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Preface

The 12th International Workshop on Coalgebraic Methods in Computer Science,
CMCS 2014, was held during April 5–6, 2014, in Grenoble, France, as a satellite event
of the Joint Conference on Theory and Practice of Software, ETAPS 2014. In more
than a decade of research, it has been established that a wide variety of state-based
dynamical systems, such as transition systems, automata (including weighted and
probabilistic variants), Markov chains, and game-based systems, can be treated uni-
formly as coalgebras. Coalgebra has developed into a field of its own interest pre-
senting a deep mathematical foundation, a growing field of applications, and
interactions with various other fields such as reactive and interactive system theory,
object-oriented and concurrent programming, formal system specification, modal and
description logics, artificial intelligence, dynamical systems, control systems, category
theory, algebra, analysis, etc. The aim of the workshop is to bring together researchers
with a common interest in the theory of coalgebras, their logics, and their applications.

Previous workshops of the CMCS series have been organized in Lisbon (1998),
Amsterdam (1999), Berlin (2000), Genova (2001), Grenoble (2002), Warsaw (2003),
Barcelona (2004), Vienna (2006), Budapest (2008), Paphos (2010), and Tallin (2012).
Starting in 2004, CMCS has become a biennial workshop, alternating with the Inter-
national Conference on Algebra and Coalgebra in Computer Science (CALCO), which,
in odd-numbered years, has been formed by the union of CMCS with the International
Workshop on Algebraic Development Techniques (WADT).

The CMCS 2014 program featured a keynote talk by Davide Sangiorgi (University
of Bologna, Italy), an invited talk by Ichiro Hasuo (University of Tokyo, Japan), and an
invited talk by Marina Lenisa (University of Udine, Italy). In addition, a special session
on game theory and coalgebras was associated with Marina Lenisa’s invited talk and
featuring tutorials by Paul-Andre Mellies (Université Paris Denis Diderot, France) and
Pierre Lescanne (Ecole Normale Superieure de Lyon, France).

This volume contains the revised contributions of the regular and invited papers
presented at CMCS 2014. A special thanks goes to all the authors for the high quality
of their contributions, and to the reviewers and Program Committee members for their
help in improving the papers presented at CMCS 2014.

April 2014 Marcello M. Bonsangue
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Higher-Order Languages: Bisimulation
and Coinductive Equivalences

(Extended Abstract)

Davide Sangiorgi(B)

Università di Bologna and INRIA, Bologna, Italy
sangiorgi@gmail.com

1 Summary

Higher-order languages have been widely studied in functional programming,
following the λ-calculus. In a higher-order calculus, variables may be instantiated
with terms of the language. When multiple occurrences of the variable exist, this
mechanism results in the possibility of copying the terms of the language.

Equivalence proof of computer programs is an important but challenging
problem. Equivalence between two programs means that the programs should
behave “in the same manner” under any context [Mor68]. Finding effective meth-
ods for equivalence proofs is particularly challenging in higher-order languages:
pure functional languages like the λ-calculus, and richer languages including non-
functional features such as non-determinism, information hiding mechanisms
(e.g., generative names, store, data abstraction), concurrency, and so on.

Bisimulation [Par81a,Par81b,Mil89,San09,San12] has emerged as a very
powerful operational method for proving equivalence of programs in various kinds
of languages, due to the associated co-inductive proof method. Further, a number
of enhancements of the bisimulation method have been studied, usually called up-
to techniques. To be useful, the behavioral relation resulting from bisimulation—
bisimilarity—should be a congruence. Bisimulation has been transplanted onto
higher-order languages by Abramsky [Abr90]. This version of bisimulation, called
applicative bisimulations, and variants of it, have received considerable atten-
tion [Gor93,GR96,Pit97,San98,Las98]. In short, two functions P and Q are
applicatively bisimilar when their applications P (M) and Q(M) are applica-
tively bisimilar for any argument M .

Applicative bisimulations have some serious limitations. For instance, they
are unsound under the presence of generative names [JR99] or data abstrac-
tion [SP05] because they apply bisimilar functions to an identical argument.
Secondly, congruence proofs of applicative bisimulations are notoriously hard.
Such proofs usually rely on Howe’s method [How96]. The method appears how-
ever rather subtle and fragile, for instance under the presence of generative
names [JR99], non-determinism [How96], or concurrency (e.g., [FHJ98]). Also,
the method is very syntactical and lacks good intuition about when and why
it works. Related to the problems with congruence are also the difficulties of

c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 3–9, 2014.
DOI: 10.1007/978-3-662-44124-4 1



4 D. Sangiorgi

applicative bisimulations with “up-to context” techniques (the usefulness of these
techniques in higher-order languages and its problems with applicative bisimula-
tions have been extensively studied by Lassen [Las98]; see also [San98,KW06]).

Congruence proofs for bisimulations usually exploit the bisimulation method
itself to establish that the closure of the bisimilarity under contexts is again a
bisimulation. To see why, intuitively, this proof does not work for applicative
bisimulation, consider a pair of bisimilar functions P1, Q1 and another pair of
bisimilar terms P2, Q2. In an application context they yield the terms P1P2 and
Q1Q2 which, if bisimilarity is a congruence, should be bisimilar. However the
argument for the functions P1 and Q1 are bisimilar, but not necessarily identical:
hence we are unable to apply the bisimulation hypothesis on the functions.

Proposals for improving applicative bisimilarity include environmental bisim-
ulations [SKS11,KLS11,PS12] and logical bisimulations [SKS07]. A key idea of
environmental bisimulations is to make a clear distinction between the tested
terms and the environment. An element of an environmental bisimulation has,
in addition to the tested terms, a further component, the environment, which
expresses the observer’s current knowledge. (In languages richer than pure λ-
calculi, there may be other components, for instance to keep track of generated
names.) The bisimulation requirements for higher-order inputs and outputs nat-
urally follow. For instance, in higher-order outputs, the values emitted by the
tested terms are published to the environment, and are added to it, as part of
the updated current knowledge. In contrast, when the tested terms perform a
higher-order input (e.g., in λ-calculi the tested terms are functions that require
an argument), the arguments supplied are terms that the observer can build
using the current knowledge; that is, terms obtained by composing the values
currently in the environment using the operators of the calculus.

A possible drawback of environmental bisimulations over, say, applicative
bisimulations, is that the set of arguments to related functions that have to
be considered in the bisimulation clause is larger (since it also includes non-
identical arguments). As a remedy to this is offered by up-to techniques (in
particular techniques involving up-to contexts), which are easier to establish for
environmental bisimulations than for applicative bisimulations, and which allow
us to considerably enhance the bisimulation proof method.

The difference between environmental bisimulations and logical bisimulations
is that the latter does not make use of an explicit environment: the environment
is implicitly taken to be the set of pairs forming the bisimulation. This simplifies
the definition, but has the drawback of making the functional of bisimulation
non-monotone. In λ-calculi one usually is able to show that the functional has
nevertheless a greatest fixed-point which coincides with contextual equivalence.
But in richer languages this does not appear to be possible.

For bisimulation and coinductive techniques, a non-trivial extension of higher-
order languages concern probabilities. Probabilistic models are more and more
pervasive. Not only they are a formidable tool when dealing with uncertainty
and incomplete information, but they sometimes are a necessity rather than an
alternative, like in computational cryptography (where, e.g., secure public key
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encryption schemes need to be probabilistic [GM84]). A nice way to deal compu-
tationally with probabilistic models is to allow probabilistic choice as a primitive
when designing algorithms, this way switching from usual, deterministic compu-
tation to a new paradigm, called probabilistic computation. Examples of appli-
cation areas in which probabilistic computation has proved to be useful include
natural language processing [MS99], robotics [Thr02], computer vision [CRM03],
and machine learning [Pea88].

This new form of computation, of course, needs to be available to program-
mers to be accessible. And indeed, various programming languages have been
introduced in the last years, spanning from abstract ones [JP89,RP02,PPT08]
to more concrete ones [Pfe01,Goo13], being inspired by various programming
paradigms like imperative, functional or even object oriented. A quite common
scheme consists in endowing any deterministic language with one or more prim-
itives for probabilistic choice, like binary probabilistic choice or primitives for
distributions.

One class of languages which cope well with probabilistic computation are
functional languages. Indeed, viewing algorithms as functions allows a smooth
integration of distributions into the playground, itself nicely reflected at the level
of types through monads [GAB+13,RP02]. As a matter of fact, many exist-
ing probabilistic programming languages [Pfe01,Goo13] are designed around the
λ-calculus or one of its incarnations, like Scheme. All these allows to write higher-
order functions (programs can take functions as inputs and produce them as
outputs).

Bisimulation and context equivalence in a probabilistic λ-calculus have been
considered in [ALS14], where a technique is proposed for proving congruence of
probabilistic applicative bisimilarity. While the technique follows Howe’s method,
some of the technicalities are quite different, relying on non-trivial “disentan-
gling” properties for sets of real numbers, these properties themselves proved
by tools from linear algebra. The bisimulation is proved to be sound for contex-
tual equivalence. Completeness, however, fails: applicative bisimilarity is strictly
finer. A subtle aspect is also the late vs. early formulation of bisimilarity; with a
choice operator the two versions are semantically different; the congruence proof
of bisimilarity crucially relies on the late style.

Context equivalence and bisimilarity, however, coincidence on pure λ-terms.
The resulting equality is that induced by Levy-Longo trees (LLT), generally
accepted as the finest extensional equivalence on pure λ-terms under a lazy
regime. The proof follows Böhm-out techniques along the lines of [San94,SW01].
The result is in sharp contrast with what happens under a nondeterministic
interpretation of choice (or in the absence of choice), where context equivalence
is coarser than LLT equality.

A coinductive characterisation of context equivalence on the whole
probabilistic language is possible via an extension in which weighted formal
sums — terms akin to distributions — may appear in redex position. Thinking
of distributions as sets of terms, the construction reminds us of the reduction of
nondeterministic to deterministic automata. The technical details are however
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quite different, because we are in a higher-order language and therefore — once
more — we are faced with the congruence problem for bisimulation, and because
formal sums may contain an infinite number of terms. The proof of congruence of
bisimulation in this extended language uses the technique of logical bisimulation,
therefore allowing bisimilar functions to be tested with bisimilar (rather than
identical) arguments (more precisely, the arguments should be in the context
closure of the bisimulation). In the probabilistic setting, however, the ordinary
logical bisimulation game has to be modified substantially. For instance, formal
sums represent possible evolutions of running terms, hence they should appear
in redex position only (allowing them anywhere would complicate matters con-
siderably). The obligation of redex position for certain terms is in contrast with
the basic schema of logical bisimulation, in which related terms can be used as
arguments to bisimilar functions and can therefore end up in arbitrary positions.
This problem is solved by moving to coupled logical bisimulations, where a bisim-
ulation is formed by a pair of relations, one on ordinary terms, the other on terms
extended with formal sums. The bisimulation game is played on both relations,
but only the first relation is used to assemble input arguments for functions.

In higher-order languages coinductive equivalences and techniques appear
to be more fundamental than in first-order languages. Evidence of this are the
above-mentioned results of correspondence between forms of bisimilarity and
contextual equivalence in various λ-calculi. Contextual equivalence is a ‘may ’
of form of testing that, in first-order languages (e.g., CCS) is quite different
from bisimilarity or even simulation equivalence. Indeed, in general, higher-
order languages have a stronger discriminating power than first-order languages
[BSV14]. For instance, if we use higher-order languages to test first-order lan-
guages, using (may-like) contextual equivalence, then the equivalences induced
is often finer than the equivalences induced by first-order languages (usually
trace equivalence); moreover, the natural definition of the former equivalences is
coinductive, whereas that for the latter equivalences is inductive. In distributed
higher-order languages, a construct that may strongly enhance the discrimi-
nating power is passivation [SS03,GH05a,LSS09a,LSS09b,LSS11,LPSS11,PS12,
KH13]. Passivation offers the capability of capturing the content of a certain
location into a variable, possibly copying it, and then restarting the execution in
different contexts. The same discriminating power can also be obtained in call-
by-value λ-calculi (that is, without concurrency or nondeterminism) extended
with a location-like construct akin to a store of imperative λ-calculi, and oper-
ators for reading the content of this location, overriding it, and, if the location
contains a process, for consuming such process (i.e., performing observations
on the process actions). When the tested first-order processes are probabilistic,
the difference in discriminating power between first-order and higher-order lan-
guages increases further: in higher-order languages equipped with passivation,
or in a call-by-value λ-calculus, bisimilarity may be recovered [BSV14].
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Abstract. We devise a generic framework where a weakest precondi-
tion semantics, in the form of indexed posets, is derived from a monad
whose Kleisli category is enriched by posets. It is inspired by Jacobs’
recent identification of a categorical structure that is common in various
predicate transformers, but adds generality in the following aspects: (1)
different notions of modality (such as “may” vs. “must”) are captured
by Eilenberg-Moore algebras; (2) nested branching—like in games and in
probabilistic systems with nondeterministic environments—is modularly
modeled by a monad on the Eilenberg-Moore category of another.

1 Introduction

Among various styles of program semantics, the one by predicate transform-
ers [5] is arguably the most intuitive. Its presentation is inherently logical, rep-
resenting a program’s behaviors by what properties (or predicates) hold before
and after its execution. Predicate transformer semantics therefore form a basis
of program verification, where specifications are given in the form of pre- and
post-conditions [14]. It has also been used for refinement of specifications into
programs (see e.g. [30]). Its success has driven extensions of the original non-
deterministic framework, e.g. to the probabilistic one [18,24] and to the setting
with both nondeterministic and probabilistic branching [31].

A Categorical Picture. More recently, Jacobs in his series of papers [16,17]
has pushed forward a categorical view on predicate transformers. It starts with a
monad T that models a notion of branching. Then a program—henceforth called
a (branching) computation—is a Kleisli arrow X → TY ; and the the weakest
precondition semantics is given as a contravariant functor P

K� : K�(T )op → A,
from the Kleisli category to the category A of suitable ordered algebras.

For example, in the basic nondeterministic setting, T is the powerset monad
P on Sets and A is the category CL∧ of complete lattices and

∧
-preserving

maps. The weakest precondition functor P
K� : K�(T )op → CL∧ then carries a

function f : X → PY to

wpre(f) : PY −→ PX , Q �−→ {x ∈ X | f(x) ⊆ Q} . (1)

Moreover it can be seen that: (1) the functor P
K� factors through the comparison

functor K : K�(P) → EM(P) to the Eilenberg-Moore category EM(P); and (2)
the extended functor P

EM has a dual adjoint S. The situation is as follows.
c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 10–32, 2014.
DOI: 10.1007/978-3-662-44124-4 2
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CL∧
S

��

P
EM

�� ⊥ (CL∨)op ∼= EM(P)op

K�(P)op Kop

��

P
K� = P

EM◦Kop

�� (2)

Here the functor K carries f : X → TY to f† : PX → PY, P �→ ⋃
x∈P f(x)

and is naturally thought of as a strongest postcondition semantics. Therefore
the picture (2)—understood as the one below—identifies a categorical structure
that underlies predicate transformer semantics. The adjunction here—it is in fact
an isomorphism in the specific instance of (2)—indicates a “duality” between
forward and backward predicate transformers.

(backward predicate transformers )
S ��

�� ⊥ ( forward predicate transformers )

(computations)
strongest postcondition

semantics

��
weakest precondition

semantics

		 (3)

Jacobs has identified other instances of (3) for: discrete probabilistic branch-
ing [16]; quantum logic [16]; and continuous probabilistic branching [17]. In all
these instances the notion of effect module—originally from the study of quan-
tum probability [6]—plays an essential role as algebras of “quantitative logics.”

Towards Generic Weakest Precondition Semantics. In [16,17] the picture (3)
is presented through examples and no categorical axiomatics—that induce the
picture—have been explicitly introduced. Finding such is the current paper’s
aim. In doing so, moreover, we acquire additional generality in two aspects:
different modalities and nested branching.

To motivate the first aspect, observe that the weakest precondition semantics
in (1) is the must semantics. The may variant looks as interesting; it would carry
a postcondition Q ⊆ Y to {x ∈ X | f(x) ∩ Q �= ∅}. The difference between the
two semantics is much like the one between the modal operators � and �.

On the second aspect, situations are abound in computer science where a
computation involves two layers of branching. Typically these layers correspond
to two distinct players with conflicting interests. Examples are games, a two-
player version of automata which are essential tools in various topics including
model-checking; and probabilistic systems where it is common to include nonde-
terministic branching too for modeling the environment’s choices. Further details
will be discussed later in Sect. 3.

Predicates and Modalities from Monads. In this paper we present two cate-
gorical setups that are inspired by [4,23]—specifically by their use of T1 as a
domain of truth values or quantities.

The first “one-player” setup is when we have only one layer of branching.
Much like in [16,17] we start from a monad T . Assuming that T is order-
enriched—in the sense that its Kleisli category K�(T ) is Posets-enriched—we
observe that:
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– a natural notion of truth value arises from an object TΩ (typically Ω = 1);
– and a modality (like “may” and “must”) corresponds to a choice of an

Eilenberg-Moore algebra τ : T (TΩ) → TΩ.

The required data set (T,Ω, τ) shall be called a predicate transformer situation.
We prove that it induces a weakest precondition semantics functor K�(T )op →
Posets, and that it factors through K : K�(T ) → EM(T ), much like in (2).
The general setup addresses common instances like the original nondeterministic
one [5] and the probabilistic predicate transformers in [18,24]. Moreover it allows
us to systematically search for different modalities, leading e.g. to a probabilistic
notion of partial correctness guarantee (which does not seem well-known).

The other setup is the “two-player” one. It is much like a one-player setup
built on another, with two monads T and R and two “modalities” τ and ρ.
A potential novelty here is that R is a monad on EM(T ); this way we manage
some known complications in nested branching, such as the difficulty of combin-
ing probability and nondeterminism. We prove that the data set (T,Ω, τ,R, ρ)
gives rise to a weakest precondition semantics, as before. Its examples include: a
logic of forced predicates in games; and the probabilistic predicate transformers
in [31].

In this paper we focus on one side of predicate transformers, namely weakest
precondition semantics. Many components in the picture of [16,17] are therefore
left out. They include the adjoint S in (3), and the role of effect modules. Indeed,
on the top-left corner of (3) we always have Posets which is less rich a structure
than complete lattices or effect modules. Incorporating these is future work.

Organization of the Paper. In Sect. 2 we introduce our first “one-player”
setup, and exhibit its examples. Our second “two-player” setup is first moti-
vated in Sect. 3 through the examples of games and probabilistic systems, and
is formally introduced in Sect. 4. Its examples are described in Sect. 5 in detail.
In Sect. 6 we conclude.

X
ηX ��

id 

������� TX
a��

X

T (TX) Ta ��
μX ��

TX
a��

TX a
�� X

(4)

Notations and Terminologies. For a monad T , a
T -algebra TX

a→ X shall always mean an Eilenberg-
Moore algebra for T , making the diagrams on the right
commute. For categorical backgrounds see e.g. [1,28].

Given a monad T on C, an arrow in the Kleisli
category K�(T ) is denoted by X �→ Y ; an identity
arrow is by idK�(T )

X ; and composition of arrows is by
g 
 f . These are to be distinguished from X → Y , idX and g ◦ f in the base
category C.

2 Generic Weakest Preconditions, One-Player Setting

2.1 Order-Enriched Monad

We use monads for representing various notions of “branching.” These monads
are assumed to have order-enrichment (� for, roughly speaking, “more options”);
and this will be used for an entailment relation, an important element of logic.

The category Posets is that of posets and monotone functions.
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Definition 2.1. An order-enriched monad T on a category C is a monad
together with a Posets-enriched structure of the Kleisli category K�(T ).

The latter means specifically: (1) each homset K�(T )(X,Y ) = C(X,TY ) car-
ries a prescribed poset structure; and (2) composition 
 in K�(T ) is monotone
in each argument. Such order-enrichment typically arises from the poset struc-
ture of TY in the pointwise manner. In the specific setting of C = Sets such
enrichment can be characterized by substitutivity and congruence of orders on
TX; see [21].

Below are some examples of order-enriched monads. Our intuition about
an order-enriched monad T is that it represents one possible branching type,
where ηX : X → TX represents the trivial branching with a unique option and
μX : T (TX) → TX represents flattening ‘branching twice’ into ‘branching once’
(see [13]). In fact each of the examples below has the Kleisli category K�(T )
enriched by the category Cppo of pointed cpo’s and continuous maps—not just
by Posets—and hence is suited for generic coalgebraic trace semantics [13].

Example 2.2.

1. The lift monad L = 1 + ( )—where the element of 1 is denoted by ⊥—
has a standard monad structure induced by coproducts. For example, the
multiplication μL : 1+1+X → 1+X carries x ∈ X to itself and both ⊥’s to
⊥. The set LX is a pointed dcpo with the flat order (⊥ � x for each x ∈ X).
The lift monad L models the “branching type” of potential nontermination.

2. The powerset monad P models (possibilistic) nondeterminism. Its action on
arrows takes direct images: (Pf)U = {f(x) | x ∈ U}. Its unit is given by
singletons: ηP

X = { } : X → PX, and its multiplication is by unions: μP
X =⋃

: P(PX) → PX.
3. The subdistribution monad Dmodels probabilistic branching. It carries a set
X to the set of (probability) subdistributions over X:

DX :=
{
d : X → [0, 1]

∣
∣ ∑

x∈X d(x) ≤ 1
}

;

such d is called a subdistribution since the values need not add to 1. Given
an arrow f : X → Y in Sets, Df : DX → DY is defined by (Df)(d)(y) :=∑
x∈f−1({y}) d(x). Its unit is the Dirac (or pointmass) distribution: ηD

X(x) =
[x �→ 1; x′ �→ 0 (for x′ �= x)]; its multiplication is defined by μD

X(a) = [x �→∑
d∈DX a(d) · d(x)] for a ∈ D(DX).

Besides, the quantum branching monad Q is introduced in [12] for the purpose
of modeling a quantum programming language that obeys the design principle
of “quantum data, classical control.” It comes with an order-enrichment, too,
derived from the Löwner partial order between positive operators. Yet another
example is the continuous variant of D, namely the Giry monad on the category
Meas of measurable spaces [7].
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2.2 PT Situation and Generic Weakest Precondition Semantics

We introduce our first basic setup for our generic weakest precondition semantics.
In our main examples we take C = Sets and Ω = 1 (a singleton).

Definition 2.2 (PT situation). A predicate transformer situation (a PT sit-
uation for short) over a category C is a triple (T,Ω, τ) of

– an order-enriched monad T on C;
– an object Ω ∈ C; and
– an (Eilenberg-Moore) algebra τ : T (TΩ) → TΩ that satisfies the following

monotonicity condition: for each X ∈ C, the correspondence

(Φτ )X : C(X,TΩ) −→ C(TX, TΩ) , i.e. K�(T )(X,Ω) −→ K�(T )(TX,Ω) ,

given by
(
X

p→ TΩ
) �−→ (

TX
Tp→ T (TΩ) τ→ TΩ

)

is monotone with respect to the order-enrichment of the Kleisli category K�(T )
(Definition 2.1). Note here that Φτ : C( , TΩ) ⇒ C(T , TΩ) is nothing but
the natural transformation induced by the arrow τ via the Yoneda lemma.

The data τ is called a modality ; see the introduction (Sect. 1) and also Sect. 2.3
below.

The following lemma gives a canonical (but not unique) modality for T .

Lemma 2.4. If T is an order-enriched monad, (T,Ω, μΩ) is a PT situation.

Proof. We have only to check the monotonicity condition of μΩ in Definition 2.2.
It is easy to see that (ΦμΩ

)X = μΩ ◦ T ( ) : C(X,TΩ) → C(TX, TΩ) is equal
to ( ) 
 (idTX)∧ : K�(T )(X,Ω) → K�(T )(TX,Ω). Here (idTX)∧ : TX �→ X is
the arrow that corresponds to the identity idTX in C. The claim follows from
the monotonicity of 
. ��

We shall derive a weakest precondition semantics from a given PT situation
(T,Ω, τ). The goal would consist of:

– a (po)set P
K�(τ)(X) of predicates for each object X ∈ C, whose order �

represents an entailment relation between predicates; and
– an assignment, to each (branching) computation f : X → TY in C, a predicate

transformer
wpre(f) : P

K�(τ)(Y ) −→ P
K�(τ)(X) (5)

that is a monotone function.

Since a computation is an arrow f : X �→ Y in K�(T ), we are aiming at a functor

P
K�(τ) : K�(T )op −→ Posets . (6)

Such a functor is known as an indexed poset, a special case of indexed categories.
These “indexed” structures are known to correspond to “fibered” structures
(poset fibrations and (split) fibrations, respectively), and all these have been
used as basic constructs in categorical logic (see e.g. [15]). An indexed poset
like (6) therefore puts us on a firm footing.
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Proposition 2.5 (the indexed poset P
K�(τ)). Given a PT situation (T,Ω, τ),

the following defines an indexed poset P
K�(τ) : K�(T )op → Posets.1

– On an object X ∈ K�(T ), P
K�(τ)(X) := K�(T )(X,Ω) = C(X,TΩ).

– On an arrow f : X �→ Y , P
K�(τ)(f) : C(Y, TΩ) → C(X,TΩ) is defined by

(
Y

q→ TΩ
) �−→ (

X
f→ TY

Tq→ T (TΩ) τ→ TΩ
)
.

Proof. We need to check: the monotonicity of P
K�(τ)(f); and that the func-

tor P
K�(τ) indeed preserves identities and composition of arrows. These will be

proved later, altogether in the proof of Theorem 2.10. ��
A consequence of the proposition—specifically the functoriality of P

K�(τ)—is
compositionality of the weakest precondition semantics: given two computations
f : X → TY , g : Y → TU and a postcondition r : U → T1, we have

P
K�(τ)(g 
 f)(r) = P

K�(τ)(f)
(

P
K�(τ)(g)(r)

)
.

That is, the semantics of a sequential composition g 
 f can be computed step
by step.

2.3 Examples of PT Situations

For each of T = L,P,D in Example 2.2, we take Ω = 1 and the set T1 is
naturally understood as a set of “truth values” (an observation in [4,23]):

L1 =
[ (tt := ∗)

(ff := ⊥)

�

]

, P1 =
[ (tt := 1)

(ff := ∅)�

]

, and D1 =
(
[0, 1], ≤ )

.

Here ∗ is the element of the argument 1 in L1. Both L1 and P1 represent the
Boolean truth values. In the D case a truth value is r ∈ [0, 1]; a predicate, being
a function X → [0, 1], is hence a random variable that tells the certainty with
which the predicate holds at each x ∈ X.

We shall introduce modalities for these monads T and Ω = 1. The following
observation (easy by diagram chasing) will be used.

Lemma 2.6. The category EM(T ) of Eilenberg-Moore algebra is iso-closed in
the category of functor T -algebras. That is, given an Eilenberg-Moore algebra
a : TX → X, an arrow b : TY → Y , and an isomorphism f : X ∼=→ Y such that
f ◦ a = b ◦ Tf , the arrow b is also an Eilenberg-Moore algebra. ��

The Lift Monad L: τtotal and τpartial. We have the following two modalities
(and none other, as is easily seen).

1 For brevity we favor the notation P
K�(τ) over more appropriate P

K�(T, Ω, τ).
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τtotal, τpartial : {⊥}+ {tt, ff} = L(L1) −→ L1 = {tt, ff} ,
τtotal : ⊥ �→ ff , tt �→ tt , ff �→ ff ,

τpartial : ⊥ �→ tt , tt �→ tt , ff �→ ff .

The one we obtain from multiplication μL
1 is τtotal; the other τpartial is nonetheless

important in program verification. Given q : Y → L1 and f : X → LY where f
is understood as a possibly diverging computation from X to Y , the predicate

P
K�(τpartial)(f)(q) = τpartial ◦ Lq ◦ f : X −→ L1

carries x ∈ X to tt in case f(x) = ⊥, i.e., if the computation is diverging. This
is therefore a partial correctness specification that is common in Floyd-Hoare
logic (see e.g. [37]). In contrast, using τtotal, the logic is about total correctness.

The Powerset Monad P : τ� and τ�. The monad multiplication μP
1 yields a

modality which shall be denoted by τ�. The other modality τ� is given via the
swapping σ : P1 ∼=→ P1:

P(P1)
τ� ��

Pσ

∼=
�� P(P1)

τ���
P1 P1 ;

σ

∼=��

explicitly,
τ�{} = ff, τ�{tt} = tt, τ�{ff} = ff, τ�{tt, ff} = tt;
τ�{} = tt, τ�{tt} = tt, τ�{ff} = ff, τ�{tt, ff} = ff.

(7)

In view of Lemma 2.6, we have only to check that the map τ� satisfies the
monotonicity condition in Definition 2.2. We first observe that, for h : X → P1
and U ∈ PX,

(τ� ◦ Ph)(U) = ff ⇐⇒ ff ∈ (Ph)(U) ⇐⇒ ∃x ∈ U. h(x) = ff ,

where the first equivalence is by (7). Now assume that f � g : X �→ 1 and
(τ� ◦ Pg)(U) = ff. For showing τ� ◦ Pf � τ� ◦ Pg it suffices to show that
(τ� ◦ Pf)(U) = ff; this follows from the above observation.

The modalities τ� and τ� capture the may and must weakest preconditions,
respectively. Indeed, given a postcondition q : Y → P1 and f : X → PY , we have
P

K�(τ�)(f)(q)(x) = tt if and only if there exists y ∈ Y such that y ∈ f(x) and
q(y) = tt; and P

K�(τ�)(f)(q)(x) = tt if and only if y ∈ f(x) implies q(y) = tt.
Moreover, we can show that τ� and τ� are the only modalities (in the sense of

Definition 2.2) for T = P and Ω = 1. Since the unit law in (4) forces τ{tt} = tt
and τ{ff} = ff, the only possible variations are the following τ1 and τ2 (cf. (7)):

τ1{} = tt , τ1{tt, ff} = tt ; τ2{} = ff , τ2{tt, ff} = ff .

Both of these, however, fail to satisfy the multiplication law in (4).

{{}, {ff}} � Pτ1 ��
�⋃

P1 ��
{tt, ff}

�
τ1��{ff} �

τ1
�� ff 	= tt

{{}, {tt}} � Pτ2 ��
�⋃

P1 ��
{tt, ff}

�
τ2��{tt} �

τ2
�� tt 	= ff

The monotonicity condition in Definition 2.2, in the case of T ∈ {L,P} (hence
TΩ ∼= 2), coincides with monotonicity of a predicate lifting 2( ) ⇒ 2T ( ). The
latter is a condition commonly adopted in coalgebraic modal logic (see e.g. [25]).
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The Subdistribution Monad D : τtotal and τpartial. The modality τtotal :
D[0, 1] → [0, 1] that arises from the multiplication μD

1 is such that: given q : Y →
D1 and f : X → DY , we have P

K�(τtotal)(f)(q)(x) =
∑
y∈Y q(y) · f(x)(y). This

is precisely the expected value of the random variable q under the distribution
f(x); thus τtotal yields the probabilistic predicate transformer of [18,24].

In parallel to the powerset monad case, we have an isomorphism σ : D1 ∼=→
D1, p �→ 1−p. Another modality τpartial : D[0, 1] → [0, 1] then arises by τpartial :=
σ ◦ τtotal ◦ Dσ like in (7), for which we have

τpartial(d) =
(
1−∑

r∈[0,1] d(r)
)

+
∑
r∈[0,1] r · d(r) and

P
K�(τpartial)(f)(q)(x) =

(
1−∑

y∈Y f(x)(y)
)

+
∑
y∈Y q(y) · f(x)(y) .

In the second line, the value 1−∑
y∈Y f(x)(y)—the probability of f ’s divergence—

is added to the τtotal case. Therefore the modalities τpartial and τtotal, much like in
the case of T = L, carry the flavor of partial and total correctness guarantee.

To see that τpartial is indeed a modality is easy: we use Lemma 2.6; and
the monotonicity can be deduced from the following explicit presentation of
τpartial ◦ Dp for p : X → D1 = [0, 1]. For each d ∈ DX,

(τpartial ◦ Dp)(d) = τpartial

[
r �→∑x∈p−1({r}) d(x)

]
r∈[0,1]

=
(
1 −∑r∈[0,1]

∑
x∈p−1({r}) d(x)

)
+
∑

r∈[0,1] r
∑

x∈p−1({r}) d(x)

=
(
1 −∑x∈X d(x)

)
+
∑

x∈X p(x) · d(x) .

We do not yet know if τtotal and τpartial are the only modalities for D and Ω = 1.

Remark 2.7. We note the difference between a subdistribution d ∈ DX and a
predicate (i.e. a random variable) p : X → D1. An example of the latter is p

that is everywhere 1—this is the truth predicate. In contrast, the former d ∈ DX
is subject to the (sub)normalization condition

∑
x d(x) ≤ 1. We understand it as

one single “current state” whose whereabouts are known only probabilistically.

2.4 Factorization via the Eilenberg-Moore Category

The indexed poset P
K�(τ) : K�(T )op → Posets in Proposition 2.5 is shown

here to factor through the comparison functor K : K�(T ) → EM(T ), much like
in (2). In fact it is possible to see K as a strongest postcondition semantics ; see
Remark 2.11.

We will be using the following result.

Lemma 2.8. Let T be an order-enriched monad on C, X,Y,U ∈ C and f : X →
Y be an arrow in C. Then ( ) ◦ f : C(Y, TU) → C(X,TU) is monotone.

Proof. Given g : Y → TU in C,

g ◦ f = μU ◦ ηTU ◦ g ◦ f = μU ◦ Tg ◦ Tf ◦ ηX = μU ◦ Tg ◦ Tf ◦ μX ◦ ηTX ◦ ηX

= μU ◦ Tg ◦ μY ◦ T (Tf) ◦ ηTX ◦ ηX =
(
X

JηX

�→ TX
Tf

�→ Y
g

�→ U
)
,
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where J : Sets → K�(T ) is the Kleisli inclusion that sends the arrow ηX : X →
TX to ηTX ◦ ηX : X �→ TX. In the calculation we used the monad laws as well
as the naturality of η and μ. The correspondence ( )
 (Tf 
JηX) is monotone
by assumption (Definition 2.1); this proves the claim. ��
Proposition 2.9. (the indexed poset P

EM(τ)). A PT situation (T,Ω, τ)
induces an indexed poset P

EM(τ) : EM(T )op → Posets in the following way.

– On objects,

P
EM(τ)

( TX↓a
X

)
:= EM(T )

( TX↓a
X

,
T (TΩ)

↓τ
TΩ

)

where the order � on the set EM(T )(a, τ) is inherited from C(X,TΩ) via the
forgetful functor UT : EM(T ) → C.

– On an arrow f : (TX a→ X) → (TY b→ Y ),

P
EM(τ)(f) : EM(T )

( TY↓b
Y

,

T (TΩ)
↓τ

TΩ

) −→ EM(T )
( TX↓a

X
,

T (TΩ)
↓τ

TΩ

)
, q �−→ q ◦ f .

Proof. The monotonicity of P
EM(τ)(f) follows from the order-enrichment of T

via Lemma 2.8. The functoriality of P
EM(τ) is obvious. ��

Theorem 2.10. For a PT situation (T,Ω, τ), the following diagram commutes
up-to a natural isomorphism. Here K is the comparison functor.

Posets
P

EM(τ)
��

Ψ⇑∼= EM(T )op

K�(T )op Kop

��
P

K�(τ)

 (8)

Proof. (Also of Proposition 2.5) The natural isomorphism Ψ in question is of the
type

ΨX : P
K�(τ)(X) = C(X,TΩ)

∼=−→ EM(T )
( T (TX)

↓μX
TX

,
T (TΩ)

↓τ
TΩ

)
= P

EM(τ)(KX)

and it is defined by the adjunction C(X,UT τ) ∼= EM(T )(μX , τ) where UT is the

forgetful functor. Explicitly: ΨX
(
X

p→ TΩ
)

=
(
TX

Tp→ T (TΩ) τ→ TΩ
)
; and its

inverse is Ψ−1
X

(
TX

f→ TΩ
)

=
(
X

ηX→ TX
f→ TΩ

)
. The function ΨX is monotonic

by the monotonicity of τ , see Definition 2.2; so is its inverse Ψ−1
X by Lemma 2.8.

Let us turn to naturality of Ψ . Given f : X �→ Y in K�(T ), it requires

C(Y, TΩ)
P

K�(τ)(f) = τ◦T ( )◦f ��

ΨY

∼=
�� EM(T )(μY , τ)

P
EM(τ)(Kf) = ( )◦μY ◦Tf��

C(X,TΩ)
ΨX

∼=
�� EM(T )(μX , τ) .

(9)
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Indeed, given q : Y → TΩ,

P
EM(τ)(Kf)(ΨY q) = P

EM(τ)(Kf)(τ ◦ Tq) = τ ◦ Tq ◦ μY ◦ Tf
= τ ◦ μTΩ ◦ T (Tq) ◦ Tf = τ ◦ Tτ ◦ T (Tq) ◦ Tf =

(
ΨX ◦ P

K�(τ)(f)
)
q ,

where the third equality is naturality of μ and the fourth is the multiplication
law of τ (see (4)). By this naturality, in particular, we have that P

K�(τ)(f) is
monotone (since the other three arrows are monotone). This is one property
needed in Proposition 2.5; the other—functoriality of P

K�(τ)—also follows from
naturality of Ψ , via the functoriality of K and P

EM(τ). ��
Remark 2.11. The comparison functor K : K�(T ) → EM(T ) can be seen as a
strongest postcondition semantics. Given a (branching) computation f : X →
TY , we obtain

spost(f) := μY ◦ Tf : TX −→ TY

that is an algebra morphism Kf between free algebras. When T = P this indeed
yields a natural notion: concretely it is given by spostP(f)(S) = {y | ∃x ∈ S. y ∈
fx}; here we think of subsets as predicates. Some remarks are in order.

Firstly, note that the notion of predicate here diverges in general from the
one in the weakest precondition semantics. This is manifest when T = D: the
former is a subdistribution d ∈ DX (“partial information on the current state’s
whereabouts”, see Remark 2.7), while the latter is a random variable p : X →
[0, 1].

Secondly, there is no notion of modality involved here. This is unsatisfac-
tory because, besides the above strongest postcondition semantics spostP(f) for
T = P that carries the “may” flavor, the “must” variant spostP

must(f) is also
conceivable such that spostP

must(f)(S) = {y | ∀x ∈ S. y ∈ fx}. This does not
arise from the comparison functor K.

3 The Two-Player Setting: Introduction

We extend the basic framework in the previous section by adding another layer
of branching. This corresponds to adding another “player” in computations or
systems. The additional player typically has an interest that conflicts with the
original player’s: the former shall be called Opponent and denoted by O, while
the latter (the original player) is called Player P.2

x0 x1

x2 x3

The need for two players with conflicting interests is pervasive
in computer science. One example is the (nowadays heavy) use of
games in the automata-theoretic approach to model checking (see
e.g. [8]). Games here can be understood as a two-player version of
automata, where it is predetermined which player makes a move
in each state. An example is above on the right, where P-states are x0, x3 and
O-states are x1, x2. Typical questions asked here are about what Player P can

2 Note that (capitalized) Player and Opponent are altogether called players.
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force: can P force that x3 be reached? (yes); can P force that x0 be visited
infinitely often? (no). In model checking, the dualities between ∧ and ∨, ν and
μ, etc. in the modal μ-calculus are conveniently expressed as the duality between
P and O; and many algorithms and proofs rely on suitably formulated games
and results on them (such as the algorithm in [19] that decides the winner of a
parity game). Games have also been used in the coalgebraic study of fixed-point
logics [26].

Another example of nested two-player branching is found in the process-
theoretic study of probabilistic systems; see e.g. [3,33]. There it is common to
include nondeterministic branching too: while probabilistic branching models
the behavior of a system (such as a stochastic algorithm) that flips an internal
coin, nondeterministic branching models the environment ’s behavior (such as
requests from users) on which no statistical information is available. In this
context, probabilistic branching is often called angelic while nondeterministic
one is demonic; and a common verification goal would be to ensure a property—
with a certain minimal likelihood—whatever demonic choices are to be made.

3.1 Leading Example: Nondeterministic P and Nondeterministic O

Let us first focus on the simple setting where: P moves first and O moves second,
in each round; and both P and O make nondeterministic choices. This is a setting
suited e.g. for bipartite games where P plays first. A computation with such
branching is modeled by a function

f : X −→ PP(POY ) , (10)

where the occurrences of the powerset functor P are annotated to indicate which
of the players it belongs to (hence PP = PO = P). We are interested in what
P can force; in this logic of forced predicates, the following notion of (pre)order
seems suitable.

a � b in PP(POY ) def.⇐⇒ ∀S ∈ a.∃S′ ∈ b. S′ ⊆POY S (11)

That is: if a can force Opponent to S ⊆ Y , then b—that has a greater power—
can force Opponent to better (i.e. smaller) S′ ⊆ Y .

In fact, we shall now introduce a modeling alternative to (10) which uses
up-closed families of subsets, and argue for its superiority, mathematical and
conceptual. It paves the way to our general setup in Sect. 4.

For a set Y , we define UPY to be the collection of up-closed families of
subsets of Y , that is,

UPY :=
{
a ⊆ PY ∣

∣ ∀S, S′ ⊆ Y. (S ∈ a ∧ S ⊆ S′ ⇒ S′ ∈ a)
}
. (12)

On UPY we define a relation � by: a � b if a ⊆ b. It is obviously a partial order.

Lemma 3.1. 1. For each set Y , the relation � in (11) on PP(POY ) is a pre-
order. It is not a partial order.



Generic Weakest Precondition Semantics from Monads Enriched with Order 21

2. For a ∈ PP(POY ), let ↑ a := {S | ∃S′ ∈ a. S′ ⊆ S} be its upward closure.
Then the following is an equivalence of (preorders considered to be) categories;
here ι is the obvious inclusion map.

UPY
ι

��� PP(POY )
↑( )

��

Proof. For 1., reflexivity and transitivity of � is obvious. To see it is not anti-
symmetric consider {∅, Y } and {∅}.

For 2., ι is obviously monotone. If a � b in PP(POY ), for any S ∈ ↑ a there
exists S′ ∈ b such that S′ ⊆ S, hence S ∈ ↑ b. Therefore ↑( ) is monotone too.
Obviously ↑( ) ◦ ι = id.

It must be checked that ι(↑ a) � a for a ∈ PP(POY ), where � is the equiva-
lence induced by �. The � direction is immediate from the definition of ↑ a; for
the other direction, observe that in general a ⊆ b implies a � b in PP(POY ). ��
Proposition 3.2. For each set Y , (UPY,�) is the poset induced by the preorder(PP(POY ),� )

. Moreover (UPY,�) is a complete lattice.

Proof. The first half is immediate from Lemma 3.1. For the latter, observe that
supremums are given by unions. ��

The constructions PP(PO ) and UP have been studied from a coalgebraic
perspective in the context of neighborhood frames [9,10]. There a coalgebra for
the former is a model of non-normal modal logic (meaning that axioms like�p ∧ �q → �(p ∧ q) and �p → �(p ∨ q) can fail); one for the latter is a model
of monotone modal logic (meaning that validity of �p → �(p ∨ q) is retained).
Proposition 3.2 shows that, as long as our interests are game-theoretic and are
in the logical reasoning with respect to the preorder � in (11), we may just as
well use UP which is mathematically better-behaved.

To argue further for the mathematical convenience of UP , we look at its
action on arrows. For PP(PO ) there are two obvious choices (PPf and 22f

) of
action on arrows, arising from the covariant and contravariant powerset functors,
respectively. Given f : X → Y in Sets,

PPf, 22f

: PP(POX) −→ PP(POY ) ,

(PPf)a := {�f S | S ∈ a} , 22f

a := {T ⊆ Y | f−1T ∈ a} .

Here �f S is the direct image of S by f .
These two choices are not equivalent with respect to � on PP(POY ). In

general we have 22f

a � (PPf)a. To see that, assume U ∈ 22f

a, i.e. f−1U ∈ a.
Then �f (f−1U) ⊆ U (a general fact) and �f (f−1U) ∈ (PPf)a. However the
converse 22f

a � (PPf)a can fail: consider ! : 2 → 1 (where 2 = {0, 1}) and
a = {{0}}; then 22f

a = ∅ while (PPf)a = {1}.
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This discrepancy is absent with UP . For a function f : X → Y , the “covari-
ant” action UPf and the “contravariant” action UP ′f are defied as follows.

UPX UPf ��
��ι ��

UPY UPX UP′f �������
����

UPY
����

PP(POX) PPf
�� PP(POY )

↑( )
��

PP(POX)
22f

�� PP(POY )
(13)

On the left, ι and ↑( ) are as in Lemma 3.1. On the right 22f

restricts to
UPX → UPY (easy by the fact that f−1 is monotone); on the left such is not
the case (consider f : 1 → 2, 0 �→ 0 and a = {1}) and we need explicit use of
↑( ).

Lemma 3.3. UPf = UP ′f .

Proof. Let a ∈ UPX (hence up-closed). In view of Lemma 3.1, it suffices to
show that 22f

a � (PPf)a; we have already proved the � direction. For the
other direction, let S ∈ a; proving �f S ∈ 22f

a will prove (PPf)a ⊆ 22f

a, hence
(PPf)a � 22f

a. That S ⊆ f−1(�f S) is standard; since a is up-closed we have
f−1(�f S) ∈ a. Therefore �f S ∈ (22f

)a. ��
We therefore define UP : Sets → Sets by (12) on objects and either of the
actions in (13) on arrows. Its functoriality is obvious from (13) on the right.

3.2 Nondeterministic O, then Probabilistic P: Search for Modularity

We have argued for the convenience of the functor UP, over PP(PO ), for model-
ing two-layer branching in games. A disadvantage, however, is that modularity is
lost. Unlike PP(PO ), the functor UP : Sets → Sets is not an obvious composite
of two functors, each of which modeling each player’s choice.

The same issue arises also in the systems with both probabilistic and non-
deterministic branching (briefly discussed before). It is known (an observation
by Gordon Plotkin; see e.g. [35]) that there is no distributive law DP ⇒ PD of
the subdistribution monad D over the powerset monad P. This means we can-
not compose them to obtain a new monad PD. Two principal fixes have been
proposed: one is to refine D into the indexed valuation monad that distinguishes
e.g. [x �→ 1/2, x �→ 1/2] from [x �→ 1] (see [35]). The other way (see e.g. [34])
replaces P by the convex powerset construction and uses

CDX := {a ⊆ DX | pi ∈ [0, 1],
∑

i pi = 1, di ∈ a ⇒ ∑
i pidi ∈ a}

in place of PD, an alternative we favor due to our process-theoretic interests
(see Remark 5.8 later). However, much like with UP, it is not immediate how to
decompose CD into Player and Opponent parts.

We now introduce a categorical setup that addresses this issue of separating
two players. It does so by identifying one layer of branching—like up-closed
powerset and convex powerset—as a monad on an Eilenberg-Moore category.
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4 Generic Two-Player Weakest Precondition Semantics

Definition 4.1 (2-player PT situation). A 2-player predicate transformer
situation over a category C is a quintuple (T,Ω, τ,R, ρ) where:

– (T,Ω, τ) is a PT situation (Definition 2.2), where in particular τ : T (TΩ) →
TΩ is an Eilenberg-Moore algebra;

– R is a monad on the Eilenberg-Moore category EM(T ); and

– ρ : R
( T (TΩ)

↓τ
TΩ

) → ( T (TΩ)
↓τ

TΩ

)
is an Eilenberg-Moore R-algebra, that is also called

a modality. It is further subject to the monotonicity condition that is much
like in Definition 2.2: the map

EM(T )(
TX↓a
X

,
T (TΩ)

↓τ
TΩ

) −→ EM(T )
(
R

( TX↓a
X

)
,

T (TΩ)
↓τ

TΩ

)
, f �−→ ρ ◦ Rf

is monotone for each algebra a. Here the order of each homset is induced by

the enrichment of K�(T ) via EM(T )(b, τ) U
T

→ C(UT b, TΩ) = K�(T )(UT b,Ω).

The situation is as in the following diagram.

C

T

��

FT

��
UT

�� 
UTURFRFT

= UTRFT ��

���
��


 ���������������������������

EM(T )
R ��

FR

��
UR

��

 EM(R)

K�(UTRFT )

K

���
����������������������������

������
(14)

The composite adjunction yields a new monad UTURFRFT = UTRFT on C;
then from the Kleisli category K�(UTRFT ) for the new monad we obtain a
comparison functor to EM(R). It is denoted by K.

We have a monad R on EM(T ) and an algebra (modality) ρ for it. This is
much like in the original notion of PT situation, where τ : T (TΩ) → TΩ is a
modality from which we derived a weakest precondition semantics. Indeed, the
following construction is parallel to Proposition 2.9.

Proposition 4.2 (the indexed poset P
EM(τ, ρ)). A 2-player PT situation

(T,Ω, τ,R, ρ) induces an indexed poset P
EM(τ, ρ) : EM(R)op → Posets over

EM(T ) by:

– on an object α ∈ EM(R),

P
EM(τ, ρ)

( R(TX
a→X)

↓α

(TX
a→X)

)
:= EM(R)

( R(TX
a→X)

↓α

(TX
a→X)

,

R(T (TΩ)
τ→TΩ)

↓ρ

(T (TΩ)
τ→TΩ)

)

where the order � on the set EM(R)(α, ρ) is inherited from C(X,TΩ) via the
forgetful functors EM(R) → EM(T ) → C; and
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– on an arrow f :
( Ra↓α

a

) → ( Rb↓β
b

)
,

P
EM(τ, ρ)(f) : EM(R)

( Rb↓β
b
,

Rτ↓ρ
Rτ

) −→ EM(R)
( Ra↓α

a
,

Rτ↓ρ
τ

)
, q �−→ q ◦ f .

Proof. The same as the proof of Proposition 2.9, relying on Lemma 2.8. ��
Much like in Theorem 2.10, composition of the indexed poset P

EM(τ, ρ) :
EM(R)op → Posets and the comparison functor K : K�(UTRFT ) → EM(R)
will yield the weakest precondition calculus. The branching computations of our
interest are therefore of the type X → UTRFTY . We will later see, through
examples, that this is indeed what models the scenarios in Sect. 3.

Note that in what follows we rely heavily on the adjunction FT � UT .

Proposition 4.3 (the indexed poset P
K�(τ, ρ)). A 2-player PT situation

(T,Ω, τ,R, ρ) induces an indexed poset P
K�(τ, ρ) : K�(UTRFT )op → Posets by:

– on an object X ∈ K�(UTRFT ), P
K�(τ, ρ)(X) := K�(T )(X,Ω) = C(X,TΩ);

– given an arrow f : X �→ Y in K�(UTRFT ), it induces an arrow f∧ : FTX →
R(FTY ) in EM(T ); this is used in

EM(T )(F T Y, τ) → EM(T )(F T X, τ) , q �−→ (F T X
f∧
→ R(F T Y )

Rq→ Rτ
ρ→ τ
)
.

The last map defines an arrow P
K�(τ, ρ)(f) : P

K�(τ, ρ)(Y ) → P
K�(τ, ρ)(X)

since we have P
K�(τ, ρ)(U) = C(U, TΩ) ∼= EM(T )(FTU, τ).

We have the following natural isomorphism, where K is the comparison in (14).

Posets
P

EM(τ,ρ)
��

Ξ•Ψ⇑∼= EM(R)op

K�(UTRFT )op Kop

��

P
K�(τ,ρ)

�� (15)

Proof. Note here that the comparison functor K is concretely described as fol-
lows: KX = FR(FTX) on objects, and use the correspondence

K�(UTRFT )(X,Y ) = C(X,UTURFRFTY ) ∼= EM(T )(FTX,URFRFTY )
∼= EM(R)(FRFTX,FRFTY ) = EM(R)(KX,KY )

for its action on arrows. We claim that the desired natural isomorphism Ξ • Ψ
is the (vertical) composite

P
K�(τ, ρ)(X) = C(X,TΩ) ΨX−→ EM(T )(FTX, τ)

ΞX−→ EM(R)(FRFTX, ρ) = P
EM(τ, ρ)(KX)

where Ψ and Ξ are isomorphisms induced by adjunctions.
We have to check that ΨX and ΞX are order isomorphisms. The map ΨX

is monotone due to the monotonicity condition on τ (Definition 2.2); so is Ψ−1
X
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by Lemma 2.8. Similarly, ΞX is monotone by the monotonicity condition on ρ
(Definition 4.1); so is Ξ−1

X by Lemma 2.8.
We turn to the naturality: the following diagram must be shown to commute,

for each f : X �→ Y in K�(UTRFT ).

C(Y, TΩ)
P

K�(τ,ρ)(f) ��

ΨY

∼=
�� EM(T )(FTY, τ)

ρ◦R( )◦f∧��

ΞY

∼=
�� EM(R)(FR(FTY ), ρ)

P
EM(τ,ρ)(Kf) = ( )◦Kf��

C(X,TΩ)
ΨX

∼=
�� EM(T )(FTX, τ)

ΞX

∼=
�� EM(R)(FR(FTY ), ρ) .

(16)
The square on the left commutes by the definition of P

K�(τ, ρ)(f) (Proposi-
tion 4.3); the one on the right is much like the one in (9) and its commutativity
can be proved in the same way. Note here that Kf = μRFTY ◦ R(f∧).

Since the diagram (16) commutes, and since Ψ and Ξ are order isomorphisms
and P

EM(τ, ρ)(Kf) is monotone (Proposition 4.2), we have that P
K�(τ, ρ)f is

monotone. The functoriality of P
K�(τ, ρ) is easy, too. This concludes the

proof. ��

5 Examples of 2-Player PT Situations

5.1 Nondeterministic Player and then Nondeterministic Opponent

We continue Sect. 3 and locate the monadUP—and the logic of forced predicates—
in the general setup of Sect. 4. We identify a suitable 2-player PT situation
(P, 1, τ�,RG, ρP), in which T = P, Ω = 1 and τ = τ� that is from Sect. 2.3. The
choice of τ� corresponds to the demonic nature of Opponent’s choices: Player can
force those properties that hold whatever choices Opponent makes.

To introduce the monad RG on EM(P)—corresponding to the up-closed pow-
erset construction—we go via the following standard isomorphism.

Lemma 5.1. Let C : EM(P) → CL∧ be the functor such that C
( PX↓a

X

)
:=

(X,�a), where the order is defined by x �a y if x = a{x, y}. Conversely, let

D : CL∧ → EM(P) be such that D(X,�) :=
( PX

↓∧
X

)
. Both act on arrows as

identities.
Then C and D constitute an isomorphism EM(P) ∼=→ CL∧. ��
The monad RG is then defined to be the composite RG := D ◦ Dw ◦ C, using

the down-closed powerset monad Dw on CL∧.

EM(P)RG ��
C

��
D�� ∼= CL∧ Dw

��
(17)

The switch between up-closed subsets in UP and down-closed subsets Dw may
seem confusing. Later in Proposition 5.3 it is shown that everything is in har-
mony; and after all it is a matter of presentation since there is an isomorphism
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CL∧ ∼=→ CL∨ that reverses the order in each complete lattice. The switch here
between up- and down-closed is essentially because: the bigger the set of Oppo-
nent’s options is, the smaller the power of Player (to force Opponent to some-
where) is.

Concretely, the monad Dw : CL∧ → CL∧ carries a complete lattice (X,�)
to the set DwX := {S ⊆ X | x � x′, x′ ∈ S ⇒ x ∈ S}. We equip DwX
with the inclusion order; this makes DwX a complete lattice, with sups and infs
given by unions and intersections, respectively. An arrow f : X → Y is carried to
Dwf : DwX → DwY defined by S �→ ↓(�f S). Here ↓( ) denotes the downward
closure and it is needed to ensure down-closedness (consider a

∧
-preserving map

f : 1 → 2, 0 �→ 1 where 0 � 1 in 2). The monad structure of Dw is given by:
ηDw
X : X → DwX,x �→ ↓{x}; and μDw

X : Dw(DwX) → DwX, a �→ ⋃
a. Note in

particular that ηDw
X is

∧
-preserving. As in (17) we define RG := D ◦ Dw ◦ C.

Finally, let us define the data ρP : RG(τ�) → τ� in the 2-player PT situation.
Via the isomorphism (17) we shall think of it as an Dw-algebra, where the P-
algebra τ� is identified with the 2-element complete lattice [ff � tt] (the order
is because τ�{tt, ff} = ff). Therefore we are looking for a

∧
-preserving map

Dw[ff � tt] =
[ ∅ � {ff} � {ff, tt} ] CρP−→ [ff � tt]

subject to the conditions of an Eilenberg-Moore algebra in (4). In fact such C(ρP)
is uniquely determined: preservation of � forces (CρP){ff, tt} = tt; the unit law
forces (CρP){ff} = ff and monotonicity of CρP then forces (CρP)∅ = ff.

Lemma 5.2. (P, 1, τ�,RG, ρP) thus obtained is a 2-player PT situation.

Proof. It remains to check the monotonicity condition (Definition 4.1) for ρP.
We shall again think in terms of complete lattices and

∧
-preserving maps; then

the requirement is that the map
(
X

f→ [ff � tt]
) �→ (

DwX
ρP◦Dwf→ [ff � tt]

)

is monotone. Assume g � f , S ∈ DwX and (ρP ◦ Dwf)(S) = ff. It suffices to
show that (ρP ◦ Dwg)(S) = ff; this follows from the observation that, for h = f
or g,

(ρP ◦ Dwh)(S) = ff ⇐⇒ (Dwh)S ⊆ {ff} ⇐⇒ ∀x ∈ S. hx = ff . ��
Let us check that the logic P

K�(τ�, ρP) associated with this 2-player PT sit-
uation is indeed the logic of forced predicates in Sect. 3.1. For instance, we want
“computations” X → UPRGF

PY to coincide with “computations” X → UPY .

Proposition 5.3. For any set X we have UPRGF
P = UPX. In fact they are

isomorphic as complete lattices, that is, Dw ◦ C ◦ FP = UP : Sets → CL∧

where the functor UP is equipped with the inclusion order.

Proof. Given X ∈ Sets, the definition of C dictates that C(FPX) = (PX,⊇)
and its order be given by the reverse inclusion order. Hence Dw(C(FPX)) is the
collection of families a ⊆ PX that are ⊇-down-closed, i.e. ⊆-up-closed. It is easily
checked that the two functors coincide on arrows, too, using the characterization
on the left in (13). ��
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Next we describe the logic P
K�(τ�, ρP) (Proposition 4.3) in concrete terms.

We base ourselves again in CL∧ via the isomorphism EM(P) ∼= CL∧ in (17).
Consider a postcondition q : Y → P1 and a branching computation f : X →
UPY . These are in one-to-one correspondences with the following arrows in
CL∧:

q∧ : C(FPY ) = (PY,⊇) −→ [ff � tt] = C(τ�) ,

f∧ : C(FPX) = (PX,⊇) −→ Dw(PY,⊇) = C(RG(FPY )) ,

where we used Proposition 5.3. Since q∧ are f∧ are
∧

-preserving, we have

q∧W = q∧(
⋃
y∈W {y}) = q∧(

∧
y∈W {y}) =

∧
y∈W q∧{y} =

∧
y∈W qy ;

and similarly f∧S =
⋂
x∈S fx. Recall that Dw(PY,⊇) has the inclusion order.

Now Proposition 4.3 states that the weakest precondition P
K�(τ�, ρP)(f)(q)

is the arrow X → P1 that corresponds, via the adjunction C ◦ FP � UP ◦ D,
to

(PX,⊇)
f∧
−→ Dw(PY,⊇)

Dw(q∧)−→ Dw[ff � tt]
ρP−→ [ff � tt] inCL∧.

Unweaving definitions it is straightforward to see that, for S ⊆ X,
(
ρP ◦ Dw(q∧) ◦ f∧)S = tt ⇐⇒ ∃W ⊆ Y.

(∀x ∈ S. W ∈ fx ∧ ∀y ∈ W. qy = tt
)
;

therefore P
K�(τ�, ρP)(f)(q)(x) = tt ⇐⇒ ∃W ⊆ Y.

(
W ∈ fx ∧ ∀y ∈ W. qy = tt

)
.
(18)

The last condition reads: among the set fx of possible moves of Player, there
exists a move W , from which q holds no matter what Opponent’s move y is.
Therefore P

K�(τ�, ρP)(f)(q)(x) = tt if Player can force the predicate q from x
after the (two-layer branching) computation f .

5.2 Nondeterministic Opponent and then Nondeterministic Player

We change the order of Player and Opponent: O moves first and then P moves.
The general setup in Sect. 4 successfully models this situation too, with a choice
of a 2-player PT situation (P, 1, τ�,RG, ρO) that is dual to the previous one.

The modality τ� is from Sect. 2.3. Although the monad RG is the same as
in Sect. 5.1, we now prefer to present it in terms of EM(P) ∼= CL∨ instead of
CL∧. The reason is that this way the algebra τ� gets identified with [ff � tt],
which is intuitive. The situation is as follows.

EM(P)RG ��
C

��
D�� ∼=

�� �	

C′:=C′′◦C

��CL∧
Dw

��

C′′
��

D′′
�� ∼= CL∨ Up

��

��

D′:=D◦D′′

�� (19)
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The functors C ′′ and D′′ carries a complete lattice (X,�) to (X,�), reversing
the order. The monad Up is defined by Up := C ′′ ◦ Dw ◦ D′′; concretely it carries
(X,�) to the set of its up-closed subsets, equipped with the reverse inclusion
order ⊇. That is,

Up(X,�) :=
( {S ⊆ X | S  x � x′ ⇒ x′ ∈ S} , ⊇ )

.

We have RG = D ◦ Dw ◦ C = D′ ◦ Up ◦ C ′.
The modality ρO : RG(τ�) → τ� is identified, via the isomorphism C ′ in (19),

with an Up-algebra on [ff � tt]. The latter is a
∨

-preserving map

Up[ff � tt] =
[ {ff, tt} � {tt} � ∅ ] C′ρO−→ [ff � tt] ;

note here that the order in Up(X,�) is the reverse inclusion ⊇. Such C ′ρO is
uniquely determined (as before): the unit law forces (C ′ρO){tt} = tt; preserva-
tion of ⊥ forces (C ′ρO){tt, ff} = ff; and then by monotonicity (C ′ρO)∅ = tt.

It is straightforward to see that (P, 1, τ�,RG, ρO) is indeed a 2-player PT
situation; the proof is symmetric to the one in Sect. 5.1. Also symmetrically, the
weakest precondition semantics P

K�(τ�, ρO) is concretely described as follows:
given a postcondition q : Y → P1 and a branching computation f : X → UPY ,

P
K�(τ�, ρO)(f)(q)(x) = tt ⇐⇒ ∀W ⊆ Y.

(
W ∈ fx⇒ ∃y ∈W. qy = tt

)
.

This is dual to (18) and reads: whatever move W Opponent takes, there exists
Player’s move y ∈W so that q holds afterwards.

We note that the analogue of Proposition 5.3 becomes: Up ◦ C ′ ◦ FP =
UP : Sets → CL∨, where each UPX is equipped with the reverse inclusion
order. This order (a � b in UPX if a ⊇ b) is intuitive if we think of � as the
power of Player.

Remark 5.4. The constructions have been described in concrete terms; this is
for intuition. An abstract view is possible too: the modality τ� is the dual of τ�
via the swapping σ (see (7)); and the other modality ρO is also the dual of ρP

by ρO =
(
RG(τ�) RGσ→ RG(τ�)

ρP→ τ� σ→ τ�
)
.

5.3 Nondeterministic Opponent and then Probabilistic Player

In our last example Opponent O moves nondeterministically first, and then
Player P moves probabilistically. Such nested branching is in many process-
theoretic models of probabilistic systems (see Sect. 3, in particular Sect. 3.2),
most notably in Segala’s probabilistic automata [27]. We identify a 2-player
PT situation (D, 1, τtotal, Cv, ρinf) for this situation; then the associated logic
P

K�(τtotal, ρinf) is that of the probabilistic predicate transformers in [31]. The
modality τtotal is from Sect. 2.3. The other components (Cv, ρinf) are to be
described in terms of convex cones and their convex subsets.

In what follows a D-algebra is referred to as a convex cone, adopting the
notation

∑
i∈I wixi to denote a

(
[xi �→ wi]i∈I

) ∈ X in a convex cone a : DX →
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X. Here I is a countable index set,3 wi ∈ [0, 1], and
∑
i∈I wi ≤ 1. Note that,

since D is the subdistribution monad, the zero distribution 0 is allowed in DX
and therefore a convex cone a : DX → X has its apex a0 ∈ X. Similarly, a
morphism of D-algebras is referred to as a convex linear map.

Definition 5.5 (convex subset). A subset S ⊆ X of a convex cone a : DX →
X is said to be convex if, for any pi ∈ [0, 1] such that

∑
i∈I pi = 1 and any

xi ∈ S, the convex combination
∑
i∈I pixi belongs to S.

We emphasize that in the last definition
∑
i pi is required to be = 1. This is

unlike
∑
i wi ≤ 1 in the definition of convex cone. Therefore a convex subset S

need not include the apex a0; one can think of the base of a 3-dimensional cone
as an example. This variation in the definitions is also found in [34, Sect. 2.1.2];
one reason is technical: if we allow

∑
i pi ≤ 1 then it is hard to find the monad

unit of Cv (see below). Another process-theoretic reason is described later in
Remark 5.8.

Definition 5.6 (the monad Cv). The functor Cv : EM(D) → EM(D) carries a
convex cone a : DX → X to CvX := {S ⊆ X | S is convex}; the latter is a convex
cone by ∑

i wiSi := {∑
i wixi | xi ∈ Si } .

It is easy to see that
∑
i wiSi is indeed a convex subset of X. Given a convex

linear map f : X → Y , Cvf : CvX → CvY is defined by (Cvf)S := �f S, which is
obviously convex in Y , too.

The monad structure of Cv is as follows. Its unit is ηCv
X := { } : X → CvX;

note that a singleton {x} is a convex subset of X (Definition 5.5). The monad
multiplication is μCv

X :=
⋃

: Cv(CvX) → CvX. It is easy to see that ηCv
X and μCv

X

are convex linear maps, and that they satisfy the monad axioms.

We introduce the last component, namely the modality ρinf : Cv(τtotal) →
τtotal. A convex subset S of the carrier D1 = [0, 1] of τtotal is nothing but an
interval (its endpoints may or may not be included); ρinf then carries such S
to its infimum inf S ∈ [0, 1]. That ρinf is convex linear, and that it satisfies the
Eilenberg-Moore axioms, are obvious.

Much like in Lemma 5.2, we obtain:

Lemma 5.7. (D, 1, τtotal, Cv, ρinf) thus obtained is a 2-player PT situation. ��
The resulting logic P

K�(τtotal, ρinf) is as follows. Given a postcondition q : Y →
D1 and a computation f : X → UDCvFDY , the weakest precondition is

P
K�(τtotal, ρinf)(f)(q)(x) = inf

{ ∑
y∈Y d(y) · q(y)

∣
∣ d ∈ f(x)

}
. (20)

Here d is a subdistribution chosen by Opponent; and the value
∑
y∈Y d(y)·q(y) is

the expected value of the random variable q under the distribution d. Therefore
the weakest precondition computed above is the least expected value of q when
Opponent picks a distribution in harm’s way. This is the same as in [31].
3 The countability requirement is superfluous since, if

∑
i∈I pi = 1, then only count-

ably many pi’s are nonzero.
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Remark 5.8. The use of the convex powerset construction, instead of (plain)
powersets, was motivated in Sect. 3.2 through the technical difficulty in getting
a monad. Convex powersets are commonly used in the process-theoretic study of
probabilistic systems, also because they model a probabilistic scheduler : Oppo-
nent (called a scheduler in this context) can not only pick one distribution but
also use randomization in doing so. See e.g. [2].

The definition of convex subset (Definition 5.5)—where we insist on
∑
i pi = 1

instead of ≤ 1—is natural in view of the logic P
K�(τtotal, ρinf) described above.

Relaxing this definition entails that the zero distribution 0 is always included in
a “convex subset,” and hence always in Opponent’s options. This way, however,
the weakest precondition in (20) can always be forced to 0 and the logic gets
trivial.

We can also model the situation where the roles of Player and Opponent are
swapped: we can follow the same path as in Remark 5.4 and obtain a 2-player PT
situation (D, 1, τpartial, Cv, ρsup); the resulting modality ρsup carries an interval to
its supremum.

6 Conclusions and Future Work

Inspired by Jacobs’ recent work [16,17] we pursued a foundation of predicate
transformers (more specifically weakest precondition semantics) based on an
order-enriched monad. There different notions of modality (such as “may” vs.
“must”) are captured by Eilenberg-Moore algebras. Nested branching with two
conflicting players can be modeled in a modular way, too, by a monad R on an
Eilenberg-Moore category EM(T ). Instances of this generic framework include
probabilistic weakest preconditions, those augmented with nondeterminism, and
the logic of forced predicates in games.

As future work we wish to address the components in the picture (2–3) that
are missing in the current framework. A generic weakest precondition calculus
presented in a syntactic form is another direction. Most probably relationships
between monads and algebraic theories (see e.g. [32]) will be exploited there. So-
called healthiness conditions—i.e. characterization of the image of P

K�(τ) in (8),
to be precise its action on arrows—are yet another topic, generalizing [5,31].

The current work is hopefully a step forward towards a coalgebraic theory
of automata (on infinite trees), games and fixed-point logics. For example, we
suspect that our categorical formulation of the logic of forced predicates be
useful in putting game (bi)simulation (studied e.g. in [22,36]) in coalgebraic
terms. Possibly related, we plan to work on the relationship to the coalgebraic
theory of traces and simulations formulated in a Kleisli category [11,13] since
all the monads in Example 2.2 fit in this trace framework.

In this paper we relied on an order-enrichment of a monad to obtain the
entailment order. We are nevertheless interested in what our current framework
brings for other monads, like the ones that model computational effects [29]
(global state, I/O, continuation, etc.). Also interesting is a higher-order extension
of the current work, where the logic will probably take the form of dependent
types. Related work in this direction is [20].
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Abstract. Coalgebraic games have been recently introduced as a gener-
alization of Conway games and other notions of games arising in different
contexts. Using coalgebraic methods, games can be viewed as elements
of a final coalgebra for a suitable functor, and operations on games can
be analyzed in terms of (generalized) coiteration schemata. Coalgebraic
games are sequential in nature, i.e. at each step either the Left (L) or
the Right (R) player moves (global polarization), moreover only a single
move can be performed at each step. Recently, in the context of Game
Semantics, concurrent games have been introduced, where global polar-
ization is abandoned, and multiple moves are allowed. In this paper, we
introduce coalgebraic multigames, which are situated half-way between
traditional sequential games and concurrent games: global polarization is
still present, however multiple moves are possible at each step, i.e. a team
of L/R players moves in parallel. Coalgebraic operations, such as sum and
negation, can be naturally defined on multigames. Interestingly, sum on
coalgebraic multigames turns out to be related to Conway’s selective sum
on games, rather than the usual (sequential) disjoint sum. Selective sum
has a parallel nature, in that at each step the current player performs
a move in at least one component of the sum game, while on disjoint
sum the current player performs a move in exactly one component at
each step. A monoidal closed category of coalgebraic multigames in the
vein of a Joyal category of Conway games is then built. The relationship
between coalgebraic multigames and games is then formalized via an
equivalence of the multigame category and a monoidal closed category
of coalgebraic games where tensor is selective sum.

1 Introduction

In [14], coalgebraic games have been introduced as a generalization of Conway
games [11] to possibly non-terminating games. Coalgebras offer an elementary
but sufficiently abstract framework, where games are represented as elements of
a final coalgebra for a suitable functor, by abstracting away superficial features
of positions, and operations are smoothly defined as final morphisms via (gener-
alized) coiteration schemata. Coalgebraic games have been further studied and
generalized in [15–18]. In particular, in [17], coalgebraic games have been shown
to subsume also games arising in the context of Game Semantics. In [3] a similar
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notion of coalgebraic game has been used to model games arising in Economics
(see also [23,24]).

Coalgebraic games are 2-player games of perfect information, the two players
being Left (L) and Right (R). A game is identified with its initial position.
At any position, there are moves for L and R taking to new positions of the
game. Contrary to other approaches in the literature, where games are defined
as graphs, we view possibly non-wellfounded games as points of a final coalgebra
of graphs, i.e. minimal graphs w.r.t. bisimilarity. This coalgebraic representation
is more in the spirit of Conway’s original presentation, and it is motivated by the
fact that the existence of winning/non-losing strategies is invariant w.r.t. graph
bisimilarity.

Coalgebraic games are sequential in nature, i.e. at each step either L or
R moves (global polarization), moreover only a single move can be performed
at each step. Recently, in the context of Game Semantics, concurrent games
have been introduced [2,10,13,30], where global polarization is abandoned, and
multiple moves are allowed.

In this paper, we introduce coalgebraic multigames, which are situated half-
way between traditional sequential games and concurrent games: global polar-
ization is still present, however multiple moves are possible at each step, i.e. a
team of L/R players moves in parallel. Coalgebraic operations, such as sum and
negation, can be naturally defined on multigames via (generalized) coiteration
schemata.

The notion of coalgebraic multigame introduced in the present paper is
inspired by that of multigame recently defined by the same authors in [19],
in the context of Game Semantics. The approach in [19] is slightly different, in
that (multi)games are defined via trees of positions, rather than coalgebraically
as sets/minimal graphs.

The main difference between coalgebraic multigames and games lies in the
fact that in the sum of games, at each step, the current player can move in
exactly one component, while in the multigame sum, by exploiting the parallel
nature of multigames, the current player can perform a multimove consisting of
atomic moves on both components. Sum on games amounts to Conway’s disjoint
sum, which corresponds to interleaving semantics and standard tensor product in
Game Semantics (see e.g. [1,20]), while multigame sum is related to Conway’s
selective sum, a form of parallel sum on games, where the current player can
possibly move in both components.

We formalize the relationship between coalgebraic games and multigames in
categorical terms. In particular, inspired by Joyal’s categorical construction of
Conway games [22], we build a symmetric monoidal closed category of coalge-
braic multigames, where tensor is multigame sum. Namely, in [22], Joyal showed
how to endow (well-founded) Conway games and winning strategies with a struc-
ture of compact closed category. This construction is based on the disjunc-
tive sum of games, which induces a tensor product, and, in combination with
negation, yields linear implication. Recently, the above categorical construction
has been generalized to non-wellfounded games with disjoint or selective sum
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[16–18], while, in the context of Linear Logic and Semantics, various categories
of possibly non-wellfounded Conway games have been introduced and studied in
[19,25,26,28].

In the present paper, we build a category of coalgebraic multigames and
strategies in the line of the above constructions. Moreover, we show that this
is equivalent to a category of coalgebraic games with a parallel tensor product
inspired by Conway’ s selective sum. In particular, we carry out these categorical
constructions in the context of polarized (multi)games, i.e. (multi)games where
each position is marked as L or R, that is only L or R can move from that position,
R starts, and L/R positions strictly alternate. Polarized games typically arise in
Game Semantics, see e.g. [1,19,20].

Technically, the main difficulty in defining the above categories of (multi)games
with parallel tensor product lies in the definition of strategy composition, which
is not a straightforward adaptation of usual composition, but it requires a non-
standard parallel application of strategies.

Our categorical constructions are related in particular to those carried out
in [19] in the context of Game Semantics. In [19], the usefulness of multigames
for modeling parallel languages is shown by providing a (universal) model of a
simple parallel language, i.e. unary PCF with parallel or.

The interest of coalgebraic (multi)games is manifold. Multigames help in
clarifying/factorizing the steps taking from sequential games (with global polar-
ization and single moves) to concurrent games (no global polarization, multiple
moves), offering a model of parallelism with a low level of complexity but still of
a set-theoretic nature, compared to more complex concurrent games. Notably,
the coalgebraic approach, both in the game and multigame version, appears
significantly simpler than the traditional Game Semantics approach, where def-
initions of games and strategies require complex additional structures, such as
equivalences on plays and strategies in the style of [1], or pointers in the arena
style [20]. Such extra structure is not needed in the coalgebraic framework.

Related Work. Coalgebraic methods for modeling games have been used also in
[5], where the notion of membership game has been introduced. This corresponds
to a subclass of our coalgebraic games, where at any position L and R have the
same moves, and all infinite plays are deemed winning for player II (the player
who does not start). However, no operations on games are considered in that
setting. In the literature, various notions of bisimilarity equivalences have been
considered on games, see e.g. [6,29]. But, contrary to our approach, such games
are defined as graphs of positions, and equivalences on graphs, such as trace
equivalences or various bisimilarities are considered. By defining games as the
elements of a final coalgebra, we directly work up to bisimilarity of game graphs.

Summary. In Sect. 2, we introduce the notions of coalgebraic multigame, play
and strategy. In Sect. 3, we define operations on the final coalgebra of multigames
via suitable (generalized) coiteration schemata. In Sect. 4, we build a monoidal
closed category of polarized coalgebraic multigames and strategies, where tensor
is sum. In Sect. 5, the relationship between coalgebraic multigames and games
is expressed in categorical terms via an equivalence between the category of
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multigames and a monoidal closed category of coalgebraic games where tensor
is selective sum. Conclusions and directions for future work appear in Sect. 6.

We assume the reader familiar with basic notions of coalgebras, see [21], and
basic categorical definitions.

2 Coalgebraic Multigames and Strategies

In this section, we introduce the definitions of coalgebraic multigame, play, and
strategy.

We consider a general notion of 2-player multigame of perfect information,
where the two players are called Left (L) and Right (R). On a multigame, at
each step, players can perform a multimove, i.e. a non-empty finite set of atomic
moves. A multigame X is identified with its initial position; at any position,
there are (multi)moves for L and R, taking to new positions of the game. By
abstracting superficial features of positions, multigames can be viewed as ele-
ments of the final coalgebra for the functor FMA(A) = P<κ(MA × A), where
A is a set of atomic moves, each atomic move is marked with the name of the
player who performs the move,MA is the set of multimoves, i.e. the finite pow-
erset of atomic moves with the same polarity, and P<κ is the set of all subsets
of cardinality < κ, where κ can be ω if only games with finitely many moves
are considered, or it can be an inaccessible cardinal if we are interested in more
general games. The coalgebra structure captures, for any position, the moves of
the players and the corresponding next positions.

We work in the category Set∗ of sets belonging to a universe satisfying the
Antifoundation Axiom, see [4,12], where the objects are the sets with hereditary
cardinal less than κ, and whose morphisms are the functions with hereditary
cardinal less than κ1. Of course, we could work in the category Set of well-
founded sets, but we prefer to use Set∗ so as to be able to use identities, i.e.
extentional equalities in formal set theory, rather than isomorphisms in some
naive set theory. Formally, we define:

Definition 1 (Coalgebraic Multigames)

– Let A be a set of atoms with functions:
(i) μ : A → N yielding the name of the move (for a set N of names),
(ii) λ : A → {L,R} yielding the player who has moved.
We assume that A is closed under complementation, i.e. a ∈ A ⇒ a ∈ A,
where μa = μa and λa = λa, with R = L and L = R.

– Let MA be the powerset of all finite sets of atomic moves with the same
polarity, i.e.

MA = {α ∈ Pf (A) | ∀a, a′ ∈ α. λa = λa′} .
1 We recall that the hereditary cardinal of a set is the cardinality of its transitive

closure, namely the cardinality of the downward membership tree which has the
given set as its root.
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– Let FMA : Set∗ → Set∗ be the functor defined by

FMA(A) = P<κ(MA ×A)

with the usual definition on morphisms, and let (MA, id) be the final FMA-
coalgebra2.

A coalgebraic multigame is an element X of the carrier MA of the final coalgebra.

The elements of the final coalgebra MA are the minimal graphs up to bisim-
ilarity.

Clearly, every multigame can be viewed as a game whose moves are the mul-
timoves. However, as we will see, multigame sum (as well as other constructions)
is not preserved under this mapping.

We call player I the player who starts the multigame (who can be L or R
in general), and player II the other. Once a player has moved on a multigame
X, this leads to a new multigame/position X ′. We define the plays on X as the
sequences of pairs move-position from X; moves in a play are alternating:

Definition 2 (Plays). A play on a coalgebraic game X0 is a possibly empty
finite or infinite sequence of pairs in MA ×MA, s = 〈α1,X1〉 . . . such that

∀n > 0. (〈αn,Xn〉 ∈ Xn−1 & λαn+1 = λαn) .

We denote by PlayX the set of plays on X and by FPlayX the set of finite plays.

Here we focus on a general notion of (deterministic) partial strategy. For-
mally, strategies in our framework are partial functions on finite plays ending
with a position where the player is next to move, and yielding (if any) a pair
in MA ×MA, consisting of “a move of the given player together with a next
position” on the game X. In what follows, we denote by

– FPlayLIX (FPlayRIX ) the set of possibly empty finite plays on the game X on
which L (R) acts as player I, and ending with a position where the turn is L
(R), i.e. s = ε or s = 〈α1,X1〉 . . . 〈αn,Xn〉, where λα1 = L (λα1 = R) and
λαn = R (λαn = L).

– FPlayLIIX (FPlayRIIX ) the set of finite plays on the game X on which L (R)
acts as player II, and ending with a position where R (L) was last to move, i.e.
s = 〈α1,X1〉 . . . 〈αn,Xn〉, where λα1 = R (λα1 = L) and λαn = R (λαn = L).

Formally, we define:

Definition 3 (Strategies). Let X be a coalgebraic multigame. A strategy σ for
LI ( i.e. L acting as player I) is a partial function σ : FPlayLIX → MA ×MA
such that, for any s ∈ FPlayLIX ,

σ(s) = 〈α,X ′〉 =⇒ λα = L & s〈α,X ′〉 ∈ FPlayX .

2 The final coalgebra of the powerset functor exists since the powerset functor is
bounded by κ.
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Similarly, one can define strategies for players LII, RI, RII.
For any player LI, LII, RI, RII, we define the opponent player as RII, RI, LII,
LI, respectively.
A counterstrategy of a strategy for a player in {LI,LII,RI,RII} is a strategy for
the opponent player.

We are interested in studying the interactions of a strategy for a given player
with the (counter)strategies of the opponent player. When a player plays on
a game according to a strategy σ, against an opponent player who follows a
(counter)strategy σ′, a play arises. Formally, we define:

Definition 4 (Product of Strategies). Let X be a coalgebraic multigame.
(i) Let s be a play on X, and σ a strategy for a player in {LI,LII,RI,RII}. Then
s is coherent with σ if, for any proper prefix s′ of s, ending with a position where
the player is next to move, σ(s′) = 〈α,X ′〉 =⇒ s′〈α,X ′〉 is a prefix of s.
(ii) Given a strategy σ on X and a counterstrategy σ′, we define the product of
σ and σ′, σ ∗ σ′, as the unique play coherent with both σ and σ′.

Notice that a play arising from the product of strategies is alternating.
We call well-founded multigames those multigames which correspond to

well-founded sets as elements of the final coalgebra MA, and non-wellfounded
multigames the non-wellfounded sets in MA. Clearly, strategies on well-founded
multigames generate only finite plays, while strategies on non-wellfounded multi-
games can generate infinite plays.

A special subclass of multigames on which we focus on in the sequel is that
of polarized multigames. Such multigames have the following special structure: R
starts, at any non-ending position only moves either for R or for L are available
and along any path in the game graph R/L moves strictly alternate. Polarized
multigames play a central rôle in the construction of our categories of multi-
games. Such games arise in traditional Game Semantics of Linear Logic and
Programming Languages, see e.g. [1,20].

3 Multigame Operations

In this section, we show how to define various operations on multigames, includ-
ing sum, negation, linear implication, and infinite sum. The crucial operation on
multigames is sum, which, as we will see, is related to Conway’s selective sum
on traditional games, and it will give rise to a tensor product on the category of
multigames defined in Sect. 4 below. In our coalgebraic framework, operations
can be conveniently defined via final morphisms, using (some generalizations of)
the standard coiteration schema. Before defining multigame operations, we start
by recalling a useful generalized coiteration schema introduced in [9].

3.1 Guarded Coiteration Schema

Here we recall a generalized coiteration schema based on λ-bialgebras, for λ a dis-
tributive law, which will be used in the sequel for defining multigame operations.
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Definition 5 (Guarded Coiteration). Let (Ω,αΩ) be a final coalgebra for
a functor F : Set∗ → Set∗, and let A be a set. A guarded specification for a
morphism h : A→ Ω is of the form:

αΩ ◦ h = F (g ◦G(h)) ◦ δA , (1)

where δA : A→ F (GA) and g : G(Ω)→ Ω are given, g is the guard.
I.e. h makes the following diagram commutes:

A

δA

��

h �� Ω

αΩ

��
FGA

F (g◦Gh)
�� FΩ

Under suitable conditions, the above schema admits a unique solution, see [9]
for more details. In particular, a functor G : Set∗ → Set∗ is required and a
generalized distributive law λ : GF ·→ FG for which (Ω, g, αΩ) is a λ-bialgebra.

3.2 Operations on Multigames

Sum. In the context of multigames, the following notion of sum arises naturally.
On the sum multigame, at each step, the next player selects either one (non-
ended) or both component multigames, and makes a legal move in each of the
selected components, while the component which has not been chosen (if any)
remains unchanged.

Definition 6 (Sum). The sum of two multigames � : MA ×MA −→ MA is
defined by:

X�Y = {〈α′,X ′�Y 〉 | 〈α,X ′〉 ∈ X} ∪ {〈β′,X�Y ′〉 | 〈β, Y ′〉 ∈ Y } ∪
{〈α+ β,X ′�Y ′〉 | 〈α,X ′〉 ∈ X & 〈β, Y ′〉 ∈ Y } ,

where α′, β′ are the sets obtained from α, β by adding tags to atomic moves.

The above definition corresponds to a standard coiteration schema, namely
the function � is the final morphism from the coalgebra (MA×MA, f�) to the
final coalgebra (MA, id), where the coalgebra morphism f� : MA ×MA −→
FMA(MA ×MA) is defined by:

f�(X,Y ) = {〈α′, 〈X ′, Y 〉〉 | 〈α,X ′〉 ∈ X} ∪ {〈β′, 〈X,Y ′〉〉 | 〈β, Y ′〉 ∈ Y } ∪
{〈α+ β, 〈X ′, Y ′〉〉 | 〈α,X ′〉 ∈ X & 〈β, Y ′〉 ∈ Y }

Remark. Notice that, in composing multigames via the sum, we keep track of the
moves coming from the two different components by using tags. This definition
is different from original Conway’s sum on games, which is a purely set-theoretic
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extensional operation, possibly allowing for identifications between the two com-
ponents. Our sum definition, where we keep track of the component in which
each move has been performed, is necessary e.g. for extending sum to a bifunctor
in categories of multigames and strategies such as that defined in Sect. 4 below,
or even to define strategy composition in this category. Nonetheless, notice that,
from a determinacy point of view, this sum and Conway’s original one behave in
the same way, i.e. they are equivalent w.r.t. the existence of (winning) strategies.

Negation. The negation is a unary multigame operation, which allows us to
build a new game, where the rôles of L and R are exchanged. For α ∈ MA, we
define

α = {a | a ∈ α} .
The definition of multigame negation is as follows:

Definition 7 (Negation). The negation − : MA −→MA is defined by:

X = {〈α,X ′〉 | 〈α,X ′〉 ∈ X} .

Also negation is an instance of the coiteration schema. It is the final morphism
from the coalgebra (MA, f−) to the final coalgebra (MA, id), where the coalgebra
morphism f− : MA −→ FMA(MA) is defined by:

f−(X) = {〈α,X ′〉 | 〈α,X ′〉 ∈ X} .

Linear Implication. Using the above notions of sum and negation, we can now
define the following linear implication, which corresponds to the notion of linear
implication in Linear Logic:

Definition 8 (Linear Implication). The linear implication of the multigames
X,Y , X � Y , is defined by

X � Y = X�Y .

Infinite Sum. We can enrich multigames with a further interesting unary coal-
gebraic operation, �∞, an infinite sum: on the game �∞x, at each step, the
current player can perform a move in finitely many of the infinite components of
X. Our infinite sum is related to the exponential modality defined on a category
of games in [28], and it will induce a comonad on the categories of multigames
that we will consider in Sect. 4.

Definition 9 (Infinite Sum). We define the infinite sum �∞ : MA −→MA
by:

�∞X = {〈α1 + . . .+ αn,X
′
1� . . .�X ′

n�(�∞X)〉 | n ≥ 1 &
〈α1,X

′
1〉, . . . , 〈αn,X ′

n〉 ∈ X & λα1 = . . . = λαn} .

The above specification defines a unique function �∞, since it is an instance
of the guarded coiteration of Definition 5 above, where
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– the functor G : Set∗ → Set∗ is defined by

G(A) =
∐

n≥1

(Mn
A ×A)

– the guard g : G(MA) −→MA is defined by

g(X1, . . . , Xn+1) = X1� . . .�Xn+1

– the function δMA : MA → P<κ(MA ×
∐
n≥1(M

n
A ×MA)) is defined by

δMA(X) = {(α1 + . . .+ αn,X
′
1, . . . , X

′
n,X) | n ≥ 1 & λα1 = . . . = λαn &

(α1,X
′
1), . . . , (αn,X

′
n) ∈ X}

– (MA, g, id) is a λ-bialgebra for λ : GF ·→ FG distributive law defined by

λA :
∐

n≥1

(Mn
A × P<κ(MA ×A))→ P<κ(MA ×

∐

n≥1

(Mn
A ×A))

λA(X1, . . . , Xn+1) = {(α1 + . . . + αk,X ′
1, . . . , X

′
n+1) | k ≥ 1 &

〈α1, X
′
i1〉 ∈ Xi1 , . . . ,〈αk, X ′

ik
〉 ∈ Xik & 1 ≤ i1, . . . , ik ≤ n &

∀j ∈ {1, . . . , n} \ {i1, . . . , ik}. X ′
j = Xj} .

3.3 Operations on Polarized Multigames

Notice that polarized multigames are not closed under the operations defined
above. However, one can define corresponding sums and linear implications on
polarized multigames, simply by “pruning” the graphs of the resulting multi-
games. A similar construction has been considered also in [18], in the case of
games. In our setting, the pruning operation of a multigame into a polarized one
can be defined as a coalgebraic operation, using a definition by mutual recursion:

Definition 10 (Pruning). Let ( )+, ( )− : MA −→MA be the mutually recur-
sive functions defined as:

{
(X)+ = {〈α, (X ′)−〉 | 〈α,X ′〉 ∈ X & λα = L}
(X)− = {〈α, (X ′)+〉 | 〈α,X ′〉 ∈ X & λα = R} .

We define the pruning operation as ( )−.

Once we have the pruning operation, we can define polarized sums and linear
implication:

Definition 11 (Polarized Operations). Let X,Y be polarized multigames.
We define:

– the polarized sum as the multigame (X�Y )−;
– the polarized linear implication as the multigame (X � Y )−;
– the polarized infinite sum as the multigame (�∞X)−.

In the following, by abuse of notation, we will use the same symbols for
polarized operations and the corresponding operations on all multigames.
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4 Categories of Multigames and Strategies

We define a monoidal closed category YMA , whose objects are polarized multi-
games and whose morphisms are strategies. We work with polarized multigames,
since the whole class of multigames fails to give a category, because of lack of
identities, as we will see.

The main difficulty in defining this category is the definition of composition,
which is based on a non-standard parallel composition of strategies. The difficulty
arises from the fact that a move in a strategy between X and Y can include
atomic moves on both X and Y .

A Monoidal Closed Category of Multigames. Let YMA be the category
defined by:
Objects: polarized multigames.
Morphisms: a morphism between multigames X and Y , σ : X � Y , is a
strategy for LII on X � Y . Notice that in a strategy on X � Y , Player R
can only open in Y , but then the Player L can move in X or Y or in both
components, and so on.
Identity: the identity idX : X � X is the copy-cat strategy. This definition
works thanks to the fact that multigames are polarized, so as, on the multigame
X � X = (X�X), R can only open on X, then L proceeds by copying the move
on X and so on, at each step R has exactly one component to move in. Notice
that, if the games were not polarized, then R could play on both components X
and X, preventing L to apply the copy-cat strategy.
Composition: strategy composition is defined as follows.

Given strategies σ : X � Y and τ : Y � Z, τ ◦ σ : X � Z is obtained via
the swivel-chair strategy, using the terminology of [7] (or the copy-cat strategy,
in Game Semantics terminology), and a non-standard parallel application of
strategies as follows.

The opening move by R on X � Z must be on Z, since multigames are
polarized. Then consider the L reply given by the strategy τ on Y � Z, if it
exists, otherwise the whole composition is undefined. If L moves in Z, then we
take this as the L move in the strategy τ ◦ σ. If the L move according to τ is
in the Y component of Y � Z or in both components Y and Z, then we use
the swivel chair to view the L move in the Y component as a R move in the Y
component of X � Y . Now, if L has a reply in X � Y according to σ, then
L moves in X or in Y or in both X and Y . In the first case, the L move in
X together with the possible previous move by L in Z form the L reply to the
opening R move. In the latter two cases, using the swivel chair, the move in Y
can be viewed as a R move in the Y component of Y � Z, and we go on in this
way: three cases can arise. Eventually, the L multimove is all in X or in Z, or σ
or τ is undefined, or the dialogue between the Y components does not stop. In
the first case, the last move on X or Z, together with a possible previous move
on Z or X, form the answer to the opening R move, in the latter two cases the
composition is undefined.
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Now, in case of convergence, in order to understand how the strategy τ ◦ σ
behaves after the first pair of RL moves, it is convenient to list all situations
which can arise after these initial moves, according to which player is next to
move in each component. Namely, by case analysis, one can show that, after the
first RL moves, the following four cases can arise:

1. XL � Y R Y L � ZR

2. XR � Y L Y R � ZR

3. XR � Y L Y R � ZR

4. XR � Y R Y L � ZR

where XL (XR) denotes that L (R) is next to move in that component. Notice
that case 1 above corresponds to the initial situation. Thus we are left to discuss
the behavior of τ ◦σ in the other cases. In case 2, R can only open in X; this case
can be dealt with similarly as the initial case 1, and after a pair of RL moves, it
takes again in one of the four situations above. Cases 3 and 4 are the interesting
ones, where we need to apply the strategies σ and τ in parallel, by exploiting
the parallelism of multigames. These two cases are dealt with similarly. Let us
consider case 3. Then R can open in Z or in X or in both components.

– If R opens in Z, then the reply of L via τ must be in Z, since, by definition
of configuration 3, L cannot play in the Y component of Y � Z. This will
be also the reply of L in the composition τ ◦ σ, and the final configuration
coincides with configuration 3.

– If R opens in X, then the L reply given by σ can be in X, or in Y , or both in
X and Y . In the first case, i.e. if the L reply is in X, this will be the reply of
τ ◦ σ, and the new configuration coincides with configuration 3. In the latter
two cases, the L move in the Y component of X � Y can be viewed, via
the swivel chair, as a R move in Y � Z. By definition of configuration 3, L
can only reply in Y via τ , and, either after finitely many applications of the
swivel chair the L reply via σ ends up in X, or the dialogue between the Y
components goes on indefinitely, or σ or τ are undefined. In the latter two
cases, the overall composition is undefined, while in the first case the L move
in X will be the reply in τ ◦ σ to the R move, and the final configuration still
coincides with configuration 3.

– Finally, if R opens in X and Z, we apply the two strategies σ and τ in parallel:
by the form of configuration 3, the L answer of τ must be in Z, while the L
answer via σ can be either in X or in Y or both in X and Y . In this latter case,
an infinite dialogue between the Y components arises (or σ or τ is undefined
at some point), and hence the overall composition is undefined.
If the L reply via σ is in X, then this, together with the L reply via τ in
Z, will form the L move in τ ◦ σ, and the final configuration coincides with
configuration 3 itself. If the L reply via σ is in Y , then again, either the dialogue
between the Y components goes on indefinitely, or σ or τ is undefined at some
point, or, after finitely many applications of the swivel chair, σ will finally
provide a L move in X. This, together with the L reply via τ in Z, will form
the L move in τ ◦σ, and the final configuration coincides with configuration 3
again.
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Similarly, one can deal with case 4. This proves closure under composition of the
category YMA .

Associativity of composition can also be proven by case analysis on the polar-
ity of the current player in the various components.

Assume strategies σ : X � Y , τ : Y � Z, θ : Z � W . We have to prove
that θ ◦ (τ ◦ σ) = (θ ◦ τ) ◦ σ. Since multigames are polarized, in any of the
two compositions, R can only open in W . Now, in any of the two compositions,
one should consider the possible replies by L. We only discuss one case, the
remaining being dealt with similarly. Assume the L reply via θ is in Z. In both
compositions, we proceed to apply the swivel chair, by viewing this latter move
as a R move in the Z component of Y � Z. Then, in both compositions, we
consider the L reply via τ . Assume L replies both in Y and in Z. At this point,
the two compositions proceed differently, since in θ ◦ (τ ◦ σ) we first apply the
swivel chair to the move in Z and we go on until we get a L answer in W , and
then we apply the swivel chair to the L move in Y . In (θ ◦ τ) ◦σ, these two steps
are reversed, first we apply the swivel chair to the L move in Y until we get a L
reply in X, then we apply the swivel chair to the L move in Z until we get a L
reply in W . The point is that these two steps, working on separate parts of the
board (i.e. different components), are independent and can be exchanged. As a
consequence, the behavior of θ ◦ (τ ◦ σ) and (θ ◦ τ) ◦ σ is the same.

The multigame constructions of tensor product and linear implication can
be made functorial, determining a structure of a symmetric monoidal closed
category on YMA , with the empty multigame as tensor unit. In particular, in
defining the bifunctor �, we proceed as follows. Let σ1 : X1 → Y1 and σ2 : X2 →
Y2 be strategies. In order to define the strategy σ1 + σ2 : X1 +X2 → Y1 + Y2,
we let the two strategies σ1 and σ2 play in parallel. I.e. we consider R opening
move: if it is in the Y1 (Y2) component, then the L answer will be given by the
strategy σ1 (σ2); if the R move is both in Y1 and Y2, then we apply the two
strategies in parallel. We proceed in a similar way for the next moves. Clearly,
for the above definition of σ1 + σ2, it is essential that in the sum multigame
we keep track of the components from which each move comes from. Otherwise,
without tags in the moves of the sum, when e.g. Y1 = Y2, we would not know
on which component the R opening move on Y1 +Y2 comes, and then we do not
know whether applying σ1 or σ2. This justifies our definition of sum in Sect. 3.2.

Summarizing, we have:

Theorem 1. The category YMA is symmetric monoidal closed.

Finally, one could show that the infinite sum operation �∞ induces a sym-
metric monoidal comonad, determining on YMA a structure of linear category in
the sense of [8]. We omit the details of this construction. Notice that, contrary
to traditional Game Semantics, in our coalgebraic framework this construction
does not require the definition of an equivalence on strategies and a quotient
operation on them in the style of [1].
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5 Relating Multigames to Games

In this section, we show that coalgebraic multigames are related to coalgebraic
games, when a notion of parallel sum reminiscent of Conway’s selective sum
is considered on games, in place of disjoint sum. Here we recall the notion of
coalgebraic game as it has been defined in [17]:

Definition 12 (Coalgebraic Games)

– Let A be a set of atoms with functions:
(i) μ : A → N yielding the name of the move (for a set N of names),
(ii) λ : A → {L,R} yielding the player who has moved.
Assume A be closed under complementation.

– Let FA : Set∗ → Set∗ be the functor defined by

FA(A) = P<κ(A×A)

with the usual definition on morphisms, and let (GA, id) be the final FA-
coalgebra.

A coalgebraic game is an element x of the carrier GA of the final coalgebra.

Plays and strategies are defined similarly as for multigames, see [17] for more
details.

The above definition of coalgebraic games generalizes Conway games and
games arising in Game Semantics, see [17] for more details. Following [11], coalge-
braic games can be endowed with various notions of sum, the most studied being
disjoint sum, which corresponds to tensor product in standard Game Semantics.
Here we focus on a notion of parallel sum inspired by Conway’s selective sum,
where at each step the current player can perform a move either in the first or
in the second component or in both components. This notion of sum admits a
straightforward definition by coiteration.

Definition 13 (Selective Sum). The selective sum of two games ∨ : GA ×
GA −→ GA is defined by:

x ∨ y = {〈a′, x′ ∨ y〉 | 〈a, x′〉 ∈ x} ∪ {〈b′, x ∨ y′〉 | 〈b, y′〉 ∈ y} ∪
{〈〈a, b〉, x′ ∨ y′〉 | 〈a, x′〉 ∈ x & 〈b, y′〉 ∈ y},

where a′, b′ are obtained from a, b by adding suitable tags, and 〈a, b〉 denotes the
pairing of the moves a, b (we assume the set of moves to be closed under pairing).

As usual, one can define negation and then linear implication on games, i.e.:

x = {〈a, x′〉 | 〈a, x′〉 ∈ x} x � y = x ∨ y .

Similarly as for multigames, when we restrict to polarized games, these can
be endowed with a structure of symmetric monoidal category where tensor is
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selective sum. As in the case of multigames, also in the present case strategy com-
position is defined via the swivel-chair and a non-standard parallel application of
strategies. We skip the details of this construction. Let call YGA be the category
so obtained.

An analogous construction has been also carried out in [18] in the case of
coalgebraic games and total strategies, and in [19] for a notion of game in the
[1]-style.

5.1 Categorical Correspondence

The category YGA of games with selective sum turns out to be equivalent to
the category YMA of multigames, i.e. there exist functors S : YGA → YMA

and T : YMA → YGA , and natural isomorphisms η : G ◦ F ·→ IdYGA and
η′ : IdYMA

·→ F ◦G.
Namely, given a multigame X in MA, this induces a game Xg, where the

atomic moves are the sets of (multi)moves on the multigame X. Vice versa, given
a game, x, one build a multigame xm, where each atomic move a is replaced by
the singleton multimove {a}. Clearly, for any multigame X, (Xg)m is isomorphic
to X, and for any game x, (xm)g is also isomorphic to x.

This allows us to define the object part of functors S : YGA → YMA and
T : YMA → YGA . Notice that S and T preserve tensor product on objects, up
to isomorphism.

Functors S and T can be extended to strategies as follows.
For any strategy on multigames σ : X � Y , we can associate a strategy

σg : Xg � Yg, where the plays of σg are obtained from the plays of σ by
splitting each multimove of σ containing atomic moves both in A and in B into
a pair of moves on A and B, respectively. Vice versa, any strategy on games
σ : x � y induces a strategy on multigames σm : xm � ym, whose plays are
obtained from the plays of σ by transforming each move instance of x or y into
a singleton multimove, and each pair of moves 〈a, b〉 as the multimove {a, b}.

Summarizing, we can define functors S : YGA → YMA and T : YMA →
YGA by:
for any game x, Sx = xm, for any strategy σ : X � Y , Sσ = σm,
for any multigame X, TX = Xg, for any strategy σ : X � Y , Tσ = σg.

Then, we have:

Theorem 2. The functors S : YGA → YMA and T : YMA → YGA are monoidal,
and they give an equivalence between the categories YGA and YMA .

6 Final Remarks and Directions for Future Work

We have introduced coalgebraic multigames, where at each step the current
player performs a multimove, i.e. a (finite) set of atomic moves. Coalgebraic
multigames introduce a certain level of parallelism, and they are situated half-
way between traditional sequential games and concurrent games. Multigame
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operations are smoothly defined in our coalgebraic framework as final mor-
phisms via (generalized) coiteration schemata. A monoidal closed category of
multigames and strategies is built, where tensor is sum. The relationship between
coalgebraic multigames and games is expressed in categorical terms via an equiv-
alence between the category of multigames and a monoidal closed category of
coalgebraic games where tensor is selective sum.

Here is a list of comments and directions for future work.

– Total strategies. In this paper, coalgebraic (multi)games are endowed with a
notion of partial strategy, whereby the given player can possibly refuse to
provide an answer and give up the game. Alternatively, one could consider
notions of total strategies, in the line of [15,17,18], where the player is forced
to give an answer, if there exists any. On total strategies one can then define the
notion of winning/non-losing strategy for a player, if it generates winning/non-
losing plays against any possible counterstrategy. A finite play is taken to be
winning for the player who performs the last move, while infinite plays are
taken to be winning for L/R or draws. In order to formalize winning/non-
losing strategies, one shall introduce a payoff function on plays, and enrich the
notion of multigame with a payoff. We claim that the results of the present
paper can be rephrased also in the context of total strategies.

– Other notions of sum. In [11], Chap. 14 “How to Play Several Games at Once
in a Dozen Different Ways”, Conway introduces a number of different ways
in which games can be played. Apart from disjunctive and selective sum,
Conway defines the conjunctive sum, where at each step the current player
makes a move in each (non-ended) component. A first attempt to extend
Joyal’s categorical construction to conjunctive sum fails, even in the case of
polarized games, since trivially copy-cat strategies do not work. Alternative
approaches are called for.

– Semantics of concurrency. In the literature, notions of concurrent games [2],
asynchronous games [27], and distributed games [10,13,30] have been intro-
duced as concurrent extensions of traditional games. Our categories of coal-
gebraic multigames and coalgebraic games with selective sum are more in the
traditional line, but nonetheless, they reflect a form of parallelism. Namely,
in [19] it has been shown that, in the context of functional languages, cat-
egories of multigames in the style of [1] accommodate parallel or. It would
be interesting to explore to what extent multigames can be used for model-
ing concurrent and distributed languages, possibly featuring true concurrency.
This would require an extension of our approach in order to account also for
interference between moves/events.

– Relating multigames to domains. Since multigames introduce a level of par-
allelism, and as it is shown in [19], they accommodate for e.g. parallel or in
functional programming, one may expect a tighter connection between multi-
games and traditional denotational semantics based on domains.
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Abstract. We propose an abstract framework for modeling state-based
systems with internal behavior as e.g. given by silent or ε-transitions.
Our approach employs monads with a parametrized fixpoint operator †
to give a semantics to those systems and implement a sound procedure
of abstraction of the internal transitions, whose labels are seen as the
unit of a free monoid. More broadly, our approach extends the standard
coalgebraic framework for state-based systems by taking into account
the algebraic structure of the labels of their transitions. This allows to
consider a wide range of other examples, including Mazurkiewicz traces
for concurrent systems.

1 Introduction

The theory of coalgebras provides an elegant mathematical framework to express
the semantics of computing devices: the operational semantics, which is usually
given as a state machine, is modeled as a coalgebra for a functor; the denota-
tional semantics as the unique map into the final coalgebra of that functor. While
the denotational semantics is often compositional (as, for instance, ensured by
the bialgebraic approach of [24]), it is sometimes not fully-abstract, i.e., it dis-
criminates systems that are equal from the point of view of an external observer.
This is due to the presence of internal transitions (also called ε-transitions) that
are not observable but that are not abstracted away by the usual coalgebraic
semantics using the unique homomorphism into the final coalgebra.

In this paper, we focus on the problem of giving trace semantics to sys-
tems with internal transitions. Our approach stems from an elementary obser-
vation (pointed out in previous work, e.g. [23]): the labels of transitions form a
monoid and the internal transitions are those labeled by the unit of the monoid.
Thus, there is an algebraic structure on the labels that needs to be taken into
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account when modeling the denotational semantics of those systems. To illus-
trate this point, consider the following two non-deterministic automata (NDA).

The one on the left (that we call A) is an NDA with ε-transitions: its transitions
are labeled either by the symbols of the alphabet A = {a, b, c} or by the empty
word ε ∈ A∗. The one on the right (that we call B) has transitions labeled by lan-
guages in P(A∗), here represented as regular expressions. The monoid structure
on the labels is explicit on B, while it is less evident in A since the set of labels
A ∪ {ε} does not form a monoid. However, this set can be trivially embedded
into P(A∗) by looking at each symbols as the corresponding singleton language.
For this reason each automaton with ε-transitions, like A, can be regarded as an
automaton with transitions labeled by languages, like B. Furthermore, we can
define the semantics of NDA with ε-transitions by defining the semantics of NDA
with transitions labeled by languages: a word w is accepted by a state q if there

is a path q
L1�� · · · Ln �� p where p is a final state, and there exist a decomposition

w = w1 · · ·wn such that wi ∈ Li. Observe that, with this definition, A and B

accept the same language: all words over A that end with a or c. In fact, B

was obtained from A in a well-known process to compute the regular expression
denoting the language accepted by a given automaton [14].

We propose to define the semantics of systems with internal transitions fol-
lowing the same idea as in the above example. Given some transition type (i.e. an
endofunctor) F , one first defines an embedding of F -systems with internal tran-
sitions into F ∗-system, where F ∗ has been derived from F by making explicit
the algebraic structure on the labels. Next one models the semantics of an
F -system as the one of the corresponding F ∗-system e. Naively, one could think
of defining the semantics of e as the unique map !e into the final coalgebra for
F ∗. However, this approach turns out to be too fine grained, essentially because
it ignores the underlying algebraic structure on the labels of e. The same prob-
lem can be observed in the example above: B and the representation of A as an
automaton with languages as labels have different final semantics—they accept
the same language only modulo the equations of monoids.

Thus we need to extend the standard coalgebraic framework by taking into
account the algebraic structure on labels. To this end, we develop our theory for
systems whose transition type F ∗ has a canonical fixpoint, i.e. its initial algebra
and final coalgebra coincide. This is the case for many relevant examples, as
observed in [12]. Our canonical fixpoint semantics will be given as the composite
¡ ◦ !e, where !e is a coalgebra morphism given by finality and ¡ is an algebra
morphism given by initiality. The target of ¡ will be an algebra for F ∗ encoding
the equational theory associated with the labels of F ∗-systems. Intuitively, ¡
being an algebra morphism, will take the quotient of the semantics given by !e
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modulo those equations. Therefore the extension provided by ¡ is the technical
feature allowing us to take into account the algebraic structure on labels.

To study the properties of our canonical fixpoint semantics, it will be conve-
nient to formulate it as an operator e �→ e† assigning to systems (seen as sets of
equations) a certain solution. Within the same perspective we will implement a
different kind of solution e �→ e‡ turning any system e with internal transitions
into one e‡ where those have been abstracted away. By comparing the operators
e �→ e† and e �→ e‡, we will then be able to show that such a procedure (also
called ε-elimination) is sound with respect to the canonical fixpoint semantics.

To conclude, we will explore further the flexibility of our framework. In par-
ticular, we will model the case in which the algebraic structure of the labels
is quotiented under some equations, resulting in a coarser equivalence than the
one given by the canonical fixpoint semantics. As a relevant example of this
phenomenon, we give the first coalgebraic account of Mazurkiewicz traces.

Synopsis. After recalling the necessary background in Sect. 2, we discuss our
motivating examples—automata with ε-transitions and automata on words—in
Sect. 3. Section 4 is devoted to present the canonical fixpoint semantics and the
sound procedure of ε-elimination. This framework is then instantiated to the
examples of Sect. 3. Finally, in Sect. 5 we show how a quotient of the algebra on
labels induces a coarser canonical fixpoint semantics. We propose Mazurkiewicz
traces as a motivating example for such a construction. A full version of this
paper with all proofs and extra material can be found in http://arxiv.org/abs/
1402.4062.

2 Preliminaries

In this section we introduce the basic notions we need for our abstract framework.
We assume some familiarity with category theory. We will use boldface capitals
C to denote categories, X,Y, . . . for objects and f, g, . . . for morphisms. We use
Greek letters and double arrows, e.g. η : F ⇒ G, for natural transformations,
monad morphisms and any kind of 2-cells. If C has coproducts we will denote
them by X + Y and use inl, inr for the coproduct injections.

2.1 Monads

We recall the basics of the theory of monads, as needed here. For more informa-
tion, see e.g. [18]. A monad is a functor T : C → C together with two natural
transformations, a unit η : idC ⇒ T and a multiplication μ : T 2 ⇒ T , which are
required to satisfy the following equations, for every X ∈ C: μX ◦ ηTX = μX ◦
TηX = id and TμX ◦ μTX = μX ◦ μX .

A morphism of monads from (T, ηT , μT ) to (S, ηS , μS) is a natural transfor-
mation γ : T ⇒ S that preserves unit and multiplication: γX ◦ ηTX = ηSX and
γX ◦μTX = μSX ◦γSX ◦TγX . A quotient of monads is a morphism of monads with
epimorphic components.

http://arxiv.org/abs/1402.4062
http://arxiv.org/abs/1402.4062
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Example 2.1. We briefly describe the examples of monads that we use in this
paper.

1. Let C = Sets. The powerset monad P maps a set X to the set PX of subsets
of X, and a function f : X → Y to Pf : PX → PY given by direct image.
The unit is given by the singleton set map ηX(x) = {x} and multiplication
by union μX(U) =

⋃
S∈U S.

2. Let C be a category with coproducts and E an object of C. The exception
monad E is defined on objects as EX = E +X and on arrows f : X → Y as
Ef = IdE + f . Its unit and multiplication are given on X ∈ C respectively as
inrX : X → E+X and ∇E+IdX : E+E+X → E+X, where ∇E = [idE , idE ]
is the codiagonal. When C = Sets, E can be thought as a set of exceptions
and this monad is often used to encode computations that might fail throwing
an exception chosen from the set E.

3. Let H be an endofunctor on a category C such that for every object X
there exists a free H-algebra H∗X on X (equivalently, an initial H + X-
algebra) with the structure τX : HH∗X → H∗X and universal morphism
ηX : X → H∗X. Then as proved by Barr [5] (see also Kelly [16]) H∗ : C→ C
is the functor part of a free monad on H with the unit given by the above
ηX and the multiplication given by the freeness of H∗H∗X: μX is the unique
H-algebra homomorphism from (H∗H∗X, τH∗X) to (H∗X, τX) such that μX ·
ηH∗X = ηX . Also notice that for a complete category every free monad arises
in this way. Finally, for later use we fix the notation κ = τ ·Hη : H ⇒ H∗ for
the universal natural transformation of the free monad.

Given a monad M : C → C, its Kleisli category K�(M) has the same objects
as C, but morphisms X → Y in K�(M) are morphisms X → MY in C. The
identity map X → X in K�(M) is M ’s unit ηX : X → MX; and composition
g ◦ f in K�(M) uses M ’s multiplication: g ◦ f = μ ◦Mg ◦ f . There is a forgetful
functor U : K�(T ) → C, sending X to TX and f to μ ◦ Tf . This functor has a
left adjoint J, given by JX = X and Jf = η ◦ f . The Kleisli category K�(M)
inherits coproducts from the underlying category C. More precisely, for every
objects X and Y their coproduct X+Y in C is also a coproduct in K�(M) with
the injections Jinl and Jinr.

2.2 Distributive Laws and Liftings

The most interesting examples of the theory that we will present in Sect. 4 con-
cern coalgebras for functors Ĥ : K�(M) → K�(M) that are obtained as liftings
of endofunctors H on Sets. Formally, given a monad M : C → C, a lifting
of H : C → C to K�(M) is an endofunctor Ĥ : K�(M) → K�(M) such that
J ◦H = Ĥ ◦ J. The lifting of a monad (T, η, μ) is a monad (T̂ , η̂, μ̂) such that T̂
is a lifting of T and η̂, μ̂ are given on X ∈ K�(M) (i.e. X ∈ Sets) respectively
as J(ηX) and J(μX).

A natural way of lifting functors and monads is by mean of distributive laws.
A distributive law of a monad (T, ηT , μT ) over a monad (M,ηM , μM ) is a natural
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transformation λ : TM ⇒MT , that commutes appropriately with the unit and
multiplication of both monads; more precisely, the diagrams below commute:

TX

TηM
X

��

TX

ηM
T X

��

TM2X

TμM
X

��

λMX �� MTMX
MλX �� M2TX

μM
T X

��

TMX
λX

�� MTX TMX
λX

�� MTX

MX

ηT
MX

��

MX

MηT
X

��

T 2MX

μT
MX

��

TλMX

�� TMTX
λT X

�� T 2MX

MμT
X

��

A distributive law of a functor T over a monad (M,ηM , μM ) is a natural transfor-
mation λ : TM ⇒MT such that only the two topmost squares above commute.

The following “folklore” result gives an alternative description of distributive
laws in terms of liftings to Kleisli categories, see also [15,20] or [4].

Proposition 2.2 ([20]). Let (M,ηM , μM ) be a monad on a category C. Then
the following holds:

1. For every endofunctor T on C, there is a bijective correspondence between
liftings of T to K�(M) and distributive laws of T over M .

2. For every monad (T, ηT , μT ) on C, there is a bijective correspondence between
liftings of (T, ηT , μT ) to K�(M) and distributive laws of T over M .

In what follows we shall simply write Ĥ for the lifting of an endofunctor H.

Proposition 2.3 ([12]). Let M : C → C be a monad and H : C → C be a
functor with a lifting Ĥ : K�(M)→ K�(M). If H has an initial algebra ι : HI ∼=→ I

(in C), then Jι : ĤI → I is an initial algebra for Ĥ (in K�(M)).

In our examples, we will often consider the free monad (Example 2.1.3) Ĥ∗

generated by a lifted functor Ĥ. The following result will be pivotal.

Proposition 2.4. Let H : C→ C be a functor and M : C→ C be a monad such
that there is a lifting Ĥ : K�(M) → K�(M). Then the free monad H∗ : C → C
lifts to a monad Ĥ∗ : K�(M)→ K�(M). Moreover, Ĥ∗ = Ĥ∗.

Recall from [12] that for every polynomial endofunctorH on Sets there exists
a canonical distributive law of H over any commutative monad M (equivalently,
a canonical lifting of H to K�(M)); this result was later extended to so-called
analytic endofunctors of Sets (see [19]). This can be used in our applications
since the power-set functor P is commutative, and so is the exception monad E

iff E = 1.

2.3 Cppo-enriched Categories

For our general theory we are going to assume that we work in a category where
the hom-sets carry a cpo structure. Recall that a cpo is a partially ordered set
in which all ω-chains have a join. A cpo with bottom is a cpo with a least
element ⊥. A function between cpos is called continuous if it preserves joins
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of ω-chains. Cpos with bottom and continuous maps form a category that we
denote by Cppo.

A Cppo-enriched category C is a category where (a) each hom-set C(X,Y )
is a cpo with a bottom element ⊥X,Y : X → Y and (b) composition is continuous,
that is:

g ◦
(

⊔

n<ω

fn

)

=
⊔

n<ω

(g ◦ fn) and

(
⊔

n<ω

fn

)

◦ g =
⊔

n<ω

(fn ◦ g).

The composition is called left strict if ⊥Y,Z ◦f = ⊥X,Z for all arrows f : X → Y .
In our applications, C will mostly be a Kleisli category for a monad on Sets.

Throughout this subsection we assume that C is a Cppo-enriched category.
An endofunctor H : C→ C is said to be locally continuous if for any ω-chain

fn : X → Y , n < ω in C(X,Y ) we have:

H

(
⊔

n<ω

fn

)

=
⊔

n<ω

H(fn).

We are going to make use of the fact that a locally continuous endofunctor
H on C has a canonical fixpoint, i.e. whenever its initial algebra exists it is also
its final coalgebra:

Theorem 2.5 ([9]). Let H : C → C be a locally continuous endofunctor on
the Cppo-enriched category C whose composition is left-strict. If an initial
H-algebra ι : HI ∼=→ I exists, then ι−1 : I ∼=→ HI is a final H-coalgebra.

In the sequel, we will be interested in free algebras for a functor H on C
and the free monad H∗ (cf. Example 2.1.3). For this observe that coproducts
in C are always Cppo-enriched, i.e. all copairing maps [−,−] : C(X,Y ) ×
C(X ′, Y ) → C(X +X ′, Y ) are continuous; in fact, it is easy to show that this
map is continuous in both of its arguments using that composition with the
coproduct injections is continuous.

Proposition 2.6. Let C be Cppo-enriched with composition left-strict.
Furthermore, let H : C → C be locally continuous and assume that all free
H-algebras exist. Then the free monad H∗ is locally continuous.

2.4 Final Coalgebras in Kleisli Categories

In our applications the Cppo-enriched category will be the Kleisli category
C = K�(M) of a monad on Sets and the endofunctors of interest are liftings
Ĥ of endofunctors H on Sets. It is known that in this setting a final coalgebra
for the lifting Ĥ can be obtained as a lifting of an initial H-algebra (see Hasuo
et al. [12]). The following result is a variation of Theorem 3.3 in [12]:

Theorem 2.7. Let M : Sets → Sets be a monad and H : Sets → Sets be a
functor such that
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(a) K�(M) is Cppo-enriched with composition left strict;
(b) H is accessible (i.e., H preserves λ-filtered colimits for some cardinal λ) and

has a lifting Ĥ : K�(M)→ K�(M) which is locally continuous.

If ι : HI ∼=→ I is the initial algebra for the functor H, then

1. Jι : ĤI → I is the initial algebra for the functor Ĥ;
2. Jι−1 : I → ĤI is the final coalgebra for the functor Ĥ.

The first item follows from Proposition 2.3 and the second one follows from
Theorem 2.5. There are two differences with Theorem 3.3 in [12]:

(1) The functor H : Sets→ Sets is supposed to preserve ω-colimits rather that
being accessible. We use the assumption of accessibility because it guarantees
the existence of all free algebras for H and for Ĥ, which implies also that
for all Y ∈ K�(M) an initial Ĥ∗(Id+Y )-algebra exists. This property of Ĥ∗

will be needed for applying our framework of Sect. 4.
(2) We assume that the lifting Ĥ : K�(M)→ K�(M) is locally continuous rather

than locally monotone. We will need continuity to ensure the double dag-
ger law in Remark 2.9. This assumption is not really restrictive since, as
explained in Sect. 3.3.1 of [12], in all the meaningful examples where Ĥ is
locally monotone, it is also locally continuous.

Example 2.8 (NDA). Consider the powerset monad P (Example 2.1.1) and the
functor HX = A×X + 1 on Sets (with 1 = {�}). The functor H lifts to Ĥ on
K�(P) as follows: for any f : X → Y in K�(P) (that is f : X → P(Y ) in Sets),
Ĥf : A×X+1→ A×Y +1 is given by Ĥf(�) = {�} and Ĥf(〈a, x〉) = {〈a, y〉 |
y ∈ f(x)}.

Non-deterministic automata (NDA) over the input alphabetA can be regarded
as coalgebras for the functor Ĥ : K�(P) → K�(P). Consider, on the left, a 3-state
NDA, where the only final state is marked by a double circle.

It can be represented as a coalgebra e : X → ĤX, that is a function e : X →
P(A×X + 1), given above on the right, which assigns to each state x ∈ X a set
which: contains � if x is final; and 〈a, y〉 for all transitions x a−→ y.

It is easy to see that M = P and H above satisfy the conditions of Theorem
2.7 and therefore both the final Ĥ-coalgebra and the initial Ĥ-algebra are the
lifting of the initial algebra for the functor HX = A×X + 1, given by A∗ with
structure ι : A×A∗ + 1→ A∗ which maps 〈a,w〉 to aw and � to ε.

For an NDA (X, e), the final coalgebra homomorphism !e : X → A∗ is the
function X → PA∗ that maps every state in X to the language that it accepts.
In K�(P):
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X

e

��

ε ∈ !e(x) ⇔ � ∈ e(x)
aw ∈ !e(x) ⇔ for some y ∈ X, (a, y) ∈ e(x) and w ∈ !e(y)

!e ������������������������������ A∗

Jι−1

��

A×X + 1
A×!e+1

�������������������������� A×A∗ + 1

2.5 Monads with Fixpoint Operators

In order to develop our theory of systems with internal behavior, we will adopt an
equational perspective on coalgebras. In the sequel we recall some preliminaries
on this viewpoint.

Let T : C → C be a monad on any category C. Any morphism e : X →
T (X + Y ) (i.e. a coalgebra for the functor T (Id + Y )) may be understood as
a system of mutually recursive equations. In our applications we are interested
in the case where C = K�(M) and T = Ĥ∗ is a (lifted) free monad. As in the
example of NDA (Example 2.8) take M = P and HX = 1 + A × X. Now, set
TX = A∗ + A∗ × X and consider the following system of mutually recursive
equations

x0 ≈ {c, (ab, x1)}, x1 ≈ {d, (a, x0), (ε, y)},
where x0, x1 ∈ X are recursion variables, y ∈ Y is a parameter and a, b, c, d ∈ A.
A solution assigns to each of the two variables x0, x1 an element of P(TY ) such
that the formal equations ≈ become actual identities in K�(P):

x0 �→ {(aba)∗c, (aba)∗abd, ((aba)∗ab, y)}, x1 �→ {(aab)∗d, (aab)∗ac, ((aab)∗, y)}.

Observe that the above system of equations corresponds to an equation morphism
e : X → T (X+Y ) and the solution to a morphism e† : X → TY , both in K�(M).
The property that e† is a solution for e is expressed by the following equation
in K�(M):

e† = (X e ��T (X + Y )
T [e†,ηT

Y ]
��TTY

μT
Y ��TY ). (1)

So e �→ e† is a parametrized fixpoint operator, i.e. a family of fixpoint operators
indexed by parameter sets Y .

Remark 2.9. In our applications we shall need a certain equational property of
the operator e �→ e†: for all Y ∈ C and equation morphism e : X → T (X +X +
Y ), the following equation, called double dagger law, holds:

e†† = (X e ��T (X +X + Y )
T (∇X+Y )

��T (X + Y ))†.

This and other laws of parametrized fixpoint operators have been studied by
Bloom and Ésik in the context of iteration theories [6]. A closely related notion
is that of Elgot monads [1,2].
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Example 2.10 (Least fixpoint solutions). Let T : C → C be a locally contin-
uous monad on the Cppo-enriched category C. Then T is equipped with a
parametrized fixpoint operator obtained by taking least fixpoints: given a mor-
phism e : X → T (X + Y ) consider the function Φe on C(X,TY ) given by
Φe(s) = μTY ◦ T [s, ηTY ] ◦ e. Then Φe is continuous and we take e† to be the least
fixpoint of Φe. Since e† = Φe(e†), Eq. (1) holds, and it follows from the argument
in Theorem 8.2.15 and Exercise 8.2.17 in [6] that the operator e �→ e† satisfies
the axioms of iteration theories (or Elgot monads, respectively). In particular
the double dagger law holds for the least fixpoint operator e �→ e†.

3 Motivating Examples

The work of [12] bridged a gap in the theory of coalgebras: for certain functors,
taking the final coalgebra directly in Sets does not give the right notion of
equivalence. For instance, for NDA, one would obtain bisimilarity instead of
language equivalence. The change to Kleisli categories allowed the recovery of the
usual language semantics for NDA and, more generally, led to the development
of coalgebraic trace semantics.

In the Introduction we argued that there are relevant examples for which this
approach still yields the unwanted notion of equivalence, the problem being that
it does not consider the extra algebraic structure on the label set. In the sequel,
we motivate the reader for the generic theory we will develop by detailing two
case studies in which this phenomenon can be observed: NDA with ε-transitions
and NDA with word transitions. Later on, in Example 5.7, we will also consider
Mazurkiewicz traces [17].

NDA with ε-transition. In the world of automata, ε-transitions are considered
in order to enable easy composition of automata and compact representations
of languages. These transitions are to be interpreted as the empty word when
computing the language accepted by a state. Consider, on the left, the following
simple example of an NDA with ε-transitions, where states x and y just make
ε transitions. The intended semantics in this example is that all states accept
words in a∗.

Note that, more explicitly, these are just NDA where the alphabet has a distin-
guished symbol ε. So, they are coalgebras for the functor Ĥ + Id: K�(P)→ K�(P)
(where H is the functor of Example 2.8), i.e. functions e : X → P((A×X +1)+
X) ∼= P((A + 1) × X + 1), as made explicit for the above automaton in the
middle.

The final coalgebra for Ĥ + Id is simply (A+ 1)∗ and the final map !e : X →
(A+1)∗ assigns to each state the language in (A+1)∗ that it accepts. However,
the equivalence induced by !e is too fine grained: for the automata above, !e
maps x, y and z to three different languages (on the right), where the number
of ε plays an explicit role, but the intended semantics should disregard ε’s.
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NDA with word transitions. This is a variation on the motivating example of the
introduction: instead of languages, transitions are labeled by words1. Formally,
consider again the functorH from Example 2.8. Then NDA with word transitions
are coalgebras for the functor Ĥ∗ : K�(P) → K�(P), that is, functions e : X →
P(A∗×X +A∗) ∼= P(A∗× (X + 1)). We observe that they are like NDA but (1)
transitions are labeled by words in A∗, rather than just symbols of the alphabet
A, and (2) states have associated output languages, rather than just �. We will
draw them as ordinary automata plus an arrow L⇒ to denote the output language
of a state (no ⇒ stands for the empty language). For an example, consider the
following word automaton and associated transition function e.

The semantics of NDA with word transitions is given by languages over A,
obtained by concatenating the words in the transitions and ending with a word
from the output language. For instance, x above accepts word abc but not ab.

However, if we consider the final coalgebra semantics we again have a mis-
match. The initial H∗-algebra has carrier (A∗)∗ × A∗ that can be represented
as the set of non-empty lists of words over A∗, where (A∗)∗ indicates possibly
empty lists of words. Its structure ι : A∗ × ((A∗)∗ × A∗) + A∗ → (A∗)∗ × A∗

maps w into (〈〉, w) and (w′, (l, w)) into (w′ :: l, w). Here, we use 〈〉 to denote
the empty list and :: is the append operation. By Theorem 2.7, the final Ĥ∗-
coalgebra has the same carrier and structure Jι−1. The final map, as a function
!e : X → P((A∗)∗×A∗), is then defined by commutativity of the following square
(in K�(P)):

X
!e �����������������������

e

��

(〈〉, w) ∈ !e(x) ⇔ w ∈ e(x)
(w :: l, w′) ∈ !e(x) ⇔ ∃y (w, y) ∈ e(x) and (l, w′) ∈ !e(y).

(A∗)∗ × A∗

Jι−1

��

A∗ × X + A∗
idA∗ ×!e+idA∗

������������������ A∗ × ((A∗)∗ × A∗) + A∗

(2)

Once more, the semantics given by !e is too fine grained: in the above example,
!e(x) = {([a, b], c)} and !e(u) = {([ε, ab], c)} whereas the intended semantics
would equate both x and u, since they both accept the language {abc}.

Note that any NDA can be regarded as word automaton. Recall the natural
transformation κ : Ĥ ⇒ Ĥ∗ defined in Example 2.1.3: for the functor Ĥ of NDA,

κX : A×X + 1→ A∗ ×X +A∗

1 More generally, one could consider labels from an arbitrary monoid.
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maps any pair (a, x) ∈ A ×X into {(a, x)} ∈ P(A∗ ×X + A∗) and � ∈ 1 into
{ε} ∈ P(A∗×X+A∗). Composing an NDA e : X → ĤX with κX : ĤX → Ĥ∗X,
one obtains the word automaton κX ◦ e.

In the same way, every NDA with ε-transitions can also be seen as a word
automaton by postcomposing with the natural transformation [κ, η] : Ĥ + Id⇒
Ĥ∗. Here, η : Id ⇒ Ĥ∗ is the unit of the free monad Ĥ∗ defined on a given set
X below (the multiplication μ : Ĥ∗Ĥ∗ ⇒ Ĥ∗ is shown on the right).

ηX : X → A∗ ×X +A∗ μX : A∗ × ((A∗ ×X +A∗) +A∗ → A∗ ×X +A∗

x �→ {(ε, x)} (w, (w′, x)) �→ {(w · w′, x)} (w,w′) �→ {w · w′}
w �→ {w}

In the next section, we propose to define the semantics of Ĥ∗-coalgebras via
a canonical fixpoint operator rather than with the final map which as we saw
above might yield unwanted semantics. Then, using the observation above, the
semantics of Ĥ-coalgebras and Ĥ + Id-coalgebras will be defined by embedding
them into Ĥ∗-coalgebras via the natural transformations κ and [κ, η] described
above.

4 Canonical Fixpoint Solutions

In this section we lay the foundations of our approach. A construction is intro-
duced assigning canonical solutions to coalgebras seen as equation morphisms
(cf. Sect. 2.5) in a Cppo-enriched setting. We will be working under the following
assumptions.

Assumption 4.1. Let C be a Cppo-enriched category with coproducts and
composition left-strict. Let T be a locally continuous monad on C such that, for
all object Y , an initial algebra for T (Id + Y ) exists.

As seen in Example 2.10, in this setting an equation morphism e : X →
T (X + Y ) may be given the least solution. Here, we take a different approach,
exploiting the initial algebra-final coalgebra coincidence of Theorem 2.5.

For every parameter object Y ∈ C, the endofunctor T (Id + Y ) is a locally
continuous monad because it is the composition of T with the (locally continu-
ous) exception monad Id + Y . Thus, by Theorem 2.5 applied to T (Id + Y ), the
initial T (Id+Y )-algebra ιY : T (IY +Y )

∼=−→ IY yields a final T (Id+Y )-coalgebra
ι−1
Y : IY

∼=−→ T (IY +Y ). This allows us to associate with any equation morphism
e : X → T (X + Y ) a canonical morphism of type X → TY as in the following
diagram.

X
!e �����������

e

��

IY

ι−1
Y

��

¡
����������� TY

TTY

μT
Y

��

T (X + Y )
T (!e+idY )

�������� T (IY + Y )

ιY

��

T (¡+idY )
�������� T (TY + Y )

T [idT Y ,η
T
Y ]

�� (3)
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In (3), the map !e : X → IY is the unique morphism of T (Id + Y )-coalgebras
given by finality of ι−1

Y : IY → T (IY + Y ), whereas ¡ : IY → TY is the unique
morphism of T (Id + Y )-algebras given by initiality of ιY : T (IY + Y )→ IY .

We call the composite ¡ ◦ !e : X → TY the canonical fixpoint solution of e. In
the following we check that the canonical fixpoint solution is indeed a solution
of e, in fact, it coincides with the least solution.

Proposition 4.2. Given a morphism e : X → T (X+Y ), then the least solution
of e as in Example 2.10 is the canonical fixpoint solution: e† = ¡ ◦ !e : X → TY
as in (3).

As recalled in Example 2.10, the least fixpoint operator e �→ e† satisfies the
double dagger law. Thus Proposition 4.2 yields the following result2.

Corollary 4.3. Let C and T : C→ C be as in Assumption 4.1. Then the canon-
ical fixpoint operator e �→ e† associated with T satisfies the double dagger law.

We now introduce a factorisation result on the operator e �→ e†, which is
useful for comparing solutions provided by different monads connected via a
monad morphism.

Proposition 4.4 (Factorisation Lemma). Suppose that T and T ′ are mon-
ads on C satisfying Assumption 4.1 and γ : T ⇒ T ′ is a monad morphism. For
any morphism e : X → T (X + Y ):

γY ◦ e† = (γX+Y ◦ e)† : X → T ′Y,

where e† is provided by the canonical fixpoint solution for T and (γX+Y ◦ e)† by
the one for T ′.

4.1 A Theory of Systems with Internal Behavior

We now use canonical fixpoint solutions to provide an abstract theory of sys-
tems with internal behavior, that we will later instantiate to the motivating
examples of Sect. 3. Throughout this section, we will develop our framework for
the following ingredients.

Assumption 4.5. Let C be a Cppo-enriched category with coproducts and
composition left-strict and let F : C → C be a locally continuous functor for
which all free F -algebras exist. Consider the following two monads derived from
F :

– the free monad F ∗ : C → C (cf. Example 2.1.3), for which we suppose that
an initial F ∗(Id + Y )-algebra exists for all Y ∈ C;

2 The equality of least and canonical fixpoint solutions can be used to state a stronger
result, namely that canonical fixpoint solutions satisfy the axioms of iteration the-
ories (cf. Example 2.10). However, the double dagger law is the only property that
we need here, explaining the statement of Corollary 4.3.
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– for a fixed X ∈ C, the exception monad FX+Id: C→ C (cf. Example 2.1.2),
for which we suppose that an initial FX+Id+Y -algebra exists for all Y ∈ C.

In the next proposition we verify that the construction introduced in the previous
section applies to the two monads of Assumption 4.5.

Proposition 4.6. Let C, F , F ∗ and FX + Id be as in Assumption 4.5. Then
C and the monads F ∗ : C → C and FX + Id: C → C satisfy Assumption 4.1.
Thus both F ∗ and FX + Id are monads with canonical fixpoint solution (which
satisfy the double dagger law by Corollary 4.3).

To avoid ambiguity, we denote with e �→ e† the canonical fixpoint operator
associated with F ∗ and with e �→ e‡ the one associated with FX + Id.

We will employ the additional structure of those two monads for the analysis
of F -systems with internal transitions. An F -system is simply an F -coalgebra
e : X → FX, where we take the operational point of view of seeing X as a
space of states and F as the transition type of e. An F -system with internal
transitions is an (F + Id)-coalgebra e : X → FX + X, where the component
X of the codomain is targeted by those transitions representing the internal
(non-interacting) behavior of system e.

A key observation for our analysis is that F -systems—with or without internal
transitions—enjoy a standard representation as F ∗-systems, that is, coalgebras of
the form e : X → F ∗X.

Definition 4.7 (F -systems as F ∗-systems). Let κ : F → F ∗ be as in Exam-
ple 2.1.3. We introduce the following encoding e �→ ē of F -systems and F -systems
with internal transitions as F ∗-systems.

– Given an F -system e : X → FX, define ē : X → F ∗X as

ē : X e ��FX
κX ��F ∗X.

– Given an F -system with internal transitions e : X → FX+X, define ē : X →
F ∗X as ē : X e ��FX +X [κX ,η

F ∗
X ] ��F ∗X .

Thus F -systems (with or without internal transitions) may be seen as equation
morphisms X → F ∗(X + 0) for the monad F ∗ (with the initial object Y = 0 as
parameter), with solutions by canonical fixpoint (cf. Sect. 2.5). This will allow
us to achieve the following.

§1 We supply a uniform trace semantics for F -systems, possibly with internal
transitions, and F ∗-systems, based on the canonical fixpoint solution oper-
ator of F ∗.

§2 We use the canonical fixpoint operator of FX+Id to transform any F -system
e : X → FX +X with internal transitions into an F -system e\ε : X → FX
without internal transitions.

§3 We prove that the transformation of §2 is sound with respect to the semantics
of §1.
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§1: Uniform trace semantics. The canonical fixpoint semantics of F -systems,
with or without internal transitions, and F ∗-systems is defined as follows.

Definition 4.8 (Canonical Fixpoint Semantics).

– For an F ∗-system e : X → F ∗X, its semantics [[e]] : X → F ∗0 is defined as
e† (note that e can be seen as an equation morphism for F ∗ on parameter
Y = 0).

– For an F -system e : X → FX, its semantics [[e]] : X → F0 is defined as
ē† = (κX ◦ e)†.

– For an F -system with internal transitions e : X → FX + X, its semantics
[[e]] : X → F0 is defined as ē† = ([κX , ηF

∗
X ] ◦ e)†

.

The underlying intuition of Definition 4.8 is that canonical fixpoint solutions
may be given an operational understanding. Given an F ∗-system e : X → F ∗X,
its solution e† : X → F ∗0 is formally defined as the composite ¡ ◦ !e (cf. (3)): we
can see the coalgebra morphism !e as a map that gives the behavior of system
e without taking into account the structure of labels and the algebra morphism
¡ as evaluating this structure, e.g. flattening words of words, using the initial
algebra μ0 : F ∗F ∗0 → F ∗0 for the monad F ∗. In particular, the action of ¡
is what makes our semantics suitable for modeling “algebraic” operations on
internal transitions such as ε-elimination, as we will see in concrete instances of
our framework.

Remark 4.9. The canonical fixpoint semantics of Definition 4.8 encompasses the
framework for traces in [12], where the semantics of an F -system e : X → FX—
without internal transitions—is defined as the unique morphism !e from X into
the final F -coalgebra F ∗0. Indeed, using finality of F ∗0, it can be shown that
!e = [[e]]. Theorem 4.10 below guarantees compatibility with Assumption 4.5.

The following result is instrumental in our examples and in comparing our theory
with the one developed in [12] for trace semantics in Kleisli categories.

Theorem 4.10. Let M : Sets → Sets be a monad and H : Sets → Sets be a
functor satisfying the assumptions of Theorem 2.7, that is:

(a) K�(M) is Cppo-enriched and composition is left strict;
(b) H is accessible and has a locally continuous lifting Ĥ : K�(M)→ K�(M).

Then K�(M), Ĥ, Ĥ∗ and ĤJX+Id (for a given set X) satisfy Assumption 4.5.

Example 4.11 (Semantics of NDA with word transitions). In Sect. 3, we have
modeled NDA with word transitions as Ĥ∗-coalgebras on K�(M), where H and
M are defined as for NDA (see Example 2.8). By Proposition 2.4, Ĥ∗ = Ĥ∗ and
thus, by virtue of Theorem 4.10, Ĥ∗ satisfies Assumption 4.5. Therefore we can
define the semantics of NDA with word transitions e : X → P(A∗×X +A∗) via
canonical fixpoint solutions as [[e]] = e† = ¡ ◦ !e:
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(4)
Observe that the above diagram is just (3) instantiated with T = Ĥ∗ and Y = 0.
Moreover, this diagram is in K�(P) and hence the explicit definition of e† as a
function X → P(A∗) is given by e†(x) =

⋃
P(¡)(!e(x)).

Both !e and ¡ can be defined uniquely by the commutativity of the above
diagram. We have already defined !e in diagram (2) and the definition of ¡ is
given in the right-hand square of the above diagram. The isomorphism in the
middle and μ0 were defined in Sect. 3.

Using the above formula e†(x) =
⋃

P(¡)(!e(x)) we now have the semantics
of e:

w ∈ e†(x) ⇔ w ∈ e(x) or (5)

∃y∈X,w1,w2∈A∗ (w1, y) ∈ e(x), w2 ∈ e†(y) and w = w1w2.

This definition is precisely the language semantics: a word w is accepted by a
state x if there exists a decomposition w = w1 · · ·wn such that

x
w1 �� y1

w2 �� · · ·wn−1
�� yn−1

wn �� . Take again the automaton of the motivating exam-
ple. We can calculate the semantics and observe that we now get exactly what
was expected: e†(u) = e†(v).

The key role played by the monad structure on A∗ can be appreciated by compar-
ing the graphs of !e and e† = ¡◦!e as in the example above. The algebra morphism
¡ : (A∗)∗×A∗ → A∗ maps values from the initial algebra (A∗)∗×A∗ for the end-
ofunctor Ĥ∗ into the initial algebra A∗ for the monad Ĥ∗: its action is precisely
to take into account the additional equations encoded by the algebraic theory
of the monad Ĥ∗. For instance, we can see the mapping of !e(u) = {([ε, ab], c)}
into the word abc as the result of concatenating the words ε, ab, c and then
quotienting out of the equation εabc = abc in the monoid A∗.

Remark 4.12 (Multiple Solutions). The canonical solution e† is not the unique
solution. Indeed, the uniqueness of !e in the left-hand square and of ¡ in the
right-hand square of the diagram above does not imply the uniqueness of e†.
To see this, take for instance the automaton
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Both s(x) = ∅ and s′(x) = A∗ are solutions. The canonical one is the least one,
i.e., e†(x) = s(x) = ∅.
Example 4.13 (Semantics of NDA with ε-transitions). NDA with ε-transitions
are modeled as Ĥ + Id-coalgebras on K�(M), where H and M are defined as for
NDA (see Example 2.8). We can define the semantics of NDA with ε-transitions
via canonical fixpoint solutions as [[e]] = ē†, where ē is the automaton with word
transitions corresponding to e (see Definition 4.7). The first example in Sect. 3
would be represented as follows,

where η and κ are defined as at the end of Sect. 3. By using (5), it can be easily
checked that the semantics [[e]] = ē† : X → PA∗ maps x, y and z into a∗.

§2: Elimination of internal transitions. We view an F -system e : X → FX+
X with internal transitions as an equation morphism for the monad FX + Id,
with parameter Y = 0. Thus we can use the canonical fixpoint solution of FX+Id
to obtain an F -system e‡ : X → FX + 0 = FX, which we denote by e\ε. The
construction is depicted below.

X
!e ����������

e

��

N× FX
∼=

��

¡
���������� FX
�� ����

e\ε def
= e‡

FX +X
idF X+!e

�� FX + N× FX

��

idF X+¡
�� FX + FX

μ0=∇F X

�� (6)

Example 4.14 (ε-elimination). Using the automaton of Example 4.13, we can
perform ε-elimination, as defined in (6), using the canonical solution for the
monad ĤJX + Id:

X
!e ����������

e

��

N × (A × X + 1)

∼=
��

¡
���������� (A × X + 1)

(A × X + 1) + X
id+!e

�� (A × X + 1) + N × (A × X + 1)

��

id+¡
�� (A × X + 1) + (A × X + 1)

μ0=∇

��
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We obtain the following NDA e\ε def= ¡ ◦ !e : X → A×X + 1.

!e(x) = {(2, a, z), (2, �)}
!e(y) = {(1, a, z), (1, �)}
!e(z) = {(0, a, z), (0, �)}

e\ε(x) = {(a, z), �}
e\ε(y) = {(a, z), �}
e\ε(x) = {(a, z), �}

�� �	
� �x ����������������y a ���� �	
� ���  !"# $%z a
		

������

a

The semantics [[e\ε]] is defined as e\ε†, where e\ε = κX ◦ e\ε is the representation
of the NDA e\ε as an automaton with word transitions (Definition 4.7). It is
immediate to see, in this case, that [[e\ ε]] = [[e]]. This fact is an instance of
Theorem 4.17 below.

Remark 4.15. Note that ε-elimination was recently defined using a trace operator
on a Kleisli category [3,11,22]. These works are based on the trace semantics of
Hasuo et al. [12] and tailored for ε-elimination. They do not take into account
any algebraic structure of the labels and are hence not applicable to the other
examples we consider in this paper.

§3: Soundness of ε-elimination. We now formally prove that the canonical
fixpoint semantics of e and e\ ε coincide. To this end, first we show how the
construction e �→ e\ε can be expressed in terms of the canonical fixpoint solution
of F ∗. This turns out to be an application of the factorisation lemma (Proposition
4.4), for which we introduce the natural transformation π : FX+Id⇒ F ∗(X+Id)
defined at Y ∈ C by

πY : FX + Y
[κX , η

F ∗
Y ]

�� F ∗X + F ∗Y
[F∗inl,F∗inr]

�� F ∗(X + Y ) .

Since F ∗ is a monad with canonical fixpoint solutions, it can be verified that
so is F ∗(X + Id). Moreover, π is a monad morphism between FX + Id and
F ∗(X + Id). These observations allow us to prove the following.

Proposition 4.16 (Factorisation property of e �→ e\ε). For any F -system
e : X → FX + X with internal transitions, consider the equation morphism
πX ◦ e : X → F ∗(X +X). Then:

π0 ◦ e\ε = (πX ◦ e)† : X → F ∗X.

Proof. This follows simply by an application of Proposition 4.4 to e\ε = e‡ and
γ = π with Y = 0. ��
We are now in position to show point §3: soundness of ε-elimination.

Theorem 4.17 (Eliminating internal transitions is sound). For any
F -system e : X → FX +X with internal transitions,

[[e\ε]] = [[e]].
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Proof. The statement is shown by the following derivation.

[[e\ε]] = [[e‡]] Definition of e\ε
= (κX ◦ e‡)

†
Definition of [[−]] (Definition 4.8)

= (π0 ◦ e‡)
†

Definition of π0

= (πX ◦ e)†† Proposition 4.16

= (F ∗(∇X) ◦ (πX ◦ e))† double dagger law

= ē† Definition of ē (Definition 4.7) and πX
= [[e]] Definition of [[−]].

��

5 Quotient Semantics

When considering behavior of systems it is common to encounter spectrums of
successively coarser equivalences. For instance, in basic process algebra trace
equivalence can be obtained by quotienting bisimilarity with an axiom stating
the distributivity of action prefixing by non-determinism [21]. There are many
more examples of this phenomenon, including Mazurkiewicz traces, which we
will describe below.

In this section we develop a variant of the canonical fixpoint semantics, where
we can encompass in a uniform manner behaviors which are quotients of the
canonical behaviors of the previous section (that is, the object F ∗0).

Assumption 5.1. Let C, F , F ∗ and FX + Id be as in Assumption 4.5 and
γ : F ∗ ⇒ Q a monad quotient for some monad Q. Moreover, suppose that for all
Y ∈ C an initial Q(Id + Y )-algebra exists.

Observe that, as Assumption 5.1 subsumes Assumption 4.5, we are within the
framework of previous section, with the canonical fixpoint solution of F ∗ provid-
ing semantics for F ∗- and F -systems. For our extension, one is interested in Q0
as a semantic domain coarser than F ∗0 and we aim at defining an interpretation
for F -systems in Q0. To this aim, we first check that Q has canonical fixpoint
solutions.

Proposition 5.2. Let C, F , Q and γ : F ∗ ⇒ Q be as in Assumption 5.1. Then
Assumption 4.1 holds for C and Q, meaning that Q is a monad with canonical
fixpoint solutions (which satisfy the double dagger law by Corollary 4.3).

We use the notation e �→ e∼ for the canonical fixpoint operator of Q. This
allows us to define the semantics of Q-systems, analogously to what we did
for F ∗-systems in Definition 4.8. Moreover, the connecting monad morphism
γ : F ∗ ⇒ Q yields an extension of this semantics to include also systems of
transition type F ∗ and F .
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Definition 5.3 (Quotient Semantics). The quotient semantics of F -systems,
with or without internal transitions, F ∗-systems and Q-systems is defined as
follows.

– For a Q-system e : X → QX, its semantics [[e]]∼ : X → Q0 is defined as e∼

(note that e can be regarded as an equation morphism for Q with Y = 0).
– For an F ∗-system e : X → F ∗X, its semantics [[e]]∼ : X → Q0 is defined as

(γX ◦ e)∼.
– For an F -system e—with or without internal transitions—its semantics [[e]]∼ :
X → Q0 is defined as (γX ◦ ē)∼, where e is as in Definition 4.7.

The Factorisation Lemma (Proposition 4.4) allows us to establish a link between
the canonical fixpoint semantics [[−]] and the quotient semantics [[−]]∼.

Proposition 5.4 (Factorisation for the quotient semantics). Let e be
either an F ∗-system or an F -system (with or without internal transitions). Then:

[[e]]∼ = γ0 ◦ [[e]]. (7)

As a corollary we obtain that eliminating internal transitions is sound also for
quotient semantics.

Corollary 5.5. For any F -system e : X → FX +X with internal transitions,

[[e]]∼ = [[e\ε]]∼.

The quotient semantics can be formulated in a Kleisli category K�(M) by further
assuming (c) below. This is needed to lift a quotient of monads from Sets to
K�(M).

Theorem 5.6. Let M : Sets → Sets be a monad and H : Sets → Sets be an
accessible functor satisfying the assumptions of Theorem 2.7. By Proposition
2.4 the free monad H∗ on H lifts to a monad Ĥ∗ : K�(M) → K�(M) via a
distributive law λ : H∗M ⇒ MH∗ with Ĥ∗ = Ĥ∗. Let R : Sets → Sets be a
monad and ξ : H∗ ⇒ R a monad quotient such that

(c) for each set X, there is a map λ′
X : RMX → MRX making the following

commute.

H∗MX

ξMX

��

λX �� MH∗X

MξX

��

RMX
λ′

X

�� MRX

Then the following hold:

1. there is a monad R̂ : K�(M) → K�(M) lifting R and a monad morphism
ξ̂ : Ĥ∗ ⇒ R̂ defined as ξ̂X = J(ξX);
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2. K�(M), Ĥ, Ĥ∗, ĤJX + Id (for a given set X), R̂ and ξ̂ : Ĥ∗ ⇒ R̂ satisfy
Assumption 5.1.

Notice that condition (c) and the first part of statement 1 are related to [7,
Theorem 1]; however, that paper treats distributive laws of monads over endo-
functors.

Example 5.7 (Mazurkiewicz traces). This example, using a known equivalence
in concurrency theory, illustrates the use of the quotient semantics developed in
Sect. 5.

The trace semantics proposed by Mazurkiewicz [17] accounts for concurrent
actions. Intuitively, let A be the action alphabet and a, b ∈ A. We will call a and
b concurrent, and write a ≡ b, if the order in which these actions occur is not
relevant. This means that we equate words that only differ in the order of these
two actions, e.g. uabv and ubav denote the same Mazurkiewicz trace.

To obtain the intended semantics of Mazurkiewicz traces we use the quotient
semantics defined above3. In particular, for Mazurkiewisz traces one considers a
symmetric and irreflexive “independence” relation I on the label set A. Let ≡
be the least congruence relation on the free monoid A∗ such that

(a, b) ∈ I ⇒ ab ≡ ba.
We now have two monads on Sets, namely H∗X = A∗×X +A∗ and RX =

A∗/≡ ×X +A∗/≡. There is the canonical quotient of monads ξ : H∗ ⇒ R given
by identifying words of the same ≡-equivalence class. It can be checked that
those data satisfy the assumptions of Theorem 5.6 and thus we are allowed to
apply the quotient semantics [[−]]∼. This will be given on an NDA e : X → ĤX

by first embedding it into Ĥ∗ as ē = κX ◦ e : X → Ĥ∗X and then into R̂ as
ξ̂X ◦ ē : X → R̂X. To this morphism we apply the canonical fixpoint operator of
R̂ to obtain (ξ̂X ◦ ē)

∼
, that is, the semantics [[e]]∼ : X → R0 = A∗/≡. It is easy

to see that this definition captures the intended semantics: for all states x ∈ X
[[e]]∼(x) = {[w]≡ | w ∈ [[e]](x)}.

Indeed, by Proposition 5.4, [[e]]∼ = ξ̂0 ◦ [[e]] and ξ̂0 : Ĥ∗0→ R̂0 is just Jξ0 where
ξ0 : A∗ → A∗/≡ maps every word w into its equivalence class [w]≡.

6 Discussion

The framework introduced in this paper provides a uniform way to express the
semantics of systems with internal behaviour via canonical fixpoint solutions.
Moreover, these solutions are exploited to eliminate internal transitions in a
sound way, i.e., preserving the semantics. We have shown our approach at work
3 Mazurkiewicz traces were defined over labelled transition systems which are sim-

ilar to NDA but where every state is final. For simplicity, we consider LTS here
immediately as NDA.
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on NDA with ε-transitions but, by virtue of Theorem 4.10, it also covers all
the examples in [12] (like probabilistic systems) and more (like the weighted
automata on positive reals of [22]).

It is worth noticing that, in principle, our framework is applicable also to
examples that do not arise from Kleisli categories. Indeed the theory of Sect. 4
is formulated for a general category C: Assumption 4.5 only requires C to be
Cppo-enriched and the monad T to be locally continuous. The role of these
assumptions is two-fold: (a) ensuring the initial algebra-final coalgebra coinci-
dence and (b) guaranteeing that the canonical fixpoint operator e �→ e† satisfies
the double dagger law. If (a) implies (b), we could have formulated our theory
just assuming the coincidence of initial algebra and final coalgebra and without
any Cppo-enrichment. Condition (a) holds for some interesting examples not
based on Kleisli categories, e.g. for examples in the category of join semi-lattices.
Therefore it is of relevance to investigate the following question: given a monad
T with initial algebra-final coalgebra coincidence, under which conditions does
the canonical fixpoint solution provided by T satisfy the double dagger law?

As a concluding remark, let us recall that our original question concerned the
problem of modeling the semantics of systems where labels carry an algebraic
structure. In this paper we have mostly been focusing on automata theory, but
there are many other examples in which the information carried by the labels has
relevance for the semantics of the systems under consideration: in logic program-
ming labels are substitutions of terms; in (concurrent) constraint programming
they are elements of a lattice; in process calculi they are actions representing
syntactical contexts and in tile systems [10] they are morphisms in a category.
We believe that our approach provides various insights towards a coalgebraic
semantics for these computational models.
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Abstract. In the first part of the paper we recall the coalgebraic app-
roach to handling the so-called invisible transitions that appear in dif-
ferent state-based systems semantics. We claim that these transitions
are always part of the unit of a certain monad. Hence, coalgebras with
internal moves are exactly coalgebras over a monadic type. The rest of
the paper is devoted to supporting our claim by studying two important
behavioural equivalences for state-based systems with internal moves,
namely: weak bisimulation and trace semantics. We continue our research
on weak bisimulations for coalgebras over order enriched monads. The
key notions used in this paper and proposed by us in our previous work
are the notions of an order saturation monad and a saturator. A sat-
urator operator can be intuitively understood as a reflexive, transitive
closure operator. There are two approaches towards defining saturators
for coalgebras with internal moves. Here, we give necessary conditions
for them to yield the same notion of weak bisimulation. Finally, we pro-
pose a definition of trace semantics for coalgebras with silent moves via a
uniform fixed point operator. We compare strong and weak bisimilation
together with trace semantics for coalgebras with internal steps.

Keywords: Bisimulation · Coalgebra · Conway operator · Epsilon tran-
sition · Fixed point operator · Internal transition · Logic · Monad · Sat-
uration · Trace · Trace semantics · Traced monoidal category · Uniform
fixed point operator · Weak bisimulation · Weak trace semantics · van
Glabbeek spectrum

1 Introduction

In recent years we have witnessed a rapid development of the theory of coalge-
bras as a unifying theory for state-based systems [11,14,19,31]. Coalgebras to
some extent are one-step entities in their nature. They can be thought of and
understood as a representation of a single step of visible computation of a given
process. Yet, for many state-based systems it is useful to consider a part of com-
putation branch that is allowed to take several steps and in some sense remains
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neutral (invisible) to the structure of the process. For instance, the so-called
τ -transitions also called invisible transitions for labelled transition systems
[25,26] or ε-transitions for non-deterministic automata [15]. As will be witnessed
here, these special branches of computation are the same in their nature, yet they
are used in order to develop different notions of equivalence of processes, e.g.
weak bisimulation for LTS [25] or trace semantics for non-deterministic automata
with ε-moves, we call ε-NA in short [15]. These are not the only state-based sys-
tems considered in the literature with a special invisible computational branch.
Fully probabilistic systems [3] or Segala systems [33,34] are among those, to
name a few. All these systems are instances of a general notion of a coalgebra.
If so, then how should we consider the invisible part of computation coalge-
braically? As we will see further on, the invisible part of the computation can
be and should be, in our opinion, considered as part of the unit of a monad.
Before we state basic results let us summarize known literature on the topic of
invisible transitions from perspective of weak bisimulation, trace semantics and
coalgebra.

Weak Bisimulation. The notion of a strong bisimulation for different tran-
sition systems plays an important role in theoretical computer science. A weak
bisimulation is a relaxation of this notion by allowing silent, unobservable tran-
sitions. Here, we focus on the weak bisimulation and weak bisimilarity proposed
by R. Milner [25,26] (see also [32]). Analogues of Milner’s weak bisimulation are
established for different deterministic and probabilistic transition systems (e.g.
[3,32–34]). It is well known that one can introduce Milner’s weak bisimulation
for LTS in several different but equivalent ways.

The notion of a strong bisimulation, unlike the weak bisimulation, has been
well captured coalgebraically (see e.g. [11,31,39]). Different approaches to defin-
ing weak bisimulations for coalgebras have been presented in the literature. The
earliest paper is [30], where the author studies weak bisimulations for while
programs. In [28] the author introduces a definition of weak bisimulation for
coalgebras by translating a coalgebraic structure into an LTS. This construc-
tion works for coalgebras over a large class of functors but does not cover the
distribution functor, hence it is not applicable to different types of probabilistic
systems. In [29] weak bisimulations are introduced via weak homomorphisms. As
noted in [38] this construction does not lead to intuitive results for probabilistic
systems. In [38] the authors present a definition of weak bisimulation for classes
of coalgebras over functors obtained from bifunctors. Here, weak bisimulation of
a system is defined as a strong bisimulation of a transformed system. In [5] we
proposed a new approach to defining weak bisimulation in two different ways.
Two definitions of weak bisimulation described by us in [5] were proposed in
the setting of coalgebras over ordered functors. The key ingredient of the defi-
nitions is the notion of a saturator. As noted in [5] the saturator is sometimes
too general to model only weak bisimulation and may be used to define other
known equivalences, e.g. delay bisimulation [32]. Moreover, the saturators from
[5] do not arise in any natural way. To deal with this problem we have presented
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a canonical way to consider weak bisimulation saturation in our previous paper
[6]. Part of the results from [6] are recalled in this paper.

We should also mention [10,24] which appeared almost at the same time
as our previous paper [6]. The former is a talk on the on-going research by
S. Goncharov and D. Pattinson related to weak bisimulation for coalgebras.
Their approach is similar to ours as it uses fixed points. It is worth noting that
the authors cover some examples that do not fit our framework (e.g. fully proba-
bilistic systems). However, they do not hide the invisible steps inside a monadic
structure. The latter is a paper in which the authors study weak bisimulation
for labelled transition systems weighted over semirings. They propose a coalge-
braic approach towards defining weak bisimulation which relies on ε-elimination
procedure presented in [35].

Weak Trace Semantics. Trace semantics is a standard behavioural equiva-
lence for many state-based systems. Generic trace semantics for coalgebras has
been proposed in [14,19]. If T is a monad on a category C and F : C → C is
an endofunctor then the trace semantics of TF -coalgebras is final semantics for
coalgebras considered in a different category, namely the Kleisli category for the
monad T [14,17]. It is worth noting that trace semantics can also be defined
for GT -coalgebras for an endofunctor G : C → C [19,36] via the so-called EM-
extension semantics. In our paper however, we focus only on TF -coalgebras and
do not consider GT -coalgebras. Trace semantics can also be defined for different
state-based systems with internal, invisible moves. In order to distinguish trace
semantics for systems with and without silent steps we will sometimes call the
former “weak trace semantics”. One coalgebraic approach towards defining trace
semantics for systems with ε-moves (invisible moves) is based on a very simple
idea, has been presented in [13,35] and can be summarized as follows. In the
first step we consider invisible moves as visible. Then we find the trace seman-
tics for an “all-visible-steps” coalgebra and finally, we remove all occurrences of
the invisible label and get the desired weak trace semantics. We discuss this app-
roach in our paper and call it the “top-down” approach. The term “top-down”
refers to the fact that we somewhat artificially treat the invisible moves as if
they were visible and then we remove their occurrences from the trace. Such an
approach does not use any structural properties of silent moves. A dual app-
roach, a “bottom-up” method, should make use of their structural properties.
Here, we present a “bottom-up” method for coalgebras with internal steps that
treats silent moves as part of the unit of a certain monad.

Content and Organization of the Paper. The paper is organized as follows.
Section 2 recalls basic notions in category theory, algebra and coalgebra. Section 3
describes two very general methods for dealing with silent steps via a monadic
structure that have been proposed in our previous work [6]. We will see that
these two methods appear in classical definitions of a weak bisimulation for
LTS’s. In Sect. 4 we recall the definition of an order saturation monad that comes
from [6] and claim that this object is suitable for defining weak bisimulations for
coalgebras. An order saturation monad is an order enriched monad equipped with
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an extra operator, a saturator (−)∗, that assigns to any coalgebra α : X → TX
a coalgebra α∗ : X → TX and can be thought of as a reflexive, transitive
closure operator. It turns out that in the classical literature on labelled transition
systems and weak bisimulation one can find two different saturators yelding the
same notion of equivalence. These two saturators are natural consequences of
the two stategies towards handling invisible steps via monadic structure. What
is new in this section is the following:

– Weak bisimulation is defined as a kernel bisimulation [39] on a saturated
structure and not via lax- and oplax-homomorphisms in Aczel-Mendler style
as it was done in [6].

– We present both saturators in a general setting and ask when they yield
the same notion of weak bisimulation. We give sufficient conditions functors
should satisfy so that weak bisimulation coincides for both approaches.

In Sect. 5 we discuss a novel approach towards defining trace semantics for coal-
gebras with internal moves. Here, weak trace semantics morphism is obtained
axiomatically by the so-called coalgebraic trace operator, i.e. a uniform fixed
point operator. For Cppo-enriched monads, a coalgebraic trace operator is given
by the least fixed point operator μx.(x · α). Moreover, we show that the coalge-
braic trace operator for ε-NA’s arises from properties of the so-called free LTS
monad. To be more precise, Kleisli category for the free LTS monad is traced
monoidal category in the sense of Joyal et al. [16]. In Sect. 6, in a fairly general
setting, we formulate how strong bisimulation, weak bisimulation and weak trace
semantics are related. Hence, according to our knowledge we present the first
paper that considers a comparison of three different behaviour equivalences in
van Glabbeek’s spectrum for systems with internal moves [8] from coalgebraic
perspective.

2 Basic Notions and Properties

Algebras and Coalgebras. Let C be a category and let F : C → C be a
functor. An F -algebra is a morphism a : FA → A in C. A homomorphism
between algebras a : FA → A and b : FB → B is a morphism f : A → B in C
such that b ◦ F (f) = f ◦ a. Dually, an F -coalgebra is a morphism α : X → FX
in C. The domain X of α is called carrier and the morphism α is sometimes
also called structure. A homomorphism from an F -coalgebra α : X → FX to an
F -coalgebra β : Y → FY is a morphism f : X → Y in C such that F (f) ◦ α =
β◦f . The category of all F -coalgebras (F -algebras) and homomorphisms between
them is denoted by CF (resp. CF ). Many transition systems can be captured by
the notion of coalgebra. In this paper we mainly focus on labelled transition
systems with a silent label and non-deterministic automata with ε-moves. These
two structures have been defined and thoroughly studied in the computer science
literature (see e.g. [15,25,26,32]). Let Σ be a fixed set of alphabet letters. A
labelled transition system over the alphabet Στ = Σ + {τ} (or an LTS in short)
is a triple 〈X,Στ ,→〉, where X is called a set of states and →⊆ X ×Στ ×X is
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a transition. The label τ is considered a special label sometimes called silent or
invisible label. For an LTS 〈X,Στ ,→〉 instead of writing (x, σ, x′) ∈→ we write
x

σ→ x′. Labelled transition systems can be viewed as coalgebras over the type
P(Στ × Id) [31]. From coalgebraic perspective, a non-deterministic automaton
with ε- transitions, or ε-NA in short, over alphabet Σ is a coalgebra of the type
P(Σε×Id+1), where 1 = {�} is fixed one element set and Σε = Σ+{ε}. Note
that LTS’s differ from ε-NA’s in the presence of 1 in the type. It is responsible
for specifying which states are final and which are not. To be more precise for
ε-NA α : X → P(Σε ×X + 1) we call a state x ∈ X final if � ∈ α(x). For more
information on automata the reader is referred to e.g. [15].

Strong Bisimulation for Coalgebras. Notions of strong bisimulation have
been well captured coalgebraically [2,11,31,39]. Let F be a Set-endofunctor and
consider an F -coalgebra α : X → FX. In Aczel-Mendler style [2,39], a (strong)
bisimulation is a relation R ⊆ X ×X for which there is a structure γ : R→ TR
making π1 : R → X and π2 : R → X homomorphisms between γ and α.
In this paper however we consider defining bisimulation as the so-called kernel
bisimulation [39]. Let F : C→ C be an endofunctor on an arbitrary category. Let
α : X → FX and β : Y → FY be F -coalgebras. A relation R on X and Y (i.e.
a jointly-monic span X

π1← R
π2→ Y in C) is kernel bisimulation or bisimulation

in short if there is a coalgebra γ : Z → FZ and homomorphisms f from α to
γ and g from β to γ such that R with π1, π2 is the pullback of X

f→ Z
g← Y .

For a thorough study of the relation between Aczel-Mendler style of defining
bisimulation and kernel bisimulation the reader is referred to [39] for details.

Monads. A monad on C is a triple (T, μ, η), where T : C→ C is
an endofunctor and μ : T 2 =⇒ T , η : Id =⇒ T are two natural
transformations for which the following two diagrams commute:
The transformation μ is called multiplication and η unit. Each
monad gives rise to a canonical category - Kleisli category for T .
If (T, μ, η) is a monad on category C then Klesli category Kl(T )
for T has the class of objects equal to the class of objects of C
and for two objects X,Y in Kl(T ) we have HomKl(T )(X,Y ) =
HomC(X,TY ) with the composition · in Kl(T ) defined between
two morphisms f : X → TY and g : Y → TZ by g · f := μZ ◦ T (g) ◦ f (here, ◦
denotes the composition in C).

Example 1. The powerset endofunctor P : Set → Set is a monad with the mul-
tiplication μ : P2 =⇒ P and the unit η : Id =⇒ P given on their X-
components by μX : PPX → PX;S 
→ ⋃

S and ηX : X → PX;x 
→ {x}. For
any category C with binary coproducts and an object A ∈ C defineMA : C→ C
as MA = Id + A. The functor carries a monadic structure (MA, μ, η), where
the X-components of the multiplication and the unit are the following: μX :
(X + A) + A → X + A;μX = [idX+A, ι

2] and ηX : X → X + A; ηX = ι1. Here,
ι1 and ι2 denote the coprojections into the first and the second component of
X +A respectively. The monad MA is sometimes called exception monad.
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Since in many cases we will work with two categories at once: C and Kl(T ),
morphisms in C will be denoted using standard arrow→, whereas for morphisms
in Kl(T ) we will use the symbol �. For any object X in C (or equivalently in
Kl(T )) the identity map from X to itself in C will be denoted by idX and in
Kl(T ) by 1X or simply 1 if the domain can be deduced from the context.

The category C is a subcategory of Kl(T ) where the inclusion functor � sends
each object X ∈ C to itself and each morphism f : X → Y in C to the morphism
f � : X � Y given by f � : X → TY ; f � = ηY ◦ f . Each monad (T, μ, η) on a
category C arises as the composition of left and right adjoint:

C

�

��
⊥ Kl(T )

UT

��

Kl(T ) F �� Kl(T )

C

�
��

F
�� C

�
��

Here, UT : Kl(T )→ C is a functor defined as follows. For
any object X ∈ Kl(T ) (i.e. X ∈ C) the object UTX is given
by UTX := TX and for any morphism f : X � Y in Kl(T )
(i.e. f : X → TY in C) the morphism UT f : TX → TY is
given by UT f = μY ◦ Tf .

We say that a functor F : C → C lifts to an endofunctor
F : Kl(T ) → Kl(T ) provided that the following diagram
commutes [14,19]:

There is a one-to-one correspondence between liftings F
and distributive laws λ : FT =⇒ TF [19,23]. Given a
distributive law λ : FT =⇒ TF a lifting F : Kl(T )→ Kl(T ) is defined by:

FX := FX for any object X ∈ Kl(T ),

Ff : FX → TFY ;Ff = λY ◦ Ff for any morphism f : X → TY.

Conversely, a lifting F : Kl(T ) → Kl(T ) of F gives rise to a distributive law
λ : FT =⇒ TF defined by λX : FTX → TFX;λX = F (idTX). A monad
T on a cartesian closed category C is called strong if there is a transformation
stX,Y : X × TY → T (X × Y ) called tensorial strength satisfying the strength
laws listed in e.g. [20]. Existence of strength guarantees that for any object Σ the
functor Σ×Id : C→ C admits a lifting Σ : Kl(T )→ Kl(T ). To be more precise
we define a functor Σ : Kl(T ) → Kl(T ) as follows. For any object X ∈ Kl(T )
(i.e. X ∈ C) we put ΣX := Σ × X, and for any morphism f : X � Y (i.e.
f : X → TY in C) we define Σf : Σ×X → T (Σ×Y ) by Σf := stΣ,Y ◦(idΣ×f).
Existence of the transformation stX,Y is not a strong assumption. For instance
all monads on Set are strong.

A category is order enriched if each hom-set is a poset with order preserved by
composition. An endofunctor on an order enriched category is locally monotonic
if it preserves order. A category C is Cppo-enriched if for any objects X,Y :

– the hom-set HomC(X,Y ) is a poset with a least element ⊥,
– for any ascending ω-chain f0 � f1 � . . . in HomC(X,Y ) the supremum∨

i∈N
fi exists,

– g ◦ ∨i∈N
fi =

∨
i∈N

g ◦ fi and (
∨
i∈N

fi) ◦ h =
∨
i∈N

fi ◦ h for any ascending
ω-chain f0 � f1 � . . . and g, h with suitable domain and codomain.

Note that it is not necessarily the case that f◦ ⊥=⊥ or ⊥ ◦f =⊥ for any
morphism f . An endofunctor on a Cppo-enriched category is called locally
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continuous if it preserves suprema of ascending ω-chains. For more details on
Cppo-enriched categories the reader is referred to e.g. [1,14].

Example 2. The Kleisli category for the powerset monad P is Cppo-enriched
[14]. The order on the hom-sets is imposed by the natural point-wise order. The
strength map for P is given by

stX,Y : X × PY → P(X × Y ); (x, S) 
→ {(x, y) | y ∈ S}.

The lifting Σ : Kl(P) → Kl(P) of Σ × Id : Set → Set is a locally continuous
functor [14]. The Kleisli category for the monadM1 on Set is also Cppo-enriched
[14]. Order on hom-sets is imposed by the point-wise order and for any X the
setM1X = X+1 = X+{⊥} is a poset whose partial order � is given by x � y
iff x =⊥ or x = y.

Monads on Kleisli Categories. In this paper we will often work with monads
on Kleisli categories. Here we list basic properties of such monads. Everything
presented below with the exception of the last theorem follows easily by classical
results in category theory (see e.g. [21]). Assume that (T, μ, η) is a monad on C
and S : C → C is a functor that lifts to S : Kl(T ) → Kl(T ) with the associated
distributive law λ : ST =⇒ TS. Moreover, let (S,m, e) be a monad on Kl(T ).
We have the following two adjoint situations whose composition is an adjoint
situation [21].

C

�

��
⊥Kl(T )

�

��

UT

�� ⊥ Kl(S)

US

		

This yields a monadic structure on the functor TS : C→ C. The X-components
of the multiplication m and the unit e of the monad TS are given by:

mX = μSX ◦ TμSX ◦ TTmX ◦ TλSX and eX = eX .

The composition · in Kl(TS) = Kl(S) is given in terms of the composition in C
as follows. For f : X → TSY and g : Y → TSZ we have:

X
g·f 

�

�
f �� TSY

TSg�� TSTSZ
TλSZ�� T 2S2Z

T 2(mZ)


TSZ T 2SZμSZ

�� T 3SZ
TμSZ

��

The following result can be proved by straightforward verification.

Theorem 1. Assume that Kl(T ) is Cppo-enriched and S is locally continuous.
Then Kl(TS) = Kl(S) is Cppo-enriched.
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3 Hiding Internal Moves Inside a Monadic Structure

Throughout this paper we assume that (T, μ, η) is a monad on a category C with
binary coproducts. Let + denote the binary coproduct operator in C. Assume
that F : C → C is a functor and let Fτ = F + Id. In this paper we deal with
functors of the form TFτ = T (F + Id). Labelled transition system and ε-NA
functor are of this form since

P(Στ × Id) ∼= P(Σ × Id+ Id) = P(F + Id) for F = Σ × Id and
P(Σε × Id+ 1) ∼= P(Σ × Id+ 1 + Id) = P(F + Id) for F = Σ × Id+ 1.

The functor F represents the visible part of the structure, whereas the functor Id
represents silent moves. Functors of this type were used to consider ε-elimination
from coalgebraic perspective in [13,35]. In [6] we noticed that given some mild
assumptions on the monad T , the functor TFτ can itself be turned into a monad
or embedded into one. The aim of this section is to recall these results here.
Before we do it, we will list basic definitions and properties concerning categories
and monads used in the construction.

Basic Definitions and Properties. For a family of objects {Xk}k∈I if the
coproduct

∐
iXi exists then by ιk : Xk →

∐
kXk we denote the coprojection

into k-th component of
∐
kXk.

We say that a category is a category with zero morphisms if for any two
objectsX,Y there is a morphism 0X,Y which is an annihilator w.r.t. composition.
To be more precise f ◦0 = 0 = 0◦g for any morphisms f, g with suitable domain
and codomain.

Example 3. For the monad T ∈ {P,M1} on Set the category Kl(T ) is a cat-
egory with zero morphisms given by ⊥: X → PY ;x 
→ ∅ for P and ⊥: X →
M1Y ;x 
→⊥ for the monad M1.

Given two monads (S, μS , ηS) and (S′, μS
′
, ηS

′
) a monad morphism h is a natural

transformation h : S =⇒ S′ which preserves unit and multiplication of monads,
i.e. h ◦ ηS = ηS

′
and h ◦ μS = μS

′ ◦ hh. A free monad over a functor F : C→ C
[7,22] is a monad (F ∗,m, e) together with a natural transformation ν : F =⇒
F ∗ such that for any monad (S,mS , eS) on C and a natural transformation
s : F =⇒ S there is a unique monad morphism h : (F ∗,m, e) → (S,mS , eS)
such that the following diagram commutes:

F
ν ��

s �
��

��
��

��
��

��
F ∗

h
�
S

Theorem 2. [7] Assume that for an endofunctor F : C→ C and any object X
the free F -algebra over X (=initial F (−) +X-algebra) iX exists in CF . For an
object X and a morphism f : X → Y in C let F ∗X denote the carrier of iX
and F ∗f : F ∗X → F ∗Y denote the unique morphism for which the following
diagram commutes:
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FF ∗X +X
iX ��

F (F∗f)+idX


�
� F ∗X

F∗f


�

�

FF ∗Y +X
id+f

�� FF ∗Y + Y
iY

�� F ∗Y

The assignment F ∗ is functorial and can be naturally equipped with a monadic
structure (F ∗,m, e) which is a consequence of the universal properties of iX .
Moreover, this monad is the free monad over F .

In the sequel we assume the following:

– The functor F : C→ C lifts to F : Kl(T )→ Kl(T ). As a direct consequence we
get that Fτ = F +Id lifts to a functor Fτ = F +Id on Kl(T ). This follows by
the fact that coproducts in Kl(T ) come from coproducts in the base category
(see also e.g. [14] for a discussion on liftings of coproducts of functors).

– The functor F admits the free F -algebra iX in CF for any object X. By
theorem above this yields the free monad (F ∗,m, e) over F in C.

Monadic Structure on TF τ . The aim of this subsection is to present the
first strategy towards handling the invisible part of computation by a monadic
structure. Note that in the following result all morphisms, in particular all copro-
jections and mediating morphisms, live in Kl(T ).

Theorem 3. [6] If Kl(T ) is a category with zero morphisms then the triple
(Fτ ,m′, e′), where e′ : Id � F + Id; e′

X = ι2 and

m′ : F (F + Id) + (F + Id) F ([0,id])+id
� F + (F + Id) [ι1,id]

� F + Id

is a monad on Kl(T ). Two adjoint situations C � Kl(T ) � Kl(Fτ ) yield a
monadic structure on TFτ .

The composition · in Kl(TFτ ) = Kl(Fτ ) is given as follows. Let λ : FτT =⇒
TFτ denote the distributive law associated with the lifting Fτ of Fτ . For any
f : X → TFτY , g : Y → TFτZ we have:

g · f = μFτZ ◦ TμFτZ ◦ TTm′
Z ◦ TλFτZ ◦ TFτg ◦ f.

We illustrate the above construction in the following example, where T = P
and Fτ = Στ × Id.
Example 4. As mentioned before, the monad P (as any other monad on Set)
comes with strength st which lifts the functor Στ × Id : Set → Set to the
functor Στ : Kl(P) → Kl(P). For the functor Στ ∼= Σ + Id we define the
multiplication m′ and the unit e′ as in Theorem 3. For any set X ∈ Kl(P) we
put m′

X : ΣτΣτX � ΣτX and e′
X : X � ΣτX to be:

m′
X(σ1, σ2, x) =

⎧
⎨

⎩

{(σ1, x)} if σ2 = τ,
{(σ2, x)} if σ1 = τ,

∅ otherwise
e′
X(x) = {(τ, x)}.
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By Theorem 3 the triple (Στ ,m′, e′) is a monad on Kl(P). By composing the
two adjoint situations we get a monadic structure on the LTS functor. The
composition in Kl(P(Στ × Id)) is given as follows. For f : X → P(Στ ×Y ) and
g : Y → P(Στ × Z) we have g · f : X → P(Στ × Z):

g · f(x) = {(σ, z) | x σ→f y
τ→g z or x τ→f y

σ→g z for some y ∈ Y }.
The construction provided by Theorem 3 can be applied only when Kl(T )

is a category with zero morphisms. Some monads fail to have this property. For
example, if instead of considering the monad P we consider the non-empty pow-
erset monad P�=∅. In what follows we focus on the second strategy for handling
internal transitions by a monadic structure on the functor which does not require
from Kl(T ) to be a category with zero morphisms.

Monadic Structure on TF ∗. Here, we present an approach towards dealing
with silent moves which uses free monads. At the beginning of this section we
stated clearly that the coalgebras we are dealing with are of the type TFτ . Any
TFτ -coalgebra α : X → TFτX can be turned into a TF ∗-coalgebra α : X →
TF ∗X by putting

α = T ([νX , eX ]) ◦ α,
where the mono-transformation [ν, e] : Fτ =⇒ F ∗ comes from the definition of
a free monad.

Example 5. Consider the LTS functor P(Στ × Id) ∼= P(Σ × Id + Id) and let
F = Σ × Id. The free monad over F in Set is given by (Σ∗ × Id,m, e), where
Σ∗ is the set of finite words over Σ together with the empty string ε ∈ Σ∗ and
m and e are given for any set X as follows:

mX : Σ∗ ×Σ∗ ×X → Σ∗ ×X; (s, s′, x) 
→ (ss′, x) and
eX : X → Σ∗ ×X;x 
→ (ε, x).

For any α : X → P(Στ ×X) we define α : X → P(Σ∗ ×X) by

α(x) = {(a, y) | (a, y) ∈ α(x) and a ∈ Σ} ∪ {(ε, y) | (τ, y) ∈ α(x)}.
Example 6. The ε-NA’s are coalgebras of the type TFτ for the monad T = P
and F = Σ × Id + 1. The functor F = Σ × Id + 1 lifts to Kl(P) [14] and
admits all free F -algebras. Let F ∗ denote the free monad over F . The functor
F ∗ : Set→ Set is defined on objects and morphisms by

F ∗X = Σ∗ ×X +Σ∗,
F ∗f : Σ∗ ×X +Σ∗ → Σ∗ × Y +Σ∗;F ∗f = (idΣ∗ × f) + idΣ∗ for f : X → Y.

The monadic structure (F ∗,m, e) is given by:

mX : Σ∗ × (Σ∗ ×X +Σ∗) +Σ∗ → Σ∗ ×X +Σ∗;
mX(s1, s2, x) = (s1s2, x) mX(s1, s2) = s1s2 mX(s1) = s1,

eX : X → Σ∗ ×X +Σ∗;x 
→ (ε, x).
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For any ε-NA coalgebra α : X → P(Σε ×X + 1) we define

α : X → P(Σ∗ ×X +Σ∗);x 
→ {(a, y) ∈ Σ∗ ×X | (a, y) ∈ α(x)} ∪Ax,

where Ax = if � ∈ α(x) then {ε} else ∅.

In order to proceed with the construction we need one additional lemma.

Lemma 1. [6] The algebra i�X = ηF∗X ◦ iX : FF ∗X +X → TF ∗X is the free
F -algebra over X in Kl(T )F .

Let F
∗

: Kl(T ) → Kl(T ) be the functor obtained by following the guidelines of
Theorem 2 using the family {i�X}X∈Kl(T ) of free algebras in Kl(T )F .

Theorem 4. [6] We have the following:

1. F ∗ : C→ C lifts to F
∗

: Kl(T )→ Kl(T ),
2. (F

∗
,m�, e�) is the free monad over F in Kl(T ).

Two adjoint situations C � Kl(T ) � Kl(F ∗
) yield a monadic structure on TF ∗.

The composition · in Kl(TF ∗) = Kl(F ∗
) is given as follows. Let λ : F ∗T =⇒

TF ∗ denote the distributive law associated with the lifting F
∗

of F ∗. The com-
position of f : X → TF ∗Y , g : Y → TF ∗Z in Kl(TF ∗) is given by:

g · f = μF∗Z ◦ TμF∗Z ◦ TTm�
Z ◦ TλF∗Z ◦ TF ∗g ◦ f =

μF∗Z ◦ TμF∗Z ◦ TT (ηZ ◦mZ) ◦ TλF∗Z ◦ TF ∗g ◦ f =
μF∗Z ◦ TTmZ ◦ TλF∗Z ◦ TF ∗g ◦ f.

Example 7. The composition · in Kl(P(Σ∗ × Id)) is given by the following for-
mula. For f : X → P(Σ∗ × Y ) and g : Y → P(Σ∗ × Z) we have g · f : X →
P(Σ∗ × Z):

g · f(x) = {(s1s2, z) | x s1→ f y
s2→ g z for some y ∈ Y and s1, s2 ∈ Σ∗}.

We call the monad P(Σ∗ × Id) free LTS monad.

Example 8. The composition · in Kl(P(Σ∗×Id+Σ∗)) is given by the following
formula. For f : X → P(Σ∗ × Y + Σ∗) and g : Y → P(Σ∗ × Z + Σ∗) we have
g · f : X → P(Σ∗ × Z +Σ∗):

g · f(x) ={(s1s2, z) | x s1→ f y
s2→ g z for some y ∈ Y and s1, s2 ∈ Σ∗}∪

{s1s2 | x s1→ f y and s2 ∈ g(y) ∩Σ∗, for some y ∈ Y }∪
{s1 ∈ Σ∗ | s1 ∈ f(x)}.

We call P(Σ∗ × Id+Σ∗) monad free ε-NA monad or ε-NA monad in short.
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We see that if we deal with functors of the form T (F + Id), where T is a
monad, given some mild assumptions on T and F we may deal with the silent
and observable part of computation inside a monadic structure on the functor
TFτ itself or by embedding the functor TFτ into the monad TF ∗ by the natural
transformation Fτ =⇒ F ∗. Therefore, from now on the term “coalgebras with
internal moves” becomes synonymous to “coalgebras over a monadic type”. Weak
bisimulation and, as we will also see, trace equivalence are defined for coalgebras
over monadic types, without the need for specifying visible and silent part of the
structure.

4 Weak Bisimulation

In this section we recall classical definition(s) of weak bisimulation for labelled
transition systems and coalgebraic constructions from [6]. Weak bisimulation
for labelled transition systems can be defined as a strong bisimulation on a
saturated structure. Process of saturation can be described as taking the reflexive
and transitive closure of a given structure w.r.t. the suitable composition and
order. First of all we present a paragraph devoted to classical definitions of weak
bisimulation for LTS. Then we show how Kleisli compositions from Examples 4
and 7 play role in the LTS saturation. These examples motivate the definition
of an order saturation monad and weak bisimulation [6]. What is essentially
new in this section is the following. First of all we present a definition of weak
bisimulation in terms of a kernel bisimulation on the saturated structure and
not via lax- and oplax-homomorphisms in Aczel-Mendler style as it was done
in [6]. Second of all, the last paragraph compares the two generalizations of the
strategies towards saturation from the point of view of weak bisimulation which
was not done in [6].

Weak Bisimulation for LTS. Let α : X → P(Στ×X) be a labelled transition
system coalgebra. For σ ∈ Στ and s ∈ Σ∗ define the relations σ=⇒ ,

s→, s=⇒ ⊆
X ×X by

σ=⇒ =
{

( τ→)∗ if σ = τ

( τ→)∗◦ σ→ ◦( τ→)∗ otherwise,
s→=

{
τ→ if s = ε

σ1→ ◦ . . . ◦ σn→ for s = σ1 . . . σn,

s=⇒ =

{
( τ→)∗ if s is the empty word

( τ→)∗◦ σ1→ ◦( τ→)∗ ◦ . . . ◦ ( τ→)∗◦ σn→ ◦( τ→)∗ for s = σ1 . . . σn

where, given any relation R ⊆ X ×X, the symbol R∗ denotes the reflexive and
transitive closure of R. We now present four different but equivalent definitions
of weak bisimulation for LTS’s. Due to limited space we do so in one definition
block.

Definition 1. [25,26,32] A relation R ⊆ X×X is called weak bisimulation on
α if the following condition holds. If (x, y) ∈ R then
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(i) for any σ ∈ Στ the condition x
σ→ x′ implies y σ=⇒ y′

(ii) for any σ ∈ Στ the condition x
σ=⇒ x′ implies y σ=⇒ y′

(iii) for any s ∈ Σ∗ the condition x
s→ x′ implies y s=⇒ y′

(iv) for any s ∈ Σ∗ the condition x
s=⇒ x′ implies y s=⇒ y′

and y′ ∈ X such that (x′, y′) ∈ R and a symmetric statement holds.

In this paper we will focus on Definitions 1.ii and 1.iv and their generalization.
They both suggest that weak bisimulation can be defined as a strong bisimulation
on a saturated model. It is worth noting that in our previous paper we focused
on analogues of Definitions 1.i and 1.iii and comparison with Definitions 1.ii and
1.iv respectively (see [6] for details).

Saturation for LTS Coalgebraically. Let us assume that · is a composition
in Kl(P(Στ×Id)) as in Example 4. Given an LTS coalgebra α : X → P(Στ×X)
the saturated LTS α∗ : X → P(Στ×X) is obtained as follows: α∗ = 1X∨α∨α·α∨
. . . =

∨
n=0,1,2... α

n, where
∨

denotes supremum in the complete lattice (P(Στ×
X)X ,�), where the relation � is given by α � β ⇐⇒ α(x) ⊆ β(x) for any x ∈
X. We see that for (σ, y) ∈ Στ×X: (σ, y) ∈ α∗(x) if and only if x σ=⇒ α y. Weak
bisimulation on α according to Definition 1.ii is a strong bisimulation on α∗.

If we now consider · to be composition in Kl(P(Σ∗ × Id)) as in Example 7
for an LTS considered as a P(Σ∗ × Id)-coalgebra α : X → P(Σ∗ × X) define
α∗ : X → P(Σ∗ × X) to be α∗ = 1X ∨ α ∨ α · α ∨ . . . =

∨
n=0,1,2... α

n. Then
(s, y) ∈ α∗(x) if and only if x s=⇒ α y for any s ∈ Σ∗. Weak bisimulation from
Definition 1.iv is a strong bisimulation on α∗.

Saturation for T -coalgebras. A monad T whose Kleisli category is order-
enriched is called ordered ∗-monad or ordered saturation monad [6] provided
that in Kl(T ) for any morphism α : X � X there is a morphism α∗ : X � X
satisfying the following conditions:

(a) 1 � α∗,
(b) α � α∗,
(c) α∗ · α∗ � α∗,
(d) if β : X � X satisfies 1 � β, α � β and β · β � β then α∗ � β,
(e) for any f : X → Y in C and any β : Y � Y in Kl(T ) we have:

f � · α � β · f � =⇒ f � · α∗ � β∗ · f � for �∈ {�,�}.
For the rest of the section we assume that T is an order saturation monad with
the saturator operator (−)∗.

Remark 1. We could try and define α∗ as the least fix point μx.(1∨x·α). Indeed,
if T is e.g. complete join-semilatice enriched monad then the saturated structure
is defined this way. We believe that our definition is slightly more general as it
does not require for the mapping x 
→ 1 ∨ x · α to be well defined. Intuitively
however, α∗ should and will be associated with μx.(1 ∨ x · α).
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Example 9. The powerset monad P and the non-empty powerset monad P�=∅

are examples of order saturation monads [6]. The monads from Examples 4 and
7 are order saturation monads [6]. Also the CM monad of convex distributions
described in [17] is an order saturation monad [6]. Although we will not focus
on CM in this paper it is a very important monad that is used to model Segala
systems, their trace semantics and probabilistic weak bisimulations [6,17,33,34].
Any Kleene monad [9] is also an order saturation monad [6].

Since P, P(Στ × Id) and P(Σ∗ × Id) are order saturation monads, the
following question arises: is the saturation operator for LTS monads related to
saturation in Kl(P)? The following theorem answers that question in general
and shows the relation between a saturation operator in Kl(T ) and Kl(TS) for
a monad S on Kl(T ).

Theorem 5. [6] Assume S : C→ C lifts to S : Kl(T )→ Kl(T ) and (S,m, e) is
a monad on Kl(T ). If S is locally monotonic and satisfies the equation

mX · S[(mX · Sα)∗ · eX ] = (mX · Sα)∗

for any α : X � SX, then the monad TS is an order saturation monad with
the saturation operator (−)� given by α� = (mX · Sα)∗ · eX .

If T = P and S is taken either to be Στ × Id or Σ∗ × Id, then the lifting
S exists and is equipped with a monadic structure as in Sect. 3. Moreover, S
satisfies the assumptions of Theorem 5 [6]. In other words, the LTS saturations
for P(Στ × Id) and P(Σ∗ × Id) are obtained respectively by

(m′
X ·Στα)∗ · e′

X and (m�
X ·Σ

∗
α)∗ · e�X .

In sections to come we will deal with generalizations of these two saturations and
check under which conditions they yield the same notion of weak bisimulation.

Weak Bisimulation for T -coalgebras. The following slogan should be in our
opinion considered the starting point to the theory of weak bisimulation for T -
coalgebras: weak bisimulation on α : X → TX = bisimulation on α∗ : X → TX.

Definition 2. Let α : X → TX be a T -coalgebra. A relation X
π1← R

π2→ X is
weak bisimulation on α if it is a bisimulation on α∗.

We see that the above definition coincides with the standard definition of
weak bisimulation for LTS considered as P(Στ×Id)- and P(Σ∗×Id)-coalgebras.

Weak Bisimulation for TF τ -and TF ∗-coalgebras. This subsection will
be devoted to comparing both approaches towards defining weak bisimulation
for TFτ -coalgebras that generalize Definitions 1.ii and 1.iv for LTS. Here, we
additionally assume that Kl(T ) is a category with zero morphisms. Then we may
either define a monadic structure on TFτ or embed the functor into the monad
TF ∗. These two approaches applied for LTS give two different saturations, yet
the weak bisimulations coincide. It is natural to suspect that given some mild
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assumptions it will also be the case in a more general setting. We will now list
all the necessary ingredients.

We assume (Fτ ,m′, e′) and (F
∗
,m�, e�) are monads as in Sect. 3 and that both

satisfy the assumptions of Theorem 5 for the monad S. For sake of simplicity
and clarity of notation we will drop � and write (F

∗
,m, e) instead of (F

∗
,m�, e�).

The consequences of these assumptions are the following:

– A natural transformation ν : F =⇒ F
∗

which arises by the definition of a
free monad.

– A natural transformation ι1 : F =⇒ Fτ = F + Id = F + Id. This transfor-
mation is given regardless of the assumptions.

– Unique monad morphism h : (F
∗
,m, e) � (Fτ ,m′, e′) in Kl(T ) making the

first three diagrams commute:

F
ν ◦

ι1 ◦�
��

� F
∗

h◦
Fτ

Id e ◦

e′=ι2 ◦�
��

� F
∗

h◦
Fτ

F
∗
F

∗ m ◦
hh◦

F
∗

h◦
FτFτ

m′
◦Fτ

Fτ
[ν,e]

◦

[ι1,e′]=id ◦�
��

� F
∗

h◦
Fτ

Commutativity of the first two diagrams implies commutativity of the forth.
Existence and uniqueness of h follows by the fact that F

∗
is a free monad over

F and ι1 : F =⇒ Fτ is a natural transformation.
– The monads TFτ and TF ∗ are order saturation monads. The saturation oper-

ators (−)� and (−)� for TFτ - and TF ∗-coalgebras resp. are given as fol-
lows. Let α : X � FτX (i.e. α : X → TFτX) and β : Y � F

∗
Y (i.e.

β : Y → TF ∗Y ). We have:

α� = (m′
X · Fτα)∗ · e′

X and β� = (mY · F ∗
β)∗ · eY .

Example 10. Let T = P and Fτ = Στ × Id, F ∗ = Σ∗ × Id. The morphism
hX : Σ∗X � ΣτX is given by:

hX : Σ∗ ×X → P(Στ ×X); (s, x) 
→
⎧
⎨

⎩

{(τ, x)} if |s| = 0,
{(s, x)} if |s| = 1,

∅ otherwise.

Consider any coalgebra α : X � FτX and let α : X � F
∗
X be given by

α = [νX , eX ] · α. Note that this is the same coalgebra as in the paragraph on
monadic structure on TF ∗ in Sect. 3. Here, however, it is defined in terms of the
composition in Kl(T ) and not C, and all superscripts � are dropped to simplify
the notation. By commutativity of the last diagram above we have:

hX · α = hX · [νX , eX ] · α = α.

We will now try to compare bisimulations for α� and α�. In case of labelled
transition systems a relation is a bisimulation on α� if and only if it is a bisimu-
lation on α�. Below we verify how general is this statement and what conditions
are required to be satisfied for it to remain true.
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Lemma 2. Assume that for any φ : F
∗
X � F

∗
X and ψ : FτX � FτX if

ψ · hX = hX · φ then ψ∗ · hX = hX · φ∗. In this case we have hX · α� = α�.

Remark 2. Note that the assumption in Lemma 2 about the natural transfor-
mation h is crucial even though T is assumed to be an order saturation monad.
Assumption (e) in the definition of order saturatiom monad does not guarantee
that h satisfies the desired property since it is not in general of the form h′� for
some h′ : F ∗X → FτX in C. However, if T is a Kleene monad [6,9] then this
assumption is always satisfied. The powerset monad P is an example of a Kleene
monad.

The following theorem follows directly from the above lemma.

Theorem 6. Assume that for any φ : F
∗
X � F

∗
X and ψ : FτX � FτX if

ψ ·hX = hX ·φ then ψ∗ ·hX = hX ·φ∗. Any bisimulation on α� is a bisimulation
on α�.

Our aim now will be to prove the converse.

Lemma 3. We have α� � (α�)�.

Remark 3. Before we state the next result we have to make one essential remark.
Note that the technical condition concerning the transformation [ν, e] in the
lemma below would follow from [ν, e] being a monad morphism. However, [ν, e] :
Fτ =⇒ F

∗
is not a monad morphism. It does not satisfy the 2nd axiom of

a monad morphism. To see this consider T = P, (Στ ,m′, e′), (Σ
∗
,m, e) as in

Examples 4 and 7 and a visible label a ∈ Σ. We have

[νX , eX ] ·m′
X(a, a, x) = ∅ and

mX · [νΣ∗X , eΣ∗X ] ·Στ [νX , eX ](a, a, x) = {(aa, x)}.
Lemma 4. Assume [νX , eX ] ·m′

X · Fτα � mX · F ∗
α · [νX , eX ]. Then α� � α�.

Theorem 7. Let α satisfy the inequality from the assumptions of the previous
statement. Any bisimulation on α� is a bisimulation on α�.

Proof. We have α � α� and hence α � α�. This, together with Lemma 4,
implies that α� � (α�)� � (α�)� 	= α� (see [6] for a proof of the equality
marked with (�)). Assume X π1← R

π2→ X is a bisimulation on α�. It is also a
bisimulation on α�. Finally, since α� = (α�)� the relation R is a bisimulation
on α�.

Theorem 8. Assume that cotupling [−,−] in Kl(T ) is monotonic w.r.t. both
arguments and the zero morphisms 0X,Y : X � Y are the least elements of the
posets HomKl(T )(X,Y ). Then any bisimulation on α� is a bisimulation on α�.

Remark 4. The powerset monad P satisfies assumptions of the above theorem.
It is worth mentioning that the CM monad used to model Segala systems does
not satisfy them as the zero morphisms in Kl(CM) are not least elements of the
partially ordered hom-sets [17]. The monad CM deserves a separate treatment
and we leave this for future research.
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5 Trace Semantics for Coalgebras with Internal Moves

The aim of this section is to present some ideas on how to approach the notion
of trace semantics for structures with invisible moves. As mentioned before in
order to distinguish the trace semantics for coalgebras with and without silent
steps we will often use the term weak trace semantics or trace semantics for
structures with internal moves to refer to the former.

Before we go into details we start this section by recalling a basic example
of trace semantics for ε-NA’s [15].

Definition 3. Given a non-deterministic automaton with ε-transitions α : X →
P(Σε ×X + 1) its trace semantics is a morphism trα : X → P(Σ∗) which maps
any state x ∈ X to the set of words over Σ it accepts. To be more precise, for a
word w ∈ Σ∗ we have w ∈ trα(x) provided that either w = ε and � ∈ α(x) or
w = a1 . . . an for ai ∈ Σ and there is x′ ∈ X such that

x( ε→)∗◦ a1→ ◦( ε→)∗ . . . ( ε→)∗◦ an→ ◦( ε→)∗x′

with � ∈ α(x′).

The above definition is an instance of what we call a “bottom-up” approach
towards trace semantics for non-deterministic automata with internal moves.
This approach considers ε steps as invisible steps that can wander around a
structure freely. In other words, from our perspective ε-steps that are used in this
definition are what they should be, i.e. are part of the unit of the ε-NA monad.
There is a second obvious approach towards defining trace semantics for ε-NA’s.
We call this approach “top-down”, since at first we treat ε steps artificially as
if they were standard visible steps. Given an ε-NA α : X → P(Σε ×X + 1) we
find its trace tr′

α : X → P((Σ ∪ {ε})∗) and then map all words from (Σ ∪ {ε})∗

to words in Σ∗ by removing all occurrences of the ε label. As a result we obtain
the same trace as in Definition 3. Since in many cases we know how to find
finite trace semantics for coalgebras with only visible steps [14] it is easy to
generalize the “top-down” approach to coalgebras with internal activities. This
is exactly how authors of [13,35] do it in their papers. We, however, will present a
bottom-up approach towards weak trace semantics that works for a large family
of coalgebras whose type is a monad.

Coalgebraic View on Weak Trace Semantics for ε-NA. In this subsection
we focus on coalgebras for the monad P(Σ∗×X+Σ∗). Recall that by Example 6
any ε-NA coalgebra α : X → P(Σε×X+1) can be considered a P(Σ∗×X+Σ∗)-
coalgebra. For simplicity and clarity of notation put F = Σ × Id+ 1 and F ∗ =
Σ∗ × Id+Σ∗. Let us list two basic facts concerning ε-NA monad:

– The lifting F
∗

: Kl(P)→ Kl(P) is locally continuous [14].
– The ε-NA monad PF ∗ is Cppo-enriched. This follows by Theorem 1.

For any α : X � X in Kl(PF ∗) (i.e. α : X → PF ∗X) define the following
mapping trα : X � ∅ (i.e. trα : X → P(Σ∗)):
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trα =
∨

n∈N

⊥ ·αn,

where ⊥: X � ∅ is given by ⊥: X → P(Σ∗);x 
→ ∅ and · denotes the com-
position in Kl(PF ∗) as in Example 8. It is simple to see that trα is the least
morphism in HomKl(PF∗)(X,∅) = HomSet(X,P(Σ∗)) satisfying trα = trα · α.
In other words,

trα = μx.x · α.
Recursively, if we put tr0 =⊥ and trn = trn−1 · α then trα =

∨
n trn.

Example 11. Let Σ = {a, b} and let α : X → P(Σε × X + 1) be given by the
following diagram (ε-labels are omitted). We have tr0 : X → P(Σ∗), x 
→ ∅ and

x �� y a��

b����
��

��
��

z�

�� tr1 :x 
→ ∅, y 
→ ∅, z 
→ {ε},
tr2 :x 
→ ∅, y 
→ {b}, z 
→ {ε},
tr3 :x 
→ {b}, y 
→ {ab, b}, z 
→ {ε},
tr4 :x 
→ {ab, b}, y 
→ {aab, ab, b},

z 
→ {b, ε}

The following result can be shown by straightforward verification.

Theorem 9. For any ε-NA coalgebra considered as P(Σ∗×Id+Σ∗)-coalgebra
the trace semantics morphism from Definition 3 and the morphism trα above
coincide.

Weak Coalgebraic Trace Semantics via Fixed Point Operator. We see
that for ε-NA’s their weak trace semantics is obtained as the least fixed point
of the assignment x 
→ x · α in Kl(P(Σ∗ ×Id+Σ∗)). Interestingly, such a fixed
point is not unique.

Example 12. Let Σ = {a},X = {x} and let ε-NA α : X → P(Σε ×X + 1) be
defined by the following diagram: x ε		 . It is easy to check that the morphism
g : X → P(Σ∗);x 
→ {a} satisfies g = g · α and it is not the least fixed point
since the least fixed point is given by trα(x) = ∅.

Here we generalize the ideas presented in the previous subsection to T -
coalgebras. It should be noted at the very beginning that this section should
serve as merely a starting point for future research.

Let us first focus on a known approach for defining trace semantics via coin-
duction in Kleisli category [14] and translating these results to our setting. In [14]
the authors present trace semantics definition via coinduction for TF -coalgebras,
where T is a monad and F satisfies some reasonable assumptions. In our setting
however, we do not consider a special functor F or in other words F = Id and
our coalgebras are T -coalgebras. Consider the category Kl(T )Id of Id-coalgebras
in Kl(T ). Note that any T -coalgebra α : X → TX is α : X � X and is
a member of Kl(T )Id. Based on the approach from [14] trace semantics of α
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should be obtained via coinduction in Kl(T )F . In our setting however, i.e. when
F = Id, the category Kl(T )Id rarely admits the terminal object. For instance if
we consider our ε-NA monad P(Σ∗ × Id + Σ∗), the category of Id-coalgebras
Kl(P(Σ∗×Id+Σ∗))Id has no terminal object. However, it still makes sense to
talk about trace for coalgebras for the monad P(Σ∗ × Id + Σ∗). We did it via
the least fixed point of the assignment x 
→ x · α. In the general case we do it
via uniform fixed point operator [37].

Assume that C is a category with the initial object 0 (this object is also initial
in Kl(T )). A fixed point operator f on Kl(T ) is a family of morphisms:

f : HomKl(T )(X,X)→ HomKl(T )(X, 0)

satisfying f(α) · α = f(α) for any α : X � X. A fixed point operator f on Kl(T )
is uniform w.r.t. (−)� : C→ Kl(T ) [37] if

h� · α = β · h� =⇒ f(β) · h� = f(α)

for any α : X � X, β : Y � Y in Kl(T ) and h : X → Y in C. Coalgebraically
speaking, the premise of the above implication says that the morphism h is a
homomorphism between coalgebras α : X → TX and β : Y → TY in CT . We
call a uniform fixed point operator on Kl(T ) a coalgebraic trace operator and we
denote it by tr(−).

Theorem 10. Assume that Kl(T ) is a Cppo-enriched category and assume that
for any f : X → Y in C we have ⊥ ·f � =⊥. For α : X � X define trα : X � 0
by trα = μx.(x · α) =

∨
n∈N
⊥ ·αn. Then tr(−) is a coalgebraic trace operator on

Kl(T ).

It may not be instantly clear for the reader why we choose uniformity as a
property of a coalgebraic trace operator. Uniformity is a powerful notion which,
in some forms, determines the least fixed point to be the unique uniform fixed
point operator [37]. For the ε-NA monad P(Σ∗ ×Id+Σ∗) the least fixed point
operator is a uniform fixed point operator w.r.t.

� : Set→ Kl(P(Σ∗ × Id+Σ∗)).

However, as we will see further on (Theorem 11 and Example 13), it is uniform
also with respect to a richer category than Set, namely, it is uniform w.r.t.:

� : Kl(P(Σ∗ × Id))→ Kl(M1) ∼= Kl(P(Σ∗ × Id+Σ∗)).

Uniqueness of a uniform fixed point operator on Kl(T ) can be imposed by
inital algebra = final coalgebra coincidence in the base category C [37]. This
coincidence is the core of generic coalgebraic trace semantics theory [14]. This is
why we believe that the uniform fixed point operators can and will serve as an
extension of the generic coalgebraic trace semantics to weak trace semantics.

We end this section with a result that links weak trace semantics for ε-
NA’s to uniform traced monoidal categories in the sense of Joyal et al. [16].
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However, instead of a uniform categorical trace operator on a monoidal category
with binary coproducts and initial object we will equivalently work with a uni-
form Conway operator [12,16]. The following theorem (modulo the uniformity)
can be found in [4].

Theorem 11. Assume C is equipped with a uniform Conway operator

(−)†
X,A : Hom(X,X +A)→ Hom(X,A).

Let A be an object in C andMA = Id+A the exception monad on C. Then the
operator tr(−) : HomKl(MA)(X,X)→ HomKl(MA)(X, 0) defined by trα = α† for
α : X → X + A in C (or equivalently α : X � X in Kl(MA)) is a coalgebraic
trace operator on the category Kl(MA) which is uniform w.r.t. � : C→ Kl(MA).

Example 13. The ε-NA’s and their trace semantics fits into the above setting
since the ε-NA monad satisfies:

P(Σ∗ × Id+Σ∗) ∼= P(Σ∗ × (Id+ 1)).

Hence, if we put T = P(Σ∗ × Id) to be the free LTS monad then the ε-NA
monad is given by T (Id+ 1) = TM1. Since the free LTS monad P(Σ∗ × Id) ∼=
P(Σ∗)Id is an example of a quantale monad [18] on Set its Kleisli category
Kl(P(Σ∗ × Id)) with binary coproducts and initial object is equipped with a
uniform Conway operator (or equivalently a uniform categorical trace operator)
[12,18]. Therefore, if we put C = Kl(P(Σ∗ × Id)) then the Kleisli category for
the exception monad M1 = Id + 1 defined on C is isomorphic to the Kleisli
category for ε-NA monad, i.e. Kl(M1) ∼= Kl(P(Σ∗ × Id + Σ∗)). The analysis
of the Conway operator for the Kleisli category for the monad P(Σ∗ × Id) [18]
leads to a conclusion that trα obtained for ε-NA’s via Theorem 11 is exactly the
least fixed point operator we introduced in the previous subsection.

To conclude, when allowing invisible steps into our setting, i.e. considering
coalgebras over monadic types, weak trace semantics becomes a categorical fixed
point operator. Moreover, as the above example states, there is a strong connec-
tion between coalgebraic trace operator for ε-NA coalgebras and traced monoidal
categories. Although traced categories have been studied from coalgebraic per-
spective in [18] they were considered a special instance of the generic coalgebraic
trace theory. With Example 13 at hand we believe that it should be the other
way around in many cases, i.e. coalgebraic trace semantics for coalgebras with
internal moves is a direct consequence of the fact that certain Kleisli categories
are traced monoidal categories.

6 Weak Bisimulation and Weak Trace Semantics

We have shown that two behavioural relations, namely, weak bisimulation and
weak trace equivalence can be defined using fixed points of certain maps. In case
of trace equivalence this map is given by x 
→ x ·α, in case of weak bisimulation
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it is x 
→ 1 ∨ x · α. We see that both equivalences should be considered individ-
ually, as they require different assumptions. Yet, in a restrictive enough setting
we should be able to compare these notions at once. Indeed, in the setting of
monads whose Kleisli category has hom-sets being complete join semilattices
and whose composition preserves all non-empty joins, it is possible for us to talk
about three behavioural equivalences at once, namely, weak trace semantics,
weak bisimilarity and bisimilarity. In this case we can prove the following.

Theorem 12. Let T be a monad as above and let ⊥=⊥ ·f � for any f : X → Y
in C. A strong bisimulation on α : X → TX is also a weak bisimulation on α.
Moreover, if we define the trace map to be trα = μx.x · α then trα = trα∗ . In
other words, weak bisimilarity implies weak trace equivalence.

7 Summary and Future Work

This paper shows that coalgebras with internal moves can be understood as
coalgebras over a type which is a monad. We believe that such a treatment
makes formulation of many different properties and behavioural equivalences
simpler. It is natural to suspect that many other types of different behavioural
equivalences can be translated into the coalgebraic setting this way. One of these
is dynamic bisimulation [27] which should be obtained as a strong bisimulation
on μx.(α ∨ x · α) (i.e. a transitive closure of α). We believe that this paper may
serve as a starting point for a larger project to translate some of the equivalences
from van Glabbeek’s spectrum of different equivalences for state-based systems
with silent labels [8,32] into the setting of coalgebras with internal activities.

Finally, as mentioned in Sect. 5 we should aim at extending the coalgebraic
trace semantics theory for systems without internal transitions [14] to systems
with silent moves. Uniform fixed point operator could serve as such an extension.
Moreover, we should build a more traced monoidal category oriented theory of
coalgebraic traces and refer it to known results for generic coalgebraic trace.
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Abstract. The literature on process theory and structural operational
semantics abounds with various notions of behavioural equivalence and,
more generally, simulation preorders. An important problem in this area
from the point of view of logic is to find formulas that characterize states
in finite transition systems with respect to these various relations. Recent
work by Aceto et al. shows how such characterizing formulas in equa-
tional modal fixed point logics can be obtained for a wide variety of
behavioural preorders using a single method. In this paper, we apply
this basic insight from the work by Aceto et al. to Baltag’s “logics for
coalgebraic simulation” to obtain a general result that yields character-
istic formulas for a wide range of relations, including strong bisimilarity,
simulation, as well as bisimulation and simulation on Markov chains and
more. Hence this paper both generalizes the work of Aceto et al. and
makes explicit the coalgebraic aspects of their work.

1 Introduction

The literature on process theory and structural operational semantics contains
a multitude of various notions of behavioural equivalence and, more generally,
simulation preorders. The most prominent example, perhaps, is the notion of
strong bisimulation: given labelled transition systems S and T , a relation Z
between states of S and states of T is said to be a strong bisimulation if the
following conditions hold:

Forth: If uZv and u
a−→ u′ for some action a, then there is v′ with v

a−→ v′

and u′Zv′.
Back: If uZv and v a−→ v′, then there is u′ with u a−→ u′ and u′Zv′.

The weaker notion of simulation is like bisimulation except that the “Back”
condition is dropped. Another way to weaken the notion of strong bisimulation is
to “truncate” the silent τ -transitions, according to the intuition that bisimulation
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should capture equivalence of observable behaviour. The resulting concept of
behavioural equivalence is called weak bisimulation.

An important problem in this area from the point of view of logic is to
find formulas that characterize states in finite transition systems with respect
to these various relations. For example, in the case of strong bisimilarity, we
want to find a formula ϕ that characterizes a given state u in a finite labelled
transition system S “up to bisimilarity”, in the sense that a state v in a transition
system T satisfies ϕ if and only if (T, v) is bisimilar with (S, u). Recent work by
Aceto et al. shows how such characterizing formulas in equational modal fixed
point logics can be obtained for a wide variety of behavioural preorders using a
single method. In such equational fixed point logics, the semantics of formulas
is parametric in a system of equations, which are to be read (in this context)
as greatest fixed point definitions of variables. For example, in Hennessy-Milner
logic, the equation

p := ϕ ∧ [a]p

assigns to the variable p the meaning: “the formula ϕ is true throughout every a-
path starting from the current state”. Generally, a fixed point language allows us
to characterize infinite or looping behaviour of a model using finitary formulas.

In this paper, we apply the basic insight from the work by Aceto et al. to
Baltag’s “logics for coalgebraic simulation”, which generalize the original coal-
gebraic languages introduced by Moss in the seminal paper [13], to obtain a
general result that yields characteristic formulas for a wide range of relations.
These include strong bisimilarity, simulation, as well as bisimulation and simula-
tion on Markov chains and more. The key observations that will drive the result
are:

1. The semantics for the modal operators and the various notions of simulation
both arise from the same concept of relation lifting via a lax extension.

2. A finite coalgebra can itself be viewed as a system of equations.

These features of the logics make the construction of the characteristic formulas
particularly direct and natural. However, the syntax of these languages directly
involve the functor T , and can be somewhat difficult to grasp intuitively. There-
fore, we also provide conditions that allow us to automatically derive character-
istic formulas in the language of predicate liftings for a given (finitary) functor.
These latter languages have become increasingly popular in the coalgebraic logic
community, and they have the advantage of staying closer to the more conven-
tional syntax of languages like Hennessy-Milner logic.

2 Basics

2.1 Set Coalgebras and Lax Extensions

In this section we introduce some basic concepts from coalgebra theory that will
be used later on. We assume familiarity with basic category theoretic concepts.
We fix a functor T : Set→ Set, where Set is the category of sets and mappings
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For simplicity, we assume that T preserves set inclusions, so that a set inclusion
ι : X → Y is mapped to a set inclusion Tι : TX → TY . This assumption
is actually more innocent than it may seem at first, since every set functor
is naturally isomorphic “up-to-∅” to one that preserves set inclusions. More
precisely, for every set functor T there is a functor T ′ such that the restrictions
of these two functors to the full subcategory of non-empty sets are naturally
isomorphic, see [1] for details.

We will make use of an approach to coalgebraic logic developed by Alexan-
dru Baltag, based on certain methods of extending the signature functor T to
relations [3]. This approach is a generalization of the original formulation of
coalgebraic logic due to Moss [13]. While Baltag uses “weak T -relators” (for
more on relators and simulations [7,9,17]), we shall here use the slightly more
general notion of “lax extension” [11], which works just as well. Besides that,
our approach is the same as Baltag’s.

Definition 1. Given a function f : X → Y , let f̂ = {(x, f(x)) | x ∈ X} be the
graph of f . Let ΔX = ÎdX be the graph of the identity map on X.

The concept of a lax extension is defined as follows:

Definition 2. A lax extension of a set functor T is a relation lifting (i.e. a
mapping that sends every relation R ⊆ X × Y to a relation LR ⊆ TX × TY )
subject to the constraints:

L1: R ⊆ S implies LR ⊆ LS,
L2: LR;LS ⊆ L(R;S),
L3: T̂ f ⊆ Lf̂ for any mapping f .

Thus lax extensions are lax endofunctors on the 2-category of sets and relations
with inclusions between relations as the 2-cells. Note that condition L3 implies
that

ΔTX ⊆ LΔX (1)

for all sets X, since ΔTX = ÎdTX = T̂ (IdX). A good example of a lax extension
(that also happens to be a weak relator), which we will come back to several
times, is the following:

Example 1. The finitary covariant powerset functor (T = Pω) has a lax extension
given by

LsimR := {(A,B) ∈ PωX × PωY | ∀a ∈ A ∃b ∈ B : aRb}.

In other words, LsimR consists of all pairs (A,B), such that there is a function
from A to B whose graph is a subset of R. It is easy to see that L1 and L2 hold.
For L3, let f : X → Y , and let AP̂ωfB. This means that B = f [A]. As f maps
A to B and its graph is f̂ , we have that ALsim f̂B.
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Definition 3 (L-simulation). An L-simulation from a T -coalgebra (X,α) to
(Y, β) is a binary relation Z ⊆ X × Y such that uZv implies α(u)(LZ)β(v).
Given pointed T -coalgebras (A, u) and (B, v), we write (A, u) 	L (B, v) to say
that there is an L-simulation Z from A to B with uZv.

Note that Lsim -simulation (with Lsim from Example 1) is simulation on Kripke
frames.

2.2 Symmetric Lax Extensions and Bisimulation

We write the converse of a relation R as R◦. Given a relation lifting L, let
L◦ : R 
→ (L(R◦))◦. Call a relation lifting L symmetric if L = L◦.

Example 2 (Barr extension). Given sets X,Y and a binary relation R ⊆ X×Y ,
the relation TR ⊆ TX × TY is defined by

aTRb ⇔ ∃c ∈ T (R) : TπX(c) = a & TπY (c) = b.

Here, πX and πY are the projections from the product X × Y . Then T is a
symmetric relation lifting, and in the case where T preserves weak pullbacks, T
is a symmetric lax extension of T called the Barr extension of T [4].

Definition 4. Given a set functor T , a T -bisimulation is an L-simulation,
where L = T .

We could also call a T -bisimulation a T -bisimulation, and we will more generally
define what is meant by L-bisimulation for any lax extension L (not necessarily
symmetric) that extends T in that TR ⊆ LR for each relation R. We first observe
the following.

Observation 1. If L is a lax extension that extends T , then L◦ is a lax exten-
sion.

Proof. We prove each case in turn.

– By L1 in Definition 2, we have

R ⊆ S ⇒ R◦ ⊆ S◦ ⇒ L(R◦) ⊆ L(S◦) ⇒ L◦(R) ⊆ L◦(S).

– We reason as follows:

L◦(R);L◦(S) = (L(R◦))◦; (L(S◦)◦) = (L(S◦);L(R◦))◦

⊆ (L(S◦;R◦))◦ = (L((R;S)◦))◦ = L◦(R;S).

– Let f : X → Y . For a ∈ TX, we have

a(T f̂)(Tf(a))⇒ (Tf(a))(T (f̂◦))a (T is a symmetric relation lifting)

⇒ (Tf(a))(L(f̂◦))a (TR ⊆ LR for all relations R)

⇒ a(Lf̂)(Tf(a)).

Thus T̂ f ⊆ L◦(f̂). �
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Definition 5. Given a lax extension L, let B(L) be defined1 by

B(L) = L ∩ L◦.

We call B(L) the bisimulator of L.

The reader can easily check that the following holds:

Observation 2. If L1 and L2 are lax extensions, then L1∩L2 is a lax extension.

Hence we get:

Observation 3. If L is a lax extension, such that TR ⊆ LR for each relation
R, then its bisimulator B(L) is a symmetric lax extension.

Proof. First note that as L extends T , we have by Observation 1 that L◦ is a lax
extension. Then by Observation 2, B(L) is a lax extension. By definition B(L)
is symmetric. �
Remark 1. If Lsim is the lax extension for the finitary power set functor Pω that
was given in Example 1, then B(Lsim) = Pω.

Definition 6. If L is a lax extension, such that TR ⊆ LR for every relation R,
then an L-bisimulation is a B(L)-simulation.

By the previous remark, Z is an Lsim -bisimulation if and only if Z is a Pω-
bisimulation.

3 Coalgebraic Logic with Fixed Point Equations

3.1 Basic Coalgebraic Modal Logic

Definition 7. Given a (finite) set of variables V , the syntax of the basic coal-
gebraic logic over V is defined as the smallest set L such that

– p ∈ L for all p ∈ V ,
– ϕ,ψ ∈ L implies ϕ ∧ ψ ∈ L and ϕ ∨ ψ ∈ L,
– if Φ is a finite subset of L then �a ∈ L and ♦a ∈ L for each a ∈ TΦ.

The following observation is made in [18]:

Proposition 1. Let T be a set functor that preserves inclusions. Then for any
a ∈ TX where X is a finite set, there is a unique smallest set Y ⊆ X with
a ∈ TY .

In particular, this guarantees that for any formula �a or ♦a, there is a unique
smallest set of formulas Φ with a ∈ TΦ. We denote this set by SPT (a), for
“support of a”. When X is understood by context, we write SPT for SPTX .

Given a fixed valuation, a function υ : V → P(X) (equivalently υ ∈ P(X)V ),
we define the satisfaction relation �υ between pointed coalgebras (A, u) (where
A = (X,α)) and formulas in L(V ), relative to the valuation υ, with the following
inductive clauses:
1 Here, for lax extensions L1 and L2 we define L1 ∩ L2 by R �→ L1R ∩ L2R.
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– (A, u) �υ p iff u ∈ υ(p), for a propositional variable p,
– (A, u) �υ ϕ ∧ ψ iff (A, u) �υ ϕ and (A, u) �υ ψ,
– (A, u) �υ ϕ ∨ ψ iff (A, u) �υ ϕ or (A, u) �υ ψ,
– (A, u) �υ �a iff α(u)(L �υ)a,
– (A, u) �υ ♦a iff α(u)(L◦(�υ))a.

Sometimes the definition of the semantics of �a and ♦a are given with �υ
replaced with �υ�X×SPT(a) = �υ ∩ X × SPT (a). We show that both defini-
tions are equivalent.

Observation 4. If L is a lax extension, then α(u)(L �υ�X×SPT(a))a if and only
if α(u)(L �υ)a.

Proof. First note that �υ�X×SPT(a) ⊆ �υ and hence by L1, α(u)(L �υ�X×SPT(a)

)a implies α(u)(L �υ)a. For the other direction, suppose that α(u)(L �υ)a.
By definition of SPT , a ∈ TSPT (a), and hence (a, a) ∈ ΔTSPT(a). By (1),
(a, a) ∈ LΔSPT(a). Then α(u)(L �υ);L(ΔSPT(a))a. The desired result follows
from this, L2, and the fact that �υ�X×SPT(a) = (�υ); (ΔSPT(a)). �
Remark 2. If L is a symmetric lax extension, then the formulas �a and ♦a are
equivalent. In this case, we might write∇a instead of�a to emphasize that� and
♦ are the same. If L = T , then these modalities are the same as the ∇-modality
from the (finitary version of) Moss’ presentation of coalgebraic logic [13].

3.2 Fixed Point Semantics

In this section we introduce the (greatest) fixed point semantics for the logic
L(V ), relative to a system of equations. First, we have to say more precisely
what a system of equations is:

Definition 8 (System of equations). Given a set of variables V , a system
of fixed-point equations is defined to be a mapping s : V → L(V ).

We shall construct a fixed point semantics using a system of equations as a
parameter. First note that the set P(X)V of V -indexed tuples of subsets of a
set X, or “valuations in X”, forms a complete lattice under the relation � of
point-wise set inclusion. That is, given υ, υ′ : V → P(X) we set

υ � υ′ iff ∀x ∈ V : υ(x) ⊆ υ′(x).

We denote the arbitrary (potentially infinite) join operation in this lattice
by
∨

. The reader can now easily check that a system of fixed point equations s
defines a monotone operation Os on the lattice of valuations P(X)V , by letting
(for υ : V → P(X) and x ∈ V ):

Os(υ)(x) = {w ∈ X | (A, w) �υ s(x)}.
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By the Knaster-Tarski fixed point theorem, Os is guaranteed a greatest fixed
point, which we denote GFP(s), so that

GFP(s) := GFP(Os) =
∨
{σ : V → P(X) | σ � Os(σ)}.

For a pointed coalgebra (A, u) we write (A, u) �s ϕ as an abbreviation for
(A, u) �GFP(s) ϕ, and say in this case that (A, u) satisfies the formula ϕ rel-
ative to the system of equations s. We could, of course, introduce a least fixed
point semantics relative to s in the same way, but since we will not have any use
for that here we refrain from doing so.

The following observation will be used for proving the correctness of the
characteristic formula for mutual simulation in Example 7. It plays a somewhat
similar role as [2, Lemma 4.6] toward this goal.

Observation 5. Let s and t be systems of equations, such that s = t � V0 for
some subset V0 of the variables used in t. Given a T -coalgebra (A, u), and a
variable x ∈ V0,

(A, u) |=s x iff (A, u) |=t x.

Proof. The proof of this is a straightforward induction. The key observation is
that as s = t � V0, for each p ∈ V0, t(p) is a formula over the variables in V0, and
hence all variables not in V0 are “unreachable” in t from variables in V0. �

4 Characteristic Formulas

Definition 9. Given a lax extension L and coalgebras A = (X,α) and B =
(Y, β), let FL be the endofunction on P(X × Y ) defined by

(x, y) ∈ FL(R)⇔ α(x)(LR)β(y).

Note that FL is a monotone increasing function on the complete lattice of rela-
tions in P(X × Y ), and hence by the Knaster-Tarski fixed point theorem, FL
has a greatest fixed point. It is clear that a relation R ⊆ X × Y is a post-fixed
point of FL iff it is an L-simulation, and so the greatest fixed point of FL is the
relation 	L, i.e. we have (u, v) ∈ GFP (FL) iff there is an L-simulation relating
u to v.

We consider the language L(X) with X being the set of variables. Let Φ
be a function from relations in P(X × Y ) to valuations in P(Y )X , such that
Φ(R)(x) = {y | (x, y) ∈ R}. Let Ψ be the function from relations in P(Y ×X)
to valuations in P(Y )X , such that Ψ(R)(x) = Φ(R◦)(x) = {y | (y, x) ∈ R}.
Definition 10. Let A = (X,α) and B = (Y, β) be T -coalgebras. We say that a
system of equations s : X → L(X) directly expresses the endofunction FL if for
Z ⊆ Y ×X

(B, y) �Ψ(Z) s(x)⇔ (y, x) ∈ FL(Z).

Similarly, we say that a system of equations s : X → L(X) conversely expresses
the endofunction FL if for Z ⊆ X × Y

(B, y) �Φ(Z) s(x)⇔ (x, y) ∈ FL(Z).
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Theorem 1. If s directly expresses FL, then

(B, v) �s u iff (B, v) 	L (A, u).

If s conversely expresses FL, then

(B, v) �s u iff (A, u) 	L (B, v).

The idea behind this theorem has been used for some time, and has been given
in papers such as [2,14,15]. The presentation in this paper is most similar to
a formulation given in [15], which addressed probabilistic simulations in a non-
coalgebraic setting. The proofs given in those papers apply to this setting as
well. However, we provide a sketch of the proof here to emphasize that it applies
to our more general (coalgebraic) setting.

Proof (sketch). Recall that Os is a function from P(Y )X to itself, such that
Os(υ)(x) = {y | (B, y) �υ s(x)}, and this function has the greatest fixed point
GFP(s). It follows directly from the definitions that s directly expresses FL if
and only if the following diagram commutes:

P(Y ×X)
FL ��

Ψ

��

P(Y ×X)

Ψ

��
P(Y )X Os

�� P(Y )X

Similarly, s conversely expresses FL if and only if the following commutes:

P(X × Y )
FL ��

Φ

��

P(X × Y )

Φ

��
P(Y )X Os

�� P(Y )X

Hence, if s directly expresses FL then, since the function Ψ is an isomorphism
between the lattices of relations in P(Y × X) and variable interpretations in
P(Y )X , by [2, Theorem 2.3] it maps the greatest fixed point of FL to the greatest
fixed point of Os, that is GFP(s) = Ψ(GFP(FL)) = Ψ(	L). So we get

(B, v) �s u⇔ (B, v) �GFP(s) u

⇔ v ∈ GFP (s)(u)
⇔ v ∈ Ψ(	L)(u)
⇔ v 	L u.

Similarly, the function Φ is an isomorphism between relations in P(X × Y ) and
variable interpretations in P(Y )X , and hence if s conversely expresses FL it



106 S. Enqvist and J. Sack

maps the greatest fixed point of FL to the greatest fixed point of Os, that is
GFP(s) = Φ(GFP(FL)) = Φ(	L). So we get

(B, v) �s u⇔ (B, v) �GFP(s) u

⇔ v ∈ GFP (s)(u)
⇔ v ∈ Φ(	L)(u)
⇔ u 	L v

as required. �
We are now left with the task to find systems of equations that express FL

(directly and conversely). The main observation here is that, with the semantics
we are using here for the �- and ♦-operators, this is easy: a finite T -coalgebra
almost is a system of equations!

To be precise, fix a finite T -coalgebra A = (X,α). We treat the set X as a set
of variables and consider the language L(X). We define two systems of equations
s� and s♦ by setting

s�(u) := �α(u)

and
s♦(u) := ♦α(u).

We then get the following result:

Lemma 1. For any lax extension L, where L◦ is also a lax extension, s� directly
expresses FL, and s♦ conversely expresses FL.

Proof. Let Z ⊆ Y ×X. Given x ∈ X, note that

�Ψ(Z)�Y×SPT(α(x))⊆ Z ⊆ �Ψ(Z).

Then by L2 and Observation 4, β(y)(L �ψ(Z))α(x) iff β(y)(LZ)α(x). Then

(B, y) �Ψ(Z) s�(x)⇔ (B, y) �Ψ(Z) �α(x)
⇔ β(y)(L �Ψ(Z))α(x)
⇔ (β(y), α(x)) ∈ L(Z)
⇔ (y, x) ∈ FL(Z).

This proves that s� directly expresses FL.
To see that s♦ conversely expresses FL, let Z ⊆ X × Y . Then, as Φ(Z) =

Ψ(Z◦),

(B, y) �Φ(Z) s♦(x)⇔ (B, y) �Ψ(Z◦) ♦α(x)
⇔ β(y)(L◦ �Ψ(Z◦))α(x)
⇔ (β(y), α(x)) ∈ L◦(Z◦)
⇔ (α(x), β(y)) ∈ L(Z)
⇔ (x, y) ∈ FL(Z).

�
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From Lemma 1 together with Theorem 1, we immediately get our main result:

Theorem 2. Let B = (Y, β) be any T -coalgebra. Then, for u ∈ X and v ∈ Y ,
relative to the system of equations s� we have

(1) (B, v) � u iff (B, v) 	L (A, u).

Conversely, relative to the system of equations s♦ we have

(2) (B, v) � u iff (A, u) 	L (B, v).

We also get characteristic formulas for various notions of bisimilarity as an
easy corollary to this result. Given a lax extension L that extends T , we use
∼L as an abbreviation for the simulation relation 	B(L), where B(L) is the
bisimulator of L.

Corollary 1. Let A = (X,α) be a T -coalgebra and let s�,♦ be the system of
equations over X defined by

v 
→ �α(v) ∧ ♦α(v).

Then for u ∈ X and any pointed T -coalgebra (B, w) we have

(B, w) �s�,♦ u iff (B, w) ∼L (A, u).

Proof. Let ∇ be the “box modality” corresponding to the lax extension B(L).
It is easy to see that s�,♦ gives rise to the same operator on the lattice of
evaluations in a coalgebra B as the system s∇ defined by

v 
→ ∇α(v).

The corollary now follows from Theorem 2 applied to s∇. �
Example 3. Consider the P-coalgebra A depicted by

x y�� �� z ��

Then, given that � is for example the box modality corresponding to Lsim , the
system of equations s� is given by

s�(x) = �∅
s�(y) = �{x, z}
s�(z) = �{z}

Remark 3. In the case where L is the Barr extension of T (where T preserves
weak pullbacks), the system of equations s� (equivalently s♦) can viewed as
a very simple “T -automaton” in the sense of [18]. Hence [18, Proposition 4.9],
which shows that any finite T -coalgebra can be characterized up to bisimilarity
by a suitable T -automaton, can be seen as a special instance of Theorem 2.
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4.1 Predicate Liftings

The � and ♦ modalities used to obtained characteristic formulas above have the
nice feature that the appropriate connection between the formulas and the lax
extension L is built directly into the semantics. On the other hand, these modal-
ities are rather abstract. By contrast, modalities based on predicate liftings are
relatively easy to grasp and are formally closer to the standard modalities used
in Hennessy-Milner logic and other modal logics for specification of various kinds
of transition systems. In this section we provide conditions on a lax extension L
that allow us to derive characteristic systems of equations for L-simulation in the
language of predicate liftings. This is very closely related to a recent result by
Marti and Venema, appearing first in [10] and later in [12]. The result builds on
earlier work by A. Kurz and R. Leal [8], and provides a translation of nabla-style
coalgebraic logic corresponding to a lax extension into the logic of predicate lift-
ings. The one subtle difference is that, while Marti and Venema restrict attention
to symmetric lax extensions, we are interested also in the non-symmetric case.
The non-symmetric case allows us to characterize simulation preorders whereas
the symmetric only allows us to characterize behavioral equivalences.

Definition 11. An n-ary predicate lifting for a set functor T is a natural trans-
formation

λ : Qn → QT

where Q is the contravariant powerset functor2.

Fix a finitary functor T : Set → Set and a lax extension L that extends T .
Given a set V of variables, the language of all predicate liftings Λ for T over the
variables V is given by the grammar:

LΛ(V ) � ϕ:: = x | ϕ ∧ ϕ | ϕ ∨ ϕ | λ(ϕ, . . . , ϕ),

where x ranges over V and λ ranges over predicate liftings. Given a coalgebra
A = (X,α) and a valuation υ : V → PX, the semantics is given by the usual
clauses for variables and Booleans, with the evaluation clause for liftings:

(A, u) �υ λ(ϕ1, . . . , ϕn)⇔ α(u) ∈ λX(trυA(ϕ1), . . . , trυA(ϕn)),

where, here and from now on, trυA : LΛ(V ) → QX sends a formula ϕ to its
“truth set”:

trυA(ϕ) = {v ∈ X | (A, v) �υ ϕ}.
A system of equations is a mapping s : X → LΛ(V ). Any system of equations s
gives rise to an operator Os on the lattice of evaluations in A in the same way
as before; if this operator is always monotone, then we say that the system s is
positive. In this case the operator always has a greatest fixed point, and we write
(A, u) �s ϕ as shorthand for (A, u) �GFP(s) ϕ, where the evaluation GFP(s) is
the greatest fixed point for this operator.

We introduce some notation: given a set X, let ∈X denote the membership
relation from X to QX. Consider the following conditions on L:
2 Given a mapping h : X → Y , Qh : QY → QX is defined by Qh(Z) = h−1[Z].
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A1 Given a mapping f : Z → X and a relation R ⊆ X × Y , we have

T̂ f ;LR = L(f̂ ;R).

A2 Given a relation R ⊆ X × Y and a mapping f : Z → Y , we have

L(R; (f̂)◦) = LR; (T̂ f)◦.

It is shown in [10, Proposition 3.10] and [12, Proposition 5] that these conditions
hold for all symmetric lax extensions.

Example 4. The reader can verify that these conditions hold for the lax extension
Lsim from Example 1.

Observation 6. If A1 and A2 hold for L, then they hold for L◦ also.

An immediate consequence of the conditions A1 and A2 is the following:

Lemma 2. If L satisfies A1 and A2, then the mappings dX : TQX → QTX
defined by

a 
→ {b ∈ TX | b(L ∈X)a}
form a distributive law, i.e. they are the components of a natural transformation

d : TQ→ QT.

The case where L is symmetric is shown is given in [12, Proposition 19]. Below
we verify that the equations A1 and A2 suffice for the proof to go through.

Proof. Let h : X → Y be any mapping and let a ∈ TQY . First, note that

∈X ; (Q̂h)◦ = ĥ;∈Y (2)

since, for u ∈ X and z ∈ QY , we have u ∈ Qh(z) iff h(u) ∈ z. We calculate:

dX ◦ TQh(a) = {b ∈ TX | b(L ∈X)TQh(a)}
= {b ∈ TX | b(L ∈X); (T̂Qh)◦a}
= {b ∈ TX | b(L(∈X ; (Q̂h)◦))a} by A2

= {b ∈ TX | b(L(ĥ;∈Y ))a} by (2)

= {b ∈ TX | b(T̂ h; (L ∈Y ))a} by A1

= {b ∈ TX | Th(b)(L ∈Y )a}
= QTh ◦ dY (a),

and we have proven that dX ◦ TQh = QTh ◦ dY , so that d is a natural transfor-
mation. �
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Lemma 3. Suppose L satisfies A1 and A2, and let d be the distributive law
determined by L, according to Lemma 2. Let A = (X,α) be a coalgebra and
υ : V → PX a valuation. Then for a ∈ TX and b ∈ TL(V ), we have

a(L �υ)b iff a ∈ dX ◦ T (trυA)(b).

From this point we can simply apply the same techniques that are used in
[10,12] to translate ∇-formulas into the language of predicate liftings: since T is
finitary it has a presentation as a quotient of a polynomial functor:

p :
∐

n∈ω
Σn × (−)n → T,

where each Σn is a constant set3 (see [1] for details). Given n ∈ ω and σn ∈ Σn,
we get a natural transformation pσn : (−)n → T by

pσn

X (u1, . . . , un) = pX(σn, u1, . . . , un).

We will simply write pσ from now on, letting the index n be made clear from
context. We can exploit the presentation p to derive a set of predicate liftings
for T :

Definition 12. Given σ ∈ Σn, define the “Moss lifting” μ[σ] : Qn → QT by

(X1, . . . , Xn) 
→ dX ◦ pσQX(X1, . . . , Xn).

We now come to the main lemma of this section:

Lemma 4. Suppose that L satisfies conditions A1 and A2. Let A = (X,α) be
a finite T -coalgebra. Then there exist systems of equations

s1, s2 : X → LΛ(X)

such that, relative to any coalgebra B = (Y, β), Os1 : P(Y )X → P(Y )X is the
same as Os� , and also Os2 = Os♦ .

Proof. For the first part of the lemma, fix u ∈ X. We have α(u) ∈ TX ⊆ TL(V ).
Since the presentation p is point-wise surjective, there are x1, . . . , xn ∈ X and
σ ∈ Σn with

pσX(x1, . . . , xn) = α(u)

3 To be concrete, we can take Σn = T (n), and we can define the action of pX on
(σ, u1, . . . , un) ∈ Σn × Xn by

pX(σ, u1, . . . , un) = Th(σ),

where h : n → X is the mapping defined by i �→ ui. These details will not be relevant
to us, however. All we need to know is that p is a natural transformation, and each
of its components is surjective.
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Since pσ is natural and T preserves inclusions we get

pσL(V )(x1, . . . , xn) = α(u)

Let μ[σ] : Qn → QT denote the n-ary Moss lifting determined by σ using the
distributive law d induced by L, and set

s1(u) = μ[σ](x1, . . . , xn).

Then, for v ∈ Y, u ∈ X and a valuation υ, we get

(B, v) �υ s�(u)
iff (B, v) �υ �α(u)
iff β(v)L(�υ)α(u)
iff β(v) ∈ dY ◦ T (trυB)(α(u)) by Lemma 3
iff β(v) ∈ dY ◦ T (trυB)(pσL(V )(x1, . . . , xn))

iff β(v) ∈ dY ◦ pσQY (trυB(x1), . . . , trυB(xn)) by naturality of pσ

iff β(v) ∈ μ[σ]Y (trυB(x1), . . . , trυB(xn))
iff β(v) ∈ μ[σ]Y (υ(x1), . . . , υ(xn))
iff (B, v) �υ μ[σ](x1, . . . , xn)
iff (B, v) �υ s1(u).

It clearly follows that the systems of equations s� and s1 give rise to the
same operator on the lattice of valuations in B.

For the second part of the lemma, we make use of Observation 6 and reason
exactly the same way using the distributive law determined by L◦. �
Note that if s1, s2 always give rise to the same operators on evaluations as s�, s♦,
then these systems of equations must be positive! Hence, we get:

Theorem 3. Suppose that L satisfies conditions A1 and A2. Given a finite
T -coalgebra A = (X,α), there exist positive systems of equations

s1, s2 : X → LΛ(X)

such that for any u ∈ X and any pointed T -coalgebra (B, v), we have

(B, v) �s1 u iff (B, v) 	L (A, u)

and
(B, v) �s2 u iff (A, u) 	L (B, v).

Proof. Easy corollary from the previous lemma and Theorem 2. �

5 Applications

In this final section, we provide examples of lax extensions for various func-
tors that give rise to simulations and bisimulations that have been used in the
literature. All these examples are taken from the papers [2,15].
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Finitary Power Set Functor.

Example 5 (simulations). Consider the following lax extensions for the covariant
powerset functor:

LsimR := {(A,B) ∈ PωX × PωY | ∀a ∈ A ∃b ∈ B : aRb},
LrsR := {(A,B) ∈ PωX × PωY | (∀a ∈ A ∃b ∈ B : aRb) & (A = ∅ ⇒ B = ∅)},
LcsR := {(A,B) ∈ PωX × PωY | A �= ∅ ⇒ (B �= ∅ & ∀b ∈ B ∃a ∈ A : aRb)}.

Recall that Lsim was already given in Example 1 and Lsim -simulations are ordi-
nary simulations. Also,Lrs -simulations are ready simulations andLcs -simulations
are conformance simulations. Item (2) of Theorem 2 yields characteristic formulas
for each of these simulations.

Example 6 (bisimulation). Let L be one of Lsim , Lrs , or Lcs from Example 5.
In each of these cases its bisimulator B(L) is the same, and is given by

B(L)R = {(A,B) ∈ PωX × PωY | ∀a ∈ A ∃b ∈ B : aRb, &
∀b ∈ B ∃a ∈ A : aRb}.

Hence by Remark 1, B(L) is the Barr extension Pω for the finitary power set
functor, and the main theorem gives characteristic formulas for bisimulation.

Example 7 (mutual simulation). Given states u ∈ X and v ∈ Y in Pω-coalgebras
A = (X,α) and B = (Y, β), we say that u and b are mutually simulated, written
(A, u) ≈ (B, v), if there is a simulation S from A to B with uSv and a simulation
S′ from B to A with vS′u. In other words, (A, u) ≈ (B, v) iff (A, u) 	Lsim

(B, v)
and (B, v) 	Lsim

(A, u). Given a finite Pω-coalgebra A = (X,α) and u ∈ X, we
want to find a system of equations that allows us to characterize (A, u) up to
mutual simulation. There is a simple way to obtain such a system of equations
from the main theorem. Let s� : u 
→ �α(u), and s♦ : u 
→ ♦α(u). Take the
disjoint union of X with itself, i.e. the coproduct

X +X = (X × {0}) ∪ (X × {1})
as a new set of variables. Let ι1 and ι2 be the left and right insertions of X into
this coproduct, and define the system of equations s by setting

– s(w, 0) = �(Pωι1(α(w))) and
– s(w, 1) = ♦(Pωι2(α(w))).

Note that Pωι1(α(w)) ∈ Pω(X × {0}), Pωι1(α(w)) ∈ Pω(X +X), and similarly
for Pωι2(α(w)), and hence s maps variables in X+X to formulas in the language
L(X+X). With respect to this system of equations, the formula (u, 0)∧(u, 1) is a
characteristic formula for the pointed coalgebra (A, u) w.r.t. mutual simulation.
To see this, first let ti = s �X×{i} for i = {0, 1}. As s� and t0 are isomorphic,
and similarly s♦ and t1, it is easy to see that for any pointed coalgebra (B, v),
we have
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– (B, v) �s� u iff (B, v) �t0 (u, 0),
– (B, v) �s♦ u iff (B, v) �t1 (u, 1).

Using this and Observation 5, we have that for any pointed coalgebra (B, v), we
have

– (B, v) �s� u iff (B, v) �s (u, 0),
– (B, v) �s♦ u iff (B, v) �s (u, 1).

It is immediate from this and Theorem 2 (the main theorem) that

(B, v) �s (u, 0) ∧ (u, 1) iff (A, u) ≈ (B, v)

as required.

Finite Probability Functor. Given a partial function ρ : X → [0, 1], and a
subset B ⊆ X, let

ρ[B] =
∑

b∈B∩dom(ρ)

ρ(b).

Let D be the finite probability functor as given in [13, Example 3.5]: D maps
each set X to the set of partial functions from ρ : X → [0, 1], such that dom(ρ)
is finite and ρ[X] = 1, and maps each function f : X → Y to Df : DX → DY
given by

((Df)ρ)(y) = ρ[f−1[{y}]] =
∑
{ρ(x) : x ∈ Supp ρ, f(x) = y}.

for each ρ ∈ DX and y ∈ f [dom(ρ)]. Then D preserves inclusions (this is the
reason for ρ being a partial rather than total function). A coalgebra α : A→ DA
corresponds to a Markov chain.

Given a relation R ⊆ X × Y and A ⊆ X, let R[A] = {b | ∃a ∈ A : aRb}.
Example 8 (Simulation and bisimulation on Markov chains). Let

LmcR := {(p, q) ∈ DX ×DY | ∀C ⊆ X, p[C] ≤ q[R[C]]}.
Then L is a lax extension of the finite probability functor D.

The lax extension L corresponds to both simulation and bisimulation on
Markov chains, and so the main theorem gives characteristic formulas for this
relation (simulation and bisimulation are distinguished in variations of these
Markov chains such as in [6] as well as with the probabilistic automata in Exam-
ple 9 below). Furthermore, it is immediate from the equivalence of items 1 and
3 in [15, Lemma 1] that L is in fact just the Barr extension of D.

Finite Non-deterministic Probability Functor. We call the functor Pω ◦D
the finite nondeterministic probability functor. A coalgebra for Pω◦D corresponds
to a probabilistic automaton (which is essentially a Markov chain with non-
deterministic transitions to distributions).
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Example 9 (Simulation on Probabilistic Automata). The finite non-deterministic
probability functor has a lax extension

LpaR := {(A,B) ∈ PωDX×PωDY | ∀p ∈ A, ∃q ∈ B : ∀C ⊆ X, p[C] ≤ q[R[C]]}.
Such a lax extension corresponds to simulation (on probabilistic automata), and
so we find characteristic formulas for such simulations.

Example 10 (Probabilistic simulation on Probabilistic Automata). Given an ele-
ment μ ∈ DDX, let γ(μ) = ν ∈ D(X), where ν(x) =

∑
ν′∈dom(μ) ν

′(x)μ(ν′).
Then probabilistic simulation (see [16]) is defined by the relation lifting:

LpsimR := {(A,B) ∈ PωDX × PωDY |∀p ∈ A, ∃q ∈ DB :
∀C ⊆ X, p[C] ≤ γ(q)[R[C]]}.

It can be checked that this is a lax extension. It is easy to see that Lpsim is
monotone (L1 holds) and as Lpa ⊆ Lpsim , L3 holds for Lpsim as well. To see
that L2 holds. Suppose that A(LpsimR)B and B(LpsimS)C, and let μ ∈ A. Then
there exists a ν̃ ∈ DB, such that for all Z ⊆ A, μ[Z] ≤ γ(ν̃)[R[Z]]. Also, for each
ν ∈ Supp ν̃, there exists ρ̃ν ∈ DC, such that for all Z ⊆ B, ν[Z] ≤ γ(ρ̃ν)[S[Z]].
Now let σ̃ =

∑
ν∈Supp ν̃ ν̃(ν)ρ̃ν . Then for any Z ⊆ A,

μ[Z] ≤ γ(ν̃)[R[Z]]

=
∑

ν∈Supp ν̃

ν̃(ν)ν[R[Z]]

≤
∑

ν∈Supp ν̃

ν̃(ν)γ(ρ̃ν)[(R;S)[Z]]

=
∑

ν∈Supp ν̃

ν̃(ν)
∑

ρ∈Supp ρ̃ν

ρ̃ν(ρ)ρ[(R;S)[Z]]

=
∑

ν∈Supp ν̃

∑

ρ∈Supp ρ̃ν

(ν̃(ν)ρ̃ν(ρ)) · ρ[(R;S)[Z]]

=
∑

ρ∈Supp σ̃

⎛

⎝
∑

{ν|ρ∈Supp ρ̃ν}
ν̃(ν)ρ̃ν(ρ)

⎞

⎠ ρ[(R;S)[Z]]

= γ(σ̃)[(R;S)[Z]].

As Lpsim is a lax extension, Theorem 2 yields characteristic formulas.

Labelled Powerset Functor. Let A be a set of labels, and let PA be the
functor that maps each object X to (Pω(X))A, and maps each morphism f :
X → Y to PAf : h 
→ k, where k : a 
→ f [h(a)]. Such a functor corresponds to a
multi-modal Kripke frame.

Example 11 (multi-modal simulation). Let

LmsimR := {(h, k) | ∀a ∈ A∀x ∈ h(a)∃y ∈ k(a) : xRy}.
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In other words LmsimR consists of all pairs (h, k), such that for all a ∈ A, there
is a function f : h(a)→ k(a), whose graph is a subset of R. Since Lmsim is a lax
extension, the main theorem yields a characteristic formula.

Weak Simulation and Bisimulation. Let A be a set of labels and designate
τ ∈ A to be a “silent action”, not to be counted in a weak simulation. We aim to
define a lax extension to capture weak simulation of transition systems. Here, we
cannot simply work with the labelled powerset functor; the problem is that this
functor only catches the “one-step” behaviours, while weak simulation crucially
involves iterated behaviour. We will solve this problem by modelling transition
systems as coalgebras for a suitable co-monad.

It is well known that the forgetful functor from the category of PA-coalgebras
to the category Set of sets and mappings has a right adjoint [5], and this adjunc-
tion gives rise to a co-monad on Set. Here, we shall describe essentially the same
co-monad in more concrete terms: let a rooted tree t over a set X be a prefix
closed set of strings in N

∗; being prefix closed, t must include the empty string ε.
An A-labelled rooted tree is a pair (t, λ), where t is a rooted tree and λ : t→ A
is a labelling function. Let CA : Set→ Set be defined by setting:

– For a set X, CA(X) is the set of (X×A)-labelled and finitely branching rooted
trees, with π2λ(ε) = τ (as an arbitrary convention).

– For a mapping h : X → Y , CAh : CAX → CAY is defined by letting CAh map
a tree (t, λ) to the tree (t, λ′) with labelling λ′ obtained by the assignment
x 
→ (h(π1λ(x)), π2λ(x)).

Intuitively, CAX is the set of possible behaviours for a PA-coalgebra with domain
X.

The functor CA is a co-monad on Set. The co-unit η : CA → IdSet is defined
by letting ηX send a tree (t, λ) ∈ CAX to π1(λ(ε)) ∈ X. The co-multiplication
μ : CA → CA ◦CA is defined by letting μX send a tree (t, λ) ∈ CAX to the “tree
of trees” (t, λ′) in CA(CA(X)), such that λ′ : w 
→ ((tw, λw), π2λ(w)), where

– tw = {v ∈ N
∗ | w · v ∈ t} and

– λw : tw → X ×A, where λw(v) =
{
λ(w · v) v �= ε
(π1λ(w), τ) v = ε

.

A labelled transition system can be represented as a coalgebra α : X → CAX for
this co-monad, meaning that the following diagrams are required to commute:

CAX
ηX �� X

X

α

��

IdX

����������

CAX
μX �� CACAX

X

α

��

α
�� CAX

CAα

��

Forgetting the co-monad structure of CA we can just view it as an ordinary set
functor, and so it makes sense to speak of a lax extension of CA. We want to
define a lax extension that captures weak simulation between labelled transition
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systems. Given a set X, a labelled tree (t, λ) ∈ CAX and a label a, define the
relation

t,λ,a−→ ⊆ X ×X
by setting x

t,λ,a−→ y iff there is an a-labelled edge from x to y in the labelled
tree (t, λ), that is, there exists w and w · n in t, such that π1(λ(w)) = x and

λ(w·n) = (y, a). Let
t,λ,a�

−→ be the transitive reflexive closure of
t,λ,a−→. For a labelled

tree (t, λ), say that a node v is a-reachable from u in (t, λ) if there are nodes u′

and v′ with
u
t,λ,τ�

−→ u′ t,λ,a−→ v′ t,λ,τ�

−→ v

and denote by re(t, λ, a) the set of nodes a-reachable in (t, λ) from the root
π1(λ(ε)) of t. Then CA has a lax extension Lweak defined, for R ⊆ X × Y , by
setting LweakR to be the set of pairs ((t, λ), (t′, λ′)) ∈ CAX × CAY satisfying

∀a ∈ A \ {τ} ∀x ∈ re(t, λ, a) ∃y ∈ re(t′, λ′, a) : xRy.

This lax extension gives �- and ♦-modalities evaluated on CA-coalgebras as
before, and we can derive characteristic formulas for Lweak -simulation using The-
orem 2. In particular, these formulas will characterize Lweak -simulation among
coalgebras for CA as a co-monad, and among these coalgebras Lweak -simulation
can be taken to model weak simulation in the usual sense. Weak bisimulation is
handled by considering the bisimulator of Lweak .
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Abstract. In a recent article Goŕın and Schröder [3] study λ-simulations
of coalgebras and relate them to preservation of positive formulae. Their
main results assume that λ is a set of monotonic predicate liftings and
their proofs are set-theoretical. We give a different definition of simula-
tion, called strong simulation, which has several advantages:

Our notion agrees with that of [3] in the presence of monotonicity, but
it has the advantage, that it allows diagrammatic reasoning, so several
results from the mentioned paper can be obtained by simple diagram
chases. We clarify the role of λ-monotonicity by showing the equiva-
lence of

– λ is monotonic
– every simulation is strong
– every bisimulation is a (strong) simulation
– every F-congruence is a (strong) simulation.

We relate the notion to bisimulations and F -congruences - which are
defined as pullbacks of homomorphisms. We show that

– if λ is a separating set, then each difunctional strong simulation is an
F -congruence,

– if λ is monotonic, then the converse is true: if each difunctional strong
simulation is an F -congruence, then λ is separating.

1 Introduction

Coalgebraic logic as introduced by D. Pattinson [6] and refined by L. Schröder
[9], has been very successful in providing a common framework for quite a variety
of modal logics, see for instance [2,5], or [11]. In many cases, the type functor,
used to model such coalgebras preserves weak pullbacks, so logical equivalence
can be modeled by structural relations called bisimulations. Two states related
by a bisimulation are equivalent. In a recent paper Goŕın and Schröder have
introduced a notion of λ-simulation, where λ is a (set of) predicate lifting(s).
Their definition is set theoretical and their proofs are calculational. In all of their
results they assumed that all predicate liftings are monotonic.

Here we offer a different notion of simulation, which we call strong simula-
tion. The definition is amenable to diagrammatical reasoning, whose utility we
show in a number of proofs. Moreover, we show that under the assumption of
monotonicity our definition coincides with that of [3]. Since they used monotony
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as a general hypothesis in their work, their results could be proved as well with
our definition. We relate our strong simulations to the notion of Aczel-Mendler
bisimulation (called F -bisimulation) and to (generalized) congruences.

2 Basic Notions and Preparations

Given a binary relation R ⊆ A×B, let R− ⊆ B ×A be the converse relation. If
S ⊆ B×C is another relation, then R◦S := {(a, c) | ∃b ∈ B.aRb∧ bSc} is called
the composition of R and S. Obviously, ◦ is associative and (R◦S)− = S− ◦R−.

For R ⊆ A×A, a relation on a set A, notice that R is transitive iff R◦R ⊆ R.
Let R� ⊆ A×A be the reflexive transitive closure of R. The smallest equivalence
relation containing R is Req := (R∪R−)�. It is well known that kernels of maps
are equivalence relations, where for a map f : A→ B the kernel is defined as

ker f := {(a, a′) | f(a) = f(a′)},

and conversely, any equivalence relation E ⊆ A×A is the kernel of the projection
map πE : A → A/E, sending each element a ∈ A to a/E, its equivalence class
under E. With ΔA we denote the identity relation on a set A.

2.1 Difunctionality

Difunctional relations are generalizations of equivalence relations, for the case
of relations R ⊆ A × B between possibly different sets. Reflexivity, symmetry
and transitivity make no sense for such relations, so a possible generalization is:

Definition 1. A relation R ⊆ A×B is called difunctional, if it satisfies:

(a1, b1), (a2, b1), (a2, b2) ∈ R =⇒ (a1, b2) ∈ R.

Immediately from the definition we see ([7]):

Lemma 1. R is difunctional ⇐⇒ R ◦ R− ◦ R ⊆ R ⇐⇒ R− ◦ R ◦ R− ⊆
R− ⇐⇒ R− is difunctional. The difunctional closure of a relation R is obtained
as Rd := R ◦ (R− ◦R)� = (R ◦R−)� ◦R.

Each equivalence relation on A is obviously difunctional. More generally, let
f : A→ C and g : B → C be two maps then we define

ker(f, g) := {(a, b) ∈ A×B | f(a) = g(b)}.

It is easy to see that ker(f, g) is a difunctional relation, and, in perfect
analogy to the situation with equivalence relations, every difunctional relation
arises that way:

Lemma 2. A relation R ⊆ A×B is difunctional, if and only if there are maps
f : A→ C, g : B → C with R = ker(f, g).
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Proof. Let R ⊆ A×B be difunctional. Let eA : A→ A+B and eB : B → A+B
be the canonical inclusions of A and B into their sum. On A+B define

R̄ := {(eA(x), eB(y)) | (x, y) ∈ R}.
Obviously, R̄ is difunctional, so

R̄ ◦ R̄− ◦ R̄ ⊆ R̄ and R̄− ◦ R̄ ◦ R̄− ⊆ R̄−.

Moreover, R̄ ◦ R̄ = ∅ = R̄− ◦ R̄− by construction. Therefore,

E := ΔA+B ∪ R̄ ∪ R̄− ∪ R̄ ◦ R̄− ∪ R̄− ◦ R̄
is an equivalence relation, since one easily calculates E ◦ E ⊆ E. Notice that

(eA[A]× eB [B]) ∩ E = R̄.

With the projection πE : A+B → (A+B)/E it is now easy to calculate:

(x, y) ∈ ker(πE ◦ eA, πE ◦ eB) ⇐⇒ (eA(x), eB(y)) ∈ E
⇐⇒ (eA(x), eB(y)) ∈ R̄
⇐⇒ (x, y) ∈ R.

Thus, R = ker(f, g) where f and g are constructed as the pushout of the pro-
jections πRA : R→ A and πRB : R→ B.

More generally, if f : A→ C and g : B → D, then any difunctional relation R ⊆
C ×D gives rise to a difunctional relation ker(f, g)R := {(a, b) | f(a)Rg(b)} ⊆
A×B}.

2.2 Directed Diagrams

Each map θ : A→ 2, where 2 = {0, 1} is understood as an ordered set, is called
a predicate. The carrier of predicate θ : A→ 2 is the subset

[[θ]] := {a ∈ A | θ(a) = 1}
and conversely, every subset U ⊆ A arises as U = [[χU ]] from its characteristic
function χU . We shall often use the same symbol for a predicate and its carrier,
such as in � : F (2)→ 2 and � ⊆ F (2).

It is sometimes convenient to write a |= θ rather than θ(a) = 1 or a ∈ θ.
Similarly, A |= θ means that a |= θ for each a ∈ A.

We say θ =⇒ ψ provided [[θ]] ⊆ [[ψ]]. It will be convenient to encode this
diagrammatically, where the inclusion is indicated by an upwards arrow, as in

A

θ

��

ψ

��
⇑ 2 .
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Establishing such a diagram amounts to showing that for any a ∈ A, taking the
lower path in the diagram yields a result which is smaller than or equal to the
result obtained by the upper path, i.e. θ(a) ≤ ψ(a) for all a ∈ A. We generalize
this notation in the following way:

Definition 2. Given a relation S between sets A and B and predicates θ : A→ 2
and ψ : B → 2, we introduce

θ
S=⇒ ψ :⇐⇒ ∀(x, y) ∈ S. (x |= θ =⇒ y |= ψ ) (2.1)

which may be spelled as “θ implies ψ modulo S”. With our above notation, we
can visualize θ S=⇒ ψ by the following “upwards-commuting” diagram

B
ψ

����
���

���
�

S

π1
�����������

π2 ����
���

���
� ⇑ 2 .

A
θ

�����������

Notice that with A = B and S = ΔA, we have θ =⇒ ψ being the same as
θ

ΔA=⇒ ψ.
Interpreting a relation S ⊆ A×B as a map between the powersets S : P(A)→

P(B), via S(U) := {b ∈ B | ∃a ∈ U.(a, b) ∈ S}, we could equivalently write:

θ
S=⇒ ψ ⇐⇒ S([[θ]]) ⊆ [[ψ]].

This shows that this notation is closely related to the notation of Hoare triples,
where the relation S would be given as the semantics of an imperative program.
We can immediately gather a number of simple properties inspired by this associ-
ation. These correspond to the rules of precondition strengthening/postcondition
weakening and sequencing:

Lemma 3

1. θ′ ⊆ θ S=⇒ ψ implies θ′ S=⇒ ψ

2. θ S=⇒ ψ ⊆ ψ′ implies θ S=⇒ ψ′

3. θ R=⇒ ϕ and ϕ S=⇒ ψ implies θ R◦S=⇒ ψ

Proof. The first two claims can be readily obtained by gluing diagrams where
we use the obvious naming conventions for the projections of a relation to its
components:

B
⇑
ψ′

��ψ ��S

πS
B

���������

πS
A

		��
���

�� ⇑ 2

A

⇑
θ





θ′

��
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For the third claim, we note that if R 	
 S is the pullback of πRB with πSB ,
then R ◦ S is the image obtained by factoring the span (R 	
 S, πR��SC , πR��SC )
into an epi followed by a mono source:

S ��

����
���

���
� C

ψ

		��
���

���⇑
R 	
 S

p �� ��

πR��S
S

���������

πR��S
R ��			

				
		 R ◦ S

��








����
���

���
B

ϕ ��

⇑
2

R

��








 �� A
θ

����������

Explicitly, an upwards diagram chase, for instance in the right diagram,
would be:

θ ◦ πR◦S
A ◦ p = θ ◦ πRA ◦ πR��SR

≤ ϕ ◦ πRB ◦ πR��SR

= ϕ ◦ πSB ◦ πR��SS

≤ ψ ◦ πSC ◦ πR��SS

= ψ ◦ πR◦S
C ◦ p.

Cancelling the epi p results in θ ◦ πR◦S
A ≤ ψ ◦ πR◦S

C .

3 Functors, Coalgebras and Bisimulations

Let F : Set → Set be an endofunctor on the category of sets. We shall write
F (X) for the action of F on an object X and Ff for the action of F on a map f .

Typical endofunctors describe set-theoretical constructions, such as sets, lists,
tuples, bags, etc. In programming they include all generic collection classes such
as List<X>, Set<X>, Bag<X> etc. The action of F on a map f : X → Y is
generically called : map f. It will be useful to keep the following visualization in
mind:

– F defines a type of “constructions”.
– Elements of F (X) are those “constructions” whose elements are drawn from

a set X; we will call them X − patterns.
– Given a map f : X → Y, the map Ff : F (X) → F (Y ) acts on an X-pattern
p ∈ F (X) by replacing in p each x by f(x).

– A pattern p ∈ F (X) is finite, if there is a subset {x1, . . . , xn} ⊆ X such
that p ∈ F ({x1, . . . , xn}). In this case, we write p = p(x1, . . . , xn) and we let
p(f(x1), . . . , f(xn)) denote (Ff)p(x1, . . . , xn).

– In particular, if θ : X → 2 is a predicate, then Fθ acts on an element p ∈ F (X)
by replacing in p each x by 1 if x |= θ and by 0 otherwise.

– If p = p(x1, . . . , xn), then (Fθ)p(x1, . . . , xn) = p(θ(x1), . . . , θ(xn)) is called a
0− 1− pattern.

If f : X → Y is injective and X �= ∅, then f is left-invertible, hence Ff is
injective, too. F can always be modified just on the empty set and on empty
mappings, so that it preserves injectivity for all mappings, including the empty
one, see [13]. We therefore assume for the rest of this article, that F preserves
all monos.
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3.1 Coalgebras

Definition 3. An F -coalgebra A = (A,α) consists of a set A and a map α :
A → F (A). A is called the base set and α the structure map. The functor F is
called the type of coalgebra A.

We shall keep F fixed and consider only coalgebras of that given type F .

Definition 4. A map ϕ : A → B between two coalgebras A = (A,α) and B =
(B, β) is called a homomorphism, if β ◦ ϕ = Fϕ ◦ α.

The functor properties immediately guarantee that the class of all F -coalgebras
with homomorphisms as morphisms forms a category SetF . The forgetful functor
U : SetF → Set which associates with every coalgebra A its underlying set A and
with every homomorphism its underlying map is known to create and preserve
colimits [8], so in particular the category SetF is cocomplete and colimits have
the same underlying set and mappings as the corresponding colimits in Set.

Example 1. Kripke frames are coalgebras of type P where P is the covariant
powerset functor, acting on a map f : X → Y as Pf : P(X) → P(Y ) where
(Pf)(U) := f [U ] := {f(u) | u ∈ U} for any U ∈ P(X).

Kripke structures come with a fixed set V of atomic properties, so they are
modeled as coalgebras of type P(−) × P(V ), where the second component is
simply a constant. A coalgebra of type P(−) × P(V ) is therefore a base set A
with a structure map α : A → P(A) × P(V ). Its first component associates to
a state a ∈ A the set of its successors succA(a) := (π1 ◦ α)(a) and its second
component yields the set of all atomic values valA(a) := (π2 ◦ α)(a) which are
true for a.

Homomorphisms ϕ : A→ B between Kripke frames, resp. Kripke structures
are also known as bounded morphisms. They are maps preserving and reflecting
successors and atomic values in the following sense: ϕ[succA(a)] = succB(ϕ(a))
and valA(a) = valB(ϕ(a)).

3.2 Bisimulations

In the structure theory of coalgebras, bisimulations play the role of compatible
relations.

Definition 5. ([1]) A bisimulation between coalgebras A and B is a relation
R ⊆ A×B for which there exists a coalgebra structure ρ : R → F (R) such that
the projections πRA : R→ A and πRB : R→ B are homomorphisms.

Typical bisimulations are graphs of homomorphismsG(ϕ) := {(a, ϕ(a)) | a ∈ A}.
In fact, a map f : A → B is a homomorphism iff its graph is a bisimulation
([8]). If R ⊆ A × B is a bisimulation between coalgebras A and B, then there
could be several possible structure maps ρ : R → F (R) establishing that R is a
bisimulation.
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The empty relation ∅ ⊆ A×B is always a bisimulation and (more generally)
the union of bisimulations is a bisimulation, so that bisimulations between A
and B form a complete lattice with largest element called ∼A,B .

The following proposition will be needed later in the proof of Theorem3. It
shows that bisimulations can be enlarged as long as the structure maps are not
affected in the following sense:

Proposition 1. Let A1 and A2 be coalgebras with corresponding structure maps
α1 and α2. Let R ⊆ A1 × A2 be a bisimulation and R′ an enlargement i.e.
R ⊆ R′ ⊆ ker α1 ◦R ◦ ker α2. Then R′ is also a bisimulation.

Proof. R is a bisimulation, so there exists a structure map ρ : R → F (R)
with αi ◦ πRi = FπRi ◦ ρ. Let ι : R → R′ be the inclusion map, then clearly
πRi = πR

′
i ◦ ι. By assumption, we find for every (x′, y′) ∈ R′ a pair (x, y) ∈ R

such that α1(x) = α1(x′) and α2(y) = α2(y′). The axiom of choice provides for
a map μ : R′ → R satisfying

αi ◦ πR′
i ◦ ι ◦ μ = αi ◦ πR′

i .

We now define ρ′ : R′ → F (R′) by ρ′ := Fι ◦ ρ ◦ μ.

R′
πR′

i

��		
			

			
		

ρ′

���
�
�
�μ

��





R

ρ

��

��
ι

�� πR
i �� Ai

αi

��

F (R′)
FπR′

i

����
���

��Fμ

��











F (R)
�� Fι

��








FπR
i

�� F (Ai)

The rest is a simple calculation.

Corollary 1. Let A = (A,α) be a coalgebra, then every reflexive relation R ⊆
ker α is a bisimulation.

Proof. Since Δ ⊆ A is always a bisimulation, we have Δ ⊆ R ⊆ ker α = ker α ◦
ker α = ker α ◦Δ ◦ ker α, because ker α is transitive.

3.3 Predicate Liftings and Boxes

We denote the contravariant powerset functor by 2−. Thus 2X is the set of
all subsets of X and a map f : X → Y induces a map 2f : 2Y → 2X via
2f (V ) := f−1[V ]. If we consider the elements of 2Y as predicates τ : Y → 2, we
can write 2f (τ) = τ ◦ f , or 2f = (−) ◦ f .

The classical Kripke style modal logic introduces formulae expressing prop-
erties holding for all successors of a point x. If ϕ is a state formula then �ϕ holds
at x if ϕ holds for each successor x′ of x. The set of all successors of a point x is
α(x) ∈ P(X), in the case of Kripke frames. Thus � can be understood as lifting
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a property ϕ from the base set A to a property λA(ϕ) ⊆ P(A), so x |= �ϕ iff
α(a) satisfies the lifted property λA(ϕ). Generalizing this observation, Pattinson
[6] introduced predicate liftings λA : 2A → 2F (A) as natural transformations
between the contravariant powerset functors 2(−) and 2F (−).

Definition 6. A predicate lifting λ for F is a natural transformation λ : 2− →
2F (−) where the latter is the composition of the functor F with 2−. For each X
denote by λX its X-component λX : 2X → 2F (X).

The idea is that every property for elements of a set X is transformed to a
property for elements of F (X).

By the Yoneda lemma, such a natural transformation λ is uniquely deter-
mined by the action of λ2 on the input id2 where [[id2]] = {1} ⊆ 2, i.e. by
λ2(id2) : F (2) → 2, which is a predicate on F (2). This was observed in [9]. We
shall from now on write [λ] or simply �, if λ is understood, for this predicate.

Conversely, given a predicate � : F (2)→ 2 on F (2), then θ �→ �◦Fθ defines
a predicate transformer, and it is easy to see that id2 is sent to � again.

Intuitively, we think of � ⊆ F (2) as a selection of 0 − 1 − patterns. The
map λA of the corresponding predicate transformer λ, when applied to θ ∈ 2A

takes an A-pattern p(a1, . . . , an) ∈ F (A) to 1 if p(θ(a1), . . . , θ(an)) ∈ �, and to
0 otherwise.

In this paper we prefer to deal with predicates � : F (2) → 2 rather than
with predicate transformers λ : 2(−) → 2F (−). Ignoring for a moment the map
α, the following figure visualizes the translation between these two views.

A
θ ��

α ��

2
id �� 2

F (A) Fθ ��

λA(θ)

��F (2)
λ2(id2)

� �� 2

Let us now consider F -coalgebras A = (A,α), where α : A → F (A) is
the structure map. Every predicate transformer, i.e. every predicate � on F (2)
defines a modality.

Definition 7. Given a predicate θ on A = (A,α), denote by �θ the predicate
� ◦ Fθ ◦ α, that is for any a ∈ A we define

a |= �θ :⇐⇒ (� ◦ Fθ ◦ α)(a) = 1.

3.4 Coalgebraic Modal Logic

Given any choice of predicate liftings, equivalently, any choice of boxes �i :
F (2) → 2, i ∈ I, we obtain a logic L (see [6]) whose formulae are defined
inductively by

ϕ ::= � |ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ | �iϕ for each i ∈ I
A formula is called positive, if it has no occurrence of ¬.
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Given a coalgebra A = (A,α) each formula defines a predicate ϕA : A →
2, where the propositional connectors have their obvious interpretation and
(�iϕ)A := �i ◦ (FϕA) ◦ α, which is short for saying

a |= �iϕ :⇐⇒ (FϕA ◦ α)(a) ∈ �i.

4 Simulations

Given a predicate lifting λ, a λ-simulation S between coalgebras A = (A,α) and
B = (B, β) was defined in [3] as a relation S ⊆ A×B such that for any (x, y) ∈ S
and any predicate θ : A→ 2 one has α(x) |= λA(θ) =⇒ β(y) |= λB(S[θ]), where
S[θ] is defined as b |= S[θ] : ⇐⇒ ∃a ∈ A.(aSb ∧ a |= θ). Most of the results in
[3] assume that λ is monotonic, a notion to be discussed in Sect. 4.2. Amongst
other things, for instance they prove:

– if λ is monotonic then bisimulations are λ-simulations
– if λ is monotonic, then each λ-simulation preserves positive formulae.

The proofs, in each case, are set theoretical, so it is difficult to see how the
notions and results could possibly be lifted to situations beyond set-theoretical
categories. Therefore, we introduce a new definition of “strong” simulation which
has the advantage that

– proofs are diagrammatical
– monotonicity need not be assumed.

For notational reasons, we shall from now on fix a certain � and define simu-
lations relative to that �. Thus a “simulation” is the same as a λ-simulation
from [3] with λ the predicate lifting defined by �. Next we shall define our new
notion of “strong simulation”. It will turn out that monotonicity is the property
relating simulations with strong simulations, see Theorem 2 below.

4.1 Strong Simulations

A strong simulation between coalgebras A = (A,α) and B = (B, β) is a relation
S ⊆ A×B such that for any predicates θ : A→ 2 and ψ : B → 2 we have

θ
S=⇒ ψ implies �θ S=⇒ �ψ.

Diagrammatically:

B
ψ

���
��

��
B

ψ

��

β �� F (B)
Fψ

����
���

S

π1
�������

π2 ���
��

��
⇑ 2 implies S

π1
�������

π2 ���
��

��
2 ⇑ F (2) � �� 2

A
θ

�������
A

θ

��

α
�� F (A)

Fθ

�������

Clearly, every strong simulation is a simulation. This is because the diagram
in the premise, above, is trivially satisfied with ψ = S[θ].
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Lemma 4. Strong simulations are closed under unions and relational compo-
sition, i.e. if R ⊆ A × B and S ⊆ B × C are strong simulations, then so is
R ◦ S ⊆ A× C.

Proof. Closure under unions is easily checked. For closure under relational com-
position, let θ R◦S=⇒ ψ be given. Obviously, then θ

R=⇒ R[θ] and R[θ] S=⇒ ψ.
Assuming that R and S are simulations, we obtain �θ R=⇒ �R[θ] as well as
�R[θ] S=⇒ �ψ, so Lemma 3 yields �θ R◦S=⇒ �ψ.

Simulations have a preferred direction. This is emphasized by the following log-
ical fact:

Theorem 1. Strong simulations preserve positive formulae.

Proof. Let S be a strong simulation between coalgebras A and B, and (x, y) ∈ S.
By structural induction, we show that for any positive formula φ we have:
x |= φ =⇒ y |= φ, that is we need to show φA

S=⇒ φB. The only interesting
case is when φ = �ψ with ψ another positive formula. Let ψA, resp ψB be the
predicates defined by ψ in A, resp B. By assumption then, ψA

S=⇒ ψB , whence
the definition of simulation yields �ψA S=⇒ �ψB , hence (�ψ)A

S=⇒ (�ψ)B .

By a (strong) bidirectional simulation we understand a (strong) simulation S for
which S− is also a simulation. We must be careful not to confuse this with the
notion of bisimulation.

From Lemmas 1 and 4 we obtain:

Lemma 5. Let (Si)i ∈ I be a family of bidirectional simulations, then their
difunctional closure is again a bidirectional simulation.

4.2 Monotonicity

Definition 8. A predicate lifting λ is called monotonic, if for all sets U, V,A
with U ⊆ V ⊆ A one has λA(U) ⊆ λA(V ). We say that � : F (2) → 2 is
monotonic, if the predicate lifting given by � is monotonic.

We get the following characterization:

Lemma 6. � : F (2) → 2 is monotonic, iff for any A and any predicates θ, ψ
on A with θ =⇒ ψ, we obtain � ◦ Fθ =⇒ � ◦ Fψ.

Proof. Suppose λA = � ◦ F (−) is monotonic, θ =⇒ ψ and � ◦ Fθ = 1, that
is λA(θ) = 1. By monotonicity, λA(ψ) = 1, i.e. � ◦ Fψ = 1. Conversely, assume
U ⊆ V ⊆ A and u ∈ λA(U), where λA(U) = [[� ◦ FχU ]]. Then χU =⇒ χV and
(�◦FχU )(u) = 1 whence by assumption (�◦FχV )(u) = 1, meaning u ∈ λA(V ).
Thus λA is monotonic.
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Graphically, monotonicity can be represented as

A

θ

��

ψ

��⇑ 2 =⇒ F (A)

Fθ

��

Fψ

��
⇑ F (2) � �� 2.

The following observation was independently found by L. Schröder and appears
in the journal version [10] of [9]. With our diagrammatic notation its proof becomes
almost trivial:

Lemma 7. � is monotonic if and only if for every ternary pattern p(x, y, z) we
have that

p(1, 0, 0) ∈ � =⇒ p(1, 1, 0) ∈ �.
Proof. When θ =⇒ ψ, we can obtain a joint factorization as θ = χ{x} ◦ f
and ψ = χ{x,y} ◦ f . Thus the above definition of monotonicity reduces to the
following implication:

A
f��

ψ

��

θ

��{x, y, z}
χ{x}

��

χ{x,y}

		⇑ 2 =⇒ F (A)
Ff��

ψ

��

θ

��F ({x, y, z})

Fχ{x}



Fχ{x,y}
��

⇑ F (2)
� �� 2 .

The outer diagrams are upward commutative iff the inner ones are. The one in
the premise is automatically upward commutative. Therefore, � is monotonic,
if and only if the inner diagram on the right is upwards commutative.

This means that monotonicity needs only be checked for θ = χ{x} and ψ =
χ{x,y}, which translates immediately into the statement p(1, 0, 0) ∈ � =⇒
p(1, 1, 0) ∈ � for each p ∈ F ({x, y, z}).
Theorem 2. � is monotonic iff each simulation is strong.

Proof. Suppose that � is monotonic and let S be a simulation between coalge-
bras A = (A,α) and B = (B, β). Suppose θ S=⇒ ψ, then S[θ] ≤ ψ as shown
in the left part of the following figure, where the left inner square trivially com-
mutes. Since S is a simulation we get upwards commutativity of the outer figure
with FS[θ] instead of Fψ. Using monotonicity, we get upwards commutativity
of the right upper figure and therefore of the whole diagram:

B
⇑

S[θ] ��

ψ

��

β �� F (B)
⇑

FS[θ]
��

Fψ

��
S

πS
B

�������

πS
A

���
��

��
2 ⇑ F (2) � �� 2

A
θ

�������
α

�� F (A)
Fθ

�������
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For the converse, consider the identity relation ΔA on A, which is obviously
a simulation, hence it is a strong simulation by assumption. Given any p ∈ F (A)
and θ ≤ ψ : A → 2 we choose the constant coalgebra structure cp : A → F (A).
Since the left square is upwards commuting, so must be the outer figure. This
readily translates into � being monotonic.

A
ψ

���
��

��
cp �� F (A)

Fψ

����
���

ΔA

π1
�������

π2 ���
��

��
⇑ 2 ⇑ F (2) � �� 2

A
θ

�������
cp

�� F (A)
Fθ

�������

Theorem 3. The following are equivalent:

1. � is monotonic
2. each bisimulation is a simulation
3. each bisimulation is a strong simulation

Proof. (1.→ 3.) Suppose � is monotonic and S ⊆ A × B is a bisimulation
between coalgebras A = (A,α) and B = (B, β). Given θ S=⇒ ψ, the left square
is upward commuting. Since � is monotonic, applying F makes the right hand
square (followed by �) upward commuting, too.

B

⇑

ψ

���
��

��
β �� F (B)

⇑

Fψ

����
���

S

πS
B

�������

πS
A

���
��

��
ρ

��� � � � �  !2 F (S)

FπS
B

�������

FπS
A

����
���

F (2) � �� 2

A
θ

�������
α

�� F (A)
Fθ

�������

Inserting the bisimulation structure ρ into the picture, an upward diagram
chase yields that the outer diagram is upward commuting, too:

� ◦ Fθ ◦ α ◦ πSA = � ◦ Fθ ◦ FπSA ◦ ρ
≤ � ◦ Fψ ◦ FπSB ◦ ρ
= � ◦ Fψ ◦ β ◦ πSB

which means that S is a strong simulation.
(3 → 2) being trivial, we prove (2→1): By Lemma 7, we need to check

monotonicity only for A = {x, y, z}, θ = χ{x} and ψ = χ{x,y}. Given p ∈ F (A)
with p(1, 0, 0) ∈ �, i.e. (�◦Fθ)(p) = 1, define a coalgebra Ap on A with constant
structure map cp. By Proposition 1, R := ΔA∪{(x, y), (y, x)} is a bisimulation on

Ap, and ψ = R[θ]. By hypothesis, R is a simulation, so �◦Fθ◦cp B=⇒ �◦Fψ◦cp,
in particular,
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(� ◦ Fψ)(p) = (� ◦ Fψ ◦ cp ◦ π2)(x, x)
≥ (� ◦ Fθ ◦ cp ◦ π1)(x, x)
= (� ◦ Fθ)(p)
= 1

i.e. p(1, 1, 0) ∈ �, as can be read from the following diagram:

A
ψ

���
��

��
cp �� F (A)

Fψ

����
���

R

π2
�������

π1 ���
��

��
⇑ 2 ⇑ F (2) � �� 2.

A
θ

�������
cp

�� F (A)
Fθ

�������

5 Congruences and Separability

5.1 Congruences

In classical examples of coalgebras, such as Kripke structures, deterministic and
nondeterministic automata, etc., observational equivalence is definable via bisim-
ulations. The reason is that the corresponding type functors preserve weak pull-
backs (see [4]). This in turn has many structural consequences. In particular the
largest bisimulation is always the same as the largest congruence relation, where
a congruence is defined as the kernel of a homomorphism. Thus a congruence is a
relation on a single coalgebra. Since we want to study relations between different
coalgebras, we have to widen the notion of congruence and therefore introduce
the notion of F -congruence. This notion has been studied by Sam Staton under
the name kernel bisimulation [12]:

Definition 9. An F -congruence θ between coalgebras A and B is the pullback
of two homomorphisms ϕ : A → C and ψ : B → C:

θ = ker(ϕ,ψ).

Theorem 4. The following are equivalent:

1. � is monotonic
2. each congruence is a simulation
3. each F -congruence is a strong simulation.

Proof. (1.→3.): An F -congruence θ = ker(ϕ,ψ) can be obtained as a composi-
tion of relations: θ = G(ϕ) ◦ G(ψ)− where G(ϕ) and G(ψ) are the graphs of ϕ
and ψ. The graphs of homomorphisms are bisimulations ([8]) and the converse of
a bisimulation is a bisimulation. Assuming monotonicity of �, Theorem 3 tells us
that they are strong simulations. By Lemma 4, their composition is a strong sim-
ulation. In particular, each congruence is a simulation, too. (3.→2) is of course
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trivial, since each congruence is an F -congruence and each strong simulation is
a simulation.

For (2.→1.), assuming that each congruence is a simulation, we can reuse the
proof of (3→2) in Theorem 3. This time, we only need to observe that R happens
to be a congruence relation, since it is the kernel of the obvious homomorphism
from Ap = Ap(x,y,z) to the constant coalgebra Ap(x,x,z) on {x, z}.

5.2 Separability

In this section we need to work with a family of boxes (�i)i ∈ I . Such is usually
required in order to render coalgebraic modal logic expressive. Separability is
usually expressed for the functor and for the boxes separately. A functor is
called 2-separable, if for any X and any p, q ∈ F (X) with p �= q there is a
predicate φ : X → 2 such (Fφ)(p) �= (Fφ)(q). Next, we call a family (�i)i ∈ I of
predicate liftings separating, if the functor F is 2-separating and the predicates
�i : F (2) → 2 combined with the unary boolean operations θ : 2 → 2 form a
mono-source. We can equivalently define this as follows:

Definition 10. (�i)i ∈ I is separating if

∀p �= q ∈ F (X).∃φ : X → 2.∃i ∈ I.(�i ◦ Fφ(p) �= �i ◦ Fφ(q))

.
Theorem 5. If (�i)i ∈ I is separating then every difunctional bidirectional strong
simulation is an F -congruence.

Proof. Let S be a difunctional strong simulation between coalgebras A = (A,α)
and B = (B, β) and π1, π2 the projections of S. Form the pushout (P, f : A →
P, g : B → P ) of (S, π1, π2) in Set. Since S is difunctional, (S, π1, π2) is a pullback
of f and g in Set. It suffices to show that there exists a coalgebra structure on
P so that f and g are homomorphisms. We obtain such a coalgebra structure if
we can show that (FP, Ff ◦ α, Fg ◦ β) is a competitor of the pushout (P, f, g)
in Set. For this it remains to show : Ff ◦ α ◦ π1 = Fg ◦ β ◦ π2.

A

��

f �� P
φ ��

���
�
�
� 2

S π2
��

��"""""
π1

��"""""
B

��

g
���������

F (A)
Ff �� F (P )

Fφ �� F (2)
�i �� 2

F (B)

Fg   #####

Let (x, y) ∈ S. As (�i)i ∈ I is separating, it is enough to show that for each i ∈ I
and each φ : P → 2 we have Ff ◦ α(x) |= �iθ ⇐⇒ Fg ◦ β(y) |= �iθ. This we
can read from the following diagram:
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B
φ◦g
���

��
��

��
β �� F (B)

F (φ◦g)
��$

$$$
$$$

S

π2

!!%%%%%%

π1 ""&
&&

&&
& ◦ 2 ⇑ F (2)

�i �� 2

A

φ◦f

���������
α

�� F (A)
F (φ◦f)

��"""""""

The left square in the diagram commutes, since (P, f, g) is a pushout, in par-
ticular it is upward commuting. S being a strong simulation, we obtain Ff ◦
α(x) |= �θ =⇒ Fg ◦ β(y) |= �θ. Since S− is a strong simulation, too, we
similarly have Fg ◦ β(y) |= �θ =⇒ Ff ◦ α(x) |= �θ.

Theorem 6. If each difunctional simulation is an F -congruence, then (�i)i ∈ I

is separating.

Proof. Assume p, q ∈ FX such that p |= �iθ ⇐⇒ q |= �iθ for each i ∈ I and
each θ : X → 2. We must show p = q.

Case 1. X �= ∅: On the setX define F -coalgebras Xp = (X, cp) and Xq = (X, cq),
where cp, resp. cq, are constant maps with value p, resp. q. Notice that the
assumption is then equivalent to saying that ΔX is a (difunctional) simula-
tion (with respect to each �i) between Xp and Xq. Therefore, by the theorem’s
premise, ΔX is an F -congruence. Consequently, there must be homomorphisms
ϕ : Xp −→ Z = (Z, γ) and ψ : Xq −→ Z with ΔX = Pb(ϕ,ψ). This immediately
yields ϕ = ψ and ϕ injective.

X
cp ��

ϕ

���
��

��
� FX

Fϕ

##'
''

''
''

ΔX

π1
��((((((

π2 ��)
))

))
) Z

γ �� FZ

X cq

��

ϕ
��������

FX
Fϕ

$$*******

The above diagram commutes, since ϕ is a homomorphism, so (Fϕ)(p) = (Fϕ ◦
cp ◦ π2)(x) = (Fϕ ◦ cq ◦ π2)(x) = (Fϕ)(q). Therefore p = q as required.

Case 2. X = ∅: According to our general assumption, Fι : F∅ → F1 is injective.
Thus in order to separate p, q ∈ F∅, it is enough to separate (Fι)(p) ∈ F (1) from
(Fι)(q) ∈ F (1) which is possible due to the previous case.

Corollary 2. If � is monotonic and separating then every difunctional simula-
tion is an F -congruence.

As a further corollary, we obtain a converse to another result found in [3].
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Corollary 3. Let (�i)i ∈ I be monotonic. Then (�i)i ∈ I are separating and F
weakly preserves pullbacks if and only if each difunctional simulation is an F -
bisimulation.

Proof. The direction from left to right is from [3]. For the converse, suppose
that each difunctional simulation is an F -bisimulation. Then by monotony each
F -congruence is an F -bisimulation. This is the same as saying that F weakly
preserves pullbacks. Similarly, every difunctional simulation is an F -congruence,
hence by the above proposition, (�i)i ∈ I is separating.

6 Conclusion and Further Work

We have given a new definition of coalgebraic simulation, which has the advan-
tage to be amenable to diagrammatic reasoning. We have demonstrated its use
with a number of results and related our definition to that of Goŕın and Schröder
in [3]. In the case where our boxes (respectively predicate liftings) are monotonic,
a general assumption in the paper [3], our definition agrees with that of the
authors. We have related our simulations to 2-dimensional congruences (so called
F -congruences). We suspect that the set of all F -congruences between fixed coal-
gebras A and B forms a complete lattice with the natural ordering. However we
were only able to show it under the additional assumption that there exists a set
of separating monotonic boxes (�i)i ∈ I . In that case, F -congruences are bidi-
rectional simulations and their supremum is given by difunctional closure. We
leave it open whether the existence of a separating set (�i)i ∈ I is needed.
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la Société Mathématique de France 76, 114–155 (1948)

8. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249, 3–80 (2000)



134 H.P. Gumm and M. Zarrad
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Abstract. The Dijkstra monad has been introduced recently for cap-
turing weakest precondition computations within the context of program
verification, supported by a theorem prover. Here we give a more general
description of such Dijkstra monads in a categorical setting. We first
elaborate the recently developed view on program semantics in terms
of a triangle of computations, state transformers, and predicate trans-
formers. Instantiations of this triangle for different monads T show how
to define the Dijkstra monad associated with T , via the logic involved.
Technically, we provide a morphism of monads from the state monad
transformation applied to T , to the Dijkstra monad associated with T .
This monad map is precisely the weakest precondition map in the trian-
gle, given in categorical terms by substitution.

1 Introduction

A monad is a categorical concept that is surprisingly useful in the theory of com-
putation. On the one hand it describes a form of computation (such as partial,
non-deterministic, or probabilistic), and on the other hand it captures various
algebraic structures. Technically, the computations are maps in the Kleisli cat-
egory of the monad, whereas the algebraic structures are described via the cat-
egory of so-called Eilenberg-Moore algebras. The Kleisli approach has become
common in program semantics and functional programming (notably in the lan-
guage Haskell), starting with the seminal paper [23]. The algebraic structure
captured by the monad exists on these programs (as Kleisli maps), technically
because the Kleisli category is enriched over the category of algebras.

Interestingly, the range of examples of monads has been extended recently
from computation to program logic. So-called Hoare monads [24,29] and Dijkstra
monads [28] have been defined in a systematic approach to program verification.
Via these monads one describes not only a program but also the associated
correctness assertions. These monads have been introduced in the language of
a theorem prover, but have not been investigated systematically from a cate-
gorical perspective. Here we do so for the Dijkstra monad. We generalise the
original definition from [28] and show that a “Dijkstra” monad can be associ-
ated with various well-known monads that are used for modelling computations.
(The Hoare monad will be mentioned briefly towards the end.)
c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 135–150, 2014.
DOI: 10.1007/978-3-662-44124-4 8
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Since the Dijkstra (and Hoare) monads combine both semantics and logic of
programs, we need to look at these two areas in a unified manner. From previous
work [13] (see also [12]) a view on program semantics and logic emerged involving
a triangle of the form:

Logop =
(

predicate
transformers

) ��
�

(
state

transformers

)

��

(
computations

)
Pred

������������ Stat

������������
(1)

The three nodes in this diagram represent categories of which only the mor-
phisms are described. The arrows between these nodes are functors, where the
two arrows � at the top form an adjunction. The two triangles involved should
commute. In the case where two up-going “predicate” and “state” functors Pred
and Stat in (1) are full and faithful, we have three equivalent ways of describ-
ing computations. On morphisms, the predicate functor yields what is called
substitution in categorical logic, but what amounts to a weakest precondition
operation in program semantics.

The upper category on the left is of the form Logop, where Log is some
category of logical structures. The opposite category (−)op is needed because
predicate transformers operate in the reverse direction, taking a post-condition
to a precondition. In this paper we do not expand on the precise logical structure
involved (which connectives, which quantifiers, etc. in Log) and simply claim
that this ‘indexed category’ on the left is a model of some predicate logic. The
reason is that at this stage we don’t need more structure than ‘substitution’,
which is provided by the functoriality of Pred.

In a setting of quantum computation this translation back-and-forth � in (1)
is associated with the different approaches of Heisenberg (logic-based, working
backwards) and Schrödinger (state-based, working forwards), see e.g. [9]. In cer-
tain cases the adjunction � forms — or may be restricted to — an equivalence
of categories, yielding a duality situation. It shows the importance of duality
theory in program semantics and logic; this topic has a long history, going back
to [1].

Almost all of our examples of computations are given by maps in a Kleisli
category of a monad. In this monadic setting, the right-hand-side of the dia-
gram (1) is the full and faithful “comparison” functor K�(T )→ EM(T ), for the
monad T at hand. This functor embeds the Kleisli category in the category of
(Eilenberg-Moore) algebras. The left-hand-side takes the form K�(T ) → Logop,
and forms an indexed category (or, if you like, a fibration), and thus a cate-
gorical model of predicate logic. The monad T captures computations as maps
in its Kleisli category. And via the predicate logic in (1) an associated monad
is defined (in Sect. 5) that captures predicate transformers. Therefore, this new
monad is called a “Dijkstra” monad, following [28].
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We list the main points of this paper.

1. The paper explains the unified view on program semantics and logic as
given by the above triangle (1) by presenting many examples, involving non-
deterministic, partial, linear, probabilistic, and also quantum computation.
This involves some new results, like the adjunction for partial computation
in (5) in the next section.

2. Additionally, in many of these examples the enriched nature of these cate-
gories and functors is shown, capturing some essential compositional aspects
of the weakest precondition operation. The role of these enrichments resem-
bles the algebraic effects, see e.g. [25]; it goes beyond the topic of the current
paper, but definitely deserves further investigation.

3. A necessary step towards understanding the Dijkstra monad is made, by
simplifying previous accounts [28] and casting them in proper categorical
language.

4. Using this combined view on computations and logic, for the different monad
examples T in this paper, an associated “Dijkstra monad” DT is defined. This
definition depends on the logic Log that is used to reason about T , since
the monad is defined via a homset in this category Log. This logic-based
approach goes well beyond the particular logic that is used in the original
article [28], where the Dijkstra monad is introduced, since it now also applies
to for instance probabilistic computation, in various forms.

5. Once we have the Dijkstra monad DT associated with T we define a “map
of monads” ST ⇒ DT , where ST is the T -state monad, obtained by apply-
ing the state monad transformer to T . This map of monads is precisely the
weakest precondition operation (categorically: substitution). This operation
that is fundamental in the work of Dijkstra is thus captured neatly in cate-
gorical/monadic terms.

6. Finally, a general construction is presented that defines the Dijkstra monad
DT for an arbitrary monad T on Sets. A deeper understanding of the con-
struction requires a systematic account of how the categories “Log” in (1)
arise in general. This is still beyond current levels of understanding.

We assume that the reader is familiar with the basic concepts of category
theory, especially with the theory of monads. The organisation of the paper is as
follows: the first three Sects. 2–4 elaborate instances of the triangle (1) for non-
deterministic, linear & probabilistic, and quantum computation. Subsequently,
Sect. 5 shows how to obtain the Dijkstra monads for the different (concrete)
monad examples, and proves that weakest precondition computation forms a
map of monads. These examples are generalised in Sect. 6. Finally, Sect. 7 wraps
up with some concluding remarks.

2 Non-deterministic and Partial Computation

The powerset operation P(X) = {U | U ⊆ X} yields a monad P : Sets →
Sets with unit η = {−} given by singletons and multiplication μ =

⋃
by
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union. The associated Kleisli category K�(P) is the category of sets and non-
deterministic functions X → P(Y ), which may be identified with relations
R ⊆ X × Y . The category EM(P) of (Eilenberg-Moore) algebras is the cate-
gory CL∨ of complete lattices and join-preserving functions. In this situation
diagram (1) takes the form:

(
CL∧

)op ��∼= CL∨ = EM(P)��

K�(P)

Pred

���������� Stat

����������
(2)

where CL∧ is the category of complete lattices and meet-preserving maps. The
isomorphism ∼= arises because each join-preserving map between complete lat-
tices corresponds to a meet-preserving map in the other direction. The upgoing
“state” functor Stat on the right is the standard full and faithful functor from
the Kleisli category of a monad to its category of algebras. The predicate func-
tor Pred : K�(P)→ (CL∧)op on the left sends a set X to the powerset P(X) of
predicates/subsets, as complete lattices; a Kleisli map f : X → P(Y ) yields a
map:

P(Y )
f∗=Pred(f) 		 P(X) given by (Q ⊆ Y ) �−→ {x | f(x) ⊆ Q}. (3)

In categorical logic, this Pred(f) is often written as f∗, and called a substitution
functor. In modal logic one may write it as �f . In the current context we also
write it as wp(f), since it forms the weakest precondition operation for f , see [4].
Clearly, it preserves arbitrary meets (intersections). It is not hard to see that
the triangle (2) commutes.

Interestingly, the diagram (2) involves additional structure on homsets. If we
have a collection of parallel maps fi in K�(P), we can take their (pointwise) join∨
i∈I fi. Pre- and post-composition preserves such joins. This means that the

Kleisli category K�(P) is enriched over the category CL∨. The category CL∨

is monoidal closed, and thus enriched over itself. Also the category (CL∧)op

is enriched over CL∨, with joins given by pointwise intersections. Further, the
functors in (2) are enriched over CL∨, which means that they preserve these joins
on posets. In short, the triangle is a diagram in the category of categories enriched
over CL∨. In particular, the predicate functor is enriched, which amounts to
the familiar law for non-deterministic choice in weakest precondition reasoning:
wp(

∨
i fi) =

∧
i wp(fi).

A less standard monad for non-determinism is the ultrafilter monadU : Sets→
Sets. A convenient way to describe it, at least in the current setting, is:

U(X) = BA
(P(X), 2

)
= {f : P(X)→ 2 | f is a map of Boolean algebras}.

For a finite set X one has X ∼=→ U(X).
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A famous result of [19] says that the category of algebras of U is the cate-
gory CH of compact Hausdorff spaces (and continuous functions). It yields the
following triangle.

BAop

Spec=Hom(−,2)


� CH = EM(U)

Clopen

��

K�(U)
Pred

���������� Stat

���������

(4)

The predicate functor Pred sends a set X to the Boolean algebra P(X) of
subsets of X. For a map f : X → U(Y ) we get f∗ : P(Y ) → P(X) by f∗(Q) =
{x | f(x)(Q) = 1}. This functor Pred is full and faithful, almost by construction.

The precise enrichment in this case is unclear. Enrichment over (compact
Hausdorff) spaces, if present, is not so interesting because it does not provide
algebraic structure on computations.

We briefly look at the lift (or “maybe”) monad L : Sets → Sets, given by
L(X) = 1 + X. Its Kleisli category K�(L) is the category of sets and partial
functions. And its (equivalent) category of algebra EM(L) is the category Sets•
of pointed sets, (X, •X), where •X ∈ X is a distinguished element; morphisms
in Sets• are “strict”, in the sense that they preserve such points. There is then
a situation:

(ACL∨•,∧)op
��� Sets• = EM(L)��

K�(L)
Pred

��������� Stat

��								
(5)

We call a complete lattice atomic if (1) each element is the join of atoms below
it, and (2) binary meets ∧ distribute over arbitrary joins

∨
. Recall that an atom

a is a non-bottom element satisfying x < a ⇒ x = ⊥. We write At(L) ⊆ L
for the subset of atoms. In such an atomic lattice atoms a are completely join-
irreducible: for a non-empty index set I, if a ≤ ∨

i∈I xi then a ≤ xi for some
i ∈ I.

The category ACL∨•,∧ contains atomic complete lattices, with maps pre-
serving non-empty joins (written as

∨
•) and binary meets ∧. Each Kleisli map

f : X → L(Y ) = {⊥} ∪ Y yields a substitution map f∗ : P(Y ) → P(X) by
f∗(Q) = {x | ∀y. f(x) = y ⇒ Q(y)}. This f∗ preserves ∧ and non-empty joins∨

•. Notice that f∗(∅) = {x | f(x) = ⊥}, which need not be empty.
The adjunction (ACL∨•,∧)op � Sets• amounts to a bijective correspon-

dence:

L
f 		 P(X − •) in (ACL∨•,∧)op

==================
X g

		 {⊥} ∪At(L) in Sets•
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This correspondence works as follows. Given f : L → P(X − •) notice that
X = f(�) = f(

∨
At(L)) =

⋃
a∈At(L) f(a). Hence for each x ∈ X there is an

atom a with x ∈ f(a). We define f : X → {⊥} ∪At(L) as:

f(x) =
{
a if x ∈ f(a)− f(⊥)
⊥ otherwise.

This is well-defined: if x is both in f(a)− f(⊥) and in f(a′)− f(⊥), for a �= a′,
then x ∈ (f(a) ∩ f(a′))− f(⊥) = f(a ∧ a′)− f(⊥) = f(⊥)− f(⊥) = ∅.

In the other direction, given g : X → {⊥} ∪At(L), define for y ∈ L,

g(y) = {x ∈ X | ∃a ∈ At(L). a ≤ y and g(x) = a} ∪ {x ∈ X − • | g(x) = ⊥}.

It is not hard to see that this yields a commuting triangle (5), and that the
(upgoing) functors are full and faithful.

3 Linear and (sub)Convex Computation

We sketch two important sources for linear and (sub)convex structures.

1. If A is a matrix, say over the real numbers R, then the set of solution vectors
v of the associated homogeneous equation Av = 0 forms a linear space: it
is closed under finite additions and scalar multiplication. For a fixed vector
b �= 0, the solutions v of the non-homogeneous equation Ax = b form a
convex set: it is closed under convex combinations

∑
i rivi of solutions vi and

“probability” scalars ri ∈ [0, 1] with
∑
i ri = 1. Finally, for b ≥ 0, the solutions

v to the inequality Av ≤ b are closed under subconvex combinations
∑
i rivi

with
∑
i ri ≤ 1. These examples typically occur in linear programming.

2. If V is a vector space of some sort, we can consider the space of linear functions
f : V → R to the real (or complex) numbers. This space is linear again, via
pointwise definitions. Now if V contains a unit 1, we can impose an additional
requirement that such functions f : V → R are ‘unital’, i.e. satisfy f(1) = 1.
This yields a convex set of functions, where

∑
i rifi again preserves the unit,

if
∑
i ri = 1. If we require only 0 ≤ f(1) ≤ 1, making f ‘subunital’, we get a

subconvex set. These requirements typically occur in a setting of probability
measures.

Taking (formal) linear and (sub)convex combinations over a set yields the
structure of a monad. We start by recalling the definitions of these (three) mon-
ads, namely the multiset monad MR, the distribution monad D, and the sub-
distribution monad D≤1, see [12] for more details. A semiring is given by a set R
which carries a commutative monoid structure (+, 0), and also another monoid
structure (·, 1) which distributes over (+, 0). As is well-known [11], each such
semiring R gives rise to a multiset monad MR : Sets→ Sets, where:

MR(X) = {ϕ : X → R | supp(ϕ) is finite},
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where supp(ϕ) = {x ∈ X | ϕ(x) �= 0} is the support of ϕ. Such ϕ ∈MR(X) may
also be written as finite formal sum ϕ =

∑
i si|xi 〉 where supp(ϕ) = {x1, . . . , xn}

and si = ϕ(xi) ∈ R is the multiplicity of xi ∈ X. The “ket” notation |x〉 for
x ∈ X is just syntactic sugar. The unit of the monad is given by η(x) = 1|x〉
and its multiplication by μ(

∑
i si|ϕi 〉) =

∑
x(

∑
i si · ϕi(x))|x〉.

The distribution monad D : Sets → Sets is defined similarly. It maps a set
X to the set of finite formal convex combinations over X, as in:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite, and
∑
x ϕ(x) = 1}

= {r1|x1 〉+ · · ·+ rn|xn 〉 | xi ∈ X, ri ∈ [0, 1] with
∑
i ri = 1}.

The unit η and multiplication μ for D are as for MR. We consider another
variation, namely the subdistribution monad D≤1, where D≤1(X) contains the
formal subconvex combinations

∑
i ri|xi 〉 where

∑
i ri ≤ 1. It has the same unit

and multiplication as D.
These three monads MR,D and D≤1 are used to capture different kinds of

computation, in the style of [23]. Maps (coalgebras) of the form c : X →MR(X)
capture “multi-computations”, which can be written in transition notation as
x

r−→ x′ if c(x)(x′) = r. This label r ∈ R can represent the time or cost of a
transition. Similarly, the monads D and D≤1 capture probabilistic computa-
tion: for coalgebras c : X → D(X) or c : X → D≤1(X) we can write x r−→ x′ if
c(x)(x′) = r ∈ [0, 1] describes the probability of the transition x→ x′.

The category EM(MR) of (Eilenberg-Moore) algebras of the multiset monad
MR contains the modules over the semiring R. Such a module is given by a
commutative monoid M = (M,+, 0) together with a scalar multiplication S ×
M →M which preserves (+, 0) in both arguments. More abstractly, if we write
CMon for the category of commutative monoids, then the semiring R is a
monoid in CMon, and the category ModR = EM(MR) of modules over R
is the category ActR(CMon) of R-actions R⊗M →M in CMon, see also [21,
VII§4]. For instance, for the semiring R = N of natural numbers we obtain
CMon = EM(MN) as associated category of algebras; for R = R or R = C

we obtain the categories VectR or VectC of vector spaces over real or complex
numbers; and for the Boolean semiring R = 2 = {0, 1} we get the category JSL
of join semi-lattices, since M2 is the finite powerset monad.

We shall write Conv = EM(D) for the category of convex sets. These are
sets X in which for each formal convex sum

∑
i ri|xi 〉 there is an actual convex

sum
∑
i rixi ∈ X. Morphisms in Conv preserve such convex sums, and are often

called affine functions. A convex set can be defined alternatively as a barycentric
algebra [27], see [10] for the connection. Similarly, we write Conv≤1 = EM(D≤1)
for the category of subconvex sets, in which subconvex sums exist.

For linear “multi” computation and computation the general diagram (1)
takes the following form, where ModR = EM(MR) and Conv = EM(D).

(ModR)op
Hom(−,R)

��� ModR = EM(MR)
Hom(−,R)

��

K�(MR)
R(−)

���������

��









(6)
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The adjunction (ModR)op � ModR is given by the correspondence between
homomorphisms M → (N � R) and N → (M � R), where � is used for linear
function space. The predicate functorR(−) : K�(MR)→ (ModR)op sends a setX
to the module RX of functions X → R, with pointwise operations. A Kleisli map
f : X → MR(Y ) yields a map of modules f∗ = Rf : RY → RX by f∗(q)(x) =∑
y q(y) · f(x)(y). Like before, this f∗(q) may be understood as the weakest

precondition of the post-condition q. In one direction the triangle commutes:
Hom(MR(X), R) ∼= Sets(X,R) = RX since MR(X) is the free module on X.
Commutation in the other direction, that is Hom(RX , R) ∼= MR(X) holds for
finite sets X. Hence in order to get a commuting triangle we should restrict to
the full subcategory K�N(MR) ↪→ K�(MR) with objects n ∈ N, considered as
n-element set.

NowletRbeacommutative semiring.Thetriangle(6) is thenadiagramenriched
over ModR: the categories, functors, and natural transformations involved are all
enriched. Indeed, if the semiring R is commutative, then so is the monadMR, see
e.g. [12]; this implies thatModR ismonoidal closed, and in particular enriched over
itself. Similarly, the Kleisli categoryK�(MR) is then enriched over ModR.

In the probabilistic case one can choose to use a logic with classical predicates
(subsets, or characteristic functions) {0, 1}X or ‘fuzzy predicates’ [0, 1]X . These
options are captured in the following two triangles.

PreFrmop

Hom(−,{0,1})
��� Conv

Hom(−,{0,1})

�� EModop

Hom(−,[0,1])
��� Conv

Hom(−,[0,1])
��

K�(D)
{0,1}(−)

���������

����������
K�(D)

[0,1](−)

��

����������

(7)

The adjunctions both come from [12]. The one on the left is investigated further
in [20]. It uses the category PreFrm of preframes: posets with directed joins
and finite meets, distributing over these joins, see [16]. Indeed, for a Kleisli map
f : X → D(Y ) we have a substitution functor f∗ : P(Y ) → P(X) in PreFrm
given by f∗(Q) = wp(f)(Q) = {x ∈ X | supp(f(x)) ⊆ Q}. This f∗ preserves
directed joins because the support of f(x) ∈ D(Y ) is finite.

The homsets PreFrm(X,Y ) of preframe maps X → Y have finite meets
∧,�, which can be defined pointwise. As a result, these homsets are convex sets,
in a trivial manner: a sum

∑
i rihi is interpreted as

∧
i hi, where we implicitly

assume that ri > 0 for each i. With this in mind one can check that the triangle
on the left in (7) is enriched over Conv. It yields the rule wp(

∑
i rifi)(Q) =⋂

i wp(fi)(Q).
The situation on the right in (7) requires more explanation. We sketch the

essentials. A partial commutative monoid (PCM) is a given by a set M with a
partial binary operation � : M×M →M which is commutative and associative,
in a suitable sense, and has a zero element 0 ∈ M . One writes x ⊥ y if x� y is
defined. A morphism f : M → N of PCMs satisfies: x ⊥ x′ implies f(x) ⊥ f(x′),
and then f(x� x′) = f(x) � f(x′). This yields a category which we shall write
as PCMon.
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The unit interval [0, 1] is clearly a PCM, with r � r′ defined and equal to
r + r′ if r + r′ ≤ 1. With its multiplication operation this [0, 1] is a monoid
in the category PCMon, see [14] for details. We define a category PCMod =
Act[0,1](PCMon) of partial commutative modules; its objects are PCMs M with
an action [0, 1] ×M → M , forming a homomorphism of PCMs in both coordi-
nates. These partial commutative modules are thus like vector spaces, except
that their addition is partial and their scalars are probabilities in [0, 1].

Example 1. Consider the set of partial functions from a setX to the unit interval
[0, 1]. Thus, for such a f : X ⇀ [0, 1] there is an output value f(x) ∈ [0, 1] only
for x ∈ X which are in the domain dom(f) ⊆ X. Obviously, one can define scalar
multiplication r • f , pointwise, without change of domain. We take the empty
function — nowhere defined, with empty domain — as zero element. Consider
the following two partial sums that turn these partial functions into a partial
commutative module.

One way to define a partial sum � is to define f ⊥ g as dom(f)∩dom(g) = ∅;
the sum f � g is defined on the union of the domains, via case distinction.

A second partial sum f �
′ g is defined if for each x ∈ dom(f) ∩ dom(g)

one has f(x) + g(x) ≤ 1. For those x in the overlap of domains, we define
(f �

′ g)(x) = f(x)+ g(x), and elsewhere f �
′ g is f on dom(f) and g on dom(g).

An effect algebra (see [5,7]) is a PCM with for each element x a unique
complement x⊥ satisfying x � x⊥ = 1 = 0⊥, together with the requirement
1 ⊥ x⇒ x = 0. In the unit interval [0, 1] we have r⊥ = 1− r. In Example 1 for
both the partial sums � and �

′ one does not get an effect algebra: in the first
case there is not always an f⊥ with f � f⊥ = 1, where 1 is the function that
is everywhere defined and equal to 1. For �

′ there is f⊥ with f �
′ f⊥, but f⊥

need not be unique. E.g. the function 1 has both the empty function and the
everywhere 0 function as complement. We can adapt this example to an effect
algebra by considering only partial functions X ⇀ (0, 1], excluding 0 as outcome.

A map of effect algebras f is a map of PCMs satisfying f(1) = 1. This yields
a subcategory EA ↪→ PCMon. An effect module is at the same time an effect
algebra and a partial commutative module. We get a subcategory EMod ↪→
PCMod. By “homming into [0, 1]” one obtains an adjunction EModop �
Conv, see [12] for details. The resulting triangle on the right in (7) commutes
in one direction, since Conv(D(X), [0, 1]) ∼= [0, 1]X . In the other direction one
has EMod([0, 1]X , [0, 1]) ∼= D(X) for finite sets X.

In [26] it is shown that each effect module is a convex set. The proof is simple,
but makes essential use of the existence of orthocomplements (−)⊥. In fact, the
category EMod is enriched over Conv. Even stronger, the triangle on the right
in (7) is enriched over Conv. This yields wp(

∑
i rifi) =

∑
i riwp(fi).

There are two variations on the distribution monad D that are worth point-
ing out. The first one is the expectation monad E(X) = EMod([0, 1]X , [0, 1])
introduced in [15] (and used for instance in [2] for probabilistic program seman-
tics). It can be seen as a probabilistic version of the ultrafilter monad from the
previous section. For a finite set one has E(X) ∼= D(X). The category of algebras
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EM(E) contains the convex compact Hausdorff spaces, see [15]. This monad E
gives rise to a triangle as on the left below, see [15] for details.

EModop

Hom(−,[0,1])
��� EM(E)

Hom(−,[0,1])
�� σEModop

Hom(−,[0,1])
��� EM(G)

Hom(−,[0,1])
��

K�(E)
[0,1](−)

�����������

����������
K�(G)

Meas(−,[0,1])

��

����������

(8)

The triangle on the right captures continuous probabilistic computation, via
the Giry monad G on the category Meas of measurable spaces. This is elabo-
rated in [13]. The category σEMod contains effect modules in which countable
ascending chains have a join. Both these triangles commute, and are enriched
over convex sets.

We continue with the category Conv≤1 = EM(D≤1) of subconvex sets. We
now get a triangle of the form:

GEModop

Hom(−,[0,1])
��� Conv≤1 = EM(D≤1)

Hom(−,[0,1])
��

K�(D≤1)
[0,1](−)

����������

�����������

(9)

We need to describe the category GEMod of generalised effect modules. First,
a generalised effect algebra, according to [5], is a partial commutative monoid
(PCM) in which x � y = 0 ⇒ x = y = 0 and x � z = y � z ⇒ x = y hold.
In that case one can define a partial order ≤ in the usual way. We obtain a full
subcategory GEA ↪→ PCMon. In fact we have EA ↪→ GEA ↪→ PCMon,
since a generalised effect algebra is not an effect algebra, but a more general
‘topless’ structure: a generalized effect algebra with a top element 1 is an effect
algebra.

One can now add multiplication with scalars from [0, 1] to generalised effect
algebras, like for partial commutative modules. But we require more, namely the
existence of subconvex sums r1x1 � · · · � rnxn, for ri ∈ [0, 1] with

∑
i ri ≤ 1.

As noted before, such sums exist automatically in effect algebras, but this is
not the case in generalised effect algebra with scalar multiplication, as the first
structure in Example 1 illustrates. Thus we define a full subcategory GEMod ↪→
PCMod, where objects of GEMod are at the same time partial commutative
modules and generalised effect algebras, with the additional requirement that
all subconvex sums exist. Summarising, we have the following diagram of ‘effect’
structures, where the bottom row involves scalar multiplication.

EA � � 		 GEA � � 		 PCMon

EMod
��

��

� � 		 GEMod
��

��

� � 		 PCMod
��

��
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Once we know what generalized effect modules are, it is easy to see that ‘hom-
ming into [0, 1]’ yields the adjunction in (9). Moreover, this diagram (9) is
enriched over Conv≤1, so that weakest precondition wp preserves subconvex
sums of Kleisli maps (programs).

4 Quantum Computation, Briefly

In this section we wish to point out that the triangle (1) applies beyond the
monadic setting. For instance, quantum computation, modelled via the category
CstarPU of C∗-algebras (with unit) and positive, unital maps, one obtains a
triangle:

EModop

Hom(−,[0,1])
��� Conv

Hom(−,[0,1])
��

(CstarPU)op
Pred

������������ Stat

�����������

(10)

The predicate functor sends a C∗-algebra A to the unit interval [0, 1]A ⊆ A of
“effects” in A, where [0, 1]A = {a ∈ A | 0 ≤ a ≤ 1}. This functor is full and
faithful, see [8]. On the other side, the state functor sends a C∗-algebra A to the
(convex) set of its states, given by the homomorphisms A → C. This diagram
is enriched over convex sets. A similar setting of states and effects, for Hilbert
spaces instead of C∗-algebras, is used in [3] for a quantum precondition calculus.

In [8] it was shown that commutative C∗-algebras, capturing the probabilistic,
non-quantum case, can be described as a Kleisli category. It is unclear if the non-
commutative, proper quantum, case can also be described via a monad.

5 Dijkstra Monad Examples

In [28] the “Dijkstra” monad is introduced, as a variant of the “Hoare” monad
from [24]. It captures weakest precondition computations for the state monad
X �→ (S×X)S , where S is a fixed collection of states (the heap). Here we wish to
give a precise description of the Dijkstra monad, for various concrete monads T .

For the powerset monad P, a first version of the Dijkstra monad, following
the description in [28], yields DP : Sets→ Sets defined as:

DP(X) = P(S)P(S×X), (11)

where S is again a fixed set of states. Thus, an element w ∈ DP(X) is a function
w : P(S × X) → P(S) that transforms a postcondition Q ∈ P(X × S) into a
precondition w(Q) ∈ P(S). The post-condition is a binary predicate, on both an
output value from X and a state from S; the precondition is a unary predicate,
only on states.
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In this first version (11) we simply take all functions P(S × X) → P(S).
But in the triangle (2) we see that predicate transformers are maps in CL∧,
i.e. are meet-preserving maps between complete lattices. Hence we now properly
(re)define DP as the set of meet-preserving functions:

DP(X) def= CL∧
(
P(S ×X),P(S)

)
=

(
CL∧

)op
(
Pred(S),Pred(S ×X)

)
(12)

This is indeed a monad, following [28], with unit and multiplication:

η(x) = λQ. {s | (s, x) ∈ Q} μ(H) = λQ.H
({(s, h) | s ∈ h(Q)}).

We introduce some notation (S, i.e. fraktur S) for the result of applying the
state transformer monad to an arbitrary monad (see e.g. [18]).

Definition 1. For a monad T : Sets → Sets and for a fixed set (of “states”)
S, the T -state monad ST is defined as:

ST (X) = T (S ×X)S = K�(T )
(
S, S ×X)

.

For the record, its unit and multiplication are given by:

x �−→ λs ∈ S. η(s, x) and H �−→ μ ◦ T (λ(s, h). h(s)) ◦ H,

where η, μ are the unit and multiplication of T .

Proposition 1. There is a map of monads SP ⇒ DP from the P-state monad
to the P-Dijkstra monad (12), with components:

SP(X) = K�(P)
(
S, S ×X) σX 		 (CL∧

)op(
Pred(S),Pred(S ×X)

)
= DP(X)

given by substitution/weakest precondition:

σX(f) = Pred(f) = f∗ = wp(f) = λQ ∈ P(S ×X). {s | f(s) ⊆ Q},

following the description from (3).

Proof. We have to check that substitution is natural in X and commutes with
the units and multiplications. This is easy; for instance:

(
σ ◦ ηS

)
(x)(Q) =

(
ηS(x)

)∗(Q) = {s | ηS(x)(s) ⊆ Q}
= {s | ηP(s, x) ⊆ Q}
= {s | {(s, x)} ⊆ Q}
= {s | (s, x) ∈ Q} = ηD(x)(Q). �

At this stage the generalisation of the Dijkstra monad for other monads —
with an associated logic as in (1) — should be clear. For instance, for the multiset
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MR and (sub)distribution monad D,D≤1 we use the triangles in (6), (7) and (9)
to define associated Dijkstra monads:

DMR
(X) = ModR

(
Pred(S ×X),Pred(S)

)
= ModR

(
RS×X , RS

)

DD(X) = EMod
(
Pred(S ×X),Pred(S)

)
= EMod

(
[0, 1]S×X , [0, 1]S

)

DD≤1(X) = GEMod
(
Pred(S ×X),Pred(S)

)
= GEMod

(
[0, 1]S×X , [0, 1]S

)
(13)

Then there is the following result, analogously to Proposition 1. The proofs
involve extensive calculations but are essentially straightforward.

Proposition 2. Forthemultiset,distribution,andsubdistributionmonadsMR,D,
andD≤1 there are maps of monads given by substitution:

SMR

(−)∗

� DMR SD

(−)∗

� DD SD≤1

(−)∗

� DD≤1

from the associated state monads to the associated Dijkstra monads (13). �

The Dijkstra monad associated with the expectation monad E is the same
as for the distribution monad D. Hence one gets a map of monads SE ⇒ DD,
with substitution components:

SE(X) = E(S ×X)S = EMod
(
[0, 1]S×X , [0, 1]

)S

(−)∗
��

EMod
(
[0, 1]S×X , [0, 1]S

)
= DD(X)

where f∗(q)(s) = f(s)(q). Details are left to the reader.

6 Dijkstra’s Monad, Beyond Examples

In the end it remains a bit unsatisfactory to see only particular instances of
what we called a Dijkstra monad DT . Below we offer a more general description,
even though it is not the definitive story. For convenience we restrict ourselves
to monads on Sets.

So let T : Sets → Sets be an arbitrary monad. As observed in (an exer-
cise in) [11], each (fixed) Eilenberg-Moore algebra ω : T (Ω) → Ω determines
an adjunction Setsop � EM(T ), via functors Ω(−) : Setsop → EM(T ) and
Hom(−, ω) : EM(T )→ Setsop. It makes sense to require that the algebra ω is a
cogenerator in EM(T ), making the unit of the adjunction injective, but this is
not needed in general. The adjunction can be generalised to strong monads on
monoidal categories with equalisers, but that is not so relevant at this stage.
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With this adjunction we can form a triangle of the form:

Setsop

Hom(−,Ω)
��� EM(T )

Hom(−,ω)

��

K�(T )
K

�����������Pred=Hom(K−,ω)∼=Ω(−)

���������
(14)

The induced predicate functor Pred is defined on a Kleisli map f : X → T (Y )
as:

ΩY � q �−→
(
X

f−→ T (Y )
T (q)−→ T (Ω) ω−→ Ω

)
.

Appropriate restrictions of this adjunction may give rise to more suitable
triangles, like in (2) and (4)–(9). How to do this restriction in a systematic
manner is unclear at this stage.

But what we can do is define for a fixed set of states S, a Dijkstra monad,
namely:

DT (X) = Setsop
(
Pred(S),Pred(S ×X)

)
= Sets

(
ΩS×X , ΩS

)
. (15)

There is a unit ηX : X → DT (X), namely ηX(x)(q)(s) = q(s, x), and a multipli-
cation μX : (DT )2(X)→ DT (X) given by μ(H)(q) = H

(
λ(t, k). k(q)(t)

)
.

In this general situation we can define a map of monads σ : ST ⇒ DT ,
where ST is the T -state monad X �→ T (S ×X)S from Definition 1. This σ has
components σX : T (S×X)S → Sets(ΩS×X , ΩS) given by weakest precondition:
σX(f) = Pred(f) = f∗ = wp(f) : ΩS×X → ΩS .

Thus, in this purely set-theoretic setting we can define for an arbitrary monad
T an associated Dijkstra monad DT as in (15), together with a ‘weakest pre-
condition’ map of monads ST ⇒ DT . However, the general formulation (15)
does not take into account that predicate transformers preserve certain logical
structure, as in the concrete examples in Sect. 5.

We conclude with two more observations.

1. In the triangle (14) there are two functors K�(T ) → EM(T ), namely the
comparison functor K and L = Hom(−, Ω) ◦ Pred = Sets(Ω(−), Ω). There
is a natural transformation τ : K ⇒ L with components:

τX(u)(p) =
(
ω ◦ T (p)

)
(u) where u ∈ K(X) = T (X) and p ∈ ΩX .

The triangle (14) commutes in both directions if this τ is an isomorphism.
2. By composing the two adjunctions Sets � EM(T ) � Setsop in (14) one

obtains a composite adjunction, which yields another monad Tω on Sets,
namely:

Tω(X) =
(
U ◦ Ω(−) ◦ Hom(−, ω) ◦ F )

(X) ∼= Sets(ΩX , Ω).

This is what Lawvere [17] calls the dual monad; a similar construction occurs
for instance in [6, Sect. 5]. There is in this case a map of monads T ⇒ Tω.
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7 Concluding Remarks

The triangle-based semantics and logic that was presented via many examples
forms the basis for (a) several versions of the Dijkstra monad, associated with
different monads T , and (b) a description of the weakest precondition operation
as a map of monads. There are many issues that remain to be investigated.

– We have concentrated on Dijkstra monads D, but there is also the Hoare
monad H, see [24,29]. It may be described explicitly as:

H(X) =
∐

P⊆S

∐

Q⊆S×X×S
{f : P → X × S | ∀s ∈ S.Q(s, f(s))},

where S is the set of states. It would be nice to extend this Hoare construction
also to other monads than powerset.

– As already mentioned in the beginning, we only scratch the surface when it
comes to the enrichment involved in the examples. This also requires further
investigation, especially in connection with the algebraic effects approach, see
e.g. [25], or the (enriched) monad models of [22].

Acknowledgements. Thanks to Sam Staton, Mathys Rennela, and Bas Westerbaan
for their input & feedback.
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Abstract. Abstract graph transformation approaches traditionally
consider graph structures as algebras over signatures where all function
symbols are unary.

Attributed graphs, with attributes taken from (term) algebras over
arbitrary signatures do not fit directly into this kind of transformation
approach, since algebras containing function symbols taking two or more
arguments do not allow component-wise construction of pushouts. We
show how shifting from the algebraic view to a coalgebraic view of graph
structures opens up additional flexibility, and enables treating term alge-
bras over arbitrary signatures in essentially the same way as unstructured
label sets. We integrate substitution into our coalgebra homomorphisms
by identifying a factoring over the term monad, and obtain a flexible
framework for graphs with symbolic attributes. This allows us to prove
that pushouts can be constructed for homomorphisms with unifiable sub-
stitution components.

We formalised the presented development in Agda, which crucially
aided the exploration of the complex interaction of the different functors,
and enables us to report all theorems as mechanically verified.

1 Introduction

In computer science, algebras are used in two different rôles:

– “Algebras providing datatype” are the concern in particular of the field of
algebraic specifications [EM85,BKL+91,BM04]: The carrier sets of an algebra
are datatypes, and the operations are available as some kind of executable
function. Frequently, the carrier sets are so large that one would not consider
to keep all their elements simultaneously available in some data structure.

– “Algebras as data” are most obviously the topic of the algebraic approach to
graph transformation [CMR+97,EHK+97,EEPT06] which derives its name
from the fact that it considers graphs as algebras.

In attributed graphs, the two views come together: An attributed graph is first
of all a graph, that is an algebra that is considered in its whole as a piece of
data, but (some of) its items may be assigned attributes which are elements of
some datatypes provided by an attribute algebra, which is normally not con-
sidered in its whole as a piece of data. Although an attributed graph can be
c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 151–167, 2014.
DOI: 10.1007/978-3-662-44124-4 9
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considered as a single algebra, implementation considerations alone already dic-
tate a separation into a graph structure part and an attribution part. As far
as attributed graphs are to be transformed via the algebraic approach to graph
transformation, theoretical reasons contribute to this separation: for graph struc-
tures, considered as unary algebras, the pushouts of their homomorphisms can
be calculated component-wise and independent of the presence of operations
between the different sorts, while in the presence of non-unary operations, this
is no longer the case. With more-than-unary operations, even a pushout of finite
algebras can become infinite, so that calculations of these pushouts is in gen-
eral not feasible. There is also typically little motivation to consider non-trivial
pushouts of attribute algebras, since most transformation concepts for attributed
graphs expect the transformation results to be attributed over the same attribute
datatypes. An exception to this consideration are symbolic attributes, which can
easily be drawn from term algebras over different variable sets during different
stages of transformation.

In the context of the algebraic approach to graph transformation, graph struc-
tures have traditionally been presented as unary algebras [Löw90,CMR+97].
However, as such they are the intersection between algebras and coalgebras, and
in this paper we show how more general coalgebras are useful in modelling graph
features, in particular symbolic attribution. Therefore, we define our graph struc-
tures not via algebraic signatures, but via coalgebraic signatures, and integrate
label types and term type constructors for attributes into the coalgebraic result
types.

For example, the following is a signature for directed hypergraphs where each
hyperedge has a sequence of source nodes and a sequence of target nodes, and
each node is labelled with an element of the constant set L:

sigDHG := 〈 sorts: N, E

ops: src : E→ List N

trg : E→ List N

nlab : N→L

〉
While constant sets like L are perfectly standard as results in coalgebras,

modelling labelled graphs as algebras always has to employ the trick of declar-
ing the label sets as additional sorts, and then consider the subcategory that
has algebras with a fixed choice for these label sets, and morphisms that map
them only with the identity. Similarly, list-valued source and target functions
are frequently considered for algebraic graph transformation, but with ad-hoc
definitions for morphisms and custom proofs of their properties.

In contrast, declaring these features via a coalgebra signature such as sigDHG
makes the generic theory of coalgebras available, which immediately produces
the standard homomorphism definition for directed hypergraphs considered as
sigDHG structures, without any necessity for ad-hoc treatment of the label type
or the list structure.
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Even more interesting is the use of coalgebras for symbolically attributed
graphs, where morphisms are required to also contain substitutions for attribute
variables; the main contribution of this paper is to formulate the beginnings of
a coalgebraic approach to corresponding categories of symbolically attributed
graphs.

After discussing related work in the next section, we provide some more
detailed motivation for moving to coalgebras. We quickly fix our categorical
notation in Sect. 3 and explain basics of (co)algebras in Sect. 4. We show more
complex graphs structures in Sect. 5, and discuss the limitations of using stan-
dard coalgebra homomorphisms. In Sect. 6 we show how a factoring of the coal-
gebra functor over a monad allows us to replace the morphisms underlying the
coalgebra homomorphisms with Kleisli arrows, enabling typical applications of
symbolic attributes where instantiation of variables via substitution is required
and the variable set may be modified by transformations. We show that this gen-
eral factoring accommodates a natural formalisation of term graphs as monadic
coalgebras. Refining this factoring in Sect. 7 for a general class of structures
encompassing in particular common kinds of symbolically attributed graphs, we
show that pushouts in that setting can be constructed from unifications for the
substitution components of the homomorphisms.

The whole theoretical development has been formalised in the dependently
typed programming language and proof checker Agda2 [Nor07] on top of the
basic category formalisations provided by [Kah11,Kah14]. The Agda source code
for this development is available on-line1. For not disrupting the flow of the
presentation, we just add a check mark “�” to statements for which a formalised
version has been mechanically checked by Agda.

2 Related Work

Löwe et al. [LKW93] started to consider attributed graphs in the context of the
algebraic approach to graph transformation; they propose working with a tri-
partitioned signature, with a unary graph structure part, an arbitrary attribute
signature, and a set of unary attribution operators connecting the two. Rewriting
uses the single pushout approach. Without discussing the issue in depth, they
propose to add sorts of attribute carriers that are deleted and re-created for
relabelling. König and Kozioura [KK08] follow the approach of [LKW93], but
impose a rigid organisation of unlabelled nodes, and labelled hyperedges with
label-conforming attribution.

In the double-pushout approach, Heckel et al. [HKT02] treat data algebra
carriers as graph nodes, with graph edges to them allowed, but data algebra
function symbols are not part of the graph. Their attribution edges from graph
nodes to data nodes are equivalent to the attribute carriers of [LKW93]. The
data part is kept constant during transformation. Rule graphs are attributed
over a term algebra with a fixed set of variables. The E-graphs of [EPT04] allows
also attribute edges starting from edges. The algebra integration of [HKT02] is
1 URL: http://relmics.mcmaster.ca/RATH-Agda/

http://relmics.mcmaster.ca/RATH-Agda/
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strengthened from a commuting square to a pullback, which is used for showing
the equivalence of categories of typed attributed graphs over type graph ATG
with categories of algebras over a derived signature AGSIG(ATG), where each
type graph item is turned into a sort. For the symbolic graphs of [OL10], the
Σ-algebra is not integrated into the graph structure, but only connected to it via
constraints: A symbolic graph is an E-graph over a sorted variable set together
with a set of formulae that may refer to constants drawn from the Σ-algebra.

While all the approaches presented so far worked with total algebras through-
out, the relabelling DPO graph transformations of Habel and Plump [HP02,
Plu09] use partially labelled interface graphs. Rule side images of unlabelled
interface nodes are unlabelled as well, and natural pushouts (that are also pull-
backs) with injective matching are used for rewriting. In [PS04], rule schemas are
introduced to get around the fixed label sets of [HP02]; these rule schemas are
rules that are labelled over a term algebra. A different approach to relabelling is
that of Rebout [RFS08], which employs a special mechanism for relabelling via
“computations” in the left-hand side of the rule.

For general theory of coalgebra, we refer to Rutten’s overview article [Rut00].
The part of the coalgebra literature that deals with combining algebras and coal-
gebras is probably closest to our current endeavour; one approach considers sep-
arate algebraic and coalgebraic structures in the same carriers, for example Kurz
and Hennicker’s “Institutions for Modular Coalgebraic Specifications” [KH02].
A further generalisation are “dialgebras” [Hag87,PZ01], which have a single car-
rier X, and operations fi : FiX → GiX, where both Fi and Gi are polynomial
functors.

Pardo studies the combination of corecursion with monads [Par98], using as
an essential tool natural transformations for distribution of the monad over the
functor; his “monadic coalgebras” are defined by an operation of type
A → M (F A), which is the opposite functor composition to the one we use
in Sect. 6. Capretta’s survey [Cap11] covers coalgebras in functional program-
ming and type theory; like Pardo, also Capretta concentrates on coinduction
and infinite structures.

3 Category Notation

We assume familiarity with the basics of category theory; for notation, we write
“f : A→B” to declare that morphism f goes from object A to object B, and
use “;” as the associative binary forward composition operator that maps two
morphisms f : A→B and g : B→C to (f ; g) : A→C. The identity morphism
for object A is written IA.

We assign “;” higher priority than other binary operators, and assign unary
operators higher priority than all binary operators.

The category of sets and functions is denoted by Set.
A functor F from one category to another maps objects to objects and

morphisms to morphisms respecting the structure generated by →, I, and com-
position; we denote functor application by juxtaposition both for objects, F A,
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and for morphisms, F f . Although we use forward composition of morphisms,
we use backward composition “ ◦ ” for functors, with (G ◦ F) A = G (F A),
and may even omit parentheses and just write GFA.

A bifunctor is a functor where the source is a product category. An important
example is the coproduct bifunctor + : C × C→C for a category C with a choice
of coproducts. Functors with more than two arguments are handled similarly.

The double-pushout (DPO) approach to high-level rewriting [CMR+97], uses
transformation rules that are spans L l←−G r−→R in an appropriate category
between the left-hand side L, gluing object G, and right-hand side R. A direct
transformation step from object A to object B via such a rule is given by a
double pushout diagram, where m is called the match:

L l� G r � R

m

�

h

�

n

�
A a� H b � B

4 Algebras and Coalgebras

The category-theoretic definitions of algebras and coalgebras are simple: Given
a (unary) functor F ,

– an F-algebra A = (CA, fA) is an object CA together with a morphism
fA : F CA→CA

– an F-coalgebra A = (CA, fA) is an object CA together with a morphism
fA : CA→F CA.

The algebraic approach to graph transformation was named for its understand-
ing of graphs as algebras — unlabelled graphs are conventionally presented as
algebras over the the following signature:

sigGraph := 〈 sorts: N,E
ops: src : E→ N

trg : E→ N 〉
(From now on, we assume the product bifunctor ×, the coproduct bifunctor +,
the terminal object 1, and the initial object O to be given.) The functor giving
rise to graphs as algebras is a functor on the product category Set × Set since
there is more than one sort:

FsigGraph−alg (N , E) = ((E + E) , O) ,

since there is an isomorphism mapping functions E+E → N to pairs of functions
(E → N)× (E → N), and there is only one “empty” function in O→ E.

This functor can be constructed systematically from the signature above, and
the signatures for which this systematic procedure works are called “algebraic”:
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– An algebraic signature has only single sort symbols as result types.

Dually, a coalgebra functor can be constructed systematically for the following:

– An coalgebraic signature has only single sort symbols as argument types.

Obviously, sigGraph is also a coalgebraic signature, and the functor giving rise
to graphs as coalgebras is the following:

FsigGraph (N , E) = (1 , (N ×N))

For algebras, one frequently considers only polynomial functors, that is, functors
constructed from +, ×, and 1. For coalgebras, more varied functors are the
norm, and many more complicated kinds of graphs can easily be characterised
via coalgebraic signatures, for example:

– Node-labelled graphs are often presented with signature sigNLG1 for some
node label set L — note that sigNLG1 is not an algebraic signature, since L
is not a sort symbol:

sigNLG1 〈 sorts: N,E
ops: src : E→ N

trg : E→ N
nlab : N→ L 〉

sigNLG2 〈 sorts: N,E, L
ops: src : E→ N

trg : E→ N
nlab : N→ L 〉

Although this is easily fixed, see sigNLG2 which introduces an additional sort
L, this comes at the cost of considering the label set a part of the graph,
while usually one may want to consider it as fixed. The category of sigNLG2-
structures admits morphisms that change labels, and encompasses as subcat-
egories images of the categories of sigNLG1-structures for different choices of
the interpretation of L.
However, both sigNLG1 and sigNLG2 are coalgebraic signatures, which shows
that the coalgebraic view has advantages even when dealing with very sim-
ple graph structures. For a fixed node set L, coalgebras over the functor for
sigNLG1 form exactly the category of graphs with node labels drawn from L,
without any complications:

FsigNLG1
(N,E) = (L , N ×N)

– sigDHG, already mentioned in the introduction, is a signature for directed
hypergraphs where each hyperedge has a sequence of source nodes and a
sequence of target nodes, and each node is labelled with an element of the
constant set L:

sigDHG := 〈 sorts: N,E
ops: src : E→ List N

trg : E→ List N
nlab : N→ L 〉
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Writing List for the list functor2, the functor corresponding to sigDHG is again
a functor between product categories because of the two sorts:

FsigDHG (N E) = (L , ((List N)× (List N)))

In general, we assume a language of functor symbols (with arity), and a signature
introduces first, after “sorts:”, a list of sort symbols, and then, after “ops:”, a
list of function symbols (or operation symbols), and for each operation symbol,
an argument type expression and a result type expression (separated by “→”)
each built from the functor symbols and the sort symbols.

In sigDHG, we used the unary functor symbol List and the zero-ary functor
symbol L— we will not make any notational distinction between functor symbols
and their interpretation as functors.

5 Limitations of Standard Coalgebra Homomorphisms

For a different situation consider edge-attributed graphs, with symbolic attributes
taken from the term algebra TΣ V over some term signature Σ and with variables
from the variable carrier set for sort V:

sigAGΣ := 〈 sorts: N,E,V
ops: src : E→ N

trg : E→ N
attr : E→ TΣ V 〉

The resulting homomorphism concept only allows renaming of variables:

Fact 5.1. A sigAGΣ-coalgebra homomorphism F : G1 → G2 consists of three
mappings FN : N1 → N2 and FE : E1 → E2 and FV : V1 → V2 satisfying the
following conditions:

FE ; src2 = src1 ;FN

FE ; trg2 = trg1 ;FN

FE ; attr2 = attr1 ; TΣ FV ��
DPO rewriting in this category therefore has to rely on deletion and re-creation
of attribute carrying edges to implement relabelling, like the approaches of
[LKW93,KK08]. In addition we also lack the ability to instantiate rules via
variable substitution as part of the morphism concept, and might therefore be
tempted to add such instantiation outside the DPO rewriting framework, as in
[PS04].

Another example where the coalgebra category is unsatisfactory are term
graphs, where each node is either a variable (of sort V), or an inner node (of
sort N) that has a label (from set L) and a list of successors, which can be either
variables or other nodes:
2 Note that List A can be defined as the initial algebra of the functor LA Y = 1+A×Y .
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sigTG := 〈 sorts: V,N
ops: lab : N→ L

suc : N→ List (N + V) 〉
The resulting standard homomorphism concept also has FV : V1 → V2 and
therefore does not allow mapping of variables to inner nodes:

Fact 5.2. A sigTG-coalgebra homomorphism F : G1 → G2 consists of two map-
pings FN : N1 → N2 and FV : V1 → V2 satisfying the following conditions:

FN ; lab2 = lab1

FN ; suc2 = suc1 ; List(FN + FV) ��
In the resulting category, pushout complements exist only in very special cases,
and the resulting DPO rewriting concept does not correspond to any useful term
graph rewriting concept.

6 Monadic Coalgebra Morphisms

We now introduce a more powerful morphism concept to remedy these short-
comings. We first show how the homomorphism concepts for sigAGΣ-coalgebras
and for sigTG-coalgebras can be “fixed” to allow substitution, and then extract
the general pattern behind this class of “fixes”.

6.1 Substituting Attributed Graph Homomorphisms

If we want to allow substitutions in morphisms between sigAGΣ-coalgebras, we
also have to adapt the morphism conditions to take the substituted variables
inside the image terms of the attribution function into account:

Definition 6.1. We define the category AGΣ to have sigAGΣ-coalgebras as
objects, and a morphism F : G1 → G2 consists of three mappings typed as
shown to the left, satisfying the conditions shown to the right:

FN : N1 → N2 FE; src2 = src1;FN

FE : E1 → E2 FE; trg2 = trg1;FN

FV : V1 → TΣ V2 FE; attr2 = attr1; TΣ FV;μTΣ

where μTΣ
: ∀X . TΣ(TΣ X)→ TΣ X is the canonical “term flattening” function

that turns two-level nested terms into one-level terms. ��
It is not hard to verify that this category is well-defined � — the key to the

proof is to recognise that the FV components are substitutions and compose via
Kleisli composition of the term monad.

The category AGΣ of course does not have all pushouts, since pushout con-
struction for the FV components involves term unification, which is not always
defined.



Categories of Coalgebras with Monadic Homomorphisms 159

6.2 “Substituting” Term Graph Homomorphisms

For term graphs, we just want to allow variables to be mapped also to inner
nodes, and therefore adapt the type of FV accordingly. The resulting adaptation
in the commutativity condition for suc affects only the argument of the List
functor:

Definition 6.2. We define the category TG to have sigTG-coalgebras as objects,
and a morphism F : G1 → G2 consists of two mappings

FN : N1 → N2

FV : V1 → N2 + V2

satisfying the following conditions:

FN ; lab2 = lab1

FN ; suc2 = suc1 ; List((FN + FV) ;μ(N2+))

where μ(N+) : ∀X . (N+(N+X))→ (N+X) is the canonical flattening function
for nested alternatives with N. ��

This time, we are dealing with a parameterised monad, namely (N+), which
maps any X to N+X, where the parameter N is instantiated with the respective
carrier of that sort. Composition of the V components of F : T1 → T2 and
G : T2 → T3 is defined accordingly:

(F ;G)V = FV ; (GN +GV) ;μ(N3+)

Again, the resulting category is well-defined. �

6.3 Generalised Coalgebra Morphisms

For obtaining the general shape of such “monadic coalgebra morphisms”, inspec-
tion of the signatures shows that each of the functors underlying these kinds of
coalgebras not only contains a primitive monad (the term monad for attributed
graphs, and an “alternative monad” for term graphs), but even can be factored
over a monad on the relevant product category.

Since the signature sigAGΣ has three sorts, the underlying category is the
triple product Set× Set× Set, with triples of sets as objects.

The coalgebra functor for sigAGΣ is then

GsigAGΣ
(N,E, V ) = (1, (N ×N × TΣ V ),1) ,

mapping node and edge set to the terminal object 1 since no operations take
nodes or edges as arguments; since there are three operations taking edges as
arguments, GsigAGΣ

produces as “edge component” of its result type the Cartesian
product N ×N × TΣ V consisting of the target sets of the three operations.
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We can decompose this as GsigAGΣ
= FsigAGΣ

◦MsigAGΣ
, where:

MsigAGΣ
(N,E, V ) = (N,E, TΣ V )

FsigAGΣ
(N,E, T ) = (1, (N ×N × T ),1)

SinceMsigAGΣ
is the product of twice the identity monad with the term monad

TΣ , it is obviously a monad. �
Analogously, the coalgebra functor for sigTG is

GsigTG (N,V ) = (L× List (N + V ),1) ,

mapping the variable set to the terminal object 1 since no operations take vari-
ables as arguments. We can decompose this as GsigTG = FsigTG ◦MsigTG, where:

MsigTG (N,V ) = (N, (N + V ))
FsigTG (N,S) = (L× List S,1)

It is straightforward to prove that MsigTG is a monad constructed as a “depen-
dent product monad”. �

In general, we define:

Definition 6.3. Given a monad M and an endofunctor F over a category C,
anM-F-coalgebra is a coalgebra over the functor F ◦M, that is, a pair (A, opA)
consisting of

– an object A of C, and
– a morphism opA : A→ F (M A)

A raw M-F-coalgebra homomorphism from (A, opA) to (B, opB) is a morphism
from A to B in the Kleisli category of M; raw morphism composition is Kleisli
composition. ��

One might expect that we obtain just coalgebras over the Kleisli category of
M. However, the following complications hold:

– F does in general not give rise to a functor over the Kleisli category ofM.
– If a natural transformation from F ◦M to M◦F exists, an endofunctor on

the Kleisli category that coincides with F on objects can be constructed —
however, no such a natural transformation exists for sigAGΣ . �

– Constructing an endofunctor on C from an endofunctor on the Kleisli category
would require transformations to “extract from the monadM” which can be
natural neither on C nor on the Kleisli category. �

In addition, not all raw MsigAGΣ
-FsigAGΣ

-coalgebra homomorphisms satisfy the
conditions we listed above for monadic sigAGΣ coalgebra homomorphisms — we
need to identify an appropriate subcategory of the Kleisli category.

From the material we have, we can easily construct the following two mor-
phisms:

f ;M opB : A→MFMB
opA ;FMf : A→ FMMB
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“Obviously”, we can complete this to a commutativity condition using a natural
transformation constructed from the return η and the join μ transformations of
the monad M, namely:

Fμ ; η : F ◦M ◦M⇒M◦F ◦M

For the category AGΣ of Definition 6.1, this condition is unfortunately only
satisfied by morphisms where FV only renames variables �, which defeats our
intentions. This problem is actually not even due to the choice of Fμ; η, but
to the choice of direction, since it arises for every natural transformation from
F ◦M ◦M to M◦F ◦M. Therefore, using distribution transformations from
F ◦M to M◦F as used by Pardo [Par98] is not an option either.

We found that natural transformations fromM◦F ◦M to Fs ◦M “work”
when combined with a join on the other side:

Definition 6.4. For an endofunctor F and a monad (M, η, μ) on C, an M-F-
distrjoin transformation is a natural transformation ξ : M◦ F ◦M ⇒ F ◦M
for which the following properties hold:

– η ; ξ = I

– μ ; ξ =Mξ ; ξ
– MFμ ; ξ = ξ ;Fμ ��
Definition 6.5. Given an endofunctor F and a monad (M, η, μ) on C, and
also anM-F-distrjoin transformation ξ, anM-F-coalgebra homomorphism from
(A, opA) to (B, opB) is a morphism f : A→MB making the following diagram
commute:

FMA
FMf � FMMB

Fμ � FMB

opA

�
ξ

�

A
f � MB

M opB � MFMB

Theorem 6.6. M-F-coalgebras with such M-F-coalgebra homomorphisms
form a category. � ��

The instantiations of this for edge-attributed graphs (sigAGΣ) and for term
graphs (sigTG) are appropriate:

Theorem 6.7. The MsigAGΣ
-FsigAGΣ

-coalgebra category is equivalent to the
category AGΣ Definition 6.1. � ��
Theorem 6.8. TheMsigTG-FsigTG-coalgebra category is equivalent to the cate-
gory TG of Definition 6.2. � ��
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6.4 Pushouts of Monadic Coalgebra Morphisms

It is well-known that the Kleisli category over the term monad T does not have all
pushouts, and that existence of pushouts essentially corresponds to unifiability.

Therefore we cannot expect the category of monadic sigAGΣ coalgebras to
have all pushouts. Nevertheless, since pushouts are the key ingredient of the
categoric approach to graph transformation, an interesting question is whether
pushouts in the Kleisli category ofM give rise to pushouts in theM-F-coalgebra
category. It is easy to see that this is not the case for term graphs; however, it does
hold for symbolically edge-attributed graphs, and in this section we explore the
question how to prove this from the point of view of M-F-coalgebra categories
without considering decompositions ofM and F .

A pushout for a span B
F←−A G−→C is a completion B

H−→D
K←−C to a

commuting square that is “minimal” in the sense that every other candidate
completion factors uniquely over it (via U).

A F � B

G

�

H

�

C K � D

�
�
�
�
�
�
�
�
�
�

H ′

����������

K ′

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

U

D′

Assuming such a pushout in the Kleisli category of M, for constructing the
operation opD of the target coalgebra we need to choose appropriate H ′ and K ′

such that the U can be used to construct opD and prove its pushout property
in the category ofM-F-coalgebras.

Without assuming additional (natural) transformations, we can only choose
the following:

H ′ = opB ;F(MH ;μ) ; η
K ′ = opC ;F(MK ;μ) ; η

However, commutativity F �H ′ = G�K ′ in the Kleisli category can only be shown
assuming additional (natural) transformations and/or laws, which however are
not available for the setting of sigAGΣ — there, this commutativity does not
hold. � The essential reason for this is that F maps V to 1, while V is also
the only component that has a non-trivial monad. Commutativity fails for the
V components due to the fact that opB and opC map these to 1, while M for
the V components is the term monad TΣ :
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MFMD ? �� MFMD

MF(MH ., μ)

	
	

	
	

	

MF(MK ., μ)

MFMB
M opB� MB MC

M opC� MFMC

	
	

	
	

	

F G

A

Due to this property of the operators in sigAGΣ , commutativity will actually fail
for any definition of H ′ of the shape “H ′ = opB ; . . .”. We solve this problem in
the next section by restriction to more specialised versions of M and F , which
allows us to “patch” H ′ and K ′ so as to avoid this conflict.

7 Monadic Product Coalgebras

We now specialise theM-F-coalgebras of Sect. 6.3 in a way that still generalises
the setup for symbolically edge-attributed graphs there, while also allowing a
pushout construction.

The most general shape we have been able to identify for this are “monadic
product coalgebras” over a product category C1 × C2, defined in the following
setting (which we will assume for the remainder of this section): Let C1 and C2
be two categories; letM be a monad on C2, and F a functor from C1×C2 to C1.

In terms of coalgebraic signatures this implements the restriction that sorts
mentioned as monad arguments do not occur as source sorts of operators, and
that the monad must not depend on sorts that do occur as source sorts of oper-
ators. This restriction is satisfied by all simple kinds of symbolically attributed
graphs where the monad is typically a term monad, is applied only to sets of free
variables, and these variables do not otherwise participate in the graph structure.

Definition 7.1. AnM-F-product-coalgebra A is a triple (A1, A2, opA) consist-
ing of

– an object A1 of C1, and
– an object A2 of C2, and
– a morphism opA : A1 → F (A1, M A2)

AM-F-product-coalgebra homomorphism f from (A1, A2, opA) to (B1, B2, opB)
is a pair (f1, f2) consisting of a C1-morphism f1 from A1 to B1 and a morphism
f2 from A2 to B2 in the Kleisli category ofM such that

f1 ; opB = opA ;F (f1, M f2 ;μ) .

Morphism composition is composition of the corresponding product category. ��
This morphism composition is well-defined �, and induces a category �.
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Now letM0 be the product monad of the identity monad on C1 andM, and
define F0 as endofunctor on C1 × C2 by:

F0(X1,X2) = (F(X1,X2),1)

With these definitions, the M0-F0-distrjoin transformation (see Definition 6.4)
has identities of C1 and terminal morphisms of C2 as its two components �,
which allows us to identify monadic product coalgebras as a special case of the
monadic coalgebras of Sect. 6.3:

Theorem 7.2. The category of M-F-product-coalgebra homomorphisms is
equivalent to the category ofM0-F0-coalgebra homomorphisms. � ��

In addition, the more fine-grained structure of monadic product coalgebras
allows us to circumvent the problems we encountered in Sect. 6.4.

Let K be the Kleisli category ofM0. SinceM0 is a product monad, pushouts
in K are calculated component-wise, that is, they consist of a pushout in C1 and
a pushout in the Kleisli category ofM.

Theorem 7.3. Let a span B F←−A G−→C ofM-F-product-coalgebra homomor-
phisms be given, and a cospan (B1, B2)

H−→(D1,D2)
K←−(C1, C2) in K that is a

pushout for the Kleisli morphisms underlying F and G. Then (D1,D2) can be
extended to aM-F-product-coalgebraD = (D1,D2, opD) such thatB H−→D

K←−C
is a pushout for B F←−A G−→C in theM-F-product-coalgebra category. �

Proof sketch: The first step is the construction of a cospan

(B1, B2)
H′
−→ D′ K′

←− (C1, C2)

in K such that the first component of the universal morphism U : (D1,D2)→ D′

from the K pushout can be used as opD.
The first constituent of D′ therefore must be the target of opD, so we define:

D′ = ( F(D1,M D2) , D2)
H ′ = ( opB ;F(H1,M H2 ;μ) , H2)
K ′ = ( opC ;F(K1,M K2 ;μ) , K2)

The second constituent of D′ is inherited from (D1,D2), which allows us to
use the universality of the original K pushout when proving universality of the
resulting M-F-product-coalgebra pushout. ��

Together with the two equivalences of categories of Theorems 7.2 and 6.7,
pushouts for edge-attributed graphs essentially reduce to unification for their
variable components (if we choose an underlying category that has pushouts,
such as Set):

Corollary 7.4. A span B
F←−A G−→C in the MsigAG-FsigAG-coalgebra category

over Set for edge-attributed graphs (as sigAGΣ structures) has a pushout if FV

and GV, as substitutions, have a pushout. � ��
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8 Conclusion and Outlook

We have shown how the additional flexibility of coalgebraic signatures enables us
to integrate label types and symbolic attribute types into graph structure signa-
tures, and then modified the coalgebraic homomorphism concept via integration
of Kleisli arrows to achieve the flexibility necessary to allow substitutions as part
of our morphisms. We showed that several seemingly plausible formalisations for
this do not model the intended applications, and arrived at a simple factoring
setup (Sect. 6.3) that additionally encompasses a natural formalisation of term
graphs. For symbolically attributed graphs fitting into the pattern of monadic
product coalgebras (Sect. 7), we showed that pushouts can be obtained where
the substitution components of their homomorphisms are unifiable.

Without the support of our mechanised formalisation in Agda, the mentioned
failures of inappropriate formalisations, and also the successful proofs reported
in the paper would have been extremely hard to arrive at with comparable
confidence.

Since pushouts do not necessarily exist in Kleisli categories, an important
question is whether general results for appropriate classes of restricted monomor-
phisms can be obtained. In this context, the “guarded monads” of Ghani et al.
[GLDM05] might be useful, since a guarded monad essentially can be represented
as Id + N for some functor N , and the identity component can be used to lift
monomorphisms from the base category into the Kleisli category.

The ultimate goal of this work is a fully verified implementation of monadic
coalgebra transformation that can be instantiated in particular for the transfor-
mation of symbolically attributed graph structures.

Acknowledgements. I am grateful to the anonymous referees for their constructive
comments.
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(eds.) ICGT 2010. LNCS, vol. 6372, pp. 43–58. Springer, Heidelberg (2010)

[Par98] Pardo, A.: Monadic corecursion - definition, fusion laws and applications.
ENTCS 11, 105–139 (1998)

[PPBE04] Parisi-Presicce, F., Bottoni, P., Engels, G. (eds.): ICGT 2004. LNCS, vol.
3256. Springer, Heidelberg (2004)

[PS04] Plump, D., Steinert, S.: Towards graph programs for graph algorithms.
In: [PPBE04], pp. 128–143

[Plu09] Plump, D.: The graph programming language GP. In: Bozapalidis, S.,
Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 99–122. Springer, Hei-
delberg (2009)

http://RelMiCS.McMaster.ca/RATH-Agda/
http://RelMiCS.McMaster.ca/RATH-Agda/


Categories of Coalgebras with Monadic Homomorphisms 167

[PZ01] Poll, E., Zwanenburg, J.: From algebras and coalgebras to dialgebras.
ENTCS 44, 289–307 (2001)
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Abstract. It is a well-known fact that a nondeterministic automaton
can be transformed into an equivalent deterministic automaton via the
powerset construction. From a categorical perspective this construction
is the right adjoint to the inclusion functor from the category of deter-
ministic automata to the category of nondeterministic automata. This is
in fact an adjunction between two categories of coalgebras: deterministic
automata are coalgebras over Set and nondeterministic automata are
coalgebras over Rel. We will argue that this adjunction between coalge-
bras originates from a canonical adjunction between Set and Rel.

In this paper we describe how, in a quite generic setting, an adjunction
can be lifted to coalgebras, and we compare some sufficient conditions.
Then we illustrate this technique in length: we recover several construc-
tions on automata as liftings of basic adjunctions including determiniza-
tion of nondeterministic and join automata, codeterminization, and the
dualization of linear weighted automata. Finally, we show how to use the
lifted adjunction to check behavioral equivalence.

1 Introduction

Coalgebra offers a general framework for specifying transition systems with var-
ious branching types. Given a functor F : Set → Set, describing the branching
type of the transition system, an F -coalgebra is a function c : X → FX, where
X represents the state set and c the transition function. Depending on the choice
of F , one can describe labeled, nondeterministic, probabilistic or various other
types of branching and it is possible to combine several of them. Coalgebras come
with a natural notion of behavioral equivalence, and coalgebra homomorphisms
can be seen as functional bisimulations, mapping states to equivalent states.

In recent years, it has also become customary to study coalgebras in cate-
gories different from Set. There are several reasons, for instance, one can impose
an algebraic structures on the states, or one can work in presheaf categories in
order to model name passing [7]. Particularly relevant to this paper is the study
of coalgebras in Kleisli categories, where a monad offers a way to model side-
effects that can also be understood as implicit branching, different from the
explicit branching that can be modeled directly in Set. Such coalgebras have
c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 168–188, 2014.
DOI: 10.1007/978-3-662-44124-4 10
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for instance been studied in [8], where nondeterministic automata are specified
as coalgebras in Rel, the category of sets and relations, which is isomorphic to
the Kleisli category of the powerset monad on Set. The behavioral equivalence
induced by such coalgebras in Rel is indeed trace (or language) equivalence, as
desired, and not bisimilarity.

When studying coalgebras in various categories a natural question to ask
is how to transform such coalgebras from one representation into another. Our
motivating examples come from the world of deterministic and nondeterministic
automata where various forms of determinization can be seen as functors which
map coalgebras living in one category, into coalgebras living in another cate-
gory. For instance, nondeterministic automata living in Rel can be transformed
into deterministic automata in Set via the powerset construction. In the other
direction, a deterministic automaton in Set can be trivially regarded as a non-
deterministic automaton in Rel. It turns out that the transformations together
form an adjunction between categories of coalgebras where the powerset con-
struction is the right adjoint. In the same vein various other determinization-like
constructions arise as adjunctions.

In the following we will first show under which circumstances adjunctions
on categories can be lifted to adjunctions on coalgebras. Part of the answer was
already given by Hermida and Jacobs [9] and we extend their characterization by
giving another, equivalent, condition. Then we study several examples in detail,
especially various forms of automata. Apart from the well-known determinis-
tic and nondeterministic automata, we consider codeterministic automata (also
known as átomata, see [6], or backwards-deterministic automata) and deter-
ministic join automata, i.e. automata that have an algebraic structure on the
states, allowing to take the join of a given set of states. Such automata live in
the category of join semilattices JSL, which is the Eilenberg-Moore category of
the powerset monad on Set (whereas Rel is the Kleisli category of the power-
set monad) and have already been considered in [17]. In total we consider four
different adjunctions between such automata.

In addition we consider an adjunction in the realm of linear weighted automata,
where we take up an example from [3], transforming input into output linear
weighted automata (and vice versa).

In order to explain what these adjunctions really mean in terms of behavioral
equivalence, we study a general notion of behavioral equivalence for arbitrary
categories. We first observe that the final coalgebra, if it exists, is preserved
by right adjoints and hence can be “inherited” from coalgebras living in a dif-
ferent category. Furthermore we show how queries on behavioral equivalence
can be translated to equivalent queries on coalgebras in another category. This
reflects the well-known construction of determinizing a nondeterministic automa-
ton before answering questions about language equivalence.

2 Theoretical Background – Lifting Adjunctions

Within this section we are first going to present a short, motivating example
which introduces our approach. Then we will recall some basic definitions from
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the theory of adjunctions (mainly to introduce our notation) and start to develop
our theory which is then summarized in our main theoretical result. The result
itself is not very surprising and, in fact, was discovered already earlier by C.
Hermida and B. Jacobs [9] in a different setting (we will compare our approach
with their result) and can be obtained using standard (2-)categorical methods
[12]. However, the focus of our work is not just the theory itself but we are
more interested in how this theory helps to understand certain (algorithmic)
constructions on automata by applying it to various types of automata, modeled
as coalgebras.

2.1 Motivating Example

Consider the following (non-commutative) diagram of functors where the bottom
part is a (canonical) adjunction (see below for a definition) between Set and Rel.

Let A be an alphabet, i.e. a finite set of labels. It is known (and we will also
recall this in Sect. 3.1) that the coalgebras for the functor 2 × ( )A on Set are
the deterministic automata (DA) and the coalgebras for the functor A× +1 on
Rel are the nondeterministic automata (NDA). (For final coalgebra semantics
of NDA see [8].) We aim at finding the functors L, R (dashed arrows on top)
that form an adjunction which is a lifting of the original adjunction and we
will see that for this particular example everything works out as planned and
the lifted right adjoint R “performs” the well-known powerset construction to
determinize an NDA.

2.2 Adjunctions

We recall some basics from category theory [2,14] to fix our notation.

Definition 1 (Adjunction, Adjoint Functors). Let C and D be categories.
An adjunction between C and D consists of a functor L : C → D, called left
adjoint, a functor R : D→ C, called right adjoint and two natural transforma-
tions η : 1C ⇒ RL, called unit, and ε : LR⇒ 1D, called counit, satisfying

εL ◦ Lη = 1L , and Rε ◦ ηR = 1R . (1)

We denote such an adjunction by 〈L � R, η, ε〉 : C→ D.
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A functor L : C → D [R : D → C] is a left adjoint [right adjoint] if it is the
left adjoint [right adjoint] of some adjunction 〈L � R, η, ε〉 : C → D. One can
prove that L [R] determines the other parts of the adjunction unique up to
isomorphism. Since this is not trivial, we will always give the full adjunction.

There are special cases of adjunctions which have their own names.

Definition 2 (Equivalence and Duality of Categories). We call an adjunc-
tion 〈L � R, η, ε〉 : C → D an equivalence if both η and ε are natural isomor-
phisms. Whenever such an equivalence exists, the categories C and D are called
equivalent. Similarly, we say that the categories C and D are dually equivalent
if there is an equivalence 〈L � R, ε, η〉 : C→ Dop.

Let us now consider our first example of an adjunction (which is well-known in
the literature and also the adjunction from our motivating example).

Example 1. Let L : Set → Rel be the inclusion functor from Set to Rel map-
ping each set X to itself and each function f : X → Y to the correspond-
ing relation f : X ↔ Y . Moreover, let R : Rel → Set be the functor which
maps each set X to its powerset 2X and each relation f : X ↔ Y to the func-
tion Rf : 2X → 2Y given by (Rf)(S) = {y ∈ Y | ∃x ∈ S : 〈x, y〉 ∈ f} for every
S ∈ 2X . We obtain an adjunction 〈L � R, η, ε〉 : Set → Rel where the unit
η : 1Set ⇒ 2− is given by all the functions ηX : X → 2X , ηX(x) = {x} for every
set X and the counit ε : 2− ⇒ 1Rel consists of all the relations εX : 2X ↔ X
where 〈S, x〉 ∈ εX ⇐⇒ x ∈ S for every set X.

2.3 Lifting an Adjunction to Coalgebras

The theory of coalgebras [10,16] has proven to be an appropriate tool for mod-
eling and analyzing various types of transition systems. We will examine several
of the standard examples (deterministic, nondeterministic, codeterministic and
linear weighted automata) in detail in the following sections and hence will not
provide any examples here. Besides these examples also probabilistic automata
[18] and even arbitrary labeled Markov processes [15] or probabilistic transition
systems [13] can be seen as coalgebras in suitable categories.

Recently the coalgebraic treatment of automata has provided new views on
algorithms for minimization and (co)determinization [1,3,4]. In these works the
authors make use of certain adjunctions of categories to obtain the minimization
of (various kinds of) automata.

We shall hereafter try to find and analyze a common and generic pattern
on how we can make use of an adjunction 〈L � R, η, ε〉 : C → D to reason
about and to find constructions (algorithms) on automata modeled as coalgebras.
For that purpose let us fix two endofunctors F : C → C and G : D → D and
look at the (non-commutative) diagram of functors on the next page where
U : Coalg (F )→ C and V : Coalg (G)→ D are the forgetful functors mapping
a coalgebra to its carrier and a coalgebra homomorphism to the underlying
arrow.
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The question we are interested in is
whether we can in some canonical way
obtain the functors L and R as indicated
by the dashed lines such that they form
an adjunction which “arises” from the ini-
tial adjunction. A precise definition for
this is given below. In several cases such
adjoint functors transform coalgebras in a
way that we (re)discover algorithmic con-
structions on the modeled automata and we will back this hypothesis by the
examples given in the following sections.

Definition 3 (Lifting). Let C and D be categories, F : C→ C, G : D→ D be
endofunctors and U : Coalg (F ) → C and V : Coalg (G) → D be the forgetful
functors mapping a coalgebra to its carrier and a coalgebra morphism to the
underlying arrow. Let 〈L � R, η, ε〉 : C→ D be an adjunction.

1. We call a functorL : Coalg (F )→ Coalg (G)
[
R : Coalg (G)→ Coalg (F )

]

a lifting of L [R] if it satisfies the equality V L = LU
[
UR = RV

]
.

2. We call an adjunction
〈
L � R, η, ε〉 : Coalg (F ) → Coalg (G) a lifting of

〈L � R, η, ε〉 : C → D if L is a lifting of L, R is a lifting of R and we have
Uη = η and V ε = ε.

Although this definition is straightforward it has one setback: it does not tell us
how to construct a lifted adjunction. Let us therefore introduce a method for
handling this. If we had a natural transformation α : LF ⇒ GL it is not hard to
see that we obtain a functor L : Coalg (F )→ Coalg (G) by defining

L
(
X

c−→ FX
)

=
(
LX

Lc−→ LFX
αX−→ GLX

)
, Lf = Lf (2)

for all F -coalgebras c : X → FX and all F -coalgebra homomorphisms f and
analogously, given a natural transformation β : RG⇒ FR we can define a func-
tor R : Coalg (G)→ Coalg (F ) by

R
(
Y

d−→ GY
)

=
(
RY

Rd−→ RGY
βY−→ FRY

)
, Rg = Rg (3)

for all G-coalgebras d : Y → GY and all G-coalgebra homomorphisms g. By
definition these functors are liftings and thus the only remaining question is
whether we obtain a lifting of the adjunction. The equation Uη = η can be
spelled out as the requirement that for all F -coalgebras c : X → FX the arrow
ηX : X → RLX is an F -coalgebra homomorphism c → RLc and likewise the
equation V ε = ε translates to the requirement that for everyG-coalgebra d : Y →
GY the arrow εY : LRY → Y is a G-coalgebra homomorphism LRd → d. This
is the case iff the outer rectangles of the following two diagrams commute.
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These diagrams certainly commute if their inner parts commute: 1© commutes
because η is a natural transformation, 2© by definition of RLc and commutativity
of 3© is equivalent to FηX = βLX ◦ RαX ◦ ηFX . Moreover, 4© commutes by
definition of LRd and 5© because ε is a natural transformation. Finally, the
commutativity of 6© is equivalent to εGY = GεY ◦ αRY ◦ LβY .

With these observations at hand it is easy to spell out a sufficient condition
for the existence of a lifting which we will do in the following theorem.

Theorem 1 (Lifting an Adjunction to Coalgebras). Let F : C → C and
G : D→ D be endofunctors and 〈L � R, η, ε〉 : C→ D be an adjunction. There
is a lifting

〈
L � R, η, ε〉 : Coalg (F ) → Coalg (G) of the adjunction if one of

the following equivalent conditions is fulfilled.

(i) There are two natural transformations α : LF ⇒ GL and β : RG ⇒ FR
satisfying the following equalities.

Fη = βL ◦Rα ◦ ηF (4)
εG = Gε ◦ αR ◦ Lβ (5)

(ii) There is a natural isomorphism β : RG⇒ FR. [9, 2.15 Corollary]

If (i) holds, the adjoint mate α• of α, which is defined as

α• := RGε ◦RαR ◦ ηFR (6)

is the inverse of β. Conversely, if (ii) holds we can define α as the adjoint mate
(β−1)• of β−1 which is defined as

(β−1)• = εGL ◦ Lβ−1L ◦ LFη . (7)

In both cases L and R are defined by (2) and (3).

By the observations from above it should be quite clear, that (i) is sufficient
for a lifting to exist. The fact that the second condition (ii) of this theorem is
also sufficient for the existence of a lifting is due to a result by C. Hermida and
B. Jacobs [9, 2.15 Corollary]. They derive this as a “by-product” from a quite
generic result in 2-categories using the fact that coalgebras are certain inserters
in the 2-category CAT of categories, functors and natural transformations. Thus
in order to prove the theorem we just have to show that (i) and (ii) are equivalent
using the provided definitions of β−1 (6) and α (7).
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Proof. (of Theorem 1).
(i) ⇒ (ii): The equations βY ◦ α•

Y = 1FRY and α•
Y ◦ βY = 1RGY are equivalent

to commutativity of the outer rectangles of the following diagrams.

The diagrams commute because their inner parts commute: For the left diagram
1© is (4) applied to X = RY , 2© is F applied to the second unit-counit equation
(1) and 3© is the natural transformation diagram for β. For the right diagram
we observe that 4© is the natural transformation diagram for η, 5© is the second
unit-counit equation (1) applied to GY and 6© is R applied to (5). Thus β is
indeed a natural isomorphism with inverse α•.

(ii) ⇒ (i): We have to show that α defined by (7) satisfies (4) and (5).
(4): Let X be an arbitrary C-object. Then FηX = βLX ◦RαX ◦ ηFX holds if

and only if β−1
LX ◦ FηX = RεGLX ◦RLβ−1

LX ◦RLFηX ◦ ηFX holds which in turn
is equivalent to commutativity of the outer part of the following diagram.

1© and 2© commute because η is a natural transformation from 1C to RL, func-
tors preserve inverses and 3© is the second unit-counit equation (1) applied to
GLX.

(5): Let Y be an arbitrary D-object. Then: εGY = GεY ◦ αRY ◦ LβY holds
if and only if εGY ◦ Lβ−1

Y = GεY ◦
(
εGLRY ◦ Lβ−1

LRY ◦ LFηRY
)

holds which in
turn is equivalent to commutativity of the outer part of the following diagram.

4© commutes by applying LF to the second unit-counit equation (1) , 5© due
to the fact that β−1 is a natural transformation and 6© because ε is a natural
transformation. �
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Remark 1. We immediately make the following observations about Theorem 1.

(a) Due to the fact that Coalg (F ) ∼= Alg (F op), where F op is the opposite
functor to F , we can apply the theorem to obtain liftings to algebras.

(b) If 〈L � R, η, ε〉 is an equivalence [a dual equivalence] of categories then〈
L � R, η, ε〉 is an equivalence [a dual equivalence] of categories.

3 Nondeterministic Automata and Determinization

Within this section we will first shortly recall how deterministic (DA), nonde-
terministic (NDA) and codeterministic (CDA) automata can be modeled as
coalgebras in suitable categories. We will then consider adjunctions between
these categories and apply our theorem to obtain a lifting. Via this we will
recover the (co)determinization of an automaton via the powerset construction.

The content of this (and the following) section can be summarized in the
diagram of categories and functors below. While DA live in Set, NDA can be
seen as arrows in Rel and CDA as arrows in Setop (see Sect. 3.1). Furthermore
in Sect. 4 we will in addition consider deterministic join automata (DJA) which
live in the category of complete join semilattices (JSL), see Sects. 4.1 and 4.2.
Between these categories of coalgebras there are four adjunctions, which will be
treated in the following sections.

For the rest of this and the following section let A denote an alphabet, i.e. a
finite set of labels. In a coalgebraic treatment of labeled transition systems, one
usually omits initial states and the state spaces are not required to be finite.

3.1 Automata as Coalgebras

Deterministic Automata. In the category Set of sets and functions, deter-
ministic automata can be modeled as coalgebras for the functor 2 × ( )A.
We can represent a deterministic automaton with states X and alphabet A
as a coalgebra c : X → 2 × XA where each state x ∈ X is mapped to a
tuple 〈o, s〉 in which the output flag o ∈ {0, 1} determines whether x is final
(if and only if o = 1) and the successor function s : A → X determines for
each letter a ∈ A the unique a-successor s(a) ∈ X of the state x. We thus
define the category of deterministic automata and automata morphisms to be
DA := Coalg

(
2× ( )A : Set→ Set

)
.
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Nondeterministic Automata. Given a set X of states, we model a nonde-
terministic automaton by a coalgebra for the functor A × + 1 in Rel. Given
a coalgebra c : X ↔ A × X + 1, each state x ∈ X is in relation with � if
and only if it is a final state. For any letter a ∈ A the y ∈ X such that
〈x, 〈a, y〉〉 ∈ c are the a-successor(s) (one, multiple or none) of x. We thus
define the category of nondeterministic automata and automata morphisms to
be NDA := Coalg (A× + 1 : Rel→ Rel).

Codeterministic Automata. Given a setX of states, a codeterministic (back-
wards deterministic) automaton (CDA) is given by a function c : A×X +1→ X
where c(�) ∈ X is the unique final state and for each pair 〈a, x〉 ∈ A×X the unique
a-predecessor of x is c(〈a, x〉). Hence we can model them as coalgebras for the func-
tor A×X + 1 on Setop and define the category of codeterministic automata and
their morphisms to be CDA = Coalg (A× + 1 : Setop → Setop).

Note that Setop is equivalent to CABA, the category of all complete atomic
boolean algebras, with boolean algebra homomorphisms. So instead of thinking
of these automata as codeterministic, one could think of them as deterministic
automata with a rich algebraic structure on the states, even richer than the
deterministic join automata introduced in Sect. 4.

Codeterministic automata are studied in [6] under the name àtomata. An
example automaton is shown in Fig. 1 (right).

3.2 Determinization of Nondeterministic Automata

Let us reconsider the adjunction between Set and Rel which we presented in
Example 1. We aim at applying Theorem1 to this adjunction to get a lifting and
claim that this will yield the well known powerset construction to determinize
nondeterministic automata.

Recall that, by Theorem 1 (ii), for such a lifting to exist it is sufficient to
define a natural isomorphism β : 2A× +1 ⇒ 2× (2−)A. Thus we define for every
set X the function βX : 2A×X+1 → 2× (

2X
)A via

βX(S) =
〈
χS(�),

(
s : A → 2X , s(a) = {x ∈ X | 〈a, x〉 ∈ S})〉 (8)

for every S ∈ 2A×X+1. Here χS is the characteristic function1 of S. The inverse
function β−1

X : 2× (
2X

)A → 2A×X+1 is given by

β−1
X (〈o, s〉) := {� | o = 1} ∪

⋃

a∈A
{a} × s(a) (9)

for every 〈o, s〉 ∈ 2× (2X)A. By Theorem 1 (ii) we obtain a lifting. We calculate
the natural transformation α : 2× ( )A ⇒ A× + 1 by using (7) to obtain for
every set X the relation αX : 2×XA ↔ A×X + 1 given by
1 Given a set X, the characteristic function χS : X → {0, 1} is defined for any subset

S ⊆ X by χS(x) = 1 iff x ∈ S and χS(x) = 0 otherwise.
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αX =
{〈
〈1, s〉 , �

〉
,
〈
〈o, s〉 , 〈a, s(a)〉

〉 ∣
∣
∣ o ∈ 2, s ∈ XA, a ∈ A

}
. (10)

With these preparations at hand we can now construct the lifted functors. The
new left adjoint L : DA → NDA maps a DJA c : X → 2 × XA to the NDA
L(c) : X ↔ A×X + 1 which is given by2

L(c) =
{

〈x,�〉
∣
∣
∣
∣

x ∈ X
π1(c(x)) = 1

}

∪
{〈

x,
〈
a, π2 (c(x)) (a)

〉〉
∣
∣
∣
∣
x ∈ X
a ∈ A

}

(11)

which is simply the same automaton, but interpreted as a nondeterministic one.
The lifted right adjoint R : NDA→ DA maps a nondeterministic automaton

d : Y ↔ A×Y +1 to the deterministic automaton R(d) : 2Y → 2×(2Y )A. A state
of this new automaton is just a set of states Q ∈ 2Y of the original automaton.
For each such Q the tuple R(d)(Q) =

〈
o, s : A → 2Y

〉
is given as follows: We

have o = 1 if and only if there is a q ∈ Q such that 〈q,�〉 ∈ d, i.e. Q is final
if and only if one of the original states in Q is final. Moreover, the a-successor
of Q is determined by s(a) = {y ∈ Y | ∃q ∈ Q : 〈q, 〈a, y〉〉 ∈ d} which we can
easily identify to be exactly the definition of the transition function of the usual
powerset automaton construction.

3.3 Codeterminization of Nondeterministic Automata

Let us now consider adjunction between Rel and Setop which we automati-
cally obtain by dualizing the adjunction between Set and Rel from Example 1
and the fact that Rel is a self-dual category. This adjunction has already been
considered in [1,8].

The left adjoint L : Rel → Setop maps a set X to its powerset 2X and a
relation f : X ↔ Y to the function Lf : 2X ← 2Y given by, for every S ∈ 2Y ,
(Lf)(S) = {x ∈ X | ∃y ∈ S : 〈x, y〉 ∈ f}. The right adjoint R : Setop → Rel
is the inclusion, i.e. it maps a set X to itself and a function f : X ← Y to
the corresponding relation f : X ↔ Y . The unit η consists of all the relations
ηX : X ↔ 2X defined via 〈x, S〉 ∈ εX iff x ∈ S and the counit ε is given by all
the functions εX : 2X ← X mapping each x ∈ X to the singleton set {x}.

We proceed to define a lifting as before by specifying a natural isomorphism
β : A × + 1 ⇒ A × + 1. The obvious choice is to let βX be the identity
relation on A × X + 1 which indeed yields a natural isomorphism. Moreover,
using (7) we obtain the natural transformation α : 2A× +1 ⇒ A×2− +1 where
for each set X the function αX : 2A×X+1 ← A× 2X + 1 is given by α(�) = 1
and α(〈a, S〉) = {a} × S for every 〈a, S〉 ∈ A × 2X .

The lifted left adjoint L : NDA→ CDA performs codeterminization: Given
an NDA c : X ↔ A×X+1 we obtain a CDA L(c) : 2X ← A×2X +1 where �
is mapped to the set {x ∈ X | 〈x,1〉 ∈ c}, i.e. the unique final state of the new
automaton is the set of all final states of the original automaton. Given a set of
states S ∈ 2X and a letter a ∈ A the a-predecessor of S is the set
2 π1 : 2 × XA → 2 and π2 : 2 × XA → XA are the projections of the product.
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L(c)(〈a, S〉) = {x ∈ X | ∃y ∈ S : 〈x, 〈a, y〉〉 ∈ c} (12)

containing all the a-predecessors of the states in S. We conclude that the new
automaton is indeed a codeterministic automaton which is (language) equivalent
to the original one.

While in the previous example the lifted left adjoint was trivial (as was
the original left adjoint), in this case we obtain a trivial lifted right adjoint
R : CDA→ NDA: it “interprets” a CDA d : Y ← A× Y + 1 as NDA, i.e. as
the corresponding relation R(d) : Y ↔ A× Y + 1.

4 Deterministic Join Automata

We will now try to take a different perspective to look at powerset automata
instead of just considering them to be determinized nondeterministic automata.
In order to do that we briefly recall the notion of complete join semilattices and
the corresponding category.

4.1 Complete Join Semilattices

A complete join semilattice is a partially ordered set X such that for every
(possibly infinite) set S ∈ 2X there is a least upper bound, called join and
denoted by �S. If Y is another join semilattice we call a function f : X → Y join-
preserving if, for all S, it satisfies f(�S) = �{f(s) | s ∈ S}. The join semilattices
and the join-preserving functions form a category which we will denote by JSL.
It is isomorphic to the Eilenberg-Moore category for the powerset monad on set.

If we equip the set 2 = {0, 1} with the partial order 0 ≤ 1, we get a complete
join semilattice with �∅ = 0, �{0} = 0, �{1} = 1 and �2 = 1.

The product of two join semilattices X and Y is the cartesian product of the
base sets equipped with a partial order given by 〈x1, y1〉 ≤ 〈x2, y2〉 if and only if
x1 ≤ y1 and y1 ≤ y2 for all x1, x2 ∈ X, y1, y2 ∈ Y and analogously, given a set
X we can equip XA with a partial order based on a given one on X by defining
for f, g ∈ XA that f ≤ g if and only if f(a) ≤ g(a) for every a ∈ A. This is a
complete join semilattice if X is one. Given a subset F ⊆ XA its join is given
by �F : A → X,�F (a) = �{f(a) | f ∈ F}.

4.2 Deterministic Join Automata

We can interpret a coalgebra c : X → 2×XA for the functor 2× ( )A on JSL as
a deterministic automaton just as we did before on Set. Since the arrows of JSL
are join-preserving functions, such an automaton possesses a certain additional
property. Given a set S ∈ 2X of states, we know that there is a join-state �S.
By the join-preserving property of the transition function c we know that c(�S)
= �{c(x) | x ∈ S} and we conclude that �S is final if and only if one of the states
x ∈ S is final and moreover any transition of an x ∈ S can be “simulated” (see
below) by �S. We define the category DJA := Coalg

(
2× ( )A : JSL→ JSL

)

and call its objects deterministic join automata.
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Example 2. Take a look at Fig. 1. If we equip the set X = {⊥, u, x, y,�} with the
partial order given by the Hasse diagram on the left we obtain a complete join
semilattice. The diagram in the middle shows a deterministic join automaton
on this join semilattice. Note that the join of two final states is again final and
that for every pair of states and alphabet symbol a, the a-successor of the join
of the states is the join of the a-successors. This implies a general property of
DJA that for every subset of states there exists a state accepting the union of
the languages of the given states.

Fig. 1. Hasse diagram of a complete join semilattice, a deterministic join automaton
and its codeterminization (from left to right)

4.3 From Deterministic Automata to Deterministic Join Automata

We will now consider adjunction in order to transform DJA into DAs and vice
versa. Given a conventional DA, a suitable algorithm to obtain a DJA is (again)
the powerset construction. We will see that this is a reasonable construction in
the sense that it arises from an adjunction between Set and JSL. As said before,
the category of complete join semilattices is equivalent to the Eilenberg-Moore
category for the powerset monad on Set. The theory of adjunctions gives us a
generic construction of an adjunction which we will now spell out in details.

The left adjoint L : Set → JSL maps any set X to 2X which is partially
ordered by set inclusion. The join operation is set theoretic union and it is easy
to see that we indeed obtain a complete join semilattice. Any function f : X → Y
is mapped to its image map f [.] : 2X → 2Y which we can easily identify as
join- (i.e. union-)preserving function. The right adjoint R : JSL → Set takes
a complete join semilattice to its base set and forgets about the order and the
join operation. Analogously, a join-preserving function is just considered as a
function. The unit of the adjunction is given, for every set X, by the function
ηX : X → 2X , ηX(x) = {x}. The counit consists of the join-preserving functions
ε〈Y,�〉 :

〈
2Y ,∪〉→ 〈Y,�〉 mapping each set S ∈ 2Y to its join �S in Y .

In order to obtain the lifting we define β〈X,�〉 : 2×XA → 2×XA to be the
identity function on 2×XA for every join semilattice 〈X,�〉 which obviously
yields a natural isomorphism β. Using (7) we construct the natural transforma-
tion α where for each setX the join preserving function αX : 22×XA → 2×(2X)A

is given by, for every S ∈ 22×XA
,
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αX(S) =
〈⊔
{o | 〈o, s〉 ∈ S} ,

⊔
{s | 〈o, s〉 ∈ S}

〉
. (13)

The lifted left adjoint L : DA → DJA performs the powerset construction on
a deterministic automaton: For a deterministic automaton c : X → 2×XA the
deterministic join automaton L(c) : 2X → 2× (2X)A is given by, for all S ∈ 2X ,

L(c)(S) =
〈⊔
{π1(c(x)) | x ∈ S} ,

⊔
{π2(c(x)) | x ∈ S}

〉
. (14)

The lifted right adjoint R : DJA → DA takes a DJA and interprets it as DA
by forgetting about its join property.

4.4 Codeterminization of Deterministic Join Automata

Finally, we will describe an unusual construction translating DJA into CDA,
based on adjunction . It is unusual, since the unit of the adjunction (which
must be join-preserving) maps every element to the complement (!) of its upward-
closure (more details are given below).

The left adjoint L : JSL→ Setop maps any join semilattice 〈X,�〉 to its base
set X and each join-preserving function f : 〈X,�〉 → 〈Y,�〉 to the Setop-arrow

Lf : X ← Y, Lf(y) =
⊔
{x ∈ X | f(x) � y} . (15)

The right adjoint R : Setop → JSL maps a set X to its powerset 2X equipped
with the subset order, i.e. to the join semilattice

〈
2X ,∪〉

and each Setop-arrow
f : X ← Y to the reverse image f−1[.] : 2X → 2Y . The unit of this adjunction is
given by the join-preserving functions

η〈X,�〉 : 〈X,�〉 → 〈
2X ,∪〉

, x �→ ↑ x = {x′ ∈ X | x′ �� x} (16)

for every join semilattice 〈X,�〉 and the counit is given by, for every set X,

εX : 2X ← X, x �→ {x} . (17)

We construct a natural isomorphism β :
〈
2A× +1,∪〉⇒ 〈

2× (2−)A,�〉
in order

to get a lifting. For every join semilattice 〈X,�〉 we take βX to be the same
function as in (8) of our first example given in Sect. 3.2 and claim that this is
a join-preserving function: for two sets Q1, Q2 ∈ 2A×X+1 let 〈o, s〉 := βX(Q1 ∪
Q2) and 〈oi, si〉 = βX(Qi) for i ∈ {1, 2} then we have o = χQ1∪Q2(�) =
max {χQ1(�), χQ2(�)} = max {o1, o2} = o1 � o2 and for each a ∈ A we have

s(a) = {x ∈ X | 〈a, x〉 ∈ Q1 ∪Q2}
= {x ∈ X | 〈a, x〉 ∈ Q1} ∪ {x ∈ X | 〈a, x〉 ∈ Q2} = s1(a) ∪ s2(a)

which can be generalized to arbitrary unions.
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We calculate α : 2× A ⇐ A× + 1 where for every join semilattice 〈X,�〉
the function α〈X,�〉 is given by α〈X,�〉(�) = 〈0, (s� : A → X, s�(a) = �)〉 and

α〈X,�〉(〈a, x〉) =

〈

1,

(

s〈a,x〉 : A → X, s〈a,x〉(a′) =

{
x, a′ = a

�, a′ �= a

)〉

. (18)

The lifted left adjoint L : DJA→ CDA maps a DJA c : 〈X,�〉 → 〈
2×XA,�〉

to the CDA Lc : X ← A×X+1 whose unique final state is the join of the non-
final states of the original automaton, i.e. Lc(�) =

⊔ {x′ ∈ X | π1(c(x′)) = 0}.
For every action a ∈ A and every state x ∈ X the unique a-predecessor of x is
the join of all the states of the original automaton whose a-successor is less or
equal to x, i.e. Lc(〈a, x〉) =

⊔ {x′ ∈ X | π2(c(x′))(a) � x}.
The lifted right adjoint R : CDA→ DJA maps a CDA d : Y ← A× Y + 1

(which can also be regarded as nondeterministic automaton) to its determiniza-
tion R(d) :

〈
2Y ,∪〉 → 〈

2× (2Y )A,�〉
via the usual powerset construction, i.e.

for every S ∈ 2Y we have R(d)(S) = βY ◦ d−1[S]. Since the reverse image of any
function preserves arbitrary unions, this is indeed a DJA.

Example 3. Take another look at Fig. 1. The DJA of Example 2 (in the middle)
is transformed into a CDA with the same state set X = {⊥, x, y, u,�} (the
diagram on the right). Its unique final state is ⊥ (the join of the non-final states)
and the unique a-predecessor of a state is the join of the previous a-predecessors,
for instance the new a-predecessor of ⊥ is y (the join of ⊥, u, y). If we transfer
this automaton into a DJA with state set 2X via the right adjoint the unit
η(X,�) maps every state to the complement of its upward-closure. For instance
state x is mapped to {⊥, u, y}.

5 Linear Weighted Automata

In the previous sections we looked at automata over Set, Rel and JSL. Now
we will look at automata over the category Vect of linear maps between vec-
tor spaces called linear weighted automata. There are two flavors: input lin-
ear weighted automata (category: WAuti) and output linear weighted automata
(WAuto). We will use Theorem 1 to obtain an adjunction between WAuti
and WAuto. We have taken this example from [3, Section 4] and extended it
from finite to arbitrary vector spaces. For this section, let A be an arbitrary set
(not necessarily finite).

5.1 Vector Spaces

Let us recall some facts about the category Vect of vector spaces. To begin
Vect has all products and coproducts. Let V and W be vector spaces. The
product of V and W is simply the cartesian product V ×W with coordinatewise
addition and scalar multiplication. The coproduct of V and W is V × W as
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well; the coprojections V κ0−→ V ×W κ1←− W are given by κ0(v) = (v, 0) and
κ1(w) = (0, w) for v ∈ V and w ∈W .

Similarly, given a set B the vector space V B of functions from B to V is the
B-fold product of V . However, the coproduct of infinitely many vector spaces is a
bit more interesting. Let B be a set and V a vector space. The B-fold coproduct
of V is the following subspace of V B .

B · V := { f ∈ V B | supp f is finite }

Here supp f := {b ∈ B | f(b) �= 0} denotes the support of f ∈ V B . Let b ∈ B
be given. The b-th coprojection κb : V → B · V is given by, for every v ∈ V :
κb(v)(b) = v and κb(v)(b′) = 0 for all b′ ∈ B with b′ �= b.

Note that the B-fold product and the B-fold coproduct coincide, i.e. B ·V =
V B , if and only if V = {0} or B is finite. In fact, we even have B · R ∼= R

B if
and only if B is finite.

5.2 Input Linear Weighted Automata

An input linear weighted automaton is a linear map
of the form c : A·V +R→ V . That is, it is an algebra
on Vect of type A·( )+R. Accordingly we define the
category WAuti of input linear weighted automata
to be Alg (A · ( ) + R).

For an example of an input linear weighted automaton we draw on our expe-
riences with turning on electrical devices such as printers and projectors. Let
us say that the state of such device is either “ON” or “OFF” or a superposi-
tion of both. We can represent the state space as R

2 where ON := 〈1, 0〉 and
OFF := 〈0, 1〉. When we approach the device it is fair to say it is as likely that
we find it running as it is that we find it turned off. So the initial state is

I := 〈0.5, 0.5〉 = 0.5 · ON + 0.5 · OFF .

When the device is turned on and we press the “power on” button, surely nothing
will happen, but when the device is turned off and the button is pressed the
device will only turn on with probability, say, 0.75 (see diagram above).

Formally, pressing the button is represented by a linear map P : R
2 → R

2

with P (ON) = 〈1, 0〉 and P (OFF) = 〈0.75, 0.25〉. There is precisely one such P :

P (〈x, y〉) =
(

1 0.75
0 0.25

)(
x
y

)

for x, y ∈ R .

Together, the initial state I and P form an input linear weighted automaton
c : A · R2 + R→ R

2 with A := {press}. Indeed, c is given by, for x, y, μ ∈ R,

c( 〈(press, 〈x, y〉), μ〉 ) =
(

1 0.75
0 0.25

) (
x
y

)

+ μ

(
0.5
0.5

)

.
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5.3 Output Linear Weighted Automata

An output linear weighted automaton is a linear map
of the form d : V → R × V A. That is, it is a coalge-
bra on Vect of type R× ( )A. The category of out-
put linear weighted automata WAuto is the category
Coalg

(
R× ( )A)

of coalgebras for R× ( )A.
We get an example of an output linear weighted automaton (see diagram)

if we reverse all arrows of the input linear weighted automaton of Sect. 5.2.
Formally, let d : R

2 → R× (R2)A with A = {press} be given by, for x, y ∈ R,

d(〈x, y〉) =
(

(
0.5 0.5

)
(
x
y

)

, λaA.
(

1 0
0.75 0.25

) (
x
y

) )

.

We could say that the output linear weighted automaton d is the dual (or trans-
pose) of the input linear weighted automaton c. We will generalize this construc-
tion to arbitrary input linear weighted automata using the dual of a vector space
(see below) and Theorem 1.

5.4 Dual of a Vector Space

Let V be a vector space. The dual of V is the following subspace of R
V .

V ∗ :=
{
ϕ ∈ R

V | ϕ is linear
}

Let us determine the dual of R
n for some natural number n. Recall that for

every linear map ϕ : R
n → R there is a unique u ∈ R

n with, for all x ∈ R
n,

ϕ(x) = u1x1 + · · · + unxn ≡ u · x .
So we get a bijection Φ : R

n → (Rn)∗ given by, for x, u ∈ R
n

Φ(u)(x) = u · x . (19)

It is not hard to see that Φ is linear, so (Rn)∗ is isomorphic to R
n. Consequently,

V ∗ ∼= V for any finite dimensional vector space V .
For an infinite dimensional vector space V the situation is different. Let B

be a basis for V (so B ·R ∼= V and B is infinite). Define Ψ : (B ·R)∗ → R
B by, for

ϕ ∈ (B ·R)∗ and b ∈ B, Ψ(ϕ)(b) = ϕ(b). Then it is not hard to see that Ψ is an
isomorphism. Since B is infinite we know that B · R �∼= R

B , so B · R �∼= (B · R)∗.
Hence V ∗ �∼= V for any infinite dimensional vector space V .

To apply Theorem 1 to the dual vector space construction we need to recog-
nize the assignment V �→ V ∗ as part of an adjunction. To begin, note that
V �→ V ∗ extends to a functor ( )∗ : Vect → Vectop as follows. Given a linear
map f : V →W define f∗ : W ∗ → V ∗ by, for ϕ ∈W ∗, f∗(ϕ) = ϕ ◦ f .

This also gives us a functor ( )∗ : Vectop → Vect. Now, given a vector
space V define ιV : V → V ∗∗ by, for v ∈ V and ϕ ∈ V ∗, ιV (v)(ϕ) = ϕ(v). Then
we have an adjunction 〈( )∗ � ( )∗, ι, ι〉 : Vect→ Vectop.

If V ≡ R
n for some n ∈ N, then ιV is an isomorphism. So if we restrict

the adjunction to the category FVect of linear maps between finite dimensional
vector spaces we get a duality 〈( )∗ � ( )∗, ι, ι〉 : FVect→ FVectop.
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5.5 Dual of a Linear Weighted Automaton

We will now lift the adjunction between Vect and Vectop. The result will be:

For a vector space V define βV : (A·V +R)∗ → R×(V ∗)A by, for f ∈ (A·V +R)∗,

βV (f) =
〈
f
(
κ1(1)

)
, λaAλvV . f

(
κ0

(
κa(v)

))〉
.

Then βV is invertible and we get a natural iso β : (A · ( ) + R)∗ → R× (( )∗)A.
Hence we get an adjunction lifting by Theorem 1 as depicted above.

Let c : A · V + R→ V be an input linear weighted automaton. Then

co : V ∗ → R× (V ∗)A and co = βV ◦ c∗.

If we take c to be as depicted in the diagram in Sect. 5.2 then co will be as depicted
in the diagram in Sect. 5.3 (if we identify (R2)∗ with R

2 via the isomorphism in
Eq. 19).

Let d : V → R× V A be an output linear weighted automaton. Then

di : A · V ∗ + R→ V ∗ and di = d∗ ◦ αV ,

where αV : A · V ∗ + R→ (R× V A)∗ and for h ∈ A · V ∗, μ, ν ∈ R, f ∈ V A,

αV (〈h, ν〉)(〈μ, f〉) = μ · ν +
∑

a∈A
h(a)

(
f(a)

)
. (20)

If we take d as in the diagram of Sect. 5.3, then di will be as depicted in the
diagram of Sect. 5.2. In particular, we see that (di)o ∼= c. More generally, since
we have a duality 〈( )∗ � ( )∗, ι, ι〉 : FVect→ FVectop we get a duality

〈
( )i � ( )o, ι, ι

〉
: FWAuto → FWAuti

where FWAuto and FWAuti are variants of WAuto and WAuti, respectively,
for finite dimensional vector spaces.
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6 Checking Behavioral Equivalences

Finally, we will show how the results on adjunctions can be used to check behav-
ioral equivalences. Since our coalgebras do not necessarily live in Set, where we
could address elements of a carrier set, we use the following alternative defi-
nition, where we specify whether two arrows are behaviorally equivalent. This
is reminiscent of equipping a coalgebra with start states, similar to the initial
states of an automaton.

Definition 4 (Behavioral Equivalence). Let C be a category, F : C→ C be
an endofunctor such that a final F -coalgebra ω : Ω → FΩ exists. Furthermore
let c1 : X1 → FX1 and c2 : X2 → FX2 be two F -coalgebras and U be a C-object.

We say that two C-arrows x1 : U → X1, x2 : U → X2 are behaviorally
equivalent (in symbols x1 ∼c1,c2F x2), whenever the diagram on the left commutes
where !1 : c1 → ω and !2 : c2 → ω are the unique coalgebra homomorphisms into
the final coalgebra.

In Set the choice for U will typically be a singleton
set and then the problem reduces to asking whether
two given states are behaviorally equivalent.

Now assume that we have an adjunction
〈L � R, η, ε〉 : C → D that is lifted to coalgebras

as specified in Definition 3. Now, since R is a right adjoint, it preserves limits,
specifically it preserves the final coalgebra. Let us take another look at the first
diagram in Sect. 3: It can easily be determined that A∗, the set of all finite words,
is the carrier of the final coalgebra in Setop. Via the right adjoint, this trans-
lates to the carrier set A∗ in Rel, where the arrow !1 into the final coalgebra is
a relation, relating each state with the words that are accepted by it (in [8] this
final coalgebra is discussed in detail). The final coalgebra can also be transferred
into JSL and Set, where it has carrier set 2A∗

.
Hence, the adjunctions allow to construct final coalgebras and to transfer

results about final semantics from other categories. Furthermore, it is possible
to check behavioral equivalence in a different category, by translating queries via
the adjunction.

Proposition 1. Let C be a category, F : C → C and G : D → D be endo-
functors, 〈L � R, η, ε〉 : C → D be an adjunction together with a lifting in the
sense of Definition 3, i.e. an adjunction

〈
L � R, η, ε〉 : Coalg (F )→ Coalg (G).

Furthermore assume that a final G-coalgebra exists and that R is faithful.
Let d1 : Y1 → GY1, d2 : Y2 → GY2 be two G-coalgebras and let y1 : U → Y1,

y2 : U → Y2 be two arrows in D. Then the following equivalence holds.

y1 ∼d1,d2G y2 ⇐⇒ Ry1 ∼Rd1,Rd2F Ry2

In all our examples the right adjoint R is faithful. If this is the case and the final
coalgebra exists, this allows us to check behavioral equivalence in a different cat-
egory, where this might be easier or more straightforward. The classical example
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is of course the lifted adjunction between Set and Rel. In order to check lan-
guage equivalence for nondeterministic automata, the standard technique is to
determinize them via the right adjoint into Set. Then, language equivalence can
be checked on the powerset automaton.

7 Conclusion, Related and Future Work

We have shown how to lift adjunctions between categories to adjunctions on
coalgebras. Furthermore we gave several examples for such adjunction liftings
and showed how they can be used to transfer behavioral equivalence checks from
one category to another.

Several open questions remain, both concerning the examples and the gen-
eral technique. Our main example involving deterministic and nondeterministic
automata is strongly related to the powerset monad, since one adjunction is
based on the Kleisli and another on the Eilenberg-Moore construction for this
monad. In this specific case we obtain two more adjunctions by considering
Setop, however this will not work for any monad. Still, it would be interesting
to investigate which monads allow such a rich structure of adjunctions, in what
way these adjunctions can be lifted to adjunctions to coalgebras and whether
this results in well-known constructions. There exists also the comparison func-
tor between the Kleisli and the Eilenberg-Moore category, which however is
not necessarily part of an adjunction. It would be interesting to find out which
behavioral information can be transported over the comparison functor.

In [1] the authors used the adjunction between Rel and Setop in order to
characterize a factorization structure that is employed for a minimization algo-
rithm. Hence, an obvious question is whether other adjunctions can be used for
such algorithmic purposes, for instance for minimizing a coalgebra in one cat-
egory, but using the structure of another category. It also seems plausible that
up-to techniques can be explained in this way, for instance by checking language
equivalence for nondeterministic automata in Rel, using the algebraic structure
of JSL via the comparison functor (similar to [5]).

We also showed how to transfer equivalence checking queries through a right
adjoint. Can they also be transferred in the other direction, via a left adjoint?

Finally, the conditions in Theorem1 (Lifting an Adjunction to Coalgebras)
are sufficient for the lifting to exist. However, it is unclear whether they are also
necessary.

Related Work. The adjunction between Rel and Setop, transforming nonde-
terministic automata into codeterministic automata has already been considered
in [1] and similarly in [8]. The paper [17] is concerned with the adjunction between
Set and JSL and uses it to determinize automata, but different from the approach
in this paper. More concretely, in [17] a nondeterministic automaton specified by
a function X → 2 × (2X)A in Set is translated into a join-preserving function
2X → 2×(2X)A, which does not give an adjunction on coalgebras. Another closely
related paper is [11] which is also concerned with the Kleisli and Eilenberg-Moore
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constructions for the powerset monad and uses the comparison functor in order to
determinize automata. Furthermore our example in Sect. 5 is based on a duality
of categories [3].

Hence, many ideas that are summarized in this paper are not completely new,
but have been stated in various forms. However, we think that it is insightful to
present this theory strictly from the point of view of adjunction lifting and to
clearly spell out what it means to preserve and reflect behavioral equivalences
by adjoints. Furthermore, to our knowledge, the adjunction between join semi-
lattices and Setop, that gives rise to a quite surprising and unusual construction,
has never been studied in this setting.
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Abstract. For each regular language L we describe a family of canonical
nondeterministic acceptors (nfas). Their construction follows a uniform
recipe: build the minimal dfa for L in a locally finite variety V, and apply
an equivalence between the finite V-algebras and a category of finite
structured sets and relations. By instantiating this to different varieties
we recover three well-studied canonical nfas (the átomaton, the jiromaton
and the minimal xor automaton) and obtain a new canonical nfa called
the distromaton. We prove that each of these nfas is minimal relative to a
suitable measure, and give conditions for state-minimality. Our approach
is coalgebraic, exhibiting additional structure and universal properties.

1 Introduction

One of the core topics in classical automata theory is the construction of state-
minimal acceptors for a given regular language. It is well-known that the diffi-
culty of this task depends on whether one has deterministic or nondeterministic
acceptors in mind. First, every regular language L ⊆ Σ∗ is accepted by a unique
minimal deterministic finite automaton (dfa): its states QL are the derivatives
of L, i.e.,

QL = {w−1L : w ∈ Σ∗} where w−1L = {v ∈ Σ∗ : wv ∈ L},

the transitions are K a−→ a−1K for K ∈ QL and a ∈ Σ, the initial state is L,
and a state is final iff it contains the empty word. This construction is due to
Brzozowski [9], and is the basis for efficient dfa minimization algorithms. For
nondeterministic finite automata (nfas) the situation is significantly more com-
plex: a regular language may have many non-isomorphic state-minimal nfas, and
generally there is no way to identify a “canonical” one among them. However,
several authors have recently proposed nondeterministic acceptors that are in
some sense canonical (though not necessarily state-minimal), e.g. the átomaton
of Brzozowski and Tamm [8], the jiromaton1 of Denis, Lemay and Terlutte [10],

1 In [10] the authors called their acceptor “canonical residual finite state automa-
ton”. We propose the shorter “jiromaton” because this is analogous to the átomaton
terminology.

c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 189–210, 2014.
DOI: 10.1007/978-3-662-44124-4 11
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and the minimal xor automaton of Vuillemin and Gama [17]. In each case,
the respective nfa is formed by closing the set QL of derivatives under certain
algebraic operations and taking a minimal set of generators as states. Specifically,

1. the states of the átomaton are the atoms of the boolean algebra generated
by QL, obtained by closing QL under finite union, finite intersection and
complement;

2. the states of the jiromaton are the join-irreducibles of the join-semilattice
generated by QL, obtained by closing QL under finite union;

3. the states of the minimal xor automaton form a basis for the Z2-vector space
generated by QL, obtained by closing QL under symmetric difference.

In this paper we demonstrate that all these canonical nfas arise from a coal-
gebraic construction. For this purpose we first consider deterministic automata
interpreted in a locally finite variety V, where locally finite means that finitely
generated algebras are finite. A deterministic V-automaton is a coalgebra for
the functor TΣ = 2× IdΣ on V, for a fixed two-element algebra 2. In Sect. 2 we
describe a Brzozowski-like construction that yields, for every regular language,
the minimal deterministic finite V-automaton accepting it. Next, for certain vari-
eties V of interest, we derive an equivalence between the full subcategory Vf of
finite algebras and a suitable category V of finite structured sets, whose mor-
phisms are relations preserving the structure. In each case, the objects of V are
“small” representations of their counterparts in Vf , based on specific generators
of algebras in Vf . The equivalence Vf ∼= V then induces an equivalence between
deterministic finite V-automata and coalgebras in V which are nondeterministic
automata.

This suggests a two-step procedure for constructing a canonical nfa for a
given regular language L: (i) form L’s minimal deterministic V-automaton, and
(ii) use the equivalence of Vf and V to obtain an equivalent nfa. Applying this
to different varieties V yields the three canonical nfas mentioned above. For the
átomaton one takes V = BA (boolean algebras). Then the minimal deterministic
BA-automaton for L arises from the minimal dfa by closing its states QL under
boolean operations. The category V = BA is based on Stone duality: BA is
the dual of the category of finite sets, so it has a objects all finite sets, as
morphisms all converse-functional relations, and the equivalence functor BAf →
BA maps each finite boolean algebra to the set of its atoms. This equivalence
applied to the minimal deterministic BA-automaton for L gives precisely L’s
átomaton. Similarly, by taking V = join-semilattices and V = vector spaces over
Z2 and describing a suitable equivalence Vf ∼= V, we recover the jiromaton and
the minimal xor automaton, respectively. Finally, for V = distributive lattices we
get a new canonical nfa called the distromaton, which bears a close resemblance
to the universal automaton [14].

Example 1.1. Consider the language L = (a + b)∗b(a + b)n where n ∈ ω. Its
minimal dfa has ≥ 2n states and its (A) átomaton, (X) minimal xor automaton,
(J) jiromaton and (D) distromaton are the nfas with ≤ n + 3 states depicted
below (see Sect. 3.3).
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The minimal xor automaton accepts L by Z2-weighted acceptance, which is
the usual acceptance in this case. It is a state-minimal nfa, as is the jiromaton.
The state-minimality of the latter follows from a general result (Theorem 4.4).

Generally, the sizes of the four canonical nfas and the minimal dfa are related
as follows:

(a) all the four canonical nfas can have exponentially fewer states than the min-
imal dfa;

(b) the minimal xor automaton and jiromaton have no more states than the
minimal dfa;

(c) the átomaton and distromaton have the same number of states, although
their structure can be very different.

In Sect. 4 we characterize the átomaton, jiromaton, minimal xor automaton
and distromaton by a minimality property. This provides an explanation of the
canonicity of these acceptors that is missing in the original papers. We then use
this additional structure to identify conditions on regular languages that guar-
antee the state-minimality of the canonical nfas. That is, there exists a natural
class of languages where canonical state-minimal nfas exist and can be computed
relatively easily.

Related work. Our paper unifies the constructions of canonical nfas given in
[8,10,17] from a coalgebraic perspective. Previously, several authors have stud-
ied coalgebraic methods for constructing minimal and canonical representatives
of machines, including Adámek, Bonchi, Hülsbusch, König, Milius and Silva [1],
Adámek, Milius, Moss and Sousa [2] and Bezhanishvili, Kupke and Panangaden
[4]. Only the first of these three papers, however, treats the case of nondeter-
ministic automata explicitly – in particular, there the átomaton is recovered as
an instance of projecting coalgebras in a Kleisli category into a reflective sub-
category. This approach is methodologically rather different from the present
paper where a categorical equivalence (rather than a reflection) is the basis for
the construction of nfas.

In [8] the authors propose a surprisingly simple algorithm for constructing
the átomaton of a language L: take the minimal dfa for L’s reversed language,
and reverse this dfa. These steps form a fragment of a classical dfa minimization
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algorithm due to Brzozowski. Recently Bonchi, Bonsangue, Rutten and Silva [6]
gave a (co-)algebraic explanation of this procedure, based on the classical duality
between observability and reachability of dfas. We provide another explanation
in Sect. 3.3.

A coalgebraic treatment of linear weighted automata (of which xor automata
considered here are a special case) appears in [5]; this paper also provides a
procedures for computing the minimal linear weighted automaton.

Finally, our work is somewhat related to work on coalgebraic trace seman-
tics [11]. However, while that work considers coalgebras whose carrier is a the free
algebra of a variety we consider coalgebras whose carriers are arbitrary algebras
from the given variety; this means we consider coalgebras over an Eilenberg-
Moore category (cf. [7,12]).

2 Deterministic Automata

We start with recalling the concept of a finite automaton. Throughout this paper
let us fix a finite input alphabet Σ.

Definition 2.1. (a) A nondeterministic finite automaton (nfa) is a triple N =
(Z,Ra, F ) consisting of a finite set Z of states, transition relations Ra ⊆
Z×Z for each a ∈ Σ and final states F ⊆ Z. Morphisms of nfas are the usual
bisimulations, i.e., relations that preserve and reflect transitions and final
states. If N is equipped with initial states I ⊆ Z we write N = (Z,Ra, F, I).
In this case, N accepts a language LN (I) ⊆ Σ∗ in the usual way.

(b) A deterministic finite automaton (dfa) is an nfa with a single initial state
whose transition relations are functions.

Although the goal of our paper is constructing canonical nondeterministic
automata, we first consider deterministic ones from a coalgebraic perspective.
Given an endofunctor T : V → V of a category V, a T -coalgebra (Q, γ) consists
of a V-object Q and a V-morphism γ : Q → TQ. A coalgebra homomorphism
into another coalgebra γ′ : Q′ → TQ′ is a V-morphism h : Q → Q′ such that
Th ◦ γ = γ′ ◦ h. This defines a category Coalg(T ). If it exists, its terminal object
νT is called the final T -coalgebra.

Assumption 2.2. From now on V is a locally finite variety with a specified
two-element algebra 2 = {0, 1}. That is, V is the category of algebras for some
finitary signature and equations, its morphisms being the usual algebra homo-
morphisms. That V is locally finite means its finitely generated algebras are
finite, equivalently its finitely generated free algebras are finite.

Example 2.3. (a) The category Set� of pointed sets is a locally finite variety,
given by the signature with a constant 0 and no equations. Let 2 ∈ Set�
have point 0.

(b) The category BA of boolean algebras is a locally finite variety: a boolean
algebra on n generators has at most 22n

elements. 2 is the 2-chain 0 < 1.
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(c) The category Vect(Z2) of vector spaces over the binary field Z2 is a locally
finite variety. Here 2 = Z2 as a one-dimensional vector space.

(d) The category JSL of (join-)semilattices with a least element 0 is locally finite:
the finite powerset PfX is the free semilattice on X, so a semilattice on n
generators has at most 2n elements. 2 is the 2-chain 0 < 1.

(e) The category DL of distributive lattices with a least and largest element ⊥
and 
 is locally finite. Again, 2 is the 2-chain 0 < 1.

Definition 2.4. If Q is a join-semilattice then q ∈ Q is join-irreducible if (i)
q �= 0 and (ii) q = r ∨ r′ implies q = r or q = r′. The set of join-irreducibles is
written J(Q) ⊆ Q.

Definition 2.5. AT -coalgebra (Q′, γ′) is a subcoalgebra of (Q, γ) if there exists an
injective coalgebra homomorphismm : (Q′, γ′) � (Q, γ), and a quotient coalgebra
of (Q, γ) if there exists a surjective coalgebra homomorphism e : (Q, γ) � (Q′, γ′).

Definition 2.6. A deterministic V-automaton is a coalgebra for the functor

TΣ : V → V, TΣ = 2× IdΣ = 2× Id× · · · × Id.

Remark 2.7. Hence, by the universal property of the product, a deterministic
V-automaton Q → 2 × QΣ is given by an algebra Q of states, a V-morphism
γε : Q→ 2 defining final states via γ−1

ε ({1}) and, for each a ∈ Σ, a V-morphism
γa : Q → Q representing the a-transitions. In particular, deterministic Set-
automata are precisely the classical (possibily infinite) deterministic automata
without initial states, shortly da’s.

Example 2.8. (a) A deterministic Set�-automaton is a da whose carrier is a
pointed set and whose point is a non-final sink state; these are the partial
automata of [16].

(b) A deterministic BA-automaton is a da with a boolean algebra structure on
the states Q such that (i) the final states form an ultrafilter, (ii) q a−→ q′ and
r
a−→ r′ implies q ∨ r a−→ q′ ∨ r′ and ¬q a−→ ¬q′, and (iii) ⊥ is a non-final sink

state.
(c) A deterministic Vect(Z2)-automaton is a da with a Z2-vector space structure

on the states Q such that (i) the final states F ⊆ Q satisfy 0 /∈ F and also
q + r ∈ F iff either q ∈ F or r ∈ F but not both, (ii) q a−→ q′ and r

a−→ r′

implies q + q
a−→ r + r′, and (iii) 0 is a non-final sink state.

(d) A deterministic JSL-automaton is a da with a join-semilattice structure on
the states Q such that (i) the final states form a prime filter, (ii) q a−→ q′ and
r

a−→ r′ implies q + r
a−→ q′ + r′, and (iii) 0 is a non-final sink state. Recall

that a prime filter is an upwards closed F ⊆ Q where 0 /∈ F and q + q′ ∈ F
iff q ∈ F or q′ ∈ F .

(e) A deterministic DL-automaton is a da with a distributive lattice structure
on the states Q such that (i) the final states form an prime filter, (ii) q a−→ q′

and r
a−→ r′ implies q ∨ r a−→ q′ ∨ r′ and q ∧ r a−→ q′ ∧ r′, and (iii) ⊥ is a

non-final sink state and 
 is a final one.
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Remark 2.9. For finitary endofunctors T , Milius [15] introduced the concept of a
locally finitely presentable coalgebra: it is a filtered colimit of coalgebras carried
by finitely presentable objects. In the present context the finitely presentable
objects are precisely the finite algebras in V, so we speak about locally finite
coalgebras. A TΣ-coalgebra is locally finite iff from each state only finitely many
states are reachable by transitions.

Remark 2.10. 1. The final TΣ-coalgebra in Set is νTΣ = PΣ∗, the set of formal
languages over Σ, with transitions L a−→ a−1L for a ∈ Σ and final states
precisely those languages containing ε. Importantly, νTΣ arises as the ωop-
limit of TΣ ’s terminal sequence (TnΣ1)n<ω, see [3]. Since for any variety V
the forgetful functor from V to Set creates limits, the final TΣ-coalgebra νTΣ
in V exists and lifts the one in Set, so νTΣ has underlying set PΣ∗ and the
transitions and final states are as above.

2. The final locally finite TΣ-coalgebra is denoted by ρTΣ . In V = Set this is the
sub-da of νTΣ = PΣ∗ given by the set of all regular languages over Σ. This
generalizes to any locally finite variety V: ρTΣ is a subcoalgebra of νTΣ and
its underlying set is the set of regular languages.

Example 2.11. (a) In Set� the carrier of the final coalgebra νTΣ has the constant
∅, which ρTΣ inherits.

(b) In BA, νTΣ has the usual set-theoretic boolean algebra structure. The prin-
cipal filter ↑ε is an ultrafilter and the transition maps L �→ a−1L are boolean
morphisms.

(c) In Vect(Z2) the vector space structure on νTΣ and ρTΣ is given by symmetric
difference and ∅ is the zero vector.

(d) In JSL the join-semilattice structure on νTΣ is union and ∅. The final states
form a one-generated upset ↑ε which is a prime filter because the language
{ε} is join-irreducible in νTΣ . The transitions maps are join-semilattice mor-
phisms.

(e) In DL we have the usual set-theoretic lattice structure on νTΣ . The final
states form a prime filter and the transition maps are lattice morphisms.

Notation 2.12. Let (Q, γ) be a locally finite TΣ-coalgebra. The unique coalge-
bra homomorphism into ρTΣ is written:

Lγ : Q→ ρTΣ .

The function Lγ sends q ∈ Q to the regular language Lγ(q) ⊆ Σ∗ the state q
accepts.

Definition 2.13. Let V ∈ V denote the free algebra on one generator g. Then
a pointed TΣ-coalgebra (Q, γ, q0) is a TΣ-coalgebra (Q, γ) with a morphism q0 :
V → Q. The latter may be viewed as the initial state q0(g) ∈ Q. The language
accepted by (Q, γ, q0) is Lγ(q0). We say that (Q, γ, q0) is



Canonical Nondeterministic Automata 195

1. reachable if it is generated by q0, i.e., no proper subcoalgebra contains q0;
2. simple if it has no proper quotients, i.e., for every quotient coalgebra e :

(Q, γ) � (Q′, γ′) the map e is bijective;
3. minimal if it is reachable and simple.

Lemma 2.14. (Q, γ, q0) is reachable iff the algebra Q is generated by those q ∈
Q reachable from q0 by transitions. It is simple iff Lγ is injective.

Brozozowski’s construction of the minimal dfa for a regular language (see
Introduction) generalizes to deterministic V-automata as follows:

Construction 2.15. For any regular language L ⊆ Σ∗ let ALV be the pointed
TΣ-coalgebra (QL, γ, L) where:

1. QL is the subalgebra of νTΣ = PΣ∗ generated by all derivatives w−1L
(w ∈ Σ∗).

2. The transitions are K a−→ a−1K for a ∈ Σ and K ∈ QL.
3. K ∈ QL is final iff ε ∈ K.

Lemma 2.16. For every regular language L ⊆ Σ∗, ALV is a well-defined finite
pointed TΣ-coalgebra.

Proof. L is regular so it has only finitely many distinct derivatives w−1L. Hence
QL is a finite algebra because V is a locally finite variety. It remains to show that
γa : QL → QL and γε : QL → 2 as specified in points 2. and 3. are well-defined
V-morphisms. Recall the final locally finite TΣ-coalgebra (ρTΣ , γρ). Then

γε = QL ↪→ ρTΣ
(γρ)ε−−−→ 2

is a V-morphism since ρTΣ is a lifting of the da of regular languages, see
Remark 2.10. Furthermore (γρ)a : ρTΣ → ρTΣ is defined (γρ)a(K) = a−1K
i.e. the derivative a−1(−) preserves the algebraic operations. Thus QL is closed
under derivatives, so γa is a well-defined algebra morphism. ��
Example 2.17. (a) In Set�, we have QL = {∅} ∪ {w−1L : w ∈ Σ∗}.
(b) In BA, QL is the closure of {∅} ∪ {w−1L : w ∈ Σ∗} under union and com-

plement.
(c) In Vect(Z2), QL is the closure of {w−1L : w ∈ Σ∗} under symmetric differ-

ence.
(d) In JSL, QL is the closure of {∅} ∪ {w−1L : w ∈ Σ∗} under union.
(e) In DL, QL is the closure of {∅, Σ∗} ∪ {w−1L : w ∈ Σ∗} under union and

intersection.

Remark 2.18. The category Coalg(TΣ) of TΣ-coalgebras has a factorization sys-
tem (surjective homomorphism, injective homomorphism) lifting the usual fac-
torization system (surjective, injective) = (regular epi, mono) in V.

Construction 2.19. (see [2]). These factorizations give a two-step minimiza-
tion of any finite pointed TΣ-coalgebra (Q, γ, q0):



196 R.S.R. Myers et al.

1. Construct the reachable subcoalgebra (R, δ) ↪→ (Q, γ) generated by q0.
2. Factorize the unique TΣ-coalgebra homomorphism Lδ : (R, δ) → (ρTΣ , γρ)

as:
(R, δ)

s� (R′, δ′)
m
↪→ (ρTΣ , γρ)

Then (R′, δ′, s(q0)) is minimal.

Theorem 2.20. Let L ⊆ Σ∗ be a regular language. Then ALV is (up to isomor-
phism) the unique minimal pointed V-automaton accepting L. It arises from any
pointed finite V-automaton (Q, γ, q0) accepting L by Construction 2.19.

Proof. Viewed as a da, ALV is a subautomaton of the da ρTΣ of regular languages.
Then the state L accepts L. It is reachable because every state is a V-algebraic
combination of those states reachable from L by transitions i.e. L’s derivatives.
It is simple because different states accept different languages, so it is minimal.

Now let (Q, γ, q0) be any pointed TΣ-coalgebra accepting L and (R, δ, q0) its
reachable subautomaton, so every q′ ∈ R arises as a V-algebraic combination
of those states reachable from q0 by transitions. Now Lδ : R → ρTΣ is an
automata morphism, so the languages of states reachable from q0 are precisely
the derivatives of L. Since Lδ is an algebra morphism its image is QL. ��

3 From Deterministic to Nondeterministic Automata

We now know that each regular language L has many canonical deterministic
acceptors: one for each locally finite variety V containing a two-element algebra
2. However this canonical acceptor ALV is generally larger than the minimal dfa
in Set because one has to close under the V-algebraic operations on the regular
languages. In this section we will show how these larger deterministic machines
induce smaller nondeterministic ones. Let us outline our approach:

1. We restrict attention to finite da’s in V, i.e., TΣ-coalgebras with finite carrier.
2. For each of our varieties V of interest, we describe an equivalence G of cat-

egories between the finite algebras Vf and another category V where (i) V’s
objects are “small” representations of their counterparts in Vf , and (ii) V’s
morphisms are relations, not functions (see Lemmas 3.4, 3.8 and 3.10).

3. From G we derive equivalences G and G∗ between (pointed) deterministic
finite V-automata and (pointed) coalgebras in V which are nondeterministic
finite automata, see Lemma 3.17.

4. Applying this equivalence to the minimal deterministic V-automaton ALV gives
a canonical nondeterministic acceptor for L. This is illustrated in Sect. 3.3.

3.1 The Equivalence Between Vf and V
For each of our varieties V of interest there is a well-known description of the
dual category of Vf : we have Stone duality (BAf ∼= Setopf ), Priestley duality
(DLf ∼= Posetopf ), where Posetf is the category of finite posets and monotone
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functions, and the self-dualities JSLf ∼= JSLopf and Vectf (Z2) ∼= Vectf (Z2)op. We
now describe each of these dually equivalent categories as a category V of finite
structured sets and relations. The idea is to represent the finite algebras in V in
terms of a minimal set of generators.

Example 3.1. (a) For any Q ∈ Set� the subset Q \ {0} generates Q; that means
that we can always drop one element.

(b) Any finite boolean algebra Q ∈ BAf is generated by its atoms At(Q), these
being the join-irreducible elements.

(c) Any finite join-semilattice Q ∈ JSLf is generated by its join-irreducibles
J(Q).

(d) A finite dimensional vector space Q ∈ Vectf (Z2) is generated by any basis
B ⊆ Q, although there is no canonical choice of a basis.

(e) Any finite distributive lattice Q ∈ DLf is generated by its join-irreducibles
J(Q).

In the case of Set�f , BAf and Vectf (Z2) we can replace each algebra by a set
of generators and each algebra morphism by a relation between these generators.

Definition 3.2. Let Set� be the category Parf of finite sets and partial functions.
BA is obtained from the category Relf of finite sets and relations by restricting to
relations whose converse is a function. Finally Vect(Z2) has the same objects and
morphisms as Relf although now the composition of R1 ⊆ X×Y and R2 ⊆ Y ×Z
is defined by

R2 •R1 := {(x, z) : |{y : (x, y) ∈ R1, (y, z) ∈ R2}| is odd}.

Notation 3.3. Given a basis GQ of a vector space Q, for each basis vector
z ∈ GQ denote by πz : Q→ {0, 1} the projection onto the z-coordinate.

Lemma 3.4. The following functors G are equivalences of categories where
f : Q→ Q′ is any Vf -morphism:

1. G : Set�f → Parf defined by

GQ = Q \ {0} Gf(z) =
{
f(z) iff(z) �= 0,
undefined otherwise.

2. G : BAf → BA where GQ = At(Q) is the set of atoms and Gf = {(z, z′) ∈
At(Q)× At(Q′) : z′ ≤Q′ f(z)}.

3. G : Vectf (Z2) → Vect(Z2) where GQ chooses a basis and Gf = {(z, z′) ∈
GQ×GQ′ : πz′ ◦ f(z) = 1}.

Finite join-semilattices are represented using closure spaces:



198 R.S.R. Myers et al.

Definition 3.5. For any set X a closure operator (shortly, a closure) on X is
a function clX : PX → PX such that for all S, S′ ⊆ X:

S ⊆ S′

clX(S) ⊆ clX(S′)
, clX(S) ⊇ S, clX ◦ clX = clX .

A closure space X = (X, clX) is a set with a closure defined on it. It is finite if
X is finite, strict if clX(∅) = ∅, separable if x �= x′ implies clX(x) �= clX(x′),
and topological if clX(A ∪ B) = clX(A) ∪ clX(B) for all A,B ⊆ X. A subset
S ⊆ X is closed if clX(S) = S and open if its complement is closed.

Finite posets are well-known to be equivalent to finite T0 topological spaces,
which amount to finite separable topological closures. For finite join-semilattices
we instead use finite strict closures i.e. we do not require separability or preser-
vation of unions.

Example 3.6. Each finite join-semilattice Q has an associated finite strict closure
space GQ = (J(Q), clJ(Q)) where J(Q) ⊆ Q is the set of join-irreducibles and

clJ(Q)(S) = {j ∈ J(Q) : j ≤
∑

s∈S
s} for any S ⊆ J(Q).

For example the closure space associated to the free join-semilattice Pn is
(n, idPn), identifying J(Pn) with n.

Definition 3.7. The category JSL has as objects all finite strict closure spaces
as morphisms all continuous relations. Here a relation R ⊆ X × Y between two
finite strict closure spaces X and Y is called continuous if, for all x ∈ X and
S ⊆ X,

1. R[x] ⊆ Y is closed, and
2. if x ∈ clX(S) then R[x] ⊆ clY (R[S]).

The composition of R1 ⊆ X × Y and R2 ⊆ Y × Z is defined by

R2 •R1 := {(x, z) ∈ X × Z : z ∈ clZ(R2 ◦R1[x])},

and the identity morphism on X is idX = {(x, x′) ∈ X ×X : x′ ∈ clX({x})}.
The following equivalence was derived from a similar one due to Moshier [13].

Lemma 3.8. The functorG : JSLf → JSL, defined on objectsQ as in Example 3.6
and for morphisms f : Q→ Q′ by

Gf = {(j, j′) ∈ J(Q)× J(Q′) : j′ ≤Q′ f(j)},

is an equivalence of categories.



Canonical Nondeterministic Automata 199

Proof. (Sketch) We describe the opposite equivalence H : JSL→ JSLf and also
the unit and counit. Given X = (X, clX) then HX = {S ⊆ X : clX(S) = S} ⊆
PX is the join-semilattice of closed subsets where 0HX = ∅ and S +HX S′ =
clX(S ∪S′). Given a continuous relation R ⊆ X ×Y then HR = λS.clY (R[S]) :
HX → HY is the corresponding algebra morphism. The unit η : Id ⇒ HG is
defined

ηQ = λq ∈ Q.{j ∈ J(Q) : j ≤Q q},
and for X = (X, clX) the counit ε : GH ⇒ Id is defined:

εX = {(K,x) ∈ J(HX)×X : K ∈ J(HX), x ∈ K}.
It is well-typed because J(HX) ⊆ HX ⊆ PX. ��
Definition 3.9. DL has finite posets as objects and as morphisms those relations
R ⊆ P ×Q such that:

1. Each R[p] ⊆ Q is downclosed,
2. If p ≤P p′ then R[p] ⊆ R[p′],
3. R preserves all intersections of downclosed subsets.

idP is the relation {(p, p′) ∈ P × P : p′ ≤P p} and composition is relational
composition.

Lemma 3.10. The functor G : DLf → DL where GQ = J(Q) (considered as a
subposet of Q) and for morphisms f : Q→ Q′

Gf = {(z, z′) ∈ J(Q)× J(Q′) : z′ ≤Q′ f(z)}
is an equivalence of categories.

Proof. G is restriction of the equivalence JSLf ∼= JSL described above. The clo-
sure spaces associated to distributive lattices are precisely the separable topo-
logical ones, so we can replace them by finite posets. This gives the first two
conditions on morphisms, where closed means downwards closed. However semi-
lattice morphisms between distributive lattices need not preserve meets. This is
captured by the third condition. ��

3.2 From Determinism to Nondeterminism

We first restrict the endofunctor TΣ of Definition 2.6 to finite algebras:

TΣ = 2× IdΣ : Vf → Vf
Then for each of our five equivalences G : Vf → V described in the previous
section we have a corresponding functor

TΣ = 1× IdΣ : V → V
where 1 = G2 ∈ V. In each case 1 has carrier {1}.
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Lemma 3.11. There is an equivalence G : Coalg(TΣ)→ Coalg(TΣ) defined by

G(Q, γ) = (GQ, γ′) on objects and Gf = Gf on morphisms,

where γ′ : GQ → 1 × (GQ)Σ is the V-morphism uniquely determined by the
morphisms Gγε : GQ→ 1 and Gγa : GQ→ GQ for each a ∈ Σ.

Given a TΣ-coalgebra δ : Z → TΣZ = 1×ZΣ we write its component maps
as δε : Z → 1 and δa : Z → Z for a ∈ Σ. Notice that these are relations rather
than functions, so TΣ-coalgebras are nondeterministic automata.

Example 3.12. (a) When V = Set� a TΣ-coalgebra δ : X → TΣX consists of:
1. A finite set X.
2. A partial function δε : X → {1} whose domain defines the final states.
3. A partial function δa : X → X for each a ∈ Σ, defining the transitions.
Hence TΣ-coalgebras are partial dfas. The equivalence G assigns to each
deterministic Set�-automaton (Q, γ) the partial dfa (Q\{0Q}, δ) whose final
states are the given ones and q a−→ q′ iff γa(q) = q′ �= 0Q.

(b) When V = BA a TΣ-coalgebra δ : X → TΣX consists of:
1. A finite set X.
2. A converse-functional relation δε ⊆ X×{1} whose domain defines a single

final state.
3. Converse-functional relations δa ⊆ X ×X for a ∈ Σ.
Hence TΣ-coalgebras are reverse-deterministic nfas, i.e., reversing all tran-
sitions yields a dfa. The equivalence G assigns to each deterministic BA-
automaton (Q, γ) an nfa (At(Q), δ) whose states are Q′s atoms. Moreover,
its single final state is the unique atom generating the ultrafilter γ−1

ε ({1})
and z a−→ z′ iff z′ ≤Q γa(z).

(c) If V = Vect(Z2) then a TΣ-coalgebra δ : X → TΣX consists of:
1. A finite set X.
2. An arbitrary relation δε ⊆ X×{1}, amounting to an arbitrary set of final

states by taking the domain.
3. Arbitrary relations δa ⊆ X ×X for each a ∈ Σ.
Hence TΣ-coalgebras are classical nfas. The equivalence G assigns to a deter-
ministic Vect(Z2)-automaton (Q, γ) the nfa (Z, δ) for some chosen basis
Z ⊆ Q. The final states are Z ∩ γ−1

ε ({1}) and z
a−→ z′ iff πz′ ◦ γa(z) = 1, cf.

Notation 3.3.
(d) If V = JSL then a TΣ-coalgebra δ : Z → TΣZ consists of:
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1. A finite strict closure space Z = (Z, clZ).
2. A continuous relation δε ⊆ Z × {1}, equivalently δε’s domain F ⊆ Z is

an open set of final states.
3. Continuous relations δa ⊆ Z × Z.
We call TΣ-coalgebras nondeterministic closure automata. The equivalence
G assigns to each deterministic JSL-automaton (Q, γ) the nondeterministic
closure automaton ((J(Q), clQ), δ) whose states are Q’s join-irreducibles.
The open set of final states is J(Q) ∩ γ−1

ε ({1}) and z a−→ z′ iff z′ ≤Q γa(z).
Note that every nfa can be turned into a nondeterministic closure automaton
by endowing the states with the identity closure, so classical nfas form a
proper subclass.

(e) If V = DL then a TΣ-coalgebra δ : P → TΣP consists of:
1. A finite poset P .
2. A non-empty relation δε ⊆ P ×{1} whose domain is a filter (i.e., a down-

directed upset), these being the final states.
3. Transition relations δa ⊆ P × P such that:

(i) δa[p] is downclosed for each p ∈ P .
(ii) p ≤P q implies δa[p] ⊆ δa[q].
(iii) δa[

⋂
I Ai] =

⋂
I δa[Ai] for downclosed Ai.

Note that reverse-deterministic nfas are the special case where P is discrete.
An important non-discrete example is the universal automaton [14], we recall
it after Corollary 3.21.
The equivalence G assigns to each deterministic DL-automaton (Q, γ) the
TΣ-coalgebra (J(Q), δ) where J(Q) is a subposet of Q. The final states form
the upwards closed set J(Q) ∩ γ−1

ε (1) and z a−→ z′ iff z′ ≤Q γa(z).

Remark 3.13. A morphism f : (Z, δ) → (Z ′, δ′) of TΣ-coalgebras is, by defini-
tion, a V-morphism f : Z → Z ′ satisfying TΣf ◦ δ = δ′ ◦ f , or equivalently:

δε = δ′
ε ◦ f, δ′

a ◦ f = f ◦ δa (a ∈ Σ).

For V = Set�, BA and DL, these morphisms are those relations (from V) which
(i) reflect and preserve transitions and (ii) have z ∈ Z final iff some z′ ∈ f [z] is
final. The cases V = JSL, Vect(Z2) are different because composition in V is not
relational.

3.3 Canonical Nondeterministic Automata

So far we have seen equivalences between deterministic and nondeterministic
automata without initial states. Next, for each of our five running examples V =
Set∗, BA, Vect(Z2), JSL, DL we will extend G : Coalg(TΣ) → Coalg(TΣ) to an
equivalence of pointed coalgebras.

Definition 3.14. Coalg∗(TΣ) is the category whose objects are the pointed TΣ-
coalgebras and whose morphisms f : (Q, γ, q0) → (Q′, γ′, q′

0) are those TΣ-
coalgebra homomorphisms f : (Q, γ) → (Q′, γ′) preserving initial states,
i.e., f ◦ q0 = q′

0.
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Using the equivalence G : Vf → V, a pointed TΣ-coalgebra is a TΣ-coalgebra
(Z, δ) equipped with a V-morphism i : GV → Z. And pointed TΣ-coalgebra
homomorphisms are those TΣ-coalgebra homomorphisms f from (Z, δ) to (Z ′, δ′)
such that f ◦ i = i′. Just as a morphism q0 : V → Q corresponds to an initial
state q0(g), it turns out that a morphism i : GV → Z corresponds to a set of
initial states I = i[g] ⊆ Z, as one would expect for nfas.

Example 3.15. For each V we describe the possible sets of initial states I ⊆ Z
for a TΣ-coalgebra (Z, δ).

(a) If V = Set� then V = {0, g} and GV = {g}. Partial functions i : {g} → Z
are determined by their codomain I = i[g]. Then I is either empty or any
singleton subset.

(b) If V = BA then V = {⊥, g,¬g,
} and GV = {g,¬g}. Given i ⊆ {g,¬g}×Z
then i[g], i[¬g] partition Z so i is determined by I = i[g]. Then I is any
subset of Z.

(c) If V = Vect(Z2) then V = {0, g} and GV = {g}, so the arbitrary relation
i ⊆ {g} × Z is determined by its codomain I = i[g]. Then I is any subset of
Z.

(d) If V = JSL then V = {0, g} and GV = {g} with closure idP{g}. The relation
i ⊆ {g} × Z is determined by I = i[g]. By continuity I ⊆ Z is any closed
subset.

(e) If V = DL then V = {⊥, g,
} is a 3-chain and GV = {g,
} a 2-chain. Given
i ⊆ {g,
} × Z then i[g] ⊆ i[
] and i[{g,
}] = Z implies i[
] = Z, so i is
determined by I = i[g]. Then I is any downclosed subset of Z.

By reinterpreting point preservation relative to I we can finally define the
category of pointed TΣ-coalgebras.

Definition 3.16. For each of our five running examples, Coalg∗(TΣ)’s objects
are triples (Z, δ, I) where (Z, δ) is a TΣ-coalgebra and I ⊆ Z is restricted as
in Example 3.15. The pointed TΣ-coalgebra homomorphisms f : (Z, δ, I) →
(Z ′, δ′, I ′) are TΣ-coalgebra homomorphisms f : (Z, δ)→ (Z ′, δ′) such that:

1. If V = Set�, BA or DL then I ′ = f [I].
2. If V = JSL then I ′ is the closure of f [I].
3. If V = Vect(Z2) then I ′ = {z′ ∈ Z ′ : |I ∩ f̆ [z′]| is odd}.
where f̆ ⊆ Z ′ × Z is the converse relation.

Lemma 3.17. There is an equivalence of pointed coalgebras G∗ : Coalg∗(TΣ)→
Coalg∗(TΣ) defined by

G∗(Q, γ, q0) = (G(Q, γ), I) G∗f = Gf

where I = Gq0[g] ⊆ GQ.

Let us spell out the equivalence G∗ for each of our varieties V. For the rest
of this section fix a TΣ-coalgebra A = (Q, γ, q0) and a regular language L ⊆ Σ∗.
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We give an explicit description of the nfa G∗A and, in particular, of the canonical
nfa for L obtained by applying G∗ to ALV from Construction 2.15.
(a) The Minimal Partial Dfa . If V = Set� then G∗A is the partial dfa
(Q\{0Q}, δ, I) that arises from A by deleting the state 0Q along with all in- and
outgoing transitions. Hence the initial states are I = {q0} if q0 �= 0Q and I = ∅
if q0 = 0Q. Clearly G∗A (viewed as an nfa) accepts A’s language.

In particular, G∗(ALSet�
) is the minimal partial dfa of L. It has states

QL = {w−1L : w ∈ Σ∗} \ {∅},

transitions K a−→ a−1K whenever a−1K �= ∅, and a state is final iff it contains ε.
The initial states are {L} if L �= ∅ and ∅ otherwise. Hence the minimal partial
dfa is the trim part of L’s minimal dfa (obtained by deleting its sink state, if it
exists).
(b) The Átomaton . If V = BA then G∗A is the nfa (At(Q), δ, I) with initial
states I = {q ∈ At(Q) : q ≤Q q0}. It accepts A’s language. In particular, G∗(ALBA)
is called the átomaton of L, see [8]. Its states

QL = At(〈{w−1L : w ∈ Σ∗}〉νTΣ
)

are the atoms of the finite boolean subalgebra of PΣ∗ generated by L’s deriv-
atives. An atom K is an initial state if K ⊆ L, the final states are the atoms
containing ε, and one has transitions K a−→ K ′ whenever K ′ ⊆ a−1K. Explicitly
constructing QL can be difficult. Fortunately, a simpler method is known [8]:

1. Construct the minimal dfa for L’s reversed language.
2. Construct its reversed nfa i.e. flip initial/final states and reverse all transi-

tions.

The átomaton is isomorphic to the resulting nfa as we now explain coalge-
braically. Let T ′

Σ = 2 × IdΣ : Setf → Setf . Then the usual reversal of finite
pointed deterministic automata defines a dual equivalence:

H :(Coalg∗(T
′
Σ))op → Coalg∗(TΣ)

Hfop ={(z′, z) : z ∈ f−1({z′})} ⊆ Z ′ × Z,
Since reachability (no proper subobjects) and simplicity (no proper quotients)
are dual concepts (see Definition 2.13), a T ′

Σ-coalgebra is minimal iff its image
under H is minimal, implying the above description.

Example 3.18. 1. The átomaton for L = (a+ b)∗b(a+ b)n in Example 1.1 arises
by constructing the minimal dfa for the reversed language rev(L) and taking
the reverse nfa. Its atoms are {(a+ b)∗a(a+ b)n, L} ∪ {(a+ b)j : 0 ≤ j ≤ n}.

2. The átomaton can have exponentially many more states than the minimal
dfa, e.g. for L = (a+ b)nb(a+ b)∗ it has ≥ 2n states.

(c) The Minimal Xor Automaton . If V = Vect(Z2) then G∗A is the nfa
(Z, δ, I) where Z ⊆ Q is a basis and I = {z ∈ Z : πz(q0) = 1}, see Notation 3.3.
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It accepts A’s language by Z2-weighted nondeterministic acceptance: a word
w ∈ Σ∗ is accepted iff its number of accepting paths is odd (this is different
than the usual acceptance condition of standard nondeterministic automata).

The nfa G∗(ALVect(Z2)
) is called the minimal xor automaton of L, see [17].

Note that its construction depends on the choice of a basis, so the minimal xor
automaton is only determined up to isomorphism in the category of pointed
TΣ-coalgebras. We provide a new way to construct it:

1. Construct L’s átomaton (Z,Ra, F, I) and determine the collection C ⊆ PZ
of all subsets of Z which are reachable from I.

2. Find any minimal Q ⊆ PZ whose closure under set-theoretic symmetric
difference equals C’s closure.

3. Build the nfa (Q, R′
a,Q ∩ F, I) where R′

a(y, y
′) iff πy′(Ra[y]) = 1 and I =

{y ∈ Q : πy(I) = 1}.
Briefly, closure under boolean operations implies closure under symmetric

difference. Then ALVect(Z2)
⊆ ALBA as da’s, leading to the above algorithm. Since

the basis Q has |Q| ≤ |C| = ∣
∣{w−1L : w ∈ Σ∗}∣∣ it follows that the minimal xor

automaton is never larger than the minimal dfa of L, see [17].

Example 3.19. Take the átomaton of Example 1.1, with states Z = {x} ∪ {zi :
0 ≤ i ≤ n+1} and reachable subsets C = {S ⊆ Z : x /∈ S, z0 ∈ S}. One can verify
that (i) the closure of Q = {{zi} : 0 ≤ i ≤ n + 1} under symmetric difference
is the closure of C and (ii) Q is minimal. The induced nfa is the minimal xor
automaton of Example 1.1. Alternatively Q = {{z0, zi} : 0 ≤ i ≤ n + 1} ⊆ C
yields a different nfa.

(d) The Jiromaton . If V = JSL then G∗A is the nondeterministic closure
automaton (J(Q), δ, I) with initial states I = {z ∈ J(Q) : z ≤Q q0} where
J(Q) is the closure space of Example 3.6. The underlying nfa (forgetting the
closure) accepts A’s language. In particular, G∗(ALJSL)’s underlying nfa is called
the jiromaton of L, see [10]. Its states

QL = J(〈{w−1L : w ∈ Σ∗}〉νTΣ
)

are the join-irreducibles of the finite join-subsemilattice of PΣ∗ generated by L’s
derivatives. Since the latter form the minimal generating set,QL consists of those
L-derivatives not arising as unions of other derivatives – the prime derivatives.
Therefore, the jiromaton has no more states than the minimal dfa. Its structure
is analogous to the átomaton: K ∈ QL is initial iff K ⊆ L, final iff ε ∈ K and
K

a−→ K ′ iff K ′ ⊆ a−1K.
An algorithm to construct the jiromaton from any nfa accepting L is given

in [10].

Example 3.20. In the jiromaton of Example 1.1, the state z0 accepts L and state
zi accepts L+(a+b)i−1 for each i > 0. These are the prime derivatives of L. The
closure is defined clZ(∅) = ∅, clZ(S) = {z0} ∪ {S} for S �= ∅. It is topological:
the closed sets are the downsets of the poset where z0 ≤Z zi for all 0 ≤ i ≤ n+1.
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(e) The Distromaton . If V = DL then G∗A = (J(Q), δ, I) with initial states
I = {z ∈ J(Q) : z ≤Q q0}. Forgetting J(Q)’s poset structure, the underlying nfa
accepts A’s language. We call G∗(ALDL) the distromaton of L. Its states

QL = J(〈{w−1L : w ∈ Σ∗}〉νTΣ
)

are the join-irreducibles of the sublattice of PΣ∗ generated by L’s derivatives.
One can close under intersections and then unions (which cannot add or remove
join-irreducibles) so QL consists of finite intersections

⋂
i w

−1
i L not arising as

finite unions of other such intersections. The structure is again analogous to the
átomaton and the jiromaton: K ∈ QL is initial iff K ⊆ L, final iff ε ∈ K and
K

a−→ K iff K ′ ⊆ a−1K. There is another way to construct the distromaton,
analogous to the construction of the átomaton:

1. Take the minimal pointed dfa (Z, a−→, z0, F ) for the reversed language rev(L)
where Z is ordered by language-inclusion.

2. Build the pointed TΣ-coalgebra (Zop, δ, F ) with final states ↓Z z0 and z′ ∈
δa[z] iff z′ a−→ y ≥Z z.
The initial states F are downclosed in Zop and the final states are upclosed

in Zop, as required. The proof that this is isomorphic to the distromaton is
analogous to our earlier argument regarding the átomaton. Briefly, let T ′

Σ =
2 × IdΣ : Posetf → Posetf where 2 is the two-chain. Then there is a dual
equivalence

H : (Coalg∗(T
′
Σ))op → Coalg∗(TΣ),

which ‘reverses’ finite pointed deterministic automata equipped with a compat-
ible ordering. The minimal T ′

Σ-coalgebra for L is the usual minimal dfa, now
equipped with the language-inclusion ordering. Its image under H is again min-
imal, yielding the above description of the distromaton.

Corollary 3.21. L’s átomaton and distromaton have the same number of states,
namely, the number of states of the minimal dfa for the reversed language rev(L).

Example 3.22. The distromaton in Example 1.1 has order z0 ≤Z zi and zi ≤Z 

for all 0 ≤ i ≤ n + 1. We have the state 
 because Σ∗ is not the union of
non-empty intersections of L’s derivatives, see Example 3.20. It arises from the
jiromaton by adding a final sink state, see Corollary 4.6.

We finally mention the well-studied universal automaton for L [14]. It is the
nfa with states

Q = {
⋂

w∈I
w−1L : I ⊆ω Σ∗}

ordered by inclusion, where K is final iff ε ∈ K and K
a−→ K ′ iff K ′ ⊆ a−1K.

The distromaton is never larger and often much smaller because one restricts to
the join-irreducible intersections. However the universal automaton has its own
advantages: in a sense every state-minimal nfa lies inside it.
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4 State Minimality and Universal Properties

This final section is split into three parts.

1. We prove L’s jiromaton is minimal amongst all nondeterministic acceptors
of L relative to a suitable measure (Sect. 4.1).

2. We give a sufficient condition on L such that the jiromaton is state-minimal
and the distromaton and átomaton have at most one more state (Sect. 4.2).

3. We characterize each of our canonical nfas amongst subclasses of nondeter-
ministic acceptors (Sect. 4.3).

4.1 The Jiromaton is Minimal

There is a measure on finite nondeterministic automata such that L’s jiromaton
is smaller than any other nfa accepting L. For any nfa N = (Q,Ra, F ) and I ⊆ Q
let LN (I) ⊆ Σ∗ be the accepted language. Define the following measures:

|N | = |Q| , acc(N) = |{LN (I) : I ⊆ Q}| , tr(N) =
∑

a∈Σ
|Ra| .

These are the number of states, the number of distinct languages accepted and
the number of transitions. Let JL be L’s jiromaton without initial states. Recall
that isomorphisms of nfas are bijective bisimulations (see Definition 2.1).

Theorem 4.1. The jiromaton JL is (up to isomorphism) the unique nfa accept-
ing L such that for every nfa N accepting L:

(1) acc(JL) ≤ acc(N),
(2) If additionally acc(JL) = acc(N) then either:

(a) |JL| < |N | or
(b) |JL| = |N | and tr(N) ≤ tr(JL).

Proof. Since JL’s individual states accept derivatives of L, it follows that JL
accepts precisely the unions of derivatives of L. Any nfa N accepting L accepts
these languages, so acc(JL) ≤ acc(N). Suppose acc(JL) = acc(N), so N
accepts precisely the unions of L’s derivatives. Then each prime derivative has
a distinct state in N accepting it, as it cannot arise as the union of other deriv-
atives, so |JL| ≤ |N |. Lastly if acc(JL) = acc(N) and |JL| = |N | then there
is language preserving bijection between N ’s states and the set of prime deriv-
atives PL, so assume N ’s carrier is PL. Given K

a−→ K ′ in N we must have
K ′ ⊆ a−1K, so there is a corresponding transition in JL. Hence tr(N) ≤ tr(JL)
and (2) holds. Moreover, in case tr(N) = tr(JL) the previous argument shows
that N and JL are isomorphic. Thus the conditions (1) and (2) determine JL
up to isomorphism. ��
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4.2 Conditions for Canonical State-Minimality

In the following let dL and nL be the minimal number of states of a dfa (respec-
tively nfa) accepting the regular language L. For any state-minimal nfa N =
(nL, Ra, F ) accepting L via I ⊆ nL, one can construct a simple pointed
TΣ-coalgebra (Q, γ′, L) whose equivalent nondeterministic closure automaton is
another state-minimal acceptor of L. First view N as the TΣ-coalgebra (PnL, γ)
via the subset construction. Factorizing the unique homomorphism Lγ we obtain
(Q, γ′) where Q is the semilattice of languages accepted by N . Then (Q, γ′) is
equivalent to a nondeterministic closure automaton accepting L. Since PnL � Q
implies nL = |J(PnL)| ≥ |J(Q)|, by forgetting the closure we obtain a state-
minimal nfa accepting L.

Hence instead of working with state-minimal nfas we may work with simple
TΣ-coalgebras which are supercoalgebras of ALJSL. This follows because ALJSL’s
carrier is the semilattice SL of unions of L’s derivatives, which Q necessarily
contains. We now provide a condition ensuring that |J(SL)| is the minimal size
of an nfa accepting L and hence L’s jiromaton is state-minimal.

Definition 4.2. A regular language L is intersection-closed if every binary
intersection of L’s derivatives is a union of L’s derivatives.

Example 4.3. 1. L = (a+ b)∗b(a+ b)n where n ∈ ω is intersection-closed.
2. ∅, Σ∗ and {w} for w ∈ Σ∗ are intersection-closed.
3. Fix n ∈ ω, t ∈ R and ki ∈ R (1 ≤ i ≤ n). Then the language L = {w ∈ 2n :∑

i kiwi ≥ t} (modeling the behaviour of an artificial neuron) is intersection-
closed.

4. Every linear subspace L ⊆ Z
n
2 (viewed as a language over the alphabet {0, 1})

is intersection-closed.

Theorem 4.4. If L is intersection-closed then its jiromaton is state-minimal.

Proof. By assumption the carrier SL of ALJSL is closed under both unions and
non-empty intersections, so D = SL∪{Σ∗} is a distributive lattice of languages.
Let N be any state-minimal nfa accepting L via initial states I, and S ⊆ PΣ∗

be the semilattice of languages accepted by N (by varying I). The nfa N must
at least accept L’s derivatives. Since S is closed under unions we have SL ⊆ S.
By the surjective morphism PnL � S it follows that |N | ≥ |J(S)|, so it suffices
to prove that |J(S)| ≥ |J(SL)|. Let S∗ = S ∪ {Σ∗} be the semilattice obtained
by adding a top element if necessary. We have a JSLf -morphism ι : D ↪→ S∗. The
meets in D are also meets in S∗ so the same function defines a JSLf -morphism
ι : Dop ↪→ Sop∗ . By the self-duality of JSLf we obtain a surjective morphism
ι′ : S∗ � D, hence |J(S∗)| ≥ |J(D)|. If D = SL then S∗ = S, so |J(S)| ≥ |J(SL)|
and we are done. Otherwise Σ∗ /∈ SL and we now prove Σ∗ /∈ S. By state
minimality N is reachable, so each state q accepts a subset of some L-derivative.
Then if Σ∗ ∈ S we deduce Σ∗ is the union of L’s derivatives, so Σ∗ ∈ SL – a
contradiction. Consequently |J(D)| = 1+ |J(SL)| and |J(S∗)| = 1+ |J(S)| hence
|J(S)| ≥ |J(SL)| again. ��
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Remark 4.5. The converse of this theorem is generally false: the language L =
{aa} is not intersection-closed, but its jiromaton is state-minimal.

Corollary 4.6. If L is intersection-closed then its átomaton and distromaton
have at most one more state than the jiromaton.

Proof. By the above proof the distromaton may only have an additional final
sink state – otherwise it has the same transition structure. By Corollary 3.21
the átomaton has the same number of states. ��
By Corollary 3.21 we further deduce:

Corollary 4.7. If L ⊆ Σ∗ is intersection-closed then any state-minimal nfa
accepting L has (i) drev(L) states if Σ∗ is a union of L’s derivatives and (ii)
drev(L) − 1 otherwise.

Theorem 4.8. If dL = 2nL then the jiromaton of L is state-minimal.

Proof. Let N = (nL, Ra, F ) be a state-minimal nfa accepting L via I ⊆ nL. View
it as a pointed TΣ-coalgebra A = (PnL, γ, I) via the subset-construction. By
assumption dL = |PnL|, so this is a state-minimal dfa accepting L; in particular,
it is a reachable pointed TΣ-coalgebra. Then the surjective morphism A � ALJSL

implies that ALJSL has no more than nL join-irreducibles, so the jiromaton is
state-minimal. ��

4.3 Characterizing the Canonical Nfas

Although the canonical nfas are generally not state-minimal, they are state-
minimal amongst certain subclasses of nfas.

Theorem 4.9. The átomaton of a regular language L is state-minimal amongst
all nfas accepting L whose accepted languages are closed under complement.

Proof. Assume the weaker condition that an nfa N accepts every language in the
boolean algebra B ⊆ω PΣ∗ generated by L’s derivatives. By an earlier argument,
N induces a simple TΣ-coalgebra (Q, γ) whose states are the languagesN accepts
and |N | ≥ |J(Q)|. By assumption Q ⊇ B (a distributive lattice), so |J(Q)| ≥
|J(B)| by the proof of Theorem 4.4. The join-irreducibles of a finite boolean
algebra are its atoms, so N has no less states than the átomaton. ��

The next result is from [17]. It follows because quotients and subspaces of
finite-dimensional vector spaces cannot have larger dimension.

Theorem 4.10. ([17]). Any canonical xor nfa for L is state-minimal amongst
nfas accepting L via Z2-weighted acceptance.

We give a mild generalization of a result in [10]. Recall that nfas accepting L also
accept all unions of its derivatives. Then we can conclude from Theorem 4.1:
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Corollary 4.11. The jiromaton of a regular language L is state-minimal
amongst nfas accepting precisely the unions of L’s derivatives.

Example 4.12. Let N be an nfa accepting L via initial states I. If every singleton
set of states is reachable from I then N accepts precisely the unions of L’s
derivatives. Thus, it is no smaller than L’s jiromaton.

Theorem 4.13. The distromaton of a regular language L is state-minimal
amongst all nfas accepting L whose accepted languages are closed under
intersection.

Proof. Reuse the proof of Theorem 4.9. Again we actually have a stronger
result: the distromaton is state-minimal amongst all nfas which can accept every
intersection of L’s derivatives. ��

5 Conclusions and Future Work

It is often claimed in the literature that canonical nondeterministic automata
do not exist, usually as a counterpoint to the minimal dfa. On the contrary
we have shown that they do exist and moreover arise from the minimal dfa
interpreted in a locally finite variety. In so doing we have unified previous work
from three sources [8,10,17] and introduced a new canonical nondeterminis-
tic acceptor, the distromaton. We also identified a class of languages where
canonical state-minimal nfas exist. These results depend heavily on a coalge-
braic approach to automata theory, providing not only new structural insights
and construction methods but also a new perspective on what a state-minimal
acceptor actually is.

In this paper we introduced nondeterministic closure automata, viz.
TΣ-coalgebras in the category of closure spaces, mainly as a tool for construct-
ing the jiromaton. However, nondeterministic closure automata bear interest-
ing structural properties themselves, which we did not discuss here in depth.
We expect that a proper investigation of these machines will lead to further
insights about nondeterminism, in particular additional and more general
criteria for the (state-)minimality of nfas.

Another point we aim to investigate in more detail are the algorithmic aspects
of the state-minimization problem for nfas. Although this problem is known
to be PSPACE-complete in general, the canonicity of our nfas suggests that
– at least for certain natural subclasses of nfas – efficient state-minimization
procedures may be in reach. We leave the study of such complexity-related issues
for future work.
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son, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 109–129. Springer,
Heidelberg (2012)

13. Jipsen, P.: Categories of algebraic contexts equivalent to idempotent semirings and
domain semirings. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol.
7560, pp. 195–206. Springer, Heidelberg (2012)

14. Lombardy, S., Sakarovitch, J.: The universal automaton. In: Flum, J., Grädel,
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Abstract. Temporal logics are an obvious high-level descriptive com-
panion formalism to dynamical systems which model behavior as deter-
ministic evolution of state over time. A wide variety of distinct temporal
logics applicable to dynamical systems exists, and each candidate has
its own pragmatic justification. Here, a systematic approach to the con-
struction of temporal logics for dynamical systems is proposed: Firstly,
it is noted that dynamical systems can be seen as coalgebras in various
ways. Secondly, a straightforward standard construction of modal logics
out of coalgebras, namely Moss’s coalgebraic logic, is applied. Lastly, the
resulting systems are characterized with respect to the temporal proper-
ties they express.

1 Introduction

Dynamical systems are the classical constructive formalism for behaviour arising
from the deterministic evolution of system state over time [1], dating back to the
works of Newton and Laplace. Clearly temporal logics, with operators such as
‘next’, ‘always’, ‘eventually’ and ‘for-at-least’, constitute a companion descriptive
formalism. However, the relation is not one-to-one: One the one hand, there is
a unifying theory underlying the various perspectives on dynamical systems as
monoid actions, which uniformly covers discrete and continuous, as well as hybrid
systems [6]. But on the other hand, the diversity of temporal logics in literature is
immense, see [13], and the choice for a particular system is often justified by ad-
hoc pragmatic arguments. The present article explores a potentially systematic
approach to the construction of temporal logics for dynamical systems, via the
relatively recent mathematical field of universal coalgebra which has been shown
to be intimately connected to both dynamical systems [11] and modal logics [5].
A different approach, also based on coalgebras and the Stone duality, has been
suggested [3] for constructing modal logics of transition systems, a close relative
of dynamical systems from theoretical computer science.

The method outlined in the remainder of this article, while theoretically sim-
ple, touches on many different fields of mathematics: order theory, category the-
ory, algebra, coalgebra, classical modal logics à la Kripke, and coalgebraic logics
à la Moss [8]. Thus a significant fraction of this paper is dedicated to reviewing
the relevant definitions and propositions from the respective standard literature.
c© IFIP International Federation for Information Processing 2014
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This review makes up the Sects. 2 and 3. The expert reader is encouraged to
skip ahead: Sect. 4 ties up all the loose ends and gives a novel contribution.
There a selection of obvious coalgebraic perspectives on dynamical systems is
explored, and the respective logics entailed by applying Moss’s construction are
characterized.

2 Review: Classical Ingredients

This section reviews some basic definitions and propositions.

2.1 Order Relations

We assume that the reader is familiar with basic order-theoretic properties of
binary relations, namely with reflexive, transitive, symmetric relations, and with
preorders, partial orders and equivalences. We give two additional related defin-
itions that are not quite as universal:

Definition 1 (Non-Branching & Linear Relations). Let X be a set. A
binary relation R ⊆ X2 is called

– non-branching if and only if x R y and x R z imply y R z or z R y, and
– linear if and only if x R y or y R x,

respectively, for all x, y, z ∈ X. Clearly, every linear relation is non-branching.

2.2 Monoids

We assume that the reader is familiar with the notions of a monoid M =
(M, 0,+), and of monoid generators. We recall that every monoid induces an
ordering relation:

Definition 2 (Monoid Order). Let M = (M, 0,+) be a monoid. For any
elements a, b ∈M , we write a ≤M b if and only if there is some c ∈M such that
a+ c = b. We say that a ≤M b via c. It follows directly from the monoid axioms
that ≤M is reflexive and transitive, and hence a preorder. By extension, M itself is
called symmetric/non-branching/linear if and only if ≤M is symmetric/non-
branching/linear, respectively.

Note that being symmetric in this sense is different from being Abelian. In
fact, symmetry characterizes a famous subclass of monoids, namely the groups:

Lemma 1 (Groups). A monoid M is a group if and only if it is symmetric.
Every symmetric monoid is trivially linear, with the degenerate order (≤M) =
M2, the full relation.

The proof of this simple but non-standard proposition is left as an exercise
to the reader.
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2.3 Dynamical Systems

Definition 3 (Dynamical System). Let T = (T, 0,+) be a monoid called
time (durations). A dynamical system is an enriched structure S = (T, S, Φ)
with

– a set S called state space, and
– a map Φ : S × T → S called dynamics,

such that

Φ(s, 0) = s Φ
(
Φ(s, t), u

)
= Φ(s, t+ u)

In other words, Φ is a right monoid action of T on S. S is called

– linear-time if and only if T is linear, otherwise nonlinear-time, and
– invertible if and only if T is symmetric.

Corollary 1. There are no invertible nonlinear-time dynamical systems.

Dynamical systems are a fundamental model class of many natural and social
sciences. In comparison with their younger counterparts in computer science,
automata and transition systems, dynamical systems are typically

– behaviourally weaker; deterministic, non-pointed (without distinguished ini-
tial states) and total (without spontaneous termination), but

– structurally stronger; with additional features of time (density, completeness)
and state space (topology, metric, differential geometry, measures).

Automata-like constructions can be emulated by dynamical systems; see Exam-
ple 1 below.

Definition 4 (Step, Trajectory & Orbit). From the dynamics map Φ we
may derive three forms of secondary maps:

Φt : S → S Φs : T → S Φ◦ : S → PS
Φt(s) = Φ(s, t) Φs(t) = Φ(s, t) Φ◦(s) = Img(Φs

= {Φ(s, t) | t ∈ T}

– Φt is called the step of duration t, or just the t-step.
– Φs is called the trajectory of initial state s.
– Φ◦(s) is called the orbit of state s.

Lemma 2 (Homomorphic Steps). The dynamical systems with time T are
precisely those systems (T, S, Φ) such that the step construction is a monoid
homomorphism from T into the monoid of maps of type S → S with right com-
position.

Φ0 = idS Φt+u = Φu ◦ Φt
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Corollary 2 (Generating Steps). If G ⊆ T generates the monoid T, then Φ
is determined uniquely by the collection of steps (Φt)t∈G.

Example 1 (Instances of Time)

– The time monoid (N, 0,+) yields standard non-invertible, linear-time, discrete-
time dynamical systems. The step Φ1 is generating. Trajectories are (one-
sided) infinite sequences.

– The timemonoid (Z, 0,+)yields standard invertible, hence linear-time, discrete-
time dynamical systems. The step Φ1 is generating and must be invertible. Tra-
jectories are two-sided infinite sequences.

– The time monoid (R+, 0,+) yields standard non-invertible, linear-time,
continuous-time dynamical systems. No finite step generator collection exists.
Trajectories are one-sided parametric curves.

– The time monoid (R, 0,+) yields standard invertible, hence linear-time,
continuous-time dynamical systems. No finite step generator exists; classically
definitions are given as solutions to ordinary differential equations. Trajecto-
ries are two-sided parametric curves.

– The free “time” monoid (Σ∗, ε, ·) over some finite alphabet Σ yields total
semiautomata, or deterministic finitely-labelled transition systems. The steps
{Φa | a ∈ Σ} (columns of the transition table) are generating. Trajectories are
big-step transition functions of total automata, mapping input words to final
states. ��

2.4 Propositional Modal Logics

We assume that the reader is familiar with the syntax and semantics of classical
propositional logics and their presentation solely in terms of the connectives ¬
and →. For the modal extensions, see [2] or some other textbook.

Definition 5 (Syntax of Propositional Modal Logics). The modal exten-
sion of classical propositional logics adds two unary connectives � and ♦, taking
� as primitive and defining

♦A = ¬�¬A
Definition 6 (Semantics of Propositional Modal Logics). A normal
modal extension of classical propositional logics adds at least the deduction rule
of necessitation or generalization, and the axiom of distribution:

A 	 �A �(A→ B)→ (�A→ �B)

Example 2. Importantnormalmodal logics are obtainedbyadding certain axioms:

– �A→ A added to the minimal system results in the logic T .
– �A→ ��A added to T results in the logic S4.
– �(�A→ B) ∨�(�B → A) added to S4 results in the logic S4.3.
– ♦A→ �♦A added to S4 or S4.3 results in the logic S5. ��
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2.5 Kripke Semantics

Definition 7 (Kripke Frame). A Kripke frame is a structure (W,R) with a
set W of worlds and a binary relation R on W called accessibility.

Definition 8 (Kripke Model). Let (W,R) be a Kripke frame. A Kripke model
(of propositional modal logic) is an extended structure (W,R,�), where � is a
relation between W and the language Form of logical formulas, such that:

w � ¬A ⇐⇒ w � A
w � A→ B ⇐⇒ w � A implies w � B
w � �A ⇐⇒ v � A whenever w R v

We say that w satisfies A in (W,R,�) if and only if w � A.

Lemma 3. The satisfaction relation � of a Kripke model is determined uniquely
by the satisfaction of atomic propositions.

Definition 9 (Validity). A formula A is called valid in

– a Kripke model (W,R,�) if and only if it is satisfied in all worlds w ∈W ,
– a Kripke frame (W,R) if and only if it is valid in all Kripke models (W,R,�),
– a class C of Kripke frames if and only if it is valid in all members of C.

Definition 10 (Soundness/Completeness). A propositional modal logic L
is called, with respect to a class C of Kripke frames,

– sound if and only if provability in L implies validity in C, and
– complete if and only if validity in C implies provability in L.

Theorem 1. The modal logics S4/S4.3/S5 are sound and complete for the classes
of Kripke frames (W,R) where R is an arbitrary/non-branching/symmetric pre-
order, respectively.

Definition 11 (Finite Frame Property). A propositional modal logic L is
said to have the finite frame property, if and only if it is complete for a class
of finite Kripke frames.

Theorem 2. The modal logics S4/S4.3/S5 have the finite frame property, for
the finite-frame subclasses of the respective classes given in Theorem1.

3 Review: Non-classical Ingredients

This section briefly reviews some definitions and propositions from categorial
coalgebra and coalgebraic logics. See [11] and [7,8], respectively, for full details.
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3.1 Category Theory

We assume that the reader is familiar with basic endofunctors on the category
Set, in particular the identical functor Id, the constant functor Const(C) for any
object C, the covariant Hom-functors and the covariant powerset functor P. All
functors considered in the following are tacitly Set-endofunctors.

Definition 12 (Monotonic, Standard & Finitary Functors). As usual, a
functor is called

– monotonic if and only if it preserves inclusions,
– standard if and only if it preserves inclusions and weak pullbacks, and
– finitary if and only if it is determined completely by its action on finite sets.

A standard, infinitary functor F has a finitary restriction Fω defined by

FωX =
⋃{FY | Y ⊆ X ∧ Y finite} Fω(h : X → Y ) = Fh|FωX

Relation liftings for functors are conventionally defined in terms of span dia-
grams, but a pointwise notation will be more convenient for the following dis-
cussions:

Definition 13 (Relation Lifting). Let F be a functor. Every relation R ⊆
X×Y has a lifting F [R] ⊆ FX×FY defined as the set of pairs (x̂, ŷ) for which
there is some r̂ ∈ FR such that (Fπ1)(r̂) = x̂ and (Fπ2)(r̂) = ŷ.

Example 3. The liftings for some basic functors are as follows:

– The identical functor lift a relation to itself: x Id[R] y if and only if x R y.
– A constant functor lifts to the identical relation: c Const(C)[R] d if and only

if c = d.
– Y P[R] Z if and only if for all y ∈ Y there is a z ∈ Z, and vice versa, such

that y R z.
– f Hom(C,−)[R] g if and only if f(c) R g(c) for all c ∈ C. ��

3.2 Universal Coalgebra

We assume that the reader is familiar with the notion of F -coalgebras for a
functor F , their associated homomorphisms, F -bisimulations and F -bisimilarity.

Definition 14 (Parallel Coalgebra Composition). Coalgebras with the same
carrier can be combined in parallel: Let (X, f) be an F -coalgebra and (X, g) be a
G-coalgebra. Then (X, 〈f, g〉) is an (F ×G)-coalgebra, where

〈f, g〉(x) =
(
f(x), g(x)

)
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3.3 Moss’s Coalgebraic Logic

The idea of Moss’s coalgebraic logic [8] is to replace Kripe frames by F -coalgebras
for some functor F , and to derive a universal and natural modality from F itself:

Definition 15 (Moss’s Coalgebraic Logic, Abstractly). Fix a standard
functor F . Extend the syntax of propositional logic by a pseudo-unary connec-
tive ∇ that, unlike the classical modalities like �, applies not to a single formula
A ∈ Form but to an expression of type either Â ∈ F (Form) or Â ∈ Fω(Form).
For infinitary F where the choice makes a difference, the cases are called infini-
tary and finitary F -coalgebraic logics, respectively. A Moss model is a structure
(X, f,�) where (X, f) is an F -coalgebra and � is a relation between coalgebra
states and formulas, such that

x � ¬A ⇐⇒ x � A x � A→ B ⇐⇒ x � A implies x � B

as for Kripke models, but

x � ∇Â ⇐⇒ f(x) F [�] Â

Moss’s coalgebraic logic as presented here specifies satisfaction only up to
atomic propositions, in analogy to Kripke frames. In Moss’s original presentation,
the specification is unique, in analogy to Kripke models:

Definition 16 (Moss’s Coalgebraic Logic, Concretely). Let (X, f) be an
F -coalgebra. Let s : X → P(Prop) be the map that assigns to each state x ∈ X
the desired set of valid atomic propositions. Then (X, s) is a Const

(P(Prop)
)
-

coalgebra. For the parallel composite coalgebra (X, g = 〈f, s〉), a unique Moss
model is specified by the additional clause

x � A ⇐⇒ A ∈ s(x) (A ∈ Prop)

The following two propositions state that traditional Kripke frames are essen-
tially equivalent to the special case F = P:

Lemma 4. P-coalgebras (X, f) are in one-to-one correspondence to relations R
on X by putting x R y if and only if y ∈ f(x).

Theorem 3. The Kripke modalities �,♦ and the Moss modality ∇ for finitary
P-coalgebraic logics are equivalent. For infinitary P-coalgebraic logics, they are
also equivalent in the presence of infinitary conjunction and disjunction; other-
wise ∇ is generally more expressive.

w �K �A ⇐⇒ w �M ∇{A} ∨ ∇∅ w �K ♦A ⇐⇒ w �M ∇{A,�}
w �M ∇Â ⇐⇒ w �K �

(∨
Â
) ∧∧♦Â where ♦Â = {♦B | B ∈ Â}

where �K/�M denote satisfaction à la Kripke/Moss, respectively.
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In general, the infinitary version of the operator ∇ is better matched with a
logic where conjunction and disjunction are also infinitary. While an uncommon
topic classically, infinitary logics are an important topic in modal logic because
of their connection to bisimulations; they always satisfy the Henessy–Milner
property:

Theorem 4 (Expressivity). In any fully (∧,∨,∇)-infinitary F -coalgebraic logic,
two states s, t ∈ S satisfy the same set of formulas if and only if they are
bisimilar.

Generally finitary logics are nicer to work with, and of course more likely to
be decidable. See Example 5 below for popular temporal operators that are not
finitary in this framework.

4 Constructions

This section gives novel theoretical results by investigating the ramifications of
the following recipe:

1. identify some generic F -coalgebraic view on dynamical systems;
2. use Moss’s construction to obtain logics with ∇F modality, depending on the

functor F ;
3. relate ∇F to established temporal logic operators.

Note that all of the following constructions have the state space S of a fixed
dynamical system as the carrier of some coalgebra for various standard functors.
Hence the associated logical languages can coexist naturally in a single system,
by the parallel composition given in Definition 14.

4.1 Step Logics

Definition 17 (Step Coalgebra). Let S = (T, S, Φ) be a dynamical system.
For any element t ∈ T , the Id-coalgebra (S,Φt) is called the t-step coalgebra
of S.

Definition 18 (Multistep Coalgebra). Let S = (T, S, Φ) be a dynamical sys-
tem. For any subset U ⊆ T , the Hom(U,−)-coalgebra (S, s �→ Φs ◦ in), given the
inclusion map in : U → T , is called the U -multistep coalgebra of S.

Lemma 5. The ∇ modality of step coalgebras amounts to

– for the t-step:
s � ∇A ⇐⇒ Φ(s, t) � A

– for the U -multistep:

s � ∇Â ⇐⇒ Φ(s, t) � Â(t) for all t ∈ U
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The functors for t-steps and finite U -multisteps are finitary; hence no additional
distinction between finitary and infinitary logics arises.

Definition 19 (Step Modality). We define the temporal modality ©, with
the intuitive meaning next, in terms of ∇.

©A = ∇A ©tA = ∇u �→
{
A (t = u)
� (t = u)

Example 4. (Multi-)Step coalgebras are of particular interest for finite genera-
tors, since they specify the dynamics uniquely and concisely. The following are
generating in the sense of Example 1:

– For time (N, 0,+), the 1-step coalgebra maps every state to its successor. The
resulting temporal logic has © as the next operator of traditional unidirec-
tional discrete-time temporal logic.

– For time (Z, 0,+), the (±1)-multistep coalgebra maps every state to its suc-
cessor/predecessor, respectively. The resulting temporal logic has ©±1 as the
next/previously operators of traditional bidirectional discrete-time temporal
logic, respectively.

– For “time” (Σ∗, ε, ·), the Σ-multistep coalgebra maps every automaton state
to its response function (row of the transition table). The resulting logic has
(©a)a∈Σ as the generating cases of Pratt’s necessity operators [a] in dynamic
logic [10], where they are extended to the free Kleene algebra over Σ.

Interesting infinite, non-generating examples include:

– For time (R, 0,+) and δ > 0, let U denote the open interval (−δ, δ). The
U -multistep coalgebra maps every state to its temporal δ-neighbourhood. ��

Step generators benefit from Moss’s Expressivity Theorem 4:

Corollary 3. The modality ∇ and the family of modalities (©t)t∈U for gen-
erating U are straightforwardly equivalent if U is finite, and equivalent in the
presence of infinitary conjunction otherwise.

x � ∇Â ⇐⇒ x �
∧

t∈U
©tÂ(t)

The following construction is the multistep limit case U = T .

4.2 Trajectory Logics

Definition 20 (Trajectory Coalgebra). Let S = (T, S, Φ) be a dynamical sys-
tem. The Hom(T,−)-coalgebra (S, s �→ Φs) is called the trajectory coalgebra
of S.

Lemma 6. The ∇ modality of trajectory coalgebras amounts to

s � ∇Â ⇐⇒ Φ(s, t) � Â(t) for all t ∈ T
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The ∇ trajectory modality is a surprisingly powerful logical operator, with
the severe disadvantage that there is no canonical syntactic representation. The
following examples are but a small subset of useful special cases.

Example 5. Arguments of the ∇ trajectory modality are maps of type T →
Form. Various intensional notations for such maps, or time-dependent formulas,
give rise to well-known temporal operators. Note that all following examples
work for finitary ∇.

– Consider discrete time (N, 0,+) or (Z, 0,+). Define a zip operator

A� B = ∇t �→
{
A t even
B t odd

Then a dynamic system is bipartite, with characteristic formula A, if and only
if (A � ¬A) ∨ (¬A � A) is valid in the Moss model associated with its
trajectories.

– Consider automaton time (Σ∗, ε, ·). Define a consumption operator

eat(L,A,B) = ∇t �→
{
A t ∈ L
B t ∈ L

for languages L ⊆ Σ∗ and formulas A,B. Now let A be a formula characteriz-
ing accepting states. Then an automaton, as a dynamical system, accepts at
least/exactly the language L ⊆ Σ∗ if and only if eat(L,A,�)/eat(L,A,¬A),
respectively, is valid for its initial state(s) in the Moss model associated with
its trajectories.

– Consider time with a linear antisymmetric order <. Define a change operator

chg(t, A,B,C) = ∇u �→

⎧
⎪⎨

⎪⎩

A u < t

B u = t

C u > t

for time duration t and formulas A,B,C. Then minimum/maximum-duration
operators can be defined directly, in two variants differing in the inclusion of
boundary cases:

min t. A = chg(t, A,�,�) max t. A = chg(t,�,�,¬A)
min′ t. A = chg(t, A,A,�) max′ t. A = chg(t,�,¬A,¬A)

Imprecise operators such as until can be expressed as infinitary disjunctions:

AUB =
∨

t∈T
chg(t, A,B,�)
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4.3 Orbit Logics

The following construction shifts the coalgebraic focus from trajectories to orbits
which are images of trajectories, hence abstracting from durations. The result
is a family of qualitative temporal logics that can be expressed naturally in the
classical modal operators, uniformly for all kinds of time structure:

Definition 21 (Orbit Coalgebra). Let S = (T, S, Φ) be a dynamical system.
The P-coalgebra (S,Φ◦) is called the orbit coalgebra of S. We say that in S, y
is reachable from x, written x �S y, if and only if y ∈ Φ◦(x). More precisely,
we say x�S y via t, if and only if y = Φt(x).

Clearly, x�S y if and only if there is some witness t ∈ T such that x�S y via t.

Lemma 7. For dynamical systems S, the reachability relation �S is

1. always a preorder,
2. additionally non-branching, but not generally linear, if S is linear-time, and
3. additionally symmetric if S is invertible.

Proof

1. Reflexivity and transitivity follow directly from the monoid axioms: x �S x
via 0, and if x�S y via t and y �S z via u, then x�S z via t+ u.

2. Assume that x�S y via t and x�S z via u. By linearity of T assume, without
loss of generality, that t ≤T u via v. Then y �S z via v.

3. For symmetric T, if x�S y via t, then y �S x via −t. ��
The caveat in case 2 of this proposition is necessary:

Example 6 (Nonlinear Linear-Time Dynamical System). Set T = {0}, giving
rise to the singleton monoid which is trivially linear. This fixes Φ completely as
Φ(s, t) = Φ(s, 0) = s, giving rise to a “still-life” structure of time. Then neither
x�S y nor y �S x for x = y.

Definition 22 (Orbital Frame). A Kripke frame is called orbital if and only
if it corresponds, in the sense of Lemma4, to the orbit coalgebra of some dynam-
ical system. An orbital frame is called linear-time/invertible if and only if it
corresponds to the orbit coalgebra of some linear-time/invertible dynamical sys-
tem, respectively.

Using this definition, Lemma 7 extends to Kripke frames:

Lemma 8. For any orbital Kripke frame F = (W,R), the relation R is

1. always a preorder,
2. additionally non-branching if F is linear-time,
3. additionally symmetric if F is invertible.

This statement has a partial, finitary converse, which is by far the most
technical result of the present paper:
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Lemma 9. A finite Kripke frame (W,R) is

1. always orbital if R is a preorder,
2. additionally linear-time if R is non-branching,
3. additionally invertible if R is symmetric.

Proof. Construct a dynamical system S = (T, S, Φ) with (�S) = R. In any case,
clearly S = W . Proceed in reverse order and increasing flexibility of cases. For
the latter two, consider the partition of W into strongly connected components
(sccs) of the preorder R: nonempty, maximal subsets C ⊆ W such that x R y
for all x, y ∈ C. We write x ∼ y if and only if x, y are in the same scc, that is
x R y and y R x.

3. Set T = (Z, 0,+). By symmetry of R there are no related pairs across sccs.
For each scc C choose an arbitrary cyclic permutation. Set Φ1 to their union.
Then
– x �S y via some i < k, where k is the size of the scc containing both, if
x R y, and

– otherwise x �S y.
2. Set T = (N, 0,+). We say that y is a successor of x, writing x� y, if and only

if x R y but not y R x. Clearly, x R y if and only if either x ∼ y or x � y,
exclusively. We say that x is transient if it has successors. Since W is finite
and R is non-branching, every transient x has a unique scc of least successors,
from which we may choose one, say x′, and all elements reachable from x are
successors. Set Φ1(x) = x′. For non-transient x, all elements reachable from
x are in the same scc. Proceed as above. Then
– x�S y via some i < k, where k is the number of successors of x, if x� y,
– x �S y via some i < k, where k is the size of the scc containing both, if
x ∼ y, and

– otherwise x �S y.
1. There are in general no least successors, and there may be non-successors

reachable from transient elements. A more basic construction is needed: Set
T = (N∗, ε, ·), the free monoid over N. For each x ∈ W choose some infinite
sequence y = (y0, y1, . . .) ∈ Wω such that x R z if and only if z = yi for
some i. This is always possible by invocation of countable choice, since the
set {z | x R z} is finite and nonempty. For the generating steps {Φn | n ∈ N},
set Φn(x) = yn. Then
– x�S y via 1, if x R y, and
– otherwise x �S y. ��

Theorem 5. The modal logics S4/S4.3/S5 are sound and complete for arbi-
trary/linear-time/invertible orbital frames, respectively.

Proof. S4/S4.3/S5 are sound for the class of Kripke frames (W,R) where R
is an arbitrary/non-branching/symmetric preorder, respectively. By Lemma8,
they are also sound for the subclasses of arbitrary/linear-time/invertible orbital
frames, respectively.
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Conversely, S4/4.3/S5 are complete for the class of Kripke frames (W,R)
where R is an arbitrary/non-branching/symmetric preorder, respectively, and
have the finite frame property. By Lemma 9, they are also complete for the
subclasses of arbitrary/linear-time/invertible orbital frames, respectively. ��
Example 7. The operators� and ♦ are well-suited to express “long-term” behav-
ioral properties of dynamical systems. For instance, let A be the characteristic
formula of a subset U ⊆ S of the state space. Then U is a stationary solution of
a dynamical system if and only if A→ �A is valid in the Moss model associated
with its orbits. ��

5 Conclusion and Outlook

Many operators discussed in the temporal logic literature can be subsumed under
a common framework by viewing them as instances of Moss’s modality ∇, for
some coalgebraic presentation of the underlying dynamical system models. As a
rule of thumb,

– step coalgebras go with discrete time,
– trajectory coalgebras go with quantitative operators for either discrete or

dense time, and
– orbit coalgebras go with arbitrary time and qualitative operators, in particular

the classical modal operators and the framework of normal modal logics.

The examples given in this article are of course only a small selection to prove
the viability of the approach. There is considerable potential for generalization.
The trajectory modality is an extremely expressive tool, and it is likely that many
other temporal operators can be shown to coincide with particular intensional
notations for it. Besides, coalgebraic perspectives on dynamical systems other
than the three detailed above could be considered. An interesting open problem
and direction for future research is the integration of measure-theoretic temporal
operators, for instance in duration calculus [4], into the framework.

Coalgebraic modal logics from predicate liftings [9] are an alternative to
Moss’s logic, with somewhat different properties. A study of the predicate liftings
arising from the functorial perspective on dynamical systems is expected provide
some interesting additional insights.

Recently, some progress has been made in the use of non-standard analysis
to clarify the relationship of discrete-time and continuous-time systems, in a way
that is compatible with a coalgebraic perspective [12]. That approach might also
be helpful in bridging the gap between our trajectory and orbit logics.
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Abstract. We investigate the common recursive structure of history-
dependent dynamic models in science and engineering. We give formal
semantics in terms of a hybrid algebraic–coalgebraic scheme, namely
course-of-value iteration. This theoretical approach yields categories of
observationally equivalent model representations with precise seman-
tic relationships. Along the initial–final axis of these categories, history
dependence can appear both literally and transformed into instantaneous
state. The framework can be connected to philosophical and epistemo-
logical discourse on one side, and to algorithmic considerations for com-
putational modeling on the other.

1 Introduction

Models of system dynamics are a cornerstone of science and engineering. They
relate the future of a system to its present and/or past. An obvious qualitative
distinction is whether observation of the present (state) alone suffices to pre-
dict or modify the future, or whether information about the past (history) is
necessary. This question can be discussed on the philosophical level, or on the
mathematical level, potentially leading to theoretical frameworks and tools for
the working scientist and engineer.

In this paper, we explore the mathematical option, and present a formaliza-
tion that puts the two model classes on equal footing. Specifically, they shall
be demonstrated to form not a dichotomy, but a continuum along the initial–
final axis of suitable categories of models, constructed from first principles of
algebraic–coalgebraic recursion theory.

In philosophical terms, this framework gives precise semantic relationships
between more and less history-dependent models, and thus renders the two
most common objections against history-dependent modeling obsolete: argu-
ments from näıve reductionism (invoking Laplace’s Daemon) and arguments
from parsimony (invoking Occam’s Razor).

We begin with motivating examples that demonstrate the pervasive occur-
rence, and the vastly different relative reputability, of the two modeling approaches
c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 225–244, 2014.
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across various disciplines. The purpose of this digression is to demonstrate the
broad applicability of our proposed framework, which is hard to see directly from
the fairly modest formal results. Readers more narrowly interested in theoretical
matters are encouraged to skip ahead to Sect. 2.

1.1 Basic Scientific Example: Simple Harmonic Oscillator

A simple harmonic oscillator is an ideal point mass m moving frictionlessly along
a line and acted on by a restoring force proportional, with positive coefficient k,
to its displacement x. An empirical study of (real approximations of) many such
systems might reveal that, with good accuracy, three displacements observed at
snapshots spaced equally in time, with a small delay δ, are related according to
the following model formula:

xt+δ =
(
2− k

mδ
2
)
xt − xt−δ (1a)

On the other hand, with slightly less accuracy, two observations at snapshots
with a small delay δ are related according to

(
xt+δ
vt+δ

)

=
(

1 δ
− k
mδ 1

)(
xt
vt

)

(1b)

provided that the “virtual” observable v = dx/dt is added to the data set.
From the fact that apparently each system has a period of T = 2π/ω where

ω =
√
k/m, one might get the intuition that the matrix entries in (1b) are

actually linear approximations of trigonometric functions for δ → 0. Indeed,
whereas the preceding models are only accurate for δ � T , the following model
gives the exact dynamics of the system:

(
xt+δ
vt+δ

)

=
(

cos(ωδ) ω−1 sin(ωδ)
−ω sin(ωδ) cos(ωδ)

) (
xt
vt

)

(1c)

Elementary theoretical physics tells us that all three models given above
contain a grain of the same truth, namely that they can be derived from the
characteristic linear differential equation of the system:

d2x

dt2
+ ω2x = 0 (2)

This differential equation has a family of solutions of the form xt = A sin(ωt+ϕ)
for arbitrary A and ϕ. The models are then obtained as follows:

– Model (1c) by substitution of t+ δ for t and various trigonometric identities.
– Model (1b) by linear approximation:

xt+δ ≈ xt + δvt vt+δ ≈ vt + δat (3a)

where a = dv/dt = d2x/dt2 = −ω2x according to (2).
– Model (1a) by slightly different linear approximation eliminating v:

xt+δ ≈ xt + δvt+δ vt+δ ≈ vt + δat vt ≈ xt − xt−δ
δ

(3b)
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1.2 Complex Scientific Example: ARMA

History dependence in scientific modeling can also take more assertive forms,
where explicit dependence on past values is not only taken at face value, but
featured as the principal methodological design concept.

The Box–Jenkins approach [1] focuses on the auto-regressive moving average
(ARMA) class of stochastic models. These can be thought of as filters that add
statistical autocorrelation to a discrete input signal in a controlled way, by linear
dependence on past output (auto-regressive) and input (moving average) values.

yt = φ1yt−1 + · · ·+ φpyt−p
︸ ︷︷ ︸

AR

+ xt + θ1xt−1 + · · ·+ θqxt−q
︸ ︷︷ ︸

MA

(4a)

The theory is phrased as transformation of bilaterally infinite stochastic
processes, although deterministic variants, with at best pseudorandom input,
are used for actual simulation. In practice, the models are used both directly,
to simulate data with a prescribed autocorrelation structure, and inversely, to
estimate the model coefficients that describe observed output data optimally, by
minimizing the variance of the implied, unobserved random input.

Linear combinations of past values are formulated neatly in an operator cal-
culus on sequences, namely as formal power series of the backshift operator B,
defined as (Bx)t = xt−1, which gives the following compact formula:

(1− Φ)
︸ ︷︷ ︸

AR

y = (1 +Θ)
︸ ︷︷ ︸

MA

x where Φ =
∑

k=1

φkB
k and Θ =

∑

k=1

θkB
k (4b)

In the basic form, both power series are finite, and the summations have
upper bounds. But on one hand, there are transformations of finitary pure AR
into infinitary pure MA models, and of finitary pure MA into infinitary pure AR
models. And on the other hand, many kinds of real-world modeling problems
call for extensions, in particular the ARIMA class, where the output of the
ARMA filter is subsequently integrated, either a whole number of times (ARIMA
proper) or fractionally (FARIMA) [2]. Since integration is linear and invertible,
the resulting model can be viewed not only as a composition of two sequence
transforms, but also as an ARMA model where a corresponding differencing
step is composed with the auto-regressive part, in terms of a formal backward
differencing operator:

(1− Φ)
︸ ︷︷ ︸

AR

(1−B)d
︸ ︷︷ ︸

I

y = (1 +Θ)
︸ ︷︷ ︸

MA

x (4c)

Differencing can be raised to arbitrary real powers d by Newton’s generalized
binomial theorem:

(1−B)d =
∞∑

k=0

(
d

k

)

(−1)kBk where
(
d

k

)

=
k−1∏

i=0

d− i
1 + i
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This power series is easily seen to vanish only for positive integer d; hence the
flagship models of FARIMA class, particularly effective for the structure of realis-
tic time series data [5], depend on actually infinite history. Of course, simulations
approximate by padding with zeroes, and luckily the consequent behavioral error
tends to vanish in few steps.

1.3 Complex Engineering Example: TFM

The trace function method (TFM) [8] is a mathematically fundamental app-
roach to behavioral description of software components. Components are taken
to interact at their interface in discrete events. Data flows through the values of
input and output variables, controlled by the environment and the component,
respectively, at the time of an event.

The behavior of the component is represented in terms of sequences of events
(traces). Traces come in two flavours: a complete trace has input and output
values for all events; an incomplete trace omits output values for the latest event.
Valid responses of the component are given as a collection of maps (optionally
set-valued for nondeterminism) from incomplete traces to output values, one
per output variable. The set of valid complete traces, the semantic object of
behavior, is defined recursively: The empty trace is valid; a nonempty trace is
valid if and only if its latest outputs can be reconstructed from its incomplete
form, and the rest of the trace is valid.

As a toy example, a “stubborn” vending machine that offers a choice of either
coffee (c) or tea (t) but, when asked for coffee the third time in a row, produces
tea instead, can be described as a component with one input and one output
variable, each of type {c, t}, and the output function

f(c, (c, c), (c, c), . . .) = t otherwise f(xn, (yn−1, xn−1), . . .) = xn (5)

where output precedes input, and the latest, incomplete event is leftmost.
TFM shines particularly for behavior that is far too complex and/or irregular

to be discussed here in passing. See [8,13] for worked-out examples.

1.4 Discussion

The succession of three oscillator models, as given in Sect. 1.1, creates the impres-
sion of the growth of scientific knowledge along the following lines:

1. Empirical models establish candidates for causal relationships between past
and future values of directly observable variables. Such models are necessarily
approximations.

2. In theoretically informed models, history of directly observable variables is
“explained away” by reference to auxiliary, indirectly observable variables.
The rate of change of some variable often turns out to be a good candidate
for an auxiliary variable; hence the usefulness of differential equations.

3. If done in the right way, approximative models can eventually be replaced by
exact, albeit idealized, history-independent models: dynamical systems.
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Classical physics has had its great successes in progressing from stage 1 (typically
via stage 2) to stage 3 for many systems. On the other hand, most practically
relevant models in self-styled “complex system” sciences seem to be stuck in
stage 1. For instance, the Box–Jenkins framework, as given in Sect. 1.2, is not
only resilient to replacement by more state-oriented models, but actually spread-
ing virulently across disciplines: Though originally developed for economics, it
is considered state of the art in environmental sciences as well [4,6]. The success
of these models, their empirical and heuristical nature notwithstanding, is due
to their pragmatic relevance as powerful forecasting tools [1].

In engineering applications, TFM even demonstrates a reversal of reputability
of modeling with and without history dependence: A description in terms of
traces of history is more abstract, and precisely hence more durable, reliable
and valuable information than any more concrete, state-based “implementation”.
This view conforms to the software engineering doctrine that the “what” should
be stated, not the “how”; here applied to the question of memory.

With the benefit of theoretical hindsight, the approximations (3a) and (3b)
that justify the empirical relations (1a) and (1b), respectively, may seem
strangely ad-hoc. But the situation in complex system sciences is often such
that modeling and simulation precedes theory, or even may take its place indef-
initely [7]. Hence, in absence of theoretical justification, we need a neutral app-
roach to judge the epistemological quality of models. Since, as Rosen [9] observed,
scientific modeling is essentially about the discovery of recursive functional rela-
tionships in data, thus elucidating how the future can be understood as entailed
by the past, it seems only reasonable to turn to (categorial) recursion theory for
answers.

2 Algebraic–Coalgebraic Recursion Theory

We recall some basic notions of categorial recursion theory. Since the key con-
struct for the present work is from [15], we adopt that paper’s notation with
a few exceptions; in particular we write the more conventional ι1, . . . , ιn and
π1, . . . , πn for n-ary coproduct injections and product projections, respectively.
We also write Ca..b for the set of streams (sequences) of Cs of lengths a to b,
inclusively, where a, b ∈ N ∪ {ω}. Note that the symbol ω henceforth refers to
the limit ordinal, not the angular velocity as in Sect. 1.1.

We consider algebras and coalgebras for certain simple endofunctors on Set.
Unless explicitly restricted to Set, results generalize implicitly to other distrib-
utive categories, and endofunctors that satisfy the small print. We take the
liberty to call any morphisms in this category “maps”. We assume that, for a
given functor F of interest, an initial F -algebra (μF, inF : F (μF ) → μF ) and
a final F -coalgebra (νF, outF : νF → F (νF )) exist. By Lambek’s Lemma, inF
and its dual outF are isomorphisms.

The following three definitions and their properties are a minimal excerpt of
[15] for our present needs. Note that we have added references to applications
in scientific modeling from our own work [3]. For a broader introduction to
(co)iterative definitions arising from (co)algebras, see [10].
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2.1 Iteration

The simplest recursion scheme that can be described by these structures is iter-
ation: given a F -algebra (C,ϕ : F (C)→ C), there is a unique F -algebra homo-
morphism (|ϕ|)F : (μF, inF ) → (C,ϕ). That (| |)F is in fact a recursion operator
can be seen from the slightly transformed universal property:

(|ϕ|)F = ϕ ◦ F (
(|ϕ|)F

) ◦ in−1
F

Uses of iteration in mathematically structured functional programming are
ubiquitous. We have argued in [3] that iteration over functors of the formA(X) =
A×X+B is a systematic approach to the recursion scheme of typical structure-
oriented scientific modeling questions, in particular prediction and identification
of initial conditions.

2.2 Coiteration

The dual of iteration, (still?) distinctly less popular in computation theory, is
coiteration: given a F -coalgebra (C,ϕ : C → F (C)), there is a unique
F -coalgebra homomorphism [(ϕ)]F : (C,ϕ) → (νF, outF ). That [( )]F is in fact
a recursion operator can be seen from the slightly transformed universal prop-
erty:

[(ϕ)]F = out−1
F ◦ F

(
[(ϕ)]F

) ◦ ϕ
Since coiteration produces infinite data, it is hardly ever considered outside

the realms of process theory and lazy functional programming. We have argued
in [3], based on an earlier discussion in [10], that coiteration over functors of the
form A(X), dual to the above, is a systematic approach to the recursion scheme
of typical behavior-oriented scientific modeling questions, in particular symbolic
dynamics and the study of irreversibility.

2.3 Course-of-Value Iteration

Course-of-value (cov) iteration is a recursion scheme where the function value
for a structured argument may depend on the function values for subarguments
at any nesting depth, as opposed to ordinary iteration where dependency is
limited to the function values for immediate, maximal subarguments. The key
ingredient for the additional power is to augment the functor F by taking the
product with some object C, intuitively a coloring. Henceforth, we assume C to
be a nonempty set, avoiding uninteresting pathological cases. Since the product
with a fixed object is a pervasive construct in the following, we abbreviate the
functor C × (−) to C:

C(X) = C ×X C(h) = idC × h

Then we can consider final CF -coalgebras and, most importantly, operations of
type ϕ : F (νCF ) → C. Note that νCF parses as ν(CF ). We define the cov
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iteration of ϕ, written {|ϕ|}F : μF → C as the following equation from [15]; the
situation and type information is summarized in the diagram below:

{|ϕ|}F = π1 ◦ outCF︸ ︷︷ ︸
topCF

◦ (|out−1
CF ◦ 〈ϕ, idF (νCF )〉

︸ ︷︷ ︸
ϕ

|)F (6)

F (μF )

F ((|ϕ|)F )

��

inF �� μF

(|ϕ|)F

��

{|ϕ|}F

��

F (νCF )
ϕ

�� νCF
topCF

�� C

That {| |}F is in fact a recursion operator can be seen from the, slightly
convoluted, universal property

{|ϕ|}F = ϕ ◦ F (
[(〈{|ϕ|}F , in−1

F 〉)]CF
) ◦ in−1

F

which is a key result of [15]. This recursion scheme is not only defined in terms of
ordinary iteration, complicating the domain of evaluation from C to νCF , but
vice versa also contains ordinary iteration over the domain C as a degenerate
case: It is easy to see that {|ϕ ◦ F (topCF )|}F = (|ϕ|)F for ϕ : F (C)→ C.

Note that in the data structure νCF of histories, the most recent results are
on top.

2.4 Simple Examples

For the motivating examples of this paper and many others besides, consider the
extremely simple functor N(X) = 1 +X. It has the following well-known initial
algebra and final coalgebra:

μN = N inN = [0, succ]
νN = N ∪ {ω} outN = pred

where pred is the partial predecessor function with pred(ω) = ω.
For cov iteration, we also need the C-colored final coalgebra, which consists

of the nonempty finite and infinite streams over C together with the total head
and partial tail operations.

νCN = C1..ω outCN = 〈head , tail〉
The domain of cov operations N(νCN) is the set C0..ω of finite and infinite
streams over C, now additionally including the empty stream (). Because of the
intrinsic left bias of the head/tail structure, history is encoded with the most
recent element on the left.

Iteration and coiteration over N obey simple rules. Given a N -algebra (C,ϕ)
with ϕ = [z, s], we have:

(|ϕ|)N (n) = sn(z)
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For instance, define powers of two as iteration of doubling, starting from one:

(|[one, double]|)N (n) = 2n

Given a N -coalgebra (C,ϕ) with ϕ : C → N(C) understood as the partial
function ϕ : C � C, we have

[(ϕ)]N (x) = sup{n ∈ N | ϕn(x) defined}
where sup N = ω and iteration of partial functions is strict. For a useful example
of coiteration over N , first define the domain restriction of a total function
f : X → Y to a region U ⊆ X as:

f |U : X � Y (f |U )(x) =

{
f(x) x ∈ U
undefined x �∈ U

Then we can define the iterated logarithm, as it appears in the study of algorith-
mic complexity, concisely as the coiteration of the logarithm, domain-restricted
to a certain open real interval:

[(log|(1,∞))]N = log∗

For examples in the realm of scientific modeling, consider a discrete-time
dynamical system with state space S and single-step transition function f : S →
S. For a given initial state x0 ∈ S, the operation t = [x0, f ] gives rise to a
N -algebra (S, t). Iteration produces precisely the trajectory of x0, that is the
infinite sequence of states obtained by repeated application of f :

(|t|)N (n) = fn(x0)

Now consider a region U ⊆ S and the partial step function f |U where the domain
is restricted to U . This gives rise to a N -coalgebra (U, f |U ). Coiteration classifies
states in S according to escape time, that is the length of the longest prefix of
the trajectory completely contained in U :

[(f |U )]N (x) = sup{n ∈ N | fn(x) ∈ U}
In particular, U is a stationary solution of the system if and only if [(f |U )]N (x) = ω
for all x ∈ U .

The paradigmatic example for a cov iteration is the Fibonacci sequence.
Define an auxiliary operation ϕ : N

0..ω → N such that

ϕ() = 0 ϕ(a) = a+ 1 ϕ(a, b, . . .) = a+ b (7)

and conclude fib = {|ϕ|}N . Note that there is a generalization of the system from
N to Z that has several advantages; see below.

The simple harmonic oscillator model (1a) has a straightforward reconstruc-
tion as a cov iteration, completely analogous to the Fibonacci sequence: Fix the
model parameters ω and δ to obtain the loose specification

ϕ(a, b, . . .) =
(
2− (ωδ)2

)
a− b
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Now fix a reference time t and the first two observations f() = xt and f(a) =
xt+δ. This specifies f uniquely. Then we have xt+nδ = {|ϕ|}N (n). Models (1b) and
(1c), being essentially independent of history, are more adequately reconstructed
as ordinary iterations. We leave the generating maps as exercises to the reader.

ARMA and TFM models are more complicated due to having input. Their
reconstruction as cov iterations over functor N is possible (with exponential car-
rier and some higher-order functional programming; see [13]), but not straightfor-
ward and out of scope here. A more direct approach is by the composite functor
M = DN for some input object D, which yields complete and incomplete traces:

νCM = (C ×D)1..ω M(νCM) = D × (C ×D)0..ω

For any cov trace function ϕ, the syntactic trace space νCM splits into
valid traces Img{|ϕ|}M and the complementary invalid traces. It is easy to see
by induction that the recursive function {|ϕ|}M is determined completely by its
behavior on valid traces.

3 General Theory: State Systems

Our theoretical approach hinges on the observation that definition (6) as given in
[15] is not at all the only ordinarily iterative representation of a given cov iterative
function; in fact, the collection of such representations has a rich categorial
structure, covering all possible degrees of nominal history-dependence.

In all of the following, consider an endofunctor F and object C fixed.

3.1 Abstract State Systems

Definition 1 (Abstract State System). A pair (S, σ : νCF → S) is called
an abstract state system, if and only if topCF factors through σ, that is, there
is a complementary map ψ : S → C that makes the following diagram commute:

νCF

outCF

��

topCF

���
�

������

σ �� S

ψ

��

CF (νCF )
π1

�� C

(8)

The object S is called state space, the maps σ/ψ are called state abstrac-
tion/valuation, respectively.

For the rationale of not stating the valuation ψ explicitly in the definition of
a state system, see Lemma 4 below and Corollary 14 at the end of this section.

Definition 2 (Abstract State System Homomorphism). A homomorphism
between abstract state systems (S1, σ1) and (S2, σ2) is defined in the obvious way
as a map h : S1 → S2 such that the following diagram commutes:
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νCF
σ1

����
��

��
�� σ2

����
��

��
��

S1
h

�� S2

(9)

Abstract state systems and their homomorphisms give rise to a category
State(F,C) (of coslices under νCF ) with the obvious identity and composition.

Definition 3 (Epic Abstract State System). An abstract state system (S, σ)
is called epic if and only if σ is an epimorphism in the underlying category.

We shall argue in the following that epic state systems are the “right” ones for
various mathematical and epistemological reasons. Note that there are several
subclasses of special epimorphisms, such as regular, strong, and split epimor-
phisms, all of which notoriously coincide in the base category Set, obscuring
the subtle differences. Because there is no experience with relevant examples in
other categories, we reserve judgement which exactly is the appropriate class for
epic state systems in full generality. Most of the following definitions use only
the characteristic property of ordinary epimorphisms e, namely

f ◦ e = g ◦ e =⇒ f = g

for all possible maps f, g but Lemma 10 also assumes that F preserves the class
of epimorphisms in question, which is granted only for split epimorphisms in
arbitrary categories, but generally in Set [14].

Lemma 4. An epic state system determines the state valuation ψ uniquely.
Homomorphisms between epic state system are unique epimorphisms.

Hence the restriction of State(F,C) to epic systems gives a full, thin sub-
category EpicState(F,C).

Lemma 5. The categories (Epic)State(F,C) have (the same) initial objects,
namely the state system (νCF, idνCF ), with the unique valuation topCF , and the
unique homomorphism to any abstract state system (S, σ) equalling σ.

Lemma 6. At least over Set, the category State(F,C) has generally no final
objects.

Proof. Consider the initial abstract state system I = (νCF, idνCF ). Add a dis-
tinguished element to obtain the system I ′ = (νCF + 1, ι1) which clearly sat-
isfies (8). Now consider any abstract state system S = (S, σ). The morphisms
Hom(I ′,S) in State(F,C) are easily seen to correspond one-to-one to Hom(1, S)
in Set and hence to S itself, namely by

Hom(I ′,S) = {[σ, i] | i ∈ Hom(1, S)}
where the first component σ is fixed by Lemma 5. Hence if a final abstract state
system existed, it would need to have a one-element state space, so (8) would
imply topCF (x) = topCF (x′) for all x, x′ ∈ νCF , which is generally false. �
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Lemma 7. At least over Set, the category EpicState(F,C) has a final object,
namely the state system (C, topCF ), with the valuation idC , and the unique
homomorphism from any abstract state system (S, σ) equalling its valuation ψ.

This last result, while not very useful in itself, gives hints for the construction
of more richly structured final systems; see Sect. 4.2 below.

3.2 Concrete State Systems

Definition 8 (Concrete State System). A triple (S, σ, τ : F (S)→ S), where
(S, σ) is an abstract state system, is called a concrete state system for a cov
operation ϕ : F (νCF )→ C, or ϕ-system for short, with state transition τ , if
and only if the following (F -algebra homomorphism) diagram commutes:

F (νCF )

ϕ

��

F (σ)
�� F (S)

τ

��

νCF σ
�� S

(10)

Definition 9 (Concrete State SystemHomomorphism). A homomorphism
between concrete state systems (S1, σ1, τ1) and (S2, σ2, τ2) is defined, in the obvious
way, as a map h : S1 → S2 that is both an abstract state homomorphism between
(S1, σ1) and (S2, σ2) and a F -algebra homomorphism between (S1, τ1) and (S2, τ2);
that is, the following diagram additionally commutes:

F (S1)

τ1

��

F (h)
�� F (S2)

τ2

��

S1
h

�� S2

(11)

These definitions give rise to a (not necessarily full) subcategory State(ϕ)
of State(F,C). The following lemma shows that the corresponding subcategory
EpicState(ϕ) of EpicState(F,C) is full.

Lemma 10. The additional consistency condition on concrete state system
homomorphisms is essentially redundant for epic state systems; assuming F
preserves enough epimorphisms, any map between state spaces of epic systems
satisfying (9) automatically satisfies (11).

Proof. Consider the diagram

F (νCF )

ϕ

��

F (σ1)
��

F (σ2)

��

F (S1)
F (h)

��

τ1

��

F (S2)

τ2

��

νCF
σ1 ��

σ2

		S1
h �� S2
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where the inner left and outer quadrangle commute by (10), the triangles com-
mute by (9), and the inner right quadrangle is the goal (11). A short diagram
chase yields h ◦ τ1 ◦F (σ1) = τ2 ◦F (h) ◦F (σ1). Since σ1 is an epimorphism, so is
F (σ1) under mild assumptions as discussed above; conclude h ◦ τ1 = τ2 ◦ F (h).

�
Lemma 11. The initial abstract state system in (Epic)State(F,C) extends to
an initial concrete state system in (Epic)State(ϕ), namely (νCF, idνCF , ϕ).

By contrast, the dual problem of final concrete state systems is relatively
complex. Results are few and mostly negative, and many questions remain open.

Lemma 12. The final epic abstract state system does not generally extend to
concrete state system, let alone a final one.

Proof. Assume there is a ϕ-system (C, topCF , τ). Then (10) implies that τ ◦
F (topCF ) = topCF ◦ ϕ = ϕ. That is, ϕ factors through F (topCF ). This is not
only generally false, but defies the very purpose of cov iteration, covering only
the degenerate case of ordinary iteration over C, as discussed in Sect. 2.3. �

The constructive disproof of final objects for the abstract case State(F,C)
in Lemma 7 does not carry over to the concrete case State(ϕ). A family of
nontrivial and well-known examples for final concrete epic state systems will be
given below in Sect. 4.2. No such example for the non-epic case is known, leaving
the problem open.

3.3 Simulation by State Systems

Now we can clarify the notion of representation introduced at the start of this
section, namely in terms of simulation.

Theorem 13 (Simulation). Let S = (S, σ, τ) be a ϕ-system for a fixed cov
operation ϕ. Let ψ be any suitable state valuation. Then the cov iteration of ϕ
is simulated by ordinary iteration in terms of S.

{|ϕ|}F = ψ ◦ (|τ |)F
Note that for the initial ϕ-system from Lemma 11 this equation reduces to (6).

Proof. Consider the following diagram in the category of F -algebras, which com-
mutes by initiality:

(νCF,ϕ)
σ



���������

(μF, inF )
(|τ |)

��

(|ϕ|)
������������

(S, τ)

Hence back in the underlying category:

ψ ◦ (|τ |)F = ψ ◦ σ ◦ (|ϕ|)F = topCF ◦ (|ϕ|)F = {|ϕ|}F �
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Corollary 14. The choice of a particular state valuation ψ for a given cov oper-
ation ϕ is irrelevant for the purpose of simulation.

This concludes the “universal” part of the theory. For particular choices of
functor F and classes of operations ϕ, results are greatly more specific and
practically useful.

4 Specific Theory: Autonomous Systems

4.1 Stream-Like State Spaces

For the special case F = N already discussed in Sect. 2.4, a closer look reveals
details hinting at a more concrete design strategy for state-based models
(automata). Up to natural isomorphisms, the operations of a ϕ-system are of
the following types:

ϕ : C0..ω → C σ : C0..ω → S

ϕ : Ca..b → Ca
′..b′

τ : 1 + S → S

The F -algebra operation ϕ acts predictably on stream lengths, always adding
one element. Hence it can be soundly given many different types, with arbitrarily
wide integer bounds a′ ≤ a+1 and b′ ≥ b+1. Usage will be clear from the context.

The state transition is conveniently decomposed as τ = [ε, �] with ε ∈ S and
� : S → S. Thus an algorithm that enumerates the values of {|ϕ|}N takes the
form of a stream generator loop, as depicted in Fig. 1.

var x : S
x := ε
forever

output ψ(x)
x := �(x)

Fig. 1. Enumeration in concrete state systems over N , pseudocode

Lemma 15. For a concrete ϕ-state system over N we have for all n ≥ 0:

�n ◦ σ = σ ◦ ϕn {|ϕ|}N (n) = (ψ ◦ �n)(ε) = (ϕ ◦ ϕn)()
Concrete state systems are of particular interest, as theoretical objects rather

than as algorithmic specifications, when the structure of their state space S is
significantly simpler than C1..ω. For interpretation as physical systems, state
spaces with simple product structure, which can be read as a small collection of
independently observable variables, are preferred; see the oscillator example in
Sect. 1.1. By contrast, interpretation as an automaton prefers a simple coproduct
structure, read as a finite enumeration of alternative states.
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4.2 Dependency Patterns

Definition 16 (Bounded/Regular Iteration). A cov operation ϕ : C0..ω →
C is called k-bounded, for k > 0, if and only if

ϕ = ϕ ◦ take(k)

where take(k) takes the k first elements of its argument stream, or less if insuf-
ficient. It is called k-regular if and only if there is a surrogate history h ∈ Ck
such that

ϕ = ϕ ◦ take(k) ◦ append(h)

where append(s)(t) appends the stream s to t.

1-bounded cov iteration coincides with ordinary iteration. We write ϕ̂ :
C0..k → C and ϕ̂ : Ck → C for the domain restrictions of ϕ in bounded and
regular systems, respectively. The auxiliary operation take(k) : Ca..b → Ca

′..b′

is polymorphic with a′ ≤ min(a, k) and b′ ≥ min(b, k).

Lemma 17. Any k-bounded operation is (k+ 1)-bounded. Any k-regular opera-
tion is k-bounded.

The TFM example (5) is 3-bounded, as evident from the ellipsis (. . . ) in the
defining equation. The Fibonacci operation is a prototypic example of a 2-regular
operation, see below. A cov operation may depend on point-wise finitely many
elements without being k-bounded for any k (analogous to continuity versus
uniform continuity); for instance, consider the well-known recursive definition of
Bell numbers [11],

Bn+1 =
n∑

k=0

(
n

k

)

Bk

where each value depends on all of the preceding. Note that this example is
potentially infinitary, as opposed to the actually infinitary FARIMA example.

The theory of ϕ-systems for bounded ϕ is particularly fruitful. In order to
exploit it, we need to introduce some machinery for stream computation by
bounded C-coiteration.

Definition 18 (Bounded Lookahead). The family (↘n) of lookahead oper-
ators for all n ≥ 0, that take a pair of maps f : A→ A and g : A→ B to a map
(g↘n f) : A→ Bn, is defined inductively as:

g↘0 f = 〈〉 g↘n+1 f = cons ◦ 〈g ◦ fn, g↘n f〉
That is, in closed form, g↘n f = 〈g ◦ fn−1, . . . , g ◦ f0〉. Note the right-to-

left “historical” enumeration order; the corresponding left-to-right enumeration
would be given by take(n) ◦ [(〈g, f〉)]C .

Lemma 19. Lookahead operators obey the following laws:

(g↘n f) ◦ f = take(n) ◦ (g↘n+1 f)
(∀m < n. g ◦ fm ◦ e = k ◦ im ◦ h) =⇒ (g↘n f) ◦ e = (k↘n i) ◦ h
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Corollary 20. As special cases of the latter we obtain:

(g↘n f) ◦ f = (g ◦ f)↘n f

(∀m < n. fm ◦ e = k ◦ im) =⇒ (g↘n f) ◦ e = (g ◦ k)↘n i

Definition 21 (FIFO System). A first-in-first-out buffer of k > 0 elements
of C gives rise to a canonical concrete state system candidate, the k-fifo system,
for any k-bounded cov operation ϕ:

S[k] = Ck σ[k] = head ↘k ϕ

ε[k] = (ϕ̂↘k ϕ)() �[k] = cons ◦ 〈ϕ̂, take(k − 1)〉
Note that ϕ is used polymorphically as a map on C0..ω and C1..ω in the

definitions of ε[k] and σ[k], respectively. These can be made precise as ϕ ◦ ι2 and
ι2 ◦ ϕ, respectively, where ι2 : C1..ω → C0..ω is the natural inclusion.

Lemma 22. The fifo operations have alternative forms:

σ[k] = take(k) ◦ ϕk−1 ε[k] = ϕk() τ[k] = take(k) ◦ ϕ
This seems to suggest that a “lookbehind” abstraction take(k) might be more

straightforward than the “lookahead” σ[k]. However, that would unnecessarily
complicate the construction of homomorphisms; see Theorem 25 below.

Corollary 23.
ϕ̂ ◦ σ[k] = head ◦ ϕk

Now we can verify our educated guess.

Theorem 24 (FIFO Simulation). If ϕ is k-bounded, then the k-fifo system
is a valid ϕ-system with valuation ψ[k] = πk.

Proof. It is easy to see that (8) is satisfied:

ψ[k] ◦ σ[k] = πk ◦ (head ↘k ϕ) = head ◦ ϕ0 = topCN

In the following we use the simplified fifo operations of Lemma22. A low-level
proof in terms of lookahead laws is also possible, and will be required for the
more advanced Theorem 25 below. To prove that (10) is satisfied, distinguish
cases of F . On one hand:

(σ[k] ◦ ϕ)() = (take(k) ◦ ϕk)() = ε[k]

On the other hand, exploiting polymorphism as discussed:

σ[k] ◦ ϕ ◦ ι2 = σ[k] ◦ ϕ
= take(k) ◦ ϕ ◦ ϕk−1

= take(k) ◦ cons ◦ 〈ϕ̂ ◦ take(k), idCk..ω 〉 ◦ ϕk−1

= cons ◦ 〈ϕ̂ ◦ take(k), take(k − 1)〉 ◦ ϕk−1

= cons ◦ 〈ϕ̂, take(k − 1)〉 ◦ take(k) ◦ ϕk−1

= �[k] ◦ σ[k] �
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var x : C[1 .. k]
for i in k to 1

x[i] := ϕ̂(x[i + 1], . . ., x[k])
forever

output x[k]
x := ϕ̂(x[1], . . ., x[k]), x[1], . . ., x[k − 1]

Fig. 2. Enumeration in fifo systems over N , pseudocode

The resulting, specialized enumeration algorithm is depicted in Fig. 2. In the
case of the Fibonacci operation with k = 2 and ϕ̂ defined as in (7), we obtain
the familiar iterative algorithm by straightforward code specialization, depicted
in Fig. 3.

var x : Z[1 .. 2]
x := 1, 0
forever

output x[2]
x := (x[1] + x[2]), x[1]

Fig. 3. Enumeration in Fibonacci fifo system, pseudocode

The existence of fifo systems is merely a new formalization of a well-known
algorithmic technique. The added value of the theory explored here is demon-
strated by the following novel, surprisingly strong characterization of semantic
adequacy.

Theorem 25 (FIFO Finality). If a fifo ϕ-system is epic, then it is final in
EpicState(ϕ). The unique homomorphism from any other ϕ-system (S, σ, [ε, �])
with valuation ψ is h = ψ↘k �.

Note that there is no obvious take-based expression for h in analogy to Lemma 22.

Proof. By Lemma 4, it suffices to show that h is a homomorphism (†). We have

h ◦ σ = (ψ↘k �) ◦ σ
(Lemma 15, Corollary 20) = (ψ ◦ σ)↘k ϕ

(8) = head ↘k ϕ = σ[k]

thus verifying that h satisfies (9). Regarding (11) we have on one hand:

h(ε) = (ψ↘k �)(ε)

(Lemmas 15 and 19) = (ϕ↘k ϕ)() = ε[k]
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By Lemma 15, observe that

ψ ◦ �k ◦ σ = ψ ◦ σ ◦ ϕk
(8) = head ◦ ϕk

(Corollary 23) = ϕ̂ ◦ σ[k] = ϕ̂ ◦ h ◦ σ

With σ epi (†) conclude ψ ◦ �k = ϕ̂ ◦ h. Then on the other hand:

h ◦ � = (ψ↘k �) ◦ �
(Lemma 19) = take(k) ◦ (ψ↘k+1 �)

= take(k) ◦ cons ◦ 〈
ψ ◦ �k, (ψ↘k �)

〉

= take(k) ◦ cons ◦ 〈ψ ◦ �k, h〉
(above) = take(k) ◦ cons ◦ 〈ϕ̂ ◦ h, h〉

= take(k) ◦ cons ◦ 〈ϕ̂, idCk〉 ◦ h
= cons ◦ 〈

ϕ̂, take(k − 1)
〉 ◦ h

= �(k) ◦ h

Together conclude that h satisfies (11). �
As a concrete example, we verify that the Fibonacci fifo system over C = Z

is final: for every pair (a, b) ∈ Z
2, we find that σ[2](b, a− b, . . .) = (a, b).

The fairly elegant proof makes use of the epimorphism property of σ in crucial
ways, marked with (†); thus the restriction to EpicState(ϕ) is essential. There
is no obvious strategy how to generalize the result to final objects in State(ϕ).
Additionally, a “moral converse” of the theorem holds also.

Lemma 26. Non-epic fifo ϕ-systems are not generally final, in State(ϕ).

Proof. As a counterexample, consider the Fibonacci sequence over C = N instead
of Z. We can give a hierarchy of four distinct, nested valid ϕ-systems with state
S0 ⊃ S1 ⊃ S2 ⊃ S3, namely

S0 = Z
2

S1 = {(a, b) ∈ S1 | a ≥ 0; a+ b ≥ 0}
S2 = {(a, b) ∈ S1 | a ≥ 0; b ≥ 0} = N

2

S3 = {(a, b) ∈ S1 | a ≥ b; b ≥ 0} = Img σ[2]

arising from the fifo system over Z discussed above. For S2 and S3, the valuation
ψ[2] = π2 is already N-valued and determined uniquely. For S0 and S1, we can
choose arbitrary valuations for elements outside S2 without violating (8).

The system S3 is epic, but the canonical N-valued fifo system S2 is not. Nei-
ther S2 nor S3 is final: Assume, for contradiction, a homomorphism h : S0/1 →
S2/3. Now observe that the following point diagram, where the squares and the
triangle are instantiations of (11) and (9), respectively, must commute.
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(1,−1) � 
 ��
�

h

��

(0, 1) � 
 ��
�

h

��

(1, 0)
�

h

��

(0, 1)
	

σ
��











�

σ���������

(a, b) �



�� (a+ b, a) �



�� (2a+ b, a+ b)

So h(1,−1) = (a, b) implies 2a + b = 1 and a + b = 0, which has no solution in
a, b ∈ N. �
Lemma 27. If the k-fifo ϕ-system is epic, then the corresponding (k + 1)-fifo
ϕ-system is generally not.

This straightforward observation clarifies that the parameter k of a final epic
fifo ϕ-system is an objective measure of the order of history dependence in ϕ.

4.3 Regularization

Regularity is a stronger condition on cov operations than boundedness. We give
some simple characterizations of regular operations.

Theorem 28 (Regularization). If, for a k-bounded cov operation ϕ, the state
transition �[k] is invertible, then there is an equivalent k-regular cov operation
ϕ′ such that {|ϕ|}N = {|ϕ′|}N .

Proof. Choose ϕ′ = ϕ◦take(k)◦append(h) with h = �−k
[k] (ε[k]). It suffices to show

that the respective fifo systems coincide. Since take(k) ◦ append(h) has no effect
on the fifo state space Ck, the clause �[k] = �′

[k] is trivial. For the ε[k] clause, we
have by Lemma 22:

ε′
[k] = ϕ′k()

= (take(k) ◦ ϕk)(h)

= (take(k) ◦ ϕk ◦ �−k
[k] )(ε[k])

(Lemma 22) = (�k[k] ◦ �−k
[k] )(ε[k]) = ε[k] �

For the concrete example of the Fibonacci operation, we find that �[2] is
specified by the invertible matrix ( 1 1

1 0 ). The operation as defined above is its
own regularization with h = (1,−1). Note that there are equivalent definitions
which are distinct from their regularization, for instance with the more commonly
found (such as in [15]) second clause ϕ(a) = 1 instead of a+ 1.

More algebraic structure on C gives more powerful results.

Corollary 29. If ϕ̂ : Ck → C is a linear form over a scalar field C, with
coefficients α1, . . . , αk, then �[k] is linear, and ϕ regularizes if and only if αk �= 0.

This result subsumes all finitary ARMA-like models.
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5 Conclusion

The role of time in science has been hotly debated since antiquity, and quite
remains so today [12]. The cov iteration approach to discrete-time history-
dependent models goes a long way in retelling the meta-level discourse in a
down-to-earth, formally precise and useful style. The categories (Epic)State(ϕ)
of concrete systems span a solution space of hypothetical state-based realizations
of a fixed black-box model with observable function {|ϕ|}F .

At one extreme, the initial system is a purely syntactic solution which takes
history at face value. It is always given trivially, but yields little scientific insight,
and is also deficient as an algorithmic specification, because it prescribes a space
leak : iterated invocation of the history constructor out−1

F makes state representa-
tions grow boundlessly, even if the computation could also easily be performed on
bounded space, such as by a fifo system. The sheer size and coalgebraic structure
of νCF as a datatype may also be distressing for the working modeler unfamiliar
with coalgebraic techniques.

At the other extreme, a final system, if such a thing exists, is a purely seman-
tic, fully abstract solution, which makes only the empirically necessary distinc-
tions, and is hence the “holy grail” of model semantics and epistemology. Final
systems can reconstruct and justify established algorithmic design techniques of
computational modeling.

Since the quotient structure of a final system may be complex and hard to
find and work with, the practice of modeling often deals with intermediate forms,
which have a more compact and regular state space than the initial rendering,
yet tractable transition and valuation rules. In particular, product-shaped state
spaces welcome the interpretation of their projections as independent, objectively
real variables, both analytically in science and synthetically in engineering.

Epic state systems are of particular interest. From the formal perspective,
they come with vastly more benign properties. From the epistemological perspec-
tive, they can be justified by an invocation of Occam’s Razor: states are not to be
multiplied without necessity (here for simulation). On the other hand, epic homo-
morphisms, that is unique surjective structure-preserving maps h : S1 → S2, can
be understood as precise semantic relationships between alternatives of hypo-
thetical state, by turning state space S1 into a possibly redundant but complete
system of representatives for the more abstract but elusive state space S2. This
view renders philosophical arguments against the structure of S1 as a datatype
obsolete. It is foreseeable that advanced aspects of model analysis can be inte-
grated into the picture as equational specifications of such homomorphisms. Fur-
thermore, we point out other (co)limit constructions than initial/final objects in
the thin category of epic state systems as an interesting open problem.

The recursion scheme of the elementary functor N is sufficient for many text-
book examples, as well as for straightforward modeling of discrete-time systems
without input. It comes with an extensive theory of canonical, even final sys-
tems, with well-understood algorithmic properties. It remains to be seen whether
behaviorally more complex applications are better dealt with by reduction to this
base case, or by extension of the theory to more advanced functors.
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Bounded and regular operations are of particular algorithmic interest,
because they do away with space leaks and base cases, respectively. We expect
that algorithmic treatment of more complicated patterns of history dependence
is also possible, and can lead to formally derived implementations of TFM. On
the other hand, dependency on actually infinite histories is a feature of the cov
operation only, not of the generated recursive function. This should serve as
a warning for the philosophical discourse to properly distinguish the theoreti-
cal role of the former from the empirical role of the latter, such as in inverse
FARIMA model estimation.

And finally, we are happy to have given yet another meaning to the phrase
“universal coalgebra: a theory of systems.”
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