference equation

xn = a1xn−1 + a2xn−2 + · · · + ad−1xn−d+1 + ad xn−d , n ≥ d + 1. (3)

Under which conditions on a1, a2, . . . , ad−1, ad , and presumably also on the initial
values x1, x2, . . . , xd , does the solution (xn) of (3) satisfy (2)? Early work in this
regard seems to have led merely to sufficient conditions that are either restrictive
or difficult to state. By contrast, two of the main results presented here (Corollary
3.7 and Theorem 4.11) provide easy-to-state, necessary and sufficient conditions for
every non-trivial solution of (3) to conform to (1) in a sense much stronger than (2).
The classical results in the literature are then but simple special cases.

The organisation of this article is as follows. Section 2 introduces the formal def-
initions and analytic tools required for the analysis. In Sect. 3, difference equations
(3), as well as the matrices associated with them are studied under the additional
assumption of positivity. Though restrictive, this assumption holds for some impor-
tant applications, and it yields a particularly simple answer to the central question
raised earlier. Dropping the positivity assumption, Sect. 4 studies the case of general
equations and matrices. The emergence of resonances, the key problem in the gen-
eral case, is dealt with by means of a tailor-made definition (Definition 4.2). While
the main results (Theorems 4.5 and 4.11) are stated in full generality, proofs are
given here only under an additional non-degeneracy condition (and the interested
reader is referred to the authors’ forthcoming work [6] for complete proofs). Finally,
Sect. 5 demonstrates how the presented results can be used to explain the “cancella-
tion of resonance” phenomenon first observed in the context of finite-state Markov
chains [10].

2 Basic Definitions and Tools

Throughout, the following, mostly standard notation is adhered to. The sets of natural,
non-negative integer, integer, rational, positive real, real, and complex numbers are
symbolised by N, N0, Z, Q, R

+, R, and C, respectively. The cardinality of any
finite set Z ⊂ C is #Z . The real part, imaginary part, complex conjugate, and
absolute value (modulus) of z ∈ C is denoted by 
z, �z, z, and |z|, respectively. Let
S := {z ∈ C : |z| = 1}. The argument arg z of z �= 0 is understood to be the unique
number in (−π, π ] for which z = |z|eı arg z ; for convenience, let arg 0 := 0. For any
set Z ⊂ C and number w ∈ C, define wZ := {wz : z ∈ Z}. Thus for instance
wS = {z ∈ C : |z| = |w|} for every w ∈ C. Given Z ⊂ C, denote by spanQ Z the



Benford Solutions of Linear Difference Equations 27

smallest subspace of C (over Q) containing Z ; equivalently, if Z �= ∅ then spanQ Z
is the set of all finite rational linear combinations of elements of Z , i.e.

spanQ Z = {
ρ1z1 + ρ2z2 + · · · + ρnzn : n ∈ N, ρ1, ρ2, . . . , ρn ∈ Q, z1, z2, . . . , zn ∈ Z

} ;

note that spanQ∅ = {0}. For every x ∈ R
+, log x and ln x are, respectively, the base-

10 and the natural (base-e) logarithm of x ; for convenience, set log 0 := ln 0 := 0. For
every x ∈ R, denote by �x the largest integer not larger than x , hence 〈x〉 := x −�x
is the non-integer (or fractional) part of x .

Given x ∈ R\{0}, there exists a unique S(x) ∈ [1, 10) such that |x | = S(x)10k for
some (necessarily unique) integer k. The number S(x) is the (decimal) significand
of x . Note that

S(x) = 10〈log |x |〉, ∀x ∈ R\{0} ;

for convenience let S(0) := 0. For x �= 0, the integer �S(x) ∈ {1, 2, . . . , 9} is the
first significant (decimal) digit of x . More generally, for every m ∈ N, the integer
�10m−1S(x)−10�10m−2S(x) ∈ {0, 1, . . . , 9} is the mth significant (decimal) digit
of x , see e.g. [7, Prop. 2.5].

Throughout this article, conformance to (1) for solutions of difference equations
is studied using the following terminology.

Definition 2.1 A sequence (xn) of real numbers is a Benford sequence, or simply
Benford, if

limN→∞
#{1 ≤ n ≤ N : S(xn) ≤ t}

N
= log t, ∀t ∈ [1, 10) . (4)

Note that every Benford sequence (xn) satisfies (2). For the purpose of this work, the
following well-known characterization of the Benford property is indispensable.

Proposition 2.2 [17, Thm. 1] A sequence (xn) is Benford if and only if the sequence
(log |xn|) is uniformly distributed modulo one.

The term uniformly distributed modulo one is henceforth abbreviated u.d. mod 1. In
view of Proposition 2.2, a few basic facts regarding uniform distribution of sequences
are used throughout; for an authoritative overall account on the subject, the reader is
referred to [29].

Proposition 2.3 [29, Sect. I.2] The following statements are equivalent for any
sequence (yn) in R:

(i) (yn) is u.d. mod 1;
(ii) For every ε > 0 there exists a sequence (zn) that is u.d. mod 1, and

lim supN→∞
#{1 ≤ n ≤ N : |yn − zn| > ε}

N
< ε ;

(iii) Whenever (zn) is convergent then (yn + zn) is u.d. mod 1;
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(iv) (pyn) is u.d. mod 1 for every non-zero integer p;
(v) (yn + α log n) is u.d. mod 1 for every α ∈ R.

One of the simplest yet also most fundamental examples of a sequence u.d. mod 1
is (nϑ) with ϑ ∈ R\Q. The following, therefore, is an immediate consequence of
Propositions 2.2 and 2.3.

Proposition 2.4 Let (xn) be a sequence in R, and α ∈ R\{0}. If limn→∞ xn/α
n

exists (in R) and is non-zero, then (xn) is Benford if and only if log |α| is irrational.

Example 2.5 Since log 2 is irrational (even transcendental), (2n) is Benford, and
so is the sequence (Fn) of Fibonacci numbers because, with ϕ = 1

2 (1 + √
5),

limn→∞ Fn/ϕ
n = 1/

√
5 �= 0, and logϕ is irrational as well. �

Remark The Benford property can be studied w.r.t. any integer base b ≥ 2, simply
by replacing the decimal significand S(x) in (4) with the base-b significand Sb(x) =
b〈logb |x |〉, where logb denotes the base-b logarithm. With the obvious modifications,
the results in this work carry over to arbitrary base b ∈ N\{1}, cf. [5–7]. For the sake
of clarity, however, only the familiar case b = 10 is considered from now on.

When studying solutions of linear difference equations, sequences of a particular
form are often encountered, and the following lemma clarifies their properties.

Lemma 2.6 Let α ∈ R, z ∈ C\{0}, and (zn) a sequence in C with limn→∞ zn = 0.
If ϑ1, ϑ2 ∈ R are irrational then the following statements are equivalent:

(i) ϑ1 �∈ spanQ{1, ϑ2};
(ii) The sequence (yn) with

yn = nϑ1 + α log n + log
∣
∣
(

zeıπnϑ2 + zn
)∣
∣, n ∈ N,

is u.d. mod 1.

Proof If ϑ1 �∈ spanQ{1, ϑ2} then 1, ϑ1, ϑ2 are rationally independent, and
[5, Lem. 2.9] shows that (yn) is u.d. mod 1. On the other hand, if ϑ1 ∈ spanQ{1, ϑ2}
then k1ϑ1 = k0 + k2ϑ2, where k0, k1, k2 are appropriate integers with k1k2 �= 0;
assume w.l.o.g. that k1 > 0. Consider now the sequence (ηn) with

ηn = nϑ1 + log
∣
∣
(zeıπnϑ2)

∣
∣ + k2

k1

( 1
2 + arg z

π

) − log |z|, n ∈ N .

If (yn)was u.d. mod 1, then so would be (ηn), and hence also (k1ηn), by Proposition
2.3. Moreover, for every n ∈ N,

〈k1ηn〉 =
〈
k2

(
nϑ2 + 1

2 + arg z
π

) + k1 log
∣
∣
∣ sin

(
π

(
nϑ2 + 1

2 + arg z
π

)) ∣
∣
∣
〉

=
〈

f
(
nϑ2 + 1

2 + arg z
π

)〉
,
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Fig. 3 The map T does not
preserve λ0,1, see the proof of
Lemma 2.6

with the measurable function f : R → R given by f (t) = k2t + k1 log | sin(π t)|.
Note that f (t + 1)− f (t) ∈ Z for all t ∈ R, and so f induces the measurable map
T := 〈 f 〉 on [0, 1). Recall now that the sequence (nϑ2 + 1

2 + arg z
π
) is u.d. mod

1 because ϑ2 is irrational. For every continuous, 1-periodic function g : R → R,
therefore,

1

N

N∑

n=1

g (〈k1ηn〉) = 1

N

N∑

n=1

g ◦ f
(

nϑ2 + 1
2 + arg z

π

)
N→∞−→

∫ 1

0
g ◦ f (t) dt

=
∫

[0,1]
g ◦ T dλ0,1 =

∫

[0,1]
g d

(
λ0,1 ◦ T −1

)
,

because g ◦ f is Riemann integrable on [0, 1]. On the other hand, if (k1ηn) was u.d.
mod 1 then limN→∞ N−1 ∑N

n=1 g(〈k1ηn〉) = ∫
[0,1] g dλ0,1 for every g, and hence

λ0,1 ◦ T −1 = λ0,1. However, it is intuitively clear that the latter equality of measures
does not hold. To see this formally, note that f is smooth on (0, 1) and has a (unique)
non-degenerate maximum at some 0 < t0 < 1. Thus if λ0,1 ◦ T −1 = λ0,1 then, for
all ε > 0 sufficiently small,

f (t0 − ε)− f (t0 − 2ε)

ε
= λ0,1

([T (t0 − 2ε), T (t0 − ε)])
ε

= λ0,1 ◦ T −1
([T (t0 − 2ε), T (t0 − ε)])

ε

≥ λ0,1([t0 − 2ε, t0 − ε])
ε

= 1,

which is impossible since f ′(t0) = 0, see also Fig. 3 which depicts the special case
k1 = k2 = 1. Hence (k1ηn) is not u.d. mod 1, and neither are (ηn) and (yn). ��

Although it would be possible to study the Benford property of solutions of (3)
directly, the analysis in subsequent sections becomes more transparent by means of
a standard matrix-vector approach. To this end, associate with (3) the matrix
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 a2 · · · ad−1 ad

1 0 · · · 0 0
0 1 0 · · · 0
...
. . .

. . .
. . .

...

0 · · · 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
d×d , (5)

which is invertible as ad �= 0, and recall that, given initial values x1, x2, . . . , xd ∈ R,
the solution of (3) can be expressed neatly in the form

xn = e�
d An y, where y = A−1

⎡

⎢
⎢
⎢
⎣

xd
...

x2
x1

⎤

⎥
⎥
⎥
⎦

∈ R
d ; (6)

here e1, e2, . . . , ed represent the standard basis of R
d , and x� denotes the transpose

of x ∈ R
d , with x�y being understood simply as the real number

∑d
j=1 x j y j . In

what follows, therefore, the following, more general question suggested by (6) will
be addressed: Under which conditions is

(
x� An y

)
Benford, where A is any fixed

real d × d-matrix and x, y ∈ R
d are given vectors? Note that specifically choosing

x = e j and y = ek , with j, k ∈ {1, 2, . . . , d}, simply yields e�
j Anek = [An] jk ,

i.e. the entry of An at the position ( j, k). Also, if A ∈ R
d×d is given by (5) then

every sequence
(
x� An y

)
solves (3), and (6) establishes a one-to-one correspondence

between all sequences of the form
(
e�

d An y
)

and all solutions of (3).
In the analysis of powers of matrices in the subsequent sections, d always is

a fixed but usually unspecified positive integer. For every x ∈ R
d , the number

|x | ≥ 0 is the Euclidean norm of x , i.e. |x | = √
x�x =

√∑d
j=1 x2

j . A vector

x ∈ R
d is a unit vector if |x | = 1. The d × d-identity matrix is Id . For every matrix

A ∈ R
d×d , its spectrum, i.e. the set of its eigenvalues, is denoted by σ(A). Thus

σ(A) ⊂ C is non-empty, contains at most d numbers and is symmetric w.r.t. the
real axis, i.e. all non-real elements of σ(A) come in complex-conjugate pairs. The
number rσ (A) := max{|λ| : λ ∈ σ(A)} ≥ 0 is the spectral radius of A. Note that
rσ (A) > 0 unless A is nilpotent, i.e. unless AN = 0 for some N ∈ N. For every
A ∈ R

d×d , the number |A| is the (spectral) norm of A, as induced by | · |, i.e.
|A| = max{|Ax | : |x | = 1}. It is well-known that |A| = √

rσ (A� A) ≥ rσ (A).

3 A Simple Special Case: Positive Matrices

The analysis of sequences (x� An y) is especially simple if the matrix A or one of its
powers happens to be positive. Recall that A ∈ R

d×d is positive, in symbols A > 0,
if [A] jk > 0 for every j, k ∈ {1, 2, . . . , d}. The following classical result, due to O
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Perron, lists some of the remarkable properties of positive matrices, as they pertain to
the present section. For a concise formulation, call x ∈ R

d positive (non-negative),
in symbols x > 0 (x ≥ 0), if x j > 0 (x j ≥ 0) for every j ∈ {1, 2, . . . , d}.
Proposition 3.1 [25, Sect. 8.2] Assume that A ∈ R

d×d is positive. Then:

(i) The number rσ (A) > 0 is an (algebraically) simple eigenvalue of A, i.e. a simple
root of the characteristic polynomial of A;

(ii) |λ| < rσ (A) for every eigenvalue λ �= rσ (A) of A;
(iii) There exists a positive eigenvector q, unique up to multiplication by a positive

number, corresponding to the eigenvalue rσ (A);
(iv) The limit Q := limn→∞ An/rσ (A)n exists, and Q > 0 satisfies Q2 = Q

as well as AQ = Q A = rσ (A)Q. (In fact, Q is a rank-one projection with
Qq = q.)

Recall that (αn)with α > 0 is Benford if and only if logα is irrational. The following
is a generalization of this simple fact to arbitrary dimension. Informally put, it asserts
that as far as the Benford property is concerned, matrices with some positive power
behave just like the one-dimensional sequence

(
rσ (A)n

)
.

Theorem 3.2 Let A be a real d × d-matrix, and assume that AN > 0 for some
N ∈ N. Then the following four statements are equivalent:

(i) The number log rσ (A) is irrational;
(ii) The sequence (x� An y) is Benford for every x, y �= 0 with x ≥ 0 and y ≥ 0;
(iii) The sequence (|An x |) is Benford for every x �= 0 with x ≥ 0;
(iv) The sequence (|An|) is Benford.

Proof Since AN > 0, the number rσ (AN ) = rσ (A)N > 0 is an algebraically
simple eigenvalue of AN , by Proposition 3.1. It follows that exactly one of the two
numbers rσ (A) > 0 and −rσ (A) < 0 is an algebraically simple eigenvalue of A.
Denote this eigenvalue by λ0, and let P be the spectral projection associated with
it, that is, P = bc�/b�c where b, c are eigenvectors of, respectively, A and A�
corresponding to the eigenvalue λ0, i.e. Ab = λ0b and A�c = λ0c. Thus P2 = P
and AP = P A = λ0 P . Moreover, the matrix R := A − λ0 P clearly satisfies
AR = R A and P R = R P = 0, and hence

An = λn
0 P + Rn, ∀n ∈ N . (7)

Since |λ| < |λ0| = rσ (A) for every eigenvalue λ of R, limn→∞ Rn/rσ (A)n = 0,
and an evaluation of (7) along even multiples of N yields

limn→∞
(AN )2n

rσ (AN )2n
= limn→∞

(
λ2nN

0

rσ (A)2nN
P + R2nN

rσ (A)2nN

)

= P .

This shows that P = Q > 0, with Q according to Proposition 3.1(iv) applied to AN .
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With these preparations, the asserted equivalences are now easily established.
Indeed, given any x, y �= 0 with x ≥ 0 and y ≥ 0, the vector Qy is positive, and

|x� An y|
rσ (A)n

= |λn
0 x�Qy + x� Rn y|

rσ (A)n
=

∣
∣
∣
∣x

�Qy + x� Rn y

λn
0

∣
∣
∣
∣

n→∞−→ x�Qy > 0, (8)

together with Proposition 2.4, shows that (x� An y) is Benford if and only if log rσ (A)
is irrational. A similar argument applies to (|An x |), as

|An x |
rσ (A)n

= |λn
0 Qx + Rn x |

rσ (A)n
=

∣
∣
∣
∣Qx + Rn x

λn
0

∣
∣
∣
∣

n→∞−→ |Qx | > 0,

whenever x ≥ 0, x �= 0, and also to (|An|), as

|An|
rσ (A)n

= |λn
0 Q + Rn|
rσ (A)n

=
∣
∣
∣
∣Q + Rn

λn
0

∣
∣
∣
∣

n→∞−→ |Q| > 0. ��

Remark The proof of Theorem 3.2 shows that if log rσ (A) is rational then (x� An y)
and (|An x |) are not Benford for any x, y ≥ 0, and neither is (|An|) Benford. Also, in
(iii) and (iv), the Euclidean norm | · | can be replaced by any norm on, respectively,
R

d and R
d×d .

Corollary 3.3 Let A ∈ R
d×d , and assume that AN > 0 for some N ∈ N. Then, for

every j, k ∈ {1, 2, . . . , d}, the sequence ([An] jk) is Benford if and only if log rσ (A)
is irrational.

Example 3.4 The matrix associated with the Fibonacci recursion

xn = xn−1 + xn−2, n ≥ 3, (9)

is A =
[

1 1
1 0

]

, with rσ (A) = ϕ = 1
2 (1 + √

5). While A is non-negative, i.e.

[A] jk ≥ 0 for all j, k, but fails to be positive, the matrix A2 is positive, and so is An

for every n ≥ 2. Since log rσ (A) is irrational (even transcendental), every entry of
(An) is Benford. This is consistent with the fact that

An =
[

Fn+1 Fn

Fn Fn−1

]

, n ≥ 2,

and the sequence (Fn) is Benford.
Consider now the sequence (xn)with xn = e�

1 An(3e2 − e1). Recall that (xn) thus
defined also solves (9). However, since 3e2 − e1 is not non-negative, Theorem 3.2
does not allow to decide whether (xn) = (2, 1, 3, 4, 7, . . .), traditionally referred to
as the sequence of Lucas numbers and denoted (Ln), is Benford. Corollary 3.7 below
shows very easily that this is indeed the case. �
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Example 3.5 Consider the (symmetric) matrix

B =
⎡

⎣
−3 1 0
1 0 1
0 1 6

⎤

⎦ ,

the characteristic polynomial of which is

pB(λ) = det(B − λI3) = −λ3 + 3λ2 + 20λ− 3 .

It is readily confirmed that pB has three different real roots. If λ = ±10m/n was a root
of pB with any relatively prime m ∈ Z and n ∈ N, then n ≤ 3, and 10m would divide
| det Bn| = | det B|n = 3n , hence m = 0, that is, λ = ±1. But pB(±1) = ±19 �= 0.
It follows that rσ (B), albeit algebraic, is not a rational power of 10, and so log rσ (B)
is irrational (even transcendental). Moreover, Bn contains both positive and negative
entries for n = 1, 2, . . . , 7, yet

B8 =
⎡

⎣
13841 1929 37034
1929 56662 335235

37034 335235 2031038

⎤

⎦ > 0,

hence Theorem 3.2 and Corollary 3.3 apply. In particular, every entry of (Bn) is
Benford. Note that the actual value of rσ (B),

rσ (B) = 1 + 2
√

69
3 cos

(
1
3 arccos 57

√
69

1058

)
= 6.165,

is not needed at all to draw this conclusion. �

Example 3.6 When A > 0 and log rσ (A) is irrational, the sequence (x� An y) may
nevertheless not be Benford for some non-zero x, y ∈ R

d . By Theorem 3.2, such

x, y cannot both be non-negative. For instance, the matrix A =
[

5 15
15 5

]

is positive,

and log rσ (A) = 1 + log 2 is irrational, yet
(
e�

1 An(e1 − e2)
) = (

(−10)n
)

is not
Benford. On the other hand, even if rσ (B) is rational, (x� Bn y) may be Benford for
some x, y ∈ R

d . Again, x, y cannot both be non-negative, by virtue of Theorem 3.2.

Concretely, B =
[

6 4
4 6

]

> 0 has log rσ (B) = 1 rational, yet
(
e�

1 Bn(e1−e2)
) = (2n)

is Benford. �

Corollary 3.7 Let (xn) be a solution of the linear difference equation

xn = a1xn−1 + a2xn−2 + · · · + ad−1xn−d+1 + ad xn−d , n ≥ d + 1,

with a1, a2, . . . , ad−1, ad > 0. Assume that the numbers x1, x2, . . . , xd are non-
negative, and at least one is positive. Then (xn) is Benford if and only if log ζ is
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irrational, where z = ζ is the right-most root of zd = a1zd−1 + a2zd−2 + · · · +
ad−1z + ad .

Proof The associated matrix A according to (5) is non-negative, and An > 0 for
n ≥ d. Moreover, A has the characteristic polynomial

pA(λ) = (−1)d(λd − a1λ
d−1 − a2λ

d−2 − · · · − ad−1λ− ad) .

Since xn = x� An−1 y with x = ed ≥ 0 and y = ∑d
j=1 xd+1− j e j ≥ 0, the claim

follows directly from Theorem 3.2. ��
Example 3.8 Every solution of (9) with x1x2 > 0 is Benford. (For the case x1 < 0
simply note that (−xn) is a solution of (9) as well.) Evidently, this includes the
Fibonacci sequence, where x1 = x2 = 1, but also the Lucas numbers, where x1 = 2,
x2 = 1. As they stand, however, Theorem 3.2 and Corollary 3.7 do not allow to
decide whether the solution of (9) with, say, x1 = 2, x2 = −3 is Benford.

More generally, every solution (xn) with x1x2 > 0 of

xn = a1xn−1 + a2xn−2, n ≥ 3, (10)

where a1, a2 are positive integers, is Benford if and only if 102m − a2 �= a1 · 10m for
every m = 0, 1, . . . , �log(a1 + a2). Again, this leaves open the question regarding
the Benford property of solutions of (10) with x1x2 < 0. The results of the next
section allow to settle this question without any further calculation: Except for the
trivial case x1 = x2 = 0, every solution of (10) is Benford if and only if

|102m − a2| �= a1 · 10m, ∀m = 0, 1, . . . , �log(a1 + a2) . (11)

For the Fibonacci recursion (9), for instance, (11) reduces to |1 − 1| �= 1, which is
obviously true. Thus, apart from xn ≡ 0, every solution of (9) is Benford. �

The following examples aim at illustrating the scope and limitations of Theorem
3.2. Although the latter is easy to state and prove, and quite useful in a variety of
situations, its overall applicability is somewhat limited because

• it does not apply in general if the matrix in question fails to have a positive power,
see Example 3.9;

• even if it applies, the Benford property of individual solutions of a linear difference
equation (3), or equivalently of sequences (x� An y) with A according to (5) and
arbitrary x, y ∈ R

d , is generally unrelated to the Benford property of (x� An y)
with non-negative x, y, see Example 3.10;

• it does not apply to various sequences that are closely related to (An) and often of
interest in their own right, for instance (An+1 − rσ (A)An), see Example 3.11.

In view of these limitations, in the next section the Benford property is studied more
generally for sequences (x� An y) with arbitrary A ∈ R

d×d and x, y ∈ R
d .
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Example 3.9 Theorem 3.2 may fail if A ∈ R
d×d does not have a positive power.

Simply consider the (non-negative) matrix A =
[

2 0
0 1

]

, for which log rσ (A) =
log 2 is irrational, yet ([An] jk) is constant and hence not Benford except for
j = k = 1. Neither is (|Ane2|) Benford. Thus the implications (i)⇒ (ii) and
(i) ⇒ (iii) in Theorem 3.2 do not even hold for non-negative matrices. As will be
seen in the next section, however, (ii)⇒ (i) and (iii)⇒ (i) remain true for arbitrary
(non-nilpotent) matrices in that if (x� An y) or (|An x |) is, for every x, y ∈ R

d , either
Benford or vanishes for all n ≥ d then log rσ (A) is irrational. Similarly, if A does
not have a positive power then (|An|) may not be Benford even when log rσ (A) is
irrational, see Example 4.10.

Note also that even if B does not have any positive power, all entries of (Bn),
or in fact all non-trivial sequences (x� Bn y), may nevertheless be Benford, as the

example B =
[

1 −1
−1 1

]

shows, for which

Bn = 2n−1
[

1 −1
−1 1

]

, n ∈ N . �

Example 3.10 Consider the difference equation

xn = 1
2 (xn−1 + xn−2), n ≥ 3, (12)

and the associated matrix

A =
[ 1

2
1
2

1 0

]

. (13)

Similarly to Example 3.4, A ≥ 0 and A2 > 0. In addition, A evidently has the
property that the entries in each of its rows add up to 1. Thus A is a (row-) stochastic
matrix. It is well known (and easy to see) that rσ (A) = 1 for every (row- or column-)
stochastic matrix. According to Theorem 3.2, none of the sequences (x� An y) with
x, y ≥ 0 is Benford. In fact, a short calculation yields

An = 1

3

[
2 1
2 1

]

+ (− 1
2 )

n

3

[
1 −1

−2 2

]

, n ∈ N0 , (14)

showing that each sequence (x� An y) converges to a finite limit (which is positive
unless x = 0 or y = 0) and hence cannot be Benford. Recall that each such sequence
is a solution of (12). On the other hand, the solution of (12) with x1 = −2, x2 = 1
is (xn) = (

(− 1
2 )

n−2
)

and clearly Benford. Thus a solution of a linear difference
equation may be Benford even if the associated matrix A has a positive power but
does not satisfy (i)–(iv) in Theorem 3.2.

To see that the reverse situation—some solution of a difference equation is not
Benford despite the associated matrix having a positive power and satisfying (i)–(iv)
in Theorem 3.2—can also occur, consider
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xn = 19xn−1 + 20xn−2, n ≥ 3. (15)

The solution of (15) with x1 = −1, x2 = 1 is
(
(−1)n

)
and hence not Benford. On

the other hand, the associated matrix B =
[

19 20
1 0

]

has a positive power as B2 > 0,

and log rσ (B) = 1 + log 2 is irrational. �

Example 3.11 If AN > 0 for some N ∈ N then exactly one of the two numbers λ0 =
rσ (A) > 0 or λ0 = −rσ (A) < 0 is an eigenvalue of A, and Q := limn→∞ An/λn

0
exists and is a positive matrix. This fact, which has been instrumental in the proof
of Theorem 3.2, is of particular interest in the case of A being a stochastic matrix,
i.e. for A ≥ 0 and each row (or column) of A summing up to 1. In this case,
λ0 = rσ (A) = 1, and hence Q = limn→∞ An . Often, one is interested in the
(Benford) properties of (An − Q) and (An+1 − An). Entries of these sequences
may well be Benford, notwithstanding the fact that Theorem 3.2 does not apply and
log rσ (A) = 0 is rational. For instance, with A from (13), it follows from (14) that

An − Q = (− 1
2 )

n

3

[
1 −1

−2 2

]

, n ∈ N0,

but also

An+1 − An = (− 1
2 )

n+1
[

1 −1
−2 2

]

, n ∈ N0,

and hence every entry of both (An − Q) and (An+1 − An) is Benford. In general,
note that AQ = Q A = λ0 Q, and consequently the sequences

([An − λn
0 Q] jk

) = (
e�

j (A
n − λn

0 Q)ek
) = (

e�
j An(Id − Q)ek

)

as well as ([An+1 − λ0 An] jk
) = (

e�
j An(A − λ0 Id)ek

)

are all of the form (x� An y)with x = e j and the appropriate y ∈ R
d where, however,

y ≥ 0 may not hold and consequently Theorem 3.2 may not apply. �

With a view towards Theorem 3.2, how does one decide in practice whether a
given d ×d-matrix A has a positive power? Comprehensive answers to this question
appear to be documented in the literature only for A ≥ 0, that is, for non-negative
matrices. In this case, Wielandt’s Theorem [25, Cor. 8.5.9] asserts that AN > 0 for
some N ∈ N (if and) only if Ad2−2d+2 > 0. The number d2 − 2d + 2 is smallest
possible in general, but can be reduced in many special cases, see [25, Sect. 8.5]. An
equivalent condition is that A be irreducible and aperiodic, i.e. for any two indices
j, k ∈ {1, 2, . . . , d} there exists a positive integer N ( j, k) such that [An] jk > 0 for
every n ≥ N ( j, k); see e.g. [25, Sect. 8.4]. Note that if A ≥ 0 but the matrix An is
not positive for any n ∈ N then there exists j, k ∈ {1, 2, . . . , d} such that eventually
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the sequence ([An] jk) vanishes periodically and hence cannot be Benford. Overall,
by combining these known facts, Theorem 3.2 can be re-stated specifically for non-
negative matrices.

Theorem 3.12 Let A ∈ R
d×d be non-negative. Then the following three statements

are equivalent:

(i) A is irreducible and aperiodic, and log rσ (A) is irrational;
(ii) Ad2−2d+2 > 0 and log rσ (A) is irrational;
(iii) The sequence (x� An y) is Benford for every x, y �= 0 with x ≥ 0 and y ≥ 0.

Moreover, if (i)– (iii) hold then, for every x �= 0 with x ≥ 0, the sequence (|An x |) is
Benford, and so is (|An|).
Proof If Ad2−2d+2 is not positive then neither is An for any n, by Wielandt’s The-
orem, and hence A cannot be irreducible and aperiodic. Thus (i)⇒ (ii). According
to Theorem 3.2, (iii) follows from (ii). Assume in turn that (i) does not hold. Then
either A is not irreducible and aperiodic, or log rσ (A) is rational. In the former case,
([An] jk) = (e�

j Anek) vanishes periodically for some j, k ∈ {1, 2, . . . , d}, hence
(iii) fails with x = e j ≥ 0 and y = ek ≥ 0. In the latter case, assume w.l.o.g.
that A is irreducible and aperiodic. Then (iii) fails again, by virtue of Theorem 3.2.
Overall, (iii)⇒ (i). Finally, the assertions regarding (|An x |) and (|An|) are obvious
from Theorem 3.2. ��
Remark The non-negative matrix A =

[
0 2
2 0

]

has neither of the properties (i)–(iii)

in Theorem 3.12, and yet (|An x |) is Benford for every x �= 0, and so is (|An|).
In general, i.e. without the assumption that A be non-negative, the clear-cut situ-

ation of the non-negative case persists only for the special cases d = 1 (trivial) and
d = 2 (a simple exercise), where AN > 0 for some N ∈ N (if and) only if A2 > 0.
In stark contrast, if d ≥ 3 then the minimal positive integer N with AN > 0 can be
arbitrarily large. For example, for every α ∈ R the (symmetric) 3 × 3-matrix

Aα :=
⎡

⎣
10 − 104α 10α+1

√
2(102α−1 + 1) 9 · 102α

10α+1
√

2(102α−1 + 1) 18 · 102α 10α
√

2(102α+1 + 1)
9 · 102α 10α

√
2(102α+1 + 1) 104α+1 − 1

⎤

⎦

is positive precisely if |α| < 1
4 , and for |α| ≥ 1

4 a short calculation shows that

min
{
n ∈ N : An

α > 0
} = 2�|α| + 2 > 2|α|.

Note that, for every α ∈ R, the matrix Aα has at most one negative entry (and is, in
the terminology of [25, Exc. 8.3.9], essentially non-negative).

The example of Aα demonstrates that unlike in the non-negative case, for d ≥ 3
the minmal exponent N with AN > 0 does not admit an upper bound independent
of A. Still, the property that AN > 0 for some N ∈ N can be characterized rather
neatly.
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Proposition 3.13 The following properties are equivalent for every A ∈ R
d×d:

(i) AN > 0 for some N ∈ N;
(ii) A2n > 0 for all sufficiently large n ∈ N;

(iii) Either λ0 = rσ (A) > 0 or λ0 = −rσ (A) < 0 is an algebraically simple
eigenvalue of A with |λ| < rσ (A) for every λ ∈ σ(A)\{λ0}, and the spectral
projection Q associated with λ0 is positive, i.e.

Q = bc�

b�c
> 0, (16)

where b and c are eigenvectors of, respectively, A and A� corresponding to the
eigenvalue λ0, that is, Ab = λ0b and A�c = λ0c.

Applying this result for instance to the 3 × 3-matrix B of Example 3.5 yields, with
λ0 = rσ (B) = 6.165,

Q = 10−4

⎡

⎣
3.158 28.95 175.3
28.95 265.3 1606
175.3 1606 9731

⎤

⎦ > 0,

and hence immediately shows that B N > 0 for some N ∈ N. (In Example 3.5,
the minimal such N was seen to be N = 8.) On the other hand, for the matrix B
considered in Example 3.9, the spectral projection associated with λ0 = rσ (B) = 2,

Q = 1

2

[
1 −1

−1 1

]

,

is not positive, and neither is Bn = 2n−1 B = 2n Q positive for any n ∈ N.

Example 3.14 Theorems 3.2 and 3.12 are especially easy to apply if A is an integer
matrix, i.e. if [A] jk ∈ Z for every j, k. In this case, an explicit calculation of rσ (A)
is not required. In fact, if A ∈ Z

d×d with d ≥ 2 and AN > 0 for some N ∈ N then
log rσ (A) is irrational (even transcendental) provided that

none of the numbers ± 10m, with m = 1, 2, . . . , �d log ‖A‖∞
and ‖A‖∞ := max j

∑d

k=1

∣
∣[A] jk

∣
∣, is an eigenvalue of any of (17)

the d matrices A, A2, . . . , Ad .

Even simpler to check is the condition that

det A is not divisible by 10, (18)

which implies (17) and hence also guarantees the irrationality of log rσ (A).
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For example, the matrix A associated with (9) is an integer matrix with A2 > 0,
and det A = −1 obviously satisfies (18). Hence, as already seen in Example 3.4,
Theorem 3.2 applies, and (x� An y) is Benford for all x, y ≥ 0 with x �= 0 and y �= 0.
Similarly, for the matrix B discussed in Example 3.5, B8 > 0, and det B = −3 is not
divisible by 10, hence log rσ (B) is irrational, and again Theorem 3.2 can be applied
without determining the actual value of rσ (B).

For another example, consider the matrix

C =
⎡

⎣
−3 −1 −1
−2 1 −3
1 −3 −1

⎤

⎦ ,

for which ‖C‖∞ = 6. As before, C8 > 0, hence Theorem 3.2 applies. Note that
det C = 30, and so (18) fails. However, (17) holds, as �3 log ‖C‖∞ = 2 and none
of the four integers ±10,±102 is an eigenvalue of any of the three matrices

C, C2 =
⎡

⎣
10 5 7
1 12 2
2 −1 9

⎤

⎦ , C3 =
⎡

⎣
−33 −26 −32
−25 5 −39

5 −30 −8

⎤

⎦ ,

as can easily be checked e.g. by means of row-reductions. Again, therefore, log rσ (C)
is irrational. �

4 The Case of Arbitrary Matrices

Given an arbitrary real d × d-matrix A, this section presents a necessary and suffi-
cient condition for the sequence (x� An y) to be, for any vectors x, y ∈ R

d , either
Benford or identically zero for n ≥ d. As explained earlier, the result also allows
to characterize the Benford property for solutions of any linear difference equation.
To provide the reader with some intuition as to which properties of such equations,
or the matrices associated with them, may affect the Benford property, first a few
simple examples are discussed.

Example 4.1 (i) Let the sequence (xn) be defined recursively as

xn = xn−1 − xn−2, n ≥ 3, (19)

with given x1, x2 ∈ R. From the explicit representation for (xn),

xn = (x1 − x2) cos
( 1

3πn
) + 1√

3
(x1 + x2) sin

( 1
3πn

)
, n ∈ N,

it is clear that xn+6 = xn for all n, i.e. (xn) is 6-periodic. This oscillatory behaviour of
(xn) corresponds to the fact that the eigenvalues of (19), i.e. of the matrix associated
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with it, are λ = e±ıπ/3 and hence lie on the unit circle S. For no choice of x1, x2,
therefore, is (xn) Benford.
(ii) Consider the linear 3-step recursion

xn = 2xn−1 + 10xn−2 − 20xn−3, n ≥ 4. (20)

For any x1, x2, x3 ∈ R, the value of xn is given explicitly by

xn = α12n + α210n/2 + α3(−1)n10n/2,

with the constants α1, α2, α3 according to

α1 = 1
12 (10x1 − x3), α2,3 = 1

60 (x3 + 3x2 − 10x1)± 1
12

√
10
(x3 − 4x1).

Clearly, lim supn→∞ |xn| = +∞ unless x1 = x2 = x3 = 0, so unlike in (i) the
sequence (xn) is not bounded. However, if |α2| �= |α3| then

log |xn| = n

2
+ log

∣
∣
∣α110−n( 1

2 −log 2) + α2 + (−1)nα3

∣
∣
∣ ≈ n

2
+ log |α2 + (−1)nα3|,

showing that
(
S(xn)

)
is asymptotically 2-periodic and hence (xn) is not Benford.

Similarly, if |α2| = |α3| �= 0 then
(
S(xn)

)
is convergent along even (if α2 = α3) or

odd (if α2 = −α3) indices n, and again (xn) is not Benford. Only if α2 = α3 = 0
yet α1 �= 0, or equivalently if x3 = 2x2 = 4x1 �= 0 is (xn) Benford. Obviously, the
oscillatory behaviour of

(
S(xn)

)
in this example is due to the characteristic equation

λ3 = 2λ2 + 10λ− 20 associated with (20) having two roots with the same modulus
but opposite signs, namely λ = ±√

10.
(iii) Let γ = cos(π log 2) = 0.5851 and define (xn) recursively as

xn = 4γ xn−1 − 4xn−2, n ≥ 3, (21)

with given x1, x2 ∈ R. As before, an explicit formula for xn is easily derived as

xn = 2n−2(4γ x1 − x2) cos(πn log 2)+ 2n−2 γ x2 − 2x1(2γ 2 − 1)
√

1 − γ 2
sin(πn log 2)

= 2nβ cos(πn log 2 + ξ),

with the appropriate β ≥ 0 and ξ ∈ R. Although somewhat oscillatory, the sequence
(xn) is clearly unbounded. However, if (x1, x2) �= (0, 0) then β > 0, and

log |xn| = n log 2 + logβ + log | cos(πn log 2 + ξ)|, n ∈ N,

together with Lemma 2.6, where ϑ1 = ϑ2 = log 2, α = 0, z = eıξ , and zn ≡ 0,
shows that (xn) is not Benford. The reason for this can be seen in the fact that, while
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log |λ| = log 2 is irrational for the roots λ = 2e±ıπ log 2 of the characteristic equation
associated with (21), there clearly is a rational dependence between the two real
numbers log |λ| and 1

2π arg λ, namely log |λ| − 2( 1
2π arg λ) = 0. �

The above examples indicate that, under the perspective of BL, the main difficulty
when dealing with multi-dimensional systems is their potential for more or less cyclic
behaviour, either of the orbits themselves or of their significands. (In the case of
positive matrices, as seen in the previous section, cyclicality does not occur or, more
correctly, remains hidden.) To precisely denominate this difficulty, the following
terminology will prove useful. Recall that, given any set Z ⊂ C, spanQ Z denotes
the smallest linear subspace of C (over Q) containing Z .

Definition 4.2 A non-empty set Z ⊂ C with |z| = r for some r > 0 and all z ∈ Z ,
i.e. Z ⊂ rS, is non-resonant if its associated set �Z ⊂ R, defined as

�Z :=
{

1 + arg z − argw

2π
: z, w ∈ Z

}

satisfies the following two conditions:

(i) �Z ∩ Q = {1};
(ii) log r �∈ spanQ�Z .

An arbitrary set Z ⊂ C is non-resonant if, for every r > 0, the set Z ∩ rS is either
non-resonant or empty; otherwise Z is resonant.

Note that by its very definition the set�Z always satisfies 1 ∈ �Z ⊂ (0, 2) and is
symmetric w.r.t. the point 1. The empty set ∅ and the singleton {0} are non-resonant.
On the other hand, Z ⊂ C is certainly resonant if either {−r, r} ⊂ Z for some r > 0,
in which case (i) is violated, or Z ∩ S �= ∅, which causes (ii) to fail.

Example 4.3 The singleton {z} with z ∈ C is non-resonant if and only if either z = 0
or log |z| �∈ Q. Similarly, the set {z, z} with z ∈ C\R is non-resonant if and only
if the three numbers 1, log |z| and 1

2π arg z are rationally independent, i.e. linearly
independent over Q. �
Remark If Z ⊂ rS then, for every z ∈ Z ,

spanQ�Z = spanQ

(

{1} ∪
{

arg z − argw

2π
: w ∈ Z

})

,

which shows that the dimension of spanQ�Z , as a linear space over Q, is at most #Z .
Also, if Z ⊂ rS is symmetric w.r.t. the real axis, then the condition (ii) in Definition
4.2 is equivalent to log r �∈ spanQ

({1} ∪ { 1
2π arg z : z ∈ Z}), cf. [5, Def. 3.1].

Recall that the behaviour of (An) is completely determined by the eigenvalues
of A, together with the corresponding (generalized) eigenvectors. As far as BL is
concerned, the key question turns out to be whether or not σ(A) is non-resonant.
Clearly log rσ (A) is irrational wheneverσ(A) is non-resonant (and A is not nilpotent),
but the converse is not true in general.
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Example 4.4 The spectrum of the matrix A associated with the Fibonacci recursion
(9), σ(A) = {−ϕ−1, ϕ}, is non-resonant. On the other hand, the matrices

B =
[

1 −1
1 0

]

, C =
⎡

⎣
2 10 −20
1 0 0
0 1 0

⎤

⎦ , D =
[

4γ −4
1 0

]

,

associated with the difference equations (19), (20), and (21), respectively, all have a
resonant spectrum. Indeed, σ(B) = {e±ıπ/3}, and hence �σ(B) = { 2

3 , 1, 4
3 } con-

tains rational numbers other than 1, which violates (i) in Definition 4.2. Also,
log |e±ıπ/3| = 0, and so (ii) is violated, too. Similarly, σ(C) = {2,±√

10}, and
with Z = σ(C) ∩ √

10S = {±√
10} again both (i) and (ii) in Definition 4.2 fail.

Finally, σ(D) = {2e±ıπ log 2}, and so �σ(D) = {1, 1 ± log 2} satisfies (i), yet (ii) is
violated as log 2 ∈ spanQ�σ(D) = spanQ{1, log 2}. �

The following theorem is the main result of the present section. Like Theorems
3.2 and 3.12, but without any assumptions on A, it extends to arbitrary dimensions
the simple fact that for the sequence (xαn y) with α ∈ R\{0} to be either Benford (if
xy �= 0) or trivial (if xy = 0) it is necessary and sufficient that log |α| be irrational.
To concisely formulate the result, call (x� An y) and (|An x |) with A ∈ R

d×d and
x, y ∈ R

d terminating if, respectively, x� An y = 0 or An x = 0 for all n ≥ d;
similarly, (|An|) is terminating if An = 0 for all n ≥ d.

Theorem 4.5 Let A be a real d × d-matrix. Then the following statements are
equivalent:

(i) The set σ(A) is non-resonant;
(ii) For every x, y ∈ R

d , the sequence (x� An y) is Benford or terminating.

Moreover, if (i) and (ii) hold then, for every x ∈ R
d , the sequence (|An x |) is Benford

or terminating, and so is (|An|).
For a full proof of Theorem 4.5, the reader is referred to [6]. A simplified variant
that applies to most matrices is given at the end of this section. From the argument,
it will transpire that “terminating” can be replaced by “zero” (meaning “identically
zero”) whenever A is invertible, i.e. whenever 0 �∈ σ(A). Before that, however, a
few examples, corollaries, and remarks are presented.

Example 4.6 (i) As seen in Example 4.4, the (invertible) matrix A =
[

1 1
1 0

]

associ-

ated with (9) has non-resonant spectrum. For every x, y ∈ R
2, therefore, (x� An y)

is either Benford or zero. The latter happens precisely if x and y are proportional
to, respectively, the eigenvector ϕe1 + e2, corresponding to the eigenvalue ϕ of A,
and to the eigenvector ϕe2 − e1, corresponding to −ϕ−1, or vice versa. In particular,
the sequences (Fn) = (e�

1 Ane1) and (Ln) = (
e�

1 An(3e2 − e1)
)

are Benford, as has
already been observed in Examples 3.4 and 3.8.

Note that (F2
n ), for instance, is also Benford. This follows from Proposition 2.3

but can be seen directly as well by noticing that
(
F2

n + 2
5 (−1)n

)
is a solution of
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xn = 3xn−1 − xn−2, n ≥ 3,

and the associated matrix

[
3 −1
1 0

]

has non-resonant spectrum {ϕ2, ϕ−2}.
(ii) The 3 × 3-matrix B considered in Example 3.5 has non-resonant spectrum, as
it has three real eigenvalues of different absolute value, none of which is of the
form ±10m/n with m ∈ Z and n ∈ N. As in (i), every sequence (x� Bn y) is either
Benford or zero, with the latter being the case precisely if x and y are proportional to
eigenvectors of B corresponding to two different eigenvalues. Note that even for this
conclusion, which is stronger than the one reached in Example 3.5, it is not necessary
to know σ(B) explicitly. In fact, unlike in Example 3.5 it is not even necessary to
know that B N > 0 for some N . �

Example 4.7 For the matrix A =
[

1 −1
1 1

]

one finds σ(A) = {√2e±ıπ/4} which is

resonant, as�σ(A) = { 3
4 , 1, 5

4 }. By Theorem 4.5, there must be x, y ∈ R
2 for which

(x� An y) is neither Benford nor zero. Indeed, observe for instance that

e�
1 Ane1 = e�

1 2n/2
[

cos( 1
4πn) − sin( 1

4πn)
sin( 1

4πn) cos( 1
4πn)

]

e1 = 2n/2 cos( 1
4πn), n ∈ N0,

and hence (e�
1 Ane1) is neither Benford (because e�

1 A4n−2e1 = 0 for all n) nor zero
(because e�

1 A8ne1 = 24n �= 0 for all n). Note, however, that this of course does
not rule out the possibility that some sequences derived from (An) may be Benford
nevertheless. For instance, (|An |) = (2n/2) is Benford. For another concrete example,
fix any x �= 0 and, for each n ∈ N, denote by En the area of the triangle with vertices
at An x , An−1x , and the origin. Then

En = 1
2

∣
∣ det(An x, An−1x)

∣
∣ = 2n−2|x |2, n ∈ N,

so (En) is Benford, see Fig. 4. Note also that while σ(A) is resonant, the set σ(A4) =
{−4} is not. (The reverse implication is easily seen to hold for all d ∈ N and A ∈
R

d×d : If σ(A) is non-resonant then so is σ(An) for every n ∈ N.) �

Example 4.8 For the matrix B =
[

19 20
1 0

]

, first encountered in Example 3.10,

σ(B) = {−1, 20} is resonant. Consequently, there must be x, y ∈ R
2 for which

(x� Bn y) is neither Benford nor zero. In essence, this has already been observed in
Example 3.10, with x = e1 and y = e1 − e2, for which (x� Bn y) = (

(−1)n
)
. Note

that failure of (x� Bn y) to be Benford can occur only if (20x1 + x2)(y1 + y2) = 0.
For most x, y ∈ R

2, therefore, (x� Bn y) is either Benford or zero. �

Example 4.9 This example briefly reviews matrices and difference equations from
earlier examples in the light of Theorem 4.5
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Fig. 4 Two Benford sequences, (F2
n ) and (En), derived from linear 2-dimensional systems, see

Examples 4.6 and 4.7; note that σ(A) is resonant for the matrix A associated with (En)

(i) The matrices A =
[

5 15
15 5

]

and B =
[

6 4
4 6

]

both have resonant spectrum,

σ(A) = {−10, 20} and σ(B) = {2, 10}, which corroborates the observation, made
in Example 3.6, that for some x, y ∈ R

2, (x� An y) is neither Benford nor zero, and
similarly for B. Note, however, that (x� An y) is Benford whenever x, y ∈ R

2 are
not multiples of e1 − e2, and hence for most x, y ∈ R

2, whereas (x� Bn y) can be
Benford only if x or y is a multiple of e1 − e2.

(ii) While Theorem 3.2 did not apply to B =
[

1 −1
−1 1

]

in Example 3.9, every

sequence (x� Bn y) was seen to be Benford or terminating. This observation is con-
sistent with σ(B) = {0, 2} being non-resonant.

(iii) As is the case for every stochastic matrix, the matrix A =
[ 1

2
1
2

1 0

]

in Examples

3.10 and 3.11, has resonant spectrum σ(A) = {− 1
2 , 1}, and for most x, y ∈ R

2,
(x� An y) is not Benford. The question, already raised in Example 3.11, whether,
say, entries of (An+1 − An) can be Benford nevertheless is addressed in Sect. 5. �

Example 4.10 Unlike in Theorem 3.2, within the wider scope of Theorem 4.5 the
sequence (|An x |) may, for every x ∈ R

d , be Benford or terminating even if (i) and
(ii) do not hold. Similarly, (|An|) may be Benford. For an example, consider the
3 × 3-matrix
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A = 10ϕ
2

⎡

⎣
cos(2πϕ) − sin(2πϕ) 0
sin(2πϕ) cos(2πϕ) 0

0 0 1

⎤

⎦ ,

where ϕ = 1
2 (1 + √

5), as usual, and hence ϕ2 = ϕ + 1. The spectrum σ(A) =
{10ϕ

2
, 10ϕ

2
e±ı2πϕ} is resonant because

1
2 (3 + √

5) = ϕ2 = log 10ϕ
2 ∈ spanQ�σ(A) = spanQ{1,√5}.

Nevertheless, for every x ∈ R
3,

|An x | = 10nϕ2

∣
∣
∣
∣
∣
∣

⎡

⎣
x1 cos(2πnϕ)− x2 sin(2πnϕ)
x1 sin(2πnϕ)+ x2 cos(2πnϕ)

x3

⎤

⎦

∣
∣
∣
∣
∣
∣
= 10nϕ2 |x |,

and since ϕ2 is irrational, (|An x |) is Benford whenever x �= 0. Similarly, note that
10−nϕ2

A is an isometry for every n, and (|An|) = (10nϕ2
) is Benford. However, by

Theorem 4.5, not every sequence (x� An y) can be Benford or zero. That (e�
2 Ane1) =

(
10nϕ2

sin(2πnϕ)
)
, for instance, is neither can be seen easily using Lemma 2.6.

Consider now also the matrix

B = 10ϕ
2

⎡

⎣
cos(2πϕ) − sin(2πϕ) sin(πϕ) cos(πϕ)
sin(2πϕ) cos(2πϕ) sin(πϕ)2

0 0 1

⎤

⎦ .

Clearly, σ(B) = σ(A), so the spectrum of B is resonant as well. A short calculation
confirms that

Bn = 10nϕ2

⎡

⎣
cos(2πnϕ) − sin(2πnϕ) sin(πnϕ) cos(πnϕ)
sin(2πnϕ) cos(2πnϕ) sin(πnϕ)2

0 0 1

⎤

⎦ , n ∈ N0,

from which it follows for instance that

|Bn
√

2e3| = 10nϕ2√
3 − cos(2πnϕ), n ∈ N0,

and consequently, using ϕ2 = ϕ + 1,

〈
log |Bn

√
2e3|

〉 = 〈
nϕ + 1

2 log
(
3 − cos(2πnϕ)

)〉 = 〈 f (nϕ)〉,

with the smooth function f : R → R given by f (s) = s + 1
2 log

(
3 − cos(2πs)

)
.

Recall that (nϕ) is u.d. mod 1. As in the proof of Lemma 2.6, consider the piecewise
smooth map T = 〈 f 〉 on [0, 1) induced by f . Since T is a bijection of [0, 1) with
non-constant slope, λ0,1 ◦ T −1 �= λ0,1. This in turn means that (|Bne3|), and in fact
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(|Bn x |) for most x ∈ R
3, is neither Benford nor zero. Similarly,

|Bn| = 10nϕ2
√

1 + 1
2 sin(πnϕ)2 + 1

2 | sin(πnϕ)|
√

4 + sin(πnϕ)2, n ∈ N0,

and a completely analogous argument shows that (|Bn|) is not Benford either.
As evidenced by this example, the property of a matrix A ∈ R

d×d that (|An x |)
is, for every x ∈ R

d , either Benford or terminating is not a spectral property, i.e. it
cannot be decided upon, at least for d ≥ 3, by using σ(A) alone. Similarly, (|An|)
being Benford is not a spectral property of A. �

Remark According to Theorem 4.5, non-resonance of σ(A) is, for any invertible
A ∈ R

d×d , equivalent to the widespread generation of Benford sequences of the
form (x� An y). Most d × d-matrices are invertible with non-resonant spectrum,
under a topological as well as a measure-theoretic perspective. To put this more
formally, let

Gd := {A ∈ R
d×d : A is invertible and σ(A) is non-resonant }.

Thus for example G1 = {[α] : α ∈ R\{0}, |α| �= 10ρ for every ρ ∈ Q}. While the
complement of Gd is dense in R

d×d , it is a topologically small set: R
d×d\Gd is of

first category, i.e. a countable union of nowhere dense sets. A (topologically) typical
(“generic”) d × d-matrix therefore belongs to Gd . Similarly, if A is an R

d×d -valued
random variable, that is, a random matrix, whose distribution is a.c. with respect
to the d2-dimensional Lebesgue measure on R

d×d , then P(A ∈ Gd) = 1, i.e. with
probability one A is invertible and σ(A) non-resonant.

The next result is a corollary of Theorem 4.5 for difference equations and analo-
gous to Corollary 3.7 but without any positivity assumptions on coefficients or initial
values.

Theorem 4.11 The following statements are equivalent for the difference equation

xn = a1xn−1 + a2xn−2 + · · · + ad−1xn−d+1 + ad xn−d , n ≥ d + 1, (22)

where a1, a2, . . . , ad−1, ad ∈ R with ad �= 0:

(i) The set {z ∈ C : zd = a1zd−1 + a2zd−2 + · · · + ad−1z + ad} is non-resonant;
(ii) Every solution (xn) of (22) is Benford, unless xn ≡ 0.

While the reader is again referred to [6] for a full proof of Theorem 4.11, a simplified
argument applicable to most a1, a2, . . . , ad−1, ad is given at the end of the present
section, following the very similar proof of Theorem 4.5.

Example 4.12 Since {z ∈ C : z2 = z + 1} = {−ϕ−1, ϕ} is non-resonant, every
solution of (9) except for xn ≡ 0 is Benford, as was already seen in Example 4.6.

More generally, consider the second-order difference equation
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xn = a1xn−1 + a2xn−2, n ≥ 3, (23)

where a1, a2 are non-zero integers, and a2 > 0. The set {z ∈ C : z2 = a1z + a2}
consists of two real numbers with different absolute value, and is resonant if and only
if one of them is of the form ±10N for some N ∈ N0. It follows that every solution
(xn) of (23), except for the trivial xn ≡ 0, is Benford if and only if

|102m − a2| �= |a1|10m, ∀m = 0, 1, . . . , �log(|a1| + a2). (24)

For example, for a1 = 2, a2 = 5, condition (24) reduces to |1 − 5| �= 2. As the latter
is obviously correct, every solution of

xn = 2xn−1 + 5xn−2, n ≥ 3,

is Benford unless x1 = x2 = 0. On the other hand, for

xn = 19xn−1 + 20xn−2, n ≥ 3,

(24) reads |102m − 20| �= 19 · 10m for m = 0, 1, which is violated for m = 0.
This corroborates the observation, already made in Example 3.10, that

(
(−1)n

)
is a

solution that is neither Benford nor zero. �

Remark Earlier, weaker forms and variants of the implication (i)⇒ (ii) in Theorems
4.5 and 4.11, or special cases thereof, can be traced back at least to [42] and may also
be found in [5, 7, 9, 26, 35, 43]. The reverse implication (ii)⇒ (i) seems to have
been addressed only for d < 4, see [7, Thm. 5.37]. A case in point is the 4×4-matrix

A = 10
√

2

⎡

⎢
⎢
⎣

cos(2π
√

3) − sin(2π
√

3) 0 0
sin(2π

√
3) cos(2π

√
3) 0 0

0 0 cos(4π
√

3) − sin(4π
√

3)
0 0 sin(4π

√
3) cos(4π

√
3)

⎤

⎥
⎥
⎦ .

In [7, Ex. 5.36], it was observed that (x� An y) is Benford or zero for every x, y ∈
R

4—despite the fact that A fails to be Benford regular, a property introduced there
that is more restrictive than the non-resonance of σ(A). This mismatch is resolved
by Theorem 4.5, simply by noticing that σ(A) = {10

√
2e±ı2π

√
3, 10

√
2e±ı4π

√
3} is

indeed non-resonant.

Example 4.13 While satisfying theoretically, Theorems 4.5 and 4.11 may be difficult
to use in practice, even if A is an integer 2 × 2-matrix (in Theorem 4.5), or d = 2
and a1, a2 are integers (in Theorem 4.11). To illustrate the basic difficulty, consider
the innocent-looking difference equation

xn = 2xn−1 − 5xn−2, n ≥ 3. (25)
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Fig. 5 Relative frequencies of the first (top) and second significant digits for the first N terms of
the solution (xn) of (25) with x1 = x2 = 1, see Example 4.13; the data suggests that (xn) is Benford

For the set Z = {z ∈ C : z2 = 2z − 5} = {1 ± 2ı} = {√5e±ı arctan 2} it is not hard
to see that �Z = {1, 1 ± 1

π
arctan 2} satisfies (i) in Definition 4.2. Thus the non-

resonance of Z is equivalent to log 5 �∈ spanQ�Z = spanQ{1, 1
π

arctan 2}. While

log 5 and 1
π

arctan 2 can both be shown to be transcendental, it seems to be unknown
whether or not 1, log 5, 1

π
arctan 2 are rationally independent [46]. In other words,

it is not known whether the set Z is non-resonant. In the likely case that it is, every
solution of (25), except for xn ≡ 0, would be Benford; otherwise, none would.
Experimental evidence strongly supports the former alternative, see Fig. 5. �

The practical difficulty alluded to in Example 4.13 can be avoided altogether only
if all eigenvalues of A, or all roots of zd = a1zd−1 + a2zd−2 + · · · + ad−1z + ad are
real. In this situation, the following simple observation may be helpful.

Proposition 4.14 A set Z ⊂ R is non-resonant if and only if every z ∈ Z\{0}
satisfies

log |z| �∈ Q and |w| �= |z| for every w ∈ Z\{z}.

The remainder of this section is devoted to presenting proofs of Theorems 4.5 and
4.11. Both proofs are given here only under the additional assumption that,

for every r > 0, the set σ(A) ∩ rS contains at most two elements, (26)

i.e. the matrix A has at most two eigenvalues of modulus r , which may take the form
of the real pair −r, r , or a non-real pair λ, λ with |λ| = r . (For complete proofs
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without this assumption, the reader is referred to [6]. Note that the matrices not
satisfying (26) form a nowhere dense nullset in R

d×d .) For convenience, let

σ+(A) := {λ ∈ σ(A) : �λ ≥ 0}\{0}.

Proof of Theorem 4.5 If σ+(A) = ∅, then A is nilpotent, σ(A) = {0} is non-
resonant, every sequence (x� An y) is identically zero for n ≥ d, and the claimed
equivalence trivially holds. Thus, from now on assume that σ+(A) is not empty.

Recall that, given any x, y ∈ R
d , the value of x� An y can be written in the form

x� An y = 

(∑

λ∈σ+(A)
pλ(n)λ

n
)
, n ≥ d, (27)

where pλ is, for every λ ∈ σ+(A), a (possibly non-real) polynomial of degree at
most d − 1; moreover, pλ is real whenever λ ∈ R. The representation (27) follows
for instance from the Jordan Normal Form Theorem. Note that pλ also depends on
x, y, but for the sake of notational clarity this dependence is not displayed explicitly.

To establish the asserted equivalence, assume first that σ(A) is non-resonant and,
given any x, y ∈ R

d , that pλ �= 0 for some λ ∈ σ+(A). (Otherwise x� An y = 0 for
all n ≥ d.) Let

r := max{|λ| : λ ∈ σ+(A), pλ �= 0} > 0.

Recall that σ(A)∩ rS contains at most two elements. Note also that r and −r cannot
both be eigenvalues of A, as otherwise σ(A)would be resonant. Hence either exactly
one of the two numbers r,−r is an eigenvalue of A, and log r is irrational, or else
σ(A) ∩ rS = {re±ıπϑ } with the appropriate irrational 0 < ϑ < 1, and

log r �∈ spanQ{1, 1 ± ϑ} = spanQ{1, ϑ}.

In the former case, assume w.l.o.g. that r is an eigenvalue. (The case of −r being an
eigenvalue is completely analogous.) Recall that |λ| < r for every other eigenvalue
λ of A with pλ �= 0. Denote by k ∈ {0, 1, . . . , d − 1} the degree of the polynomial
pr , and let γ := limn→∞ pr (n)/nk . Note that γ is non-zero and real. From (27), it
follows that

|x� An y| =
∣
∣
∣pr (n)r

n +
∑

λ∈σ+(A):|λ|<r
pλ(n)λ

n
∣
∣
∣ = rnnk |γ + zn|, n ≥ d,

with the (real) sequence (zn) given by

zn = pr (n)

nk
− γ + 1

rnnk

∑

λ∈σ+(A):|λ|<r
pλ(n)λ

n, n ≥ d.

Clearly, limn→∞ zn = 0. Since log r is irrational and

log |x� An y| = n log r + k log n + log |γ + zn|, n ≥ d,
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Proposition 2.3 implies that (x� An y) is Benford.
In the other case, the matrix A has λ0 = reıπϑ and its conjugate λ0 = re−ıπϑ

as eigenvalues, and |λ| < r for every other eigenvalue λ of A with pλ �= 0. With k
denoting the degree of pλ0 , let again γ := limn→∞ pλ0(n)/nk , and note that γ may
now be non-real, yet is non-zero as before. Deduce from (27) that

|x� An y| =
∣
∣
∣
∣


(

pλ0 (n)r
neıπnϑ +

∑

λ∈σ+(A):|λ|<r
pλ(n)λ

n
)∣

∣
∣
∣ = rnnk |
(γ eıπnϑ + zn)|,

with the (possibly non-real) sequence (zn), given by

zn =
(

pλ0(n)

nk
− γ

)

eıπnϑ + 1

rnnk

∑

λ∈σ+(A):|λ|<r
pλ(n)λ

n,

again satisfying limn→∞ zn = 0. Since ϑ is irrational due to the non-resonance
of σ(A), the set I := {n ∈ N : 
(γ eıπnϑ + zn) = 0} has density zero, that is,
limn→∞ 1

n #(I ∩ {1, 2, . . . , n}) = 0, and

log |x� An y| = n log r + k log n + log |
(γ eıπnϑ + zn)|, ∀n ∈ N\I. (28)

(The reader familiar with the Skolem–Mahler–Lech Theorem [34, Thm. A] will
notice that I is actually finite, though this much stronger property is not needed
here.) Lemma 2.6 with ϑ1 = log r , ϑ2 = ϑ , α = k, z = γ shows that the sequence
on the right in (28) is u.d. mod 1, and so is (log |x� An y|), by Proposition 2.3. Thus
(x� An y) is Benford, and the proof of (i)⇒ (ii) is complete.

To establish the reverse implication, assume that σ(A) is resonant. Then, for some
r0 > 0 and with Z := σ(A) ∩ r0S, the set �Z contains rational numbers other than
1, or log r0 ∈ spanQ�Z , or both. Assume first that 1 + ρ ∈ �Z for some rational
number ρ > 0. This implies that Z contains exactly two elements, either r0,−r0
or else r0e±ıπρ . In the former case, let b, c be unit eigenvectors corresponding to,
respectively, the eigenvalues r0 and −r0 of A, and let x := y := b + c. Then

x� An y = (b + c)�
(
rn

0 b + (−r0)
nc

) = (1 + b�c)
(
rn

0 + (−r0)
n)
.

By the Cauchy–Schwarz inequality, 1 + b�c > 0. Hence x� An y = 0 for all odd n
but x� An y > 0 for all even n, and (x� An y) is neither Benford nor terminating. In the
case of non-real eigenvalues, there exist linearly independent unit vectors b, c ∈ R

d

such that, for every n ∈ N0,

Anb = rn
0 cos(πnρ)b−rn

0 sin(πnρ)c, Anc = rn
0 sin(πnρ)b+rn

0 cos(πnρ)c. (29)

Hence with x := y := b + c,
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x� An y = rn
0 (b + c)�

(
(cos(πnρ)+ sin(πnρ))b + (cos(πnρ)− sin(πnρ))c

)

= 2(1 + b�c)rn
0 cos(πnρ),

and again x� An y = 0 periodically but no identically. Thus (x� An y) is neither
Benford nor terminating.

It remains to consider the case where #(�Z ∩ Q) ≤ 1 for every Z = σ(A) ∩ rS

and r > 0, yet log r0 ∈ spanQ�Z for some r0 > 0. Again it is helpful to distinguish
two cases: either σ(A)∩ r0S ⊂ R or σ(A)∩ r0S ⊂ C\R. In the former case, exactly
one of the two numbers r0 and −r0 is an eigenvalue of A. The argument for −r0
being analogous, assume w.l.o.g. that σ(A)∩ r0S = {r0}. Then�Z = {1} and hence
log r0 is rational. Taking x := y := b, where b is any eigenvector of A corresponding
to the eigenvalue r0, yields x� An y = rn

0 |b|2, and (x� An y) is neither Benford nor
terminating. In the other case, i.e. for Z = σ(A) ∩ r0S = {r0e±ıπϑ } with some
irrational 0 < ϑ < 1, pick again linearly independent unit vectors b, c ∈ R

d such
that (29) holds for all n, with ρ replaced by ϑ . With x := y := b + c, it follows that

log |x� An y| = n log r0 + log |2(1 + b�c) cos(πnϑ)|.

Recall that log r0 ∈ spanQ{1, ϑ}, by assumption. An application of Lemma 2.6
with ϑ1 = log r0, ϑ2 = ϑ , α = 0, z = 2(1 + b�c) > 0 and zn ≡ 0 shows that the
sequence (x� An y) is not Benford. Clearly, it is not terminating either. Thus (ii)⇒ (i),
as claimed.

To complete the proof, the assertions regarding (|An x |) and (|An|) have to be
verified. The above argument establishing (i)⇒ (ii) can be used to verify the former
assertion because, for every x ∈ R

d , |An x |2 = ∑d
j=1(e

�
j An x)2, and so (log |An x |) is

easily seen to be u.d. mod 1 using Lemma 2.6. Finally, if A is not nilpotent (otherwise
(|An|) obviously is terminating) assume first that σ(A) ∩ rσ (A)S = {rσ (A)e±ı2πϑ }
for some irrational 0 < ϑ < 1

2 . Then, with the appropriate integer k ≥ 0,

(An)� An = rσ (A)
2nn2k(

B(nϑ)� B(nϑ)+ Cn
)
, n ∈ N,

where the function B : R → R
d×d is 1-periodic, real-analytic and does not vanish

identically, and (Cn) is a sequence in R
d×d with |Cn| → 0. It follows that

log |An| = n log rσ (A)+ k log n + 1
2 log rσ

(
B(nϑ)�B(nϑ)+ Cn

)
.

Note that rσ
(
B(t)�B(t)

)
> 0 for all but finitely many t ∈ [0, 1). By the assumed

non-resonance of σ(A), log rσ (A) �∈ spanQ{1, ϑ}, and hence [5, Lem. 2.9] shows
that (|An|) is Benford. As the argument for the caseσ(A)∩rσ (A)S ⊂ R is completely
analogous, the proof is complete. ��
Proof of Theorem 4.11 Note first that the matrix A associated with (22) via (5) is
invertible because ad �= 0. Hence (27) is valid for all n ∈ N, and the sequence
(x� An y) vanishes identically unless pλ �= 0 for some λ ∈ σ+(A). Also note that
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σ(A) simply equals {z ∈ C : zd = a1zd−1 + a2zd−2 + · · · + ad−1z + ad}. Thus, if
the latter set is non-resonant then (xn) = (e�

d An y) with y = A−1 ∑d
j=1 xd+1− j e j

either is Benford or else vanishes identically. This shows that (i)⇒ (ii).
To establish the reverse implication, assume that σ(A) is resonant, and distinguish

cases just as in the above proof of Theorem 4.5. If σ(A) is resonant due to failure
of (i) in Definition 4.2 then, for some r0 > 0 and rational number ρ ∈ (0, 1), either
{−r0, r0} ⊂ σ(A) or {r0e±ıπρ} ⊂ σ(A). In the former case, (xn) = (

rn
0 + (−r0)

n
)

solves (22) and is neither Benford nor zero. In the latter case, the same is true for
(xn) = (

rn
0 cos(πnρ)

)
. If, on the other hand, σ(A) is resonant due to failure of (ii)

then, for some r0 > 0 and irrational ϑ ∈ (0, 1), either r0 ∈ σ(A) and log r0 ∈ Q,
or else {r0e±ıπϑ } ⊂ σ(A) and log r0 ∈ spanQ{1, ϑ}. In the first case, (xn) = (rn

0 )

solves (22) and is neither Benford nor zero. In the second case, (xn) = (
rn

0 cos(nπϑ)
)

is a non-zero solution of (22) that is not Benford since

(
log |rn

0 cos(nπϑ)|) = (
n log r0 + log | cos(nπϑ)|)

is not u.d. mod 1, by Lemma 2.6. Overall, (ii)⇒ (i), and the proof is complete. ��

5 An Application to Markov Chains

If A is a real d×d-matrix and log rσ (A) is rational then, as an immediate consequence
of Theorem 4.5, the sequence (x� An y) is, for most x, y ∈ R

d , not Benford. If, in
addition, A happens to have a positive power then, for instance, none of the entries
([An] jk) is Benford, according to Corollary 3.3. Even in this situation, however, it
is quite possible that all entries of (An+1 − rσ (A)An), and in fact most sequences(
x�(An+1 −rσ (A)An)y

)
, are Benford. This phenomenon has already been observed

in Examples 3.10 and 3.11 for the matrix A =
[ 1

2
1
2

1 0

]

, for which log rσ (A) = log 1 =
0, and yet

An+1 − An = (− 1
2

)n+1
[

1 −1
−2 2

]

, n ∈ N0,

hence most sequences (x�(An+1 − An)y) are Benford. The purpose of the present
section is to study this “cancellation of resonance” scenario and to demonstrate how it
can be understood easily by utilizing the results from previous sections. The scenario
is of particular interest in the case of stochastic matrices which often arise as tran-
sition probability matrices of finite-state Markov chains. (As observed in Example
4.9(iii), the spectrum of every stochastic matrix is resonant.) However, “cancella-
tion of resonance” may occur whenever A has a dominant simple eigenvalue, and
it is in this more general and transparent setting that the main result, Theorem 5.1
below, is formulated. The specific result for Markov chains is then a simple corollary
(Corollary 5.4).
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Assume, therefore, that the real d ×d-matrix A has a dominant eigenvalue λ0 that
is algebraically simple, i.e. |λ| < |λ0| for every λ ∈ σ(A)\{λ0}, and λ0 is a simple
root of the characteristic polynomial of A. Note that λ0 is necessarily a real number,
and rσ (A) = |λ0|. It is not hard to see that under these assumptions the limit

Q A := limn→∞
An

λn
0

(30)

exists. Moreover, it is clear from (30) that Q A A = AQ A = λ0 Q A, but also Q2
A =

Q A. In fact, Q A is nothing but the spectral projection associated with λ0 and can
also be represented in the form

Q A = bc�

b�c
, (31)

where b, c are eigenvectors of, respectively, A and A� corresponding to the eigen-
value λ0. A dominant, algebraically simple eigenvalue is often observed in practice.
For instance, it occurs whenever AN > 0 for some N ∈ N, see Proposition 3.1. (In
this case even Q A > 0.) But it also occurs for matrices such as e.g.

[
1 −1

−1 1

]

and

[
2 1
0 1

]

,

of which no power is positive.
Consider now the sequences (An+1 −λ0 An) and (An −λn

0 Q A), both of which in a
sense measure the speed of convergence in (30) and therefore are often of interest in
their own right. Using the results of Sect. 4, the Benford behaviour of these sequences
is easily analysed.

Theorem 5.1 Assume A ∈ R
d×d has a dominant eigenvalue λ0 that is algebraically

simple, and let Q A be the associated projection according to (31). Then the following
three statements are equivalent:

(i) The set σ(A)\{λ0} is non-resonant;
(ii) The sequence (x�(An+1 − λ0 An)y) is Benford or terminating for every x, y ∈

R
d;

(iii) The sequence (x�(An − λn
0 Q A)y) is Benford or terminating for every x, y ∈

R
d .

Proof Since all assertions are trivially correct for d = 1, assume d ≥ 2 from now
on, and hence λ0 �= 0. As in the proof of Theorem 3.2, let R := A − λ0 Q A and
observe that AR = R A as well as Q A R = 0 = RQ A, and hence

An = λn
0 Q A + Rn, ∀n ≥ 1. (32)
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Note that, for every λ ∈ σ(A)\{λ0} and x ∈ R
d with (A − λId)

m x = 0 (i.e. x �= 0
is a generalized eigenvector of A corresponding to the eigenvalue λ �= λ0),

0 = c�(A − λId)
m x = (

(A� − λId)
mc

)�
x = (λ0 − λ)mc�x,

and so c�x = 0, which in turn implies Q Ax = 0, and hence An x = Rn x for all
n, by (32), and λ ∈ σ(R). On the other hand, Ab = λ0b = λ0 Q Ab and therefore
Rb = 0. Thus 0 ∈ σ(R). Also, if Rx = λ0x for some x ∈ R

d then (32) yields

Q Ax = limn→∞
An x

λn
0

= Q Ax + x,

hence x = 0. In other words, λ0 �∈ σ(R), and overall σ(R) = (σ (A)\{λ0}) ∪
{0}, showing that σ(R) is non-resonant if and only if σ(A)\{λ0} is non-resonant.
Moreover, deduce from (30) and (32) that

An+1 − λ0 An = Rn(R − λ0 Id), An − λn
0 Q A = Rn, ∀n ≥ 1.

Since R − λ0 Id is invertible, the asserted equivalences are now obvious from
Theorem 4.5. ��

Example 5.2 (i) The (positive) matrix B =
[

6 4
4 6

]

first encountered in Example 3.6

has the dominant simple eigenvalue λ0 = 10. Thus Theorem 5.1 applies, with

Q B = limn→∞
Bn

λn
0

= 1

2

[
1 1
1 1

]

.

Since σ(B)\{10} = {2} is non-resonant, every sequence (x�(Bn+1 − 10Bn)y) and
(x�(Bn − 10n Q B)y) is Benford or terminating. This can also be seen directly from

Bn+1 − 10Bn = −2n+2
[

1 −1
−1 1

]

, Bn − 10n Q B = 2n−1
[

1 −1
−1 1

]

, n ∈ N0.

(ii) For the (non-negative) matrix B =
[

19 20
1 0

]

from Example 3.10, λ0 = 20 is a

dominant simple eigenvalue, and

Q B = 1

21

[
20 20
1 1

]

.

However, σ(B)\{20} = {−1} is resonant, and hence some (in fact, most) sequences
(x�(Bn+1 −20Bn)y) and (x�(Bn −20n Q B)y) are neither Benford nor terminating.
Again, this can be confirmed by an explicit calculation as well.
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(iii) The matrix C =
[

6 −8
4 −6

]

does not have a dominant eigenvalue, asσ(C) = {±2},
and hence Theorem 5.1 does not apply. Correspondingly, the limit limn→∞ Cn/2n

does not exist. Note, however, that every entry of (Cn+1 − 2Cn), for instance, is
Benford, as

Cn+1 − 2Cn = 2(−2)n+1
[ −1 2

−1 2

]

, n ∈ N0. �

Example 5.3 (i) The spectrum of

A =
⎡

⎣
−10 15 15
−24 29 27

24 −24 −22

⎤

⎦

equals σ(A) = {−10, 2, 5}, and hence is resonant, yet λ0 = −10 is a dominant
simple eigenvalue, and σ(A)\{−10} = {2, 5} is non-resonant. By Theorem 5.1,
every entry of (An+1 + 10An) and (An − (−10)n Q A), in particular, is Benford or
terminating, where

Q A =
⎡

⎣
1 −1 −1
2 −2 −2

−2 2 2

⎤

⎦ .

(ii) Consider the (non-negative) 3 × 3-matrix

B =
⎡

⎣
3 1 0
0 3 0
0 0 2

⎤

⎦ .

Clearly, λ0 = 3 is a dominant eigenvalue, and σ(B)\{3} = {2} is non-resonant.
However,

Bn =
⎡

⎣
3n n3n−1 0
0 3n 0
0 0 2n

⎤

⎦ , n ∈ N0,

and so limn→∞ Bn/3n does not exist. The reason for this is that the eigenvalue λ0,
although dominant, is not simple. Thus Theorem 5.1 does not apply. Nevertheless,
(x�(Bn+1 − 3Bn)y) is Benford or terminating for every x, y ∈ R

3. �

Remark A close inspection of the proof of Theorem 5.1 shows that the assump-
tion of algebraic simplicity for λ0 can be relaxed somewhat. As a matter of fact,
Theorem 5.1 remains unchanged if the dominant eigenvalue λ0 is merely assumed
to be semi-simple, meaning that its algebraic and geometric multiplicities coincide
or, equivalently, that A − λ0 Id and (A − λ0 Id)

2 have the same rank.

Arguably the most important application of Theorem 5.1 is to stochastic matrices.
Recall that A ∈ R

d×d is row-stochastic (column-stochastic) if A ≥ 0 and the entries
in each row (column) add up to 1; recall also that rσ (A) = 1 ∈ σ(A) for every
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(row- or column-) stochastic matrix. In probability textbooks, the letters P, Q etc.
are traditionally used to denote stochastic matrices, a tradition adhered to for the
remainder of this section. If P ∈ R

d×d is a (row-) stochastic matrix, then it can
naturally be interpreted as the matrix of 1-step transition probabilities of a time-
homogeneous d-state Markov chain (Xn), i.e. (Xn) is a discrete-time Markov process
on d symbols, s1, s2, . . . , sd , and, for every n ∈ N,

P(Xn+1 = sk |Xn = s j ) = [P] jk ∀ j, k ∈ {1, 2, . . . , d}. (33)

As a consequence of (33), the N -step transition probabilities are simply given by the
entries of P N , that is, for every n ∈ N,

P(Xn+N = sk |Xn = s j ) = [P N ] jk ∀ j, k ∈ {1, 2, . . . , d}.

Thus the long-term behaviour of the stochastic process (Xn) is governed by the
sequence of (stochastic) matrices (Pn). Moreover, if |λ| < 1 for every eigen-
value λ �= 1 of P then Q P := limn→∞ Pn exists and is itself a stochastic matrix.
A common problem in many Markov chain models is to estimate Q P through numer-
ical simulation. In this context, the sequences (Pn+1 − Pn) and (Pn − Q P ) are
of special interest, as they both in a sense measure the speed of convergence of
Pn → Q P . They are also rich sources of Benford sequences.

Corollary 5.4 [10, Thm. 12] Assume that the stochastic matrix P ∈ R
d×d is irre-

ducible and aperiodic, and let Q P := limn→∞ Pn. Ifσ(P)\{1} is non-resonant then,
for every j, k ∈ {1, 2, . . . , d}, the sequences ([Pn+1 − Pn] jk) and ([Pn − Q P ] jk)

are Benford or terminating.

Proof Since P is irreducible and aperiodic, P N > 0 for some N ∈ N, and hence
λ0 = 1 is a dominant, algebraically simple eigenvalue of P . The claim then follows
from Theorem 5.1. ��
Example 5.5 For the stochastic matrix

P = 1

10

⎡

⎣
9 0 1
6 3 1
1 0 9

⎤

⎦ ,

σ (P)\{1} = { 3
10 ,

4
5

}
is non-resonant. Note that P fails to be irreducible, and hence

Corollary 5.4 does not apply directly. However, λ0 = 1 obviously is dominant and
simple, and so Theorem 5.1 can be used to deduce that every entry of (Pn+1 − Pn)

and (Pn − Q P ) is Benford or terminating, with

Q P = 1

2

⎡

⎣
1 0 1
1 0 1
1 0 1

⎤

⎦ . �
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Example 5.6 Consider the (irreducible and aperiodic) stochastic matrix

P = 1

30

⎡

⎣
14 11 5
11 14 5
5 5 20

⎤

⎦ ,

for which σ(P)\{1} = { 1
10 ,

1
2 } is resonant. While Corollary 5.4 does not apply,

Theorem 5.1 shows that there exist x, y ∈ R
3 for which (x�(Pn+1 − Pn)y), for

instance, is neither Benford nor terminating. For a concrete example that is neither,
simply take x = e1, y = e1 − e2, which yields (x�(Pn+1 − Pn)y) = (10−n). On
the other hand, with

Q P = 1

3

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ ,

it is straightforward to check that all entries of (Pn+1 − Pn) and (Pn − Q p) are
Benford. Thus the non-resonance of σ(P)\{1} is not necessary for the latter prop-
erty. In other words, the implication in Corollary 5.4 cannot in general be reversed.
Moreover, the property asserted by Corollary 5.4, i.e. the property that all entries of
(Pn+1 − Pn) and (Pn − Q P ) are Benford or terminating, is not a spectral property
of P . To see this, consider for example

P̃ = 1

10

⎡

⎣
6 3 1
3 4 3
1 3 6

⎤

⎦ ,

and note that σ(P̃) = σ(P) and Q P̃ = Q P . Again, it is readily confirmed that, for
instance ([P̃n+1 − P̃n]22) = (− 3

5 10−n) and ([P̃n − Q P̃ ]22) = ( 2
3 10−n), and both

sequences are neither Benford nor terminating. �

The situation described in Corollary 5.4 is very common among stochastic matri-
ces. To put this more formally, denote by Pd the family of all (row-) stochastic
d × d-matrices, that is

Pd =
{

P ∈ R
d×d : P ≥ 0,

∑d

k=1
[P] jk = 1 ∀ j = 1, 2, . . . , d

}

.

The set Pd is a compact and convex subset of R
d×d . For example,

P1 = {[1]} and P2 =
{[

s 1 − s
1 − t t

]

: 0 ≤ s, t ≤ 1

}

.

Note that Pd can be identified with a d-fold copy of the standard (d − 1)-simplex,
that is, Pd � {x ∈ R

d : x ≥ 0,
∑d

j=1 x j = 1}d , and hence carries the (normalized)
d(d − 1)-dimensional Lebesgue measure Leb. Consider now
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Hd :=
{

P ∈ Pd : P is irreducible and aperiodic, and σ(P)\{1} is non-resonant
}
.

Thus Hd is exactly the family of stochastic matrices covered by Corollary 5.4. For
instance, H1 = {[1]} = P1,

H2 =
{[

s 1 − s
1 − t t

]

: 0 ≤ s, t < 1, s + t = 1 or log |s + t − 1| �∈ Q

}

,

and in both cases Hd constitues most of Pd . The latter can be shown to be true in
general: For every d ∈ N, the complement of Hd in Pd is a set of first category
and has Leb-measure zero. Thus if P is a Pd -valued random variable, i.e. a random
stochastic matrix, whose distribution is absolutely continuous (w.r.t. Leb, which
means that P(P ∈ C) = 0 whenever C ⊂ Pd and Leb(C) = 0), then P(P ∈
Hd) = 1. Together with Corollary 5.4, this implies

Corollary 5.7 [10, Thm. 17] If the random stochastic matrix P has an absolutely
continuous distribution then with probability one, P is irreducible and aperiodic,
and every sequence ([Pn+1 − Pn] jk) and ([Pn − Q P ] jk) is Benford or terminating.

Note that for example the random stochastic matrix P has an absolutely continuous
distribution whenever its d rows are chosen independently according to the same
density on the standard (d − 1)-simplex.

While the above genericity properties are very similar to the corresponding results
for arbitrary matrices (see the Remark on p. 23), they do not follow directly from the
latter. In fact, they are somewhat harder to prove, as they assert (topological as well
as measure-theoretic) prevalence of Hd within the space Pd which, as a subset of
R

d×d , is itself a nowhere dense nullset. The interested reader may want to consult
[10] for details.
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Harvesting and Dynamics in Some
One-Dimensional Population Models

Eduardo Liz and Frank M. Hilker

Abstract We review some dynamical effects induced by constant effort harvesting
in single-species discrete-time population models. We choose three different forms
for the density-dependent recruitment function, which include the overcompensatory
Ricker map for semelparous species; a modified Ricker model allowing for adult
survivorship; and a model with both strong Allee effect and overcompensation which
results from incorporating mate limitation in the Ricker model. We show that these
simple models exhibit some interesting (and sometimes unexpected) phenomena
such as the hydra effect; bubbling; sudden collapses; and essential extinction. We
underline the importance of two often underestimated issues that turn out to be
crucial for management: census timing and intervention time.

1 Introduction

We consider discrete-time single-species models governed by a first-order difference
equation

xn+1 = F(xn), n = 0, 1, 2, . . . , (1)
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where xn denotes the population size at the n–th generation, and F is the so-called
stock–recruitment (production) function. These models are well-suited for semel-
parous populations [7, Chap. 4], but they also fit well to populations where a fraction
of adults survive the reproduction season [3, Sect. 7.5]. We will focus our attention
on the unimodal Ricker map [12]

F(x) = xer(1−x), r > 0, (2)

and two modifications of it. The first one assumes a survivorship rate α, α ∈ (0, 1),
of adults and reads

F(x) = αx + (1 − α)xer(1−x). (3)

We refer to this function as the Ricker–Clark map; see, e.g., [3, 9, 19].
The second modification of the Ricker model that we will consider exhibits a

strong Allee effect, that is, there is a critical population size (Allee threshold) below
which the population cannot survive [4]. It has been used by Schreiber [14] to model
mate limitation, and we will refer to it as the Ricker–Schreiber map. Its production
function is

F(x) = βx

1 + βx
x er(1−x), β > 0. (4)

Our aim is to show how a strategy of constant effort harvesting changes the
dynamics of the difference Eq. (1) when the production map F is given by (2), (3)
or (4).

2 The Ricker Model and the Hydra Effect

In this section we consider the Ricker function (2), which is a prototype for over-
compensatory production. See Fig. 1 for a graphic representation when r = 3.

A strategy of constant effort harvesting assumes that a percentage γ x of the
population is removed at every period. Thus, harvesting a population following the
Ricker map after recruitment gives

xn+1 = (1 − γ )xn er(1−xn), n = 0, 1, 2, . . . , (5)

where γ ∈ (0, 1). The bifurcation diagram of (5) for varying γ (Fig. 2) shows the
well-known effects of increasing harvesting:

• Reducing complexity: if the unharvested population is unstable, a sufficiently large
harvesting effort leads the system to a globally stable positive equilibrium through
a series of period-halving bifurcations (see, e.g., [8]).

• Overharvesting leads to extinction after a transcritical bifurcation at γ = 1 − e−r .
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Fig. 1 Graphic representation of the Ricker stock–recruitment curve F(x) = xe3(1−x). This curve
is overcompensatory; this means that after a critical value of the population size, recruitment de-
creases with increasing population size. The intersection with the line y = x (dashed line) is the
positive equilibrium x = 1 (obtained from the carrying capacity after normalization)
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Fig. 2 Bifurcation diagram for Eq. (5) with r = 3 and γ ∈ (0, 1). For each value of γ (with step
0.001), we produce 300 iterations of (5) with a random initial condition x0 ∈ [0, 2.5], and plot the
last 20 iterates to let the transients die out. The bold line corresponds to the average population size

2.1 Census Timing and the Hydra Effect

The hydra effect is a term recently coined by P. A. Abrams and co-authors to define a
seemingly paradoxical increase in the size of a population in response to an increase
in its per-capita mortality [1]. One of the simplest models where this effect can be
observed is a modified version of Eq. (5), namely,

xn+1 = (1 − γ )xn er(1−(1−γ )xn), n = 0, 1, 2, . . . (6)

This equation has been studied in [8, 11, 15]; see also [1] for other recruitment
functions. In particular, Ref. [11] proves that the average population size for any
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Fig. 3 Bifurcation diagram
for Eq. (6) with r = 3 and
γ ∈ (0, 1). The bold line
corresponds to the average
population size
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initial condition x0 > 0 is an increasing function of the harvesting effort γ for all
γ ∈ (

0, 1 − e1−r
)
. The average population size is defined by the formula

φ(x0, γ ) = lim
n→∞

1

n

n−1∑

i=0

xi (γ ).

The bifurcation diagram for r = 3 is shown in Fig. 3. The bold line corresponds to
the average population size.

What is the relationship between models (5) and (6)? From an ecological point
of view, both are models with only two processes: reproduction and harvesting.
The only difference between them is the moment at which the population size is
measured. Indeed, if we denote by F(x) = xer(1−x) the recruitment function and by
h(x) = (1−γ )x the harvesting action, Eq. (5) corresponds to census after harvesting.
That is, it can be written in the form

xn+1 = h(F(xn)), n = 0, 1, 2, . . . (7)

On the other hand, Eq. (6) corresponds to census after reproduction. That is, it can
be written in the form

xn+1 = F(h(xn)), n = 0, 1, 2, . . . (8)

Following another analogy [3, see Sect. 7.1], Eq. (7) measures the dynamics of the
parent stock, whereas (8) measures the dynamics of the recruits.

From a mathematical point of view, Eqs. (7) and (8) are dynamically equivalent
[11]; this means that they share the same properties of stability, periodicity and
chaos. However, what we observe in Figs. 2 and 3 does not appear to be the same. In
particular, while (7) does not exhibit the hydra effect, (8) does do. This fact stresses
the necessity of taking into account census timing when a mathematical model is used
for management purposes; using Clark’s terms [3, see Sect. 7.1], the same harvesting
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Fig. 4 Geometric
representation of the positive
equilibria of models (5)
and (6). The equilibrium
Kγ of the former decreases
as γ is increased, while the
equilibrium Kγ of the latter
increases with γ until the
critical value γc, for which the
line y = x/(1 − γ ) intersects
the curve y = F(x) at its
maximum value (c, F(c))
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model can exhibit a hydra effect when we census recruits, but it does not if we census
the parent stock. Of course, the hydra effect is still present in the recruits but “hidden”
since we do not measure it. For more discussion on this topic, see [5] and references
therein.

We notice that the hydra effect in discrete single-species models can only occur
if the density dependence is overcompensatory [1, 15]. Actually, it is easy to explain
using the geometric interpretation of the positive equilibrium. Recall that for the
Ricker model, the average population size matches the equilibrium even when the
population oscillates. It is easy to check that the equilibrium Kγ of (5) is the projection
on the x–axis of the intersection of the curve y = F(x)with the line y = x/(1 −γ ),
and the positive equilibrium of (6) is Kγ = F(Kγ ), which is the projection of
the same intersection point on the y–axis. This simple observation explains why
increasing harvesting produces a hydra effect in model (6) but not in (5). See Fig. 4.

2.2 Variable Harvest Timing and Its Impact on Population
Dynamics

As emphasized in [6], the timing of harvesting may profoundly influence the impact
on the population. The main reason is that if population growth is compensatory, then
if individuals are removed at early stages in the season, the remaining individuals
reproduce better. Seno [15] proposed one of the simplest models that considers
harvesting at a specific point of time within the season. It assumes that individuals
accumulate energy for reproduction in the course of the season and takes into account
density-dependent effects in the population dynamics for the parts of the season
before and after harvesting. For the Ricker map, the model is
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Fig. 5 Time series for Eq. (9) with γ = 0.7, r = 4 and different harvesting times: a chaotic
solution for θ = 1 (harvesting at the end of the reproductive season); b asymptotically stable
positive equilibrium for θ = 0.7

xn+1 = (1 − γ )xn

(
θer(1−xn) + (1 − θ)er(1−(1−γ )xn)

)
, n = 0, 1, 2, . . . (9)

where θ ∈ [0, 1] is the moment of time in the season (assuming its length is 1) when
harvest intervention takes place. The main conclusion of Seno’s paper is that the
hydra effect in (9) occurs for low values of θ , that is to say, the earlier we harvest,
the more the average population size is increased.

It is easily seen that the right-hand side of (9) is a convex combination of the
right-hand sides of Eqs. (5) and (6); cf. [2]. In other words, it can be written as

xn+1 = θh(F(xn))+ (1 − θ)F(h(xn)), n = 0, 1, 2, . . . ,

where h and F have the same meaning as in (7). Using this fact, it is easy to prove
that the intervention time θ does not change the critical value of the harvesting
effort γ driving the population to extinction, and that the average population size is
a decreasing function of θ .

Since we have seen that the cases θ = 0 and θ = 1 are dynamically equivalent,
an interesting problem is how intervention time affects the qualitative behaviour of
the model with harvesting. This problem has been addressed in [2], and a major
conclusion is that harvesting at intermediate values of the reproductive season may
reduce complexity. To illustrate this fact, Fig. 5 shows the time series of a solution of
Eq. (9) with θ = 1 (which reduces to (5)) and θ = 0.7. While the former is chaotic,
the latter has a globally attracting positive equilibrium.

3 The Ricker–Clark Model and the Bubbling Effect

As we have seen in the previous section, one of the characteristics of the Ricker model
with harvesting (5) is that an increasing harvesting effort stabilizes the positive equi-
librium. Actually, the opposite effect is not posible: harvesting cannot destabilize
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Fig. 6 Graphic representation
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a stable positive equilibrium [11]. However, it has recently become apparent that
harvesting/fishing can magnify fluctuations in exploited populations, and some hy-
potheses have been proposed (see, e.g., [16] and references therein).

One of the simplest mechanisms giving rise to destabilization with increasing
harvesting effort in deterministic models of discrete-time single-species populations
is to allow a certain percentage of the adult population to survive the season. This
yields the Ricker–Clark production function (3). Contrary to the usual Ricker map,
function (3) is usually bimodal, and this fact leads to richer dynamics. See Fig. 6 for
a graphic representation when r = 4 and α = 0.55.

The influence of harvesting in a population governed by Eq. (1) with the Ricker–
Clark function (3) has been recently studied in [9] for constant quota harvesting and
in [11] for constant effort harvesting. In both cases, it was shown that for certain
parameter ranges (of the adult survivorship α and production rate r ) increasing har-
vesting can destabilize the positive equilibrium and, more generally, harvesting can
magnify fluctuations of population abundance, even inducing chaotic oscillations
[11, Sect. 3.2].

Consider the Ricker–Clark map with constant effort harvesting

xn+1 = (1 − γ )
(
αxn + (1 − α)xn er(1−xn)

)
, n = 0, 1, 2, . . . (10)

The destabilization that occurs for increased harvesting can be explained by a
bubbling effect, which essentially consists of a period-doubling bifurcation followed
by a period-halving bifurcation; these bifurcations produce a bubble in the bifurcation
diagram. See Fig. 7.

In Fig. 8 we visualize the bubbling effect as well as population extinction due to
overharvesting by presenting time series predicted by the model for selected harvest-
ing efforts.

In Ref. [11, Theorem 2], the exact parameter ranges are given for which a bubble
occurs in Eq. (10). What is necessary is a combination of high production rates
(r > 3) and intermediate survivorship rates. Similar conclusions are obtained for
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Fig. 7 Bifurcation diagram showing a bubbling effect for Eq. (10) with α = 0.55, r = 4 and
γ ∈ (0, 1). Inside the bubble, the equilibrium is unstable (dashed curve), and there is an attracting
periodic orbit of period two
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Fig. 8 Time series for Eq. (10) withα = 0.55, r = 4 and different harvesting rates: a asymptotically
stable equilibrium for the unharvested population (γ = 0); b sustained oscillations for a capture
rate of 30 %; c the equilibrium is again stable when the harvesting rate is 70 %; d overharvesting
(γ = 0.96) drives the population extinct

a stage-structured model with two age classes (juveniles and adults) if only adult
harvesting is allowed [10, 20]. Bubbling can also occur if juveniles and adults are
harvested with the same rate, but not if juveniles are the only harvesting target (for
more details, see [10]). Note that forms of bubbling have also been observed in
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population models with constant feedback control (here, constant immigration), but
only when varying the production rate rather than the harvesting parameter [18].

If we consider intervention time using Seno’s model as we did in Sect. 2, we
arrive at a similar conclusion: intermediate harvesting times can be stabilizing;
actually, a suitable value of the timing parameter θ can avoid the bubbling effect
(see [2] for more details).

4 The Ricker–Schreiber Model: Sudden Collapses and Essential
Extinction

A common feature of the models studied in the previous sections is that overharvest-
ing (leading to population extinction) takes place after a transcritical bifurcation, i.e.
when the harvesting effort has passed a critical value γ ∗. Actually, for values of γ
slightly smaller than γ ∗, the positive equilibrium is globally asymptotically stable
and decays continuously to zero. In some sense, this means that extinction can be
prevented if harvesting pressure is increased only gradually (although the decay to
zero can be very fast, especially if we census after reproduction, see Fig. 3).

But there are populations for which the transition from a stable positive equi-
librium to extinction is discontinuous, producing a so-called sudden collapse. This
phenomenon is typical of a strategy of constant quota harvesting [9, 13], but it can
also happen for constant effort harvesting if the population model exhibits a strong
Allee effect.

The last model we consider in this paper is also based on the Ricker map, but it
includes a factor for positive density dependence that induces a strong Allee effect.
It is the Ricker–Schreiber model

xn+1 = βxn

1 + βxn
xn er(1−xn), n = 0, 1, 2, . . . , (11)

which was already introduced in Eq. (4). Parameterβ represents the carrying capacity
of the population in the absence of mate limitation multiplied by an individual’s
efficiency to find a mate [14, Sect. 2.1]. See Fig. 9 for a graphic representation when
r = 3.5 and β = 0.5.

There are three generic possibilities for the dynamics of model (10): extinction;
bistability between extinction and survival; and essential extinction [13]. The latter
means that extinction occurs for a randomly chosen initial condition with probability
one. For fixed values of β and r , different harvesting efforts result in the three generic
possibilities. For example, we consider the model with constant effort harvesting

xn+1 = (1 − γ )
4xn

1 + 4xn
xn e4(1−xn), n = 0, 1, 2, . . . (12)
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Fig. 9 Graphic representa-
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For γ = 0, there is essential extinction (c.f. [14, p. 205]). When constant effort
harvesting is applied (see the bifurcation diagram in Fig. 10), a boundary colli-
sion switches the dynamics from essential extinction to bistability at a value of
γ1 = 0.09384. A tangent bifurcation leads to extinction at γ2 = 0.91104, which
corresponds to a sudden collapse due to overharvesting. Between γ1 and γ2, the
dynamics of the nontrivial attractor ranges from chaos to asymptotic stability of the
larger positive equilibrium.

We call the reader’s attention to an unusual behaviour of extinction: populations
can persist within a band of medium to high harvesting efforts, whereas extinction
occurs for lower and very high harvesting efforts. This phenomenon is also typical
of a strategy of constant quota harvesting, and has been uncovered by Sinha and
Parthasarathy [17]. For constant effort harvesting in models with Allee effects, it
was first demonstrated by Schreiber [14].

The influence of harvest timing in the model (10) has been considered in [2]. Here
we just state the main conclusions for the model
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Fig. 11 Bifurcation diagram
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xn+1 = θ(1 − γ )Fβ,r (xn)+ (1 − θ)Fβ,r ((1 − γ )xn), n = 0, 1, 2, . . . , (13)

where θ ∈ [0, 1] and Fβ,r (x) = (βx/(1 + βx))x er(1−x).

• For moderate harvesting efforts, intermediate values of the harvest timing θ can sta-
bilize the larger positive equilibrium and hence facilitate stabilization—similarly
to the models considered in Sects. 2 and 3.

• For large harvesting efforts (close to the regime of overharvesting), intermedi-
ate values of the harvest timing θ can render the population more vulnerable to
extinction. In this scenario, the population can persist for early- or late-season
harvesting, but goes extinct for mid-season harvesting; see Fig. 11. The underly-
ing reason is that intervention time θ does change the overharvesting effort, i.e. the
critical value of the harvesting effort at which the system switches from survival
to extinction. This is in contrast to the models considered in Sects. 2 and 3.

• For low harvesting efforts (close to the regime of essential extinction), intermediate
values of the harvest timing θ can prevent essential extinction, which would occur
for early or late harvesting.

Hence, intermediate harvest times can be both beneficial (for small and moderate
harvesting efforts) and detrimental (for large harvesting efforts). See [2] for more
details.
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5 Conclusions

In this contribution, we have reviewed the impact of harvesting effort and harvest tim-
ing on population dynamics. While a large part of the literature is mainly concerned
with the yield obtained from harvesting (e.g., [3]), we have focused on (i) the abun-
dance of the exploited population and (ii) the complexity of the dynamics induced by
harvesting, in particular whether harvesting can be stabilizing or destabilizing. Both
aspects are crucial for the yield as well as for the sustainability of the population.
In the overview of this contribution, we have exclusively considered single-species
discrete-time population models. However, they represent a fair amount of different
ecological situations as they take into account overcompensation (scramble compe-
tition); adult survival (iteroparity) and critical depensation (strong Allee effect).

Regarding population abundance, the most interesting phenomenon is the
hydra effect [1, 11, 15]. Average population abundance can increase in response
to an increase in the per-capita mortality rate. This phenomenon underlines the im-
portance of census timing, as the hydra effect in parts of the population may be
“hidden” from observation and go unnoticed [5].

Regarding the complexity of the dynamics, increased harvesting typically sta-
bilizes population dynamics, but in the presence of adult survivorship it can also
be destabilizing. Typical mechanisms are period-halving bifurcations and bubbling
[8, 11].

In compensatory models (i.e., without Allee effect), harvest timing does not affect
the critical harvesting effort leading to overexploitation and population extinction.
Harvesting at an intermediate moment of the season can reduce dynamic complexity,
preventing chaos and sometimes stabilizing the positive equilibrium. In models with
a strong Allee effect, intermediate harvest timing can enhance both persistence as
well as extinction; the actual outcome depends on the magnitude of the harvesting
effort [2].

In models with a strong Allee effect, population extinction due to overharvesting
may occur in form of a sudden collapse rather than gradually. Intermediate harvesting
rates, however, may help the population to survive, preventing essential extinction
due to overproduction [14].

To conclude, we emphasize that a good knowledge of the population dynamics is
crucially important for designing management programmes of exploited populations.
For example, does population growth exhibit exact or undercompensation, overcom-
pensation or depensation? Is the population semelparous or iteroparous? Once the
underlying population dynamics is known, it can be equally important to address the
aspects of census timing (how many times and at what moments in the seasons the
population is measured) and harvest timing. Kokko [6, p. 143] highlighted already
in 2001 that

Timing of harvesting may profoundly influence the impact on the population.

In this overview, we have collected further theoretical mechanisms demonstrating the
role of harvest timing and that it should not be neglected in comparison to harvesting
effort.
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Chaos and Wild Chaos in Lorenz-Type Systems

Hinke M Osinga, Bernd Krauskopf and Stefanie Hittmeyer

Abstract This contribution provides a geometric perspective on the type of chaotic
dynamics that one finds in the original Lorenz system and in a higher-dimensional
Lorenz-type system. The latter provides an example of a system that features
robustness of homoclinic tangencies; one also speaks of ‘wild chaos’ in contrast
to the ‘classical chaos’ where homoclinic tangencies accumulate on one another,
but do not occur robustly in open intervals in parameter space. Specifically, we dis-
cuss the manifestation of chaotic dynamics in the three-dimensional phase space
of the Lorenz system, and illustrate the geometry behind the process that results in
its description by a one-dimensional noninvertible map. For the higher-dimensional
Lorenz-type system, the corresponding reduction process leads to a two-dimensional
noninvertible map introduced in 2006 by Bamón, Kiwi, and Rivera-Letelier [arXiv
0508045] as a system displaying wild chaos. We present the geometric ingredients—
in the form of different types of tangency bifurcations—that one encounters on the
route to wild chaos.

1 Introduction

The Lorenz system was introduced and studied by meteorologist Edward Lorenz in
the 1960s as an extremely simplified model for atmospheric convection dynamics
[35]. Famously, Lorenz discovered sensitive dependence on the initial condition, and
the Lorenz system has arguably become the best-known example of a chaotic system.
It is given as the vector field
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⎧
⎨

⎩

ẋ = σ(y − x),
ẏ = ρx − y − xz,
ż = −βz + xy.

(1)

The system is invariant under the symmetry of a rotation about the z-axis by π . The
now classical choice of the parameters for which Lorenz found a chaotic attractor is

σ = 10, ρ = 28, β = 2
2

3
. (2)

For these parameters, (1) has three equilibria: the origin 0 and a symmetrically re-
lated pair of secondary equilibria p±, which are all saddles. The chaotic attractor is
often called the Lorenz or butterfly attractor. It has two ‘wings,’ which are centred
at p− and p+ (which are not part of the attractor). Importantly, the Lorenz attractor
contains 0 and its one-dimensional unstable manifold W u(0), that is, the two trajec-
tories that converge to 0 in backward time. The Lorenz attractor actually consists of
infinitely many layers or sheets that are connected along W u(0), which forms the
‘outer boundary’ of the attractor. This is already sketched and studied in the original
paper by Lorenz [35]; an illustration of the different layers of the Lorenz attractor
can be found in the paper by Perelló [40] and it is reproduced in [14].

Figure 1 shows a computed version of the Lorenz attractor, which was rendered as
a surface from computed orbit segments of several suitably chosen families; see [14]
for details of this computation. Also shown in Fig. 1 is the one-dimensional unstable
manifold W u(0), with its left and right branches rendered in different shades; observe
how W u(0) forms the outer boundary of the Lorenz attractor. Our visualisation in
Fig. 1 is quite different from most images of the Lorenz attractor that are obtained
with numerical simulation. Starting from some initial condition, and letting transients
die down, the Lorenz attractor is typically visualised by plotting (a long part of) the
remaining trajectory. In this way, the part of the Lorenz attractor closest to the origin
is generally missed, as it is not ‘visited’ very often by trajectories; hence, most
published images show a considerably smaller part of the Lorenz attractor.

The Lorenz system (1) has been studied since the 1970s via the concept of the
geometric Lorenz attractor, which is an abstract geometric model introduced by
Guckenheimer [24], Guckenheimer and Williams [26], and Afrajmovich, Bykov and
Shilnikov [1, 2]; see also [8, 44]. The key is that the geometric Lorenz attractor
displays all the features observed in the Lorenz system, and that it can be reduced
rigorously to a one-dimensional noninvertible map. This reduction is done in two
steps. First of all, one considers the Poincaré return map to the horizontal section
through the points p± (given by z = ρ − 1). Locally this map is a diffeomorphism
that has a stable foliation (near the classic parameter values), that is, an invariant
foliation that is uniformly contracted by the Poincaré return map. The map on the
quotient space of this foliation is a one-dimensional noninvertible map, called the
Lorenz map, and it describes the dynamics on the geometric Lorenz attractor exactly.
It can be shown with standard methods that the Lorenz map has chaotic dynamics;
see, for example, [25]. In 1999 Tucker [45] famously provided a computer-assisted
proof that, for the classical parameter values (2), the Lorenz system (1) satisfies the
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W u(0)

W u(0)

0

Fig. 1 The Lorenz attractor as computed and rendered as a surface, with the equilibria 0 and p±
and the manifold W u(0)

technical conditions of this geometric construction, thereby showing that the Lorenz
attractor is indeed a chaotic attractor.

The question how chaos arises in the Lorenz system has also been considered,
where ρ is chosen traditionally as the parameter that is varied [15, 43]. For small
ρ > 1 all typical initial conditions simply end up at either p− or p+, which are
the only attractors of (1). As ρ is increased, a first homoclinic bifurcation at ρ ≈
13.9265 is encountered; here both branches of the one-dimensional unstable manifold
W u(0) of the origin return to 0 to form a pair of homoclinic connections. This
global bifurcation creates not only a pair of (symmetrically related) saddle periodic
orbits, but also a hyperbolic set of saddle type. The result is what has been called
preturbulence [29], which is characterised by the existence of arbitrarily long chaotic
transients before the system settles down to either p− or p+ (still the only attractors).
At ρ ≈ 24.0579 one encounters a pair of heteroclinic cycles between the origin and
the pair of saddle periodic orbits, and this results in the creation of a chaotic attractor.
The chaotic attractor, which is the closure of W u(0), coexists with the two stable
equilibria until they become saddles in a Hopf bifurcation at ρ = 470/19 ≈ 24.7368.
After the Hopf bifurcation and up to ρ = 28, the chaotic attractor is the only attractor.

A crucial role in the organisation of the dynamics of the Lorenz system (1) is
played by the stable manifold W s(0) of the origin 0, which we refer to as the Lorenz
manifold. The origin 0 is a saddle equilibrium (for ρ > 1) with two stable directions
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and one unstable direction, and W s(0) is a smooth surface that consists of all points
in R

3 that end up at 0. Before the first homoclinic bifurcation, W s(0) forms the
boundary between the two attractors p− and p+. In the preturbulent regime after the
first homoclinic bifurcation W s(0) is still part of the basin boundary of p±, but it is
much more complicated topologically as it is involved in organising arbitrarily long
transients.

More importantly for the purpose of this paper, the Lorenz manifold W s(0) organ-
ises the dynamics in the chaotic regime [14, 15]. Owing to the sensitive dependence
on the initial condition, W s(0) is dense in phase space. Moreover, the interaction of
the Lorenz manifold W s(0)with the unstable manifold W u(0) gives rise to infinitely
many further homoclinic bifurcations when ρ is varied. Closely related is the fact
that there are infinitely many homoclinic tangencies between the two-dimensional
stable and unstable manifolds of the saddle periodic orbits that lie dense in the chaotic
Lorenz attractor. More generally, such tangencies of a three-dimensional vector field
correspond directly (by taking a Poincaré return map) to homoclinic tangencies of the
one-dimensional stable and unstable manifolds of fixed or periodic points of a planar
diffeomorphism such as the Hénon map [27], which is another well-known chaotic
system. Near a homoclinic tangency one can construct Smale horseshoe dynamics,
that is, a chaotic hyperbolic set of saddle type. Moreover, any homoclinic tangency
of a one-parameter family of three-dimensional vector fields, or planar diffeomor-
phisms, is accumulated in parameter space by other homoclinic tangencies [39],
leading to an infinite sequence of homoclinic tangency points accumulating on other
homoclinic tangency points. This is one of the characterising properties of ‘clas-
sical chaos’ that arises in vector fields of dimension three and in diffeomorphisms
of dimension two, for which the Lorenz system and the Hénon map are standard
examples; see, for example, textbooks such as [4, 25, 42].

At a homoclinic tangency of a hyperbolic set (such as a periodic orbit) there
is a nontransversal intersection of its stable and unstable manifolds. In particular,
the point of homoclinic tangency is nonwandering and its tangent bundle cannot be
decomposed into stable and unstable subspaces. As a result, the system is not uni-
formly hyperbolic, or simply, it is nonhyperbolic at a homoclinic tangency. In other
words, in ‘classical chaos’ one finds infinitely many accumulating points of nonhy-
perbolicity. A property is said to be robust (in the C1-topology) if there is an open
neighbourhood in the space of vector fields or diffeomorphisms such that all these
systems have said property. As it turns out, it has been argued that nonhyperbolicity
and homoclinic tangencies do not occur robustly in three-dimensional vector fields
or two-dimensional diffeomorphisms [36].

On the other hand, robust homoclinic tangencies and, hence, robust nonhyperbol-
icity can be found in vector fields of dimension at least four and in diffeomorphisms
of dimension at least three [11]. Any system with this property is said to display
wild chaos [37]. There are several constructions of diffeomorphisms that feature
robust nonhyperbolicity [3, 6, 7, 21, 22]. Moreover, in [49] it is shown that a four-
dimensional vector field model of calcium dynamics in a neuronal cell has a heterodi-
mensional cycle between two saddle periodic orbits, which is directly associated with
robust hyperbolicity [11, 29]. It is also possible to construct an n-dimensional vector
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field with robust homoclinic tangencies of a singular attractor and, hence, with wild
chaos. Turaev and Shilnikov presented such an example for n ≥ 4 in [46, 47]. We
consider here the example for n ≥ 5 due to Bamón, Kiwi, and Rivera-Letelier [9],
which is constructed as a Lorenz-type system. It suffices to consider their construc-
tion for n = 5; the associated attractor is called Lorenz-like because it is effectively
a higher-dimensional version of the geometric Lorenz attractor. The dynamics of the
five-dimensional Lorenz-type vector field is described by a four-dimensional diffeo-
morphism given as the Poincaré return map to a suitable codimension-one section.
On this section there is a two-dimensional stable foliation, and the resulting quotient
map is now a noninvertible map of the plane. This map is given in [9] in explicit form;
in fact, Bamón, Kiwi, and Rivera-Letelier construct their example by starting from
the noninvertible map, lifting it to the four-dimensional Poincaré return map and then
suspending this diffeomorphism to obtain an abstract five-dimensional Lorenz-type
vector field. In a small neighbourhood of a specific point in parameter space, they
then show that the planar noninvertible map is robustly nonhyperbolic.

The goal of this paper is to determine and illustrate the geometry behind chaos in
the Lorenz system and wild chaos in the five-dimensional Lorenz-type system. This
study is made possible by advanced numerical methods—based on solving families of
boundary value problems—for the computation of two-dimensional global manifolds
of vector fields [15, 30, 31, 33] and tangency bifurcations involving stable and
unstable sets of noninvertible planar maps [10, 28]; their implementation is done
in the packages AUTO [13] and Cl_MatContM [18, 23], respectively. Section 2 is
concerned with the Lorenz system. Our starting point in Sect. 2.1 is the discussion of
how the three-dimensional phase space is organised globally by the two-dimensional
Lorenz manifold W s(0) of the origin in the presence of the classical Lorenz attractor.
We then discuss in Sect. 2.2 the geometry behind the description of the dynamics
on the Lorenz attractor by the one-dimensional Lorenz map. The two-dimensional
Lorenz-like map is introduced in Sect. 3 and its basic properties are discussed. The
transition from simple to wild chaos is the subject of Sect. 3.1, where we show
how different types of tangency bifurcations are involved in creating increasingly
complicated dynamics. In Sect. 3.2 we present a two-parameter bifurcation diagram
with curves of the different tangency bifurcations, which allows us to identify a large
region where we conjecture wild chaos to be found. Finally, Sect. 4 summarises the
results and briefly discusses avenues for future research.

2 Chaos in the Lorenz System

In this section we consider the chaotic dynamics of the Lorenz system (1) for the
classical parameter values given in (2). We first consider the organisation of the
full phase space and then illustrate the geometry behind the reduction to the one-
dimensional Lorenz map.
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2.1 Global Organisation of the Phase Space

The Lorenz attractor is the only attractor of (1) for ρ = 28. Its basin is the entire
phase space R

3 with the exception of the symmetric pair of secondary equilibria p±
and their one-dimensional stable manifolds W s(p±). Recall that the origin 0 and
its one-dimensional unstable manifold W u(0) are part of the chaotic attractor. This
also means that the two-dimensional stable manifold W s(0) lies in the basin of the
Lorenz attractor. Moreover, locally near 0 the invariant surface W s(0) determines the
dynamics in the following sense: initial conditions on one side of W s(0) flow away
from the origin into the left wing of the attractor (towards negative values of x) and
those on the other side flow away from the origin into the right wing of the attractor
(towards positive values of x). The sensitive dependence on initial conditions of
the dynamics on the Lorenz attractor has global consequences throughout the phase
space. Any open sphere in phase space, no matter how small, must contain two points
that eventually move over the Lorenz attractor differently: at some point in time one
trajectory is, say, on the left wing, while the other is on the right wing. This means
that, locally near the attractor, the two trajectories are on either side of W s(0). This
implies that W s(0)must divide the open sphere into two open halves, each containing
one of the two initial conditions. In turn this proves that W s(0) lies dense in the basin
of the Lorenz attractor and, hence, also in R

3.
According to the stable and unstable manifold theorem [38], locally near 0 the

surface W s(0) is a small topological disk that is tangent to the two-dimensional
stable linear eigenspace Es(0) spanned by the eigenvectors of the two negative real
eigenvalues. This disk can be imagined to grow while its boundary maintains a fixed
geodesic distance (arclength of the shortest path on W s(0)) to the origin 0. At any
stage of this growth process one is dealing with a smooth embedding of the standard
unit disk into R

3 yet, as it grows, this topological disk fills out R
3 densely. Hence,

loosely speaking, one can imagine the surface W s(0) as a growing, space-filling
pancake.

We developed a numerical method for the computation of two-dimensional stable
and unstable manifolds, called the geodesic level set (GLS) method [30]. This method
is based on the idea of growing such a manifold by adding geodesic bands to it at each
step. With the GLS method we are able to compute a first part of W s(0) as a surface
up to a considerable geodesic distance. On the other hand, in order to examine the
denseness of W s(0) in R

3 a different approach is needed. Namely, we consider the
intersection set Ŵ s(0) := W s(0) ∩ SR with a suitably chosen sphere SR , which is
then computed directly by defining a boundary value problem such that its solutions
are orbit segments with begin point on SR and end point in Es(0) near 0; see [5, 15]
for details. More specifically, we choose the centre of SR as the point (0, 0, ρ−1) on
the z-axis, which lies exactly in the middle of the line that connects the two equilibria
p±. The radius R of SR is chosen such that the Lorenz attractor is well inside SR , and
the second intersection points in Ŵ s(p±) := W s(p±) ∩ SR of the small-amplitude
branches of W s(p±) lie on the ‘equator’ of SR—for ρ = 28 as considered here, this
gives R = 70.7099; see [15] for details.
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W s( p+ )

W s( p− )

W s(0)

W s(0)

0

p−

SR

Fig. 2 The Lorenz manifold W s(0) for ρ = 28 intersecting the sphere SR with R = 70.7099 in
the set Ŵ s(0); also shown are the equilibria 0 and p− and the one-dimensional manifolds W u(0)
and W s(p±)

Figure 2 illustrates the geometry of how W s(0) intersects the sphere SR . The view
is from a point with negative x- and y-coordinates, and only one half of the computed
part of the surface W s(0) is shown, namely, the part with y ≥ 0. The sphere SR is
rendered transparent. Inside SR , we can clearly see the equilibria 0 and p−, with
p+ obscured by W s(0). The one-dimensional unstable manifold W u(0), with its left
and right branches rendered in different shades, gives an idea of the location of the
Lorenz attractor. Also shown in Fig. 2 are the two one-dimensional stable manifolds
W s(p±), each drawn in different shades. Note that the small-amplitude branch of
W s(p−) indeed intersects SR along its equator, while the large-amplitude branch
of W s(p+) intersects SR at a point higher up and closer to the z-axis. Recall that
p±∪W s(p±) forms the complement of the basin of the Lorenz attractor. The surface
W s(0) can be seen to wrap around the curves W s(p±), which it cannot intersect.
The part of W s(0) that is shown, which was computed up to geodesic distance 162.5,
generates the beginnings of what appear to be only three intersection curves in Ŵ s(0).
It is clear that an impractically large piece of W s(0) would need to be computed to
generate the many curves in Ŵ s(0) that are shown in Fig. 2; this is why Ŵ s(0) is
computed directly.
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W s( p+ )

W s( p− )

W s( p+ )

W s( p− )
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Fig. 3 The set Ŵ s(0) for ρ = 28 on the sphere SR with R = 70.7099; also shown are Ŵ s(p±)

Figure 3 shows four different views of the computed intersection curves in Ŵ s(0)
on the sphere SR ; also shown on SR are the points in Ŵ s(p±). In all views, the
vertical axis is the z-axis of (1). In Fig. 3a, the horizontal axis is the direction defined
by (cos θ,−sin θ), with θ = 3π/10 (in other words, the (x, y)-plane was rotated
clockwise by 3π/10 about the z-axis). The view points in panels (b)–(d) are consec-
utively rotated by a further π/4 radians about the z-axis; note that a further rotation
over π/4 would show the symmetrical version of Fig. 3a with Ŵ s(p−) and Ŵ s(p+)
interchanged. Figure 3 is designed to illustrate how W s(0) fills the phase space R

3

by showing the intersection set Ŵ s(0) on the sphere SR . Notice the intricate struc-
ture of how the curves in Ŵ s(0) fill up SR ; see also [15]. As one might expect, the
computed curves in Ŵ s(0) are not distributed evenly on SR , and there are several
larger regions on SR without computed curves in Ŵ s(0). This is due to the fact that
a finite computation is performed to show an infinite process. More specifically, the
curves in Ŵ s(0) that are shown in Fig. 3 have the property that the overall integration
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time of the associated computed orbit segments is no larger than 7.0; see [15] for
details of the computational setup. This bound already leads to a considerable com-
putation generating 350 MB of AUTO data and 377 individual curves in Ŵ s(0). As
we have checked, these regions fill up with additional curves in Ŵ s(0) if one allows
for a larger bound on the integration time of orbit segments; however, the number of
curves thus obtained and, hence, the duration and data produced grow exponentially
with the bound on the integration time. Figure 3 provides a good illustration of the
space-filling nature of the surface W s(0) in phase space that, in turn, constitutes a
global geometric interpretation of the sensitive dependence of the Lorenz system (1)
on the initial conditions.

2.2 From Lorenz Attractor to Lorenz Map

The first step in the reduction process resulting in the description of the dynamics
on the Lorenz attractor by the Lorenz map is to consider the Poincaré return map to
the horizontal plane Σρ through the secondary equilibria p±, which is given by

Σρ := {(x, y, z) ∈ R
3 | z = ρ − 1}. (3)

Geometrically, this means that one needs to consider the intersection sets withΣρ of
the relevant invariant objects of the vector field (1). Figure 4 illustrates the situation.
The Lorenz attractor, represented by the unstable manifold W u(0) accumulating on
it, can be found in the middle of the image. It is intersected byΣρ , which is rendered
transparent, at the height of the equilibria p±. The stable manifold W s(0) is shown
as computed up to geodesic distance 162.5; the parts of W s(0) below and above
the plane Σρ are rendered solid and transparent, respectively. The outer boundary
of the computed part of W s(0) (the geodesic level set of geodesic distance 162.5)
is highlighted to help illustrate the complicated geometry of this surface, which is
topologically a disk. The surface W s(0) can be seen in Fig. 4 to intersectΣρ in several
curves of the set W

s
(0) := W s(0) ∩ Σρ . One of them is the primary intersection

curve W
s
0(0), which is invariant under the symmetry of a rotation by π about the z-

axis and contains the point (0, 0, ρ−1). Also shown in Fig. 4 are the one-dimensional
manifolds W s(p±), which intersect Σρ in discrete points.

It is important to realise, as can easily be checked from (1), that the flow is tangent
to Σρ along the tangency locus

C = {(x, y, ρ − 1) ∈ R
3 | x y = β(ρ − 1)}. (4)

The set C consists of two hyperbolas, which contain the equilibria p± ∈ Σρ , re-
specively. In between the two hyperbolas the vector field points downward (towards
negative z), which is indicated by the symbol ⊗ in Fig. 4. In the regions to the other
side of C the vector field points upward (towards positive z), which is indicated by
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W s(p+) W s(p−)

W s(0)

0

C
Σρ W

s
0(0)

Fig. 4 The manifold W s(0) for ρ = 28 computed up to geodesic distance 162.5 and its intersection
with the plane Σρ ; the section Σρ and the part of W s(0) above it are rendered transparent. Also
shown are the equilibria 0 and p±, the one-dimensional manifolds W u(0) and W s(p±), and the
tangency locus C on Σρ

the symbol �. As a result, the Poincaré return map, defined as the first return to the
section, is not a diffeomorphism on the entire planeΣρ . This is why one defines the
local Poincaré return map only on the central region of Σρ where the direction of
the flow is downward [24], that is, in between the two hyperbolas of C ; technically,
this means that one considers the second return to Σρ .

However, this local Poincaré map on the central region is still not a diffeomor-
phism. Namely, points along the primary intersection curve W

s
0(0) converge to

0 	∈ Σρ under the flow and, hence, do not return to the section Σρ . This means
that the Poincaré map is not defined on W

s
0(0). Trajectories through points to the

left of W
s
0(0) spiral around p− while those through points to the right of W

s
0(0)

spiral around p+ before intersecting the central region ofΣρ again. Hence, the local
Poincaré map has a discontinuity across the curve W

s
0(0), and it maps each of the two

complimentary regions either side of W
s
0(0) over the entire central region between

the two hyperbolas in C .
Figure 5 shows the respective invariant objects in the plane Σρ , which can be

identified with the (x, y)-plane (with fixed z = ρ−1). By construction, the equilibria
p± lie in Σρ and on the tangency locus C that bounds the central region indicated
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Fig. 5 The invariant objects of (1) for ρ = 28 in the plane Σρ ; compare with Fig. 4. Shown are
the equilibria p±, the tangency locus C , the intersection set of the Lorenz attractor as represented
by W

u
(0), and curves in W

s
(0); the primary intersection curve W

s
0(0) is highlighted, and it divides

the central region labelled ⊗ where the direction of the flow is downward

by the symbol ⊗. The Lorenz attractor is represented by the intersection points
W

u
(0) := W u(0) ∩ Σρ of the unstable manifold W u(0). These intersection points

appear to intersectΣρ in four disjoint curves, two of which lie in the central region;
note that the Lorenz attractor does not contain the points p± and compare with Fig. 1.
Also shown in Fig. 5 are many curves of the intersection set W

s
(0), and the primary

curve W
s
0(0) is highligthed. Curves in the set W

s
(0) were computed directly by

imposing the boundary condition that the corresponding orbit segments have their
begin point in Σρ ; by contrast, in Fig. 4 the shown curves in W

s
(0) were obtained

from the computed part of the two-dimensional manifold W s(0).
The reduction of the Poincaré map to the Lorenz map for ρ = 28 relies on

the fact that the geometric Lorenz system—the abstract version of the Lorenz
system—admits an invariant stable foliation in some neighbourhood of the chaotic
attractor [1, 26, 41, 48]. This means that leaves of this foliation are mapped to leaves,
and the dynamics on the leaves is a contraction. When restricted to said neighbour-
hood of the attractor, the curves in W

s
(0) generate the stable foliation by means of
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taking their closure. Hence, Fig. 5 provides an illustration of the stable foliation by
showing a large number of curves in W

s
(0). The leaves of this foliation intersect the

segment of the diagonal between p− and p+ in unique points. The one-dimensional
Lorenz map is defined on this diagonal segment—or, rather, on the corresponding
interval of the variable x—and it describes how leaves are mapped to leaves under the
Poincaré map on the central region ofΣρ . The Lorenz map is topologically conjugate
to the map

x 
→
{

1 − η | x |α, x ∈ [−1, 0),
−1 + η | x |α, x ∈ (0, 1], (5)

with 0 < α < 1, η ∈ (1, 2) and α η > 1; see [25]. Here, α is the ratio between
the magnitudes of the weak stable and unstable eigenvalues of the equilibrium 0
of the Lorenz system (1). The Lorenz map is not invertible because it maps the
subinterval [−1, 0) to a much larger subinterval in [−1, 1]; due to symmetry, the
same is true for the subinterval (0, 1]. Moreover, the Lorenz map has a discontinuity
at 0, which is also referred to as the critical point; note that 0 corresponds to the point
(0, 0, ρ−1) ∈ W

s
(0) that never returns toΣρ . The critical point 0 has infinitely many

preimages under the Lorenz map, because all points on W
s
(0) eventually map to 0;

compare with Fig. 5. One can also take the point of view that the critical point 0 of
the Lorenz map represents the origin 0 of the Lorenz system; then the (symmetrically
related) first intersection points of W

u
(0) in the central region ofΣρ can be thought

of as the forward (set-valued) image of the critical point 0. In particular, whenever
these two points map to the critical point 0 under some iterate of the Lorenz map
then this corresponds to a homoclinic orbit of 0 in the full Lorenz system.

The Lorenz map of the form (5) is a rigorous description of the dynamics of the
Lorenz system (1) provided that there is an invariant stable foliation. There is every
indication that this is indeed the case in this entire ρ-range of 0 < ρ ≤ 30.1 [43].
Indeed, the Lorenz map has been used to study the (emergence of) chaotic dynamics
for increasing ρ up to ρ = 28 [24, 29, 43]. On the other hand, it is known that for
larger values of ρ the Lorenz system has ‘cusped horseshoes,’ the dynamics of which
is definitely not represented faithfully by the one-dimensional Lorenz map [24, 43].
By which mechanism the stable foliation is lost near ρ ≈ 30.1 is the subject of
ongoing research [12].

A closely-related concept is the so-called Lorenz template [19, 20, 24, 35]. Geo-
metrically, the Lorenz template is obtained from the Lorenz attractor in Fig. 1 by the
identification of points on the diagonal segment in between p− and p+ with points
on the Lorenz attractor via the projection along leaves of the stable foliation in Σρ .
More specifically, consider the points corresponding to the stable projections of the
first intersection points of the two sides of W u(0)withΣρ in the central region where
the direction of the flow is downward. The diagonal segment connecting these two
points contains the point (0, 0, ρ− 1). Initial conditions on the diagonal segment on
either side of (0, 0, ρ− 1) sweep out two surfaces as the flow takes them around p−
and p+, respectively, until they return to the central region ofΣρ as two curves (that
are very close to the intersection of the Lorenz attractor with Σρ). Projection along



Chaos and Wild Chaos in Lorenz-Type Systems 87

stable leaves then identifies these two end curves with the initial diagonal segment.
This segment can, hence, be thought of as the start and finish line on a branched
two-manifold, that is, the topological object obtained by ‘glueing’ the two surfaces
together along the diagonal in the central region of Σρ ; this branched two-manifold
is the Lorenz template. In particular, the Lorenz template allows one to describe
the symbolic dynamics of the knot-types in R

3 of periodic orbits in the Lorenz sys-
tem [19]. Notice that the dynamics from start to finish on the Lorenz template is
exactly given by the Lorenz map.

3 Wild Chaos in a Lorenz-Type System of Dimension Five

The reduction process for the three-dimensional (geometric) Lorenz system can also
be applied to systems with phase-space dimension n ≥ 4. In direct analogy, one
obtains an invariant foliation in a suitable (n − 1)-dimensional cross-section with
leaves of codimension one and dimension n − 2; this would require that, near the
Lorenz attractor, the additional directions are all stronger than those on the Lorenz
attractor. Projection along stable leaves then results in a one-dimensional Lorenz
map, meaning that the dynamics of such a vector field for n ≥ 4 is just like that of
the Lorenz system (1) itself.

To obtain a Lorenz-type vector field in higher dimensions with different dynamics
from that of the Lorenz system (1), one needs to consider an example where the
Poincaré map in a cross-section admits an invariant stable foliation of codimension
at least two. In 2006, Bamón, Kiwi, and Rivera-Letelier [9] constructed such an
abstract n-dimensional Lorenz-type vector field for n ≥ 5 with a stable foliation
of codimension two and dimension n − 3 in the (n − 1)-dimensional cross-section;
the minimal case n = 5 contains all the geometric ingredients, and we restrict
to it for simplicity in the discussion that follows. The central object in [9] is the
corresponding two-dimensional noninvertible quotient map, which is given on the
punctured complex plane as

f : C\{0} → C

z 
→ (1 − λ+ λ | z |a)
( z

| z |
)2

+ 1,
(6)

with parameters a, λ ∈ R in the ranges 0 < a < 1 and 0 < λ < 1. Notice the term
|z|a , indicating a clear similarity with the form (5) of the one-dimensional Lorenz
map.

A planar noninvertible map can have richer dynamics than a one-dimensional
noninvertible map, where homoclinic tangencies can be at most dense in parameter
space. Indeed, [9] provides a proof that there exists a small open region near the
point (a, λ) = (1, 1) in the (a, λ)-plane, such that the map (6) has a homoclinic
tangency for every point from this parameter region; hence, homoclinic tangencies
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occur robustly, and the map, as well as the associated Lorenz-type vector field in R
5,

exhibit wild chaos.
As is the case for the one-dimensional Lorenz map, the origin in C does not have

a well-defined image under (6). Hence, this point is a critical point, which we refer to
as J0. The critical point J0 arises, as in Sect. 2.2, from the fact that it lies on the three-
dimensional stable manifold of an equilibrium e of the five-dimensional Lorenz-type
vector field, where e does not lie in the cross-section on which the four-dimensional
Poincaré map is defined. The equilibrium e has a two-dimensional unstable manifold
that corresponds in the planar map (6) to the critical circle

J1 = {z ∈ C | | z − 1 | = 1 − λ }, (7)

with radius 1 − λ around the point z = 1. The equilibrium e plays the role of the
origin 0 of the Lorenz system (1) and, in complete analogy, the critical circle J1 can
be interpreted as the set-valued image of the critical point J0. The map (6) maps the
punctured complex plane C\J0 in a two-to-one fashion—by angle doubling due to
the term (z/|z|)2—to the region outside the circle J1; the centre of the angle-doubling
is shifted by 1 with respect to J0 = 0. Dynamics and bifurcations of this type of map
are the subject of [28], where we consider a more general family with an additional
complex parameter c for the shift; it is set to c = 1 in (6) for simplicity and in
accordance with the formulation of the map in [9].

Our goal here is to present geometric mechanisms that are involved in the transi-
tion from simple dynamics to wild chaos in the map (6) as the point (a, λ) = (1, 1)
is approached. Key ingredients in this transition are different types of global bifurca-
tions. The map (6) has fixed points and periodic points, which correspond to periodic
orbits of the associated vector field. If they are saddles then these points have sta-
ble and unstable invariant sets, which are the generalisations of stable and unstable
manifolds to the context of noninvertible maps; see, for example, [16, 17, 32] for
more details. Points on the stable set W s(p) of a saddle periodic point p converge to
p under iteration of f k where k is the (minimal) period of p; note that k = 1 if p is a
fixed point. Similarly, points on the unstable set W u(p) of p converge to p via a par-
ticular sequence of preimages of f k . Note that W s(p) and W u(p) of the map (6) are
one-dimensional objects, but they are typically not manifolds. The stable set W s(p)
consists of a primary manifold W s

0 (p) that contains p, and all preimages of W s
0 (p),

so that the stable set is typically a disjoint family of infinitely many one-dimensional
manifolds. The unstable set may be an immersed one-dimensional manifold; how-
ever, the sequence of preimages of points in W u(p)may not be unique, in which case
W u(p) has self-intersections. The stable and unstable sets of a saddle fixed or peri-
odic point of the map (6) correspond to four-dimensional stable and two-dimensional
unstable manifolds of the corresponding saddle periodic orbit in the five-dimensional
Lorenz-type vector field.

Clearly, the stable and unstable sets of a fixed or periodic point p can become
tangent, which is referred to as a homoclinic tangency and corresponds to a tangency
between the respective manifolds of the associated periodic orbit in the five-
dimensional Lorenz-type vector field. To characterise the additional global
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bifurcations that arise in the map (6) it is convenient to consider the backward critical
set

J − := ∪∞
k=0 f −k(J0),

of all preimages of the critical point J0, and the forward critical set

J + := ∪∞
k=0 f k(J1),

of all images of the critical circle J1. Note that J − consists of potentially
infinitely many discrete points, while J + consists of infinitely many closed curves;
we refer to J = J − ∪ J + as the critical set. With this notation, we can define
three further tangency bifurcations: the forward critical tangency where the sta-
ble set W s(p) becomes tangent to the circles in the forward critical set J +; the
backward critical tangency where a sequence of points in the backward critical set
J − lies on the unstable set W u(p); and the forward-backward critical tangency
where a sequence of points in the backward critical set J − lies on the forward criti-
cal set J +. These three global bifurcation involving the critical set J , as well as the
homoclinic bifurcation, are encountered and discussed here as part of the transition
to wild chaos. They are of codimension one, that is, they are encountered generically
at isolated points when a single parameter is changed; their unfoldings are presented
in detail in [28]. Note that a forward or backward critical tangency corresponds to
a heteroclinic bifurcation between the corresponding periodic orbit and the equilib-
rium e of the Lorenz-type vector field. The forward-backward critical tangency, on
the other hand, corresponds to the existence of an isolated homoclinic orbit of the
saddle equilibrium e of the five-dimensional Lorenz-type vector field; it is the higher-
dimensional analogue of how a homoclinic bifurcation in the Lorenz system (1) is
described by the one-dimensional Lorenz map.

3.1 The Transition for Increasing a = λ

We now show a series of phase portraits as panels (a)–(l) of Fig. 6 that illustrate the
bifurcations that are encountered in the transition to wild chaos and generate the
robustness of homoclinic tangencies; more specifically, we increase a and λ along
the diagonal a = λ towards the point (a, λ) = (1, 1), near which wild chaos was
proven to exist [9]. To facilitate the visualisations, we project the complex plane
C onto the Poincaré disk by stereographic projection, where the unit circle, that
is, the boundary of the Poincaré disk represents the directions to infinity. In each
phase portrait we show a suitable number of points in the backward critical set
J − (as dots) and the closed curves in the forward critical set J +. We remark that
the circle J1 with radius 1 − λ appears distorted in all phase portraits as a result
of stereographic projection. For the values a, λ ∈ R that we consider, the map (6)
has one fixed point p on the positive real line and a complex-conjugate pair of fixed
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points q±. We plot these fixed points p and q±, as well as the stable set W s(p) and
unstable set W u(p) of the saddle point p; throughout, the points in J − are branch
points of the stable set W s(p). Notice that all phase portraits are symmetric with
respect to complex conjugation, owing to the fact that a, λ ∈ R. The phase portraits
in Fig. 6 were obtained from computations of the transformed map on the Poincaré
disk as follows: the fixed points p and q± can be found readily; J − is represented
by all backward images of J0 under up to eleven backward iterations, that is, by
∪11

k=0 f −k(J0); similarly, J + is represented by J1 and its next fourteen forward
iterations; to obtain W s(p), we take advantage of the complex-conjugate symmetry
and note that the primary manifold W s

0 (p) is the real halfline (0,∞), which is the
real interval (0, 1] on the Poincaré disk; we computed eleven backward iterates of
W s

0 (p); finally, W u(p) was found by computing a first piece of arclength 5 and then
plotting it and its next six iterates (in this way, we ensure that W u(p) maintains a
suitable and comparable arclength as parameters are changed).

Figure 6a is for a = λ = 0.7, when the map (6) does not have chaotic dynamics,
and all typical orbits converge to one of the two attracting fixed points q±. The two
branches of the unstable set W u(p) (which is an immersed manifold in this case)
spiral towards q+ and q−, respectively. The preimages of W s

0 (p) are organised in
such a way that every point in the backward critical set J − connects four branches
of W s(p). Moreover, J − accumulates on the boundary of the Poincaré disk. The
forward critical set J +, on the other hand, accumulates on the unstable set W u(p).
Figure 6b shows the phase portrait for a = λ = 0.72, just after a Neimark-Sacker
bifurcation (or Hopf bifurcation for maps) [34]. The fixed points q± are now repel-
lors and W u(p) and J + accumulate on two invariant closed curves (not shown),
which correspond to invariant tori in the associated Lorenz-type vector field. As a
and λ change, these invariant closed curves undergo various bifurcations (associ-
ated with resonance phenomena) that we do not discuss here. Figure 6c shows the
phase portrait for a = λ = 0.73277, approximately at the moment that W s(p) and
W u(p) have a first homoclinic tangency. Since W u(p) accumulates on itself, this first
homoclinic tangency is accumulated in parameter space, on the side of larger a = λ,
by infinitely many homoclinic tangencies. As is shown in Fig. 6d for a = λ = 0.745,
after the first homoclinic tangency there is a homoclinic tangle between W s(p)
and W u(p). Therefore, the system is now chaotic in the classical sense, mean-
ing that any homoclinic tangency between W s(p) and W u(p) is accumulated by
further homoclinic tangencies with associated saddle hyperbolic sets and horseshoe
dynamics; see, for example, [11, 39]. Notice also that W s(p) accumulates on itself
and the two branches of the unstable set W u(p) now intersect. Moreover, the forward
critical set J + accumulates on W u(p), so that the first homoclinic tangency is also
accumulated in parameter space, on the side of larger a = λ, by infinitely many
forward critical tangencies; indeed, in Fig. 6d there is a tangle between W s(p) and
J + as a result. Furthermore, the forward critical tangencies have the effect that
the points in J − are branch points to infinitely many, instead of four branches of
W s(p); see also [28]. In Fig. 6d, this can be seen at the origin, where an additional
eight branches are shown to connect to 0; these are preimages of the two additional
branches of W s(p) that intersect J1.
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J0
J1 p

q+

q−

W s( p)

W u( p)

(a) (b)

(d)(c)

Fig. 6 The objects p (cross), q± (triangles when attracting, and squares when repelling), W s(p),
W u(p), J − and J + on the Poincaré disk; from (a) to (d) a = λ take the values 0.7, 0.72, 0.73277
and 0.745; from (e) to (h) a = λ take the values 0.76302, 0.765, 0.77 and 0.8; and from (i) to (l)
a = λ take the values 0.85, 0.87, 0.9 and 0.95

In Fig. 6e for a = λ = 0.76302 one encounters the first backward critical tan-
gency, where the unstable set W u(p) goes through the critical point J0 = 0, which
implies that W u(p) contains two sequences of preimages of J0 (two because of sym-
metry). Since W u(p) accumulates on itself, this first backward critical tangency is
accumulated in parameter space, on the side of larger a = λ, by infinitely many
backward critical tangencies. Observe from Fig. 6f for a = λ = 0.765 how these
interactions with J0 induce effects near J1 and its images. As a result of this first
backward critical tangency, W u(p) has points of self-intersection on each of its two
branches (in addition to the intersections between the two branches). Consider the
region A enclosed by the first segments of the two branches of W u(p) up to when
they meet on the real line. Before the backward critical tangency all points of J −
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(e) (f)

(g) (h)

Fig. 6 (continued)

lie outside the region A . In this and the accumulating further backward critical tan-
gencies, more and more points of J − move inside this region; see also Fig. 6g and
h for a = λ = 0.77 and a = λ = 0.8, respectively. Moreover, the map (6) has a
chaotic attractor in the region A , which is the closure of the unstable set W u(p)
and, hence, also contains p. Because the forward critical set J + accumulates on
W u(p), the first backward critical tangency is also accumulated in parameter space,
on the side of larger a = λ, by infinitely many forward-backward critical tangencies
between J + and J −. The forward-backward critical tangencies lead to the disap-
pearance of certain sequences of backward orbits of J0 from the backward critical set
J −; moreover, the closed curves in J + develop self-intersections in the process.
These effects of the forward-backward critical tangencies are difficult to discern in
the phase portraits (f)–(l) of Fig. 6; see [28] for details and illustrations.
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(i) (j)

(k) (l)

Fig. 6 (continued)

When a = λ is increased further, W u(p) and, thus, the region A grows and
incorporates more and more points of J −; see Fig. 6i–k for a = λ = 0.85, a =
λ = 0.87 and a = λ = 0.9, respectively. At the same time, the sets W s(p), W u(p)
and J seem to become denser in the Poincaré disk, leading to ever more associated
tangency bifurcations when a = λ is increased. As Bamón, Kiwi, and Rivera-Letelier
showed in [9], near a = λ = 1 the tangency bifurcations between stable and unstable
sets of the hyperbolic saddle of (6) occur robustly. This means that there exists
0 � w∗ < 1, such that one finds a homoclinic tangency of the hyperbolic saddle
for every point (a, λ) ∈ (w∗, 1)× (w∗, 1). We believe that Fig. 6l for a = λ = 0.95
gives some impression of what wild chaos, that is, the robustness of homoclinic
tangencies might look like. The saddle point p is only one of uncountably infinitely
many nonwandering points; yet the sets W s(p) and W u(p) and the critical set J
already fill out the Poincaré disk increasingly densely.
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Fig. 7 Bifurcation diagram of (6) in the (a, λ)-plane for a, λ ∈ R. Shown are the curve NS of
Neimarck-Sacker bifurcation of q±, the curve H0 of first homoclinic tangency and two further
nearby curves of homoclinic tangencies, the curves Fk for k ∈ {8, 10, 12, 14, 16} of forward critical
tangencies, the curve B0 of first backward critical tangency and two further nearby curves of
backward critical tangencies (one of which is labelled B2), the curve FB10 of forward-backward
critical tangency, and the curve A (cyan) along which det(D f (p)) = 1. The labelled points along
the diagonal a = λ correspond to the panels of Fig. 6

3.2 The Bifurcation Diagram in the (a, λ)-plane

The bifurcations that are encountered as a = λ is increased towards a = λ = 1 can
be continued as curves when a and λ are allowed to vary independently. For tangency
bifurcations this is done via the formulation of a suitable boundary value problem.
These computations are based on the technique for continuing a locus of homoclinic
tangency described in [10], which has been implemented in Cl_MatContM [18, 23];
details on how we adapted this method can be found in [28]. Figure 7 shows the
resulting bifurcation diagram of (6) in the (a, λ)-plane; the points labelled (a)–(l)
along the diagonal are the parameter points of the phase portraits of Fig. 6. Starting
from the lower-left corner, one first encounters the Neimarck-Sacker bifurcation
NS. The system then becomes chaotic when the curve H0 of homoclinic tangency
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between W s(p) and W u(p) is crossed. As we already discussed, there are many
more homoclinic tangencies that accumulate on H0 and two of them are shown in
Fig. 7. These curves of secondary homoclinic tangencies turn around and cross the
diagonal at least twice, between the points (c) and (d) and between the points (d)
and (e); they each end on the curve B0 of first backward critical tangency where
W u(p) interacts with J −. Also shown in Fig. 7 are five curves Fk of forward critical
tangency between the primary manifold W s

0 (p) and f (k−1)(J1), namely, those for
k = 8, 10, 12, 14 and 16. Observe how each curve Fk passes very close to H0 before
turning away towards the right boundary of Fig. 7 and note that Fk for k = 12, 14
and 16 cross the diagonal very close to the curve H0. The curve B0 is accumulated by
curves of further backward critical tangencies, for example, the curve B2. Figure 7
also shows the curve FB10 of forward-backward critical tangency between J0 and
f 9(J1), which lies very close to B0.

While the proof in [9] is valid only very close to the point a = λ = 1, the
bifurcation diagram in Fig. 7 suggests that one might expect to encounter wild chaos
in a much larger region of the (a, λ)-plane. As soon as B0 is crossed, infinitely
many forward-backward critical tangencies have occured, which are codimension-
one homoclinic bifurcations of the equilibrium e of the five-dimensional Lorenz-type
vector field; as such, they play the role of the homoclinic bifurcation in the Lorenz
system (1). Apart from this geometric ingredient, the proof in [9] also requires that
the parameters are such that (6) is area-expanding in a neighbourhood of the chaotic
attractor. In [28] we conjecture that homoclinic tangencies occur robustly to the right
of the first backward critical tangency B0; this region is shaded in Fig. 7. This is
based on the suggestion that (6) is area-expanding in a neighbourhood of a subset of
the attractor in this region. A sufficient (but not necessary) condition to ensure this
area-expanding property is that the product of the eigenvalues of p exceeds 1. The
curve A in Fig. 7 is the locus where det(D f (p)) = 1, and (6) is area-expanding in a
neighbourhood of the chaotic attractor in the darker shaded region to the right of A.
Hence, in this darker region wild chaos should certainly be expected. In particular,
this means that the phase portraits of Fig. 6k and l, and possibly also those of Fig. 6g–j,
are already from the regime of wild chaos.

4 Conclusions

We presented a geometric perspective of the techniques used to prove the existence
of chaos in the Lorenz system (1). The same approach can also be applied to the study
of wild chaos in higher-dimensional Lorenz-type vector fields. We focussed here on
the two-dimensional noninvertible map (6) by Bámon, Kiwi and Rivera-Letelier [9]
and discussed how interactions between its invariant objects are directly related to
homoclinic and heteroclinic bifurcations of the associated five-dimensional Lorenz-
type vector field. In this way, we were able to describe geometric changes in (6)
during the transition from non-chaotic, via chaotic to wild chaotic dynamics. Our
numerical results provide guidance for further theoretical study. In particular, we
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proposed the conjecture that the wild chaotic regime for (6) starts as soon as the
first backward critical tangency bifurcation has occurred. Due to the accumulative
nature of the respective objects, the first backward critical tangency induces infinitely
many forward-backward critical tangencies, which emerge as a main ingredient for
wild chaos. It remains to show that, in this regime, the attractor has the necessary
area-expanding properties. The numerical methods we employed can be used to
investigate other two-dimensional noninvertible maps and associated vector fields.
In particular, it is of interest to explore possible routes to wild chaos in these other
examples.
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Almost Automorphic Sequences
and Their Application to a Model
of a Cellular Neural Network

Syed Abbas

Abstract In this paper we show the almost automorphic sequence solution of a
model of a cellular neural networks with piecewise constant argument. We convert
the model into a corresponding difference equation model and then show the existence
and global attractivity of solutions.

Keywords Almost automorphic sequence ·Difference equations ·Neural networks

1 Introduction

Since the introduction of almost periodic functions by Bohr [1], there have been many
important generalizations of these functions. One of the important generalization of
almost periodic functions is that of almost automorphic functions introduced by
Bochner [2].

It is natural to inquire about a discrete counterpart of these functions. The theory of
discrete almost automorphic sequence develops in parallel with that of almost auto-
morphic functions. As we know, difference equations play an important role in many
fields like numerical analysis, population dynamics, etc. Hence, many mathemati-
cians have investigated the almost periodicity/almost automorphy of the solution
to difference equations (see: [3–9]). Application of these functions in differential
equations has been studied by several authors (for example [10–12] and references
therein).

Neural networks are important in artificial networks because of their richness
as theoretical models of collective dynamics. Many authors have recently studied
the dynamics of neural-networks. For example, the network model proposed by
Hopfield [13] is described by an ordinary differential equation of the form

S. Abbas (B)
School of Basic Sciences, Indian Institute of Technology Mandi,
Mandi 175001, India
e-mail: sabbas.iitk@gmail.com

© Springer-Verlag Berlin Heidelberg 2014
Z. AlSharawi et al. (eds.), Theory and Applications of Difference Equations and Discrete
Dynamical Systems, Springer Proceedings in Mathematics & Statistics 102,
DOI 10.1007/978-3-662-44140-4_5

101



102 S. Abbas

Ci
dxi(t)

dt
= − 1

Ri
xi(t)+

n∑

j=1

Tijfj(xj(t)), 1 ≤ i ≤ n, t ≥ 0, (1)

where the variable xi(t) denotes the voltage of the input of the ith neuron. Each
neuron is characterized by an input capacitance Ci and a transfer function fi(x). The
connection matrix element Tij has a value 1

Rij
when the non-inverting output of the

jth neuron is connected to the input of the ith neuron through a resistance Rij, and
a value −1

Rij
when the inverting output of the jth neuron is connected to the input of

the ith neuron through a resistance Rij. The parallel resistance at the input of each

neuron is defined by Ri =
( ∑n

j=1 |Tij|
)−1

. The nonlinear transfer function gi(u) is

sigmoidal, saturating at 1 with maximum slope at u = 0. By defining

bi = 1

CiRi
, aij = Tij

Ci

we can re-write the differential equations as

dxi(t)

dt
= −bixi(t)+

n∑

j=1

aijfj(xj(t)), 1 ≤ i ≤ n.

The theory of discrete almost automorphic sequences has been developed in a
paper by Araya et al. [7]. Using this foundation, we establish the existence of a
unique almost automorphic sequence solution for a general discrete model of cellular
neural network. A cellular neural network is a nonlinear dynamic circuit consisting of
many processing units called cells arranged in two or three dimensional array. This is
useful in the areas of signal processing, image processing, pattern classification and
associative memories. Hence, the application of cellular networks is of great interest
to many researchers. For more details on neural networks, the interested reader may
consult [3, 5, 6, 8, 14–16]. In [8, 14–16] the authors dealt with the global exponential
stability and the existence of a periodic solution of a cellular neural network with
delays using the general method of Lyapunov functional. The discrete analogue of
continuous time cellular network models is important for theoretical analysis as well
as for implementation. Thus, it is essential to formulate a discrete time analogue of
continuous time network. A reasonable method is to discretize the continuous time
network. For detailed analysis on the discretization method, the reader may consult
Mohamad and Gopalsamy [16], Stewart [17].

The purpose of this paper is to study the problem of existence, uniqueness and
exponential attractivity of almost automorphic solution of the following difference-
differential equation model of a neural network,

dxi(t)

dt
= − ai([t])xi(t)+

m∑

j=1

bij([t])fj(xj(t))
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+
m∑

j=1

cij([t])fj(xj(s − τij)ds)+ Ii([t]),

xi(t) = φi(t), t ∈ [−τij, 0], (2)

where i = 1, 2, . . . ,m and [·] denote the greatest integer function. The function xi(t)
is the potential of the cell i at time t and fi is the nonlinear output function. bij and
cij denote the strengths of connectivity between the cells i and j at the instants t and
t − τij, respectively. τij is the time delay required in processing and transmitting a
signal from jth cell to the ith cell. We denote the ith component of an external input
source from outside the network to the cell i by Ii. This is a generalization of the
result of paper [5] for delayed model.

2 Preliminaries and Main Results

Assume X be a real or complex Banach space endowed with the norm ‖ · ‖X .

Definition 1 A function f : Z → X is said to be almost automorphic sequence if
for every sequence of integer {kl}l∈N there exists a subsequence {kn}n∈N such that

f (k + kn) → g(k)

and
g(k − kn) → f (k)

for each k ∈ Z. This is also equivalent to

lim
n→∞ lim

m→∞ f (k + kn − km) = f (k)

for each k ∈ Z.

Denote by AAS(X) the set of all almost automorphic sequences from Z to X. Then
(AAS(X), ‖ · ‖AAS(X)) is a Banach space with the supremum norm given by

‖u‖AAS(X) = sup
k∈Z

‖u(k)‖X .

Definition 2 A function f : Z × X → X is said to be almost automorphic sequence
in k for each x ∈ X if for every sequence of integers {kl}l∈N there exists a subsequence
{kn}n∈N such that

f (k + kn, x) → g(k, x)
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and
g(k − kn, x) → f (k, x)

for each k ∈ Z and x ∈ X.

The set of all such functions is denoted by AAS(Z × X,X).
For any almost automorphic functions f (t) over R, the sequence {xn} define by

x(n) = f (n) for n ∈ Z is almost automorphic.

Example Consider the function

f (k) = signum(cos 2πkθ).

This function is almost automorphic.
The discrete analogue of the model (2) is given by

xi(n + 1) = xi(n)e
−ai(n) + 1 − e−ai(n)

ai(n)

{ m∑

j=1

bij(n)fj(xj(n))

+
m∑

j=1

cij(n)fj(xj(n − τ))+ Ii(n)
}
,

xi(n) = φi(n), τ ≤ n ≤ 0, (3)

where i = 1, 2, . . . ,m, n ∈ Z. We prove the existence and global attractivity of
almost automorphic sequence solutions of Eq. (3) in this section. For more details of
this kind of model without delay term and cij = 0, we refer to Huang et al. [9] in
which the authors proved the existence of an almost periodic sequence solution.

The assumptions described below are necessary to show the existence of almost
automorphic solutions of Eq. (3).

(A1) ai(n) > 0 is almost automorphic sequence and bij(n), cij(n), Ii(n) are almost
automorphic sequence for i, j = 1, 2, . . . ,m.

(A2) There exist positive constants Mj and Li such that |fj(x)| ≤ Mj and |fi(x) −
fi(y)| ≤ Li|x − y| for each x, y ∈ R and j = 1, 2, . . . ,m; i = 1, 2, . . . ,m.

For discrete Eq. (3), let us introduce the following notations,

Ci(n) = e−ai(n), Dij(n) = bij(n)
1 − e−ai(n)

ai(n)
,

Eij(n) = cij(n)
1 − e−ai(n)

ai(n)
, Fi(n) = Ii(n)

1 − e−ai(n)

ai(n)
.

Using the above notations, we can re-write Eq. (3) as,
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xi(n + 1) = Ci(n)xi(n)+
m∑

j=1

(
Dij(n)fj(xj(n))+ Eij(n)fj(xj(n − τ))

)
+ Fi(n), (4)

for i = 1, 2, . . . ,m. The Eq. (4) is clearly a difference equation and in this work we
focus on this equation only.

Denote:
C∗

i = sup
n∈Z

|Ci(n)|, I∗
i = sup

n∈Z

|Ii(n)|,

D∗
ij = sup

n∈Z

|Dij(n)|, E∗
ij = sup

n∈Z

|Eij(n)|, F∗
i = sup

n∈Z

|Fi(n)|,

b∗
ij = sup

n∈Z

|bij(n)|, a∗
i = inf

n∈Z
ai(n), Pi =

m∑

j=1

(D∗
ij + E∗

ij)Mj + F∗
i .

Definition 3 A solution x(ν) = (x1(ν), . . . , xm(ν))
T of (4) is said to be globally

attractive if for any other solution y(ν) = (y1(ν), . . . , ym(ν))
T of (4), we have

lim
ν→∞ |xi(ν)− yi(ν)| = 0.

Lemma 1 Suppose assumption (A1) holds, then Ci ∈ AAS and Dij, Eij,

Fi ∈ AAS for i, j = 1, 2, . . . ,m.

Proof From the assumption (A1)we know that ai(n) is almost automorphic sequence.
Thus for any sequence kl there exists a subsequence km such that

ai(n + km) → ai1(n) and ai1(n − km) → ai(n).

Denoting Ci1(n) = e−ai1(n), we have

|Ci(n + km)− Ci1(n)|
= |e−ai(n+km) − e−ai1(n)| ≤ |ai(n + km)− ai1(n)| → 0, (5)

as m → ∞. Also

|Ci1(n − km)− Ci(n)|
= |e−ai1(n−km) − e−ai(n)| ≤ |ai1(n − km)− ai(n)| → 0, (6)

as m → ∞. Thus one can conclude that Ci(n) are almost automorphic. Now since
bij and Ii are almost automorphic, we have

bij(n + km) → b̄ij(n) and b̄ij(n − km) → bij(n)
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and
Ii(n + km) → Īi(n) and Īi(n − km) → Ii(n).

By assuming Dij(n) = bij(n)
1−e−ai(n)

ai(n)
and D̄ij(n) = b̄ij(n)

1−e−ai(n)

ai(n)
, we obtain

|Dij(n + km)− D̄ij(n)|
=

∣
∣
∣bij(n + km)

1 − e−ai(n+km)

ai(n + km)
− b̄ij(n)

1 − e−ai(n)

ai(n)

∣
∣
∣

≤ |bij(n + km)− b̄ij(n)| ×
∣
∣
∣
1 − e−ai(n+km)

ai(n + km)

∣
∣
∣

+ |b̄ij(n)| ×
∣
∣
∣
1 − e−ai(n+km)

ai(n + km)
− 1 − e−ai(n)

ai(n)

∣
∣
∣

→ ∞, as m → ∞. (7)

Similarly

|D̄ij(n − km)− Dij(n)|
=

∣
∣
∣b̄ij(n − km)

1 − e−ai(n−km)

ai(n − km)
− bij(n)

1 − e−ai(n)

ai(n)

∣
∣
∣

≤ |b̄ij(n − km)− bij(n)| ×
∣
∣
∣
1 − e−ai(n−km)

ai(n − km)

∣
∣
∣

+ |bij(n)| ×
∣
∣
∣
1 − e−ai(n−km)

ai(n − km)
− 1 − e−ai(n)

ai(n)

∣
∣
∣

→ ∞, as m → ∞. (8)

From the above analysis, we conclude that D′
ijs are almost automorphic sequences.

By similar analysis, it is not difficult to show that the sequences Eij and Fi are also
almost automorphic.

Lemma 2 Under the assumptions (A1), (A2), every solution of (4) is bounded.

Proof One can easily observe that the relation

Ci(n)xi(n)− Ri ≤ xi(n + 1) ≤ Ci(n)xi(n)+ Ri,

where Ri = ∑m
j=1 D∗

ij + F∗
i holds. Consider the following difference equations

x̄i(n + 1) = Ci(n)x̄i(n)+ Ri,

where x̄i(0) = xi(0). Using induction we have
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x̄i(n) =
n∏

k=1

Ci(k)x̄i(0)+ Ri

( n−1∑

l=1

l∏

k=1

Ci(k)+ 1
)

≤ e−na∗
i x̄i(0)+ Ri(

n−1∑

l=1

e−la∗
i + 1)

≤ |x̄i(0)| + Ri

1 − e−a∗
i
. (9)

One can easily observe that xi(n) ≤ x̄i(n). Now using the difference equation

x̃i(n + 1) = Ci(n)x̃i(n)− Ri

and doing the similar calculation we get

x̃i(n) ≥ −|x̄i(0)| − Ri

1 − e−a∗
i
.

Combining the above two, we get the following estimate

−|xi(0)| − Ri

1 − e−a∗
i

≤ xi(n) ≤ |xi(0)| + Ri

1 − e−a∗
i
.

Thus xi are bounded.
Now consider the following difference equations

xi(n + 1) = Ci(n)xi(n)+ Fi(n). (10)

Lemma 3 Under assumption (A1), there exists a almost automorphic sequence
solution of (10).

Proof Using the induction argument, one obtain

xi(n + 1) =
n∏

k=0

Ci(k)xi(0)+
n∑

l=0

n∏

k=n−l+1

Ci(k)Fi(n − l)

= e−∑n
k=0 ai(k)xi(0)+

n∑

l=0

Ii(n − l)
1 − e−ai(n−l)

ai(n − l)
e−∑n

k=n−l+1 ai(k).

Consider the sequence

x̂i(n) =
∞∑

l=0

Ii(n − l)
1 − e−ai(n−l)

ai(n − l)
e−∑n

k=n−l+1 ai(k).
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Since

|x̂i(n)| ≤
∞∑

l=0

I∗
i

1 − e−a∗
i

a∗
i

e−(l−1)a∗
i =

∞∑

l=0

ea∗
i

1 − e−a∗
i

a∗
i

e−la∗
i ≤ I∗

i ea∗
i

a∗
i
.

Thus the sequence x̂i(n) is well defined. It is easy to verify that

x̂i(n + 1) = Ci(n)x̂i(n)+ Fi(n).

Hence the sequence x̂i = {x̂i(n)} is bounded. Now define

x̂i(n) =
∞∑

l=0

Ii(n − l)
1 − e−ai(n−l)

ai(n − l)
e−∑n

k=n−l+1 ai(k)

and

ŷi(n) =
∞∑

l=0

Īi(n − l)
1 − e−ai(n−l)

ai(n − l)
e−∑n

k=n−l+1 ai(k).

For any sequence kl there exists a sequence km such that

|x̂i(n + km)− ŷi(n)|

=
∣
∣
∣

∞∑

l=0

Ii(n + km − l)
1 − e−ai(n+km−l)

ai(n + km − l)
e−∑n

k=n−l+1 ai(k+km)

−
∞∑

l=0

Īi(n − l)
1 − e−ai(n−l)

ai(n − l)
e−∑n

k=n−l+1 ai(k)
∣
∣
∣

≤
∞∑

l=0

(
|Ii(n + km − l)− Īi(n − l)|1 − e−ai(n+km−l)

|ai(n + km − l)| e−∑n
k=n−l+1 |ai(k+km)|

+
∣
∣
∣Īi(n − l)

∣
∣
∣ ×

∣
∣
∣
1 − e−ai(n+km−l)

ai(n + km − l)
e−∑n

k=n−l+1 ai(k+km)

− 1 − e−ai(n−l)

ai(n − l)
e−∑n

k=n−l+1 ai(k)
∣
∣
∣
)

≤ ε
ea∗

i

a∗
i

+ ε
I∗
i ea∗

i

a∗
i

2 ≤ ea∗
i

a∗
i
ε + I∗

i ea∗
i

a∗
i

2 ε. (11)

From the above calculations, we obtain

x̂i(n + km) → ŷi(n) m → ∞.
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Similarly one can show that

ŷi(n − km) → x̂i(n) m → ∞.

Hence x̂i are almost automorphic sequences.

Theorem 1 If assumptions (A1), (A2) hold, then there exists a unique almost auto-
morphic sequence solution of (4) which is globally attractive, provided

max
1≤i≤m

{
C∗

i +
m∑

j=1

(D∗
ij + E∗

ij)Lj

}
< 1.

Proof Denote a metric d : AAS × AAS → R
+, by

d(x, y) = sup
n∈Z

max
1≤i≤m

|xi(n)− yi(n)|.

Now define a mapping F : AAS → AAS by Fx = y, where

Fx = (F1x,F2x, . . . ,Fmx)T

such that Fix = yi and yi = {yi(n)}. Define

yi(n + 1) = Ci(n)xi(n)+
m∑

j=1

(
Dij(n)fj(xj(n))+ Eij(n)fj(xj(n − τ))

)
+ Fi(n),

where x̂i are almost automorphic sequence solution of (10). Using Lemma 1 and
assumption (A2), we see that F maps almost automorphic sequences into almost
automorphic sequences. Now denote

max
1≤i≤m

{C∗
i +

m∑

j=1

(D∗
ij + E∗

ij)Lj} = r < 1.

For x, y ∈ AAS, we have

‖Fx − Fy‖ = sup
n∈Z

max
1≤i≤m

m∑

j=1

∣
∣
∣[(Dij(n)(fj(xj(n))− fj(yj(n)))

+ (Eij(n)(fj(xj(n − τ))− fj(yj(n − τ)))]
∣
∣
∣

≤ sup
n∈Z

max
1≤i≤m

m∑

j=1

D∗
ijLj|xj(n)− yj(n)|
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+ sup
n∈Z

max
1≤i≤m

m∑

j=1

E∗
ijLj|xj(n − τ)− yj(n − τ)|

≤ max
1≤i≤m

{C∗
i +

m∑

j=1

(D∗
ij + E∗

ij)Lj}‖x − y‖

≤ r‖x − y‖. (12)

Hence F is a contraction. It follows that Eq. (4) has a unique almost automorphic
sequence x.

Let y be any sequence satisfying Eq. (4). Consider Q(n) = x(n) − y(n), then
we get

Qi(n + 1) = Ci(n)Qi(n)+
m∑

j=1

(
Dij(n)(fj(xj(n))− fj(yj(n)))

+Eij(n)(fj(xj(n − τ))− fj(yj(n − τ)))
)
. (13)

Taking modulus of both sides one has

|Qi(n + 1)| ≤ C∗
i |Qi(n)| +

m∑

j=1

D∗
ijLj|Qj(n)| +

m∑

j=1

E∗
ijLj|Qj(n − τ)|.

Defining Q(n) = max1≤i≤m |Qi(n)|, we have

|Q(n + 1)| ≤ C∗
i |Q(n)| +

m∑

j=1

(D∗
ijLjQ(n)+ E∗

ijLjQ(n)) ≤ rQ(n). (14)

By induction we have
Q(n) ≤ rnQ(0).

Hence
|xi(n)− yi(n)| → 0 as n → ∞.

Thus x is a unique globally attractive almost automorphic sequence solution of (4).
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Advances in Periodic Difference Equations
with Open Problems

Ziyad AlSharawi, Jose S. Cánovas and Antonio Linero

Abstract In this paper, we review some recent results on the dynamics of
semi-dynamical systems generated by the iteration of a periodic sequence of contin-
uous maps. In particular, we state several open problems focused on the structure of
periodic orbits, forcing between periodic orbits, sharing periodic orbits, folding and
unfolding periodic systems, and on applications of periodic systems.

1 Introduction

Let C(I ) denote the set of continuous maps f : I → I where I is a compact
subinterval of the real line. We consider f0, . . . , f p−1 ∈ C(I ). These maps generate
a semi-dynamical system [33], which we denote by (I, [ f0, . . . , f p−1]). For any
x ∈ I , the orbit through x is denoted by Orb(x, [ f0, . . . , f p−1]) and given by the
solution of the non-autonomous difference equation

{
x0 = x,
xn+1 = fn mod p(xn).

(1)

The number p is called the period of the system and it is always considered to be
minimal.
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Periodic difference equations have been studied by several authors recently (see
for instance [6, 8, 9, 11, 15, 16, 23, 28–30, 33]. The interest for studying periodic
discrete systems is motivated by applications in population dynamics, the (see e.g.
[27] and [38]) and economic dynamics (see the so-called duopolies (see e.g. [44]
and [47]). When one observes the orbit (xn) of a point x ∈ I , it is easy to note that
the subsequences (x pn), (x pn+1), . . . , (x pn+p−1) are respectively the orbits of the
initial points

x0, f0(x0), . . . , ( f p−2 ◦ . . . ◦ f0)(x0)

under the iteration of the individual maps

F0, F1, F2, . . . , Fp−1,

where Fj = f(p−1+ j)mod p ◦ . . . ◦ f j+1 ◦ f j for j = 0, 1, . . . p − 1. Therefore,
one might expect that the dynamics can be completely given by the dynamics of the
above individual maps. Indeed, this is true for some characteristics of the dynamical
system. For instance, the topological entropy of [ f0, . . . , f p−1] can be computed by
means of the topological entropy of f p−1 ◦ . . . ◦ f0 (see [40]). On the other hand,
the ω-limit set ω(x, [ f0, . . . , f p−1]), which is the set of limit points of the orbit with
initial condition x , can be obtained from the equality

ω(x, [ f0, . . . , f p]) = ω(x, f p−1 ◦ . . . ◦ f0) ∪ ω( f0(x), f0 ◦ f p−1 ◦ . . . ◦ f1) ∪ . . .
. . . ∪ ω(( f p−2 ◦ . . . ◦ f0)(x), f p−2 ◦ . . . ◦ f0 ◦ f p−1)

= ω(x, F0) ∪ ω( f0(x), F1) ∪ . . . ∪ ω(( f p−2 ◦ . . . ◦ f0)(x), Fp−1)

where each ω(z j , Fj ) is meant the set of limit points of the orbit of z j = ( f j−1 ◦ . . . ◦ f0)(x)
under the interval map Fj , j = 0, 1, . . . , p − 1, (here, z0 = x).

The aim of this paper is to show that, even when many dynamical properties can
be studied by the folded dynamical systems, there are several open problems that
deserve investigation. The paper is organized in sections and each section covers a
topic that includes some proposed open problems.

In Sect. 2, we deal with the set of periods Per[ f0, . . . , f p−1] of periodic non-
autonomous systems. In Sect. 3 we analyze how this set can be altered by the effect
of folding some maps of the periodic non-autonomous system in order to obtain a
new system, of possibly shorter period. After this, we present in Sect. 4 the question
of studying the resulting period when we combine strings of two given periodic
sequences. Another problem related to periodic orbits appears in Sect. 5: it is an open
problem to determine whether or not the intersection of the sets of periodic points
of two commuting interval maps is empty. Section 6 is devoted to the Parrondo’s
paradox. Finally, we present some interesting applications related with the dynamics
of population models described by periodic non-autonomous systems.
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2 Periodic Orbits in Periodic Non-autonomous Systems

When Eq. (1) is composed of one map, say f, an orbit Orb(x, f ) = (xn) is said to
be periodic if there is q ∈ N := {1, 2, . . .} such that xn+q = xn for all n ≥ 0. The
smallest number q satisfying this condition is called the period or order, and denoted
by ord f (x). In the case of discrete dynamical systems on the interval I, the well–
known Sharkovsky‘s theorem characterizes the set of periods of f , denoted Per( f ).
More precisely, we consider the following order in the set of natural numbers N.

3 >s 5 >s 7 >s · · ·>s 2 · 3 >s 2 · 5 >s 2 · 7 >s · · ·
2n · 3 >s 2n · 5 >s 2n · 7 >s · · ·>s 2n+1 >s 2n >s · · ·>s 2 >s1.

For n ∈ N ∪ {2∞}, define S (n) = {m ∈ N : n >sm} ∪ {n} and S (2∞) =
{2n : n ∈ N ∪ {0}}. Sharkovsky’s theorem states that if f has a periodic orbit
(periodic sequence) of period n, then it has periodic points (periodic sequences) of
period m ∈ S (n). Moreover, for any n ∈ N ∪ {2∞} there is f ∈ C(I ) such that
Per( f ) = S (n) (see [52] or [32] for a recent proof of Sharkovsky’s theorem).

In the case of periodic non-autonomous systems, a generalization of Sharkovsky’s
theorem is given in [11]. For a fixed p ∈ N, consider a p-periodic system defined
by the maps [ f0, . . . , f p−1]. For q ∈ N, define the clusters

Ap,q = {n : lcm(n, p) = q · p} = {n : q = n

gcd(n, p)
}.

Notice that p · q ∈ Ap,q . Now, define the equivalence relation “∼p” on N by stating
that n ∼p m, n,m ∈ N, if and only if n and m belong to the same set Ap,q for some
q ∈ N. If we denote any equivalence class Ap,q by [q], we define the order on N/ ∼p

by [n] >s[m] if and only if n >sm. Now, [q] ∈ Per([ f0, . . . , f p−1])/ ∼p denotes
that Ap,q ∩ Per([ f0, . . . , f p−1]) is nonempty. The generalization in [11] shows if
[n] ∈ Per([ f0, . . . , f p−1])/ ∼p, then for any [m] ∈ N/ ∼p such that [n]>s[m],we
have [m] ∈ Per([ f0, . . . , f p−1])/ ∼p. The proof of this result is based on two facts:
Sharkovsky’s theorem and the fact that if m ∈ Per([ f0, . . . , f p−1]) and m ∈ [q],
then q ∈ Per( f p−1 ◦ . . . ◦ f0).

When p = 2, another approach was used in [23] to characterize the structure of
the set of periods Per([ f0, f1]). More precisely, set

N
∗ := N \ ({2n − 1 : n ∈ N} ∪ {2}).

The following result is given in [23].

Theorem 1 Each of the following holds true for a 2-periodic system:

(a) If [ f0, f1] has a periodic orbit of period n ∈ N
∗ ∪ {2∞}, then S (n)\{1, 2} ⊂

Per[ f0, f1].
(b) If 2n + 1 ∈ Per[ f0, f1], n ≥ 1, then S (2 · 3)\{1} ⊂ Per[ f0, f1].
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(c) There is a 2-periodic system [ f0, f1] such that Per([ f0, f1]) is {1}, {2} or {1, 2}.
(d) For any n ∈ N

∗ ∪ {2∞}, there is a 2-periodic system [ f0, f1] such that one of
the following is satisfied.

d.1. Per([ f0, f1]) = S (n).
d.2. Per([ f0, f1]) = S (n)\{1}.
d.3. Per([ f0, f1]) = S (n)\{2}.

(e) For any subset of odd numbers Imp ⊆ {2n + 1 : n ∈ N} there is a 2-periodic
system [ f0, f1] such that one of the following is satisfied.

e.1. Per([ f0, f1]) = Imp ∪ (S (2 · 3)\{1}).
e.2. Per([ f0, f1]) = Imp ∪ S (2 · 3).

Notice that the case Per([ f0, f1]) = Imp ∪ (S (2 · 3)\{2}) is not allowed, that is,
if 2n + 1 ∈ Per([ f0, f1]) for some n ∈ N, then automatically 2 ∈ Per([ f0, f1]). In
addition, for n ∈ N

∗ ∪ {2∞}, n = 2 · 3, there are no continuous maps f0, f1 ∈ C(I )
such that Per([ f0, f1]) = Imp ∪ (S (n)\{1}) or Per([ f0, f1]) = Imp ∪ (S (n)\{2})
or Per([ f0, f1]) = Imp ∪ S (n).

The following frame summarizes the forcing (where n >2m is meant that the
presence of a period n in the alternated system forces the existence of periodic
sequences having order m):

{2 · n + 1 : n ∈ N} >2 2 · 3 >2 2 · 5 >2 2 · 7 >2 . . .

2n · 3 >2 2n · 5 >2 2n · 7 >2 · · ·>2 2n >2 · · ·>2 22 >2 (1 or/and 2).

The generalization of Sharkovsky’s theorem given by AlSharawi et al. in [11] lacks
the details about the forcing relationship within each equivalence class [q] = Ap,q .

On the other hand, the result of Cánovas and Linero in [23] gives the exact forcing
between cycles when p = 2, but lacks the generality for p > 2. Since the results in
[11] and [21], several attempts have been made to give the exact forcing within each
equivalence class [q] [6, 8, 15]. Although progress has been made in special cases,
the general case is still open, which motivates our first open problem.

Open Problem 1 Extend Theorem1 to periodic sequences of maps of arbitrary
period, i.e., characterize the set of periods Per([ f0, . . . , f p−1]) for any positive
integer p.

In each equivalence class or cluster [q] = Ap,q , there is one period, namely
pq, that does not depend on the intersection between the maps f0, f1, . . . , f p−1,

while the other periods need certain intersections between the maps [8, 15]. This
observation leads to dividing the periods into the ones that are generic proper-
ties of the intersections, and the ones that are generic properties of the iterations.
Indeed, establishing a connection between those two sets was one of the objec-
tives in [6, 8, 12]. Examples were constructed [6] to show that the existence of
m ∈ Per([ f0, . . . , f p−1]) for some m ∈ Ap,q , where q > 1 is a power of 2, does



Advances in Periodic Difference Equations with Open Problems 117

not guarantee that pq ∈ Per([ f0, . . . , f p−1]). However, the following problem is
still open.

Open Problem 2 Suppose m ∈ Per([ f0, . . . , f p−1]) for some m ∈ Ap,q , where
q > 1 is an odd number. Prove that pq ∈ Per([ f0, . . . , f p−1]).

It is well known that Sharkovsky’s theorem works under certain modifications
for other one-dimensional spaces, as the circle -with some modifications as a
consequence of the degree of a circle map-, even for classes of n-dimensional
continuous maps, for instance the so-called triangular maps G(x1, x2, . . . , xn) =
(g1(x1), g2(x1, x2), . . . , gn(x1, x2, . . . , xn)) (see [5] for more details). To this
respect:

Open Problem 3 Extend Theorem1 to periodic sequences of two continuous circle
maps, that is, characterize the set of periods Per([ f0, f1]), where f0, f1 : S

1 → S
1

are continuous.

3 Folding in Periodic Systems

For a p-periodic system [ f0, . . . , f p−1], it is possible to fold some of the maps
to obtain a system of possibly shorter period. For instance, an obvious situation is
the p-fold map F0 := f p−1 ◦ f p−2 ◦ · · · ◦ f0, which changes the p-periodic non-
autonomous system into an autonomous system. In general, for any 1 ≤ k ≤ p − 1,
we can fold the maps

fk−1 ◦ · · · ◦ f0 =: F0, f2k−1 ◦ · · · ◦ fk =: F1, f3k−1 ◦ · · · ◦ f2k =: F2, · · · (2)

to form another periodic system [F0, F1, . . . , F p
gcd(p,k)

]. Some caution must be made

here about the period of the new periodic system. It may not be p
gcd(p,k) . Indeed, take

the 4-periodic system [ f, f −1, f −1, f ] and k = 2, then the folded system [F0, F1]
is 1-periodic rather than 2-periodic. The notion of folding was introduced in [6]. The
scenario of having [F0, F1, . . . , F p

gcd(p,k)
] with a period less than p

gcd(p,k) is called

degenerate scenario and has been avoided. The case when k is a divisor of p is studied
in [12] and connections between the cycles of the folded and unfolded systems have
been established. However, for general k, the connection between the folded and
unfolded systems still open for further investigation, which motives the next open
problem.

Open Problem 4 Consider the p-periodic system [ f0, . . . , f p−1], and let 1 ≤ k ≤
p. Consider the maps F0, F1, . . . , F p

gcd(p,k)
as defined in (2). What is the relationship

between Per([ f0, . . . , f p−1]) and Per([F0, F1, . . . , F p
gcd(p,k)

])?
Periodic difference equations with delay of the form yn+1 = gn mod p(yn−(k−1))

have been studied by AlSharawi et al. in [10], and a characterization of the periodic
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structures was given. To visualize the orbits in this case, consider p = 6 and k = 4,
then orbits of yn+1 = gn mod 6(yn−3) can be written in matrix form as

y−3 y−2 y−1 y0
g0 g1 g2 g3
g4 g5 g0 g1
g2 g3 g4 g5.

From the columns of this matrix, observe that each column gives a periodic system
of period p

gcd(p,k) ,which can be assumed to be the minimal period. This observation
motivates the following problem.

Open Problem 5 Suppose there is a p-periodic system [ f0, . . . , f p−1],which is un-
known to us, but we know one of its folded systems [F0, F1, . . . , F p

gcd(p,k)
].What kind

of similarity (if any) in periodic structure do we have between the unfolded p-periodic
system [ f0, . . . , f p−1] and the periodic system with delay xn+1 = Fn(xn−(k−1))?

4 Merging Periodic Sequences

In the unfolding process of a p
k −periodic system [F0, F1, . . . , F p

k
], we find our-

selves dealing with sequences that are merged in a certain way [12]. Therefore, we
find the notion of merging two periodic sequences to be related to the topic of the
previous section, and therefore, we find it is worth addressing here. Suppose we have
two periodic sequences {an} and {bn} of periods q1 and q2, respectively. The two
sequences can be thought of as two periodic signals or codes coming out of two
machines. After each string of length k1 produced by the first machine (a k1 string
of {an}), the second machine releases a k2 string (a k2 string of {bn}). The obtained
signal has the structure [an, bn] :=

k1 string
︷ ︸︸ ︷
a1, a2, . . . , ak1 ,

k2 string
︷ ︸︸ ︷
b1, b2, . . . , bk2 ,

k1 string
︷ ︸︸ ︷
ak1+1, ak1+2, . . . , a2k1 , bk2+1, . . . (3)

Before we proceed, we clarify the notion by an illustrative example.

Example 1 For n ∈ N, consider an = n mod 4 and bn = 4 + (n mod 6). Thus, {an}
is periodic of period q1 := 4 and {bn} is periodic of period q2 := 6.

(i) If k1 = 2 and k2 = 3, then

[an, bn] = {0, 1, 4, 5, 6, 2, 3, 7, 8, 9, 0, 1, 4, 5, 6, · · · },

and the period of the formed sequence is 10.
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(ii) If k1 = 2 and k2 = 4, then

[an, bn] = {0, 1, 4, 5, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 8, 9,

2, 3, 4, 5, 6, 7, 0, 1, 8, 9, 4, 5, 2, 3, 6, 7, 8, 9, 0, 1 · · · }

and the period of the formed sequence is 36.

For a better understanding of the structure of the formed sequence [an, bn], we
write its elements in matrix form as follows:

a0 a1 · · · ak1−1 b0 b1 · · · bk2−1
ak1 ak1+1 · · · a2k1−1 bk2 bk2+1 · · · b2k2−1
a2k1 a2k1+1 · · · a3k1−1 b2k2 b2k2+1 · · · b3k2−1
a3k1 a3k1+1 · · · a4k1−1 b3k2 b3k2+1 · · · b4k2−1
...

... · · · ...
...

... · · · ....

(4)

Now, reading this matrix row by row from left to right gives the formed sequence
[an, bn]. It is obvious that we obtain a periodic sequence in each column. In some
cases, it is easy to deduce the new period of the sequence obtained from the merging
process, for instance when the merged sequences are disjoint (we establish here the
result without proof):

Lemma 1 For n ∈ N, let {an} and {bn} be two disjoint periodic sequences of periods
q1 and q2, respectively. Also, let 1 ≤ k1 ≤ q1 and 1 ≤ k2 ≤ q2. The period of the
sequence [an, bn] formed in (3) is of minimal period kq, where k = k1 + k2 and

q = lcm

(
q1

gcd(k1, q1)
,

q2

gcd(k2, q2)

)

.

The condition to have the two sequences disjoint is a luxury that one may not
have, which leads us to state the following general problem:

Open Problem 6 For n ∈ N, let {an} and {bn} be two periodic sequences of
periods q1 and q2, respectively. Find the minimal period of the sequence [an, bn]
formed in (3).

5 Commuting Maps and the Problem of Sharing
Periodic Orbits

Denote by Fix( f ) and P( f ) the set of fixed and periodic points of a map f ∈ C(I ),
respectively. We consider two maps f0, f1 ∈ C(I ) such that they commute, that is,
f0 ◦ f1 = f1 ◦ f0.

In the fifties of the 20-th century, some authors posed independently the problem
of proving whether two commuting continuous interval maps share fixed points. The
problem is answered in affirmative for polynomials, as J. F. Ritt pointed out in [49].
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Other cases, under restrictive conditions, have also a positive answer (for instance, we
mention [31] or [53]). The question on whether Fix( f0)∩Fix( f1) is nonempty, that is,
f0 and f1 have a common fixed point, was open for a long time [37]. Finally, Boyce
[20] and Huneke [36] found simultaneously counterexamples which show that in
general the answer is negative, there exist two continuous commuting interval maps
which do not share any fixed point. The counterexamples constructed in [20, 36] are
given by two maps f0 and f1 that share periodic points.

Since then, the research on this topic was concentrated in several directions. For
instance, to extend the problem to other compact metric spaces or to particular classes
of continuous maps [34, 39, 41]. The problem has been also posed in terms of sharing
periodic points which are not necessarily fixed points (see [3, 55]). Then, it can be
expected to raise the following question:

Open Problem 7 Is it true that P( f0) ∩ P( f1) = ∅ for commuting continuous
interval maps f0, f1 ∈ C(I )?

Fixed and periodic points are the strongest type of recurrence in dynamical sys-
tems. There are weaker notions of recurrence that contain the sets of fixed and periodic
points. Namely, a point x ∈ X is called recurrent if for any open neighborhood U
of x there is an increasing sequence {ni }∞i=1 such that f ni (x) ∈ U . If the sequence
{ni }∞i=1 has bounded gaps, the point is called uniformly recurrent. If ni = ki for some
k ∈ N the point is called almost periodic. Denote by Rec( f ), UR( f ) and AP( f ) the
sets of recurrent, uniformly recurrent and almost periodic points. It is clear from the
definitions that

Fix( f ) ⊆ P( f ) ⊆ AP( f ) ⊆ UR( f ) ⊆ Rec( f ).

Following the Sharkovsky’s order of natural numbers, let T1 = { f ∈ C(I ) : P( f )
is closed}, T2 = { f ∈ C(I ) : f has periodic points of period 2n , n ≥ 0} and
T3 = { f ∈ C(I ) : f has a periodic point which is not a power of two}. The next
result was proved in [22].

Theorem 2 Assume f0, f1 ∈ C(I ) commute. Then

(a) If f0 ∈ T1, then Fix( f0) ∩ P( f1) = ∅.
(b) If f0 ∈ T2, then Fix( f0) ∩ AP( f1) = ∅.
(c) If f0 ∈ T3, then Fix( f0) ∩ UR( f1) = ∅.

The above result proves Open Problem 7 for maps which are simple from the point
of view of dynamics. Note that maps of type T3 have positive topological entropy,
and therefore, they are chaotic in the sense of Li and Yorke. Chaotic maps in the
sense of Li and Yorke may also exist in the family T2, but they cannot be found in
T1, which contains the set of continuous interval maps with finite set of periods (see
[18] or [22]). So, if one has to look for counterexamples for Open Problem 7, he/she
should construct maps having both infinitely many periodic points. In addition, they
cannot have a finite number of monotonicity pieces (see [20, 36]).
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We finish this section by a problem that links Theorem 1 and Open Problem .

Open Problem 8 Find Per([ f0, f1]) for commuting maps f0, f1 ∈ C(I ). More pre-
cisely, can the examples of Theorem1 be constructed such that f0 and f1 commute?

6 The Parrondo’s Paradox

Parrondo’s paradox [35] has become an active area of research in many applied sci-
ences like Physics [46], Economy [56] or Biomathematics [57]. As a first approach,
we can say that it appears when we alternate different games in a stochastic or deter-
ministic way. Parrondo’s paradox exists when the behavior of individual systems and
the combined one are completely different. For discrete dynamical systems, the para-
dox was formulated in [4] by showing that the phenomenon “chaos+chaos=order”
and “order+order=chaos” are possible when considering periodic combinations of
1-dimensional quadratic maps. Similar results have been obtained by Boyarsky and
collaborators in the random combination of piecewise smooth maps [19]. On the other
hand, it was shown in [21] that in some particular cases the paradox is not possible.

The dynamic Parrondo’s paradox was studied in detail in [24] as follows. For a
map f ∈ C(I ), I = [0, 1], denote by D( f ) the set of dynamic properties of f
(for instance to have positive topological entropy or exhibiting chaos in the sense of
Li and Yorke), and define D([ f0, f1]) similarly. Let J = [a, b] ⊆ I = [0, 1] and
denote by ϕJ : J → I a linear map such that ϕJ (a) = 0 and ϕJ (b) = 1. Define
f J : [0, 1] → [0, 1] by f J (x) = ϕ−1

J ◦ f ◦ ϕJ (x) if x ∈ J , f J (0) = 0, f J (1) = 1,
and linear on any connected component of [0, 1]\ J . A dynamic property P ∈ D( f )
is an L-property if for any continuous map f and any compact subinterval J ⊆ [0, 1],
it is held that P ∈ D( f )∩D( f J ). The fact that if f0, f1 ∈ C(I ) , then the dynamics
of the sequence [ f0, f1] is complicated (or simple) if and only if the dynamics of
f0 ◦ f1 is complicated (or simple), jointly with L-properties are the key for analyzing
the Parrondo’s paradox as the following result shows [24].

Theorem 3 Let Pi , i = 1, 2, 3, be L-properties. Then there are f0, f1 ∈ C(I ) such
that P1 ∈ D( f0), P2 ∈ D( f1) and P3 ∈ D( f0 ◦ f1).

In particular, we can construct maps such that f0 and f1 have a complicated
(simple) L-property and f0 ◦ f1 has not this property. [P ∈ D( f0) ∩ D( f1) and
P /∈ D( f0 ◦ f1)]. For instance, we consider the topological entropy (see e.g. [2]
or [5] for definition and basic properties of topological entropy), which is a useful
tool to decide whether a map has a complicated dynamics. From Theorem 3, we can
construct two continuous interval maps, f0 and f1, with zero topological entropy
(and hence simple) such that f0 ◦ f1 has positive topological entropy (and therefore a
complicated dynamics), because the properties zero topological entropy and positive
topological entropy are L-properties. However, we must emphasize that, although
Theorem 3 shows the existence of paradox in a general way for a very large list of
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dynamical properties, the constructions made for proving it cannot be done when
we consider fixed maps like for instance a member of the logistic family fa(x) =
ax(1 − x), 1 ≤ a ≤ 4 and x ∈ [0, 1].
Open Problem 9 State an analogous result to Theorem3 when the maps f0 and f1
commute.

Consider the well–known logistic family fa(x) = ax(1 − x), a ∈ [1, 4]. More
precisely, we consider two maps fa and fb and wonder about the existence of paradox
for parameters a and b. In [26], the paradox existence is shown for several parameters
values. However, although fa ◦ fb may exhibit the paradox, it is observed that several
combinations like fa ◦ fb ◦ fa do not exhibit the paradox.

Open Problem 10 Characterize the set of parameters a, b ∈ [1, 4] such that any
combination of maps fa and fb exhibit the Parrondo’s paradox. Is this set nonempty?

Denote the topological entropy of a continuous map f by h( f ). In [25], numerical
simulations show that Parrondo’s paradox cannot be exhibited by maps with positive
topological entropy, that is, if min{h( fa), h( fb)} > 0, then numerical simulations
show that h( fa ◦ fb) > 0, and therefore the Parrondo’s paradox cannot be exhibited
(see Fig. 1).

Open Problem 11 In the logistic family, prove or disprove that min{h( fa), h( fb)} >
0 implies that h( fa ◦ fb) > 0.
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Fig. 1 On the left we show the topological entropy of F with accuracy 10−3. On the right, we
present the projection of topological entropy where stronger colors means lower topological entropy.
The darkest region represents those parameter values for which the topological entropy is zero up
to the prescribed accuracy



Advances in Periodic Difference Equations with Open Problems 123

7 Applications

In population dynamics, one dimensional models usually take the form xn+1 =
xn f (xn),where xn represents the density of a population at discrete time n and f (t)
is a function that reflects certain characteristics of the studied species. For instance,
f (t) = kμ

k+(μ−1)t , μ > 1 is used for the Beverton-Holt model [17], f (t) = at (b− t)

is used for the logistic model [45], and f (t) = be−kt is used for the Ricker model
[48]. Forcing periodic harvesting or stocking in a deterministic environment leads to
investigating the dynamics of models in the from

xn+1 = xn f (xn)± hn, (5)

where {hn} is a p-periodic sequence that represents harvesting or stocking quotas.
See [7] and the references therein for more details and some open questions. We find
Problem 3.1 in [7] to be suitable within the context of this paper.

Open Problem 12 Consider Eq. (5) with stocking (i.e. +hn) and assume this equa-
tion has a global attractor (like when f (t) = bt

1+t [14]). Let {ĥn} be a permutation
of {hn}.Define xav and x̂av to be the average of the global attractors associated with
{hn} and {ĥn}, respectively. How does xav relate to x̂av?

Although it is tempting to believe that increasing constant yield harvesting in
population models leads to a decline in the population, recent results show otherwise
[50, 54] and the phenomenon is known as the hydra effect [1]. In fact, this notion
led to a fertile area of research; see for instance [42, 43, 51] and the references
therein. When we confine models in Eq. (5) to contest-competition models and force
the harvesting to be constant yield harvesting (i.e., hn = h for all n), then the hydra
effect is not known to take place. For instance, if we take the Beverton-Holt model
with harvesting [13], then the global attractor is decreasing in h. However, the effect
of periodic harvesting is not characterized yet, which motivates our next problem.

Open Problem 13 Consider Eq. (5) with harvesting (i.e. −hn). Investigate the effect
of ordering the elements of the sequence {hn} on the population. On other words,
assume that we have a periodic sequence of harvesting quotas but we have the
freedom to permute its elements. Which permutation of {hn} plays on the advantage
of the population in terms of the basin of attraction and in terms of the arithmetic
average of the attractor?
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An Evolutionary Beverton-Holt Model

J.M. Cushing

Abstract The classic Beverton-Holt (discrete logistic) difference equation, which
arises in population dynamics, has a globally asymptotically stable equilibrium (for
positive initial conditions) if its coefficients are constants. If the coefficients change in
time, then the equation becomes nonautonomous and the asymptotic dynamics might
not be as simple. One reason the coefficients can change in time is their evolution
by natural selection. If the model coefficients are functions of a heritable phenotypic
trait subject to natural selection then, by standard methods for modeling evolution,
the model becomes a planar system of coupled difference equations, consisting of
a Beverton-Holt type equation for the population dynamics and a difference equa-
tion for the dynamics of the mean phenotypic trait. We consider a case when the
trait equation uncouples from the population dynamic equation and obtain criteria
under which the evolutionary system has globally asymptotically stable equilibria or
periodic solutions.

1 Introduction

The well-known difference equation

xt+1 = b
1

1 + cxt
xt , b, c > 0 (1)

arose historically in population dynamics as a discrete analog of logistic growth [6]
(also see [7–10]). It has been used as a basic model in many studies in population,
ecological and evolutionary dynamics in the same way that the logistic differential
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equation is used as a starting point for innumerable differential equation models in
these fields. The equation has been used, for example, in the fisheries industry where
it is known as the Beverton-Holt equation, a name that is now widely used for the
equation.

The dynamics of (1) are well known. For x0 > 0 the equilibrium xe = 0 (which
we will refer to as the extinction equilibrium) is globally asymptotically stable (GAS)
if b < 1. If b > 1 then x = 0 is unstable and the survival equilibrium xe = (b−1)/c
is GAS. Moreover, solution sequences are monotone (and hence the strong analogy
with the logistic differential equation).

There are numerous biological reasons to consider the coefficients b and c in
Eq. (1) not to be constants. For example, these parameters might change in time due
to changing environmental conditions, to physiological cycles, etc. Their fluctuations
might be stochastic or deterministically regular, even periodic (modeling seasonal,
monthly, or daily environmental oscillations). These fluctuations in (1) give rise
respectively to a stochastic, a nonautonomous, and a periodically forced difference
equation. The mathematical literature on the latter case has, for both (1) and for more
general scalar difference equations, grown considerably in the last decade.

Another biological reason for which parameters in population dynamic models
might change is time is evolutionary adaptation. In this case, the coefficients b and/or
c in (1) are assumed to be functions of a phenotypic trait or several phenotypic traits
that are subject to Darwinian evolution through natural selection and hence that
change in time. If a scalar v represents a quantified phenotypic trait (e.g. body size,
age, color, metabolic rate, aggressiveness, etc.) whose value affects and determines
the values of b and c experienced by an individual that inherits the trait v (or by
a mutant or an invader with trait v), then we write b = b (v) and c = c (v). It is
up to the modeler to assign specific properties to these two functions that reflect the
biological situation of interest. It can be the case that these parameters are not only
affected by the trait value v of the individual, but by the traits of other individuals in
the population (for example, through competition for resources). One way to model
this case (called frequency dependence) is to assume that b and/or c also depend on
the mean trait u of the population and to write

b = b (v, u) , c = c (v, u) .

A method for modeling the change in the mean trait u over time, as subject to
evolution, is by means of the equations

xt+1 = b (v, ut )
1

1 + c (v, ut ) xt

∣
∣
∣
∣
v=ut

xt (2)

ut+1 = ut + σ 2 ∂ ln r (x, v, ut )

∂v

∣
∣
∣
∣
v=ut

(3)
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where

r (x, v, u) := b (v, u)
1

1 + c (v, u) x

[1, 4, 5, 11]. The equation for ut (the trait dynamics) states that change in the mean
trait is proportional to the fitness gradient where here fitness is defined as ln r (x, v, u).
The parameter σ 2 (the constant of proportionality in the assumed evolution law) has
different biological interpretations that depend on the assumptions made in modeling
evolution [1]. Generally, however, σ 2 is proportional to the variance of the trait in
the population, which is assumed constant over time. In any case, σ 2 measures how
fast evolution occurs, and we refer to it as the speed of evolution.

The model equations (2) constitute a planar system of difference equations in
which the population dynamics of xt and the evolutionary dynamics of ut are in
general coupled. A method known as adaptive dynamics uncouples the trait equation
from the population dynamic equation by making the assumption that evolutionary
and population dynamics occur on (infinitely) different time scales [1, 4]. In this
paper, we consider a (fairly general) case in which the trait dynamics uncouple
from the population dynamics without the necessity of this strong assumption about
differing time scales.

We will assume that b depends only on v (i.e., only on the trait inherited by the
individual and not on the traits of others in the population). We also assume that
c, which is surrogate for intraspecific competition, is a function of the difference
v − u; that is to say, the amount of competition felt by an individual depends on how
different its trait is from that of others, as represented by the mean u. Letting R and
R+ denote the real numbers and positive real numbers respectively, we make the
following assumption:

b = b (v) and c = c (v − u) where b, c ∈ C2
(
R, R+)

and c′(0) = 0. (4)

The ecological reason for the assumption c′(0) = 0 is that it is often assumed in
evolutionary game theory models that an individual experiences maximum compe-
tition when its trait equals the population mean, i.e. the competition coefficient c
is maximized when v = u. In this case, the evolutionary Beverton-Holt model (2)
becomes

xt+1 = b (ut )
1

1 + c0xt
xt (5)

ut+1 = ut + σ 2 b′ (ut )

b (ut )
(6)

where c0 = c (0) > 0. The prime denotes differentiation: b′ (ut ) = ∂b (v) /∂v|v=ut
.

Note that (6) is uncoupled from Eq. (5), but not vice versa.
The evolutionary models (2) and (3) are included in the general models studied

in [3]. The theorems in [3] extend the fundamental bifurcation theorem for general
population models that occurs as extinction states destabilize. These theorems apply
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to the evolutionary Beverton-Holt model (5)–(6) and provide criteria under which
equilibrium states are locally stable or unstable. However, in this paper we will
obtain a more general, independent analysis (including global dynamics) of (5)–(6)
by taking advantage of the fact that (6) is uncoupled from (5) and of the fact that the
global dynamics of (5) are well-known if evolution does not take place (i. e. σ 2 = 0
and ut remains constant at u0 for all time).

2 Asymptotic Dynamics of the Evolutionary
Beverton-Holt Model

A critical trait (mean) u is one for which b′ (u) = 0. Note that critical traits are
equilibria of the scalar trait equation (5). Also note that (xe, ue) is an equilibrium
of (5)–(6) if and only if ue is a critical trait. If ue is a critical trait, there exist
two equilibria, one with xe = 0 and another with xe = (b (ue)− 1) /c0. We call
the equilibrium (0, ue) an extinction equilibrium. We define a survival equilibrium
(xe, ue) of the system (5)–(6) to be an equilibrium associated with trait ue for which
xe > 0. The survival equilibria of (5)–(6) are

(
xe+, ue) =

(
b (ue)− 1

c0
, ue

)

(7)

where ue is any critical trait that satisfies

b
(
ue) > 1.

Let U ⊆ R. We say that an equilibrium (xe, ue), xe ≥ 0, is globally attracting on
R+ × U if (x0, u0) ∈ R+ × U implies limt→+∞ (xt , ut ) = (xe, ue). If, in addition,
(xe, ue) is a locally asymptotically stable equilibrium of (5)–(6), then we say it is
globally asymptotically stable (GAS) on R+ × U .

Note that because (6) is uncoupled from (5), the local asymptotic stability of
an equilibrium (xe, ue) of (5)–(6) implies that ue is a locally asymptotically stable
equilibrium of (6).

Theorem 1 Assume (4) and that ue is a critical trait. We have the following facts
about the extinction equilibrium (0̂, ue) and the survival equilibrium (7) of the evo-
lutionary system (5)–(6).

(a) (Extinction equilibria). If b (ue) > 1 or if

∣
∣
∣
∣1 + σ 2 b′′ (ue)

b (ue)

∣
∣
∣
∣ > 1 (8)

then the extinction equilibrium (0̂, ue) is unstable.
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If b (ue) < 1 and ∣
∣
∣
∣1 + σ 2 b′′ (ue)

b (ue)

∣
∣
∣
∣ < 1 (9)

then there exists an open neighborhood U of ue such that the extinction equilib-
rium (0̂, ue) is GAS on R+ × U.

(b) (Survival equilibria) If b (ue) > 1 and (8) hold, then the survival equilibrium
(7) is unstable.

If b (ue) > 1 and (9) hold, then there exists an open neighborhood U of ue such
that the survival equilibrium (7) is GAS on R+ × U.

Note that the instability inequality (8) holds if b′′(ue) > 0.

Proof The Jacobian J (x, u) of (5)–(6), when evaluated at any equilibrium (xe, ue),
namely

J
(
xe, ue) =

(
b (ue) 1

(1+c0xe)2
0

0 1 + σ 2 b′′(ue)
b(ue)

)

(10)

has eigenvalues

λ1 = b
(
ue) 1

(1 + c0xe)2
, λ2 = 1 + σ 2 b′′ (ue)

b (ue)
.

(a) The instability assertions follow from the linearization principle when either
λ1 or λ2 have absolute value greater than one. By the linearization principle, the
extinction equilibrium (0, ue) is locally asymptotically stable when both λ1 or λ2
have absolute value less than one. What remains to show, in this case, is its global
asymptotic stability when b (ue) < 1. Since ue is a locally asymptotically stable
equilibrium of the trait equation (6), we can find a δ > 0 be such that |u0 − ue| < δ

implies limt→+∞ ut = ue. Let (xt , ut ) be any solution of (5) with an initial condition
(x0, u0) that satisfies x0 > 0 and |u0 − ue| < δ. We need to show that

lim
t→+∞ (xt , ut ) = (0, ue). (11)

Since we already know that limt→+∞ ut = ue, we need only show limt→+∞
xt = 0. Since b (ue) < 1 we can choose a real number β satisfying b (ue) < β < 1
and, since limt→+∞ ut = ue, there exists a T > 0 such that t ≥ T implies b (ut ) ≤ β.
From (5) we have

0 ≤ xt+1 = b (ut )
1

1 + c0xt
xt ≤ βxt

for all t ≥ T . It follows that limt→+∞ x (t) = 0, i.e. (11) holds.
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(b) For a survival equilibrium (7) we have

0 < λ1 = 1

b (ue)
< 1.

When (8) holds, instability follows because |λ2| > 1.
On the other hand, when (9) holds, then |λ2| < 1 and the survival equilibrium is

locally asymptotic stability. What remains to prove, in this case, is its global stability.
Since ue is a locally asymptotically stable equilibrium of the trait equation (6), we
can find a δ > 0 be such that |u0 − ue| < δ implies limt→+∞ ut = ue. Let (xt , ut )

be any solution of (5)–(6) with an initial condition (x0, u0) that satisfies x0 > 0 and
|u0 − ue| < δ. We need to show

lim
t→+∞ (xt , ut ) = (xe, ue). (12)

Since we already know that limt→+∞ ut = ue, we need only show limt→+∞
xt = xe+. The sequence xt is positive for all t and satisfies the asymptotically
autonomous equation (5). A straightforward calculation shows that yt := 1/xt sat-
isfies the linear, asymptotically autonomous equation

0 < yt+1 = 1

b (ut )
yt + c0

b (ut )
.

Lemma 1 in the Appendix implies

lim
t→+ yt = c0

b (ue)− 1

from which we obtain

lim
t→+ xt = b (ue)− 1

c0
= xe

and hence (12) holds. This completes the proof.

With regard to evolutionary convergence (i.e. the stability of a survival equilib-
rium), Theorem 1b requires (9) hold. For this inequality to hold it is necessary that
b′′(ue) < 0 and

σ 2 < −2
b (ue)

b′′ (ue)
, (13)

that is to say, that the speed of evolution be not too fast. The open neighborhood U
in Theorem 1(b) can be taken to be the basin (interval) of attraction of ue as a stable
equilibrium of the trait equation (6).

If the inequality (13) is reversed, that is to say, if the speed of evolution is too
fast, then Theorem 1(a) implies the survival equilibrium is unstable and the expected
exchange of stability between equilibrium branches as b (ue) increases through 1
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does not occur. This destabilization of the survival equilibrium is due to a period
doubling bifurcation in the trait equation (6) as σ 2 increases through the critical
value −2b (ue) /b′′ (ue) where the derivative of

u + σ 2 b′ (u)
b (u)

equals −1 at u = ue. In such a case, the uncoupled trait equation (5) can have locally
asymptotically stable periodic cycles. In this case we have the following theorem
for the dynamics of the evolutionary system (5). We say that a p-periodic solution
(ξt , υt ) of the system (5)–(6) is a survival p-periodic solution if ξt > 0 for all t .

Theorem 2 Assume (4). Suppose υt is a hyperbolic, locally asymptotic p-periodic
solution of the trait equation (6). If

p−1∏

t=0

b (υt ) > 1 (14)

then there exists a survival p-periodic solution (ξt , υt ) of the evolutionary system (5)–
(6) which is globally asymptotically stable on R+ × U for some open neighborhood
U of υ0.

Proof The xt component of a solution pair (xt , ut ) of (5)–(6) satisfies the nonau-
tonomous equation

xt+1 = b (ut )
1

1 + c0xt
xt , x0 > 0 (15)

where ut satisfies the uncoupled trait equation (6). Suppose ut approaches the p-
periodic solution υt as t → +∞. Then the nonautonomous equation (15) is asymp-
totically periodic with limiting equation

xt+1 = b (υt )
1

1 + c0xt
xt , x0 > 0. (16)

Defining yt = 1/xt we obtain the linear, asymptotically periodic equation

yt+1 = 1

b (ut )
yt + c0

b (ut )
, y0 > 0. (17)

By Theorem 1 in [2] the periodically forced limiting equation

yt+1 = 1

b (υt )
yt + c0

b (υt )
(18)

has a unique, positive p-periodic solution θt .
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To show the periodic solution θt is attracting, we consider the p-fold composite
equation of (17), which is a linear (asymptotically autonomous) equation of the form
(21) in Lemma 1 in the Appendix, namely,

yt+1 = αt yt + βt

with

αt = 1
∏p−1

i=0 b (ut )
→ αe = 1

∏p−1
i=0 b (υi )

< 1

and a sequence βt > 0 (a formula for which we do not need) which approaches a
limit βe as t → ∞. By Lemma 1, inequality (14) implies the solution of the p-fold
composite with initial condition y0 > 0 approaches as t → ∞ the equilibrium
βe/ (1 − αe) of the limiting equation of the composite. This limit is, in fact, the first
point θ0 in the p-periodic solution θt . Repeating this argument using yi , 1 ≤ i ≤ p−1,
as a starting point, we find that the solution of the composite approaches the i th point
θi in the p-periodic solution θt .

All of this is to say that the solution of (17) approaches the periodic solution θt of
the limiting equation (18), which in turns implies the solution xt of (15) approaches
the periodic solution ξt = 1/θt of the limiting equation (16). All that remains to
prove is that p-periodic solution (ξt , υt ) of (5)–(6) is locally asymptotically stable.
This is done by investigating the eigenvalues of the Jacobian of the p-fold composite
map arising from (5)–(6). This Jacobian is equal to the product�p−1

i=0 J (ξt , υt )where

J (x, u) =
(
λ1 (x, u) b′ (u) 1

1+c0x x
0 λ2 (u)

)

is the Jacobian of (5)–(6). Here

λ1 (x, u) := b (u)
1

(1 + c0x)2
, λ2 (x, u) := 1 + σ 2 b (u) b′′ (u)− (

b′ (u)
)2

b2 (u)
.

Therefore

p−1∏

i=0

J (ξt , υt ) =
(
π1 ∗
0 π2

)

, π1 :=
p−1∏

i=0

λ1 (ξt , υt ) , π2 :=
p−1∏

i=0

λ2 (υt ) ,

where the asterisk does not concern us, since the eigenvalues of this matrix lie along
the diagonal. The assumption that υt is a hyperbolic, locally asymptotically stable
periodic solution implies that |π2| < 1 and hence that the stability of the periodic
solution (ξt , υt ) is determined by the π1.
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Note that

p−1∏

i=0

ξi+1 =
p−1∏

i=0

b (υi )
1

1 + c0ξi
ξi =

⎛

⎝
p−1∏

i=0

b (υi )
1

1 + c0ξi

⎞

⎠
p−1∏

i=0

ξi .

Since ξt is p-periodic, it follows that
∏p−1

i=0 ξi+1 = ∏p−1
i=0 ξi and hence

1 =
p−1∏

i=0

b (υi )
1

1 + c0ξi
=

p−1∏

i=0

b (υi )

p−1∏

i=0

1

1 + c0ξi
.

Then

0 < π1 =
p−1∏

i=0

b (υi )
1

(1 + c0ξi )
2 = 1

∏p−1
i=0 b (υi )

< 1

which establishes local asymptotic stability.

3 Examples

We give two examples of the use of Theorem 1 to analyze the evolutionary model
(5)–(6) with specified dependences of the coefficient b = b (v) on the phenotypic
trait v. In the first example, the adaptive landscape defined by b (or by fitness ln b)
is unimodal with a global maximum. In the second example, the adaptive landscape
is bimodal. In that example, oscillations are possible and Theorem 2 is applicable.

Example 1 A common assumption in evolutionary modeling is that vital parameters
are normally distributive as functions of a phenotypic trait. If we take

b (v) = b0 exp

(

− v2

2w2

)

, b0 > 0

then ve = 0 is the only critical trait. Since

b′′ (0) = −b0

w2 < 0

we find from Theorem 1 that if σ 2 < 2w2 then

(0̂, 0) is GAS on R+ × R+ if b0 < 1 and unstable if b0 > 1
(

b0−1
c0
, 0

)
is GAS on R+ × R+ if b0 > 1.
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Here the interval U = R+ because ue = 0 is globally attracting as an equilibrium of
the (in this case simple linear) trait equation (6) ut+1 = (

1 − σ 2/w2
)

ut . Note that
the solutions of this equation are unbounded if σ 2 > 2w2 and hence so are the orbits
of the evolutionary model (5)–(6).

In Example 1, the adaptive landscape, i.e., the graph of fitness

ln b (v) = ln b0 − v2

2w2

as a function the mean phenotypic trait v, is unimodal with a maximum at the critical
trait v = 0. When orbits approach a survival equilibrium, i.e. when b0 > 0 and
σ 2 < w2, the evolution of fitness ln b (ut ) along orbits of the model (5)–(6) tends to
its maximum value ln b0. In this case, the trait ue = 0 is said to be an evolutionarily
stable strait (ESS) since it is located at the global maximum of fitness [11].

In the next example, we illustrate the application of Theorems 1 and 2 in a case
when the adaptive landscape has multiple peaks and the evolutionary model can have
multiple attractors.

Example 2 An example of a two peaked adaptive landscape is provided by the
fitness function ln b (v) with

b (v) = b0 exp
(
−v2

(
3v2 − 2v − 3

))
, b0 > 0. (19)

In this case,
ln b (u) = ln b0 − u2

(
3u2 − 2u − 3

)

has three critical traits

ue = −1

2
, 0, 1.

b (u) has a local maximum at ue = −1/2, a local minimum at ue = 0, and a global
maximum at ue = 1. See Fig. 1. Calculations show

b (−1/2) = b0e5/16 and b′′ (−1/2) = −9b0e5/16 < 0

b (0) = b0 and b′′ (0) = 6b0 > 0

b (1) = b0e2 and b′′ (1) = −18b0e2 < 0.

Theorem 1 implies the stability results in Table 1 for the extinction and survival
equilibria of the evolutionary Beverton-Holt equation (5)–(6) when b is given by
(19). In each case the set U is the interval of attraction of ue as an equilibrium of the
trait equation (6), which is in this example, the scalar difference equation

u′ = u + 6σ 2u (2u + 1) (1 − u) . (20)
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Fig. 1 The graph of b (u) in (19) is shown for three values of b0 which give rise to three different
phase plane scenarios in Table 1. Phase plane plots for each case are shown, with three sample
orbits, in plots (a), (b) and (c). In all cases σ 2 = 0.01 and c0 = 0.01. a b0 = 1/20. In this case,
b (−1/2) = e5/16/20 < 1 and b (1) = e2/20 > 1 and there exists no survival equilibrium. All
orbits approach an extinction equilibrium. b b0 = 1/4. In this case, b (−1/2) = e5/16/4 < 1 and
b (1) = e2/4 > 1 and there exists one survival equilibrium (7) with trait ue = 1 which attracts
orbits with u0 > 0. Orbits with u0 ≤ 0 tend to an extinction equilibrium. c b0 = 2. In this case,
b (−1/2) = 2e5/16 < 1 and b (1) = 2e2 < 1 and there exist three survival equilibria. Orbits with
u0 > 0 tend to the survival equilibrium (7) with trait ue = 1. Orbits with u0 < 0 tend to the survival
equilibrium (7) with trait ue = −1/2. Orbits with u0 = 0 lie on the stable manifold of the unstable
(saddle) survival equilibrium (7) with trait ue = 0

When the survival equilibrium at ue = 1 is stable, the trait ue = 1 is an ESS since
it is located at a global maximum of the fitness function. On the other hand, when
the survival equilibrium at ue = −1/2 is stable, the trait ue = −1/2 is said to be
evolutionarily convergent, but not an ESS since it does not yield a global maximum
of the fitness function. It is possible, of course, for both survival equilibria at ue = 1
and ue = −1/2 to be stable, which occurs when b0 > e−5/16 and σ 2 < 1/9.

A cobwebbing analysis and a bifurcation diagram of trait equation (using the
speed of evolution σ 2 as a bifurcation parameter) indicates what occurs when the
slow evolution inequalities in Table 1 are violated. Asσ 2 increases through the critical
values 1/9 and 2/9, period doubling cascades to chaos occur as the corresponding
survival equilibrium destabilizes. See Fig. 2. For any periodic cycle which results
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Table 1 In the right column are the extinction and survival equilibria of the evolutionary Beverton-
Holt equation (5)–(6) when b is given by (19). The middle and left columns show the criteria for
the global stability and instability of each equilibrium. The set U is the interval of attraction of ue
as an equilibrium of the trait equation (20)

Extinction equilibria GAS on R+ × U Unstable

(0,−1/2) b0 < e−5/16 and σ 2 < 2/9 b0 > e−5/16 or σ 2 > 2/9

(0, 0) never always

(0, 1) b0 < e−2 and σ 2 < 1/9 b0 > e−2 or σ 2 > 1/9

Survival equilibria (7)
(

b0e5/16−1
c0

,−1/2
)

, b0 > e−5/16 σ 2 < 2/9 b0 > e−5/16 and σ 2 < 2/9
(

b0−1
c0
, 0

)
, b0 > 1 never always

(
b0e2−1

c0
, 1

)
, b0 > e−2 σ 2 < 1/9 σ 2 > 1/9

from these bifurcations, Theorem 2 implies that there exists a periodic cycle of the
evolutionary system (5)–(6) which is globally asymptotically stable on R+ × U for
some open neighborhood of the critical trait ue.

4 Concluding Remarks

We considered the evolutionary Beverton-Holt model (2)–(3) under the assumption
(4), which uncouples the trait equation (3) from the planar system (2)–(3). We proved
the global stability criteria given in Theorems 1 and 2 for equilibria and for periodic
cycles of the resulting system (5)–(6). The proofs of these theorems make use of
the uncoupling of the equations, which produces a nonautonomous version of the
Beverton-Holt equation (5) in which the coefficient b = b (ut ) is driven by a solution
of the scalar trait equation (6).

The dynamics of the evolutionary Beverton-Holt model (2)–(3) when the trait
equation does not uncouple remains an interesting open question. For example, a
common mathematical expression for the intraspecific competition coefficient c =
c (v − u) is [11]

c = c0 exp

(

− (v − u)2

2w2
c

)

,

which assumes that the maximum competitive effect c0 occurs when an individ-
ual’s trait v equals the population mean trait u. If, more generally, the maximum
competitive effect c0 is dependent on the individual’s trait v, then

c = c0 (v) exp

(

− (v − u)2

2w2
c

)
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Fig. 2 The bifurcation diagram of the trait equation (20) shows a periodic doubling cascade origi-
nating at each of the survival equilibria (7) with ue = −1/2 and 1 at their respective critical values
of σ 2, namely, 1/9 and 2/9. a When the speed of evolution in the case of Fig. 1(c) is increased the
σ 2 = 0.12 > 1/9, the survival equilibrium with ue = 1 destabilizes, resulting in a stable period
2 cycle. b When the speed of evolution is further increased to σ 2 = 0.17, a chaotic attractor is
reached through a period doubling cascade initiating at the survival equilibrium with ue = 1

and the trait equation will no longer uncouple in the evolutionary Beverton-Holt
model (2)–(3).

Acknowledgments J.M. Cushing was supported by NSF grant DMS 0917435.

Appendix

Lemma 1 Consider the nonautonomous linear difference equation

yt+1 = αt yt + βt (21)

for t = 0, 1, 2, . . . . Assume αt , βt ≥ 0 and
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lim
t→+∞αt = αe, lim

t→+∞βt = βe.

If αe < 1 then for all y0 > 0

lim
t→+∞ yt = ye := βe

1 − αe
.

Proof If we define wt := yt − ye, then

wt+1 = αt wt + qt

where
qt := (

αt − αe) ye + βt − βe

and hence
lim

t→+∞ qt = 0.

By induction

wt+1 =
(

t∏

i=0

αi

)

w0 +
t∑

j=1

⎛

⎝
t∏

i= j

αi

⎞

⎠ q j−1 + qt .

Let ᾱ and q̄ > 0 be upper bounds for the bounded sequences αt and |qt | respectively.
Choose a positive ρ < 1. Since αe < 1 and limt→+∞ bt = be, for arbitrary ε > 0,
we can find a T > 0 such that t ≥ T implies

0 ≤ αt ≤ ρ, |qt | ≤ ε (1 − ρ) .

For t ≥ T we have

|wt+1| ≤
(

T∏

i=0

αi

)(
t∏

i=T +1

αi

)

|w0| +
T∑

j=1

⎛

⎝
t∏

i= j

αi

⎞

⎠
∣
∣q j−1

∣
∣

+
t∑

j=T +1

⎛

⎝
t∏

i= j

αi

⎞

⎠
∣
∣q j−1

∣
∣ + |qt |

≤ ᾱT +1ρt−T |w0| +
T∑

j=1

⎛

⎝
T∏

i= j

αi

⎞

⎠

(
t∏

i=T +1

αi

)
∣
∣q j−1

∣
∣

+
t∑

j=T +1

ρt− j+1ε (1 − ρ)+ ε (1 − ρ)
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|wt+1| ≤ ᾱT +1ρt−T |w0| + ρt−T q̄
T∑

j=1

ᾱT − j+a + 1

1 − ρ
ε (1 − ρ) .

Letting t → +∞ we obtain

lim
t→+∞ sup |wt+1| ≤ ε.

Because ε > 0 is arbitrary, we conclude limt→+∞ |wt+1| = 0.
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The Periodic Decomposition Problem

Bálint Farkas and Szilárd Gy. Révész

Abstract If a function f : R → R can be represented as the sum of n periodic
functions as f = f1 + · · · + fn with f (x + α j ) = f (x) ( j = 1, . . . , n), then it
also satisfies a corresponding nth order difference equation �α1 . . . �αn f = 0. The
periodic decomposition problem asks for the converse implication, which may hold or
fail depending on the context (on the system of periods, on the function class in which
the problem is considered, etc.). The problem has natural extensions and ramifications
in various directions, and is related to several other problems in real analysis, Fourier
and functional analysis. We give a survey about the available methods and results, and
present a number of intriguing open problems. Most results have already appeared
elsewhere, while the recent results of [7, 8] are under publication. We give only some
selected proofs, including some alternative ones which have not been published, give
substantial insight into the subject matter, or reveal connections to other mathematical
areas. Of course this selection reflects our personal judgment. All other proofs are
omitted or only sketched.
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Keywords Periodic functions · Periodic decomposition · Difference equation ·
Almost periodic and mean periodic functions · Transformation invariant functions ·
Functions with values in a group · Operator semigroups

1 Introduction

Let f : R → R be a function with

f = f1 + · · · + fn, f j (x + α j ) = f j (x) ∀x ∈ R, j = 1, . . . , n, (1)

where α j ∈ R are fixed real numbers. We call this an (α1, . . . , αn)-periodic decom-
position of f . For α ∈ R let �α denote the (forward) difference operator

�α : R
R → R

R, �αg(x) := g(x + α)− g(x).

Then the αi -periodicity of fi above means �αi fi = 0. The difference operators
commute, so

�α1�α2 . . . �αn f = 0. (2)

Problem 1.1 (Ruzsa, 70s) Does the converse implication “(2) ⇒ (1)” hold true?

Naturally, this question can be posed in any given function class F ⊆ R
R.

Definition 1.2 Let F ⊆ R
R be a set of functions. With n ∈ N, n ≥ 1, and

α1, . . . , αn ∈ R given, the function class F is said to have the decomposition property
with respect to α1, . . . , αn if for each f ∈ F satisfying (2) a periodic decomposition
(1) exists with f j ∈ F ( j = 1, . . . , n). Furthermore, the function class F has the
n-decomposition property if it has the decomposition property for every choice of
α1 . . . , αn ∈ R, and F has the decomposition property if it has the n-decomposition
property for each integer n ≥ 1.

Notice that we did not speak about uniqueness of decompositions. As we shall see
uniqueness is an intriguing problem and in general cannot be expected. Note also
that R

R or C(R) (space of continuous functions) do not have the n-decomposition
property for n ≥ 2. Indeed, let n = 2 and α1 = α2 = α. The identity function
id(x) := x satisfies �α�αid = 0, but it fails to be α-periodic. So the implication
“(2) ⇒ (1)” fails. As a matter of fact, a function class containing the identity does
not have the decomposition property.

The above choice for α1, α2 hides the nature of the problem a bit: The existence of
periodic decompositions may depend on the systemα1, . . . , αn of prescribed periods.
If we take α1 = 1 and α2 = √

2 the arguments above do not work. And in fact, if α1
and α2 are incommensurable (i.e., α1Z ∩ α2Z = {0}) then f = id : R → R has a
decomposition as f = f1 + f2, �α j f j = 0.
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Proposition 1.3 Let α1, α2 ∈ R be incommensurable. Then each function f :
R → R satisfying (2) can be written as f = f1 + f2, with f1, f2 being α1 and
α2 periodic, respectively. That is, R

R has the decomposition property with respect
to any system of two incommensurable reals.

Proof Using the axiom of choice, we can select one representative from each of the
classes of the equivalence relation x ∼ y ⇔ x − y ∈ α1Z + α2Z.

On each class we construct our f j as follows. For the fixed class representative
y ∈ R take f1(y + kα1 + mα2) := f (y + mα2) and f2(y + kα1 + mα2) :=
f (y + kα1)− f (y). Then f j are α j -periodic and by (2)

f (y + kα1 + mα2) = f (y + mα2)+ f (y + kα1)− f (y)

= f1(y + kα1 + mα2)+ f2(y + kα1 + mα2).

This ends the construction of a periodic decomposition. �
Of course, the decomposition given in the preceding proof depends on the particular
choice of the representatives for the equivalence classes, hence uniqueness cannot
be expected. In fact, by adding and subtracting a function constant on α1Z + α2Z to
f1 and f2 respectively, we immediately obtain different decompositions. In Sect. 8
below we shall return to this matter. The above decomposition can be far worse than
the function itself. E.g., f = id is continuous, while f1 and f2 are certainly not,
for continuous periodic functions, hence also their sums, are necessarily bounded.
That f = id does not even have a measurable decomposition, is proved in [34] by a
somewhat involved argumentation.

In fact, no function with limx→∞ f (x) = ∞ can have a measurable periodic
decomposition. To see this, let ε, η > 0 be arbitrarily fixed, and assume that f has
a measurable decomposition (1). Then for each j = 1, . . . , n, f j must be bounded
on [0, α j ] by some constant K j < ∞ apart from an exceptional set A j ⊆ [0, α j ]
of Lebesgue measure |A j | < η. Therefore, on any interval I of length � (large), f
is bounded by K := K1 + · · · + Kn < ∞ apart from an exceptional set A ⊆ I
of measure |A| < (��/α1� + · · · + ��/αn�)η < ε�, if η is chosen small enough.
So f is “locally almost bounded”: for any ε > 0 there is K < ∞ such that on any
sufficiently large interval I , |{x ∈ I : | f (x)| > K }| < ε|I |.

One would think that the bug here is with the axiom of choice, the huge number of
“ugly”, non-measurable functions, so that once a continuous function has a relatively
nice—say, measurable—decomposition, then it must also have a continuous one.
However, the contrary is true:

Proposition 1.4 (Keleti [24]) There exists f ∈ C(R) having measurable decompo-
sition (1) but without a continuous periodic decomposition.

For the proof see [23, Theorem 4.8].
We can also look for further immediate solutions of (2): For example polyno-

mials of degree m < n satisfy this difference equation. So, we can ask for quasi-
decompositions with periodic functions and polynomials
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f = p + f1 + · · · + fn, with �α j f j = 0 and deg p < n a polynomial. (3)

Theorem 1.5 (Ruzsa and Szegedy (unpublished)) There exist continuous, unbounded
solutions of (2) with limx→∞ f (x)/x = 0.

As a consequence C(R) does not have the quasi-decomposition property either. For
a discussion see [29, pp. 338–339]. It can be precisely described which functions in
C(R) have continuous periodic quasi-decompositions (3).

Theorem 1.6 (Laczkovich and Révész [29]) For a function f ∈ C(R) the existence
of a quasi-decomposition (3) is equivalent to (2) together with the Whitney condition

δn( f ) := sup
{ n∑

j=0

(−1) j
(

n

j

)

f (x + jh) : x, h ∈ R

}
< ∞.

Proof Notice first
∑n

j=0(−1)n− j
(n

j

)
f (x + jh) = �n

h f (x). Hence, if f = p + f1 +
· · · + fn as in (3), then �n

h p = 0. Since f j is α j -periodic and continuous δn( f j ) ≤
2n supt∈[0,α j ] | f j (t)|. So that (3) implies both (2) and δn( f ) < ∞. Conversely, a

result of Whitney [38] says that δn( f ) < ∞ entails that f can be approximated by
a polynomial p of degree deg p < n within a bounded distance: ‖ f − p‖∞ < ∞.
Thus, for g := f − p ∈ BC(R)we have�α1 . . . �αn g = 0 and it remains to establish
the decomposition property of BC(R), postponed to Sect. 4.1. �

2 Continuous Periodic Decompositions

In view of the foregoing discussion it is natural to pose the boundedness condition
on the occurring functions and look at subclasses F of the space BC(R) of bounded
continuous functions on R. Note that if f has a continuous periodic decomposition
it is uniformly almost periodic (alternatively, Bohr or Bochner almost periodic), i.e.,
the set

{
f (· + t) : t ∈ R

} ⊆ BC(R)

of its translates is relatively compact with respect to the supremum norm ‖ f ‖∞ :=
supx∈R | f (x)|. Denote by UAP(R) the set of all such functions, which becomes
a Banach space, actually a C∗-algebra, if endowed with the supremum norm and
pointwise operations, see [2, Chap. 1]. Evidently, a solution of (2) in F ⊆ BC(R)
must be contained by UAP(R) if F has the decomposition property.
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Proposition 2.1 The space UAP(R) has the decomposition property.

At this point, we give a proof only for the case of incommensurable periods to
illustrate the use of Fourier analytic techniques. The complete proof will be given in
Sect. 3 as a special case of a more general result, see Example 3.7.

Proof Suppose α1, . . . , αn are incommensurable and let f ∈ UAP(R). Any f ∈
UAP(R) has a mean value

M f := lim
t→∞

1

t

t∫

0

f (s)ds ∈ C

by [2, Sect. 1.3], and M is a continuous linear functional on UAP(R). Moreover, for
λ ∈ R the Fourier coefficients of f are defined as a(λ) := M( f (s)e−isλ) among
which only countably many are nonzero, denote these by ck and the corresponding
“frequences” by λk . We say that f has the Fourier series f ∼ ∑

k ckei xλk .

Let α ∈ R. In what follows M is understood with respect to the variable s and
�α with respect to the variable x . We have

ck�α

(
ei xλk

)
= �α

(
M( f (s)e−isλk )ei xλk

)

= M
(

f (s)e−i(s−(x+α))λk
)

− M
(

f (s)e−i(s−x)λk
)

= M
(
( f (s + α)− f (s))e−i(s−x)λk

)
= M

(
�α f (s)e−isλk

)
ei xλk .

So that the difference equation (2) implies �α1 . . . �αn ckei xλk = 0. Since ck �= 0,
this is only possible if λk = 2π�/α j for some � ∈ Z and j ∈ {1, . . . , n}. Since
α1, . . . , αn are incommensurable there can be at most one such j .

On the other hand, by Sect. 1.8.6◦ in [2] 1
N

∑N
k=1 f (s +kα j ) converges uniformly

(in s) as N → ∞ to an α j -periodic continuous function f j , whose (non-zero)
Fourier coefficients are precisely those Fourier coefficients a(λ) of f for which
λ ∈ (2π/α j )Z. We see therefore that f1 + · · · + fn and f have the same Fourier
coefficients, hence they coincide by Theorem I.4.7◦ in [2]. �
That is to say if we a priori know that f is uniformly almost periodic, then the
difference equation (2) implies the periodic decomposition (1).

The next step is to deduce this almost periodicity. Letμ ∈ Mc(R), i.e., a compactly
supported finite (signed) Borel measure on R, and let f ∈ C(R). Then

f ∗ μ(x) :=
∫

R

f (x − t)dμ(t)

defines a continuous function, the convolution of f and μ. The convolution of two
measures μ, ν ∈ Mc(R) is defined by f ∗ (μ ∗ ν) := ( f ∗μ) ∗ ν (for f ∈ C(R)): As

http://dx.doi.org/10.1007/978-3-662-44140-4_3
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a continuous linear functional on the locally convex space C(R),μ∗ν is a compactly
supported measure, i.e., μ ∗ ν ∈ Mc(R). It is also easy to see that convolution is
commutative and associative in Mc(R).

Now denote μα := δ−α − δ0, where δβ is the Dirac measure at β ∈ R. Then
f ∗ μα = f ∗ (δ−α − δ0) = �α f . With this Eq. (2) takes the form

f ∗ (μα1 ∗ · · · ∗ μαn ) = f ∗ (
(δ−α1 − δ0) ∗ · · · ∗ (δ−αn − δ0)

) = 0.

Definition 2.2 (Schwartz [35]) A function f ∈ C(R) is mean periodic if there
exists a compactly supported Borel measure μ on R with f ∗μ = 0. i.e.

∫ ∞
−∞ f (x −

t)dμ(t) = 0.

Let us recall from [21, p. 44] the following.

Proposition 2.3 (Kahane) A bounded uniformly continuous mean periodic function
is uniformly almost periodic.

An immediate consequence of this and of Proposition 2.1 is the following.

Proposition 2.4 (Gajda [13]) The Banach space BUC(R) has the decomposition
property.

Gajda proved this results with a different argument (using Banach limits) that can
be easily extended to the case of translations on locally compact Abelian groups (see
Corollary 7.2).

However, the result of Gajda for BUC(R) falls short of the complete truth, in
the extent that it does not tell that a continuous function satisfying (2) is necessarily
uniformly continuous, a fact that would imply even the decomposition property of
the whole BC(R) itself.

No direct proof of the implication “ f ∈ BC(R)& (2) ⇒ f ∈ BUC(R)” is known,
so the decomposition property of BC(R) lies deeper. In fact, to prove that a bounded
continuous solution of (2) is uniformly continuous, we have no other known ways
than this periodic decomposition result on BC(R) itself.

Before proceeding let us formulate the following more general question than
Problem 1.1.

Problem 2.5 Let μ, ν (or μ1, . . . , μn) be given Borel measures of compact support
on R. Clearly, if

f = g + h with g, h ∈ C(R) such that g ∗ μ = 0, h ∗ ν = 0, (4)

then f ∗(μ∗ν) = 0. Find conditions, under which we have the converse implication:
If f ∈ C(R), and f ∗ (μ ∗ ν) = 0, then (4) holds. Or find conditions on μ ensuring
that a solution f ∈ BC(R) of f ∗ μ = 0 is almost periodic.

http://dx.doi.org/10.1007/978-3-662-44140-4_7
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In this formulation we use no assumption on boundedness or uniform continuity.
Clearly, then additional assumptions are needed. E.g. additional functional equations
must also be satisfied? Spectra must be simple? Spectra ofμ and ν should be distinct?
Several variations may be considered.

Remark 2.6 In the problem above f is by default mean periodic. However, con-
vergence of mean periodic Fourier expansions was shown only in a complicated,
complex sense. Perhaps, recent developments in the Fourier synthesis and represen-
tation of mean periodic functions can be used, see Székelyhidi [37]. Then again,
boundedness and uniform continuity could be of use by means of Proposition 2.3 of
Kahane.

Wierdl [39] showed that the space BC(R) of bounded continuous functions has
the 2-decomposition property. Subsequently, Laczkovich and Révész proved this for
general n as the main result of [29], which was the first internationally published
paper in this topic (but see also the preceding paper [28]).

Theorem 2.7 (Laczkovich and Révész [29]) The Banach space BC(R) has the
decomposition property.

Although many generalizations and interpretations have since been described and
various tools could be invoked depending on the setup, oddly enough this first non-
trivial result could be covered by neither extensions. To date, we have no other proof
than the essentially elementary yet tricky original argument. In Sect. 4.1 we present
a proof of this result utilizing the operator theoretic approach to be developed next.

3 Generalizations to Linear Operators

Forα ∈ R the translation byα acts as a homeomorphism on R. Consider the so-called
Koopman (or composition) operator, in this case called the shift operator,

Tα : R
R → R

R, Tα f (x) := f (x + α).

Observe that the solutions of the difference equation (2) form the subspace

ker(Tα1 − I) · · · (Tαn − I)

(where I denotes the identity operator), while the functions having a periodic decom-
position (1) are the elements of

ker(Tα1 − I)+ · · · + ker(Tαn − I).

Then Problem 1.1 can be rephrased so as whether the equality

ker(Tα1 − I) · · · (Tαn − I) = ker(Tα1 − I)+ · · · + ker(Tαn − I) (5)

http://dx.doi.org/10.1007/978-3-662-44140-4_4
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holds? Of course, one can restrict the question by considering linear subspaces of
R

R that are invariant under the occurring operators. The equality then means the
decomposition property of F . Or more generally one can ask the following:

Problem 3.1 Let E be a linear space and let T1, . . . , Tn : E → E be commuting
linear operators. Find conditions such that

ker(T1 − I) · · · (Tn − I) = ker(T1 − I)+ · · · + ker(Tn − I). (6)

Remark 3.2 For a system of pairwise commuting operators T1, . . . , Tn the inclusion
“ker(T1 − I) · · · (Tn − I) ⊇ ker(T1 − I) + · · · + ker(Tn − I)” trivially holds. This
corresponds to the trivial implication “(1) ⇒ (2)”.

The first result in this direction is the following:

Theorem 3.3 (Laczkovich and Sz. Révész [30]) Let X be a topological vector space
and T1, . . . , Tn be commuting continuous linear operators on X. Suppose that for
every x ∈ X and j ∈ {1, . . . , n} the closed convex hull of {T m

j x : m ∈ N} contains
a fixed point of Tj , that is

conv
{

T m
j x : m ∈ N

}
∩ ker(Tj − I) �= ∅.

Then (6) holds.

We shall give the proof of this theorem in a special case only, see Proposition 3.6,
because that proof yields some extra information about the obtained decompositions.
For the proof of the general statement we refer to [30]. For a Banach space E
we denote by L (E) the space of bounded linear operators on E . Here are some
consequences of the previous theorem:

Corollary 3.4 Let E be a Banach space and let T1, . . . , Tn ∈ L (E) be commuting
power bounded operators. Suppose an additional vector topology τ is given on E
such that the unit ball B := {x ∈ E : ‖x‖ ≤ 1} is τ -compact, and the operators Tj

are τ -continuous. Then (6) holds.

The proof is the application of the foregoing result and the Markov–Kakutani
fixed point theorem (see, e.g., [5, Sect. 10.1]) to the closed convex hull conv{T m

j x :
m ∈ N}, which was assumed to be τ -compact.

The above together with the Banach–Alaoglu theorem yields the following:

Proposition 3.5 Let X be a normed space, E := X∗ and let τ := σ(X∗, X) be
the weak∗ topology on X∗. If T1, . . . , Tn ∈ L (E) are commuting, power bounded
weakly∗ continuous operators, then (6) holds.

Let E be a Banach space. Suppose T1, . . . , Tn ∈ L (E) are power bounded, then
the fixed point condition in Theorem 3.3 means precisely the mean ergodicity of
T1, . . . , Tn , see [5, Theorem 8.20]. Recall that T ∈ L (E) is mean ergodic if

http://dx.doi.org/10.1007/978-3-662-44140-4_3
http://dx.doi.org/10.1007/978-3-662-44140-4_3
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Px := lim
N→∞

1

N

N∑

j=1

T j x

exists for every x ∈ E . In this case the limit P is a bounded projection onto ker(T −I),
the so-called mean ergodic projection, and one has E = rgP ⊕ ker P and ker P =
rg(T − I), where rg and rg stand for the range and the closure of the range of an
operator, respectively, see [5, Sect. 8.4].

If T, S are commuting mean ergodic operators with mean ergodic projections
P, Q, then P S = S P (and T Q = QT ), so that P Q = Q P .

Proposition 3.6 Let E be a Banach space and T1, . . . , Tn ∈ L (E) be commuting
mean ergodic operators. Then the equality (6) holds.

Proof Since the operators T1, . . . , Tn commute, so do the mean ergodic projections
P1, . . . , Pn , and actually all operators occurring in this proof commute with each
other. A moment’s thought explains that the direct decomposition

E = rgP1 ⊕ rgP2(I − P1)⊕ · · · ⊕ rg
(
Pn(I − Pn−1) · · · (I − P1)

)

⊕ rg
(
(I − Pn)(I − Pn−1) · · · (I − P1)

)

is valid, i.e. for any x ∈ E we can uniquely write x = x1 + · · · + xn + y with xi ∈
rgPi = ker(Ti −I) and y ∈ rg(I−P1) · · · (I−Pn). Let now x ∈ ker(T1−I) · · · (Tn−I):
then (T1 − I) · · · (Tn − I)y = 0. It follows that y ∈ ker(T1 − I) · · · (Tn − I) ⊆
ker(I − P1) · · · (I − Pn), thus y ∈ rg(I − P1) · · · (I − Pn)∩ ker(I − P1) · · · (I − Pn).
However, (I − P1) · · · (I − Pn) is a projection, so from this y = 0 follows. �
Actually, the proof above and the result itself appears in [19] in a slightly more
general form, and as a matter of fact even much earlier in [30]. None of the papers
however formulated it by using the notion of mean ergodicity.

Example 3.7 Since shift operators Tα are all mean ergodic on E = UAP(R) we
obtain a (complete) proof of Proposition 2.1. To see that Tα is mean ergodic it
suffices to note that {T n

α : n ∈ N} is compact in the strong operator topology and
to invoke [5, Theorem 8.20]; or alternatively one can use [2, Sect. 1.8.6◦] as in the
proof of Proposition 2.1 given for incommensurable periods.

Remark 3.8

(a) Notice, that Q j = Pj (I − Pj−1) · · · (I − P2)(I − P1) is a bounded projection
on E . One trivially has ‖Pj‖ ≤ ‖Tj‖ and ‖I − Pj‖ ≤ 1 + ‖Tj‖. If we suppose
‖Tj‖ ≤ 1 for j = 1, . . . , n, then ‖Q j‖ ≤ 2 j−1. The proof above yields that the
decomposition obtained is actually

x = P1x + P2(I − P1)x + · · · + Pn(I − Pn−1) · · · (I − P2)(I − P1)x

= Q1x + Q2x + · · · + Qn x .
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Hence x has a decomposition x = x1 + · · · + xn with x j ∈ ker(Tj − I) and

max
j=1,...,n

‖x j‖ ≤ 2n−1‖x‖.

(b) If E is a Hilbert space, then the mean ergodic projections Pj are orthogonal,
see [5, Theorem 8.6]. So that I − Pj is also an orthogonal, hence contractive,
projection. This implies that x ∈ ker(T1 − I) · · · (Tn − I) has a decomposition
x = x1 + · · · + xn with x j ∈ ker(Tj − I) and

max
j=1,...,n

‖x j‖ ≤ ‖x‖.

(c) In the original setting of the decomposition problem Laczkovich and Révész
have shown that on E = BC(R) with Tj being translations by a j a function f
satisfying (2) has a decomposition f = f1 + · · · + fn with

max
j=1,...,n

‖ f j‖∞ ≤ 2n−2‖ f ‖.

The estimate is sharp for n = 2, see [29].

Problem 3.9 Find the best constant Cn such that any x ∈ ker(T1 − I) · · · (Tn − I)
has some decomposition x = x1 + · · · + xn with x j ∈ ker(Tj − I) and

max
j=1,...,n

‖x j‖ ≤ Cn‖x‖.

We saw Cn ≤ 2n−1 in general, Cn ≤ 2n−2 for translations on BC(R). Are these
estimates sharp? Is it true that Cn = 1 for translations on BC(R) for every n? ∈ N,
n ≥ 1? Under which conditions on E and/or T1, · · · , Tn does Cn = 1 hold?

Example 3.10 It is a classical result that a power bounded operator on a reflexive
Banach space E is mean ergodic. As a consequence, commuting power bounded
operators on a reflexive Banach space E fulfill the conditions of Proposition 3.6,
hence (6) holds true. See also [30, Corollary 2.6]

Definition 3.11 Let E be a Banach space, or, more generally, a topological vector
space. We say that E has the decomposition property with respect to the pairwise
commuting operators T1, . . . , Tn ∈ L (E) if (6) holds. Moreover, if A ⊆ L (E)
and E has the decomposition property for each system of n pairwise commuting
operators T1, . . . , Tn ∈ A , then E is said to have the n-decomposition property
with respect to A . Finally, if this holds for all n ∈ N, then E is said to have the
decomposition property with respect to A .

So that e.g. Example 3.10 means that a reflexive Banach space has the decomposition
property with respect to (commuting) power bounded operators. This new terminol-
ogy shall not cause any ambiguity in connection with the decomposition property of
function classes F ⊆ R

R (in Definition 1.2).
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Remark 3.12 If 1 is not an eigenvalue of say T1, then the questioned equality (6)
reduces to ker(T2 − I) . . . (Tn − I) = ker(T2 − I)+ . . .+ ker(Tn − I). That is to say
the order n reduces to order n − 1. In particular, if 1 is not a spectral value for every
T1, . . . , Tn , then (6) is satisfied trivially, both sides being {0}.
Note the following border-line feature of our subject matter. It is only interesting
to look at cases when ‖T1‖ ≥ 1, . . . , ‖Tn‖ ≥ 1 (since I − T is invertible for
‖T ‖ < 1). On the other hand, if T1, . . . , Tn are power bounded and commute,
we can equivalently renorm E by ‖|x‖| := supk1,...,kn∈N

∥
∥T k1

1 . . . T kn
n x

∥
∥, such that

for the new norm each operator becomes a contraction. Hence in the end with the
assumption ‖T1‖ = · · · = ‖Tn‖ = 1 one loses no generality (for the particularly
fixed power bounded operators T1, . . . , Tn).

Recall that a Banach space E is called m-quasi-reflexive if E has codimension m
in its bidual E∗∗.

Theorem 3.13 (Kadets and Shumyatskiy [20])

(a) A 1-quasi reflexive Banach space E has the 2-decomposition property with
respect to any pair of commuting linear transformations S, T of norm 1.

(b) If E is m-quasi reflexive with m > 1, then there exist commuting linear transfor-
mations S, T ∈ L (E) of norm 1 such that E fails to have the 2-decomposition
property with respect to S, T .

Also Kadets and Shumyatskiy proved the following:

Theorem 3.14 (Kadets and Shumyatskiy [19]) Neither the space c0 of null sequences,
nor �1 has the 2-decomposition property with respect to operators of norm 1.

See [19] for the proofs and for further information on averaging techniques which
can be used in connection with the periodic decomposition problem. Several natural
questions arise, see [20]:

Problem 3.15

1. Is it true that in a 1-quasi reflexive space E has the decomposition property with
respect to any finite system of commuting operators of norm 1?

2. Does the 2-decomposition property with respect to contractions imply the
n-decomposition property with respect to contractions?

3. Does the 2-decomposition property with respect to power bounded operators
characterizes m-quasi reflexive Banach spaces with m ≤ 1?

Let us finally remark that a recent result of Fonf et al. [12] states that a separable
1-quasi reflexive space can be equivalently renormed such that every contraction
with respect to the new norm becomes mean ergodic. Also a classical result of theirs,
see [11], is that a Banach space E is reflexive if (and only if) every power bounded
operator is mean ergodic. These indicate the possible difficulty of Problem 3.15.
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The original setting of the decomposition problem has a special feature, namely
that the translation operators Tt on translation invariant subspaces E of R

R form a
one-parameter (semi)group of linear operators. In the rest of this section we shall
study this aspect from a more general point of view. Given a Banach space E , a one-
parameter semigroup T is a unital semigroup homomorphism T : [0,∞) → L (E),
i.e., T (t + s) = T (t)T (s) and T (0) = I are fulfilled for every t, s ≥ 0. Whereas a
one-parameter group defined analogously as a group homomorphism (into the group
of invertible operators). On R

R one can define the translation group by T (t) f (x) =
f (t + x), which is then, as said above, a one-parameter group.

Problem 3.16 Under which conditions does a Banach space E have the decompo-
sition property with respect to operators T1, . . . , Tn coming from a one-parameter
(semi)group T as Tj = T (t j ) for some t j > 0, j = 1, . . . , n?

A one-parameter (semi)group is called a C0-(semi)group if it is strongly continuous,
i.e., continuous into L (E) endowed with the strong (i.e., pointwise) operator topol-
ogy. The translation group is not strongly continuous on the Banach space B(R) of
bounded functions or on BC(R), but it is strongly continuous on the Banach space
BUC(R) of bounded unformly continuous functions. A one-parameter (semi)group
is called bounded if ‖T (t)‖ ≤ M for all t ∈ [0,∞) (or t ∈ R). See [6] for the general
theory.

Theorem 3.17 ( Kadets and Shumyatskiy [20]) Let T be a bounded C0-group, and
let t1, t2 > 0. Then

ker(T (t1)− I)(T (t2)− I) = ker(T (t1)− I)+ ker(T (t2)− I). (7)

Translations on BUC(R) is a C0-group of isometries, providing another proof of the
2-decomposition property of BUC(R), formulated in Proposition 2.4.

In general the idea is to find a closed subspace F ⊆ E invariant under the semi-
group operators T (t), such that one can apply Proposition 3.6 to the restricted oper-
ators. Concerning the nature of the problem there is one immediate candidate for
this subspace. In what follows T will be a fixed bounded C0-semigroup. A vector
x ∈ E is called asymptotically almost periodic (with respect to the semigroup T ) if
the orbit {T (t)x : t ≥ 0} is relatively compact in E . Denote by Eaapthe collection of
asymptotically almost periodic vectors, which is easily seen to be a closed subspace
of E invariant under the semigroup operators. It can be proved that if T is a bounded
C0-group then for x ∈ Eaap one actually has also the relative compactness of the
entire orbit {T (t)x : t ∈ R}. The proof of Theorem 3.17 by Kadets and Shumyatskiy
establishes the fact that ker(T (t1)− I)(T (t2)− I) ⊆ Eaap.

The only known extensions/variations of the Kadets–Shumyatskiy result follow
the same strategy (or some modifications of it) and are the following:

Theorem 3.18 (Farkas [8]) Let E be a Banach space and let T be a bounded
C0-group. Suppose that E does not constain an isomorphic copy of the Banach
space c0 of null sequences. Then for every n ∈ N and t1, . . . , tn ∈ R we have

http://dx.doi.org/10.1007/978-3-662-44140-4_3
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ker(T (t1)− I ) · · · (T (tn)− I ) = ker(T (t1)− I )+ · · · + ker(T (tn)− I ). (8)

It is not surprising that Bohl–Bohr–Kadets type theorems (see [1, 18]) play an impor-
tant role here. In this regard let us mention just the following:

Theorem 3.19 (Basit [1], Farkas [7]) A separable Banach space E does not contain
an isomorphic copy of c0 if and only if for every x ∈ E, T ∈ L (E) invertible with
T and T −1 both power bounded the following statements are equivalent:

(i)
{
T n+1x − T n x : n ∈ N

}
is relatively compact.

(ii)
{
T n+m x − T n x : n ∈ N

}
is relatively compact for some m ∈ N, m ≥ 1.

(iii)
{
T n+m x − T n x : n ∈ N

}
is relatively compact for all m ∈ N.

(iv)
{
T n x : n ∈ N

}
is relatively compact.

The next class of C0-semigroups for which the decomposition problem has positive
solution is of those that are norm-continuous at infinity, including also eventually
norm-continuous semigroups, see [31] or [6, Sect. 2.1] for these notions.

Theorem 3.20 (Farkas [8]) Let T be a bounded C0-semigroup that is norm-
continuous at infinity. Then for all n ∈ N and t1, . . . , tn ≥ 0 (8) holds.

Problem 3.21 1. Is the Kadets–Shumyatskiy theorem true for every n? I.e., can
one drop the geometric assumptions on E from Theorem 3.18?

2. What about the case of C0-semigroups? Can one get rid of the eventual norm-
continuity in Theorem 3.20?

3. None of the above covers the decomposition property of BC(R). What can be
said about one-parameter semigroups that are only strongly continuous with
respect to some weaker topology on the Banach space E? Can one cover the
decomposition property of BC(R) by some extension of the results for one-
parameter semigroups?

4 Application of the Operator Theoretic Results

In this section we present some applications of the results in the foregoing section.

4.1 The decomposition property of BC(R)

We devote this subsection to the proof of Theorem 2.7. We slightly differ from the
original proof of [29], in exploiting the previous results and in particular Proposi-
tion 2.1.
For n = 1 the statement is trivial, so we argue by induction. Suppose f ∈ BC(R)
satisfies (2). We group the periods according to commensurability:
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{α1, . . . , αn} = {α1, . . . , αa} ∪ {β1, . . . , βb} ∪ · · · ∪ {ρ1, . . . , ρr }.

Denote the least common multiple of these by α, β, . . . , ρ, i.e., α is the non-negative
generator of the cyclic group

⋂a
j=1 α j Z etc. Then from (2) we obtain

�a
α . . . �

r
ρ f = 0. (9)

Lemma 4.1 Let f ∈ B(R) (a bounded function) and α ∈ R \ {0}, n ∈ N. If
�n
α f = 0, then �α f = 0.

Proof Obviously, it suffices to work out the proof for n = 2. Let g := �α f . By
condition, �αg = 0, so g is α-periodic. Therefore,

f (x + Nα) = f (x)+
N−1∑

i=0

�α f (x + iα) = f (x)+ Ng(x),

thus f cannot be bounded if g(x) �= 0. �
As a consequence, from (9) we obtain

�α . . .�ρ f = 0. (10)

Hence in case α1, . . . , αn are not all pairwise incommensurable then f is also a
solution of a difference equation of order less than n. We can therefore apply the
induction hypothesis providing that f has an (α, . . . , ρ)-decomposition. So in par-
ticular f ∈ UAP(R), which space has the decomposition property in view of Propo-
sition 2.1, and so we are done.
It remains to handle the case when α1, . . . , αn are pairwise incommensurable. The
crux of the proof is thus the following:

Lemma 4.2 Let α1, . . . , αn be pairwise incommensurable, and let f ∈ BC(R)
satisfy (2). Then f has an (α1, . . . , αn)-decomposition in BC(R).

To prove this lemma it is natural to get rid of one period and reduce the situation to
a difference equation of order n − 1 by considering g := �αn f , which then satisfies
�α1 . . . �αn−1 g = 0, and thus by the induction hypothesis, by Remark 3.8(a) and by
Example 3.7

g = g1 + · · · + gn−1 (�α j g j = 0, j = 1, . . . , n − 1),

where g j = Q j g for some bounded projection Q j on UAP(R). If f were subject to
the representation (1), then we could guess �αn f j = g j . So we try to “lift up” the
g j to some functions f j with �α j f j = �α j g j = 0 and �αn f j = g j . Suppose this
works, we find such f j ∈ BC(R). Then

fn := f − ( f1 + · · · + fn−1) ∈ BC(R),



The Periodic Decomposition Problem 157

and�αn fn = g −(g1 +· · ·+gn−1) = 0, so f has a decomposition (1). So it remains
to show the possibility of a lift-up for any incommensurable periods.

Lemma 4.3 Let g ∈ C(R), let β, γ ∈ R be incommensurable, and suppose
�βg = 0. Then the following are equivalent:

(i) There exists K > 0 such that

∣
∣
∣

k−1∑

i=0

g(x + iγ )
∣
∣
∣ < K (for x ∈ R, k ∈ N).

(ii) There is h ∈ C(R) such that �βh = 0 and �γ h = g.

Proof This is a special case of a well-known ergodic theory result, see [14, The-
orem 14.11, p.135], as putting Y := R/γZ, the homeomorphism �(x) := x + β

mod γ has minimal orbit-closure Y for every x . �
To complete the proof of Theorem 2.7 we need to check that condition (i) in the
preceding lemma is fulfilled. For j ∈ {1, . . . , n − 1} the projection Q j commutes
with translations so that

∣
∣
∣

k−1∑

i=0

g j (x + iαn)

∣
∣
∣ =

∣
∣
∣

k−1∑

i=0

(Q j g)(x + iαn)

∣
∣
∣

=
∣
∣
∣Q j

k−1∑

i=0

g(x + iαn)

∣
∣
∣ =

∣
∣
∣Q j

(
f (x + kαn)− f (x)

)∣∣
∣ ≤ 2‖Q j‖ · ‖ f ‖∞

for every x ∈ R, k ∈ N. The proof is hence complete.

4.2 Applications to L p spaces

Let (X, �,μ) be a measure space. In this subsection our standing assumption is as
follows:

Condition 4.4 For j = 1, . . . , n let Tj : X → X be pairwise commuting measur-
able mappings such that μ(T −1

j (A)) ≤ μ(A) for every A ∈ �.

Then the Koopman operators, denoted by the same letter and defined by

Tj f := f ◦ Tj

are contractions on all of the spaces Lp(X, �,μ). In particular the condition above
is fulfilled if the Tj s are measure-preserving, in which case the Koopman operators
Tj become isometries on each of the Lp spaces.
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For the reflexive range the next corollary of Proposition 3.6 is immediate:

Corollary 4.5 Let 1 < p < ∞. Under Condition4.4 consider the Koopman oper-
ators Tj on Lp(X, �,μ). Then (6) holds true.

The same result is true for the case p = 1, but the proof is different since infinite
dimensional L1 spaces are non-reflexive. We remark however that if (X, �,μ) is
finite, then the Koopman operators Tj are simultaneous L1 and L∞ contractions,
so-called Dunford–Schwartz operators, that are known to be mean ergodic on L1,
see, e.g., [5, Sect. 8.4].

Proposition 4.6 (Laczkovich and Révész [30]) Under Condition 4.4 consider the
Koopman operators Tj on L1(X, �,μ). Then (6) holds true.

We do not give the proof here, but note that the mean ergodicity of the operators
can be replaced by an application of Birkhoff’s pointwise ergodic theorem, see, e.g.
[5, Chap. 11]. See [30] for the detailed proof.

The case of p = ∞ is more subtle. Let us recall the following notion.

Definition 4.7 A measure space (X, �,μ) is called localizable if the dual of the
Banach space L1(X, �,μ) is L∞(X, �,μ) (with the usual identification).

As a matter of fact, the original definition of Segal (see [36, Sect. 5]) was different,
but is equivalent to the one above. Known examples of localizable measure spaces
include:

Example 4.8

1. σ -finite measure spaces,
2. (X, �,μ) with X a set � = P(X) the power set, μ the counting measure,
3. (X, �,μ) purely atomic,
4. (X, �,μ), X a locally compact group,� the Baire algebra, μ a (left/right) Haar

measure.

Hence, in all of these cases the results below apply. In particular if one considers
commuting left- (or right) translations on some locally compact group G, then the
respective Koopman operators will satisfy (6). Note that the left and the right Haar
measures are absolutely continuous with respect to each other, so we can fix each
and any of them for our considerations below.

Theorem 4.9 (Laczkovich and Révész [30]) Let (X, �,μ) be a localizable measure
space, and suppose that for the pairwise commuting measurable mappings Tj : X →
X ( j = 1, . . . , n) the push-forward measures μ ◦ T −1

j are all absolutely continuous
with respect to μ. Then for the Koopman operators Tj on L∞(X, �,μ) (6) holds
true.

The proof relies on the fact that under the conditions of localizability of (X, �,μ) and
absolute continuity of the push-forward measures, the operators Tj will be weak∗
continuous on L∞(X, �,μ) hence one can apply Proposition 3.5. For the details
see [30].
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Problem 4.10 Can one drop the localizability assumption?

Corollary 4.11 (Gajda [13], Laczkovich and Révész [30]) The space B(X) of
bounded functions on a set X has the decomposition property with respect to any
system of commuting Koopman operators.

This follows from Theorem 4.9 and from Example 4.8(2) above. The proof of Gajda
uses Banach limits, see also Sect. 7. To sum up we have:

Corollary 4.12 The Banach spaces Lp(R) (1 ≤ p ≤ ∞, Lebesgue measure) have
the decomposition property.

Of course, 0 is the only periodic function in Lp(R) if p < ∞, hence the message of
the previous result is that (2) has 0 as the only Lp-solution if p < ∞. This follows
also from a more general result of Edgar and Rosenblatt [4, Corollary 2.7] stating
that the translates of a function 0 �= f ∈ Lp(Rd), p < 2d/(d − 1) are linearly
independent.

4.3 More Spaces with the Decomposition Property

Proposition 4.13 (Laczkovich and Révész [30]) The following spaces of real-valued
functions on R have the decomposition property:

(a) BV1(R) := {
f : f ∈ B(R)with unif. bdd. variation on [x, x + 1], x ∈ R

}

(b) Lipb(R) := {
f : f is bounded and Lipschitz continuous

}

(c) Lipk
b(R) := {

f : f ∈ BC(R) k times differentiable with f (k) Lipschitz
}

The cases (a) and (b) can be handled by introducing an appropriate norm turning the
spaces under consideration into Banach spaces, then by noting that the unit ball is
compact for the pointwise topology. Hence Theorem 3.3 is applicable. Details are in
[30]. Part (c) relies on the following result interesting in its own right:

Proposition 4.14 (Laczkovich and Révész [30]) Let F ⊆ C(R) be a function class
with the property that whenever f ∈ F and c ∈ R then f + c ∈ F . Let k ∈ N and
define

G := {
f : f ∈ BC(R) is k times differentiable with f (k) ∈ F}

.

If the function class F has the decomposition property so does G.

Problem 4.15 There are several interesting Banach function spaces. Which of them
do have the decomposition property? Just take your favorite non-reflexive translation
invariant Banach function space on R. Does it have the decomposition property?
Denote by L1

p(R) the set of functions with

‖ f ‖1,p := sup
x∈R

⎛

⎝

1+x∫

x

| f (t)|pdt

⎞

⎠

1/p

< ∞,

http://dx.doi.org/10.1007/978-3-662-44140-4_4
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and by Sp(R) the closure of trigonometric polynomials in this norm. The elements
of Sp(R) are called Stepanov almost periodic functions, see [2]. Does the Banach
space L1

p(R) have the decomposition property? If the answer were affirmative it
would follow that f ∈ L1

p(R) and (2) imply that f ∈ Sp(R). (This is because
periodic functions belong to Sp(R).) So, is an L1

p(R) solution of (2) Stepanov almost
periodic?

5 Results for Arbitrary Transformations

Treating the periodic decomposition problem for various classes F of real functions
a natural approach would be to split the question into two. That is first looking for a
periodic decomposition into arbitrary periodic functions with the given periods, and
then investigating whether the existence of such arbitrary decomposition entails the
existence of a decomposition within the function class F . In this section we address
the first question, which can be actually done in a far more general setup. We consider
this problem interesting in its own right, even if we already know that for some
important function classes (e.g., for C(R), see the paragraph after Proposition 1.3)
the answer to the second question is in the negative.

Let X be a non-empty set. The decomposition problem can be formulated in the
whole space of functions R

X with respect to arbitrary commuting transformations
in X X . To do that to a self map T : X → X , called transformation, we asso-
ciate the Koopman operator (denoted by the same letter) T f := f ◦ T , and the
T -difference operator �T f := T f − f . A function f satisfying �T f = 0 is then
called T -invariant. A (T1, . . . , Tn)-invariant decomposition of some function f is a
representation

f = f1 + · · · + fn , where �Tj f j = 0 ( j = 1, . . . , n). (11)

For pairwise commuting transformations Ti the functional equation

�T1 . . . �Tn f = 0 (12)

is evidently necessary for the existence of invariant decompositions. On the example
of translations on R we saw that it is not sufficient. Now in this general setting our
basic question sounds:

Problem 5.1 Give necessary and sufficient conditions, containing (12), in order to
have some (T1, . . . , Tn)-invariant decomposition (11). Or give restrictions either on
the transformations or on X (but not on the function class R

X ) such that (12) becomes
also sufficient.

More precisely, we focus on complementary conditions, functional equations, on
the functions, which they must satisfy in case of existence of an invariant decompo-
sition (11) and which equations will also imply existence of such a decomposition.
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Difference equations (of higher order) and/or inequalities occur here naturally, as is
also suggested by the appearance of the Whitney condition in Theorem 1.6.

Further necessary conditions can be easily obtained. Indeed, as the transformations
commute, (12) implies

�
T

k1
1
. . . �T kn

n
f = 0 (∀k1, . . . , kn ∈ N). (13)

Now the major difficulties come from the following features:

1. The transformations Tj may not be invertible.
2. The “mix-up” of transformations can be completely irregular: T 5S3x = T 7S2x

for some x ∈ X and nothing similar for other points y ∈ X .
3. Functions on X lack any structure beyond the obvious linear one—no bound-

edness, continuity, measurability, compatibility with underlying structure of X ,
nothing—so not much theoretical mathematics but pure combinatorics can be
invoked.

For two transformations, i.e., n = 2, the answer is completely known:

Theorem 5.2 (Farkas and Révész [10]) Let X be a non-empty set, let S, T : X → X
be commuting transformations, and let f ∈ R

X . The following are equivalent:

(i) There exists a decomposition f = g+h, with g and h being S- and T -invariant,
respectively.

(ii) �S�T f = 0, and if for some x ∈ X and k, n, k′, n′ ∈ N the equality

T k Sn x = T k′
Sn′

x (14)

holds, then
f (T k x) = f (T k′

x).

(iii) �S�T f = 0, and if for some x ∈ X and k, n, k′, n′ ∈ N (14) holds, then

f (Sn x) = f (Sn′
x).

Of course, the equivalence of (ii) and (iii) is due to symmetry, if one knows that any
one of them is equivalent to (i). We do not give the proof (see [10]), but mention
an idea that will be useful also below. First we partition the set X with respect to
an equivalence relation: x, y ∈ X are equivalent if there exist k, n, k′, n′ ∈ N such
that T k Sn x = T k′

Sn′
y. X splits into equivalence classes X/∼, from which by the

axiom of choice we choose a representation system. Obviously, it is enough to define
g and h on each of these equivalence classes. Indeed, for x ∈ X the elements x , T x
and Sx are all equivalent, so the invariance of the desired functions g, h is decided
already in the common equivalence class. So the task is now reduced to defining the
functions g and h on a fixed, but arbitrary equivalence class.
For general n ∈ N, n ≥ 2 the following difference equation type necessary conditions
can be found:
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Condition (*) For every N ≤ n, disjoint N -term partition B1 ∪ B2 ∪ · · · ∪
BN = {1, 2, . . . , n}, distinguished elements h j ∈ B j ( j = 1, . . . , N ), indices
0 < k j , l j , l ′j ∈ N, ( j = 1, . . . , N ) and z ∈ X once the conditions

T
k j
h j

T li
i z = T

l ′i
i z for all i ∈ B j \ {h j }, for all j = 1, . . . , N (15)

are satisfied, then
�

T
k1
h1

. . . �
T

kN
hN

f (z) = 0. (16)

Theorem 5.3 (Farkas and Révész [10] ) Let T1, . . . , Tn be commuting transforma-
tions of X and let f be a real function on X. In order to have a (T1, . . . , Tn)-invariant
decomposition (11) of f Condition (∗) is necessary.

If the blocks B j are all singletons the condition (15) is empty, so (16) expresses
exactly (13). In particular, Condition (∗) contains (12).
For n = 3 transformations Condition (∗) is not only necessary but also sufficient for
the existence of invariant decompositions.

Theorem 5.4 (Farkas and Révész [10]) Suppose that T1, T2 and T3 commute and that
the function f satisfies Condition (∗). Then f has a (T1, T2, T3)-invariant decom-
position.

Again the proof is combinatorially involved, so let us just state one main ingredient,
the "lift-up lemma" corresponding to Lemma 4.3 above. It is proved itself in a series
of lemmas, which we do not detail here.

Lemma 5.5 Let T, S be commuting transformations of X and let g : X → R be a
function satisfying�Sg = 0. Then there exists a function h : X → R satisfying both
�Sh = 0 and �T h = g if and only if for every x ∈ X it holds

k−1∑

i=0

g(T i x) = 0 whenever T k Sl x = Sl ′ x with some k, l, l ′ ∈ N. (17)

Problem 5.6 Is Condition (∗) equivalent to (11) for all n ∈ N (n ≥ 4)?

5.1 Unrelated Transformations

If the orbits of the transformations show no recurrence then a satisfactory answer
can be given. The relevant notion is the following.

Definition 5.7 We call two commuting transformations S, T on X unrelated if
T n Sk x = T m Sl x can occur only if n = m and k = l. In particular, then nei-
ther of the two transformations can have any cycles in their orbits, nor do their joint
orbits have any recurrence.
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If all pairs Ti and Tj (1 ≤ i �= j ≤ n) are unrelated, then Condition (∗) degener-
ates, as in (15) we necessarily have that all blocks B j are singletons. Hence Condition
(∗) reduces merely to (13) or, equivalently, to (12).

Theorem 5.8 (Farkas and Révész [10]) Suppose the transformations T1, . . . , Tn are
pairwise commuting and unrelated. Then the difference equation (12) is equivalent
to the existence of some invariant decomposition (11).

Proof Only sufficiency is to be proved. We argue by induction. The cases of small
n are obvious. Let F := �Tn+1 f . Then F satisfies a difference equation of order
n, hence by the inductive hypothesis we can find an invariant decomposition of F
in the form F = F1 + · · · + Fn , where �Tj Fj = 0 for j = 1, . . . , n. Since the
transformation are unrelated, condition (17) in Lemma 5.5 is void, and therefore the
“lift-ups” f j with �Tj f j = 0, �Tn+1 f j = Fj exist for all j = 1, . . . , n. Therefore,
fn+1 := f − ( f1 +· · ·+ fn) provides a function satisfying�Tn+1 fn+1 = F − (F1 +
· · · + Fn) = 0. Thus a required decomposition of f is established. �

5.2 Invertible Transformations

When the transformations Tj are invertible, the situation simplifies somewhat. Denote
by G ⊆ X X the group generated by T1, . . . , Tn . As before, we work on equivalence
classes, now orbits O := {T x : T ∈ G} for some x ∈ X , under the action of the
transformation group G. Given a group G denote by 〈a〉 the cyclic group generated
by a i.e., 〈a〉 := {an : n ∈ Z}, and for H ⊆ G let [H ] := ⋂

h∈H
〈h〉.

Condition(**) For all orbits O of G, for all partitions

B1 ∪ B2 ∪ · · · ∪ BN = {
T1 |O , T2 |O , . . . , Tn |O

}

and any element S j ∈ [B j ], j = 1, . . . , N , we have that

�S1 . . . �SN f |O= 0 holds. (18)

The next is the main result in this setting:

Theorem 5.9 (Farkas et al. [9]) Let T1, . . . , Tn be pairwise commuting invertible
transformations on a set X. Let f : X → R be any function. Then f has a
(T1, T2, . . . , Tn)-invariant decomposition (11) if and only if it satisfies Condition
(**).

The proof relies on a variant of Lemma 5.5.
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6 Decompositions on Groups

Let us see some consequences of the result in the foregoing section. Let G be a
group, and let a1, . . . , an ∈ G. Consider the actions of a1, . . . , an on G as left
multiplications. For a function f : G → R we introduce the left a-difference oper-
ator �a f (x) := f (ax) − f (x). The function f is called left a-invariant (or left
a-periodic) if �a f = 0. Since the actions are transitive we get:

Corollary 6.1 Let G be a group and a1, . . . , an ∈ G pairwise commuting. Then
a function f : G → R decomposes into a sum of left a j -invariant functions,
f = f1 +· · ·+ fn, if and only if for all partitions B1 ∪ B2 ∪· · ·∪ BN = {a1, . . . , an}
and for each element b j ∈ [B j ]

�b1 . . . �bN f = 0.

In a torsion free Abelian group A for B ⊆ A the generator of the cyclic group [B]
is uniquely determined (up to taking inverse). In [10] we called this (maybe two)
element(s) the least common multiple of the elements in B. For instance, with this
terminology we have that the least common multiple of 1 and

√
2 in the group (R,+)

is 0. Then we have the next result:

Corollary 6.2 Let A be a torsion free Abelian group and a1, . . . , an ∈ A. A function
f : A → R decomposes into a sum of a j -periodic functions, f = f1 + · · · + fn, if
and only if for all partitions B1 ∪ B2 ∪ · · · ∪ BN = {a1, . . . , an} and b j being the
least common multiple of the elements in B j one has

�b1 . . . �bN f = 0. (19)

If we take A = R and α1, . . . , αn incommensurable we obtain the following.

Corollary 6.3 (Mortola and Peirone [32], Farkas and Révész [10]) Let α1, . . . , αn

∈ R be incommensurable. Then a function f : R → R satisfies (2) if and only if it
has periodic decomposition (1).

The above results remain true if one considers functions with values in torsion free
groups �. The proof of the following is the same as for Theorem 5.9 with the new
aspect that taking averages in � requires some additional care.

Theorem 6.4 (Farkas et al. [9]) Let A, � be torsion free Abelian groups and
a1, . . . , an ∈ A. A function f : A → � decomposes into a sum of a j -periodic
functions f j : A → �, f = f1 + · · · + fn if and only if for all partitions
B1 ∪ B2 ∪ · · · ∪ BN = {a1, . . . , an} and b j being the least common multiple of
the elements in B j one has (19).

Let A be a torsion free Abelian group. By the previous theorem for� = R and for� =
Z, we obtain that for a function f : A → Z the existence of a real-valued periodic
decomposition and the existence of an integer-valued periodic decomposition are
both equivalent to the same condition.
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Corollary 6.5 If an integer-valued function f on a torsion free Abelian group A
decomposes into the sum of a j -periodic real-valued functions for some a1, . . . , an,
then f decomposes into the sum of a j -periodic integer-valued ones.

There are examples showing that one cannot get rid of the torsion freeness of A in
Corollary 6.5 or Theorem 6.4, see [9].

Note that in crystallography and other applications, reconstruction or at least
unique identification of integer-valued functions or characteristic functions of sets
from various (partial) information concerning their Fourier transform are rather
important. This also motivates the interest in integer-valued periodic decomposi-
tions or decompositions with values within a subgroup. In turn, support of a Fourier
transform can reveal the existence of a periodic decomposition, see e.g. [27, 2.7 and
2.8], or the analogous idea of the proof for Proposition 2.1. For more about this see
[27] and the references therein.

7 Actions of Semigroups

Let X be a non-empty set and let T : X → X be an arbitrary mapping. If a function
f : X → R is invariant under T , i.e., �T f = 0, then it is evidently invariant under
each iterate T n of T for n ∈ N. Given commuting mappings T1, . . . , Tn : X → X
consider the generated semigroups

S j := {
T n

j : n ∈ N
}
. (20)

The corresponding semigroup of the Koopman operators on R
X is denoted by S j .

(Recall that we use the same symbol T for the Koopman operator of T ∈ X X .)
For a subset A of linear operators on R

X we introduce the notations ker A :=⋂
A∈A ker A. Then the equality

ker(T1 − I) · · · (Tn − I) = ker(T1 − I)+ · · · + ker(Tn − I) (21)

is easily seen to be equivalent to

ker(S1 − I) · · · (Sn − I) = ker(S1 − I)+ · · · + ker(Sn − I). (22)

In what follows we study this equality when S j are general, not necessarily cyclic,
semigroups.

Let S be a discrete semigroup with unit element, and let S j , j = 1, . . . , n unital
subsemigroups of S that all act on the non-empty set X (from the left), the unit acting
as the identity. Suppose furthermore st = ts for all s ∈ S j and t ∈ Si with i �= j
(the actions of different S j s are commuting).
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Theorem 7.1 (Farkas [8]) Suppose that for j = 1, . . . , n the unital semigroups
S j on the set X are (right-)amenable and that the actions of the different S j are
commuting. Denote by S j the semigroups of the Koopman operators. Then (22)
holds in the space B(X). Furthermore, if X is uniform (topological) space and the
action of S j on X is uniformly equicontinuous, then (22) holds in the space BUC(X).

This result and its proof generalizes those of Gajda [13], who used Banach limits
(i.e., amenability of Z or N) to establish the above for Z and N actions, i.e., for
semigroups as in (20). The next consequence immediately follows.

Corollary 7.2 (Gajda [13]) Let A be a locally compact Abelian group, and let
a1, . . . , an ∈ A. Then (21) holds in BUC(R) for Tj being the shift operator by
a j . In particular BUC(R) has the decomposition property.

Let us finally return to the purely linear operator setting on an arbitrary Banach
space E . A subsemigroup S ⊆ L (E) of bounded linear operators is called mean
ergodic if the closed convex hull conv(S ) ⊆ L (E) contains a zero element P , i.e.,
PT = P = T P for every T ∈ S . In this case P is a projection, called the mean
ergodic projection of S , and it holds (see [33])

E = rgP ⊕ rg(I − P) with rgP = ker(S − I) .

Theorem 7.3 (Farkas [8]) Let S1,S2, . . . ,Sn ⊆ L (E) be mean ergodic operator
semigroups and suppose that ST = T S whenever T ∈ Si , S ∈ S j with i �= j .
Then (22) holds.

Since an operator T is mean ergodic if and only if the semigroup {T n : n ∈ N} is
mean ergodic, the previous result contains Proposition 3.6. Moreover, the obvious
modification of Theorem 3.3 (using fixed points in the closed convex hull) for this
semigroup setting is easily proved, but this we will not pursue here. Furthermore,
the analogue of Corollary 3.4 can be formulated for amenable semigroups instead of
cyclic ones, where of course one applies Day’s fixed point theorem, see [3], instead
of the one of Markov and Kakutani.

Problem 7.4 Does the space BC(A) of bounded and continuous functions, where A
is a locally compact Abelian group, has the decomposition property with respect to
translations? If A is compact or discrete or A = R, this is so by the previous results.
What about A = R

2?

8 Further Results

We briefly touch upon topics that, regrettably, could not be covered in detail.
First we take a second glimpse at the original problem.
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Theorem 8.1 (Natkaniec and Wilczyński [34]) Let α1, . . . , αn ∈ R \ {0} be incom-
mensurable. A function f : R → R has a decomposition (1) with f1, . . . , fn Darboux
functions if and only if (2) holds.

See [34] for the proof where also the decomposition property of Marczewski
measurable functions is studied for incommensurable periods. It is also shown that
the identity is not the sum of periodic functions having the Baire property. For classes
of measurable functions we have, e.g., the following.

Theorem 8.2 (Keleti [26]) None of the following classes F have the decomposition
property:

(a) F = { f : f : R → Z, f ∈ L∞(R)},
(b) F = { f : f : R → Z is bounded measurable},
(c) F = { f : f : R → R is a.e. integer-valued and f ∈ L∞(R)},
(d) F = { f : f : R → Z is a.e. integer-valued, bounded and measurable}.
For more information on measurable decompositions see also [23–25]. Next we
turn to integer-valued decompositions on Abelian groups. We mention only three
exemplary results from [22]:

Theorem 8.3 (Károlyi et al. [22])

(a) Suppose f : Z → Z has an (α1, . . . , αn)-periodic decomposition into real-
valued functions with a j ∈ Z. Then it has an (α1, . . . , αn)-periodic integer-
valued decomposition.

(b) For α1, . . . , αn ∈ Z the class of Z → Z functions has the decomposition prop-
erty.

(c) Let A be a torsion-free Abelian group. Then the class of bounded A → Z

functions has the decomposition property if and only if A is isomorphic to an
additive subgroup of Q.

For a proof and for an abundance of further information we refer to [22], and remark
that part c) above implies that the class of bounded and integer-valued functions
does not have the decomposition property known also from Theorem 8.2, see also
[22, Corollary 3.4].
Finally, we discuss some aspects of uniqueness of decompositions. Of course, one
cannot expect uniqueness in the original setting, since appropriate constant functions
can be added to the summands in (1) not affecting the validity of (2). If one restricts
to certain function classes then only this trivial procedure can produce different
decompositions (for incommensurable periods).

Theorem 8.4 (Laczkovich and Révész [30]) For incommensurable periods a peri-
odic decomposition in L∞(R) of a function f ∈ L∞(R) is unique up to additive
constants.

In the original setting of the decomposition problem, i.e., in R
R the situation is

somewhat more complicated. E.g. consider n = 2, f = f1 + f2 with �a j f j = 0,
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j = 1, 2. Let h be a not identically 0 function that is both α1- and α2-periodic. Then
f = ( f1 + h)+ ( f2 − h) is a different decomposition.

In general two decompositions f = g1 + · · · + gn and f = f1 + · · · + fn with
�α j g j = �α j f j = 0 j = 1, . . . , n are called essentially the same if there are

functions hi j ∈ R
R for i, j = 1, . . . , n with hii = 0, hi j = −h ji , �αi hi j = 0,

�α j hi j = 0 such that for all j = 1, . . . , n one has f j − g j = ∑n
i=1 hi j . Note that

for incommensurable periods αi/α j �∈ Q we necessarily have hi j =constant on each
equivalence class of R (for the equivalence relation as in the paragraph after Theorem
5.2), whence in presence of continuity on the whole real line.

Essential uniqueness of decomposition depends very much on the periods:

Theorem 8.5 (Harangi [17]) For α1, . . . , αn ∈ R \ {0} the following assertions are
equivalent:

(i) If any three numbers αi , α j , αk from α1, . . . , αn are pairwise linearly indepen-
dent over Q, then they are linearly independent over Q.

(ii) Any two (α1, . . . , αn)-periodic decomposition of a function f are essentially
the same, i.e., the decomposition is essentially unique.

(iii) If a function f : R → Z has an (α1, . . . , αn)-periodic decomposition into
bounded real-valued functions, then it has also one into bounded integer-valued
functions.

See also [15], [17] or [16] for details and further directions.
We end this survey by posing the following problem:

Problem 8.6 Study the periodic decomposition problem for functions f on R, or
on an Abelian group, with values in R mod 1 (or in an Abelian group).
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Existence of Periodic and Almost Periodic
Solutions of Discrete Ricker Delay Models

Yoshihiro Hamaya

Abstract The aim of this article is to investigate the sufficient conditions for the
existence of periodic and almost periodic solutions of a generalized Ricker delay
model,

N (n + 1) = N (n) exp{ f (n, N (n − r(n)))},

when f are periodic and almost periodic functions in n, respectively, which appears as
a model for dynamics with single species in changing periodic and almost periodic
environments, by applying the technique of boundedness and stability conditions
which derives the fixed point theorems and uniformly asymptotically stable of so-
lutions for above equation, respectively. Moreover, we consider the existence of an
almost periodic solution of the case where f has the Volterra term with an infinite
delay.

1 Introduction

For ordinary differential equations and functional differential equations, the
existence of periodic and almost periodic solutions of systems has been studied
by many authors. One of the most popular methods is to find Liapunov func-
tions/functionals [1, 3, 7, 11, 14] for boundedness and stability conditions. For
the periodic functional difference equation, the existence of uniform bounded and
uniform ultimately bounded solutions imply the existence of a periodic solution, see
[9], However, for an almost periodic equation, the boundedness of solutions does
not necessarily imply the existence of an almost periodic solution even for scalar
differential equations with no delay. Recently, He et al. [10] have shown the exis-
tence of periodic and almost periodic solutions for a non-autonomous scalar delay
differential equation of modeling single species dynamics in a temporally changing
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environment. Their results extend the results of Gopalsamy [3] to a non-autonomous
differential equation by using the 3/2 stability conditions [13] when its almost peri-
odic case. To the best of our knowledge, there are no relevant results on the existence
of periodic and almost periodic solutions for discrete Ricker models by means of
our approach of discrete boundedness and stability theorems [16]. We emphasize
that our results extend [4, 10] as delay discrete periodic and almost periodic cases.
Equation (27) does not contain a delay independent stabilising negative feedback
term and hence (27) require a different approach from that in the literature [11]. In
this paper, we discuss the existence of periodic and almost periodic solutions for
a generalized non-autonomous discrete Ricker type difference equations with finite
delay and infinite delay in f , respectively.

In what follows, we denote by R real Euclidean space, Z is the set of integers,
Z+ := [0,∞) is the set of nonnegative integers and | · | will denote the Euclidean
norm in R. For any discrete interval I ⊂ Z := (−∞,∞), we denote by BS(I ) the
set of all bounded functions mapping I into R, and set |φ|I = sup{|φ(s)| : s ∈ I }.
We introduce an almost periodic function f (n, φ) : Z × BS → R. where BS is an
open set in R. After, this BS is defined by I = [−h, 0] for some h > 0.

Definition 1 f (n, φ) is said to be almost periodic in n uniformly for φ ∈ BS, if for
any ε > 0 and any compact set K in BS, there exists a positive integer L(ε, K ) such
that any interval of length L(ε, K ) contains an integer τ for which

| f (n + τ, φ)− f (n, φ)| ≤ ε

for all n ∈ Z and all φ ∈ K . Such a number τ in above inequality is called an
ε-translation number of f (n, φ).

In order to formulate a property of almost periodic functions, which is equivalent
to the above definition, we discuss the concept of the normality of almost periodic
functions. Namely, Let f (n, φ) be almost periodic in n uniformly for φ ∈ BS. Then,
for any sequence {h ′

k} ⊂ Z , there exists a subsequence {hk} of {h ′
k} and function

g(n, φ) such that

f (n + hk, φ) → g(n, φ) (1)

uniformly on Z × K as k → ∞, where K is a compact set in BS. There are many
properties of the discrete almost periodic functions [2, 11], which are corresponding
properties of the continuous almost periodic functions f (t, x) ∈ C(R × D, R)
[cf. [14]]. We shall denote by T ( f ) the function space consisting of all translates of
f , that is, fτ ∈ T ( f ), where

fτ (n, φ) = f (n + τ, φ), τ ∈ Z . (2)

Let H( f ) denote the uniform closure of T ( f ) in the sense of (2). H( f ) is called the
hull of f. In particular, we denote by Ω( f ) the set of all limit functions g ∈ H( f )
such that for some sequence {nk}, nk → ∞ as k → ∞ and f (n + nk, φ) → g(n, φ)
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uniformly on Z × S for any compact subset S in BS. By (1), if f : Z × BS → R is
almost periodic in n uniformly for φ ∈ BS, so is a function in Ω( f ).

The following concept of asymptotic almost periodicity was introduced by Frechet
in the case of continuous function (cf.[14]).

Definition 2 u(n) is said to be asymptotically almost periodic if it is a sum of a
almost periodic function p(n) and a function q(n) defined on I ∗ = [a,∞) ⊂ Z+
which tends to zero as n → ∞, that is,

u(n) = p(n)+ q(n).

u(n) is asymptotically almost periodic if and only if for any sequence {nk} such that
nk → ∞ as k → ∞ there exists a subsequence {nk} for which u(n + nk) converges
uniformly on n; a ≤ n < ∞.

2 Preliminary Lemma

In this paper, we shall consider a discrete non-autonomous Ricker delay difference
equation of the form

N (n + 1) = N (n) exp{ f (n, N (n − r(n)))} for n ≥ n0, n0 ∈ Z . (3)

As example of the type (3), we provide the following example

N (n + 1) = N (n) exp
{
a + bN p(n − r)− cN q(n − r)

}
.

We set the following assumptions for Eq. (3).
(H1) f is continuous at second term defined on [n0,∞)× R+ to R, r defined on

[n0,∞) ⊂ Z to Z+ and 0 < rl ≤ r(n) ≤ r L < ∞ for n ≥ n0, and some n0 ∈ Z .
(H1′) f is almost periodic function in n uniformly for φ and it’s continuous at

second term defined on [n0,∞) × R+ to R. r defined on [n0,∞) ⊂ Z to Z+ and
r is almost periodic in n, 0 < rl = lim infn→∞ r(n) ≤ r(n) ≤ lim supn→∞ r(n) =
r L < ∞ for n ≥ n0, and some n0 ∈ Z .
(H2) There exist continuous function Fi : R+ to R (i = 1, 2) such that F1(y) ≤

f (n, y) ≤ F2(y) for (n, y) ∈ [n0,∞)× R+.
(H3) There exist ξi > 0(i = 1, 2) such that

⎧
⎨

⎩

Fi (ξi ) = 0, (i = 1, 2),
Fi (x) > 0 for x ∈ [0, ξi ),

Fi (x) < 0 for x ∈ (ξi ,∞).

We assume that the initial conditions associated with (3) are as follows:

N (s) = φ(s) ≥ 0, s ∈
[
n0 − r L , n0

]
, φ(n0) > 0 and φ defined on

[
n0 − r L , n0

]
. (4)
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By (3) and (H3), we can see that solutions of (3) satisfy

φ(n0) exp

⎡

⎣
n−1∑

j=n0

F1(N ( j − r( j)))

⎤

⎦ ≤ N (n) ≤ φ(n0) exp

⎡

⎣
n−1∑

j=n0

F2(N ( j − r( j)))

⎤

⎦ n > n0.

We show the following key lemma in which the solution of (3) is permanence
[8, 9].

Lemma 1 If the assumptions (H2) and (H3) hold, then there exists an n1 ≥ n0 such
that any solution N (n) of (3) satisfies

N (n) ≤ M ≡ ξ2eαr L
for n ≥ n1. (5)

where α = max0≤x≤ξ2 F2(x). Furthermore, if we assume that (H2) and (H3), and if

F1(x) ≥ F1(M) for 0 ≤ x ≤ M,

then there exists an n2 ≥ n1 such that

N (n) ≥ m ≡ ξ1eF1(M)r L
for n ≥ n2. (6)

3 Periodic Models with Finite Delay

To construct the discrete type existence theorem of the periodic solution, we first
consider the scalar general functional difference equation

x(n + 1) = g(n, xn). (7)

Here xn is the segment of x(s) on [n − h, n] shifted to [−h, 0], where h >

0 is a fixed constant integer. For h > 0 and φ ∈ BS = BS([−h, 0]), |φ| =
sup−h≤s≤0 |φ(s)|. In (18), g(n, φ) is continuous for φ (second term) defined on
Z × BS to R and it takes bounded sets into bounded sets. Moreover, it satisfies a
local Lipschitz condition in φ and there is a T with g(n + T, φ) = g(n, φ)whenever
φ is also T -periodic. A solution through (n0, φ) is denoted by x(n0, φ) with value
at being x(n, n0, φ) and with x(n0, n0, φ) = φ. The solution of (7) is unique for the
initial function φ (cf. [8, 9, 11]).

We consider the following fixed point theorems by Schauder and Horn [cf. [1]].
Theorem A (Schauder) A continuous mapping Q of a compact convex nonempty
subset Y in the Banach space X into itself has at least one fixed-point.
Theorem B (Horn) Let S0 ⊂ S1 ⊂ S2 be convex subsets of the Banach space X ,
with S0 and S2 compact and S1 open relative to S2. Let Q : S2 → X be a continuous
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function such that for some integer q > 0,

(a) Q j S1 ⊂ S2, 1 ≤ j ≤ q − 1

and

(b) Q j S1 ⊂ S0, q ≤ j ≤ 2q − 1.

Then Q has a fixed point in S0.
we now define the uniformly bounded and uniformly ultimately bounded of so-

lutions for (7).

Definition 3 The solutions of (7) are uniformly bounded if for any K > 0, there
exists a B1 = B1(K ) > 0 such that |φ| ≤ K implies |x(n, n0, φ)| < B1 for all
n ≥ n0.

Definition 4 The solutions of (7) are uniform ultimately bounded for bound B, if
there exists a B > 0 and if corresponding to any K > 0, there exists a T ∗ =
T ∗(K ) > 0 such that |φ| ≤ K implies that |x(n, n0, φ)| < B for all n ≥ n0 + T ∗.

The Definitions 3 and 4 can employ to our finite delay difference Eq. (3) and so,
Lemma 1 shows that the solution N (n) of Eq. (3) is uniformly bounded and uniformly
ultimately bounded under assumptions (H1), (H2) and (H3). We show the following
theorems by improving, as discrete case, the proof of theorems in [1].

Theorem 1 Suppose that x(n + T ) is a solution of (7) whenever x(n) is a solution
of (7). If solutions of Eq. (7) are uniformly ultimately bounded for bound B, then it
has a m̄T -periodic solution for some positive integer m̄.

Theorem 2 Suppose that x(n+T ) is a solution of (7) whenever x(n) is a solution of
(7). If solutions of Eq. (7) are uniformly bounded and uniformly ultimately bounded
for bound B, then it has a T -periodic solution which is bounded by B.

Proof Let x(n) = x(n, 0, φ) be the solution defined on Z+ with initial time n0 = 0.
Since solution x(n) of (7) is uniformly bounded, for B > 0 of uniformly ulti-
mately bounded for bound B, there is a B1 > 0 such that |φ| ≤ B implies that
|x(n, 0, φ)| < B1. For this B1, there exists a B2 > 0 such that |φ| ≤ B1 + 1 implies
that |x(n, 0, φ)| < B2. Also, since solution x(n) is uniformly ultimately bounded,
there is an integer m such that |φ| < B1 + 1 implies that |x(n, 0, φ)| < B for
n ≥ mT − h. By uniformly boundedness, for above B2 there exists an L > 0 such
that |φ| ≤ B2 implies that |x(n + 1, 0, φ)| ≤ L . Let

S0 = {φ ∈ BS||φ| ≤ B, |φ(u)− φ(v)| ≤ L|u − v|},
S2 = {φ ∈ BS||φ| ≤ B2, |φ(u)− φ(v)| ≤ L|u − v|},

and

S1 = {φ ∈ BS||φ| < B1 + 1} ∩ S2.
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Then, the Si , (i = 0, 1, 2) are convex, and moreover S0 and S2 are compact by
Ascoli’s theorem. Furthermore, S1 is open in S2. Define Q : S2 → BS by φ ∈ S2
implies Qφ = x(n + T, 0, φ) for −h ≤ n ≤ 0. Now x(n + T, 0, φ) is a solution for
n ≥ 0 and its initial function is Qφ. Hence,

x(n + T, 0, φ) = x(n, 0, Qφ) (8)

by the uniqueness theorem. Next,

Q2φ = x(n + T, 0, Qφ) for − h ≤ n ≤ 0

and x(n + T, 0, Qφ) is a solution with initial function Qφ. Hence,

x(n + T, 0, Qφ) = x
(

n, 0, Q2φ
)

(9)

by uniqueness. Now in (8) let n be replaced by n + T so that

x(n + 2T, 0, φ) = x(n + T, 0, Qφ) = x
(

n, 0, Q2φ
)

by (9). In general, for each integer k > 0, x(n + kT, 0, φ) = x(n, 0, Qkφ). By
construction of S1 and S2 we have Q j S1 ⊂ S2 for 1 ≤ j ≤ m. By choice of m we
have Q j S1 ⊂ S0 for j ≥ m. Also, Q j S0 ⊂ S1 for all j . We can see that, by Horn’s
fixed point theorem, Q has a fixed point φ ∈ S0. Then, we conclude that x(n, 0, φ)
is T -periodic solution of (7). This completes the proof.

Now, in our main theorem, we show that the existence of a periodic solution for
the Eq. (3).

Theorem 3 Under the assumptions (H1), (H2) and (H3), if f (n, φ) is continuous
in its second term, satisfies a local Lipschity condition in φ and periodic in n with
period T , then Eq. (3) has a positive periodic solution of period T .

4 Almost Periodic Models with Finite Delay

First, in (7), we assume that the g(n, φ) is almost periodic in n uniformly for φ ∈ BS.
In what follows, we need the following definitions of stability.

Definition 5 The bounded solution x(n) of Eq. (7) is said to be;

(i) uniformly stable (in short, US) if for any ε > 0 there exists a δ(ε) > 0 such that
if n0 ≥ 0, |xn0 − un0 | < δ(ε), then |xn − un| < ε for all n ≥ n0, where u(n) is
a solution of (18) through (n0, ψ) such that un0(s) = ψ(s) for all −h ≤ s ≤ 0.

(ii) uniformly asymptotically stable (in short, UAS) if it is US and if for any ε > 0
there exists a δ0 > 0 and a T (ε) > 0 such that if n0 ≥ 0, |xn0 − un0 | < δ0, then
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|xn − un| < ε for all n ≥ n0 + T (ε), where u(n) is a solution of (7) through
(n0, ψ) such that un0(s) = ψ(s) for all −h ≤ s ≤ 0. The δ0 and the T in above
are independent of n0.

(iii) globally uniformly asymptotically stable (in short, GUAS) if it is US and if
for any ε > 0 and α > 0, there exists a T (ε, α) > 0 such that if n0 ≥ 0,
|xn0 − un0 | < α, then |xn − un| < ε for all n ≥ n0 + T (ε, α), where u(n) is a
solution of (7) through (n0, ψ) such that un0(s) = ψ(s) for all −h ≤ s ≤ 0.
The T in above is independent of n0.

We consider the scalar delay difference equation as special case of (7).

Δx(n) = −a(n)x(n − r(n)), (10)

where Δ is difference of x(n), a : Z+ → R+ and r : Z+ → [0, h]. We assume that
a(n) and r(n) are almost periodic functions in n, and 0 < rl = lim infn→∞ r(n) ≤
r(n) ≤ lim supn→∞ r(n) = r L .

The following lemma is derived from the results of Theorem 1.1 and 1.2 in [16],
and so we omit the proof of Lemma 2.

Lemma 2 If a(n) and r(n) are in R and

∞∑

s=0

a(s) = ∞, λ ≡ lim sup
n≥0

n∑

s=n−r(n)

a(s) ≤ 1 + rl + 2

2
(
r L + 1

) ,

then the zero solution x(n) ≡ 0 of (10) is uniformly stable. Moreover if λ < 1
+ rl+2

2(r L+1)
, then the zero solution of (10) is uniformly asymptotically stable.

We have the following theorem by Lemma 2.

Theorem 4 Suppose that all the assumptions of Lemma 2 are satisfied. Let g̃(n, z):
[n0,∞)× R → R+ be defined by

g̃(n, z) = −∂ f (n, ez)

∂z
. (11)

We assume that there exists a function G : [n0,∞) → R+ such that

∞∑

s=n0

g̃(s, x) = ∞, and g̃(n, x) ≤ G(n) for m ≤ x ≤ M

where m and M are defined by (5) and (6). If

lim sup
n→∞

n∑

s=n−r(n)

G(s) ≤ 1 + rl + 2

2
(
r L + 1

) , (12)



178 Y. Hamaya

then any positive solution of (3) is uniformly asymptotically stable.

Remark 1 From Theorem 2 in [9] and above Theorem 1, we can see that, under the
assumptions of Theorem 1, if f is a periodic function in n with period T > 0, then
(3) has a periodic solution with period T which is uniformly asymptotically stable.
From Theorem 1, we obtain the following main theorem.

Theorem 5 Under the assumptions (H1′), (H2) and (H3), if f (n, φ) in (3) is con-
tinuous with its second term, satisfies a local Lipschitz condition in φ and an almost
periodic function in n ∈ [n0,∞) uniformly for φ ∈ BS([−h, 0], R+), then Eq. (3)
has a unique positive almost periodic solution which is globally uniformly asymp-
totically stable.

Proof Let N (n) denote a positive solution of (3) such that

0 < m ≤ N (n) ≤ M, for n ≥ n0,

where m and M are defined by (5) and (6). Let {n j } be a sequence of integer such
that n j → ∞ as j → ∞. Define xi (n) and x j (n) as follows,

exi (n) = N (n + ni ), ex j (n) = N (n + n j ).

It follows from (3)

Δxi = xi (n + 1)− xi (n) = f
(

n + ni , exi (n−r(n))
)
,

Δx j = x j (n + 1)− x j (n) = f
(

n + n j , ex j (n−r(n))
)
.

We let yi, j (n) = xi (n)− x j (n) and note that

Δyi, j (n) = yi, j (n + 1)− yi, j (n)

= f
(

n + ni , exi (n−r(n))
)

− f
(

n + n j , ex j (n−r(n))
)

= f
(

n + ni , exi (n−r(n))
)

− f
(

n + ni , ex j (n−r(n))
)

+ h(n; ni , n j ),

(13)

where h(n; ni , n j ) = f
(
n + ni , ex j (n−r(n))

) − f
(
n + n j , ex j (n−r(n))

)
. By (11), we

can rewrite (13) in the form

Δyi, j (n) = −[g̃(n + ni , ξi,i (n − r(n)))]yi, j (n − r(n))+ h(n; ni , n j ), (14)

in which ξi, j (n) lies between N (n + ni ) and N (n + n j ). By hypotheses and
Lemma 2, the trivial solution of the linear equation

Δz(n) = −e(n)z(n − r(n)) (15)
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with e(n) = g̃(n + ni , ξi,i (n − r(n))) is uniformly asymptotically stable and hence
the fundamental solution W (n) associated with (15) satisfies an estimate of the type
(see [1, 6])

∣
∣
∣W (n)W −1(s)

∣
∣
∣ ≤ C∗ηγ (n−s) for γ ∈ (0,∞), C∗ ∈ [1,∞), η ∈ (0, 1). (16)

By the variation of constants formula [1], we have from (14) that

yi, j (n) = W (n)W −1(n0)yi, j (n0)+
n−1∑

s=n0

W (n)W −1(s)h(s; ni , n j ) (17)

Using (16) and (17) we obtain

|yi, j (n)| = C∗ηγ (n−n0)|yi, j (n0)| +
n−1∑

s=n0

C∗ηγ (n−n0)|h(s; ni , n j )|, n ≥ n0. (18)

From the almost periodic property of f (n, φ) in n uniformly for φ ∈ BS, we can
choose integers n∗

i and n∗
j large enough such that

|h(n; ni , n j )| =
∣
∣
∣ f

(
n + ni , ex j (n−r(n))

)
− f

(
n + n j , ex j (n−r(n))

)∣
∣
∣

<
εγ

2C∗ for ni ≥ n∗
i , n j ≥ n∗

j (19)

and for arbitrary ε > 0. Also, we have from |yi, j (n0)| = |x(n0 + ni )− x(n0 + n j )|
that

|yi, j (n0)| < ε

2
for ni ≥ n∗

i , n j ≥ n∗
j (20)

due to the uniformly convergence of the sequence {x(n + ni )} for n in compact
subsets of [n0,∞). Thus, it follows from (18), (19) and (20) that

|yi, j (n)| = |x(n + ni )− x(n + n j )| < ε for n ∈ [n0,∞), ni ≥ n∗
i , n j ≥ n∗

j

and hence, x(n) is asymptotically almost periodic in the sense that there exist x∗ and
x̄ satisfying

x(n) = x∗(n)+ x̄(n) (21)

where x∗ is almost periodic on [n0,∞) and x̄ is on [n0,∞) with x̄(n) → 0 as
n → ∞. We can now proceed as in [7] to show that the almost periodic part x∗ in
(21) is a solution of
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Δx∗(n) = f
(

n, ex∗(n−r(n))
)
.

It follows that N∗(n) = ex∗(n) is an almost periodic solution of (3). The uniform
asymptotic stability of N∗(n) is an immediate consequence of Theorem that is, the
proof is complete.

Conjecture For the functional differential equation with finite delay, it is well known
that the condition (12) and others is able to change the 3/2 stability [cf.[13]]. Then,
we have the following conjecture; it seems that if (12) is replacing

lim sup
n→∞

n∑

s=n−r(n)

G(s) ≤ 3

2
+ 1

2
(
r L + 1

) ,

then the result of Theorem 4 is also right for (3). However, we have no prove, yet.

5 Examples

We first consider the following almost periodic delay model of the form

N (n + 1) = N (n) exp
{
a(n)+ b(n)N p(n − r(n))− c(n)N q(n − r(n))

}
, (22)

where a, b, c and r are defined on [n0,∞) with a(n) > 0, b(n) ∈ R, c(n) > 0
and r(n) > 0 are almost periodic functions in n, and

0 < p < q, 0 < rl = lim inf
n→∞ ≤ r(n) ≤ lim sup

n→∞
r(n) = r L , (23)

0 < al = lim inf
n→∞ a(n) ≤ a(n) ≤ lim sup

n→∞
a(n) = aL ,

bl = lim inf
n→∞ b(n) ≤ b(n) ≤ lim sup

n→∞
b(n) = bL and (24)

0 < cl = lim inf
n→∞ c(n) ≤ c(n) ≤ lim sup

n→∞
c(n) = cL

for n ≥ n0. The original differential model of (22) is considered by Ladas and Qian
[12]. Let

f (n, y) = a(n)+ b(n)y p − c(n)yq
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and

F1(y) = al + bl y p − cL yq , F2(y) = aL + bL y p − cl yq .

We note that F1(y) ≤ f (n, y) ≤ F2(y) for n ≥ n0, y ∈ [0,∞). It is easy to see
that all the assumptions (H1), (H2) and (H3) are satisfied. We denote by y∗ and y∗
the unique positive solution of the equations F1(y) = 0 and F2(y) = 0, respectively.
Then, any positive solution N (n) of (22) satisfies eventually for all large n

m1 ≤ N (n) ≤ M1,

where

M1 =
⎧
⎨

⎩

y∗eaLr L
, b(n) ≤ 0,

y∗ exp

[

r L
(

aL + bL
(

bL p
cl q

)p/(q−p) − cl
(

bL p
cl q

)q/(q−p)
)]

, b(n) > 0

and

m1 = y∗ exp
[
r L

(
al + bl M p

1 − cL Mq
1

)]
. (25)

We obtain the result which is a generalization to the delay difference equation of
that in [5]. According to the above result and Theorem 5, we can obtain the following
corollary for Eq. (22) which has been studied recently [10] treated delay differential
equations, and the conditions of the following corollary offer an improvement of this
known results for differential equations.

Corollary 1 Let a(n), b(n) and c(n) be almost periodic functions. Suppose that (23)
and (24) hold. If

lim sup
n→∞

n−1∑

s=n−r(n)

[
c(s)q Mq

1 − b(s)pM p
1

]
< 1 + rl + 2

2
(
r L + 1

) for b(n) < 0

and

lim sup
n→∞

n−1∑

s=n−r(n)

[
c(s)q Mq

1 − b(s)pm p
1

]
< 1 + rl + 2

2
(
r L + 1

) for b(n) ≥ 0

in which m1 and M1 are defined by (25), then (22) has a unique almost periodic
solution which is global uniformly asymptotically stable.

Proof Let N (n) be any positive solution of (22). Let eu(n) = N (n). Note that
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g(n, u) = −∂ f (n, eu)

∂u
= −b(n)pN p + c(n)q N q . (26)

We have from above example that N (n) satisfies

m1 ≤ N (n) ≤ M1,

eventually for all large n which, together with (26), implies that g(n, u) ≤ G(n)
where

G(n) =
⎧
⎨

⎩

c(n)q Mq
1 − b(n)pM p

1 for b(n) < 0

c(n)q Mq
1 − b(n)pm p

1 for b(n) ≥ 0.

Then, from Theorem 5, the conclusion follows.

6 Almost Periodic Models with Infinite Delay

We final consider the existence of an almost periodic solution of the following almost
periodic Ricker type difference equation in the case where f of (3) has an infinite
delay (cf. [4]);

N (n + 1) = N (n) exp

{

a(n)− b(n)
∞∑

s=0

K (s)N (n − s)

}

, (27)

where a and b are positive almost periodic functions in n, and K is nonnegative
kernel on [0,∞) such that there exists a σ > 0 satisfying

∞∑

s=0

K (s) = 1,
∞∑

s=0

sK (s) ≤ σ < ∞ and
σ∑

s=0

K (s) > 0. (28)

Moreover, we assume that

0 < al = lim inf
n→∞ a(n) ≤ a(n) ≤ lim sup

n→∞
a(n) = aL ,

0 < bl = lim inf
n→∞ b(n) ≤ b(n) ≤ lim sup

n→∞
b(n) = bL . (29)

In the following we are concerned with positive solutions of (27) corresponding
to initial conditions of the form

N (s) = φ(s) ≥ 0, s ∈ (−∞, 0], φ(0) > 0 and φ ∈ BS
(
(−∞, 0], R+)

. (30)
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The following lemma provides a priori upper estimate of any positive solution of
(27).

Lemma 3 If the assumptions (28), (29) and (30) hold, then there exists a T∗ > 0
such that any positive solution N (n) of (27) satisfies

N (n) ≤ N∗,

where

N∗ = aL

bl
∑σ

s=0 K (s)
eaLσ for n > T ∗. (31)

Furthermore, if

al > bL N∗,

then there exist a T∗ ≥ T ∗ and an (N∗ >)N∗ > 0 such that

N (n) ≥ N∗ for n ≥ T∗.

Theorem 6 Assume that a, b and K in (27) satisfy (28), (29) and (30).
Then Eq. (27) has an unique positive almost periodic solution say p(n) such that

any other positive solution N (n) of (27) satisfies

lim
n→∞{N (n)− p(n)} = 0. (32)

Proof For (27), we first introduce the change of variables

N (n) = exp{v(n)}, p(n) = exp{y(n)}.

Then, (27) can be written as

v(n + 1)− v(n) = a(n)− b(n)
n∑

s=−∞
K (n − s) exp{v(s)}. (33)

We first consider Liapunov functional

V1 = V1(v(n), y(n)) = |v(n)− y(n)| +
∞∑

s=0

K (s)
n−1∑

l=n−s

b(s + l)| exp{v(l)} − exp{y(l)}|,

where y(n) and v(n) are solutions of (33) which remains in bounded set B := {x ∈
R|N∗ ≤ x ≤ N∗}. We have
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ΔV1(v(n), y(n)) ≤ |v(n + 1)− v(n)| − |y(n + 1)− y(n)|

+
∞∑

s=0

K (s)[b(s + n)| exp{v(n)} − exp{y(n)}|

− b(n)| exp{v(n − s)} − exp{y(n − s)}|]

= |a(n)− b(n)
∞∑

s=0

K (s) exp{v(n − s)}| − |a(n)

− b(n)
∞∑

s=0

K (s) exp{y(n − s)}|

+
∞∑

s=0

K (s)[b(s + n)| exp{v(n)} − exp{y(n)}|

− b(n)| exp{v(n − s)} − exp{y(n − s)}|]
≤ |a(n)− b(n) exp{v(n − s)}| − |a(n)− b(n) exp{y(n − s)}|

+ b(s + n)| exp{v(n)} − exp{y(n)}| − b(n)| exp{v(n − s)} − exp{y(n − s)}|
≤ −2b(n)| exp{v(n − s)} − exp{y(n − s)}| + b(s + n)| exp{v(n)} − exp{y(n)}|.

Secondly we consider

V2 = V2(v(n), y(n)) = 2|v(n + s)− y(n + s)|.

Similar we can calculate

ΔV2(v(n), y(n)) ≤ 2(|v(n + s + 1)− v(n + s)| − |y(n + s + 1)− y(n + s)|)
≤ −2b(s + n)| exp{v(n)} − exp{y(n)}|.

We take V = V1 + V2. Then, we have

ΔV (v(n), y(n)) ≤ −2b(n)| exp{v(n − s)} − exp{y(n − s)}|
− b(n + s)| exp{v(n)} − exp{y(n)}|

≤ −b(n + s)| exp{v(n)} − exp{y(n)}|
≤ −bl | exp{v(n)} − exp{y(n)}|.

From the mean value theorem, we have

| exp{v(n)} − exp{y(n)}| = exp{θ(n)}|v(n)− y(n)|,

where θ(n) lies between v(n) and y(n). Then, we have

ΔV (v(n), y(n)) ≤ −bl D|v(n)− y(n)|,
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where set D = exp(N∗). Let be solutions z(n) of (33) such that N∗ ≥ z(n) ≥ N∗
for n ≥ T∗. Thus |v(n)− y(n)| → 0 as n → ∞, and hence V = V (v(n), y(n)) → 0
as n → ∞. Moreover, we can show that |v∗(n) − y∗(n)| → 0 as n → ∞, where
v∗ and y∗ are solutions in hull of (33) by the same argument as in [11]. By using
similar Liapunov functional V ∗ of V , we can show that V ∗ → 0 as n → ∞. Note
that this Liapunov functional V ∗ is a non-increasing functional on Z , and hence
V ∗ = V ∗ (v∗(n), y∗(n)) ≡ 0. Thus, v∗(n) = y∗(n) for all n ∈ Z . Therefore,
each hull equation of (33) has a unique strictly positive bounded solution. By the
equivalence between (27) and (33), it follows from results in [15] that (27) has an
almost periodic solution p(n) such that N∗ ≤ p(n) ≤ N∗ for all n ∈ Z and (32)
yields. This proof is complete.
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Generalized Lagrange Identity for Discrete
Symplectic Systems and Applications
in Weyl–Titchmarsh Theory

Roman Šimon Hilscher and Petr Zemánek

Abstract In this paper we consider discrete symplectic systems with analytic
dependence on the spectral parameter. We derive the Lagrange identity, which plays
a fundamental role in the spectral theory of discrete symplectic and Hamiltonian
systems. We compare it to several special cases well known in the literature. We
also examine the applications of this identity in the theory of Weyl disks and square
summable solutions for such systems. As an example we show that a symplectic
system with the exponential coefficient matrix is in the limit point case.

1 Introduction

In this paper we consider a 2n-dimensional discrete symplectic system

zk+1(λ) = Sk(λ) zk(λ), (Sλ)

whose coefficient matrix Sk(λ) ∈ C
2n×2n is analytic in the spectral parameter λ ∈ C

in a neighborhood of 0 and satisfies a symplectic-type identity, i.e.,

Sk(λ) =
∞∑

j=0

λ jS
[ j]

k , S
∗
k(λ)J Sk(λ̄) = J , J =

(
0 I

−I 0

)

. (1)
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The superscript ∗ denotes the conjugate transpose and M∗(λ) := [M(λ)]∗. For the
applications we will in addition assume that a certain weight matrix Ψ (λ) ∈ C

2n×2n

is positive semidefinite. The terminology “symplectic system” refers to the fact that
Sk(λ) and the fundamental matrix of system (Sλ) are complex symplectic (also called
conjugate symplectic or J-unitary) when λ is real, i.e., they satisfy the identity
M∗J M = J .

For convenience we write system (Sλ) as two n-dimensional equations with

zk(λ) = (x∗
k (λ), u∗

k(λ))
∗ and Sk(λ) =

(
Ak(λ) Bk(λ)

Ck(λ) Dk(λ)

)

. System (Sλ) was studied

in the literature in several special cases. In [2–4, 6, 9] the first equation in (Sλ) does
not depend on λ and the second equation is linear in λ, which by [2, Remark 3(iii)]
gives the form

zk+1(λ) =
(

Ak Bk

Ck − λWkAk Dk − λWkBk

)

zk(λ), (2)

where Sk :=
(

Ak Bk

Ck Dk

)

is complex symplectic, Wk is Hermitian, and Wk ≥ 0. Note

that system (2) covers also the classical second order Sturm–Liouville equation

−Δ(RkΔyk(λ))+ Qk yk+1(λ) = λWk yk+1(λ) (3)

with Hermitian matrices Rk, Qk,Wk ∈ C
n×n , invertible Rk , and Wk > 0, see Exam-

ple 1. System (Sλ) with a general linear dependence on λ

zk+1(λ) = (Sk + λVk) zk(λ) (4)

was studied in [18, 19], where the matrix Sk is complex symplectic, V ∗
k J Sk

is Hermitian and positive semidefinite, and V ∗
k J Vk = 0. In [15, 16] the linear

Hamiltonian difference system

Δ

(
xk(λ)

uk(λ)

)

=
(

Ak Bk + λW [1]
k

Ck − λW [2]
k −A∗

k

)(
xk+1(λ)

uk(λ)

)

(5)

is considered with the matrices Ak, Bk,Ck,W [1]
k ,W [2]

k ∈ C
n×n , Ãk := (I − Ak)

−1

exists, Bk,Ck,W [1]
k ,W [2]

k are Hermitian, and W [1]
k ≥ 0, W [2]

k ≥ 0. Upon expanding
the forward difference in (5), we can verify that system (5) corresponds to a discrete
symplectic system (Sλ) with quadratic dependence on λ. Another linear Hamiltonian
system

Δ

(
xk(λ)

uk(λ)

)

= λJ Hk

(
xk+1(λ)

uk(λ)

)

, Hk :=
(−Ck A∗

k
Ak Bk

)

, (6)
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with Hk ∈ C
2n×2n Hermitian and Ãk(λ) := (I − λAk)

−1 is studied in [13, 14].
Upon expanding the latter inverse into a power series we get the analytic dependence
on λ in the coefficient matrix of system (6). More generally, the linear Hamiltonian
system corresponding to

Δ

(
xk(λ)

uk(λ)

)

= J (H [0]
k + λH [1]

k )

(
xk+1(λ)

uk(λ)

)

with Hermitian H [0]
k , H [1]

k ∈ C
2n×2n is considered in [5]. Finally, a discrete sym-

plectic system (Sλ) with analytic dependence on λ and S [0]
k = I is studied in [7].

The latter paper also motivated the present study.
All the above mentioned references are devoted to various results in the spectral

theory of the corresponding system. As it is known, the Lagrange identity plays a
fundamental role in these investigations. This identity connects the J-skew-product
of two solutions of system (Sλ) with the associated weight matrix Ψk(λ). In this
paper we prove a general form of the Lagrange identity for system (Sλ) with analytic
dependence on λ ∈ C and calculate the corresponding weight matrix explicitly in
terms of the coefficients of (Sλ). This result includes the Lagrange identities for the
above mentioned special systems. As a consequence we obtain the J-monotonicity
of the fundamental matrix Φk(λ) of (Sλ), which is used in [7] for proving the Krein
traffic rules for the eigenvalues of Φk(λ). We also investigate applications of the
generalized Lagrange identity in the discrete Weyl–Titchmarsh theory. In particular,
we show that under an appropriate Atkinson condition involving the weight matrix
Ψk(λ), the theory of eigenvalues, Weyl disks, and square summable solutions devel-
oped in [18, 19] for system (4) remains valid without any change also for system
(Sλ) with the analytic dependence on λ.

2 Lagrange Identity

Consider system (Sλ) with complex 2n × 2n matrix Sk(λ) such that (1) holds. The
parameter λ ∈ C is restricted to |λ| < ε for some ε > 0 (ε = ∞ is allowed), which
bounds the region of convergence of Sk(λ) in (1) for all k ∈ [0,∞)Z := [0,∞)∩ Z.
It follows that the matrices S

[ j]
k , j ∈ [0,∞)Z, satisfy the identities

S [0]∗
k J S [0]

k = J (7)
m∑

j=0

S
[ j]∗

k J S
[m− j]

k = 0, m ∈ N (8)

for all k ∈ [0,∞)Z. We note that | det S [0]
k | = 1, as the determinant of any complex

symplectic matrix is a complex unit. The second identity in (1) implies that Sk(λ) is
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invertible and hence

S
−1
k (λ) = −J S

∗
k(λ̄)J = −

∞∑

j=0

λ jJ S
[ j]∗

k J .

Remark 1 From Sk(λ)S
−1
k (λ) = I we then obtain the identity Sk(λ)J S

∗
k(λ̄) = J

or equivalently

S [0]
k J S [0]∗

k = J ,

m∑

j=0

S
[ j]

k J S
[m− j]∗

k = 0, m ∈ N.

First we study the J-skew product of two coefficient matrices with different
values of the spectral parameter. This lemma gives a main tool for the proof of the
Lagrange identity.

Lemma 1 Assume (7)–(8). Then for every λ, ν ∈ C with |λ| < ε, |ν| < ε,

S
∗
k(λ)J Sk(ν) = J + (λ̄− ν)Ωk(λ̄, ν),

k ∈ [0,∞)Z, where the 2n × 2n matrix Ω(λ̄, ν) is defined by

Ωk(λ̄, ν) :=
∞∑

m=0

m∑

j=0

λ̄m− jν j
j∑

l=0

S [m−l+1]∗
k J S [l]

k . (9)

Moreover, for ν = λ the matrix Ωk(λ̄, λ) is Hermitian for all k ∈ [0,∞)Z.

Proof We fix |λ| < ε, |ν| < ε, and k ∈ [0,∞)Z. The power series for S
∗
k(λ) and

Sk(ν) converge absolutely, so that the terms in the product S
∗
k(λ)J Sk(ν) can be

re-arranged to the separate powers of λ̄m− jν j , that is,

S
∗
k(λ)J Sk(ν) =

∞∑

m=0

m∑

j=0

λ̄m− jν jS
[m− j]∗

k J S
[ j]

k .

By using identity (8) for each m ∈ N, we replace the term νmS [0]∗
k J S [m]

k by

−νm (
S [m]∗

k J S [0]
k + S [m−1]∗

k J S [1]
k + · · · + S [1]∗

k J S [m−1]
k

)
.

Thus, with the aid of (7) we get

S
∗
k(λ)J Sk(ν) = J +

∞∑

m=1

m∑

j=1

(λ̄ j − ν j ) νm− jS
[ j]∗

k J S
[m− j]

k .
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Upon factoring λ̄ − ν out of each term λ̄ j − ν j and collecting the remaining
products with the same powers of λ̄ and ν, we get

S
∗
k(λ)J Sk(ν) = J + (λ̄− ν)

∞∑

m=1

m∑

j=1

( j∑

l=1

λ̄ j−lνl−1
)

νm− jS
[ j]∗

k J S
[m− j]

k

= J + (λ̄− ν)Ωk(λ̄, ν),

whereΩk(λ̄, ν) is given in (9). Finally, for ν := λ we get by using J ∗ = −J and
identities (8) that the matrix Ωk(λ̄, λ) is Hermitian. This latter fact is also shown in
[7, Proposition 1]. ��

The following theorem provides the main result of this section. Its relationship to
known discrete Lagrange identities in the literature is discussed in Sect. 3.

Theorem 1 (Lagrange identity) Assume (7)–(8) and fix λ, ν ∈ C with |λ| < ε,
|ν| < ε. For any two solutions z(λ) and z(ν) of systems (Sλ) and (Sν), respectively,
we have for all k ∈ [0,∞)Z

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄− ν) z∗

k (λ)Ωk(λ̄, ν) zk(ν), (10)

z∗
k+1(λ)J zk+1(ν) = z∗

0(λ)J z0(ν)+ (λ̄− ν)

k∑

j=0

z∗
j (λ)Ω j (λ̄, ν) z j (ν). (11)

Proof Given that zk+1(λ) = Sk(λ) zk(λ) and zk+1(ν) = Sk(ν) zk(ν) for all k ∈
[0,∞)Z, we obtain from Lemma 1 that

Δ
(
z∗

k (λ)J zk(ν)
) = z∗

k (λ)
[
S

∗
k(λ)J Sk(ν)− J

]
zk(ν)

= (λ̄− ν) z∗
k (λ)Ωk(λ̄, ν) zk(ν).

The summation of (10) over the interval [0, k]Z then yields (11). ��
Motivated by Lemma 1, we define for k ∈ [0,∞)Z the Hermitian 2n × 2n matrix

Ψk(λ) := Ωk(λ̄, λ) =
∞∑

m=0

m∑

j=0

λ̄m− jλ j
j∑

l=0

S [m−l+1]∗
k J S [l]

k . (12)

The following identities show that Ψk(λ) is the correct weight matrix for the
spectral theory of system (Sλ), see the examples and applications in Sects. 3 and 4.

Corollary 1 For every λ ∈ C with |λ| < ε and k ∈ [0,∞)Z we have
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Δ
(
z∗

k (λ)J zk(λ)
) = −2i im(λ) z∗

k (λ) Ψk(λ) zk(λ), (13)

z∗
k+1(λ)J zk+1(λ) = z∗

0(λ)J z0(λ)− 2i im(λ)
k∑

j=0

z∗
j (λ) Ψ j (λ) z j (λ), (14)

z∗
k (λ)J zk(λ̄) = z∗

0(λ)J z0(λ̄). (15)

Remark 2 When |λ| < ε and λ ∈ R, we have

Ψk(λ) =
∞∑

m=0

m∑

j=0

λm
j∑

l=0

S [m−l+1]∗
k J S [l]

k = −S
∗
k(λ)J Ṡk(λ) = Ṡ

∗
k(λ)J Sk(λ),

where the dot denotes the derivative with respect to λ. The weight matrix

J Ṡk(λ)J S
∗
k(λ)J = S

∗−1
k (λ) Ψk(λ)S

−1
k (λ)

was used in [11, 17] in the oscillation theory of systems (Sλ) with general nonlinear
dependence on λ.

3 Special Examples

In this section we show the connection of the generalized Lagrange identity in
Theorem 1 to several special cases known in the literature. We also demonstrate
that a positive definite weight matrix Ψk(λ) can be obtained when Sk(λ) is quadratic
in λ.

Example 1 In the simplest case, i.e., for the second order Sturm–Liouville difference
equation (3), the Lagrange identity is

Δ
[
y∗

k (λ) RkΔyk(ν)− (Δy∗
k (λ)) Rk yk(ν)

] = (λ̄− ν) y∗
k+1(λ)Wk yk+1(ν),

see e.g. [1, Theorem 4.2.1] or [10, Theorem 2.2.3]. This can be seen from (10) and
(9), in which ε = ∞, xk := yk , uk := RkΔyk , zk = (x∗

k , u∗
k)

∗, and use the formula
xk+1 = xk + R−1

k uk . The coefficient matrix of (Sλ) is Sk(λ) := Sk + λVk with

Sk := S [0]
k =

(
I R−1

k
Qk I + Qk R−1

k

)

, Vk := S [1]
k = −

(
0 0

Wk Wk R−1
k

)

,

Ω(λ̄, ν) = V ∗
kJ Sk = (

I, R−1
k

)∗
Wk

(
I, R−1

k

) = Ψk(λ),

and S
[ j]

k := 0 for j ≥ 2. Note that Eqs. (7) and (8) with m ∈ {1, 2} hold, since
Rk, Qk,Wk are assumed to be Hermitian.
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Example 2 Consider system (4) with general linear dependence on λ. In this case
S [0]

k := Sk , S [1]
k := Vk , S [ j]

k := 0 for j ≥ 2, ε = ∞, andΩk(λ̄, ν) = V ∗
kJ Sk =

Ψk(λ) is constant in λ and Hermitian. Identities (7) and (8) with m ∈ {1, 2} are

S ∗
kJ Sk = J , S ∗

kJ Vk + V ∗
kJ Sk = 0, V ∗

kJ Vk = 0. (16)

The Lagrange identity in (10) is, compare with [19, Theorem 2.6],

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄− ν) z∗

k (λ)V
∗

kJ Sk zk(ν)

= (λ̄− ν) z∗
k+1(λ)J VkJ S ∗

kJ zk+1(ν). (17)

Observe that by (16) the matrix Vk is singular. Hence, Ωk(λ̄, ν) and Ψk(λ) are in
this case singular as well. Moreover, det Sk(λ) = det Sk and thus | det Sk(λ)| = 1.

Example 3 System (2) represents a special case of Example 2, namely

Sk := S [0]
k =

(
Ak Bk

Ck Dk

)

, Vk := S [1]
k = −

(
0 0

WkAk WkBk

)

,

Ωk(λ̄, ν) = V ∗
kJ Sk = (

Ak, Bk
)∗

Wk
(
Ak, Bk

) = Ψk(λ).

In this case the Lagrange identity in (10) or (17) has the form

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄− ν) x∗

k+1(λ)Wk xk+1(ν), (18)

where z(λ) = (x∗(λ), u∗(λ))∗ and z(ν) = (x∗(ν), u∗(ν))∗. Identity (18) is used in
[6, Lemma 2.3] and [4, Lemma 2.6].

Example 4 In this example we discuss the symplectic analogue (or a generalization
to the symplectic system) of the linear Hamiltonian system (5), which was studied
in [15, 16]. We take system (Sλ) with a special quadratic dependence on λ

zk+1(λ) =
(

Ak Bk + λAk W [2]
k

Ck − λW [1]
k Ak Dk + λCk W [2]

k − λW [1]
k (Bk + λAk W [2]

k )

)

zk(λ),

(19)
where W [1]

k and W [2]
k are Hermitian. That is, Sk(λ) = Sk +λVk +λ2Wk with ε = ∞,

Sk := S [0]
k =

(
Ak Bk
Ck Dk

)

, Wk := S [2]
k = J W̃kSkJ Ŵk =

(
0 0

0 −W [1]
k Ak W [2]

k

)

,

Vk := S [1]
k = J W̃kSk + SkJ Ŵk =

(
0 Ak W [2]

k
−W [1]

k Ak Ck W [2]
k − W [1]

k Bk

)

,

Ωk(λ̄, ν) = Ŵk + (I − λ̄ŴkJ )S ∗
k W̃k Sk (I + νJ Ŵk),
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and S
[ j]

k := 0 for j ≥ 3. The Hermitian 2n × 2n matrices W̃k := diag{W [1]
k , 0}

and Ŵk := diag{0,W [2]
k } are block diagonal. We can see that in this case Ψk(λ) =

Ωk(λ̄, λ) is Hermitian but no longer constant in λ, as was the case in Examples 1–3.
The above coefficients satisfy identities (7) and (8) with m ∈ {1, 2, 3, 4}, i.e.,

S ∗
kJ Sk = J , S ∗

kJ Vk + V ∗
kJ Sk = 0, V ∗

kJ Wk + W ∗
k J Vk = 0

S ∗
kJ Wk + V ∗

kJ Vk + W ∗
kJ Sk = 0, W ∗

kJ Wk = 0.

The Lagrange identity in (10) now reads as

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄− ν)

[
x∗

k+1(λ)W [1]
k xk+1(ν)+ u∗

k(λ)W [2]
k uk(ν)

]
, (20)

where z(λ) = (x∗(λ), u∗(λ))∗ and z(ν) = (x∗(ν), u∗(ν))∗. Identity (20) can be
found in [16, Lemma 2.2]. We note that we can factorize Sk(λ) and Ωk(λ̄, ν) as

Sk(λ) =
(

I 0
−λW [1]

k I

)(
Ak Bk

Ck Dk

) (
I λW [2]

k
0 I

)

,

Ωk(λ̄, ν) =
(

A ∗
k 0

B∗
k + λ̄W [2]

k A ∗
k I

)(
W [1]

k 0
0 W [2]

k

) (
Ak Bk + νAk W [2]

k
0 I

)

.

Therefore, det Sk(λ) = det Sk and | det Sk(λ)| = 1 as in Example 2, and

det Ψk(λ) = det Ωk(λ̄, ν) = | det Ak |2 × det W [1]
k × det W [2]

k . (21)

Equation (21) shows that the determinant of the weight matrixΨk(λ) does not depend
on λ. Moreover, Ψk(λ) is invertible if and only if Ak , W [1]

k , W [2]
k are invertible.

And in this case the matrix Ψk(λ) is positive definite if and only if W [1]
k and W [2]

k
are positive definite. However, an invertible (positive definite) weight matrix Ψk(λ)

can occur only when system (19) corresponds to a linear Hamiltonian system (5)
with invertible (positive definite) W [1]

k and W [2]
k , because in this case Ak = Ãk is

invertible. The other coefficients of (19) are then given by Bk = Ãk Bk , Ck = Ck Ãk ,
and Dk = Ck Ãk Bk + I − A∗

k , see [16, Formula (2.3)].

Example 5 Consider the linear Hamiltonian difference system (6), in which

Sco[0]
k : = I, S [1]

k := J Hk, S
[ j]

k :=
(

A j
k A j−1

k Bk

Ck A j−1
k Ck A j−2

k Bk

)

, j ≥ 2,

Ωk(λ̄, ν) = D∗
k (λ) Hk Dk(ν), Dk(λ) :=

(
Ãk(λ) λ Ãk(λ) Bk

0 I

)

,

where Ãk(λ) := (I − λAk)
−1, see [7, p. 5]. Therefore, the dependence of Sk(λ)

on λ is analytic with ε = inf{1/sprad(Ak), k ∈ [0,∞)Z}, provided this infimum is
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positive, where sprad(M) = max{|μ|, μ is an eigenvalue of M} denotes the spectral
radius of M . The Lagrange identity in (10) is, compare with [13, Formula (9)],

Δ
(
z∗

k (λ)J zk(ν)
) = (λ̄− ν)

(
xk+1(λ)

uk(λ)

)∗
Hk

(
xk+1(ν)

uk(ν)

)

.

Example 6 In [7, 8], the discrete symplectic system (Sλ) with S
[ j]

k := (1/j !) R j
k

for j ∈ [0,∞)Z is studied, where Rk ∈ C
2n×2n satisfies R∗

k J + J Rk = 0. This
means that the coefficient matrix Sk(λ) is of exponential type, i.e., ε = ∞ and

Sk(λ) =
∞∑

j=0

λ j

j ! R j
k = exp(λRk). (22)

By [7, p. 6] or [8, Sect. 2], we then have

Ωk(λ̄, ν)=
∞∑

j=1

(−1) j (λ̄− ν)2 j−1

(2 j)! (R∗
k )

jJ R j
k −

∞∑

j=0

(−1) j (λ̄− ν)2 j

(2 j + 1)! (R
∗
k )

jJ R j+1
k .

The Lagrange identity has the same form as in (10) with the above Ωk(λ̄, ν).

4 Weyl–Titchmarsh Theory

In this section we discuss the applications of the Lagrange identity from Theorem 1
in the Weyl–Titchmarsh theory for system (Sλ) with analytic dependence on λ. We
assume that the Hermitian weight matrix Ψk(λ) defined in (12) satisfies

Ψk(λ) ≥ 0, k ∈ [0,∞)Z. (23)

In [19] we have recently developed the Weyl–Titchmarsh theory for system (4),
i.e., for system (Sλ) with general linear dependence on λ. In this section we show that
most of the results in [19] remain valid also for the analytic dependence on λ, when
we modify the corresponding Atkinson-type condition to this more general setting.
One of the crucial properties is that the fundamental matrix Φk(λ) of (Sλ) satisfies

Φ∗
k (λ)J Φk(λ̄) = J (24)

for all k ∈ [0,∞)Z whenever (24) holds at the initial point k = 0. Note that identity
(24) now follows from (15) in Corollary 1. In the subsequent paragraphs we review
the most important results, which are in particular connected to the theory of square
summable solutions of (Sλ).
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In [19] we identified the minimal requirements for the solutions of (Sλ) to satisfy
the Atkinson condition. In this way we obtained the weak and strong Atkinson
conditions, which are needed for different statements in the Weyl–Titchmarsh theory.
For completeness we reformulate these conditions in the setting of this paper. Let
Φk(λ) = (Zk(λ), Z̃k(λ)) be the partition of the fundamental matrix of system (Sλ)
into 2n × n solutions, which are given by the initial conditions Z0(λ) = α∗ and
Z̃0(λ) = −J α∗ for some fixed α ∈ C

n×2n with αJ α∗ = 0 and αα∗ = I . The
solution Z̃(λ) is called the natural conjoined basis of (Sλ) and the spectral properties
of the associated eigenvalue problem are formulated in terms of this natural conjoined
basis. Let us fix for a moment an index N ∈ [1,∞)Z.

Hypothesis 1 (Finite weak Atkinson condition) For all λ ∈ C with |λ| < ε and
every column z(λ) of the natural conjoined basis Z̃(λ) of (Sλ) we assume that

N∑

k=0

z∗
k (λ) Ψk(λ) zk(λ) > 0. (25)

If β ∈ C
n×2n with βJ β∗ = 0 and ββ∗ = I is also fixed, then we consider the

symplectic eigenvalue problem

(Sλ), k ∈ [0, N ]Z, α z0(λ) = 0, β zN+1(λ) = 0. (26)

It follows as in [19, Theorem 2.8] that under Hypothesis 1 the eigenvalues of (26)
are real, isolated, and they are characterized by det β Z̃ N+1(λ) = 0. The correspond-
ing eigenfunctions are then of the form Z̃(λ) d with nonzero d ∈ Kerβ Z̃ N+1(λ).

The M(λ)-function for system (Sλ) is defined by Mk(λ) := −[β Z̃k(λ)]−1β Zk(λ)

and it satisfies the properties in [19, Lemma 2.10 and Theorem 2.13]. In particular,
M∗

k (λ) = Mk(λ̄) and Mk(λ) is analytic in λ. Define the Weyl solution χ(λ,M) of
(Sλ) corresponding to M ∈ C

n×n and the Hermitian matrix function E (λ,M) by

χk(λ,M) := Φk(λ)
(
I, M∗)∗ , Ek(λ,M) := i δ(λ) χ∗

k (λ,M)J χk(λ,M),
(27)

where δ(λ) := sgn im(λ). The Weyl disk Dk(λ) and the Weyl circle Ck(λ) are then
defined as the sets

Dk(λ) := {
M ∈ C

n×n, Ek(λ,M) ≤ 0
}
, Ck(λ) := {

M ∈ C
n×n, Ek(λ,M) = 0

}
.

It follows that the results in [19, Sect. 3] regarding the Weyl disks and Weyl circles
hold exactly in the same form, but now under the following assumption.

Hypothesis 2 (Infinite weak Atkinson condition) There exists N0 ∈ N such that for
all λ ∈ C with |λ| < ε every column z(λ) of Z̃(λ) satisfies (25) with N = N0.

We summarize the main properties of the Weyl disks in the following.
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Theorem 2 Let λ ∈ C \ R with |λ| < ε and suppose that (23) and Hypothesis 2
hold. Then for every k ≥ N0 + 1 the Weyl disk and Weyl circle satisfy

Dk(λ) = {
Pk(λ)+ Rk(λ) V Rk(λ̄), V ∈ C

n×n, V ∗V ≤ I
}
,

Ck(λ) = {
Pk(λ)+ Rk(λ)U Rk(λ̄), U ∈ C

n×n, U∗U = I
}
,

where the center Pk(λ) and the matrix radius Rk(λ) are defined by

Pk(λ) := −H −1
k (λ)Gk(λ), Rk(λ) := H

−1/2
k (λ) (28)

with Hk(λ) and Gk(λ) given by Hk(λ) := i δ(λ) Z̃∗
k (λ)J Z̃k(λ) and Gk(λ) :=

i δ(λ) Z̃∗
k (λ)J Zk(λ). Moreover, the Weyl disks Dk(λ) are closed, convex, and

Dk+1(λ) ⊆ Dk(λ) for all k ≥ N0 + 1.

Proof The proof follows the same arguments as in [19, Theorem 3.8]. We note that
by (14) in Corollary 1 we have

Hk(λ) = 2 |im(λ)|
k−1∑

j=0

Z̃∗
j (λ) Ψ j (λ) Z̃ j (λ). (29)

This shows that under Hypothesis 2 the matrices Hk(λ) are Hermitian and positive
definite for k ≥ N0 + 1, so that the center Pk(λ) and the matrix radius Rk(λ) are
well defined. ��

The properties of the Weyl disks Dk(λ) in Theorem 2 and formula (29) imply that
for k → ∞ there exists the limiting Weyl disk D+(λ) := ⋂

k≥N0+1 Dk(λ), which is
closed and convex and which satisfies

D+(λ) = {
P+(λ)+ R+(λ) V R+(λ̄), V ∈ C

n×n, V ∗V ≤ I
}
,

where the limiting center and the limiting matrix radius are complex n × n matrices

P+(λ) := lim
k→∞ Pk(λ), R+(λ) := lim

k→∞ Rk(λ) ≥ 0,

compare with [19, Theorem 3.9 and Corollary 3.11]. The elements of the limiting
Weyl disk are characterized in the following result.

Theorem 3 Let λ ∈ C \ R with |λ| < ε and suppose that (23) and Hypothesis 2
hold. The matrix M ∈ C

n×n belongs to D+(λ) if and only if

∞∑

k=0

χ∗
k (λ,M) Ψk(λ) χk(λ,M) ≤ im(M)

im(λ)
, (30)

where χ(λ,M) is the Weyl solution of (Sλ) corresponding to M defined in (27).
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Proof The proof follows by applying identity (14) in Corollary 1 to Ek(λ,M), see
also [19, Corollary 3.12]. ��

We now discuss the number of square summable solutions of (Sλ) with analytic
dependence on λ. As the weight matrixΨk(λ) now depends on λ, we define for λ ∈ C

with |λ| < ε the semi-inner product and the semi-norm

〈z, z̃〉Ψ (λ) :=
∞∑

k=0

z∗
k Ψk(λ) z̃k, ‖z‖Ψ (λ) := √〈z, z〉Ψ (λ) =

( ∞∑

k=0

z∗
k Ψk(λ) zk

)1/2

,

and the corresponding space of all square summable sequences with respect to Ψ (λ)

2
Ψ (λ) := {{zk}∞k=0, zk ∈ C

2n, ‖z‖Ψ (λ) < ∞}
. (31)

Observe that the space 2
Ψ (λ) now also depends on λ. However, in some special cases

this space can be taken independent on λ, as it is shown for systems (2), (3), (4) in
Examples 1–3. Also, in view of (20) in Example 4 we may consider for systems (19)
or (5) the space

2
W [1],W [2] :=

{
{
zk = (x∗

k , u∗
k)

∗}∞
k=0,

∞∑

k=0

(
x∗

k+1 W [1]
k xk+1 + u∗

k W [2]
k uk

)
< ∞

}

,

which does not depend on λ. Given the space 2
Ψ (λ) in (31), its subspace of all square

summable solutions of (Sλ) is denoted by

N (λ) := {
z ∈ 2

Ψ (λ), z = {zk}∞k=0 solves(Sλ)
}
.

Under assumption (23) and Hypothesis 2, the result in Theorem 3 implies that n ≤
dim N (λ) ≤ 2n for all λ ∈ C \ R with |λ| < ε, see also [19, Theorem 4.2].
The two extreme cases are then called as the limit point case when dim N (λ) =
n, and the limit circle case when dim N (λ) = 2n. The cases when dim N (λ) is
between n + 1 and 2n − 1 are called intermediate. It follows that the results in [19,
Theorem 4.2, Corollary 4.15] hold for system (Sλ) with analytic dependence on λ in
exactly the same form under the appropriate weak or strong Atkinson type condition.
We summarize the main result regarding the number of linearly independent square
summable solutions of (Sλ) in the following theorem.

Theorem 4 Let λ ∈ C\R with |λ| < ε and suppose that (23) and Hypothesis 2 hold.
Then system (Sλ) has exactly n +rank R+(λ) linearly independent square summable
solutions, i.e.,

dim N (λ) = n + rank R+(λ),

where R+(λ) is the matrix radius of the limiting Weyl disk D+(λ).

Proof We refer to the proof of [19, Theorem 4.9] for the details. ��
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As a consequence of Theorem 4 we obtain the characterization of the limit point
case and limit circle case for system (Sλ) with analytic dependence on λ in terms of
the limiting matrix radius R+(λ).

Corollary 2 Let λ ∈ C \ R with |λ| < ε and suppose that (23) and Hypothesis 2
hold. System (Sλ) is in the limit point case if and only if R+(λ) = 0, and in this case
D+(λ) = {P+(λ)} and D+(λ̄) = {P+(λ̄)}. System (Sλ) is in the limit circle case if
and only if R+(λ) is invertible.

In a similar way, the results in [18] regarding the Weyl–Titchmarsh theory for
system (Sλ) with jointly varying endpoints remain valid also for the analytic depen-
dence on λ, when we assume the following finite or infinite strong Atkinson type
condition.

Hypothesis 3 (Finite strong Atkinson condition) For all λ ∈ C with |λ| < ε, every
nontrivial solution z(λ) of (Sλ) satisfies (25).

Hypothesis 4 (Infinite strong Atkinson condition) There exists N0 ∈ N such that
for all λ ∈ C with |λ| < ε every nontrivial solution z(λ) of (Sλ) satisfies (25) with
N = N0.

We illustrate the Weyl–Titchmarsh theory of system (Sλ) with analytic dependence
on λ by the following interesting example.

Example 7 In this example we show that the discrete symplectic system

zk+1(λ) = exp(λJ ) zk(λ). (32)

is in the limit point case for every λ ∈ C \ R. Moreover, we calculate the unique
2n × n solution (up to an invertible multiple) of (32) whose columns lie in 2

Ψ (λ) and
thus form a basis of N (λ). System (32) is an exponential symplectic system from
Example 6, where ε = ∞, Sk(λ) := exp(λJ ) is given in (22) with Rk := J . This
matrix satisfies the conditions R∗

k J + J Rk = 0 in Example 6, so that by (22)
we have Sk(λ) = exp(λJ ) = (cos λ) I + (sin λ)J . Note that this matrix does not
depend on k.

For simplicity we perform the calculations below in the scalar case, i.e., for n = 1.
The general case follows with the same arguments upon multiplication by the n × n
or 2n × 2n identity matrices at appropriate places. The fundamental matrix Φk(λ)

of (32) with Φ0(λ) = I is given by

Φk(λ) = exp(kλJ ) = (cos kλ) I + (sin kλ)J =
(

cos kλ sin kλ
− sin kλ cos kλ

)

for every k ∈ [0,∞)Z. SinceΦ0(λ) = I , we takeα := (1, 0), so thatαJ α∗ = 0 and
αα∗ = 1 are satisfied. It follows that the natural conjoined basis of (32) is determined
by the second column of Φ(λ), i.e., Z̃k(λ) = ((cos kλ)∗, (sin kλ)∗)∗. Since the
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powers of J repeat in a cycle of length four, the weight matrix Ψk(λ) = Ω(λ̄, λ) is
given in Example 6 as (we substitute x := im(λ))

Ψk(λ) = 1

2x

∞∑

j=0

(2x)2 j+1

(2 j + 1)! I + 1

2x

∞∑

j=1

(2x)2 j

(2 j)! iJ = sinh 2x

2x
I + cosh 2x − 1

2x
iJ

= sinh x

x

[
(cosh x) I + (sinh x) iJ

] = sinh x

x

(
cosh x i sinh x

−i sinh x cosh x

)

> 0,

where we used the formulas for hyperbolic functions sinh 2x = 2 sinh x cosh x ,
cosh 2x = 2 cosh2 x − 1, and the identity cosh2 x − sinh2 x = 1. By the definition
of Hk(λ) and Gk(λ) in Theorem 2,

Hk(λ) = i δ(λ) (sin kλ̄ cos kλ− cos kλ̄ sin kλ) = sinh (2k |im(λ)|),
Gk(λ) = −i δ(λ) (sin kλ̄ sin kλ+ cos kλ̄ cos kλ) = −i δ(λ) cosh (2k im(λ)),

where we used the identities cosh x = cos i x and i sinh x = sin i x relating the
hyperbolic and trigonometric functions. The same value for Hk(λ) is of course
obtained from formula (29) after some calculations. Therefore, Hypothesis 2 is sat-
isfied with N0 = 1, and by (28)

Pk(λ) = i coth (2k im(λ)), Rk(λ) = 1/
√

sinh (2k |im(λ)|).

The center and radius of the limiting disk D+(λ) are then

P+(λ) = lim
k→∞ Pk(λ) = i δ(λ), R+(λ) = lim

k→∞ Rk(λ) = 0,

so that system (32) is in the limit point case for every λ ∈ C\R. From Corollary 2 and
Theorem 3 we obtain that dim N (λ) = 1, and the space N (λ) of square integrable
solutions of system (32) is generated by the Weyl solution

χk(λ, P+(λ)) = Φk(λ)

(
I

P+(λ)

)

=
(

cos kλ+ i δ(λ) sin kλ
− sin kλ+ i δ(λ) cos kλ

)

=
(

1
i δ(λ)

)

e i δ(λ) kλ,

for which (we again substitute x := im(λ))

∥
∥χ(λ, P+(λ))

∥
∥2
Ψ (λ)

=
∞∑

k=0

χ∗
k (λ, P+(λ)) Ψk(λ) χk(λ, P+(λ))

= 2 sinh x

x
× [cosh x − δ(λ) sinh x] ×

∞∑

k=0

e−2 |x |k
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= 2 sinh x

x
× [cosh x − δ(λ) sinh x] × 1

1 − e−2 |x | = 1

| x | .

This shows that
∥
∥χ(λ, P+(λ))

∥
∥
Ψ (λ)

= 1/
√|im(λ)| < ∞, and so indeed we have

χ(λ, P+(λ)) ∈ 2
Ψ (λ) for every λ ∈ C \ R. On the other hand, we also have

∥
∥ Z̃(λ)

∥
∥2
Ψ (λ)

=
∞∑

k=0

Z̃∗
k (λ) Ψk(λ) Z̃k(λ)

(29)= 1

2 |im(λ)| lim
k→∞ Hk(λ)

= 1

2 |im(λ)| lim
k→∞ sinh(2k |im(λ)|) = ∞,

so that Z̃(λ) �∈ 2
Ψ (λ). Thus, again we get that dim N (λ) = 1. Similarly, in arbi-

trary dimension n we get that the n columns of the Weyl solution χ(λ, P+(λ)) are
linearly independent and they belong to 2

Ψ (λ), while the n columns of the natural

conjoined basis Z̃(λ) are linearly independent and they do not belong to 2
Ψ (λ). Hence,

dim N (λ) = n and system (32) is in the limit point case for all λ ∈ C \ R.

Finally, as a consequence of (14) we obtain the J-monotonicity of the funda-
mental matrix of (Sλ). We recall the terminology from [12, p. 7] saying that a matrix
M ∈ C

2n×2n is J-nondecreasing if i M∗J M ≥ iJ , and it is J-nonincreasing if
i M∗J M ≤ iJ . Similarly we define the corresponding notions of a J-increasing
and J-decreasing matrix. These concepts are used in [12] to study the stability zones
for continuous time periodic linear Hamiltonian systems. In a similar way, such sta-
bility zones are studied in [13, 14] for discrete linear Hamiltonian systems (6) and
in [7] for discrete symplectic systems (Sλ) with S [0]

k = I .

Corollary 3 Fix λ ∈ C with |λ| < ε and assume (23). Let Φ(λ) be a fundamental
matrix of system (Sλ) such thatΦ0(λ) is complex symplectic, i.e.,Φ∗

0 (λ)J Φ0(λ) =
J . Then for every k ∈ [0,∞)Z the matrix Φk(λ) is J-nondecreasing or
J-nonincreasing depending on whether im(λ) > 0 or im(λ) < 0. Moreover, under
Hypothesis 4 the J-monotonicity of Φk(λ) is strict for k ≥ N0 + 1.

Proof By applying (14) to the fundamental matrix Φk(λ) we get

i Φ∗
k (λ)J Φk(λ)− iJ = 2 im(λ)

k−1∑

j=0

Φ∗
j (λ) Ψ j (λ)Φ j (λ). (33)

By (23), the sum in (33) is nonnegative, so that Φk(λ) is J-nondecreasing when
im(λ) > 0, and it is J-nonincreasing when im(λ) < 0. Moreover, under Hypothe-
sis 4 the sum in (33) is positive definite for k ≥ N0 +1, so thatΦk(λ) is J-increasing
when im(λ) > 0, and it is J-decreasing when im(λ) < 0. ��
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Dynamic Selection Systems and Replicator
Equations

Zdeněk Pospíšil

Abstract The dynamic replicator equation is inferred from a generalized
Kolmogorov-type dynamic system that is called selection system. This way, both
systems have the same dimension. The main result shows that the replicator equation
is in a certain sense equivalent to a selection system of lower dimension. Corollaries
demonstrating connections with known results are also presented. The equations are
interpreted as models of biological evolution on different time scales. Hence, the
results show a link between ecology and evolution at least on the level of mathemat-
ical models.

1 Introduction

There are two general theories dealing with biological evolution. One of
them—the ecology—aims to describe interactions among population and their envi-
ronment and consequent changes in population abundances. Suitable tools for this
purpose are Kolmogorov-type systems of differential equations

u′
i = uiri (u1, u2, . . . , um), i = 1, 2, . . . ,m,

and their discrete counterparts, see e.g. [10]. Here, ri denotes growth rate of the
i th population affected by all of the populations forming the community. The other
one—the evolution theory in the strict sense—is interested in change of gene fre-
quencies, traits or so one. These phenomena can be described by replicator equations

x ′
i = xi

(
fi (x1, x2, . . . , xn)−Φ(x1, x2, . . . , xn)

)
, i = 1, 2, . . . , n,

where fi andΦ denote fitness of the i th species and an average fitness, respectively,
that depend on structure of the modelled community, see e.g. [7].
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A trivial but noteworthy fact is that ecology and evolution operate on different
time scales. Although the previous sentence uses the word “time scale” in a common
meaning, not in the technical one, the mentioned different passing of the ecological
and evolutionary times hints to embody both mathematical ecology and evolution
theory in the unified framework of dynamic equations, i.e. equations on time scales
in the strict sense [1].

There is a huge literature on continuous and discrete equations of population
dynamics (see e.g. [5, 6] and references therein), as well as on continuous and
discrete replicator dynamics ([3, 9] and references therein). Hence, it may be useful
to point out a general character common to all of them. This is the aim of the presented
paper.

The subsequent section introduce a time scale form of the replicator equation. It
is inferred from the selection system, i.e. from the system describing evolution of
interacting populations. This part follows a terminology and ideas that G.P. Karev
used for continuous systems [4]. The main result is presented in Sect. 3 and it consists
in the proof of certain equivalence of dynamic replicator and selection systems.
Theorem 2 generalizes a result of Hofbauer [2] obtained for a special continuous
replicator equation and a Lotka-Volterra system. The replicator equation with linear
fitness function is of a particular interest, it describes an evolutionary game dynamics
introduced independently by Taylor and Jonker [11] and Schuster and Sigmund [8].
Hence, some corollaries of Theorem 2 for these systems are presented.

The notation used is standard. Vectors are denoted by bold italic letters, the symbol
vi or (v)i denote the i th entry of the vector v. The symbol R+ denotes the set of non-
negative reals, the sets

Sn =
{

x ∈ R
n+ :

n∑

i=1

xi = 1

}

, S◦
n =

{

x ∈ Sn :
n∏

i=1

xi > 0

}

, ∂Sn = Sn \ S◦
n

are (probability) simplex, its relative interior and boundary, respectively. Throughout
the paper the symbols σ , �, and μ denote the forward jump operator, the Hilger
derivative and the graininess function on a considered time scale T, respectively.
The “regressive minus” operation is defined by the formula

a � b = a − b

1 + μb
;

for details of time scale calculus see the excellent monograph [1].

2 The Equations and Their Interpretation

The dynamic selection system consists of the equations

u�i = uiri (u), i = 1, 2, . . . ,m, (1)
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where ri : R
m+ → R are positively regressive rd-continuous functions such that the

system with the initial condition

u(t0) = u0 ∈ R
m+ (2)

has exactly one solution.

Proposition 1 Let u be a solution of the problem (1), (2). Then ui (t0) = 0 implies
ui (t) = 0 and ui (t0) > 0 implies ui (t) > 0 for each t ∈ T and any i ∈ {1, 2, . . . ,m}.
Proof The first statement follows from the assumed uniqueness of the solution. If
t1 ∈ T is right scattered and ui (t1) > 0, then

uσi (t1) = ui (t1)
(

1 + μ(t1)ri
(
u(t1)

))
> 0

by the supposed positive regressivity of the function ri ; if t1 ∈ T is right (left) dense,
then there exists a right (left) neighborhood of t1 such that u(t) > 0 on it. Hence, the
statement follows from the induction principle [1, Theorem 1.7]. ��

The proposition shows that the selection system (1) can be considered as a deter-
ministic model of an isolated biological community formed by interacting popu-
lations. Here, ui is interpreted as a size (population density, biomass) of the i th
population. The modeled community consists of constant number of populations;
none of them goes to extinction in a finite time, neither immigration nor emigration
is taken into account.

Let g : T×Sm → R
m be a map. We define the average function ḡ : T×Sm → R by

ḡ(t, x) =
m∑

i=1

xi gi (t, x) = xTg(t, x).

Theorem 1 Let the vector function u : T → R
m be a solution of the initial value

problem for the selection system (1), (2) with
m∑

i=1
ui (t0) > 0. Put

N (t) =
m∑

i=1

ui (t), xi (t) = ui (t)

N (t)
, i = 1, 2, . . . ,m.

Then there are rd-continuous and positively regressive functions fi : T × Sm → R,
i = 1, 2, . . . ,m such that the vector function x solves the dynamic equations

x�i = xi
(

fi (t, x)� f̄ (t, x)
)
, i = 1, 2, . . . ,m. (3)

Proof First note that the functions xi are non-negative according to Proposition 1
and they satisfy
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m∑

i=1

xi = 1

N

m∑

i=1

ui = 1,

hence, x ∈ Sm . The linearity of the Hilger derivative operator yields

N� =
m∑

j=1

u�j =
m∑

j=1

u jr j (u), i.e. Nσ = N + μN� =
m∑

j=1

u j
(
1 + μr j (u)

)
.

Let the functions fi : T × Sm be defined by the formulae

fi (t, x) = ri
(
N (t)x

)
, i = 1, 2, . . . ,m.

Then the functions fi are rd-continuous. Further,

1 + μ(t) fi (t, x) = 1 + μ(t)ri
(
N (t)x

) = 1 + μ(t)ri
(
u(t)

)
> 0,

hence the functions fi are positively regressive. Now, we have

x�i =
(ui

N

)� = u�i N − ui N�

N Nσ
= 1

Nσ

⎛

⎝ui ri (u)− ui

m∑

j=1

u j

N
r j (u)

⎞

⎠

= ui
m∑

j=1
u j
(
1 + μr j (u)

)

⎛

⎝ri (u)−
n∑

j=1

u j

N
r j (u)

⎞

⎠

= xi
m∑

j=1
x j
(
1 + μr j (Nx)

)

⎛

⎝ri (Nx)−
m∑

j=1

x j r j (Nx)

⎞

⎠ = xi

ri (Nx)−
m∑

j=1
x j r j (Nx)

1 + μ
m∑

j=1
x j r j (Nx)

,

since
m∑

j=1
x j = 1. The proof is complete. ��

The theorem suggests a form of a dynamic equation describing an evolution of
the community structure. We shall take an “autonomous form” of the Eq. (3).

Let f : R
n → R

n be an rd-continuous and positively regressive map. The dynamic
replicator equation is the vector equation with the components

x�i = xi
(

fi (x)� f̄ (x)
)
, i = 1, 2, . . . , n. (4)

Further, assume that all of the functions fi are such that any initial value problem
for the Eq. (4) with the initial condition
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x(t0) = x0 (5)

possesses exactly one solution.

Proposition 2 Let the vector function x : T → R
n be the solution of the problem

(4), (5). If xi (t0) = 0 for an index i then xi (t) = 0 for all t ∈ T. If x0 ∈ Sn, then
x(t) ∈ Sn for all t ∈ T.

A simple consequence of the proposition is that x0 ∈ S◦
n and x0 ∈ ∂Sn imply

x(t) ∈ S◦
n and x(t) ∈ ∂Sn for all t ∈ T, respectively.

Proof The first statement follows immediately from the assumed uniqueness of the
solution.

Let us observe now that the positive regressivity of the functions fi yields positive
regressivity of the function f̄ on the set Sn . Indeed, for any x ∈ Sn and t ∈ T, we
have

1 + μ(t) f̄ (x) =
n∑

i=1

xi + μ(t)
n∑

i=1

xi fi (x) =
n∑

i=1

xi
(
1 + μ(t) fi (x)

)
> 0.

Consequently, the functions fi � f̄ are positively regressive on Sn , since

1 + μ(t)
fi (x)− f̄ (x)

1 + μ(t) f̄ (x)
= 1 + μ(t) fi (x)

1 + μ(t) f̄ (x)
> 0.

In a similar way as in the previous proposition, we can show that xi (t0) ≥ 0 implies
xi (t) ≥ 0 for all t ∈ T.

Let x be a solution of the Eq. (4) and define the function y : T → R by the formula

y(t) =
n∑

i=1
xi (t)− 1. Then

y�(t) =
n∑

i=1

xi (t)
(

fi
(
x(t)

)� f̄
(
x(t)

)) =
n∑

i=1

xi (t)
fi
(
x(t)

)− f̄
(
x(t)

)

1 + μ(t) f̄
(
x(t)

)

= 1

1 + μ(t) f̄
(
x(t)

)

(
n∑

i=1

xi (t) fi
(
x(t)

)− f̄
(
x(t)

) n∑

i=1

xi (t)

)

= f̄
(
x(t)

)

1 + μ(t) f̄
(
x(t)

)

(

1 −
n∑

i=1

xi (t)

)

= − f̄
(
x(t)

)

1 + μ(t) f̄
(
x(t)

) y(t)

= [� f̄
(
t, x(t)

)]
y(t).
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That is, the function y solves the linear homogeneous dynamic equation

y� = [� f̄
(
x(t)

)]
y

which yields y(t) = y0

[

e� f̄
(

x(·)
)(t, t0)

]

. Hence, if y0 = 0 then y(t) = 0 for all

t ∈ T, cf. [1, Theorem 2.48]. Subsequently, if x0 ∈ Sn then
n∑

i=1
xi (t) = 1 for all

t ∈ T. That is, the second statement of the proposition holds. ��
Proposition 2 enables one to interpret the solution of the Eq. (4) as an evolution

of frequencies of some replicated—i.e. neither appearing nor vanishing—entities,
e.g. genes, memes or traits present in a population or in a community. For brevity,
we will use an accustomed terminology and call these entities “quasispecies”. Then,
the entries of vector x can be interpreted as frequencies of quasispecies forming a
biological community and the replicator equation (4) as a model of evolving structure
of it. The function fi expresses a fitness of the i th quasispecies and the fitness
depends on time and on structure of the community. Hence, the replicator equation
precises (or specifies) the basic tenet of Darwinism that the evolutionary success of
a (quasi)species depends on its fitness: the relative change of the i th quasispecies
frequency equals the regressive difference of its fitness and of the average one.

3 Equivalence of Selection and Replicator Systems

Now, we are ready to prove the main result of the paper: the statement that the dynamic
selection system and the replicator equation are in a certain sense equivalent.

Theorem 2 Let the vector function x : T → Sn be the solution of the initial value
problem (4), (5) with the initial value x0 ∈ S◦

n . Then there exist a time scale T̃,
one-to-one continuous maps ϕ : T → T̃, F : S◦

n → (0,∞)n−1, and positively
regressive rd-functions ri : T̃ → R, i = 1, 2, . . . , n−1 such that F

(
x(t)

) = u
(
ϕ(t)

)
,

where the vector function u : T̃ → R
n−1+ is the solution of the problem (1), (2) with

m = n − 1 and u0 = F(x0).

Proof For y ∈ S◦
n define

F(y) = v ∈ R
n−1+ , where vi = yi

yn
, i = 1, 2, . . . , n − 1. (6)

The map F is obviously continuous on S◦
n . Summation of the previous equalities

gives
n−1∑

j=1

v j = 1

yn

n−1∑

j=1

v j = 1 − yn

yn
, hence

1

yn
= 1 +

n−1∑

j=1

v j .
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That is, the map F is invertible and y = F−1(v) is given by the formulae

yi = vi

⎛

⎝1 +
n−1∑

j=1

v j

⎞

⎠

−1

, i = 1, 2, . . . , n − 1, yn =
⎛

⎝1 +
n−1∑

j=1

v j

⎞

⎠

−1

. (7)

Let ϕ : T → R be defined by the integral

ϕ(t) =
t∫

t0

xn(s)�s (8)

and put T̃ = {ϕ(t) : t ∈ T}. Since xn(t) > 0 for all t ∈ T, the function ϕ is strictly
increasing and, consequently, ϕ : T → T̃ is bijection. The properties of the time
scale integral imply that the function ϕ is rd-continuous. Hence, the set T̃ is a time
scale.

The graininess μ̃ of the time scale T̃ is given by

μ̃(τ ) = μ̃
(
ϕ−1(t)

)
=

σ(t)∫

t0

xn(s)Δs −
t∫

t0

xn(s)Δs =
σ(t)∫

t

xn(s)Δs = μ(t)xn(t),

or briefly
μ̃ = μxn . (9)

Let the functions ui : T̃ → R, i = 1, 2, . . . , n−1 satisfy u(τ ) = F
(

x
(
ϕ−1(τ )

))
,

i.e.

ui (τ ) = xi
(
ϕ−1(τ )

)

xn
(
ϕ−1(τ )

) , i = 1, 2, . . . , n − 1. (10)

Let g : T̃ → R be a differentiable function. For clarity, we denote the Hilger
derivative on the time scale T̃ by the symbol Δ̃. The chain rule [1, Theorem 1.93]
yields

(g ◦ ϕ)�(t) = gΔ̃
(
ϕ(t)

)
ϕ�(t) = xn(t)g

Δ̃
(
ϕ(t)

)
,

that is, for τ ∈ T̃ we have

gΔ̃(τ ) = 1

xn
(
ϕ−1(τ )

) (g ◦ ϕ)�(ϕ−1(τ )
)
, briefly gΔ̃ = 1

xn
g�.
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Now, we can calculate

(
fi (x)� f̄ (x)

)− (
fn(x)� f̄ (x)

) = fi (x)− f̄ (x)

1 + μ f̄ (x)
+ fn(x)− f̄ (x)

1 + μ f̄ (x)
= fi (x)− fn(x)

1 + μ f̄ (x)
,

xσn
(
1 + μ f̄ (x)

) = xn

(
1 + μ

(
fn(x)� f̄ (x)

) ) (
1 + μ f̄ (x)

) = xn
(
1 + μ fn(x)

)
,

and, subsequently according to (10), we have

uΔ̃i = 1

xn

(
xi

xn

)�
= 1

xn

x�i xn − xi x�n
xn xσn

= xi

xn

(
fi (x)� f̄ (x)

)− (
fn(x)� f̄ (x)

)

xσn

= xi

xn

fi (x)− fn(x)

xn
(
1 + μ fn(x)

) .

Denoting hi (x) = fi (x)/xn and considering (9) we obtain

u�̃i = xi

xn

hi (x)− hn(x)
1 + μxnhn(x)

= ui
hi
(
F−1(u)

)− hn
(
F−1(u)

)

1 + μ̃hn
(
F−1(u)

)

= ui

[
hi
(
F−1(u)

)� hn
(
F−1(u)

)]
,

where the “regressive minus” � is related to the time scale T̃. Hence, the relations
(7), (10) show that the functions ri : R

n−1+ → R, i = 1, 2, . . . , n − 1 defined by the
formulae

ri (u) = Hi (u)� Hn(u), where Hi
(
u) =

⎛

⎝1 +
n∑

j=1

u j

⎞

⎠ fi
(
F−1(u)

)
(11)

satisfy the statement of the theorem. ��
We can reformulate the statement of Theorem 2—the systems (1) and (4) are

qualitatively equivalent; the term “qualitative equivalence” means that there is a
homeomorphism S◦

n → (0,∞)n−1 that maps orbits of one equation to the orbits of
the second one.

The proof of the theorem reveals that one can take the set

T̃ =
⎧
⎨

⎩

t∫

t0

xn(s)Δs : t ∈ T

⎫
⎬

⎭

as the time scale for the selection system (1) equivalent to the replicator equation
(4). Then, the maps F , ϕ, and the functions ri are defined by equalities (6), (8),
and (11), respectively. The choice of xn for the construction of the time scale T̃ is
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not substantial, any other component of the vector function x solving the Eq. (4) is
applicable as well.

If the time scale T is discrete, i.e. μ(t) > 0 for all t ∈ T, then the replicator
equation (4) can be rewritten to the form

xσi = xi
1 + μ fi (x)

1 + μ f̄ (x)
.

In particular, if T = Z, the replicator equation takes the form

xi (t + 1) = xi (t)
1 + fi

(
x(t)

)

1 + f̄
(
x(t)

) .

The replicator equation with linear fitness functions fi , i.e. with the functions

fi (x) =
n∑

j=1

ai j x j = (Ax)i ,

where A is a constant n × n matrix, is of a particular interest. It describes a game
dynamics and the matrix A can be interpreted as a payoff matrix, cf. [3]. The functions
fi are positively regressive if

−μ(t) (Ax)i < 1, i = 1, 2, . . . , n

for all t ∈ T, x ∈ Sn . The condition is satisfied for any time scale if the matrix A is
nonnegative; this constraint is not restrictive for payoff matrices at all.

The replicator equation with linear fitness functions takes the form

x�i = xi

(
(Ax)i � xTAx

)
, i = 1, 2, . . . , n, (12)

and it is equivalent to the selection system

u�i = ui

⎡

⎣

⎛

⎝
n−1∑

j=1

ai j u j + ain

⎞

⎠�
⎛

⎝
n−1∑

j=1

anj u j + ann

⎞

⎠

⎤

⎦ i = 1, 2, . . . , n − 1.

(13)
Indeed, the term Hi in the equality (11) takes the form

Hi (u) =
⎛

⎝1 +
n−1∑

j=1

u j

⎞

⎠ fi
(

F−1(u)
)

=
⎛

⎝1 +
n−1∑

j=1

u j

⎞

⎠

⎡

⎢
⎢
⎢
⎢
⎣

A
1

1 +
n−1∑

j=1
u j

⎛

⎜
⎜
⎜
⎝

u1
...

un−1
1

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

i
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=
n−1∑

j=1

ai j u j + ain .

We have to keep in mind that the time scale for the dynamic replicator equation (12)
is different from the one for the dynamic selection system (13).

We finish with two corollaries of Theorem 2. The n × n matrix A with the entries
ai j is non-negative in both of them.

Corollary 1 (equivalence of replicator and Lotka-Volterra equations, [2]) The dif-
ferential replicator equation

x ′
i = xi

(
(Ax)i − xTAx

)
, i = 1, 2, . . . , n.

is qualitatively equivalent to the Lotka-Volterra differential system

u′
i = ui

(
ci − (Bx)i

)
, i = 1, 2, . . . , n − 1,

where ci = ain − ann, bi j = anj − ai j .

Corollary 2 There exists a strictly increasing sequence {τk} of reals such that the
difference replicator equation

xi (t + 1) = 1 + (
Ax(t)

)
i

1 + x(t)TAx(t)
, i = 1, 2, . . . , n,

is qualitatively equivalent to the difference equation

ui (τk+1) =
1 + (Δτk)

(
n−1∑

j=1
ai j u j (τk)+ ain

)

1 + (Δτk)

(
n−1∑

j=1
anj u j (τk)+ ann

)ui (τk), i = 1, 2, . . . , n − 1.

There exists a strictly increasing sequence {tk} of reals such that the difference
equation

ui (τ + 1) =
1 + ain +

n−1∑

j=1
ai j u j (τ )

1 + ann +
n−1∑

j=1
anj u j (τ )

ui (τ ), i = 1, 2, . . . , n − 1,

is qualitatively equivalent to the difference replicator equation
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xi (tk+1) = 1 + (Δtk)
(
Ax(tk)

)
i

1 + (Δtk)x(tk)TAx(tk)
, i = 1, 2, . . . , n.

Proof Multiplying the equation (13) by μ and adding xi to the both sides of it, we
obtain

uσi = ui + μu�i = ui

1 + μ

(
n−1∑

j=1
ai j u j + ain

)

1 + μ

(
n−1∑

j=1
anj u j + ann

) .
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Asymptotic Equivalence of Difference
Equations in Banach Space

Andrejs Reinfelds

Abstract Conjugacy technique is applied to analysis asymptotic equivalence of
nonautonomous linear and semilinear difference equations in Banach space.

1 Introduction

The well-known Levinson’s theorem [8] states that if the trivial solution of

x ′ = Ax (1)

is uniformly stable, where x ∈ R
n , and

∞∫

0

|B(t)| dt < +∞

then (1) and
x ′ = Ax + B(t)x

are asymptotically equivalent.
There are many studies in the literature which deal with asymptotic equivalence

problem in the theory of differential equations, difference equations and equations
on time scale at n-dimensional space R

n . See in particular [1–11] and the references
citied therein.
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In the present paper asymptotical equivalence of linear and semilinear
nonautonomous difference equations is proved in Banach space. We prove that cor-
responding difference equations are conjugated and using this conjugacy we find
sufficient conditions for asymptotical equivalence.

Consider the following difference equations in Banach space E

x1(t + 1) = F1(t, x1(t)), (2)

x2(t + 1) = F2(t, x2(t)). (3)

Let us denote by x1(·, s, x) : [s,+∞) → E and by x2(·, s, x) : [s,+∞) → E
the solutions of equations (2) and (3) satisfying the initial conditions x1(s, s, x) = x
and x2(s, s, x) = x respectively.

Definition 1 Difference equations (2) and (3) are conjugate if there exists a home-
omorphism H(t, ·) : E → E such that |H(t, x)||x |−1 is uniformly bounded and

H(t, x1(t, s, x)) = x2(t, s, H(s, x)) for t ≥ s.

Definition 2 Difference equations (2) and (3) are asymptotically equivalent, if there
exists a homeomorphism H(s, ·) : E → E it such that

lim
t→+∞ (x2(t, s, H(s, x))− x1(t, s, x)) = 0.

Let us consider linear and semilinear difference equation in Banach space

x(t + 1) = A(t)x(t)+ f (t, x(t)) (4)

x(t + 1) = A(t)x(t) (5)

where the map A(t) : E → E is invertible. We will assume that map F : [s,+∞)×
E → E satisfy the Lipschitz condition

| f (t, x)− f (t, x ′)| ≤ γ (t)|x − x ′|

and (4) has the equilibrium point x = 0,

f (t, 0) = 0.

Let X (t, s) t, s ∈ Z be the Cauchy evalutionary operator of (5), where X (s, s) = I
and I identity operator.
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Our basic assumption is that

�(s) = sup
r≥s

+∞∑

i=r

|X (r, i + 1)||X (i, r)|γ (i) < ∞ (6)

and
lim

s→+∞�(s) = 0. (7)

Remark 1 If
|X (t, s)| ≤ M < +∞ for all t, s ∈ Z

then conditions (6) and (7) reduces to condition

+∞∑

i=s

γ (i) < ∞.

Lemma 1 If s is large enough, then the following estimate is valid

+∞∑

i=s

|X (s, i + 1)|γ (i)|x(i, s, x)| ≤ �(s)|x |
1 −�(s)

.

Proof The solution of (4) satisfying the initial condition x(s, s, x) = x for t > s is
given by the formula

x(t, s, x) = X (t, s)x +
t−1∑

i=s

X (t, i + 1) f (i, x(i, s, x)).

We have estimate

|X (s, t + 1)|γ (t)|x(t, s, x)| ≤ |X (s, t + 1)|γ (t)|X (t, s)||x |.

+ |X (s, t + 1)|γ (t)
t−1∑

i=s

|X (t, i + 1)|γ (i)|x(i, s, x)|.

Summing up for t’s with respect t ≥ s, we obtain

T∑

t=s

|X (s, t + 1)|γ (t)|x(t, s, x)| ≤
T∑

t=s

|X (s, t + 1)|γ (t)|X (t, s)||x |
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+
T∑

t=s+1

|X (s, t + 1)|γ (t)
t−1∑

i=s

|X (t, i + 1)|γ (i)|x(i, s, x)|

≤
T∑

t=s

|X (s, t + 1)|γ (t)|X (t, s)||x |

+
T∑

i=s

|X (s, i + 1)γ (i)|x(i, s, x)|
T∑

t=i+1

|X (t, s)||X (s, t + 1)|γ (t)

≤
+∞∑

t=s

|X (s, t + 1)|γ (t)|X (t, s)||x |

+
T∑

i=s

|X (s, i + 1)γ (i)|x(i, s, x)|
+∞∑

t=s

|X (t, s)||X (s, t + 1)|γ (t)

Therefore

T∑

i=s

|X (s, i + 1)|γ (i)|x(i, s, x)| ≤
+∞∑

i=s

|X (s, i + 1)|γ (i)|x(i, s, x)| ≤ �(s)|x |
1 −�(s)

.

Let us note that

|x(t, s, x)| ≤ |X (t, s)|
(

|x | +
+∞∑

i=s

|X (s, i + 1)|γ (i)|x(i, s, x)|
)

≤ |X (t, s)||x |
1 −�(s)

.

�	

2 Conjugacy of Difference Equations

Let us consider the following semilinear difference equations in Banach space E

x1(t + 1) = A(t)x1(t)+ f1(t, x1(t)) (8)

x2(t + 1) = A(t)x2(t)+ f2(t, x2(t)) (9)
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where

| f1(t, x)− f1(t, x ′)| ≤ γ (t)|x − x ′|
| f2(t, x)− f2(t, x ′)| ≤ γ (t)|x − x ′|

and
f1(t, 0) = 0, f2(t, 0) = 0

Theorem 1 Let �(s) < 1/2. Then difference equations (8) and (9) are conjugate.

Proof Consider the set of continuous maps

M =
{

h : [s,+∞)× E,E)

∣
∣
∣
∣ sup

t,x

|h(t, x)|
|x | < +∞

}

It is easy to see that M is a Banach space with the norm

‖h‖ = sup
t,x

|h(t, x)|
|x | < +∞.

We will seek the map establishing the conjugacy of (8) and (9) in the form
H1(t, x) = x + h1(t, x). We examine the following functional equation

h1(s, x) =
+∞∑

i=s

X (s, i + 1)( f1(i, x1(i, s, x))

− f2(i, x1(i, s, x)+ h1(i, x1(i, s, x)))). (10)

Let us consider the map h1 �→ L h1, h1 ∈ M defined by the equality

L h1(s, x) =
+∞∑

i=s

X (s, i + 1)( f1(i, x1(i, s, x))

− f2(i, x1(i, s, x)+ h1(i, x1(i, s, x)))).

First we obtain

|L 0| ≤ 2
+∞∑

i=s

|X (s, i + 1)|γ (i)|x1(i, s, x)| ≤ 2�(s)|x |
1 −�(s)

.

Then ‖L (0)‖ ≤ 2�(s)
1−�(s) . Next we get

|L h1(s, x)− L h′
1(s, x)| ≤ �(s)|x |

1 −�(s)
‖h − h′‖.
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We get that the map L is a contraction and consequently the functional equation
(10) has a unique solution in M.

h1(t, x1(t, s, x)) =
+∞∑

i=t

X (t, i + 1)( f1(i, x1(i, s, x))− f2(i, x1(i, s, x)+ h1(i, x1(i, s, x))))

= −
t−1∑

i=s

X (t, i + 1)( f1(i, x1(i, s, x))− f2(i, x1(i, s, x)+ h1(i, x1(i, s, x))))

+
+∞∑

i=s

X (t, i + 1)( f1(i, x1(i, s, x))− f2(i, x1(i, s, x)+ h1(i, x1(i, s, x))))

=
t−1∑

i=s

X (t, i + 1) f2(i, x1(i, s, x)+ h1(i, x1(i, s, x)))

− x1(t, s, x)+ X (t, s)(x + h1(s, x)).

Consequently, we have

x1(t, s, x)+ h1(t, x1(t, s, x)) = x2(t, s, x + h1(s, x)).

Changing the roles of f1 and f2, we prove in the same way the existence of h2 that
satisfies the equality

x2(t, s, x)+ h2(t, x2(t, s, x)) = x1(t, s, x + h2(s, x))

Designing H1(t, x) = x + h1(t, x), H2(t, x) = x + h2(t, x), we get

H1(t, H2(t, x2(t, s, x))) = x2(t, s, H1(s, H2(s, x))),

H2(t, H1(t, x1(t, s, x))) = x2(t, s, H2(s, H1(s, x))).

Taking into account uniqueness of mappings H2(t, H1(t, ·)) − id and H1
(t, H2(t, ·)) − id in M we have H2(t, H1(t, ·)) = id and H1(t, H2(t, ·)) = id
and therefore H1(t, ·) is a homeomorphism establishing a conjugacy of the (8)
and (9). �	

3 Asymptotic Equivalence of Difference Equations

Theorem 2 If
lim

t→+∞ |X (t, s)|�(t) = 0 (11)



Asymptotic Equivalence of Difference Equations in Banach Space 221

where

�(s) = sup
r≥s

+∞∑

i=r

|X (r, i + 1)||X (i, r)|γ (i) < ∞

and
lim

s→+∞�(s) = 0

then difference equations (4) and (5) are asymptotically equivalent.

Proof Let f2(t, x) ≡ 0, f1(t, x) = f (t, x). Then Theorem 1 implies that

X (t, s)(x + h1(s, x))− x1(t, s, x) = h1(t, x1(t, s, x)).

We have the estimate

|h1(t, x1(t, s, x))| =
∣
∣
∣
∣
∣

+∞∑

i=t

X (t, i + 1) f (i, x1(i, s, x))

∣
∣
∣
∣
∣

≤
+∞∑

i=t

|X (t, i + 1)|γ (i)|x1(i, t, x1(t, s, x))|

≤ �(t)|x1(t, s, x)|
1 −�(t)

≤ �(t)|X (t, s)||x |
(1 −�(t))(1 −�(s))

.

It follows that difference equations (4) and (5) are asymptotically equivalent. �	
Acknowledgments This work has been partially supported by the grant No. 345/2012 of the
Latvian Council of Science
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