
XMG: A Modular MetaGrammar Compiler

Simon Petitjean

Univ. Orlans, LIFO EA 4022, F-45067 Orlans, France

Abstract. XMG(eXtensibleMetaGrammar) is a metagrammar compiler
which has already been used for the design of large scale Tree Adjoining
Grammars and Interaction Grammars. Due to the heterogeneity in the
field of grammar development (different grammar formalisms, different
languages, etc), a particularly interesting aspect to explore is modular-
ity. In this paper, we discuss the different spots where this modularity can
be considered in a grammar development, and its integration to XMG.

1 Introduction

1.1 Grammar Engineering

Nowadays, a lot a applications have to deal with languages and consequently
need to manipulate their descriptions. Linguists are also interested in these kinds
of resources, for study or comparison. For these purposes, formal grammars
production has became a necessity. Our work focuses on large scale grammars,
that is to say grammars which represent a significant part of the language.

The main issue with these resources is their size (thousands of structures),
which causes their production and maintenance to be really complex and time
consuming tasks. Moreover, these resources have some specificities (language,
grammatical framework) that make each one unique.

Since a handwriting of thousands of structures represents a huge amount of
work, part of the process has to be automatized. A totally automatic solution
could consist in an acquisition from treebanks, which is a widely used technique.
Semi automatic approaches are alternatives that give an important role to the
linguist: they consist in building automatically the whole grammar from informa-
tion on its structure. The approach we chose is based on a description language,
called metagrammar [1]. The idea behind metagrammars is to capture linguistic
generalization, and to use abstractions to describe the grammar.

1.2 Metagrammars for Tree Adjoining Grammars

The context that initially inspired metagrammars was the one of Tree Adjoining
Grammars (TAG) [2]. This formalism consists in tree rewriting, with two specific
rewriting operations: adjunction and substitution. An adjunction is the replace-
ment of an internal node by an auxiliary tree (one of its leaf nodes is labelled
with � and called foot node) with root and foot node having the same syntactic
category as the internal node. A substitution is the replacement of a leaf node

M. Colinet et al. (Eds.): ESSLLI 2012/2013, LNCS 8607, pp. 36–48, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

XMG: A Modular MetaGrammar Compiler 37

(marked with ↓) by a tree with a root having the same syntactic category as this
leaf node.

TAG is said to have an extended domain of locality, because the adjunction
operation and the depth of the trees allow to represent long distance relations
between nodes: two nodes of the same elementary tree can after derivation end
up at an arbitrary distance from each other. Here, we will only manipulate LTAG
(lexicalized-TAG), which means each elementary tree is associated with at least
one lexical element.

LTAG is traditionnaly used with respect to the Condition on Elementary Tree
Minimality from [3], which means that an elementary tree only encapsulates the
arguments of its anchor, recursion being factored away.

What can we do to lower the amount of work implied by the conception of
the grammar ? Let us take a look at some rules:

S

N ↓ V� N ↓
Sally sings a song

N

N� S

C S

that N↓ V�
the song that Sally sings

Fig. 1. Verb with canonical subject and canonical or extracted object

Those two trees share some common points: part of the structure is the same
(the subject is placed before the verb in both circled parts), and the agree-
ment constraints, given in feature structures associated to nodes (not repre-
sented here), are similar. This kind of redundancy is one of the key motivations
for the use of abstractions. These abstractions are descriptions of the redundant
fragments we can use everywhere they are needed.

Metagrammars are based on the manipulation of those linguistic generaliza-
tions. They consist in generating the whole grammar from an abstract descrip-
tion, permitting to reason about language at an abstract level.

1.3 A Need for Modularity

The metagrammatical language we will deal with here is XMG (eXtensible Meta-
Grammar)1, introduced in [4]. A new project, XMG-22, started in 2010 to achieve
the initial goal of the compiler, extensibility, which has not been realized yet:
XMG-1 only supports tree based grammars (two formalisms, Tree Adjoining

1 https://sourcesup.cru.fr/xmg/
2 https://launchpad.net/xmg

https://sourcesup.cru.fr/xmg/
https://launchpad.net/xmg

38 S. Petitjean

Grammars and Interaction Grammars), and includes two levels of description,
the syntactic one and the semantic one.

Using this metagrammatical approach for the generation of another type of
linguistic resource implies the creation of a new XMG compiler. This compiler
needs to provide dedicated description languages for the needed structures. A
high level of flexibility is needed so that the user can assemble by their own a
new metagrammatical framework.

Our goal is to go towards two levels of modularity: we want it to be possible
to assemble a grammar in a modular way, thanks to a metagrammar assembled
in a modular way. The first level of modularity, provided by a compiler, allows
to combine abstractions to build a linguistic resource. The second one allows to
build new compilers dedicated to new grammar engineering tasks.

We will begin pointing out the modularity on the grammar side in section 2.
In section 3, we will focus on a new level of modularity, a metagrammatical one.
In section 4, we will give an overview of what has been done, and what remains
to be done. Finally, we will conclude and give some perspectives.

2 Assembling Grammars in a Modular Way

XMG consists in defining fragments of the grammar, and controlling how these
fragments can combine to produce the whole grammar. The following figure
shows the intuition of the combination of fragments to produce a tree for tran-
sitive verbs. It is done by combining three tree fragments, one for the subject
(in its canonical form, that we noticed redundant previously), one for the object
(relative) and one for the active form.

N

N� S

C S

which N↓ V�

S

N↓ V

S

V�

N

N� S

C S

which N↓
= + +

Transitive CanSubj Active RelObj

To build a lexicon, the metagrammar is first executed in an non-deterministic
way to produce descriptions. Then these descriptions are solved to produce the
models which will be added to the lexicon.

2.1 The Control Language and the Dimension System

The main particularity of XMG is that it allows to see the metagrammar as a
logical program, using logical operators.

XMG: A Modular MetaGrammar Compiler 39

The abstractions (possibly with parameters) we manipulate are called classes.
They contain conjunctions and disjunctions of descriptions (tree fragments de-
scriptions for TAG), or calls to other classes. This is formalized by the following
control language:

Class := Name[p1 , . . . , pn] → Content

Content := 〈Dim〉{Desc} | Name[. . .] | Content ∨ Content

| Content ∧ Content

For example, we can produce the two trees of the figure 1 by defining the tree
fragments for canonical subject, verbal morphology, canonical object and rela-
tivized object, and these combinations:

Object → CanObj ∨ RelObj

Transitive → CanSubj ∧ Active ∧ Object

This part of metagrammar says that an object can either be a canonical object
or a relative object, and that the transitive mode is created by getting together
a canonical subject, an active form and one of the two object realizations.

Notice that descriptions are accumulated within dimensions, which allow to
separate types of data. Sharing is still possible between dimensions, by means
of another dimension we call interface. In XMG’s TAG compiler for example,
the syn dimension accumulates tree descriptions while the sem dimension ac-
cumulates predicates representing the semantics. Each dimension comes with a
description language, adapted to the type of data it will contain. For each type
of description we need to accumulate, we have to use a different description lan-
guages. The first version of XMG provides a tree description langague (for TAG
or Interaction Grammars) associated with the syn dimension and a language for
semantics associated with the sem dimension.

A Tree Description Language. For trees in TAG, we use the following tree
description language:

Desc := x → y | x →+ y | x →∗ y | x ≺ y | x ≺+ y | x ≺∗ y | x[f :E]

| x(p:E) | Desc ∧ Desc

where x and y are node variables, → and ≺ dominance and precedence between
nodes (+ and ∗ respectively standing for transitive and reflexive transitive clo-
sures). ’:’ is the association between a property p or a feature f and an expression
E. Properties are constraints specific to the formalism (the fact that a node is
a substitution node for example), while features contain linguistic information,
such as syntactic categories, number or gender.

When accumulated, the tree description in the syntactic dimension is still
partial. The TAG elementary trees that compose the grammar are the models
for this partial description. They are built by a tree description solver, based
on constraints to ensure the well-formedness of the solutions. XMG computes

40 S. Petitjean

minimal models, that is to say models where only the nodes of the description
exist (no additional node is created).

Here is a toy metagrammar, composed of three description classes (represent-
ing canonical subject, relative object, active form) and one combination class
(transitive mode):

CanSubj →〈syn〉{(s1[cat : S] → v1[cat : V]) ∧ (s1 → n1(mark : subst)[cat : N])

∧ (n1 ≺ v1)}
RelObj →〈syn〉{(n2[cat = N] → n3(mark = adj)[cat = N]) ∧ (n2 → s2[cat = S])

∧ (n3 ≺ s2) ∧ (s2 → c) ∧ (s2 → s1[cat = S]) ∧ (c ≺ s1)

∧ (c → wh[cat = wh]) ∧ (s1 → n1[cat = n])}
Active →〈syn〉{(s1 → v2[cat : V])}

Transitive →CanSubj ∧RelObj ∧Active

The minimal models for the classes named CanSubj, Active and Object are
the trees with matching names on the previous figure. The tree Transitive is a
minimal model for the description accumulated in class Transitive.

A Language for Semantics. To describe semantics, we use another description
language, which is:

SemDesc := � : p(E1, ..., En) | ¬� : p(E1, ..., En) | Ei << Ej | E
where � is a label for predicate p (of arity n) and << is a scope-over relation for
dealing with quantifiers. To add binary relations to the semantic dimension, we
can use a class of this type:

BinaryRel[Pred,X, Y] → 〈sem〉{Pred(X,Y)}
When instantiated with Pred=love, X=John, Y=Mary, calling the class
BynaryRel accumulates the predicate love(John,Mary).

2.2 Principles

Some additional sets of constraints we call principles are available. Their goal
is to check some properties in the resulting models of the compilation, they are
consequently dependent from the target formalism. For example, in TAG, the
color principle is a way to forbid some fragments combination, by associating
colors to each node.

A valid model is a model in which every node is colored either in red or black.
When unifying nodes, their colors are merged: a red node must not unify, a white
node has to unify with a black node, creating a black node, and a black node can
only unify with white nodes. The only valid models are the ones in which every
node is colored either in red or black. The following table shows the results of
colors unifications.

For example, if we consider our previous example, the colored trees of the
metagrammar are the following:

XMG: A Modular MetaGrammar Compiler 41

•b •r ◦w ⊥
•b ⊥ ⊥ •b ⊥
•r ⊥ ⊥ ⊥ ⊥
◦w •b ⊥ ◦w ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Fig. 2. Unification rules for colors

S◦W

N•B V◦W
CanSubj

N•R

N•R S•R

C•R

Wh•R

S◦W

N◦W
RelObj

S•B

V•B
Active

→

N•R

N•R S•R

C•R

Wh•R

S•B

N•B V•B

The tree description solver (ignoring the colors) will produce models where
the nodes labelled S of CanSubj and Active unify with any of the two nodes
labelled S in RelObj, where the nodes labelled V do not unify, etc. But when
filtering with the colors principle, the only remaining model is the one of the
right, which is linguistically valid, contrary to the others.

We can also cite the rank principle: we use it to add constraints on the ordering
of nodes in the models of the description. In French for example, clitics are
necessarily ordered, so we associate a rank property to some nodes, with values
that will force the right order.

3 Assembling Metagrammars in a Modular Way

The main aim of the XMG-2 project is to make it possible for the linguist to
design new metagrammatical scopes, that can accomodate a large number of
linguistic theories. A modular way to realize this ambition is to provide a set of
bricks the user can pick or create and combine to build the compiler he needs.
Those bricks could be used to design new description languages, new principles,
etc.

3.1 A Modular Architecture

XMG compiler comes with a modular processing chain. This chain is composed of
two phases. The first one consists in translating the metagrammatical description
into executable code.

42 S. Petitjean

Fig. 3. Compilation steps

First, the description is analysed and turned into an abstract syntax tree. The
types into this tree are checked. The tree is then unfolded into terms of depth
one, representing instructions. Instructions are finally translated into code.

The second phase corresponds to the generation of the resource.

Fig. 4. Generation steps

The execution of the non-deterministic code generated by the compiler triggers
accumulations in the dimensions. Each accumulation is composed of structures,
and of a set of constraints over these structures. A solver extracts the models
from the accumulations. The terms resulting from the solving are then translated
into an output language.

The particularity of XMG is to make it possible to choose the modules that
suits the best the user’s metagrammar. By this mean, descriptions accumulated
in different dimensions can be handled differently. For example, the end of the
processing chain for TAG is a tree description solver, that builds the grammar’s
elementary trees from the descriptions accumulated in the syntactic dimension.
The user can choose the kind of output the compiler will produce: he can in-
teractively observe the grammar he produced, or produce an XML description
of the grammar. This description can be used by a parser (for example TuLiPA
[5]3 for TAG, or LeoPar4 for IG).

The modules of the processing chains are contributed by the XMG-2 bricks.
The new compiler includes bricks that recreate the two processing chains (for
Tree Adjoining Grammars and Interaction Grammars) featured by XMG-1.

3 https://sourcesup.cru.fr/tulipa/
4 http://wikilligramme.loria.fr/doku.php?id=leopar:leopar

https://sourcesup.cru.fr/tulipa/
http://wikilligramme.loria.fr/doku.php?id=leopar:leopar

XMG: A Modular MetaGrammar Compiler 43

3.2 Representation Modules

As we wish to build a tool which is as universal as possible, being independent
from the formalism is a priority. To achieve this goal, we need to be able to
describe a large number of types of structure into XMG. We saw the dimension
system was useful to separate syntax from semantics, but adding new dimen-
sions also allows to describe and combine other levels of description. A set of
dimensions, with description language, has recently been proposed.

These dimensions are packaged into XMG-2 bricks and can be used to build
new compilers. Different dimensions can be built from similar sets of bricks:
for example, feature structures, which can be used in a lot of formalisms, are
provided by a brick. Getting the support for feature structures inside a new
dimension can be done simply by plugging the feature structure brick into the
new dimension brick.

Syntactic Dimensions. In [6], description languages for two syntactic for-
malisms, namely Lexical Functional Grammars (LFG) and Property Grammars
(PG), are proposed. Here, we will focus on Property Grammars, because they
differ from TAG in many aspects. PG are not based on tree rewriting but on
a local constraints system: the properties. A property concerns a node and ap-
plies constraints over its children nodes. One of the interesting aspects of PG is
the ability to analyse ungrammatical utterances. When parsing a utterance, its
grammaticality score is lowered at every violated property. Here, we will consider
these six properties:

Obligation A: �B at least one B child
Uniqueness A: B! at most one B child
Linearity A: B≺C B child precedes C child
Requirement A: B⇒C if a B child, then also a C child
Exclusion A: B�C B and C children are mutually exclusive
Constituency A: S children must have categories in S

A real size PG consists in an inheritance hierarchy of linguistic constructions.
These constructions are composed of feature structures and a set of properties.
Variables are manipulated on both sides, and can be used to share data between
them. Figure 5 represents a part of the hierarchy built in [7] for French.

The V-n construction of the figure says that in verbs with negation in French,
negation implies the presence of an adverb ne labelled with category Adv − ng
(ne) and/or an adverb labelled with category Adv−np (like pas). We also have a
uniqueness obligation over these adverbs, and an linear order must be respected
(ne must come before pas). When the mode of the verb is infinitive, the verb
must be placed after the adverbs.

44 S. Petitjean

Fig. 5. Fragment of a PG for French (basic verbal constructions)

To describe a PG, we need to be able to represent encapsulations, variables,
feature structures, and properties. We can notice that XMG classes can be seen
as encapsulations, and that variables and feature structures were already used
for TAG descriptions. Considering that, the XMG description language for PG
can be formalized this way:

DescPG := x = y | x = y | [f :E] | {P} | DescPG ∧ DescPG

P := A : �B | A : B! | A : B ≺ C | A : B ⇒ C | A : B ⇔ C | A : B

where x, y correspond to unification variables, = to unification, 	= to unifica-
tion failure, : to association between the feature f and some (possibly complex)
expression E, and {P} to a set of properties. Note that E and P may share
unification variables.

The translation of the linguistic construction for V-m in XMG would be:

V−m → (V class ∨ V−n) ∧ 〈PG〉{[INTR:[SYN:[INTRO:[RECT:X,DEP:Prep]]]]

∧ (V : Prep!) ∧ (V : X ⇒ Prep) ∧ (V : X ≺ Prep)}
Here, inheritance is made possible by calls of classes. The control language

even allows to do disjunctive inheritance, like it happens in class V-m. The end
of the compilation process for PG will differ from TAG’s one. We don’t need any
solver for descriptions, the accumulation into PG dimension is the grammar. To
get the properties solved for a given sentence, the solution is to use a parser as
a post processor for the compiler.

Morphological Dimension. For the needs of the study of verbal morphology
in Ikota [8], a morphological dimension based on the notion of topological fields
[9] was proposed. The description language available inside this dimension is the
following:

DescMorph := f ← c | attr = val | DescMorph ∧ DescMorph

where f is a field, declared for the whole metagrammar, c is a contribution, and
← corresponds to the accumulation of a contribution into a field. attr = val

XMG: A Modular MetaGrammar Compiler 45

means that the feature composed of this pair will be part of the accumulated
description.

The execution of the metagrammar starts with the ordering of fields. This
solving has to be done only once in this dimension because in the chosen mor-
phological theory, positions are fixed. For every solution of the execution of the
classes, strings are accumulated into the fields, and morphosyntactic information
into features.

The output of the compilation process is not a grammar strictly speaking,
but a lexicon of fully inflected forms, basically obtained by concatenation of the
fields contents.

Frame Semantics Dimension. A dimension handling a second formalism for
semantics was proposed in [10]. The dedicated description language allows to
describe frames, which are representations of mental concepts [11] and can be
represented as feature structures. The unification of frames implies the unifica-
tion of their types, which belong to a type hierarchy. This specific type unification
is handled by the frame compiler brick. The description language for frames is
the following:

DescFrame := f(t, [a1 = f1, . . . an = fn]) | DescFrame ∧ DescFrame

where f is an optional variable labeling the frame, a1 . . . an are attributes of the
frame, and f1 . . . fn are frame associated to these attributes.The execution of the
frame dimension leads to the accumulation and combination of frame fragments.

The output for this dimension is a set of frames, that should be associated to
syntactic structures. The interface between TAG trees and frames in discussed
in [12].

Including a specific representation module to the XMG-1 compiler could be
seen as an ad-hoc solution. This is why allowing the linguist to build their own
dimension, begining with the choice of a description language, is a central feature
of the new version of XMG. A XMG-2 brick corresponding to a new represen-
tation module is composed of the definition of the language used by the brick
(the dedicated description language) and of the compilation modules to handle
this language.

3.3 Specific Virtual Machines

During the generation of the linguistic resource, objects correponding to the
described structures are manipulated. The main operation between structures
is unification, triggered explicitely (by using the equal sign) or implicitely (by
importing variables from other classes). For most of these structures, standard
unification is adequate, but for some of them, specific engines have to be used.
For example, feature structures (like the ones used in TAG) need a dedicated
unification algorithm, corresponding to set union.

A XMG-2 brick for a new description language has to include the set of
specific virtual machines needed to handle the unification of its structures. For

46 S. Petitjean

the frame semantics dimension for example, a dedicated virtual machine handling
the unification of typed feature structures is contributed by the brick.

3.4 Principle Bricks

The notion of principles defined in XMG was too restrictive for our aims. Their
specificity for the target formalism, for example, is incompatible with the multi-
formalism ambition. An interesting way to handle principles is the one of [13],
both allowing the linguist to create his own principles or to use a subset of the
ones already defined. An example is the tree principle, which states that the
solution models must be trees.

What we aim to provide is a meta-principles library: generic and parametriz-
able principles the user can pick and configure. For example, the color principle
provided for TAG could be an implementation of a generic polarity principle,
parametrized with the table of figure 2. Another example of meta-principle is
called unicity and was already implemented in XMG-1. It is used to check the
uniqueness of a specific attribute-value pair in each solution, and thus is not
specific to any linguistic theory.

Principles are also packaged into XMG-2 bricks. This means that for any new
metagrammatical scope where trees have to be solved, the tree principle brick
just has to be plugged into the new (or existing) dimension brick.

For the morphological dimension discussed early, a principle brick handling
linear ordering constraints between fields was created.

3.5 Dynamic Definition of a Metagrammar Compiler

To build their own metagrammatical scope, one only has to create and configure
the dimensions he needs and the properties he wants to check on them. Building
a compiler consists in picking and combining independent modules, which we call
compiler bricks. XMG-2 provides a compiler builder, that assembles the needed
parts of the compiler according to a description of the connections between
the bricks. The tokenizer and the parser for the metagrammatical language are
automatically generated from this description, and each brick contributes its
own compilation modules.

One of the main advantages of this modular approach is that the specific
part of the compiler is mostly written automatically, and new features could
be added just for experiments. A user can either use an existing compiler or
assemble parts to build their own. Defining the principles would just consist in
taking meta-principles out from the library and instantiate them.

Building a metagrammar compiler in this way allows to deal with a large
range of linguistic theories, or even to quickly experiment while creating a new
grammar formalism.

4 Current State of the Work

XMG project started in 2003 with a first tool, that has been used to produce
large TAG grammars for French [14], German [15] and English, and a large

XMG: A Modular MetaGrammar Compiler 47

Interaction Grammar for French [16]. The compiler was written in Oz/Mozart,
a language which is not maintained any more and not compatible with today’s
architectures (64 bits). It was also important to restart from scratch, in order
to build a compiler more in adequation with its ambitions : modularity and
extensibility.

Consequently, a new implementation started in 2010, in YAP (Yet Another
Prolog) with bindings with Gecode for constraints solving. XMG-2 is currently
the tool used for modeling the syntax and morphology of various African and
Creole languages, and is compatible with the previous large metagrammars. It
also includes the support for the dimensions discussed in this article.

5 Conclusion

In this paper, we showed how modularity, together with a metagrammatical
approach, eases the development of a large scale grammar. This modularity is
essential for reaching the main goal of XMG, that is to say extensibility. Getting
to that means taking a big step towards multi-formalism and multi-language
grammar development, and then offers new possibilities for sharing data between
different types of grammar, or even for comparing them.

Two levels of modularity are given by XMG. The first one is the grammatical
modularity, which makes it easier to generate and maintain large scale grammars
thanks to the definition and the combination of abstractions. The second level
of modularity is metagrammatical: XMG-2 provides a way to build new com-
pilers by defining and combining elementary parts of compiler, called compiler
bricks. The users have different options: they can use existing compilers (the
one for TAG and ’flat’ semantics for example), combine bricks to build a new
type of compiler (like a compiler having two TAG dimensions, for two different
languages), or create their own bricks, to combine them with existing ones (a
brick for dependency grammars for example).

References

1. Candito, M.: A Principle-Based Hierarchical Representation of LTAGs. In: Pro-
ceedings of COLING 1996, Copenhagen, Denmark (1996)

2. Joshi, A.K., Schabes, Y.: Tree Adjoining Grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages. Springer, Berlin (1997)

3. Frank, R.: of Pennsylvania. Institute for Research in Cognitive Science, U.: Syn-
tactic Locality and Tree Adjoining Grammar: Grammatical, Acquisition and Pro-
cessing Perspectives. IRCS report. University of Pennsylvania, The Institute for
Research in Cognitive Science (1992)

4. Duchier, D., Le Roux, J., Parmentier, Y.: The Metagrammar Compiler: An NLP
Application with a Multi-paradigm Architecture. In: Van Roy, P. (ed.) MOZ 2004.
LNCS, vol. 3389, pp. 175–187. Springer, Heidelberg (2005)

48 S. Petitjean

5. Kallmeyer, L., Lichte, T., Maier, W., Parmentier, Y., Dellert, J., Evang, K.:
TuLiPA: Towards a Multi-Formalism Parsing Environment for Grammar Engi-
neering. In: Coling 2008: Proceedings of the Workshop on Grammar Engineering
Across Frameworks, Manchester, England, pp. 1–8. Coling 2008 Organizing Com-
mittee (2008)

6. Duchier, D., Parmentier, Y., Petitjean, S.: Cross-framework Grammar Engineer-
ing using Constraint-driven Metagrammars. In: CSLP 2011. Karlsruhe, Allemagne
(2011)

7. Guénot, M.L.: Éléments de grammaire du français pour une théorie descriptive et
formelle de la langue. PhD thesis, Université de Provence (2006)

8. Duchier, D., Magnana Ekoukou, B., Parmentier, Y., Petitjean, S., Schang, E.: De-
scribing Morphologically-rich Languages using Metagrammars: a Look at Verbs in
Ikota. In: Workshop on “Language Technology for Normalisation of Less-resourced
Languages”, 8th SALTMIL Workshop on Minority Languages and the 4th Work-
shop on African Language Technology, Istanbul, Turkey (2012)

9. Stump, G.T.: On the theoretical status of position class restrictions on inflectional
affixes. In: Booij, G., vanMarle, J. (eds.) Yearbook of Morphology 1991, pp. 211–241.
Kluwer (1992)

10. Lichte, T., Diez, A., Petitjean, S.: Coupling Trees and Frames through XMG. In:
ESSLLI 2013 Workshop on High-level Methodologies for Grammar Engineering
(HMGE 2013), Duesseldorf, Germany (2013)

11. Fillmore, C.J.: Frame semantics. In: The Linguistic Society of Korea. Linguistics
in the Morning Calm, pp. 111–137. Hanshin Publishing (1982)

12. Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in Lexical-
ized Tree Adjoining Grammar. Journal of Language Modelling 1, 267–330 (2013)

13. Debusmann, R.: Extensible Dependency Grammar: A Modular Grammar Formal-
ism Based On Multigraph Description. PhD thesis, Saarland University (2006)

14. Crabbé, B.: Représentation informatique de grammaires fortement lexicalisées: Ap-
plication à la grammaire d’arbres adjoints. PhD thesis, Université Nancy 2 (2005)

15. Kallmeyer, L., Lichte, T., Maier, W., Parmentier, Y., Dellert, J.: Developing a
tt-mctag for german with an rcg-based parser. In: LREC. ELRA (2008)

16. Perrier, G.: A French Interaction Grammar. In: RANLP, Borovets, Bulgaria (2007)

	XMG: A Modular MetaGrammar Compiler
	1 Introduction
	1.1 Grammar Engineering
	1.2 Metagrammars for Tree Adjoining Grammars
	1.3 A Need for Modularity

	2 Assembling Grammars in a Modular Way
	2.1 The Control Language and the Dimension System
	2.2 Principles

	3 Assembling Metagrammars in a Modular Way
	3.1 A Modular Architecture
	3.2 Representation Modules
	3.3 Specific Virtual Machines
	3.4 Principle Bricks
	3.5 Dynamic Definition of a Metagrammar Compiler

	4 Current State of the Work
	5 Conclusion
	References

