
Chapter 7
Neutron Scattering and Its Application
to Strongly Correlated Systems

Igor A. Zaliznyak and John M. Tranquada

Abstract Neutron scattering is a powerful probe of strongly correlated systems. It
can directly detect common phenomena such as magnetic order, and can be used
to determine the coupling between magnetic moments through measurements of
the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse
scattering and dynamic correlations. Neutrons are also sensitive to the arrangement
of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter,
we provide an introduction to neutrons and neutron sources. The neutron scattering
cross section is described and formulas are given for nuclear diffraction, phonon
scattering, magnetic diffraction, and magnon scattering. As an experimental exam-
ple, we describe measurements of antiferromagnetic order, spin dynamics, and their
evolution in the La2−x Bax CuO4 family of high-temperature superconductors.

7.1 Introduction

A common symptom of correlated-electron systems is magnetism, and neutron scat-
tering is the premiere technique for measuring magnetic correlations in solids. With a
spin angular momentum of 1

2 �, the neutron interacts directly with the magnetization
density of the solid. Elastic scattering can directly reveal stic magnetic order; for
example, neutron diffraction provided the first experimental evidence for Néel anti-
ferromagnetism [1]. Through inelastic scattering one can probe dynamic spin-spin
correlations; in an ordered antiferromagnet, one can measure the precession of the
spins about their average orientations, which show up as dispersing spin waves.

Neutrons do not couple to the charge of the electrons, but instead scatter from
atomic nuclei via the strong force. Despite the name, the small size of the nucleus
compared to the electronic charge cloud of the atom results in a rather weak scattering
cross section. The magnetic and nuclear scattering cross sections are comparable, so
that neutron scattering is very sensitive to magnetism, in a relative sense.
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A challenge with neutron scattering is that the combination of weak scattering
cross section and limited source strength means that one needs a relatively large
sample size compared with many other techniques. The value of the information that
can be obtained by neutron scattering generally makes worthwhile the effort to grow
large samples; nevertheless, in practice it is useful to take advantage of complemen-
tary information obtained from techniques such as muon spin rotation spectroscopy
and nuclear magnetic resonance. The latter techniques yield less information but
often provide greater precision. There have also been continuing developments in
resonant X-ray scattering; nevertheless, neutron scattering will remain an essential
technique to investigate strongly correlated systems for the foreseeable future.

As we have space only for a concise introduction to the field, we note that there
plenty of more extended references available. A good summary of the theory of
neutron scattering is given by Squires [2], while a more detailed description is pro-
vided by Lovesey [3]. We have contributed to a technique-oriented book [4] and to
book chapters on magnetic neutron scattering [5, 6], and new books on the subject
continue to appear.

To illustrate some of the concepts and capabilities, we will use examples involv-
ing copper-oxide compounds, especially from the family La2−x Bax CuO4, which
includes phenomena from antiferromagnetic order to high-temperature supercon-
ductivity. More details on neutron scattering studies of cuprates are given in recent
reviews [7–10].

7.2 Basic Properties of the Neutron and Its Interaction
with Matter

The neutron is an elementary spin-1/2 particle, which, together with its charged
relative, the proton, is a building block of the atomic nucleus. According to the
“standard model” of the elementary particles, the neutron and proton are fermionic
hadrons, or baryons, composed of one “up” and two “down” quarks, and two “up” and
one “down” quarks, respectively. The basic properties of a neutron are summarized
in Table 7.1.

Although the neutron is electrically neutral, it has a non-zero magnetic moment,
similar in magnitude to that of a proton (μn = 0.684979 μp), but directed opposite

Table 7.1 Basic properties of a neutron

Charge Mass Lifetime Magnetic moment Gyromagnetic ratio g-factor (gn)

(kg) (s) μn (J/T) γn (s−1/T)

0 1.67492 × 10−27 882 ± 2 −0.96623 × 10−26 −1.83247 × 108 3.82609

The gyromagnetic ratio, γn , and the g-factor, gn , are defined by μn = γnσ n = −gnμN Sn , where
σ n is the neutron’s angular momentum, Sn = σ n/� is the neutron’s spin (Sn = 1/2), μN =
e�/(2m pc) = 5.05078 × 10−27 J/T = 5.05078 × 10−24 erg/G s is the nuclear magneton [11, 12]



7 Neutron Scattering and Its Application to Strongly Correlated Systems 207

to the angular momentum, so that the neutron’s gyromagnetic ratio is negative. The
neutron’s mass, mn = 1.00866 Da (atomic mass units) is slightly larger than that of
the proton, mn = 1.00728 Da, and that of the hydrogen atom m H = 1.00782 Da.
Therefore, outside the nucleus the free neutron is unstable and undergoesβ-decay into
a proton, an electron, and an antineutrino. Although the free neutron’s lifetime is only
about 15 mins, this is long enough for neutron-scattering experiments. For example,
a neutron extracted through the beam-tube in a nuclear reactor has typically reached
thermal equilibrium with the water that cools the reactor in a number of collisions on
its way out (such neutrons usually are called thermal neutrons). Assuming the water
has “standard” temperature of 293 K, the neutron’s most probable velocity would be
about 2200 m/s. It would spend only a fraction of a second while it travels along the
<100 m beam path in the spectrometer to be scattered by the sample and arrive in
the detector.

Neutrons used in scattering experiments are non-relativistic. Therefore, the neu-
tron’s energy, En , is related to its velocity, υn , wave vector, κn = mnυn/�, and the
(de Broglie) wavelength, λn = 2π/κn , through

En = 1

2
mnυ2

n = �
2κ2

n

2mn
= h2

2mnλ2
n
. (7.1)

Following the notation accepted in particle physics, the neutron’s energy is measured
in millielectronvolts (meV). The neutron’s wavelength and its wave vector are usually
measured in Å (1 Å = 0.1 nm = 10−8 cm) and Å−1, respectively. Using these units,
we can rewrite the (7.1) in the following, practical fashion:

En = 5.22704 × 10−6 · υ2
n = 2.07212 · κ2

n = 81.8042

λ2
n

, (7.2)

where En is in meV, vn in m/s, κn in Å−1, and λn in Å.
For the sake of comparison with the notations used in other techniques and in

theoretical calculations, we list several different ways of representing typical neutron
energies in Table 7.2. The different energy equivalents shown in the Table can be used
interchangeably, as a matter of convenience.

7.3 Neutron Sources

Neutrons are especially abundant in nuclei of high atomic number, where they can
significantly exceed the number of protons. To create a neutron beam, the first
challenge is to extract neutrons from the nuclei. The first practical source was the
nuclear reactor, in which neutron bombardment of 235U nuclei induces fission, a
process that releases several neutrons per incident neutron, thus allowing for a self-
sustaining chain reaction. The neutrons that are released have a very large energy,
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Table 7.2 Different notations used to represent the neutron’s energy

En En/e En/h En/(hc) En/(2μB) En/kB kn λn

(10−19 J) (meV) (T Hz) (cm−1) (T) (K) (Å−1) (Å)

1.60218 1000 241.799 8065.54 8637.99 11604.5 21.968 0.2860

0.160218 100 24.1799 806.554 863.799 1160.45 6.9469 0.9044

0.0801088 50 12.0899 403.277 431.900 580.225 4.9122 1.27909

0.0240326 15 3.62698 120.983 129.570 174.068 2.6905 2.3353

0.00160218 1 0.241799 8.06554 8.63799 11.6045 0.69469 9.0445

e is the electron charge, h is the Plank’s constant, c is the velocity of light, μB = e2/2mec =
0.92740 × 10−29 J/T is the Bohr’s magneton, kB is Boltzman’s constant [11]. Also shown are the
corresponding neutron wave vector kn and the deBroglie wavelength λn

whereas the fission cross section is enhanced by slower neutrons. The slowing of
neutrons can be achieved quite effectively by scattering from hydrogen, especially
in the form of H2O, which can also act to cool the reactor core. In a research reactor,
where one would like to extract some of the neutrons, the reactor moderator can
be made more transparent to neutrons by replacing H2O with D2O (heavy water,
with D representing deuterium). Cylindrical thimbles poking into the water moder-
ator provide an escape path for neutrons, which form the beams that supply neutron
spectrometers.

Another approach is to knock the neutrons out of heavy nuclei with high-energy
protons from an accelerator. Again, the neutrons that can escape the nuclei have very
high energies that must be reduced by multiple scattering in a moderator. In contrast
to a reactor, which produces neutron beams that are continuous in time, the proton
beam provided by an accelerator can be pulsed, so that a spallation source typically
has pulsed beams of neutrons. Targets can be made of a heavy metal such as tungsten,
but newer sources with higher power tend to use liquid mercury in order to allow
adequate heat removal.

A list of the major operating spallation sources in the world is given in the upper
portion of Table 7.3. Information on the available instrumentation and capabilities
can be obtained from the listed web sites. With a pulsed neutron source, each burst of
neutrons is produced in a narrow time window, so that one can distinguish between
neutrons of different velocities by their travel time, or “time of flight”. Using a
rotating shutter, one can select incident neutrons of a desired energy; the energy of
scattered neutrons can then be determined by their time of arrival at a detector.

The spallation source SINQ at the Paul Scherrer Institut provides a continuous,
rather than pulsed, beam, so its instrumentation has more in common with reactor
facilities, which are listed in the lower portion of Table 7.3. With a continuous source,
it is common to select the desired energy of incident neutrons by Bragg diffraction
from a crystal (or array of crystals). In a triple-axis spectrometer [4], one also uses
Bragg diffraction to analyze the energy and momentum of neutrons scattered by a
sample. Again, many of the facility web sites provide a wealth of information on
spectrometers and capabilities.
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7.4 Neutron Interactions and Scattering Lengths

Many of the fundamental advantages of neutron scattering techniques arise from the
fact that the neutron’s interactions with matter are usually weak and are extremely
well understood. Hence, neutrons afford direct experimental insight into dynamical
properties of the material system of interest, unperturbed by the probe and essentially
undistorted by the details of its interaction with matter. These properties contrast
favorably with X-ray or charged-particle (electron, muon) techniques, where the
probe could significantly perturb the system, and the interaction matrix elements
between the system and the probe are often very complicated and profoundly impact
the physics measured in the experiment.

The scattering of neutrons by an atomic system is governed by two fundamental
interactions. The residual strong interaction (nuclear force) gives rise to scatter-
ing by the atomic nuclei (nuclear scattering). The electromagnetic interaction of
the neutron’s magnetic moment with the sample’s internal magnetic fields, mainly
originating from the unpaired electrons in the atomic shells, gives rise to magnetic
scattering [2, 3, 13–15].

Magnetic interaction of a neutron with a single atom is of relativistic origin and
is very weak, so that magnetic neutron scattering can be treated using the Born
approximation. The interaction potential consists of the dipole-dipole interaction
with the magnetic moment associated with the electronic spin, μse = gs se ≈ −2se

(gs ≈ −2.002319 is the Landé g-factor),

V̂se(r) = −8π

3
(μn · μse)δ(r) − (μn · μse)

r3 + 3(μn · r)(μse · r)
r5

, (7.3)

and the interaction with the electric current associated with the electron’s orbital
motion

V̂sl(r) = 2μB
(μn · le)

r3 . (7.4)

Here �le = r × pe is the electron’s orbital angular momentum, and r = re − rn its
coordinate in the neutron’s rest frame.

While the neutron’s interaction with the atomic nucleus is strong—the nuclear
force is responsible for holding together protons and neutrons in the nucleus—it
has extremely short range, <10−12 cm, comparable to the size of the nuclei, and is
much smaller than the typical neutron’s wavelength. Hence, to describe the neutron’s
interaction with the system of atomic nuclei in which the typical distances are about
1 Å = 10−10 cm, a highly accurate approximation is obtained by using a delta-
function for the nuclear scattering length operator in the coordinate representation,

b̂N (r) = b δ(rn − RN ). (7.5)

Here RN is the position of the nucleus and b is the nuclear scattering length, which is
usually treated as a phenomenological parameter [16, 17] that has been determined
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experimentally and tabulated [18–20]. In the Born approximation, the scattering
length would correspond to the neutron-nucleus interaction described by the Fermi’s
pseudo-potential [21],

V̂N (rn, RN ) = −2π�
2

mn
b δ(rn − RN ). (7.6)

In general, the bound scattering length (that is, for a nucleus fixed in space) is a
complex quantity [2, 13], b = b′ − ib′′, defining the total scattering cross-section,
σs , and the absorption cross-section far from the nuclear resonance capture, σa ,
through

σs = 4π |b′|2 σa = 4π

κi
|b′′|2. (7.7)

For the majority of natural elements b′ is close in magnitude to the characteristic
magnetic scattering length, rm = −(gn/2)re = −5.391 fm (1 fm = 10−13 cm and
re = e2/(mec2) is the classical electron radius).

7.5 Cross-Section Measured in a Neutron Scattering Experiment

In a scattering experiment, the sample is placed in the neutron beam having a well-
defined wave vector κ i and known incident flux density Φi (κ i ), and the detector
measures the partial current, δ J f (κ f ), scattered into a small (ideally infinitesimal)
volume of the phase space, d3κ f = k2

f dκ f d� f = (mnκ f /�
2)d E f d� f , near the

wave vector κ f , as indicated in Fig. 7.1.This measured partial current, normalized
to the appropriate phase space element covered by the detector, yields the scattered
current density. The double differential scattering cross-section, which is thus mea-
sured, is then defined by the ratio of this scattered current density to the incident
neutron flux density, e.g.,

d2σ( Q, E)

d Ed�
= 1

Φi (κ i )

δ J f (κ f )

d Ed�
. (7.8)

s

d f

E ,i ik

E <f fkE ,i
q k k= -f i

sample

d f

E ,i ik

q k k= -f i

sample

d f

E ,i ik

q k k= -f i

sample

E >f fkE ,i
E =f fkE ,i

= 2 s= 2 s= 2

(a) (b) (c)

Fig. 7.1 Schematics of the scattering process in a neutron scattering experiment, a elastic, b
inelastic, neutron energy loss, c inelastic, neutron energy gain
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For each incident neutron in the plane wave state eiκ i ·rn , the incident flux density is
Φi (κ i ) = �κi/mn . The scattered current density is determined by the transition rate
Γi→ f from the initial state |κ i , Sz

n,i , ηi 〉, where the neutron is in the plane wave state

eiκ i ·rn with the spin Sz
n,i and the scattering system is described by the set of variables

ηi , to the final state, |κ f , Sz
n, f , η f 〉. According to scattering theory [5, 13, 22], the

transition rate is determined by the matrix elements of the transition operator (or
T -matrix) T̂ , satisfying certain operator equations, which depend on the scattering
system’s Hamiltonian, Ĥ , and its interaction with the neutron, V̂ ,

Γi→ f = 2π

�

∣
∣
∣〈κ f , Sz

n, f , η f |T̂ |κ i , Sz
n,i , ηi 〉

∣
∣
∣

2
δ

(

�
2κ2

i

2mn
− �

2κ2
f

2mn
− E

)

. (7.9)

Here E = E f (η f ) − Ei (ηi ) is the scattering system’s energy gain. It is convenient
to introduce the scattering length operator, b̂, which conveniently absorbs several
factors,

b̂(rn, Sn, η) = − mn

2π�2 〈κ f , Sz
n, f |T̂ |κ i , Sz

n,i 〉, (7.10)

and its Fourier transform, b̂(q),

b̂(q) =
∫

e−iq·r b̂(r, Sn, η)d3r, (7.11)

Summing over all possible final scattering states, we obtain the double differential
scattering cross-section for a given initial state, |κ i , Sz

n,i , ηi 〉,

d2σ( Q, E)

d Ed�
= κ f

κi

∑

Sz
n, f ,η f

∣
∣
∣〈η f |b̂(− Q)|ηi 〉

∣
∣
∣

2
δ
(

E f (η f ) − Ei (ηi ) − E
)

, (7.12)

where the dependence on the spin-state of the neutron is implicit in b̂(− Q). The
energy and momentum transfer to the sample are governed by the conservation laws,

Q = κ i − κ f , E = E f (η f ) − Ei (ηi ) = �
2

2mn
(κ2

i − κ2
f ). (7.13)

Finally, following Van Hove [23], one can use the integral representation of the
delta-function expressing the energy conservation in (7.12), and the time-dependent
scattering length operator whose evolution is governed by the system’s Hamiltonian,

b̂(q, t) = ei Ĥ t/�b̂(q)e−i Ĥ t/�, (7.14)

to recast the double differential scattering cross-section in the most useful form of
the two-time correlation function,
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d2σ

d Ed�
= κ f

κi

∑

Sz
n, f

∞∫

−∞
e−iωt 〈ηi |b̂†(− Q)b̂(− Q, t)|ηi 〉 dt

2π�
. (7.15)

Here the sum is over all possible final spin states of the scattered neutron, Sz
n, f ,

since in the general case the scattering length operator, b̂(− Q, t), depends on the
neutron spin, Sn . The sum over the final states of the sample has been absorbed into
the expectation value of the two-time correlation function of the scattering length
operator. The minus sign in front of Q in (7.15) follows from the convention adopted
in the conservation laws in (7.13), where � Q is the momentum transfer to the sample,
which is the opposite of the change in the neutron’s momentum. The total measured
scattering cross-section is obtained by taking the proper thermal average of (7.15)
over all possible initial states, |ηi 〉.

While the scattered neutron’s wave vector κ f is uniquely determined by κ i and
Q, by virtue of the conservation laws (7.13), the neutron’s spin state can be changed
by transferring the angular momentum �(�Sz

n) = ±� to the sample. In a polarized
neutron experiment scattering between different neutron spin states can be measured.
In such a case, the scattering length operator in (7.15) is a matrix with respect to
different initial and final spin state indices; it determines the various spin-flip and
non-spin-flip cross-sections [3, 24]. In the more common case of unpolarized neutron
scattering, neutron spin indices should be traced out in (7.15), so that it determines
a single unpolarized neutron scattering cross-section.

Finally, we should mention that the double differential cross-sections in (7.12),
(7.15) are general expressions obtained from scattering theory and are valid for
scattering of any probe particles. The remarkable advantage of neutron scattering is
in the fact that scattering length operators are rather simple, very well understood, and
are directly related to the fundamental physical properties of the scattering sample.

7.6 Nuclear Scattering in Condensed Matter

For scattering from an individual nucleus, the scattering length operator can be very
accurately approximated by a delta-function, (7.5). For a collection of nuclei in a
condensed matter system, the total scattering length operator is obtained by adding
scattering lengths of all nuclei,

b̂N (rn) =
∑

j

b j δ(rn − r j ), (7.16)

where j indexes the nucleus at position r j with scattering length b j . For a system
of identical nuclei, this is just a particle number density operator in the scattering
system, times b,
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b̂N (rn) = b
∑

j

δ(rn − r j ) = b n̂(rn), b̂N (q) = b n̂q . (7.17)

Substituting this into (7.15) and summing out the neutron’s spin states we obtain,

d2σ

d Ed�
= κ f

κi
|b|2

∞∫

−∞
e−iωt 〈ηi |n̂ Q n̂− Q(t)|ηi 〉 dt

2π�
. (7.18)

Therefore, the nuclear cross-section measures the space-time correlation of the atom
number density in a condensed matter system. This is exactly the quantity of interest
in many theories of strongly-correlated quantum systems.

One of the first successes of neutron scattering was the measurement of the
phonon-roton dispersion of the elementary excitations in superfluid helium-4. Neu-
tron data have confirmed that the shape of the dispersion is in agreement with that
previously postulated by Landau and Feynman, as illustrated in Fig. 7.2. This led to
the broad acceptance of the neutron scattering technique as a prime tool for studying
quantum systems.

Next we consider the case in which two or more types of nuclear scatterers (with
distinct scattering lengths bj and frequency of occurrence cj) are present in the sample
in a random fashion. For example, an element may have multiple isotopes, each with
a distinct bj, or the nuclei have a spin, so that bj depends on the nuclear and neutron
spin orientations, or we have at least two elements that are randomly distributed
among equivalent positions. The average product of the scattering lengths for any
two sites can then be written as

0

1

2

3

4

0 1 2 3 4

q (Å-1)

E
 (

m
eV

)

Fig. 7.2 Phonon-roton dispersion of the elementary excitations in the superfluid 4He. The points
show the compilation of the experimental neutron data presented in [25]. The solid line is the fit of
the low-q part of the spectrum to the Bogolyubov quasiparticle dispersion
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(b j b j ′) = (b)2 (

1 − δ j j ′
) + b2 δ j j ′, (7.19)

where

b =
∑

j

c j b j ,

b2 =
∑

j

c j b
2
j . (7.20)

We can then distinguish between coherent scattering,

d2σc

d Ed�
= κ f

κi
(b)2

∑

j j ′

∞∫

−∞
e−iωt 〈e−i Q·r j ei Q·r j ′ (t)〉 dt

2π�
, (7.21)

which probes the inter-nuclear correlation, and the incoherent scattering,

d2σi

d Ed�
= κ f

κi

(

b2 − (b)2
)∑

j

∞∫

−∞
e−iωt 〈e−i Q·r j ei Q·r j (t)〉 dt

2π�
, (7.22)

which probes the local autocorrelation of the nuclear position; the angle brackets
denote the average over the sample state. In (7.21) and (7.22) we have switched
to the co-ordinate representation of nuclear density operator (7.17) and performed
the Fourier integration. As a result, nuclear positions r j and r j ′(t) are quantum-
mechanical operators and have to be treated appropriately in calculating the cross-
section [2, 3, 14].

7.7 Nuclear Scattering in a Crystal: The Bragg Peaks
and the Phonons

In a crystal, the equilibrium positions of atomic nuclei are arranged on the sites of a
lattice, so that the position of each individual nucleus j can be represented as

r j = R j + u j , (7.23)

where R j is the lattice site position, and u j is a small displacement of the atomic
nucleus from its equilibrium position at R j .

Substituting this into (7.21), one can show that the coherent nuclear cross-section
of a monoatomic crystal is given by
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d2σc

d Ed�
= κ f

κi
N (b)2e−〈( Q·u0)

2〉 ∑

j

e−i Q·R j

∞∫

−∞
e−iωt e〈( Q·u0)( Q·u j (t))〉 dt

2π�
,

(7.24)
Here 〈( Q · u0)

2〉 is the time- or lattice-averaged square of the atomic displacement
from equilibrium in the direction of Q, and we have taken advantage of the fact that
the correlation function in (7.21) depends only on relative coordinates, which allows
one summation over the N lattice sites to be completed. The integral contains an
exponentiated correlation function of atomic displacements. It is useful to consider
the series expansion of this term in powers of pair displacement correlations.

In zeroth order, the exponential factor is just 1, and one obtains the expression for
the elastic Bragg scattering in a crystal,

d2σB

d Ed�
= N (b)2e−2W

∑

j

e−i Q·R j δ(�ω), (7.25)

where we used the conventional notation for the Debye-Waller factor, with W ≡
1
2 〈( Q·u0)

2〉. Using the lattice Fourier representation, this can be recast in the common
form

d2σB

d Ed�
= N V ∗(b)2e−2W

∑

τ

δ( Q − τ ) δ(�ω), (7.26)

where V ∗ = (2π)3/V0 is the reciprocal unit cell’s volume (V0 is the volume of the
unit cell in real space), and τ are the vectors of the reciprocal lattice. In a non-Bravais
crystal, where the unit cell contains several atoms, the sum in (7.24) has to be split
into the intra-unit cell and the inter-unit cell parts, leading to

d2σB

d Ed�
= N V ∗|FN ( Q)|2

∑

τ

δ( Q − τ ) δ(�ω), (7.27)

where the intra-unit cell summation yields the nuclear unit cell structure factor,

FN ( Q) =
∑

μ

e−Wμbμe−i Q·rμ, (7.28)

and μ indexes atoms in the unit cell. For some reciprocal lattice points, FN (τ ) can
be zero, which gives the Bragg peak extinction rules in a non-Bravais crystal.

Expanding the exponent in (7.24) to the first order, we obtain a contribution to the
cross-section that is proportional to the correlation of displacements at two different
sites. In cases where static disorder is present in the crystal, such as dislocations or
lattice strain, the time-independent correlations of displacements between different
sites give rise to elastic diffuse scattering.
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Calculation of the time-dependent displacements of atomic nuclei from their equi-
librium positions in the lattice is achieved by quantizing their vibrations in terms of
quantum oscillators, called phonons. A phonon is a normal mode of atomic vibra-
tion, a coherent wave of atomic displacements in the crystal. We distinguish phonons
with index s. The polarization vector es (direction of atomic displacements) and the
dependence of the energy on the wave vector, �ωqs (dispersion), are determined by
the local inter-atomic potentials. The total number of such modes depends on the
number of atoms in the unit cell of the crystal. Only three phonons, which are all
acoustic, are present for the Bravais lattice, two transverse and one longitudinal. Tak-
ing the proper thermal average over the sample’s equilibrium state, the contribution
to the neutron scattering is given by

d2σph

d Ed�
= κ f

κi
(b)2e−2W

∑

s

( Q · es)
2

2Mωqs

× V ∗ ∑

τ

[

δ( Q − q − τ )δ(�ω − �ωqs)(n(ω) + 1)

+ δ( Q + q − τ )δ(�ω + �ωqs)n(ω)
]

, (7.29)

where M is the mass of each nucleus. The thermal factor

n(ω) = (e�ω/κBT − 1)−1

is the Bose distribution function describing thermal population of the oscillator states
for temperature T of the sample. The first term arises from phonon creation and
corresponds to the neutron energy loss, while the second term is from an annihilation
of a phonon that has been thermally excited in the crystal and results in the neutron
energy gain.

For a non-Bravais crystal lattice, there are also optic phonons, arising from the
different intra-unit-cell vibrations. The total number of phonons is equal to 3ν, the
number of vibrational degrees of freedom of the ν atoms comprising the basis of
the unit cell of the lattice. The contribution of each of these phonons to the neutron
scattering cross-section is

d2σph

d Ed�
= κ f

κi

∣
∣
∣
∣
∣

∑

μ

bμ e−Wμ

√

2Mμωqs
(τ · esμ)e−iτ ·rμ

∣
∣
∣
∣
∣

2

× V ∗ ∑

τ

[

δ(τ − q − τ )δ(�ω − �ωqs)(n(ω) + 1)

+ δ(τ + q − τ )δ(�ω + �ωqs)n(ω)
]

, (7.30)

where esμ is the complex polarization vector for site μ in mode s. For an acoustic
phonon in the hydrodynamic, long-wavelength (small q) and low-energy limit, this
reduces to (7.29), where the total mass of all atoms in the unit cell, M = ∑

μ Mμ,
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should be used and one must multiply by the square of the elastic Bragg structure
factor, |FN (τ )|2.

7.8 Magnetic Scattering in a Crystal: Magnetic Form Factor
and Spin Correlations

The magnetic interaction of a neutron with a single atom is very weak, so the Born
approximation provides an extremely accurate account for magnetic neutron scat-
tering by the atomic electrons. In this approximation, the transition matrix is given
simply by the interaction potential, T̂ = V̂ , where we have to combine the neutron’s
interaction with the electron’s spin and orbital magnetic moment, (7.3) and (7.4).
Accurate accounting for the orbital contribution to magnetic scattering presents, in
general, a rather difficult and cumbersome task [3]. There are many important cases
where the orbital contribution is not significant, such as transition-metal atoms in a
crystal, where the local crystal electric field typically quenches the orbital angular
momentum, or the case of s-electrons, where l = 0. Nevertheless, under some very
general assumptions, the neutron’s interaction with the electron orbital currents can
be recast in the same way as its interaction with the spin magnetic moment, yielding
for the total magnetic scattering length,

b̂m(r) = − mn

2π�2

(

V̂se(r) + V̂le(r)
)

= mn

2π�2

(

μn ·
∑

e

[

∇ ×
[

∇ × μe(r)

r

]])

, (7.31)

where μe(r) = μs,e + μl,e is the sum of the spin and the orbital magnetization
associated with each electron, e. The Fourier transform of the magnetic scattering
length (7.31), which determines the scattering cross-section, is

b̂m( Q) = − mn

2π�2

4π

Q2

(

μn · [

Q × [

Q × m( Q)
]])

. (7.32)

Here m( Q) is the Fourier transform of the total magnetization density of the atom,

m( Q) = mS( Q) + mL( Q)

=
∫

e−i Q·r ∑

e

(−2μB seδ(r − re) + μl,e
)

d3r,

se is the spin operator of eth electron, μl,e its orbital magnetic moment operator.
The cross product in (7.32) ensures the important property that only magnetization

perpendicular to the wave vector transfer, Q, contributes to the magnetic neutron
scattering. Adding the contributions from all atoms in the crystal and averaging over
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the neutron polarizations, we obtain the magnetic neutron scattering cross-section
measured in an experiment with unpolarized neutrons (α, β = x, y, z),

d2σm

d Ed�
= κ f

κi

(
2mn

�2 μn

)2 ∑

α,β

(

δαβ − Qα Qβ

Q2

) ∞∫

−∞
e−iωt 〈Mα

Q Mβ

− Q(t)〉 dt

2π�
.

(7.33)
Here

M Q =
∑

j

e−i Q·R j m j ( Q)

=
∫

e−i Q·r ∑

j

m j (r + R j )d
3r

is the Fourier transformed magnetization density operator in the crystal. Hence,
magnetic neutron scattering measures the time- and space-dependent correlations of
the magnetization fluctuations in the sample. Introducing the dynamic correlation
function,

Sαβ( Q, ω) =
∞∫

−∞
e−iωt 〈Mα

Q Mβ

− Q(t)〉 dt

2π�
, (7.34)

we can rewrite (7.33) as

d2σm

d Ed�
= κ f

κi
r2

m

∑

α,β

(

δαβ − Qα Qβ

Q2

)
1

(2μB)2 Sαβ( Q, ω), (7.35)

where rm = −2μBμn(2mn/�
2) = −5.391 × 10−13 cm is the characteristic mag-

netic scattering length.

7.8.1 The Detailed Balance Constraint and the FDT

The dynamic correlation function defined above by (7.34) obeys two important
relations that are derived in the linear response theory [2, 3, 15]. First, it is the
detailed balance constraint, which relates the energy gain and the energy loss scat-
tering at a temperature T ,

Sαβ( Q, ω) = e�ω/κBT Sβα(− Q,−ω). (7.36)

The second is the fluctuation-dissipation theorem (FDT), which relates the scattering
intensity with the imaginary part of the dynamic magnetic susceptibility,
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χ̃
′′
αβ( Q, ω) = π

(

1 − e−�ω/κBT
)

S̃αβ( Q, ω). (7.37)

Here χ̃
′′
αβ( Q, ω) and S̃αβ( Q, ω) denote χ

′′
αβ( Q, ω) and Sαβ( Q, ω) symmetrized

with respect to {α, β, Q} → {β, α,− Q}. A system with a center of inversion has
symmetry with respect to { Q} → {− Q}, in which case the tildes can be dropped
for the diagonal components in {α, β} indices. This is the case for which the FDT
is most frequently written [5]. The FDT, (7.37), is a consequence of the detailed
balance condition (7.36) and the causality relations, which require that χ

′′
αβ( Q, ω) is

properly asymmetric. The fundamental laws of nature expressed in (7.36) and (7.37)
are extremely useful in performing and analyzing neutron scattering experiments.

7.8.2 Elastic and Inelastic Scattering

If there exists a non-zero equilibrium magnetization in the sample, 〈M Q〉 =
〈M Q(t)〉, where the bar over M Q(t) denotes the time-averaging, we can introduce
magnetization fluctuation around this equilibrium, m Q(t) = M Q(t) − 〈M Q〉, and
write

Sαβ( Q, ω) = 〈Mα
Q〉〈Mβ

− Q〉δ(�ω) + Sαβ
inel( Q, ω), (7.38)

where the inelastic component Sαβ
inel( Q, ω) is defined similarly to (7.34), but with

M Q replaced by m Q . The first term here leads to elastic scattering which results
from static magnetization in the sample, while the second term describes the inelastic
magnetic scattering arising from its motion. Substituting the first term into (7.35) we
obtain the unpolarized magnetic elastic cross-section,

d2σm,el

d Ed�
= r2

m

(2μB)2

∣
∣
∣〈M⊥

Q〉
∣
∣
∣

2
δ(�ω), (7.39)

where M⊥
Q is the Fourier transform of the magnetization component perpendicular

to the wave vector transfer, Q.

7.8.3 Magnetic Order and Magnetic Bragg Peaks

Equation (7.39) applies equally well to all cases where static magnetism is present
in a crystal, whether it is a long-range magnetic order leading to Bragg peaks, or a
short-range, e. g. nano-scale magnetic correlation, resulting in an appearance of a
broad magnetic diffuse scattering. In the case of a long-range order, the magnetization
density in a crystal typically has an equilibrium static component, which is modulated
with a wave vector Qm ,
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〈M(r)〉 = m0(r) + m(r) ei Qm ·r + m∗(r) e−i Qm ·r , (7.40)

where m0(r) is a real vector function that describes the ferromagnetic component,
if present, while m(r) can be complex and describes the staggered magnetization.
These “Bloch amplitudes” are periodic in the crystal lattice, and therefore can be
expanded in the Fourier series,

m(r) = 1

V0

∑

τ

mτ eiτ ·r , mτ =
∫

V0

m(r) e−iτ ·r , (7.41)

where the integral is over the unit cell of the nuclear (paramagnetic) crystal lattice.
Substituting (7.40) and (7.41) into (7.39), we obtain the following expression for

magnetic Bragg scattering associated with the long-range magnetic order at a wave
vector Qm ,

d2σm,B

d Ed�
= Nr2

m V ∗ ∑

τ

⎛

⎝

∣
∣
∣
∣
∣

m⊥
0,τ

2μB

∣
∣
∣
∣
∣

2

δ( Q − τ )

+
∣
∣
∣
∣

m⊥
τ

2μB

∣
∣
∣
∣

2
[

δ( Q − Qm + τ ) + δ( Q + Qm + τ )
]

)

δ(�ω).

(7.42)

Here the summation is over the paramagnetic crystal lattice. This is the “large
Brillouin zone” description, which is the most general one, in that it does not rely
on the existence of a commensurate magnetic superlattice with a unit cell containing
some integer number of nuclear lattice unit cells, and applies to incommensurate, as
well as commensurate magnetic structures. Such a description is most convenient
for stripe phases in the cuprates, which are often incommensurate.

The intensities of magnetic satellites, |m⊥
τ |2, are given by the Fourier amplitudes of

the magnetization, (7.41), which are obtained by performing the Fourier integrals over
the unit cell of the paramagnetic lattice. In the case where the unit cell magnetization
could be approximated by a number of point-like magnetic dipoles μν located at
positions rν , these amplitudes become the conventional unit cell magnetic structure
factors,

m(r) =
∑

j,ν

μν δ
(

r − R j − rν

)

,

∣
∣
∣m⊥

τ

∣
∣
∣

2 =
∣
∣
∣
∣
∣

∑

ν

μ⊥
ν e−iτ ·rν

∣
∣
∣
∣
∣

2

. (7.43)

In discussing magnetic scattering we assume a rigid lattice, neglecting atomic dis-
placements due to disorder and vibrations discussed above. The leading correction
to this description is obtained by multiplying expressions for magnetic cross-section
with the Debye-Waller factor, e−2W .
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7.8.4 Magnetic Form Factor and Spin Correlations

In many important cases the magnetization density in the crystal is carried by
electrons localized on atomic-like orbitals, which are specified by the local atomic
variables, such as spin and orbital quantum numbers. In such cases, the matrix ele-
ment of the atomic magnetization in the magnetic neutron scattering cross-section
can be factorized into the product of the reduced matrix element (form factor), which
does not depend on the direction of the atom’s angular momentum quantum numbers,
and the Wigner 3j-symbol, which entirely accounts for such dependence. Hence, the
cross-section can be expressed in terms of a product of the Q-dependent form factor,
which accounts for the shape of the magnetization cloud associated with the atomic
spin and orbital variables, and a dynamical correlation function between these local
angular momentum variables at different lattice sites.

For magnetic ions obeying Hund’s rule, neutron scattering usually probes states
belonging to the same multiplets of the angular momentum, �L = 0, �S = 0 for the
Russel-Saunders atoms with weak spin-orbit and strong crystal field, or �J = 0 for
the case of strong spin-orbit coupling, where the total angular momentum J = L+ S
is a good quantum number, such as in rare earths. Hence, we can write for the Fourier
transform of atomic magnetization,

〈η f |M( Q)|ηi 〉 = −2μB FS( Q)〈η f |S|ηi 〉 − μB FL( Q)〈η f |L|ηi 〉, (7.44)

where the spin and the orbital magnetic form factors are,

FS( Q) = 〈η′
f , L , S| ∑e e−i Q·re (se · S) |η′

i , L , S〉
S(S + 1)

, (7.45)

FL( Q) = 〈η′
f , L , S| ∑e e−i Q·re

(

μe,l · L
) |η′

i , L , S〉
μB L(L + 1)

, (7.46)

where we made explicit that initial and final states of the sample belong to the same
L and S multiplet. Similar relations hold for the J multiplet in the strong spin-orbit
coupling limit.

Typically it is possible to define an effective spin operator,

〈η f |M( Q)|ηi 〉 = −gμB F( Q)〈η f |S̃|ηi 〉, (7.47)

F( Q) =
〈η′

f , L , S|
(

M( Q) · S̃
)

|η′
i , L , S〉

gμB S̃(S̃ + 1)
= gS

g
FS( Q)+ g − gS

g
FL( Q). (7.48)

where g and gS are the effective g−factors, 〈η f |L + 2S|ηi 〉 = g〈η f |S̃|ηi 〉,
〈η f |2S|ηi 〉 = gS〈η f |S̃|ηi 〉. These expressions are exact in the cases of a J -multiplet,
where S̃ = J , gS = 2(g−1) and gL = 2−g, or a pure spin multiplet, where g = gS
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and the orbital contribution is absent. They give the leading-order approximation in
other cases. If the orbital moment is nearly quenched, as it is for magnetic d-elements
in strong crystal field, then S̃ ≈ S, gS ≈ 2, and the orbital contribution to F( Q), is
small. Assuming this to be the case, we shall omit tildes and use S for the effective
spin.

Using the factorization of atomic magnetization provided by (7.47) and (7.48),
the magnetic neutron scattering cross-section (7.33) can be recast as

d2σm

d Ed�
= κ f

κi
r2

m

∑

α,β

(

δαβ − Qα Qβ

Q2

)
∑

j, j ′
gα, j

F∗
j ( Q)

2
gβ, j ′

Fj ′( Q)

2

×
∞∫

−∞
e−iωt e−i Q·(R j −R j ′ )〈Sα

j Sβ

j ′(t)〉
dt

2π�
, (7.49)

where we allow for the possibility that the g−factor is anisotropic, and that both gα, j

and Fj ( Q) could be different for different sites j, j ′ of the lattice. Equation (7.49)
relates the magnetic cross-section to the dynamic spin structure factor, which is the
Fourier transform of the time-dependent two-point correlation function of the atomic
spin variables on the sites of the lattice,

Sαβ( Q, ω) =
∞∫

−∞
e−iωt 1

N

∑

j, j ′
e−i Q(R j −R j ′ )〈Sα

j Sβ

j ′(t)〉
dt

2π�
. (7.50)

Sαβ( Q, ω) is a quantity which is calculated in theoretical models based on the local
spin Hamiltonians. It also obeys a number of important relations, known as sum rules,
which are extremely useful in analyzing neutron scattering data. The zero moment
sum rule is obtained by integrating (7.50) in Q and ω, providing the direct connection
of the integral neutron intensity with the spin value S in the lattice spin Hamiltonian,

∑

α

∞∫

−∞
Sαα( Q, ω)d3qd(�ω) = S(S + 1). (7.51)

The first moment sum rule relates
∑

α

∫ ∞
−∞ �ωSαα( Q, ω)d3qd(�ω), which is the

integral oscillator strength of the fluctuation spectrum, with the bond energies in the
spin Hamiltonian, and so on.
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7.8.5 Spin Waves

Representing the neutron scattering cross-section via two-point dynamical spin
correlation function, as in (7.49), is possible in a large number of important magnetic
systems, such as cuprates and other 3d magnetic insulators. Such a representation is
extremely useful, as it allows one to connect the measured magnetic neutron intensity
with the theoretically predicted properties of model spin Hamiltonians, such as the
Heisenberg spin Hamiltonian,

Ĥ =
∑

j, j ′
J j j ′ S j S j ′ =

∑

q

N Jq Sq S−q . (7.52)

Here J j j ′ = J (r j j ′) is the exchange coupling between sites j and j ′, and Jq and Sq
are the lattice Fourier transforms,

Jq =
∑

r j j ′
J j j ′e

−iq·r j j ′ , Sq =
∑

j

S j e
−iq·r j . (7.53)

In many systems with magnetic order, the average value of spin at each lattice
site in the ground state (GS) is “frozen” at nearly the full saturation value, 〈Sz

j 〉 ≈ S.
In particular, this is a very good approximation for the semi-classical spins, S � 1,
in more than one dimension (1D). For quantum spins, S = 1/2, and/or in the low-
dimensional, or frustrated systems, the order may be weak, or absent, and such a
picture is inadequate. Nevertheless, in a large number of systems magnetic order in
the ground state is well developed, and the semiclassical spin-wave picture applies.

Spin excitations in a magnetic system with a well-ordered ground state, such
as a ferromagnet, where all spins are parallel, or a semi-classical antiferromagnet,
where there are two antiparallel sublattices, can be visualized as small oscillations
of classical spin vectors around their equilibrium positions in the GS spin structure.
Their wave-like spatial composition results from the translational symmetry of the
system. Frequencies of such spin-wave oscillations can be calculated from the spin
Hamiltonian, such as (7.52), totally within the classical mechanics, simply by writing
the torque equations of motion for the classical spin angular momenta. For example,
in the case of the Heisenberg Hamiltonian (7.52) for a magnetically ordered system
characterized by the ordering wave vector Q0 (this includes ferromagnetism with
Q0 = 0, as well as antiferromagnetism and helimagnetism), one obtains the spin-
wave dispersion [26, 27],

�ωq = 2S

√

(

Jq − JQ0

)
(

Jq+ Q0 + Jq− Q0

2
− JQ0

)

. (7.54)

This can be recast as ωq = √
ω0ωQ0 , where �ω0 = 2S(Jq − JQ0).

Spin waves are the normal modes of the linearized equations of motion. They
involve small spin deviations that are perpendicular to the equilibrium spin direction.
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Hence, spin waves are transversely polarized, with two mutually orthogonal linear
polarizations of spin oscillations possible. For a spin system on a Bravais lattice there
are two spin-wave modes.

In a quantum-mechanical treatment of spins, the spin-wave calculation proceeds
via an approximate mapping of spin operators to Bose creation-annihilation opera-
tors, i.e. to local oscillator modes. Hence, the so obtained spin-wave theory (SWT)
describes spin excitations as coherent waves of small oscillations around the local
equilibrium positions, in many ways similar to phonons. The resulting expression
for the spin-wave contribution to the neutron magnetic scattering cross-section in a
sample with a spiral spin structure with the propagation vector Q0 is

d2σsw

d Ed�
= κ f

κi
r2

m N
∣
∣
∣
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2
F( Q)

∣
∣
∣
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2
V ∗ ∑
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(n(ω) + 1)δ(�ω − �ωq)

×
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1

4

(

1 + Q2
z

Q2

)
√

ω0

ωQ0

(

δ( Q − q − τ − Q0) + δ( Q − q − τ + Q0)
)

+
(

1 − Q2
z

Q2

) √
ωQ0

ω0
δ( Q − q − τ )

]

, (7.55)

where z is the direction normal to the plane of the spiral, and we have restricted
consideration to the case of a Bravais lattice and retained only the contribution
corresponding to creation of a single spin wave. The contribution arising from the
absorption of a spin wave is written similarly to that of a phonon in (7.29). For a
ferromagnet, the single spin-wave magnetic cross-section simplifies to [2, 3],

d2σsw

d Ed�
= κ f

κi
r2

m N
∣
∣
∣
g

2
F( Q)

∣
∣
∣

2 S

2

(

1 + Q2‖
Q2

)

× V ∗ ∑

τ

[

δ( Q − q − τ )δ(�ω − �ωq)(n(ω) + 1)

+ δ( Q + q − τ )δ(�ω + �ωq)n(ω)
]

, (7.56)

where Q‖ is the wave vector component along the ferromagnetic ordered moment
and we have retained the contributions from both the creation and the absorption of
a spin wave.

7.8.6 Anisotropic Magnetic Form Factor and Covalency

It is clear from (7.49) that even the exact knowledge of the dynamical spin structure
factor (available from theory in some special cases, such as in one dimension) is
insufficient to reproduce the measured magnetic scattering cross-section. One also
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has to know the magnetic form factor, which needs to be obtained from an ab initio
calculation of the electronic density in the crystal.

In the most common case of a Hund’s ion with 2S unpaired electrons forming
spin (2S + 1)-multiplet, the spin magnetic form factor (7.45) becomes

FS( Q) = 1

2S

2S
∑

e=1

∫

e−i Q·r |ψe(r)|2 d3r = 1

2S

2S
∑

e=1

FS,e( Q), (7.57)

where the sum is only over the unpaired electrons. The single-electron density,
|ψe(r)|2, is determined from the many-electron atomic wave function through
|ψe(r)|2 = 〈η′, L , S|δ(r − re)|η′, L , S〉. The magnetic form factor for an atom is
therefore simply an average of those for each of the unpaired electrons. Similarly, the
orbital form factor is the Fourier-transformed average density of the uncompensated
orbital currents in the atom.

If the average Hartree-Fock potential acting on an unpaired electron e in the atom
is spherically symmetric, then the effective one-electron wave functions in (7.57)
are the eigenfunctions of angular momentum and are tagged by the n, l, m = lz

quantum numbers, ψe(r) = ψn,l,m(r). The angular and the radial dependencies
of the electronic density factorize, ψn,l,m(r) = Rn,l(r)Y m

l (θ, φ), where Y m
l (θ, φ)

is the spherical function giving the dependence on the polar angles θ, φ. This so-
called central field approximation is good when the contribution to the potential
from electrons in the incomplete shell is small. However, it also becomes exact for
an almost-filled shell, with only a single electron, or a single hole, as in the case of
Cu2+, or for a nearly half-filled shell, because the average potential of the closed, or
half-filled shell, is spherically symmetric.

In the general case, a single-electron wave function can always be expanded in
a series in spherical harmonics. In each term of such an expansion, the radial and
the angular parts are again factorized, and the magnetic form factor is a sum of
Fourier-transformed terms with different l and m. The same kind of an expansion
is encountered in calculating the orbital contribution to the magnetic form factor.
This is known as a multipole expansion [3]. The calculations are ion-specific and
extremely cumbersome. The general expressions can be obtained only for the leading,
isotropic contributions, in the limit of small wave vector transfer, known as the dipole
approximation,

FS( Q) = 〈 j0(Q)〉 FL( Q) = 1

2
(〈 j0(Q)〉 + 〈 j2(Q)〉) , (7.58)

where j0(Q) and j2(Q) are the l, m dependent radial integrals quantifying the radial
wave function [5, 18]. The radial integrals for most known magnetic atoms and ions
have been calculated numerically from the appropriate Hartree-Fock or Fock-Dirac
wave functions and are tabulated in [18]. The full F( Q) is given by (7.48).

Although the dipole approximation (7.58) is the one most commonly used, it is
extremely crude. In particular, it does not account for the anisotropy of the magnetic
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form factors, which can be very important for ions with only one or two unpaired
electrons. The anisotropic magnetic form factor of a single 5d hole in a t2g orbital
of the magnetic Ir4+ ion in the cubic K2IrCl6 was studied in [28]. The authors
found that the anisotropy of the magnetic form factor is very large, with an addi-
tional enhancement coming from the hybridization of the Ir 5d-orbital with the Cl
p-orbitals.

The anisotropy of the magnetic form factor is also very pronounced in La2CuO4,
YBa2Cu3O6+y , and related cuprate materials, including the high-Tc superconduc-
tors, where in the ionic picture a single unpaired magnetic electron occupies a 3dx2−y2

orbital. In [29] the authors found that properly accounting for the anisotropy of the
Cu2+ magnetic form factor is essential for understanding the magnetic Bragg intensi-
ties measured in YBa2Cu3O6+y at large wave vectors, and can also explain the pecu-
liar Q-dependence of the inelastic magnetic cross-section in this material. Account-
ing for the anisotropic Cu2+ form factor was also very important in analyzing neutron
scattering by high-energy spin waves in La2CuO4 [30, 31], and the chain cuprates
SrCuO2 and Sr2CuO3 [32, 33]. The magnetic excitations in these cuprate materials
extend to several hundreds of meV. Consequently, the measurements require very
large wave vector transfers, for which the anisotropy of the magnetic form factor is
very pronounced.

The ionic magnetic form factors for 3d orbitals can be explicitly computed by
Fourier transforming the corresponding spherical harmonics. In particular, for the
dx2−y2 orbital relevant for Cu2+ one obtains [5],

F( Q) = 〈 j0(Q)〉 − 5

7
〈 j2(Q)〉

(

1 − cos2 θQ

)

+ 9

56
〈 j4(Q)〉

(

1 − 10 cos2 θQ + 35

3
cos4 θQ

)

+15

8
〈 j4(Q)〉 sin4 θQ cos

(

4φQ
)

, (7.59)

where θQ, φQ are the polar angles of the wave vector Q in the local coordinate
system used to specify the proper orbital wave functions in the crystal field.

Although using the anisotropic ionic magnetic form factor of Cu2+ is much better
than using a spherical form factor of the dipole approximation, it is still not suffi-
cient for cuprates, as it neglects the effects of covalency (i.e. charge transfer to the
neighboring oxygen) that are expected to be very significant in these materials. In
[33] it was discovered that covalent bonding results in a marked modification of the
magnetic form factor in the quasi-1D antiferromagnet Sr2CuO3. The local structure
of the planar Cu–O square plaquettes in this material is essentially identical to that
in La2CuO4. Making use of a precise theoretical result for the excitation spectrum
available in 1D, the authors demonstrated that a good fit to the data requires a form
factor that takes account of hybridization between the half-filled Cu 3dx2−y2 orbital
and the ligand O 2pσ orbitals, as given by a density functional calculation. The
hybridization causes the spin density to be extended in real space, resulting in a more
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(a) (b) (c)

Fig. 7.3 Wave vector dependence of the ionic magnetic form factor of Cu2+ given by (7.59)
(solid line) and the covalent magnetic form factors for Sr2CuO3 (dashed line) and La2CuO4 (dash-
dotted line) obtained from the ab initio density functional calculations [33]. Panels (a–c) show the
dependence along three principal directions

rapid fall off in reciprocal space compared to a simple Cu2+ form factor, as illustrated
in Fig. 7.3. Smaller values of magnetic form factor at relatively large wave vectors,
where the measurement is performed, lead to the suppression of magnetic intensity,
which could be as large as a factor of two or more [33]. Finally, we note that a study
of covalent NMR shifts by Walstedt and Cheong [34] found that barely 2/3 of the
spin density in La2CuO4 resides on the copper sites, in excellent agreement with the
Sr2CuO3 neutron data of Walters et al. [33].

7.9 Application to Cuprate Superconductors

The discovery of high-temperature superconductivity in La2−x Bax CuO4 (LBCO)
came as a considerable surprise [35], as ceramic oxides were generally considered
to be poor conductors. The structure of LBCO and related cuprates involves CuO2
layers, with the Cu atoms forming a square lattice with bridging O atoms, as shown in
Fig. 7.4a. Anderson [36] predicted that the parent compound, La2CuO4, should have
strong antiferromagnetic (AF) superexchange interactions between nearest-neighbor
Cu atoms. The occurrence of antiferromagnetic order was demonstrated by Vaknin
et al. [37] using neutron diffraction on a powder sample of La2CuO4. As illustrated
in Fig. 7.4b, the antiferromagnetic Néel order doubles the size of the unit cell in
real space, which results in magnetic superlattice peaks, as shown in (c). Thus, the
antiferromagnetic order can be detected through the appearance of superlattice peaks.
The challenge in this case is that one must distinguish from structural superlattice
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Fig. 7.4 a Structure of a CuO2 plane, with Cu atoms indicated by filled circles and O atoms by
open diamonds. b Schematic of antiferromagnetic order, with alternating up (filled circles) and down
(open circles) spins. The solid line indicates the chemical unit cell, while the dashed line indicates
the doubled area of the antiferromagnetic unit cell. c Reciprocal space showing fundamental Bragg
peak positions (filled circles) and antiferromagnetic superlattice peak (open circle) at ( 1

2 , 1
2 )

peaks due to staggered rotations of CuO6 octahedra [38]. Fortunately, the AF and
structural peaks appear at inequivalent positions.

The ordered pattern of the octahedral tilts is associated with an orthorhombic dis-
tortion of the crystal structure that makes the diagonal directions of a Cu-O plaquette
inequivalent [38], as indicated in Fig. 7.5. By analyzing the Q dependence of the AF
Bragg peak intensities, it was possible to determine that the magnetic moments on
Cu atoms lie within the CuO2 planes, pointing along the orthorhombic b axis [37].
Furthermore, it was possible to show that the relative arrangement in neighboring
planes is as shown in Fig. 7.5. With the magnetic structure determined, one can eval-
uate the magnitude of the magnetic moments by normalizing the AF peak intensities
to the nuclear intensities and correcting for the magnetic form factor. Early studies
yielded a small ordered moment whose magnitude was correlated with the mag-
netic ordering, or Néel, temperature, TN [39]. Neutron scattering studies on carefully
prepared single-crystal samples eventually demonstrated the impact of interstitial
oxygen, within the La2O2 layers [40]. Removing the excess oxygen by annealing,
one can achieve TN = 325 K [41] and a magnetic moment of 0.60 ± 0.05 µB [39].
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Fig. 7.5 Structure of
La2CuO4, with arrows
indicating the arrangement of
the magnetic moments in the
antiferromagnetic state.
Figure reprinted with
permission from Lee et al.
[42]. Copyright (1999) by the
American Physical Society

c 

a 
b 

O  2−

La 3+

Cu  2+

If one assumes a g factor of roughly 2, then the ordered moment yields an average
ordered spin 〈S〉 ≈ 0.3, compared to the expected S = 1

2 per Cu atom. The reduc-
tion results from the strongly anisotropic structure and the low value of the spin. For
a two-dimensional magnetic system described by a Heisenberg spin Hamiltonian,
long-range order is destroyed at any finite temperature by thermal excitation of spin
fluctuations. For La2CuO4, weak (nearly-frustrated) couplings between the planes
enable the ordering at finite temperature [43]. Nevertheless, the spin correlations
have a strongly two-dimensional (2D) character, as demonstrated by neutron scat-
tering studies [44]. The small magnitude of the spin, combined with the enhanced
zero-point spin fluctuations in 2D, puts the system close to a quantum critical point
[45]. Although the large fluctuations cause problems for perturbation theory, spin-
wave theory nonetheless yields a result, 〈S〉 = 0.3, that is very close to the value
obtained from experiment [46].

The exchange couplings between the spins can be determined by analyzing the
dispersion of the spin excitations, which can be obtained by inelastic scattering
measurements on a single-crystal sample. Early studies of La2CuO4 with triple-
axis spectrometers demonstrated that the superexchange energy J coupling nearest-
neighbor spins is greater than 100 meV, and that effects such as exchange anisotropy
and interlayer coupling are very small [43]. Time-of-flight techniques were required
to measure the highest-energy spin waves [47], and these have been refined over
time [30, 31]. The most recent results, from Headings et al. [31], are shown in
Fig. 7.6. The line through the data points corresponds to a fit with linear spin-wave
theory, which works surprisingly well in light of the large zero-point fluctuations.
One impact of the latter is the renormalization factor, with a fitted value of Zd =
0.4 ± 0.04, that is required to fit the measured intensity. This is somewhat smaller
than the value Zd ≈ 0.6 that is predicted from quantum corrections to linear spin
waves [48]. It should be noted, though, that this analysis did not take account of
the hybridization effects on the magnetic form factor, discussed in Sect. 7.8.4, which
would account for some of the apparent renormalization. An additional effect is the
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Fig. 7.6 Spin wave a
dispersion and b intensity
measured in antiferro
magnetic La2CuO4 at
T = 10 K. Lines through data
correspond to fits with
spin-wave theory; the fit to
the intensity includes a
renormalization factor
Zd = 0.4 ± 0.04. Figure
reprinted with permission
from Headings et al. [31].
Copyright (2010) by the
American Physical Society
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damping and broadening of the energy-dependence of the spin-wave line shape at
the zone boundary position Q = ( 1

2 , 0). This appears to be the result of interactions
with a multi-magnon high-energy continuum [31].

The fitted dispersion corresponds to J = 143 ± 2 meV, but also requires longer-
range exchange couplings—second and third neighbor couplings J ′ and J ′′, which
are relatively weak, and a significant 4-spin cyclic exchange term Jc ≈ 0.4 J. The
overall bandwidth of the magnetic spectrum is ∼2 J. A recent analysis of the cou-
plings, including Jc, in terms of a single-band Hubbard model has been given by
Dalla Piazza et al. [49].

To achieve superconductivity, one must dope charge carriers into the CuO2 planes.
Substituting Ba2+ or Sr2+ for La3+ introduces holes. A small density of holes,
p ≈ 2 %, is enough to kill the long-range AF order, which is followed by a regime
of spin-glass order [7]. Doping beyond p ∼ 0.055 yields superconductivity. The
maximum superconducting transition temperature Tc occurs for p ∼ 0.16, with
Tc heading towards zero for p > 0.25. Inelastic neutron scattering studies have
been performed on single crystal samples across this entire doping range [7, 9].
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(a) (b)

Fig. 7.7 Cartoons of equivalent domains of a vertical and b horizontal bond-centered stripe order
within a CuO2 plane (only Cu sites shown). Note that the magnetic period is twice that of the charge
period. The charge density along a stripe is one hole for every two sites in length. The registry of
the stripes with respect to the lattice (for example, site-centered versus bond-centered) has not yet
been determined experimentally

A couple of the key features are: (1) the bandwidth of strong spin-fluctuation scat-
tering decreases linearly with doping, being quantitatively similar to the pseudogap
energy extracted from various electron spectroscopies [9, 50], and (2) the wave vec-
tor characterizing the low-energy spin excitations splits about the AF wave vector,
becoming incommensurate [7, 51].

Insight into the cause of the magnetic incommensurability was provided by neu-
tron diffraction measurements on a closely related material, La1.48Nd0.4Sr0.12CuO4
[52]. The impact of the Nd substitution is to modify the tilt pattern of the CuO6 octa-
hedra such that the in-plane Cu-O bond directions become inequivalent [38]. New
superlattice peaks were observed in this low-temperature phase, with in-plane wave
vectors Q = ( 1

2 ±ε, 1
2 ) and ( 1

2 , 1
2 ±ε) corresponding to spin order and (±2ε, 0) and

(0,±2ε) associated with modulations of atomic positions due to charge order, with
ε ≈ 0.12. Such results have been confirmed in the system La2−x Bax CuO4 [53, 54].
Analysis of the superlattice peaks indicates that they are evidence for spin and charge
stripe order [55, 56], as illustrated in Fig. 7.7. Because of the crystal symmetry, the
orientation of the stripes rotates 90◦ from one layer to the next.

The occurrence of maximum stripe order corresponds to a strong suppression of
the bulk Tc at p ≈ 1

8 [54, 57], suggesting that stripe order competes with supercon-
ductivity; however, recent studies have demonstrated that 2D superconductivity can
coexist with stripe order [58]. It now appears that superconducting order can inter-
twine with stripe order [59]. Thus, understanding stripe correlations may provide
valuable insights into the nature of the superconducting mechanism of cuprates.

Neutron scattering on a time-of-flight instrument has been used to characterize
the spin excitation spectrum in La2−x Bax CuO4 with x = 1/8 [60]. The effective
dispersion and the Q-integrated spectral weight are shown in Fig. 7.8. Above 50 meV,
the excitations disperse upwards like antiferromagnetic spin waves with an energy
gap; the solid line through the points in each panel corresponds to a two-leg spin
ladder model with J = 100 meV. Below 50 meV, the excitations disperse downwards
toward the positions of the incommensurate magnetic superlattice peaks. When the
sample is warmed to a state with no static stripe order, the spectrum maintains its
essential features [53, 61]. It appears that stripes, whether static or dynamic, provide



7 Neutron Scattering and Its Application to Strongly Correlated Systems 233

(a) (b)

Fig. 7.8 a Q-integrated spectral weight and b effective magnetic dispersion in the stripe-ordered
phase of La2−x Bax CuO4 with x = 1/8, from [60]. The solid lines through the data points are
described in the text. In a, the peak at ∼40 meV is now know to be due to a phonon mode. In b, the
effective dispersion is plotted for q along a line through the incommensurate magnetic superlattice
peaks

a way for the superexchange mechanism to survive when the antiferromagnetic layers
are doped with holes.++

The relevance of charge-stripe order is less clear in cuprates families such as
YBa2Cu3O6+y and Bi2Sr2CaCu2O8+δ; nevertheless, the dispersion of the magnetic
excitations in these compounds (measured by neutron scattering) has been shown to
be quite similar to that of LBCO [8, 9]. The main difference is that the low-energy
excitations tend to be gapped in the superconducting state, with a pile up of weight
(“resonance” peak) appearing above the gap for T < Tc. The commonality of the
dispersions over a broad energy range suggests that the charge and spin correlations
in superconducting and striped cuprates are similar.
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