
The Impact of Including Model Update

Operators in Modal Logics

Raul Fervari

FaMAF, Universidad Nacional de Córdoba & CONICET, Argentina
fervari@famaf.unc.edu.ar

Abstract. In this paper we discuss ideas about dynamic modal logics.
Modal logics are appropriate to describe properties of relational structures,
and several operators have been already introduced to describe dynamic
properties of such structures. However, we are interested in those opera-
tors which can modify models during the evaluation of a formula. First, we
introduce different dynamic operators to clarify which of them are inter-
esting for us. Then we focus on operators which modify the accessibility
relation of relational models, and we show some expressivity results.

Keywords: modal logics, model updates, bisimulation, complexity.

1 What Kind of Dynamic Logics?

Modal logics [8,9] extend classical logics with operators that represent the modal
character of some situation, for instance, necessity, possibility, knowledge, belief
or permissions, just to name a few. In particular, the Basic Modal Logic (ML)
is an extension of propositional logic with a new operator which can describe
the structural properties of a relational model. Formally:

Definition 1 (Syntax). Let PROP be an infinite, countable set of propositional
symbols. The set FORM of ML formulas over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ,
where p ∈ PROP and ϕ, ψ ∈ FORM. We use �ϕ as a shorthand for ¬♦¬ϕ, while
� and ϕ ∨ ψ are defined as usual.

Definition 2 (Semantics). A model M is a triple M = 〈W,R, V 〉, where W
is a non-empty set; R ⊆ W ×W is the accessibility relation; and V : PROP →
P(W) is a valuation. Let w be a state in M, the pair (M, w) is called a pointed
model; we will usually drop parentheses and write M, w. Given a pointed model
M, w and a formula ϕ we say that M, w satisfies ϕ (M, w |= ϕ) when

M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w �|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M, v |= ϕ.

ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ.

M. Colinet et al. (Eds.): ESSLLI 2012/2013, LNCS 8607, pp. 91–108, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

92 R. Fervari

As shown in Definition 2, modal logics describe characteristics of relational
structures. Given a pointed model, the ♦ operator moves the evaluation of the
formula in its scope to some successor of the evaluation point. In this way, it is
possible to describe the model by traversing its structure. But these are static
characteristics of the structure, i.e. properties never change after the application
of certain operations. If we want to describe dynamic aspects of a given situ-
ation, e.g. how the relations between a set of elements evolve through time or
through the application of certain operations, the use of modal logics (or actu-
ally, any logic with classical semantics) becomes less clear. We can always resort
to modeling the whole space of possible evolutions of the system as a graph,
but this soon becomes unwieldy. It would be more elegant to use truly dynamic
modal logics with operators that can mimic the changes that the structure will
undergo.

We should take some care here, because some modal operators have been de-
vised in the past to model dynamic phenomena, but not in the sense we just
mentioned. One example is Propositional Dynamic Logic (PDL) [16,12,14]. This
logic is a formal system for reasoning about programs. Originally, it was designed
to formalize correctness specifications and prove that those specifications corres-
pond to a particular program. PDL is a modal logic that contains an infinite
number of modalities 〈π〉, where each π corresponds to a program. The inter-
pretation of 〈π〉ϕ is that “some terminating execution of π from the current
state leads to a state where the property ϕ holds”. The structure of a program is
defined inductively from a set of basic programs {a, b, c, . . .} as:

– Choice: if π and π′ are programs, then π ∪ π′ is a program which executes
non-deterministically π or π′.

– Composition: if π and π′ are programs, then π;π′ is a program which
executes first π and then π′.

– Iteration: if π is a program, π∗ is the program that executes a finite number
(possibly zero) of times π.

– Test: if ϕ is a formula, then ϕ? is a program. It tests whether ϕ holds, and
if so, continues; if not, it fails.

The expressive power of PDL is high (notice that it goes beyond first-order
logic, as it can express the reflexive-transitive closure of a relation), and PDL
can express some interesting properties. For example the formula

〈(ϕ?; a)∗; (¬ϕ)?〉ψ
represents that the program “while ϕ do a” ends in a state satisfying ψ (the
program inside the modality executes a a finite, but not specified number of
times after checking that ϕ holds, and after finishing the loop ¬ϕ must holds.
This captures exactly the behaviour of a while loop).

Clearly, the language gives us a practical way to deal with the notion of
state and change, but this is a weak notion of dynamic behaviour. Formulas do
not change the model, they only formalize program executions. We are more
interested in operations that can change the model while we are evaluating a

The Impact of Including Model Update Operators in Modal Logics 93

formula, i.e., model update operators. We will see in the next section, various
concrete examples of this kind of logics.

1.1 Some Examples of Dynamic Modal Logics

A typical example when we think in logics that can change the model are Dy-
namic Epistemic Logics [23]. This is a family of logics that are used to reason
about knowledge and belief, with operators that let us change such knowledge
or belief by communicating some information. The Epistemic Logic EL is an
extension of Propositional Logic with the knowledge operator Ka, where a is an
agent name. Ka has the same semantics of � but in a multiagent framework:
edges of models are labeled by agent names, and each Ka is interpreted on the
accessibility relation labeled by a. Kaϕ is interpreted as “the agent a knows that
ϕ is the case”. This logic only represents static information, but there are diffe-
rent extensions to model information exchange among the agents, which involves
a dynamic behaviour.

Public Announcement Logic (PAL) was introduced in [20] (first published
in 1989), as an extension of EL with the operator [!ϕ] which communicates
some common information to the agents (〈!ψ〉ϕ is a shorthand for ¬[!ψ]¬ϕ.)
The formula [!ψ]ϕ is read as “after ψ is (truthfully) announced, ϕ is the case”.
The formula ψ is revealed to all the agents (the announcement is public), then
ϕ is evaluated. Announcements are represented by removing the access to states
of the model where the announced fact does not hold. We introduce the formal
semantics of PAL:

M, w |= [!ψ]ϕ iff M, w |= ψ implies M|ψ, w |= ϕ,

where M|ψ = 〈W ′, R′, V ′〉 is defined as follows:

W ′ = {w ∈ W | M, w |= ψ}
R′

a = Ra ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′.

After making an announcement, the model is transformed to a new one and
evaluation of the rest of the formula continues in the new model. Agents cannot
access anymore information which contradicts the announcement: the knowledge
of the agents has changed. Notice that the propositional information contained
in states (the valuation) does not change. The only information affected is the
knowledge that the agents have of this information.

Another family of model update logics is memory logics [4,19]. The semantics
of these logics is specified on models that come equipped with a set of states called
the memory. The simplest memory logic includes a modality r© that stores the
current point of evaluation into memory, and a modality k© that verifies whether
the current state of evaluation has been memorized. The memory can be seen as
a special proposition symbol whose extension grows whenever the r© modality
is used. In contrast with public announcements, the basic memory logic expands
the model with an ever increasing set of memorized elements.

94 R. Fervari

Definition 3 (Syntax of Memory Logics). Given a set PROP, the set FORM
of formulas of ML(r©, k©) over PROP is defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | ♦ϕ | r©ϕ,

where p ∈ PROP and ϕ, ψ ∈ FORM.
Given a set PROP, the set FORM of formulas of ML(〈〈r〉〉, k©) over PROP is

defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | 〈〈r〉〉ϕ,
where p ∈ PROP and ϕ, ψ ∈ FORM.

We turn now to semantics. Models of memory logics are modal models, but
with an extra set where we store the elements that we visited.

Definition 4 (Semantics of Memory Logics). A model M = 〈W,R, V, S〉
is an extension of an Kripke model with a memory S ⊆ W . Let w be a state in
M, we inductively define the notion of satisfiability of a formula as:

〈W,R, V, S〉, w |= k© iff w ∈ S
〈W,R, V, S〉, w |= r©ϕ iff 〈W,R, V, S ∪ {w}〉, w |= ϕ
〈W,R, V, S〉, w |= 〈〈r〉〉ϕ iff 〈W,R, V, S〉, w |= r©♦ϕ.

A formula ϕ of ML(r©, k©) or ML(〈〈r〉〉, k©) is satisfiable if there exists a
model 〈W,R, V, ∅〉 such that 〈W,R, V, ∅〉, w |= ϕ.

In the definition of satisfaction, the empty initial memory ensures that no
point of the model satisfies the unary predicate k© unless a formula r©ϕ or
〈〈r〉〉ϕ has previously been evaluated there. The memory logic ML(〈〈r〉〉, k©)
does not have the ♦ operator, and its expressive power is strictly weaker than
ML(r©, k©) [19,5]. However, in both cases we have a logic that is strictly more
expressive than the basic modal logic ML. We show this result with a simple
example.

Example 5. Given a pointed model 〈W,R, V, ∅〉, w, the ML(〈〈r〉〉, k©)-formula
〈〈r〉〉 k© is satisfiable only if w is reflexive. The 〈〈r〉〉 operator remembers the current
element but at the same time looks for a successor. In this case, such succes-
sor has to be in the memory, but w is the only one belonging to the memory
(remember that we started with the empty memory). Then, the formula is sat-
isfiable if only if w is his own successor. The same effect can be captured with
the ML(r©, k©)-formula r©♦ k©.

Memory logics will not only result interesting as an example of model update
operator, but the logic ML(r©, k©) will be useful to prove the undecidability of
some other logics. The idea is taking advantage of the model update operators to
simulate the capability of memorizing elements. Then we encode the satisfiability
problem of some dynamic logics into the undecidable satisfiability problem of
ML(r©, k©).

The Impact of Including Model Update Operators in Modal Logics 95

Notice that all the operators introduced in this section have something in
common: they all can be defined in terms of an update function on the models.
For instance, public announcements can be represented by an update function
which takes a model and some announcement, and removes all the states which
do not hold such announcement. The semantics of r© can be seen as a function
which adds elements to the memory. We are interested in this kind of operators,
that let us transform a model during the evaluation of a formula. We introduced
several examples, all of them thought in a determined context. This is the main
difference with the work in this article. We are not interested in the application of
dynamic operators to model a particular problem, we want to explore the impact
of including dynamic operators (in particular, model update operators) in modal
logics. When we use this kind of operators with a particular purpose, we can
ignore some details about the behaviour of the resulting logics. By investigating
dynamic operators from a theoretical point of view, we can study in detail the
intrinsic properties of these operators.

As we mentioned, it is possible to modify a relational model in different ways.
For instance, it is possible to remove elements of the domain (PAL), change the
valuation of the model (ML(r©, k©) and ML(〈〈r〉〉, k©)) and change the accessi-
bility relation. We are particularly interested in this last family of operators, that
we called Relation-Changing Operators. This is not a new idea: van Benthem in-
troduced the Sabotage Operator which deletes arbitrarily edges in the model [22],
as an example of a relation-changing operator used to model changes in the sce-
nario of a two-player game. In the epistemic logics field, Arrow Updates [15] were
introduced to encode dynamic epistemic logics. In [7] some relation-changing op-
erators have been introduced as data structure modifiers. In the next section,
we will introduce some other examples of relation-changing operators that will
be discussed in the rest of this article.

2 Relation-Changing Operators

We will introduce some relation-changing operators that have been previously
investigated in [1,2,3,11]. We will compare the results obtained by adding dy-
namic operators to modal logics (most of them, included in the publications we
mentioned). We will consider relation-changing operators, and the examples we
introduced in the previous section.

In this article, we only discuss the single addition to ML of the local version
of some relation-changing operators, i.e., operators that perform modifications
from the evaluation point. We will introduce 〈sw〉, an operator that swaps around
edges; 〈sb〉, a local version of van Benthem’s sabotage operator; and 〈br〉, which
adds new edges from the evaluation point to an unaccessible point. Let us for-
mally define the syntax of these relation-changing modal logics.

Definition 6 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. Then the set FORM of formulas over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | �ϕ,

96 R. Fervari

where p ∈ PROP, � ∈ {♦, 〈sw〉, 〈sb〉, 〈br〉} and ϕ, ψ ∈ FORM. Other operators
are defined as usual. In particular, �ϕ is defined as ¬�¬ϕ.

We call ML(�) the extension of ML allowing also the � operator, for � ∈
{〈sw〉, 〈sb〉, 〈br〉}.

Formulas of ML(〈sb〉), ML(〈sw〉) and ML(〈br〉) are evaluated in standard
relational models, and the meaning of the operators of the basic modal logic is
unchanged. When we evaluate formulas containing relation-changing operators,
we will need to keep track of the edges that have been modified. To that end, let
us define precisely the models that we will use. In the rest of this thesis we will
use wv as a shorthand for {(w, v)} or (w, v). Context will always disambiguate
the intended use.

Definition 7 (Models and Model Variants). A model M is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called points or states;
R ⊆ W×W is the accessibility relation; and V : PROP → P(W) is a valuation.

Given a model M = 〈W,R, V 〉, we define the following notations for model
variants:

(sabotaging) M−
S = 〈W,R−

S , V 〉, with R−
S = R\S, S ⊆ R.

(swapping) M∗
S = 〈W,R∗

S , V 〉, with R∗
S = (R\S−1)∪S, S ⊆ R−1.

(bridging) M+
B = 〈W,R+

B , V 〉, with R+
B = R ∪B, B ⊆ (W×W)\R.

Let w be a state in M, the pair (M, w) is called a pointed model; we will
usually drop parenthesis and call M, w a pointed model.

Let us introduce the formal semantics of the new operators.

Definition 8 (Semantics). Given a pointed model M, w and a formula ϕ we
say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w �|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M, v |= ϕ
M, w |= 〈sb〉ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M−

wv, v |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M∗

vw, v |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈ W s.t. (w, v) �∈ R,M+

wv, v |= ϕ.

ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ.

We will discuss the impact of considering these operators and some of those
introduced in Section 1.

3 Bisimulations

Bisimulations are an important tool to investigate the expressive power of the
languages. In most modal logics, bisimulations are binary relations linking ele-
ments of the domains that have the same atomic information, and preserving
the relational structure of the model [8]. This is the case for ML:

The Impact of Including Model Update Operators in Modal Logics 97

Definition 9 (ML-Bisimulations). Let M = 〈W,R, V 〉, M′ = 〈W ′, R′, V ′〉
be two models. A non empty relation Z ⊆ W ×W ′ is an ML-bisimulation if it
satisfies the following conditions. If wZw′ then

(atomic harmony) for all p ∈ PROP, w ∈ V (p) iff w′ ∈ V ′(p);
(zig) if (w, v) ∈ R then for some v′, (w′, v′) ∈ R′ and vZv′;
(zag) if (w′, v′) ∈ R′ then for some v, (w, v) ∈ R and vZv′.

Given two pointed models M, w and M′, w′ we say that they are ML-bisimilar
and we write M, w �ML M′, w′ if there is an ML-bisimulation Z such that
wZw′.

In general, when we want to express differences between two models in a
particular language L, we do it by defining an L-formula which is satisfiable in
one of them and is not satisfiable in the other. On the other hand, if we want
to show that some language cannot distinguish between two models, we need
specific tools to capture the expressivity of the language. As we mentioned, ML-
bisimulations relate elements in models that have the same atomic and structural
information. This is exactly what we can characterize using ML, then it looks
like bisimulations are the appropriate tool to compare models. Thanks to the
next theorem, we can say that if there is a bisimulation between two pointed
models then they satisfy the same formulas.

Theorem 10 (Invariance for Bisimulations). Let M = 〈W,R, V 〉, M′ =
〈W ′, R′, V ′〉 be two models, w ∈ W and w′ ∈ W ′. If there is an ML-bisimulation
Z between M, w and M′, w′ such that wZw′ then for any formula ϕ ∈ ML,
M, w |= ϕ iff M′, w′ |= ϕ.

In a few words, the existence of an ML-bisimulation between two models
indicates that they are modally equivalent. Let us see an example.

Example 11. These two models that cannot be distinguished by any formula of
ML. Dotted lines represent the bisimulation Z.

w
M

w′

v′

M′

Z

Z

For the Public Announcement Logic PAL introduced in Section 1 this is also
the case: if two models are bisimilar according to Definition 9 then they satisfy
the same PAL-formulas. PAL has the same expressive power as ML [23]. The
translation is not straightforward (the resulting ML-formula can be exponen-
tially larger than the original PAL-formula) but it can be done via reduction
axioms. However, this translation is not possible for all the dynamic logics we
are discussing in this article. When we increase the expressivity of the language,
the definition of bisimulation we introduced before is useless. In such cases, as we
pointed in previous works, we need to include additional conditions to capture
the expressivity of the logic.

98 R. Fervari

Definition 12 (ML(�)-Bisimulations). Let M=〈W,R, V 〉, M′=〈W ′, R′, V ′〉
be two models. A non empty relation Z ⊆ (W × P(W 2))× (W ′ × P(W ′2)) is a
ML(�)-bisimulation if it satisfies the conditions atomic harmony, zig and zag
below, and the corresponding conditions for the operators that the considered
logic contains. If (w, S)Z(w′, S′) then

(atomic harmony) for all p ∈ PROP, w ∈ V (p) iff w′ ∈ V ′(p);
(zig) if (w, v)∈S then for some v′, (w′, v′)∈S′ and (v, S)Z(v′, S′);
(zag) if (w′, v′)∈S′ then for some v, (w, v)∈S and (v, S)Z(v′, S′);
(〈sb〉-zig) if (w, v)∈S then for some v′, (w′, v′)∈S′ and (v, S−

vw)Z(v′S′−
v′w′);

(〈sb〉-zag) if (w′, v′)∈S′ then for some v, (w, v)∈S and (v, S−
wv)Z(v′S′−

w′v′);
(〈sw〉-zig) if (w, v)∈S then for some v′, (w′, v′)∈S′ and (v, S∗

vw)Z(v′S′∗
v′w′);

(〈sw〉-zag) if (w′, v′)∈S′ then for some v, (w, v)∈S and (v, S∗
vw)Z(v′S′∗

v′w′);
(〈br〉-zig) if (w, v)/∈S, there is v′ ∈ W ′ s.t. (w′, v′)/∈S′ and (v, S+

wv)Z(v′, S′+
w′v′);

(〈br〉-zag) if (w′, v′)/∈S′, there is v ∈ W s.t. (w, v)/∈S and (v, S+
wv)Z(v′, S′+

w′v′).

Given two pointed models M, w and M′, w′ we say that they are ML(�)-
bisimilar (M, w �ML(�) M′, w′) if there is a ML(�)-bisimulation Z such that
(w,R)Z(w,R′) where R and R′ are respectively the relations of M and M′.

Notice that bisimulations for relation-changing modal logics relate current
states and current accessibility relations of the models. Depending on which o-
perator we are considering, different zig/zag conditions are added. Zig and zag
for ML-bisimulations are the correspondent conditions to capture ♦: they talk
about the successors of the current state. Conditions for relation-changing modal
logics are the same, but also keeping track of the modifications already done, and
changing the relation according to the semantics of the operators. For instance,
〈sb〉-zig/zag establish that there are successors of the current states that are re-
lated, and delete the edges that connect them. For 〈sw〉 is the same but swapping
edges instead deleting. Conditions for 〈br〉 require that there exist unreachable
points from the current states, and put edges to them in the accessibility relation.

As we have showed for ML, bisimulations are important to distinguish when
two models are equal for those languages. The next theorem establishes that two
bisimilar models are not distinguishable for any formula of the corresponding
language.

Theorem 13 (Invariance for Bisimulations). Let M = 〈W,R, V 〉, M′ =
〈W ′, R′, V ′〉 be two models, w ∈ W , w′ ∈ W ′, and let S ⊆ W 2, S′ ⊆ W ′2. If there
is a ML(�)-bisimulation Z between M, w and M′, w′ such that (w, S)Z(w′, S′)
then for any formula ϕ ∈ ML(�), 〈W,S, V 〉, w |= ϕ iff 〈W ′, S′, V ′〉, w′ |= ϕ.

Proof. We will see the case for ML(〈sw〉). The proof is by structural induction
on ML(〈sw〉)-formulas. The base case holds by (atomic harmony), and the ∧
and ¬ cases are trivial.

ϕ = ♦ψ: Suppose 〈W,S, V 〉, w |= ♦ψ. Then there is v in W s.t. (w, v) ∈ S
and 〈W,S, V 〉, v |= ψ. By (zig) we have v′ in W ′ such that w′S′v′ and
(v, S)Z(v′, S′). By I.H., 〈W ′, S′, V ′〉′, v′ |= ψ and by definition 〈W ′, S′, V ′〉, w′

|= ♦ψ. For the other direction use (zag).

The Impact of Including Model Update Operators in Modal Logics 99

ϕ = 〈sw〉ψ: For the left to the right direction suppose 〈W,S, V 〉, w |= 〈sw〉ψ.
Then there is v in W s.t. (w, v) ∈ S and 〈W,S∗

vw , V 〉, v |= ψ. By (〈sw〉-
zig) we have v′ in W ′ s.t. (w′, v′)∈S′ and (v, S∗

vw)Z(v′, S′∗
v′w′). By I.H.,

〈W ′, S′∗
v′w′ , V ′〉, v′ |= ψ and by definition 〈W ′, S′, V ′〉, w′ |= 〈sw〉ψ. For the

other direction use (〈sw〉-zag).

��

Example 14. The two models below are ML(〈sw〉)-bisimilar. The simplest way
to check this is to recast the notion ofML(〈sw〉)-bisimulation as an Ehrenfeucht-
Fräıssé game as the one used for ML, but where Spoiler can also swap arrows
when moving from a node to an adjacent node. It is clear that Duplicator has a
winning strategy.

w w′ v′

M M′

Example 15. There is no ML(〈sw〉)-bisimulation between the models below. In-
deed the formula 〈sw〉♦�⊥ is satisfied in M′, w′ and not in M, w. Notice that
the models are ML-bisimilar.

w w′ v′

M M′

As we have seen, the first difference between PAL and relation-changing
modal logics is the definition of bisimulation. For PAL it suffices with the
conditions defined for ML, but for the relation-changing modal logics we are
discussing in this article we need to define new conditions which capture the
new behaviour. As we showed in [1,3,11], it is natural given that these relation-
changing operators increase the expressive power of ML.

We can use bisimulations to compare the logics among them, and also with
others. Definition 16 formalizes how we compare the expressive power of two
logics.

Definition 16 (L ≤ L′). We say that L′ is at least as expressive as L (notation
L ≤ L′) if there is a function Tr between formulas of L and L′ such that for every
model M and every formula ϕ of L we have that

M |=L ϕ iff M |=L′ Tr(ϕ).

M is seen as a model of L on the left and as a model of L′ on the right, and we
use in each case the appropriate semantic relation |=L or |=L′ as required.

We say that L and L′ are incomparable (notation L �= L′) if L � L′ and
L′ � L.

We say that L′ is strictly more expressive than L (notation L < L′) if L ≤ L′

but not L′ ≤ L.

100 R. Fervari

The ≤ relation indicates that we can embed one language into another. To
do this, we need an equivalence preserving translation from the first language to
the second one. Its strict version is <, that indicates that the second language
can express strictly more than the first one. Incomparability relation says than
any of the two languages cannot be embedded in the other, i.e., they are able to
say different things. These definitions will be used next, when we compare the
expressive power of relation-changing modal logics of Definition 6.

The comparisons have been already investigated in [1,11], establishing that
relation-changing modal logics are all incomparable among them. Some cases are
easy to check, but there are others in which we need more complex structures
to distinguish two languages.

Lemma 17. For every pair of pointed models M, w and M′, w′ in Figure 1, and
for all corresponding formulas ϕ of the column “Distinct by”, we have M, w �|= ϕ
and M′, w′ |= ϕ. Moreover, for all corresponding logics L of the column “Bisi-
milar for”, we have that (w,R) and (w′, R′) are in an L-bisimulation, where R
and R′ are the accessibility relations of M and M′ respectively.

Proof. We will check the conditions to show that the two models in first row are
bisimilar for ML(〈sb〉) and for ML(〈sw〉). Clearly all the states agree proposi-
tionally (their valuations are empty). For zig and zag conditions, we need to check
if both have bisimilar successors, which holds because there are not successors at
all. The same happens with 〈sb〉-zig/zag and 〈sw〉-zig/zag: the lack of successors
makes the conditions true. Now we can prove that ML(〈br〉) �≤ ML(〈sb〉) and
ML(〈br〉) �≤ ML(〈sw〉). We have to check now that there is a ML(〈br〉)-formula
that distinguishes the two models. The ML(〈br〉)-formula 〈br〉〈br〉� holds at
M′, w′ but not at M, w. Checking 〈br〉-zag, it fails starting from w′ and finding
two states to reach with a new edge, while starting from w we can just reach
one.

The models in the second row are ML(〈br〉)-bisimilar because no new edges
can be added, and we checked that they are also ML(〈sw〉)-bisimilar in Exam-
ple 15. In the third row, the given models are bisimilar for ML(〈sb〉) because
they are bisimilar for ML and they are acyclic. In the fourth row, both models
are ML(〈br〉)-bisimilar since they are infinite, hence one can add as many links
as needed to points that are modally bisimilar.

��

Corollary 18. For all �1,�2 ∈ {〈sb〉, 〈sw〉, 〈br〉} such that �1 �= �2, we have
ML(�1) �= ML(�2).

We have proved in [1,11] that adding some relation-changing operators to the
basic modal logic we increase its expressive power, and according to the results
we just showed, each logic allows to express different things. We have seen in this
section that standard tools in modal logics such as bisimulations can be adapted
for logics with relation-changing operators.

The Impact of Including Model Update Operators in Modal Logics 101

M M′ Distinct by Bisimilar for

w
w′

〈br〉〈br〉� ML(〈sb〉)
ML(〈sw〉)

w w′
〈sb〉♦� ML(〈sw〉)

ML(〈br〉)
w w′

〈sw〉♦♦♦�⊥ ML(〈sb〉)

w
. w′

. . . 〈sw〉♦�⊥ ML(〈br〉)

Fig. 1. Bisimilar models and distinguishing formulas

4 Computational Behaviour

When we need to choose a logic to model a particular problem, First-Order Logic
FOL [10] comes immediately to our mind. FOL is a nice language, very powerful
and well-known for everyone who studied mathematics and/or computer science,
but it has some undesirable properties. For instance, its satisfiability problem
is undecidable, and model checking is PSpace-complete. However, FOL is still
used because it is appropriate to model many different problems. On the other
hand, there are weaker languages with a better computational behaviour that
we can use, such as modal logics. For any problem that requires describing struc-
tural properties of a graph, modal logics can be a good choice. The satisfiability
problem for ML is PSpace-complete, and its model checking problem is in P.

These two languages have very different properties (more expressive power
in FOL, better computational properties in ML), and each of them is still
appropriate in determined situations. Let us see what happens when we add
model update operators to modal logics. We will analyze if by adding the kind
of operators that are appropriate to model dynamic situations, we preserve the
good properties of ML, or the increasing of the expressivity leads them closer
to FOL.

Let us start by discussing the case that, so far, resulted easier to be analyzed:
the public announcement logic PAL. We mentioned that this logic has the same
expressive power thanML but there are certain properties that can be expressed
exponentially more succinct in PAL than in ML. Despite this succinctness,
the computational complexity of these two logics coincides [18,13]. In this case,
adding dynamic behaviour we keep the properties.

On the other hand, memory logics have a more complex behaviour. We know
that ML is a proper fragment of FOL [9] with good computational properties.
Memory logics are also a proper fragment of FOL [19], but unfortunately, the
good properties of modal logics are not preserved. Adding to the language the ca-
pability of remember visited elements we move closer to FOL than to ML. The

102 R. Fervari

satisfiability problem for ML(〈〈r〉〉, k©) is decidable but the one of ML(r©, k©) is
not, and its model checking problem is PSpace-complete [4,6,19].

For relation-changing operators, we have similar results. In [3] we provided a
translation from ML(〈sw〉) to two sorted FOL by unraveling all the possible
model transformations that can be done using 〈sw〉. Sorts are convenient for
such translation, but it is possible to translate it to unsorted FOL, then we
can conclude that ML(〈sw〉) is a proper fragment of FOL. It would be easy
apply a similar argument for ML(〈sb〉) and ML(〈br〉) to prove the same result.
Such as for ML(r©, k©), even though they are proper fragments of FOL, adding
relation-changing modal operators increases the computational complexity of the
logics. We have proved that the model checking task for logics of Definition 6 is
PSpace-complete [1,11] (such as for FOL). Also, in [3] we proved in detail that
the satisfiability problem for ML(〈sw〉) is undecidable, and in [17,21] the same
was showed for a global version of the sabotage operator. This results give us an
idea about the computational behaviour of this kind of operators. In the next
section we will use similar arguments as the used for ML(〈sw〉) to prove that
the satisfiability problem for ML(〈sb〉) is undecidable.

4.1 Undecidability of ML(〈sb〉)
We will prove that the satisfiability problem for ML(〈sb〉) is undecidable. This
result has been proved together with Mauricio Martel1 and appears in [11]. First,
we provide a translation from formulas of this logic to formulas of the memory
logic ML(r©, k©). In order to simulate the behaviour of the operators r© and k©
without having a memory in the model, we impose constraints on the models
where we evaluate the translated formula. Then we prove that a ML(r©, k©)-
formula is satisfiable if and only if, the translation of such formula (in addition
to the constraints we define) is satisfiable.

Definition 19. Let s ∈ PROP, we define Conds as the conjunction of the fol-
lowing formulas:

(1) s ∧�¬s ∧�♦s
(2) ��(s → ¬♦s)
(3) [sb][sb](s → �♦s)
(4) �[sb](s → ♦¬♦s)
(5) ��(¬s → ♦(s ∧ ¬♦s))
(6) �[sb](¬s → [sb](s → ��(¬s → ♦s)))
(7) ��(¬s → [sb](s → ♦♦(¬s ∧ ¬♦s)))
(Spy) ��(¬s → [sb](s → ♦¬♦s)).

Let us call s (for spy point) a node satisfying Conds in an arbitrary model.
Then, the point s satisfies the propositional symbol s, and is related with all the
states of the connected component of the model in the two directions. Formula
(1) ensures that the propositional symbol s is satisfied at the evaluation point,

1 Master student at Universidad Nacional de Ŕıo Cuarto, Argentina.

The Impact of Including Model Update Operators in Modal Logics 103

and is not satisfied in any successor. It also says that all the successors can see an
s-state. (2) ensures that all the s-states that are accessible in two steps from the
evaluation point, has no successors satisfying s. (3) ensures that after deleting
two edges and reaching an s-state, the property that all the successors can see
an s-state is maintained. The formula (4) establishes that for all the successors,
after deleting an edge an reaching an s-state, there is a successor which cannot
see any s-state (it was the only successor satisfying s). (5) says that reaching
some state in two steps that does not satisfy s, there is always an s-state which
is reachable and has no successors satisfying s. (6) ensures that after eliminating
the edge from a ¬s-state (which is no longer accessible from the evaluation point
in two steps) to an s-state, the remaining ¬s-states still have an edge pointing
to some state satisfying s. (7) ensures that all the states reachable in two steps
(which do not satisfy s) have only one successor labeled by s. Finally, (Spy)
establishes that states that are accessible in two steps are also accessible in one
step.

Next, we will see an example showing how we will use Conds. The idea is
to pick an ML(r©, k©) model, and add a spy point to satisfy Conds. A model
where M, s |= Conds is illustrated below:

ϕ . . .

s

In this picture, the thick points and lines represent the model of the initial
memory logic formula that can be extracted from the whole model. We intro-
duce some properties of the models satisfying Conds, that will be useful in the
equisatisfiability proof.

Proposition 20. Let M = 〈W,R, V 〉 be a model, w ∈ W . If M, w |= Conds,
then the following properties hold:

1. w is the only state in M that satisfies s in the connected component generated
by w.

2. For all states v ∈ W such that v �= w, we have that if (w, v) ∈ R then
(v, w) ∈ R, and if (w, v) ∈ R∗ then (w, v) ∈ R (w is a spy point).

Proposition 20 enumerates the main properties of the spy point: it is the only
spy point in the connected component, and each time that there is an outgoing
edge to some state of the model, there is also an edge coming back.

Now we introduce the translation from ML(r©, k©)-formulas to ML(〈sb〉)-
formulas.

104 R. Fervari

Definition 21. Let ϕ be an ML(r©, k©)-formula that does not contain the propo-
sitional symbol s. We define Tr(ϕ) = ♦(ϕ)′, where ()′ is defined as follows:

(p)′ = p for p ∈ PROP appearing in ϕ
(k©)′ = ¬♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ (ψ)′)
(r©ψ)′ = (♦s → 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))) ∧ (¬♦s → (ψ)′).

Boolean and modal cases are obvious. r© is represented by removing the edges
from the spy point to the state we want to memorize and from this state to the
spy point. Notice how the translation behaves: if the point has already been
memorized (¬♦s), then nothing needs to be done and translation continues;
otherwise (♦s), we make s inaccessible using 〈sb〉 and we also delete the arrow
from s to the current point. k© is represented by checking whether there is an
edge pointing to the spy point or not.

Theorem 22. Let ϕ be a formula of ML(r©, k©) that does not contain the
propositional symbol s. Then, ϕ and Tr(ϕ) ∧ Conds are equisatisfiable.

Proof. We will prove that ϕ is satisfiable if and only if Tr(ϕ)∧Conds is satisfiable.
(⇐) Suppose that Tr(ϕ)∧Conds is satisfiable, i.e., there exists a model M =

〈W,R, V 〉, and s ∈ W such that 〈W,R, V 〉, s |= Tr(ϕ) and 〈W,R, V 〉, s |= Conds.
Then we can define the model M′ = 〈W ′, R′, V ′, ∅〉 where

W ′ = {v | (s, v) ∈ R}
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP.

Let w′ ∈ W ′ be a state s.t (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′ (because
〈W,R, V 〉, s |= ♦(ϕ)′). We will prove

〈W ′, R′, V ′,M ′〉, v |= ψ iff 〈W,R(M ′), V 〉, v |= (ψ)′,

where v ∈ W ′, M ′ ⊆ W ′, ψ ∈ FORM, and R(M ′) = R\{(s, t), (t, s) | t ∈ M ′}. In
particular, whenM ′ = ∅ we have that 〈W ′, R′, V ′, ∅〉, w′ |= ϕ iff 〈W,R, V 〉, w′ |=
(ϕ)′.

Then we do structural induction on ψ. We have two base cases:

ψ = p : Suppose that 〈W ′, R′, V ′,M ′〉, v |= p. By |= we have v ∈ V ′(p), and
this is equivalent to v ∈ V (p)∩W ′ by definition of V ′. Because v ∈ V (p), by
|= we have 〈W,R(M ′), V 〉, v |= p, and by definition of ()′ this is equivalent
to 〈W,R(M ′), V 〉, v |= (p)′.

ψ = k©: Suppose that 〈W ′, R′, V ′,M ′〉, v |= k©. By |= we have v ∈ M ′, and
by Proposition 20 and definition of R(M ′) we have (v, s) /∈ R(M ′) and
〈W,R(M ′), V 〉, s |= s. Then by |= 〈W,R(M ′), V 〉, v |= ¬♦s, and by definition
of ()′ this is equivalent to 〈W,R(M ′), V 〉, v |= (k©)′.

The Impact of Including Model Update Operators in Modal Logics 105

Now we prove inductive cases.

ψ = ¬φ: Suppose 〈W ′, R′, V ′,M ′〉, v |= ¬φ. By (|=), 〈W ′, R′, V ′,M ′〉, v �|= φ.
By I.H., we have 〈W,R(M ′), V 〉, v �|= (φ)′, iff 〈W,R(M ′), V 〉, v |= ¬(φ)′.
Then, by definition of ()′, 〈W,R(M ′), V 〉, v |= (¬φ)′.

ψ = φ∧χ: Suppose 〈W ′, R′, V ′,M ′〉, v |= φ∧χ. By |=, 〈W ′, R′, V ′,M ′〉, v |= φ
and 〈W ′, R′, V ′,M〉, v |= χ. By I.H. we have 〈W,R(M ′), V 〉, v |= (φ)′ and
〈W,R(M ′), V 〉, v |= (χ)′. Then we have 〈W,R(M ′), V 〉, v |= (φ)′∧ (χ)′. Then
by definition of ()′, 〈W,R(M ′), V 〉, v |= (φ ∧ χ)′.

ψ = ♦φ: Suppose 〈W,R(M ′), V 〉, v |= (♦φ)′. By definition of ()′ we have
〈W,R(M ′), V 〉, v |= ♦(¬s ∧ (φ)′). By |=, there is v′ ∈ W s.t. (v, v′) ∈ R(M ′)
and 〈W,R(M ′), V 〉, v′ |= ¬s ∧ (φ)′. Then we have 〈W,R(M ′), V 〉, v′ |= ¬s
and 〈W,R(M ′), V 〉, v′ |= (φ)′. By I.H., 〈W ′, R′, V ′,M ′〉, v′ |= φ, hence by |=
and Proposition 20, we have 〈W ′, R′, V ′,M ′〉, v |= ♦φ.

ψ = r©φ: Suppose 〈W,R(M ′), V 〉, v |= (r©φ)′. By definition of ()′ and |=,

〈W,R(M ′), V 〉, v |= ♦s → 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (φ)′)) and
〈W,R(M ′), V 〉, v |= ¬♦s → (φ)′.

We will prove each conjunct separately. First, suppose 〈W,R(M ′), V 〉, v |=
♦s. Then (v, s) ∈ R(M ′) (by Proposition 20). We want to prove that

〈W,R(M ′), V 〉, v |= 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (φ)′)).

By assumption we know (v, s) ∈ R(M ′) then (s, v) ∈ R(M ′), because in
R(M ′) we always delete pairs in the two directions and by Proposition 20.
Then we only need to prove that 〈W,R(M ′)−vs, V 〉, s |= s ∧ 〈sb〉(¬♦s ∧ (φ)′).
It is trivial that 〈W, (R(M ′))−vs, V 〉, s |= s. Let us see 〈W, (R(M ′))−vs, V 〉, s |=
〈sb〉(¬♦s ∧ (φ)′). Because (s, v) ∈ (R(M ′))−vs, we only need to prove that
〈W,R(M ′)−vs,sv , V 〉, v |= ¬♦s ∧ (φ)′. First conjunct is trivial because (v, s) /∈
R(M ′)−vs,sv.
On the other hand, we know that for all t, (t, s) /∈ R(M ′) iff (s, t) /∈ R(M ′).
Then by I.H., 〈W,R(M ′)−vs,sv , V 〉, v |= (φ)′ iff 〈W ′, R′, V ′,M ∪ {v}〉, v |= φ.
Hence, by |= we have 〈W ′, R′, V ′,M ′〉, v |= r©φ.
Now suppose the other case, 〈W,R(M ′), V 〉, v |= ¬♦s. By Proposition 20,
we know (v, s) /∈ R(M ′). By definition of R(M ′), we have (s, v) /∈ R(M ′).
Then v ∈ M ′, and by I.H. we have 〈W ′, R′, V ′,M ′〉, v |= r©φ.

(⇒) Suppose that ϕ is satisfiable, i.e., there exists a model M = 〈W,R, V, ∅〉
and w ∈ W such that 〈W,R, V, ∅〉, w |= ϕ.

Let s be a state that does not belong to W . Then we can define the model
M′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {s}
R′ = R ∪ {(s, w) | w ∈ W} ∪ {(w, s) | w ∈ W}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {s}.

106 R. Fervari

By construction of M′, it is easy to check that M′, s |= Conds. Then we can
verify that

〈W,R, V,M〉, w |= ϕ iff 〈W ′, R′(M), V ′〉, s |= Tr(ϕ),

where R′(M) is defined as for the (⇐) direction of the proof.
Again we need to do structural induction. Boolean cases are easy, and it is

also the case for k©. If 〈W,R, V,M〉, w |= ♦ψ, then by construction of M′ it is
clear that w /∈ V ′(s) and 〈W ′, R′(M), V ′〉, v |= (ψ)′. If 〈W,R, V,M〉, w |= r©ψ,
we can delete the edges (w, s) and (s, w) to simulate the storing of w in the
memory (if those pairs are not in R′ means w ∈ M) and continue by evaluating
the rest of the translation ()′ (steps are similar than for the (⇐) direction of
the proof). ��
From the previous theorem, we immediately get:

Theorem 23. The satisfiability problem of ML(〈sb〉) is undecidable.

We showed that ML(〈sb〉) behaves in the same way as ML(〈sw〉) with res-
pect to the satisfiability problem. For the ML(〈br〉) case, similar constructions
have been done in [11]. With the relation-changing operators that we introduced
we can simulate memory logics operators. The idea is to use the capability of
adding, swapping and deleting edges to remember points of the model. In general,
by defining any operator with this ability we increase the expressivity of the
language to an undecidable one.

5 Conclusions

We have discussed several cases of modal logics with operators that let us modify
a model. The Public Announcement Logic PAL [20], incorporates an operator
that removes all the states of the model which do not satisfy a determined
formula (the announcement). Adding this new operator to the basic modal logic
does not affect its behaviour, because public announcements can be represented
by modal formulas (which are possibly exponentially larger), and even the notion
of bisimulation remains unchanged. On the other hand, Memory Logics [4,19]
are extensions of ML that come equipped with operators to store states in a
memory and to consult if the current state belongs to the memory. This new
behaviour can be captured by adding a new propositional symbol, and changing
its extension when we want to remember some state. Hence, memory logics can
be seen as a model update logic with the ability of modify the valuation of the
models. In this case, a new notion of bisimulation has to be defined, and the
computational complexity blows up with respect to ML.

In order to further explore the spectrum of possible modifications that can be
done to a relational model, we discussed in this article Relation-Changing Modal
Logics. Some other operators that change the accessibility relation of the models
have been investigated in the past, such as van Benthem’s sabotage logic [22],

The Impact of Including Model Update Operators in Modal Logics 107

and some Epistemic Logics [7,15]. However, our goal was to investigate different
relation-changing operators from a theoretical point of view to study the effects
of using this kind of operators. Local Sabotage, Swap and Bridge were introduced
before in [1,3,11]. In this paper we provide an analysis of their properties and
compare them with other kind of model updates. We learned that it is possible
to adapt the notion of bisimulation to capture their behaviour, and we obtained
some experience working with relation-changing logics that can help us in the
future, for instance, to find decidable fragments.

Acknowledgments. This work was partially supported by grants ANPCyT-
PICT-2008-306,ANPCyT-PIC-2010-688, the FP7-PEOPLE-2011-IRSESProject
“Mobility between Europe and Argentina applying Logics to Systems” (MEALS)
and the Laboratoire Internationale Associé “INFINIS”.

Thanks to Mauricio Martel for working with me on the undecidability results.

References

1. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model check-
ing results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456,
pp. 142–153. Springer, Heidelberg (2012)

2. Areces, C., Fervari, R., Hoffmann, G.: Tableaux for relation-changing modal logics.
In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI),
vol. 8152, pp. 263–278. Springer, Heidelberg (2013)

3. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic Journal of the IGPL 22(2),
309–332 (2014)

4. Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability
for memory logics. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Informa-
tion and Computation. LNCS (LNAI), vol. 5110, pp. 56–68. Springer, Heidelberg
(2008)

5. Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory
logics. The Review of Symbolic Logic 4(2), 290–318 (2011)

6. Areces, C., Figueira, D., Goŕın, D., Mera, S.: Tableaux and model checking for
memory logics. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI),
vol. 5607, pp. 47–61. Springer, Heidelberg (2009)

7. Aucher, G., Balbiani, P., Fariñas Del Cerro, L., Herzig, A.: Global and local graph
modifiers. Electronic Notes in Theoretical Computer Science (ENTCS), Special is-
sue Proceedings of the 5th Workshop on Methods for Modalities (M4M5 2007) 231,
293–307 (2009)

8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Comp. Scie, vol. 53. Cambridge University Press (2001)

9. Blackburn, P., van Benthem, J.: Modal logic: A semantic perspective. In: Handbook
of Modal Logic. Elsevier, North-Holland (2006)

10. Enderton, H.: A mathematical introduction to logic. Academic Press (1972)
11. Fervari, R.: Relation-Changing Modal Logics. PhD thesis, Facultad de Matemática

Astronomı́a y F́ısica, Universidad Nacional de Córdoba, Córdoba, Argentina
(March 2014)

12. Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Com-
put. Syst. Sci. 18(2), 194–211 (1979)

108 R. Fervari

13. French, T., van der Hoek, W., Iliev, P., Kooi, B.: On the succinctness of some
modal logics. Artificial Intelligence 197, 56–85 (2013)

14. Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic. Vol. II. Synthese Library, vol. 165, pp. 497–604. D. Reidel Publish-
ing Co., Dordrecht (1984); Extensions of classical logic

15. Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4(4), 536–559
(2011)

16. Ladner, R.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

17. Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. In: Rovan, B.,
Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 531–540. Springer, Heidelberg
(2003)

18. Lutz, C.: Complexity and succinctness of public announcement logic. In:
Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) AAMAS, pp. 137–143.
ACM (2006)

19. Mera, S.: Modal Memory Logics. PhD thesis, Univ. de Buenos Aires and UFR
STMIA - Ecole Doctorale IAEM Lorraine Dép. de Form. Doct. en Informat. (2009)

20. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
21. Rohde, P.: On games and logics over dynamically changing structures. PhD thesis,

RWTH Aachen (2006)
22. van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan,

W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605,
pp. 268–276. Springer, Heidelberg (2005)

23. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Kluwer
(2007)

	The Impact of Including Model UpdateOperators in Modal Logics
	1 What Kind of Dynamic Logics?
	1.1 Some Examples of Dynamic Modal Logics

	2 Relation-Changing Operators
	3 Bisimulations
	4 Computational Behaviour
	4.1 Undecidability of ML(�sb�)

	5 Conclusions
	References

