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Abstract. Public announcements are used in dynamic epistemic logic
to model certain kinds of information change. A formula 〈ψ〉ϕ represents
the statement that after ψ is publicly announced ϕ will be the case.

Sometimes we want to reason about whether it is possible for ϕ to
become true after some announcement. In order to do this an arbitrary
public announcement operator ♦ can be added to an epistemic logic with
public announcements. Ideally a formula ♦ϕ would hold if and only if
there is a formula ψ such that 〈ψ〉ϕ. However, in order to avoid circularity
the ♦ operator can only quantify over those ψ that are ♦-free. So ♦ϕ holds
if and only if there is a ♦-free ψ such that 〈ψ〉ϕ.

As a result it does not follow immediately from the definition that
〈ψ〉ϕ implies ♦ϕ if ψ contains a ♦. But the implication may still hold in
some cases. In this paper I show that on finite models 〈ψ〉ϕ implies ♦ϕ
for every ψ, and that on finitely branching models 〈ψ〉ϕ implies ♦ϕ for
every ψ if ϕ is ♦-free. Finally I also show that there are ϕ and ψ such
that 〈ψ〉ϕ does not imply ♦ϕ even on a finitely branching model.

1 Introduction

In epistemic logic we can reason about basic facts (represented by propositional
variables) and about knowledge of different agents (represented by one operator
Ka per agent). A commonly used example in epistemic logic is that of a simple
card game. Suppose two agents a and b are playing a game where they each hold
one card, and they know their own card but not the other’s card. Then if a holds
a queen (and we use the propositional variable q to represent this basic fact) the
formulas (i) Kaq, (ii) q∧¬Kbq and (iii) Ka¬Kbq represent the (true) statements
that (i) a knows that she holds a queen, (ii) a holds a queen but b does not know
this, and (iii) a knows that b does not know that she holds a queen.

In such a basic epistemic logic we cannot however express information change.
For example, we cannot reason about what would happen if a were to show her
card to b in basic epistemic logic. If we want to reason about information change
we need to use a dynamic epistemic logic. There are many different kinds of
dynamic epistemic logic, see for example [1] for an overview. One of the most
common ways to turn a (static) epistemic logic into a dynamic epistemic logic
is to add public announcements [2,3] to the logic. A public announcement is a
binary operator of the form 〈ψ〉ϕ. The formula 〈ψ〉ϕ is true if ϕ will hold after
ψ is announced truthfully and publicly.
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Using public announcements we can reason about what would happen if a were
to show her card to b; the showing of a card can be considered an announcement
of the card that a holds. The statement that after a shows her card b knows what
card a holds is therefore represented by the (true) formula 〈q〉Kbq. One thing to
note about the formula 〈q〉Kbq is that after q is announced agent b knows that
q, so the announcing of q is a way for b to get to know q.

However, not all formulas can be learned in such a way. Consider the formula
q ∧ ¬Kbq, representing a holding a queen and b not knowing this. This formula
was introduced in [4] as a formula that can never be known by b even if it is true.
Since q ∧ ¬Kbq can never be known by b there is also no announcement such
that b will know q ∧ ¬Kbq after the announcement. So not only is it impossible
for b to get to know the truth of q ∧ ¬Kbq by announcing q ∧ ¬Kbq, there is no
formula ψ such that 〈ψ〉Kb(q ∧ ¬Kbq).

This last property, whether for a given ϕ there exists a ψ such that 〈ψ〉Kbϕ
requires us to quantify over all formulas. We can of course do this quantification
meta-logically, but epistemic logic with public announcements does not allow us
to perform this quantification inside the logic. This is unfortunate, as this means
we cannot use public announcements to reason about whether it is possible to
get to know something. A solution proposed in [5,6] is to add one more operator
♦, representing arbitrary public announcements.

Such arbitrary public announcements can be useful when considering problems
of knowability, but also in more practical scenarios such as in cryptography where
it is important to know whether it is possible to make a public statement such
that agent b learns the content p of a message but another agent e does not, so
whether ♦(Kbp ∧ ¬Kep).

We would like to define ♦ in such a way that ♦ϕ holds if and only if there is an
announcement ψ such that 〈ψ〉ϕ holds. There is a technical problem with this
kind of definition, however. If we allow the announcement ψ to be any formula
the evaluation of ♦ϕ would become circular. After all, in order to know whether
♦ϕ holds we would have to check whether 〈♦ϕ〉ϕ holds. But in order to know
whether 〈♦ϕ〉ϕ holds we would among other things have to know whether ♦ϕ
is a truthful announcement, so whether ♦ϕ holds.

This circularity is removed in [5,6] by restricting ψ to formulas that do not
themselves contain ♦ operators. So ♦ϕ holds if and only if there is a ♦-free
formula ψ such that 〈ψ〉ϕ. Unfortunately this means that the announcements in
an arbitrary announcement operator are not in fact entirely arbitrary. But while
the definition of ♦ cannot allow completely arbitrary announcements it might
be possible to get entirely arbitrary announcements as an “emergent property”.
Suppose that whenever there is a ψ containing ♦ such that 〈ψ〉ϕ there would
always also be a ψ′ that is ♦-free such that 〈ψ′〉ϕ. Then 〈ψ〉ϕ would imply ♦ϕ,
even if ψ happens to contain a ♦.

A different way of phrasing this is to ask whether 〈ψ〉ϕ → ♦ϕ is valid for
every ψ. It was shown in [5] that the implication is valid if there is only a single
agent. In this paper I show that if there are multiple agents the validity of the
implication depends on the class of models we use to evaluate the logic on and
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on ϕ. If we use only finite models then 〈ψ〉ϕ → ♦ϕ is valid. If we allow finitely
branching infinite models then 〈ψ〉ϕ → ♦ϕ is valid for every ψ and every ♦-free
ϕ. But if we allow models that are infinitely branching or if we do not restrict
to ♦-free ϕ then there are ϕ and ψ such that 〈ψ〉ϕ → ♦ϕ is not valid.

In Section 2 I give some definitions needed to formulate and prove the results.
Then in Section 3 I show that for finite models 〈ψ〉ϕ → ♦ϕ is valid. In Section
4.1 I prove that for finitely branching models 〈ψ〉ϕ → ♦ϕ is valid if ϕ is ♦-
free. In Section 4.2 I construct ψ and ♦-free ϕ such that 〈ψ〉ϕ → ♦ϕ is not
valid on infinitely branching models. Finally, in Section 4.3 I construct ϕ and ψ
containing ♦ such that 〈ψ〉ϕ → ♦ϕ is not valid on finitely branching models.

2 Definitions

Let us start by defining arbitrary public announcement logic LAPAL and the ♦-
free fragment public announcement logic LPAL of LAPAL. Let us fix a countably
infinite set P of propositional variables and a finite set A of agents. The language
of LAPAL is then defined as follows.

Definition 1. The formulas of LAPAL are given by

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | 〈ϕ〉ϕ | ♦ϕ
where p ranges over P and a ranges over A.

Definition 2. The logic LPAL is the ♦-free fragment of LAPAL.

Parentheses are omitted where this should not cause confusion and ∧, →,↔,
∨

and
∧

are used in the usual way as abbreviations. Furthermore, K̂a, [ϕ] and
� are used as abbreviations for ¬Ka¬, ¬ 〈ϕ〉 ¬ and ¬♦¬ respectively. Integer
superscripts are used to indicate multiple copies of an operator, so K3

a stands
for KaKaKa. Finally, if B is a set of agents then KB stands for

∧
a∈B Ka and

K̂B for
∨

a∈B Ka.
The intended reading of the non-boolean operators is as follows:

– Kaϕ is read as “agent a knows that ϕ”,
– 〈ψ〉ϕ is read as “after it is publicly announced that ψ is the case ϕ holds”,
– ♦ϕ is read as “there is a ♦-free announcement ψ such that 〈ψ〉ϕ holds”.

Since LAPAL and LPAL are epistemic logics they are usually considered over
the class of S5 models. We will follow this tradition, but it should be noted that
none of the proofs in this paper depend on the special properties of S5 models.
So all the results presented here also hold over the class of K models.

Definition 3. A model M is a triple (W,R, v) where W is a set of worlds,
R : A → ℘(W ×W ) assigns to each agent an equivalence relation on W and v :
P → ℘(W ) is a valuation function that assigns an extension to each propositional
variable.

A model M = (W,R, v) is said to be finitely branching if for each w ∈ W
and each a ∈ A the set {w′ | (w,w′) ∈ R(a)} is finite. A model M = (W,R, v)
is said to be finite if W is a finite set.
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The semantics for most operators of LAPAL are as usual. For the only unusual
operator ♦ it should be noted that it quantifies not over the formulas of LAPAL

but over the formulas of LPAL.

Definition 4. Given a model M = (W,R, v), a world w of M and ϕ, ψ formulas
of LAPAL the satisfaction relation |= is given by

M, w |= p ⇔ w ∈ v(p)
M, w |= ¬ϕ ⇔ M, w 
|= ϕ
M, w |= ϕ ∨ ψ ⇔ M, w |= ϕ or M, w |= ψ
M, w |= Kaϕ ⇔ M, w′ |= ϕ for all w′ ∈ W such that (w,w′) ∈ R(a)
M, w |= 〈ϕ〉ψ ⇔ M, w |= ϕ and Mϕ, w |= ψ
M, w |= ♦ϕ ⇔ there is a LPAL formula ψ such that M, w |= 〈ψ〉ϕ

with Mϕ = (Wϕ, Rϕ, vϕ) where Wϕ = {w ∈ W | M, w |= ϕ} and Rϕ and vϕ are
the restrictions of R and v to Wϕ.

We write M |= ϕ if M, w |= ϕ for every w ∈ W and |= ϕ if M |= ϕ for every
model M. Furthermore, we write |=br ϕ if M |= ϕ for every finitely branching
model M and |=fin ϕ if M |= ϕ for every finite model M.

3 APAL on Finite Models

With the definitions out of the way I can show that |=fin 〈ψ〉ϕ → ♦ϕ for all
LAPAL formulas ψ. This is not a very surprising result; in a finite model we can
replace any ♦ operator by the announcement of a disjunction of LPAL formulas,
one for each world where the ♦ is replaced by the “chosen announcement” for
that world.

Lemma 1. Fix a finite model M = (W,R, v) and a LAPAL formula ϕ. Then
there is a LPAL formula ψ such that M |= ϕ ↔ ψ.

Proof. By induction on the construction of ϕ. The lemma trivially holds if ϕ is
atomic. Suppose then as induction hypothesis that ϕ is not atomic, and that the
lemma holds for all finite models and all subformulas of ϕ.

The formula ϕ is not atomic, so it is of one of the following forms:

1. ϕ = ¬ϕ′,
2. ϕ = ϕ′ ∨ ϕ′′,
3. ϕ = Kaϕ

′,
4. ϕ = 〈ϕ′′〉ϕ′ or
5. ϕ = ♦ϕ′.

By the induction hypothesis there is a LPAL formula ψ′ such that M |= ϕ′ ↔ ψ′

and, if applicable, a LPAL formula ψ′′ such that M |= ϕ′′ ↔ ψ′′. So if we take
ψ to be ¬ψ′, ψ′ ∨ ψ′′ or Kaψ

′ then we have M |= ϕ ↔ ψ in the first, second or
third case respectively.

Let us then consider fourth case. By the induction hypothesis there are LPAL

formulas ψ′′ such that M |= ϕ′′ ↔ ψ′′ and ψ′ such that Mϕ′′ |= ϕ′ ↔ ψ′. This
implies that M |= ϕ ↔ 〈ψ′′〉ψ′.
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Let us then consider the fifth case, ϕ = ♦ϕ′. Let W ′ be the extension of ϕ,
so W ′ := {w ∈ W | M, w |= ♦ϕ′}. For each wi ∈ W ′ we have M, wi |= ♦ϕ′,
so there is a LPAL formula ϕ′′

i such that M, wi |= 〈ϕ′′
i 〉ϕ′. By the induction

hypothesis there is a LPAL formula ψ′
i such that Mϕ′′

i
|= ψ′

i ↔ ϕ′. We therefore
have M |= 〈ϕ′′

i 〉ψ′
i ↔ 〈ϕ′′

i 〉ϕ′.
Now let ψ :=

∨
wi∈W ′ 〈ϕ′′

i 〉ψ′
i. This is a LPAL formula, since all its subformulas

are LPAL formulas and W ′ is a finite set. Furthermore, for each wi ∈ W ′ we have
M, wi |= ψ.

Suppose now towards a contradiction that for some w′ ∈ W \ W ′ we have
M, w′ |= ψ. Then one of the disjuncts of ψ holds in w′, so for some wi ∈ W ′

we have M, w′ |= 〈ϕ′′
i 〉ψ′

i. Then we also have M, w′ |= 〈ϕ′′
i 〉ϕ′, since M |=

〈ϕ′′
i 〉ψ′

i ↔ 〈ϕ′′
i 〉ϕ′. But ϕ′′

i is a LPAL formula so this implies that M, w′ |= ♦ϕ′.
This contradicts w′ being an element of W \W ′, so we must have M, w′ 
|= ψ.

This shows thatM |= ϕ ↔ ψ, which completes the induction step and thereby
the proof. ��
It now follows immediately that |=fin 〈ψ〉ϕ → ♦ϕ.

Theorem 1. For every LAPAL formulas ϕ and χ we have |=fin 〈ϕ〉χ → ♦χ.

Proof. Fix any LAPAL formulas ϕ and χ, and any finite model M. Then by
Lemma 1 there is a LPAL formula ψ such that M |= ϕ ↔ ψ. This implies that
M |= 〈ϕ〉χ ↔ 〈ψ〉χ. But ψ is a LPAL formula so |= 〈ψ〉χ → ♦χ and therefore
M |= 〈ϕ〉χ → ♦χ. Since this is true for any finite model M this implies that
|=fin 〈ϕ〉χ → ♦χ. ��

4 APAL on Infinite Models

On infinite models we cannot use the method that worked for finite models,∨
wi∈W ′ 〈ϕ′′

i 〉ψ′
i is in general not a formula on infinite models since W ′ may be

infinite. Here I show that no other method can work; there are infinite models
M, worlds w of M and LAPAL formulas ϕ and ψ such that M, w |= 〈ψ〉ϕ∧¬♦ϕ.

Like the result for the finite case this should not surprise us. What is somewhat
surprising however is that the result extends to finitely branching models; there
are ϕ and ψ such that 
|=br 〈ψ〉ϕ → ♦ϕ. To see why it is unexpected that

|=br 〈ψ〉ϕ → ♦ϕ consider the following. Fix any finitely branching model M
and any world w of M. We cannot guarantee the existence of a LPAL formula
ψ′ such that M |= ψ ↔ ψ′, but since M is finitely branching we can for any
n ∈ N guarantee the existence of a LPAL formula ψ′′ such that M, w′ |= ψ ↔ ψ′

for every world w′ that is reachable within n steps from w.
The language of LAPAL does not contain common knowledge, so it would at

first glance seem like such a ψ′′ that is equivalent to ψ up to a given distance
might be sufficient to make ϕ have the same value after both announcements. If
ϕ does not contain any ♦ operators then this does indeed work, for any LAPAL

formula ψ and any LPAL formula ϕ we have |=br 〈ψ〉ϕ → ♦ϕ. But a ♦ operator
(or more precisely: a � operator) can make a formula depend on worlds that are



114 L.B. Kuijer

arbitrarily far away in such a way that in certain models no finite approximation
ψ′′ of ψ will suffice.

I first show that for ♦-free ϕ we have |=br 〈ψ〉ϕ → ♦ϕ, then that there are ψ
and ♦-free ϕ such that 
|= 〈ψ〉ϕ → ♦ϕ and finally that for some ϕ that do contain
♦ we have 
|=br 〈ψ〉ϕ → ♦ϕ. This order of proofs is chosen for reasons of clarity
of exposition; the proof that 
|=br 〈ψ〉ϕ → ♦ϕ uses more complicated variants
on some of the same techniques that are used in the proof of 
|= 〈ψ〉ϕ → ♦ϕ.

4.1 Validity of 〈ψ〉ϕ → ♦ϕ for ♦-free ϕ

Before proving that |=br 〈ψ〉ϕ → ♦ϕ we need one auxiliary lemma.

Lemma 2. Let M be any finitely branching model and w1, w2 two worlds of M.
Then there is a LAPAL formula that distinguishes between M, w1 and M, w2 if
and only if there is a LPAL formula that distinguishes between them.

Proof. If there is a LPAL formula ψ′ that distinguishes between two worlds then
there is also a LAPAL formula ψ that distinguishes between the two worlds,
namely ψ = ψ′. Left to show is that if LAPAL can distinguish between two
worlds then so can LPAL.

The formulas of LAPAL are invariant under bisimulation (see [6]), so if a LAPAL

formula distinguishes between M, w1 and M, w2 then M, w1 and M, w2 are not
bisimilar. On finitely branching models worlds are bisimilar if and only if they
are indistinguishable by basic modal logic (see for example [1]). So since M, w1

and M, w2 are not bisimilar they can be distinguished by a LPAL formula. ��
Lemma 2 also holds for models that are not finitely branching, but that requires
a more complicated proof and we only need the result for finitely branching
models.1

Lemma 3. Let ψ be any LAPAL formula and let ϕ be any LPAL formula. Then
|=br 〈ψ〉ϕ → ♦ϕ.

Proof. Fix any finitely branching model M and any world w of M. It was shown
in [2] that every LPAL formula is equivalent to a LPAL formula that does not
contain any public announcements. Let ϕ′ be the announcement-free formula
equivalent to ϕ, and let n be the maximum nesting depth of K operators in
ϕ′. Then the truth of ϕ′—and therefore also ϕ—on M, w does not depend on
changes to worlds that are not reachable from w in at most n steps.

Let W ′ be the set of worlds that are reachable from w in at most n steps,
and let W1 := {w′ ∈ W ′ | M, w′ |= ψ} and W2 := W ′ \ W1. Then for each
wi ∈ W1 and wj ∈ W2 the formula ψ distinguishes M, wi from M, wj , so by
Lemma 2 there is also a LPAL formula that distinguishes the two worlds. Let

1 For an idea of why Lemma 2 also holds for infinitely branching models consider the
case where M, w |= ♦ϕ and M, w′ �|= ♦ϕ. Then there is a ψ such that M, w |= 〈ψ〉ϕ
and in particular M, w′ �|= 〈ψ〉ϕ so the formula 〈ψ〉ϕ distinguishes the two worlds
as well. This can be extended to any formula containing a ♦ operator.
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ψ′
i,j be this distinguishing LPAL formula and assume without loss of generality

that M, wi |= ψ′
i,j and M, wj 
|= ψ′

i,j .
For wi ∈ W1 let ψ′

i :=
∧

wj∈W2
ψ′
i,j . Then M, wi |= ψ′

i and M, wj 
|= ψ′
i for

each wj ∈ W2. Finally, let ψ′ :=
∨

wi∈W1
ψ′
i. This ψ′ satisfies M, wi |= ψ′ for

each wi ∈ W1 and M, wj 
|= ψ′ for each wj ∈ W2.
As such, the models Mψ and Mψ′ only differ in worlds that are not reachable

from w within n steps, so M, w |= 〈ψ〉ϕ ↔ 〈ψ′〉ϕ. Because ψ′ is a LPAL formula
this implies that M, w |= 〈ψ〉ϕ → ♦ϕ. The model M and world w were chosen
as any finitely branching model and any world of that model, so we have |=br

〈ψ〉ϕ → ♦ϕ. ��

4.2 Invalidity of 〈ψ〉ϕ → ♦ϕ on Infinitely Branching Models

If we do not restrict ourselves to finite or finitely branching models there are ϕ
and ψ such that 〈ψ〉ϕ → ♦ϕ is not valid. Let

ϕ1 := K̂cp ∧Kc(r → K̂d¬r) ∧Kc((p ∧ ¬r) → K̂er),

ϕ2 := Kc(¬q → (K̂f (¬K̂cq ∧Kap) ∧ K̂f¬Kap)),

ϕ := ϕ1 ∧ ϕ2

ψ := p ∨ q ∨Ka¬♦(K̂bKap ∧ K̂b¬Kap).

Furthermore, let M be the model shown in Figure 1 and let Mn for n ∈ N be
the submodels indicated in Figure 1.

We want to show that M, w 
|= 〈ψ〉ϕ → ♦ϕ. This requires us to show that
M, w |= 〈ψ〉ϕ and that M, w 
|= ♦ϕ. In order to prove that M, w 
|= ♦ϕ we
have to demonstrate that if M, w |= 〈ψ′〉ϕ then ψ′ contains a ♦ operator. The
subformula ϕ1 is constructed in such a way that if M, w |= 〈ψ′〉ϕ then the
update 〈ψ′〉 retains an infinite number of worlds. The subformula ϕ2 guarantees
that if M, w |= 〈ψ′〉ϕ and 〈ψ′〉 retains an infinite number of worlds then ψ′ must
perform an infinite number of different updates, which cannot be done without a
♦ operator. But before looking at the details of the proof that M, w 
|= ♦ϕ let us
start by proving the simpler part of the statement, namely that M, w |= 〈ψ〉ϕ.
Lemma 4. We have M, w |= 〈ψ〉ϕ.
Proof. To show is that Mψ |= ϕ, so let us look at which worlds are retained by
〈ψ〉. The disjuncts p and q of ψ guarantee that any world in the leftmost three
columns is retained.

The worlds in the fourth column from the left satisfy neither p nor q though,
so they are retained only if they satisfy Ka¬♦(K̂bKap∧ K̂b¬Kap). These worlds
themselves always satisfy ¬♦(K̂bKap∧ K̂b¬Kap); there is no update that would
let them satisfy K̂bKap because every b-reachable world satisfies ¬p.

So the worlds in the fourth column are retained if and only if the p world to the
left of them (which they are a-connected with) satisfies ¬♦(K̂bKap ∧ K̂b¬Kap).

Now we reach the difference between the rows of a submodel Mn. Consider
the p world in the bottom row of Mn for any n. The only world b-reachable from
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this world is itself, so there is no update that can make the world satisfy K̂bKap∧
K̂b¬Kap. So the p world in the bottom row satisfies ¬♦(K̂bKap ∧ K̂b¬Kap).

Now consider one of the p worlds in the top two rows ofMn. These two worlds
can be distinguished from each other because their “tails” are of different lengths.
This allows us to create an update χn that removes the ¬p world adjacent to the
top p world but not the one adjacent to the second row p world. The formula
χn := ¬p → K̂n−1

{a,b}K
n
{a,b}¬p for example does this.

The specific formula χn that works for a submodel Mn depends on n, but in
every case it is a PAL formula so for every n the top two p worlds of Mn satisfy
♦(K̂bKap ∧ K̂b¬Kap).

This means that the worlds in the fourth column are retained by 〈ψ〉 if and
only if they are in the third row of any submodelMn. The modelMψ is therefore
as shown in Figure 2. It is straightforward to verify that w satisfies ϕ in that
model. ��
Now to show that there is no PAL formula ψ′ that satisfies M, w |= 〈ψ′〉ϕ.
Recall that the two parts of ϕ have different purposes. The part ϕ1 guarantees
that ψ′ retains an infinite number of worlds while ϕ2 guarantees that ψ

′ performs
an infinite number of different updates, which cannot be done without using a
♦ operator.

Lemma 5. For every LPAL formula ψ′ we have M, w 
|= 〈ψ′〉ϕ.
Proof. Suppose towards a contradiction that there is a LPAL formula ψ′ such
that M, w |= 〈ψ′〉ϕ. Then we have M, w |= 〈ψ′〉ϕ1 and M, w |= 〈ψ′〉ϕ2.

Consider M, w |= 〈ψ′〉ϕ1. The conjunct K̂cp guarantees that 〈ψ′〉 retains at
least one of the p worlds that are accessible from w, so at least one of the worlds
in the second column.

The worlds in the second column alternate between r and ¬r, and the arrows
between those worlds alternate between d and e. As a result the conjunctKc(r →
K̂d¬r) implies that if ψ′ retains an r world in the second column then it also
retains the ¬r world below it. Likewise, the conjunct Kc((p∧¬r) → K̂er) implies
that if ψ′ retains a ¬r world in the second column then it also retains the r world
below it.

So the three conjuncts of ϕ1 together imply that ψ′ retains at least one of the
worlds in the second column as well as all worlds below it.

Consider then M, w |= 〈ψ′〉ϕ2. The formula ϕ2 says something about all c-
reachable worlds that do not satisfy q, so all worlds in the second column (that
are retained by 〈ψ′〉). Of these worlds it says that they can reach two worlds by
using f , one world satisfying ¬K̂cq ∧Kap and one satisfying ¬Kap.

The worlds in the first two columns all satisfy K̂cq and Kap so these two
f -reachable worlds must be in the third column. If the n-th world of the second
column is retained by 〈ψ′〉 there must therefore be two p worlds retained in Mn.
Furthermore, one of those worlds in Mn must be adjacent to a ¬p world that is
retained while the other must not be adjacent to a retained ¬p world.

One of the ¬p worlds in the second column of Mn (so the fourth column of
M) must be retained and one must not be retained, so in particular ψ′ must
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distinguish between two of those worlds. But the only way to distinguish between
those worlds is to use the fact that one “tail” is shorter than the others, and
doing this requires a formula with K-depth at least 2n− 2.

The K-depth of ψ′ is fixed and finite, so there is some N ∈ N such that for
every n ≥ N the formula ψ′ cannot distinguish between the worlds in the second
column of Mn. Putting all of the above together, we get that ψ′:

– must retain all worlds in the second column below a certain point,
– must distinguish between two worlds in the second column of Mn if the n-th

world of the second column is retained and
– cannot distinguish between the worlds in the second column of Mn for all n

greater than some number N .

This is a contradiction, so our initial assumption that such a ψ′ exists must be
false, which proves the lemma. ��
The theorem now follows easily.

Theorem 2. There are a LPAL formula ϕ and a LAPAL formula ψ such that

|= 〈ψ〉ϕ → ♦ϕ.

Proof. LetM, w, ϕ and ψ be as defined above. Then M, w |= 〈ψ〉ϕ by Lemma 4.
Furthermore, by Lemma 5 we know that M, w 
|= 〈ψ′〉ϕ for every LPAL formula
ψ′ so we have M, w 
|= ♦ϕ. This implies that M, w 
|= 〈ψ〉ϕ → ♦ϕ and so that

|= 〈ψ〉ϕ → ♦ϕ. ��

4.3 Invalidity of 〈ψ〉ϕ → ♦ϕ on Finitely Branching Models

Now to show that 
|=br 〈ψ〉ϕ → ♦ϕ. The method used to show this is very similar
to the method used to show that 
|= 〈ψ〉ϕ → ♦ϕ. We use ϕ to force ψ to retain
an infinite number of worlds in a pointed model (N , w). Additionally we force ψ
to distinguish between infinitely many pairs of worlds, and we let the difference
between the two worlds in a pair get further and further away.

Unfortunately, forcing ψ to retain an infinite number of worlds is much more
complicated in a finitely branching frame, so we need more complex formulas
and models. Let N be the model shown in Figure 3 and let

ψ := (¬p ∧ K̂b(p ∧ K̂a(q ∨ r))) → ♦(K̂aKbp ∧ K̂a(p ∧ ¬Kbp)),

ϕ1 := (q ∨ r) → (K̂aKbp ∧ K̂a(p ∧ ¬Kbp)),

ϕ2 := (q → ¬K̂cK̂aK̂bK̂cr) ∧ (r → ¬K̂cK̂aK̂bK̂cq),

ϕ := 〈ϕ1〉 (K̂aK̂bK̂cq ∧ K̂aK̂bK̂cr ∧ 〈ϕ2〉�¬(K̂aKbp ∧ K̂a(p ∧ ¬Kbp))).

Note the recurring a-triangles with two p worlds in the model and the recurring
subformula K̂aKbp ∧ K̂a(p ∧ ¬Kbp). These subformulas have the property that
they hold in the ¬p world of such a triangle if and only if for one of the p worlds
in the triangle a b-reachable ¬p world is retained but for the other it is not.
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Fig. 3. The model N . Reflexive arrows are not drawn. The submodels N x
n for n ∈ N,

x ∈ {q, r} are shown in Figure 4.
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Fig. 4. The submodel N x
n for x ∈ {q, r} and n ∈ N>0. The origin world that connects

it to N is the world satisfying x.

Lemma 6. We have N , w |= 〈ψ〉ϕ.

Proof. Let us consider the update 〈ψ〉. It places the conditions on ¬p ∧ K̂b(p ∧
K̂a(q ∨ r)) worlds that they must satisfy ♦(K̂aKbp ∧ K̂a(p ∧ ¬Kbp)). The ¬p ∧
K̂b(p ∧ K̂a(q ∨ r)) worlds are exactly those that are in the third line from the
bottom in N x

n submodels. Furthermore, of the two such worlds in a submodel
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N x
n the left one satisfies ♦(K̂aKbp∧ K̂a(p∧¬Kbp)), and the right one does not.2

The updated submodel N x
n ψ is therefore as shown in Figure 5. (The worlds of

N that are not in one of the submodels N x
n are all retained by the update so

nothing changes there.)
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a

b
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a

a

b

a

b

a

a

2n worlds

2n− 1 worlds

2n worlds

Fig. 5. The submodel N x
n ψ for x ∈ {q, r} and n ∈ N>0

After the update 〈ψ〉 the formula K̂aKbp∧K̂a(p∧¬Kbp) therefore holds in the
origin world of each submodel N x

n . Since q and r only hold in the origin worlds
of these submodels the update 〈ϕ1〉 = 〈(q∨ r) → (K̂aKbp∧ K̂a(p∧¬Kbp))〉 does
nothing if executed immediately after 〈ψ〉. We therefore have N , w |= 〈ψ〉 〈ϕ1〉
(K̂aK̂bK̂cq ∧ K̂aK̂bK̂cr).

Finally consider the third update 〈ϕ2〉. It places conditions on q ∨ r worlds;
q worlds must satisfy ¬K̂cK̂aK̂bK̂cr and r worlds must satisfy ¬K̂cK̂aK̂bK̂cq.
After the other updates there are no q or r worlds that satisfy this condition.

As such the result of applying the three updates 〈ψ〉 〈ϕ1〉 〈ϕ2〉 removes the ori-
gin worlds of all N x

n submodels. In the resulting model the two p worlds that are
a-reachable form w are indistinguishable, so N , w |= 〈ψ〉 〈ϕ1〉 〈ϕ2〉�¬(K̂aKbp ∧
K̂a(p∧¬Kbp)). Together with the previous result N , w |= 〈ψ〉 〈ϕ1〉 (K̂aK̂bK̂cq ∧
K̂aK̂bK̂cr) this shows that N , w |= 〈ψ〉ϕ. ��
2 Announcements that make K̂aKbp∧ K̂a(p∧¬Kbp) true in the leftmost world in the
third row do so by removing one of the ¬p worlds in the fifth row but not the other.
This can be done because there are formulas that differentiate between a “tail” of
2n worlds and a “tail” of 2n− 1 worlds, as in the infinitely branching case.
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Lemma 7. For every LPAL formula ψ′ we have N , w 
|= 〈ψ′〉ϕ.
Proof. Suppose towards a contradiction that there is a LPAL formula ψ′ such
that N , w |= 〈ψ′〉ϕ. Then after the updates 〈ψ′〉 〈ϕ1〉 the formula K̂aK̂bK̂cq ∧
K̂aK̂bK̂cr must hold in w. The origin worlds of N q

1 and N r
1 and the paths to

those worlds must therefore be retained by 〈ψ′〉 〈ϕ1〉.
But after those two updates it must also hold in w that 〈ϕ2〉�¬(K̂aKbp ∧

K̂a(p ∧ ¬Kbp)), so after the update 〈ϕ2〉 the two worlds that are b-reachable
from the p worlds that are a-reachable from w must be indistinguishable. In
particular this means that neither the origin world of N q

1 nor that of N r
1 may

be reachable, as otherwise K̂cq or K̂cr would distinguish the worlds.
Since the update 〈ϕ2〉 only removes q ∨ r worlds this implies that the origin

worlds of N q
1 and N r

1 must satisfy ¬ϕ2 after the first two updates. But then

K̂cK̂aK̂bK̂cr must hold in the origin of N q
1 and K̂cK̂aK̂bK̂cq in the origin of

N r
1 .
But then the origins of N q

2 and N r
2 must be reachable after the first two

updates. But these two origin worlds must also be removed by 〈ϕ2〉 as otherwise
K̂aK̂bK̂cq would distinguish the two worlds that must be indistinguishable. But
then the origins of N q

3 and N r
3 must be retained. Repeating the argument shows

that if the origins of N q
n and N r

n remain reachable then so do those of N q
n+1

and N r
n+1. Therefore, the updates 〈ψ′〉 〈ϕ1〉 must leave the origin of every N x

n

submodel reachable.
But then consider the update 〈ϕ1〉. This update retains the origin of a N x

n

submodel if and only if it satisfies K̂aKbp∧ K̂a(p∧¬Kbp). This implies that for
each n ∈ N and x ∈ {q, r} the update 〈ψ′〉 must retain one of the worlds on
the third row of the submodel but not the other. However, in N x

n these worlds
are indistinguishable up to depth 2n, so a LPAL formula must contain at least
2n + 1 iterations of a K-operator to distinguish them. There is therefore no
single formula in LPAL that distinguishes the two worlds for every submodel.
This contradicts the assumption that such a ψ′ exists. ��
The theorem now follows easily.

Theorem 3. There are LAPAL formulas ϕ, ψ such that 
|=br 〈ψ〉ϕ → ♦ϕ.

Proof. For the LAPAL formulas ϕ, ψ, finitely branching model N and world w of
N as defined above we have N , w |= 〈ψ〉ϕ by Lemma 6 and N , w 
|= 〈ψ′〉ϕ for
every LPAL formula ψ′ by Lemma 7. This implies that N , w 
|= 〈ψ〉ϕ → ♦ϕ so

|=br 〈ψ〉ϕ → ♦ϕ. ��

5 Conclusion and Further Research

I showed that for any LAPAL formula ϕ and ψ we have |=fin 〈ψ〉ϕ → ♦ϕ and that
for any LPAL formula ϕ and any LAPAL formula ψ we also have |=br 〈ψ〉ϕ →
♦ϕ. Additionally, I showed that there are LAPAL formulas ϕ and ψ such that

|=br 〈ψ〉ϕ → ♦ϕ and that there are a LPAL formula ϕ and a LAPAL formula ψ
such that 
|= 〈ψ〉ϕ → ♦ϕ.
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The operator ♦ therefore only represents a truly arbitrary public announce-
ment on finite models. There are scenarios that can be modeled in finite models
and where arbitrary public announcements are useful, such as the cryptography
example mentioned in the introduction. The message p for which we want to
know whether ♦(Kbp ∧ ¬Kep) is generally taken from a finite set of possible
messages which allows for a finite model to be used.

However, not all interesting scenarios allow for finite modeling, so it seems
like an interesting topic for further research whether semantics for a different ar-
bitrary public announcement operator � can be found such that for any LPAL+�
formulas ϕ, ψ we have |= 〈ψ〉ϕ → �ϕ. One possibility that might work is an
infinite hierarchy of ♦i operators, where each ♦i quantifies over all formulas that
use only ♦j with j < i. I conjecture that if we then define �ϕ as

∨
i∈N

♦iϕ we
have |= 〈ψ〉ϕ → �ϕ.
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