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Preface

This volume “Experimental Techniques for Strongly Correlated Systems”, together
with the set “Methods and Techniques for Strongly Correlated Systems” it belongs
to, builds upon the long-standing experience we have acquired in organizing the
“Trainings Course in the Physics of Strongly Correlated Systems” in Vietri sul
Mare (Salerno, Italy) since 1996 and our scientific working experience in the field.
Running a school for advanced graduate students and junior postdocs, we have
realized that this field of condensed matter and solid-state physics lacked in ade-
quate textbooks and that the whole strongly correlated systems community would
benefit from a systematic exposition of the field. The present volume consists of a
series of monographs on the most relevant experimental techniques currently used
to tackle the hoary problem of correlations. The authors have been selected, the
major experts in the field have been consulted, among the most world-wide famous
scientists who have invented or greatly helped improve/spread the specific tech-
nique in the community. Each chapter presents the method in a pedagogical way
and contains at least one case study where the method has proved to give a sub-
stantial leap forward in the knowledge and a very rich bibliography. The book is
mainly intended for neophytes, who will find in one single volume all the pieces of
information necessary to choose and start learning an experimental technique. Also
more experienced researchers would benefit from this volume as they would gain a
deeper understanding of what any single technique can really tell them and what
cannot. Accordingly, the accent is more on the ideas behind (origins, pros/cons,
perspectives, ...) than on the technical details, which are left to the comprehensive
bibliography.

We wish to thank all the authors of this volume as they all joined this editorial
project with enthusiasm and provided the whole community with what we hope will
become a relevant resource for any researcher in the field as a comprehensive and
extended reference.

Salerno, Italy Adolfo Avella
June 2014 Ferdinando Mancini

v



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Hans R. Ott

1 Nuclear Magnetic Resonance as a Probe of Strongly Correlated
Electron Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Nicholas J. Curro
1.1 Basics of Nuclear Magnetic Resonance. . . . . . . . . . . . . . . . . . . 1

1.1.1 NMR Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Density Matrix Solution . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2.1 Statistical Ensemble. . . . . . . . . . . . . . . . . . . . 4
1.1.2.2 The Rotating Frame. . . . . . . . . . . . . . . . . . . . 5
1.1.2.3 Bloch Equations . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Pulse Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3.1 Spin Echoes . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3.2 Spin Lattice Relaxation . . . . . . . . . . . . . . . . . 13

1.2 Quadrupolar Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Quadrupolar Nuclei in Field . . . . . . . . . . . . . . . . . . . . 15

1.2.1.1 Nuclear Quadrupolar Resonance . . . . . . . . . . . 18
1.2.1.2 Angular Dependence . . . . . . . . . . . . . . . . . . . 18

1.3 Hyperfine Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Knight Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Spin Lattice Relaxation. . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Case Study: Field Induced Magnetism . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 ARPES: A Probe of Electronic Correlations . . . . . . . . . . . . . . . . . 31
Riccardo Comin and Andrea Damascelli
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 The ARPES Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Kinematics of Photoemission. . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Three-Step Model and Sudden Approximation. . . . . . . . . . . . . . 42
2.5 One-Particle Spectral Function. . . . . . . . . . . . . . . . . . . . . . . . . 45

vii

http://dx.doi.org/10.1007/978-3-662-44133-6_1
http://dx.doi.org/10.1007/978-3-662-44133-6_1
http://dx.doi.org/10.1007/978-3-662-44133-6_1
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_1#Bib1
http://dx.doi.org/10.1007/978-3-662-44133-6_2
http://dx.doi.org/10.1007/978-3-662-44133-6_2
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec5


2.6 Matrix Elements and Finite Resolution Effects. . . . . . . . . . . . . . 49
2.7 State-of-the-Art Photoemission . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Physics of Correlations—The ARPES Perspective . . . . . . . . . . . 54

2.8.1 Origin of Correlations in Photoelectron Spectroscopy . . . 55
2.8.2 Electron-Phonon Correlations in Solids: The Polaron . . . 58
2.8.3 Doping-Controlled Coherence: The Cuprates . . . . . . . . . 60
2.8.4 Temperature-Controlled Coherence:

The Manganites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.8.5 Probing Coherence with Polarization:

The Cobaltates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.8.6 Correlated Relativistic Metals: Spin-Orbit

Coupled 4d-TMOs . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.8.7 Mott Criterion and Spin-Orbit Coupling: 5d TMOs . . . . 65
2.8.8 Relativistic Mott Insulating Behavior: Na2IrO3 . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Spectroscopic Imaging STM: Atomic-Scale Visualization
of Electronic Structure and Symmetry in Underdoped
Cuprates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Kazuhiro Fujita, Mohammad Hamidian, Inês Firmo,
Sourin Mukhopadhyay, Chung Koo Kim, Hiroshi Eisaki,
Shin-ichi Uchida and J.C. Davis
3.1 Electronic Structure of Hole-doped Cuprates . . . . . . . . . . . . . . . 74
3.2 Bi2Sr2CaCu2O8 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Spectroscopic Imaging Scanning Tunneling Microscopy . . . . . . . 78
3.4 Effect of Magnetic and Non-magnetic Impurity Atoms . . . . . . . . 82
3.5 Nanoscale Electronic Disorder in Bi2Sr2CaCu2O8þδ . . . . . . . . . . 85
3.6 Bogoliubov Quasiparticle Interference Imaging . . . . . . . . . . . . . 88
3.7 Broken Spatial Symmetries of E�Δ1 Pseudogap States . . . . . . . 93
3.8 Interplay of Intra-unit-cell and Incommensurate Broken

Symmetry States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Point Contact Spectroscopy in Strongly Correlated Systems . . . . . . 111
Guy Deutscher
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Experimental Realization of Point Contacts . . . . . . . . . . . . . . . . 113

4.2.1 Resistance of a Sharvin Contact. . . . . . . . . . . . . . . . . . 113
4.2.2 Scattering Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.3 Critical Velocity Effects . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.4 Contact Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.5 Practical Realization of Point Contacts . . . . . . . . . . . . . 117

viii Contents

http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_2#Bib1
http://dx.doi.org/10.1007/978-3-662-44133-6_3
http://dx.doi.org/10.1007/978-3-662-44133-6_3
http://dx.doi.org/10.1007/978-3-662-44133-6_3
http://dx.doi.org/10.1007/978-3-662-44133-6_3
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_3#Bib1
http://dx.doi.org/10.1007/978-3-662-44133-6_4
http://dx.doi.org/10.1007/978-3-662-44133-6_4
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec7


4.3 Point Contact Spectroscopy of Conventional Superconductors . . . 117
4.4 Fitting the Symmetry of the Superconductor Order

Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 Theory of ASJ Reflections in the Presence

of Retardation Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.6 Experimental Determination of the Mass Enhancement

Factor: From Conventional Superconductors
to Heavy Fermions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6.1 A Conventional Superconductor: Nb . . . . . . . . . . . . . . 124
4.6.2 MgB2: A Weakly Correlated High Temperature

Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.6.3 High Tc Cuprates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.6.4 An Example of Moderate Heavy Fermion: PuCoGa5 . . . 127
4.6.5 Strong Heavy Fermions: UBe13 and CeCoIn5 . . . . . . . . 129
4.6.6 Pnictides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.7 Spin Active Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Quantum Oscillation Measurements Applied to Strongly
Correlated Electron Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Stephen R. Julian
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Theory of the de Haas-van Alphen Effect . . . . . . . . . . . . . . . . . 139

5.2.1 Landau Quantization and the Onsager Relation . . . . . . . 139
5.2.2 The Effect of Temperature and Scattering . . . . . . . . . . . 142
5.2.3 The Spin Damping Factor . . . . . . . . . . . . . . . . . . . . . . 147
5.2.4 Three-Dimensional Fermi Surfaces . . . . . . . . . . . . . . . . 150
5.2.5 The Full Lifshitz-Kosevich Equation . . . . . . . . . . . . . . 152

5.3 Measuring the de Haas-van Alphen Effect. . . . . . . . . . . . . . . . . 153
5.3.1 The Field Modulation Technique . . . . . . . . . . . . . . . . . 153
5.3.2 Torque Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3.3 Transport and Other Measurements . . . . . . . . . . . . . . . 157
5.3.4 Pulsed Versus DC Field . . . . . . . . . . . . . . . . . . . . . . . 158
5.3.5 Analysis of the dHvA Signal . . . . . . . . . . . . . . . . . . . . 159

5.4 Case Study: Sr2RuO4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.4.1 Summary of Normal State Properties . . . . . . . . . . . . . . 161
5.4.2 Summary of Quantum Oscillation Results

and Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.4.3 Correspondence with Bulk Properties . . . . . . . . . . . . . . 167

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Contents ix

http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec18
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec18
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec19
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Sec19
http://dx.doi.org/10.1007/978-3-662-44133-6_4#Bib1
http://dx.doi.org/10.1007/978-3-662-44133-6_5
http://dx.doi.org/10.1007/978-3-662-44133-6_5
http://dx.doi.org/10.1007/978-3-662-44133-6_5
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec18
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Sec18
http://dx.doi.org/10.1007/978-3-662-44133-6_5#Bib1


6 Pressure Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Michael Nicklas
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.2 Pressure Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2.1 Pressure Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.2.2 Piston-Cylinder Type Pressure Cells . . . . . . . . . . . . . . . 175
6.2.3 Opposed-Anvil Type Pressure Cells . . . . . . . . . . . . . . . 176
6.2.4 Indenter-type Pressure Cells . . . . . . . . . . . . . . . . . . . . 179
6.2.5 Other Types of Pressure Cells . . . . . . . . . . . . . . . . . . . 180
6.2.6 Electrical Connections . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3 Pressure Determination and Transmitting Media . . . . . . . . . . . . 181
6.3.1 Pressure Determination . . . . . . . . . . . . . . . . . . . . . . . . 181
6.3.2 Pressure Transmitting Media . . . . . . . . . . . . . . . . . . . . 183

6.4 Physical Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.4.1 Electrical Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.4.2 Thermal Transport and Thermoelectric Power . . . . . . . . 184

6.4.2.1 Thermal Transport. . . . . . . . . . . . . . . . . . . . . 184
6.4.2.2 Thermoelectric Power . . . . . . . . . . . . . . . . . . 184

6.4.3 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.4.4 Thermal Expansion and Magnetostriction . . . . . . . . . . . 186
6.4.5 Magnetic Susceptibility and Magnetization . . . . . . . . . . 187
6.4.6 De Haas–van Alphen Oscillations . . . . . . . . . . . . . . . . 189
6.4.7 Magnetic Resonance. . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.4.7.1 Nuclear Magnetic Resonance . . . . . . . . . . . . . 190
6.4.7.2 Electron-Spin Resonance . . . . . . . . . . . . . . . . 190
6.4.7.3 Muon-Spin Rotation/Resonance . . . . . . . . . . . 190

6.4.8 Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.4.9 Mössbauer Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 191
6.4.10 Optical Spectroscopy and Related Techniques . . . . . . . . 192

6.5 Pressure Tuning of Strongly Correlated Materials. . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Neutron Scattering and Its Application to Strongly Correlated
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Igor A. Zaliznyak and John M. Tranquada
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Basic Properties of the Neutron and Its Interaction

with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.3 Neutron Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.4 Neutron Interactions and Scattering Lengths . . . . . . . . . . . . . . . 210
7.5 Cross-Section Measured in a Neutron Scattering Experiment . . . . 211
7.6 Nuclear Scattering in Condensed Matter . . . . . . . . . . . . . . . . . . 213
7.7 Nuclear Scattering in a Crystal: The Bragg Peaks

and the Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

x Contents

http://dx.doi.org/10.1007/978-3-662-44133-6_6
http://dx.doi.org/10.1007/978-3-662-44133-6_6
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec17
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec18
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec18
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec19
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec19
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec20
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec20
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec21
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec21
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec22
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec22
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec23
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec23
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec24
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec24
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec25
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec25
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec26
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec26
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec27
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec27
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec28
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Sec28
http://dx.doi.org/10.1007/978-3-662-44133-6_6#Bib1
http://dx.doi.org/10.1007/978-3-662-44133-6_7
http://dx.doi.org/10.1007/978-3-662-44133-6_7
http://dx.doi.org/10.1007/978-3-662-44133-6_7
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec7


7.8 Magnetic Scattering in a Crystal: Magnetic Form Factor
and Spin Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.8.1 The Detailed Balance Constraint and the FDT . . . . . . . . 219
7.8.2 Elastic and Inelastic Scattering. . . . . . . . . . . . . . . . . . . 220
7.8.3 Magnetic Order and Magnetic Bragg Peaks. . . . . . . . . . 220
7.8.4 Magnetic Form Factor and Spin Correlations. . . . . . . . . 222
7.8.5 Spin Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.8.6 Anisotropic Magnetic Form Factor and Covalency . . . . . 225

7.9 Application to Cuprate Superconductors . . . . . . . . . . . . . . . . . . 228
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8 Muon Spin Relaxation Studies of Unconventional Superconductors:
First-Order Behavior and Comparable Spin-Charge Energy
Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Yasutomo J. Uemura
8.1 Brief History and Technical Overview of μSR . . . . . . . . . . . . . 237
8.2 Magnetic Phase Diagrams of Unconventional

Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.3 Search for Time-Reversal Symmetry Breaking

in the Superconducting and Pseudogap States . . . . . . . . . . . . . . 246
8.4 London Penetration Depth and Pairing Symmetry . . . . . . . . . . . 247
8.5 Correlation Between Tc, Superfluid Density, and Superfluid

Fermi Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.6 Comparisons of Charge and Spin Energy Scales and BEC-BCS

Crossover Picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.7 Phase Separation and Overlap of Superconducting

and Magnetic States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
8.8 First Order Evolution, Roton-Analogue Resonance Mode,

and Quantum Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.9 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

9 Optical Properties of Correlated Electrons . . . . . . . . . . . . . . . . . . 269
Dirk van der Marel
9.1 Reflection of Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . 270
9.2 Optical Conductivity, Current and Electric Field . . . . . . . . . . . . 272
9.3 Transverse and Longitudinal Dielectric Function . . . . . . . . . . . . 274
9.4 Quantum Electrodynamics of Electrons in a Lattice . . . . . . . . . . 275

9.4.1 Coupling of Interacting Electrons in Solids
to an Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . 276

9.4.2 General Consideration About the Calculation
of the Linear Response . . . . . . . . . . . . . . . . . . . . . . . . 278

Contents xi

http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_7#Bib1
http://dx.doi.org/10.1007/978-3-662-44133-6_8
http://dx.doi.org/10.1007/978-3-662-44133-6_8
http://dx.doi.org/10.1007/978-3-662-44133-6_8
http://dx.doi.org/10.1007/978-3-662-44133-6_8
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_8#Bib1
http://dx.doi.org/10.1007/978-3-662-44133-6_9
http://dx.doi.org/10.1007/978-3-662-44133-6_9
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec1
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec2
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec3
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec4
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec5
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec6
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec6


9.4.3 Expansion of the Current Operator in Powers
of the Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . 279

9.4.4 Expansion of the Hamiltonian in Leading Order
of the Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . 281

9.4.5 Current Response to an Applied Field . . . . . . . . . . . . . 282
9.4.6 Frequency and Temperature Dependent Optical

Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
9.4.7 The Drude-Lorentz Expression . . . . . . . . . . . . . . . . . . 288

9.5 Spectral Weight Sum Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.5.1 K-Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.5.2 F-Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.5.3 Kinetic Energy Sum Rule . . . . . . . . . . . . . . . . . . . . . . 291
9.5.4 Regular Part of the Spectral Weight . . . . . . . . . . . . . . . 292

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

xii Contents

http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec7
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec8
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec9
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec10
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec11
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec12
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec13
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec14
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec15
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Sec16
http://dx.doi.org/10.1007/978-3-662-44133-6_9#Bib1


Contributors

Riccardo Comin Department of Physics and Astronomy, University of British
Columbia, Vancouver, BC, Canada

Nicholas J. Curro Department of Physics, University of California, Davis, CA,
USA

Andrea Damascelli Quantum Matter Institute, Department of Physics and
Astronomy, University of British Columbia, Vancouver, BC, Canada

J. C. Davis LASSP, Department of Physics, Cornell University, Ithaca, NY, USA;
CMPMS Department, Brookhaven National Laboratory, Upton, NY, USA; Kavli
Institute at Cornell for Nanoscience, Cornell University, Ithaca, NY, USA; School
of Physics and Astronomy, University of St. Andrews, Scotland, UK

Guy Deutscher School of Physics and Astronomy, Tel Aviv University, Ramat
Aviv, Tel Aviv, Israel

Hiroshi Eisaki National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba, Ibaraki, Japan

Inês Firmo LASSP, Department of Physics, Cornell University, Ithaca, NY, USA;
CMPMS Department, Brookhaven National Laboratory, Upton, NY, USA

Kazuhiro Fujita LASSP, Department of Physics, Cornell University, Ithaca, NY,
USA; CMPMS Department, Brookhaven National Laboratory, Upton, NY, USA

Mohammad Hamidian LASSP, Department of Physics, Cornell University, Ith-
aca, NY, USA; CMPMS Department, Brookhaven National Laboratory, Upton,
NY, USA

Stephen R. Julian Department of Physics, University of Toronto, Toronto, ON,
Canada

Chung Koo Kim CMPMS Department, Brookhaven National Laboratory, Upton,
NY, USA

xiii



Sourin Mukhopadhyay LASSP, Department of Physics, Cornell University,
Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscience, Cornell University,
Ithaca, NY, USA

Michael Nicklas Max Planck Institute for Chemical Physics of Solids, Nöthnitzer
Str. 40, Dresden, Germany

Hans R. Ott Laboratory for Solid State Physics, Department of Physics, ETH
Zurich, Zurich, Switzerland

John M. Tranquada Brookhaven National Laboratory, Upton, NY, USA

Shin-ichi Uchida Department of Physics, University of Tokyo, Bunkyo-ku,
Tokyo, Japan

Yasutomo J. Uemura Department of Physics, Columbia University, New York,
NY, USA

Dirk van der Marel Département de Physique de la Matière Condensée, Uni-
versité de Genève, Genève 4, Switzerland

Igor A. Zaliznyak Brookhaven National Laboratory, Upton, NY, USA

xiv Contributors



Foreword

1 Introduction

This volume is intended to give an overview of various important experimental
methods and techniques for studying correlation and many-body effects in solids.
Naturally, the content of the chapters concentrates on the modern, i.e., state-of-the-
art situation of these aspects. In order to put these contributions in relation to the
developments in studies of correlations in solids, the first section of this foreword
aims at briefly reviewing the history of corresponding investigations, emphasizing
the interplay between experiment and theory.

An early experimental or rather observational evidence for correlation effects
among electrons in solids, but certainly not identified as such at the time, is
the phenomenon of persistent magnetization in ferrous materials found in nature.
A much more recent but in this context also early and then unexplained indication
of the same was the discovery of superconductivity via experiments probing the
electrical resistance of Mercury (Hg) at low temperatures in 1911 [1]. In 1933,
simple experiments [2], again probing the temperature dependence of the electrical
resistivity ρ(T) of a metal, at this time Gold (Au), marked the beginning of a new
direction in the slow development of understanding the role of electron correlations
that was to bloom only much later. At these early times, electronic transport in
metals was considered to be adequately described by the motion of free or quasifree
electrons in the crystal lattice. Hence the observed increase of ρ(T) with decreasing
T at low temperatures was registered as a not understood anomaly which, even-
tually but much later, was shown to be due to transition-metal (TM) impurities in
common metals such as Cu and Au [3]. The first theory-based link between
magnetism and electronic conduction in solids was provided by Bloch [4].
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Yet another experimental fact concerning the electronic conduction in solids,
namely the insulating behavior of NiO, initiated new ideas on how correlation
effects among electrons are decisive for solids to turn out to be either metals, i.e.,
electrical conductors, or insulators. Following conventional wisdom, NiO is
expected to be a metal and not an insulator as verified experimentally. In 1949,
based on a comparison of the Heitler-London approach [5] with Blochs [6]
approximation in dealing with electronic states in solids, Mott [7] argued that the
NiO puzzle was a result of correlation effects. Already in this first discussion of his
ideas, known data on the magnetic susceptibility and the specific heat of transition-
metal elements were used to support the conjectures.

Subsequently, experimental and theoretical investigations on the stability of
magnetic moments and the occurrence of magnetic order in metals, launched a
development of activities that continue to be a major part of contemporary con-
densed matter physics research. The behavior of magnetic moments in, and their
influence on a metallic environment was first treated by considering a single
magnetic moment as an impurity in an itinerant-electron system by Friedel [8],
Blandin [9] and others around 1956. Experiments employing the still young
experimental technique of nuclear magnetic resonance (NMR) provided informa-
tion on the polarization of conduction electrons by the spins of more localized
electrons on atoms of d-transition-metal elements [10]. Accompanying theoretical
investigations [11–13] finally provided a scheme for describing the onset of mag-
netic order induced by the interaction between itinerant and more localized core
electrons, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.

Magnetization measurements probing the influence of magnetic moments on the
normal state of metals, mainly by Matthias, Suhl, Clogston, and others [14, 15],
revealed unexpected complications. This prompted Anderson to extend the then
existing model by creating what is now known as the Anderson Hamiltonian [16],
aiming at explaining why a magnetic moment due to localized electrons is stable in
one metal but not in another. At the same time, with the same simple experiments,
again Matthias and co-workers, noted detrimental effects of magnetic moments on
the superconducting state of selected materials [17]. In this case it was Abrikosov
and Gorkov [18] who provided an explanation by considering the particular cor-
related superconducting ground state put forward a few years earlier by Bardeen,
Cooper, and Schrieffer (BCS) [19].

Not much later, in 1963, another model Hamiltonian, attempting to capture
correlation effects among narrow-band d-electrons in transition metals (TM), was
introduced and analyzed by Hubbard [20]. Although formally quite simple, rigorous
solutions are difficult to obtain. The model and variations of it are, however, still
very popular and, as mentioned below, often used in numerical investigations of
correlated electron systems. Almost in parallel, an explanation of the above-men-
tioned experimental observation of the minimum in ρ(T) was given by Kondo [21].
He argued that a single localized magnetic moment embedded in a metallic envi-
ronment is shielded by oppositely oriented spins in a cloud of conduction electrons
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in the neighborhood of the impurity. The resulting partial rearrangement of the
excitation spectrum of the conduction electrons is then responsible for the observed
increase of ρ(T) with decreasing temperature below a material-specific temperature
TK, the Kondo temperature.

New aspects of electronic correlations in metals were soon discovered via
experiments probing thermal, transport, and magnetic properties of rare-earth and
actinide compounds. It was expected and confirmed that the corresponding 4f- and
5f-electrons are even more localized than the d-electrons in the above-mentioned
d-transition metals and their compounds. As expected, Curie-Weiss type magnetic
susceptibility data below room temperature indicated the presence of well localized,
weakly interacting f-electron moments occupying regular lattice sites. A particularly
intriguing result was the observation that a Curie-Weiss type magnetic susceptibility
at elevated temperatures does not necessarily imply the onset of magnetic order at
low temperatures [22]. In other cases, the established magnetic order was among
moments, in magnitude much reduced below the values indicated by the Curie-
Weiss effective moment at elevated temperatures [23]. A particular case in this
respect is CeAl3 with Ce3+ ions carrying a significant localized magnetic moment
and occupying a regular crystalline sublattice. Results of measurements of the
temperature dependences of the specific heat, the electrical resistivity and the
magnetic susceptibility were interpreted as being due to conduction electrons with
extremely large effective masses [24] or, equivalently, very low Fermi velocities vF.
In a first approximation, these features obviously imply that the involved itinerant
electrons occupy energy states in very narrow bands and may be regarded as forming
a very strongly renormalized Fermi liquid, a situation that was discussed in detail by
Landau 20 years earlier [25]. In some sense, the magnetic degrees of freedom appear
to be transferred to the subsystem of the itinerant electrons at low temperatures. The
resulting anomalously large effective masses mimic the tendency to localization and
the local ionic moments are substantially reduced. An interesting toy model
describing the situation of order among much reduced moments or eventually no
order at all was put forward by Doniach [26]. He suggested that a competition
between different correlations, those of Kondo type and those of RKKY type, might
cause this anomalous electronic many-body state. Not surprisingly and early indi-
cated by results of thermal expansion [24] and elastic-constant measurements [27],
the properties of these narrow-band electron systems are easily influenced by the
application of external pressure. Subsequently and as also mentioned below, some
spectacular transitions from magnetic order to superconductivity were discovered in
later studies [28].

In view of the above-mentioned previously observed detrimental effect of
magnetic moments in superconducting materials, the discovery of superconduc-
tivity [29] in these materials with narrow bands and strong electronic correlations,
was really unexpected. Experimental data, mainly invoking thermal (specific heat)
and spectroscopic (NMR) properties, soon prompted first claims of the identifica-
tion of unconventional superconductivity in metallic solids [30].
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Research on electronic correlations in solids received an unprecedented boost by
the again completely unexpected discovery of superconductivity in a particular class
of copper-oxide compounds with critical temperatures Tc between 30 and 40 K [31].
Efforts to enhance the critical temperature Tc in the same and various other cuprate
materials were soon successful in raising the onset of superconductivity to above the
boiling point of liquid nitrogen and finally to temperatures up to 134 K [32]. Con-
sidering the onset of superconductivity in such materials at all and the magnitude of
Tc seemed to violate conventional wisdom to an extent that conjectures of uncon-
ventional superconductivity also in these cases, were to be expected. Experimental
efforts employing a variety of methods probing the phase of the superconducting
order parameter indeed confirmed the occurrence of nodes in the k-dependent energy
gap of the electronic excitation spectrum in the superconducting state [33, 34]. In
another experimental approach to directly verify such gap nodes, a new experimental
method with a rapid development in technical perfection, namely angular-resolved
photoemission spectroscopy (ARPES), encountered its first real success [35]. The
increasing importance of this method was naturally based on the growing availability
of intense light sources in the form of large electron synchrotrons. The mapping of E
(k) spectra of cuprate superconductors was widely used in many ARPES-based
investigations, hoping that this type of information would help to understand the
reasons for the instability of the electronic subsystem leading to superconductivity at
unusually high temperatures in these compounds.

Similar progresses in instrumentations of this and other experimental techniques
provided new ways for investigating the influence of electronic correlations in
solids. With respect to access narrow bands of electronic excitations, the energy
resolution in photoemission methods was greatly improved and finally resulted in
commercially available detectors for this purpose [36]. A similar but less rigorous
development took place in using elastic and inelastic neutron diffraction. In par-
ticular, the method of small-angle neutron scattering [37], primarily used for studies
of macromolecules and polymers, gained in importance for studies of (H, T) phase
diagrams of superconductors [38]. In parallel to these improvements of the
instrumentation at large-scale facilities, the methods employing scanning-tunneling
techniques such as based on electron-tunneling (STM) and atomic-force micros-
copy (AFM) provided new ways of probing electronic and magnetic properties at a
local, i.e., atomically resolved level [39].

It turned out that the electronic conductivity in these materials is the result of
specifically doping initially insulating and magnetically ordering compounds. The
aims to provide a theoretical basis for explaining the observations concerning the
normal state of these substances led to a revival of the above-mentioned models of
Mott and Hubbard and extensions thereof [40]. Yet another model, earlier devised
by Anderson by reviving Paulings resonant-valence-bond concept [41], was con-
sidered as a possible approach to solve the problem. An early account of strong
correlation and superconductivity is given in [42]. Some of these models implied
the formation of a ground state that would not be consistent with the Fermi liquid
type description of the metallic, i.e., oρ=oT > 0, state and a number of the available
experimental data seemed to support this view [43]. The anomalous electronic
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properties of the normal state of cuprates encouraged detailed experiments inves-
tigating the electronic properties of TM oxides and related materials. An early
review of the results of these efforts, concentrating on the phenomenon of externally
controlled metal-insulator transitions was provided by Imada and co-workers [44].

Because of the very high upper critical fields Hc2 of these cuprate supercon-
ductors, the low-temperature electronic structure of the normal state of these
materials was, at the time, not accessible by employing the usual magneto-oscil-
latory effects on the resistivity and the magnetisation. The already mentioned
progresses in ARPES experiments made it possible to investigate these features also
at elevated temperatures above Tc, previously not accessible by conventional means
[45]. Much more recently, improved sample quality and progress in the technical
handling of high-field magnets and measuring devices made it possible to observe
the long sought field-induced oscillatory features of transport coefficients [46]. New
insights into the correlations in electronic subsystems, mainly in cuprates and other
TM compounds close to metal-insulator transitions were achieved via measure-
ments of optical properties and using advanced photoelectron spectroscopy
techniques.

Inspired by earlier results and to some extent encouraged by the experimental
results indicating the anomalous features of the normal state of the cuprate com-
pounds and noting the perspectives of new aspects in the understanding of metallic
conductivity, more detailed experimental investigations, mostly probing thermal,
transport, and magnetic properties, were made on compounds featuring heavy
electrons. Data from specific heat experiments at very low temperatures indicated
significant deviations from the behavior expected for Fermi liquids [47]. Other
studies revealed that the properties of this low-temperature electronic state can be
significantly altered by changing externally controlled parameters, such as varia-
tions of the chemical composition, external pressure, or magnetic fields. Again,
some of the results of the corresponding experiments indicated properties not
compatible with Landaus original Fermi-liquid model; others suggested the
occurrence of so-called quantum phase transitions (QPT) [48], a concept [49] with a
bright future, as will be seen below.

Structural investigations of the cuprate superconductors, mostly by employing
X-ray and neutron diffraction [50], revealed that the arrangement of atoms in the
crystallographic unit cells may be viewed as a stacking of planes of atoms. It turned
out that the essential physical properties of these compounds are determined by
planes consisting of copper and oxygen atoms; additional planes, occupied by
atoms of the other constituent chemical elements, are regarded as mostly inactive
spacer blocks and charge reservoirs [51]. This insight triggered new and extensive
efforts in synthesizing other similar oxide materials based on Cu and other TM
elements with low-dimensional (low-D) structural subunits, such as planes, multileg
ladders, and chains. These included both electrical conductors and insulators. Since
the Cu and other TM ions, depending on their charge configuration, carry a definite
electronic spin, the cited subunits may be regarded as spin chains, ladders, and
planes. In special cases, the interactions between the low-D spin subunits in
insulators turn out to be weak. For this reason, these particular materials were and
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still are considered as assemblies of quasi-individual low-D objects, serving as
model systems for testing rigorous theoretical predictions concerning the properties
of ensembles of spins which accumulated over many years up to present.

With respect to theory, low-D spin arrangements have a long history, starting
with Isings model of individual magnets on a chain in his contribution to the theory
of ferromagnetism [52]. The more general approach of Heisenberg to consider the
exchange phenomenon in the quantum-mechanical description of indistinguishable
particles for the description of ferromagnetism was the next step [53]. It was taken
up by Bloch who concluded that planar arrangements of magnetic moments would
not support ferromagnetism [4]. Next it was Bethe who calculated the eigenfunc-
tions and eigenvalues of a linear chain of atoms, each with a single valence electron
and its spin [54]. With this method he aimed at establishing the magnetic and
transport properties of such systems, also in higher dimensions.

General aspects of phase transitions in low-D systems were first discussed by
Onsager [55]. He considered a 2D model which exhibits an order–disorder tran-
sition. Later, Griffiths [56] as well as Mermin and Wagner [57] discussed the
possibility of magnetic order in low-dimensional systems. Based on earlier work of
Bloch [58], the features of low-D electronic systems were also studied, first by
Tomonaga [59] and later by Luttinger [60]. From still later work by Haldane [61]
and Affleck [62] it was concluded that the above-mentioned Fermi-liquid model,
describing the electronic properties of common metals so well, was not applicable
in treating 1D conductors. These authors saw a more suitable treatment with a
concept that they termed Luttinger-liquid model, the 1D equivalent of the Fermi-
liquid model. It turns out that quite generally the physical properties of low-D
systems are characteristically different from those usually observed in common 3D
objects. The 1D physics is strongly influenced by quantum effects, defects, and
fluctuations which are usually masked in standard 3D materials. For unraveling
these effects, systems with chains (1D) of spins with S ¼ 1=2 and antiferromagnetic
couplings are the most favorable choice. The low-energy excitations were shown to
be objects carrying a spin S ¼ 1=2 and the spectrum of these Fermions, termed
spinons, turns out to be gapless [63]. A rather unexpected theoretical result was
Haldanes conjecture that the excitation spectrum of the same type of chains but with
S ¼ 1 ought to exhibit a gap [64]. Follow-up studies by Affleck and co-workers
[65] demonstrated that the theoretical reasoning for explaining this difference is far
from trivial. Later, a very fruitful development originated in interpreting the low-
energy excitations of low-D spin systems as particles. To see this it is useful to note
that in the considered spin systems, spin dimers with a singlet ground state and
S ¼ 1 excitations to a triplet excited state may form. Apart from regarding the
above-mentioned spinons as Fermions, an analogy between these S ¼ 1 excitations
termed triplons and Bosons was established [66]. As a consequence, a Bose-Ein-
stein condensation (BEC) of such excitations in the form of magnetic order was
predicted to occur under the influence of an external magnetic field [67]. It also
turned out that some of these systems are show cases for studying the properties of
a Luttinger liquid [68].
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First experiments for testing some of the theoretical predictions were made with
TM bronzes and some organic compounds, both of which exhibit considerable
anisotropies in electronic conduction. Early results are reviewed in [69]. Soon it
was found that some of the low-D organic compounds exhibit a variety of ground
states from insulating and magnetically ordered to metallic and superconducting;
varying by applications of external pressure and/or magnetic field. An up-to-date
review can be found in [70]. Later, the research interests began to focus on
materials containing the mentioned weakly coupled low-D spin systems in an
electrically insulating environment. The physics of these spin systems is often
assumed to be captured by relatively simple Hamiltonians of the Heisenberg type;
complications are to be expected from the unavoidable anisotropies and spin-orbit
coupling. The interactions in each individual spin chain are based on the exchange
phenomenon. Naturally, they depend on the bond strength and directions between
the atomic sites. Therefore, they may be varied by applying external pressure and
introducing selected defects. Likewise, the application of external magnetic fields
which softens the above-mentioned triplon excitations is expected to induce phase
transitions. This offers new opportunities for studies of the physical behavior of
these systems if links between the theoretical concepts and really existing materials
can be made. Many new compounds with spin-carrying cations (Cu, V, Ni) were
synthesized. Based on first structural and magnetic characterisations, some of them
were indeed identified to serve as model compounds for experimental tests under
varying external conditions as outlined above. Both bulk and microscopic
experimental probes, such as magnetization measurements as well as neutron-
scattering and NMR techniques are being used to identify the magnetic properties
of these systems. A good part of corresponding efforts and the achieved results up
to 2003 are summarized in [71]. More recent results, mainly in connection with the
BEC phenomenon in quantum magnets are presented and discussed in [72].
The model Hamiltonians offer a playground for analytical as well as numerical
studies of the influence of correlations in solids; the current status of both these
activities is documented in detail in two other, recently published volumes of this
series [73, 74].

As mentioned at the beginning, the third volume of this series is devoted to
reviewing current experimental methods and techniques that play an essential role
in contemporary studies of correlation effects in solids. Below, brief summaries of
the content of each chapter are given.

2 Nuclear Magnetic Resonance

As mentioned in the introduction, nuclear magnetic resonance (NMR) experiments
were already employed in early studies of correlation effects in metals. A highlight
was the experimental confirmation of the NMR-related coherence effect in super-
conductors as predicted by the BCS theory.
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In the first section, Nicholas Curro covers the basic theoretical background of the
method. It includes the density-matrix approach, the introduction of the concept of
the rotating frame and Blochs equations. The latter defines two important param-
eters representing the characteristic times of the decay of the transverse magneti-
zation (T2) and of the recovery of the longitudinal equilibrium magnetization (T1).
A section on pulse techniques explains the principles of the free induction decay
and the spin-echo technique, including some practical technical details concerning
the detection of the response signals and briefly recalling the role of spin-lattice
relaxation.

Since many probed nuclei possess spins In > 1/2, quadrupolar effects due to the
interaction between the nuclear quadrupole moments and the local electric potential
at the site of the nucleus, complicate the response and hence the spectra. The
corresponding section summarizes the essentials of these complications and the
resulting spectra and their dependence on the angle between the magnetic field
orientation and the principal axes of the crystalline lattice. The case where the
external magnetic field is set to zero, i.e., the nuclear quadrupole resonance (NQR),
is also briefly addressed.

The usually dominating interaction in correlated electron systems is the hyper-
fine coupling between the spins of the probed nuclei and the spins of electrons in
the local environment. In metals the latter includes conduction electrons and
localized electrons on ions occupying neighboring lattice sites; in insulators the so-
called transferred hyperfine interaction couples to spins of localized electrons.
These interactions lead to resonance shifts which are summarized under the term
Knight shifts. While simple and usually temperature independent in simple metals,
these shifts are more complex in cases where different hyperfine couplings con-
tribute to the total shift or correlation effects influence the local susceptibilities.
These interactions not only influence the position of the corresponding resonance
but also affect the dynamics of the above-mentioned spin-lattice relaxation process.

The last section is devoted to a case study of field-induced magnetism in
superconducting CeCoIn5, demonstrating the power of NMR-based methods in
studies of the strongly correlated electron system in this compound. It is demon-
strated that the available microscopic information may correct seemingly solid
interpretations of data obtained from measurements of bulk thermal properties. The
NMR data reveal a static antiferromagnetic order in the superconducting phase close
to Hc2 at T << Tc. Although coexistence of antiferromagnetic order and supercon-
ductivity has been observed before in several cases, the phenomenon in CeCoIn5 is
most likely of different nature and still awaits a sound theoretical interpretation.

3 Angle-Resolved Photoemission

Before the authors, Riccardo Comin and Andrea Damascelli, address the technical
aspects of angle-resolved photoemission (ARPES) experiments, they offer an
overview on correlation-dominated materials in the form of d-electron transition-
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metal oxides (TMOs). In view of correlation effects the chosen classification
scheme of these systems includes (i) Mott-Hubbard insulators, (ii) charge-transfer
insulators and (iii) relativistic Mott insulators. As usual, this choice is based on the
relative magnitudes of the on-site Coulomb repulsion U, the band width W and the
spin-orbit interaction λ.

Angle-resolved photoelectron spectroscopy is the experimental dream tool for
those interested in exploring the electronic structure of materials. Its application
requires the availability of both intense photon sources which are provided by, e.g.,
electron synchrotrons, and detectors with sufficient energy and angular resolution
for harvesting the escaping photoelectron as a function of their energy and
momentum. A section of the chapter is devoted to discuss technical aspects of state-
of-the-art photoemission with respect to both radiation sources and electron
detectors and their current performance parameters. Also briefly addressed are
specific aspects of the geometrical configuration of the incoming light beam and the
detector in ARPES experiments.

Starting with the basics, the authors first explain the kinematics of photoemission
and continue by summarizing the essentials of the three-step model and the sudden
approximation which they use to model the photoemission process. As the inter-
pretation of the collected photoelectron spectra requires solid theoretical guidelines,
the authors discuss the routinely employed Green’s function formalism to obtain the
one-particle spectral function A(ω, k) which is directly probed by ARPES. For
extracting quantitative information from the spectra, matrix element effects and the
influence of the unavoidable limited resolutions and the extrinsic background have
to be considered.

The discussion of rather generic aspects of photoemission experiments is fol-
lowed by a longer section emphasizing the physics of correlations probed by
ARPES. It starts with describing spectral functions of small many-body systems
such as molecules, in this case H2. Considering solids, electron-phonon correlations
and the corresponding quasiparticle, the polaron, are described first and illustrated
with existing results. Naturally, the electronic structure of Cu oxides is a primary
example for illustrating correlation effects in solids and corresponding work and
results are summarized under the heading: doping controlled coherence. For tem-
perature-controlled coherence manganese oxide (Mn-O) compounds are chosen as
examples. A particular feature of the ARPES technique, namely to exploit the
dependence of matrix elements that determine the spectral intensity on the light
polarization, is exemplified in a discussion of relevant work on cobaltates where
contributions of different electron bands to the spectra need to be unraveled. Further
subsections deal with the influence of relativistic effects due to enhanced spin-orbit
coupling in 4d and 5d electron TMO materials, including a novel type of insulating
state due to correlations in an Ir oxide material, termed relativistic Mott insulator.
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4 Spectroscopic Imaging Scanning-Tunneling
Microscopy (SI-STM)

This chapter, co-authored by 8 contributors affiliated with various institutions,
concentrates on efforts to visualize the electronic structure and its symmetry of a
particular compound series of cuprate superconductors with scanning-tunneling
microscopy in the spectroscopic imaging mode. First, a brief and rather general
review of the low-temperature phase diagram and related electronic structures of
hole-doped cuprate superconductors summarizes the principal features reported in
the literature. The two distinct energy scales, Δ0 and Δ1, related to two distinct
phases, are introduced. While the first is clearly identified as being related to
excitations across the gap that forms upon the onset of the superconducting state,
the cause and significance of the second, characterizing the so-called pseudogap
phase, is judged to be still rather obscure. The investigated system is based on the
parent compound Bi2Sr2CaCu2O8+δ. The doping parameter δ is chosen such that the
system is in the underdoped regime where both the superconducting and the
pseudogap phase can be probed.

The technique is based on measuring the voltage dependence of the tunneling
current oI=oT as a function of the tunneling site and the energy of the tunneling
electrons. The authors prefer to describe the theoretical background of the method
rather than its technical realization. For the latter, they refer to information existing
in the literature. Probably led by previous experience, some of the most serious and
in practice often overlooked systematic errors that may occur in such investigations
are described and some guidance of how to avoid or at least minimize them is
given. The next section is devoted to describing how magnetic and nonmagnetic
impurity atoms can serve as indicators for the pairing mechanism and/or symmetry
in superconductors. It is pointed out that the corresponding spectra change appre-
ciably upon varying the degree of doping. The doping itself introduces electronic
disorder at the nanoscale. The influence of these defects on spectra, especially
related to the pseudogap phase are discussed. Information on quasiparticle scat-
tering can be obtained from Bogoliubov-quasiparticle interference imaging. In
particular, the evolution of the electronic structure in k-space in the form of Fermi
arcs with varying degree of doping can be studied. This type of experiments is
believed to clarify whether the pseudogap phase may be regarded as a state of
incoherent d-wave superconductivity. In the strongly underdoped regime, the
experimental results reveal ungapped Fermi arcs, a gap of a phase-incoherent
superconductor and local symmetry-breaking excitations that are the same in the
superconducting and pseudogap regime. The final two sections deal with observing
symmetry-broken electronic states in the pseudogap regime. The simultaneous
observation of two different broken symmetries in the form of nematic and smectic
fluctuations allows to study their interactions. In spite of all this new information on
local details of the electronic structure, the relation between the pseudogap phase
and the superconducting phase are admitted to be not yet understood. There is no
doubt, however, that the two phenomena are linked in some way. This type of
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studies also reveals a characteristic difference between the electronic structures in
the under and overdoped regime, respectively. The question of what is causing this
transition is also still unanswered.

5 Point-Contact Spectroscopy

Although physically and technically quite different, point-contact spectroscopy
(PCS) has at least one similarity with the above-mentioned STM technique. Both
methods basically involve a transfer of electronic quasiparticles from one electrode
to another. As it is explained in the introduction of this chapter, PCS is an extension
of early experiments which employed point contacts for locally studying electron
trajectories in a metal which is exposed to an external magnetic field.

In this chapter, Guy Deutscher concentrates on the use of PCS between a sharply
pointed normal electrode and a laterally extended superconducting electrode. In the
introduction he emphasizes the pros and cons of the method with respect to elec-
tron-tunneling methods, including scanning-tunneling techniques. Concerning the
physical realization of PC, its concept invented by Sharvin and the parameters that
govern the electronic transport through such a contact are discussed. The domi-
nating factor is the Sharvin resistance which depends on the lateral extension d of
the contact and the electron mean-free path in the electrode. Although simple in
concept, various sources of complications in real contacts have to be considered.
These include scattering effects if the mean-free path is smaller or similar in length
as the contact diameter, which may lead to a local heating of the contact. Similar
heating effects due to exceeding critical velocities determined by parameters of the
probed superconductor may falsify the observed properties. At any rate, the most
reliable results using PCS are obtained at low temperatures. An important parameter
is the effective transparency coefficient of the contact, crucial in the determination
of the contact size. A short review of practical realizations of PCs is presented in the
next section. The controlled fabrication of a contact of desired quality is still a
major problem. In so-called break junctions, both electrodes are of the same
material, thus eliminating the usually unknown mismatch of the Fermi velocities
between both sides of the junction.

The interpretation of PCS data on conventional superconductors is usually based
on the theory of Blonder, Tinkham and Klapwijk (BTK) and a short overview on
this approach is given in the next section and various aspects that have to be
considered in practice are discussed. Next it is explained how extensions of the
BTK theory in connection with the phase sensitivity can be used to establish the
order parameter symmetry, an important aspect in connection with studies of
unconventional superconductors for which the gap configuration exhibits nodes.

The well-known quasiparticle reflection effects at the contact interface, in par-
ticular the Andreev-Saint James reflections under special circumstances, are the
topic of the next section. In it, the importance of retardation effects which open the
possibility to evaluate the effective masses of quasiparticles in metals with very
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strong correlations, is emphasized. In order to demonstrate how this approach can
be used in the fitting procedure of conductance data, typical examples of super-
conductors with different causes of mass enhancement are discussed in detail. These
include Nb, MgB2, high-Tc Copper-oxide, and Fe-pnictide superconductors as well
as intermetallics with moderate and strong enhancements of the quasiparticles’
masses. It is concluded that effective masses due to strong correlations established
in this way are in very good agreement with values that have been obtained from
data that were acquired with other experimental techniques. Quite remarkably, the
method also allows for a relatively easy access to determine the electron–phonon
mass enhancement in conventional superconductors.

A brief account on some PCS data obtained with contacts between an inho-
mogeneously magnetic material and a conventional superconductor is given in the
short final section.

6 Quantum Oscillation Measurements

Studies of the electronic structure of metals via measurements employing the de
Haas-van Alphen (dHvA) effect and other magneto-oscillatory techniques had their
first high in the 1960s and early 1970s of the last century. With the growing interest
in metals with strongly correlated electrons, the corresponding methods experi-
enced a revival and new experimental data revealed detailed insights into the
behavior of such systems which are not accessible by other means.

After describing some of the advantages but also limits of employing this type of
probing the electronic structure in comparison with other experimental methods,
Stephen Julian gives a brief but fairly complete account of the theoretical basis of
the dHvA effect, starting from the Landau quantization and a derivation of the
Onsager relation for a cylindrical Fermi surface (FS) which relates the frequencies
of the observed quantum oscillations with, in this case only one, extremal cross-
sections of the FS. What follows are descriptions of various aspects that have to be
considered when interpreting the recorded data. First, the influence of temperature
and scattering on the amplitude of the quantum oscillations is discussed. It is
recalled that while band-structure calculations employing the local density
approximation (LDA) are adequate to predict the topology of FS, they usually
underestimate the correlation effects which, to a large extent, determine the effective
masses of the electronic quasiparticles. Julian’s discussion of the influence of many-
body effects on the Landau levels is original and clear. The resulting amplitude
damping factors due to nonzero temperature and quasiparticle scattering at impu-
rities can be used to obtain information on the effective mass and the mean-free path
of the quasiparticles. The spin damping factor arises from the magnetic field-
induced splitting of the FS into a spin-up and a spin-down part. It turns out that
probing these split parts in strongly correlated systems reveals different amplitudes
for each part. This difference can be traced back to spin dependent effective masses
reflecting the electron-electron interactions. Mapping 3D Fermi surfaces requires
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measurements of the angular dependence of the oscillations by varying the angle
between the crystal orientation with respect to the direction of the applied magnetic
field. Julian’s description of how this is done in principle, is followed by a brief
presentation of the Lifshitz-Kosevitch equation which governs the oscillatory
magnetisation of common metals. Julian ends this section with number of com-
ments on how this basic equation needs to be modified if strong correlations have to
be taken into account.

Very helpful for prospective users is the section in which it is explained how
measurements of the dHvA effect can actually be done. It includes the description
and possible realization of measurements involving either the field modulation
technique or using torque magnetometry. Briefly mentioned are measurements of
all the other physical properties that are affected by the Landau quantisation of the
energy levels of the itinerant quasiparticles, and therefore exhibit magneto-oscil-
latory behaviour. The section ends with a comparison of DC- versus pulsed-field
applications and a short discussion on the information that can be gained from a
detailed analysis of the dHvA signals.

These preparatory parts are complemented with an extensive case study on the
compound Sr2RuO4 whose electronic subsystem is clearly influenced by strong
correlation effects and exhibits unconventional superconductivity. It is shown that
the topology and size of the Fermi surface obtained from the dHvA data is in very
good agreement with those predicted by band-structure calculations. It is pointed
out, however, that the dHvA analysis provides much more details concerning the
form of the different FS parts as well as, from the temperature dependence of the
oscillation amplitudes, the effective masses and their anisotropies. Finally, it is
shown how the parameters obtained from the dHvA investigations can be tested
with respect to their compatibility with measured bulk properties. It turns out that
the correct, often not straightforward, analyses of the data and their combination
provide very satisfactory results in this respect. This confirms that experimental
methods under the heading of this chapter are particularly well suited to enhance the
understanding of correlation effects in metals.

7 Pressure Probes

External pressure, often relatively moderate in magnitude, has been shown to be
one of the versatile control parameters for studies of physical properties of materials
that are dominated by correlation effects. Many examples of pressure-induced
quantum phase transitions (QPT) are described in the literature. It is therefore quite
natural that one chapter in this series, authored by Michael Nicklas, is devoted to an
overview of currently employed methods for pressure generation and of experi-
mental techniques to perform measurements of different physical properties under
impeding conditions, including very low temperatures.

Pressure generation is the first topic that is addressed. First, two types of pressure
cells are considered and described in some detail; piston-cylinder type and opposed
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anvil type. The performance of these cells with respect to achieved pressures
depends on the choice of materials for the different components of the cells. In
many cases, very low magnetic susceptibilities of the chosen materials are required,
which usually limits their mechanical strength. With piston-cylinder cells, pressures
of 3–4 GPa have been achieved. For higher pressures, anvil-type cells are required;
the highest static pressures, up to 30 GPa are achieved with diamond anvils. Other
forms of pressure cells, including the indenter-type configuration, and solutions for
contacting samples inside the cell with electrical leads are briefly discussed at the
end of the same section.

The distribution of pressure within the cell’s sample volume, i.e., hydrostatic or
anisotropic, depends on the choice of the pressure-transmitting medium. Once the
pressure is generated, its value needs to be measured independently under the
conditions of the primary measurement, often at low temperatures. These two
aspects are discussed in a subsequent section.

Very informative is the next section where it is shown that a wealth of different
physical properties can in principle be measured under external pressure, although
often only with difficulties and by taking into account a number of complications. For
obvious reasons, thermal properties, where measuring constant small temperature
differences is an important part of the experiment, are notoriously difficult to determine
with accuracies that are achieved under ambient conditions. Nevertheless, possible
ways to resolve the experimental difficulties for measurements of thermal conduc-
tivity, thermopower, specific heat and thermal expansion are discussed. Equally dif-
ficult are experiments probing magnetostriction. More feasible are measurements
where monitoring an induction signal with a simple coil is the essential part of the
experiment. This is the case for measurements of magnetic susceptibilities, magne-
tizations and de Haas-van Alphen oscillations, as well as resonance experiments such
as NMR and ESR. Also experiments involving particle beams at large facilities, such
as muon spin rotation/resonance and neutron scattering are routinely done for probing
samples under pressure. For optical experiments where access of visible light to and
from the sample is required, the use of diamond anvil cells is inevitable.

The chapter ends with a presentation of examples where pressure tuning of
metals with strong electron correlations leads to phase transitions of various kinds.
Well documented are the examples of 122 Ce compounds such as CeCu2Si2,
CeCu2Ge2 and other CeTM2Si2 compounds as well as CeIn3. For all of them,
antiferromagnetic and superconducting phases are the competing ground states.
More recent are the observations of pressure-induced phase changes in compounds
of the type CeTMIn5.

8 Neutron Scattering

As Igor Zaliznyak and John Tranquada point out, magnetic phenomena in solids are
the result of correlation effects and different varieties of neutron-scattering tech-
niques are the experimental tool of choice for investigating magnetic correlations in
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condensed matter. In the introduction, they mention a few pros and cons for using
these methods and they provide useful references to existing literature that cover the
topic in more detail.

They continue with describing the basic properties of the neutron as a particle
and briefly summarize the use of different energy scales for practical purposes.
Using neutrons for scattering experiments of course requires that they are available
in sufficient quantities and the authors offer a brief account on existing reactor-
based and spallation-type neutron sources, including their performance
characteristics.

Next they discuss the two fundamental scattering processes of neutrons in
matter, namely the nuclear and the magnetic scattering which both are exploited in
different scattering techniques. They then explain the notions of the scattering
lengths and cross-sections relevant in neutron-scattering experiments. Subse-
quently, two subsections deal with nuclear scattering in more detail. The authors
distinguish between nuclear scattering in condensed matter per se and in condensed
matter in crystalline form. For the first case, they present the energy versus
momentum dispersion curve of superfluid 4He as a prime example of the usefulness
of neutrons for studying elementary excitations in quantum-dominated systems. In
the section on nuclear scattering in crystalline matter, aspects of experimentally
establishing atomic order and the energy-momentum relations of lattice excitations
are briefly discussed.

The context of correlations in solids the magnetic interactions of neutrons with
magnetic moments due to electron’s spins and orbital motion are of primary interest.
First the authors stress the importance of the detailed-balance constraint and the
fluctuation–dissipation theorem in interpreting corresponding neutron-scattering
experiments. Static magnetization can be accessed by elastic neutron scattering
while information on its motion may be obtained from inelastic scattering. The
subsequent sections deal with magnetic Bragg peaks indicating magnetic order, the
magnetic form factor and spin correlations, spin waves and anisotropy effects.

The content of the sections explaining the theoretical background for performing
and analyzing neutron-scattering experiments prepare for a brief review of results
on structural and magnetic properties of cuprate superconductors obtained by
employing neutron-scattering techniques in the concluding section of the chapter.

9 Muon Spin Relaxation (μSR) Studies

In the first section of this chapter, Yasutomo Uemura briefly describes the particle-
physics history of muons and their importance in the experimental verification of
parity violation in weak interactions. He continues by explaining the very basic
principles of μ+SR experiments, based on implanting positively charged muons μ+

into a specimen and monitoring the time evolution of their spin polarization via
observing the ejection direction of the positrons that result from the decay of the
muons. Also mentioned are the most versatile external-field configurations that are
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employed for extracting different informations on the internal field distributions at
the sites adopted by the muons at the time of their decay into positrons.

In the second section, the role of μ+SR in investigations of magnetic phase
diagrams of unconventional superconductors is described. Examples of the inter-
play between magnetic order and superconductivity are presented for different
families of superconductors, such as heavy-fermion and Cu–O compounds, organic
materials, and fullerides as well as Fe-based chalcogenides.

Since μ+SR is a very sensitive probe for detecting small internal magnetic fields,
it has been employed in searches for time-reversal-symmetry (TRS)-breaking
phases in unconventional superconductors. Following the early cases of corre-
sponding evidence in U-based heavy-fermion superconductors, other materials
were investigated in this respect. The phenomenon of TRS has been reported to
occur in the superconducting state of Sr2RuO4 and filled skutterudites. The corre-
sponding evidence for TRS is much less convincing, however, in data obtained
from studies of cuprate superconductors in the pseudogap regime.

Early experiments to determine the penetration depth λ of magnetic fields of
cuprate superconductors were made by employing the μSR technique. Section IV is
a summary of such efforts to provide evidence for unconventional pairing in the
superconducting state of cuprate superconductors by measuring the temperature
dependence of λ and comparing it with corresponding theoretical predictions. Based
on the fact that the value of λ at low temperatures is related to the pair density ns, it
was established that the critical temperature Tc of cuprate superconductors is, quite
generally, controlled by ns such that Tc varies linearly with ns. Section V describes
how from ns, an effective Fermi energy in the excitation spectrum can be extracted
and be compared with trends in the variation of Tc in cuprate- and other types of
superconductors.

The following sections VI, VII, and VIII cover a wide range of efforts, not
necessarily based on μSR experiments, to establish correlations between different
key parameters that might determine the critical temperature of superconductors. In
particular, efforts to clarify the interrelation between antiferromagnetic order and
superconductivity, often competing phases in unconventional superconductors, are
described and illustrated. Phase boundaries and the physical properties in their
vicinity are discussed. The last section is a brief outlook into the future with some
ideas for future investigations of unconventional superconductors, including a
comprehensive understanding of the driving mechanisms that induce these unusual
condensates of charge carriers.

10 Optical Properties

This chapter, authored by Dirk van der Marel, offers a step-by-step introduction
to the field of optical conductivity of correlated electrons. He focusses on the
theoretical background for treating many-body effects influencing the optical
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conductivity of interacting electrons, including the methodology of corresponding
measurements and their analyses. For introductions to experimental optical tech-
niques, he refers to the existing literature.

He starts with describing general aspects of the two commonly used experi-
mental configurations for measuring optical parameters of matter, i.e., the reflection
of electromagnetic waves at the interface between the vacuum and the probed
substance, or the transmission through a sample under investigation. The discussion
is based on Maxwell’s equations and their solutions invoking macroscopic
parameters of the investigated material. It focusses on the influence of the interface
on the incoming and reflected radiation; the transmission process through the
sample is not treated.

After introducing the basic relations between current and electric field, in this
case the optical conductivity σ(k, ω), the terms longitudinal and transverse
dielectric function are explained. Next, the quantum description of the electrody-
namics of electrons in a crystal lattice is outlined and the relevant Hamilton
operators are introduced. In order to calculate the linear response of the current
density to the electric field, the vector potential A needs to be invoked. Due to the
noncommuting operators, the calculation is complicated and is explained in detail in
three subsections. It is shown that the optical conductivity is given by two con-
tributions. The diamagnetic part σd(q, ω), reflecting the response of a plasma of
freely moving electrons, is complemented by the so-called regular part σ1(q, ω)
which is the response of the interacting electrons confined in the potential exerted
by the crystal lattice and is proportional to the current-current correlation function.
In the subsequent section it is shown how to calculate the response for a system
with defined many-body states. Explicit results are compared with experimental
data for a series of Si-based compounds that exhibit correlation effects in their
physical properties. At the end of this section, the Drude-Lorentz concept of
ascribing the response to a combined action of independent oscillators which
represent the principal optical transitions is introduced. In practice, this approach is
successfully used to fit experimental data, even for multi-component materials such
as high-Tc cuprates.

In the final section, the significance of spectral weight sum rules in many-body
physics is emphasized. Spectral weights are again divided into two parts, a dia-
magnetic part Wd and a regular part Wr. It turns out that after integration over
frequencies, Wr (q) ¼ 1. In addition, the delta functions in Wd and Wr cancel
exactly for normal metals but not for superconductors. Of particular practical
importance is the so-called F-sum rule which relates the integrated optical con-
ductivity to the density of charged particles and the ratio of their charges and
effective mass. In a rather detailed discussion of the regular part of σ(q), the author
concludes that new experimental techniques for probing σ(q ≠ 0) can provide
information on the integrated spectral weight at nonzero frequencies and hence the
free-carrier optical-response intensity of correlated electrons.
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11 Summary

It turns out that establishing the physical properties of materials which are domi-
nated by correlation effects requires the application of many different experimental
techniques and methods, often under extreme conditions such as very low tem-
peratures as well as high magnetic fields or pressure. The content of this volume
covers a major part of such endeavors. Prominently represented are spectroscopic
techniques and local probes. Unfortunately, experiments probing thermal and
transport properties are much less well represented. This is particularly regretful
because many new aspects or phenomena are actually discovered by measurements
probing the bulk of the material of interest.
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Chapter 1
Nuclear Magnetic Resonance as a Probe
of Strongly Correlated Electron Systems

Nicholas J. Curro

Abstract Beginning with the pioneering NMR experiments of Hebel and Slichter in
superconductingAluminum, nuclearmagnetic resonance (NMR) has played a central
role in the study of strongly correlated electron matter. The relatively small energies
associated with the nuclear spin degrees of freedom guarantee that the experimental
probes of the nuclear spin behavior have little or no effect on the electronic degrees
of freedom. On the other hand, the hyperfine coupling between the electronic and
nuclear spins enables one to probe the static and dynamic properties of the electron
spins through their effect on the nuclei. NMRoffers detailedmicroscopic information
about homogeneity, dynamics, and novel phases of electron matter and can probe
under extreme conditions of high magnetic field, ultra low temperature, and high
pressures. This chapter discusses the basics of NMR in condensed matter solids,
including basic measurements such as the Knight shift, the hyperfine field, and the
relaxation rates. To illustrate these concepts we discuss the case of field-induced
antiferromagnetism and the exotic superconducting phase in CeCoIn5.

1.1 Basics of Nuclear Magnetic Resonance

1.1.1 NMR Spectra

The energy of a nuclear magnetic moment in a magnetic field is given by the Zeeman
Hamiltonian:

HZ = µ · H0 (1.1)

= γ� Î · H0

= �ωL Îz,
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Fig. 1.1 a Energy levels for a spin 1
2 in a magnetic field, b resonance frequency versus field, c

field-swept spectrum at constant frequency, and d frequency-swept spectrum at constant field

where γ is the gyromagnetic ratio, � is Planck’s constant, Î = Îx x̂ + Îy ŷ + Îz ẑ is the
nuclear spin operator, H0 = H0 ẑ is the magnetic field and ωL = γH0 is the Larmor
frequency. For a spin I = 1

2 nucleus we have:

HZ =
(

�ωL
2 0
0 −�ωL

2

)
(1.2)

The solution of this equation is straightforward: the eigenstates are |φm〉 = |m〉 with
energy Em = �ωLm, where m = ± 1

2 and the splitting is �E = �ωL . The energy
levels are shown in Fig. 1.1 as a function ofmagnetic field. There is a single resonance
at the Larmor frequency. For higher spin nuclei there are 2I separate resonances, and
depending on other terms in theHamiltonian there can be considerablemore structure
in the spectra.

Nuclei transition between levels by absorbing or emitting a photon of energy �ωL .
In a typical NMR experiment, an ensemble of ∼1023 nuclei is located in a tuned
radiofrequency coil that generates an electromagnetic field oscillating at the Larmor
frequency, and power will be transferred between the nuclear spin system and the
electromagnetic field. The spectrum is a measure of the absorbed power as a function
of either the field, H0, or the frequency, ω, of the resonant circuit. Both approaches
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Fig. 1.2 Precession of a
magnetic moment, M around
a magnetic field, H0 oriented
along the z-axis. The
precession frequency is given
by ωL = γH0, where γ is the
gyromagnetic ratio

are complementary, and correspond to cuts across the frequency-field diagram in
Fig. 1.1 along the vertical and horizontal axes, respectively. The absorption of power
can be measured by detecting the response of a resonant circuit, such as a change
in the quality factor of the resonance. Alternatively, the nuclei can be perturbed by
resonant pulses of radiofrequency fields, and their response observed as a function
of either field or frequency. This latter approach forms the basis of modern pulsed
NMR and requires a detailed understanding of the time dependent response of the
quantum mechanical system.

1.1.2 Density Matrix Solution

The wavefunction of the Hamiltonian in (1.2) is given by:

|ψ〉 = aeiωL t/2| ↑〉 + be−i(ωL t/2+φ)| ↓〉, (1.3)

where the real constants a, b, and the phase factor φ depend on the initial conditions.
Alternatively the solution can be expressed in terms of the density matrix:

ρ =
(

a2 abei(ωL t+φ)

abe−i(ωL t+φ) b2

)
. (1.4)

The diagonal elements are time independent and the off-diagonal elements oscillate at
the Larmor frequency. The expectation values of the nuclear magnetization 〈Mα〉 =
γ�Tr[ρ(t) Îα] are given by:
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〈Ix 〉 = ab cos(ωL t + φ) (1.5)

〈Iy〉 = ab sin(ωL t + φ) (1.6)

〈Iz〉 = 1

2
(a2 − b2). (1.7)

These equations describe the magnetization vector 〈M〉 precessing around the mag-
netic field H0 at frequency ωL (Fig. 1.2). Of course, if we start the system off in an
eigenstate of HZ , then either a or b is zero, 〈Ix 〉 = 〈Iy〉 = 0, and there is no time
dependence of the expectation value. In order for the spins to precess, they must be
in a superposition of the eigenstates of HZ .

1.1.2.1 Statistical Ensemble

The density matrix (1.4) is valid for a single spin- 12 in a magnetic field. In real solids,
there are N ∼ 1023 nuclei, each with it’s own phase, φ j . The Hilbert space has
dimensions of (2I + 1)N × (2I + 1)N , which is intractable for anything more than a
few spins. However, it turns out that for most cases of interest we can treat the spins
as independent particles. Of course, the nuclei do interact with both the surrounding
electrons and with one another, but these interactions are small compared with the
Zeeman interaction and can be introduced perturbatively. In practice this is a very
good assumption, since the nuclei in a solid sit far apart from one another (the
typical spacing between nuclei in a solid is ∼10−10 m, whereas the nuclei have radii
∼10−15 m). On the other hand, it is exactly these interactions both with one another
and their environment that renders magnetic resonance such a powerful technique to
probe the behavior of solids.

For N independent spins the density matrix has the form:

ρ̂N =

⎛
⎜⎜⎜⎜⎜⎝

a2
1 a1b1 f (t)eiφ1 · · · 0 0

a1b1 f (t)eiφ1 b21 · · · 0 0
...

...
. . .

...
...

0 0 · · · a2
N aNbN f (t)eiφN

0 0 · · · aNbN f (t)eiφN b2N

⎞
⎟⎟⎟⎟⎟⎠ , (1.8)

where f (t) = eiωL t . The statistical ensemble density matrix is obtained by a partial
trace over the N degrees of freedom:

〈ρ̂〉 =
( 〈a2〉 〈ab〉eiωL t ∑

N e−iφ j /N
〈ab〉e−iωL t ∑

N eiφ j /N 〈b2〉
)

, (1.9)

where 〈a2〉 = 1
N

∑N
n a2

n , 〈b2〉 = 1
N

∑N
n b2n , and 〈ab〉 = 1

N

∑N
n anbn . In equilibrium

each spin will have a different phase and these phases will be uncorrelated, thus the
average of the phase factors eiφ j vanishes:
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Fig. 1.3 The rotating frame
rotates around the z-axis at
angular frequency ω

lim
N→∞

1

N

N∑
j=1

eiφ j = 0. (1.10)

The off-diagonal matrix elements of the ensemble average density matrix, 〈ρ〉, are
zero in thermal equilibrium. If the system is disturbed from thermal equilibrium (for
example by pulsedNMR techniques), then these off-diagonal elements become finite
and time dependent. The diagonal elements 〈a2〉 and 〈b2〉 for the ensemble average
are simply the statistical probabilities of finding the spin in either the up or down
state: 〈a2〉, 〈b2〉 = 1

Z e±β�ωL/2, where β = 1/kB T , kB is the Boltzmann constant, T
is the temperature, and Z = e−�ωL/2kB T + e−�ωL/2kB T is the partition function. Since
± 1

2�ωL are the eigenvalues of HZ , we can write the thermal equilibrium ensemble
average density matrix as:

ρE Q = 1

Z
e−βHZ , (1.11)

where β = 1/kB T . One can then calculate various thermodynamic quantities of
interest associated with the nuclei using this formalism, such as the nuclear magne-
tization, M , the specific heat, Cn , and the magnetic susceptibility, χn . It is important
to note that there are two types of density matrices: ρ, the density matrix for a single
particle, and 〈ρ〉, the statistical ensemble density matrix for a system of N spins. In
most cases we will consider the statistical ensemble average density matrix, drop the
bracket notation and simply refer to it as the “density matrix”. Care should be taken,
however, to not confuse the case for a single spin.

1.1.2.2 The Rotating Frame

ModernNMRspectrometers detect the coherent precession of an ensemble of nuclear
spins, which give rise to a time dependent magnetization that couples to the NMR
circuit. In this case, the ensemble average density matrix is not in equilibrium,
and off-diagonal elements are created by radiofrequency pulses. During such a
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Fig. 1.4 In the rotating
frame, the moments precess
around the effective field,
Heff , which lies
perpendicular to H0 when the
irradiation frequency, ω is
equal to the Larmor
frequency, ωL = γH0

pulse, the Hamiltonian becomes: H = γ�[ Îz B0 + Îy H1 cos(ωt)], where H1 is
the radiofrequency field generated by the solenoid oscillating at ω along the coil
direction (taken here to lie along ŷ) perpendicular to the external field H0. Typi-
cally H1 ∼ 10 − 100Oe, whereas H0 ∼ 10 − 100kOe. In order to solve for the
time dependence of the magnetization, it is useful to transform to the rotating frame,
which is equivalent to the interaction picture (see Fig. 1.3). In the rotating frame, the
state vector, Hamiltonian, and density matrix transform as:

|ψ〉R = Û |ψ〉 (1.12)

HR = ÛHÛ † − i�
∂Û

∂t
Û † (1.13)

ρR = ÛρÛ †, (1.14)

where Û = eiωt Îz , and the subscript R corresponds to the rotating frame. The Hamil-
tonian can be written asHR = γ�H Î · Heff , where Heff = (H0 − ω/γ)ẑ + H1 ŷ is
the effective field in the rotating frame (Fig. 1.4). When the rf frequency ω is equal
to the natural resonance frequency of the nuclei in the magnetic field, ωL , then Heff
has no component along the ẑ direction—only along ŷ. In other words, at resonance
in the rotating frame the spins process around H1, not H0. By selectively turning
pulses on and off along different directions, one can therefore manipulate the spins
to point in any direction and create off-diagonal resonances in the density matrix.

The time dependence of ρR(t) is given by:

i�
∂ρR

∂t
= [HR, ρR] , (1.15)

and sinceHR is time independent this equation can be solved to give:
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ρR(t) = eiHRt/�ρR(0)e−iHRt/�. (1.16)

This expression enables one to calculate the density matrix, and hence the expecta-
tion values of the magnetization, following a series of pulses of varying power and
duration by realizing that the pulses act as unitary transformations on the density
matrix.

Consider, for example, a radiofrequency pulse exactly on resonance (ω = ωL )

with intensity H1 = �1/γ for a time tp 	 1/ωL . In this case Û = ei�1t Îy . Immedi-
ately following the pulse the density matrix is given by:

ρ(tp) = ei�1tp Îy ρR(0)e−i�1tp Îy . (1.17)

If we assume that we start off in thermal equilibrium, then ρR(0) = ρ(0) = ρEQ.
Furthermore, for temperatures T > �ωL/kB ∼ 10−6 K it is reasonable to use the
high temperature approximation:

ρEQ = 1

Z
eβĤZ ≈ 1

N

(
1̂ + β�ωL Îz + · · ·

)
. (1.18)

We shall be interested in calculating observables such as 〈Mz〉 = γ�Tr{�̂ Îz}, in
which case the first term of this expansion will vanish, and we can safely ignore it.
Therefore, in the rotating frame the equilibrium density matrix is identical to that in
the laboratory frame:

ρR(0) = εeiωt Îz Îze−iωt Îz = ε Îz, (1.19)

where ε = β�ωL/N 	 1.
In order to determine the effect of the radiofrequency pulse, it is important to

consider the effect of the unitary rotation transform Ûy = eiθ Îy on the operator Îz . It
can be shown that [1]:

eiθ Îy Îze−iθ Îy = Îz cos(θ) − Îx sin(θ). (1.20)

Therefore the density matrix immediately following the pulse is given by:

ρR(tp) = ε
(

Îz cos(�1tp) − Îx sin(�1tp)
)

(1.21)

= ε

2

(− cos(�1tp) sin(�1tp)

sin(�1tp) cos(�1tp)

)
, (1.22)

and for times following the pulse in the laboratory frame the density matrix is:

ρ(t) = ε

2

( − cos(�1tp) sin(�1tp)eiωL t/2

sin(�1tp)e−iωL t/2 cos(�1tp)

)
. (1.23)
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By turning on the H1 field for a time of length tp = π
2�1

the diagonal elements can
be completely converted to off-diagonal elements, which then give rise to a time
dependent magnetization M(t) precessing perpendicular to H0.

1.1.2.3 Bloch Equations

The effect of a pulse is identical both for an individual spin-1/2 nucleus and an
ensemble of independent nuclei. In the latter case, the density matrix describes an
ensemble average, and it is important to note that the pulse creates a coherent pre-
cession of the spins. In other words, all of the nuclei start off with the same phase
following the pulse. For Ω1tp = π/2 (1.23) describes finite off-diagonal coherence
indefinitely. This result cannot be correct, however, since ρ(t) must decay to ρEQ, a
time-independent result, for sufficiently long times. Eventually all of the precessing
spins will lose their coherence and relax back to a time independent equilibrium
Boltzmann distribution. These relaxation processes are due to interactions between
the spins themselves and with their environment. The Bloch equations describe the
time dependence of the spins with relaxation by including two phenomenological
parameters:

d Mx

dt
= γ(M × H)x − Mx

T2
(1.24)

d My

dt
= γ(M × H)y − My

T2
(1.25)

d Mz

dt
= γ(M × H)z − M0 − Mz

T1
. (1.26)

Here M = γ�〈I〉/V is the magnetization density, the constant M0 = χn H0 is
the equilibrium magnetization, and χn = Nγ2

�
2 I (I + 1)/3kB T is the nuclear

spin susceptibility. The time constant T2 is the transverse relaxation, or spin-spin
decoherence time, and T1 is the longitudinal relaxation, or spin-lattice relaxation
time. The first terms in the Bloch equations describe precession, and the second set
of terms describe relaxation of the spins to equilibrium. T2 describes the relaxation of
the off-diagonal terms in the ensemble average density matrix, and T1 describes the
relaxation of the diagonal terms. The spin-lattice relaxation time is the time scale for
the ensemble of spins to acquire thermal equilibrium. The spin-decoherence time,
which generally is not equivalent to T1, describes the decay of the off-diagonal terms
in the density matrix. Alternatively, if we consider the expectation value 〈M〉 =
γ�Tr{ρ Î}, then T1 describes the relaxation of the z component of the magnetization
and T2 describes the relaxation of the x- and y-components. Following a pulse along
the ŷ direction of duration tp = π/2�1, the time dependence of the ensemble average
density matrix is given by:
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Fig. 1.5 Time dependence of the three components of the nuclear magnetization in the laboratory
frame following a 90◦ radiofrequency pulse in the y−direction. In this case, T1 � T2, and M0 =
χn H0 is the equilibrium magnetization

ρ(t) = ε

2

(− (
1 − e−t/T1

)
eiωL t/2e−t/T2

e−iωL t/2e−t/T2
(
1 − e−t/T1

) )
, (1.27)

and the magnetization 〈M〉 is:

Mx (t) = 1

4
γ�εe−t/T2 cos(ωL t)

My(t) = 1

4
γ�εe−t/T2 sin(ωL t) (1.28)

Mz(t) = 1

4
γ�ε

(
1 − e−t/T1

)
.

These equations are plotted in Fig. 1.5. Note that T2 describes the decay of the
envelope of the transverse magnetization, and over a time scale T1 the magnetization
returns to equilibrium along the z-axis.

1.1.3 Pulse Techniques

The response of the magnetization following a pulse described by (1.28) is known
as a Free Induction Decay or FID. The spectrum is given by the complex Fourier
transform of the FID,
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magnetization. Also shown are the magnitude (blue) and phase angle θ. The full width at half
maximum of the resonance is given by T −1

2 . In a pulsed experiment, these correspond to the
magnetization components along the two planar directions, where θ is defined relative to the phase
of the original H1 pulse

S(ω) = 1√
2π

∞∫
−∞

M+(t)eiωt dt, (1.29)

where M± = Mx ± i My . In this case it is given by:

S(ω) = M0

2π

ωL T2
1 + i(ω − ωL)T2

. (1.30)

The real and imaginary parts of S(ω) are the absorptive and dispersive parts of
the spectrum, and are shown in Fig. 1.6. The spectrum is centered at ωL and has a
FWHM linewidth of 2T −1

2 . S(ω) is measured usually by detecting the magnetization
in real time and then taking the Fourier transform of the data. The components
of the magnetization precessing perpendicular to H0 give rise to a voltage signal
V (t) across an NMR coil that is proportional to d My/dt . A typical phase sensitive
spectrometer splits the detected signal V (t) into two channels, then mixes it with
internally generated signal s1(t) = s0 cos(ωt) and s2(t) = s0 sin(ωt). After mixing
the signals in the two channels become:

s1(t) ∼ M0ωL [sin((ω − ωL)t) − sin((ω + ωL)t)] (1.31)

s2(t) ∼ M0ωL [− cos((ω − ωL)t) + cos((ω + ωL)t)] (1.32)
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If ω ≈ ωL then the first termwill oscillate at very low frequency, and the second high
frequency component can be eliminated by a low pass filter. Thus s1(t) ∼ My(t) and
s2(t) ∼ Mx (t) are direct measures of the magnetization in the rotating frame. This is
the basic operation of a homodyne quadrature receiver, and enables one to measure
both the magnitude and phase of the magnetization.

There are several more complex types of receivers. For example a heterodyne
receiver mixes V (t) down to an intermediate frequency ωI < ωL . At this point, the
signal could be passed through a narrow band-pass filter to reduce noise and then
mixed down to DC in two channels which can then be digitized. However, modern
data acquisition cards can digitize at rates up to several hundredMHz, which enables
one to digitize either the intermediate signal at ωI or even the original signal at ωL .
After digitization at these high frequencies, the signal can then be processed digitally
to extract the magnitude and phase independently.

A serious problem with the detection of FIDs is that the voltage signal V (t) in
the NMR coil will ring for several time constants following a large rf pulse. Typical
rf pulses induce voltages on the order of a hundred volts, whereas the precessing
magnetization signal is often only μV in magnitude. Consequently there is a dead
time of several ms during which the sensitive low-noise preamplifiers must be turned
off in order to avoid saturation of the response. If T2 is sufficiently short then it
is possible that the FID will have decayed before the spectrometer can detect it.
Quadrature detection is helpful in this regard because it enables one to vary the
phase of the H1 pulses in such a manner that the transient decay of the pulse ringing
in the circuit can be canceled out, thus partially reducing the dead time.

1.1.3.1 Spin Echoes

In 1950, Erwin Hahn discovered a second magnetization signal in an NMR coil at a
time t = 2τ if second 180◦ pulse is applied at a time τ after the first 90◦ pulse [2].
An NMR spin-echo arises because the ensemble of precessing spins that dephases
during an FID can be refocused, and has the same time dependence as the FID itself.
This enables one to detect the signal at a time τ after the end of the second pulse,
during which time the voltage ringing can die down.

In order to understand the spin-echo, it is important to understand the origin of
the decay of the FID signal. Equation (1.28) implies that the time dependence of
the FID decay is determined by the time constant T2. T2 was introduced as a phe-
nomenological parameter, but what determines this quantity? The answer depends
on details of the measuring equipment and the substance being measured. If the
nuclei experience a distribution P(Hloc) of local magnetic fields, then there will be
a distribution P(ωL) of precession frequencies. If we assume a normal distribution
P(ωL) = 1√

2πδ
exp

[
(ωL − ω0

L)2/2δ2
]
, then in the time domain the signal is pro-

portional to e−δt cos(ω0
L t). In other words, the measured decay time is δ−1 ≡ T ∗

2 ,
which is equivalent to the second moment of the local magnetic field distribution.
In the ensemble of ∼1023 spins, each one precesses at a slightly larger or slightly
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Fig. 1.7 A spin echo is formed by a two-pulse sequence. In this case, the sequence in panels (a)–(e)
is 90x̄ − τ − 180x̄ − τ−echo. The FID forms along the +y-direction in the rotating frame. Since
M is the vector sum of all the individual spins, each with a slightly different precession frequency,
the FID signal decays with time constant T ∗

2 as seen in panel (f). The second 180◦ pulse refocuses
these spins a time 2τ after the first pulse. In this case, the echo forms along the −y-direction

smaller rate than the average precession rate ω0
L so that in the rotating frame of ω0

L ,
the ensemble of spins will spread out around the plane over time. Eventually the net
sum of these spins along the original axis will average to zero and the FID signal
will decay with time constant T ∗

2 · T ∗
2 is often much smaller than the intrinsic T2 of

a a material. This phenomenon is demonstrated in Fig. 1.7.
Two important sources of local magnetic field distributions are magnet inhomo-

geneity and dipole couplings between nuclei in a rigid lattice. Typically δ/γ ∼
0.01 − 10 G for NMR magnets, and δ/γ ∼ 100 − 1,000 G for dipole couplings
in solid materials. FIDs typically decay much faster in solids, in which case spin
echoes are particularly important. Alternatively, the Fourier transform of the FID in
a solid will be much broader than in a liquid. In both cases, however, the linewidth
of the Fourier transform is given by 1/T ∗

2 , which is not necessarily the intrinsic
spin-decoherence time of the density matrix.

A classic analogy for the formation of a spin echo is a set of runners on a track.
Initially all the runners are gathered in a pack at the starting line. When the gun
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blows and the runners start racing, some will run faster and other will run slower.
Eventually the pack of runners spreads out around the track. If the gun were shot a
second time at which point each runner turns around and races backwards, then the
pack of runners would return to the starting line exactly twice the time difference
between the two gun shots. The fastest runners would have run the farthest and the
slowest runners run the shortest distance, but the time to return to the starting line is
the same for all the runners.

One apparent failure of this analogy is that the runners would tire after sufficient
time, so that the longer time the run, the slower they become. If the second gun
shot were to occur only 10s after the start of the race, then the entire pack would
return simultaneously to the starting line 10s later. However if the second gun shot
were to occur 10min after the start, it is doubtful that all the runners would return
exactly 10min later in a well defined pack. The same effect occurs for the ensemble
of nuclear spins, and is due to the loss of coherence in the density matrix. In other
words, if T ∗

2 	 T2, then the FID signal (or the envelope of the echo) decays quickly,
but echoes can still be formed as long as τ � T2. In fact, the intrinsic T2 can be
measured directly by measuring the echo size as a function of pulse spacing τ . In
this case, the echo amplitude will decay as e−2τ/T2 .

1.1.3.2 Spin Lattice Relaxation

Any spin system that does not exhibit a Boltzmann population distribution among the
energy levels is out of thermal equilibrium and will eventually return to equilibrium,
in which all off-diagonal elements of the density matrix vanish and only the diagonal
terms remain. This process is known as spin lattice relaxation, and can be measured
with a sequence of three pulses:

180x − t1 − 90x − τ − 180x − τ − echo. (1.33)

The first 180◦ pulse will invert the magnetization such that Mz = −M0. The system
then will return to equilibrium according to (1.24). The size of the magnetization
at a time t1 is measured by applying a two-pulse echo sequence to inspect Mz(t1).
In this case, the magnetization is reversed by the first pulse, however other initial
configurations are possible. For example, one could apply a 90◦ pulse, or a series
of multiple 90◦ pulses known as a “comb” sequence. A comb sequence is intended
to prepare the initial state such that 〈Mx 〉 = 〈My〉 = 〈Mz〉 = 0. Both types of
preparatory pulses or pulse sequences simply change the initial conditions. For a
spin 1/2 nucleus the recovery is single exponential, but for higher spin systems the
recovery function is more complex, determined by a system of coupled differential
equations.
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1.2 Quadrupolar Nuclei

Approximately 71% of all the isotopes with nuclear spins have I > 1
2 , and such

nuclei manifest the full breadth and versatility of NMR as an experimental probe
of the solid state. These isotopes are often referred to as quadrupolar nuclei since
they experience an interaction between their electric quadrupolar moments and the
local electrostatic potential in addition to any spin interactions. For I > 1

2 there
are multiple resonances corresponding to transitions between different nuclear spin
levels. The spectra of such nuclei can be rich, complex, and challenging to interpret,
but containing a wealth of information about the local electronic environment of the
nuclei.

The quadrupolar interaction originates from the shape of a nucleus and its pref-
erential orientation in the surrounding electrostatic environment usually created by
the electrons. This interaction is given by:

HQ = 1

6

∑
αβ

Q̂αβVβα, (1.34)

where

Qαβ =
∫

ρn(r)(3rαrβ − r2δαβ)d3r (1.35)

are the elements of a quadrupolar tensor, where α and β are direction indices, and

ρn(r) is the nuclear charge density. The elements Vβα = ∂2V (0)
∂xα∂xβ

, where V (r) is the
electrostatic potential created by the electrons. Vβα form a second rank tensor in real
space known as the Electric Field Gradient, or EFG tensor. The EFG is determined
by the electronic system, and Qαβ is a property of the nucleus. Equation (1.34)
describes the interaction between the nuclear quadrupolar moment and the EFG, but
in this case the Qαβ are quantum mechanical operators that depend on the shape and
orientation of the nucleus in the ground state manifold of I . By taking advantage of
various quantum mechanical theorems and nuclear symmetries, this interaction can
be written entirely in terms of spin operators and parameters of the EFG:

HQ = e2Qq

4I (2I − 1)

[
(3 Î 2z − Î 2) + η( Î 2x − Î 2y )

]
. (1.36)

Here Q is the quadrupolar moment of the nucleus, eq ≡ Vzz is the largest eigenvalue
of the EFG tensor, η ≡ (

Vxx − Vyy
)
/Vzz is the asymmetry parameter of the EFG. Q,

like I , is an intrinsic parameter of the nucleus, and typically is on the order of a barn
(10−24 cm2). This expression is only valid in the basis which diagonalizes the EFG
tensor, so that Vxx , Vyy and Vzz are the principal eigenvalues of the EFG tensor. For
arbitrary directions the operators Îα must be rotated using rotation operators. Usually
the direction associated with the largest eigenvalue is notated q and corresponds to
|Vzz | > |Vxx | > |Vyy |.
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Fig. 1.8 A spin I = 3/2 nucleus in an external magnetic field H0 with an axial field gradient
parallel to H0 has HamiltonianH = �ωL Îz + �ωQ(3 Î 2z − Î 2)/6. This system has three resonances
split by the EFG

1.2.1 Quadrupolar Nuclei in Field

For a quadrupolar nucleus in a magnetic field the 2I + 1 eigenstates are determined
byHZ +HQ . In general H0 may not be in the same direction as one of the principal
directions of the EFG tensor, in which case the Hamiltonian can quickly become
difficult to diagonalize analytically. We will consider a simple case that captures the
essential features of the spectrum of a quadrupolar nucleus and can still be solved
analytically. Here H0 is parallel to q and the EFG has axial symmetry (η = 0), so
the total Hamiltonian is given by:

H = �ωL Îz + �ωQ

6

(
3 Î 2z − Î 2

)
, (1.37)

where �ωQ ≡ 3e2q Q
2I (2I−1) . Since Îz commutes with H, the Hamiltonian is diagonal in

the Îz basis. For I = 3/2 the eigenstates are given by:

|φm〉 = |m〉 (1.38)

εm/� = mωL + 4m2 − 5

8
ωQ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3
2ωL + 1

2ωQ for m = − 3
2

− 1
2ωL − 1

2ωQ for m = − 1
2

+ 1
2ωL − 1

2ωQ for m = + 1
2

+ 3
2ωL + 1

2ωQ for m = + 3
2 .

(1.39)
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The transition frequencies (given by the selection rule�m = ±1) are: ωL −ωQ , ωL ,
andωL + ωQ . The energy levels and the spectrum are shown in Fig. 1.8. Usually these
three transitions are referred to the central (− 1

2 ↔ 1
2 ) transition, and the satellites

transitions (± 1
2 ↔ ± 3

2 ). The transition frequencies of each transition are linear in
field:

ω = γH0 ± nωQ, (1.40)

where n = −1, 0 + 1. This behavior can be seen in the left panel of Fig. 1.9.
It is instructive to consider the behavior of the density matrix in this case. Previ-

ously we considered a spin-1/2 nucleus and found that the off diagonal terms of the
density matrix oscillate at the Larmor frequency. For a higher spin nucleus, the off
diagonal terms oscillate at a frequency ωαβ = (εα − εβ)/�, where εα is the energy
of the i th eigenstate and corresponds to the i ↔ j transition. Each one of these
off-diagonal elements corresponds to one of the possible nuclear spin transitions.

Consider such a system initially in equilibrium that experiences a 90◦ rotation
about the y-axis. Following the rotation, the density matrix will evolve as:

ρ̂ =

⎛
⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠ 90◦

y−→

⎛
⎜⎜⎜⎝
0

√
3
2 0 0√

3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0

⎞
⎟⎟⎟⎠ eiHt/�−→

⎛
⎜⎜⎜⎝
0

√
3
2 ei(ωL+ωQ)t 0 0√

3
2 e−i(ωL+ωQ)t 0 eiωL t 0

0 e−iωLt 0
√
3
2 ei(ωL−ωQ)t

0 0
√
3
2 e−i(ωL−ωQ)t 0

⎞
⎟⎟⎟⎠ . (1.41)

In this case, the off-diagonal elements oscillate at one of the three transition frequen-
cies. The expectation value for the magnetization is:

〈Mx 〉 = 3

2
cos

(
(ωL − ωQ)t

) + 2 cos (ωL t) + 3

2
cos

(
(ωL + ωQ)t

)
. (1.42)

(Note that the spectrum S(ω) is the Fourier transform of 〈Mx 〉.) This equation
indicates that there will be three resonances at ωL − ωQ , ωL and ωL + ωQ , with
relative intensities given by the ratio 3 : 4 : 3. The intensity of the transition between
the |m〉 and |m + 1〉 level is given by the square of the matrix element ( Î+)2m,m+1 =
I (I + 1) − m(m + 1). For higher spin nuclei there will be more transitions, each
with relative intensity given by this formula.

The 90◦ rotation needed to generate these off-diagonal elementsmust be generated
by an H1 pulse. If this pulse has components of frequency at each of the three
transitions, then each off-diagonal matrix element will be generated as shown above.
This is possible if the pulse length is short enough such that the frequency bandwidth
of the pulse is wider than the difference between the resonances; in other words, if
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tp < (2ωQ)−1. This condition may not be possible in general, since ωQ can vary
anywhere from a few kHz to several MHz whereas tp is typically on the order of
a microsecond or longer. The broadest coverage of a resonance is typically less
than about 1MHz, so if ωQ > 500 kHz, then not all of the transitions can be excited
simultaneously. In some cases, one can use special frequency-swept excitation pulses,
or special pulse sequences to excite all of the transitions [3]. Alternatively, one can
excite and detect each resonance independently of one another.

Consider the effect of a 90◦ pulse at the lower satellite transition of the spin 3
2

case discussed above. The Hamiltonian in the rotating frame is:

HR = �(ωL − ω) Îz + �
ωQ

6
(3 Î 2z − I 2) + ��1 Îy (1.43)

= �

⎛
⎜⎜⎜⎜⎝

(3ωL+ωQ−3ω)
2 − 1

2 i
√
3�1 0 0

1
2 i

√
3�1

(ωL−ωQ−ω)
2 −i�1 0

0 i�1
(ω−ωL−ωQ)

2 − 1
2 i

√
3�1

0 0 1
2 i

√
3�1

(3ω−3ωL+ωQ)
2

⎞
⎟⎟⎟⎟⎠ .

In principle we can compute the solution to the density matrix by using the operator
T̂ (t) = eiHRt/� since HR is independent of time. However, this quickly becomes
intractable even when ω matches one of the three resonance frequencies because
there is no closed form expression for the operator T̂ (t).

In order to make headway, note that we only really care about the first off diagonal
elements of the density matrix, not the entire density matrix itself. Furthermore, we
only are interested in one particular transition at a time. In this case, we can focus on
the subspace of Hilbert space corresponding to the two eigenstates of the transition
in question:

⎛
⎜⎜⎜⎝

1
2

(
3ωL + ωQ − 3ω

) − 1
2 i

√
3�1 0 0

1
2 i

√
3�1

1
2

(
ωL − ωQ − ω

) −i�1 0
0 i�1

1
2

(
ω − ωL − ωQ

) − 1
2 i

√
3�1

0 0 1
2 i

√
3�1

1
2

(
3ω − 3ωL + ωQ

)

⎞
⎟⎟⎟⎠ .

We can consider the two upper levels as an effective spin- 12 system, with Hamiltonian:

Heff = �

(
1
2

(
3ωL + ωQ − 3ω

) − 1
2 i

√
3�1

1
2 i

√
3�1

1
2

(
ωL − ωQ − ω

)
)

. (1.44)

If ω = ωL + ωQ , then

Heff = �

(
−ωQ − 1

2 i
√
3�1

1
2 i

√
3�1 −ωQ

)
= −�ωQ Î + �

√
3

2
�1 Îy . (1.45)
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The first term is just a constant offset, and the second term indicates that the effective field lies

along the y axis, with amplitude
√
3
2 �1/γ. This means that the magnetization of the effective

spin- 12 will precess around H1 in the rotating frame, but at an enhanced precession rate. A 90◦

rotation would be enabled with a pulse width such that
√
3
2 �1tp = π

2 . The other transitions
remain unaffected, so the density matrix evolves as:

ρ̂ =

⎛
⎜⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎟⎠

90◦
y(ωL+ωQ)−→

⎛
⎜⎜⎜⎝
0

√
3
2 0 0√

3
2 0 1 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎟⎠ eiHt/�−→ (1.46)

⎛
⎜⎜⎜⎝
0

√
3
2 ei(ωL+ωQ)t 0 0√

3
2 e−i(ωL+ωQ)t 0 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎟⎠ .

This example demonstrates that each of the quadrupolar satellites can be observed indepen-
dently from one another, and that each transition has a particular resonance amplitude and
effective H1 field that depends on the transition and the spin of the nucleus.

1.2.1.1 Nuclear Quadrupolar Resonance

The simple relationship between the field H0 and the resonance frequency for a spin 1/2 system
becomes more complex for higher spin nuclei. Equation (1.40) expresses this relationship for
the simple case discussed above, and is shown in Fig. 1.9. There are clearly three sets of
transitions, and even at H0 = 0 there is afinite frequency.This zerofield resonance corresponds
to Nuclear Quadrupolar Resonance (NQR). In this case the two sets of states |± 3

2 〉 and |± 1
2 〉

are both degenerate, with an splitting given by �ωQ . NQR is essentially identical to NMR
except with the absence of a magnetic field. ωQ is determined by the parameters of the crystal,
and often one cannot determine the EFG a priori. In practice ωQ is determined by measuring
the spectrum in field prior to doing an NQR experiment. A significant advantage of NQR is
that the absence of an external field means that there are no alignment issues for the crystal.
In fact, NQR is often performed on a powder sample. Nuclei in any crystallites in the powder
oriented such q ⊥ H1 will be excited. NQR is particularly useful for measuring the internal
field of magnetically ordered materials. In this case, the development of long range magnetic
order generally gives rise to a static internal magnetic field, which shifts or splits the NQR
resonance, as seen in Fig. 1.9 and in (1.40).

1.2.1.2 Angular Dependence

In cases where the Hamiltonian cannot be diagonalized analytically, it can often be solved
either by perturbation theory or via numericalmethods. This is the case for arbitrary orientation
of H0 with respect to the EFG, and for η �= 0. The frequency versus field relationship is shown
in Figs. 1.9 and 1.10. In these plots, the intensity of the line is proportional to the intensity



1 Nuclear Magnetic Resonance as a Probe ... 19

1.5 1.0 0.5 0.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

F
re

qu
en

cy
 (

 ω
/ω

Q
 )

1.51.00.50.0

Field ( γH0/ ωQ) Field ( γH0/ ωQ)

806040200

θ (°)

Fig. 1.9 The resonance frequencies of the Hamiltonian (1.37) for I = 3/2 and η = 0 as a function
of field and angle. The normalized resonance frequency ω/ωQ is plotted on the vertical axis, and the
field is normalized as γH0/ωQ . The left panel shows the frequency versus field for θ = 0 (H0 ‖ q),
the center panel shows the frequencies versus angle θ, and the right panel shows the frequencies
versus field for θ = 90◦

of the transition. The intensity of a transition between the states | j〉 and |k〉 is given by the
square of the matrix element |〈 j | Îx |k〉|2. For most cases, this matrix element vanishes. If the
eigenstates are given by the |m〉 states (such that Îz is diagonal) then 〈 j | Îx |k〉 = 0 unless
j = k ± 1 or �m = ±1. This rule implies that there should be only 2I transition in the
spectrum—for example Figs. 1.9 and 1.10 show three transitions for I = 3

2 . The only allowed

transitions are those between adjacent levels because the field H1 couples to the Î+ and Î−
operators, which can only raise or lower the state by one level. However, when [H, Îz] �= 0
the eigenstates | j〉 are superpositions of the |m〉 states and it is possible that 〈 j | Îx |k〉 > 0 for
states that are not adjacent in energy and �m �= ±1 for such a transition. These are so-called
“forbidden” transitions, and generally have weaker transition intensities because the matrix
element 〈 j | Îx |k〉 is smaller. An example is seen in Fig. 1.9. For θ = 90◦, [HQ ,HZ ] �= 0,
and for low fields (H0 	 ωQ /γ) there are more than just 2I transitions possible. In this
case a fourth weaker transition is evident, as seen on the right hand side of the Figure. The
same phenomenon is visible for η �= 0 in Fig. 1.10. For sufficiently large fields H0, the matrix
element |〈 j | Îx |k〉|2 becomes too small to detect the transition.

Plots of frequency versus field such as Figs. 1.9 and 1.10 are critical to understanding the
spectra of single crystals with high spin nuclei. In practice it can be difficult to identify a
particular resonance, which depends on both the orientation as well as the EFG parameters eq
and η. Careful measurements at either constant frequency or constant field, as well as angle
rotational studies, are key to identifying the various NMR quantities such as the EFG and the
magnetic shift (discussed below).

1.3 Hyperfine Couplings

In the previous discussion of the Bloch equations, the parameters T1 and T2 were introduced
as phenomenological parameters to take into account the effect of interactions among nuclear
spins and their environment. These interactions can include magnetic dipolar interactions
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Fig. 1.10 The resonance frequencies of the Hamiltonian (1.34) for I = 3/2 and η = 0.3 as a
function of field and angle. The normalized resonance frequency ω/ωQ is plotted on the vertical
axis, and the field is normalized as γH0/ωQ . The left panel shows the frequency versus field for
θ = 0 (H0 ‖ q), the two center panels shows the frequencies versus the angles θ andφ, respectively,
and the right panel shows the frequencies versus field for θ = φ = 90◦. The square of the matrix
element of the transition is shown on the gray scale legend. For some range of parameters, the
transitions “fade out”—these are “forbidden” transitions

among neighboring nuclei or with nearby electrons. In fact, one of of the most important
interaction for nuclei in condensed matter and strongly correlated systems is the hyperfine
interaction, coupling the nuclear spins to the electron spins:

Hhyp = A Î · S

= AÎz Sz + 1

2
A( Î+S− + Î−S+), (1.47)

where A is the hyperfine constant, typically on the order of 10−8 eV. This constant is often
expressed as A/γ�μB in units of Oe/μB . Typical values are on the order of 10kOe/μB .
This unit is often more useful since it gives an estimate of the size of the hyperfine field that
the electron spin creates at the nucleus. This coupling allows the nuclei to probe both the
static susceptibility, χ0, and the dynamical susceptibility, χ(q,ω), of the electronic degrees
of freedom. The diagonal term AÎz Ŝz gives rise to a static shift of the resonance frequency.

1.3.1 Knight Shift

The Hamiltonian for a nucleus in an external field that experiences a hyperfine
interaction is given by:

H = �ωL Îz + AÎz Sz . (1.48)

For temperatures T � A/kB ∼ 10−4 K, the electron and nuclear spins do not develop any
coherence and therefore we can replace Sz with its thermal averaged value 〈Sz〉 = χH0, where
χ is the magnetic susceptibility of the electronic system. The Hamiltonian can be rewritten
then as:
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H = �ωL (1 + K ) Îz, (1.49)

where the Knight shift, K , measures the percent shift of the resonance frequency from that of
an isolated nucleus (ω0 = γH0). The Knight shift is given by: K = Aχ0/�γμB . In a Fermi
liquid, χ0 is given by the Pauli susceptibility, so K ∼ AN (0) is temperature independent.

This scenario works well for simple metals such as Li and Na, yet there are many cases
where the Knight shift is more complex. In Pt, for example, there are multiple hyperfine
couplings to the d- and sp- bands, and hence several contributions to the total shift [4]. In
many-electron atoms, there is also a core-polarization term, in which the core s electrons
acquire a population difference between the up- and down-spin states. This difference arises
because the orthogonal eigenstates of the many-electron atom get mixed by the perturbing
influence of the external field. In practice, it is difficult to estimate the contribution of a core-
polarization term versus a purely contact term [5]. As a result, hyperfine couplings are usually
taken to be material dependent parameters.

In metals with local moments, such as rare-earth and d-electron systems, there is also a
second hyperfine coupling to these moments that give rise to a strong temperature dependence
of the total shift [6]. In heavy fermion systems the hyperfine coupling is given by:

Ĥhyp = γ� Î · (
A · Sc + B · S f

)
, (1.50)

where A is an on-site hyperfine tensor interaction to the conduction electron spin, and B is a
transferred hyperfine tensor to the f spins [7]. Note that we consider here nuclear spins on the
ligand sites, i.e., not on the f atom nucleus.

Given the two spin species, Sc and S f , there are three different spin susceptibilities: χcc =
〈Sc Sc〉, χc f = 〈Sc S f 〉, and χ f f = 〈S f S f 〉. The full expression for the Knight shift is given
by:

K (T ) = Aχcc(T ) + (A + B) χc f (T ) + Bχ f f (T ). (1.51)

wherewe have absorbed the g-factors into the definition of the hyperfine constants and dropped
the tensor notation for notational simplicity [7]. The bulk susceptibility is given by:

χ(T ) = χcc(T ) + 2χc f (T ) + χ f f (T ). (1.52)

Note that if A = B, then K ∝ χ for all temperatures. However, if χcc(T ), χcc(T ), and
χcc(T ) have different temperature dependences, then the Knight shift will not be proportional
to susceptibility, leading to a Knight shift anomaly at a temperature T ∗. This phenomenon is
illustrated in Fig. 1.11. In this case both χ f f and χc f have different temperature dependences,
thus K and χ stop scaling with one another below T ∗ ∼60K. This temperature corresponds
to the coherence temperature of the Kondo lattice in this compound [8, 9].

1.3.2 Spin Lattice Relaxation

The off diagonal terms of the hyperfine interaction couple neighboring transitions through the
Î± operators. This perturbation corresponds to a spin-flip exchange between the electron spin
and the nuclear spin. These processes do not shift the resonance frequency, but do affect the
dynamics of the nuclei. In fact, this process is crucial to bring about an equilibrium population
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Fig. 1.11 TheKnight shift of the In(1) (red squares) and theCo (blue circles) inCeCoIn5, compared
with the bulk susceptibility, χ(T ) (solid line), in the c-direction. INSET: Kc[(In(1)] and Kc(Co)
versus χc with temperature as an implicit parameter. The solid lines are linear fits to the data for
T > T ∗. T ∗, the temperature where K and χ diverge, is approximately 50K in this case

distribution among the nuclear spin levels. Consider a Fermi liquid with a simple contact
interaction give by (1.50). As the quasiparticles scatter from one nucleus to another, they
maintain essentially the same energy since the nuclear Zeeman energy is orders of magnitude
lower than the Fermi level, and the quasiparticle Zeeman energy can be absorbed by states
within kB T of EF . By using Fermi’s Golden Rule one can show that the spin-lattice-relaxation
rate can be written as:

T −1
1 = γ2A2

∞∫
0

〈Ŝ+(t)Ŝ−(0)〉eiω0t dt, (1.53)

where the brackets indicate a thermal averaged correlation function. In a Fermi liquid, the
states available for scattering the quasiparticles are those at the Fermi surface, and by a simple
counting argument one can show that (1.53) can be written as:

T −1
1 = γ2A2

2

∞∫
0

N (Ei )N (E f ) f (Ei )(1 − f (E f ))d Ei (1.54)

where E f − Ei = �ω0. Since f (E)(1 − f (E)) ≈ kB T δ(E − EF ), we find that T −1
1 ∼

T A2N2(0). In other words, measurements of T −1
1 yield information about the square of the

density of quasiparticle states at the Fermi level. Any changes to the Fermi surface as a function
of temperature, such as the development of a superconducting gap, will be reflected in T −1

1 .

It is also immediately obvious that T1T K 2 ≡ K is constant in a Fermi liquid. This Korringa



1 Nuclear Magnetic Resonance as a Probe ... 23

Fig. 1.12 The phase diagram
of CeCoIn5 in high field as
determined by specific heat
[11]. Solid points represent
second order phase transitions
and open points are first order
transitions. The solid blue
squares are the points at
which the spectra in Figs. 1.14
and 1.15 were obtained
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constant, K = π2�γ2/μ2B , is valid for non-interacting systems. In practice K is found often
to deviate from unity, which is usually taken as a measure of the strength of the quasiparticle
interactions [10].

The expression (1.53) can be rewritten also in terms of the dynamical susceptibility:

T −1
1 = γ2kB T lim

ω→0

∑
q

A2(q)
χ′′(q, γ)

�ω
, (1.55)

where the form factor A2(q) is the square of the Fourier transform of the hyperfine interaction,
and the sum over q is over the first Brillouin zone [12]. For a contact interaction, A2(q) is
constant, but formore complex situations involving transferred couplings between neighboring
sites, A2(q) can have structure and may vanish at particular wavevectors. A q-dependent form
factor can have profound consequences for the behavior of T −1

1 in materials. A notorious

example is the difference in T −1
1 observed for the planar Cu and planar O in the cuprates [13].

Each nucleus has a different form factor and the dynamical susceptibility of this material is
dominated by fluctuations at a particular wavevector, Q. Since A2(q) vanishes for the O site
but not for the Cu site, the two spin-lattice-relaxation rates have very different temperature
dependences, even though they are coupled to the same degree of freedom, the Cu 3d9 S = 1/2
spins.

1.4 Case Study: Field Induced Magnetism

The heavy-fermion superconductor CeCoIn5 has attracted considerable attention since its
discovery in 2001, and NMR has played a central role in elucidating the novel physics
of this strongly correlated electron system [14]. Of particular interest is a magnetic field
induced phase (the Q phase) that emerges close to the upper critical field Hc2 (see Fig. 1.12).
This material is an unconventional d-wave superconductor that also exhibits non-Fermi liq-
uid behavior associated with proximity to an antiferromagnetic quantum critical point. The
normal state quasiparticles have an enhanced mass and a large magnetic susceptibility, and
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(a) (b)

Fig. 1.13 a The frequency versus field relationship for the In(1) and In(2) sites in CeCoIn5 for the
field located in the ab plane. There are two distinct In(2) sites in this orientation because the field
can point either parallel or perpendicular to the principal EFG axis, q. The inset shows the unit cell.
b The position of the two In(2) resonances as a function of the angle, φ in the ab plane

consequently the superconducting state is Pauli limited [15]. This means that for sufficiently
large magnetic fields the superconductivity is destroyed by breaking apart the Cooper pair
singlets rather than by orbital currents as in more common orbital limited superconduc-
tors. In Pauli limited superconductors the condensate is expected theoretically to form long
wavelength modulations in which the Cooper pairs develop finite momenta in certain lim-
its [16–18]. This so-called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting phase
was first predicted to exist in Pauli-limited superconductors several decades ago, but an
experimental realization has proved elusive. The field-induced phase of CeCoIn5 was identi-
fied initially as an FFLO phase based on bulk thermodynamic measurements [11, 19–21].

Subsequent NMR work, however, revealed a much more complex picture [22]. This mate-
rial is ideal for NMR studies because there are multiple NMR active sites in the unit cell.
There are two In sites per unit cell (115In has spin I = 9/2), and one Co site (59Co has
spin I = 7/2). The In(1) site has axial symmetry and is located in the Ce-In plane, and the
In(2) site has lower symmetry and is located on the lateral faces of the unit cell (see inset
of Fig. 1.13). The EFG parameters of both sites are well known (νQ = 8.173MHz, η = 0
for the In(1) and νzz = 15.489MHz, η = 0.386 for the In(2), and the frequency versus field
relationship for this material is shown in Fig. 1.13 [8]. In this case there are two In(2) sites
since the external magnetic field can point either parallel or perpendicular to the unit cell face,
and the principal axis of the EFG (q) points towards the center of the unit cell. These two sites
are sometimes referred to In(2a) (H0 || q) and In(2b) (H0 ⊥ q ⊥ ĉ). Thus there are four
unique crystallographic sites that can be probed with NMR in the Q phase.

Initial NMR studies focused solely on the In(1) site and found dramatic changes to the
Knight shift that were interpreted as evidence for the FFLO phase [21, 23, 24]. Amore careful
study looking at all fourNMRsites revealed the presenceof incommensurate antiferromagnetic
order in contrast to the standard predictions for the FFLO phase [18, 22, 25]. Figures1.14
and 1.15 show the In and Co spectra at constant field as a function of temperature. Each site
clearly exhibits a different response in the Q phase. There is a discontinuity in the Knight shift
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Fig. 1.14 NMR spectra of the Co and the In(1) site in CeCoIn5 acquired in a field of 11.1T (left)
and 11.485T (right). The light blue spectra are in the normal state, the green are within 20mK of a
phase transition, the orange are in the mixed (vortex) phase, and the purple are in the field induced
antiferromagnetic phase. Reproduced from [22]

(and hence the resonance frequency) due to the first order nature of the phase transition as
the temperature is lowered through Tc. Deep within the Q phase, the In(1) and Co resonances
are somewhat broadened and shifted, but remain relatively unaffected. For the In(2b) site
the spectrum broadens by several MHz and develops a two-peaked pattern consistent with
the presence of long range antiferromagnetic order. Several subsequent NMR and neutron
scattering experiments confirmed the presence of this static antiferromagnetism [26–29].

The lack of splitting in the spectra of the In(1) and Co sites coupled with the broad double-
peak structure of the In(2b) spectra place strong constraints on the possible magnetic structure.
The spectrum is split into two peaks because the hyperfine field at the In(2b) site is either
parallel or perpendicular to the applied field. However the relationship between the direction
of the ordered Cemoments and that of the hyperfine field is non-trivial. Young et al. proposed a
minimal model where the magnetic structure consists of ordered local Ce spins with moments
S0 along the applied magnetic field direction (along [100]), with an ordering wavevector of
the form Q = π( 1+δ

a , 1
a , 1

c ). The structure of the NMR spectra revealed the incommensurate
nature, but the value of themodulation δ remained undetermined since the hyperfine field at the
In(2) site depends on the product of the size of the orderedmoment and the incommensuration.
A more complete analysis of the static hyperfine fields that develop at each of these sites
for different magnetic structures and orientations of the ordered Ce moments suggested that
for H || [100] the spins are oriented as S0 || [001] and the incommensurate wavevector is
Qi ⊥ S0, as summarized in Fig. 1.16 [30]. Recent detailed studies of the evolution of the
In(2b) spectrum as a function of temperature and field have revealed a continuous growth
of the antiferromagnetic order parameter in this phase (see Fig. 1.17). The antiferromagnetic
order parameter vanishes above Hc2, indicating that the physical origin of the Q phase is tied
closely to the presence of the superconductivity.

Neutron diffraction experiments confirmed the presence of static long range incommensu-
rate antiferromagnetism in the Q phase, both for the field along [100] and along [110], as well
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Fig. 1.15 Spectra of the In(1) and In(2b) in CeCoIn5 acquired at 11.1 T. The In(1) transition
at shifts down in frequency below Tc, and the In(2b) shifts up due to the first order normal to
superconducting phase transition. The In(2b) spectra develop two split peaks at low temepartures
due to the antiferromagnetic ordering. Reproduced from [22]

as directly measured δ [31, 32]. A crucial observation was that δ is independent of the applied
field, in contrast to the predictions for the FFLO phase. In an FFLO phase, the incommensurate
wavevector of the superconducting order parameter is field dependent.

The discovery of static antiferromagnetism in this field induced phase has spurred con-
siderable theoretical interest. A key question is whether the magnetic order is a consequence
of an instability of the superconductivity that gives way to a more complex form of coex-
isting FFLO and antiferromagnetism, or whether the magnetism is tied to the proximity to
a quantum critical point. A Ginzburg-Landau analysis of the coupled superconducting and
antiferromagnetic order parameters, Δ(r) and M(r), indicates that if the superconductivity
develops modulations as prescribed by the FFLO scenario, then M can also develop such
modulations [27]. Such a state may be described by pair density wave (PDW) condensate,
whichmay also carry a small spin-triplet component [33–35]. An alternative description is that
the antiferromagnetism develops as a spin density wave (SDW) between the Fermi pockets
that emerge at the d-wave nodes of the superconducting order parameter [36]. In a magnetic
field the Zeeman interaction shifts the quasiparticle spectrum such that the nodes develop into
pockets. These pockets are nested, and since the normal state of thismaterial already has strong
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Fig. 1.16 Hyperfine fields and ordered moments in the field induced phase of CeCoIn5. The
in-plane tetragonal structure is outlined in gray. The Ce atoms are yellow, and their moments
are indicated by red arrows pointing along [100]. The In(1) atoms are orange, and the Co are not
shown. The In(2a) are blue and the In(2b) are green. The hyperfine fields are indicated by blue
arrows, and the direction of B0 is shown by the black arrow. Reproduced from [30]

Fig. 1.17 Spectra of the In(1)
and In(2b) at several different
fields at 50 mK. The inset
shows the temperature
dependence of the internal
field at the In(2b) site.
Reproduced from [29]

antiferromagnetic fluctuations at the wavevector Q = (π/a,π/a) the quasiparticles can form
an SDW. In this picture the superconducting order parameter is not modulated. Furthermore
this scenario is consistent with the observation that the ordering wavevector Q is independent
of the orientation of the field in the plane [32].

In summary, NMR has played a crucial role in the discovery and subsequent characteri-
zation of the field induced phase of CeCoIn5, illustrating a fascinating example of correlated
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electron behavior in condensed matter. At present there remains no consensus as to the origin
of the antiferromagnetism, which emerges in a region of parameter space where the Zeeman
energy of the electrons, the superconducting condensate energy, and the Kondo exchange
between the local moments and the conduction electrons are all on the same order of mag-
nitude. Furthermore, recent detailed NMR studies of the In(1) and In(2a) sites suggest that
the superconducting order parameter �(r) may also be spatially modulated [29]. It is unclear,
however, that the length scale of such a modulation is tied with that of the antiferromagnetism,
or if this behavior reflects a more complex FFLO state. In addition, recent NMR data has
suggested an unusual behavior of the vortex lattice phase in fields Hc1 < H < H∗, where
H∗ ≈ 10 T low field boundary of the Q phase [28]. For moderate fields the NMR linewidth
is significantly broader than that expected for a conventional Abrikosov vortex lattice, and
it has been suggested that there is yet another phase present in this field range. It remains
unclear whether these observations are consistent with a true thermodynamic phase or are
a manifestation of slow spin fluctuations close to the phase boundary. Undoubtedly further
NMR work will continue to reveal new information about this exotic new phase of strongly
correlated electron matter.
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Chapter 2
ARPES: A Probe of Electronic Correlations

Riccardo Comin and Andrea Damascelli

Abstract Angle-resolved photoemission spectroscopy (ARPES) is one of the most
direct methods of studying the electronic structure of solids. By measuring the kinetic
energy and angular distribution of the electrons photoemitted from a sample illumi-
nated with sufficiently high-energy radiation, one can gain information on both the
energy and momentum of the electrons propagating inside a material. This is of vital
importance in elucidating the connection between electronic, magnetic, and chem-
ical structure of solids, in particular for those complex systems which cannot be
appropriately described within the independent-particle picture. Among the various
classes of complex systems, of great interest are the transition metal oxides, which
have been at the center stage in condensed matter physics for the last four decades.
Following a general introduction to the topic, we will lay the theoretical basis needed
to understand the pivotal role of ARPES in the study of such systems. After a brief
overview on the state-of-the-art capabilities of the technique, we will review some
of the most interesting and relevant case studies of the novel physics revealed by
ARPES in 3d-, 4d- and 5d-based oxides.

2.1 Introduction

Since their original discovery, correlated oxides have been extensively studied using
a variety of experimental techniques and theoretical methods, thereby attracting an
ever-growing interest by the community. It was soon realized that the low-energy
electronic degrees of freedom were playing a key role in determining many of
their unconventional properties, with the concepts of “correlations” and “many-body
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physics” gradually becoming part of the everyday dictionary of many condensed-
matter physicists. It was only around the mid 90’s that a series of considerable
technological advancements, allowing for unprecedentedly high momentum- and
energy-resolutions, made ARPES one of the prime techniques for the study of
correlated materials. We will show, by discussing the required theoretical basis in
conjunction with a few selected case studies, how the experimental information
directly accessible using ARPES provides a unique and rich perspective towards the
understanding of the electronic properties of these materials at the microscopic level.

The correlated materials treated here belong to the ample (and growing) class
of transition metals oxides (TMOs). Despite giving rise to a rich variety of dis-
tinctive unconventional phenomena, these systems all share the same basic struc-
tural elements: TM-O6 (near) octahedral units, where a central transition metal
(TM) cation TMn+ is coordinated to 6 neighboring O2− anions, sitting at positions
δ={(±ax ,±ay,±az)}, ai being the TM-O nearest neighbor bond length (along the
axis î). Most TMOs possess either cubic (ax =ay =az) or tetragonal (ax =ay �=az)
TM-O6 units, although deviations from these two local symmetries are also present
in some compounds. The remaining elements in the structure primarily serve the
purpose of completing the stoichiometry and also, in most cases, to help control-
ling certain material parameters (e.g. doping, bandwidth, structure, magnetism). The
delicate interplay between the localized physics taking place within these building
blocks, and the delocalized behaviour emerging when such local units are embedded
in a crystalline matrix, is what makes these systems so complex and fascinating.

We will discuss the emerging physics in this class of materials, as one goes from the
row of 3d to that of 5d transition metals. This is schematically illustrated in Fig. 2.1,
where the relevant elements are highlighted (see caption). The phenomenology of
correlated oxides can be understood in terms of the competition between charge
fluctuation (favored by the O-2p electrons) and charge localization (driven by the
TM-d electrons). The peculiarity of 3d and 4f shells is that the radial part of the wave
functions has an extension which is small compared to typical interatomic distances,
as opposed to the oxygen 2p orbitals which are more extended. This follows from the
fact that the average squared radius 〈r2〉nl of the atomic wavefunctions decreases with
increasing angular quantum number l. As a results, the localized 3d and 4f electrons
are not well described within the independent particle picture, where electrons are
assumed to interact with the average (electronic) charge density, which is hardly
affected by the motion of a single electron. In reality, for the tightly confined 3d and
4f electrons, the addition of an extra electron in the same shell entails a large energy
cost given by the strong increase in Coulomb repulsion U. This is at the heart of
what is referred to as strongly-correlated electron behavior, and it underlies most of
the spectacular phenomena observed in these materials. As a result, all the relevant
degrees of freedom—charge, spin, orbital and lattice—are deeply entangled, and
their mutual interplay is what governs the low-energy physics.

Over time experimentalists have learned how to tune this delicate interplay by
means of selected control parameters—bandwidth, band filling, and dimensionality.
All of these parameters are primarily tuned chemically (e.g. via the choice of the
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Fig. 2.1 Building blocks of correlated materials and related control parameters. U refers to the
on-site Coulomb repulsion, whereas W indicates the bandwidth of the valence band, proportional
to the electron hopping amplitude in the lattice. The yellow and blue circles pictorially represent
the two extreme cases for an atomic wavefunction having U � W and U � W , respectively. Blue
boxes indicate those elements exhibiting strongly localized physics (U � W ), due to the presence
of localized 3d (transition metals) and 4f (rare earths) orbitals. Correlated physics emerges when
these species form oxide compounds, and the localized d orbitals mix with the delocalized O
2p states. In this chapter we will review: 3d-based materials, such as manganites, cobaltates, and
cuprates, the 4d-based ruthenates and rhodates, and the 5d-based iridates. The phase diagrams for the
special cases of Cu-based (from [1]) and Ru-based (from [2]) oxides, which exhibit unconventional
superconductivity, are expanded in the bottom right and left panels, respectively

specific TM ion, or by carrier doping) but they can also be controlled experimentally
(e.g. by means of pressure, EM fields, or in-situ doping). The resulting novel
phenomena and materials include Kondo physics [3] and heavy fermion systems [4]
(found especially in—but not limited to—4f -based materials), Mott-Hubbard/charge-
transfer insulators [5] (e.g. CuO, NiO, CoO, MnO), unconventional superconductiv-
ity [6–8] (cuprates, such as e.g. La2CuO4, and also Sr2RuO4), spin-charge ordering
phenomena [9, 10] (e.g. La2CoO4, La2NiO4, La1−x Cax MnO3), and colossal mag-
netoresistance [11] (La2−x Srx Mn2O7). Remarkably, some of these phenomena can
be found in the very same phase diagram, as is the case of Cu- and Ru-oxides (see
bottom-right and bottom-left phase diagrams in Fig. 2.1, respectively).

To better elucidate the origin and nature of correlated behaviour, we will first
discuss one of the most fascinating manifestations of the novel, correlated physics
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arising from the spatial extent of p- and d-orbitals: the Mott insulator. In order to
understand the origin of this concept, it is useful to start from classical band theory.
One of the fundamental paradigms of band theory affirms that the nature of the elec-
tronic ground state in a single-band material is entirely determined by the band filling,
which is directly related to the number of electrons NUC in the unit cell: if NUC is
odd (even), the system must be metallic (insulating). For this reason, the discovery
of insulating TMOs having odd NUC came as a surprise. The breakdown of single-
particle physics, and consequently of band theory (where electrons are assumed to
interact only with the lattice ionic potential and the average electronic density), was
originally suggested by Sir. Neville Mott [12]. This new category of correlated insu-
lators is the manifestation of the dominant role of on-site interactions in 3d oxides: at
half-filling (1 electron per site), the large on-site Coulomb repulsion (parametrized
by the Hubbard parameter U) between the strongly localized 3d electrons makes
hopping processes unfavourable, thus leading to charge localization and subsequent
insulating behaviour, with a gap in the electronic spectrum opening up at the chem-
ical potential. When the lowest occupied and the first unoccupied bands both have
mainly TM-d orbital character, as in Fig. 2.2a, we use the term Mott insulator. The
presence of a Mott gap, with its characteristic scale of order U, is therefore a hallmark
of correlated behaviour in these systems. The lowest electron removal and addition
states (bands) are respectively termed lower Hubbard band (LHB) and upper Hub-
bard band (UHB). This is sketched in Fig. 2.2a, where a gap at the chemical potential
is separating the LHB and UHB (both having mainly 3d-character).

The stability of a Mott-Hubbard insulating ground state against a delocalized
metallic behavior lies in the fulfilment of the Mott criterion, i.e. U > W , which
establishes the condition for the localizing energy scale (U) to overcome the delo-
calizing ones (the bandwidth W, proportional to intersite hopping). This criterion
is based on the prerequisite that the correlated d-states are the lowest-lying ones,
i.e. those closest to EF . While this is in most cases true, it fails to hold for the late
3d transition metals [5, 13], where ε3d < ε2p instead, ε being the orbital on-site
energy (or the band center-of-mass in a delocalized picture). In such cases we talk
of charge-transfer insulators [5], the denomination following from the fact that the
lowest-energy excitation involves the transfer of one electron from the last occupied
band, of O-2p character, onto the first unoccupied band, of TM-3d character. This
is depicted in Fig. 2.2b, where now the charge-transfer gap separates the 3d-derived
UHB and the O 2p-derived valence band. A comprehensive classification can be
found in [5].

The bandwidth W and Coulomb repulsion U are not the only relevant energy
scales in the field of correlated materials. More recently, a new class of materials has
appeared on the stage, that are based on the late 5d transition metals (osmium, irid-
ium), and whose electronic states have to be treated within a relativistic framework,
due to the heavier nuclear mass. This results in a new energy scale making its way
into the problem: spin-orbit (SO) interaction, whose strength will be indicated by
ζSO . This new element in the Hamiltonian, despite being a single-particle term (com-
ing from the expansion of the single-fermion Dirac Hamiltonian), strongly affects
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(a) (b) (c)

Fig. 2.2 Different types of correlated quantum states of matter discovered in transition metal oxides.
The energy axis refers to spectrum of many-body excitations, with the Fermi Energy EF separating
the electron addition part (N + 1, above EF ) from the electron removal part (N − 1, below EF ). a
when d-states are close to EF (i.e., they are the lowest-ionization states), the partially-filled d-band
is split into a lower (LHB) and an upper Hubbard band (UHB) by the action of U. Whenever U >W
a gap opens up at EF . b same as (a), but now the last occupied band has O-2p character, since U is
larger than the Cu-O charge-transfer energy Δ; the corresponding gap is a charge-transfer gap. c the
action of spin-orbit (SOC) interaction splits the t2g manifold into Je f f =3/2 and 1/2 submanifolds.
The latter is higher in energy and lies close to EF . Again, the action of U can open a Mott-like gap,
but this hinges on the previous SOC-induced splitting of the t2g band

the balance governing the interplay between W and U, making the previously intro-
duced Mott criterion not sufficient. This results in the emergence of a new class of
correlated quantum states of matter, the relativistic Mott insulator, in which on-site
Coulomb repulsion and spin-orbit interaction have to be treated on equal footing.
The idea behind the existence of such a state is sketched in Fig. 2.2c. To summarize,
we have introduced three different classes of correlated TMOs:

1. Mott-Hubbard insulators—Fig. 2.2a.
2. Charge-transfer insulators—Fig. 2.2b.
3. Relativistic Mott insulators—Fig. 2.2c.

Please note that the 4d-based oxides have been left out of this overview, as the pres-
ence of Mott physics in such systems is still debated, although they host a variety of
different many-body phenomena, including relativistic correlated metallic behavior
and unconventional superconductivity.

It is then clear how, as one goes down from 3d to 5d materials, U progressively
decreases whereas a new energy scale, spin-orbit coupling, gains importance and
thus has to be accounted on equal footing. The evolution of U/W and the interplay
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with SO from 3d to 5d will be the focus of this review. In the last section of this
chapter we will present a few selected examples which illustrate the different flavors
of correlated electrodynamics in various TMOs (cuprates, manganites, cobaltates,
ruthenates, rhodates, and iridates), and discuss the role of ARPES for quantitative
and qualitative estimates of correlation effects in these systems.

2.2 The ARPES Technique1

Photoelectron spectroscopy is a general term that refers to all those techniques based
on the application of the photoelectric effect originally observed by Hertz [15] and
later explained as a manifestation of the quantum nature of light by Einstein [16], who
recognized that when light is incident on a sample an electron can absorb a photon
and escape from the material with a maximum kinetic energy Ekin =hν−φ (where
ν is the photon frequency and φ, the material work function, is a measure of the
potential barrier at the surface that prevents the valence electrons from escaping, and
is typically 4–5 eV in metals). In the following, we will show how the photoelectric
effect also provides us with deep insights into the quantum description of the solid
state. In particular, we will give a general overview of angle-resolved photoemission
spectroscopy (ARPES), a highly advanced spectroscopic method that allows the
direct experimental study of the momentum-dependent electronic band structure
of solids. For a further discussion of ARPES and other spectroscopic techniques
based on the detection of photoemitted electrons, we refer the reader to the extensive
literature available on the subject [1, 17–47].

As we will see in detail throughout the paper and in particular in Sect. 2.4, due
to the complexity of the photoemission process in solids the quantitative analysis of
the experimental data is often performed under the assumption of the independent-
particle picture and of the sudden approximation (i.e., disregarding the many-body
interactions as well as the relaxation of the system during the photoemission itself).
The problem is further simplified within the so-called three-step model (Fig. 2.3a),
in which the photoemission event is decomposed in three independent steps: optical
excitation between the initial and final bulk Bloch eigenstates, travel of the excited
electron to the surface, and escape of the photoelectron into vacuum after transmis-
sion through the surface potential barrier. This is the most common approach, in
particular when photoemission spectroscopy is used as a tool to map the electronic
band structure of solids. However, from the quantum-mechanical point of view pho-
toemission should not be described in terms of several independent events but rather
as a one-step process (Fig. 2.3b): in terms of an optical transition (with probabil-
ity given by 2.10) between initial and final states consisting of many-body wave
functions that obey appropriate boundary conditions at the surface of the solid. In
particular (see Fig. 2.4), the initial state should be one of the possible N -electron
eigenstates of the semi-infinite crystal, and the final state must be one of the eigen-
states of the ionized (N−1)-electron semi-infinite crystal; the latter has also to include

1 Parts of the following sections have been readapted from our previous publications, [1, 14].
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Fig. 2.3 Pictorial representation of three-step and one-step model description of the photoemission
process (from [30])

a component consisting of a propagating plane-wave in vacuum (to account for the
escaping photoelectron) with a finite amplitude inside the crystal (to provide some
overlap with the initial state). Furthermore, as expressed by 2.10, which represents
a complete one-step description of the problem, in order for an electron to be pho-
toemitted in vacuum not only there must be a finite overlap between the amplitude
of initial and final states, but the following energy and momentum conservation laws
for the impinging photon and the N -electron system as a whole must also be obeyed:

E N
f − E N

i = hν (2.1)

kN
f − kN

i = khν . (2.2)

Here the indexes i and f refer to initial and final state, respectively, and khν is the
momentum of the incoming photon. Note that, in the following, when proceeding
with the more detailed analysis of the photoemission process as well as its application
to the study of the momentum-dependent electronic structure of solids (in terms
of both conventional band mapping as well as many-body effects), we will mainly
restrict ourselves to the context of the three-step model and the sudden approximation.
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2.3 Kinematics of Photoemission

The energetics and kinematics of the photoemission process are shown in Figs. 2.5
and 2.6, while the geometry of an ARPES experiment is sketched in Fig. 2.7a. A
beam of monochromatized radiation supplied either by a gas-discharge lamp, a UV
laser, or a synchrotron beamline is incident on a sample (which has to be a properly
aligned single crystal in order to perform angle- or, equivalently, momentum-resolved
measurements). As a result, electrons are emitted by photoelectric effect and escape
into the vacuum in all directions. By collecting the photoelectrons with an electron
energy analyzer characterized by a finite acceptance angle, one measures their kinetic
energy Ekin for a given emission direction. This way, the wave vector or momentum
K=p/� of the photoelectrons in vacuum is also completely determined: its modulus
is given by K =√

2m Ekin/� and its components parallel (K|| = Kx ûx + Ky ûy) and
perpendicular (K⊥ = Kz ûz) to the sample surface are obtained in terms of the polar
(ϑ) and azimuthal (ϕ) emission angles defined by the experiment:

Kx = 1

�

√
2m Ekin sin ϑ cos ϕ (2.3)

Ky = 1

�

√
2m Ekin sin ϑ sin ϕ (2.4)

Kz = 1

�

√
2m Ekin cos ϑ . (2.5)

The goal is then to deduce the electronic dispersion relations E(k) for the solid
left behind, i.e. the relation between binding energy EB and momentum k for the
electrons propagating inside the solid, starting from Ekin and K measured for the
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photoelectrons in vacuum. In order to do that, one has to exploit the total energy
and momentum conservation laws ((2.1) and (2.2), respectively). Within the non-
interacting electron picture, it is particularly straightforward to take advantage of the
energy conservation law and relate, as pictorially described in Fig. 2.5, the kinetic
energy of the photoelectron to the binding energy EB of the electronic-state inside
the solid:

Ekin = hν − φ − |EB | . (2.6)

More complex, as we will discuss below, is to gain full knowledge of the crystal
electronic momentum k. Note, however, that the photon momentum can be neglected
in (2.2) at the low photon energies most often used in ARPES experiments (hν <

100 eV), as it is much smaller than the typical Brillouin-zone dimension 2π/a of a
solid (see Sect. 2.7 for more details). As shown in Fig. 2.6, within the three-step model
description (see also Sect. 2.4), the optical transition between the bulk initial and final
states can be described by a vertical transition in the reduced-zone scheme (k f −ki =
0), or equivalently by a transition between momentum-space points connected by a
reciprocal-lattice vector G in the extended-zone scheme (k f −ki = G). In regard to
(2.1) and (2.2) and the deeper meaning of the reciprocal-lattice vector G note that,
as emphasized by Mahan in his seminal paper on the theory of photoemission in
simple metals [49], “in a nearly-free-electron gas, optical absorption may be viewed
as a two-step process. The absorption of the photon provides the electron with the
additional energy it needs to get to the excited state. The crystal potential imparts
to the electron the additional momentum it needs to reach the excited state. This
momentum comes in multiples of the reciprocal-lattice vectors G. So in a reduced
zone picture, the transitions are vertical in wave-vector space. But in photoemission,
it is more useful to think in an extended-zone scheme.” On the contrary in an infinite
crystal with no periodic potential (i.e., a truly free-electron gas scenario lacking
of any periodic momentum structure), no k-conserving transition is possible in the
limit khν = 0, as one cannot go from an initial to a final state along the same
unperturbed free-electron parabola without an external source of momentum. In
other words, direct transitions are prevented because of the lack of appropriate final
states (as opposed to the periodic case of Fig. 2.6). Then again the problem would
be quite different if the surface was more realistically taken into account, as in a
one-step model description of a semi-infinite crystal. In fact, while the surface does
not perturb the translational symmetry in the x–y plane and k‖ is conserved to within
a reciprocal lattice vector G‖, due to the abrupt potential change along the z axis the
perpendicular momentum k⊥ is not conserved across the sample surface (i.e., k⊥ is
not a good quantum number except for deeply into the solid, contrary to k||). Thus,
the surface can play a direct role in momentum conservation, delivering the necessary
momentum for indirect transitions even in absence of the crystal potential (i.e., the
so-called surface photoelectric effect; see also (2.10) and the related discussion).

Reverting to the three-step model direct-transition description of Fig. 2.6, the
transmission through the sample surface is obtained by matching the bulk Bloch
eigenstates inside the sample to free-electron plane waves in vacuum. Because of
the translational symmetry in the x–y plane across the surface, from these match-
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photoelectrons (right), is more conveniently expressed in terms of the binding energy EB (left)
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ing conditions it follows that the parallel component of the electron momentum is
conserved in the process:

|k‖| = |K‖| = 1

�

√
2m Ekin · sin ϑ (2.7)

where k‖ is the component parallel to the surface of the electron crystal momentum
in the extended-zone scheme (upon going to larger ϑ angles, one actually probes
electrons with k‖ lying in higher-order Brillouin zones; by subtracting the corre-
sponding reciprocal-lattice vector G‖, the reduced electron crystal momentum in
the first Brillouin zone is obtained). As for the determination of k⊥, which is not
conserved but is also needed in order to map the electronic dispersion E(k) versus
the total crystal wave vector k, a different approach is required. As a matter of fact,
several specific experimental methods for absolute three dimensional band mapping
have been developed [30, 50, 51]; however, these are rather complex and require
additional and/or complementary experimental data. Alternatively, the value of k⊥
can be determined if some a priori assumption is made for the dispersion of the
electron final states involved in the photoemission process; in particular, one can
either use the results of band structure calculations, or adopt a nearly-free-electron
description for the final bulk Bloch states:
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E f (k) = �
2k2

2m
− |E0| = �

2(k‖2 + k⊥2)

2m
− |E0| (2.8)

where once again the electron momenta are defined in the extended-zone scheme, and
E0 corresponds to the bottom of the valence band as indicated in Fig. 2.6 (note that
both E0 and E f are referenced to the Fermi energy EF , while Ekin is referenced to
the vacuum level Ev). Because E f = Ekin + φ and �

2k2‖/2m = Ekin sin2 ϑ, which
follow from Fig. 2.6 and (2.7), one obtains from (2.8):

k⊥ = 1

�

√
2m(Ekin cos2 ϑ + V0) . (2.9)

Here V0 = |E0| + φ is the inner potential, which corresponds to the energy of
the bottom of the valence band referenced to vacuum level Ev . From (2.9) and the
measured values of Ekin and ϑ, if V0 is also known, one can then obtain the corre-
sponding value of k⊥. As for the determination of V0, three methods are generally
used: (i) optimize the agreement between theoretical and experimental band map-
ping for the occupied electronic state; (ii) set V0 equal to the theoretical zero of
the muffin tin potential used in band structure calculations; (iii) infer V0 from the
experimentally observed periodicity of the dispersion E(k⊥). The latter is actually
the most convenient method as the experiment can be realized by simply detecting
the photoelectrons emitted along the surface normal (i.e., K‖ =0) while varying the
incident photon energy and, in turn, the energy Ekin of the photoelectrons and thus
Kz (see (2.5)). Note that the nearly-free electron approximation for the final states is
expected to work well for materials in which the Fermi surface has a simple spher-
ical (free-electron-like) topology such as in the alkali metals, and for high-energy
final states in which case the crystal potential is a small perturbation (eventually the
final-state bands become so closely spaced in energy as to form a continuum, and
the details of the final states become unimportant). However this approximation is
also often used for more complicated systems, even if the initial states are not-free
electron-like.

A particular case in which the uncertainty in k⊥ is less relevant is that of the
low-dimensional systems characterized by an anisotropic electronic structure and,
in particular, a negligible dispersion along the z axis (i.e., the surface normal, see
Fig. 2.7a). The electronic dispersion is then almost exclusively determined by k‖ (as
in the case of many transition metal oxides, such as for example the two-dimensional
copper oxide superconductors [1]). As a result, one can map out in detail the elec-
tronic dispersion relations E(k) simply by tracking, as a function of K‖, the energy
position of the peaks detected in the ARPES spectra for different take-off angles (as
in Fig. 2.7b, where both direct and inverse photoemission spectra for a single band
dispersing through the Fermi energy EF are shown). Furthermore, as an additional
bonus associated with the lack of a z dispersion, one can directly identify the width of
the photoemission peaks as the lifetime of the photohole [53], which contains infor-
mation on the intrinsic correlation effects of the system and is formally described by
the imaginary part of the electron self energy (see Sect. 2.5). On the contrary, in 3D
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systems the linewidth contains contributions from both photohole and photoelectron
lifetimes, with the latter reflecting final state scattering processes and thus the finite
probing depth; as a consequence, isolating the intrinsic many-body effects becomes
a much more complicated problem.

2.4 Three-Step Model and Sudden Approximation

To develop a formal description of the photoemission process, one has to calculate the
transition probability w f i for an optical excitation between the N -electron ground
state Ψ N

i and one of the possible final states Ψ N
f . This can be approximated by

Fermi’s golden rule:

w f i = 2π

�
|〈Ψ N

f |Hint |Ψ N
i 〉|2δ(E N

f − E N
i − hν) (2.10)

where E N
i = E N−1

i − Ek
B and E N

f = E N−1
f + Ekin are the initial and final-state

energies of the N -particle system (Ek
B is the binding energy of the photoelectron with

kinetic energy Ekin and momentum k). The interaction with the photon is treated as
a perturbation given by:

Hint = e

2mc
(A·p + p·A) = e

mc
A·p (2.11)

where p is the electronic momentum operator and A is the electromagnetic vector
potential (note that the gauge � = 0 was chosen for the scalar potential �, and the
quadratic term in A was dropped because in the linear optical regime it is typically
negligible with respect to the linear terms). In (2.11) we also made use of the com-
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mutator relation [p, A]=−i�∇ · A and dipole approximation (i.e., A constant over
atomic dimensions and therefore ∇ · A=0, which holds in the ultraviolet). Although
this is a routinely used approximation, it should be noted that ∇ ·A might become
important at the surface where the electromagnetic fields may have a strong spatial
dependence. This surface photoemission contribution, which is proportional to (ε−1)
where ε is the medium dielectric function, can interfere with the bulk contribution
resulting in asymmetric lineshapes for the bulk direct-transition peaks [27, 54–56].
At this point, a more rigorous approach is to proceed with the so-called one-step
model (Fig. 2.3b), in which photon absorption, electron removal, and electron detec-
tion are treated as a single coherent process [49, 57–70]. In this case bulk, surface, and
vacuum have to be included in the Hamiltonian describing the crystal, which implies
that not only bulk states have to be considered but also surface and evanescent states,
as well as surface resonances (see Fig. 2.4). Note that, under the assumption ∇·A=0,
from (2.11) and the commutation relation [H0, p]= i�∇V (where H0 =p2/2m+V
is the unperturbed Hamiltonian of the semi-infinite crystal) it follows that the matrix
elements appearing in (2.10) are proportional to 〈Ψ N

f |A ·∇V |Ψ N
i 〉. This explicitly

shows that for a true free-electron like system it would be impossible to satisfy simul-
taneously energy and momentum conservation laws inside the material because there
∇V = 0. The only region where electrons could be photoexcited is at the surface
where ∂V/∂z �= 0, which gives rise to the so-called surface photoelectric effect.
However, due to the complexity of the one-step model, photoemission data are usually
discussed within the three-step model (Fig. 2.3a), which, although purely phenom-
enological, has proven to be rather successful [61, 71, 72]. Within this approach, the
photoemission process is subdivided into three independent and sequential steps:

(i) Optical excitation of the electron in the bulk.
(ii) Travel of the excited electron to the surface.

(iii) Escape of the photoelectron into vacuum.

The total photoemission intensity is then given by the product of three independent
terms: the total probability for the optical transition, the scattering probability for the
travelling electrons, and the transmission probability through the surface potential
barrier. Step (i) contains all the information about the intrinsic electronic structure
of the material and will be discussed in detail below. Step (ii) can be described in
terms of an effective mean free path, proportional to the probability that the excited
electron will reach the surface without scattering (i.e., with no change in energy
and momentum). The inelastic scattering processes, which determine the surface
sensitivity of photoemission (see Sect. 2.7), give rise to a continuous background
in the spectra which is usually ignored or subtracted. Step (iii) is described by a
transmission probability through the surface, which depends on the energy of the
excited electron and the material work function φ (in order to have any finite escape
probability the condition �

2k2⊥/2m ≥ |E0| + φ must be satisfied).
In evaluating step (i), and therefore the photoemission intensity in terms of the

transition probability w f i , it would be convenient to factorize the wavefunctions
in (2.10) into photoelectron and (N −1)-electron terms, as we have done for the
corresponding energies. The final state Ψ N

f then becomes:
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Ψ N
f = Aφk

f Ψ N−1
f (2.12)

where A is an antisymmetric operator that properly antisymmetrizes the N -electron
wavefunction so that the Pauli principle is satisfied, φk

f is the wavefunction of the

photoelectron with momentum k, and Ψ N−1
f is the final state wavefunction of the

(N −1)-electron system left behind, which can be chosen as an excited state with
eigenfunction Ψ N−1

m and energy E N−1
m . The total transition probability is then given

by the sum over all possible excited states m. This derivation, which originated
from writing the transition probability using Fermi’s golden rule, (2.10), implicitly
assumes the validity of the so-called sudden approximation, which is extensively used
in many-body calculations of the photoemission spectra from interacting electron
systems, and is in principle applicable only to high kinetic-energy electrons. In this
limit, the photoemission process is assumed to be sudden, with no post-collisional
interaction between the photoelectron and the system left behind (in other words, an
electron is instantaneously removed and the effective potential of the system changes
discontinuously at that instant).2 Note, however, that the sudden approximation is
inappropriate for low kinetic energy photoelectrons, which may need longer than the
system response time to escape into vacuum. In this case, the so-called adiabatic
limit, one can no longer use the instantaneous transition amplitudes w f i and the
detailed screening of photoelectron and photohole has to be taken into account [74].

For the initial state, let us first assume for simplicity that Ψ N
i is a single Slater

determinant (i.e., Hartree-Fock formalism), so that we can write it as the product of
a one-electron orbital φk

i and an (N −1)-particle term:

2 In particular, this implies that the wavefunction for the (N−1)-electron system at time t1 (when the
interaction Hint is switched on) remains unchanged when Hint is switched off at t2, thus allowing
to use Fermi’s golden rule and the instantaneous transition probabilities w f i . This approximation
is only valid when t2 − t1 � �

ΔE , ΔE being the characteristic energy separation of the (N−1)
system [73].
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Ψ N
i = Aφk

i Ψ N−1
i . (2.13)

More generally, however, Ψ N−1
i should be expressed as Ψ N−1

i = ckΨ N
i , where ck

is the annihilation operator for an electron with momentum k. This also shows that
Ψ N−1

i is not an eigenstate of the (N−1) particle Hamiltonian, but is just what remains
of the N -particle wavefunction after having pulled out one electron. At this point,
we can write the matrix elements in (2.10) as:

〈Ψ N
f |Hint |Ψ N

i 〉=〈φk
f |Hint |φk

i 〉〈Ψ N−1
m |Ψ N−1

i 〉 (2.14)

where 〈φk
f |Hint |φk

i 〉≡ Mk
f,i is the one-electron dipole matrix element, and the sec-

ond term is the (N −1)-electron overlap integral. Here, we replaced Ψ N−1
f with an

eigenstate Ψ N−1
m , as discussed above. The total photoemission intensity measured

as a function of Ekin at a momentum k, namely I (k, Ekin) = ∑
f,i w f,i , is then

proportional to:

∑
f,i

|Mk
f,i |2

∑
m

|cm,i |2δ(Ekin +E N−1
m − E N

i −hν) (2.15)

where |cm,i |2 = |〈Ψ N−1
m |Ψ N−1

i 〉|2 is the probability that the removal of an electron
from state i will leave the (N−1)-particle system in the excited state m. From here we
see that, if Ψ N−1

i =Ψ N−1
m0

for one particular m = m0, the corresponding |cm0,i |2 will
be unity and all the others cm,i zero; in this case, if also Mk

f,i �=0, the ARPES spectra

will be given by a delta function at the Hartree-Fock orbital energy Ek
B = −εb

k, as
shown in Fig. 2.7b (i.e., non-interacting particle picture). In the strongly correlated
systems, however, many of the |cm,i |2 terms will be different from zero because
the removal of the photoelectron results in a strong change of the system effective
potential and, in turn, Ψ N−1

i will have an overlap with many of the eigenstates Ψ N−1
m .

Therefore, the ARPES spectra will not consist of single delta functions but will show
a main line and several satellites according to the number of excited states m created
in the process (Fig. 2.7c).

2.5 One-Particle Spectral Function

In the discussion of photoemission on solids, and in particular on the correlated
electron systems in which many |cm,i |2 in (2.15) are different from zero, the most
powerful and commonly used approach is based on the Green’s function formalism
[75–80]. In this context, the propagation of a single electron in a many-body system
is described by the time-ordered one-electron Green’s function G(k, t − t ′), which
can be interpreted as the probability amplitude that an electron added to the system
in a Bloch state with momentum k at a time zero will still be in the same state
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after a time |t − t ′|. By taking the Fourier transform, G(k, t − t ′) can be expressed
in energy-momentum representation resulting in G(k,ω)= G+(k,ω) + G−(k,ω),
where G+(k,ω) and G−(k,ω) are the one-electron addition and removal Green’s
function, respectively. At T =0:

G±(k,ω) =
∑

m

|〈Ψ N±1
m |c±

k |Ψ N
i 〉|2

ω − E N±1
m + E N

i ± iη
(2.16)

where the operator c+
k =c†

kσ (c−
k =ckσ) creates (annihilates) an electron with energy

ω, momentum k, and spin σ in the N -particle initial state Ψ N
i ; the summation runs

over all possible (N ±1)-particle eigenstates Ψ N±1
m with eigenvalues E N±1

m , and η
is a positive infinitesimal (note also that from here on we will take � = 1). In the
limit η → 0+ one can make use of the identity (x ± iη)−1 = P(1/x)∓ iπδ(x),
where P denotes the principle value, to obtain the one-particle spectral function
A(k,ω)= A+(k,ω)+ A−(k,ω)=−(1/π)Im G(k,ω), with:

A±(k,ω)=
∑

m

|〈Ψ N±1
m |c±

k |Ψ N
i 〉|2δ(ω−E N±1

m + E N
i ) (2.17)

and G(k,ω)=G+(k,ω) + [G−(k,ω)]∗, which defines the retarded Green’s func-
tion. Note that A−(k,ω) and A+(k,ω) define the one-electron removal and addition
spectra which one can probe with direct and inverse photoemission, respectively.
This is evidenced, for the direct case, by the comparison between the expression
for A−(k,ω) and (2.15) for the photoemission intensity (note that in the latter
Ψ N−1

i = ckΨ N
i and the energetics of the photoemission process has been explicitly

accounted for). Finite temperatures effect can be taken into account by extending the
Green’s function formalism just introduced to T �= 0 (see, e.g., [78]). In the latter
case, by invoking once again the sudden approximation, the intensity measured in
an ARPES experiment on a 2D single-band system can be conveniently written as:

I (k,ω) = I0(k, ν, A) f (ω)A(k,ω) (2.18)

where k = k‖ is the in-plane electron momentum, ω is the electron energy with
respect to the Fermi level, and I0(k, ν, A) is proportional to the squared one-electron
matrix element |Mk

f,i |2 and therefore depends on the electron momentum, and on
the energy and polarization of the incoming photon. We also introduced the Fermi
function f (ω) = (eω/kB T + 1)−1, which accounts for the fact that direct photoe-
mission probes only the occupied electronic states. Note that in (2.18) we neglected
the presence of any extrinsic background and the broadening due to the energy and
momentum resolution, which however have to be carefully considered when per-
forming a quantitative analysis of the ARPES spectra [see Sect. 2.6 and (2.25)].

The corrections to the Green’s function originating from electron-electron cor-
relations can be conveniently expressed in terms of the electron proper self energy
Σ(k,ω)=Σ ′(k,ω) + iΣ ′′(k,ω). Its real and imaginary parts contain all the infor-
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mation on the energy renormalization and lifetime, respectively, of an electron with
band energy εb

k and momentum k propagating in a many-body system. The Green’s
and spectral functions expressed in terms of the self energy are then given by:

G(k,ω) = 1

ω − εb
k − Σ(k,ω)

(2.19)

A(k,ω) = − 1

π

Σ ′′(k,ω)

[ω − εb
k − Σ ′(k,ω)]2 + [Σ ′′(k,ω)]2

. (2.20)

Because G(t, t ′) is a linear response function to an external perturbation, the real
and imaginary parts of its Fourier transform G(k,ω) have to satisfy causality and,
therefore, also Kramers-Kronig relations. This implies that if the full A(k,ω) =
−(1/π)Im G(k,ω) is available from photoemission and inverse photoemission, one
can calculate Re G(k,ω) and then obtain both the real and imaginary parts of the
self energy directly from (2.19). However, due to the lack of high-quality inverse
photoemission data, this analysis is usually performed using only ARPES spectra by
taking advantage of certain approximations (such as, e.g., particle-hole symmetry
near EF ; for a more detailed discussion, see also [81, 82] and references therein).

In general, the exact calculation of Σ(k,ω) and, in turn, of A(k,ω) is an extremely
difficult task. In the following, as an example we will briefly consider the interacting
FL case [83–85]. Let us start from the trivial Σ(k,ω)=0 non-interacting case. The
N -particle eigenfunction Ψ N is a single Slater determinant and we always end up in a
single eigenstate when removing or adding an electron with momentum k. Therefore,
G(k,ω) = 1/(ω−εb

k ± iη) has only one pole for each k, and A(k,ω) = δ(ω−εb
k)

consists of a single line at the band energy εb
k [as shown in Fig. 2.7b]. In this case,

the occupation numbers nkσ =c†
kσckσ are good quantum numbers and for a metallic

system the momentum distribution [i.e., the expectation value n(k) ≡ 〈nkσ〉, quite
generally independent of the spin σ for nonmagnetic systems], is characterized by
a sudden drop from 1 to 0 at k = kF [Fig. 2.7b, top], which defines a sharp Fermi
surface. If we now switch on the electron-electron correlation adiabatically, (so that
the system remains at equilibrium), any particle added into a Bloch state has a certain
probability of being scattered out of it by a collision with another electron, leaving the
system in an excited state in which additional electron-hole pairs have been created.
The momentum distribution n(k) will now show a discontinuity smaller than 1 at
kF and a finite occupation probability for k > kF even at T = 0 (Fig. 2.7c, top). As
long as n(k) shows a finite discontinuity Zk > 0 at k = kF , we can describe the
correlated Fermi sea in terms of well defined quasiparticles, i.e. electrons dressed
with a manifold of excited states, which are characterized by a pole structure similar
to the one of the non-interacting system but with renormalized energy ε

q
k, mass m∗,

and a finite lifetime τk =1/Γk. In other words, the properties of a FL are similar to
those of a free electron gas with damped quasiparticles. As the bare-electron character
of the quasiparticle or pole strength (also called coherence factor) is Zk <1 and the
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total spectral weight must be conserved (see (2.23)), we can separate G(k,ω) and
A(k,ω) into a coherent pole part and an incoherent smooth part without poles [86]:

G(k,ω) = Zk

ω − ε
q
k + iΓk

+ Gincoh (2.21)

A(k,ω) = Zk
Γk/π

(ω − ε
q
k)2 + Γ 2

k

+ Aincoh (2.22)

where Zk = (1− ∂Σ ′
∂ω )−1, ε

q
k = Zk(εb

k +Σ ′), Γk = Zk|Σ ′′|, and the self energy
and its derivatives are evaluated at ω = ε

q
k. It should be emphasized that the FL

description is valid only in proximity to the Fermi surface and rests on the condition
ε

q
k−μ�|Σ ′′| for small (ω−μ) and (k−kF ). Furthermore, Γk ∝[(πkB T )2+(ε

q
k−μ)2]

for a FL system in two or more dimensions [86, 87], although additional logarithmic
corrections should be included in the two-dimensional case [88]. By comparing
the electron removal and addition spectra for a FL of quasiparticles with those of
a non-interacting electron system (in the lattice periodic potential), the effect of
the self-energy correction becomes evident [see Figs. 2.7c and 2.7b, respectively].
The quasiparticle peak has now a finite lifetime and width (due to Σ ′′), but sharpens
rapidly as it emerges from the broad incoherent component and approaches the Fermi
level, where the lifetime is infinite corresponding to a well defined quasiparticle [note
that the coherent and incoherent part of A(k,ω) represent the main line and satellite
structure discussed in the previous section and shown in Fig. 2.7c, bottom right].
Furthermore, the peak position is shifted with respect to the bare band energy εb

k (due
to Σ ′): as the quasiparticle mass is larger than the band mass because of the dressing
(m∗ >m), the total dispersion (or bandwidth) will be smaller (|εq

k|< |εb
k|). We note

here, as later discussed in more detail in relation to Fig. 2.13, that the continuum of
excitations described by the incoherent part of A(k,ω) in general does still retain a
k and ω-dependent structure with spectral weight distributed predominately along
the non-interacting bare band. This, however, is usually characterized by remarkably
broad lineshapes (see e.g. Figs. 2.12c and 2.15) and should not be mistaken for a
quasiparticle dispersion.

Among the general properties of the spectral function there are also several sum
rules. A fundamental one, which in discussing the FL model was implicitly used
to state

∫
dωAcoh = Zk and

∫
dωAincoh = 1− Zk (where Acoh and Aincoh refer to

coherent and incoherent parts of the spectral function), is:

+∞∫
−∞

dωA(k,ω) = 1 (2.23)

which reminds us that A(k,ω) describes the probability of removing/adding an
electron with momentum k and energy ω to a many-body system. However, as it
also requires the knowledge of the electron addition part of the spectral function, it
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is not so useful in the analysis of ARPES data, unless particle-hole symmetry holds.
A sum rule more relevant to this task is:

+∞∫
−∞

dω f (ω)A(k,ω) = n(k) (2.24)

which solely relates the one-electron removal spectrum to the momentum distribution
n(k). When electronic correlations are important and the occupation numbers are no
longer good quantum numbers, the discontinuity at kF is reduced (as discussed for
the FL case), but a drop in n(k) is usually still observable even for strong correlations
[89]. By tracking the loci of steepest descent of the experimentally determined n(k)

in k-space, i.e. maxima in |∇k n(k)|, one may thus identify the Fermi surface even in
those correlated systems exhibiting particularly complex ARPES features. However,
great care is necessary in making use of (2.24), because the integral of (2.18) does
not give just n(k), but rather I0(k, ν, A)n(k) [1, 90]. A more detailed discussion of
this point with specific relevance to undoped Mott insulating cuprates can be found
in [91, 92].

2.6 Matrix Elements and Finite Resolution Effects

As discussed in the previous section and summarized by (2.18), ARPES directly
probes the one-particle spectral function A(k,ω). However, in extracting quantitative
information from the experiment, not only the effects of the matrix element term
I0(k, ν, A) have to be taken into account, but also the finite experimental resolution
and the extrinsic continuous background due to the secondaries (those electrons
which escape from the solid after having suffered inelastic scattering events and,
therefore, with a reduced Ekin). The latter two effects may be explicitly accounted
for by considering a more realistic expression for the photocurrent I (k,ω):

∫
dω̃dk̃

[
I0(k̃,ν,A) f (ω̃)A(k̃,ω̃)R(ω−ω̃)Q(k−k̃)

]
+ B (2.25)

which consists of the convolution of (2.18) with energy (R) and momentum (Q)
resolution functions [R is typically a Gaussian, Q may be more complicated], and
of the background correction B. Of the several possible forms for the background
function B [30], two are more frequently used: (i) the step-edge background (with
three parameters for height, energy position, and width of the step-edge), which
reproduces the background observed all the way to EF in an unoccupied region
of momentum space; (ii) the Shirley background BSh(ω) ∝ ∫ μ

ω dω′ P(ω′), which
allows to extract from the measured photocurrent I (ω) = P(ω) + cSh BSh(ω) the
contribution P(ω) of the unscattered electrons (with the only parameter cSh [93]).
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Calculated photon energy dependence of the photoionization cross-sections for Cu 3d and O 2p
atomic levels

Let us now very briefly illustrate the effect of the matrix element term I0(k, ν, A)∝
|Mk

f,i |2, which is responsible for the dependence of the photoemission data on photon
energy and experimental geometry, and may even result in complete suppression of
the intensity [94–97]. By using the commutation relation �p/m = −i[x, H ], we
can write |Mk

f,i |2 ∝|〈φk
f |ε · x|φk

i 〉|2, where ε is a unit vector along the polarization
direction of the vector potential A. As in Fig. 2.8a, let us consider photoemission from
a dx2−y2 orbital, with the detector located in the mirror plane (when the detector is out
of the mirror plane, the problem is more complicated because of the lack of an overall
well defined even/odd symmetry). In order to have non vanishing photoemission
intensity, the whole integrand in the overlap integral must be an even function under
reflection with respect to the mirror plane. Because odd parity final states would be
zero everywhere on the mirror plane and therefore also at the detector, the final state
wavefunction φk

f itself must be even. In particular, at the detector the photoelectron

is described by an even parity plane-wave state eik·r with momentum in the mirror
plane and fronts orthogonal to it [96]. In turn, this implies that (ε ·x)|φk

i 〉 must be
even. In the case depicted in Fig. 2.8a, where |φk

i 〉 is also even, the photoemission
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process is symmetry allowed for A even or in-plane (i.e., εp ·x depends only on
in-plane coordinates and is therefore even under reflection with respect to the plane)
and forbidden for A odd or normal to the mirror plane (i.e., εs ·x is odd as it depends
on normal-to-the-plane coordinates). For a generic initial state of either even or odd
symmetry with respect to the mirror plane, the polarization conditions resulting in
an overall even matrix element can be summarized as:

〈
φk

f

∣∣∣ A·p
∣∣∣φk

i

〉⎧⎨
⎩

φk
i even 〈+| + |+〉 ⇒ A even

φk
i odd 〈+| − |−〉 ⇒ A odd

(2.26)

In order to discuss the photon energy dependence, from (2.11) and by considering
a plane wave eikr for the photoelectron at the detector, one may more conveniently
write |Mk

f,i |2 ∝ |(ε ·k)〈φk
i |eikr〉|2. The overlap integral, as sketched in Fig. 2.8b,

strongly depends on the details of the initial state wavefunction (peak position of
the radial part and its oscillating character), and on the wavelength of the outgoing
plane wave. Upon increasing the photon energy, both Ekin and k increase, and Mk

f,i
changes in a fashion which is not necessarily monotonic (see Fig. 2.8c, for the Cu-
3d and the O 2p atomic case). In fact, the photoionization cross section is usually
characterized by one minimum in free atoms, the so-called Cooper minimum [98],
and a series of them in solids [99].

2.7 State-of-the-Art Photoemission

The configuration of a generic angle-resolved photoemission beamline is shown in
Fig. 2.9. A beam of radiation peaked about a specific photon energy is produced in
a wiggler or an undulator (these so-called ‘insertion devices’ are the straight sec-
tions of the electron storage ring where radiation is produced). The light is then
monochromatized at the desired photon energy by a grating monochromator and
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focused on the sample. Alternatively, a UV-laser or a gas-discharge lamp can be
used as a radiation source (the latter has to be properly monochromatized to avoid
complications due to the presence of different satellites, and refocused to a small
spot size, essential for high angular resolution). However, synchrotron radiation
offers important advantages: it covers a wide spectral range (from the visible to the
X-ray region) with an intense and highly polarized continuous spectrum; lasers and
discharge lamps provide only a few resonance lines at discrete energies.

Photoemitted electrons are then collected by the electron analyzer, where kinetic
energy and emission angle are determined (the whole system is in ultra-high vac-
uum at pressures lower than 5×10−11 torr). A conventional hemispherical analyzer
consists of a multi-element electrostatic input lens, a hemispherical deflector with
entrance and exit slits, and an electron detector (i.e. a channeltron or a multi-channel
detector). The heart of the analyzer is the deflector which consists of two concentric
hemispheres (of radius R1 and R2). These are kept at a potential difference ΔV ,
so that only those electrons reaching the entrance slit with kinetic energy within a
narrow range centered at E pass = eΔV/(R1/R2 − R2/R1) will pass through this
hemispherical capacitor, thus reaching the exit slit and then the detector. This way it
is possible to measure the kinetic energy of the photoelectrons with an energy reso-
lution given by ΔEa = E pass(w/R0 + α2/4), where R0 = (R1 + R2)/2, w is the
width of the entrance slit, and α is the acceptance angle. The role of the electrostatic
lens is that of decelerating and focusing the photoelectrons onto the entrance slit. By
scanning the lens retarding potential one can effectively record the photoemission
intensity versus the photoelectron kinetic energy.

One of the innovative characteristics of a state-of-the-art analyzer is the two-
dimensional position-sensitive detector consisting of two micro-channel plates and
a phosphor plate in series, followed by a CCD camera. In this case, no exit slit is
required: the electrons, spread apart along the Y axis of the detector (Fig. 2.9) as a
function of their kinetic energy due to the travel through the hemispherical capacitor,
are detected simultaneously. In other words, a range of electron energies is dispersed
over one dimension of the detector and can be measured in parallel; scanning the lens
voltage is in principle no longer necessary, at least for narrow energy windows (a few
percent of E pass). Furthermore, contrary to a conventional electron spectrometer in
which the momentum information is averaged over all the photoelectrons within the
acceptance angle (typically ±1◦), state-of-the-art 2D position-sensitive electron ana-
lyzers can be operated in angle-resolved mode, which provides energy-momentum
information not only at a single k-point but along an extended cut in k-space. In
particular, the photoelectrons within a variable angular window as wide as ∼ 30◦
along the direction defined by the analyzer entrance slit can be focused on different
X positions on the detector (Fig. 2.9). It is thus possible to measure multiple energy
distribution curves simultaneously for different photoelectron angles, obtaining a 2D
snapshot of energy versus momentum. Such snapshots, for differing sample orien-
tations, can be combined to form a 3D volume (Fig. 2.10), and then cut at constant
energy to generate a material’s Fermi surface when done at ω = EF on a metal, or
along any k-space path to generate a band mapping versus energy and momentum.
State-of-the-art spectrometers typically allow for energy and angular resolutions of
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less than approximately 1 meV and 0.1–0.2◦, respectively. Taking as example the
transition metal oxides and in particular the cuprate superconductors (for which
2π/a �1.6 Å−1), one can see from (2.7) that 0.2◦ corresponds to ∼0.5 % of the Bril-
louin zone size for the 21.2 eV photons of the He-Iα line typically used in ARPES
systems equipped with a gas-discharge lamp. In the case of a beamline, in order to
estimate the total energy resolution one has to take into account also the ΔEm of
the monochromator, which can be adjusted with entrance and exit slits (the ultimate
resolution a monochromator can deliver is given by its resolving power R = E/ΔEm

and in general worsens upon increasing the photon energy). The current record in
energy resolution is of 360µeV obtained on an ARPES spectrometer equipped with a
Scienta R4000 electron analyzer and a UV laser operating in continuous-wave mode
at ∼ 6.994 eV (see Figs. 2.11). One should note however that while the utilization
of UV lasers allows superior resolutions, it also leads to some important shortcom-
ings: (i) access to a limited region of k-space, often smaller than the first Brillouin
zone, due to the reduced kinetic energy of photoelectrons; (ii) extreme sensitivity to
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final state effects, with the detailed energy-momentum structure of the final states
becoming important, since at low photon energies one cannot reach the high-energy
continuum (the kinematic constraints of energy and momentum conservation may be
satisfied only for a limited set of momenta, and as a result the photoemission inten-
sity might be completely suppressed in certain regions of the Brillouin zone); (iii)
breakdown of the sudden approximation, in which case the photoemission intensity
would all be found in the “0-0” transition between the initial and final ground states
(see discussion of Fig. 2.7 and especially (2.12)), providing no information on the
excited states of the system left behind, and in turn on the strength and nature of the
underlying many-body interactions (the crossover from sudden to adiabatic regime
in TMOs is still being debated, see e.g. [103], and depends on the specific relaxation
processes of a given material).

2.8 Physics of Correlations—The ARPES Perspective

The sensitivity of ARPES to correlation effects is deeply connected to its correspond-
ing observable, which is the one-particle spectral function previously introduced in
Sect. 2.5. This physical quantity conveys information not only on the single-particle
excitations, but also on the many-body final states which can be reached in the pho-
toemission process. However, the distinction between single-particle and many-body
features in A(k,ω) at the experimental level is often subtle. In order to disentangle
the nature of the underlying excitations it is common practice to decompose the
spectral function into a coherent, Acoh(k,ω), and an incoherent part, Aincoh(k,ω),
as explained in Sect. 2.5.
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Whereas in a purely non-interacting system all single-electron excitations are
coherent, since they are insensitive to the behavior of the other particles, things
can be quite different when electron-electron interactions, and therefore quantum-
mechanical correlation effects, are turned on. For these reasons, the redistribution of
spectral weight between the coherent and incoherent part in A(k,ω) is commonly
regarded as a distinct signature of correlations at work. In particular, the integrated
spectral intensity of the coherent part, the quasiparticle strength Zk that can be
extracted from ARPES, is a relatively direct measure of the correlated behavior of
a given system. Following its definition given in (2.19), Zk can vary from 1 (non-
interacting case) to 0 (strongly correlated case, no coherent states can be excited).

In the following subsections we will explain how the concept of correlation already
emerges in simple molecular-like systems (i.e. few-body) and evolves into the com-
plex structures found in solid-state materials (i.e. many-body). Different types of cor-
relation effects will be reviewed, with particular emphasis on those stemming from
electron-phonon and electron-electron interactions. We will then discuss different
aspects of correlated electron behavior in a few selected transition metal oxides, and
show how correlations evolve with—and to some degree can be controlled by—the
external control parameters introduced in Sect. 2.1 and Fig. 2.1.

2.8.1 Origin of Correlations in Photoelectron Spectroscopy

In general, the connection between the one-particle spectral function and correlations
is not immediately obvious and might look mysterious to the reader. It is useful and
instructive to clarify what the photoelectron spectrum for a correlated system looks
like, beginning with an example from molecular physics. In Fig. 2.12 we show the
photoionization spectrum of the molecular gas H2 which, at variance with a simpler
atomic gas (e.g., He or Ne), exhibits a fine structure made of a series of peaks almost
evenly separated in energy. The underlying physical explanation for these spectral
features relates to the Franck-Condon principle, which is explained in Fig. 2.12a. This
is best understood if we write down the equation for the photoionization cross section,
which will involve: (i) an initial state wavefunction ψi , assumed to be the ground
state for the neutral molecule; and (ii) a final state wavefunction ψ f , which can be a
linear combination of eigenstates for the ionized, positively charged molecule H+

2 .
The possible eigenstates we consider here can be separated into an electronic part
(the hydrogen-like 1 s orbital φ1s) and a nuclear part, which in a diatomic molecule
like H2 can be vibrationally excited. The latter is given, to a good approximation,
by one of the eigenfunctions of the harmonic oscillator, φn(Req), which depend on
the interatomic equilibrium distance Req . Combining together electronic and nuclear
(i.e., vibrational) components we obtain a basis set for the molecular Hamiltonian
in the form ψn = φ1sφn(Req). We can then use this set of functions in the matrix
element governing the photoionization process:
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IH2→H+
2

∝
∑

m

〈ψH+
2

m |p · A|ψH2
n=0〉 ∝

∑
m

〈φk,m |p · A|φ1s〉〈φm(R
H+

2
eq )|φ0(RH2

eq )〉 .

(2.27)

Here p · A is the dipole interaction operator and the initial state is the ground state
for H2, or ψH2

GS = ψn=0. The term 〈φk,m |p · A|φ1s〉 = Mk
m is the matrix element

previously introduced in Sect. 2.6, representing the overlap between the initial-state
electronic wavefunction φ1s and the final state plane-wave φk,m . It is readily seen

that, if R
H+

2
eq = RH2

eq , then IH2→H+
2

∝ ∑
m δm,0 and the photoionization spectrum

would be composed of a single peak, corresponding to the “0–0” transition between
the initial and final ground states. In reality, the neutral and ionized molecule will
see a different charge distribution (thus leading to a different electrostatic potential),
due to the missing Coulomb interaction term for the 1s electrons in the Hamiltonian
for H+

2 . As a consequence, the molecule before and after photoexcitation will have
a different interatomic equilibrium distance, and many of the terms in (2.27) will
be different from zero resulting in multiple transitions in the experimental spectrum
(corresponding to the vertical excitations in Fig. 2.12a and to the various peaks in
Fig. 2.12b). The lowest energy peak (labeled “0–0” in Fig. 2.12b) still corresponds
to a transition into the ground state of the ionized molecule, but it only contains
a fraction of the total photoemission intensity, or spectral weight. At this point it
is useful to introduce an alternative definition (but equivalent to the one given in
Sect. 2.5) of coherent and incoherent spectral weight:

• The coherent spectral weight is a measure of the probability to reach the ground
state of the final-state Hamiltonian (HH+

2
) in the photoexcitation process. In exper-



2 ARPES: A Probe of Electronic Correlations 57

imental terms, it is represented by the total area of the 0–0 transition shown in
Fig. 2.12b.

• The incoherent spectral weight is a measure the probability to leave the ionized
system in any of its excited states. It can be therefore calculated from the integrated
intensity of all the 0–m (m �= 0) peaks in the ionization spectrum, as shown in
Fig. 2.12b.

In solid-state, many-body systems, both molecular vibrations and electronic levels
are no longer discrete but have an energy dispersion (turning into phonons and
electronic bands, respectively). This is what gives a continuum of excitations when
many body interactions are at play, as opposed to the sharp excitation lines of the
H2 case. However, these concepts remain valid, although we shall now restate them
within a many-body framework:

• The coherent spectral weight corresponds to the probability of reaching, via the
electron addition/removal process (ΔN =±1, where N is the initial number of elec-
trons), the many-body ground-state for the (N ± 1)-particle Hamiltonian (H∓

N±1).
• The incoherent spectral weight gives the cumulative probability that the (N ± 1)-

particle system is instead left in an excited state.

A photoelectron spectrum for a solid-state many-body system will look like the
dashed curve in Fig. 2.12b, due to the multitude of final states that can be reached
as a result of the photoemission process. The well-defined features characterizing
A(k,ω) in the molecular case will then broaden out into a continuum of excitations.
This was experimentally found to occur in the strongly-coupled cuprate material
Ca2CuO2Cl2 [see Fig. 2.12c], which will be discussed in more detail in the next
section. We also note that for the incoherent part of the spectral function two cases
are possible in a solid:

1. Aincoh(k,ω) is composed of gapless many-body excitations, e.g. creation of
electron-hole pairs in a metal; this typically produces an asymmetric lineshape,
as in the case of the Doniach-Sunjic model [107].

2. Aincoh(k,ω) originates from gapped excitations, e.g. coupling between electrons
and optical phonons; in this case, the coherent part is well separated from the
incoherent tail, and a quasiparticle peak can be more properly identified.

What we have just seen for the H2 molecule stems from the interaction between
the electronic and the nuclear degrees of freedom. In the absence of such interplay,
there would be no fine structure in the corresponding spectral function. This is a
very important concept, which is deeply connected to the idea of correlations. The
Hamiltonian of a given (few-body or many-body) system, in the absence of interac-
tion terms, can be decomposed into a sum of single particle terms (non-interacting
case). Correspondingly, the system is unperturbed by the addition or removal of a
particle during the photoexcitation process; due to the orthonormality of the involved
eigenstates, the (N ± 1)-system left behind will not be found in a superposition of
excited states but rather left unperturbed in its ground state (at zero temperature).
Single-particle spectroscopy would then detect a single transition (e.g., the 0–0 peak
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Fig. 2.13 A(k,ω) for the Holstein model, showing the quasiparticle band and the 0-, 1- and
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k , respectively.

The Fermi energy EF has been set at the top of the quasiparticle band (from [82])

in Fig. 2.12); the spectral weight is fully coherent. Conversely, when the electron-
nucleus and/or electron-lattice interaction are switched on, addition/removal of a
single electron perturbs the molecular/lattice potential to some degree and this can
trigger creation or annihilation of one or multiple vibrational modes in the process.
As we will see in the following section for electron-phonon coupling in solids, the
effect at the level of spectral function can be very different according to the strength
of the interaction.

2.8.2 Electron-Phonon Correlations in Solids: The Polaron

The interaction of the mobile charges with the static ionic lattice is what underlies the
formation of electronic bands in all crystalline materials. However, the lattice is never
really static and its low-energy excitations, the phonons, are present even at very low
temperatures. As they hop around in the lattice, electrons can interact (through the
ionic Coulomb potential) with—or become “dressed” by—phonons, thereby slowing
their quantum motion. These new composite entities, known as polarons, represent
the true quasiparticles of the coupled electron-lattice system: the properties of the
“bare” electrons, in primis bandwidth and mass, are now renormalized in a fashion
which directly depends on the strength of the electron-phonon coupling. Here we
show two examples of polaronic physics, one experimental and the other theoretical,
which exhibit different features but relate to the same underlying interactions.

The first case is that of Ca2CuO2Cl2 (CCOC). This compound is the undoped
parent compound of the high-Tc superconducting cuprates, where the low-energy
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physics originates from the hybridized Cu 3d – O 2p states of the CuO2 planes. In
Fig. 2.12c, the ARPES spectrum of CCOC at k = (π/2,π/2) is shown [106]. This
value of electron momentum corresponds to the lowest ionization state of the Zhang-
Rice singlet (ZRS) band [108]. The latter is a 2-particle state, made of a combination
of one O 2p and one Cu 3d hole in a total spin-zero state (singlet). Hence the nature
of such a state is intrinsically correlated, and cannot be described within a single-
particle framework. While this feature was originally recognized as the quasiparticle
pole of the same Cu–O band that is also found in the doped compounds [109], the
Gaussian lineshape, together with the broad linewidth (Γ ∼0.5 eV), suggest that this
feature might instead be identified as the incoherent part of the spectral function. It
follows that the spectral function has no actual quasiparticle weight Zk because the
intensity of the lowest energy excitation [the “0–0” line marked by the “B” arrow in
Fig. 2.12c] approaches zero.

While the previous example illustrates a case where the strong electron-boson
interaction entirely washes away the coherent spectral weight, in different physical
systems it is possible to have sizeable weight in the quasiparticle pole. This is illus-
trated with the second example discussed here, the one-dimensional (1D) Holstein
model [82], shown in Fig. 2.13 and represented by the Hamiltonian:

H1D
Holstein =

∑
k
εb

kc†
kck + Ω

∑
Q

b†
QbQ + g√

n

∑
k,Q

c†
k−Qck(b

†
Q + b−Q) . (2.28)

The evolution of the associated spectral function as a function of the dimensionless
electron-phonon coupling parameter λ= g2/2tΩ (in this calculation Ω = 50 meV)
is shown in Fig. 2.13. The case λ = 0 (no coupling), shown in Fig. 2.13a, yields a
spectral function which exactly follows the bare electronic band εb

k (indicated by the
black dashed line in Fig. 2.13), i.e. A(k,ω)=δ(ω − εb

k), where the δ-function is here
broadened into a Lorentzian for numerical purposes. Already in the small coupling
limit λ=0.1, a quasiparticle band branches off the original band, with a k-dependent
spectral weight (see Fig. 2.13b). The latter is substantially redistributed, with the
spectral weight at binding energies higher than the quasiparticle band belonging to
the incoherent part of the spectral function, which forms a continuum of many-body
excitations for EB >Ω . As the electron-phonon coupling is further increased, it can
be noted from Fig. 2.13c,d how: (i) there is a progressive renormalization of the qua-
siparticle band (εq

k), which implies a reduction in the total bandwidth and a change
in the slope ∂ε

q
k/∂k (quasiparticle velocity); (ii) the spectral weight is redistrib-

uted between the quasiparticle band ε
q
k and the incoherent features at higher binding

energy, corresponding to a photohole co-propagating with, or “dressed” by, one or
multiple phonons. In the strong-coupling regime λ=10, the quasiparticle band and
its n-phonon replicas are nondispersive (i.e., corresponding to a diverging quasipar-
ticle mass), and the coherent spectral weight Zk has almost completely vanished
(Fig. 2.13d). Having discussed quasiparticle renormalization due to electron-phonon
coupling, in the following we will turn our focus onto electron-electron interaction
effects, which are particularly pronounced in 3d-TMOs, and dominate the low-energy
electrodynamics in these systems.
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Fig. 2.14 a, b: ARPES dispersion in YBCO, along the nodal cut [Γ → (π,π)] for p = 0.24
and 0.06, respectively, showing the lack of bonding-antibonding (B-AB) bilayer splitting and the
spectral function being mostly incoherent for p = 0.06. c A(k = kF,N ,ω) as a function of doping
for the bonding Cu-O band, showing the progressive suppression of the quasiparticle peak. d Z N
as determined from the B-AB splitting and the spectral-weight ratio SWR (see text). Also shown
are guides-to-the-eye and the 2p/(p + 1) Gutzwiller projection relation (from [112])

2.8.3 Doping-Controlled Coherence: The Cuprates

As anticipated, copper-based oxide superconductors exhibit a rich phase diagram,
encompassing a variety of unconventional phases (Fig. 2.1), which include: high-
temperature superconductivity, Mott insulating behavior, pseudogap phase, strange
metal (non-conventional Fermi liquid), and possibly electronic liquid crystal (nematic
phase), to name a few. In particular, their remarkable peculiarity lies in the possibility
of realizing these different phases simply by controlling the charge carriers doped
into the CuO2 planes.

A manifestation of the underlying correlated nature of these materials can be
found in the doping-dependent evolution of coherent behavior in the low-energy
electrodynamics. This is the case of the ARPES results on YBa2Cu3O6+x (YBCO),
one of the most studied within the family of cuprates owing to its superior purity.
In this and similar materials, hole-doping is usually controlled at the chemical level,
by tuning the stoichiometric ratio between the O and Cu content. As for the study of
the low-energy electronic structure by ARPES, this has been hampered by the lack
of a natural cleavage plan and especially the polarity of the material, which leads
to the self doping of the cleaved surfaces [110–112]. As a result, while the bulk of
YBCO cannot be doped beyond 20 % by varying the oxygen content, the surfaces
appear to be overdoped up to almost 40 % (the highest overdoping value reached on
any cuprate [112]). An approach devised to resolve this problem involves the control
of the carrier concentration at the surface [111, 112] by in-situ potassium deposition
on the cleaved crystals, which enables the investigation of the surface electronic
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structure all the way from the overdoped (p ∼ 0.37) to the very underdoped region
of the phase diagram (p∼0.02).

Concurrent with a modification of the Fermi surface, which evolves from large
hole-like cylinders to Fermi arcs [111, 112], there is also a pronounced change
in the ARPES spectral lineshape [see Fig. 2.14c, where the corresponding energy
distribution curves have been extracted from the ARPES maps in panels (a, b),
for k = kF ]. In particular, two major effects are observed going from the over-
to the under-doped surface: (i) the progressive loss of the nodal coherent weight
with no quasiparticle peak being detected at p = 0.02 (Fig. 2.14c), accompanied
by an increase in the incoherent tail, and consistent with conservation of the total
spectral weight; (ii) the suppression of the nodal bilayer splitting ΔεB,AB

N shown in
the ARPES intensity maps of Fig. 2.14a, b (an even more pronounced suppression
can be observed at the antinodes), which goes hand-in-hand with the redistribution of
spectral weight from the coherent to the incoherent part of the spectral function. Since
correlation effects suppress hopping within and between planes in a similar fashion,
the renormalization of the measured bilayer splitting with respect to the prediction of
density functional theory can be used as an equivalent measure of the coherent weight
Zk =ΔεB,AB

N /2t L D A⊥ (N ), with t L D A⊥ (N )�120 meV. This is a more quantitative and
more accurate method than estimating the spectral weight ratio between quasiparticle
and many-body continuum, SWR=∫ −∞

EF
I (kF,N ,ω)dω/

∫ −∞
0.8eV I (kF,N ,ω)dω, since

in this case the coherent and incoherent parts of A(k,ω) are not well separated. Using
both methods, it is possible to observe a suppression of the coherent weight as one
goes underdoped, with Zk vanishing around p = 0.1 − 0.15 (Fig. 2.14d), which is
consistent with the observation that the underdoped (p < 0.1) ARPES spectra are
mostly incoherent, A(k,ω)∼ Aincoh(k,ω). The proximity of the Mott phase (p=0),
with its strongly correlated behavior, is believed to be the reason underlying the loss
of coherent behavior as hole doping is progressively reduced, and forces a departure
from the Fermi liquid description much more rapidly than predicted by the mean
field Gutzwiller projection Z =2p/(p + 1).

2.8.4 Temperature-Controlled Coherence: The Manganites

Another family of 3d-based oxides characterized by a rich phase diagram is that of the
manganites. These materials, which exhibit the fascinating phenomenon known as
colossal magnetoresistance, have been extensively studied by ARPES [113–119]. In
one of these compounds, La1.2Sr1.8Mn2O7, the high temperature spectra (T >120 K)
do not qualitatively differ from those seen for undoped cuprates, previously presented
in Fig. 2.12c. As shown in Fig. 2.15d, there is no spectral weight at the Fermi energy,
and the lowest-energy excitation is a broad peak dispersing between -1 and -0.5 eV
[113]. This finding suggests that we are again looking at a strongly correlated system,
where all the spectral weight is pushed into a broad and incoherent structure away
from EF . Surprisingly, when the temperature is lowered through the Curie value
TC ∼ 120 K, a sharp feature emerges at the chemical potential, with an intensity
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(a)T=

Fig. 2.15 a ARPES image plot of the Mn-eg valence band along the (0, 0)–(π,π) direction in
La1.2Sr1.8Mn2O7 (T =20 K); note the quasiparticle band ε

q
k branching off the bare band near EF ,

in analogy to the case of the Holstein model (Fig. 2.13b). b, c Stack of low-energy EDCs for T =15
and 120 K, respectively, emphasizing the emergence of the quasiparticle peak below TC (from [113])

progressively increasing as the sample is cooled down to 15 K (see Fig. 2.15a, b,
and c and related insets). This is a remarkable example of how temperature can lead
to a transfer of spectral weight from Aincoh to Acoh , in this case associated with
the ferromagnetic transition occurring at TC . Note the large ratio Aincoh/Acoh , i.e. a
incoherent-to-coherent transition, and the subsequently small Zk: this is an indication
of the fact that we are still in a regime where electronic correlations are very strong,
similar to the case of undoped and underdoped cuprates and, as we will see in the
following section, also of cobaltates [120]. In addition, it is important to note how the
coherent spectral weight does not necessarily appear throughout the entire Brillouin
zone, but might instead be limited to a reduced momentum range, where electronic
excitations can propagate in a coherent manner.

2.8.5 Probing Coherence with Polarization: The Cobaltates

As discussed in the previous sections, the distinction between coherent and inco-
herent parts of A(k,ω)—and thus the determination of the quasiparticle strength
Zk—although conceptually well defined, is often not easy to estimate from ARPES
experiments. An additional complication is encountered whenever more overlapping
bands contribute to the low energy electronic structure in the same region of momen-
tum. In such instances, there is one characteristic of the ARPES technique which
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Fig. 2.16 a top panel: A(k=kF ,ω) from the misfit cobaltate [Bi2Ba2O4][CoO2] for two different
polarizations—red curve is linear horizontal (LH), blue curve is linear vertical (LV); a bottom panel:
linear dichroism AL D = AL H − ALV . b momentum-dependence of AL D near k=kF (from [121]).
c temperature-dependence of AL D [122]

can be exploited, namely the explicit dependence on light polarization of the pho-
toemission intensity from a band of specific symmetry, as a result of matrix-element
effects (see Sect. 2.6). For a single band system, changing any of the experimen-
tal parameters would change the ARPES intensity as a whole, thus preserving the
shape of the spectral function and in particular the ratio between Acoh(k,ω) and
Aincoh(k,ω), since these terms are weighted by an identical matrix element. The
situation is very different in a multiband system since, whenever the quasiparticle
peaks and the many-body continua originate from different single-particle bands,
they will be characterized by a different overall symmetry. In this case, one may use
the polarization dependence of the single-particle matrix elements to disentangle the
different spectral functions contributing to the total ARPES intensity. This approach,
shown in Fig. 2.16 and discussed in more detail in [121], has been used in the study of
misfit cobaltates, a family of layered compounds, where the low-energy electronic
states reside in the CoO2 planes. These compounds all have 3 bands crossing the
chemical potential and, while detecting Acoh is relatively simple due to its sharpness
in proximity to EF , evaluating the ratio between Acoh and Aincoh is complicated due
to the overlap of contributions stemming from different orbitals.

Two close-lying bands, of respectively a1g and eg
′ orbital character, have different

symmetries and can thus be selected using polarization, as described in Sect. 2.6 (see
top panel in Fig. 2.16a). Taking the difference between spectra measured with differ-
ent polarization (linear dichroism), one can isolate the full spectral function for the
a1g band (Fig. 2.16a, bottom panel). The momentum- and temperature-dependence
are then displayed in Fig. 2.16b,c, respectively, evidencing a very similar behavior
to the one found in the manganites [122]. With this approach it is thus possible to
track the quasiparticle weight Zk as a function of temperature and doping, even in
multiband systems and in those regions of momentum space where bands overlap.



64 R. Comin and A. Damascelli

Sr
2
R

hO
4

(b)
Sr

2
R
uO

4

M

X M X

M

0-0.2

0-0.25
E-EF

 (eV) LDA LDA+SO

M M

M XX
(c)

(d) (e) (f)

β
β

α

α

Γ Γ

γ γ

β

α

Γ Γ

γ

SB

Γ

X

X

(a)
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2.8.6 Correlated Relativistic Metals: Spin-Orbit Coupled 4d-TMOs

Stepping down one row in the periodic table we find the 4d transition metal oxides.
Based on simple arguments, one would expect correlations to play a less important
role in these materials. This is due to the larger spatial extent of the 4d orbitals,
as compared to the 3d case, which at the same time favors delocalization (larger
W ) and reduces on-site electron-electron interactions (smaller U), thus positioning
these systems away from the Mott criterion. Following such intuitive expectations,
one indeed finds an evident suppression of correlation effects, which is accompanied
by the emergence of coherent charge dynamics even in undoped (i.e., stoichiometric)
compounds. However, marking the difference from 3d oxides, a new important term
has to be considered for 4d materials: the spin-orbit (SO) interaction. The associated
energy scale ζSO becomes increasingly important for heavier elements (with an
approximate ζSO ∝ Z4 dependence on the atomic number Z), which then have to be
treated within a relativistic framework. Whereas these effects are largely neglected
in cuprates, where ζSO(Cu2+) ∼ 20–30 meV, they are important in ruthenates and
rhodates (and even more in 5d materials, as we will see later), where ζSO(Ru4+)=
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161 meV and ζSO(Rh4+)=191 meV [126]. Furthermore, in 4d systems correlation
effects continue to play a role, hence these systems are commonly classified as
correlated relativistic metals.

ARPES results on two of the most studied 4d-based oxides, namely Sr2RuO4
and Sr2RhO4 [101, 123–125] are shown in Fig. 2.17, together with predictions for
the Fermi surface from density functional theory in the local density approximation
(LDA). While one indeed finds intense and sharp quasiparticle peaks in the energy
distribution curves (EDCs)—and consequently large values of Zk supporting the
strongly reduced relevance of many-body correlations—the matching between
experimental and predicted Fermi surfaces is not perfect for Sr2RuO4 and is actually
poor for the even more covalent Sr2RhO4. Experiments and theory are almost fully
reconciled when SO coupling is included in the single-particle methods used to
describe the low-energy electronic structure of 4d-oxides; on the other hand, the
experimental bands still appear renormalized with respect to the calculations, by
approximately a factor of 2 similar to overdoped cuprates [112, 127], which indi-
cates that electronic correlations cannot be completely neglected. This ultimately
qualifies Sr2RuO4 and Sr2RhO4 as correlated relativistic metals.

2.8.7 Mott Criterion and Spin-Orbit Coupling: 5d TMOs

Based on the reduced correlation effects observed in 4d-oxides, a progressive
evolution into an even less correlated physics in 5d materials would be expected.
For this reason, the discovery of an insulating state in Sr2IrO4, a compound isostruc-
tural and chemically similar to cuprates and ruthenates, came as a big surprise. The
first resistivity profiles to be measured in this iridate [128] showed an insulating
behavior, as also later confirmed by optical spectroscopy [129]. ARPES data on this
material, showing the low-energy dispersions of the Ir 5d-t2g states, consistently
found no spectral weight at EF (see Fig. 2.18a). Furthermore, and most importantly,
there is a significant disagreement between experimental data and LDA(+SO) cal-
culations that, as displayed in Fig. 2.18b, c, would predict the system to be metallic,
with a Fermi surface corresponding to a large Luttinger counting. This is a situation
reminiscent of the 3d-oxides, where fulfilment of the Mott criterion would yield a
correlated S = 1/2 insulating state at variance with band theory. This novel under-
lying physics emerges because of the prominent role of the SO interaction, whose
strength is ζSO ∼ 500 meV for Ir4+, and which now acts in concert with the other
relevant energy scales (W and U). In the atomic limit, the action of SO would split the
otherwise degenerate t2g orbitals into two submanifolds with the total angular
momentum J 2

e f f = L2
e f f + S2, and its projection J z

e f f , as new quantum num-
bers. Within such a framework, local correlations would then split the Je f f = 1/2
manifold into lower and upper Hubbard bands, thus opening a Mott gap, provided
U >WJef f =1/2. This mechanism, sketched in Fig. 2.18f, g, yields a novel type of cor-
related ground state, the so-called relativistic Mott-insulator. One should note that
the validity of such pseudospin-1/2 approximation is still debated, and alternative
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Fig. 2.18 a ARPES data along high-symmetry directions (EDCs at high-symmetry points are
marked in red), showing no spectral weight at EF . b, c: density-functional calculations within
the LDA and LDA+SO approximations, respectively. d, e Possible low-energy scenarios in a 5d5

system: d U = 0, ζSO = 0, yielding an uncorrelated metallic ground state; e U > W , ζSO = 0,
yielding a S = 1/2 Mott-insulating state; f U = 0, ζSO ∼ W , giving a spin-orbit coupled metal; g
ζSO ∼W , U ∼WJef f =1/2, producing a Je f f =1/2 Mott-insulating ground state (from [129])

mechanisms are being discussed. Also, recent works have questioned the Mott-like
nature of the electronic ground state in Sr2IrO4 and suggested that this system could
be closer to a Slater-type (thus, non-correlated) insulator [130, 131]. In the latter
case, the insulating gap would result from the onset of long-range magnetic ordering
and not from strong electron correlations of the Mott type, i.e. the metal-insulator
transition would coincide with the magnetic ordering transition. In the next section,
we will present an unambiguous experimental realization of relativistic Mott physics
in iridates and highlight similarities and differences with respect to Sr2IrO4.

2.8.8 Relativistic Mott Insulating Behavior: Na2IrO3

After the original discovery and proposal of a Mott-insulating state in Sr2IrO4, new
systems were predicted, both on theoretical and experimental grounds, to exhibit
similar physics. Na2IrO3 is one of these compounds, which has been the sub-
ject of early theoretical speculations [133–135], and was later synthesized and
found to behave in a correlated manner. Early transport and magnetization mea-
surements [136] provided evidence for an insulating behavior characterized by local
spin moments, therefore pointing to a Mott scenario (charge localization). Further
spectroscopic evidence for such a scenario has been provided by a combination of
ARPES, optics and LDA calculations [132]. ARPES data for the Ir 5d-t2g bands
from a pristine surface are shown in Fig. 2.19a, and highlight few primary aspects:
no spectral weight is found at EF and the band dispersions are surprisingly narrow
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(W ∼ 0.15 eV). Moreover, the energy distribution curves are very broad, with no
evidence of sharp quasiparticles, perhaps as a result of a vanishing Zk, at variance
with Sr2IrO4. While this is unexpected for a system possessing the more extended
5d orbitals, it also brings us closer to fulfilment of the Mott criterion U > W and
therefore to a correlated, Mott-Hubbard-like physics. LDA predicts this system to be
metallic with a density of states peaking at EF (see Fig. 2.19b, e). The disagreement
with the ARPES data implies that the charge dynamics cannot be explained within a
simple band-model. When also accounting for the SO interaction, it is found that this
is sufficient to turn the system insulating within the LDA calculations (Fig. 2.19c),
although with a 0-gap at EF (Fig. 2.19f). It is only with the further inclusion of the
Coulomb term U that the correct gap size Δgap ∼340 meV, as found from optics and
ARPES with potassium evaporation [132], can finally be reproduced (see Fig. 2.19d,
g, where values of U = 3 eV and JH = 0.6 eV have been used). The presence of a



68 R. Comin and A. Damascelli

sizeable on-site electron-electron interaction also explains the presence of local
moments well above the long-range antiferromagnetic ordering temperature TN ∼13
K (i.e., in the paramagnetic phase). These findings reveal that the expectation of
correlation-free physics in 5d oxides is in general unrealistic, and that spin-orbit
coupling has a primary role in making these systems unstable even against small
correlation effects. This indicates that many-body and spin-orbit interactions cannot
be fully disentangled, thus conclusively establishing Na2IrO3—and possibly other
members of the iridates family—as relativistic Mott insulators: a novel type of cor-
related insulator in which many-body (Coulomb) and relativistic (spin-orbit) effects
have to be treated on an equal footing.
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Chapter 3
Spectroscopic Imaging STM: Atomic-Scale
Visualization of Electronic Structure
and Symmetry in Underdoped Cuprates

Kazuhiro Fujita, Mohammad Hamidian, Inês Firmo, Sourin Mukhopadhyay,
Chung Koo Kim, Hiroshi Eisaki, Shin-ichi Uchida and J.C. Davis

Abstract Atomically resolved spectroscopic imaging STM (SI-STM) has played a
pivotal role in visualization of the electronic structure of cuprate high temperature
superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG)
phases of underdoped cuprates, two distinct types of electronic states are observed
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when using SI-STM. The first consists of the dispersive Bogoliubov quasiparticles
of a homogeneous d-wave superconductor existing in an energy range |E | ≤ Δ0 and
only upon an arc in momentum space (k-space) that terminates close to the lines con-
necting k =±(π/a0, 0) to k =±(0, π/a0). This ‘nodal’ arc shrinks continuously as
electron density increases towards half filling. In both phases, the only broken sym-
metries detected in the |E | ≤ Δ0 states are those of a d-wave superconductor. The
second type of electronic state occurs near the pseudogap energy scale |E | ∼ Δ1 or
equivalently near the ‘antinodal’ regions k =±(π/a0, 0) and k =±(0, π/a0). These
states break the expected 90◦-rotational (C4) symmetry of electronic structure within
each CuO2 unit cell, at least down to 180◦-rotational (C2), symmetry. This intra-
unit-cell symmetry breaking is interleaved with the incommensurate conductance
modulations locally breaking both rotational and translational symmetries. Their
wavevector S is always found to be determined by the k-space points where Bogoli-
ubov quasiparticle interference terminates along the line joining k = (0,±π/a0)
to k = (±π/a0, 0), and thus diminishes continuously with doping. The symme-
try properties of these |E | ∼ Δ1 states are indistinguishable in the dSC and PG
phases. While the relationship between the |E | ∼ Δ1 broken symmetry states and
the |E | ≤ Δ0 Bogoliubov quasiparticles of the homogeneous superconductor is not
yet fully understood, these two sets of phenomena are linked inextricably because
the k-space locations where the latter disappears are always linked by themodulation
wavevectors of the former.

3.1 Electronic Structure of Hole-doped Cuprates

The CuO2 plane electronic structure is dominated by Cu 3d and O 2p orbitals [1].
Each Cu dx2−y2 orbital is split energetically into singly and doubly occupied con-
figurations by on-site Coulomb interactions. This results in a ‘charge-transfer’ Mott
insulator [1, 2] that is also strongly antiferromagnetic due to inter-copper superex-
change [3, 4]. So called ‘hole-doping’, a process distinct from the eponymous one
in semiconductors, is achieved by removing electrons from the 2p6 orbitals of the O
atoms [5–7].

The phase diagram [8] as a function of the number of holes per CuO2 measured
from half-filling, p, is shown schematically in Fig. 3.1a. Antiferromagnetism exists
for p< 2–5%, superconductivity appears in the range 5–10% < p< 25–30%, and
a likely Fermi liquid state appears for p> 25–30%. The highest superconducting
critical temperature Tc occurs at ‘optimal’ doping p ∼ 16% and the superconductiv-
ity exhibits d-wave symmetry. With reduced p, an unexplained electronic excitation
with energy |E | ∼ Δ1 and that is anisotropic in k-space, [8–13] appears at T* >

Tc. This phase is so called ‘pseudegap’ (PG) because the energy scale Δ1 could be
the energy gap of a distinct electronic phase [9, 10]. Explanations for the PG phase
include (i) that it occurs via hole-doping an antiferromagnenic Mott insulator to cre-
ate a spin-liquid [4, 14–18] or, (ii) that it is a d-wave superconductor but without
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Fig. 3.1 a Schematic cuprate
phase diagram. Here Tc
is the critical temperature
circumscribing a ‘dome’
of superconductivity, Tφ

is schematic of the maximum
temperature at which
superconducting phase
fluctuations are detectable
within the pseudogap
phase, and T ∗ is the
approximate temperature
at which the pseudogap
phenomenology first
appears. b The two classes
of electronic excitations
in cuprates. The separation
between the energy scales
associated with excitations
of the superconducting state
(dSC, denoted by Δ0) and
those of the pseudogap state
(PG, denoted byΔ1) increases
as p decreases (reproduced
from [10]). The different
symbols correspond to the
use of different experimental
techniques. c A schematic
diagram of electronic
structure within the 1st
Brillouin zone of hole-doped
CuO2. The dashed lines
joining k = (0,±π/a0)
to k = (±π/a0, 0) are found,
empirically, to play a key role
in the doping-dependence
of electronic structure. The
hypothetical Fermi surface (as
it would appear if correlations
were suppressed) is labeled
using two colors, red for the
‘nodal’ regions bounded
by the dashed lines and
blue for the ‘antinodal’
regions near k = (0,±π/a0)
to k = (±π/a0, 0)
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long range phase coherence [19–24] or, (iii) that it is a distinct electronic ordered
phase [25–39].

The energy scales Δ1 and Δ0 are associated with two distinct types of electronic
excitations [8–11, 40–43] and are observed in underdoped cuprates by many tech-
niques. Further,Δ1 andΔ0 deviate continuously fromone anotherwith diminishing p
(Fig. 3.1b from [10]). Transient grating spectroscopy shows that the |E | ∼ Δ1 exci-
tations propagate very slowly without recombination into Cooper pairs, while the
lower energy ‘nodal’ excitations propagate freely and pair as expected [40]. Andreev
tunneling identifies two distinct excitation energy scales which diverge as p → 0:
the first is identified with the pseudogap energy Δ1 and the second Δ0 with the max-
imum pairing gap energy of Cooper pairs [41]. Raman spectroscopy finds that only
the scattering near the d-wave node is consistent with delocalized Cooper pairing
[42]. The superfluid density from muon spin rotation evolves with hole-density as if
the whole Fermi surface is unavailable for Cooper pairing [43]. Figure3.1c shows a
schematic depiction of the Fermi surface and distinguishes the ‘nodal’ from ‘antin-
odal’ regions of k-space on red and blue. Momentum-resolved studies of cuprate
electronic structure using angle resolved photoemission spectroscopy (ARPES) in
the PG phase reveals that excitations with E ∼ −Δ1 occur near the antinodal regions
k ∼= (π/a0, 0); (0, π/a0), and that Δ1(p) increases rapidly as p → 0 [9–12], while
the nodal region of k-space exhibits an ungapped ‘Fermi Arc’ [44] in the PG phase
upon which a momentum- and temperature-dependent energy gap opens in the dSC
phase [44–50].

Density-of-states measurements report an energetically particle-hole symmetric
excitation energy |E | = Δ1 that is unchanged in the PG and dSC phases [51, 52].
Figure3.2b shows the evolution of spatially-averaged differential tunneling con-
ductance g(E) for Bi2Sr2CaCu2O8+δ [53–55] with the evolution of the pseudogap
energy E = ±Δ1 indicated by a blue dashed curve, while that of Δ0 is shown by
red dashed curves (Sect. 3.6). SI-STM uses spatially mapped tunneling spectroscopy
to visualize the spatial structure and symmetry of these distinct types of states. For
energies |E | ≤ Δ0, the dispersive Bogoliubov quasiparticles of a spatially homo-
geneous superconductor are always observed [56–62] while the states near |E | ∼
Δ1 are highly disordered [53–55, 63–70] and exhibit distinct broken symmetries
[7, 53, 60–62, 71, 72].

3.2 Bi2Sr2CaCu2O8 Crystals

Wehave studied a sequence of Bi2Sr2CaCu2O8+δ samples with p ∼= 0.19, 0.17, 0.14,
0.10, 0.08, 0.07, 0.06 orwithTc(K)= 86, 88, 74, 64, 45, 37, 20 respectively, andmany
of these samples were studied in both the dSC and PG phases [53–58, 60–64, 71,
72]. Each sample is inserted into the cryogenic ultra high vacuum of the SI-STM [76]
and cleaved to reveal an atomically clean BiO surface. All measurements were made
between 1.9 and 65K using three different cryogenic SI-STMs. These samples were
derived from large single crystals with very high quality of Bi2.1Sr1.9CaCu2O8+δ
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Fig. 3.2 a Fourier transform
of the conductance ratio map
Z(r, E) at a representative
energy below Δ0 for
Tc =45K
Bi2Sr2Ca0.8Dy0.2Cu2O8+δ ,
which only exhibits the
patterns characteristic of
homogenous d-wave
superconducting quasiparticle
interference. b Evolution of
the spatially averaged
tunneling spectra of
Bi2Sr2CaCu2O8+δ with
diminishing p, here
characterized by Tc(p). The
energies Δ1(p) (blue dashed
line) are detected as the
pseudogap edge while the
energies Δ0(p) (red dashed
line) are more subtle but can
be identified by the
correspondence of the “kink”
energy with the extinction
energy of Bogoliubov
quasiparticles, following the
procedures in [57] and [61]. c
Laplacian (or equivalent high
pass filter) of the conductance
ratio map Z(r) at the
pseudogap energy E = Δ1,
emphasizing the local
symmetry breaking of these
electronic states
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and Bi2.2Sr1.8Ca0.8Dy0.2Cu2O8+δ . The crystal growth was carried out in air and at
growth speeds of 0.15–0.2mm/h. Annealingwas used to vary the critical temperature
of each sample. Oxidation annealing is performed in air or under oxygen gas flow,
and deoxidation annealing is done in vacuum or under nitrogen gas flow for the
systematic study at different hole-densities [77].

3.3 Spectroscopic Imaging Scanning Tunneling Microscopy

The spectroscopic imaging STM technique consists of making atomically resolved
and registered measurements of the STM tip-sample differential tunneling conduc-
tance dI/dV (r, E = eV ) ≡ g(r, E = eV ) which is a function of both location r
and electron energy E. It can simultaneously determine the real space (r-space) and
momentum space (k-space) electronic structure both above and below EF . Success-
ful implementation of this approach requires quite specialized STM techniques and
facilities [76].

SI-STM does suffer from some common systematic errors, the most important
andmost widely ignored of which emerges from the tunneling current equation itself.
The tunneling current is given by

I (r, z, V ) = C(r)e− z(r)
z0

eV∫
0

[ f (E, T )N (r, E)] [1 − f (E, T )] NTip(E)d E (3.1)

Here z(r) is the tip-surface distance, V the tip-sample bias voltage, N(r, E) the sam-
ple’s local-density-of-electronic-states, NTip(E) the tip density-of-electronic-states,

C(r)e− z(r)
z0 contains effects of tip elevation, ofwork function based tunnel-barrier, and

of tunneling matrix elements, f (E, T ) is the Fermi function. Therefore, as T → 0
and with NTip and C(r) both equal to constants (3.1) can be simplified as,

Is = Ce
− z(r)

z0

eVs∫
0

N (r, E)d E ⇒ Ce
− z(r)

z0 = Is/

eVs∫
0

N (r, E)d E (3.2)

Here Vs and Is are the (constant but arbitrary) junction ‘set-up’ bias voltage and
current respectively that are used in practice to fix z(r). Taking the energy derivative
of (3.1) as T→ 0 and with NTip and C(r) both equal to constants, and then substi-
tuting from (3.2), the measured g(r, E) ≡ dI/dV (r, E =eV ) data are then related to
N(r, E) by [58, 60–62]

g(r, E = eV ) = eIs

eVs∫
0

N (r, E ′)d E ′
N (r, E) (3.3)
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Equation (3.3) shows that when
∫ eVs
0 N (r, E ′)d E ′ is heterogeneous at the atomic

scale as it invariably is in Bi2Sr2CaCu2O8+δ [53–55, 59–71], the g(r, E =eV )
data can never be used to measure the spatial arrangements of N(r, E). Mitigation
[58, 60–62] of these systematic errors can be achieved by using

Z(r, E) ≡ g(r, E = +eV )

g(r, E = −eV )
= N (r,+E)

N (r,−E)
(3.4)

which cancels the unknown ‘setup effect’ errors. This approach allows energy mag-
nitudes, distances, wavelengths and spatial symmetries to be measured correctly but
at the expense of mixing information derived from states at ±E.

A second very important and frequently overlooked systematic error is the ‘ther-
mal broadening’ which results in an unavoidable energy uncertainty δE in the
energy argument of all types of tunneling spectroscopy. This thermal broadening
effect is caused by the convolution of the tip and sample Fermi-Dirac distributions
f (E) (1− f (E)) in (3.1). As themaximum of this product is f (0) (1− f (0)) = 1

4 ,
the observed FWHM in tunneling conductance due to a delta-function in N(E) at
T = 0 is determined implicitly from

(
e

E
kB T + 1

)−1
[
1 −

(
e

E
kB T + 1

)−1
]

= 1

8
(3.5)

to be δE > 3.53kB T (or δE > 1.28meV at T = 4.2K). This FWHM is the
lower limit of meaningful energy resolution in tunneling spectroscopy, and features
in tunnelling spectra whose energy width grows linearly with T with this slope, are
due merely to the form of the Fermi function.

A third important systematic error limits k-space resolution when using g̃(q, E)

and Z̃(q, E), the power spectral density Fourier transforms of g(r, E) and Z(r,
E). Because q-space resolution during Fourier analysis is inverse to the r-space
field-of-view size, to achieve sufficient precision in |q(E)| for discrimination of a
non-dispersive ordering wavevector q∗ due to an electronic ordered phase from the
dispersive wavevectors q(E) due to quantum interference patterns of delocalized
states, requires that g(r, E) or Z(r, E) be measured in large fields-of-view and with
energy resolution at or below ∼2 meV for cuprates. Using a smaller FOV or poorer
energy resolution in g(r, E) studies inexorably generates the erroneous impression
of non-dispersive modulations. For example, in Bi2Sr2CaCu2O8+δ , no deductions
distinguishing between dispersive and non-dispersive excitations can or should be
made using Fourier transformed g(r,E) data from a FOV smaller than∼45nm-square
[57, 62].

A final subtle but important systematic error derives from the slow picometer
scale distortions in rectilinearity of the image over the continuous and extended
period (of up to a week or more) required for each g(r, E) data set to be acquired.
This is particularly critical in research requiring a precise knowledge of the spatial
phase of the crystal lattice [71, 72]. To address this issue, we recently introduced a
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post-measurement distortion correction technique that is closely related to an
approachwe developed earlier to address incommensurate crystal modulation effects
[78] in Bi2Sr2CaCu2O8+δ . We identify a slowly varying field u(r) [79] that measures
the displacement vector u of each location r in a topographic image of the crystal
surface T (r), from the location r-u(r) where it should be if T (r) were perfectly
periodic. Therefore, we consider an atomically resolved topograph T (r) with tetrag-
onal symmetry. In SI-STM, the T (r) and its simultaneously measured g(r, E) are
specified by measurements on a square array of pixels with coordinates labeled as
r = (x, y). The power-spectral-density (PSD) Fourier transform of T (r), |T̃ (q)|2—
where, T̃ (q)=ReT̃ (q) + iImT̃ (q), then exhibits two distinct peaks representing the
atomic corrugations; these are centered at the first reciprocal unit cell Braggwavevec-
torsQa = (Qax , Qay) andQb = (Qbx , Qby)with a and b labeling the unit cell vectors.
Next T (r) is multiplied by reference cosine and sine functions with periodicity set by
the wavevectors Qa and Qb, and whose origin is chosen at an apparent atomic loca-
tion in T (r). The resulting four images are filtered to retain q-regions within a radius
δq = 1

λ
of the four Bragg peaks; the magnitude of λ is chosen to capture only the rel-

evant image distortions. This procedure results in four new images which retain the
local phase information �a(r), �b(r) that quantifies the local displacements from
perfect periodicity:

Xa(r) = cos�a(r), Ya(r) = sin�a(r) (3.6)

Xb(r) = cos�b(r), Yb(r) = sin�b(r) (3.7)

Dividing the appropriate pairs of images then allows one to extract

�a(r) = tan−1 Ya(r)
Xa(r)

(3.8)

�b(r) = tan−1 Yb(r)
Xb(r)

(3.9)

Of course, in a perfect lattice the �a(r), would be independent of r. However, in the
real image T (r), u(r) represents the distortion of the local maxima away from their
expected perfectly periodic locations, with the identical distortion occurring in the
simultaneous spectroscopic data g(r, E). Considering only the components periodic
with the lattice, the measured topograph can therefore be represented by

T (r) = T0
[
cos (Qa · (r + u(r))) + cos (Qb · (r + u(r)))

]
(3.10)

Correcting this for the spatially dependent phases�a(r),�b(r) generated by u(r)
requires an affine transformation at each point in (x,y) space. We see that the actual
local phase of each of cosine component at a given spatial point r, ϕa(r), ϕb(r) can
be written as
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ϕa(r) = Qa · r + �a(r) (3.11)

ϕb(r) = Qb · r + �b(r) (3.12)

where �i (r)=Qi · u(r); i = a, b is the additional phase generated by the displace-
ment field u(r). This simplifies (3.10) to

T (r) = T0 [cos (ϕa(r)) + cos (ϕb(r))] (3.13)

which is defined in terms of its local phase fields only, and every peak associated
with an atomic local maximum in the topographic image has the same ϕa and ϕb.
We then need to find a transformation, using the given phase information ϕa,b(r), to
map the distorted lattice onto a perfectly periodic one. This is equivalent to finding
a set of local transformations which makes �a,b take on constant values, �a and
�b, over all space. Thus, let r be a point on the unprocessed (distorted) T (r), and
let r̃= r − u(r) be the point of equal phase on the ‘perfectly’ lattice-periodic image
which needs to be determined. This produces a set of equivalency relations

Qa · r + �a(r) = Qa · r̃ + �̄a

Qb · r + �b(r) = Qb · r̃ + �̄b
(3.14)

Solving for the components of r̃ and then re-assigning the T (r) values measured
at r, to the new location r̃ in the (x,y) coordinates produces a topograph with virtually
perfect lattice periodicity. To solve for r̃ we rewrite (3.14) in matrix form:

Q
(
r̃1
r̃2

)
= Q

(
r1
r2

)
−

(
θ̄a − θa(r)
θ̄b − θb(r)

)
(3.15)

where

Q =
(

Qax Qay

Qbx Qby

)
(3.16)

Because Qa and Qb are orthogonal, Q is invertible allowing one to solve for the
displacement field u(r) which maps r to r̃ as

u(r) = Q−1
(

θ̄a − θa(r)
θ̄b − θb(r)

)
(3.17)

with the convention �̄i = 0 that generates a ‘perfect’ lattice with an atomic peak at the
origin; this is equivalent to ensuring that there are no imaginary (sine) components
to the Bragg peaks in the Fourier transform. Then, by using this technique, one can
estimate u(r) and thereby undo distortions in the raw T (r) data with the result that
it is transformed into a distortion-corrected topograph T ′(r) exhibiting the known
periodicity and symmetry of the termination layer of the crystal. The key step for
electronic-structure symmetry determination is then that the identical geometrical
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transformations to undo u(r) in T (r) yielding T ′(r), are also carried out on every
g(r, E) acquired simultaneously with the T (r) to yield a distortion corrected g′(r,
E). The T ′(r) and g′(r, E) are then registered to each other and to the lattice with
excellent periodicity. This procedure can be used quite generally with SI-STM data,
provided it exhibits appropriately high resolution in both r-space and q-space.

3.4 Effect of Magnetic and Non-magnetic Impurity Atoms

Substitutionofmagnetic andnon-magnetic impurity atomscanprobe themicroscopic
electronic structure of an unconventional superconductor includingwhether there are
sign changes on the order parameter [80–83]. For a BCS superconductor, if the order
parameter exhibits s-wave symmetry, then non-magnetic impurity atoms should have
little effect because time reversedpairs of stateswhich canundergoCooper pairing are
not disrupted.Magnetic impurity atoms, on the other hand should be quite destructive
since they break time reversal symmetry. For unconventional superconductors (non
s-wave) this simple situation does not pertain and both magnetic and non-magnetic
impurities produce strong pair breaking effects. However, the spatial/energetic struc-
ture of the bound and resonant states [80, 84] can be highly revealing of the micro-
scopic order parameter symmetry. These theoretical ideas as summarized in [80]
were the basis for SI-STM studies of non-magnetic Zn impurity atoms and magnetic
Ni impurity atoms substituted on the Cu sites of Bi2Sr2CaCu2O8+δ [85–87].

For Zn-doped Bi2Sr2CaCu2O8+δ near optimal doping, a typical g(r,E) of a 50nm
square region at V = −1.5 mV is shown in Fig. 3.3a with the expected overall
white background being indicative of a very low g(r, E) near the Fermi level. How-
ever there are many randomly distributed dark sites corresponding to areas of high
g(r, E), each with a distinct four-fold symmetric shape and the same relative ori-
entation as clearly seen in Fig. 3.3b. In Fig. 3.3c we show a comparison between
spectra taken at their centers and at usual superconducting regions of the sample.
The spectrum at the center of a dark site has a very strong intra-gap conductance peak
at energy Ω = −1.5 ± 0.5 meV. And, at these sites, the superconducting coher-
ence peaks are strongly diminished, indicating the suppression of superconductivity.
All of these phenomena are among the theoretically predicted characteristics of a
∼unitary quasiparticle scattering resonance at a single potential-scattering impurity
atom in a d-wave superconductor [80].

Studies ofNi-doped samples near optimal doping revealedmore intriguing results.
Figure3.4 shows two simultaneously acquired g(r, E =eV ) maps taken on Ni-
doped Bi2Sr2CaCu2O8+δ at sample bias Vbias = ±10mV. At +10mV in Fig. 3.4b
‘+-shaped’ regions of higher g(r, E) are observed, whereas at −10mV in Fig. 3.4a
the corresponding higher g(r, E) regions are ‘X-shaped’. g(r, E) maps at Vbias =
±19mV show the particle-like and hole-like components of a second impurity state
at Ni whose spatial structure is very similar to that at Vbias = ±10 mV. Figure3.4c
shows the typical spectra taken at the Ni atom site in which there are two clear
particle-like g(r, E) peaks. The average magnitudes of these on-site impurity-state
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Fig. 3.3 a g(r,
E = −1.5mV) showing the
random dark ‘crosses’ which
are the resonant impurity
states of a d-wave
superconductor, at each Zn
impurity atom site. b High
resolution
g(r,E = −1.5mV). The dark
center of scattering resonance
in (b) coincides with the
position of a Bi atom. The
inner dark cross is oriented
with the nodes of the d-wave
gap. The weak outer features,
including the ∼30Å- long
“quasiparticle beams” at 45◦
to the inner cross, are oriented
with the gap maxima. c The
spectrum of a usual
superconducting region of the
sample, where Zn scatterers
are absent (white region in a,
b), is shown in blue. The
arrows indicate the
superconducting coherence
peaks that are suppressed near
Zn. The data shown in red,
with an interpolating fine
solid line, are the spectrum
taken exactly at the center of
a dark Zn scattering site. It
shows both the intense
scattering resonance peak
centered at Ω = −1.5mV,
and the very strong
suppression of both the
superconducting coherence
peaks and gap magnitude at
the Zn site
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Fig. 3.4 a, b
g(r, E = ±10mV) revealing
the impurity states at
locations of the Ni impurity
atoms in this
128 Å × 128 Å square FOV.
At Vbias = +10mV, showing
the ‘+-shaped’ regions of
high local density of states
associated with the Ni atoms.
At Vbias = −10mV, showing
the 45◦ spatially rotated
‘X-shaped’ pattern. c g(r,E)
spectra above a Ni atom (red)
and away from the Ni atom
(blue).
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energies are Ω1 = 9.2 ± 1.1meV and Ω2 = 18.6 ± 0.7 meV. The existence of
two states is as expected for a magnetic impurity in a d-wave superconductor [80].
Perhaps most significant, however, is that the magnetic impurity does not appear to
suppress the superconductivity (as judged by the coherence peaks) at all, as if mag-
netism is non destructive to the pairing interaction locally. This is not as expected
within BCS-based models of the pairing mechanism.

One of themost interesting observationsmade during these impurity atom studies,
and one which was not appreciated at the time of the original experiments, was that
the vivid, clear and theoretically reasonable d-wave impurity states at Zn and Ni
disappear as hole density p is reduced below optimal doping in Bi2Sr2CaCu2O8+δ

[64, 88, 89]. Thus, even though the density of Zn or Ni impurity atoms is the same,
the response of the CuO2 electronic structure to them is quite different approaching
half-filling. In fact, the Zn and Ni impurity states (Figs. 3.3 and 3.4) quickly diminish
in intensity and eventually become undetectable at low hole-density [88, 89]. One
possible explanation for this strong indication of anomalous electronic structure in
underdoped Bi2Sr2CaCu2O8+δ could be that the k-space states which contribute to
Cooper pairing on the whole Fermi surface at optimal doping, no longer do so at
lower p (Sect. 3.6). In this situation, all the Bogoliubov eigenstates necessary for
scattering resonances to exist [80, 84] would no longer be available. This hypothesis
is quite consistent with the discovery of restricted regions of k-space supporting
coherent Bogoliubov quasiparticles that diminish in area with falling hole-density
[61] as discussed in Sect. 3.6.

3.5 Nanoscale Electronic Disorder in Bi2Sr2CaCu2O8+δ

Nanoscale electronic disorder is pervasive in images of Δ1(r) measured on
Bi2Sr2CaCu2O8+δ samples [53–55, 57, 60–71]. The magnitude of |Δ1| ranges from
above 130meV to below 10meV as p ranges from 0.06 to 0.22. Equivalent nanoscale
Δ1(r) disorder is found in Bi2Sr2CuO6+δ [59, 68] and in Bi2Sr2Ca2Cu3O10+δ [90].

Figure3.5a shows a typical Bi2Sr2CaCu2O8+δ Δ1(r) image—upon which the
sites of the non-stoichiometric oxygen dopant ions are overlaid as white dots [54].
Figure3.5b shows the typical g(E) spectrum associated with each different value
of ±Δ1 [53]. It also reveals quite vividly how the electronic structure becomes
homogeneous [53–55, 58, 59, 61, 62] for |E | ≤ Δ0 as indicated by the arrows.
Samples of Bi2Sr2CuO6+δ and Bi2Sr2Ca2Cu3O10+δ show virtually identical effects
[59, 68, 90] and imaging Δ1(r) in the PG phase reveals highly similar [62, 67–69]
electronic disorder.

One component of the explanation for these phenomena is that electron-acceptor
atoms must be introduced [91] to generate hole doping. This almost always creates
random distributions of differently charged dopant ions near the CuO2 planes [92].
The dopants in Bi2Sr2CaCu2O8+δ are −2e oxygen ions charged interstitials and
may cause a range of different local effects. For example, electrostatic screening
may cause holes to congregate surrounding the dopant locations thereby reducing
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Fig. 3.5 a Map of the local
energy scale Δ1(r) from a
49nm field of view
(corresponding to ∼16, 000
CuO2 plaquettes) measured
on a sample with Tc = 74K.
Average gap magnitude Δ1 is
at the top, together with the
values of N, the total number
of dopant impurity states
(shown as white circles)
detected in the local spectra.
b The average tunneling
spectrum, g(E), associated
with each gap value in the
field of view in a. The arrows
locate the “kinks” separating
homogeneous form
heterogeneous electronic
structure and which occur at
energy ∼Δ0. c The doping
dependence of the average Δ1
(blue circles), average Δ0
(red circles) and average
antinodal scattering rate �2*
(black squares), each set
interconnected by dashed
guides to the eye. The
higher-scale Δ1 evolves along
the pseudogap line whereas
the lower-scale Δ0 represents
segregation in energy
between homogeneous and
heterogeneous electronic
structure
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the energy-gap values nearby [93, 94]. Or the dopant ions could cause nanoscale
crystalline stress/strain [95–99] thereby disordering hopping matrix elements and
electron-electron interactions within the CuO2 unit cell. In Bi2Sr2CaCu2O8+δ the
locations of interstitial dopant ions are identifiable because an electronic impurity
state occurs at E = −0.96Vnearby each ion [54]. Significant spatial correlations are
observed between the distribution of these impurity states and Δ1(r) maps implying
that dopant ion disorder is responsible for much of theΔ1(r) electronic disorder. The
principal effect near each dopant is a shift of spectral weight from low to high energy,
with Δ1 increasing strongly. Simultaneous imaging of the dopant ion locations and
g(r, E< Δ0) reveals that the dispersive g(r,E) modulations due to scattering of
Bogoliubov quasiparticles are well correlated with dopant ion locations meaning
that the dopant ions are an important source of such scattering (Sect. 3.6) [53, 54,
56–59, 61, 62].

The microscopic mechanism of theΔ1-disorder is not yet fully understood. Hole-
accumulation surrounding negatively charged oxygen dopant ions does not appear
to be the explanation because the modulations in integrated density of filled states
are observed to be weak [54]. More significantly, Δ1 is actually strongly increased
nearby the dopant ions [54] that is diametrically opposite to the expected effect from
hole-accumulation there. Atomic substitution at random on the Sr site by Bi or by
some other trivalent lanthanoid is known to suppress superconductivity strongly [92,
100] possibly due to geometrical distortions of the unit cell and associated changes
in the hopping matrix elements. It has therefore been proposed that the interstitial
dopant ions might act similarly, perhaps by displacing the Sr or apical oxygen atoms
[92, 95, 96, 100] and thereby distorting the unit cell geometry. Direct support for
this point of view comes from the observation that quasi-periodic distortions of the
crystal unit-cell geometry yield virtually identical perturbations in g(E) and Δ1(r)
but now are unrelated to the dopant ions [78]. Thus it seems that theΔ1-disorder is not
caused primarily by carrier density modulations but by geometrical distortions to the
unit cell dimensions with resulting strong local changes in the high energy electronic
structure. One could also expect the presence of such disorder in Ca2−xNaxCuO2Cl2
as Ca is substituted by Na since indeed similar Δ1 disorder is also observed in this
material [60].

Underdoped cuprate g(E) spectra always exhibit “kinks” [53–55, 58, 59, 61, 63–
66, 68–70] close to the energy scale where electronic homogeneity is lost. They
are weak perturbations to N(E) near optimal doping, becoming more clear as p is
diminished [53, 55]. Figure3.5b demonstrates how, in Δ1-sorted g(E) spectra, the
kinks are universal but becomemore obvious forΔ1>50meV [53, 55]. Each kink can
be identified and its energy is labeled byΔ0(r). By determining Δ̄0 as a function of p
(Fig. 3.5c), we find that it always divides the electronic structure into two categories
[55]. For |E | < Δ̄0 the excitations are spatially coherent in r-space and therefore
represent well defined Bogoliubov quasiparticle eigenstates in k-space (Sect. 3.6).
By contrast, the pseudogap excitations at |E | ∼ Δ1 are heterogeneous in r-space
and ill defined in k-space (Sect. 3.7).

To summarize: the Δ1-disorder of Bi2Sr2CaCu2O8+δ is strongly influenced by
the random distribution of dopant ions [54] and oxygen vacancies [101]. It occurs
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through an electronic process in which geometrical distortions of the crystal unit
cell appear to play a prominent role [97–102]. While the electronic disorder is most
strongly reflected in the states near the pseudogap energy |E | ∼ Δ1, the states
with |E | ≤ Δ0 are homogeneous when studied using direct imaging [53–55, 64]
or from quasiparticle interference as described in Sect. 3.6. Therefore this intriguing
phenomenon is clearly not heterogeneity of the superconductivity or superconducting
energy gap, because in all simultaneously determined images the spatial coherence
of Bogoliubov scattering interferences shows the superconducting energy gap to be
homogeneous.

3.6 Bogoliubov Quasiparticle Interference Imaging

Bogoliubov quasiparticle interference (QPI) occurs when quasiparticle de Broglie
waves are scattered by impurities and the scattered waves undergo quantum interfer-
ence. In a d-wave superconductor with a single hole-like band of uncorrelated elec-
trons as sometimes used to describeBi2Sr2CaCu2O8+δ , theBogoliubov quasiparticle
dispersion E(k) would exhibit constant energy contours which are ‘banana-shaped’.
The d-symmetry superconducting energy gap would then cause strong maxima to
appear for a given E, in the joint-density-of-states at the eight banana-tips k j (E);
j = 1, 2,…, 8. Elastic scattering between the k j (E) should produce r-space inter-
ference patterns in N(r,E). The resulting g(r,E) modulations should exhibit 16 ±q
pairs of dispersive wavevectors in g̃(q, E) (Fig. 3.6a).

The set of these wavevectors characteristic of d-wave superconductivity consists
of seven: qi (E) i = 1,…,7 with qi (−E) = qi (+E). By using the point-group sym-
metry of the first CuO2 Brillouin zone and this ‘octet model’, [102–104] the locus
of the banana tips kB(E) = (kx (E),ky(E)) can be determined from:

2kx = q1, q4x , q2x − q2y, q6y + q6x , (q3 + q7)/
√
2, q5 − √

2q7
2ky = q5, q4y, q2x + q2y, q6y − q6x , (q3 − q7)/

√
2,

√
2q7 − q1

(3.18)

The qi (E) are measured from |Z̃(q, E)|, the Fourier transform of spatial modu-
lations seen in Z(r, E) and the kB(E) are then determined by using (3.18) within
the requirement that all its independent solutions be consistent at all energies. The
superconductor’s Cooper-pairing energy gap Δ(k) is then determined directly by
inverting the empirical data kB(E = Δ).

Near optimal doping inBi2Sr2CaCu2O8+δ ,measurements fromQPIof kB(E) and
Δ(k) (Fig. 3.6b inset) are consistent with ARPES [57, 105]. And, in Ca2−xNaxCuO2
Cl2 this octetmodel yieldskB(E) andΔ(k) equallywell [58, 59] as indeed the equiv-
alent ‘octet’ approach does in iron-pnictide high temperature superconductors [106].
Therefore, Fourier transformation of Z(r,E) in combination with the octet model of
d-wave Bogoliubov QPI yields the two branches of the Bogoliubov excitation spec-
trum kB(±E) plus the superconducting energy gap magnitude ±Δ(k) along the
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�Fig. 3.6 a The ‘octet’ model of expected wavevectors of quasiparticle interference patterns in a
superconductor with electronic band structure like that of Bi2Sr2CaCu2O8+δ . Solid lines indicate
the k-space locations of several banana-shaped quasiparticle contours of constant energy as they
increase in size with increasing energy. As an example, at a specific energy, the octet of regions
of high JDOS are shown as red circles. The seven primary scattering q-vectors interconnecting
elements of the octet are shown in blue. b The magnitude of various measured QPI vectors, plotted
as a function of energy. Whereas the expected energy dispersion of the octet vectors qi (E) is
apparent for |E | < 32mV, the peaks which avoid extinction (q∗

1 and q∗
5) shows ultra-slow or zero

dispersion above Δ0 (vertical dashed line). Inset: A plot of the superconducting energy gap Δ(θk)

determined from octet model inversion of quasiparticle interference measurements, shown as (open
circles) [57]. c Locus of the Bogoliubov band minimum kB(E) found from extracted QPI peak
locations qi (E), in five independent Bi2Sr2CaCu2O8+δ samples with increasing hole density. Fits
to quarter-circles are shown and, as p decreases, these curves enclose a progressively smaller area.
The BQP interference patterns disappear near the perimeter of a k-space region bounded by the
lines joining k = (0,±π/a0) and k = ±(π/a0, 0). The spectral weights of q2, q3, q6 and q7
vanish at the same place (dashed line; see also [61]). Filled symbols in the inset represent the hole
count p = 1− n derived using the simple Luttinger theorem, with the fits to a large, hole-like
Fermi surface indicated schematically here in grey. Open symbols in the inset are the hole counts
calculated using the area enclosed by the Bogoliubov arc and the lines joining k = (0,±π/a0) and
k = (±π/a0, 0), and are indicated schematically here in blue

specific k-space trajectory kB for both filled and empty states in a single experiment.
And, since only the Bogoliubov states of a d-wave superconductor could exhibit
such a set of 16 pairs of interference wavevectors with qi (−E) = qi (+E) and
all dispersions internally consistent within the octet model, the energy gap ±Δ(k)
determined by these procedures is definitely that of the delocalized Cooper-pairs.

These Bogoliubov QPI imaging techniques are used to study the evolution of
k-space electronic structure with diminishing p in Bi2Sr2CaCu2O8+δ . In the SC
phase, the expected 16 pairs of q-vectors are always observed in |Z̃(q, E)| and are
found consistent with each other within the octet model (Fig. 3.6a). However, in
underdoped Bi2Sr2CaCu2O8+δ the dispersion of octet model q-vectors always stops
at the same weakly doping-dependent [53, 59, 61] excitation energy Δ0 and at q-
vectors indicating that the relevant k-space states are still far from the boundary of
the Brillouin zone (Fig. 3.6c). These observations are quite unexpected in the context
of the d-wave BCS octet model. Moreover, for |E | > Δ0 the dispersive octet of q-
vectors disappears and three ultra-slow dispersion q-vectors become predominant.
They are the reciprocal lattice vector Q along with q∗

1 and q∗
5 (see Fig. 3.7a).

The ultra-slow dispersion incommensurate modulation wavevectors equivalent
to q∗

1 and q∗
5 has also been detected by SI-STM in Ca2−xNaxCuO2Cl2 [58] and

Bi2Sr2CuO6+δ [59].
We show in Fig. 3.6c the locus of Bogoliubov quasiparticle states kB(E) deter-

mined as a function of p using QPI. Here we discovered that when the Bogoliubov
QPI patterns disappear atΔ0, the k-states are near the diagonal lines between k = (0,
π /a0) and k = (π /a0, 0) within the CuO2 Brillouin zone. These k-space Bogoliubov
arc tips are defined by both the change from clearly dispersive states to those whose
dispersion is extremely slow or non existent, and by the disappearance of the q2, q3,
q6 and q7 modulations. Thus, the QPI signature of delocalized Cooper pairing is con-
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Fig. 3.7 a A large FOV
Z(r, E = 48mV) image
from a strongly underdoped
sample showing the full
complexity of the electronic
structure modulations. Inset:
|Z̃(q, E = 48mV)| for
underdoped Tc = 50K
Bi2Sr2CaCu2O8+δ . The
(circles) label the location of
the wavevectors q∗

1, q∗
5 (or

Sx , Sy at E ∼ Δ1) and Qx ,
Qy as described in the text. b
Doping dependence of
line-cuts of
|Z̃(q, E = 48mV)|
extracted along the Cu-O
bond direction Qx . Inset: The
peak is q∗

5, and the lines over
the data are fits used to extract
its location. The short vertical
lines indicate the terminating
2ky values derived from
lower bias data. The vertical
dashed lines demonstrate that
the q-vectors at energies
between Δ0 and Δ1 are not
commensurate harmonics of a
4a0 periodic modulation, but
instead evolve in a fashion
directly related to the
extinction point of the Fermi
arc. c q∗

1, q∗
5, and their sum

q∗
1 + q∗

5 as a function of p
demonstrating that,
individually, these
modulations evolve with
doping while their sum does
not change and is equal to the
reciprocal lattice vector
defining the first Brillouin
zone. This indicates strongly
that these modulations are
primarily a k-space
phenomenon

N
or

m
al

iz
ed

 A
m

pl
itu

de

2

q (2π/a0)
0.750.500.250.00

TC = 20K

TC = 45K

TC = 74K
TC = 88K

q1
*

q5
*

N
or

m
al

iz
ed

A
m

pl
itu

de

3.0

1.5

0.0

q (2π /a0)
0.900.750.60

4 nm

QxQy

q*
1

q*
1

q*
5q*

5

xy

0.35

0.30

0.25

0.20

q 1
*

0.200.160.120.080.04
p

1.10

1.05

1.00

0.95

0.90

q 1
*+

q 5
*

0.80

0.75

0.70q 5
* 

(2
π/

a 0
)

(b)

(c)

(a)



92 K. Fujita et al.

fined to an arc that shrinks with falling p [61]. This observation has been supported
directly by ARPES studies [43, 50] and by QPI studies, [58, 59] and indirectly by
analyses of g(r, E) by fitting to a multi-parameter model for k-space structure of a
dSC energy gap [70].

The minima (maxima) of the Bogoliubov bands kB(±E) should occur at the
k-space location of the Fermi surface of the non-superconducting state. One can
therefore ask if the carrier-density count satisfies Luttinger’s theorem, which states
that twice the k-space area enclosed by the Fermi surface, measured in units of the
area of the first Brillouin zone, equals the number of electrons per unit cell, n. In
Fig. 3.7c we show as fine solid lines hole-like Fermi surfaces fitted to our measured
kB(E). Using Luttinger’s theorem with these k-space contours extended to the zone
face would result in a calculated hole-density p for comparison with the estimated
p in the samples. These data are shown by filled symbols in the inset showing how
the Luttinger theorem is violated at all doping below p ∼ 10% if the large hole-like
Fermi surface persists in the underdoped region of the phase diagram.

Figure3.7 provides a doping-dependence analysis of the locations of the ends
of the arc-tips at which Bogoliubov QPI signature disappears and where the q∗

1
and q∗

5 modulations appear. Figure3.7a shows a typical Z(r,E =48mV) where
Δ0 < E < Δ1 and its |Z̃(q, E)| as an inset. Here the vectors q∗

1 and q∗
5 are labeled

along with the Bragg vectors Qx and Qy . Figure3.7b shows the doping dependence
for Bi2Sr2CaCu2O8+δ of the location of both q∗

1 and q∗
5 measured from |Z̃(q, E)|

[61]. Themeasuredmagnitude of q∗
1 and q∗

5 versus p are then shown in Fig. 3.7c along
with the sum q∗

1 +q∗
5 which is always equal to 1(2π /a0). This demonstrates that, as

the Bogoliubov QPI extinction point travels along the line from k = (0, π /a0) and
k = (π /a0,0), the wavelengths of incommensurate modulations q∗

1 and q∗
5 are con-

trolled by itsk-space location [61]. Equivalent phenomenahave also been reported for
Bi2Sr2CuO6+δ [59]. A natural speculation is that “hot spot” scattering related to anti-
ferromagnetic fluctuations is involved in both the disappearance of the Bogoliubov
QPI patterns and the appearance of the incommensurate quasi-static modulations at
q∗
1 and q∗

5 at the diagonal lines between k = (0,π /a0) and k = (π /a0,0) within the
CuO2 Brillouin zone [107].

If the PG state of underdoped cuprates is a phase incoherent d-wave supercon-
ductor, these Bogoliubov-like QPI octet interference patterns could continue to exist
above the transport Tc. This is because, if the quantum phase φ(r, t) is fluctuating
while the energy gap magnitude Δ(k) remains largely unchanged, the particle-hole
symmetric octet of high joint-density-of-states regions generating the QPI should
continue to exist [108–110]. But any gapped k-space regions supportingBogoliubov-
like QPI in the PG phase must then occur beyond the tips of the ungapped Fermi
Arc [44]. Evidence for phase fluctuating superconductivity is detectable for cuprates
in particular regions of the phase diagram [111–116] as indicated by the region
Tc < T < Tφ (Fig. 3.1a). The techniques involved include terahertz transport stud-
ies, [111] the Nernst effect, [112, 113] torque-magnetometry measurements, [114]
field dependence of the diamagnetism, [115] and zero-bias conductance enhance-
ment [116]. Moreover, because cuprate superconductivity is quasi-two-dimensional,
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the superfluid density increases from zero approximately linearly with p, and the
superconducting energy gap Δ(k) exhibits four k-space nodes, fluctuations of phase
φ(r, t) could strongly impact the superconductivity at low p [19–24].

To explore these issues, the temperature evolution of the Bogoliubov octet in
|Z̃(q, E)|was studied as a functionof increasing temperature from thedSCphase into
the PG phase using 48nm square FOV. Representative |Z̃(q, E)| for six temperatures
are shown in Fig. 3.8.

Clearly, the qi (E) (i=1,2,…,7) characteristic of the superconducting octet model
are observed to remain unchanged upon passing above Tc to at least T ∼ 1.5Tc. This
demonstrates that theBogoliubov-likeQPI octet phenomenology exists in the cuprate
PG phase. Thus for the low-energy (|E | < 35mV) excitations in the PG phase, the
qi (E) (i = 1, 2, . . . , 7) characteristic of the octet model are preserved unchanged
upon passing above Tc. All seven qi (E) (i = 1, 2, . . . , 7) modulation wavevectors
which are dispersive in the dSC phase remain dispersive into the PG phase still
consistent with the octet model [62]. The octet wavevectors also retain their particle-
hole symmetry qi (+E)=qi (−E) in the PG phase and the g(r,E) modulations occur
in the same energy range and emanate from the same contour in k-space as those
observed at lowest temperatures [62]. Thus theBogoliubovQPI signatures detectable
in the dSCphase survive virtually unchanged into the underdoped PGphase—up to at
least T ∼ 1.5Tc for strongly underdoped Bi2Sr2CaCu2O8+δ samples. Additionally,
for |E | ≤ Δ0 all seven dispersive qi (E) modulations characteristic of the octet model
in the dSC phase remain dispersive in the PG phase. These observations rule out the
existence for all |E | ≤ Δ0 of non-dispersive g(E) modulations at finite ordering
wavevector Q* which would be indicative of a static electronic order which breaks
translational symmetry, a conclusionwhich is in agreementwith the results ofARPES
studies. In fact the excitations observable using QPI are indistinguishable from the
dispersive k-space eigenstates of a phase incoherent d-wave superconductor [62].

Our overall picture of electronic structure in the strongly underdoped PG phase
from SI-STM contains three elements: (i) the ungapped Fermi arc, [44] (ii) the
particle-hole symmetric gap Δ(k) of a phase incoherent superconductor, [62] and
(iii) the locally symmetry breaking excitations at the E ∼ Δ1 energy scale [53,
60–62, 71, 72] (which remain completely unaltered upon the transition between the
dSC and the PG phases [62, 71]). This three-component description of the electronic
structure of the cuprate pseudogap phase has recently been confirmed in detail by
ARPES studies [49].

3.7 Broken Spatial Symmetries of E ∼ Δ1 Pseudogap States

The electronic excitations in the pseudogap energy range |E | ∼ Δ1 are associated
with a strong antinodal pseudogap in k-space: [11, 12] they exhibit slow dynam-
ics without recombination to form Cooper pairs, [40] their Raman characteristics
appear distinct from expectations for a d-wave superconductor, [42] and they appear
not to contribute to superfluid density [43]. As described on Sects. 3.4, 3.5 and
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Fig. 3.8 (a to x) Differential conductance maps g(r, E) were obtained in an atomically resolved
and registered FOV > 45 × 45 nm2 at six temperatures. Each panel shown is the |Z̃(q, E)| for a
given energy and temperature. The QPI signals evolve dispersively with energy along the horizontal
energy axis. The temperature dependence of QPI for a given energy evolves along the vertical axis.
The octet-model set of QPI wave vectors is observed for every E and T as seen, for example,
by comparing (a) and (u), each of which has the labeled octet vectors. Within the basic octet
QPI phenomenology, there is no particular indication in these data of where the superconducting
transition Tc, as determined by resistance measurements, occurs
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especially Sect. 3.6, underdoped cuprates exhibit an octet of dispersive Bogoliubov
QPIwavevectorsqi (E), but only upon a limited and doping-dependent arc in k-space.
Surrounding the pseudogap energy E ∼ Δ1, these phenomena are replaced by a
spectrum of states whose dispersion is extremely slow (Fig. 3.6b) [53, 59–62, 71].

Remarkably, for underdoped cuprates the atomically resolved r-space images of
the phenomena in Z(r, E ∼ Δ1(r)) show highly similar spatial patterns. By chang-
ing to the reduced energy variables e(r)= E/Δ1(r) and imaging Z(r, e) it becomes
clearer that these modulations exhibit a strong maximum in intensity at e = 1 [61,
62] and that they both break translational symmetry, and reduce the expected C4 sym-
metry of stateswithin the unit cell to at least toC2 symmetry [60–62, 71, 72]. Theoret-
ical concerns [117] about a possibly spurious nature to the spatial symmetry breaking
in these imageswere addressedby carryingout a sequence of identical experiments on
two very different cuprates: strongly underdoped Ca1.88Na0.12CuO2Cl2 (Tc ∼ 21K )
and Bi2Sr2Ca0.8Dy0.2Cu2O8+δ (Tc ∼ 45K ). These materials have completely dif-
ferent crystallographic structures, chemical constituents, dopant-ion species, and
inequivalent dopant sites within the crystal-termination layers [60]. Images of the
|E | ∼ Δ1 states for these two systems demonstrate statically indistinguishable
electronic structure arrangements [60]. As these virtually identical phenomena at
|E | ∼ Δ1 in these two materials must occur due to the common characteristic of
these two quite different materials, the spatial characteristics of Z(r, e = 1) images
[60–62, 71] are due to the intrinsic electronic structure of the CuO2 plane.

To examine the broken spatial symmetries of the |E | ∼ Δ1 states within the CuO2
unit cell, we use high-resolution Z(r, e) imaging performed in a sequence of under-
doped Bi2Sr2CaCu2O8+δ samples with Tc’s between 20 and 55K. The necessary
registry of the Cu sites in each Z(r, e) is achieved by the picometer scale trans-
formation that renders the topographic image T (r) perfectly a0-periodic (Sect. 3.3).
The same transformation is then applied to the simultaneously acquired Z(r, e) to
register all the electronic structure data to this ideal lattice.

The topographT (r) is shown in Fig. 3.9a; the inset compares theBragg peaks of its
real (in-phase) Fourier components ReT̃ (Qx ), ReT̃ (Qy) showing that ReT̃ (Qx )/ReT̃
(Qy) = 1. Therefore T (r) preserves the C4 symmetry of the crystal lattice. In
contrast, Fig. 3.9b shows that the Z(r, e = 1) determined simultaneously with
Fig. 3.9a breaks various crystal symmetries [60–62]. The inset shows that since Re
Z̃(Qx , e = 1) /ReZ̃(Qy, e = 1) �= 1 the pseudogap states break C4 symmetry. We
therefore defined a normalized measure of intra-unit-cell nematicity as a function of
e:

O Q
N (e) ≡ Re Z̃(Qy, e) − Re Z̃(Qx , e)

Z̄(e)
(3.19)

where Z̄(e) is the spatial average of Z(r, e). The plot of O Q
N (e) in Fig. 3.9c shows

that themagnitude of O Q
N (e) is low for e � Δ0/Δ1, begins to grow near e ∼ Δ0/Δ1,

and becomes well defined as e ∼ 1 or E ∼ Δ1.
Within the CuO2 unit cell itself we directly imaged Z(r, e) [60, 71] to explore

where the symmetry breaking stems from. Figure3.9d shows the topographic image
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�Fig. 3.9 a Topographic image T (r) of the Bi2Sr2CaCu2O8+δ surface. The inset shows that the real
part of its Fourier transform Re T̃ (q) does not break C4 symmetry at its Bragg points because plots
of T̃ (q) show its values to be indistinguishable at Qx = (1, 0)2π/a0 and Qy = (0, 1)2π/a0.
Thus neither the crystal nor the tip used to image it (and its Z(r, E) simultaneously) exhibits C2
symmetry. b The Z(r, e = 1) image measured simultaneously with T (r) in (a). The inset shows
that the Fourier transform |Z̃(q, e = 1)| does break C4 symmetry at its Bragg points because
ReZ̃(Qx , e ∼ 1) � = ReZ̃(Qy, e ∼ 1). c The value of O Q

N (e) computed from Z(r, e) data measured
in the same FOV as (a) and (b). Its magnitude is low for all E < Δ0 and then rises rapidly to become
well established near e ∼ 1or E ∼ Δ1. Thus the pseudogap states in underdopedBi2Sr2CaCu2O8+δ

break the expected C4 symmetry of CuO2 electronic structure. d Topographic image T (r) from the
region identified by a small white box in (a). It is labeled with the locations of the Cu atom plus
both the O atoms within each CuO2 unit cell (labels shown in the inset). Overlaid is the location and
orientation of a Cu and four surrounding O atoms. e The simultaneous Z(r, e = 1) image in the
same FOV as (d) (the region identified by small white box in (b)) showing the same Cu and O site
labels within each unit cell (see inset). Thus the physical locations at which the nematicity measure
O R

N (e) is evaluated are labeled by the dashes. Overlaid is the location and orientation of a Cu atom
and four surrounding O atoms. f The value of O R

N (e) computed from Z(r, e) data measured in the
same FOV as (a) and (b). As in (c), its magnitude is low for all E < Δ0 and then rises rapidly to
become well established at e ∼ 1 or E ∼ Δ1

of a representative region from Fig. 3.9a; the locations of each Cu site R and of the
two O atoms within its unit cell are indicated. Figure3.9e shows Z(r, e) measured
simultaneously with Fig. 3.9d with same Cu and O site labels. An r-space measure
of intra-unit-cell nematicity can also be defined

O R
N (e) =

∑
R

Zx (R, e) − Z y(R, e)

Z̄(e)N
(3.20)

where Zx (R, e) is the magnitude of Z(r, e) at the O site a0/2 along the x-axis from
R while Z y(R, e) is the equivalent along the y-axis, and N is the number of unit

cells. This estimates intra-unit-cell nematicity similarly to O Q
N (e) but counting only

O site contributions. Figure3.9f contains the calculated value of O R
N (e) from the

same FOV as Fig. 3.9a, b showing good agreement with O Q
N (e). Thus the intra-unit-

cell C4 symmetry breaking is specific to the states at |E | ∼ Δ1, manifestly, because
of inequivalence, on the average, of electronic structure at this energy at the two
oxygen atom sites within each cell.

Atomic-scale imaging of electronic structure evolution from the insulator through
the emergence of the pseudogap to the superconducting state in Ca2−xNaxCuO2Cl2
also reveals how the intra-unit-cell C4 symmetry breaking emerges from the C4 sym-
metric antiferromagnetic insulator existing at zero hole-doping. Quite remarkably, at
lowest finite dopings, nanoscale regions appear exhibitingpseudogap-like spectra and
180◦-rotational (C2v) symmetry, and form unidirectional clusters within a weakly
insulating and the C4v-symmetric matrix [7]. Therefore ‘hole doping’ in cuprates
seems to proceed by the appearance of nanoscale clusters of localized holes within
which the intra-unit-cell broken-symmetry pseudogap state is stabilized. A funda-
mentally two-component electronic structure then exists until these C2v-symmetric
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clusters touch each other at higher doping at which point the long-range high-Tc

superconductivity emerges in Ca2−xNaxCuO2Cl2.
There are also strong incommensurate electronic structure modulations (density

waves) in Bi2Sr2CaCu2O8+δ , Ca2−xNaxCuO2Cl2 and Bi2Sr2CuO6+δ , for Δ0 <

|E| < Δ1 states. They exhibit two ultra-slow dispersion q-vectors, q∗
1 and q∗

5. We
find that they evolve with p as shown in Fig. 3.7b, c. The q∗

1 modulations appear as the
energy transitions from below to above Δ0 but disappear quickly leaving only two
primary electronic structure elements of the pseudogap-energy electronic structure in
Z(q, E ∼= Δ1). These occur at the incommensurate wavevector Sx , Sy representing
phenomena that locally break translational and rotational symmetry at the nanoscale.
The doping evolution of |Sx |= |Sy | indicates that these modulations are directly and
fundamentally linked to the doping-dependence of the extinction point of the arc of
Bogoliubov QPI in Sect. 3.6. The rotational symmetry breaking of these incommen-
surate smectic modulations can be examined by defining a measure analogous to
(3.19) of C4 symmetry breaking, but now focused only upon the modulations with
Sx , Sy :

O Q
S (e) ≡ ReZ̃(Sy, e) − ReZ̃(Sx, e)

Z̄(e)
(3.21)

Low values found for |O Q
S (e)| at low e occur because these states are dispersive

Bogoliubov quasiparticles [56, 57, 61, 62] and cannot be analyzed in term of any
static electronic structure, smectic or otherwise, but |O Q

S (e)| shows no tendency to
become well established at the pseudogap or any other energy and its correlation
lengths are always on the nanometer scale [71].

There is growing interest in possible procedures formeasurement of nematic order
in STM expeirments as discussed in [74] which identified some challenges inherent
in specific approaches. It is important to note that while as they apply to the data
presented therein the conclusions of [74] may be true, they are of no relevance for
those presented in this section or in [71, 72]. This is because [74] defines “nematicity”
by the ratio of the magnitudes measured at the Qx = [100] and Qy = [010] Bragg
peaks of g(q),-the Fourier transform of g(r) in the following fashion

|g(Qy)| − |g(Qx )|
|g(Qy)| + |g(Qx )| , (3.22)

as is also described in [39]. This is profoundly and essentially different from the
definition of nematic order given in (3.19) above; that nematic order parameter
O Q

N is lattice-phase sensitive (and thus atomic site selective) and characterizes the
contribution primarily from the oxygen atoms in theCuO2 plane. In contrast, (3.22) as
defined in [74] mixes both real and imaginary Fourier Bragg components indiscrim-
inately in a fashion that renders CuO2 intra-unit-cell symmetry breaking extremely
difficult, if no impossible, to detect.

At a more practical level, the approaches in [74] and in (3.19) are also highly dis-
tinct. In order to obtain O Q

N given by (3.19), one has first to correct for sub-angstrom
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scale distorsions in rectilinearity throughout the images of g(r, E) using the Fujita-
Lawler algorithms [71] or similar procedure, and then establish the correct lattice
phase with high precision (2% of 2π ), as described in Sect. 3.3. This allows estab-
lishment and analysis of the complex elements of the Fourier transform, ReT(q) and
ImT(q), in order to yield a well defined Reg(q) and Img(q) only from which O Q

N
can be calculated correctly. We emphasize that this technique not only requires the
mathematical steps described in Sect. 3.3, but it also requires spectroscopic measure-
ments using many pixels inside each CuO2 unit-cell. If these measurement specifica-
tions, the above lattice-phase definition procedures, and the resulting determination
of Reg(q) and Img(q) are not all achieved demonstrably, no deductions about the
validity of C4v symmetry breaking in the STM data using (3.19) can or should be
made. Therefore, whether the (3.22) is valid (or invalid) measure of nematicity as
discussed in [74] has no relevance whatsoever for our measurements throughout this
section because we use (3.19) along with the procedures described in Sect. 3.3.

In any case, there are simple practical tests for the capability to correctly mea-
sure nematicity: observation of adjacent domains with opposite nematic order when
using same tip, or the direct detection of the intra-unit-cell symmetry breaking in a
characteristic energy associated with the electronic states therein.

In summary: electronic structure imaging in underdoped Bi2Sr2CaCu2O8+δ

and Ca2−xNaxCuO2Cl2 reveal compelling evidence for intra-unit-cell C4 sysmetry
breaking specific to the states at the |E | ∼ Δ1 pseudogap energy. These effects exist
because of inequivalence, when averaged over all unit cells in the image, of electronic
structure at the two oxygen atom sites within each CuO2 cell. This intra-unit-cell
nematicity coexists with finite q=Sx , Sy smectic electronic modulations, but they
can be analyzed separately by using Fourier filtration techniques. The wavevec-
tor of smectic electronic modulations is controlled by the point of k-space where
the Bogoliubov interference signature disappears when the arc supporting delocal-
ized Cooper pairing approaches the lines between k =±(0,π /a0) and k =±(π /a0,0)
(Fig. 3.6b, c). This appears to indicate that the q=Sx , Sy smectic effects are domi-
nated by the same k-space phenomena which restrict the regions of Cooper pairing
[61] and are not a characteristic of r-space ordering.

3.8 Interplay of Intra-unit-cell and Incommensurate Broken
Symmetry States

The distinct properties of the |E | ∼ Δ1 smectic modulations can be examined
independently of the |E | ∼ Δ1 intra-unit-cell C4-symmetry breaking, by focus-
ing in q-space only upon the incommensurate modulation peaks Sx and Sy . A
coarse grained image of the local smectic symmetry breaking reveals the very short
correlation length of the strongly disordered smectic modulations [60, 71, 72]. The
amplitude and phase of two unidirectional incommensurate modulation components
measured in each Z(r, e = 1) image (Fig. 3.10a, b) can be further extracted by
denoting the local contribution to the Sx modulations at position r by a complex field
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�Fig. 3.10 a Smectic modulations along x-direction are visualized by Fourier filtering out all the
modulations in Z(r, e = 1) of the underdoped Bi2Sr2CaCu2O8+δ except those at Sx . b Smectic
modulations along y-direction are visualized by Fourier filtering out all themodulations of Z(r, e =
1) except those at Sy . c Smectic modulation around the single topological defect in the same FOV
showing that the dislocation core is indeed at the center of the topological defect and that the
modulation amplitude tends to zero there. This is true for all the 2π topological defects identified
in (e) and (f). d Phase field around the single topological defect in the FOV in (c). e f Phase field
φ1(r)(φ2(r)) for smectic modulations along x(y)—direction exhibiting the topological defects at
the points around which the phase winds from 0 to 2π . Depending on the sign of phase winding, the
topological defects are marked by either white or black dots. The broken red circle is the measure
of the spatial resolution determined by the cut-off length (3σ ) in extracting the smectic field from
Z̃(q, e = 1)

1(r). This contributes to the Z(r, e = 1) data as 1(r)eiSx ·r + ∗
1 (r)e−iSx ·r ≡

2|1(r)| cos(Sx · r + φ1(r)) thus allowing the local phase φ1(r) of Sx modulations
to be mapped; similarly for the local phase φ2(r) of Sy modulations.

A typical example of an individual topological defect (within solid white box
in Fig. 3.10a) is shown in Fig. 3.10c, d. The dislocation core (Fig. 3.10c) and its
associated 2π phase winding (Fig. 3.10d) are clear. We find that the amplitude of
1(r) or 2(r) always goes to zero near each topological defect. In Fig. 3.10e, f
we show the large FOV images of φ1(r) and φ2(r) derived from Z(r, e = 1) in
Fig. 3.10a, b. They show that the smectic phases φ1(r) and φ2(r) take on all values
between 0 and ±2π in a complex spatial pattern. Large numbers of topological
defects with 2π phase winding are observed; these are indicated by black (+2π)

and white (−2π) circles and occur in approximately equal numbers. These data are
all in agreement with the theoretical expectations for quantum smectic dislocations
[35].

Simultaneous imaging of two different broken symmetries in the electronic struc-
ture provides an unusual opportunity to explore their relationtship empirically, and to
develop a Ginzburg-Landau style description of their interactions. The local nematic
fluctuation δOn(r) ≡ On(r)− < On > (Fig. 3.11a) is the natural small quantity to
enter the GL functional. In all cases we then focus upon the phase fluctuations of
the smectic modulations (meaning that δOn(r) couples to local shifts of the incom-
mensurate wavectors) we find that δOn(r) = l · ∇φ surrounding each topological
defect [72] where the vector l ∝ (αx , αy) lies along the line where δOn(r) = 0. The
resulting prediction is that δOn(r) will vanish along the line in the direction of l that
passes through the core of the topological defect with δOn(r) becoming greater on
one side and less on the other (Fig. 3.11b), and this is what is observed throughout
data sets.

Both nematic and smectic broken symmetries have been reported in the elec-
tronic/magnetic structure of different cuprate compounds [73, 117–119]. This
approach may provide a good starting point to address the interplay between the
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Fig. 3.11 a Fluctuations of
electronic nematicity
δOn(r, e = 1) obtained by
subtracting the spatial average
< On(r, e = 1) > from
On(r, e = 1). The locations
of all 2π topological defects
measured simultaneously are
indicated by black dots. They
occur primarily near the lines
where δOn(r, e = 1) = 0.
Inset shows the distribution of
distances between the nearest
δOn(r, e = 1) = 0 contour
and each topological defect; it
reveals a strong tendency for
that distance to be far smaller
than expected at random. b
Theoretical δOn(r, e = 1)
from the Ginzburg Landau
functional in the [72] at the
site of a single topological
defect (bottom). The vector l
lies along the zero-fluctuation
line of δOn(r, e = 1)

different broken electronic symmetries and the superconductivity near the cuprate
Mott insulator state.
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�Fig. 3.12 a Image typical of the broken spatial symmetries in electronic structure as measured in
the dSC phase at the pseudogap energy E ∼ Δ1 in underdoped cuprates (both Bi2Sr2CaCu2O8+δ

and Ca2−xNaxCuO2Cl2). b A schematic representation of the electronic structure in one quarter of
the Brillouin zone at lowest temperatures in the dSC phase. The region marked II in front of the
line joining k = (π/a0, 0) and k = (0, π/a0) is the locus of the Bogoliubov QPI signature of
delocalized Cooper pairs. c An example of the characteristic Bogoliubov QPI signature of sixteen
pairs of interference wavevectors, all dispersive and internally consistent with the octect model as
well as particle-hole symmetric qi (+E) = qi (−E), here measured at lowest temperatures. d An
example of the broken spatial symmetries which are concentrated upon pseudogap energy E ∼ Δ1
asmeasured in the PG phase; they are indistinguishable frommeasurements at T ∼ 0. eA schematic
representation of the electronic structure in one quarter of the Brillouin zone at T ∼ 1.5Tc in the PG
phase. The region marked III is the Fermi arc, which is seen in QPI studies as a set of interference
wavevectors qi (E = 0) indicating that there is no gap-node at E = 0. Region II in front of the
line joining k = (π/a0, 0) and k = (0, π/a0) is the locus of the phase incoherent Bogoliubov
QPI signature. Here all 16 pairs of wavevectors of the octet model are detected and found to be
dispersive. Thus although the sample is not a long-range phase coherent superconductor, it does
give clear QPI signatures of d-wave Cooper pairs. f An example of the characteristic Bogoliubov
QPI signature of sixteen pairs of interference wavevectors, all dispersive and internally consistent
with the octet model as well as particle-hole symmetric qi (+E) = qi (−E), but here measured at
T ∼ 1.5Tc

3.9 Conclusions

We summarize our empirical understanding of underdoped cuprate electronic
structure as derived from SI-STM studies in Fig. 3.12.

In the dSC phase (Fig. 3.12a–c) the Bogoliubov QPI signature of delocalized
Cooper pairs exhibiting a spatially homogenous pairing energy gap (Sect. 3.6)
exists upon the arc in k-space labeled by region II in Fig. 3.12b. States of this
type have energy |E | ≤ Δ0. The Bogoliubov QPI disappears near the lines
connecting k = (0,±π /a0) to k = (±π /a0,0)—thus defining a k-space arc which
supports the delocalized Cooper pairing. This arc shrinks rapidly towards the
k = (±π/2a0,±π/2a0) points with falling hole-density in a fashion which could
satisfy Luttinger’s theorem if it were actually a hole-pocket bounded from behind
by the k =± (π/a0, 0) − k ± (0, π/a0) lines. The |E | ∼ Δ1 pseudogap excitations
(Sect. 3.7) are labeled schematically by region I and exhibit a radically different r-
space phenomenology locally breaking the expectedC4 symmetry of electronic struc-
ture at least down to C2, by rendering the two oxygen sites electronically inequivalent
within each CuO2 unit cell (Fig. 3.12a). These intra-unit-cell broken C4-symmetry
states coexist with incommensurate modulations that break translational and rota-
tional symmetry locally. The wavelengths of these incommensurate modulations
q=Sx , Sy are controlled by the k-space locations at which the Bogoliubov QPI sig-
natures disappear; this is the empirical reason why Sx , Sy evolve continuously with
doping along the line joining k =±(π/a0, 0) − k ± (0, π/a0) (Sect. 3.6). In the PG
phase (Figs. 3.12d–f), theBogoliubovQPI signature (Fig. 3.12f) exists upon a smaller
part of the same arc in k-space as it did in the dSC phase. This is labeled as region
II while the ungapped Fermi-arc (region III) predominates. The E ∼ Δ1 excitations
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in the PG phase, (Sect. 3.7) are again labeled by region I and exhibit intra-unit-cell
C4 breaking and q=Sx , Sy incommensurate smectic modulations indistinguishable
from those in the dSC phase (Fig. 3.12e). One further point must be reemphasized:
the spatially disordered and symmetry breaking states with E ∼ Δ1 are obviously
not due to heterogeneity (granularity) of the superconductivity, because the Bogoli-
ubov scattering interference patterns exhibit ∼long range spatial coherence, for all
dopings and materials studied.

The relationship between the |E | ∼ Δ1 broken symmetry states (Sects. 3.5, 3.7,
3.8) and the |E | ≤ Δ0 Bogoliubov quasiparticles indicative of Cooper pairing
(Sects. 3.4 and 3.6), and thus the relationship between quantum states associated
with the heterogeneous pseudogap and those with the homogeneous superconduc-
tivity, is not yet understood. However, these two sets of phenomena appear to be
linked inextricably. The reason is that the k-space location where the latter disap-
pears always occurswhere the Fermi surface touches the lines connecting (0,±π/a0)
to (±π/a0, 0), while the wavevectors q∗

1 and q∗
5 close to this intersection are those

of the incommensurate modulations at |E | ∼ Δ1.
Finally, site-specificmeasurements within each CuO2 unit-cell that are segregated

into three separate electronic structure images (containing only the Cu sites (Cu(r))
and only the x/y-axis O sites (Ox (r) and Oy(r))) allows sublattice phase resolved
Fourier analysis. This has recently revealed directly that themodulations in the Ox (r)
and Oy(r) sublattice electronic structure images consistently exhibit a relative phase
of π . These observations demonstrate by direct sublattice phase-resolved visualiza-
tion that the cuprate smectic state (density wave) with wavevector S, is in fact a
d-form factor density wave [120].
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Chapter 4
Point Contact Spectroscopy in Strongly
Correlated Systems

Guy Deutscher

Abstract The application of Point Contact Spectroscopy to strongly correlated
materials is reviewed. Results obtained on MgB2, high Tc cuprates, heavy fermions,
pnictides and spin-active interfaces are reviewed, with an emphasis on the quantita-
tive determination of themass enhancement factor. Themethod of analysis presented
is particularly useful when low temperature heat capacity measurements cannot be
performed due to very high superconducting critical fields.

4.1 Introduction

The development of Point Contact Spectroscopy can be traced back to an early
paper by Sharvin [1]. In this paper, Sharvin pointed out that when electrons cross a
small aperture without undergoing any collision, which occurs if its size d is smaller
than the electron mean free path, this contact will nevertheless have a finite resis-
tance. However he did not himself use point contacts for spectroscopic investigations.
Instead, his idea was to use devices incorporating two point contacts to study electron
orbits under applied magnetic fields: electrons injected through one contact could be
collected in the second one if the field would bend over the electron beam so that it
would hit back the surface at the location of the second contact. It is interesting to
note that at the same time Andreev [2] had predicted that electrons hitting a normal
metal to superconductor interface should be reflected back as holes at biases below
the gap. It turned out later that the Point Contact invented by Sharvin was in fact the
perfect tool to study these reflections, also predicted at the same time independently
by de Gennes and Saint-James [3] and by Saint James [4]. In what follows, I will
call these reflections Andreev–Saint James, or ASJ, as has now been accepted [5].

The first observation of ASJ reflections at a normal metal/superconductor inter-
face was reported by Pankove [6], who noticed that the conductance of small Nb/Al
contacts decreased abruptly at a bias of the order of the superconducting gap. As we
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shall see below, this sudden decrease is a basic characteristic ofASJ reflections. How-
ever, Pankove did not relate his observations to the predicted electron-hole reflections
below the gap. In fact it was only in 1980 that Zaitsev [7] showed explicitly that the
conductance of a Sharvin contact between a normal metal and a superconductor
is enhanced below the gap. Shortly thereafter Blonder, Tinkham and Klapwijk [8]
produced a full theory of the I(V) characteristics of such contacts, covering the full
range between Sharvin (ballistic) contacts and tunneling junctions whose resistance
is mostly due to a barrier at the interface.

However, in the case of conventional superconductors Point Contact Spectroscopy
does not present much of an advantage over the well established Giaever tunneling
spectroscopy [9]. In addition to the determination of the gap, Giaever tunneling also
allows the determination of the detailed interaction with the bosons (here phonons)
that provide the glue for pair formation.

I believe that the justification for the present review is the discovery of many
new superconductors (strongly correlated systems such as heavy fermions, cuprates,
pnictides, and also MgB2). While tunneling was the tool of choice for the study of
conventional superconductors, it has turned out to be basically inapplicable to these
new superconductors, which are complex materials that do not allow the preparation
of high quality tunnel barriers. To some extent the development of Scanning Tunnel-
ing Spectroscopy has replaced conventional tunneling, but it has its own limitations.
It requires a very smooth and clean surface, and few materials can be easily cleaved
to produce them. Besides it investigates the density of states at the surface, and may
not necessarily be trusted to always reflect bulk properties. By contrast, Point Con-
tact Spectroscopy does not require perfect surfaces, and investigates the properties
of the material over a depth of the order of the coherence length. These are I believe
the experimental reasons why there has been in recent years strong renewed interest
in this technique for the study of complex materials, particularly strongly correlated
systems.

Besides, there has also been progress in the theoretical understanding of the prop-
erties of contacts with materials where interactions are strong. It has been shown
that the effective transparency of these contacts is not affected by retardation effects
[10]. This result has allowed the development of a new method for the quantitative
determination of mass enhancement due for instance to strong correlation effects.
The mass enhancement factor is obtained by comparing the effective Fermi velocity
of the strongly correlated material that enters into the contact resistance, and that
which determines the superconducting coherence length. In this way it has become
possible to establish a classification of strongly correlated systems in terms of their
mass enhancement factors.

Another reason for recent successes in the use of Point Contact Spectroscopy
for the study of unconventional superconductors is that, contrary to tunneling spec-
troscopy, it is phase sensitive. For instance, in the case of the high Tc cuprates, it has
been possible to make a quantitative fit of I(V) characteristics to theory by taking
into account the d-wave symmetry of the order parameter.
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Overall, the quality of the fits of Point Contact data is today comparable to that
which had been achieved in the past by tunneling spectroscopy on conventional
superconductors.

4.2 Experimental Realization of Point Contacts

4.2.1 Resistance of a Sharvin Contact

Sharvin considered the transport of electrons through a small aperture connecting two
electrodes in the case where the size d of this aperture is smaller than the electrons
mean free path l (Fig. 4.1). He remarked that in spite of the absence of scattering this
contact has a finite resistance. His argument is that when a difference of potential
V is applied between the two electrodes, electrons crossing the aperture acquire an
additional kinetic energy equal to eV as compared to their Fermi kinetic energy.
Denoting the additional velocity by δv and the Fermi velocity by vF one has to
first order mvF · δv = eV . The net current resulting from the excess velocity is
I = ned2 · δv and therefore the resistance of the contact is equal to:

Rsh = mvF

nd2e2
. (4.1)

This result is easily transformed into Rsh = ρl/d2 where ρ is the resistivity of
the metallic electrodes. A more precise calculation taking into account the three
dimensional character of the electron gas gives:

Fig. 4.1 A contact between a
normal tip, on the left, and a
superconducting electrode on
the right hand side. The
physical size of the contact, s,
should be smaller than the
mean free path l to avoid
heating effects, and than the
coherence length ξ to avoid
the proximity effect that may
weaken locally the
superconducting gap
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Rsh = 16ρl

3πd2 (4.2)

or equivalently:

Rsh = 16�

(kF d)22e2
(4.3)

where the universal resistance h/2e2 = 12.9k� appears. This last expression has a
simple physical meaning: the Sharvin resistance is equal to the universal resistance
divided by the number of quantum channels across the contact.

In most metals the product ρl is of the order of 1 × 10−11 � cm2. In a relatively
clean metal the mean free path will be of the order of 100nm or more. In order to
qualify as a Sharvin contact a point contact resistance should therefore be of the
order of 1� or more. This is a useful number to remember. It is in fact a lower limit
as the resistance will often be increased by the presence of a physical barrier or a
mismatch of the Fermi velocities of the two electrodes, if we have a heterogeneous
contact as will in general be the case.

The above expressions give the resistance of a Sharvin contact in the low bias
limit. But in fact in what follows we shall be mainly interested in the behavior of
the contact at finite biases, where interactions can modify the I(V) characteristic. For
instance, electrons can interact with phonons and be scattered back, thus reducing
the net flow of electrons at a given bias. More generally inelastic scattering will
generate heating, which in some instances such as a contact with a superconductor
can strongly modify the conductivity. In the next section we briefly consider these
possibilities and the limitation they imply for point contact spectroscopy.

4.2.2 Scattering Effects

Elastic scattering in the contact area results in an additional diffusive term in its
resistance, basically equal to ρ/d. Here ρ is the resistivity in the region of the contact,
and it is assumed that l � d. A useful interpolation expression given by Wexler [11]
is:

R = 16ρl

3πd2 + ρ (T )

d
(4.4)

which is just the sum of the Sharvin resistance and of the diffusive term. Temperature
dependence of a contact resistance is therefore a sign that it is not in the Sharvin limit.

Joule heating inside the constriction arises if the inelastic mean free path—in
addition to the elastic mean free path—is smaller than the size of the constriction.
This results in an elevation of its temperature TPC , which is bias dependent. If it rises
substantially above that of the bath, it is given by [12]:
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eV = 3.63kB TPC (4.5)

In the case of a normal metal to superconductor contact, spectroscopy involves
biases of the order of the superconducting gap Δ = 1.75kB Tc for a BCS supercon-
ductor. Spectroscopy is typically performed at temperatures well below the critical
temperature Tc. As can be seen from the above expression, at such bias the tem-
perature of the constriction can in fact easily reach values of the order of Tc. The
measured gap will then be significantly smaller than its low temperature value.

4.2.3 Critical Velocity Effects

In the case of a normal metal to superconductor point contact, heating is not an issue
as long as the superconducting state is maintained since there is zero dissipation.
However, when eV ≥ Δ, the velocity that pairs acquire is of the order of the critical
velocity at which massive depairing occurs:

vc = Δ

pF
(4.6)

where pF is the Fermi momentum. Quasi-particles are then produced at the expense
of the superconducting condensate. If the contact is not in the Sharvin limit, heating
will immediately occur, the temperature will rise substantially and possibly above Tc.
At that point the (I/V) characteristic will reverse to that in the normal state, instead
of following the behavior predicted in the superconducting state, where above the
gap the production of quasi-particles occurs gradually. This results in a dip in the
dynamical conductance dI/dV at a bias of the order of the gap. Such a signature of
heating effects is often seen, see Fig. 4.2. Vice-versa, the absence of such a dip at the
gap bias is a strong indication that the contact is in the Sharvin limit.

When pairs are reaching the critical velocity, heat will be dissipated inside the
superconducting material within a radius lin of the contact. The longer this inelastic
scattering length, the smaller the temperature rise: away from the contact the pair
velocity will decrease as r−2 and heat will be dissipated in a larger volume. There-
fore the condition lin � d is of ultimate importance. At high temperatures scattering
occurs mostly through the electron-phonon interaction, the elastic and inelastic scat-
tering lengths are close to each other. But at low temperatures the inelastic length
grows as T −p where the exponent p ranges from 1 to 3 depending on the scattering
process and the dimensionality. It can easily reach values of the order of one micron
in the liquid Helium temperature range. This is a large length scale compared to the
typical contact size of the order of 10nm. Point contact spectroscopy is therefore
best conducted at low temperatures.
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Fig. 4.2 Characteristic of a
low resistance Cu/Nb point
contact (about 0.1�) showing
heating effects. A fit to theory
is possible, but the dip in
dV/dI occurs at a bias smaller
than the gap of the bulk
superconductor and the
resistance rises at high
voltages. After Blonder and
Tinkham [13]

4.2.4 Contact Size

Determining the contact size through a measurement of the contact resistance using
the Sharvin relation gives only a rough estimate. This is because it assumes that the
contact is perfectly transparent, while it in fact never is. Transparency of the contact
is limited for two reasons: the possible existence of a physical barrier at the interface,
and a mismatch of the Fermi velocities, as already mentioned.

Blonder et al. [8] have modeled the barrier through a delta function V = Hδ(x)

and have introduced a transparency coefficient Z = H/�vF . In addition they have
taken into account the ratio r between the Fermi velocities of the two electrodes. The
effective transparency coefficient Zeff is given by:

Z2
eff = Z2 + (1 − r)2

4r
(4.7)

and the actual resistance of the contact is:

R = Rsh

(
1 + Z2

eff

)
. (4.8)

An independent determination of Zeff is therefore necessary to obtain the value
of the Sharvin resistance, and therefore of the contact size. This is in general not
possible in the normal state, but as we shall see in the next section it is possible for
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a normal metal to superconductor contact. By itself, a measurement of the contact
resistance only gives an upper bound for Rsh and therefore a lower bound for the
contact size.

4.2.5 Practical Realization of Point Contacts

A commonly used technique to produce a point contact is to prepare a sharp normal
metal tip and to bring in into contact with the surface of the material under study. Tip
preparation can be done for instance by cutting the edge of a gold wire with a sharp
razor. The typical radius of curvature achieved is of about one micron. Although this
size is by itself much too large to fabricate a Sharvin contact, one can make one
by bringing delicately the tip into contact through a micro-screw device. At first,
the contact resistance is usually of the order of several k�, in general due to the
presence of some insulating material on the surface. The (I/V) characteristic is then
structure-less. But by moving the tip down slowly, and sometimes by adding some
small lateral movement, this resistance can be brought down into the desired range
of 10–100�. A useful characteristic can then be recorded.

How the small point contact is actually achieved is not obvious. One possibility
is that by moving the tip one scratches the surface of the material under study, and
that contact with the tip is actually through a pinhole. Existence of pinholes is a
non-desired but common feature in thin insulating oxides used to produce tunnel
junctions.

A different technique consists indeed in creating pinholes in a thin oxide barrier
by applying a voltage pulse across a small area junction between two thin wires at
right angle. This has been done for instance to study ferromagnetic to superconductor
contacts. Here the ferromagnet (Ni or Co) was evaporated first and let to oxidize in
air for some limited time. In a second stage the superconductor (for instance In) was
evaporated and prepared in a cross-wire geometry. Resistance of the contact is at first
high but can be brought down into the desired range by the application of series of
voltage pulses [14].

Mechanically controlled break junctions have also been used to produce point
contacts [15, 16]. Here both electrodes are identical, the advantage being that one
unknown parameter—the mismatch between the Fermi velocities between the two
electrodes—is eliminated.

4.3 Point Contact Spectroscopy of Conventional
Superconductors

The theory of Blonder et al. [8] still constitutes the basis of our understanding of point
contact spectroscopyof superconductors.Although itwas developed for conventional
superconductors—by which wemean s-wave order parameter symmetry and weakly
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correlated systems—its application to unconventional superconductors has proven to
be extraordinarily useful for reasons that will become clear below. Therefore a brief
overview will be helpful here for the reader actually interested in strong correlation
effects.

In a pure Sharvin contact an electron coming from the normal side at an energy
ε (counted from the Fermi energy) smaller than the gap cannot penetrate into the
superconductor. It can however be reflected as a hole of opposite spin at an energy
−ε. Recombination into a Cooper pair occurs in S over the length scale of the
superconducting coherence length ξ. At biases smaller than the gap a charge of
2e flows through the interface, as compared to a charge e in the normal state. This
increase in conductance below the gap, by a factor of 2, can be understood intuitively
by noting that the resistance of the contact in the normal state comes for half fromeach
side, and that the contribution of one half disappears when one electrode becomes
superconducting. Above the gap voltage quasi-particles progressively reduce this
enhanced conductance until it returns to its normal state value.

If the contact is not perfectly transparent, the incoming electron can undergo
several processes. It can still be reflected as a hole along the incident trajectory with
probability A(ε) (ASJ reflection); it can be reflected as a normal electron (normal
specular reflection) with probability B(ε) even at bias below the gap; it can be
transmitted as an electron with a wave vector k > kF (no branch crossing) with
probability C(ε); or it can be transmitted as an electron with a wave vector k < kF

(branch crossing) with probability D(ε). The sum of these probabilities is equal
to unity. The current across the contact is the same on both sides of the contact,
knowledge of two coefficients for instance A(ε) and B(ε) is sufficient to calculate it:

I = J0

+∞∫
−∞

[1 + A (ε) − B (ε)] [ f (ε − eV ) − f (ε) dε] (4.9)

where J0 depends on the geometry of the contact and f (ε) is the Fermi function.
The shape of the dynamical conductance characteristic dI/dV(V) is a sensitive

function of the effective barrier parameter Zeff . As shown in Fig. 4.3, when Z (read
Zeff ) is smaller than 0.5, the zero bias conductance is enhanced compared to the nor-
mal state one (the conductance well above the gap). In other terms, ASJ reflections
still dominate. For Z values increasing from zero to 0.5, a conductance peak progres-
sively develops at the gap bias. For Z > 0.5, the zero bias conductance is reduced
and for Z > 2, the characteristic is basically tunneling like, with sharp coherence
peaks developing at the gap.

Experimentalists often present dV/dI characteristics, like that shown in Fig. 4.3.
Instead of a peak, a dip is seen at the gap bias.

For a normal to superconducting contact a further restriction to the contact size
applies, in addition to d � lin . In spite of the desire for good contact between the
normal metal (for instance a tip) and the superconducting electrode, the value of
the gap in S should not be affected by this contact as it normally is because of the
proximity effect [17]. Lack of a proximity effect can be achieved if the size of the
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Fig. 4.3 Typical dynamical
conductances of point
contacts for values of the
transparency parameter Z
ranging from 0 (pure Sharvin
limit) to 5 (tunneling like
characteristic). After Blonder
et al. [8]

contact is much smaller than the superconducting coherence length, d � ξ, since
ξ is the length scale over which the conversion of quasi-particles to Cooper pairs
occurs. At low temperatures this condition is more stringent than d � lin , because as
mentioned above the inelastic scattering lengthdiverges at low temperatures, while
the coherence length reaches a finite value. For a clean, low temperature supercon-
ductor ξ is of the order of one micron, which poses no problems. But the coherence
length of clean Nb is already down to 40nm, a value further reduced in the dirty limit
l < ξ. As can be seen in Fig. 4.4, for intermediate resistance contacts the condition
d � ξ is met. But it is not for a low resistance contact, see Fig. 4.2 where the gap
“seen” at the contact is evidently reduced precisely by the proximity effect.

4.4 Fitting the Symmetry of the Superconductor Order
Parameter

Like ARPES, point contact spectroscopy is sensitive to gap anisotropy. But it has in
addition the unique property to be phase sensitive, namely it can distinguish between
a strongly anisotropic order parameter and a d-wave order parameter for which there
is a change in phase by π at nodes between neighboring lobs. Extensions of the
BTK theory to include unconventional order parameter symmetries by Tanaka and
Kashiwaya [18] have been successfully used to fit point contact spectroscopy data
obtained on high Tc cuprates [5, 19].
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Fig. 4.4 Characteristic of a
Cu/Nb point contact of
intermediate resistance (about
4�) showing no heating
effects. The only adjustable
parameter is Z , the value of
the gap is that of bulk Nb. The
fit is not perfect but the dip in
dV/dI occurs at the bulk gap
bias, and the resistance is
almost flat at high bias
(actually a small rise above
the theory fit can be seen).
After Blonder and
Tinkham [13]

Fig. 4.5 Conductance of a
point contact with a d-wave
superconductor in a nodal
direction for the following Z
values: 0; 0.5; 1.0; 2.0; 3.0.
The surface zero energy
bound states are better
defined for less transparent
contacts, resulting in a higher
and narrower peak a zero bias

Zero energy bound states are formed at the surface of a d-wave superconductor
oriented perpendicular to a node direction [20]. These zero energy states are formed
because during a Saint-James cycle [4] involving two successive specular reflections
at the surface, excitations explore successively lobes of the order parameter having
phases that differ by π. These zero energy states result in a sharp conductance peak
at zero bias. The height of this peak is twice the normal state conductance for a
perfectly transparent Sharvin contact. As the transparency reduces, the conductance
peak narrows and its height increases (Fig. 4.5).
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Fig. 4.6 a Conductance of a Au/YBCO point contact on a (100) oriented facet (anti-nodal di-
rection). The continuous curve is a fit to theory with Z = 0.6 and Δd = 18.6meV. After Kohen
et al. [19]. bTheoretical conductance curves calculated for a contact along a (100) direction between
a normal metal and a d-wave superconductor having a gap of 10meV for the following Z values:
0;0.2;0.3;0.5;07;1.0

Characteristics are quite different when the surface is oriented perpendicular to an
anti-node direction. In that orientation they are sensitive to the gap anisotropy rather
than to its phase because during a Saint-James cycle quasi-particles are reflected
by lobs having the same phase, before and after a specular reflection at the surface.
Figure4.6a shows data obtained on a (100) oriented facet of an optimally doped
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YBa2Cu3O7−δ film [19], together with a fit to the theory of Tanaka and Kashiwaya
with Z = 0.68 and Δd = 18.6meV.

As shown Fig. 4.6b, the shape of the theoretical curves is very sensitive to the
value of the Z parameter in the range from 0 to 1. A quick comparison between the
data shown Fig. 4.6a and the theoretical curves shown Fig. 4.6b immediately tells
that the value of the Z parameter must fall for this contact between 0.5 and 0.7. As
said above, a more refined fit gives the value 0.68.

An interesting feature of the theoretical curves in the case of a d-wave symmetry
is that for Z values larger than about 0.5 they present a weak coherence peak about
1.4 times higher than the normal state conductance at the gap bias. This was already
observed in the early data obtained by Hass et al. [21], but at the time it was not
understood that the origin of this weak coherence peak was the d-wave symmetry of
the order parameter.

A surprising fact also noted in this early data was the relatively small value of
the Z parameter, immediately obvious because of the enhanced conductance below
the gap. Compared to normal metals, cuprates have a small Fermi velocity of about
1.5×107 cm/s, as determined for instance byARPESmeasurements. This is about 10
times smaller that the Fermi velocity in the Au tip. According to the BTK expression
for a perfectly clean interface Zeff = [(1 − r)2/4r ]1/2, which gives Zeff ≈ 2. The
actual value of Zeff can only be larger than this. Instead, fits to the characteristics of
contacts to cuprates give typically Zeff ≈ 0.5 or less. In other terms, point contacts
to cuprates should always give Giaever like characteristics, while they are in fact
commonly Sharvin like, see Fig. 4.3. It will turn out that a high transparency is a key
property of point contacts to strongly correlated metals, in spite of their short Fermi
velocity.

Another surprise is that in spite of the very short coherence length of the cuprates,
which is typically of the order of 1–2nm, an excellent quantitative fit to the BTK
theory can be achieved, see Fig. 4.6a. Such contacts have resistances of about 10�,
and therefore do not meet the condition d � ξ since they must have a minimum size
of about 1nm—of the same order as the coherence length.

The high transparency of contacts to heavy fermions as well as their “point contact
character” raise questions regarding their effective Fermi velocity and quasi-particles
to Cooper pairs effective recombination length.We dealwith them in the next section.

4.5 Theory of ASJ Reflections in the Presence
of Retardation Effects

As will be reviewed below, normal metal/heavy fermion interfaces are characterized
by a high transparency. This is at first view surprising since according to the BTK
theory the large mismatch of the Fermi velocities, which can reach values of the
order of 100, should lead to a low transparency. This apparent contradiction between
experiment and theory was resolved in 1994 by Deutscher and Nozières [10]. How-
ever their argument seems not to have been fully appreciated [22]. We shall therefore
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review it here and show how well it applies to a wide range of interfaces with mate-
rials showing various degrees of electronic correlations. It turns out that their theory
can be used to determine quantitatively the mass enhancement factor by combining
the experimental determination of the value of Zeff and that of the coherence length.

The origin of the short Fermi velocity and short coherence length in the cuprates
and heavy fermions lies in the large electron mass enhancement typical of strongly
correlatedmaterials. However, thismass enhancement cancels out from the boundary
condition determining the transparency of contacts with normal metals.

Corrections to the free electron approximation come from the potential of the
lattice periodic crystal and from interaction terms such as electron-phonon, electron-
electron of various kinds. If one uses the electrons wave functions in the periodic
lattice as the basis, the other interactions are included in a self-energy term Σ(k,ω).
The wave vector dependence of this self-energy is usually small and can often be
neglected, contrary to the wave vector dependence due to the potential of the periodic
lattice.

The finite transparency resulting from amismatch of the Fermi velocities is awell-
known effect in optics. When light strikes an interface between two media having
different refraction indices, in which the velocities of propagation are different, a
fraction of the incoming wave is reflected. The same applies to electron waves at an
interface between two lattices where the velocities of propagation are different due
to different interactions with the potentials of their respective lattices. By contrast,
one may guess that the frequency dependence of the self-energy does not affect the
transparency of the contact because this is a retarded and local effect.

One must distinguish between three different velocities: the bare velocity vF0 of
the electron’s wave in the potential of the lattice, this velocity corrected for the wave
vector dependence of the self-energy vF , and the fully renormalized velocity vF :

vF = vF0

(
1 − ∂Σ

∂k

)
(4.10)

vF = vF

1 + ∂Σ
∂ω

(4.11)

where appears the renormalization factor z:

z = 1

1 + ∂Σ
∂ω

(4.12)

in the above expressions the derivatives are taken at the Fermi level.
It is the ratio r between the velocity vF in the heavy fermion and the velocity in the

normal metal vFN (for which self energy corrections are negligible) that determines
the minimum value of Zeff . As we have seen in the above section, barring heating
effects, the value of Zeff at a normal/superconducting contact can be determined
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by fitting the conductance characteristic to the BTK theory for the appropriate order
parameter symmetry. This value can then be used to obtain that of vF , if vFN is known
(which is the case if N is a conventional normal metal). In this way we can calibrate
the Fermi velocity in the superconducting electrode, corrected for the wave vector
dependence of the self-energy, against the known Fermi velocity of the normal metal
electrode.

On the other hand, the superconducting coherence length ξ involves the fully
renormalized Fermi velocity vF :

ξ = �vF

πΔ
(4.13)

where Δ is the renormalized (measured) gap.
If ξ and Δ are known, vF can be calculated and the mass enhancement factor

obtained as the ratio between vF and vF . This will give a lower bound for this factor
since the presence of a physical barrier at theN/S interfacewill increase themeasured
value of Zeff .

In the following section we show how this method can be applied to obtain the
mass enhancement factor in conventional superconductors, MgB2, f electron heavy
fermions, high Tc cuprates, and some pnictides.

4.6 Experimental Determination of the Mass Enhancement
Factor: From Conventional Superconductors to Heavy
Fermions

4.6.1 A Conventional Superconductor: Nb

In their pioneering work Blonder and Tinkham [13] studied Nb/Cu contacts and
fitted well their data using the then accepted bulk gap value of Nb (1.47meV), when
contacts had a normal state resistance of more than a few �. Contacts were in the
Sharvin limit, with a size estimated to be about 100Å. The most transparent contacts
they produced had Zeff = 0.3, corresponding to r = 1.75. Cu has a Fermi velocity
of 1.36 × 108 cm/s, from which we obtain vF = 0.77 × 108 cm/s. The coherence
length of Nb, equal to 380Å, is larger as requested than the contact size. Using
their gap value and this coherence length, we get for the fully renormalized velocity
vF = 0.3 × 108 cm/s. Finally we have for Nb a mass enhancement factor:

∂Σ

∂ω
= 2.5 (4.14)

Assuming that the mass enhancement is entirely due to the electron-phonon interac-
tion, ∂Σ

∂ω = 1 + λe−p, we get λe−p = 1.5.
This method of evaluation of the electron-phonon interaction is much easier

to apply than the McMillan-Rowell [23] method of inversion of the tunneling
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characteristic, which requires very high quality tunnel junctions. Those are in general
not available for d-band metals such as Nb. For instance, Bostock et al. [24] give
λe−p = 0.39, clearly much to small.

Based on an analysis of their critical field measurements Kerchner et al. [25] have
given for Niobium a mass enhancement factor of 2.2, not too far from the value we
have calculated.

This is the place to remember that the mass enhancement factor is only equal to
(1 + λe−p) in the case it is entirely due to the electron-phonon interaction. If the
electron-electron interaction (correlation) also contributes, this is no longer true: the
mass enhancement factor is then larger than (1 + λe−p). This will appear more
clearly when we describe results obtained on heavy fermions.

4.6.2 MgB2: A Weakly Correlated High Temperature
Superconductor

With a critical temperature of 39K, MgB2 stands out as being in the same range as
many High Tc cuprates, known to be strongly correlated materials. It is therefore
important to establish the degree of electron correlation in this superconductor.

Several groups have published converging point contact results for normal state
contact resistances of the order of 10� and estimated contact sizes below 100Å.
The mean free path in good samples is quoted as being equal to 800Å [26], the
contacts are thus well in the Sharvin limit. The contact size is of the order of the
coherence length, see below. Daghero and Gonnelli [26], Szabó et al. [27], Kohen
and Deutscher [28] have reported Zeff = 0.5 in their most transparent contacts. This
gives for r the lower bound 2.6, and for vF the lower bound 5 × 107 cm/s.

It has been shown that MgB2 has a lamellar structure and is a two band, two gap
superconductor (for a review see [26]). To calculate the values of the renormalized
Fermi velocity we have used the very accurate STM gap measurements of Giubileo
et al. [29], Δ1 = 3.8meV and Δ2 = 7.8meV, and the coherence lengths de-
duced from the in-plane and out-of-plane critical fields (3.5 and 17T respectively),
ξparallel = 100Å and ξ⊥ = 44Å. We remark that the products Δξ are very close
to each other and use their average to calculate the normalized Fermi velocities, for
which we get 1.8 × 107 cm/s.

This gives an average mass enhancement factor of 2.8. If we attribute it entirely
to the electron-phonon interaction, we obtain the λe−p = 1.8. This value is close to
but somewhat larger than that found for Pb for which λe−p = 1.55 [30], (Fig. 4.7).

Nicol and Carbotte [31] have calculated strong coupling effects in MgB2 in a two
band model characterized by four interaction parameters, one for each band and two
for inter-band coupling. They characterize the degree of strong coupling by the ratio
of the critical temperature to a characteristic phonon frequency. They conclude that
this parameter is somewhat larger for MgB2 than for Pb. This is in line with the
average effective value we have obtained for λe−p.
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Fig. 4.7 Conductance of a Cu/MgB2 contact showing a two-gap structure well resolved at
low temperature. The fit to the BTK theory involves in principle 7 parameters: two gap
values, two barrier parameters, two broadening parameters, and a parameter giving the respec-
tive weight of the two bands. All curves have been fitted here with a single Z = 0.5 (af-
ter Szabó et al. [27]). The values of the broadening parameters used in this particular fit were
not given. They are often of the order of one half or one third of the gap. After Daghero
et al. [26]

Based on point contact spectroscopy results, we may conclude that MgB2 is a
conventional superconductor in the sense that the mass enhancement factor is due
entirely to the electron-phonon interaction. Strong coupling effects are similar to but
somewhat stronger than in Pb. Two-band superconductivity certainly contributes to
getting a relatively high Tc, but strong coupling effects are also essential.

4.6.3 High Tc Cuprates

Kohen et al. [19] have fitted their conductance data to the BTK theory for Au/YBCO
contacts having Z parameter values ranging from 0.3 to 0.7 (one of them is shown
Fig. 4.6a). Contact resistances were in the range of 5–40�, indicating contact sizes
ranging from 150 to 50Å. The results were obtained on nearly optimally doped
YBCO films with contacts in the anti-nodal direction. They found that for contact
with the lowest Z values it was necessary to add to the main d-wave pair potential
an idxy component, which they proposed is due to a proximity effect. The authors
propose that this additional component occurs because the size of low Z contacts is
substantially larger than the coherence length. The value of the Dynes broadening
parameter Γ used in their fits was in every case much smaller than the main pair
potential Δdx2−y2

. This is in contrast with many point contact conductance data, for
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Fig. 4.8 Point contact
conductance of a Au/BSCCO
2212 contact. Note the good
agreement with the
theoretical curves shown
Fig. 4.6b. The height of the
normalized conductance
peaks is close to its maximum
theoretical value, and the
shape of the characterisitic
around zero bias displays the
V shape predicted for the
anti-nodal direction. No
broadening parameter has
been used in the fit to the
BTK theory. After D’Gorno
and Kohen quoted in [5]

which a smearing parameter of the order of the gap is often required, and shows that
such a large broadening parameter when found has probably an extrinsic origin.

Using the above described procedure, with Z = 0.3, a coherence length of 18Å
(corresponding to an estimated upper critical field of 100T), a gap of 18meV (as
obtained from the fits), the mass enhancement factor comes out to be of about 5 for
optimally doped YBCO.

For LSCO Hass et al. [32] fitted their data with Z = 0.3, vF = 6×107 cm/s and
vF = 1.5×107 cm/s, giving a mass enhancement factor of 4 at optimum doping. For
BSCCO there is not enough point contact data available, and the upper critical field
value is not known well enough to give a reliable value of the mass enhancement fac-
tor. We nevertheless show Fig. 4.8 point contact data with a high quality fit achieved
without a Dynes broadening parameter.

Amass enhancement factor of 4–5 is probably typical of optimally doped cuprates.
The moderate value of the 2Δ/kB Tc ratio [33] excludes a very strong electron-
phonon coupling as do isotope effect, transport and tunneling experiments.

It is more likely that the mass enhancement factor in the cuprates is mostly due to
correlation effects. Several theories of superconductivity in the cuprates consider that
it is due to electron-electron interactions. Experimental determination of the mass
enhancement factor could be useful for a quantitative test of these theories. Such a
discussion is however beyond the scope of this review.

4.6.4 An Example of Moderate Heavy Fermion: PuCoGa5

PuCoGa5 has the highest critical temperature amongst heavy fermions, 18K. It is
considered a moderate heavy fermion because the value of its electronic specific heat
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coefficient γ is of the order of 77–95mJ/mole K2, compared for instance to UBe13
for which it is of the order of 1 J/moleK2 [34, 35]. PuCoGa5 is of particular interest
because it is iso-structural to CeCoIn5, a well researched superconducting heavy
fermion for which γ = 350mJ/moleK2 [35].

Daghero et al. [36] studied Au/PuCoGa5 single crystal point contacts having
resistances of 6�. The contact size can be estimated to be of at least 100Å. It is
certainly larger than the superconducting coherence length, see below.

In spite of this, Daghero et al. achieved goodfits to theBTK theorywith amoderate
broadening parameter, about one order ofmagnitude smaller than the gap. For certain
contacts the conductance characteristic as shown in Fig. 4.9 had the shape predicted
for a d-wave order parameter in a nodal direction as seen in Fig. 4.5. It has a sharp
peak at zero bias, with the conductance returning to its normal state value at the gap
voltage. The fitted gap value is 5meV, and the broadening parameter 0.6meV.

Daghero et al. could follow the temperature dependence of the gap, see Fig. 4.10.
It has the general BCS shape, with a sharp onset at Tc. The strong coupling ratio
2Δ/kB Tc was found to be equal to 6.4, as compared to 4.28 for a weak coupling
d-wave superconductor. They analyze their results in terms of the Eliashberg strong
coupling theory, which allows to calculate the critical temperature and the gap in
terms of a characteristic boson frequency, the electron boson interaction parameter
λ, and the renormalized Coulomb interaction parameter μ∗. Since none of these
parameters is known a priori, the authors could only arrive at a range of likely
values, assuming that 0 < μ∗ < 0.2. Their conclusion is that 2.2 < λ < 3.7, and

Fig. 4.9 Fit of point contact data obtained on a PuCoGa5 single crystal to the BTK
theory for a d-wave order parameter in a nodal direction. The fit parameters are
Δ = 4.85meV and Z = 0.84. Note that as predicted by theory the peak height at zero bias is
larger than 2, and that there is a slight undershoot below the normal state conductance that ends
about at the gap bias. After Daghero et al. [36]
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Fig. 4.10 Temperature dependence of Au/ PuCoGa5 point contact characteristics. Note that in a
the zero bias peak remains sharp up to Tc, and that in b the fitted gap has a sharp onset at Tc, as
predicted by the BCS/Eliashberg theory. After Daghero et al. [36]

that the characteristic boson frequency is in the range 5.3–8meV, which would fit a
spin fluctuation spectrum.

Using the method described above, it is now possible to obtain directly the value
of the mass enhancement parameter and to compare it to the range of values of the
electron-boson interaction parameter given by Daghero et al. Using Δ = 5meV,
Z = 0.84 and ξ = 20Å (from the value of Hc2 = 74T given by [34]), we get
vF = 3 × 107 cm/s and vF = 0.53 × 107 cm/s, for a mass enhancement factor of
5.6 and λ = 4.6. This is somewhat out of the range of the electron-boson interaction
parameter given by Daghero et al., but not by a lot considering that their gap value
of 5meV may be somewhat underestimated as values as high 6.3meV from other
authors have been cited by them.

4.6.5 Strong Heavy Fermions: UBe13 and CeCoIn5

The first determination of the gap in UBe13 by point contact was performed by
Nowack et al. [37]. Below Tc = 0.9K they observed a V shape drop of the dynamical
resistance around zero bias, by almost a factor of 3 at the lowest temperature achieved
T= 0.53mK, followed by a flat part beyond roughly 0.300meV. They estimated the
gap value as the half width at mid-height of this peak, and gave 2Δ/kB Tc = 10.
In a later work Wälti et al. [38] observed a very sharp conductance peak having a
height 10 times the normal state conductance, followed by an undershoot ending up
at 0.250meV. This behavior is roughly what would be expected for a high Z contact
to a d-wave superconductor in a nodal direction. Wälti et al. give 2Δ/kB Tc = 6.
Neither the Nowack nor theWälti data can be fitted quantitatively to the BTK theory.

Qualitatively the results of Nowack et al. indicate that a rather high trans-
parency contact is possible. Both sets of data give close gap values. With Z = 0.3,
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Fig. 4.11 Conductance of a
Au/UBe13 point contact
having a normal state
resistance of about 2�. The
high peak at zero bias and the
undershoot at 0.3meV are in
rough agreement with a nodal
contact to a d-wave
superconductor. After Wälti et
al. [38]

Δ = 0.25meV and ξ = 60Å (from Hc2 = 7T [39]), we calculate a mass enhance-
ment factor of 90.

Although the large electronic heat capacity of UBe13 (γ = 1.1J/moleK2) clearly
establishes that the mass enhancement factor is large, the heat capacity data is not by
itself sufficient to calculate it precisely. This is because in these complex materials
the number of free electrons per atom is not known a priori, and must be evaluated
from additional data. Stewart has reviewed various methods used in the literature,
based on resistivity, upper critical field and heat capacity data, usually making the
assumption of a spherical Fermi surface [40]. These various methods give for UBe13
mass enhancement factors of up to about 200. In view of the uncertainties involved,
the agreement with the result we have obtained here is reasonable and in a sense
remarkable since the methods used are so different (Fig. 4.11).

Discovered later the heavy fermion CeCoIn5 has been much researched owing
to its relatively high critical temperature Tc = 2.3K. The value of its electronic
heat capacity coefficient has been determined to be γ = 35mJ/moleK2 [41]. Park
et al. [42] reported detailed measurements on Au/CeCoIn5 single crystal point con-
tacts down to 400mK, having normal state resistances of about 1�. They estimated
the contact size to be at most 460Å, and established that it is certainly smaller than
the elastic and inelastic mean free paths, respectively 800 and 6,500Å (at least).
Therefore they rightly claim that these contacts are in the Sharvin limit, so that their
characteristics should not be affected by heating effects. However the contact size
is substantially larger than the coherence length values given by Thompson [43]
ξab = 82Å and ξc = 53Å. ξc is presumably the relevant length scale since the point
contacts were oriented along the c axis of the crystal. Since this coherence length is
almost one order of magnitude smaller than the contact size, proximity effects at the
contact cannot be excluded.

Figure4.12 reproduces the results of Park et al. It shows the temperature
dependence of the gap and of the broadening parameter resulting from a fit to the
data assuming an s-wave order parameter. At the lowest temperature Δ approaches
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Fig. 4.12 The gap Δ and the
broadening parameter Γ of
point contact data to CeCoIn5
fitted to an s-wave order
parameter. After Park
et al. [44]

the value 0.4meV and Γ the value 0.3meV. Both have an anomalous temperature
dependence, Δ rising much too slowly below Tc and Γ approaching zero at Tc,
while it should be temperature independent. The fits use a temperature independent
Z = 0.3. Fits assuming a d-wave order parameter are preferred by the authors, and
give a slightly higher value Δ = 0.46meV.

The large contact size compared to the coherence length as well as the slow rise of
the gap belowTc makes one consider the possibility of a proximity effect that reduces
the measured gap value compared to the bulk. It may also induce a surface s-wave
component, which would explain the difficulty the authors had in differentiating
between s-wave and d-wave symmetries fits, see Kohen et al. [19]. Recent STM
measurements have indeed given a somewhat larger gap value Δ = 0.55meV and
have confirmed that the order parameter symmetry is likely to be d-wave [45].

Taking Δ = 0.55meV, ξ = 53Å and vF = 8 × 107 cm/s from Z = 0.3, we get
for the mass enhancement factor the value of 35. This is about 5–6 times larger than
its value for PuCoGa5 and 3 times smaller than for UBe13, values that are in line
with the respective electronic heat capacity coefficients of these heavy fermions.

4.6.6 Pnictides

Point contact results on pnictides have been recently reviewed by Daghero et al. [46].
An enhanced conductance at zero bias is generally observed, with a double peak for
the 1111 (like SmFeAsO) and 122 (like BaFeAs) compounds indicating in both cases
a s-wave symmetry order parameter. Fits to the BTK theory often give two distinct
gaps, similar to MgB2.
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For instance, for SmFeAs(OF) compounds having critical temperatures of up to
52K, Z parameters of about 0.5 have been shown to fit the data, with a low gap around
6meV and a large gap around 15–18meV. The upper critical field is anisotropic, the
extrapolation of the lower one to T= 0 (corresponding to the (ab) orientation) being
of the order of 100T. We associate the lower gap to the larger coherence length
(lower critical field), and take Δ = 7meV, ξ = 20Å, Z = 0.5 and obtain for the
mass enhancement factor a value of about 5. This is similar to the values obtained
for PuGaIn5 and YBCO.

4.7 Spin Active Interfaces

An interesting area of investigation that has been barely touched upon is that of nano-
scale contacts between a conventional superconductor and a spin-active magnetic
material. While a contact between a superconductor and a homogeneous ferromag-
net has for main effect to destroy superconductivity as soon as the exchange field is
larger than the superconducting gap, more interesting effects can take place if the
magnetization of the magnetic material can be made in some way to be inhomoge-
neous near the interface. In that case it has been predicted that an order parameter
having an equal-spin p-wave component can be induced in the superconductor near
the interface [47].

The conductance of nano-scale Co/CoO/In contacts [48] having resistances of
the order of the universal resistance (from 7 to 13k�) is shown in Fig. 4.13. An
enhanced ASJ conductance is seen at low bias in the least resistive contact J24. It
must therefore be composed of a very small number of quantum channels, likely

Fig. 4.13 Conductance of Co/CoO/In nano-scale contacts having normal state resistances of the
order of the universal resistance. A p-wave component of the order parameter gives the character-
istics their V shape, best seen in sample J18. Fits to a pure s-wave order parameter give instead the
usual U shape (red lines). After Hacohen-Gourgy et al. [48]
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pinholes in the CoO interface layer. Fits of the data have been made to a pure s-wave
order parameter (red lines) and to a mixed s and p order parameter (dark line). Nodes
in the p component give the characteristics of V shape, most clearly visible in the
higher resistances contacts J18 and J15 for which the fitted transparency parameter
Z is about 2 (poorly transparent interface). The combination Co/CoO provides the
magnetic inhomogeneity that allows the presence of a p-wave component of the order
parameter at the interface.

4.8 Conclusions

In spite of some uncertainties mainly due to a contact size often somewhat larger
than the coherence length, it appears that reliable values of the gap and of the bar-
rier parameter can be safely obtained from conductance data of point contacts to
practically every superconductor, going from simple metals to heavy fermions and
related materials. The mass enhancement factor can then be derived using coherence
length values obtained from critical field measurements. In addition, point contact
measurements provide reliable information on the symmetry of the order parameter.

For metals such as Nb the mass enhancement factor is essentially due to the
electron-phonon interaction, which so far could not be established from tunneling
experiments using the McMillan and Rowell inversion method, because of the lack
of sufficiently high quality tunnel junctions.

The high effective transparency of contacts between noblemetals and heavy fermi-
ons, as determined by fits to theBTK theory, is well explained by the theory presented
in Sect. 4.5, formass enhancement factors ranging frommoderate to very high values.
This theory allows one to obtain the mass enhancement factor for heavy fermions.
Good agreement with values derived from electronic heat capacity measurement
on heavy fermions validates this method. It can then be used for cases where low
temperature heat capacity measurements are not available, because the normal state
cannot be restored due to a very high critical field. In this way, the mass enhancement
factor could be determined for the high Tc cuprates, for the heavy fermion PuCoIn5
and for the pnictides. These values should be useful for a quantitative comparison
between theories and experiments concerning the normal and superconducting states
in these strongly correlated materials.
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Chapter 5
Quantum Oscillation Measurements Applied
to Strongly Correlated Electron Systems

Stephen R. Julian

Abstract The de Haas-van Alphen effect and related quantum oscillation
measurements are powerful tools for studying the behaviour of electron quasiparticles
in conducting strongly correlated electron systems. Using them, one can: measure
the size and shape of Fermi surfaces; determine quasiparticle effective masses on a
Fermi-surface-specific basis; determine mean-free paths on a Fermi-surface-specific
basis; and obtain information about quasiparticle g-factors. This chapter first gives
an outline of the theory of quantum oscillations, and then reviews experimental
methods, focusing on aspects that are of particular relevance to strongly correlated
electron systems. The chapter concludes by describing, as a ‘case study’, quantum
oscillation measurements on the p-wave superconductor Sr2RuO4, a material that
is of great current interest, and that illustrates many aspects of quantum oscillation
measurements that are applicable across a broad range of strongly correlated electron
systems.

5.1 Introduction

L.D. Landau predicted in 1930 that the conduction electrons in a metal can, in princi-
ple, show a diamagnetism that oscillates as a function of applied magnetic field [29].
Almost simultaneously, de Haas and Van Alphen first observed such oscillations in
the magnetism of bismuth [14]. Over the subsequent decades the investigation of
Fermi surface topologies with the de Haas-van Alphen (dHvA) effect and related
“quantum oscillation” techniques, notably by David Shoenberg and his collabora-
tors, was primarily responsible for our modern conception of the Fermi surface as a
geometrical object in momentum space.

By the 1970s, however, dHvA measurements were regarded as somewhat routine,
an experimental tool primarily useful for confirming the accuracy of computer gen-
erated band-structures of the elements. There remained, however, some mysteries
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associated with magnetic metals, and the advent of strongly correlated electron sys-
tems in the form of heavy fermions [58], followed by superconducting oxides, led to
a renaissance of the technique. Its unique power to measure not just Fermi surfaces—
which turned out to be much less predictable in these new materials than in the ele-
mental metals—but also many-body mass enhancements reaching up to 100 times
the bare electron mass [59] played a key role in our developing understanding of
strongly correlated systems. In recent years the technique has continued to have a
high impact in such diverse areas as cuprate superconductivity [15] and graphene
[66].

The key to understanding strongly correlated electron matter is to understand
the many-body quantum states of the electrons. Essentially all of the theoretical
work in the field is devoted to theories of electronic states that lie at or beyond the
extreme limits of the standard approximations that are employed to describe conven-
tional metals and magnetic insulators. For the experimentalist, there are a number
of probes of electronic structure available, ranging from macroscopic probes such
as resistivity, Hall effect, specific heat, magnetic susceptibility, optical conductivity,
etc., to microscopic probes of k-space states, such as Angle Resolved Photoemission
(ARPES) and Quasiparticle Interference (QPI) using scanning tunneling microscopy,
techniques described in Chaps. 2 and 3 of this volume. This chapter is devoted to
a technique—the de Haas-van Alphen effect—that plays an essential role in elu-
cidating the properties of quasiparticles at the Fermi surface in strongly correlated
electron metals. An unusual aspect of the dHvA effect is that it straddles the macro-
scopic and microscopic: one measures bulk properties—the magnetization in the de
Haas-van Alphen effect, the resistivity in the Shubnikov-de Haas effect, etc.—yet
the information that is obtained is microscopic in k-space.

The dHvA effect is important because it can be employed in conditions where oth-
ers methods cannot, such as at millikelvin temperatures, and in very high magnetic
fields, and moreover it probes some quantities, such as the effective mass of qua-
siparticles, with much greater accuracy than can be achieved by other techniques.
In strongly correlated electron systems having complex, three-dimensional Fermi
surfaces, quantum oscillations have proven to be more useful for mapping the Fermi
surface than surface based probes of electronic structure, such as ARPES, which are
most reliable when applied to quasi-two-dimensional systems.

On the other hand, quantum oscillation measurements are limited to low tem-
peratures, one obtains information only about states in the immediate vicinity of
the Fermi energy, and in general one requires very high quality crystals in order to
observe the oscillations.

In the first part of this chapter we outline the theory of the dHvA effect, empha-
sizing that it can be used to test Fermi liquid theory, and that in principle quantum
oscillations can be observed in non-Fermi-liquids. We motivate the discussion of
each theoretical capability by listing some significant results, on a variety of strongly
correlated electron systems, that have been obtained using quantum oscillation mea-
surements.

http://dx.doi.org/10.1007/978-3-662-44133-6_2
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We follow with a brief overview of experimental methods. These have developed
rapidly in the past decade with the development of ever-higher-field pulsed magnets
with increasingly sensitive detection systems.

We conclude by showing how these methods have been employed to study one
particular material, Sr2RuO4. This p-wave superconductor is a somewhat rare exam-
ple in which the electronic structure can be understood in fairly simple terms, and
in which there is good agreement between the theoretical and experimental Fermi
surfaces. There is also good agreement between measured bulk properties such as
the specific heat, electrical conductivity and Hall coefficient, and estimates based
on quantum oscillation measurements of quasiparticle properties such as effective
masses, mean-free-paths and Fermi surface size.

5.2 Theory of the de Haas-van Alphen Effect

In this section we will gradually build up the theory of quantum oscillations, begin-
ning with a two-dimensional non-interacting Fermi gas at T = 0 K, and ending
with a theory that can be applied to three-dimensional non-Fermi-liquids with spin-
dependent masses at arbitrary temperature.

5.2.1 Landau Quantization and the Onsager Relation

In a quantum oscillation measurement some property, such as the diamagnetism of
the conduction electrons, or the resistivity, oscillates as a function of applied magnetic
field B. The oscillations are periodic in 1/B, with frequency F , and in this section
we sketch the derivation of the famous Onsager result, F = �A/2πe, in which A is
an extremal area of the Fermi surface.

Through the Onsager relation, the three-dimensional shape of a Fermi surface can
be determined in detail, and this capability has been important to our understand-
ing of strongly correlated electron systems. For example, in UPt3 [44, 59] dHvA
measurements showed that local-density-approximation electronic-structure calcu-
lations can give a reasonably accurate picture of the Fermi surface of heavy fermion
metals. This permits dHvA measurements to address a central issue in heavy fermion
physics, which is whether the f -electrons are ‘localized’ or ‘itinerant’, that is: do they
contribute to the Fermi volume? Early work suggested that in magnetically ordered
systems the f -electrons are localized [32, 50], while in paramagnetic heavy fermi-
ons they contribute to the Fermi volume [2, 32]. Recently, in a classic paper, [56], it
was shown that in CeRhIn5 the Fermi volume jumps from f -localized to f -itinerant
when the ground state changes from antiferromagnetic to paramagnetic as a function
of applied pressure. Similarly, quantum oscillations reveal that in the cuprates there
is a drastic reconstruction of the Fermi surface between the underdoped and the over-
doped sides of the phase diagram [15, 61]. In the p-wave superconductor Sr2RuO4,
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Fig. 5.1 The semiclassical orbit of a wave packet on a two-dimensional Fermi surface, in the
presence of an applied field B = Bẑ. a shows a Fermi surface having no dispersion along the
c-axis. b is a top view of a slice of k-space perpendicular to B. The shaded region shows occupied
states, and the dark region shows the area of k-space between two adjacent Landau levels. The
large dot indicates the center of a semi-classical wave-packet located at the Fermi surface. c shows
a cyclotron orbit of the semiclassical packet in real-space, with x and y measured from the center
of the orbit. (Note that the Landau levels are highly degenerate, and the classical orbit shown in (c)
is just one of many possible orbits that can be constructed [11].)

which we discuss in detail in Sect. 5.4, dHvA measurements can be used to fix the
parameters of a tight-binding fit to the electronic structure. In general this can place
strong constraints on model Hamiltonians for a strongly correlated electron system,
providing important input to theories of exotic electronic states. In the iron-pnictide
superconductors, quantum oscillation measurements have been very prominent in
this role [10].

To simplify subsequent mathematics, it is useful to start by considering an energy
band with no dispersion along the z-axis, such as would arise in a quasi-two-
dimensional metal composed of decoupled two-dimensional sheets. The Fermi sur-
face then consists of tubes parallel to the z-axis, such as that shown in Fig. 5.1a.

A semi-classical wave-packet on a two-dimensional Fermi surface, moving under
the influence of a uniform magnetic field as shown in Fig. 5.1, moves with velocity
vF (k) and has equation of motion

�k̇ = −evF (k) × B, where vF (k) = 1

�

∂ε(k)

∂k
, (5.1)

and �k is the crystal momentum. Since the Lorentz force is perpendicular to the
gradient of the energy, the wave-packet moves on a surface of constant energy, which
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in this case is the Fermi surface, so in the absence of scattering the wave-packet will
orbit periodically on the Fermi surface.

The resulting semiclassical orbit is quantized according to the Bohr-Sommerfeld
rule (for details see [57], pp. 32–33)

∮
p . dr = (n + γ ) 2π� (5.2)

where n is an integer, p = (p̂ − eA) with p̂ the canonical momentum, ∇ × A = B,
and γ is a constant phase factor. Integrating (5.1) with respect to time to relate the
real and k-space orbits then leads to the famous result that the magnetic flux enclosed
by the real-space orbit is quantized: Φ = Bzar = (n + γ )2π�/e. The area of the
k-space orbit is related to that of the real-space orbit by ar = ak�

2/e2 B2, thus we
finally obtain

ak = (n + γ )
2πeB

�
, (5.3)

which tells us that the area of the k-space orbits is quantized. In a non-interacting,
free-electron system, where the area is πk2 and the energy is �

2k2/2m, this gives the
more familiar result that the energy is quantized in units of �ωc, where ωc = eB/m
is the classical cyclotron frequency.

The k-space area between neighbouring Landau orbits can be simply found by
considering the difference in area swept out by electrons orbiting on adjacent orbits
labelled n and n − 1 in Fig. 5.1b. The element of area δA between orbits at k and
k + δk can be calculated by writing (5.1) as

�
δk⊥
δt

= e

�

δε

δk‖
B, (5.4)

where δk⊥ and δk‖ are defined in Fig. 5.1, so that

δA = δk⊥ δk‖ = eB

�2 δε δt. (5.5)

Integrating δA around a single orbit, with the period and the difference in energy
between adjacent Landau tubes δt = τ = 2π/ωc and δε = �ωc, gives

An − An−1 = 2πeB

�
. (5.6)

The angular velocity of the quasiparticle is of the classical form ωc = eB/m, however
in a crystal we need to use ωc = eB/m∗(ε), with renormalised effective mass m∗
defined from the orbital period:

τ = 2π

ωc
= �

2

eB

∂ A(ε)

∂ε
⇒ m∗(ε) = �

2

2π

∂ A(ε)

∂ε
. (5.7)
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Consider now the passage of successive Landau levels through the Fermi surface
of area A as the magnitude of the magnetic field, Bz , changes. If at a given field, Bn

say, level n coincides with the Fermi energy so that, from (5.3), Bn = �A/2πe(n+γ ),
then level (n − 1) will have the same area when the field has increased to Bn−1 =
�A/2πe(n − 1 + γ ). From this we see that




(
1

B

)
≡ 1

Bn
− 1

Bn−1
= 2πe

�A . (5.8)

At T = 0 K, the Fermi function dictates that only those states with energy less
than the Fermi energy can be occupied. Thus, with increasing magnetic field, as each
Landau level crosses the Fermi energy it will empty into states below εF . The passage
of consecutive Landau levels through εF will cause the density of states at the Fermi
surface to vary periodically as a function of 1/B. Consequently, all properties of the
system dependent on the density of states, such as the diamagnetic moment of the
conduction electrons in the de Haas-van Alphen effect, will oscillate. The oscillations
are periodic in 1/B, with corresponding frequency given by the Onsager equation

F = �A
2πe

. (5.9)

5.2.2 The Effect of Temperature and Scattering

Another powerful capability of quantum ocillation measurements is the determina-
tion of quasiparticle effective masses and scattering rates on a Fermi surface specific
basis. When applied to heavy fermion systems, such measurements have revealed
that, although LDA band-structure calculations can predict Fermi surface topologies
that are approximately correct, they typically predict effective masses that are much
too small [59], because they fail to account for many-body mass enhancements. In
some systems, the mass enhancement is found to be radically different on different
sheets of the Fermi surface [2, 32], and even to vary by a large amount over a sin-
gle sheet of Fermi surface [16], information which cannot be obtained from bulk
measurements such as specific heat which average over all of the Fermi surfaces in
a material. In other cases, the mass enhancement at high magnetic field has been
found to be spin-dependent [40, 55]. In strongly correlated oxide metals, Fermi-
surface-specific mass enhancements again provide an important guide to the nature
of many-body effects, e.g. [35].
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Fig. 5.2 The effect of electron-electron interactions and scattering on quantum oscillations. The
occupancy of the Landau levels is determined by the Fermi-Dirac function. The top panel shows
this function superposed on the Landau levels of a Fermi gas, which are a set of equally spaced
delta functions. When interactions are turned on, each Landau level is shifted by the real part of the
self-energy, and broadened to a Lorentzian by the imaginary part of the self energy (middle panel),
as described in the text. The set of Lorentzians can be analyzed into “harmonics”: the bottom panel
shows the p = 1 term. Integrating the product of this term with the Fermi function gives the p = 1
term in (5.17)

Here we give a simplified, intuitive, derivation of the temperature dependence of
the quantum oscillation amplitude that goes beyond the standard textbook treatment
to allow for both Fermi-liquid and weakly non-Fermi-liquid states [18, 42]. The main
steps in the calculation are illustrated in Fig. 5.2.

We start from a two-dimensional Fermi gas at constant chemical potential in an
applied magnetic field, for which the electrons condense onto Landau levels with
energies (n + 1/2)�ωc + γ , where n is an integer, ωc = eB/me, and γ is a constant
phase factor [30]. The Landau levels are shown, superposed on the Fermi-Dirac
distribution function, in the top panel of Fig. 5.2. As the magnetic field increases,
�ωc increases and successive Landau levels cross the Fermi energy. We calculate the
temperature dependence of the electron number N for the energy band of interest at
constant chemical potential which for the Fermi gas is:
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N = D(B)

∞∫
0

dε

∞∑
n=0

δ(ε − (n + 1/2)�ωc − γ )

e(ε−μ)/kB T + 1
, (5.10)

where D(B), the degeneracy per Landau level [57], does not enter into the temper-
ature dependence.

The effect of electron-electron interactions is to shift each Landau level by the
real part of the self-energy, and broaden it by the imaginary part. The sum over delta
functions becomes a sum over Lorentzians,

N = D(B)

π

∞∫
0

dε
1

e(ε−μ)/kB T + 1

×
∞∑

n=0

−Σ ′′
n (ε)

(ε − (n + 1/2)�ωc − γ − Σ ′
n(ε))2 + Σ ′′

n (ε)2 . (5.11)

This equation is illustrated in the middle panel of Fig. 5.2 where we have assumed a
Fermi liquid state so that the real part of the self energy varies as Σ(ε) ∝ |ε − εF |
and the imaginary part as Σ ′′(ε) ∝ −(ε − εF )2. The sum over Lorentzians is next
re-expressed as a sum over their Fourier transforms:

Re

∞∫
0

dτ

∞∑
n=0

ei(ε−(n+1/2)�ωc−γ−Σ ′
n(ε))τ+Σ ′′

n (ε)τ . (5.12)

Since
∑

n(e−i�ωcτ )n = ∑
p δ(τ −2pπ/�ωc) where the p’s are integers, the integral

over τ can be carried out to obtain

N ∝ Re

∞∫
0

dε

∞∑
p=0

ei(ε−�ωc/2−γ−Σ ′(ε)−iΣ ′′(ε))2pπ/�ωc

e(ε−μ)/kB T + 1
. (5.13)

In Fig. 5.2, at energies far from εF , the Landau levels are broadened out of exis-
tence by Σ ′′(ε), thus distinct Landau levels are only identifiable in the vicinity of
εF = μ.

This means that the oscillatory terms in the sum (those with p > 0) vanish
everywhere except very close to εF , as shown in the lower panel of Fig. 5.2, allowing
the lower limit of integration to be extended to −∞. Each integral in the sum (except
p = 0, which is not of interest) can then be evaluated by contour integration. From
Cauchy’s theorem, this corresponds to evaluating the numerator at the poles of the
Fermi function, (ε − μ) = iωn = i(2n + 1)πkB T , which gives
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N ∝ Re
∑
p,ωm

(−1)p exp

[
2pπ i

�ωc
{μ + iωm − Σ(iωm) − γ }

]
. (5.14)

Thus, to within some constants, the oscillatory part of the pth harmonic can be
expressed as

∑
ωm

(−1)p e− 2pπ
�ωc {ωm−Σ ′′(iωm )} cos

[
2pπ

�ωc
(μ − Σ ′(iωm) − γ )

]
. (5.15)

This corresponds to equation 58 of [62], which gives a more rigorous, but abstract,
derivation that includes the effect of a three-dimensional band structure—in the
presence of a lattice the self-energy in this formula becomes an average around the
quasiparticle orbit, and the bare electron mass in ωc, me, is replaced by mb, the
average of the band mass around the quasiparticle orbit.

The cosine term in (5.15) produces the oscillations. It is normal to expand the
self-energy around the Fermi energy, in which case Σ ′(iωm) = 0, and the cosine
term may be brought in front of the sum over ωm . At low temperature, μ = εF and
the argument of the cosine function can be cast into the familiar form for quantum
oscillations. Consider for example the simple case of a cylindrical Fermi surface, for
which εF/�ωc = (�2k2

F/2m∗)/(�eB/m∗) = (�πk2
F/2πe)/B = �A/2πeB, so that

the oscillatory term can be written

cos

(
2πp

�A
2πeB

+ φ

)
= cos

(
2πp

F

B
+ φ

)
, (5.16)

where φ is a phase factor that is independent of B to a good approximation, and F
is the Onsager frequency derived in the previous section.

Our interest here is in the non-oscillatory part of (5.15). These are damping terms
that affect the amplitude of the oscillations, so we write

a(T ) ∝
∑
ωm

(−1)p exp

[
−2pπ

�ωc

{
ωm − Σ ′′(iωm)

}]
. (5.17)

The damping is controlled by the imaginary part of the self-energy on the imaginary
axis.

It is interesting to consider various forms of the self-energy. Firstly, for the Fermi
gas, Σ(ω) = 0, so the series sums to a thermal damping factor

Rp,T =
∞∑

n=0

exp(−2pπωn/�ωc) = pX

sinh pX
, where X ≡ 2π2kB T

�ωc
. (5.18)

The function X/sinhX is the famous Lifshitz-Kosevich temperature dependence [31].
One of the classic equations of the physics of metals, this equation can be shown
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Fig. 5.3 Calculated temperature damping factor X/sinhX for different quasiparticle masses at a
magnetic field of 10 T. Effective masses can vary enormously, from much less than 1 me in semi-
conductors and in topological insulators, to over 100 me in heavy fermion systems. The temperature
dependence of the quantum oscillation signal enables effective masses to be measured with high
accuracy. In materials with multiple extremal orbits (see below) the effective mass on different
orbits can be measured

to be the Fourier transform of the Fermi-Dirac distribution. If impurity damping
is included, all levels are broadened equally, so Σ ′′(iωn) = −�/2τ , where τ is
the scattering lifetime (including all scattering, with no preferential weight given
to large-angle scattering, so in general the quantum oscillation τ is shorter than the
transport τ ) giving the famous exponential “Dingle factor” damping

Rp,D ≡ e−2πp2/τ�ωc = e−pπrc/ l◦ (5.19)

where rc = �kF/eB is the cyclotron radius, and l◦ is the mean-free-path.
In a Fermi liquid, the frequency-dependent part of the self-energy (which adds to

the constant impurity scattering part) is Σ(ω) = −λω− iΓ ω2, so that the imaginary
part of the self-energy on the imaginary axis is Σ ′′(iωn) = −λωn +Γ ω2

n . To leading
order this is the same dependence on ωn as in the Fermi gas, so the oscillations
still follow an X/sinhX behaviour, but with a modified cyclotron frequency ωc =
eB/(1 +λ)mb, equivalent to an enhanced mass m∗ = (1 +λ)mb, as was first shown
by Bychkov and Gork’ov in 1962 [9]. The X/sinhX temperature dependence thus
allows quasiparticle effective masses to be obtained from the temperature dependence
of the amplitude, as illustrated in Fig. 5.3.

Equation (5.17) also allows for non-Fermi-liquid forms of the self-energy, as
explored in [41, 42, 62].
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5.2.3 The Spin Damping Factor

In addition to producing quantized cyclotron motion, the applied magnetic field B
polarizes the Fermi surface, via Pauli paramagnetism, into a spin-up part whose area
A↑ grows with increasing field, and a spin-down part whose area A↓ shrinks with
increasing field. As a result, each quantum oscillation signal is a superposition of two
oscillations with field dependent frequencies F↑(B) and F↓(B). This allows quantum
oscillations to be used to determine quasiparticle g-factors on a Fermi-surface specific
basis. As shown below, however, there are subtleties both in the measurement and
its interpretation, so this capability is somewhat neglected. Nevertheless, there are
important recent examples in the strongly correlated electron literature: in the heavy
fermion system URu2Si2 quantum oscillation measurements [45] reveal a highly
anisotropic g-factor that may yield important insights into the famous hidden order
phase of this material [1]; in other heavy fermion systems, interference between
oscillations from the spin-up and spin-down branches of the Fermi surface show
that the effective mass has a marked dependence on spin [17, 40, 55, 60]; in the
strongly correlated oxide Sr2RuO4, described in the last section of this chapter, g-
factor measurements uncover important aspects of spin-orbit interactions; and recent
measurements of the g-factor of quasiparticles in underdoped cuprates [48] show that
the g-factor is free-electron-like, which excludes some forms of spin-density wave
order.

In conventional metals it is assumed that the spin-up and spin-down oscillations
have identical amplitudes, but in strongly correlated systems this is not always so,
so we write the pth harmonic term in the dHvA signal as

M̃p(T ) ∝ ap,↑(T ) sin

(
2πp

F↑(B)

B
+ φo

)
+ ap,↓(T ) sin

(
2πp

F↓(B)

B
+ φo

)
(5.20)

where ap,↑ and ap,↓ are the spin-dependent amplitudes:

ap,σ = 1

mσ

Rp,Dσ Rp,Tσ , (5.21)

with the impurity and thermal damping factors given in (5.19) and (5.18).
If the splitting is linear, then the field dependent frequencies F↑(B) and F↓(B)

can be written as

F↑(B) = Fo + B
∂ F

∂ B
F↓(B) = Fo − B

∂ F

∂ B
(5.22)

where Fo is the frequency at B = 0, and (5.20) becomes
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M̃p(T ) ∝ ap,↑(T ) sin

(
2πp

Fo

B
+ φo + 2πp

∂ F

∂ B

)

+ ap,↓(T ) sin

(
2πp

Fo

B
+ φo − 2πp

∂ F

∂ B

)
. (5.23)

Setting φp,s = 2πp(∂ F/∂ B) allows this to be re-expressed as

M̃p(T ) ∝ sin

(
2πp

Fo

B
+ φo

)
[ap,↑(T ) + ap,↓(T )] cos φp,s

+ cos

(
2πp

Fo

B
+ φo

)
[ap,↑(T ) − ap,↓(T )] sin φp,s . (5.24)

Note that, although the spin-up and spin-down Fermi surface areas are field depen-
dent, the measured dHvA frequency is F◦, the so-called “back-projected” frequency,
which is the intercept at B = 0 of the tangent of F(B) at B◦. This back-projection
effect is the main subtlety involved in the interpretation of dHvA oscillations from
magnetically polarized Fermi surfaces. Note in particular that linear spin-splitting
effects only the quantum oscillation amplitude, not its measured frequency.

If the spin-up and spin-down amplitudes are equal, (5.24) reduces to

M̃p(T ) ∝ 1

m∗ Rp,D Rp,T Rp,S sin

(
2πp

Fo

B
+ φo

)
. (5.25)

with the spin damping factor

Rp,S = cos φp,s where φp,s = 2π
∂ F

∂ B
= πpgm∗

s

2me
. (5.26)

The latter expression comes from combining the Onsager relation with the expression
for the Pauli susceptibility, and m∗

s includes only electron-electron enhancement of
the mass, not the electron-phonon enhancement which does not contribute to the
magnetic susceptibility.

When a↑ �= a↓, the overall amplitude is

ap(T ) ∝
[
(ap,↑(T ) + ap,↓(T ))2 cos2 φp,s(B)

+ (ap,↑(T ) − ap,↓(T ))2 sin2 φp,s(B))
]1/2

. (5.27)

The amplitude has a minimum when the spin-up and spin-down oscillations are out
of phase with each other, i.e. when

φp,s = nπ + π

2
, where n is an integer. (5.28)
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Fig. 5.5 Amplitude versus temperature for a quantum oscillation in CeCoIn5, illustrating spin-
dependent masses. In this case the spin-up and spin-down signals are out-of-phase (φp,1 = π/2).
At high temperature only the lighter-mass signal contributes, but below 300 mK, as the heavier-mass
amplitude becomes significant, the oscillation amplitude (squares) actually falls at low tempera-
ture [40]
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If a↑ = a↓ and m↑ = m↓ then this produces a spin zero, because then ap(T ) = 0.
This is illustrated in the bottom-right panel of Fig. 5.4. If however the effective mass
is spin-dependent, then unusual temperature dependence of the signal can result.
Figure 5.5 shows such a situation in CeCoIn5 at high magnetic field. Here the spin-
up and spin-down oscillations are out-of-phase, and one mass is significantly heavier
than the other. Above 300 mK the dHvA signal looks normal, because only the lighter
spin direction is contributing. Below 300 mK however the heavier spin signal starts
to rise, partially cancelling the light-spin signal so that the overall amplitude actually
falls at low temperature.

5.2.4 Three-Dimensional Fermi Surfaces

As a final but important generalization, we relax the assumption of pure two-
dimensionality, by which the Fermi surfaces were simple tubes. The Fermi surface
is now to be considered an arbitrary three-dimensional geometrical object, and it
produces quantum oscillations with frequencies determined by the “extremal” orbit
areas, which are the semiclassical orbits in k-space whose area is a local maximum
or minimum, as illustrated by the shaded ellipses in Fig. 5.6. The variation of quan-
tum oscillation frequencies with the angle of the applied magnetic field allows the
Fermi surface shape and size to be mapped out in detail. This capability is very
powerful, allowing detailed comparison with theoretical Fermi surfaces from either
LDA band-structures or tight-binding effective Hamiltonians. Some examples were
listed earlier, to motivate our derivation of the Onsager expression at the start of this
section.

Figure 5.6 shows the simplest generalization of a Fermi surface for a quasi-two-
dimensional metal, consisting of a cylindrical Fermi surface with warping along the
vertical axis. When the field B is tilted the cyclotron orbits also tilt, remaining always
perpendicular to B in k-space.

We can apply our earlier results by slicing such a Fermi surface into short tubular
slices, of height dkz , that are perpendicular to B = Bẑ. A slice has cross-sectional
area A(kz), and the total signal is the sum of the oscillations from the slices:

∫
dkz cos

[
2πp

(
�A(kz)

2πeB
− γ

)]
. (5.29)

A(kz) is an extremum when dA/dkz = 0. It is usually the case that the curvature of
the Fermi surface is large, in the sense that that many Landau levels simultaneously
intersect εF . In this case, as illustrated by the zoomed regions in Fig. 5.6, it is only
when A(kz) is at an extremum (i.e. a turning point) that the oscillatory signals from
many adjacent slices add coherently to give a finite contribution to the integral.
Away from an extremum the integrand oscillates rapidly as we move from one slice
to the next, and thus there is no net contribution to the integral. The integral can be
approximated, (for details see [57], pp. 53–55) and the result is
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Fig. 5.6 Extremal orbits for a warped cylindrical Fermi surface. The quantum oscillations can be
approximated as a sum of oscillations from short cylindrical sections that are perpendicular to the
applied field (zoomed regions on the left). At the “extremal orbits” (the gray ellipses) the oscillations
from adjacent cylinders are nearly in phase (upper zoomed section, with the Landau levels shown
as dashed gray lines), so there is a large contribution. At a non-extremal region (lower zoomed
region) the oscillations from nearby cylindrical sections all have different phase, so there is no net
contribution. For a warped cylinder there are in general two extremal orbits, at the maximum and
minimum cross-sectional areas perpendicular to the applied field, so the resulting oscillations have
two contributions that beat against each other, as in a and b. At certain ‘magic angles’, as in c, the
maximum and minimum orbits are identical in area, and the oscillations interfere constructively
over the whole surface, giving rise to a large amplitude signal with no beats. From [7]

1∣∣∣ ∂2 Aext
∂kz

2

∣∣∣ 1
2

∞∑
p=1

cos

[
2πp

(
F

B
− γ

)
± π

4

]
(5.30)

where F is the frequency of the extremal orbit, F = �Aext/2πe, and the ± in the
argument of the cosine is + when Aext is a minimum and − when it is a maximum.
The prefactor is the inverse of the curvature of the Fermi surface at the extremal
orbit, and this makes intuitive sense: lower warping means that more slices near the
extremal orbit contribute coherently before the oscillations de-phase.

If the Fermi surface has more than one extremal cross-section, as in Fig. 5.6, the
signal measured experimentally will be a superposition of oscillations with frequen-
cies corresponding to each extremal area.
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If only a few Landau levels intersect a quasi-two-dimensional Fermi surface then
the full integration must be carried out [64]. We can describe a simple warped cylinder
like the one shown in Fig. 5.6 with two parameters, an average radius k00, plus warping
described by k01, such that A(kz) varies as

A(kz) = πk2
00/ cos θ◦ + 2πk00k01 J0(κF tan θ◦)

cos θ◦
cos κz, (5.31)

where κz ≡ kzc, θ◦ is the angle between B and the cylinder axis, and J0 is the
zero-order Bessel function. Then

M̃ ∝ sin

(
2π F(θ◦)

B

)
J0

(
π
F(θ◦)

B

)
, (5.32)

where 
F is the difference between the maximum and minimum extremal orbit
dHvA frequencies at angle θ0. Because the amplitude of the oscillations is modified
by the Bessel function, the change in amplitude with angle can be used to determine

F , and thus the warping of the Fermi surface.

Reference [6] shows how the angle dependence of the amplitude can also be used
to determine higher-order warpings of tubular Fermi surfaces in great detail.

5.2.5 The Full Lifshitz-Kosevich Equation

In a conventional metal the quantum oscillatory magnetisation is given by the
Lifshitz-Kosevich (LK) equation (we continue to ignore a number of numerical
factors that can be found in [57]):

M̃ ∝ F B
1
2

m∗
∣∣∣ ∂2 Aext

∂kz
2

∣∣∣ 1
2

∞∑
p=1

Rp,T Rp,D Rp,S p− 3
2 sin

[
2πp

(
F

B
− γ

)
± π

4

]
, (5.33)

where Rp,D is the Dingle factor, (5.19), Rp,S is the spin-damping factor, (5.26), and
Rp,T is the thermal damping factor, (5.18). We have seen, however that in strongly
correlated electron systems this equation may need to be modified in qualitatively
important ways: if the effective mass is spin dependent (in which case the scattering
rate is probably spin dependent as well) then we must use (5.24), in which each
spin direction has a separate thermal and impurity scattering factor (5.21); if the self-
energy of the electron fluid has a non-Fermi-liquid form then the product of the Dingle
and thermal damping factors must generalized to (5.17); and if the system is so two
dimensional that only a few Landau levels intersect the Fermi surface at a time, then
the curvature factor cannot be used, and we must generalize to (5.32), which sums
the oscillatory contribution of the entire Fermi surface, rather than keeping only the
part near the extremal orbits. The lesson is that, although the conventional expression
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may often be applied, and useful information derived thereby, in strongly correlated
systems there are effects beyond the simple LK expression that firstly require caution
to be exercised in interpreting measurements, but secondly allow substantially more
information to be derived from a quantum oscillation measurement.

5.3 Measuring the de Haas-van Alphen Effect

In this section we give an overview of some of the key measurement techniques
for the de Haas-van Alphen effect, focusing on field modulation, torque, and pulsed
field techniques. Each has its advantages and disadvantages, and each requires more
or less specialized apparatus. Brief mention is made of other quantum oscillation
techniques of importance in strongly correlated systems.

5.3.1 The Field Modulation Technique

Figure 5.7 illustrates the field modulation technique. A sample, measuring typically
0.5 × 0.5 × 2 mm3, is placed in one coil of an astatic pair which will have on the
order of 1,000 turns of wire on each coil. The pair of coils is carefully wound so
that, in the absence of the sample, the pickup of the two coils cancels. The coil and
sample are placed in a rotation mechanism that can change the angle of the sample
with respect to the magnetic field.

A superconducting magnet supplies a quasi-static magnetic field that is slowly
swept, while a specially constructed modulation coil, built into the bore of the magnet,
supplies an alternating magnetic field with amplitude up to 0.005 T and frequency
up to 50 Hz. The magnetic induction, due to the time varying magnetization of the
sample, is measured using lock-in detection techniques. Note that the modulation
field amplitude is large compared to a value of <0.0001 T typically used to measure
ac-susceptibility. The applied magnetic field H(t) = H + h̃(t) will induce a time-
varying voltage V

V = μoVnφ

N

l

d M

dt
(5.34)

where nφ is the filling factor, N/ l is the turns density, and M and V are respectively
the magnetisation and volume of the sample. The magnetisation is made up of non-
oscillatory contributions from the Pauli and van Vleck spin susceptibilities χo H
plus a static contribution M◦ if the sample is ferromagnetic, plus an oscillatory part
M̃o(F), assumed for simplicity to have only a single dHvA frequency F , so that

M = M◦ + χo B

μo
+ M̃o(F) sin

(
2π F

B
+ φ

)
, (5.35)
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Fig. 5.7 Illustration of the field modulation technique. a The sample is placed in one of a pair of
coils with opposed windings, so that direct pickup of the alternating field h̃ is eliminated. b The
alternating field amplitude can be chosen to be comparable to the period of the quantum oscillations,
as shown in the upper-left with the oscillatory magnetization greatly exaggerated. c This produces
a time-varying magnetization that has considerable harmonic distortion. Focusing on the second-
harmonic, at a field H1 that is centred on a zero of M̃ , the second harmonic distortion is zero, but
at H2 centered on a maximum the second harmonic is maximal, thus we see that the 2 f signal
oscillates as the quasistatic field H is swept

where B(t) = μ◦(H +M). An expression for the time-variation of the magnetisation
can be obtained by replacing B with B(t) in (5.35) and linearly expanding the sine
for b = μ◦(h̃ + M̃) � Bo:

M(t) = M◦ + χo Bo

μo
+ χob

μo
cos ωt + M̃o(F)

×
[

sin

(
2π F

Bo
+ φ

)
cos(λ cos ωt) − cos

(
2π F

Bo
+ φ

)
sin(λ cos ωt)

]
(5.36)

where

λ = 2π Fb

B2
o

= 2π Fμ◦(h̃ + M̃)

μ2◦(H + M◦)2 . (5.37)

The presence of M◦ in the denominator can be important for ferromagnets at low
fields, but normally it can be ignored; the presence of M̃ in the numerator can create
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extreme non-linearities if M̃ is comparable to h̃, a problem known as “magnetic inter-
action” (see Chap. 6 of [57]), but usually this too can be ignored. The cos(λ cos ωt)
and sin(λ cos ωt) terms in (5.36) can be expanded as Fourier series whose coeffi-
cients are Bessel functions, Jν(λ). Applying (5.34) then leads to an expression for
the pick-up voltage as a Fourier series of harmonics:

V = −μoVnφ

N

l
ω[

χo b sin ωt − 2ωM̃o

∞∑
ν=1

ν Jν(λ) sin

(
2π F

Bo
+ φ − kπ

2

)
sin νωt

]
. (5.38)

From (5.38) it can be seen why setting the lock-in amplifier to detect at the second
or higher harmonics (i.e. ν ≥ 2) is advantageous. Firstly, the static susceptibility χo
contributes only to the ν = 1 fundamental, thus by detecting on a harmonic, ν > 1,
the static susceptibility is removed. In the actual experiment, a notch filter is placed
at the fundamental frequency, removing the χo signal and any direct pickup of the
modulation field if the coils are unbalanced. Secondly, the amplitude of the oscillatory
signal can be tuned, through the Bessel function dependence on the modulation field
amplitude, allowing the experimenter to focus on the particular quantum oscillation
of interest.

The advantages of the field modulation technique are as follows: (1) provided that
suitably large single crystals are available and one is working in a superconducting
magnet, it is the most sensitive measurement technique—moment sensitivities down
toμmin ∼ 10−11 Am2 can be achieved if low-temperature transformers and low-noise
pre-amplifiers are used; (2) lower temperatures can be achieved with this technique
than with torque or pulsed-field methods—the sample is typically heat-sunk through
high-conductivity wires directly to the mixing chamber of a dilution refrigerator, and
thus temperatures in the low mK range can be achieved [41]; (3) the filtering effect of
harmonic detection can eliminate the signal due to the static susceptibility and large
quantum oscillations that are not of primary interest; and (4) it is possible to have
such a setup in a laboratory, which allows much longer measurement times than are
possible at user facilities.

The main disadvantages are: (1) you need fairly large single crystals to achieve
very high sensitivity; (2) the maximum field is limited by superconducting magnet
technology to below ∼20 T (at present); and (3) you need a specially constructed
magnet, with the modulation coils built into the bore of the magnet, to achieve the
the required modulation field amplitude.

5.3.2 Torque Magnetometry

Compared with the field modulation method, torque magnetometry has a number
of advantages. It is easy to measure, typically requiring only simple capacitance
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or resistance bridges. Also, it is readily scaled to very small samples, for example
piezoresistive cantilevers can be applied to crystals as small as 10 ×100 ×100 µm3.
This a huge advantage when, as is often the case, only small single crystals are
available. It is quicker to set up, requiring only that the sample be fixed on the end of
a flexible foil or cantilever. Finally, because it does not employ a pick-up coil, it is
more immune to magnetic field noise than the field modulation technique, and thus
is appropriate for resistive or even pulsed field magnets. For these reasons, torque is
probably the most popular method of measuring de Hass-van Alphen oscillations.

However, there are some disadvantages. If large, mm sized crystals available,
then the field modulation method is more sensitive. Also, it is more difficult to heat
sink samples than in field modulation, so if the measurement requires going to very
low temperatures then torque does not work well. With some measurement methods,
for example the popular piezoresistive cantilever technique, the measurement itself
generates enough heat that it is not possible to cool the sample below several 10’s of
millikelvin. Finally, many samples have a large, anisotropic non-oscillatory magnetic
signal (e.g. YbRh2Si2 [28]) so a cantilever that is sufficiently sensitive to detect
quantum oscillations will flex so much that it breaks. The method chosen has to be
adapted to the available apparatus, the requirements of the measurement, and the
properties of the material studied.

The physical basis of the technique is straightforward. We intially considered a
quasi-two-dimensional metal with a tubular Fermi surface. The Lorentz force equa-
tion �dk/dt = ev ×B requires that the k-space orbit be perpendicular to the applied
magnetic field B. However in real space, a tubular Fermi surface means that there is
no component of velocity perpendicular to the conducting planes, thus the electron
quasiparticles are confined to orbits in real space that are perpendicular to the out-of-
plane direction. The orbital diamagnetism is thus always parallel to the out-of-plane
direction, and there will be a torque, M̃o × B. Although the torque vanishes when B
is perpendicular to the planes, in practice the angle between B and the perpendicular
can be as small as a few degrees, in order to produce a strong torque signal.

The previous paragraph describes the limiting case of a purely two-dimensional
Fermi surface, however unless the Fermi surface is perfectly spherical there is usually
sufficient anisotropy of the Fermi velocity to generate a torque signal, and the torque
method has been applied to many three-dimensional metals, e.g. [57].

Figure 5.8 illustrates the torque method of detection using piezo-resistive can-
tilevers.

Detection of the torque signal is quite straightforward. The High Magnetic Field
Laboratory in Tallahassee for example has a standard setup with cantilevers cut out
of beryllium-copper foil, and the deflection is monitored capacitively using commer-
cially available capacitance bridges. Or, with commercially available piezoresistive
cantilevers (illustrated schematically in Fig. 5.8) intended for scanning-AFM use, a
simple Wheatstone bridge can be used to monitor the signal. An essential component
of any measurement system is a rotating stage, so that the angle between the principal
axes of the sample and the applied field can be adjusted. But in general such stages
are required in order to map out the Fermi surface, so this is not a limitation of the
method.
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Fig. 5.8 The torque method of detection. Left a schematic of a piezoresistive torque measurement.
Two cantilevers are used, one for a balance signal, the other carrying the sample. The resistivity of
the conducting path changes as the cantilever bends. Right Wheatstone bridge setup for measuring
the deflection of the cantilever. Alternatively, the sample can be mounted on a foil that makes one
half of a capacitor, and the deflection monitored capacitively

Wiegers et al. [63] describe perhaps the most sensitive torque magnetometer con-
structed to date, having a rotor/stator arrangement with deflection measured capaci-
tively. With this they were able to observe quantum oscillations in a two-dimensional
electron gas.

5.3.3 Transport and Other Measurements

In principle, quantum oscillations can be observed in all thermodynamic and transport
properties that involve quasiparticles at the Fermi surface. The Nernst effect has been
shown recently to be a very effective probe of oscillations in semi-metals [5].
Quantum oscillations in the specific heat have contributed to the ongoing debate
about the nature of the pseudogap phase of underdoped cuprates [52], although these
measurements are quite specialized. Quantum oscillations in the magnetoresistance,
known as the Shubnikov-de Haas (SdH) effect, and also in the Hall voltage, are com-
monly employed. These methods have traditionally been regarded as most effective
to observe small Fermi surfaces, for example in graphene and in two-dimensional
electron gases. Resonant rf circuits using tunnel diode oscillators [12] allow contact-
less measurement of SdH oscillations via changes in the skin-depth of a sample.
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5.3.4 Pulsed Versus DC Field

Aside from detection technique, the choice of magnet is important. In general a high
field is advantageous. The Dingle damping factor, RD = e−πrc/ l◦ , (5.19), where l◦
is the mean free path and rc = �kF/eB is the cyclotron radius, means that quantum
oscillations may grow exponentially with increasing magnetic field, depending on
sample purity. Particularly where there are moderate levels of disorder, there can be
many orders of magnitude improvement in signal by going to the highest available
fields. Also, a long sweep range can help to resolve overlapping dHvA frequencies,
although in general it is better (and cheaper) to get purer samples and sweep to lower
fields, than to get a bigger magnet and sweep to higher fields.

Laboratory scale superconducting magnets have some advantages. Fields up to
20 T are sufficient to overcome the Dingle factor in materials that can be produced
with mean free paths of around 100’s of nm. As a rough rule of thumb, this corre-
sponds typically to a residual resitivity of 1 µ� cm, although if the Fermi surface
is small then higher resistivity crystals can reasonably be attempted. These magnets
have very low flux noise, and they can have a modulation coil installed in the bore
of the magnet if the magnet is to be devoted to dHvA measurements. Also, it is
only with these magnets that very low temperatures (in the low mK range) can be
achieved, because they can have a canceled field region that allows a metal dilution
refrigerator to be employed. A further advantage is unlimited measurement time,
allowing detailed studies as a function of angle and temperature.

Fields up to 37 T are now available with resistive magnets at high magnetic field
laboratories. These magnets are not as quiet as superconducting magnets, and access
time is more restricted, so detailed studies of the angular dependence, or the tem-
perature dependence, of oscillations can be difficult, and may require multiple visits
to the facility. However, these magnets are well set up and more likely to produce
successful results for non-experts who have high quality cyrstals, and 30+T can
produce sufficiently large improvements in signal, for mildly disordered samples,
that the additional flux noise of the magnet is overcome.

In the next highest field range, with even more restricted access, is the 45 T hybrid
magnet at the National High Magnetic Field Laboratory in Tallahassee. Torque and
transport measurements have been carried out successfully, and a recent measurement
in Tl2Ba2CuO6+δ [53] illustrates the power of such high fields: at some dopings in
this cuprate superconductor the quantum oscillations show up only the last few tesla.

Non-destructive pulsed field magnets have recently reached 100 T at the National
High Magnetic Field Laboratory in Los Alamos, and fields above 60 T can be reached
in a number of laboratories. They have been used to study quantum oscillations in
organic metals, heavy fermion systems and, most importantly, underdoped cuprates,
e.g. [4, 15, 23, 61, 65], where such high fields are required to overcome impurity
scattering and to suppress superconductivity to reach the normal state.

The measurement methods for pulsed fields are highly specialized, and great care
must be taken to eliminate sources of vibration, minimize eddy currents, and reduce
indirect pickup of electromagnetic signals from the pulses, however the plused-
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field facilities at Toulouse, Los Alamos and Dresden have developed very effective
methods that yield suprisingly good signal-to-noise ratios. Quantum oscillations in
pulsed-field measurements are often observed through oscillations in the magnetore-
sistance (Shubnikov-de Haas, SdH, oscillations) or the Hall signal [15]. The Los
Alamos laboratory specializes in measuring SdH oscillations through changes in
the skin-depth of a sample via changes in the resonant frequency of high-frequency
circuits (e.g. [65]). In a recent application, a tunnel-diode-oscillator circuit has been
used in to detect quantum oscillations in a tiny sample of CeIn3 in a plastic high
pressure cell in pulsed field measurements up to 60 T [22].

De Haas-van Alphen oscillations in pulsed fields can be observed using miniature
piezo-resistive cantilevers [47], but more commonly the sample is placed in a pickup
coil. The extremely high sweep rate of the field, covering 10’s of tesla in micro-
to milliseconds, is sufficient to give a strong oscillatory d M/dT signal without
field modulation. In a recent measurement, for example [20], a sample with volume
0.1 × 0.2 × 3 mm3, was placed in a pickup coil having 450 turns of 10 µm copper
wire on ∼500µm mandrel, with the compensation coil wound coaxially around the
pickup coil. The coil and sample were mounted on a plastic dilution refrigerator and
measurements could be carried out between 600 mK and 4 K.

5.3.5 Analysis of the dHvA Signal

As we shall see below for Sr2RuO4 (Fig. 5.11) in general a dHvA measurement will
consist of a superposition of oscillations arising on different extremal orbits of the
Fermi surface. The different oscillations are separated by taking a Fourier transform,
with a result such as Fig. 5.12. In order to do this, the data as a function of B are
interpolated to give evenly spaced points in 1/B, and then the fast-Fourier-transform
is taken. It is generally helpful to pad the 1/B data with extra zeros to give a smoother
FFT spectrum. From the FFT the frequency of each peak can be obtained by fitting.

In order to map the Fermi surface the crystal is rotated around its major symmetry
axes, and the resultant F vs. θ data is compared with extremal orbits calculated by
LDA or other electronic-structure programs. For example one can use the wien-2k
package and analyze the output using the extremal-area finder SKEAF [8, 54].

By taking data at different temperatures a plot of dHvA amplitude vs. temperature
can be constructed, as in Fig. 5.16, and the data fitted with the Lifshitz-Kosevich (LK)
formula, (5.18), to extract the quasiparticle effective mass m∗ associated with that
extremal orbit.

Similarly, by analyzing a long sweep over several consecutive short field ranges
one can, in principle, extract the the Dingle factor, (5.19), but care must be taken
because long-period beats can arise from nearly degenerate extremal orbits or field-
dependent spin-damping factors, and these can lead to incorrect Dingle analyses, if
they are not recognized.

If only a few oscillations are available then the FFT doesn’t work well, and in
this case the oscillations can be fitted directly using the LK formula. An interesting



160 S.R. Julian

recent example is Ramshaw et al., who used a genetic algorithm to simultaneously
fit many sweeps at different angles in underdoped YBCO [48], allowing them to
separate contributions from nearly degenerate extremal orbits, the Dingle factor, and
spin-splitting.

5.4 Case Study: Sr2RuO4

Sr2RuO4 initially attracted attention as the only layered perovskite oxide that super-
conducts without copper-oxide planes [37]. It has continued to be of interest as it
gradually emerged that Sr2RuO4 is a chiral p-wave superconductor, with poten-
tial uses in quantum computation [27]. For our purposes, Sr2RuO4 offers a superb
demonstration of the power of quantum oscillation measurements: it was possible
through careful measurements and insightful analysis to build up a very detailed
picture of the topography of the Fermi surface and the many-body enhancements of
the quasiparticles on the Fermi surface. From this, a detailed correspondence was
established between the properties of electron quasiparticles at the Fermi surface,
and bulk properties such as specific heat and transport that average over all sheets
of the Fermi surface. More importantly, detailed Fermi-surface-specific information
from quantum oscillations provides important starting points for theories of p-wave
superconductivity in this material.

In this section we will use Sr2RuO4 to illustrate how quantum oscillation measure-
ments are analyzed. This exercise is doubly useful because Sr2RuO4 is layered and
highly anisotropic, like many other materials of current interest such as cuprate and
iron-pnictide superconductors, so many of the ideas that emerge in our discussion
can be applied elsewhere.

Finally, we note that a number of reviews of Sr2RuO4 exist, so that the reader
who wishes for more detail, or clarification, can easily find it [7, 27, 36].

Fig. 5.9 Left The crystal structure of single-layer strontium ruthenate, from [36]. Sr2RuO4 is
isostructural with the cuprate superconductor La2RuO4. Right The resistivity of Sr2RuO4 versus
temperature, from [25]. The main panel shows that the resistivity is highly anisotropic, while the
inset shows that both ρab and ρc have a Fermi-liquid, T 2, temperature dependence at low temperature
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5.4.1 Summary of Normal State Properties

The crystal structure of Sr2RuO4 is shown in Fig. 5.9. Sr2RuO4 crystallizes in this
base-centered tetragonal crystal structure, identical to the tetragonal form of the
layered cuprate La2CuO4. Unlike La2CuO4, however, Sr2RuO4 retains this crystal
structure down to low temperature, with no orthorhombic distortion. The ruthenium-
oxide ab-planes are highly conducting, while transport between the planes, along the
c-axis, is greatly reduced by the insulating strontium-oxide layers, hence electrical
transport is highly anisotropic, with low temperature values of ρc/ρab as high as
4,000 reported [46].

The right-hand panel of Fig. 5.9 shows the temperature dependence of ρab and
ρc, from [25]. Below about 20 K, both ρab and ρc follow the ρ(T ) = ρ◦ + AT 2

dependence expected of a Fermi liquid, and although the A coefficients are very
different in magnitude, the ratio ρc/ρab is fairly constant over this temperature range.
The Hall constant has also been measured, giving a value of −1.15 × 10−10 m3/C
in the low field, low temperature limit [33].

As we show below, these bulk transport properties can be calculated accurately
using the Fermi surface topology and properties of the quasiparticles on each Fermi
surface, as obtained from quantum oscillation measurements.

Another key property of strongly correlated electron systems is the specific heat,
because comparison of the linear specific heat coefficient, γ , with the density of states
calculated in band-theory gives an indication of the strength of many-body interac-
tions within a metallic system. As expected for a Fermi liquid, at low temperature in
Sr2RuO4 C(T ) = γ T + βT 3 (see Fig. 5.10), where γ T describes the contribution
from electrons at the Fermi surface, while βT 3 is the phonon contribution. While a
few, slighly scattered values have been reported for γ , the accepted result made on
the highest quality crystals is 38 ± 2 mJ/mole K2 [34, 38]. This will be shown to
agree with effective masses derived from quantum oscillation measurements.

The Pauli susceptibility, from Knight shift measurements, is χs ∼ 1.7×10−4 [26].
Both γ and χs are quite enhanced compared with the predictions of LDA calculations.
This, plus the fact that the related three-dimensional system SrRuO3 is a ferromagnet
with a Tc of ∼160 K, led Sigrist and Rice to the quite remarkable suggestion that
Sr2RuO4 has analogous properties to 3He, and therefore its superconductivity might
be p-wave [51].

5.4.2 Summary of Quantum Oscillation Results and Analyses

While Sr2RuO4 had been known since the late 1950s [49], the discovery of super-
conductivity was not made until high-quality single crystals were grown using a
floating zone image furnace [37]. Not only were high quality crystals necessary for
observation of superconductivity, but their high quality also allowed observation of
quantum oscillations. Soon after the discovery of superconductivity, Mackenzie et al.
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Fig. 5.10 The specific heat
of Sr2RuO4 at low
temperatures, from [34].
C(T ) follows the usual
γ T + βT 3 behaviour for a
metal, however a γ value of
∼38 ± 2 mJ/mole K2 is very
large for a d-electron metal,
suggesting strong correlations

Fig. 5.11 Quantum oscillations in Sr2RuO4. The data are de Haas-van Alphen oscillations detected
using the field-modulation method, with detection at the second harmonic of the modulation fre-
quency. The temperature was 50 mK, and the modulation field amplitude 54 gauss (5.4 mT). The
arrows between 13 and 16 T indicate beats of the so-called β frequency. From [6]

[33] published a comprehensive quantum oscillation study, based on both de Haas-
van Alphen and Shubnikov-de Haas oscillations. Aside from pioneering work in the
1960s (see e.g. [21, 39]), this was one of the first quantum oscillation studies of an
oxide metal.

Typical quantum oscillations from a high quality crystal of Sr2RuO4 are shown in
Fig. 5.11. There are several frequencies present. Some of these must be close together
in frequency, because they produce long-period beat structures, indicated for example
by the four arrows between 13 and 16 T. The node in amplitude at about 6.6 T is
also due to beating of two nearly degenerate frequencies, whereas the decreasing
amplitude below 5 T results from an approaching Bessel-function zero [see (5.38)].

The dHvA spectrum of Sr2RuO4 depends, as expected from the earlier discussion,
on the field range, field angle, and the temperature. A typical dHvA spectrum of a
high-quality sample is shown in Fig. 5.12 [34]. Several peaks are observed. The peak
labeled α is a fundamental oscillation, but 2α and 3α can be indentified as harmonics
of α (i.e. terms with p > 1 in (5.33)), because their frequency is an integer multiple of
the frequency of the α peak, and their mass is an integer multiple of the mass derived
for the α oscillation, as expected from (5.18). The pair of peaks labeled β could, on
the basis of this trace alone, arise from distinct sheets of the Fermi surface, how-
ever when the crystal is rotated in the field these two peaks merge, as expected
for the maximum and minimum extremal areas for a tube with c-axis warping
(Fig. 5.6). The peak labeled β + α is seen only in high quality samples, and it
arises from mixing of these two frequencies as the chemical potential is modulated.
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Fig. 5.12 Quantum oscillation spectrum of Sr2RuO4, from [34]. The oscillations arise from three
sheets of the Fermi surface, α, β and γ . Three harmonics, p = 1, 2 and 3 [see (5.33), (5.13)]
of the α frequency are visible. The β frequency is split, and the beating of these two fequencies
produces the nodes, marked by arrows, in Fig. 5.11. The γ frequency is also weakly split. The
labels α′, γ ′ and β ′ show where the oscillation frequencies are predicted to be, based on an angle-
resolved photoemission study that was later shown to have been wrong due to a reorganization of
the electronic states at the surface of the crystal [13]

Finally, the peak γ , which is weakly split as can be seen in the inset, can be identified
as a distinct quantum oscillation: it is obviously not an integer multiple of β; it is not
far from the 6th multiple of α, however it’s mass, as discussed below, is not 6 times
the mass of α, and it would be peculiar for the 6th harmonic to show up, when the
4th and 5th do not.

No fundamental oscillations are found above 20 kT, and indeed the γ orbit fills a
substantial fraction of the Brillouin zone. Rotation of the crystal shows that all of the
dHvA frequencies vary as 1/ cos(θ) [35], which is the signature of a tubular Fermi
surface, as expected in a quasi-two-dimensional metal.

From a dHvA measurement we can obtain detailed information about the size
and shape of each Fermi surface, but not about where it is located in the Brillouin
zone. For this, comparison must be made with band structure calculations, and in the
case of Sr2RuO4 there was excellent agreement with LDA calcuations [35], which
predict that three bands cross the Fermi energy to produce the Fermi surfaces shown
in Fig. 5.13.

These three bands originate in a simple way from the underlying 3d crystal-field
levels of ruthenium in an octahedral environment, as illustrated in Fig. 5.14. The
β and α sheets of the Fermi surface both arise from quasi-one-dimensional dxz and
dyz bands antibonding with O pz orbitals. These bands are quasi-one-dimensional
because dxz has very little hybridization along y, as can be seen, and similarly dyz

has little hybridization along x , and they both hybridize weakly in the z direction
because of the insulating strontium-oxide layers. Where these two bands cross, spin-
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Fig. 5.13 Three-dimensional cartoon of the Fermi surface of Sr2RuO4 [7], in which the warpings
have been exaggerated by a factor of 15. The right-hand figure shows the cross-section in the
ab-plane, together with the labels of the Fermi surfaces
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Fig. 5.14 The t2g crystal field levels of Sr2RuO4 [7]. Top left the dxz orbital of Ru π -bonds to the
pz orbitals of O; top right the resulting quasi-one-dimensional bands from the dxz and dyz orbitals
hybridize with each other to give rise to the β and α sheets of the Fermi surface; bottom the dxy
orbital in anti-bonding combination with O px and py orbitals gives rise to the γ sheet of the Fermi
surface

orbit interaction causes them to hybridize with each other, so that the Fermi surface
reconstructs into a large electron surface β enclosing occupied states, and a hole
pocket α enclosing vacant states, at the corner of the Brillouin zone.

The remaining large electron sheet of the Fermi surface, γ , arises from hybridiza-
tion of the dxy orbital of ruthenium in antibonding combination with the nearest
neighbour O px and py orbitals.

While there is excellent agreement between the Fermi surface sizes and the pre-
dictions of electronic-structure calculations, one can go significantly beyond this
analysis and enquire into the detailed warpings of these nearly tubular Fermi sur-
faces. We expect that the β and α surfaces, arising as they do from orbitals the dxz and
dyz that have some extension along the z direction, should have more c-axis warping
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(indicative of inter-layer tunneling) than the dxy (γ ) Fermi surface, whose orbitals
are much more confined to the ab-plane. This is confirmed by Fig. 5.12, in which the
β sheet has a much larger splitting between its the maximum and minimum Fermi
surface areas, compared with γ , indicating a larger difference between the maximum
and minimum extremal areas (Fig. 5.6) as expected for stronger warping.

On the other hand, a very low beat frequency for the α oscillation suggested that
this sheet has very little c-axis warping, which would be surprising, given that it too
originates on from the dxz and dyz orbitals (Fig. 5.14).

This mystery was solved by more detailed analysis by Bergemann, [6, 7] that
illustrates both the power of quantum oscillation measurements and the dangers
of overly-simplistic interpretation of dHvA amplitude versus field, when extracting
the Dingle factor for example (5.19). Bergemann fitted a three-dimensional data set
consisting of dHvA amplitude versus field and rotation angle, using model parameters
that included spin-splitting, impurity damping, and warpings described by the series
of cylindrical harmonics, shown in Fig. 5.15, of the form

kF (φ, κ) =
∑

μ,ν≥0;μ even

kμν cos(νκ)

{
cos μφ if (μ mod 4) = 0
sin μφ if (μ mod 2) = 0,

(5.39)

where κ ≡ ckz/2 and φ is the azimuthal angle in the ab-plane. This analysis showed
that the k01 and k02 warpings, which we normally think of when picturing a warped
tubular Fermi surface and which would give rise to a beat pattern in the dHvA signal,
are indeed small for the α sheet, however the k21 warping term is large. This term
conserves the Fermi surface cross-sectional area to first order: it can be thought of
as a ellipsoidal bulge in the cross-section that first extends in one direction, and then
in the perpendicular direction, as we move in the c-direction along this corner of the
Brillouin zone [7]. Similarly, the k42 term is significant, but this too conserves the
area as a function of κ . This analysis shows that a Fermi surface can have substantial
warping without a large splitting of the maximum and minimum extremal areas.

In combination with other data such as angle dependent magnetoresistance oscil-
lations [46], a very detailed picture of the Fermi surface and its spin-splitting was
built up, from which an accurate tight-binding Hamiltonian can be constructed, and
this in turn can be used as the underlying model for theoretical studies of the super-
conductivity of this compound. Recently, a similar analysis of quantum oscillations
was applied to the cuprate superconductor Tl2Ba2CuO6+δ [53].

In addition to obtaining a detailed picture of the Fermi surface, the tempera-
ture dependence of the oscillations allowed determination of the effective mass of
the quasiparticles, via (5.18). For the measurement, the samples were heat-sunk to
the mixing chamber of a dilution refrigerator through a copper wire, attached at the
sample by low-resistance silver epoxy, and at the other end clamped by a brass screw
to a gold-plated section of the mixing chamber. The temperature dependence of the
oscillations was measured by taking spectra such as those in Fig. 5.12 at several
temperatures between 20 mK and 2 K. The amplitude versus temperature of each
peak was determined by fitting the spectra, and the result fitted to the Fermi liquid
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Fig. 5.15 Warping parameters for Sr2RuO4, from [6]. The Fermi surfaces are expanded in cylin-
drical harmonics, (5.39)

Fig. 5.16 Temperature dependence of the quantum oscillation amplitude for the β frequency [35].
The solid line is a fit of X/sinhX (5.18), the Fermi liquid formula for the temperature dependence
of quantum oscillations

form of (5.18). A typical result is shown in Fig. 5.16. From this effective masses for
all three sheets of the Fermi surface were obtained.

In Table 5.1 the mass enhancements, m∗/mband , which is the ratio of the measured
quasiparticle effective masses to the predictions of LDA band-structure calculations,
are given for the three Fermi surfaces. These mass enhancements are all large com-
pared to most d-electron metals, and they vary substantially from one Fermi surface
to another, with γ having the largest mass enhancement. The Fermi-surface specific
mass enhancement is an important measure of the strength of quasiparticle interac-
tions. For example, models of the pairing interaction for superconductivity in this
material ought to be compatible with these mass enhancements, particularly in light
of a subsequent study of the pressure dependence of the effective masses and the T 2

coefficient of the resistivity [19], which showed that the superconducting Tc and the
many-body enhancements track each other closely.
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Table 5.1 Fermi surface and quasiparticle properties obtained from quantum oscillation measure-
ments in Sr2RuO4

Fermi-surface sheet α β γ

character Hole-like Electron-like Electron-like

kF (Å−1) 0.304 0.622 0.753

m∗/me 3.3 7.0 16.0

m∗/mband 3.0 3.5 5.5

vF (m s−1) 1.0 × 105 1.0 × 105 5.5 × 104

〈v2⊥〉 (m2 s−2) 7.4 × 105 3.1 × 106 1.0 × 105

t⊥ (K) 7.3 15.0 2.7

kF is the average around the orbit, given by
√

Ae/π ,
Ae is the extremal area,
mband is from [43]; vF ≡ �kF/m∗; 〈v2⊥〉 ≡ (�2k2

00c2/16m∗2)[∑μν kμνν
2(1 + δμ0)], with

c the body-centred tetragonal lattice parameter, comes from the sum over the c-axis warpings of
the quasi-tubular Fermi surfaces

5.4.3 Correspondence with Bulk Properties

Table 5.1 summarizes some of the experimentally determined quantities from quan-
tum oscillation measurements. Using these values several bulk properties can be
estimated and compared with bulk measurements.

Knowledge of the effective mass and the size of a Fermi surface allows the
expected linear coefficient of specific heat to be estimated. In a two-dimensional
metal, each cylindrical Fermi surface contributes πk2

BNAa2m∗
i /3�

2 J mol−1 K−2 to
the specific heat, where a is the in-plane lattice parameter, NA is Avogadro’s number
and kB is Boltzmann’s constant. For Sr2RuO4 this gives 1.48 mJ/mol/K2 × (3.3 +
7.0 + 16.0) = 38.9 mJ/mol/K2, which agrees within the error with the measured
value of 38 mJ mol−1 K−2 [34, 38].

Note that in general it can be dangerous to assume that the effective mass is
uniform over the whole Fermi surface. For example, in the heavy fermion system
CeIn3 at high magnetic field the effective mass is found to vary by a factor of around
15, from 2me to ∼32me, on a single sheet of the Fermi surface [16]. It is good
practice, therefore, to measure m∗ at several different field angles, to check for such
“hot spots”. Even if hot-spots are not present, it is good practice to use an LDA band
structure to calculate the unrenormalized contribution to γ for a particular orbit (this
can be done using available software [54]), and then calculate the enhancement of
the effective mass on this orbit, to get m∗/mband . Then, assuming that the density
of states for the entire Fermi surface is enhanced by the same amount, the expected
value of γ can be calculated. Such a calculation [33], found that the α, β and γ

surfaces respectively contribute approximately 1.55, 3.14 and 4.19 mJ mole−1 K−2

to γ . Enhancing these values by the mass enhancements given in Table 5.1, again
gave γ ∼ 39 mJ mol−1 K−2.

Next we turn to transport properties.
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Within the relaxation time approximation [3] the electrical conductivity tensor for
a sheet n of the band structure is given at T = 0 by

σ
(n)
i j = e2

4π3 τ

∮
F S

d2k v
(n)
i (k)v

(n)
j (k).

This assumes a constant relaxation time τ over the Fermi surface, and v
(n)
i (k) is the

Fermi velocity in the î direction at k.
Assuming that this approximation holds, the resistivity anisotropy for each Fermi

surface is

ρab

ρc
= σcc

σab
=

∮
F S

d2k vz(k)vz(k)∮
F S

d2k vx (k)vx (k)
=

∮
F S

d2kv̂z(k)v̂z(k)∮
F S

dkc k(φ) dφ cos2(φ)
(5.40)

= 2

AF S

∮
F S

d2kv̂z(k)v̂z(k), (5.41)

where v̂z is the z-component of the unit vector that is parallel to the Fermi velocity at
a given point on the Fermi surface. Bergemann et al. [7], using the detailed warpings
of the Fermi surfaces extracted from the envelope analysis described above, carried
out the integral numerically, and obtained an anisotropy of 3,700, compared with a
measured anisotropy of 4,000.

A final consistency check is possible with the Hall effect and the carrier density
[33]. The three cylindrical Fermi surfaces enclose fractional volumes of the Brillouin
zone of 0.108, 0.457 and 0.667. This corresponds to 2.0 ∗ (0.667 + 0.457 + (1 −
0.108)) = 4.032 electrons, compared with the expected value of 4.0 conduction
electrons per formula unit, with one formula unit per unit cell [33]. Note that because
the α surface is a hole surface it encloses empty states, so it contributes (1 − 0.108)

electrons per spin-direction.
These checks on the consistency between measured bulk properties and those cal-

culated from Fermi surface parameters and mass enhancements are very important.
In Sr2RuO4 the agreement is very impressive. In other cases there may be disagree-
ments that could reveal that there are Fermi surfaces that have not been observed
in the dHvA measurement. Sometimes, such as in the recent quantum oscillation
measurements on underdoped cuprates [15], one is not sure how many copies of an
observed Fermi surface there are in the Brillouin zone, and the requirment that the
electronic specific heat summed over Fermi surfaces cannot exceed the measured
specific heat, and that the carrier density should add up to the known number of
carriers per formula unit, can rigorously constrain this.
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5.5 Conclusions

In this article we have reviewed the theory of the de Haas-van Alphen effect, empha-
sizing less-well-known aspects of the theory that are of particular relevance to
strongly correlated electron systems. We have briefly discussed the main measure-
ment techniques, and shown an exemplary application, to the p-wave superconductor
Sr2RuO4, in which comprehensive quantum oscillation measurements lead to mea-
sured Fermi-surface-specific properties that can be used to calculate bulk properties
that are in excellent agreement with bulk measurements, and that can therefore be
used with confidence to help construct models of the exotic superconductivity of this
material.
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Chapter 6
Pressure Probes

Michael Nicklas

Abstract The physical properties of correlated materials, like low-dimensional
organic conductors, cuprate superconductors, heavy-fermion metals, or the recently
discovered iron-based superconductors, depend on a delicate interplay of differ-
ent physical effects. External pressure is an ideal tool to tune this interplay. The
resulting phase diagrams and their study is essential for the understanding of the
underlying physical principles. This chapter is intended to give an introduction to
modern pressure techniques which are used for investigations of strongly corre-
lated materials. We provide a short overview of the different types of pressure cells.
Thereby, we focus on the experimental capabilities and point at limits and problems
which might occur in a pressure experiment. In a survey of experimental probes we
outline the specifics of the experimental setup for pressure studies in comparison
with the setup used at ambient pressure. We further address the particular restric-
tions on the experimental resolution in the pressure study and discuss the accessible
parameter range in pressure, temperature and magnetic field. The covered physical
probes include, electrical- and thermal-transport measurements, thermodynamic and
magnetic studies, magnetic-resonance experiments, and structural and spectroscopic
investigations. On the example of heavy-fermion superconductors we elucidate the
contributions of pressure experiments on the discovery and understanding of new
emerging physical phenomena in correlated electron materials.

6.1 Introduction

External pressure is an excellent tool to tune the interplay of different energy scales in
strongly correlated materials in a clean and controlled way. One notable example for
competing interactions is the magnetic Ruderman-Kittel-Kasuya-Yoshida (RKKY)
exchange interaction and the Kondo effect in heavy-fermion metals. The major draw-
back of pressure probes is the additional complexity of the experiments due to the
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pressure cells needed to generate the high pressure. Today, many physical quantities
are accessible at high pressures. Available probes comprise, for example, electrical
transport, thermodynamic and magnetic properties, but also magnetic resonance and
scattering techniques. Compared to ambient-pressure measurements, the accessible
temperature range might be limited and the sensitivity of the experiment reduced.

In this chapter we will concentrate on the experimental techniques adapted to
high-pressure environments. In Sect. 6.2 we give an overview on different types
of pressure cells with a focus on pressure cells which are currently used in the
laboratories. In the following section (Sect. 6.3) we describe the different ways to
determine the actual pressure inside the pressure cell and discuss the importance
of the pressure transmitting medium in carrying out a successful experiment. In
Sect. 6.4 we provide a survey of the implementation of the measurement of different
physical quantities in pressure cells. We put our special attention on the particular
requirements in the study of correlated electron materials. Our aim is to point out
the modifications of experimental setups and the limitations and problems which can
occur while performing pressure experiments. A discussion of technical details is
beyond this introductory text, therefore, we refer to the literature at the appropriate
places. In the final section (Sect. 6.5) we highlight the importance of pressure studies
on the example of heavy-fermion materials.

6.2 Pressure Generation

The target of a pressure study is to measure a physical quantity at high pressures with
the same sensitivity as at ambient pressure. This is usually difficult due to the fact
that the sample and eventually the experimental setup have to be placed inside the
pressure cell, which provides only a limited space. The size of the pressure chamber
can be of the order of a few hundred micrometers up to several millimeters in diameter
depending on the type of pressure cell. There are additional restrictions connected
to the specific type of a physical investigation, for example, it might be difficult to
reach low temperatures (T � 1 K) and high magnetic fields with a pressure setup.

6.2.1 Pressure Cells

In the following, we give an introduction to high-pressure techniques and present
the different types of pressure cells which are used to investigate strongly correlated
materials. The main challenge of pressure experiments becomes evident when we
write pressure (p) as:

p = F

A
, (6.1)
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where F is the force acting on the area A. To increase the maximum achievable
pressure of a pressure setup, we can follow two routes: (i) generate larger and larger
forces or (ii) reduce the size of the sample chamber further and further. The first
route, which is, for example, followed in the field of earth sciences or high-pressure
materials synthesis, requires the use of a large hydraulic press and corresponding
pressure apparatus. Due to the size of the whole setup this route is not appropriate for
low-temperature experiments, which require small pressure cells fitting in a cryostat.
On the other hand, going to smaller and smaller dimensions is also no ideal solution,
since it becomes more and more challenging to set up an experiment due to the
reduced size of the sample chamber. Despite of these challenges, usually the second
route is followed to study the physical properties of materials at high pressures.

In general, pressure cells can be divided into different groups depending on their
mechanism adapted to generate the pressure [1]. Most commonly used in laboratories
are the piston-cylinder type and opposed-anvil type pressure cells. While the maxi-
mum pressure in piston-cylinder type cells is limited to about 4 GPa, in diamond-anvil
cells (DAC’s) pressures well above 100 GPa can be reached. The interesting physics
in strongly correlated materials, like pressure-induced superconductivity or quantum
critical phenomena, is in most cases observed in the pressure range below 10 GPa.

6.2.2 Piston-Cylinder Type Pressure Cells

Piston-cylinder type pressure cells have the advantage of a reasonably large vol-
ume sample chamber and a relatively small size. This enables pressure studies of a
large number of physical properties, like electrical transport, heat capacity, magnetic
probes, neutron scattering, etc., down to very low temperatures and in high magnetic
fields. This type of cell is easy to handle and, therefore, in use in many laboratories.
The name piston-cylinder type pressure cell comes from the moving piston inside
the pressure cylinder, on which the force is applied to compress the sample chamber.
To apply the force a hydraulic press is used. After application of the desired force,
the pressure inside the cell is clamped with a locking nut. For this reason, also the
term clamp-type pressure cell is used. Afterwards, the cell can be placed inside the
cryostat. For measurements in magnetic fields pressure cells machined from mag-
netic materials are not suitable. Therefore, a nonmagnetic Cu:Be alloy with about
2.5 % Be is used as material for the cell body. Compared with maraging steel, also
used as a material for constructing pressure cells, Cu:Be has the advantage that it is
nonmagnetic and still has a reasonably high tensile strength (∼1.3 GPa). Considering
the hassles accompanying the usage and machining of alloys containing beryllium,
Cu:Ti may become an alternative material for pressure cells [2].

The maximum pressure generated using a Cu:Be piston-cylinder type pressure
cell is limited to about 1.5 GPa. Above this pressure plastic deformations take place.
In Cu:Be cells with a particular small volume sample chamber higher pressures can
be achieved on the expense of a plastic deformation of the pressure chamber. Double-
layer piston-cylinder type cells have been invented to reach higher pressures and to
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Cu: Be locking nut

Cu: Be outer cylinder

Teflon capsule

Ni-Cr-Al inner cylinder

sample chamber

WC disc

Cu:Be locking cut

Cu: Be feedthrough for
eletrical connection

WC piston

Fig. 6.1 Schematic drawing of a double-layer piston-cylinder type pressure cell. The outer diameter
of this cell is about 25 mm. Using this or similar designs pressures between 3 and 4 GPa can be
reached

maintain a large volume sample chamber [3]. In a double-layer piston-cylinder type
cell pressures between 3 and 4 GPa can be reached [3–6]. Furthermore, this type
of cell is extremely versatile and can be used for different kinds of experiments.
A schematic drawing of a typical design is displayed in Fig. 6.1. The cell consists
of an outer cylinder machined of Cu:Be and an inner cylinder of Ni-Cr-Al, which
has a higher tensile strength than Cu:Be [2]. Instead of Ni-Cr-Al also MP35N, a
Co-Ni-Cr-Mo alloy, is often used as material for the inner cylinder [2]. Its magnetic
properties due to the Co content make its use less favorable.

6.2.3 Opposed-Anvil Type Pressure Cells

The class of opposed-anvil pressure cells comprises many different types of cells.
The highest pressures can be reached with the diamond-anvil cell (DAC), but this
offers the smallest available sample space. Other types of opposed-anvil cells, like
the Bridgman-type cell or the toroidal-anvil cell, have a larger available space for the
sample, but do by far not reach the maximum pressures of DAC’s.

The general principle of an opposed-anvil type pressure cell is illustrated in
Fig. 6.2. One of the anvils is usually fixed in place and the force is applied to the
movable anvil. The gasket sits in between the anvils and seals the pressure inside the
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diamond anvils

force

gasket

sample chamber

Fig. 6.2 Schematic representation of the principle of an opposed-anvil cell illustrated on the exam-
ple of a diamond-anvil pressure cell (DAC)

sample chamber filled with the pressure transmitting medium and the sample(s). Next
to the sample(s) a pressure gauge is placed in order to determine the pressure inside
the sample chamber (see Sect. 6.3). In most setups, the pressure is changed at room
temperature using a hydraulic press and then clamped by one or more screws (nuts).
In addition to the application of pressure at room temperature, in some experimental
setups the pressure can be changed at low temperatures using a bellow system [7, 8].

The clamped Bridgman-type anvil technique has the most simple setup. Usu-
ally tungsten carbide (WC) serves as material for the anvils, but sometimes sintered
synthetic diamond is used to reach higher pressures. While WC starts to deform
above 11 GPa, limiting the maximum pressure which can be obtained with these
anvils, sintered synthetic diamond allows to reach pressures up to 30 GPa. The sin-
tered synthetic diamond anvils are magnetic which limits their usability in some
experiments. In contrast to sintered synthetic diamond, non-magnetic WC is avail-
able. The remnant field of a magnetic anvil after an experiment in magnetic fields
can, for example, shift the superconducting transition of lead used as manometer
to lower temperatures leading to an overestimation of the pressure inside the cell
(see Sect. 6.3.1). Figure 6.3 shows an electrical-resistivity setup in a Bridgman-type
pressure cell. The gasket consists of pyrophyllite (a sheet silicate) and the samples sit
in between two sheets of the soft mineral steatite, which is in this case the pressure
transmitting medium (see Sect. 6.3.2). With this experimental setup the resistivity of
two samples and lead, which serves as pressure gauge, can be measured at the same
time (see also Sects. 6.3.1 and 6.4.1).

The solid pressure transmitting medium causes non-isotropic pressure distri-
butions in the sample chamber. To obtain more isotropic pressure conditions in
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samples lead (manometer)

WC anvil

steatite 
(pressure transmitting medium)

pyrophyllite gasket Cu:Be jacket(a)

(b)

Fig. 6.3 a Setup for electrical-resistivity measurements in a Bridgman-type pressure cell. The
sample chamber has a diameter of 2 mm. Before closing the cell a second steatite disc will be placed
on top of the samples. b WC anvil enclosed in a Cu:Be jacket. Pyrophyllite serves as material for
the gasket [9]

sample, manometer

electrical connections

sample

Pt wire

pressure transmitting medium

pyrophyllite
gasket

5 mm

(a)

(b)

teflon capsule
epoxy

WC anvils

electrical leads
Au wire

Au foil

pyrophyllite gasket

teflon capsule

Fig. 6.4 Schematic drawing (a) and photograph (b) of modified Bridgman anvils with an experi-
mental setup for electrical-resistivity studies. A liquid is used as pressure transmitting medium (see
also [10–12])

Bridgman-type pressure cells different attempts have been made to replace steatite
by a liquid pressure transmitting medium. One procedure is to impregnate the inner
wall of the gasket with epoxy [13]. Another one uses teflon rings as sealing in a
classical Bridgman setup [14]. A completely different approach uses modified anvils
and a teflon capsule as pressure chamber [10–12]. An example for such a setup is
shown in Fig. 6.4. In this cell pressures of about 8 GPa can be reached using a liquid
pressure transmitting medium. A similar design has been realized in toroidal-anvil
cells [15–17]. The maximum achievable pressure and the available sample space are
comparable in both types of pressure cells.
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In a diamond-anvil cell the highest possible static pressure can be achieved. This
requires a very high precision of the alignment of the opposed diamond anvils. The
major drawback of the DAC technique is the limited experimental space of the order
of only a few 100µm in diameter and several 10µm in height, depending on the
size of the diamonds used. A brief history of the DAC, which was invented more
than 50 years ago, is given in an article by Basset [18]. Further useful information
on technical aspects can be found in [19–21].

Even though, pressures far beyond 100 GPa can be obtained in DAC’s, the exper-
imental methods for pressures larger than 50 GPa are typically limited to physical
probes which do not need electrical connections inside the pressure chamber, but
take advantage of the transparency of diamonds in a large frequency range. These
methods include optical spectroscopy, X-ray scattering/spectroscopy, or Mössbauer
spectroscopy. For other probes, like electrical transport or specific heat, the main
challenge is to bring electrical connections into the high-pressure region. Today,
DAC’s have been miniaturized so far that they can be used in most standard lab-
oratory cryogenic systems. Examples for different DAC designs can be found in
[22–25].

6.2.4 Indenter-type Pressure Cells

With indenter-type pressure cells pressures up to 4.5 GPa at low temperatures have
been reached using a liquid pressure transmitting medium [26]. This pressure is
above the limit of piston-cylinder type cells. Furthermore, the indenter type cell
still provides a reasonably sized sample space of about 1.6 mm in diameter and
1.4 mm in depth, which is reduced to 0.7 mm at the maximum pressure. A schematic
drawing is shown in Fig. 6.5. In some respects, this pressure cell can be considered

Cu wires

cell body
(Cu:Be)

indenter
(WC)

sample
space

hole piece
(NiCrAl)

locking nut
(Cu:Be)

conical stopper
(Cu:Be)

10 mm

Cu wires
indenter
(WC)

sample
(NMR coil)

epoxy

(a) (b)

Fig. 6.5 left Cross-sectional view of the indenter pressure cell. right Arrangement for nuclear
magnetic resonance (NMR) measurements in the indenter cell (after [26])
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as the upper part of an opposed-anvil cell, just the lower anvil and the gasket are
missing and replaced by a piece of Ni-Cr-Al with a hole serving as sample chamber.
A main advantage compared to modified Bridgman or toroidal-anvil cells is that the
feedthrough for the electrical wires can be reused. However, the piece with the hole
is deformed in the experiment and has to be replaced each time.

6.2.5 Other Types of Pressure Cells

We briefly want to mention two further types of pressure cells. The multi-anvil
pressure cells are fairly complicated to operate, since the whole setup, including a
custom-made cryostat, is placed inside a large hydraulic press [27, 28]. Due to the
construction the temperature is limited to the range of a 4He cryostat. The helium
gas pressure cells are the second type of pressure cells we want to refer to. In them
pressures up to about 1.7 GPa can be reached. However, practically the pressure is
limited to 1 GPa because of the safety limits of the available pressure fittings. Due
to the usage of helium gas as pressure transmitting medium the helium gas pressure
cells offer excellent hydrostatic pressure conditions and a very good pressure control
especially at small pressures [29, 30].

6.2.6 Electrical Connections

Several experimental probes require electrical connections inside the pressure cham-
ber. This provides an additional challenge for the experimentalists. The electrical
connections are usually the first place where a pressure experiment fails, e.g. due to
a short circuit to the ground. For piston-cylinder type pressure cells quite reliable
electrical feedthroughs can be prepared using glass or sapphire filled epoxies [3].
To prepare reliable electrical connections for anvil cells using metallic gaskets is
more difficult. The wires have to be electrically insulated from the gasket. This can
be done by covering the gasket by sapphire (Al2O3) or cubic boron nitride (CBN)
powder mixed with epoxy. However, there is a high risk of an electrical short circuit
while closing the cell and applying pressure, e.g. at the edges of the gasket. A promis-
ing way to overcome this obstacle of the anvil cells, are patterned anvils [31–33].
Here, electrical leads or even more complicated structures like multilayered coils for
magnetic measurements are deposited on the anvil and consecutively covered by an
additional layer of the anvil material. One problem in experiments can arise from the
poor electrical properties of the materials which can be used for depositing the struc-
tures. Figure 6.6 shows examples of electrical contact leads and a multilayered coil
evaporated on sapphire (Al2O3) and moissanite (single-crystalline SiC) anvils [34].
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Fig. 6.6 Patterned anvil designs. a Al2O3 anvil with eight lead probe pattern b moissanite (single-
crystalline SiC) anvil with eight-lead probe NiCr pattern, and c Au on NiCr multilayered coil
pattern on an Al2O3 anvil [31]. Reproduced with permission from Review of Scientific Instruments
82, 033901 (2011). Copyright 2011 American Institute of Physics

6.3 Pressure Determination and Transmitting Media

The exact determination of the pressure and the quality of the pressure conditions
inside a pressure cell are very important for any high-pressure experiment.

6.3.1 Pressure Determination

A simple estimation of the pressure inside the pressure cell as applied force per surface
area (6.1) is not reliable. Due to friction effects the actual force transmitted to the sam-
ple space is not known exactly. Furthermore, the surface area of the pressure chamber
can change with pressure, especially, in opposed anvil cells. Therefore, more precise
pressure gauges placed next to the sample inside the pressure chamber are needed.

An other important point to consider in a pressure experiment is that due to the
different thermal expansions of the materials used in the pressure cell setup, i.e.
for the pressure cell body, pistons or anvils, pressure transmitting medium etc., the
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pressure inside the pressure cell increases or decreases on cooling. Even though, the
design of a pressure cell can compensate this effect partly, it is important to be aware
that the pressure inside a pressure cell is never constant on changing temperature.
Therefore, it is important at which temperature the pressure inside the pressure cell
is determined.

Depending on the type of pressure cell different manometers are available. The
pressure dependence of the electrical resistance of Manganin wire can be utilized
as pressure gauge [35–38]. Due to the mainly temperature independent resistance,
Manganin can be used in a large temperature range. The linear pressure dependence
of the electrical resistivity of manganin is very reproducible and can be calibrated
using the structural transitions of bismuth under pressure. These are easily detectable
in the electrical resistance and serve as reliable fix points for a calibration [39, 40].

Another widely deployed method to determine the pressure at low temperatures
uses the strong pressure dependencies of the superconducting transition temperatures
(Tc) of lead, tin, or indium [41, 42]. For pressures up to 5 GPa the following relations
hold (p in GPa) [41]:

Pb : Tc(p) = Tc(0) − (0.365 ± 0.003)p,

Sn : Tc(p) = Tc(0) − (0.4823 ± 0.002)p + (0.0207 ± 0.0005)p2,

In : Tc(p) = Tc(0) − (0.3812 ± 0.002)p + (0.0122 ± 0.0004)p2. (6.2)

Here, no additional calibrations are needed and Tc can be determined by electrical
resistance or magnetic susceptibility (magnetization). The latter has the advantage
that no electrical connections inside the pressure chamber are required. We note, one
important drawback of this method is that the Tc of lead, tin, or indium is highly
sensitive to a magnetic field. Thus, the remnant field of a superconducting magnet
in a typical experimental setup can already lead to a strong shift of Tc to lower
temperatures, pretending a much higher pressure inside the cell. Therefore, it is
important to remove any remnant field carefully (to less than 0.1 mT) before using
this method as pressure gauge. The width of the superconducting transition can also
serve as a measure of the pressure gradient inside the pressure chamber by taking
the size of the manometer into account.

In diamond-anvil cells, or more generally, in pressure cells with optical access,
the pressure shift of the ruby fluoresce line R1 is used as pressure gauge [43, 44].
This method is not limited to a certain temperature range. Furthermore, the place-
ment of several ruby grains inside the pressure chamber, which can be individually
focused by an optics, allows for a detailed study of the pressure gradient. The pressure
(p in GPa) can be obtained from the R1 line-shift [45–47]:

p = 1904

B

[(
1 + δλ

6.9424

)B

− 1

]
, (6.3)

with δλ the line-shift of the ruby R1 line in nm and the parameter B as a measure of
the hydrostaticity (B = 7.665 for hydrostatic conditions).
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In addition to the previously described methods, there are further ways to deter-
mine the pressure, which are directly related to a particular physical probe. In the
case of nuclear quadrupol resonance (NQR) or nuclear magnetic resonance (NMR)
experiments the pressure shift of the 63Cu NQR spectrum of Cu2O is established as
pressure gauge [48, 49]. Here, a Cu2O piece is placed inside the detection coil, next
to the sample under investigation (see also 6.4.7.1). Furthermore, X-ray and neutron
diffraction experiments allow to utilize the equation of state (EOS), e.g. of NaCl, to
determine the pressure [50].

6.3.2 Pressure Transmitting Media

Ideal isotropic pressure conditions cannot be achieved in real pressure experiments.
Nevertheless, the quality of the pressure conditions inside the pressure cell can be
crucial for the success of an experiment. Non-hydrostatic effects, e.g. uniaxial strain,
can strongly influence the physical properties of a sample. Therefore, it is important
to carefully choose an appropriate pressure transmitting medium. A gas, like Ar or
He, offer the best isotropic pressure conditions. However, we want to point out that
even a solid pressure transmitting medium like steatite, AgCl, or NaCl can provide
satisfactory pressure conditions depending on the samples and physics investigated.
On the other hand, even the solidification of helium can cause anomalies in the data of
very strain sensitive materials [51]. Therefore, in case unexpected anomalies appear
in the data, it is important to look at the properties of the pressure transmitting
medium, e.g. solidification pressure or temperature. A recent study reports on the
properties of many commonly used pressure transmitting media [52]. This study
covers the pressure range up to 10 GPa in different temperature regions. Further
information can be also found in [53–62].

6.4 Physical Probes

6.4.1 Electrical Transport

The electrical resistance is probably the most used probe to investigate the physics of
strongly correlated materials under pressure. This is because the electrical resistance,
including magnetoresistance and Hall-effect, is the only physical property which can
be measured with the same precision, in almost the same temperature and magnetic
field range, under pressure like at ambient conditions. All other probes suffer from
higher background contributions, reduced sensitivities, or other limiting factors.

In a piston-cylinder type pressure cell several samples can be measured in one
experiment. A typical setup for three samples and the pressure gauge is shown in
Fig. 6.7. In opposed-anvil cells only one or two samples can be investigated simulta-
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Fig. 6.7 Electrical feedthrough for a piston-cylinder type pressure cell with sample board. The
electrical wiring is shown schematically for 3 samples and the pressure gauge (strip of lead). A
serial electrical current is used for all samples

neously (see also Fig. 6.3). In electrical-resistance experiments maximum pressures
of above 50 GPa can be achieved in DAC’s.

6.4.2 Thermal Transport and Thermoelectric Power

6.4.2.1 Thermal Transport

Thermal transport is difficult to measure inside a pressure cell. In contrast to ambient
pressure experiments, where the sample sits in vacuum, the heat loss from the sample
to the pressure medium is generally significant and makes any measurement of the
thermal conductivity using the steady-state method under pressure nearly impossible
[63]. To overcome this problem two different methods have been proposed, the
transient method [64, 65] and the 3ω method [66]. The latter has the advantage that
very small samples can be measured. The small sample size and the high measurement
frequencies help to reduce the heat loss from the sample to the pressure medium.
However, the losses cannot be neglected. This method is limited to intermediate
temperatures (T � 10 K).

6.4.2.2 Thermoelectric Power

In contrast to thermal transport, the measurement of the thermoelectric power (TEP),
S, is well established under pressure [67–69]. To measure S(T ) a temperature gra-
dient is induced across the sample. S is defined as:
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S(T, p) = �T (T, p)

�V (T, p)
, (6.4)

where �T is the thermal gradient and �V the thermoelectric voltage across the
sample. The temperature gradient is usually measured using thermocouples as ther-
mometers. For the determination of S from the experimental data the knowledge
of the absolute values of the TEP of the material used for the voltage leads and
its pressure dependence is essential [70]. In pressure experiments different setups
with one or two thermocouples are used. In the former case it is assumed that the
cold end of the sample is at the temperature of the bath [69]. The sensitivity of the
available thermocouples limits the experiments to the temperature range above 1 K.
TEP experiments have been carried out up to 30 GPa in Bridgman-type pressure cells
using steatite as pressure transmitting medium [69, 71]. In DAC’s a combination of
ZrO2 and CsI is used as pressure transmitting medium which also serves as a thermal
insulation of the sample from the diamond anvils [72]. Piston-cylinder type pressure
cells have been also successfully deployed for TEP experiments [68, 73].

6.4.3 Heat Capacity

For studies of the heat capacity under pressure two approaches are followed. The first
method provides absolute values of the heat capacity by measuring the heat capacity
of the whole pressure cell with the sample inside. A subtraction of the addenda
finally yields the heat capacity of the sample. Following the second procedure semi-
quantitative data is obtained by using an ac-technique to directly measure the heat
capacity of the sample inside the pressure cell.

Using the first technique, the heat capacity of the whole pressure cell with the
sample inside is measured [77–79]. To obtain the specific heat of the sample, the
addenda, including the contributions of the pressure cell and the pressure trans-

Fig. 6.8 Two different pressure cells for heat-capacity measurements. a Setup for a dilution
refrigerator, b miniature cell on a commercial heat-capacity platform [74–76]
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mitting medium, has to be carefully determined and subtracted from the raw data
[77–79]. Depending on the size of the pressure cell a customized measurement rig or
a standard heat-capacity platform is employed (see Fig. 6.8). The heat capacity is then
determined by a quasi-adiabatic heat-pulse technique [80] or a relaxation technique
[81, 82]. The main limitation of this method is that only samples with a large heat
capacity compared with the heat capacity of the pressure cell can be investigated.
Furthermore, only piston-cylinder type pressure cells provide a large enough vol-
ume for the sample, but limit the maximum achievable pressures to the 3 GPa range.
One class of materials suited for this method are the heavy-fermion materials. In a
pressure experiment the heat capacity of a heavy-fermion sample typically reaches
between 10 and 120 % of the heat capacity of the pressure cell. At higher tempera-
tures the contribution of the pressure cell to the total heat capacity increases stronger
than that of the sample, making measurements above ∼10 K basically impossible.
Experiments starting from temperatures below 50 mK can be carried out. However,
in the low-temperature range (T � 0.5 K) nuclear Schottky contributions to the heat
capacity, e.g. from the Cu in the pressure cell, become substantial in magnetic fields.
Since these contribute significantly to the addenda, precise measurement in high
magnetic fields and at low temperatures are very challenging.

The second available method, the ac-technique directly measures the heat capacity
of the sample and can, therefore, be adapted to different types of pressure cells. It
allows to study small crystals since thermometer and resistive heater are usually
directly glued to the sample [83, 84]. For diamond-anvil cells also a laser heating
method has been developed [85]. For the ac-technique the thermal conduction inside
the sample has to be much larger than that from the sample to the surrounding
pressure medium. In practice this can be achieved by choosing an appropriate sample
geometry and measurement frequency. As thermometer a thermocouple is usually
the best choice. Due to its small thermal mass it follows the temperature of the sample
immediately. The sensitivity of thermocouples strongly decreases with decreasing
temperature. In the low-temperature region (<1 K) AuFe/Au thermocouples give the
best sensitivity [70]; at temperatures above 2 K Au/Chromel thermocouples provide
a good resolution [70, 85]. Below 300 mK the resolution of the thermocouples
decreases rapidly making ac-heat-capacity experiments more and more difficult.
The ac-technique has been adapted for different types of pressure cells, e.g. piston-
cylinder type pressure cells [86, 87], Bridgman-type cells with solid [70, 88, 89] and
liquid pressure medium [71], cubic-anvil setups [90], and diamond-anvil cells [85].

6.4.4 Thermal Expansion and Magnetostriction

The linear thermal expansion, respectively, the volume thermal expansion coefficient,

α = 1

�(T )
· ∂�(T )

∂T
and β = 1

Vs(T )
· ∂Vs(T )

∂T
, (6.5)

and the magnetostriction coefficient,
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λ = 1

�(B)
· ∂�(B)

∂B
, (6.6)

are important thermodynamic properties suitable for studying different types of phase
transitions. Here, � is the length and Vs the volume of the sample.

Under pressure there are only two ways to determine the thermal expansion/
magnetostriction coefficient: (i) a study of the lattice parameters by X-ray or neutron
diffraction (see also Sect. 6.4.8) or (ii) the strain-gauge technique [15, 91, 92]. The
first method does not only provide α and β, but also gives structural information,
e.g. the pressure dependence of the lattice parameters (see for example [93]). Fur-
thermore, fitting the unit-cell volume, V (p), using the second order Murnaghan’s
equation of state (EOS),

p = B0

B ′
0

[(
V0

V (p)

)B′
0 − 1

]
, (6.7)

gives the bulk modulus, B0, of the material. B ′
0 is a parameter, which is typically

between 3 and 6 in intermetallic compounds, and V0 is the unit-cell volume at ambi-
ent pressure. The second way to study the thermal expansion or magnetostriction
is the strain-gauge technique. It is based on a simple electrical resistance measure-
ment. A resistive strain gauge consists ideally of a meander-type resistance structure
to enhance the sensitivity. The strain gauge is glued directly on the sample. The
expansion, respectively, contraction of the sample gives a change in the length of
the strain gauge, which is detectable in the electrical resistance of the strain gauge.
This technique has a much better resolution than X-ray or neutron scattering [15],
but it does by far not reach the sensitivity of a capacitive dilatometer used at ambient
pressure [94]. The limited sensitivity restricts the use of this probe under pressure pri-
marily to the detection of structural phase transitions. X-ray and neutron diffraction
experiments can be conducted to pressures above 50 GPa using DAC’s. The strain-
gauge technique has been adapted to piston-cylinder type pressure cells [91, 92] and
toroidal-anvil cells allowing to reach pressures up to 8 GPa [15].

6.4.5 Magnetic Susceptibility and Magnetization

The experimental setups for magnetic susceptibility (χac) and magnetization (M)
measurements under pressure can be divided in two groups: (i) experiments in which
the whole pressure cell including the sample is measured in a conventional magne-
tometer or susceptometer [97–100], e.g. a commercial SQUID magnetometer and (ii)
setups where the sample is placed in a susceptometer which resides inside the pres-
sure cell. The first measurement procedure has the disadvantage of a very small filling
factor. In the second type of experimental setup the filling factor can be enhanced by
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Fig. 6.9 a Schematic drawing of a DAC (after [95]) and b of a piston-cylinder type pressure cell
[96] for a SQUID magnetometer

placing the susceptometer completely or at least its detection coil inside the high-
pressure chamber [26, 33, 101–103].

There are several experimental setups belonging to the first group. For measure-
ments in a commercial SQUID magnetometer the whole pressure cell is moved
through the detection-coil system. Therefore, it is essential that the pressure cell is
nonmagnetic and constructed as homogenous as possible. Ideally only the signal
of the sample would be recorded. However, in reality this is not the case. In order
to determine the magnetic properties of the sample, the background signal of the
pressure cell without sample has to be determined and subtracted from the signal
of the pressure cell with sample. Figure 6.9 shows two pressure cells for use in a
commercial SQUID system. The DAC is capable of pressures up to 10 GPa [95] and
the piston-cylinder type cell reaches about 1.4 GPa [96, 99]. The DAC provides only
a very small sample space limiting the resolution of such a setup considerably. In a
commercial SQUID magnetometer, e.g. the MPMS from Quantum Design, the low-
est achievable temperature is only about 1.8 K and the magnetic field is limited to 7 T.
Magnetization studies at lower temperatures and higher magnetic fields are possible
with a capacitive Faraday magnetometer in a dilution refrigerator. Using a miniature
piston-cylinder type pressure cell in this setup magnetization measurements can be
carried out in the millikelvin range and in magnetic fields B � 20 T at pressures up
to 1.5 GPa [104]. With the same pressure cell also specific-heat measurements are
possible (see Fig. 6.8a and Sect. 6.4.3).

The actual design of the second type of experimental setups depends strongly
on the type of pressure cell used and the available space in the sample chamber.
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The susceptometer, a coil system, is composed of an excitation (primary) coil and a
compensated detection (secondary) coil. The compensated coil consists of two parts
wound in opposite direction in order to get a zero signal without sample. At ambient
pressure the sample can be moved and measured in both parts of the compensated
detection coil. In this way contributions coming from a non-ideal detection coil
can be eliminated. This is not possible in pressure experiments. Here, the sample sits
always in one part of the compensated detection coil. In piston-cylinder type pressure
cells the whole coil system can be placed inside the pressure chamber [101, 103]. So
much space is not available in opposed-anvil cells. In recent experimental realizations
for opposed-anvil cells one part of the detection coil is placed inside the pressure
chamber, while the second part, for the compensation, is placed outside [33, 102].
In earlier setups the whole coil system was fixed outside of the pressure chamber,
directly on the anvils in order to obtain an as high as possible filling factor (e.g. [105]).

6.4.6 De Haas–van Alphen Oscillations

The measurement of de Haas–van Alphen oscillations (dHvA) is a powerful tool to
study the metallic state. Together with band-structure calculations the Fermi-surface
topology can be mapped out. At ambient pressure different methods are available
to study dHvA oscillations. For measurements under pressure the field modulation
technique is the only one which can be realized [106, 107]. The experimental setup is
quite similar to that used for magnetic susceptibility measurements (see Sect. 6.4.5).
The excitation coil is usually placed outside of the pressure cell and, to obtain a
higher resolution, a compensated detection coil with the sample inside is placed in
the pressure chamber. Since dHvA oscillations are typically only visible at very low
temperatures and high magnetic fields a dilution refrigerator with a superconducting
magnet capable of high magnetic fields is needed. Both, sweeping of the external field
for measuring the dHvA oscillations and the modulation of the driving field, can lead
to heating effects due to eddy currents induced in the pressure cell. While the former
effect can be reduced by choosing a smaller sweeping rate at the expense of a longer
duration of the experiment, a reduction of the amplitude of the modulation field
reduces the sensitivity. Most of the dHvA experiments under pressure are carried out
in the pressure range up to 3 GPa using piston-cylinder type pressure cells [106–109].
Recently, the feasibility to investigate dHvA oscillations at higher pressures has been
demonstrated using a moissanite-anvil cell [110].

6.4.7 Magnetic Resonance

Magnetic resonance methods give access to local electronic and magnetic properties
of strongly correlated materials, which are not accessible by the methods described
above.
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6.4.7.1 Nuclear Magnetic Resonance

The nuclear magnetic resonance (NMR) probes the local spin susceptibility at the
site of the NMR nucleus and gives information on the local magnetic anisotropy.
Furthermore, the spin-lattice relaxation rate can, for example, provide direct infor-
mation on magnetic fluctuations. The experimental setup is related to the one for
ac-susceptibility and dHvA experiments under pressure. A single detection coil as
part of the NMR resonant circuit is placed inside the pressure chamber as described in
Sect. 6.4.5. Broadband solid-state NMR experiments have been adapted to different
types of pressure cells, like piston-cylinder type pressure cells, indenter type cells
(see Fig. 6.5 which shows an NMR coil in the sample chamber) [26], opposed-anvil
cells [111–113], and cubic-anvil type pressure cells [114].

6.4.7.2 Electron-Spin Resonance

In metallic systems usually an appropriate element (ESR-probe), e.g. Mn or Gd,
which does not possess any orbital momentum, has to be doped into the compound
under investigation to be able to measure the electron-spin resonance (ESR). ESR
investigations under pressure using a classical resonator setup were well established
[115], but are generally not in use anymore. With these setups pressures up to 3 GPa
and above could be obtained. Only recently the discovery of an ESR signal in the
heavy-fermion material YbRh2Si2 without any ESR probe [116] motivated a renewed
interest in ESR measurements under pressure [117]. In addition to the classical ESR
experiments, setups for high-field (high-frequency) ESR experiments under pres-
sure have been developed and are used for investigations on quantum-spin systems
[118–120].

6.4.7.3 Muon-Spin Rotation/Resonance

μSR stands for both muon-spin rotation and muon-spin resonance. The acronym
already draws the attention to the analogy with ESR and NMR. The muons are
implanted in the sample and decay after 2.2 µs as μ+ → e+ + νμ + νe. The angular
distribution of e+ has a maximum in the muon spin direction. The muon spins precess
in a transverse magnetic field, which is equivalent to the free induction decay in
pulsed NMR. This is called muon-spin rotation (TF-μSR) in contrast to the muon-
spin resonance (RF-μSR). Here, the muon-spin polarization is along the magnetic
field and transitions are induced by an RF-field as in conventional NMR. μSR can
detect extremely small internal fields. Furthermore, magnetic fluctuations in the range
104–1012 Hz can be investigated. A comprehensive review on heavy-fermion systems
and type-II superconductors studied by μSR techniques can be found in [121] and
[122, 123] respectively.

For μSR experiments under pressure a large sample size is essential to obtain a
good signal-to-background ratio. Thus, only piston-cylinder type pressure cells are
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suitable for μSR measurements under pressure. This limits the achievable pressure
to about 3 GPa. Pressure experiments can be carried out at temperatures down to
0.25 K using 3He cryostats (see [124, 125] as an example of a recent study).

6.4.8 Neutron Scattering

Neutron-scattering experiments allow the study of different physical properties.
Neutron diffraction is an important tool to investigate crystal (see Sect. 6.4.4) and
magnetic structures. Inelastic neutron scattering provides information on different
types of excitations. These can include magnetic excitations, which are of special
interest in the field of correlated matter, but also crystal-electric field (CEF) and
phonon excitations [126].

The biggest challenge for neutron-scattering experiments under pressure is to
reduce the additional background signal due to the pressure cell. Crystal-structure
investigations need only a relatively small sample size. Using anvil cells pressures up
to 50 GPa can be achieved (see for example [127–132]). The investigation of magnetic
structures is more challenging due to the low intensity of the magnetic reflections,
especially in materials with small magnetic moments. Usually piston-cylinder type
cells are utilized in neutron-scattering investigations of magnetic properties under
pressure because of their large volume available for the sample [133–137]. A compre-
hensive introduction to neutron scattering techniques in high-pressure environments
can be found in [138].

6.4.9 Mössbauer Spectroscopy

Mössbauer spectroscopy is an effective microscopic tool to investigate magnetic
moments and magnetic ordering phenomena. It also reveals the electric-field gradient
(EFG) at the site of the Mössbauer active nucleus. Unfortunately, only a very lim-
ited number of Mössbauer active nuclei exist. In heavy-fermion materials Mössbauer
investigations under pressure have been conducted in Yb-based compounds using
170Yb as Mössbauer active nucleus ([139] and references therein). Mössbauer spec-
troscopy is also possible on 238U and 151Eu, but no pressure studies are reported.
In the iron-based superconductors 57Fe is a Mössbauer active nucleus which allows
Mössbauer investigations under pressure directly at the magnetic site (e.g. [140]).
Using DAC’s Mössbauer experiments can be carried out at cryogenic temperatures
at pressures up to 100 GPa [139, 141–143].
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6.4.10 Optical Spectroscopy and Related Techniques

Raman scattering, Brillouin scattering, and optical/X-ray spectroscopy are important
tools to investigate the effects of electron-phonon coupling and electronic correlations
in materials like high-temperature superconductors or transition-metal oxides. Since
these techniques require an optical access to the sample, DAC’s are regularly utilized.
For further details on pressure experiments with these probes we refer to the literature
(see for example [144–147] and references therein).

6.5 Pressure Tuning of Strongly Correlated Materials

External pressure has been successfully used to study different classes of strongly cor-
related materials, like low-dimensional organic conductors (for example [148, 149]
and references therein), the recently discovered iron-based superconductors (for
example [150] and references therein), or the heavy-fermion materials. In the fol-
lowing we will demonstrate the importance of pressure studies for the understanding
of heavy-fermion supeconductors on some selected examples.

CeCu2Si2, the first heavy-fermion superconductor [151], shows a very broad
superconducting region under pressure [152]. Even though this unusual supercon-
ducting regime was reported already short after the discovery of CeCu2Si2 its
origin remained puzzling for many years. It was speculated that the low-pressure
superconducting region is related to the proximity to antiferromagnetism and that in
the high-pressure region valence fluctuations might play an important role [152–154].
A combined pressure and substitution experiment could finally show that indeed two
distinct superconducting regions exist in CeCu2Si2 [155].

Pressure investigations have been highly successful in the discovery of new uncon-
ventional Ce-based heavy-fermion superconductors. The heavy-fermion antiferro-
magnet CeCu2Ge2 is isoelectronic to CeCu2Si2, but has a larger unit-cell volume.
It was therefore a natural step to apply pressure on CeCu2Ge2 in order to reduce
its unit-cell volume to that of CeCu2Si2 and look for superconductivity. Application
of pressure indeed suppresses the magnetic order and an extended superconducting
phase develops above 7.5 GPa [156]. In this way CeCu2Ge2 was not a completely
new heavy-fermion superconductor, since its pressure dependence reproduces that
of CeCu2Si2. Nevertheless, the experimental concept to use pressure to suppress the
antiferromagnetic state to induce superconductivity led to the discovery of many
Ce-based heavy-fermion pressure-induced superconductors, e.g. CeRh2Si2 [157],
CePd2Si2 [158], or CeIn3 [158, 159]. Figure 6.10 displays the T –p phase diagram
of CeIn3 which is also representative for that of CeRh2Si2 and CePd2Si2. In these and
several other Ce-based heavy-fermion materials superconductivity develops around
the critical pressure where the antiferromagnetic order is suppressed, suggesting that
the superconductivity is magnetically mediated.

In the following we will highlight how pressure studies contributed to the
understanding of the CeMIn5 heavy-fermion materials (M = Co, Rh, and Ir).
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Fig. 6.10 T –p phase diagram of CeIn3. The data were taken from [158]

Fig. 6.11 Combined T –p phase diagram of CeRhIn5 and CeCoIn5. The data of CeCoIn5 have
been shifted by 1.6 GPa. The data were taken from [161–164]
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The CeMIn5 compounds are layered materials which consist of layers of CeIn3
separated by layers of MIn2 [160]. Therefore, CeIn3 can be considered the parent
compound of the CeMIn5 family. At ambient pressure CeIn3 orders antiferromagnet-
ically below TN ≈ 10 K. Application of pressure suppresses TN to zero temperature
at pc ≈ 2.5 GPa [158]. Around pc superconductivity develops below Tc ≈ 200 mK
(see also Fig. 6.10).

CeRhIn5 orders antiferromagnetically like CeIn3, but has a considerably lower
TN = 3.8 K [165]. On application of pressure the antiferromagnetic order is sup-
pressed around 1.9 GPa and superconductivity starts to develop [165]. A broad super-
conducting dome with a maximum Tc of 2.3 K extends over more than 4 GPa in the
T –p phase diagram [161, 163, 165]. While the phase diagram of CeRhIn5 is rem-
iniscent of that of other heavy-fermion superconductors, it shows one important
difference, the antiferromagnetic and superconducting ordering temperatures are of
the same order. CeCoIn5 and CeIrIn5 are ambient pressure superconductors with
Tc = 2.3 K [166] and 0.4 K [167], respectively. Detailed experiments confirm the
unconventional nature of the superconductivity [168]. The T –p phase diagram of
CeCoIn5 displays a broad superconducting dome which extends up to 5 GPa sim-
ilar to CeRhIn5 [162, 164]. An estimation using the experimental bulk modulus
and lattice parameters of CeCoIn5 and CeRhIn5 suggests that CeCoIn5 is under an
effective pressure of 1.6 GPa compared with CeRhIn5. Shifting the phase diagram
of CeCoIn5 by this value and superimposing it on that of CeRhIn5 leads indeed to a
good agreement between the two phase diagrams (see Fig. 6.11). This suggests that at
ambient pressure CeCoIn5 is situated in close proximity to antiferromagnetic order.

This finding is supported by studies on Cd substituted CeCoIn5, where In was
replaced by a small amount of Cd [169]. For substitution levels of more than
x ≈ 0.075 antiferromagnetism is induced in CeCo(In1−x Cdx )5 [169]. In the con-
centration range 0.075 � x � 0.0125 superconductivity coexists with the antiferro-
magnetic order at low temperatures [169–171]. Pressure studies on the substituted
compounds revealed a T –p phase diagram which can be superimposed on that of
CeRhIn5 and CeCoIn5, shown in Fig. 6.11, by considering an appropriate pressure
shift [169]. However, there is no direct correspondence of the unit-cell volumes of
the different compounds.

CeIrIn5 is the second ambient pressure superconductor in the CeMIn5 family. The
superconducting transition temperature of only Tc = 0.4 K is rather small compared
with the Tc of CeCoIn5 [166, 167]. Tc(p) exhibits also a dome-like shape with a
maximum Tc ≈ 1 K at about 2.5 GPa [173]. In contrast to CeCoIn5 there are no
obvious candidates for the superconducting coupling mechanism.

Substituting Rh by Ir in CeRh1−x Irx In5 suppresses the antiferromagnetic order at
a critical concentration of about xc = 0.65 (see Fig. 6.12) [174]. A broad supercon-
ducting phase covers the T − x phase diagram starting from x = 0.35 up to CeIrIn5
[174]. On a first look this might suggest that the superconductivity in CeIrIn5 is related
to the pressure-induced superconducting phase in CeRhIn5, similar like in CeCoIn5.
However, there is a small dip in Tc(x) around x = 0.9 [174]. The dip was taken as a
hint for the existence of two distinct superconducting phases in the phase diagram of
CeRh1−x Irx In5 [172, 174]. This would imply that the superconductivity in CeIrIn5
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Fig. 6.12 T –x phase diagram of CeRh1−x Irx In5 at ambient pressure, 1 GPa, and 1.75 GPa. The
phase diagram evidences the existence of two distinct superconducting phases, SC1 and SC2. The
data were taken from [172]

is disconnected from that in CeRhIn5 and, therefore, possibly different in origin. A
combined doping and pressure study answered the question and showed that two
separated superconducting phases exist in CeRh1−x Irx In5 [172]. The application of
pressure slowly removes the antiferromagnetism from the T − x phase diagram. At
1 GPa the critical concentration is only xc ≈ 0.35 compared to xc ≈ 0.65 at ambi-
ent pressure. Finally, at 1.75 GPa only CeRhIn5 exhibits antiferromagnetic order
(see Fig. 6.12) [172]. While the antiferromagnetic region becomes narrower upon
increasing pressure, the dip in Tc(x) evolves into a range without superconductiv-
ity. This result evidences that two distinct superconducting phases, SC1 and SC2,
exist in CeRh1−x Irx In5. The position of the maximum of the superconducting dome
SC1 is correlated with the critical concentration, xc, for the disappearance of the
antiferromagnetic order. This hints at a magnetic coupling mechanism in the super-



196 M. Nicklas

Fig. 6.13 Low-temperature specific heat of CeCoIn5 at 0.45 GPa and 1.34 GPa in a magnetic field
of 12 T applied in the ab plane. The specific heat at both pressures shows two phase transitions,
which are marked by arrows. The experiment was carried out using the pressure cell shown in
Fig. 6.8b. The data were taken from [76]

conducting phase SC1. The superconducting phase SC2 is disconnected from any
magnetic order, thus leaving open the question about the superconducting pairing
mechanism in CeIrIn5 [172].

There are more peculiar findings in the CeMIn5 materials. CeCoIn5 shows a
second phase-transition anomaly inside the superconducting state close to the upper
critical field, Hc2(0), for H‖ab [175, 176]. This unusual observation was taken
as a strong hint at the realization of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
superconducting state [177, 178]. CeCoIn5 does not only show this anomaly, but
also fulfills the pre-conditions for the formation of such a state. The FFLO state is an
inhomogeneous superconducting state due to competition between superconductivity
and Pauli paramagnetism, which had been proposed already in the 1960s [177, 178].

Even though there is strong evidence for the realization of the FFLO phase in
CeCoIn5, there remains also the possibility that this phase is magnetic in origin. We
have shown before that CeCoIn5 is situated close to a magnetic instability. Further-
more, the observed non-Fermi liquid behavior in thermodynamic and transport prop-
erties evidences the presence of strong magnetic fluctuations [166]. Application of
external pressure enables us to move CeCoIn5 away from these magnetic fluctuations.
Electrical-resistivity and Hall-effect studies under pressure evidence that the mag-
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Fig. 6.14 Magnetic field—temperature phase diagram of CeCoIn5 at different pressures. The phase
diagram shows the evolution of the low-temperature phase inside the superconducting state. The axes
are normalized by the upper-critical field Hc2(0) and the superconducting transition temperature
Tc, respectively. The data were taken from [76]

netic fluctuations in CeCoIn5 are effectively suppressed around 1.5 GPa [179, 180].
Therefore, a study of the effect of pressure on the low-temperature phase inside the
superconducting state in CeCoIn5 can help to clarify the nature of this unusual phase.

Figure 6.13 shows specific-heat data recorded at 12 T at 0.45 and 1.34 GPa [181].
At both pressures the anomaly at the transition into the superconducting state and
an additional anomaly inside the superconducting phase are clearly visible. At 12 T
the shape of the anomaly at Tc is qualitatively different at 0.45 GPa and 1.34 GPa.
At 0.45 GPa it indicates a first-order type phase transition, while at 1.34 GPa the
shape of the anomaly is typical for a second-order type transition. At 1.34 GPa the
character of the phase transition changes from second- to first-order slightly above
12 T [181, 182]. We note that upon increasing pressure both transitions shift to
higher temperatures. The phase diagram in Fig. 6.14 summarizes the results from
the specific-heat experiments. The field axis is normalized by the corresponding
upper-critical field at zero temperature, Hc2(0), and the temperature by Tc at zero
field. The low-temperature phase in the superconducting state expands upon increas-
ing pressure. This is generally not expected, if the low-temperature phase would be
purely magnetic in nature, since pressure favors a non-magnetic state in Ce-based
heavy-fermion metals. Therefore, the pressure studies are in support of a realization
of the FFLO state in CeCoIn5. However, neutron scattering experiments find a small
field induced magnetic moment at an incommensurate wave-vector inside the low-
temperature phase which is not compatible with the FFLO state [183]. The real nature
of this phase is still under debate. Several theoretical models have been proposed
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to account for this so-far unique relationship between magnetism and superconduc-
tivity. Studies of microscopic properties under pressure, e.g. by NMR or by neutron
scattering, could help to reveal the true nature of this unusual phase in CeCoIn5.

These examples show that pressure studies do not only contribute to the general
understanding of strongly correlated materials. They can lead to the discovery of
new unconventional phases or help to answer specific physical questions.
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Chapter 7
Neutron Scattering and Its Application
to Strongly Correlated Systems

Igor A. Zaliznyak and John M. Tranquada

Abstract Neutron scattering is a powerful probe of strongly correlated systems. It
can directly detect common phenomena such as magnetic order, and can be used
to determine the coupling between magnetic moments through measurements of
the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse
scattering and dynamic correlations. Neutrons are also sensitive to the arrangement
of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter,
we provide an introduction to neutrons and neutron sources. The neutron scattering
cross section is described and formulas are given for nuclear diffraction, phonon
scattering, magnetic diffraction, and magnon scattering. As an experimental exam-
ple, we describe measurements of antiferromagnetic order, spin dynamics, and their
evolution in the La2−x Bax CuO4 family of high-temperature superconductors.

7.1 Introduction

A common symptom of correlated-electron systems is magnetism, and neutron scat-
tering is the premiere technique for measuring magnetic correlations in solids. With a
spin angular momentum of 1

2 �, the neutron interacts directly with the magnetization
density of the solid. Elastic scattering can directly reveal stic magnetic order; for
example, neutron diffraction provided the first experimental evidence for Néel anti-
ferromagnetism [1]. Through inelastic scattering one can probe dynamic spin-spin
correlations; in an ordered antiferromagnet, one can measure the precession of the
spins about their average orientations, which show up as dispersing spin waves.

Neutrons do not couple to the charge of the electrons, but instead scatter from
atomic nuclei via the strong force. Despite the name, the small size of the nucleus
compared to the electronic charge cloud of the atom results in a rather weak scattering
cross section. The magnetic and nuclear scattering cross sections are comparable, so
that neutron scattering is very sensitive to magnetism, in a relative sense.
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A challenge with neutron scattering is that the combination of weak scattering
cross section and limited source strength means that one needs a relatively large
sample size compared with many other techniques. The value of the information that
can be obtained by neutron scattering generally makes worthwhile the effort to grow
large samples; nevertheless, in practice it is useful to take advantage of complemen-
tary information obtained from techniques such as muon spin rotation spectroscopy
and nuclear magnetic resonance. The latter techniques yield less information but
often provide greater precision. There have also been continuing developments in
resonant X-ray scattering; nevertheless, neutron scattering will remain an essential
technique to investigate strongly correlated systems for the foreseeable future.

As we have space only for a concise introduction to the field, we note that there
plenty of more extended references available. A good summary of the theory of
neutron scattering is given by Squires [2], while a more detailed description is pro-
vided by Lovesey [3]. We have contributed to a technique-oriented book [4] and to
book chapters on magnetic neutron scattering [5, 6], and new books on the subject
continue to appear.

To illustrate some of the concepts and capabilities, we will use examples involv-
ing copper-oxide compounds, especially from the family La2−x Bax CuO4, which
includes phenomena from antiferromagnetic order to high-temperature supercon-
ductivity. More details on neutron scattering studies of cuprates are given in recent
reviews [7–10].

7.2 Basic Properties of the Neutron and Its Interaction
with Matter

The neutron is an elementary spin-1/2 particle, which, together with its charged
relative, the proton, is a building block of the atomic nucleus. According to the
“standard model” of the elementary particles, the neutron and proton are fermionic
hadrons, or baryons, composed of one “up” and two “down” quarks, and two “up” and
one “down” quarks, respectively. The basic properties of a neutron are summarized
in Table 7.1.

Although the neutron is electrically neutral, it has a non-zero magnetic moment,
similar in magnitude to that of a proton (μn = 0.684979 μp), but directed opposite

Table 7.1 Basic properties of a neutron

Charge Mass Lifetime Magnetic moment Gyromagnetic ratio g-factor (gn)

(kg) (s) μn (J/T) γn (s−1/T)

0 1.67492 × 10−27 882 ± 2 −0.96623 × 10−26 −1.83247 × 108 3.82609

The gyromagnetic ratio, γn , and the g-factor, gn , are defined by μn = γnσ n = −gnμN Sn , where
σ n is the neutron’s angular momentum, Sn = σ n/� is the neutron’s spin (Sn = 1/2), μN =
e�/(2m pc) = 5.05078 × 10−27 J/T = 5.05078 × 10−24 erg/G s is the nuclear magneton [11, 12]
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to the angular momentum, so that the neutron’s gyromagnetic ratio is negative. The
neutron’s mass, mn = 1.00866 Da (atomic mass units) is slightly larger than that of
the proton, mn = 1.00728 Da, and that of the hydrogen atom m H = 1.00782 Da.
Therefore, outside the nucleus the free neutron is unstable and undergoesβ-decay into
a proton, an electron, and an antineutrino. Although the free neutron’s lifetime is only
about 15 mins, this is long enough for neutron-scattering experiments. For example,
a neutron extracted through the beam-tube in a nuclear reactor has typically reached
thermal equilibrium with the water that cools the reactor in a number of collisions on
its way out (such neutrons usually are called thermal neutrons). Assuming the water
has “standard” temperature of 293 K, the neutron’s most probable velocity would be
about 2200 m/s. It would spend only a fraction of a second while it travels along the
<100 m beam path in the spectrometer to be scattered by the sample and arrive in
the detector.

Neutrons used in scattering experiments are non-relativistic. Therefore, the neu-
tron’s energy, En , is related to its velocity, υn , wave vector, κn = mnυn/�, and the
(de Broglie) wavelength, λn = 2π/κn , through

En = 1

2
mnυ2

n = �
2κ2

n

2mn
= h2

2mnλ2
n
. (7.1)

Following the notation accepted in particle physics, the neutron’s energy is measured
in millielectronvolts (meV). The neutron’s wavelength and its wave vector are usually
measured in Å (1 Å = 0.1 nm = 10−8 cm) and Å−1, respectively. Using these units,
we can rewrite the (7.1) in the following, practical fashion:

En = 5.22704 × 10−6 · υ2
n = 2.07212 · κ2

n = 81.8042

λ2
n

, (7.2)

where En is in meV, vn in m/s, κn in Å−1, and λn in Å.
For the sake of comparison with the notations used in other techniques and in

theoretical calculations, we list several different ways of representing typical neutron
energies in Table 7.2. The different energy equivalents shown in the Table can be used
interchangeably, as a matter of convenience.

7.3 Neutron Sources

Neutrons are especially abundant in nuclei of high atomic number, where they can
significantly exceed the number of protons. To create a neutron beam, the first
challenge is to extract neutrons from the nuclei. The first practical source was the
nuclear reactor, in which neutron bombardment of 235U nuclei induces fission, a
process that releases several neutrons per incident neutron, thus allowing for a self-
sustaining chain reaction. The neutrons that are released have a very large energy,
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Table 7.2 Different notations used to represent the neutron’s energy

En En/e En/h En/(hc) En/(2μB) En/kB kn λn

(10−19 J) (meV) (T Hz) (cm−1) (T) (K) (Å−1) (Å)

1.60218 1000 241.799 8065.54 8637.99 11604.5 21.968 0.2860

0.160218 100 24.1799 806.554 863.799 1160.45 6.9469 0.9044

0.0801088 50 12.0899 403.277 431.900 580.225 4.9122 1.27909

0.0240326 15 3.62698 120.983 129.570 174.068 2.6905 2.3353

0.00160218 1 0.241799 8.06554 8.63799 11.6045 0.69469 9.0445

e is the electron charge, h is the Plank’s constant, c is the velocity of light, μB = e2/2mec =
0.92740 × 10−29 J/T is the Bohr’s magneton, kB is Boltzman’s constant [11]. Also shown are the
corresponding neutron wave vector kn and the deBroglie wavelength λn

whereas the fission cross section is enhanced by slower neutrons. The slowing of
neutrons can be achieved quite effectively by scattering from hydrogen, especially
in the form of H2O, which can also act to cool the reactor core. In a research reactor,
where one would like to extract some of the neutrons, the reactor moderator can
be made more transparent to neutrons by replacing H2O with D2O (heavy water,
with D representing deuterium). Cylindrical thimbles poking into the water moder-
ator provide an escape path for neutrons, which form the beams that supply neutron
spectrometers.

Another approach is to knock the neutrons out of heavy nuclei with high-energy
protons from an accelerator. Again, the neutrons that can escape the nuclei have very
high energies that must be reduced by multiple scattering in a moderator. In contrast
to a reactor, which produces neutron beams that are continuous in time, the proton
beam provided by an accelerator can be pulsed, so that a spallation source typically
has pulsed beams of neutrons. Targets can be made of a heavy metal such as tungsten,
but newer sources with higher power tend to use liquid mercury in order to allow
adequate heat removal.

A list of the major operating spallation sources in the world is given in the upper
portion of Table 7.3. Information on the available instrumentation and capabilities
can be obtained from the listed web sites. With a pulsed neutron source, each burst of
neutrons is produced in a narrow time window, so that one can distinguish between
neutrons of different velocities by their travel time, or “time of flight”. Using a
rotating shutter, one can select incident neutrons of a desired energy; the energy of
scattered neutrons can then be determined by their time of arrival at a detector.

The spallation source SINQ at the Paul Scherrer Institut provides a continuous,
rather than pulsed, beam, so its instrumentation has more in common with reactor
facilities, which are listed in the lower portion of Table 7.3. With a continuous source,
it is common to select the desired energy of incident neutrons by Bragg diffraction
from a crystal (or array of crystals). In a triple-axis spectrometer [4], one also uses
Bragg diffraction to analyze the energy and momentum of neutrons scattered by a
sample. Again, many of the facility web sites provide a wealth of information on
spectrometers and capabilities.
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7.4 Neutron Interactions and Scattering Lengths

Many of the fundamental advantages of neutron scattering techniques arise from the
fact that the neutron’s interactions with matter are usually weak and are extremely
well understood. Hence, neutrons afford direct experimental insight into dynamical
properties of the material system of interest, unperturbed by the probe and essentially
undistorted by the details of its interaction with matter. These properties contrast
favorably with X-ray or charged-particle (electron, muon) techniques, where the
probe could significantly perturb the system, and the interaction matrix elements
between the system and the probe are often very complicated and profoundly impact
the physics measured in the experiment.

The scattering of neutrons by an atomic system is governed by two fundamental
interactions. The residual strong interaction (nuclear force) gives rise to scatter-
ing by the atomic nuclei (nuclear scattering). The electromagnetic interaction of
the neutron’s magnetic moment with the sample’s internal magnetic fields, mainly
originating from the unpaired electrons in the atomic shells, gives rise to magnetic
scattering [2, 3, 13–15].

Magnetic interaction of a neutron with a single atom is of relativistic origin and
is very weak, so that magnetic neutron scattering can be treated using the Born
approximation. The interaction potential consists of the dipole-dipole interaction
with the magnetic moment associated with the electronic spin, μse = gs se ≈ −2se

(gs ≈ −2.002319 is the Landé g-factor),

V̂se(r) = −8π

3
(μn · μse)δ(r) − (μn · μse)

r3 + 3(μn · r)(μse · r)
r5

, (7.3)

and the interaction with the electric current associated with the electron’s orbital
motion

V̂sl(r) = 2μB
(μn · le)

r3 . (7.4)

Here �le = r × pe is the electron’s orbital angular momentum, and r = re − rn its
coordinate in the neutron’s rest frame.

While the neutron’s interaction with the atomic nucleus is strong—the nuclear
force is responsible for holding together protons and neutrons in the nucleus—it
has extremely short range, <10−12 cm, comparable to the size of the nuclei, and is
much smaller than the typical neutron’s wavelength. Hence, to describe the neutron’s
interaction with the system of atomic nuclei in which the typical distances are about
1 Å = 10−10 cm, a highly accurate approximation is obtained by using a delta-
function for the nuclear scattering length operator in the coordinate representation,

b̂N (r) = b δ(rn − RN ). (7.5)

Here RN is the position of the nucleus and b is the nuclear scattering length, which is
usually treated as a phenomenological parameter [16, 17] that has been determined
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experimentally and tabulated [18–20]. In the Born approximation, the scattering
length would correspond to the neutron-nucleus interaction described by the Fermi’s
pseudo-potential [21],

V̂N (rn, RN ) = −2π�
2

mn
b δ(rn − RN ). (7.6)

In general, the bound scattering length (that is, for a nucleus fixed in space) is a
complex quantity [2, 13], b = b′ − ib′′, defining the total scattering cross-section,
σs , and the absorption cross-section far from the nuclear resonance capture, σa ,
through

σs = 4π |b′|2 σa = 4π

κi
|b′′|2. (7.7)

For the majority of natural elements b′ is close in magnitude to the characteristic
magnetic scattering length, rm = −(gn/2)re = −5.391 fm (1 fm = 10−13 cm and
re = e2/(mec2) is the classical electron radius).

7.5 Cross-Section Measured in a Neutron Scattering Experiment

In a scattering experiment, the sample is placed in the neutron beam having a well-
defined wave vector κ i and known incident flux density Φi (κ i ), and the detector
measures the partial current, δ J f (κ f ), scattered into a small (ideally infinitesimal)
volume of the phase space, d3κ f = k2

f dκ f d� f = (mnκ f /�
2)d E f d� f , near the

wave vector κ f , as indicated in Fig. 7.1.This measured partial current, normalized
to the appropriate phase space element covered by the detector, yields the scattered
current density. The double differential scattering cross-section, which is thus mea-
sured, is then defined by the ratio of this scattered current density to the incident
neutron flux density, e.g.,

d2σ( Q, E)

d Ed�
= 1

Φi (κ i )

δ J f (κ f )

d Ed�
. (7.8)

s

d f

E ,i ik

E <f fkE ,i
q k k= -f i

sample

d f

E ,i ik

q k k= -f i

sample

d f

E ,i ik

q k k= -f i

sample

E >f fkE ,i
E =f fkE ,i

= 2 s= 2 s= 2

(a) (b) (c)

Fig. 7.1 Schematics of the scattering process in a neutron scattering experiment, a elastic, b
inelastic, neutron energy loss, c inelastic, neutron energy gain
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For each incident neutron in the plane wave state eiκ i ·rn , the incident flux density is
Φi (κ i ) = �κi/mn . The scattered current density is determined by the transition rate
Γi→ f from the initial state |κ i , Sz

n,i , ηi 〉, where the neutron is in the plane wave state

eiκ i ·rn with the spin Sz
n,i and the scattering system is described by the set of variables

ηi , to the final state, |κ f , Sz
n, f , η f 〉. According to scattering theory [5, 13, 22], the

transition rate is determined by the matrix elements of the transition operator (or
T -matrix) T̂ , satisfying certain operator equations, which depend on the scattering
system’s Hamiltonian, Ĥ , and its interaction with the neutron, V̂ ,

Γi→ f = 2π

�

∣∣∣〈κ f , Sz
n, f , η f |T̂ |κ i , Sz

n,i , ηi 〉
∣∣∣2

δ

(
�

2κ2
i

2mn
− �

2κ2
f

2mn
− E

)
. (7.9)

Here E = E f (η f ) − Ei (ηi ) is the scattering system’s energy gain. It is convenient
to introduce the scattering length operator, b̂, which conveniently absorbs several
factors,

b̂(rn, Sn, η) = − mn

2π�2 〈κ f , Sz
n, f |T̂ |κ i , Sz

n,i 〉, (7.10)

and its Fourier transform, b̂(q),

b̂(q) =
∫

e−iq·r b̂(r, Sn, η)d3r, (7.11)

Summing over all possible final scattering states, we obtain the double differential
scattering cross-section for a given initial state, |κ i , Sz

n,i , ηi 〉,

d2σ( Q, E)

d Ed�
= κ f

κi

∑
Sz

n, f ,η f

∣∣∣〈η f |b̂(− Q)|ηi 〉
∣∣∣2

δ
(
E f (η f ) − Ei (ηi ) − E

)
, (7.12)

where the dependence on the spin-state of the neutron is implicit in b̂(− Q). The
energy and momentum transfer to the sample are governed by the conservation laws,

Q = κ i − κ f , E = E f (η f ) − Ei (ηi ) = �
2

2mn
(κ2

i − κ2
f ). (7.13)

Finally, following Van Hove [23], one can use the integral representation of the
delta-function expressing the energy conservation in (7.12), and the time-dependent
scattering length operator whose evolution is governed by the system’s Hamiltonian,

b̂(q, t) = ei Ĥ t/�b̂(q)e−i Ĥ t/�, (7.14)

to recast the double differential scattering cross-section in the most useful form of
the two-time correlation function,
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d2σ

d Ed�
= κ f

κi

∑
Sz

n, f

∞∫
−∞

e−iωt 〈ηi |b̂†(− Q)b̂(− Q, t)|ηi 〉 dt

2π�
. (7.15)

Here the sum is over all possible final spin states of the scattered neutron, Sz
n, f ,

since in the general case the scattering length operator, b̂(− Q, t), depends on the
neutron spin, Sn . The sum over the final states of the sample has been absorbed into
the expectation value of the two-time correlation function of the scattering length
operator. The minus sign in front of Q in (7.15) follows from the convention adopted
in the conservation laws in (7.13), where � Q is the momentum transfer to the sample,
which is the opposite of the change in the neutron’s momentum. The total measured
scattering cross-section is obtained by taking the proper thermal average of (7.15)
over all possible initial states, |ηi 〉.

While the scattered neutron’s wave vector κ f is uniquely determined by κ i and
Q, by virtue of the conservation laws (7.13), the neutron’s spin state can be changed
by transferring the angular momentum �(�Sz

n) = ±� to the sample. In a polarized
neutron experiment scattering between different neutron spin states can be measured.
In such a case, the scattering length operator in (7.15) is a matrix with respect to
different initial and final spin state indices; it determines the various spin-flip and
non-spin-flip cross-sections [3, 24]. In the more common case of unpolarized neutron
scattering, neutron spin indices should be traced out in (7.15), so that it determines
a single unpolarized neutron scattering cross-section.

Finally, we should mention that the double differential cross-sections in (7.12),
(7.15) are general expressions obtained from scattering theory and are valid for
scattering of any probe particles. The remarkable advantage of neutron scattering is
in the fact that scattering length operators are rather simple, very well understood, and
are directly related to the fundamental physical properties of the scattering sample.

7.6 Nuclear Scattering in Condensed Matter

For scattering from an individual nucleus, the scattering length operator can be very
accurately approximated by a delta-function, (7.5). For a collection of nuclei in a
condensed matter system, the total scattering length operator is obtained by adding
scattering lengths of all nuclei,

b̂N (rn) =
∑

j

b j δ(rn − r j ), (7.16)

where j indexes the nucleus at position r j with scattering length b j . For a system
of identical nuclei, this is just a particle number density operator in the scattering
system, times b,
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b̂N (rn) = b
∑

j

δ(rn − r j ) = b n̂(rn), b̂N (q) = b n̂q . (7.17)

Substituting this into (7.15) and summing out the neutron’s spin states we obtain,

d2σ

d Ed�
= κ f

κi
|b|2

∞∫
−∞

e−iωt 〈ηi |n̂ Q n̂− Q(t)|ηi 〉 dt

2π�
. (7.18)

Therefore, the nuclear cross-section measures the space-time correlation of the atom
number density in a condensed matter system. This is exactly the quantity of interest
in many theories of strongly-correlated quantum systems.

One of the first successes of neutron scattering was the measurement of the
phonon-roton dispersion of the elementary excitations in superfluid helium-4. Neu-
tron data have confirmed that the shape of the dispersion is in agreement with that
previously postulated by Landau and Feynman, as illustrated in Fig. 7.2. This led to
the broad acceptance of the neutron scattering technique as a prime tool for studying
quantum systems.

Next we consider the case in which two or more types of nuclear scatterers (with
distinct scattering lengths bj and frequency of occurrence cj) are present in the sample
in a random fashion. For example, an element may have multiple isotopes, each with
a distinct bj, or the nuclei have a spin, so that bj depends on the nuclear and neutron
spin orientations, or we have at least two elements that are randomly distributed
among equivalent positions. The average product of the scattering lengths for any
two sites can then be written as

0

1

2

3

4

0 1 2 3 4

q (Å-1)

E
 (

m
eV

)

Fig. 7.2 Phonon-roton dispersion of the elementary excitations in the superfluid 4He. The points
show the compilation of the experimental neutron data presented in [25]. The solid line is the fit of
the low-q part of the spectrum to the Bogolyubov quasiparticle dispersion
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(b j b j ′) = (b)2 (
1 − δ j j ′

) + b2 δ j j ′, (7.19)

where

b =
∑

j

c j b j ,

b2 =
∑

j

c j b
2
j . (7.20)

We can then distinguish between coherent scattering,

d2σc

d Ed�
= κ f

κi
(b)2

∑
j j ′

∞∫
−∞

e−iωt 〈e−i Q·r j ei Q·r j ′ (t)〉 dt

2π�
, (7.21)

which probes the inter-nuclear correlation, and the incoherent scattering,

d2σi

d Ed�
= κ f

κi

(
b2 − (b)2

)∑
j

∞∫
−∞

e−iωt 〈e−i Q·r j ei Q·r j (t)〉 dt

2π�
, (7.22)

which probes the local autocorrelation of the nuclear position; the angle brackets
denote the average over the sample state. In (7.21) and (7.22) we have switched
to the co-ordinate representation of nuclear density operator (7.17) and performed
the Fourier integration. As a result, nuclear positions r j and r j ′(t) are quantum-
mechanical operators and have to be treated appropriately in calculating the cross-
section [2, 3, 14].

7.7 Nuclear Scattering in a Crystal: The Bragg Peaks
and the Phonons

In a crystal, the equilibrium positions of atomic nuclei are arranged on the sites of a
lattice, so that the position of each individual nucleus j can be represented as

r j = R j + u j , (7.23)

where R j is the lattice site position, and u j is a small displacement of the atomic
nucleus from its equilibrium position at R j .

Substituting this into (7.21), one can show that the coherent nuclear cross-section
of a monoatomic crystal is given by
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d2σc

d Ed�
= κ f

κi
N (b)2e−〈( Q·u0)

2〉 ∑
j

e−i Q·R j

∞∫
−∞

e−iωt e〈( Q·u0)( Q·u j (t))〉 dt

2π�
,

(7.24)
Here 〈( Q · u0)

2〉 is the time- or lattice-averaged square of the atomic displacement
from equilibrium in the direction of Q, and we have taken advantage of the fact that
the correlation function in (7.21) depends only on relative coordinates, which allows
one summation over the N lattice sites to be completed. The integral contains an
exponentiated correlation function of atomic displacements. It is useful to consider
the series expansion of this term in powers of pair displacement correlations.

In zeroth order, the exponential factor is just 1, and one obtains the expression for
the elastic Bragg scattering in a crystal,

d2σB

d Ed�
= N (b)2e−2W

∑
j

e−i Q·R j δ(�ω), (7.25)

where we used the conventional notation for the Debye-Waller factor, with W ≡
1
2 〈( Q·u0)

2〉. Using the lattice Fourier representation, this can be recast in the common
form

d2σB

d Ed�
= N V ∗(b)2e−2W

∑
τ

δ( Q − τ ) δ(�ω), (7.26)

where V ∗ = (2π)3/V0 is the reciprocal unit cell’s volume (V0 is the volume of the
unit cell in real space), and τ are the vectors of the reciprocal lattice. In a non-Bravais
crystal, where the unit cell contains several atoms, the sum in (7.24) has to be split
into the intra-unit cell and the inter-unit cell parts, leading to

d2σB

d Ed�
= N V ∗|FN ( Q)|2

∑
τ

δ( Q − τ ) δ(�ω), (7.27)

where the intra-unit cell summation yields the nuclear unit cell structure factor,

FN ( Q) =
∑
μ

e−Wμbμe−i Q·rμ, (7.28)

and μ indexes atoms in the unit cell. For some reciprocal lattice points, FN (τ ) can
be zero, which gives the Bragg peak extinction rules in a non-Bravais crystal.

Expanding the exponent in (7.24) to the first order, we obtain a contribution to the
cross-section that is proportional to the correlation of displacements at two different
sites. In cases where static disorder is present in the crystal, such as dislocations or
lattice strain, the time-independent correlations of displacements between different
sites give rise to elastic diffuse scattering.
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Calculation of the time-dependent displacements of atomic nuclei from their equi-
librium positions in the lattice is achieved by quantizing their vibrations in terms of
quantum oscillators, called phonons. A phonon is a normal mode of atomic vibra-
tion, a coherent wave of atomic displacements in the crystal. We distinguish phonons
with index s. The polarization vector es (direction of atomic displacements) and the
dependence of the energy on the wave vector, �ωqs (dispersion), are determined by
the local inter-atomic potentials. The total number of such modes depends on the
number of atoms in the unit cell of the crystal. Only three phonons, which are all
acoustic, are present for the Bravais lattice, two transverse and one longitudinal. Tak-
ing the proper thermal average over the sample’s equilibrium state, the contribution
to the neutron scattering is given by

d2σph

d Ed�
= κ f

κi
(b)2e−2W

∑
s

( Q · es)
2

2Mωqs

× V ∗ ∑
τ

[
δ( Q − q − τ )δ(�ω − �ωqs)(n(ω) + 1)

+ δ( Q + q − τ )δ(�ω + �ωqs)n(ω)
]
, (7.29)

where M is the mass of each nucleus. The thermal factor

n(ω) = (e�ω/κBT − 1)−1

is the Bose distribution function describing thermal population of the oscillator states
for temperature T of the sample. The first term arises from phonon creation and
corresponds to the neutron energy loss, while the second term is from an annihilation
of a phonon that has been thermally excited in the crystal and results in the neutron
energy gain.

For a non-Bravais crystal lattice, there are also optic phonons, arising from the
different intra-unit-cell vibrations. The total number of phonons is equal to 3ν, the
number of vibrational degrees of freedom of the ν atoms comprising the basis of
the unit cell of the lattice. The contribution of each of these phonons to the neutron
scattering cross-section is

d2σph

d Ed�
= κ f

κi

∣∣∣∣∣
∑
μ

bμ e−Wμ√
2Mμωqs

(τ · esμ)e−iτ ·rμ

∣∣∣∣∣
2

× V ∗ ∑
τ

[
δ(τ − q − τ )δ(�ω − �ωqs)(n(ω) + 1)

+ δ(τ + q − τ )δ(�ω + �ωqs)n(ω)
]
, (7.30)

where esμ is the complex polarization vector for site μ in mode s. For an acoustic
phonon in the hydrodynamic, long-wavelength (small q) and low-energy limit, this
reduces to (7.29), where the total mass of all atoms in the unit cell, M = ∑

μ Mμ,
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should be used and one must multiply by the square of the elastic Bragg structure
factor, |FN (τ )|2.

7.8 Magnetic Scattering in a Crystal: Magnetic Form Factor
and Spin Correlations

The magnetic interaction of a neutron with a single atom is very weak, so the Born
approximation provides an extremely accurate account for magnetic neutron scat-
tering by the atomic electrons. In this approximation, the transition matrix is given
simply by the interaction potential, T̂ = V̂ , where we have to combine the neutron’s
interaction with the electron’s spin and orbital magnetic moment, (7.3) and (7.4).
Accurate accounting for the orbital contribution to magnetic scattering presents, in
general, a rather difficult and cumbersome task [3]. There are many important cases
where the orbital contribution is not significant, such as transition-metal atoms in a
crystal, where the local crystal electric field typically quenches the orbital angular
momentum, or the case of s-electrons, where l = 0. Nevertheless, under some very
general assumptions, the neutron’s interaction with the electron orbital currents can
be recast in the same way as its interaction with the spin magnetic moment, yielding
for the total magnetic scattering length,

b̂m(r) = − mn

2π�2

(
V̂se(r) + V̂le(r)

)

= mn

2π�2

(
μn ·

∑
e

[
∇ ×

[
∇ × μe(r)

r

]])
, (7.31)

where μe(r) = μs,e + μl,e is the sum of the spin and the orbital magnetization
associated with each electron, e. The Fourier transform of the magnetic scattering
length (7.31), which determines the scattering cross-section, is

b̂m( Q) = − mn

2π�2

4π

Q2

(
μn · [

Q × [
Q × m( Q)

]])
. (7.32)

Here m( Q) is the Fourier transform of the total magnetization density of the atom,

m( Q) = mS( Q) + mL( Q)

=
∫

e−i Q·r ∑
e

(−2μB seδ(r − re) + μl,e
)

d3r,

se is the spin operator of eth electron, μl,e its orbital magnetic moment operator.
The cross product in (7.32) ensures the important property that only magnetization

perpendicular to the wave vector transfer, Q, contributes to the magnetic neutron
scattering. Adding the contributions from all atoms in the crystal and averaging over
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the neutron polarizations, we obtain the magnetic neutron scattering cross-section
measured in an experiment with unpolarized neutrons (α, β = x, y, z),

d2σm

d Ed�
= κ f

κi

(
2mn

�2 μn

)2 ∑
α,β

(
δαβ − Qα Qβ

Q2

) ∞∫
−∞

e−iωt 〈Mα
Q Mβ

− Q(t)〉 dt

2π�
.

(7.33)
Here

M Q =
∑

j

e−i Q·R j m j ( Q)

=
∫

e−i Q·r ∑
j

m j (r + R j )d
3r

is the Fourier transformed magnetization density operator in the crystal. Hence,
magnetic neutron scattering measures the time- and space-dependent correlations of
the magnetization fluctuations in the sample. Introducing the dynamic correlation
function,

Sαβ( Q, ω) =
∞∫

−∞
e−iωt 〈Mα

Q Mβ

− Q(t)〉 dt

2π�
, (7.34)

we can rewrite (7.33) as

d2σm

d Ed�
= κ f

κi
r2

m

∑
α,β

(
δαβ − Qα Qβ

Q2

)
1

(2μB)2 Sαβ( Q, ω), (7.35)

where rm = −2μBμn(2mn/�
2) = −5.391 × 10−13 cm is the characteristic mag-

netic scattering length.

7.8.1 The Detailed Balance Constraint and the FDT

The dynamic correlation function defined above by (7.34) obeys two important
relations that are derived in the linear response theory [2, 3, 15]. First, it is the
detailed balance constraint, which relates the energy gain and the energy loss scat-
tering at a temperature T ,

Sαβ( Q, ω) = e�ω/κBT Sβα(− Q,−ω). (7.36)

The second is the fluctuation-dissipation theorem (FDT), which relates the scattering
intensity with the imaginary part of the dynamic magnetic susceptibility,
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χ̃
′′
αβ( Q, ω) = π

(
1 − e−�ω/κBT

)
S̃αβ( Q, ω). (7.37)

Here χ̃
′′
αβ( Q, ω) and S̃αβ( Q, ω) denote χ

′′
αβ( Q, ω) and Sαβ( Q, ω) symmetrized

with respect to {α, β, Q} → {β, α,− Q}. A system with a center of inversion has
symmetry with respect to { Q} → {− Q}, in which case the tildes can be dropped
for the diagonal components in {α, β} indices. This is the case for which the FDT
is most frequently written [5]. The FDT, (7.37), is a consequence of the detailed
balance condition (7.36) and the causality relations, which require that χ

′′
αβ( Q, ω) is

properly asymmetric. The fundamental laws of nature expressed in (7.36) and (7.37)
are extremely useful in performing and analyzing neutron scattering experiments.

7.8.2 Elastic and Inelastic Scattering

If there exists a non-zero equilibrium magnetization in the sample, 〈M Q〉 =
〈M Q(t)〉, where the bar over M Q(t) denotes the time-averaging, we can introduce
magnetization fluctuation around this equilibrium, m Q(t) = M Q(t) − 〈M Q〉, and
write

Sαβ( Q, ω) = 〈Mα
Q〉〈Mβ

− Q〉δ(�ω) + Sαβ
inel( Q, ω), (7.38)

where the inelastic component Sαβ
inel( Q, ω) is defined similarly to (7.34), but with

M Q replaced by m Q . The first term here leads to elastic scattering which results
from static magnetization in the sample, while the second term describes the inelastic
magnetic scattering arising from its motion. Substituting the first term into (7.35) we
obtain the unpolarized magnetic elastic cross-section,

d2σm,el

d Ed�
= r2

m

(2μB)2

∣∣∣〈M⊥
Q〉

∣∣∣2
δ(�ω), (7.39)

where M⊥
Q is the Fourier transform of the magnetization component perpendicular

to the wave vector transfer, Q.

7.8.3 Magnetic Order and Magnetic Bragg Peaks

Equation (7.39) applies equally well to all cases where static magnetism is present
in a crystal, whether it is a long-range magnetic order leading to Bragg peaks, or a
short-range, e. g. nano-scale magnetic correlation, resulting in an appearance of a
broad magnetic diffuse scattering. In the case of a long-range order, the magnetization
density in a crystal typically has an equilibrium static component, which is modulated
with a wave vector Qm ,
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〈M(r)〉 = m0(r) + m(r) ei Qm ·r + m∗(r) e−i Qm ·r , (7.40)

where m0(r) is a real vector function that describes the ferromagnetic component,
if present, while m(r) can be complex and describes the staggered magnetization.
These “Bloch amplitudes” are periodic in the crystal lattice, and therefore can be
expanded in the Fourier series,

m(r) = 1

V0

∑
τ

mτ eiτ ·r , mτ =
∫
V0

m(r) e−iτ ·r , (7.41)

where the integral is over the unit cell of the nuclear (paramagnetic) crystal lattice.
Substituting (7.40) and (7.41) into (7.39), we obtain the following expression for

magnetic Bragg scattering associated with the long-range magnetic order at a wave
vector Qm ,

d2σm,B

d Ed�
= Nr2

m V ∗ ∑
τ

⎛
⎝

∣∣∣∣∣ m⊥
0,τ

2μB

∣∣∣∣∣
2

δ( Q − τ )

+
∣∣∣∣ m⊥

τ

2μB

∣∣∣∣
2 [

δ( Q − Qm + τ ) + δ( Q + Qm + τ )
])

δ(�ω).

(7.42)

Here the summation is over the paramagnetic crystal lattice. This is the “large
Brillouin zone” description, which is the most general one, in that it does not rely
on the existence of a commensurate magnetic superlattice with a unit cell containing
some integer number of nuclear lattice unit cells, and applies to incommensurate, as
well as commensurate magnetic structures. Such a description is most convenient
for stripe phases in the cuprates, which are often incommensurate.

The intensities of magnetic satellites, |m⊥
τ |2, are given by the Fourier amplitudes of

the magnetization, (7.41), which are obtained by performing the Fourier integrals over
the unit cell of the paramagnetic lattice. In the case where the unit cell magnetization
could be approximated by a number of point-like magnetic dipoles μν located at
positions rν , these amplitudes become the conventional unit cell magnetic structure
factors,

m(r) =
∑
j,ν

μν δ
(
r − R j − rν

)
,

∣∣∣m⊥
τ

∣∣∣2 =
∣∣∣∣∣
∑
ν

μ⊥
ν e−iτ ·rν

∣∣∣∣∣
2

. (7.43)

In discussing magnetic scattering we assume a rigid lattice, neglecting atomic dis-
placements due to disorder and vibrations discussed above. The leading correction
to this description is obtained by multiplying expressions for magnetic cross-section
with the Debye-Waller factor, e−2W .
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7.8.4 Magnetic Form Factor and Spin Correlations

In many important cases the magnetization density in the crystal is carried by
electrons localized on atomic-like orbitals, which are specified by the local atomic
variables, such as spin and orbital quantum numbers. In such cases, the matrix ele-
ment of the atomic magnetization in the magnetic neutron scattering cross-section
can be factorized into the product of the reduced matrix element (form factor), which
does not depend on the direction of the atom’s angular momentum quantum numbers,
and the Wigner 3j-symbol, which entirely accounts for such dependence. Hence, the
cross-section can be expressed in terms of a product of the Q-dependent form factor,
which accounts for the shape of the magnetization cloud associated with the atomic
spin and orbital variables, and a dynamical correlation function between these local
angular momentum variables at different lattice sites.

For magnetic ions obeying Hund’s rule, neutron scattering usually probes states
belonging to the same multiplets of the angular momentum, �L = 0, �S = 0 for the
Russel-Saunders atoms with weak spin-orbit and strong crystal field, or �J = 0 for
the case of strong spin-orbit coupling, where the total angular momentum J = L+ S
is a good quantum number, such as in rare earths. Hence, we can write for the Fourier
transform of atomic magnetization,

〈η f |M( Q)|ηi 〉 = −2μB FS( Q)〈η f |S|ηi 〉 − μB FL( Q)〈η f |L|ηi 〉, (7.44)

where the spin and the orbital magnetic form factors are,

FS( Q) = 〈η′
f , L , S| ∑e e−i Q·re (se · S) |η′

i , L , S〉
S(S + 1)

, (7.45)

FL( Q) = 〈η′
f , L , S| ∑e e−i Q·re

(
μe,l · L

) |η′
i , L , S〉

μB L(L + 1)
, (7.46)

where we made explicit that initial and final states of the sample belong to the same
L and S multiplet. Similar relations hold for the J multiplet in the strong spin-orbit
coupling limit.

Typically it is possible to define an effective spin operator,

〈η f |M( Q)|ηi 〉 = −gμB F( Q)〈η f |S̃|ηi 〉, (7.47)

F( Q) =
〈η′

f , L , S|
(

M( Q) · S̃
)

|η′
i , L , S〉

gμB S̃(S̃ + 1)
= gS

g
FS( Q)+ g − gS

g
FL( Q). (7.48)

where g and gS are the effective g−factors, 〈η f |L + 2S|ηi 〉 = g〈η f |S̃|ηi 〉,
〈η f |2S|ηi 〉 = gS〈η f |S̃|ηi 〉. These expressions are exact in the cases of a J -multiplet,
where S̃ = J , gS = 2(g−1) and gL = 2−g, or a pure spin multiplet, where g = gS
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and the orbital contribution is absent. They give the leading-order approximation in
other cases. If the orbital moment is nearly quenched, as it is for magnetic d-elements
in strong crystal field, then S̃ ≈ S, gS ≈ 2, and the orbital contribution to F( Q), is
small. Assuming this to be the case, we shall omit tildes and use S for the effective
spin.

Using the factorization of atomic magnetization provided by (7.47) and (7.48),
the magnetic neutron scattering cross-section (7.33) can be recast as

d2σm

d Ed�
= κ f

κi
r2

m

∑
α,β

(
δαβ − Qα Qβ

Q2

)∑
j, j ′

gα, j
F∗

j ( Q)

2
gβ, j ′

Fj ′( Q)

2

×
∞∫

−∞
e−iωt e−i Q·(R j −R j ′ )〈Sα

j Sβ

j ′(t)〉
dt

2π�
, (7.49)

where we allow for the possibility that the g−factor is anisotropic, and that both gα, j

and Fj ( Q) could be different for different sites j, j ′ of the lattice. Equation (7.49)
relates the magnetic cross-section to the dynamic spin structure factor, which is the
Fourier transform of the time-dependent two-point correlation function of the atomic
spin variables on the sites of the lattice,

Sαβ( Q, ω) =
∞∫

−∞
e−iωt 1

N

∑
j, j ′

e−i Q(R j −R j ′ )〈Sα
j Sβ

j ′(t)〉
dt

2π�
. (7.50)

Sαβ( Q, ω) is a quantity which is calculated in theoretical models based on the local
spin Hamiltonians. It also obeys a number of important relations, known as sum rules,
which are extremely useful in analyzing neutron scattering data. The zero moment
sum rule is obtained by integrating (7.50) in Q and ω, providing the direct connection
of the integral neutron intensity with the spin value S in the lattice spin Hamiltonian,

∑
α

∞∫
−∞

Sαα( Q, ω)d3qd(�ω) = S(S + 1). (7.51)

The first moment sum rule relates
∑

α

∫ ∞
−∞ �ωSαα( Q, ω)d3qd(�ω), which is the

integral oscillator strength of the fluctuation spectrum, with the bond energies in the
spin Hamiltonian, and so on.
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7.8.5 Spin Waves

Representing the neutron scattering cross-section via two-point dynamical spin
correlation function, as in (7.49), is possible in a large number of important magnetic
systems, such as cuprates and other 3d magnetic insulators. Such a representation is
extremely useful, as it allows one to connect the measured magnetic neutron intensity
with the theoretically predicted properties of model spin Hamiltonians, such as the
Heisenberg spin Hamiltonian,

Ĥ =
∑
j, j ′

J j j ′ S j S j ′ =
∑

q

N Jq Sq S−q . (7.52)

Here J j j ′ = J (r j j ′) is the exchange coupling between sites j and j ′, and Jq and Sq
are the lattice Fourier transforms,

Jq =
∑
r j j ′

J j j ′e
−iq·r j j ′ , Sq =

∑
j

S j e
−iq·r j . (7.53)

In many systems with magnetic order, the average value of spin at each lattice
site in the ground state (GS) is “frozen” at nearly the full saturation value, 〈Sz

j 〉 ≈ S.
In particular, this is a very good approximation for the semi-classical spins, S � 1,
in more than one dimension (1D). For quantum spins, S = 1/2, and/or in the low-
dimensional, or frustrated systems, the order may be weak, or absent, and such a
picture is inadequate. Nevertheless, in a large number of systems magnetic order in
the ground state is well developed, and the semiclassical spin-wave picture applies.

Spin excitations in a magnetic system with a well-ordered ground state, such
as a ferromagnet, where all spins are parallel, or a semi-classical antiferromagnet,
where there are two antiparallel sublattices, can be visualized as small oscillations
of classical spin vectors around their equilibrium positions in the GS spin structure.
Their wave-like spatial composition results from the translational symmetry of the
system. Frequencies of such spin-wave oscillations can be calculated from the spin
Hamiltonian, such as (7.52), totally within the classical mechanics, simply by writing
the torque equations of motion for the classical spin angular momenta. For example,
in the case of the Heisenberg Hamiltonian (7.52) for a magnetically ordered system
characterized by the ordering wave vector Q0 (this includes ferromagnetism with
Q0 = 0, as well as antiferromagnetism and helimagnetism), one obtains the spin-
wave dispersion [26, 27],

�ωq = 2S

√(
Jq − JQ0

) (
Jq+ Q0 + Jq− Q0

2
− JQ0

)
. (7.54)

This can be recast as ωq = √
ω0ωQ0 , where �ω0 = 2S(Jq − JQ0).

Spin waves are the normal modes of the linearized equations of motion. They
involve small spin deviations that are perpendicular to the equilibrium spin direction.
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Hence, spin waves are transversely polarized, with two mutually orthogonal linear
polarizations of spin oscillations possible. For a spin system on a Bravais lattice there
are two spin-wave modes.

In a quantum-mechanical treatment of spins, the spin-wave calculation proceeds
via an approximate mapping of spin operators to Bose creation-annihilation opera-
tors, i.e. to local oscillator modes. Hence, the so obtained spin-wave theory (SWT)
describes spin excitations as coherent waves of small oscillations around the local
equilibrium positions, in many ways similar to phonons. The resulting expression
for the spin-wave contribution to the neutron magnetic scattering cross-section in a
sample with a spiral spin structure with the propagation vector Q0 is

d2σsw

d Ed�
= κ f

κi
r2

m N
∣∣∣g
2

F( Q)

∣∣∣2 S

2
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(
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)

+
(

1 − Q2
z

Q2

) √
ωQ0

ω0
δ( Q − q − τ )

]
, (7.55)

where z is the direction normal to the plane of the spiral, and we have restricted
consideration to the case of a Bravais lattice and retained only the contribution
corresponding to creation of a single spin wave. The contribution arising from the
absorption of a spin wave is written similarly to that of a phonon in (7.29). For a
ferromagnet, the single spin-wave magnetic cross-section simplifies to [2, 3],

d2σsw

d Ed�
= κ f

κi
r2

m N
∣∣∣g
2

F( Q)

∣∣∣2 S

2

(
1 + Q2‖

Q2

)

× V ∗ ∑
τ

[
δ( Q − q − τ )δ(�ω − �ωq)(n(ω) + 1)

+ δ( Q + q − τ )δ(�ω + �ωq)n(ω)
]
, (7.56)

where Q‖ is the wave vector component along the ferromagnetic ordered moment
and we have retained the contributions from both the creation and the absorption of
a spin wave.

7.8.6 Anisotropic Magnetic Form Factor and Covalency

It is clear from (7.49) that even the exact knowledge of the dynamical spin structure
factor (available from theory in some special cases, such as in one dimension) is
insufficient to reproduce the measured magnetic scattering cross-section. One also
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has to know the magnetic form factor, which needs to be obtained from an ab initio
calculation of the electronic density in the crystal.

In the most common case of a Hund’s ion with 2S unpaired electrons forming
spin (2S + 1)-multiplet, the spin magnetic form factor (7.45) becomes

FS( Q) = 1

2S

2S∑
e=1

∫
e−i Q·r |ψe(r)|2 d3r = 1

2S

2S∑
e=1

FS,e( Q), (7.57)

where the sum is only over the unpaired electrons. The single-electron density,
|ψe(r)|2, is determined from the many-electron atomic wave function through
|ψe(r)|2 = 〈η′, L , S|δ(r − re)|η′, L , S〉. The magnetic form factor for an atom is
therefore simply an average of those for each of the unpaired electrons. Similarly, the
orbital form factor is the Fourier-transformed average density of the uncompensated
orbital currents in the atom.

If the average Hartree-Fock potential acting on an unpaired electron e in the atom
is spherically symmetric, then the effective one-electron wave functions in (7.57)
are the eigenfunctions of angular momentum and are tagged by the n, l, m = lz

quantum numbers, ψe(r) = ψn,l,m(r). The angular and the radial dependencies
of the electronic density factorize, ψn,l,m(r) = Rn,l(r)Y m

l (θ, φ), where Y m
l (θ, φ)

is the spherical function giving the dependence on the polar angles θ, φ. This so-
called central field approximation is good when the contribution to the potential
from electrons in the incomplete shell is small. However, it also becomes exact for
an almost-filled shell, with only a single electron, or a single hole, as in the case of
Cu2+, or for a nearly half-filled shell, because the average potential of the closed, or
half-filled shell, is spherically symmetric.

In the general case, a single-electron wave function can always be expanded in
a series in spherical harmonics. In each term of such an expansion, the radial and
the angular parts are again factorized, and the magnetic form factor is a sum of
Fourier-transformed terms with different l and m. The same kind of an expansion
is encountered in calculating the orbital contribution to the magnetic form factor.
This is known as a multipole expansion [3]. The calculations are ion-specific and
extremely cumbersome. The general expressions can be obtained only for the leading,
isotropic contributions, in the limit of small wave vector transfer, known as the dipole
approximation,

FS( Q) = 〈 j0(Q)〉 FL( Q) = 1

2
(〈 j0(Q)〉 + 〈 j2(Q)〉) , (7.58)

where j0(Q) and j2(Q) are the l, m dependent radial integrals quantifying the radial
wave function [5, 18]. The radial integrals for most known magnetic atoms and ions
have been calculated numerically from the appropriate Hartree-Fock or Fock-Dirac
wave functions and are tabulated in [18]. The full F( Q) is given by (7.48).

Although the dipole approximation (7.58) is the one most commonly used, it is
extremely crude. In particular, it does not account for the anisotropy of the magnetic
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form factors, which can be very important for ions with only one or two unpaired
electrons. The anisotropic magnetic form factor of a single 5d hole in a t2g orbital
of the magnetic Ir4+ ion in the cubic K2IrCl6 was studied in [28]. The authors
found that the anisotropy of the magnetic form factor is very large, with an addi-
tional enhancement coming from the hybridization of the Ir 5d-orbital with the Cl
p-orbitals.

The anisotropy of the magnetic form factor is also very pronounced in La2CuO4,
YBa2Cu3O6+y , and related cuprate materials, including the high-Tc superconduc-
tors, where in the ionic picture a single unpaired magnetic electron occupies a 3dx2−y2

orbital. In [29] the authors found that properly accounting for the anisotropy of the
Cu2+ magnetic form factor is essential for understanding the magnetic Bragg intensi-
ties measured in YBa2Cu3O6+y at large wave vectors, and can also explain the pecu-
liar Q-dependence of the inelastic magnetic cross-section in this material. Account-
ing for the anisotropic Cu2+ form factor was also very important in analyzing neutron
scattering by high-energy spin waves in La2CuO4 [30, 31], and the chain cuprates
SrCuO2 and Sr2CuO3 [32, 33]. The magnetic excitations in these cuprate materials
extend to several hundreds of meV. Consequently, the measurements require very
large wave vector transfers, for which the anisotropy of the magnetic form factor is
very pronounced.

The ionic magnetic form factors for 3d orbitals can be explicitly computed by
Fourier transforming the corresponding spherical harmonics. In particular, for the
dx2−y2 orbital relevant for Cu2+ one obtains [5],

F( Q) = 〈 j0(Q)〉 − 5

7
〈 j2(Q)〉

(
1 − cos2 θQ

)
+ 9

56
〈 j4(Q)〉

(
1 − 10 cos2 θQ + 35

3
cos4 θQ

)

+15

8
〈 j4(Q)〉 sin4 θQ cos

(
4φQ

)
, (7.59)

where θQ, φQ are the polar angles of the wave vector Q in the local coordinate
system used to specify the proper orbital wave functions in the crystal field.

Although using the anisotropic ionic magnetic form factor of Cu2+ is much better
than using a spherical form factor of the dipole approximation, it is still not suffi-
cient for cuprates, as it neglects the effects of covalency (i.e. charge transfer to the
neighboring oxygen) that are expected to be very significant in these materials. In
[33] it was discovered that covalent bonding results in a marked modification of the
magnetic form factor in the quasi-1D antiferromagnet Sr2CuO3. The local structure
of the planar Cu–O square plaquettes in this material is essentially identical to that
in La2CuO4. Making use of a precise theoretical result for the excitation spectrum
available in 1D, the authors demonstrated that a good fit to the data requires a form
factor that takes account of hybridization between the half-filled Cu 3dx2−y2 orbital
and the ligand O 2pσ orbitals, as given by a density functional calculation. The
hybridization causes the spin density to be extended in real space, resulting in a more
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(a) (b) (c)

Fig. 7.3 Wave vector dependence of the ionic magnetic form factor of Cu2+ given by (7.59)
(solid line) and the covalent magnetic form factors for Sr2CuO3 (dashed line) and La2CuO4 (dash-
dotted line) obtained from the ab initio density functional calculations [33]. Panels (a–c) show the
dependence along three principal directions

rapid fall off in reciprocal space compared to a simple Cu2+ form factor, as illustrated
in Fig. 7.3. Smaller values of magnetic form factor at relatively large wave vectors,
where the measurement is performed, lead to the suppression of magnetic intensity,
which could be as large as a factor of two or more [33]. Finally, we note that a study
of covalent NMR shifts by Walstedt and Cheong [34] found that barely 2/3 of the
spin density in La2CuO4 resides on the copper sites, in excellent agreement with the
Sr2CuO3 neutron data of Walters et al. [33].

7.9 Application to Cuprate Superconductors

The discovery of high-temperature superconductivity in La2−x Bax CuO4 (LBCO)
came as a considerable surprise [35], as ceramic oxides were generally considered
to be poor conductors. The structure of LBCO and related cuprates involves CuO2
layers, with the Cu atoms forming a square lattice with bridging O atoms, as shown in
Fig. 7.4a. Anderson [36] predicted that the parent compound, La2CuO4, should have
strong antiferromagnetic (AF) superexchange interactions between nearest-neighbor
Cu atoms. The occurrence of antiferromagnetic order was demonstrated by Vaknin
et al. [37] using neutron diffraction on a powder sample of La2CuO4. As illustrated
in Fig. 7.4b, the antiferromagnetic Néel order doubles the size of the unit cell in
real space, which results in magnetic superlattice peaks, as shown in (c). Thus, the
antiferromagnetic order can be detected through the appearance of superlattice peaks.
The challenge in this case is that one must distinguish from structural superlattice
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Fig. 7.4 a Structure of a CuO2 plane, with Cu atoms indicated by filled circles and O atoms by
open diamonds. b Schematic of antiferromagnetic order, with alternating up (filled circles) and down
(open circles) spins. The solid line indicates the chemical unit cell, while the dashed line indicates
the doubled area of the antiferromagnetic unit cell. c Reciprocal space showing fundamental Bragg
peak positions (filled circles) and antiferromagnetic superlattice peak (open circle) at ( 1

2 , 1
2 )

peaks due to staggered rotations of CuO6 octahedra [38]. Fortunately, the AF and
structural peaks appear at inequivalent positions.

The ordered pattern of the octahedral tilts is associated with an orthorhombic dis-
tortion of the crystal structure that makes the diagonal directions of a Cu-O plaquette
inequivalent [38], as indicated in Fig. 7.5. By analyzing the Q dependence of the AF
Bragg peak intensities, it was possible to determine that the magnetic moments on
Cu atoms lie within the CuO2 planes, pointing along the orthorhombic b axis [37].
Furthermore, it was possible to show that the relative arrangement in neighboring
planes is as shown in Fig. 7.5. With the magnetic structure determined, one can eval-
uate the magnitude of the magnetic moments by normalizing the AF peak intensities
to the nuclear intensities and correcting for the magnetic form factor. Early studies
yielded a small ordered moment whose magnitude was correlated with the mag-
netic ordering, or Néel, temperature, TN [39]. Neutron scattering studies on carefully
prepared single-crystal samples eventually demonstrated the impact of interstitial
oxygen, within the La2O2 layers [40]. Removing the excess oxygen by annealing,
one can achieve TN = 325 K [41] and a magnetic moment of 0.60 ± 0.05 µB [39].
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Fig. 7.5 Structure of
La2CuO4, with arrows
indicating the arrangement of
the magnetic moments in the
antiferromagnetic state.
Figure reprinted with
permission from Lee et al.
[42]. Copyright (1999) by the
American Physical Society

c 

a 
b 

O  2−

La 3+

Cu  2+

If one assumes a g factor of roughly 2, then the ordered moment yields an average
ordered spin 〈S〉 ≈ 0.3, compared to the expected S = 1

2 per Cu atom. The reduc-
tion results from the strongly anisotropic structure and the low value of the spin. For
a two-dimensional magnetic system described by a Heisenberg spin Hamiltonian,
long-range order is destroyed at any finite temperature by thermal excitation of spin
fluctuations. For La2CuO4, weak (nearly-frustrated) couplings between the planes
enable the ordering at finite temperature [43]. Nevertheless, the spin correlations
have a strongly two-dimensional (2D) character, as demonstrated by neutron scat-
tering studies [44]. The small magnitude of the spin, combined with the enhanced
zero-point spin fluctuations in 2D, puts the system close to a quantum critical point
[45]. Although the large fluctuations cause problems for perturbation theory, spin-
wave theory nonetheless yields a result, 〈S〉 = 0.3, that is very close to the value
obtained from experiment [46].

The exchange couplings between the spins can be determined by analyzing the
dispersion of the spin excitations, which can be obtained by inelastic scattering
measurements on a single-crystal sample. Early studies of La2CuO4 with triple-
axis spectrometers demonstrated that the superexchange energy J coupling nearest-
neighbor spins is greater than 100 meV, and that effects such as exchange anisotropy
and interlayer coupling are very small [43]. Time-of-flight techniques were required
to measure the highest-energy spin waves [47], and these have been refined over
time [30, 31]. The most recent results, from Headings et al. [31], are shown in
Fig. 7.6. The line through the data points corresponds to a fit with linear spin-wave
theory, which works surprisingly well in light of the large zero-point fluctuations.
One impact of the latter is the renormalization factor, with a fitted value of Zd =
0.4 ± 0.04, that is required to fit the measured intensity. This is somewhat smaller
than the value Zd ≈ 0.6 that is predicted from quantum corrections to linear spin
waves [48]. It should be noted, though, that this analysis did not take account of
the hybridization effects on the magnetic form factor, discussed in Sect. 7.8.4, which
would account for some of the apparent renormalization. An additional effect is the
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Fig. 7.6 Spin wave a
dispersion and b intensity
measured in antiferro
magnetic La2CuO4 at
T = 10 K. Lines through data
correspond to fits with
spin-wave theory; the fit to
the intensity includes a
renormalization factor
Zd = 0.4 ± 0.04. Figure
reprinted with permission
from Headings et al. [31].
Copyright (2010) by the
American Physical Society
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damping and broadening of the energy-dependence of the spin-wave line shape at
the zone boundary position Q = ( 1

2 , 0). This appears to be the result of interactions
with a multi-magnon high-energy continuum [31].

The fitted dispersion corresponds to J = 143 ± 2 meV, but also requires longer-
range exchange couplings—second and third neighbor couplings J ′ and J ′′, which
are relatively weak, and a significant 4-spin cyclic exchange term Jc ≈ 0.4 J. The
overall bandwidth of the magnetic spectrum is ∼2 J. A recent analysis of the cou-
plings, including Jc, in terms of a single-band Hubbard model has been given by
Dalla Piazza et al. [49].

To achieve superconductivity, one must dope charge carriers into the CuO2 planes.
Substituting Ba2+ or Sr2+ for La3+ introduces holes. A small density of holes,
p ≈ 2 %, is enough to kill the long-range AF order, which is followed by a regime
of spin-glass order [7]. Doping beyond p ∼ 0.055 yields superconductivity. The
maximum superconducting transition temperature Tc occurs for p ∼ 0.16, with
Tc heading towards zero for p > 0.25. Inelastic neutron scattering studies have
been performed on single crystal samples across this entire doping range [7, 9].
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(a) (b)

Fig. 7.7 Cartoons of equivalent domains of a vertical and b horizontal bond-centered stripe order
within a CuO2 plane (only Cu sites shown). Note that the magnetic period is twice that of the charge
period. The charge density along a stripe is one hole for every two sites in length. The registry of
the stripes with respect to the lattice (for example, site-centered versus bond-centered) has not yet
been determined experimentally

A couple of the key features are: (1) the bandwidth of strong spin-fluctuation scat-
tering decreases linearly with doping, being quantitatively similar to the pseudogap
energy extracted from various electron spectroscopies [9, 50], and (2) the wave vec-
tor characterizing the low-energy spin excitations splits about the AF wave vector,
becoming incommensurate [7, 51].

Insight into the cause of the magnetic incommensurability was provided by neu-
tron diffraction measurements on a closely related material, La1.48Nd0.4Sr0.12CuO4
[52]. The impact of the Nd substitution is to modify the tilt pattern of the CuO6 octa-
hedra such that the in-plane Cu-O bond directions become inequivalent [38]. New
superlattice peaks were observed in this low-temperature phase, with in-plane wave
vectors Q = ( 1

2 ±ε, 1
2 ) and ( 1

2 , 1
2 ±ε) corresponding to spin order and (±2ε, 0) and

(0,±2ε) associated with modulations of atomic positions due to charge order, with
ε ≈ 0.12. Such results have been confirmed in the system La2−x Bax CuO4 [53, 54].
Analysis of the superlattice peaks indicates that they are evidence for spin and charge
stripe order [55, 56], as illustrated in Fig. 7.7. Because of the crystal symmetry, the
orientation of the stripes rotates 90◦ from one layer to the next.

The occurrence of maximum stripe order corresponds to a strong suppression of
the bulk Tc at p ≈ 1

8 [54, 57], suggesting that stripe order competes with supercon-
ductivity; however, recent studies have demonstrated that 2D superconductivity can
coexist with stripe order [58]. It now appears that superconducting order can inter-
twine with stripe order [59]. Thus, understanding stripe correlations may provide
valuable insights into the nature of the superconducting mechanism of cuprates.

Neutron scattering on a time-of-flight instrument has been used to characterize
the spin excitation spectrum in La2−x Bax CuO4 with x = 1/8 [60]. The effective
dispersion and the Q-integrated spectral weight are shown in Fig. 7.8. Above 50 meV,
the excitations disperse upwards like antiferromagnetic spin waves with an energy
gap; the solid line through the points in each panel corresponds to a two-leg spin
ladder model with J = 100 meV. Below 50 meV, the excitations disperse downwards
toward the positions of the incommensurate magnetic superlattice peaks. When the
sample is warmed to a state with no static stripe order, the spectrum maintains its
essential features [53, 61]. It appears that stripes, whether static or dynamic, provide
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(a) (b)

Fig. 7.8 a Q-integrated spectral weight and b effective magnetic dispersion in the stripe-ordered
phase of La2−x Bax CuO4 with x = 1/8, from [60]. The solid lines through the data points are
described in the text. In a, the peak at ∼40 meV is now know to be due to a phonon mode. In b, the
effective dispersion is plotted for q along a line through the incommensurate magnetic superlattice
peaks

a way for the superexchange mechanism to survive when the antiferromagnetic layers
are doped with holes.++

The relevance of charge-stripe order is less clear in cuprates families such as
YBa2Cu3O6+y and Bi2Sr2CaCu2O8+δ; nevertheless, the dispersion of the magnetic
excitations in these compounds (measured by neutron scattering) has been shown to
be quite similar to that of LBCO [8, 9]. The main difference is that the low-energy
excitations tend to be gapped in the superconducting state, with a pile up of weight
(“resonance” peak) appearing above the gap for T < Tc. The commonality of the
dispersions over a broad energy range suggests that the charge and spin correlations
in superconducting and striped cuprates are similar.
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Chapter 8
Muon Spin Relaxation Studies
of Unconventional Superconductors:
First-Order Behavior and Comparable
Spin-Charge Energy Scales

Yasutomo J. Uemura

Abstract Since the late 1980s, the muon spin rotation and relaxation (μSR) method
has been extensively applied to studies of unconventional superconductors, includ-
ing high-Tc cuprate, ruthenate, FeAs, organic, and heavy-fermion systems. With its
unique sensitivity to static magnetic order in both long-range ordered and random
spin systems, μSR has played a leading role in determining magnetic phase dia-
grams and elucidating the evolution from the parent antiferromagnetic state to the
superconducting state in these systems. The extremely high sensitivity of μSR to
small static magnetic fields allowed studies of time-reversal symmetry breaking in
the superconducting state of Sr2RuO4 and several other systems and in the pseudo-
gap region of cuprate systems. μSR measurements of the London penetration depth
and the superfluid density led to a unique characterization of the pairing symmetry
and energy scales of superconducting charges. In this paper, we review the historical
developments and recent progress ofμSR studies in unconventional superconductors
which revealed, among others, scaling of the superfluid density and Tc, compara-
ble spin and charge energy scales, phase separation between superconducting and
non-superconducting volumes, and first-order quantum evolution at phase bound-
aries. We discuss these results in terms of quantum criticality, crossover from Bose
Einstein to BCS condensation, and the influence of competing states via inelastic
soft modes.

8.1 Brief History and Technical Overview of µSR

In high intensity proton accelerator facilities, such as TRIUMF in Vancouver and
Paul Scherrer Intsitut in Switzerland, positive pions are produced by collisions of a
proton beam and a meson production target (usually made of carbon or beryllium).
Within a very short life time, a positive pion decays into a positive muon and muon
neutrino. Since the π+ is a spin-less particle, the muon spin should be polarized by
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Fig. 8.1 Schematic view of experimental configurations in transeverse-field (TF-), zero-field (ZF)
and longitudinal-field (LF) μSR measurements. The specimen is shown as the shaded region, sur-
rounded by the muon-defining (M) and positron-detecting (E, EB, EF) counters. The time spectra
of muon decay events are shown in the right figures, together with the angular asymmetry of a
decay event of a positive muon, for different positron energies from 26MeV (without anisotropy) to
52MeV (with the largest anisotropy). Muon spin precession around the applied external TF can be
observed in the TF configuration, in which the amplitude of the oscillatory signal is proportional to
population of muons in the para- or non-magnetic environment. Magnetic-field penetration depth in
type-II superconductors is measured in the TF-μSR configuration, with the external magnetic field
between HC1 and HC2. Oscillatory signal is also observed in ZF-μSRwhen the specimen undergoes
static long-range magnetic order. The muon spin-lattice relaxation rate 1/T1 can be measured in the
ZF and LF configurations. Typical implantation depth (stopping range) of incident muons is about
200mg/cm2 (= 0.4mm from the surface for a material with the density 5) for ordinary surface
(Arizona) muons having kinetic energy of 4.1MeV, while about 200–2000Åfor low-energy muons
with kinetic energy of 5–10keV. At TRIUMF and PSI, the initial muon spin direction can be rotated
to become perpendicular to the beam direction, by the use of a spin–rotator (Wien filter), in which
case the TF is applied parallel to the beam direction. For general aspects of μSR, see [5–10, 109]

100% along its flight direction, if the neutrino generated by the pion decay is to have
a full helicity. Therefore, spin polarization of muons is related to the parity violation
of weak interaction.

The principle of μSR measurement is illustrated in Fig. 8.1. A positive muon
stops in a material of typical thickness of 0.1–1mm, losing its energy via ionization
of atoms composing the material. This energy-loss and stopping process occurs in
less than 1ns, without any change in theμ+ spin state. After stopping at an interstitial
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site in the unit cell, the positive muon often stays localized at that site with its spin
precessing around the internal or external magnetic field. After an average life time of
2.2µs, the positive muon decays in a three-body process into a positron, neutrino and
anti-neutrino. In this process, energetic positrons are emitted preferentially along the
muon spin direction, due again to parity violation. The arrival time of a given muon
is recorded by the “defining counter M” and the emission of the decay positron
by the positron counters “EF” or “EB” or “E” shown in Fig. 8.1. The event-rate
histograms are obtained as a function of the muon residence time t defined by the
interval of the muon arrival and positron emission times. The angular asymmetry,
{EF(t) − EB(t)}/{EF(t) + EB(t)}, reflects the time evolution of the muon spin
polarization in the specimen.

The first μSR experiment was performed in 1957 at the Nevis Synchro-cyclotron
of Columbia University by Garwin et al. [1] to verify parity non-conservation. By
using a carbon target as the specimen and applying a transverse external mag-
netic field, they observed the dependence of the positron intensity on the magnitude
of the applied field. Their paper was submitted for publication on January 15, 1957
to Physical Review, which is the same day that the famous beta-decay paper by
the group of Wu [2] was submitted to Physical Review. These two experiments,
together with another measurement by a group of Telegdi in Europe [3], provided
the first experimental confirmation of parity violation in the weak interaction. The
historical details of these developments were reviewed by Lee [4].

Figure8.2 shows a photograph of a modern μSR spectrometer at TRIUMF.
We see several sets of Helmholtz coils used for applying external magnetic fields.
As shown in Fig. 8.1b, the evolution of the muon spin polarization can be measured
in zero field (ZF) as well as in a longitudinal external field (LF) applied parallel
to the initial muon spin direction. The spin-lattice relaxation rate 1/T1 of muon spin
can be measured by LF-μSR. When an internal or external magnetic field is not
parallel to the initial polarization, the muon spin will precess around the field and
exhibit an oscillation pattern, as illustrated in Fig. 8.1a for transverse-field (TF) μSR
measurements in applied external fields.

Oscillation and relaxation of muon spins around a spontaneous internal magnetic
field,measured inZF-μSR, allow the direct observation of the onset of staticmagnetic
order, as can be seen in μSR studies of magnetic phase diagrams. The London pen-
etration depth in type-II superconductors can be determined from the damping rate
of muon spin precession around an applied external field in TF-μSR measurements.
The asymmetry of muon spin precession observed in a weak external transverse field
(WTF) represents signals frommuons in para-or non-magnetic environments, which
leads to a determination of the volume fraction of magnetically ordered regions near
the phase boundary. Details of these μSR techniques can be found in [5–10].
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Fig. 8.2 A photograph of a μSR spectrometer at TRIUMF. A large Helmhorz coils are used to
generate magnetic field parallel to the muon beam direction, while sets of smaller coils are used
to generate magnetic field perpendicular to the muon beam direction. The specimen is placed in
the center of these coils within a Helium gas flow cryostat which has horizontal access (shown by
the silver/blue cylindrical object). Blue tubes contain photo-multiplyers connected to black light
guides and plastic scintillation counters for detecting muons and positrons. In the top-right corner
of the picture is shown a part of high-voltage generator of a spin rotator (Wien filter) with which
the spin polarization direction of incident muons are rotated from the original direction parallel to
the muon flight direction. One sees a part of beamline quadrupole magnets guiding the muon beam
to the location of the specimen. This picture was taken at the M15 beamline of TRIUMF. Other
instruments for μSRmeasurements can be seen at web pages of TRIUMF [110], PSI [111] and ISIS
[112] muon facilities

8.2 Magnetic Phase Diagrams of Unconventional
Superconductors

μSR has played a leading role in studies of static magnetic order in parent systems
of unconventional superconductors. For example, μSR provided direct evidence of
static magnetic order in La2CuO4 [11], the so-called A phase of CeCu2Si2 [12], and
an organic superconductor (TMTSF)2PF6 [13] prior to any other probes. Figure8.3
shows magnetic phase diagrams of unconventional superconductors [14]. Among
them, the results for LaFeAsO [15], YBa2Cu3O7 [16], A3C60 [17] are based on μSR
measurements. As listed in Table8.1, extensive μSR studies have been performed to
elucidate static magnetism in parent compounds of FeAs and FeSe superconductors.
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(a) (b) (c)

(d) (e) (f)

Fig. 8.3 Electronic phase diagrams shown as functions of temperature T and composition, pressure
and/or unit-cell volume in different superconductors. a La(O,F)FeAs [15]; b (Ba,K)Fe2As2 [113];
c YBa2Cu3O7−δ [16]; d A3C60 (A = K, Cs, Rb) [17]; e CeRhIn5 [114]. (CeCoIn5 at ambient
pressure corresponds to CeRhIn5 at the pressure p ∼ 2.4 GPa); f Phase diagram of superfluid 4He.
All these systems show abrupt disappearance of the AF (or hcp solid phase in the case of helium)
or coexistence of the AF and the superconducting (SC) phases near the phase boundary. These
are features expected in first-order transition in quantum evolution. a, c and d are based on μSR
measurements, while (b) on neutron scattering, and (e) on transport and NMR studies. Adopted
from Fig. 1 of [14] with some revisions

In general, these phase diagrams suggest the importance of magnetic interactions
in pairing mechanisms of unconventional superconductors. Implications of these
results on possible roles ofmagnetic quantum criticality are discussed in a subsequent
section.

Occasionally, μSR finds static magnetic order in systems which were thought to
have a non-magnetic ground state, as in the case of CeCu2Si2 [12]. The most recent
examples of this type of discovery include static magnetic order of (Sr,Ca)2RuO4
in nearly the entire doping ranges of (Sr,Ca) substitution [18]. For many years, the
superconducting phase of Sr2RuO4 was thought to be isolated from staticmagnetism,
especially in the Sr-rich region of (Sr,Ca)2RuO4 [19]. However, the new μSR results
revealed the magnetic phase diagram shown in Fig. 8.4, with a part of the results
confirmed by subsequent measurements of dc- and ac- magnetic susceptibility.

Since the discovery of Bucky-ball superconductors K3C60 and Rb3C60 in 1991
[20, 21], alkali-doped fulleride superconductors A3C60 were often discussed as
belonging to a rather different class of superconductors than the high-Tc cuprates
and heavy fermion systems, due to the apparent lack of magnetic parent systems and
to the monotonically increasing Tc with increasing lattice constants reminiscent of
the effect of increasing density of states at the Fermi level expected in BCS theory.
In 2008, by ZF-μSR measurements, Prassides and co-workers [17] reported static
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Fig. 8.4 Magnetic phase diagram of (Ca,Sr)2RuO4 and Sr2(Ru,Ti)O4 determined by μSR mea-
surements of Carlo et al. [18]. Closed red symbols show transition temperatures determined by the
relaxation rate measured in ZF-μSR, open red symbols corresponds to the peak temperature of 1/T1
in LF-μSR, and closed and open blue symbols denote, respectively, the peak temperature and the
irreversibility-onset temperature of the dc-magnetic susceptibility. Static magnetic order develops
in the colored region. The blue diamonds represent the susceptibility results obtained for the present
specimens used in μSR, the blue circles denote points fromMinakata andMaeno [115] and the blue
triangles are from Nakatsuji and co-workers [19]. The slanted-stripe coloring indicates regions
involving phase separation (see Supplementary Information of [18]). SG denotes spin glass and
I-SDW indicates incommensurate spin density wave. Static magnetic order of Ca0.5Sr1.5RuO4 has
been confirmed by neutron scattering measurements [116]. The in-plane conductivity and specific
heat exhibit Fermi liquid behavior below TFL [19, 117, 118]

magnetic order in A3C60 systems with the insertion of NH3 molecules to further
expand the lattice constant. The resulting phase diagram is shown in Fig. 8.3d. By
additional μSR and other magnetic measurements, the same group found magnetic
parent phases in bcc Cs3C60 [22] and insulating fcc polymorphic Cs3C60 [23], which
can be made into superconducting and metallic states by the application of pressure.
These discoveries have triggered ongoing studies to re-evaluate possible roles of spin
fluctuations in the superconducting pairing of these C60-based systems.

In some cases, μSR studies confirmed the absence of static magnetism in par-
ent systems adjacent to superconducting states, such as in (Ba,K)BiO3 [24] and
BaTi2(As1−xSbx)2O [25, 26]. In these systems and in CuxTiSe2 [27, 28], supercon-
ducting pairing may be related to an instability towards charge density wave states.
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(a) (b)

Fig. 8.5 a μSR measurements on time reversal symmetry (TRS) breaking in a single crystal of
Sr2RuO4 fromLuke et al. [33]. Zero-field (ZF) relaxation rate� for the initialmuon spin polarization
k parallel to the c-axis (top) and perpendicular to the c-axis (bottom). Tc from a.c.-susceptibility
indicated by arrows. Circles in bottom figure give relaxation rate in LF = 50 G. Curves are guides
to the eye. b Schematic view of configurations of the spin (s) and orbital (L) angular momenta and
the d-vector (d) (top), and the gap-node structure (bottom), expected for the chiral p-wave paring
state [36] consistent with the TRS breaking in Sr2RuO4. This paring is similar to that of the A-phase
of superconducting 3He

8.3 Search for Time-Reversal Symmetry Breaking
in the Superconducting and Pseudogap States

The μSR technique has a very high sensitivity to small internal magnetic fields, as
demonstrated by ZF-μSR results in systems with nuclear dipolar fields [29]. This
feature was used to search for “time-reversal symmetry breaking” phenomena in
the superconducting phase, which is due not to static magnetic order in a usual
sense but to an emergence of a static magnetic field from superconducting pairs in
states different from isotropic s-wave coupling. The first possible example of this
phenomenon was found by Heffner and co-workers in (U,Th)Be13 [30], followed by
UPt3 [31], both of which may have pairing with high angular momentum.

Soon after the discovery of superconductivity in Sr2RuO4 [32], we performed
ZF-μSR measurements on single crystal specimens of this system [33], and found
a small increase of internal magnetic field below the superconducting Tc shown in
Fig. 8.5a, which indicates that time reversal symmetry (TRS) is broken. In this sys-
tem, NMR Knight shift measurements exhibited no temperature dependence below
Tc, suggesting an odd-parity pairing [34, 35]. The most-likely p-wave state has
orbital angular momentum l = 1 and spin angular momentum s = 1, which can lead
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to several different states depending on relative directions of l and s. The observa-
tion of TRS breaking helps narrow down the ground state to the so-called “chiral
p-wave state” [36], illustrated in Fig. 8.5b, which is analogous to the “A-phase”
of superfluid 3He. About 10years after the initial μSR report, Kapitulnick and
co-workers reported a corresponding observation using precision measurements of
Kerr rotation in Sr2RuO4 [37].

Similar TRS breaking has been subsequently detected by μSR in filled Skutteldite
systems PrOs4Sb12 [38] and PrPt4Ge12 [39] and non-centrosymmetric superconduc-
tors LaNiC2 [40], LaNiGa2 [41], and SrPtAs [42], while TRS is found to be preserved
(within experimental limits of detection by μSR) in other non-centrosymmetric
superconductorsMg10Ir19B16 [43], LaRhSi3 [44] andRe3W [45]. RecentμSRexper-
iments have found TRS preservation in bulk specimens of candidates for topological
superconductors CuxBi2Se3 and (Sn,In)Te [46].

Since 2006, Bourges, Mook, Greven and their collaborators reported [47–49] ob-
servations of an increase in elastic neutron scattering intensity corresponding to the
build up of antiferromagnetic correlations within the unit cell of YBCO, BISCO,
and Hg2201 cuprates below the “pseudogap” temperature T∗. This phenomenon has
been often discussed in the context of a theory of Varma [50, 51] which argues that
a circulating orbital current within a unit cell can generate such a static magnetism.
Much earlier than these neutron studies, searches for static magnetic order in the
pseudogap region were conducted with μSR in YBCO and BISCO cuprate systems
[52], which found the absence of any signal suggesting an onset of magnetic or-
der below T∗. Similar results were obtained by subsequent μSR studies in LSCO
[53, 54]. Sonier et al. [55] initially reported the possibility of a signal corresponding
to magnetic order below T∗ in YBCO, but later published a more precise study in
which no static magnetism was observed in the pseudogap state [56]. Similarly to
μSR, no signature of static magnetic order below T∗ has been detected by NMR or
NQR of various cuprate systems [57, 58]. Static magnetic order below T∗ was, how-
ever, recently reported from Kerr effect measurements [59, 60]. Thus, the existence
of static magnetic order in the pseudogap phase is controversial, and remains to be
clarified by further experiments in the future.

8.4 London Penetration Depth and Pairing Symmetry

The superconducting transition is associated with an expulsion of magnetic field
known as the Meissner effect. This phenomenon is theoretically described by the
London equation, which defines the London penetration depth λL as the character-
istic length scale for decay of the magnetic field within superconducting materials.
Below the superconducting transition temperature, gauge symmetry is broken, and
a particular choice of gauge (the London gauge) is required to explain Meissner
effect. In this process, photons acquire a mass within superconductors. This phe-
nomenon provided hints to elementary particle physics to explain the acquisition of
mass of elementary particles by condensation of the Higgs bosons (corresponding to
the condensation of Cooper pairs) with spontaneous gauge symmetry breaking [61].
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Fig. 8.6 a Schematic view of the distribution of the internal magnetic field in the vortex state
of type-II superconductors for the case of formation of the triangular Abrikosov vortex lattice.
For an external field of 1–2kG, the distance of adjacent vortex core becomes about 1000–2000Å.
The variation of the magnetic field �B within the superconductor is determined by the London
penetration depth λ as �B scaling with λ−2. b Muon spin precession signal observed in a single
crystal of YBa2Cu3O7 in the normal state above Tc (top) and the superconducting state below
Tc (bottom). From Sonier et al. [62]. c Fourier transforms of the time spectra shown in (b). The
anisotropic field distribution, expected for the Abrikosov vortex lattice, is seen in the bottom fig-
ure. The sharp peak in the bottom figure is due to non-relaxing background signal. From Sonier
et al. [62]

According to the London equation, the inverse of the penetration depth squared,
(1/λ)2 is proportional to the superconducting carrier density ns divided by the
effective mass m∗ as

λ−2 = 4πnse2

m∗c2
× 1

1 + ξ/lmf
(8.1)

where a correction is required in the “dirty limit” when the mean free path lmf
is shorter than the superconducting coherence length ξ. The parameter ns/m∗ is
often called the “superfluid stiffness” or “superfluid density” and represents the
magnitude of the supercurrent screening the external magnetic field. If one replaces
the superconducting carrier density ns with the normal state carrier density nn, then
n/m∗ gives a parameter proportional to plasma frequency squared and the Fermi
energy in non-interacting two-dimensional Fermion systems.

In type-II superconductors, the external magnetic field penetrates the system by
forming a lattice of flux vortices. Since each flux vortex carries a magnetic flux
quantum, the density of flux vortices and the resulting distance between adjacent
vortices is a material-independent parameter. For an applied field of a few kG, the
adjacent vortices are apart by about 1000–2000Å. After correction for the shape-
dependent demagnetizing field, the magnetic field at the core of each flux vortex is
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equivalent to the applied field. The field magnitude, however, is reduced in regions
between the vortex cores, forming a magnetic field pattern as illustrated in Fig. 8.6a.

In TF-μSR experiments on type-II superconductors, as illustrated in Fig. 8.6b
with results from a YBCO cuprate superconductor [62], the muon spin precession
around the external magnetic field exhibits clear damping below Tc caused by the
inhomogeneous internal magnetic field in the flux vortex lattice. In experiments
on polycrystalline ceramic specimens or systems having a rather long penetration
depth (slow damping of precession), the damping of the muon spin precession is
usually fit with a Gaussian decay envelope exp {−(0.5)σ2t2}which defines the muon
spin relaxation rate σ. Since the width of the field inhomogeneity is proportional
to 1/(λL)2, the relaxation rate σ can be used for deriving the penetration depth and
estimating the superfluid density ns/m∗. In high-quality single crystal specimens, the
Fourier transform of the damping pattern exhibits an asymmetric field distribution
expected for the triangular Abrikosov vortex lattice, as shown in Fig. 8.6c from μSR
inYBCOsingle crystals [62]. In this case, the secondmoment of the field distribution,
instead of the rate σ, is used to obtain the penetration depth.

The temperature dependence of the relaxation rate σ reflects the reduction of ns

caused by thermal excitations across the energy gap. Thanks to this feature, one can
study the structure of gap nodes using TF-μSR results. Initial attempts to apply this
to high-Tc cuprate superconductors were made mostly on polycrystalline ceramic
specimens,which often exhibited behaviors consistentwith an isotropic gap expected
for s-wave paring. Measurements on high-quality single crystals were essential for
reliable arguments concerning gap nodes. In Fig. 8.7, we depict a few representative
results of the temperature dependence of the superfluid density, which have survived
various subsequent checks by μSR and other methods. In 2-dimensional organic
superconductors (BEDT-TTF)2Cu(NCS)2 and (BEDT-TTF)2Cu[N(CN)2]Br, μSR
measurements of Le et al. [63] were among the first to indicate the existence of
line nodes in the superconducting gap, from the T-linear variation of the superfluid
density at low temperatures as shown in Fig. 8.7a, b. It was later confirmed from
the directional dependence of the thermal conductivity [64] that this result is due to
d-wave pairing.

Pioneering measurements of the penetration depth in YBCO single crystals were
performed by Hardy et al. [65] using microwave methods. They provided the first
evidence for d-wave superconducting pairing in high-Tc cuprate superconductors.
Soon after that, Sonier et al. [66] performed μSR measurements on the same single
crystal specimens and confirmed the T-linear dependence of the superfluid density
at low temperatures, as shown in Fig. 8.7c expected for line nodes of d-wave super-
conductors. By now, the d-wave paring of YBCO has also been confirmed by phase
sensitive methods [67, 68], ARPES, STM [69, 70], and many other measurements.
More recently, Khasanov et al. [71] performed μSR measurements on de-twinned
single crystals of YBCO, and found the signature of an effect arising from the CuO
chain which leads to an additional feature of s-wave symmetry, as shown in Fig. 8.7d.
This is an example of a multi-band effect seen in the superfluid density measure-
ments. DetailedμSR studies ofmulti-band effects in FeAs and FeSe superconductors
are currently underway [72].
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Fig. 8.7 a, bMuon spin relaxation rate in quasi 2 dimensional organic superconductor (a)κ (BEDT-
TTF)2Cu(NCS)2 and (b) (BEDT-TTF)2Cu[N(CN)2]Br measured by Le et al. [63] with the external
field perpendicular to the conducting ac plane. The T-linear variation of the superfluid density at low
temperatures indicates line-nodes in the energy gap. Corresponding d-wave pairing with line-nodes
was confirmed by a subsequent study of thermal conductivity [64]. c Muon spin relaxation rate in
a single crystal of YBa2Cu3O7 measured by Sonier et al. [66] with the external field perpendicular
to the ab-plane. The solid line shows a fit to the variation expected for a d-wave pairing with line
nodes, while the dotted line shows the behavior expected for an isotropic s-wave pairing. d Muon
spin relaxation rate in a de-twinned single crystal of YBa2Cu3O7 measured by Khasanov et al. [71]
with the external field applied perpendicular to the ab-plane. The additional superfluid density seen
at low temperatures is due to superconductivity in the CuO chain. This is one of the first results
demonstrating the effect of multiple superconducting gaps

8.5 Correlation Between Tc, Superfluid Density,
and Superfluid Fermi Energy

Soon after the discovery of high-Tc superconductors, several μSR groups started
to measure the London penetration depth. Most of the measurements were per-
formed with poly-crystalline ceramic specimens during the initial several years, due
to a lack of high-quality single crystal specimens with sufficient charge doping lev-
els. The observed muon spin relaxation rate was regarded to selectively reflect the
in-plane penetration depth assuming the c-axis penetration depth to be much longer.
In 1988 [73], we plotted the low temperature relaxation rate σ(T→0) versus Tc to
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Fig. 8.8 aPlot of the superconducting transition temperatureTc versus themuon spin relaxation rate
σ(T→0) for various unconventional superconductors (most updated plot from [85]). The horizontal
axis represents the superfluid density ns/m∗ in the ground state. Original results were published
by Uemura and co-workers for the 214, 123, and 2223 cuprates shown by the open circle in [73,
74], Zn-doped (La,Sr)2CuO4 (214) system in [96], the 214 system with static magnetism in partial
volume fraction in [99], overdoped Tl2201 systems in [81], A3C60 systems in [75, 76], and Fe-
based superconductor systems in [78, 79]. One finds a general trend that Tc shows nearly linear
correlations with the superfluid density, with a common proportionality constant for the 123, 2223,
and Tl2201 cuprates, A3C60, and the 1111 and 122 FeAs superconductors. b The correlations
between Tc and the superfluid density measured by Khasanov and co-workers in several families of
Fe-based superconductors [80], compared with the trends of hole-doped and electron-doped cuprate
systems. Although the proportionality constant (slope) varies significantly over different families,
nearly linear trends can be seen for the results of each family of unconventional superconductors

study correlations between the superfluid density and Tc. Subsequent accumulation
of the results on more than 10 different cuprate systems allowed us to establish [74]
nearly linear correlations between Tc and ns/m∗ in the underdoped region of the 214,
123, and 2223 cuprate systems with single, double and triple CuO2 layers, as shown
in Fig. 8.8a.

Since these systems lie in the clean limit where the mean free path lmf is much
longer than the superconducting coherence length ξ, this relationship indicates that
Tc is controlled by the superfluid density. In BCS theory, Tc is determined by the
strength of the superconducting pairing proportional to the energy gap at the Fermi
level, and only indirect and weak correlation is expected between Tc and the carrier
density. In this sense, the μSR results of nearly linear correlations [74] represent one
of the first signatures suggesting that condensation mechanisms for high-Tc cuprate
systems may be fundamentally different from that of BCS superconductors.

Stimulated by these results on cuprates, we performed μSR measurements of the
superfluid density also in other unconventional superconductors, including A3C60
[75, 76], (BEDT-TTF)2Cu(NCS)2 [77], and (Ba,K)BiO3 [77], and found that points
from these systems lie close to the linear trend of the cuprates as shown in Fig. 8.8a.
Our results on several representative systems of FeAs-based superconductors also
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demonstrate a similar trend [78, 79] (see Fig. 8.8a). Accumulated results on FeAs
superconductors, plotted by Bendele et al. [80] in Fig. 8.8b, exhibit a wider range of
slopes, but still suggest the existence of a linear trend between Tc and the superfluid
density.

In 1993, our research team [81] and a European μSR team [82] discovered that
the points for overdoped Tl2201 and Tl2212 systems also lie along the monotonic
relationship between Tc and the superfluid density (see Fig. 8.8a). This surprising
signature indicates that the increase in normal state carrier density does not con-
tribute to an increase in the superfluid density, contrary to the expectation of BCS
condensation where all the conducting carriers participate in the superfluid regard-
less of the magnitude of the superconducting energy gap at the Fermi level. By now,
a similar trend has been found in overdoped regions of the 214 cuprates, CeCoIn5,
Ba(Fe,Co)2As2 [83], and Ba(Fe,Ni)2As2 [84].

In a non-interacting 2-dimensional electron gas, the Fermi energy is proportional
to the (areal) carrier density divided by the effective mass. This feature suggests
that the superfluid density represents an energy scale of superconducting carriers.
It is also useful to remember that ns/m∗ corresponds to the spectral weight of the
“Drude” component which condenses into a delta function at zero frequency ω = 0
below Tc. For highly 2-dimensional systems with strong anisotropy, such as cuprate
superconductors, one can calculate the “effective Fermi energy” TF by deriving the
2-d values of ns/m∗ from the μSR relaxation rate multiplied by the average distance
between the conducting layers. For nearly isotropic 3-d systems, one can obtain the
effective Fermi energy, proportional to n2/3/m∗, by combining ns/m∗ with the Pauli
susceptibility or the Sommerfeld constant which scales with n1/3 times m∗. TF may
also be called the effective “Drude energy” or “superfluid energy”.

We converted the superfluid density into such an “effective Fermi energy” TF

[77] and plotted it versus Tc in Fig. 8.9a [85]. For a given carrier density and mass,
one can calculate the “idealized Bose Einstein condensation (BEC) temperature”
TB for the case that pairs two fermions with mass 2m∗ form a tightly bound non-
interacting boson gas (in the strong coupling limit) with the boson density n/2. As
shown in Fig. 8.9a, the points for the cuprates, FeAs, A3C60 and some of the heavy-
fermion superconductors are parallel to theTB line (dotted line). This feature indicates
that the linear relationship may be originating from BEC. Figure8.9a serves as an
experimentalist’s way to classify various existing superconductors and superfluids
in the evolution from the BEC limit (close to TB) to the BCS limit (with low Tc and
high TF with no correlations).

The actual transition temperatures of all the existing superconductors are reduced
by at least a factor of 4–5 from the TB line. It is also interesting to note that the
point for superfluid 4He lies closer to the TB line but with about 50% reduction,
as the lambda point temperature 2.2K in ambient pressure is reduced from TB =
3.2K calculated by the density and mass of liquid He. The point for cold atoms of
40K, which exhibit BEC-BCS crossover [86], lies very close to the TB line, as shown
by a factor 108 multiplication for both horizontal and vertical axes. We will discuss
the possible origin of the reduction of actual Tc from the TB line in the subsequent
sections.
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Fig. 8.9 a A plot of Tc versus the effective Fermi temperature TF obtained from the superfluid
density ns/m∗ of various superconducting systems, first attempted in [77] in 1991, and updated to
include results from [63, 75, 76, 78, 79, 81] (adopted from Fig. 8.2b of [85]). We see an empirical
upper limit Tc/TF ∼ 0.05 for superconducting systems. Also included are the corresponding points
for the superfluid 4He (blue star) and the ultracold 40K [86] in the BEC–BCS crossover region (red
star; with Tc and TF both multiplied by 108). The TB line shows the BE condensation temperature
for the ideal non-interacting Bose gas of boson density ns/2 and mass 2m∗. This plot can be used to
classify various unconventional superconductors in the evolution fromBEC to BCS condensation. b
Aplot ofTc versus the spin-fluctuation energy scaleTSF, estimated theoretically basedon the normal-
state transport, susceptibility and specific-heat results for cuprates and heavy fermion systemsmade
by Moriya and Ueda [87, 88]. Also included are points for CeCu2Si2 (blue solid circle) based on
inelastic neutron scattering results [89, 90] and for (Sr,K)Fe2As2 (red solid circle) based on neutron
scattering results of spin waves in [91]

8.6 Comparisons of Charge and Spin Energy Scales
and BEC-BCS Crossover Picture

In an effort to understand the mechanisms of unconventional superconductors, var-
ious plots have been generated to see correlations between some key parameters
and Tc, in a spirit similar to the development of Fig. 8.9a. One of them is the
“Moriya-Ueda plot” [87, 88] shown in Fig. 8.9b for correlations between Tc and
the “spin fluctuation energy scale TSF”, which is the energy of spin waves or para-
magnetic spin fluctuations at the antiferromagnetic zone boundary. Moriya and Ueda
derived TSF from the normal state resistivity using their theory [87, 88], but the es-
timated energy is close to direct results from neutron scattering shown by colored
points in Fig. 8.9b [89–91]. In BCS theory for weak-coupling superconductors, Tc is
linearly proportional to the Debye frequency, or to the energy scale of pair-mediating
bosons �ωB in a more general sense, which represents the range of energy integra-
tion in the gap equation. If spin fluctuations are playing the role of mediating bosons,
and if the BCS theory is applicable to condensation, one would expect correlations
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Fig. 8.10 a Schematic view of a crossover from Bose Einstein (BE) condensation to BCS conden-
sation caused by increasing carrier density n, proposed by the present author in two conferences
for unconventional superconductors held in 1994 [93, 94]. The Tp line represents an energy scale
for pair formation (attractive interaction). By identifying Tp as the temperature T∗ for the open-
ing of the “pseudo-gap”, this model can be mapped to the doping evolution of high-Tc cuprate
superconductors. The normal state of the low-doping (underdoped) BEC side at Tc < T < Tp is
characterized by the co-existence of paired (2e) and unpaired (e) charges, while the condensation
and pair formation occur at the same temperature in the BCS region. It is conjectured that the
crossover region with maximum Tc is characterized by the comparable energy scales of charges
(kTF ) and of the pairing-mediating bosons �ωB, which would divide between the non-retarded and
retarded interactions. b A plot of the charge energy scale TF versus spin-fluctuation energy scale
TSF for selected superconductors based on the results shown in Fig. 8.9a, b. For superconducting
pairing mediated by spin fluctuations, kBTSF corresponds to the pair-mediating boson energy �ωB.
This figure shows that spin and charge energy scales are comparable in several prototypical cuprate,
FeAs and heavy-fermion superconductors. A pairing mechanism based on resonance of the spin
and charge energy scales was proposed by the present author in [85, 94]

between Tc and TSF. The Moriya-Ueda plot Fig. 8.9b seems to support this scaling,
and it is therefore often discussed as a main signature for pairing mediated by spin
fluctuations in various unconventional superconductors.

By the early 1990s, the correlations between Tc and the superfluid density were
recognized, and the pseudogap behaviors of underdoped cuprates were emerging
in NMR, dc- and optical conductivity and ARPES measurements. Based on these
observations, the present author proposed amodel in 1994 [92, 93] tomap the doping
evolution of cuprate systems to a general concept of crossover from BEC to BCS
condensation, as illustrated in Fig. 8.10a. The “pseudogap” temperature T∗ can be
identified as the pair formation temperature Tp. In the “BEC side” characterized by
low carrier density, fermions (e) start to form bosonic pairs (2e) upon cooling below
Tp, the temperature corresponding to energy of the attractive interaction. This energy
scale represents a “two-body problem” irrelevant in principle to the particle density.
The normal state below Tp is composed of a mixture of fermions (e) and pre-formed
bosons (2e).



8 Muon Spin Relaxation Studies of Unconventional Superconductors … 255

Upon further cooling, the system will come to a point where the thermal wave-
length of a boson becomes comparable to the inter-boson distance. At this point,
local superconducting phase coherence develops. In absence of restrictions from
competing ground states and dimensionality, global phase coherence can prevail at
this point, leading to superconducting BEC condensation. In this case, the conden-
sation temperature Tc scales with the boson density as Tc ∝ n2/3B /m∗

B. This process
represents a “many body problem” related to the density of condensing bosons.

On the “BCS” side characterized by high particle density, the normal state contains
fermions, while the condensation occurs simultaneously with the pair formation,
as the particle-density restriction for condensation is readily satisfied. On the high
density side, the characteristic energy scale of the system, the Fermi energy, is higher
than the energy scale of pair mediating bosons �ωB, and thus the interaction is
“retarded”. In the low density and strong-coupling limit, the attractive interaction
kBTp represents the energy scale of interaction-mediating bosons, similar to how
the pion mass represents magnitude of the strong interaction in elementary particle
physics, and this energy is larger than the Bose-gas energy scale represented by TB.
Thus the interaction in the BEC side is non-retarded. The present author proposed a
conjecture that the crossover region from the BEC to BCS behaviors is characterized
by comparable energy scales of particle gas (Fermi energy) and the pair-mediating
bosons, i.e., Debye frequency for the case of phonon-mediated pairing and TSF for
the case of pairing mediated by spin fluctuations. The transition temperature Tc may
exhibit a maximum around this point, as illustrated in Fig. 8.10a.

The Tc versus TF plot of Fig. 8.9a suggests that Tc is determined by the
energy scale of charges, while Fig. 8.9b suggests scaling of Tc with the energy of
pair-mediating bosons. Therefore, these two figures are often considered to imply
contradicting features. They are, however, both based on experimental data, and
furthermore they look very much alike. By further inspection, one realizes that sev-
eral representative unconventional superconductors have comparable values of the
charge energy TF and the spin energy TSF, as demonstrated by Fig. 8.10b. These
systems indeed satisfy the above-mentioned crossover criterion from BEC to BCS
condensation.

The coincidence of the charge and spin energy scales in the systems shown in
Fig. 8.10b can be accidental. However, it seems to the present author that TF ∼ TSF

is the essential condition for having high Tc in given series of superconductors. The
comparable energy scales suggests possible resonance of charge and spin behaviors.
As we proposed in several papers after 2004 [85, 94, 95], this feature may help
charges to move smoothly by “dynamically avoiding” frustration caused by spin
patterns, similar to synchronized traffic light alternation (spin fluctuations) helping a
smooth flow of cars (charges) in what we call “traffic-light resonance” [85]. Further
detailed study of the crossover region of BEC-BCS evolution may possibly lead to
a full understanding of unconventional superconductivity.
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Fig. 8.11 a Muon spin relaxation rate σ(T→0) measured in La1.85Sr0.15CuO4 (214) and
YBa2Cu3O7 (123) cuprate systems with a small amount of (Cu,Zn) substitutions measured
by Nachumi et al. [96]. The solid line represents the evolution of the superfluid density expected
for the “Swiss Cheese model” where each Zn atom generates a normal region around Zn region on
the CuO2 plane with the radius corresponding to the in-plane superconducting coherence length
ξab as illustrated in the top figure. This situation was subsequently confirmed by an STM study of
Davis and co-workers [97]. b A plot of the volume fraction of the regions with static magnetic order
(horizontal axis) and the muon spin relaxation rate representing the superfluid density (vertical
axis) measured by Kojima et al. [98] in La1.85−yEuySr0.15CuO4 with several different Eu concen-
trations. The trade-off suggests that regions with static magnetism do not carry superfluid, and the
magnetic islands are phase separated from the surrounding superconducting regions without static
magnetism, as illustrated in the top figure. The length scale of the magnetic island was estimated
to be comparable to ξab by Savici et al. in [99]

8.7 Phase Separation and Overlap of Superconducting
and Magnetic States

μSRmeasurements of the superfluid density also provide unique information on spa-
tial phase separation of superconducting and non-superconducting regions in several
cuprate systems. In 214 and 123 cuprate systems with (Cu,Zn) substitutions, we
noticed [96] that the reduction of the superfuid density with increasing Zn concen-
tration fits well to a simple model in which each Zn atom generates a small non-
superconducting area with a radius equal to the coherence length in the CuO2 plane,
as illustrated in Fig. 8.11a. This “Swiss Cheese Model” was subsequently confirmed
by STM measurements of Davis and co-workers [97].

In LSCO cuprate superconductors, (La,Eu) substitution drives the system closer
to static magnetic order with “stripe” spin charge correlations. Increasing (La,Eu)
substitution in optimally doped LSCO with Sr0.15 reduces the superfluid density at
T → 0 (measured by TF-μSR) while increasing the volume fraction of regions with
static magnetism (measured by ZF-μSR), as shown in Fig. 8.11b [98]. The trade-off
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between magnetic volume and the superfluid density suggests that there is no super-
fluid in the volume with static magnetic order and superconductivity is supported
by the remaining volume without static magnetism, as illustrated in Fig. 8.11b. In
a similar system of over-oxygenated La2CuO4 [99], the size of the “magnetic is-
lands” was estimated to be comparable to the coherence length ξ via analyses of the
ZF-μSR spectra. Together with a similar study in La2CuO4 [100], these μSR results
on cuprate systems suggest the tendency of the system towards microscopic and
real-space phase separation between regions with and without superconductivity.

In FeAs superconductors, the parent antiferromagnetic (AF) phase is adjacent to
the superconducting (SC) phase by a seemingly abrupt phase boundary, as shown
in Fig. 8.3a, b. Coexistence of the AF and SC phases has been studied extensively
by μSR [101, 102], in combination with optical conductivity in [101], and with six
different probes in [102]. These studies generally point towards (1) overlap of the
AF and SC orders in real space in the AF-SC border region, and (2) disappearance
of the static AF phase with increasing charge doping by means of a reduction of
the volume fraction of the AF phase rather than a reduction of the magnitude of the
magnetic moment.

8.8 First Order Evolution, Roton-Analogue Resonance Mode,
and Quantum Criticality

We have so far reported several signatures found by μSR which indicate heteroge-
neous behaviors andfirst-order evolution at quantumphase boundaries. They include:
(a) the Swiss Cheese behavior in cuprates with (Cu,Zn) substitutions; (b) the phase
separation in the 214 cuprates with (La,Eu) substitutions; (c) the reduction of the
superfluid density with charge doping in the overdoped Tl2201; (d) microscopic
overlap of the AF and SC phases in FeAs systems; and (e) gradual disappearance of
the AF phase with decreasing volume fraction. These features are not expected in
mean-field-like second order quantum phase transitions. We note that all the phase
diagrams in Fig. 8.3 exhibit first-order evolution at quantum phase boundaries.

The phase diagram of superfluid 4He in Fig. 8.3f has similarities to those of uncon-
ventional superconductors shown in Fig. 8.3. The superfluid (lambda) transition tem-
perature 2.2K of 4He at ambient pressure is reduced from the ideal non-interacting
Bose-gas condensation temperature TB = 3.2K. This is usually explained by the
finite size of He atoms and their interaction with neighboring atoms. Another way
to explain this reduction is to remember effects of the roton minimum, which pro-
vides a thermally excitable mode for the destruction of the superfluid condensate.
In Fig. 8.12, we plot correlations between the roton energy and the lambda super-
fluid temperature measured at ambient and applied pressure [103]. Although data
is limited to a small pressure region due to solidification of He, the condensation
temperature exhibits a linear correlation with the roton energy. A roton represents
short-range and dynamic atomic correlations of hcp He, being a soft mode existing
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Fig. 8.12 a Dispersion relations for inelastic excitations in (Ba,K)Fe2As2 with the magnetic res-
onance mode measured by Christianson et al. [119] (top), and in superfluid 4He with the roton
minimum by Henshaw and Woods [120] (bottom). Filled blue circles denote the momentum trans-
fer of the 2-dimensional (1/2, 1/2, 0) antiferromagnetic correlations (top) and of Bragg points of
competing hexagonal closed-packed (HCP) solid phase of 4He (bottom). b Correlations between
the transition temperature Tc and the energy �ω of the magnetic resonance mode observed in the
superconducting state of the high-Tc cuprate systems [121, 122], (Ba,K)Fe2As2 [119], CeCoIn5
[104], and CeCu2Si2 [105]. The closed square symbols denote the “spin-gap” energy obtained from
the low-energy end of the hour-glass dispersion shape [122]. The star symbols represent the lambda-
point superfluid transition temperature Tc and the roton energies in superfluid 4He at ambient and
applied pressure [103]. The right-vertical and top-horizontal axes for 4He, CeCoIn5 and CeCu2Si2
are both scaled by a factor 60 with respect to the left and bottom axes for the other systems. The
aspect ratio is preserved, however, for direct comparisons of the slope Tc/�ω of all the different
systems. Updated after [94] and adopted from [14]

in momentum space close to the Bragg point of hcp He (see Fig. 8.12). The role
played by rotons demonstrates how the competing (hcp solid) state can influence the
situation (Tc) of the superfluid state via generating excitable inelastic soft modes [85,
93].

In several different unconventional superconductors, including cuprates, FeAs,
and many heavy fermion systems, the SC phase is competing with AF phase. The
so-calledmagnetic resonancemode, which is observed in the SC phase as an inelastic
response near theAFwavevector, can be regarded as a softmodedue to the competing
state [14, 85, 93–95], analogous to rotons in superfluid He. In Fig. 8.12, we plot the
energy of the resonance mode versus Tc for some cuprate and FeAs systems using
horizontal and vertical axes both 60 times larger than the ones used in the plot of
superfluid He. Points for these superconductors exhibit nearly linear correlations,
with the slope very close to that of rotons [14], suggesting similarities of these
excitations in thermodynamically determining superconducting / superfluid Tc. We
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also find a similar situation for heavy fermion superconductors CeCoIn5 [104] and
CeCu2Si2 [105] (plotted with the axes used for 4He in Fig. 8.12).

Smallness of the soft-mode energy corresponds to closeness of the free energy of
the superconducting state to that of the competing AF state. Thus, energetic close-
ness to the competing state can be regarded as an additional factor which controls Tc

in unconventional superconductors via the thermodynamic effect of inelastic excita-
tions. The effect of closeness to the magnetic state can be found in cuprate systems
close to the stripe spin-charge orders. Comparing the 123 and 214 cuprate systems
in Fig. 8.8a, we find that the former has higher Tc for the same value of the superfluid
density, due to closeness of the latter system to AF order. The effect of the competing
state can also be appreciated as the origin of the apparent upper-limit of Tc being 20–
25% of TB as shown in Fig. 8.9a. Unconventional superconductors need to compete
with AF (or in some cases charge density wave) phases. This reduces the free energy
advantage for SC condensation which controls Tc. In contrast, dilute cold atoms do
not have to compete with other ground states, and this makes the point for 40K lying
close to the TB line in Fig. 8.10a.

8.9 Future Outlook

First-order behavior in the quantum phase evolution may be an essential factor in
having an inelastic soft mode. Up to now, studies on the roles of quantum crit-
icality have been focused on second order transitions and theoretical considera-
tions. In actual systems, SC phases appear in the process of “avoiding” a quantum
critical point. Furthermore, many actual systems exhibit strong indications of first-
order like evolution and the intrinsic role of heterogeneity. Recent studies of nano-
scale optical responses have revealed real-space images of intrinsic phase separation
and history-dependent behaviors in the Mott metal-insulator transition of VO2 and
other systems [106]. Comparisons of first-order transitions in superconducting and
non-superconducting systems would be very important for better understanding un-
conventional superconductors, and μSR can certainly play a major role in this effort.

μSR has a superb and unique sensitivity to static magnetic order even with small
ordered moments in random/dilute spin configurations, providing information of
volume fractions separately from that of the moment size [99, 107, 108]. Thanks to
this feature, μSR results can be nicely complementary to those from other methods
obtained on the same specimens, as discussed in Sects. 8.3 and 8.7. We recently
performed [102] measurements of Ba(Fe,Ni)2As2 by μSR, neutron, Moessbauer,
specific heat, optical conductivity and STM methods. Such “multiprobe” studies
will be highly effective in revealing subtle features near phase boundaries.

The detection of time reversal symmetry breaking by μSR will become a very
important activity in elucidating topological systems. Currently, we do not have a
good understanding of how the local field at muon sites is generated by the TRS
broken state, nor can we provide reliable estimates of the magnitude of that field.
Further studies on this point are necessary. In studies of correlations between Tc and
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the superfluid density, we notice several systems lying close to “dirty limit”, such as
BKBO and topological superconductors (Sn,In)Te and CuxBe2Se3. It would be very
rewarding to study the effects of carrier scattering in superfluid density and include
the results in the phenomenology of BEC-BCS crossover.

The present author has a feeling that the closeness of the spin and charge energy
scales demonstrated in Fig. 8.10b, based on results in Fig. 8.9a, b, may be one of the
most important elements of the mechanisms for unconventional superconductors. It
would be very important to elucidate the crossover region of BEC-BCS evolution and
study possible resonance behavior between the charge and mediator-boson energy
scales. We can also make further effort to integrate the effects of competing states
and quantum criticality in general arguments of BEC-BCS crossover, in view of our
findings discussed in Sects. 8.7 and 8.8.
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Chapter 9
Optical Properties of Correlated Electrons

Dirk van der Marel

Abstract Optical spectra provide a versatile tool for studying the electronic
properties of matter. In addition, the absolute spectral weight of an optical spectrum
reveals optical sum-rules, which are one of the most powerful tools of experimen-
tal and theoretical physics providing access to deeply rooted quantities such as the
effective mass of the charge carriers and their kinetic energy. The formalism for the
optical conductivity of correlated electrons is presented in this chapter for general
values of the inverse wavelength q and general band dispersion εk of the electrons.
The corresponding sumrule is found to have a characteristic q-dependence for the
nearest-neighbour tight binding model, causing in this case a vanishing of spectral
weight for q at the Brillouin-zone boundary, i.e. for qa = π. These findings are of
possible importance for k-resolved infrared spectroscopy, a technique which is in
full development at the moment.

In the treasure trove of correlated matter lurk great opportunities for novel phases
of matter, including various different forms of quantummagnetism, unconventional-
and high-temperature superconductivity, and many other forms of behavior result-
ing from correlated motion of electrons. The correlated behavior of electrons in the
context of quantum many-body systems constitutes one of the remaining challenges
of physics. Characterizing and understanding electronic materials requires sophisti-
cated experimental probes [1]. These include advanced optical techniques, including
infrared spectroscopy at low frequency and small wavelength [2–4]. Although seem-
ingly contradictory, near-field techniques with nano-scale resolution are emerging
andwill open theway toward non-local optical spectroscopy, i.e. optical spectroscopy
probing σ(q,ω) with finite q.

Excellent texts are on the market treating the experimental optical techniques
in the long wavelength limit [5] and the optical conductivity of weakly correlated
electrons [6]. Also the various aspects optical conductivity of for q = 0 has been
described in detail in the literature [7–12]. A step-by-step introduction into the
optical conductivity of correlated electrons, for general electron dispersion εk and
wavevector q is to our knowledge not presented in the literature. The purpose of this
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book chapter is to provide such a discussion. Since the purpose is only to provide
a fairly complete description of the many-body formalism underlying the optical
conductivity at finite wavelength andwave-vectors, no attempt ismade here to review
the vast literature on optical properties of interacting electrons.

9.1 Reflection of Electromagnetic Waves

In this section we discuss the reflection and transmission of electromagnetic (EM)
waves at the interface betweenvacuumanda substancewhich could be a solid, a liquid
or even a gas. With optical spectroscopy one measures the reflection or transmission
as a function of frequency ω. A variety of different experimental geometries can be
used, depending on the type of sample under investigation, which can be a reflecting
surface of a thick crystal, a free standing thin film, or a thin film supported by a
substrate. Two frequently used configurations for measuring the optical constants
are shown in Fig. 9.1.

Important factors influencing the type of analysis are also the orientation of the
crystal or film surface, the angle of incidence of the ray of photons, and the polariza-
tion of the light. In most cases only the amplitude of the reflected or refracted light is
measured, but sometimes the phase is measured, or the phase difference between two
incident rays with different polarization as in ellipsometry. The task of relating the
intensity and/or phase of the reflected or refracted light to the dielectric tensor inside

Fig. 9.1 Two commonly used experimental configurations for measuring optical constants
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the material boils down to solving the Maxwell equations at the vacuum/sample,
sample/substrate interface.

Before attacking the problem of reflection and transmission at an interface, we
first give a brief reminder of the macroscopic Maxwell equations inside a medium.
The main properties of the medium which controls the propagation of EM-waves are
the dielectric constant ε, and the magnetic permeability μ

D = εE

B = μH (9.1)

We come later in the chapter to the microscopic interpretation of ε. We will see
among other things, that ε depends on q and ω, and that it has a real and imaginary
part. The speed of propagation of electromagnetic waves is given by

v2 = c2

εμ
(9.2)

For Re
√

εμ > 1 the wavelength is compressed compared to what it would be in
vacuum for the same frequency, as can be seen from the following expression for the
wave-vector inside the medium

q2 = εμ
ω2

c2
(9.3)

In vacuum μ = ε = 1. Another consequence of the Maxwell equations is, that
the electromagnetic wave has electric and magnetic components, which are given by

E(z, t) = x̂Eqeiω(z
√

εμ/c−t)

H(z, t) = ŷHqeiω(z
√

εμ/c−t)

μH2
q = εE2

q (9.4)

We also see now, that the effect of a finite value of Im
√

εμ is to cause an exponen-
tial decay of the wave amplitude from the interface inward to the solid. When one
irradiates a perfect interface between the vacuum and a substance with a ray of elec-
tromagnetic radiation, part of the light is transmitted to the interior of the substance,
and part of the light is reflected. The amplitudes of the incident and reflected rays can
measured experimentally. To describe the reflection process one uses the amplitude
and phase of the electric field component of the electromagnetic waves just before
hitting the sample surface, Ei and just after being reflected Er , and just after being
transmitted inside the solid, Et . Likewise the corresponding magnetic fields are Hi ,
Hr and Ht .
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In the following tablewe summarize the consequences of the solutionofMaxwell’s
equations at the interface relevant to this discussion

Ei + Er = Et (i)

Hi − Hr = Ht (ii)

Hi = Ei (iii)

Hr = Er (iv)

μH2
t = εE2

t (v)

We divide left and right of (i) and (ii) by Ei and Hi respectively. We then insert (iii),
(iv) and (v) in (ii). We furthermore define r = Er/Ei and t = Et/Ei . The resulting
equations are

1 + r = t (i)

1 − r = t
√

ε/μ (ii)

Solution of this system of two equations provides

r =1 − √
ε/μ

1 + √
ε/μ

(9.5)

t = 2

1 + √
ε/μ

(9.6)

In the following sections we are going to consider the case of non-magnetic media
where μ(ω) = 1. Once r(ω) has been measured, it then suffices to invert 9.5 to
obtain the real and imaginary parts of ε(ω), which is usually the quantity of interest.
An example of this is shown in Fig. 9.2. A similar procedure can be followed when
measuring the transmission spectrum through a thin film.

9.2 Optical Conductivity, Current and Electric Field

The optical conductivity expresses the current response to an electric field

J(r, t) =
∫

d3r ′
t∫

−∞
dt ′σ(r, r ′, t − t ′)E(r ′, t ′) (9.7)
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Fig. 9.2 Optical spectrum in the infrared range of the insulating quantum magnet NaV2O5. Top
panel experimental reflectivity and phase. Lower panel Real and imaginary parts of the dielectric
function ε(ω). Source [13]

We consider the situation where the electric field is described by a plane wave with
a wavevector q and a frequency ω, hence E(r, t) = Eqei(q·r−ωt), with similar
definitions, Jq , Dq , Pq , for the current, displacement field and polarization density.
We will assume here, that the fields are sufficiently small, so that we may consider
only induced electrical currents which are linearly proportional to the electric fields
at each coordinate r of the matter. Consequently the currents oscillate at the same
frequency and wavelength as the electric field.

Written in frequency and momentum representation the relation between Eq and
Jq is

Jq = σ(q,ω)Eq (9.8)
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The electric field of a plane electromagnetic wave is transverse to the photonmomen-
tum. The tensor elements of the optical conductivity which can be measured in an
optical experiment, are therefore transverse to the direction of propagation of the
electromagnetic wave. The component of the dielectric function describing polariza-
tion transverse to the propagation of the EM wave can be expressed in terms of the
“optical conductivity”, which has a real and an imaginary part. The relation linking
the optical conductivity to ε(q,ω) is

ε(q,ω) = Dq

Eq
= 1 + 4πi

ω
σ(q,ω) (9.9)

In a typical optical experiment the photon energy is below 6 eV. In vacuum the
photon wave number used in optical experiments is therefore 0.0005Å−1, or smaller,
which is at least three orders of magnitude below the reciprocal lattice constant
in a solid. Hence with optical spectroscopy one measures the transverse dielectric
function -corresponding to the optical conductivity—in the limit of vanishing wave-
vector.

9.3 Transverse and Longitudinal Dielectric Function

In the previous sections we have seen that optical experiments measure the transverse
dielectric function εt (q,ω). This can for example be done by analyzing the reflection
coefficient at a sample-vacuum interface. The transverse nature of electromagnetic
waves makes that the component of ε(q,ω) relevant for the optical properties, is
polarized transverse to q, i.e. to the propagation direction of the EM wave. For
the purpose of the discussion in the present section we have written the index t
specifically as a reminder of that. However, the general definition of ε(q,ω) is

ε(q,ω) = Dq

Eq
(9.10)

where D(r, t) = Dq exp i(q · r − ωt) and E(r, t) = Eq exp i(q · r − ωt). For
waves traveling in vacuum transverse polarization is the only possibility allowed by
Maxwell’s equations. Inside a material, on the other hand, longitudinal electromag-
netic waves do in fact exist, plasmons for example. Static and dynamic screening
of charge inside solids is an important phenomenon which involves the longitudinal
component of the dielectric function.

Since we have already seen how to measure εt (ω), we may wonder how one
can measure also εl(q,ω). The experimental method allowing to do so is called
Electron Energy Loss Spectroscopy (EELS). This technique consists of measuring
the inelastic decay of fast electrons passing through a sample. Experimentally one
creates a monochromatic beam of high energy electrons, typically with an energy of
170keV. These electrons are fired through a thin slab (100nm thick) of the material
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which one wishes to investigate. Part of the electrons emerge at the other side of the
sample with the original energy and momentum, others have lost an amount of their
energy, and have transferred momentum to an excitation inside the solid. For each
value of transferred momentum, q, the number of electrons can be counted for any
given value of the energy loss, �ω by selecting a certain direction in space, and by
selecting the energy of the electrons emerging from the sample.

A collision process inside the solid, whereby the momentum changes from p to
p−q and the energy from Ein = p2/(2m) to Eout = | p−q|2/(2m) = p2/(2m)−�ω
generates during the collision process a longitudinal dielectric displacement field,
D(r, t) ∝ exp (iq · r − iωt). Since inside a material the dielectric displacement is
screened by the response of the matter particles, the resulting electric field is

E(q,ω) = 1

ε(q,ω)
D(q,ω) (9.11)

The probability per unit time that a fast electron transfers momentum q and energy ω
to the electrons was derived by Nozières and Pines for a fluid of interacting electrons

P(q,ω) = 8πq2
e

|q|2 Im

{ −1

ε(q,ω)

}
(9.12)

whereqe is the electron charge.Hence this technique provides the longitudinal dielec-
tric function, i.e. the response to a dielectric displacement field which is parallel to
the transferred momentum q.

Finally we come back to the optical spectroscopy. In the limit q → 0 the distinc-
tion between longitudinal and transverse polarization vanishes, and consequently

lim
q→0

εt (q,ω) = εl(q,ω) (9.13)

Since optical spectroscopy allows to measure real and imaginary part of εt (q,ω), it
is possible to calculate the loss function Im(−1/ε(q,ω)) for q → 0 , and this should
correspond exactly to the energy loss spectra measured with EELS. An example
where the two techniques are compared for the same material is given in Fig. 9.3.
Indeed, we see that the two techniques give the same result for q → 0, as expected.

9.4 Quantum Electrodynamics of Electrons in a Lattice

To keep the notation light, we use Planck units in the remainder of this chapter.
In those units � = 1, c = 1. Since the fine-structure constant is α = q2

e /�c, we
automatically have qe = −√

α in these units. We will however continue to use the
symbol qe to indicate the electron charge throughout this chapter. Spin-coordinate
plays no role of particular importance in this chapter; we therefore suppress the
spin-labels in the following subsections in the interest of compactness of notation.
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Fig. 9.3 Comparison of the optical data (left [14]) and EELS spectra (right [15], reproduced
from the original figure with permission of the authors.) of Bi2Sr2CaCu2O8, both providing
Im(−1/ε(q,ω)). The peak positions in both spectra correspond to the plasma-resonance frequency

9.4.1 Coupling of Interacting Electrons in Solids
to an Electromagnetic Field

We begin by defining the system in the absence of an external electromagnetic field.
We consider a tight-binding model for the conduction band, where the tunneling of
an electron on a given site rm to surrounding sites rm+ j is described by the hopping
matrix element t j . In addition we have to take into account the interaction between
the electrons, which in general is a function of their mutual distance. Although the
interaction may in principle also depend on the spin, this aspect plays no role in the
present discussion. The full matter Hamiltonian including interactions is then
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Ĥ0 = Ĥ kin + Ĥ int

Ĥ kin = −
∑
m, j

t j (c
†
m+ j cm + c†mcm+ j )

Ĥ int = 1

2

∑
m,n

Vm−n ρ̂(rm)ρ̂(rn) (9.14)

where ρ̂(r j ) = c†j c j is the density operator at lattice site j . For later use we point
out, that the first term is diagonal on the basis of Bloch-states represented by the
operators

c†k = 1√
Ns

∑
m

e−i k·rm c†m

In terms of which

Ĥ kin =
∑

k

εkc†k ck

εk = −2
∑

j

t j e
i k·r j

vk = ∂εk

∂k
= −2i

∑
j

t j r j e
i k·r j (9.15)

Let us now turn to the microscopic quantum mechanical expression for the optical
conductivity. We will follow closely the treatment of Mahan [9], and by Nozières
and Pines [7]. We consider the effect of a time-varying electric field, which is the
time derivative of the vector potential, i.e. the relation between A = Aqe−iωt and
E = Eqe−iωt is

E(t) = −∂ A(t)

∂t
= iω A(t). (9.16)

In quantum electrodynamics the coupling between the electromagnetic field and the
electrons is introduced by making the “minimal substitution” p → p − qe A in the
kinetic energy term of the Hamiltonian. Since here we are concerned with the tight-
binding model on a lattice, we need some form of “course graining” of the vector
potential. The relation between direct- and reciprocal space representations is then

Aq = 1√
Ns

∑
m

e−iq·rm Am (9.17)
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If an electron is transferred from lattice coordinate rm to rn , the wavefunction picks
up a phase due to the vector potential, described by the integral (qe/�)

∫ m+ j
m A(s)·ds,

which depends on the path if∇× A �= 0. A difficulty is, that with the course-graining
procedure we have introduced some ambiguity regarding the path followed by the
electron. Since the path of a hopping term t j in the tight-binding Hamiltonian is of
the order of a lattice constant, the variation of A(s) along the path is very small. We
follow the Peierls coupling scheme, and substitute a constant value in the integral,
Am, j = (Am + Am+ j )/2, corresponding to the average over the tunneling path.

The integral than becomes
∫ m+ j

m A(s) · ds = Am, j · r j . The corresponding Peierls
substitution

t j → t j e
−iqe Am, j ·r (9.18)

does not affect the interaction part of the Hamiltonian (9.14), but the kinetic energy
term picks up the extra phase. The Hamiltonian in the presence of Am, j is, according
to the “Peierls coupling” scheme

Ĥ = −
∑
m, j

t j (e
−iqe Am, j ·rc†m+ j cm + eiqe Am, j ·rc†mcm+ j ) + Ĥ int (9.19)

9.4.2 General Consideration About the Calculation
of the Linear Response

We are interested to calculate the linear response of the current density Jq to the
electric field Eq , which is related to the vector potential Aq through Eq = iω Aq .
The current density is related to the local velocities of all electrons, described by the
expectation value of the current operator ĵ(r) through J(r) = 〈 ĵ(r)〉. Note, that
J(r) refers to the amount charge passing per unit of time per unit area perpendicular
to J(r). The optical conductivity is then

σ(q,ω) = Jq

Eq
= 〈 ĵq〉

iω Aq
(lim Aq → 0) (9.20)

In general terms our task is to compute the time-dependent expectation value of the
current operator in the presence of the vector potential. The vector potential enters the
problem on two levels: First, the time-independent current operator in the presence
of the vector potential is already different from the current operator without vector
potential. Secondly the time evolution of the current operator is described by the
Hamiltionian (9.19), which also contains the vector potential. Taken together

σ(q,ω) = 1

iω Aq

〈
ei Ĥ(Aq )t ĵq(Aq)e−i Ĥ(Aq )t

〉
(lim Aq → 0) (9.21)
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We see, that the vector potential enters in various different positions in the expression.
One can proceed by making Taylor series expansions of all terms, and collect at the
end all terms linear in Aq . Each step takes care and precision, since the operators
in this expression don’t commute. These steps are treated in the following three
subsections.

9.4.3 Expansion of the Current Operator in Powers
of the Vector Potential

In quantum electrodynamics the current density is obtained from the relation J =
−�−1∂ Ĥ/∂ A. For our tight-binding Hamiltonian (9.14) this implies

ĵ(rm) = − 1

�

[
∂ Ĥ

∂ Am

]
(9.22)

= 1

�

∑
j

t j r j (−iqee−iqe Am, j ·r j c†m+ j cm + iqeeiqe Am, j ·r j c†mcm+ j )

which we expand in powers of Am, j , retaining only terms up to first order

ĵ(rm) = ĵ
r
(rm) + ĵ

d
(rm)

ĵ
r
(rm) = −i

qe

�

∑
j

t j r j (c
†
m+ j cm − c†mcm+ j )

ĵ
d
(rm) = −q2

e

�

∑
j

t j r j (r j · Am, j )(c
†
m+ j cm + c†mcm+ j ) (9.23)

The first term in (9.23) is the so-called “regular” term of the current operator, since
it is independent of the vector potential. We draw attention to the physical interpre-

tation of the velocity operator. The matrix element
〈
−iqet j r j c

†
m+ j cm

〉
describes a

process whereby an electron tunnels from position rm to rm+ j . The tunneling time
of this process is 1/t j , and the displacement is r j . The effective velocity of this
process is therefore r j t j . The second term proportional to < c†mcm+ j > describes

the same event, except that it occurs in the opposite direction. The operator ĵ
r
(rm)

therefore describes exactly the current passing through lattice position rm . While
the Peierls substitution is burdened by ambiguities (except if A(r) is uniform), the
regular part of the current operator in (9.23) is a robust result, which satisfies our
intuitive understanding of a local current. Its momentum-space representation is
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ĵ
r
q = 1√

Ns

∑
m

e−iq·rm ĵ
r
(rm) = qe

�

∑
k

vk + vk−q

2
c†k ck−q (9.24)

where vk = ∂εk/∂k is the group velocity.

The “diamagnetic part” of the current, ĵ
d
, is the term which is proportional to

Am . Its Fourier transform is

ĵ
d
q = −q2

e

∑
q ′

Aq ′ · K̂ q,q ′ (9.25)

K̂ q,q ′ ≡ 1

2�

∑
j,k

t j r j r j (2eiq ′·r j cos k · r j + ei k·r j + ei(k+q−q′)·r j )c†k ck+q−q ′

The expectation value has finite contributions only from q = q ′ in the above expres-
sion, hence

Jd
q =

〈
ĵ
d
q

〉
= −q2

e Aq · K (q) (9.26)

where the tensor K (q) is proportional to the spectralweight in the optical conductivity
function

K (q) = 2

�

∑
k, j

t j r j r j e
i k·r j cos2

(q · r j

2

) 〈
c†k ck

〉
(9.27)

We see, that (9.27) indicates that K (q) depends on the wavevector q of the perturb-
ing field. For the special case of the nearest-neighbour tight-binding model we will
find confirmation of exactly this q-dependence from a different approach in subsec-
tion9.5.4. Nevertheless, we have to keep in mind that the course-graining procedure
used in the Peierls substitution is only fully accurate for a uniform vector potential,
i.e. q = 0. For a general type of dispersion ε(k) non-negligible corrections of order
q2 to (9.27) are to be expected. The limit for q → 0 of (9.27) gives

K = 1

�

∑
k

∂2εk

∂k2

〈
c†k ck

〉
(9.28)

The only exception where K (q) is q-independent occurs for a parabolic energy-
momentum dispersion relation of the electrons, εk = k2/2m. We then obtain the
result

K (q) = K = n

m
(9.29)

For an entirely filled band at zero temperature
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(2π)3

�

∑
k

∂2εk

∂k2
nk =

∫
1t B Z

∂εk

∂k
dsk = 0 (9.30)

where the integral is over the surface of the first Brillouin zone. Since ∂εk/∂k = 0
on the BZ surface, this integral is zero, and consequently K = 0 in this case.

Combining (9.24) and (9.26) we obtain the full expression for the current operator

ĵq = ĵ
d
q + ĵ

r
q = −q2

e

∑
q ′

Aq ′ · K̂ q,q ′ + qe

�

∑
k

vk + vk−q

2
c†k ck−q (9.31)

9.4.4 Expansion of the Hamiltonian in Leading Order
of the Vector Potential

We now turn to the Hamiltonian in (9.19). Since we are interested in the linear
response to the vector potential, we use a Taylor expansion in powers of Am

Ĥkin(Aq) = Ĥ kin + iqe

∑
m, j

t j Am, j · r j (c
†
m+ j cm − c†mcm+ j + · · · ) (9.32)

The terms proportional to Am, j can be worked out as follows:

iqe

∑
m, j

t j Am, j · r j (c
†
m+ j cm − c†mcm+ j )

= iqe

∑
k,q, j

t j Aq · r j (e
i k·r j − e−i(k+q)·r j )c†k ck+q

= −qe

∑
k,q, j

Aq · vk + vk+q

2
c†k ck+q = −�

∑
q

Aq · ĵ
r
−q

where, in order to write the last equation, we use the result for the regular term
of the current operator, (9.24). In leading order of Aq the Hamiltonian can then
be written as the sum of two terms, Ĥ0 representing the full matter Hamiltonian
including interactions (9.14), and Ĥ p representing the perturbation due to a time-
varying vector potential

Ĥ = Ĥ0 + Ĥ p

Ĥ p = −�
∑

q

Aq · ĵ
r
−q (9.33)
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9.4.5 Current Response to an Applied Field

The response to the vector potential is described by expectation value of the Heisen-
berg representation of the current operator, taking the full Hamiltonion including the
vector potential

Jq(t) =
〈
ei Ĥ t ĵqe−i Ĥ t

〉
=

〈
ĵ
d
q(t)

〉
+

〈
ĵ
r
q(t)

〉
= −q2

e Aq · K (q) + Jr
q(t) (9.34)

The diamagnetic contribution to the conductivity is now easily obtained using the
definition (9.20)

σd(ω, q) = Jd
q

iω Aq
= iq2

e K (q)

ω
(9.35)

This term expresses that in the absence of a potential binding the electrons to the
lattice, the response will be that of a plasma of freely moving charged particles with
mass m, charge qe, and density n = N/�.

The second contribution to the current in (9.34) represents the combined effect of
the crystal potential in which the electrons move, and their mutual interactions. The
corresponding “regular” contribution to the optical conductivity is

σr (ω, q) = Jr
q

iω Aq
(9.36)

At this point it will be useful to introduce the Heisenberg representation of the
current operator in the absence of the external field described by the term Ĥ p in
the hamiltonian.

ĵ
0
q(t) = ei Ĥ0t ĵqe−i Ĥ0t (9.37)

The vector potential A(t) has been switched on at a certain time t0. Without loss of
generality we can choose this time to be t0 = 0. To describe the time-evolution of
the current operator caused by A(t), we introduce the time-evolution operator

Û (t) = ei Ĥ0t e−i Ĥ t t ≥ 0

Û (t) = 1 t < 0 (9.38)

With the help of (9.37), (9.38) we can rewrite ĵ
r
q(t) in the expression of Jr

q(t)

ĵ
r
q(t) = ei Ĥ t ĵqe−i Ĥ t = Û †(t) ĵ

0
q(t)Û (t) (9.39)
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With the help of this we obtain

Jr
q(t) =

〈
Û †(t) ĵ

0
q(t)Û (t)

〉
(9.40)

We like to expand the expression for the current as a function of Ĥ p and look for

the leading terms for the linear response. Since the definition of ĵ
0
(r, t) contains

Ĥ0 instead of Ĥ , it does not depend on the vector potential Ĥ p. It is therefor only
necessary to expandU (t) as a function of Ĥ p . To do soweneed to know the properties
of Û (t). First of all, according to (9.38) we have Û (−∞) = 1. In addition, Û (t)
satisfies the following expression for the derivative with respect to time

∂Û

∂t
= i Ĥ0ei Ĥ0t e−i Ĥ t − iei Ĥ0t Ĥe−i Ĥ t = ei Ĥ0t Ĥ pe−i Ĥ t

= iei Ĥ0t Ĥ pei Ĥ0t e−i Ĥ0t e−i Ĥ t = −i Ĥ p(t)Û (t)

To solve this equation, we integrate from the lower limit Û (−∞) = 1 to finite time
t :

Û (t) = 1 − i

t∫
−∞

dt ′ Ĥ p(t ′)Û (t ′)

Iterative solution yields

Û (t) = 1 − i

t∫
−∞

dt ′ Ĥ p(t ′) + 1
2

t∫
−∞

dt ′
t ′∫

−∞
dt ′′ Ĥ p(t ′)Ĥ p(t ′′) + · · ·

Since we restrict the discussion here to linear response, we need only the first two
terms. Substituting those in (9.40) yields

Jr
q(t) =

〈⎛
⎝1 + i

t∫
−∞

dt ′ Ĥ p(t ′)

⎞
⎠ ĵ

0
q(t)

⎛
⎝1 − i

t∫
−∞

dt ′ Ĥ p(t ′)

⎞
⎠〉

(9.41)

The matrix element
〈

ĵ
0
(r, t)

〉
= 0 for a system in equilibrium. Furthermore terms

proportional to (Ĥ p)2 contribute to the quadratic response.We now substitute Ĥ p =
−�

∑
q Aq · ĵ

r
−q (9.33). Retaining only the linear terms gives
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Jr
q(t) = i�

t∫
−∞

〈[
ĵ
0
q(t), ĵ

0
−q(t ′) · Aq(t ′)

]〉
dt ′

We substitute Jr
q(t) = Jr

qe−iωt and Aq(t) = Aqe−iωt and multiply both sides with
eiωt

Jr
q = i�

t∫
−∞

〈[
ĵ
0
q(t), ĵ

0
−q(t ′) · Aq

]〉
eiω(t−t ′)dt ′

Due to time-invariance, we have[
ĵ
0
q(t), ĵ

0
−q(t ′)

]
=

[
ĵ
0
q(t − t ′), ĵ

0
−q(0)

]
(9.42)

We substitute t − t ′ → t ′′, so that

Jr
q = i�

∞∫
0

〈[
ĵ
0
q(t ′′), ĵ

0
−q(0) · Aq

]〉
eiωt ′′dt ′′

We now divide both sides by Aq

Jr
q

Aq
= −χ j j (q,ω) (9.43)

where χ j j (q, t) is the current-current correlation function defined as

χ j j (q, t) = −iθ(t)�
〈[

ĵq(t), ĵ−q(0)
]〉

(9.44)

and

χ j j (q,ω) =
∞∫

−∞
χ j j (q, t)eiωt dt (9.45)

Comparing this to (9.36) we see, that the regular part of the optical conductivity is

σr (ω, q) = i

ω + iη
χ j j (q,ω) (9.46)

where iη = i0+ moves the pole infinitesimally away from the real axis, such as to
assure causality in the time-dependence of the relation between current and electric
field.
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9.4.6 Frequency and Temperature Dependent Optical Conductivity

We see, that the regular par of the optical conductivity is proportional to the current-
current correlation function, divided by the frequency. We continue the discussion
by considering a well-defined many-particle state |n〉, for which we calculate the
optical conductivity

σr (q,ω) = �

ω + iη

∞∫
0

〈
n

∣∣∣{ei Ĥ0t ĵqe−i Ĥ0t ĵ−q − ĵ−qei Ĥ0t ĵqe−i Ĥ0t
}∣∣∣ n

〉
eiωt dt

After some manipulation with the operators ei Ĥ0t and e−i Ĥ0t we obtain

σr (ω, q) = �

ω + iη

∞∫
0

∑
m �=n

{
jnm
q jmn−qei(ω+En−Em )t − jnm−q jmn

q ei(ω+Em−En)t
}

dt

where for compactness of notation we represent the matrix elements of the current
operators as

jnm
q ≡ 〈n| ĵ

r
q |m〉 (9.47)

In the remainder we will assume a basis on which the conductivity tensor is diagonal,
so that jnm

q // jmn−q . We can than drop the tensor notation and replace jnm
q jmn−q with

| jnm
q |2. We also introduce the short-hand notation for the energy differences Em −

En = ωmn . Carrying out the integrations over time we obtain

σr (ω, q) = i
∑
m �=n

�| jnm
q |2

ω + iη

{
1

ω − ωmn + iη1
− 1

ω + ωmn + iη1

}
(9.48)

Note, that both η and η1 are to be taken in the limit η → 0, but that these limits are
independent from one another, i.e. η1 �= η.

The expression for the total conductivity (diamagnetic + regular) is obtained by
combining this with (9.35).

σ(q,ω) = σd(q,ω) + σr (q,ω) (9.49)

= i

ω + iη

⎧⎨
⎩q2

e K +
∑
m �=n

[
�| jnm

q |2
ω − ωmn + iη1

− �| jnm
q |2

ω + ωmn + iη1

]⎫⎬
⎭
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In (9.49) σ(ω) is represented by two separate terms, a δ-function for ω = 0 and a
summation over excited many-body eigen-states. The δ-function is a diamagnetic
contribution of all electrons in the system, the presence of which is a consequence of
the gauge invariant treatment of the optical conductivity. Note however, that accord-
ing to (9.30) for an insulator (the bands of which are either fully occupied or entirely
empty) we have K = 0. The presence of this term is at first glance rather confusing,
since left by itself this δ-function would imply that all metals are ideal conductors!
However, the second term has, besides a series of poles corresponding to the optical
transitions, also a pole for ω = 0, corresponding to a negative δ-function of Reσ(ω).
It turns out, that for all materials except ideal conductors this δ-function compen-
sates exactly the first (diamagnetic) term of (9.49). This exact compensation is a
consequence of the relation.1

For every n: q2
e K = 2

∑
m �=n

�| jnm
q |2

ωmn
(9.50)

Experimentally truly ‘ideal’ conductivity is only seen in superconductors. In ordinary
conducting materials the diamagnetic term broadens to a Lorentzian peak due to
elastic and/or inelastic scattering. The width of this peak is the inverse life-time of
the charge carriers. Often in the theoretical literature the broadening is not important,
and the Drude peak is counted to the Dirac-function in the origin. The infrared
properties of superconductors are characterized by the presence of both a purely
reactive diamagnetic response, and a regular dissipative conductivity. The sum of
these contributions counts the partial intra-band spectral weight which we discussed
previously in relation to the “kinetic energy sum rule”. With the help of (9.50), the
diamagnetic term of (9.49) can now be absorbed in the summation on the right-hand
side, so that after combining all terms

σ(q,ω) = 2iω
∑
m �=n

�| jnm
q |2

ωmn

1

ω(ω + iη) − ω2
mn

(9.51)

wherewe have to keep inmind, that the equivalencewith (9.49) holds under condition
that η (= 2η1) is infinitesimally small. Note, that in deriving (9.51) from (9.49), an
ω+iη term in the numerator has been replaced byω since, unlike for the denominators
containing iη, the effect of iη vanishes if we consider the limit η → 0.

In (9.51) we have calculated the optical conductivity assuming that, under the
influence of the external potential, the system evolves as a function of time from an
eigenstate |n〉. In the most common experimental situation the sample is in thermal
equilibrium with heat bath with temperature T . Following the approach of Kubo we
calculate the conductivity using thermodynamical weight factors e−βEn /Z for each

1 Equation (9.50) is obtained if one represents the current operators as commutators of the hamil-
tonian with the dipole operator defined in (9.68). The expectation value of the hamiltonian is used to
cancel out the factor ωmn in the denominator of the expression. In the final step the commutator of
the dipole operator and the current operator is calculated, which completes the derivation of (9.50).
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many-body eigenstate (see [9] for a discussion on the justification of this approach).
Here Z is the partition function, and β = 1/kB T . The expression for the optical
conductivity at finite temperature becomes then

σ(q,ω) = 2iω
∑

n,m �=n

�| jnm
q |2

ωmn

e−βEn

Z

1

ω(ω + iη) − ω2
mn

(9.52)

The imaginary parts of the terms are Dirac δ-functions, so that

Reσ(q,ω) = π
∑

n,m �=n

�| jnm
q |2

ωmn

e−βEn

Z
{δ(ω − ωmn) + δ(ω + ωmn)} (9.53)

The spectrum thus consists of a series of peaks, each representing an excitation
from the ground state |n〉 to an excited many-body state |m〉 at an energy cost ωmn .
In atoms and molecules one observes indeed a discrete set of lines. In solids the
excitations broaden into bands due to the fact that the excitations in different parts
of the lattice are coupled, resulting in bands of excited states. The most commonly
observed excited states are the creation of one hole in the occupied band and one
electron in the states above EF . The resulting optical spectrum is than something like
a joint density of states of the bands below and above the Fermi energy. Examples of
this are shown for ametal (MnSi), a semi-comductor (FeSi), a semimetal (CoSi) and a

Fig. 9.4 Density of states (left) and real part of the optical conductivity (right) of a number of
transition-metal silicides. Source [16]
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doped semiconductor (Co-dopedFeSi) are shown inFig. 9.4. The optical conductivity
of FeSi reveals the gap around the Fermi energy visible in the density of states of the
left panel.

9.4.7 The Drude-Lorentz Expression

It is useful at this stage to relabel the transitions m, n → j , where j is a generalized
index, and to introduce a plasma frequencies for each transition with energy ωmn =
ω j

� j (q)2 = 8π
�| jnm

q |2
ωmn

e−βEn

Z
(9.54)

with the help of which we obtain the following compact expression for the optical
conductivity tensor

σ(q,ω) = iω

4π

∑
j

� j (q)2

ω(ω + iγ j ) − ω2
j

(9.55)

Although formally γ j = η = 0+, a natural modification of (9.55) consists of lim-
iting the summation to a set of oscillators representing the main optical transitions
and inserting a finite value for γ j , which in zero’th approximation represents the
inverse lifetime of the corresponding excited state (e.g. calculated using Fermi’s
Golden Rule). With this modification (9.55) is one of the most commonly used phe-
nomenological representations of the optical conductivity, generally known as the
Drude-Lorentz expression. An example is shown in Fig. 9.5. In its original incar-
nation the Drude-Lorentz expression is obtained from a model of classical damped
oscillators.

The simple recipe of broadening the δ-functions by a life-time broadening is prone
to pitfalls: For example, different line shapes of the oscillators are obtained if we
make the substitution η1 = η = γ in (9.49). Apparently it is important to combine
all (positive and negative) δ-functions coming from diamagnetic (σd ) and regular
(σr ) terms in (9.49), not only in order to cancel out the negative δ-function in the
origin, but also to make a connection to the Drude-Lorentz expression.

9.5 Spectral Weight Sum Rules

9.5.1 K-Sum Rule

We define the total spectral weight of the optical conductivity as follows
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Fig. 9.5 Optical conductivity of HgBa2CuO4, shown together with a fit to (9.55). Each of the
colored curves represents a separate term defined by its position ωmn , strength �2

mn and width γmn .
Source [17]

W (q) ≡ Re

∞∫
−∞

σ(q,ω)dω (9.56)

The optical conductivity has, as we have seen in the previous subsection, a dia-
magnetic part and a regular part. We split up the corresponding contributions to the
spectral weight accordingly, i.e.

W (q) = W d(q) + W r (q)

W d(q) = Re

∞∫
−∞

σd(q,ω)dω

W r (q) = Re

∞∫
−∞

σr (q,ω)dω (9.57)

To calculate W d(q) we use (9.35)
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W d(q) = Re

∞∫
−∞

i K (q)

ω + iη
dω = πq2

e K (q) (9.58)

where K (q) is defined in (9.27). The substitution ω → ω + iη in the denominator is
needed to ensure causality and convergence of the integrals. The same substitution
is used in (9.46) from which we calculate W r (q).

W r (q) = Re

∞∫
−∞

dω
i

ω + iη

∞∫
0

χ j j (q, t)eiωt dt (9.59)

It is easy to see that the total regular spectral weight is zero. We first interchange the
order of integration over frequency and time:

W r (q) = Re

∞∫
0

dtχ j j (q, t)

∞∫
−∞

i

ω + iη
eiωt dω (9.60)

We can calculate this by a contour integral. Since t > 0 the term eiωt converges
exponentially to zero for |ω| → ∞ provided that ω is in the upper half of the
complex plane. The contour integral along the half-circle in the upper half of the
complex plane than also converges to zero for |ω| → ∞. The integral along the real
axis has the same value as the contour consisting of the integral along the real axis and
the half-circle in the upper half plane. To calculate the latter contour, we can apply
Cauchy’s residue theorem. However, the only pole in the integrand occurs for for
ω = −iη, and this is in the lower half of the complex plane. Since the contour-integral
encloses no poles, the integral over ω has a vanishing result. Consequently

W r (q) = 0 (9.61)

Apparantly there is an exact compensation going on between positive and negative
contributions to the “regular” optical conductivity. In the previous subsection we
discussed this in relation to (9.49): The regular optical conductivity has a negative
δ-function at zero frequency, which has exactly the same spectral weight as the
conductivity integrated over all finite frequencies. Moreover, for all metals except
superconductors there is an exact cancellation between the positive δ-function com-
ing from the diamagnetic response, and the negative one from the regular part of the
conductivity.

This completes the general discussion of the spectral weight sum rule. Since this
is a central theorem of many-body physics, we write here in full glory the limit for
q → 0
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Re

∞∫
−∞

σ(0,ω)dω = πq2
e

�

∑
k

∂2εk

∂k2

〈
c†k ck

〉
(9.62)

Two cases of the spectral weight sumrule, (9.62) are of particular importance, which
we detail in the following two subsections.

9.5.2 F-Sum Rule

The free electron dispersion εk = k2/(2m) gives

Re

∞∫
−∞

σ(q,ω)dω = πnq2
e

m
(9.63)

This is the f-sum rule, or Thomas-Reich-Kuhn rule. It is a cornerstone for optical
studies of materials, since it relates the integrated optical conductivity directly to
the density of charged objects, and the absolute value of their charge and mass. It
reflects the fundamental property that also in strongly correlated matter the number
of electrons is conserved.

9.5.3 Kinetic Energy Sum Rule

The nearest-neighbour tight-binding model has a dispersion relation εk = −2t
cos(ka), where a is the lattice constant. The implication for the K -sum rule is

Re

∞∫
−∞

σ(q,ω)dω = πq2
e K (q) (9.64)

K (q) = 1

�

∑
k

2ta2 cos(ka) cos2
(qa

2

)
〈c†k ck〉 = − cos2

(qa

2

) a2

�
〈Ĥ kin〉

This is also known as the “kinetic energy sum rule”, since the spectral weight is
proportional to the minus the average kinetic energy of the electrons. An example
of such a measurement is shown in Fig. 9.6 for a high temperature superconductor.
Besides a gradual change of the kinetic energy (spectral weight) as a function of
temperature, one observes a sudden change at the superconducting phase transition
at 110K.
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Fig. 9.6 Reσ(ω) of the high Tc superconductor Bi2Sr2Ca2Cu3O10 for some selected temperatures.
Inset: Free carrier spectral weight as a function of T . The dotted line signals the critical temperature
of the sample (Tc = 110K). Note that in the superconducting state the optical conductivity has a
δ-function at ω = 0. The spectral weight of this δ-function has been experimentally determined
from the imaginary part of the optical conductivity (not shown), and it’s contribution is taken into
account in W (T ). Source [18]

9.5.4 Regular Part of the Spectral Weight

The exact compensation between the negative zero-frequency mode and the finite
frequency spectral weight of the regular spectral weight (9.61) deserves some extra
attention. It is still interesting to verify the amount present at zero frequency. This
is easily obtained. From inspection of (9.59), we notice that the real part of i

ω+iη
represents a δ-function πδ(ω). The spectral weight of the zero-frequency mode is
then

W r,0(q) = πRe

∞∫
−∞

χ j j (q, t)dt = π�Im

∞∫
0

〈[
ĵ
r
q(t), ĵ

r
−q(0)

]〉
dt (9.65)

where (9.44) was substituted to obtain the righthand part of the equation. We first
define the “dipole” field operator with the property
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∂ p̂q(t)

∂t
= ĵ

r
q(t) (9.66)

We can now integrate (9.65) and obtain

W r,0(q) = π�Im
(〈[

p̂q(∞), ĵ
r
−q(0)

]〉
−

〈[
p̂q(0), ĵ

r
−q(0)

]〉)
(9.67)

The dipole (current) operator is the position (velocity) operator times the elec-
tron charge. Maldague [8] used the position operator for q = 0 defined as x̂ =∑

m rmc†mcm , and calculated the commutator with the velocity operator, resulting in
the K-sum rule for q = 0. Here we generalize this result to q �= 0. It is tempting to
use x̂q = ∑

m e−iq·rm rmc†mcm . While the time derivative has the required property,
that ∂ x̂q/∂t = i[Ĥ kin, x̂q ] = v̂q , there are obvious difficulties with this definition
due to the divergence of rm in the thermodynamic limit. However, those difficulties
can be avoided. If we consider the following operator

p̂q ≡ − iqe

2�

∑
k

vk + vk−q

εk − εk−q
c†k ck−q , (9.68)

then we notice that there are no divergencies of the expression in the thermodynamic
limit for any q �= 0. Moreover, it is easy to verify, that

∂ p̂q/∂t = i
[

Ĥ0, p̂q

]
= ĵ

r
q (9.69)

which implies that p̂q corresponds to the momentum-space Fourier transform of the
dipole operator. The first term in (9.67) represents the response in the pq -channel
after an infinite amount of time, which is certainly zero. The second term can be
calculated directly from the commutation relations

�
〈[

p̂q , ĵ
r
−q

]〉
= iq2

e K r (q)

where

K r (q) = 1

4�

∑
k

{
(vk+q + vk)

2

εk+q − εk
+ (vk−q + vk)

2

εk−q − εk

} 〈
c†k ck

〉
(9.70)

Consequently

W r,0(q) = −πq2
e K r (q) (9.71)

The amount of spectral weight at finite frequencies exactly balances this amount,
hence
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W r,+(q) =
∞∫

0+
Reσ(q,ω)dω = πq2

e

2
K r (q) (9.72)

Let us now consider the properties of K r (q). In the first place it is interesting to look
at the limit q → 0. We can use that vk+q − vk = q · ∂2εk/∂k2 for the terms in the
numerators, and εk+q − εk = q · ∂εk/∂k + (q2/2)∂2εk/∂k2 in the denominators to
show that

lim
q→0

{
(vk+q + vk)

2

εk+q − εk
+ (vk−q + vk)

2

εk−q − εk

}
= 4

∂2εk

∂k2
. (9.73)

Consequently by comparing to (9.28) we see, that for q = 0 there is a perfect
compensation of the zero-frequency spectral weights of the diamagnetic and the
regular parts of the conductivity:

K r (0) = 1

�

∑
k

∂2εk

∂k2
〈c†k ck〉 = K (9.74)

Again we consider the most commonly encountered case: The free electron disper-
sion εk = k2/(2m) gives

∞∫
0+

Reσ(q,ω)dω = πq2
e

2m

∑
k

〈c†k ck〉 (9.75)

which is the same expression as the familiar f-sum rule, (9.63), and we see that in
this case K r (q) = K is independent of q.

With the tightbinding formula εk = −2t cos(ka) one obtains after some gonio-
metric manipulations

K r (q) = cos2
(qa

2

) 1

�

∑
k

2 T a2 cos(ka)
〈
c†k ck

〉
= K cos2

(qa

2

)
(9.76)

which corresponds exactly to the result in (9.64).
The fact that the same expression for K (q) is found in (9.76) and (9.64) indicates

the perfect compensation of the positive (diamagnetic) and negative (regular) zero-
frequency delta-functions. This resultmakes perfect sense physically; the implication
is that no dissipation-less DC currents can flow for any wave-vector. Presumably the
implementation of the Peierls substitution used here is quite accurate, despite some
ambiguity for any q �= 0 due to the course-graining procedure of the tight-binding
form.2

2 One can pose the questionwhether the corresponding expression for the current density satisfies the
continuity equation. On a fundamental level this relation expresses the conservation of the number
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Following (9.72) the spectral weight of the optical conductivity decreases as a
function of increasing q and vanishes at the Brillouin-zone boundary.
From inspection of (9.68) it is clear why this is the case: for q = π there is an
exact cancellation of terms in the numerator, i.e. vk + vk+π = 0. In other words, all
optical matrix elements are zero for q = π and consequently the intensity of the opti-
cal spectrum vanishes in this limit. While for general ε(k) dispersion such an exact
cancellation is not expected, yet this indicates that the trend that W (q) diminishes
for increasing q is the rule rather than the exception. With the advent of new experi-
mental techniques which allow the exploration of the optical conductivity at finite q
[2–4] the q-dependent optical conductivity sumrule in (9.72) provides a lower bound
on the intensity of the free carrier optical response of correlated electrons.
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Symbols
T ∗
2 versus T2, 12

d-wave BCS octet model, 90
d-wave superconductor, 74
d-wave symmetry, 74
s-wave symmetry, 82
2π phase winding, 101

A
Affin transformation, 80
Andreev, seeAndreev–Saint James (ASJ) re-

flections
Andreev–Saint James (ASJ) reflections, 111,

112, 118
Antiferromagnetic fluctuations, 92
Antiferromagnetic order, 25, 228
ARPES

1-step model, 36
3-step model, 36, 42
adiabatic limit, 44
conservation laws, 39
cross-section, 46, 49
electron analyzer, 52
experimental resolution, 53
kinematics, 38, 42
matrix element, 49, 51
sudden approximation, 36, 42
the technique, 36, 51

B
BCS superconductor, 82
Bi2Sr2CaCu2O8+δ , 76, 233
Bloch equations, 8
Bloch-states, 277

Blonder-Tinkham-Kalpwijk (BTK), 112,
116, 117

Bogoliubov arc, 90
Bogoliubov quasiparticles, 76
Bragg diffraction, magnetic, 220, 221
Bragg diffraction, neutron nuclear, 216
Bridgman-type anvil cell, 177
Brillouin zone

extended-zone scheme, 39
reduced-zone scheme, 39

Brillouin-zone boundary, 295
Broken spatial symmetries, 93

C
C2 symmetry, 95
C4 symmetry, 95
Ca2−xNaxCuO2Cl2, 87
CeCoIn5, 23, 150
CeIn3, 159
Central transition, 16
CeRhIn5, 139
Cobaltates, 63
Commutation relations, 293
Conductance

coherence peaks, 118
dynamical, 115, 118
peak, see conductance, zero bias
quantum channel, 114
zero bias, 118, 120

Contact
ballistic, see contact, Sharvin
resistance, 113
Sharvin, 112, 114
size, 116, 119
transparency, see transparency contact

Copper oxide superconductors, 139, 147
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Correlated electrons, 269
Correlation effects, see interaction, electron-

electron
Correlations, 54
Course graining, 277
Cuprate superconductors, 228
Cuprates

Ca2CuO2Cl2, 58
YBa2Cu3O6+x , 60

Current, 273
Current operator, 278, 279, 281
Current-current correlation function, 284

D
De Broglie waves, 88
De Haas van Alphen effect, 137–169

back-projection, 148
Dingle factor, 146, 158, 159, 165
Fermi liquid behaviour, 146
in quasi-two-dimensional compounds,
152

in three-dimensional metals, 150
Lifshitz-Kosevich formula, 145, 152,
159

measurement techniques, 153
choice of magnet, 158–159
field modulation, 153, 155
piezoresistive cantilevers, 156, 159
torque, 155, 157
tunnel diode oscillators, 157, 159

non-Fermi liquid behaviour, 146
Onsager relation, 140–142
signal analysis, 159–160
spin damping, 150
spin damping factor, 147–152
spin dependent effective mass, 142, 147
spin-zeros, 150
temperature dependence, 142–146
theory, 139–153

De Haas–van Alphen oscillations, 189
Debye-Waller factor, 216
Density matrix, 3

equilibrium, 5
statistical ensemble, 4
time dependence, 6

Density of states, 76
Detailed balance, 219
Diamagnetic part of the current, 280
Diamond anvil cell (DAC), 179
Dielectric constant, 271
Diffdrential tunneling conductance, 78
Dingle factor, 146, 152, 158, 159, 165

Dipole field operator, 292
Dislocation, 101
Displacement field, 273
Displacement vector, 80
Dissipation-less DC currents, 294
Drude-Lorentz expression, 288
Dynamic correlation function, 219
Dynamic structure factor, 220, 223
Dynamic structure factor, sum rule, 223

E
Effective mass, 139, 141–146, 159, 165, 167

spin dependent, 147, 150, 152
Electric field, 273
Electric field gradient (EFG), 14
Electrical transport, 183
Electromagnetic waves, 270
Electron energy loss spectroscopy (EELS),

274
Electron-phonon coupling, 58
Electron-spin resonance (ESR), 190
Electronic specific heat capacity

of CeCoIn5, 128, 130
of PuCoGa5, 128
of UBe13, 130

Ellipsometry, 270

F
F-sum rule, 291
Fermi function, 46, 78
Fermi surface, 137–139, 142, 150–152, 159
Fermi’s Golden Rule, 288
FFLO phase, 24
Field induced magnetism, 23
Field-of-view (FOV), 79
Fluctuation-dissipation theorem, 220
Forbidden transitions, 19
Franck-Condon effect

H2 molecule, 55
Free induction decay, 9
Frequency versus field plot, 2, 16, 18

G
Gas pressure cell, 180
Giaever tunneling, 112, 122
Ginzburg-Landau functional, 101
Green’s function

electron addition, 46
electron removal, 46
retarded, 46
time-ordered, 45
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H
Hall effect, 168
Heat capacity, 185

ac-method, 186
heat-pulse technique, 186

Heating, 114–115
Heisenberg representation, 282
Hole-doped cuprates, 74
Hole-like Fermi surface, 92
Hubbard band, 34
Hyperfine coupling, 20

in heavy fermions, 21

I
Incommensurate magnetic order, 232
Indenter-type pressure cell, 179
Infrared spectroscopy, 269
Inner potential, 41
Insulator

charge-transfer, 34
Mott, 34
Mott relativistic, 35, 66

Interaction
electron-boson, 128
electron-electron, 127
electron-phonon, 124, 125

Interface, 271
Intra-unit-cell nematicity, 95
Iridates

Na2IrO3, 67
Sr2IrO4, 65

J
Joint-density-of-states (JDOS), 88
Junction

mechanically controlled break, 117
tunneling, 112

K
K2IrCl6, 226
K-sum rule, 288
Kinetic energy sum rule, 291
Kondo lattice coherence, 21
Korringa constant, 23
Kubo formalism, 286

L
La2CuO4, 227, 228
La2CuO4, antiferromagnetic order, 229, 230
La2CuO4, spin wave dispersion, 231

La2CuO4, spin waves, 230, 231
La1.48Nd0.4Sr0.12CuO4, 232
La2−xBaxCuO4, 228, 232
La2−xBaxCuO4, magnetic dispersion, 232,

233
Larmor frequency, 2
Linear response, 278, 282
Longitudinal dielectric function, 274
Luttinger’s theorem, 92

M
Mössbauer spectroscopy, 191
Magnetic form factor, 222
Magnetic form factor, anisotropy, 225
Magnetic form factor, covalency, 225
Magnetic form factor, Cu2+, 227, 228
Magnetic form factor, Ir4+, 226
Magnetic impurity, 82
Magnetic permeability, 271
Magnetic scattering length, 218
Magnetic susceptibility, 187
Magnetic susceptibility, dynamic, 220
Magnetization, 187
Magnetostriction, 186
Manganites, 61
Manometer, 181

Tc of lead, indium, tin, 182
Cu2O NQR, 183
manganin gauge, 182
ruby fluoresce, 182

Many-body, 269
Mass enhancement, 112

factor, 123, 124
for CeCoIn5, 131
for cuprates, 127
for LSCO, 127
for MgB2, 125
for Nb, 124, 125
for PuCoGa5, 129
for SmFeAs, 132
for UBe13, 130
for YBCO, 127

Matrix element, 63
Maxwell equations, 271
Mean free path, 111, 113

of CeCoIn5, 130
of metal, 114
of MgB2, 125

Minimal substitution, 277
Modified Bridgman-type anvil cell, 178
Mott

criterion, 34, 66
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gap, 34
insulator, 34

Mott insulator, 74
Multi-anvil pressure cell, 180
Muon-spin resonance, μSR, 190
Muon-spin rotation, μSR, 190

N
Nanoscale electronic disorder, 85
Near-field techniques, 269
Nematic fluctuation, 101
Nernst effect, 157
Neutron absorption cross section, 211
Neutron diffraction, 187, 191
Neutron energy formulas, 207
Neutron energy units, 207
Neutron magnetic interaction, 210
Neutron magnetic scattering, 218
Neutron magnetic scattering cross section,

219
Neutron nuclear scattering, 213
Neutron nuclear scattering, coherent, 215
Neutron nuclear scattering, incoherent, 215
Neutron properties, 206
Neutron scattering, 191
Neutron scattering cross section, 211
Neutron scattering length, 210, 211
Neutron scattering, differential cross sec-

tion, 212, 213
Neutron sources, 207
NMR receivers, 11
Non-Fermi liquids, 143
Non-local optical spectroscopy, 269
Non-magnetic impurity, 82
Nuclear magnetic resonance (NMR), 190
Nuclear quadrupolar resonance (NQR), 18

O
Off-diagonal coherence, 8
Opposed-anvil type pressure cell, 176
Optical conductivity, 274
Optical constants, 270
Optical spectroscopy, 192
Oxygen dopant ions, 85

P
Pair density wave, 27
Partition function, 287
Pauli limited superconductivity, 24
Peierls substitution, 278

Phonons, neutron scattering cross section,
217

Pinholes, 117, 133
Piston-cylinder type pressure cell, 175
Planck units, 275
Plasma frequency, 288
Polarization, 270
Polarization density, 273
Polaron, 58
Precession, 3
Pressure cell, 174
Pressure transmitting medium, 183
Proximity effect, 118, 126
Pseudogap (PG), 74

Q
Q phase, 23

magnetic structure, 25
NMR spectra, 24

Quadrature detection, 11
Quadrupolar interaction, 14
Quadrupolar moment, 14
Quadrupolar nuclei, 14
Quadrupolar satellites, 16, 18
Quantum electrodynamics, 275
Quantum oscillations, see also de Haas van

Alphen effect, 137
Nernst effect, 157
Shubnikov-de Haas effect, 157
specific heat oscillations, 157

Quasiparticle, 47, 48, 65
Quasiparticle g-factor, 147
Quasiparticle interference (QPI), 88
Quasiparticle weight, 57, 59

R
Raman scattering, 192
Reflection, 271
Reflectivity, 273
Regular part of the current, 279
Regular part of the optical conductivity, 284
Regular part of the spectral weight, 292
Retardation effects, 112, 123
Rhodates

Sr2RhO4, 65
Rotating frame, 5
Rotation operators, 7
Ruthenates

Sr2RuO4, 65
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S
Saint James, seeAndreev–Saint James (ASJ)

reflections
Scattering

elastic, 114
inelastic, 114

length, 114, 115, 119
Screeining, 275
Second moment, 11
Self-energy, 46, 48

Fermi liquid, 47
Sharvin limit, 114, 119
Shubnikov de Haas effect, 157
Smectic modulations, 99
Spectral function, 45, 48

coherent, 48
Doniach-Sunjic, 57
Fermi liquid, 47
incoherent, 48
sum rule, 48, 49

Spectral weight, 280
coherent, 56, 57

vs. band filling, 64
vs. doping, 60
vs. photon polarization, 63
vs. spin-orbit interaction, 65
vs. temperature, 61

incoherent, 56, 57
Spectroscopic imaging scanning tunneling

microscopy (SI-STM), 78
Spin decoherence time, T2, 9
Spin echo, 11
Spin lattice relaxation, 13, 21

Moriya expression, 23
time constant T1, 9

Spin waves, 224
Spin waves, neutron scattering cross section,

225
Spin-liquid, 74
Spin-orbit coupling, 64, 65
Spin-wave dispersion, 224
Sr2CuO3, 227, 228
Sr2RuO4, 147, 160–166

de Haas van Alphen oscillations, 162
effective masses, 165, 166
Fermi surface, 163
Fermi surface warping, 164
linear specific heat vs. effective masses,
167

normal state properties, 161
resistivity anisotropy vs. Fermi surface
warping, 168

SrCuO2, 227

Stripe order, 232
Structure factor, neutron nuclear, 216
Sum rule, 288
Superconducting

coherence length, 112, 118, 119, 124
of CeCoIn5, 130
of cuprates, 122
of MgB2, 125
of Nb, 119, 124
of PuCoGa5, 129
of SmFeAs, 132
of UBe13, 130
of YBCO, 127

critical temperature, 115
gap, 111, 115

anisotropy, 119–121
order parameter, 112, 119–122

Superconductor, 286
Superexchange energy, 230
Superfluid density, 93
Superfluid helium, phonon-roton dispersion,

214
Surface photoelectric effect, 39, 43

T
Thermal conductivity, 184
Thermal expansion, 186
Thermal transport, 184
Thermodynamic limit, 293
Thermodynamical weight factors, 286
Thermoelectric power, 184
Tight-binding model, 276
Time operator, 17
Time-evolution operator, 282
Tip

point contact, 117
Topograph, 80
Topological defect, 101
Toroidal-anvil cells, 178
Transition metal oxides, 31, 32

3d-based, 58, 60, 61, 63
4d-based, 64
5d-based, 65, 67

Transmission, 271
Transparency

contact, 120
Transparency coefficient, 116

effective, 116, 118
Transverse dielectric function, 274
Transverse polarization, 274



302 Index

U
Unidirectional clusters, 97
Unitary quasiparticle scattering resonance,

82
UPt3, 139
URu2Si2, 147

V
Vector potential, 277
Velocity

critical, 115
Fermi, 113

effective, 112
mismatch, 114, 123
of Cu, 124
of Cuprates, 122

fully renormalized, 123

W
Wave-vector, 271
Work function, 78

X
X-ray diffraction, 187
X-ray spectroscopy, 192

Y
YBa2Cu3O6+y , 227, 233

Z
Zeeman interaction, 1
Zhang-Rice singlet, 59
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