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Abstract. A class of Kripke frames is called modally definable if there
is a set of modal formulas such that the class consists exactly of frames
on which every formula from that set is valid, i.e. globally true under
any valuation. Here, existential definability of Kripke frame classes is
defined analogously, by demanding that each formula from a defining set
is satisfiable under any valuation. The notion of modal definability is then
generalized by combining these two. Model theoretic characterizations of
these types of definability are given.
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1 Introduction

Some questions about the power of modal logic to express properties of rela-
tional structures are addressed in this paper. One way to determine the expres-
sive power of a language is to establish a model theoretic characterization of
properties definable in that language. Such characterizations depend not only
on language, but also on a choice of semantics.

Only the Kripke semantics is considered in this paper. Even so, we have
several perspectives on the meaning of modal formulas: we distinguish between
their truth at some designated world, global truth on a model, and validity
on a frame. Because of this, model theory provides several characterizations of
modal definability, which answer to the following questions: which properties of
Kripke frames (Goldblatt-Thomason [4], see also [1]), Kripke models (de Rijke
and Sturm [3]), and pointed models (de Rijke, see [1]), are expressible in modal
logic.

Moreover, on the level of Kripke models, we can also use the notion of satisfia-
bility, which is dual to the global truth. In [9] the notion of existential definability
of Kripke model classes (or properties) is defined as follows: a class is existen-
tially definable if there is a set of formulas such that this class consists exactly
of models in which every formula from that set is satisfiable. In [8] we combine
the usual (universal) and existential definability to obtain further generalizations
and we prove model theoretic characterizations for these types of definability.

The aim of this paper is to provide similar generalizations for the level of
Kripke frames. Since we abstract away from the effect of the valuations, frames
are the most natural semantic level for one of the basic purposes of modal logic:
to express properties of accessibility relation. So, it is of interest to get a broader
perspective on modal frame definability.
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As it turns out, an appropriate notion of existential definability of Kripke
frame classes demands that each formula from a defining set is satisfiable under
any valuation. This is equivalent to the definability by the existential fragment
of modal language enriched with the universal modality, similarly as it is on
the level of models (see [9] and [8]). A generalized notion of modal definability,
which is defined exactly like in the case of models, by combining universal and
existential definability, also corresponds to a fragment of this language.

This paper provides two characterizations at the level of frames: one for the
existential definability and one for the generalized definability. Characterizations
are obtained by similar proof techniques as for the definability in the usual sense,
which means that saturated models (ultraproducts and ultrafilter extensions) are
deeply involved in the results. Characterization theorems are useful for obtaining
non-definability results, some of which are given in Section 5. These examples
also show that the conditions in the characterizations are necessary.

2 Preliminaries

For the sake of notational simplicity, only the basic modal language is consid-
ered in this paper, with the exception of few remarks concerning the universal
modality.

Let Φ be a set of propositional variables. The syntax of the basic propositional
modal language (BML) is given by

ϕ ::= p | ⊥ |ϕ1 ∨ ϕ2 | ¬ϕ |♦ϕ,

where p ∈ Φ. We define other connectives and � as usual. Namely, �ϕ := ¬♦¬ϕ.
The basic notions and results on the Kripke semantics are only briefly recalled

here (see [1] for details if needed). A Kripke frame for the basic modal language
is a relational structure F = (W,R), where W �= ∅ and R ⊆ W ×W . A Kripke
model based on a frame F is M = (W,R, V ), where V : Φ → 2W is a mapping
called valuation. For w ∈ W , we call (M, w) a pointed model.

The truth of a formula is defined locally and inductively as usual, and denoted
M, w � ϕ. Namely, a formula of a form ♦ϕ is true at w ∈ W if M, u � ϕ for
some u such that Rwu. A valuation is naturally extended to all modal formulas
by putting V (ϕ) = {w ∈ W : M, w � ϕ}.

We say that a formula is globally true on M if it is true at every w ∈ W , and
we denote this by M � ϕ. On the other hand, a formula is called satisfiable in
M if it is true at some w ∈ W .

If a formula ϕ is true at w under any valuation on a frame F, we write F, w � ϕ.
We say that a formula is valid on a frame F if we have M � ϕ for any model
M based on F. This is denoted F � ϕ. For a set Σ of formulas we write F � Σ
if F � ϕ for all ϕ ∈ Σ. A class K of Kripke frames is modally definable if there
is Σ such that K consists exactly of frames on which every formula from Σ is
valid, i.e. K = {F : F � Σ}. If this is the case, we say that K is defined by Σ
and denote K = Fr(Σ).
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Model theoretic closure conditions that are necessary and sufficient for an
elementary class of frames (i.e. first-order definable property of relational struc-
tures) to be modally definable are given by the famous Goldblatt-Thomason
Theorem.

Theorem (Goldblatt-Thomason [4]). An elementary class K of frames is
definable by a set of modal formulas if and only if K is closed under surjec-
tive bounded morphisms, disjoint unions and generated subframes, and reflects
ultrafilter extensions.

All of the frame constructions used in the theorem – bounded morphisms,
disjoint unions, generated subframes and ultrafilter extensions – are presented
briefly in Section 4 (see [1] for more details if needed). Just to be clear, we say
that a class K reflects a construction if its complement Kc, that is the class of
all Kripke frames not in K, is closed under that construction.

Now, an alternative notion of definability is proposed here as follows.

Definition 1. A class K of Kripke frames is called modally ∃-definable if there
is a set Σ of modal formulas such that for any Kripke frame F we have: F ∈ K
if and only if each ϕ ∈ Σ is satisfiable in M, for every model M based on F. If
this is the case, we denote K = Fr∃(Σ).

The definition does not require that all formulas of Σ are satisfied at the same
point – it suffices that each formula of Σ is satisfied at some point.

In the following, a notation Mod(F ) is used for a class of structures defined
by a first-order formula F . Similarly, if Σ = {ϕ} is a singleton set of modal
formulas, we write Fr∃(ϕ) instead of Fr∃({ϕ}).
Example 1. It is well-known that the formula p → ♦p defines reflexivity, i.e.
Fr(p → ♦p) = Mod(∀xRxx). Now, it is easy to see that Fr∃(p → ♦p) is the class
of all frames such that R �= ∅, that is Fr∃(p → ♦p) = Mod(∃x∃yRxy). This class
is not modally definable in the usual sense, since it is clearly not closed under
generated subframes. Note that the condition R �= ∅ is ∃-definable also by a
simpler formula ♦�.

Next, we define a notion which generalizes both universal and existential de-
finability.

Definition 2. A class K of Kripke frames is called modally ∀∃-definable if there
is a pair (Σ1, Σ2) of sets of modal formulas such that for any Kripke frame F
we have: F ∈ K if and only if each ϕ ∈ Σ1 is valid on F and each ϕ ∈ Σ2 is
satisfiable in M, for any model M based on F, i.e. K = Fr(Σ1) ∩ Fr∃(Σ2).

Model theoretic characterizations of these notions are given in Section 5.

3 First and Second-Order Standard Translations

The starting point of correspondence between first-order and modal logic is the
standard translation, a mapping that translates each modal formula ϕ to the
first-order formula STx(ϕ), as follows:
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STx(p) = Px, for each p ∈ Φ,
STx(⊥) = ⊥,
STx(¬ϕ) = ¬STx(ϕ),
STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ),
STx(♦ϕ) = ∃y(Rxy ∧ STy(ϕ)).
Clearly, we have M, w � ϕ if and only if M |= STx(ϕ)[w], and M � ϕ

if and only if M |= ∀xSTx(ϕ). But, validity of a formula on a frame gener-
ally is not first-order expressible, since we need to quantify over valuations.
We have a second-order standard translation, that is, F � ϕ if and only if
F |= ∀P1 . . .∀Pn∀xSTx(ϕ), where P1, . . . , Pn are monadic second-order vari-
ables, one for each propositional variable occurring in ϕ. So, the notion of modal
definability is equivalent to the definability by a set of second-order formulas of
the form ∀P1 . . . ∀Pn∀xSTx(ϕ). However, in many cases a formula of this type is
equivalent to a first-order formula. Namely, this holds for any Sahlqvist formula
(the definition is omitted here – see [10] or [1]), for which an equivalent first order
formula is effectively computable. On the other hand, the Goldblatt-Thomason
Theorem characterizes those first-order properties that are modally definable.

Now, ∃-definability is clearly also equivalent to the definability by a type
of second-order formulas – those of the form ∀P1 . . . ∀Pn∃xSTx(ϕ). Consider
another example of a modally ∃-definable class.

Example 2. The condition F = ∃x∀y(Rxy → ∃zRyz) is not modally definable,
since it is not closed under generated subframes, but it is modally ∃-definable
by the formula ϕ = p → �♦p.

To prove this, we need to show Fr∃(ϕ) = Mod(F ). But F = (W,R) ∈ Fr∃(ϕ)
if and only if F |= ∀P∃x(Px → ∀y(Rxy → ∃z(Ryz ∧ Pz))). So in particular,
under the assignment which assigns the entire W to the second-order variable
P , we get F |= ∃x∀y(Rxy → ∃zRyz), thus F ∈ Mod(F ). The reverse inclusion is
proved similarly.

Other changes of quantifiers or the order of first and second-order quantifiers
would result in other types of definability, perhaps also worthy of exploring. In
fact, this has already been done by Venema [12] and Hollenberg [7], who consider
negative definability, which corresponds to second-order formulas of the form
∀x∃P1 . . . ∃Pn STx(¬ϕ). The class of frames negatively defined by Σ is denoted
Fr−(Σ). It should be noted here that the definition of ∀∃-definability is inspired
by the analogous notion of ±-definability from [7].

A general characterization of negative definability has not been obtained, and
neither has been a characterization of elementary classes which are negatively
definable – it even remains unknown if all negatively definable classes are in fact
elementary. But, to digress a little from the main point of this paper, we easily
get the following fairly broad result.

Proposition 1. Let ϕ be a modal formula which has a first-order local cor-
respondent, i.e. there is a first-order formula F (x) such that for any frame
F = (W,R) and any w ∈ W we have F, w � ϕ if and only if F |= F (x)[w].
(In particular, this holds for any Sahlqvist formula.)
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Then we have Fr−(ϕ) = Mod(∀x¬F (x)).

Proof. We have F ∈ Fr−(ϕ) if and only if F |= ∀x∃P1 . . . ∃Pn STx(¬ϕ) if and
only if F �|= ∃x∀P1 . . . ∀Pn STx(ϕ). But this means that there is no w ∈ W such
that F |= ∀P1 . . .∀Pn STx(ϕ)[w]. The latter holds if and only if F, w � ϕ, which
is by assumption equivalent to F |= F (x)[w]. The fact that such w does not exist,
is equivalent to F ∈ Mod(∀x¬F (x)). ��

So for example, since p → ♦p locally corresponds to Rxx, we have that p → ♦p
negatively defines irreflexivity, which is not modally definable property, since it
is not preserved under surjective bounded morphisms.

4 Model-Theoretic Constructions

This section can be used, if needed, as a reference for the basic facts about the
constructions used in the proofs of the characterizations. Otherwise it can be
omitted.

A bisimulation between Kripke models M = (W,R, V ) and M′ = (W ′, R′, V ′)
is a relation Z ⊆ W ×W ′ such that:

(at) if wZw′ then we have: w ∈ V (p) if and only if w′ ∈ V ′(p), for all p ∈ Φ,
(forth) if wZw′ and Rwv, then there is a v′ such that vZv′ and R′w′v′,
(back) if wZw′ and R′w′v′, then there is a v such that vZv′ and Rwv.
The basic property of bisimulations is that (at) extends to all formulas: if

wZw′ then M, w � ϕ if and only if M′, w′ � ϕ, i.e. (M, w) and (M′, w′) are
modally equivalent. We get the definition of bisimulation between frames by
omitting the condition (at).

A bounded morphism from a frame F = (W,R) to F′ = (W ′, R′) is a function
f : W → W ′ such that:

(forth) Rwv implies R′f(w)f(v),
(back) if R′f(w)v′, then there is v such that v′ = f(v) and Rwv.
Clearly, the graph of a bounded morphism is a bisimulation.
A generated subframe of F = (W,R) is a frame F′ = (W ′, R′) where W ′ ⊆ W

such that w ∈ W ′ and Rwv implies v ∈ W ′, and R′ = R∩(W ′×W ′). A generated
submodel of M = (W,R, V ) is a model based on a generated subframe, with the
valuation V ′(p) = V (p)∩W ′, for all p ∈ Φ. It is easy to see that the global truth
of a modal formula is preserved on a generated submodel.

The disjoint union of a family of models {Mi = (Wi, Ri, Vi) : i ∈ I} is the
model

⊎
i∈I Mi = (W,R, V ) such that:

(1) W =
⋃

i∈I(Wi × {i}),
(2) R(w, i)(v, j) if and only if i = j and Riwv,
(3) (w, i) ∈ V (p) if and only if w ∈ Vi(p), for all p.
It is easy to see that the disjoint union preserves the global truth of a modal

formula. The definition of the disjoint union of a family of frames is obtained by
omitting (3).

To define the ultraproducts and ultrafilter extensions, we need the notion of
ultrafilters. An ultrafilter over a set I �= ∅ is a family U ⊆ P(I) such that:
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(1) I ∈ U ,
(2) if A,B ∈ U , then A ∩B ∈ U ,
(3) if A ∈ U and A ⊆ B ⊆ I, then B ∈ U ,
(4) for all A ⊆ I we have: A ∈ U if and only if I \A /∈ U .
The existence of ultrafilters is provided by a fact that any family of subsets

which has the finite intersection property (that is, each finite intersection is
non-empty) can be extended to an ultrafilter (see e.g. [2]).

Let {Mi = (Wi, Ri, Vi) : i ∈ I} be a family of Kripke models and let U
be an ultrafilter over I. The ultraproduct of this family over U is the model∏

U Mi = (W,R, V ) such that:
(1) W is the set of equivalence classes fU of the following relation defined on

the Cartesian product of the family: f ∼ g if and only if {i ∈ I : f(i) = g(i)} ∈ U ,
(2) fURgU if and only if {i ∈ I : f(i)Rig(i)} ∈ U ,
(3) fU ∈ V (p) if and only if {i ∈ I : f(i) ∈ Vi(p)} ∈ U , for all p.
The basic property of ultraproducts is that (3) extends to all formulas.

Proposition 2. Let {Mi : i ∈ I} be a family of Kripke models and let U be an
ultrafilter over I.

Then we have
∏

U Mi, f
U � ϕ if and only if {i ∈ I : Mi, f(i) � ϕ} ∈ U , for

any fU . Furthermore, we have
∏

U Mi � ϕ if and only if {i ∈ I : Mi � ϕ} ∈ U .

This is an analogue of �Loś’s Fundamental Theorem on ultraproducts from
the first-order model theory (see [2] for this, and [1] for the proof of the modal
analogue). �Loś’s Theorem also implies that an elementary class of models is
closed under ultraproducts.

An ultraproduct such that Mi = M for all i ∈ I is called an ultrapower of
M and denoted

∏
U M. From �Loś’s Theorem it follows that any ultrapower of

a model is elementarily equivalent to the model, that is, the same first-order
sentences are true on M and

∏
U M. Definition of an ultraproduct of a family of

frames is obtained by omitting the clause regarding valuation.
Another notion needed in the proofs of the characterizations is modal satura-

tion, the modal analogue of ω-saturation from the classical model theory. The
definition of saturation is omitted here (see e.g. [1]), since we only need some
facts which it implies:

– While a bisimulation implies modal equivalence, the converse generally does
not hold, but it does hold for modally saturated models. In fact, a modal
equivalence between points of modally saturated models is a bisimulation.

– Any ω-saturated Kripke model is also modally saturated (see [1] for proofs
of these facts).

Finally, the ultrafilter extension of a model M = (W,R, V ) is the model
ueM = (Uf(W ), Rue, V ue), where Uf(W ) is the set of all ultrafilters over W ,
Rueuv holds if and only if A ∈ v implies m♦(A) ∈ u, where m♦(A) denotes the
set of all w ∈ W such that Rwa for some a ∈ A, and u ∈ V ue(p) if and only
if V (p) ∈ u. The basic property is that this extends to any modal formula, i.e.
we have u ∈ V ue(ϕ) if and only if V (ϕ) ∈ u (see [1]). From this it easily follows
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that the global truth of a modal formula is preserved on the ultrafilter extension.
Another important fact is that the ultrafilter extension of a model is modally
saturated (see [1]).

The ultrafilter extension of a frame F = (W,R) is ueF = (Uf(W ), Rue).

5 Characterizations

Arguments and techniques used in the proofs of the following characterizations
are similar to the ones used in the proof of Goldblatt-Thomason theorem as
presented in [1], so the reader might find it interesting to compare these proofs
to note analogies and differences.

Theorem 1. Let K be an elementary class of Kripke frames. Then K is modally
∃-definable if and only if it is closed under surjective bounded morphisms and
reflects generated subframes and ultrafilter extensions.

Proof. Let K = Fr∃(Σ). Let F = (W,R) ∈ K and let f be a surjective bounded
morphism from F to some F′ = (W ′, R′). Take any ϕ ∈ Σ and any model
M′ = (W ′, R′, V ′) based on F′. Put V (p) = {w ∈ W : f(w) ∈ V ′(p)}. Then V
is a well defined valuation on F. Put M = (W,R, V ). Since F ∈ K, there exists
w ∈ W such that M, w � ϕ. But then M′, f(w) � ϕ. This proves that K is
closed under surjective bounded morphisms.

To prove that K reflects generated subframes and ultrafilter extensions, let
F = (W,R) /∈ K. This means that there is ϕ ∈ Σ and a model M = (W,R, V )
based on F such that M � ¬ϕ. Let F′ = (W ′, R′) be a generated subframe of
F. Define V ′(p) = V (p) ∩W ′, for all p. Then we have M′ � ¬ϕ, which proves
F′ /∈ K, as desired. Also, ueM is a model based on the ultrafilter extension ueF
and we have ueM � ¬ϕ, which proves ueF /∈ K.

For the converse, let K be an elementary class of frames that is closed under
surjective bounded morphisms and reflects generated subframes and ultrafilter
extensions. Denote by Σ the set of all formulas that are satisfiable in all models
based on all frames in K. Then K ⊆ Fr∃(Σ) and it remains to prove the reverse
inclusion.

Let F = (W,R) ∈ Fr∃(Σ). Let Φ be a set of propositional variables that
contains a propositional variable pA for each A ⊆ W . Let M = (W,R, V ), where
V (pA) = A for all A ⊆ W . Denote by Δ the set of all modal formulas over Φ
which are globally true on M. Now, for any finite δ ⊆ Δ there is Fδ ∈ K and
a model Mδ based on Fδ such that Mδ � δ. Otherwise, since Δ is closed under
conjunctions, there is ϕ ∈ Δ such that ¬ϕ ∈ Σ, thus ¬ϕ is satisfiable in M,
which contradicts M � Δ.

Now, let I be the family of all finite subsets of Δ. For each ϕ ∈ Δ, put
ϕ̂ = {δ ∈ I : ϕ ∈ δ}. The family {ϕ̂ : ϕ ∈ Δ} clearly has the finite intersection
property, so it can be extended to an ultrafilter U over I. But for all ϕ ∈ Δ
we have {δ ∈ I : Mδ � ϕ} ⊇ ϕ̂ and ϕ̂ ∈ U , thus {δ ∈ I : Mδ � ϕ} ∈ U ,
so the Proposition 2 implies

∏
U Mδ � ϕ. The model

∏
U Mδ is based on the

frame
∏

U Fδ. Since K is elementary, it is also closed under ultraproducts, so
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∏
U Fδ ∈ K. It remains to prove that there is a surjective bounded morphism from

some ultrapower of
∏

U Fδ to a generated subframe of ueF. Then the assumed
properties of K imply that F ∈ K, as desired.

Classical model theory provides us with an ω-saturated ultrapower of
∏

U Mδ

(cf. [2]). Let MΔ be such an ultrapower. We have that MΔ is modally saturated.
Also, it is elementarily equivalent to

∏
U Mδ, so using standard translation we

obtain MΔ � Δ. The model MΔ is based on a frame FΔ, which is an ultrapower
of

∏
U Fδ. Now define a mapping from FΔ to ueF by putting f(w) = {A ⊆ W :

MΔ, w � pA}.
First we need to prove that f is well-defined, i.e. that f(w) is indeed an

ultrafilter over W .
(1) We easily obtain W ∈ f(w), since pW ∈ Δ by the definition of V .
(2) If A,B ∈ f(w), then MΔ, w � pA ∧ pB. Clearly, M � pA ∧ pB ↔ pA∩B.

Thus MΔ � pA ∧ pB ↔ pA∩B, so MΔ, w � pA∩B, i.e. A ∩B ∈ f(w).
(3) If A ∈ f(w) and A ⊆ B ⊆ W , then from the definition of V it follows

M � pA → pB. But then also MΔ � pA → pB, hence MΔ, w � pB, so B ∈ f(w).
(4) For all A ⊆ W we have M � pA ↔ ¬pW\A, which similarly as in the

previous points implies A ∈ f(w) if and only if W \A /∈ f(w), as desired.
Assume for the moment that we have: u = f(w) if and only if (ueM, u) and

(MΔ, w) are modally equivalent. Since ueM and MΔ are modally saturated, the
modal equivalence between their points is a bisimulation. So f is a bisimulation,
but it is also a function, which means that it is a bounded morphism from FΔ

to ueF. But then the corestriction of f to its image is a surjective bounded
morphism from an ultrapower of

∏
U Fδ to a generated subframe of ueF, which

we needed.
So to conclude the proof, it remains to show that u = f(w) holds if and only

if (ueM, u) and (MΔ, w) are modally equivalent. Let u = f(w). Then we have
ueM, u � ϕ if and only if V (ϕ) ∈ u, which is by the definition of f equivalent to
MΔ, w � pV (ϕ). But the definition of V clearly implies M � ϕ ↔ pV (ϕ), so also
MΔ � ϕ ↔ pV (ϕ), which provides the needed modal equivalence.

For the converse, the assumption implies that we have ueM, u � pA if and
only if MΔ, w � pA, for all A ⊆ W . This means that V (pA) = A ∈ u if and only
if A ∈ f(w), i.e. u = f(w). ��

In the characterization of ∀∃-definability we need the following non-standard
closure condition.

Definition 3. We say that a class K of Kripke frames is closed under generated
interframes if the following holds:

Let F1, F and F2 be frames such that F1 is a generated subframe of F and F
is a generated subframe of F2. Then we have: if F1 and F2 are in K, then F is
also in K (cf. [8] for the analogous notion for Kripke models).

Theorem 2. Let K be an elementary class of Kripke frames. Then K is modally
∀∃-definable if and only if it is closed under surjective bounded morphisms, dis-
joint unions and generated interframes, and reflects ultrafilter extensions.
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Proof. It is easy to show that any ∀∃-definable class have the desired proper-
ties, using the same arguments as in the respective directions of the proofs of
Goldblatt-Thomason theorem (see [1]) and Theorem 1.

For the converse, let K be an elementary class of frames that is closed under
surjective bounded morphisms, disjoint unions and generated interframes, and
reflects ultrafilter extensions. Let Σ1 be the set of all formulas that are valid on
all frames in K, and let Σ2 be the set of all formulas that are satisfiable in all
models based on all frames in K. Then K ⊆ Fr(Σ1) ∩ Fr∃(Σ2) and it remains to
prove the reverse inclusion.

Let F ∈ Fr(Σ1) ∩ Fr∃(Σ2) and let Φ be a set of propositional variables that
contains pA for each A ⊆ W . Let M be a model based on F such that V (pA) = A
for all A ⊆ W . Let Δ∀ be the set of all formulas over Φ which are globally true
on M and let Δ∃ be the set of all formulas over Φ which are satisfiable in M.

Denote D∀ = {∀xSTx(ϕ) : ϕ ∈ Δ∀}, D∃ = {∃xSTx(ϕ) : ϕ ∈ Δ∃}, and
D = D∀ ∪ D∃. It is easy to see that for all F ∈ D there is a model MF based
on some FF ∈ K such that MF |= F (the opposite assumption easily leads to a
contradiction).

Using the same arguments as in the proof of Theorem 1, we conclude that
there is an ω-saturated model M∀ based on some frame F∀ ∈ K such that
M∀ |= D∀, i.e. M∀ � Δ∀. We define a mapping f from F∀ to ueF by putting
f(w) = {A ⊆ W : M∀, w � pA}. In the same way as in the proof of Theorem 1,
we show that f is a bounded morphism. Denote its image by F′

∀. It is a generated
subframe of ueF, and since K is closed under surjective bounded morphisms, we
have F′

∀ ∈ K.
On the other hand, since K is closed under disjoint unions, we have that⊎
F∈D∃ FF ∈ K, while clearly

⊎
F∈D∃ MF |= D∃. Since K is elementary, it is

closed under ultraproducts, so an ω-saturated ultrapower M∃ of the disjoint
union

⊎
F∈D∃ MF is based on some F∃ ∈ K and it holds M∃ |= D∃. Hence, all

formulas that are satisfiable in M are also satisfiable in M∃. By contraposition,
all formulas that are globally true on M∃ are also globally true on M, thus also
on ueM. It is not hard to show that the modal equivalence between worlds of M∃
and ueM is a surjective bisimulation (this follows immediately from Lemma 1 in
[8]). The domain of this bisimulation is a generated submodel M′

∃ of M∃.
To prove that this bisimulation is in fact a surjective bounded morphism from

M′
∃ to ueM, it remains to prove that it is a function. Assume the opposite,

i.e. that there is a world in M∃ which is modally equivalent to two different
ultrafilters u, v in ueM. Hence, u and v are modally equivalent, i.e. for all ϕ we
have V (ϕ) ∈ u if and only if V (ϕ) ∈ v. In particular, for all A ⊆ W we have
V (pA) = A ∈ u if and only if V (pA) = A ∈ v, thus u = v. This proves that there
is a surjective bounded morphism g from F′

∃ to ueF, where F′
∃ is a generated

subframe of F∃.
Let F′′

∃ be the frame built from ueF
⊎
(F∃ \ F′

∃), by extending its accessibility
relation with all pairs (w, g(v)), for w in F∃ \ F′

∃ and v in F′
∃ such that v is

accessible from w in F∃. Now, extend g to F∃ by putting g(w) = w for w in
F∃ \F′

∃. This makes g a surjective bounded morphism from F∃ to F′′
∃. Since K is
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closed under surjective bounded morphisms, we have F′′
∃ ∈ K. Clearly, ueF is a

generated subframe of F′′
∃. We have already proved that there is F′

∀ ∈ K which is
a generated subframe of ueF, so the closure under generated interframes implies
ueF ∈ K. Since K reflects ultrafilter extensions, it follows F ∈ K. ��

The following examples show that the conditions of Theorems 1 and 2, and
Goldblatt-Thomason theorem, are minimal. Each example is an elementary class
which satisfies all but one of the conditions of a characterization, thus showing
that this condition cannot be omitted. Almost all claims are proved routinely,
so most of the details are skipped.

Example 3. Irreflexivity, i.e. the class Mod(∀x¬Rxx), is not modally definable,
since it is not closed under surjective bounded morphisms. It is easy to see that
this class is closed under generated subframes, generated interframes, disjoint
unions, and reflects ultrafilter extensions. This shows that the closure under sur-
jective bounded morphisms cannot be omitted in Goldblatt-Thomason theorem
or Theorem 2.

To show that this condition cannot be omitted from Theorem 1 either, con-
sider the class Mod(∃x¬Rxx), i.e. the class of frames which are not reflexive. It
is easy to construct an example which shows that this class is not closed under
surjective bounded morphisms, but it is also not hard to show that it reflects
generated subframes and ultrafilter extensions.

Example 4. The class Mod(∀x∀yRxy) is obviously not closed under disjoint
unions, but it is closed under surjective bounded morphisms, generated sub-
frames and generated interframes, and reflects ultrafilter extensions. This proves
that the closure under disjoint unions is essential in Goldblatt-Thomason theo-
rem and Theorem 2. It is also obvious that this class does not reflect generated
subframes, which means that this condition cannot be omitted in Theorem 1.

Example 5. The class Mod(∃x∃yRxy) is not closed under generated subframes,
but it satisfies all other conditions of Goldblatt-Thomason theorem.

Example 6. Let K = Mod(∀xRxx∨∃x∀y¬Rxy). This is the class of all frames
that are either reflexive or have a world with no access to any world. It is easy to
see that K is closed under disjoint unions and surjective bounded morphisms, and
reflects ultrafilter extensions. But, K is not closed under generated interframes,
thus this condition cannot be omitted in Theorem 2.

To see this, let F1 = ({w}, {(w,w)}), and F2 = ({w, v, u}, {(w,w), (v, w)}).
Obviously F1,F2 ∈ K. Let F = ({w, v}, {(w,w), (v, w)}). Clearly, F1 is a gener-
ated subframe of F, and F is a generated subframe of F2, but F /∈ K.

Example 7. Finally, the class K = Mod(∀x∃y(Rxy ∧ Ryy)), i.e. the property
that every world has a reflexive R-successor, is closed under disjoint unions,
generated subframes, generated interframes and surjective bounded morphisms,
but does not reflect ultrafilter extensions. To prove the last claim, consider the
frame F = (N, <), i.e. the set of natural numbers with the standard strict or-
dering. Obviously F ∈ Kc. But, ueF ∈ K. This follows from the fact that for
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each ultrafilter u over N and for each non-principal ultrafilter v over N we have
u <ue v (see [1], p. 95).

The same frame shows in a similar way that the class Mod(∃xRxx) does not
reflect ultrafilter extensions, and it is easy to see that it is closed under surjective
bounded morphisms and reflects generated subframes. This shows that the reflec-
tion of ultrafilter extensions cannot be omitted in any of the characterizations.

6 Link to the Universal Modality

Although the approach of this paper is to define ∃-definability as a metalingual
notion, it should be noted that it can be included in the language itself. That
is, the satisfiability of a modal formula under any valuation on a frame can
be expressed by a formula of the modal language enriched with the universal
modality (BMLU). The syntax is an extension of the basic modal language by
a new modal operator Aϕ, and we can also define its dual Eϕ := ¬A¬ϕ. We
call A the universal modality, and E the existential modality. The semantics of
the new operators is standard modal semantics, with respect to the universal
binary relation W × W on a frame F = (W,R). This means that the standard
translation of universal and existential operators is as follows (cf. [5] and [11]):

STx(Eϕ) = ∃y STy(ϕ),
STx(Aϕ) = ∀y STy(ϕ).

Now, let K be a class of Kripke frames. Clearly, K is modally ∃-definable if and
only if it is definable by a set of formulas of the existential fragment of BMLU,
i.e. by a set of formulas of the form Eϕ, where ϕ is a formula of BML. This
immediately follows from the clear fact that for any frame F and any ϕ we have
F � Eϕ if and only if F |= ∀P1 . . .∀Pn∃y STy(ϕ), where P1, . . . , Pn correspond
to propositional variables that occur in ϕ, and the latter holds if and only if ϕ
is satisfiable under any valuation on F.

Goranko and Passy [5] gave a characterization that an elementary class is
modally definable in BMLU if and only if it is closed under surjective bounded
morphisms and reflects ultrafilter extension. So, from Theorem 1 we conclude
that reflecting generated subframes, not surprisingly, is what distinguishes exis-
tential fragment within this language, at least with respect to elementary classes.
Also, the usual notion of modal definability clearly coincides with the universal
fragment of BMLU, hence the Goldblatt-Thomason Theorem tells us that clo-
sure under generated subframes and disjoint unions is essential for this fragment.
Furthermore, from Theorem 2 it follows that closure under generated interframes
and disjoint unions characterizes the union of universal and existential fragment
of BMLU, i.e. definability by sets of formulas of the form Aϕ or Eϕ, where ϕ is
in BML.

On the other hand, a question is which modally ∃-definable classes are ele-
mentary, and whether there is an effective procedure analogous to the one for
Sahlqvist formulas, to obtain a first-order formula equivalent to a second-order
translation ∀P1 . . . ∀Pn∃xSTx(ϕ) for some sufficiently large and interesting class
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of modal formulas. Goranko and Vakarelov [6] answer this, and more: they pro-
vide a generalization of Sahlqvist formulas to languages with hybrid operators,
including universal modal operator.

As for some further questions that might be worth exploring, we may be able
to obtain general characterization theorems, without the assumption of the first-
order definability. Furthermore, the results of this paper are easily generalized to
the multi-modal framework, but more work is needed to obtain similar results
for particular modal logics, for example temporal, with some restrictions on
accessibility relations, e.g. transitivity.
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