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6.1            Skin Structure and Function 

 Human skin is a complex, multilayered tissue 
that forms the largest organ of the body. Its pri-
mary function is to provide an essential barrier to 
the external environment, protecting against 
mechanical stresses and chemical or pathogenic 
incursion. Other functions are diverse and 
include sensory perception, prevention of fl uid 
loss, maintenance of body temperature and bio-
synthesis [ 1 ]. Structurally the skin can be divided 
into three principle layers, an outermost epider-
mis, underlying dermis and innermost hypoder-
mis [ 2 ]. The avascular epidermis is composed 
mainly of keratinocytes originating from a pool 
of progenitor cells in the basal layer of the epi-
dermis and the bulge region of the hair follicle 
[ 3 ,  4 ]. These progenitor cells give rise to daugh-
ter cells that transit through the suprabasal layers 
of the epidermis undergoing a tightly regulated 
programmed terminal differentiation, regulated 
at least in part by an epidermal calcium gradient 
[ 5 ]. The ultimate aim of terminal differentiation 
is the synthesis of components of the outermost 
epidermal layer, the stratum corneum, which 
imparts the majority of epidermal barrier func-
tion (reviewed in [ 6 ]) [ 7 ]. These include fi lag-
grin, loricrin, SPRR and LCE proteins, which 
become cross-linked to form the impermeable 
cornifi ed envelope, and lipid bodies, which are 
extruded to form the stratum corneum lipid 
lamellae. Non-keratinocyte epidermal cell types 
include melanocytes, which synthesise melanin 
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for UV protection; Langerhans cells, which are 
responsible for antigen presentation and protec-
tion from pathogens; and Merkel cells, which 
complex with nerve fi bres acting as touch recep-
tors [ 8 ,  9 ]. 

 The underlying dermis is connected to the epi-
dermis by a basement membrane termed the der-
mal epidermal junction (DEJ). This region has a 
complex structure of anchoring proteins includ-
ing collagen VII, laminins and fi brillin-1 [ 10 , 
 11 ]. The dermis is highly vascularised and rela-
tively acellular, instead composed of a structur-
ally diverse extracellular matrix (ECM) 
comprised of fi brillar collagens, elastic fi bres and 
proteoglycans. These ECM proteins are respon-
sible for much of the strength and structure of the 
skin providing a physical scaffold. The fi brillar 
collagens are mechanically very strong, resisting 
tensile forces. This tensile strength is comple-
mented by the elastic fi bres, which only comprise 
around 2 % of the dermal ECM but confer pas-
sive recoil in this dynamic tissue [ 12 ]. The elastic 
fi bres are complex macromolecules comprising 
an elastin-rich core surrounded by fi brillin-rich 
microfi brils [ 13 ]. In the human skin they assem-
ble into a characteristic arrangement with thick 
elastin-rich fi bres running parallel in the deeper 
dermis and branching into perpendicular fi brillin- 
rich fi bres towards the DEJ [ 14 ]. The dermis also 
contains a diverse range of proteoglycans, which 

primarily maintain skin hydration and resist com-
pressive forces via hydrophilic GAG chains [ 15 ].  

6.2     Skin Aging 

 A combination of intrinsic and extrinsic factors 
contributes to altered homeostasis in aged skin 
resulting in dramatic changes that manifest as 
wrinkling, sagging, fragility, atrophy and 
increased laxity. These changes have a signifi cant 
impact on skin structure (Fig.  6.1 ) and function, 
rendering skin both more susceptible to injury 
and less able to repair once injured. Indeed, 
advanced age is a primary risk factor for develop-
ing chronic, non-healing skin wounds.

6.3        Intrinsic Aging 

 Intrinsic aging, mainly genetically programmed, 
presents clinically as uniform pigmentation, loss 
of elasticity and reduced appendage density (hair 
follicles, sweat and sebaceous glands; [ 16 ]). 
Intrinsically aged skin is characterised by fi ne 
wrinkles, a fl attened DEJ and a thinning of both 
the dermis and epidermis. Intrinsic aging is 
reported to result in an overall loss of around 1 % 
of total collagen per adult year [ 17 ], while elastic 
fi bres are gradually lost from the papillary dermis 

  Fig. 6.1    Human skin is structurally altered with age. 
 Left  inner arm skin from a young subject with abundant 
rete ridges.  Right  inner arm skin from an aged subject 

lacks rete ridges with a thinner epidermis. In addition, 
dermal cellularity is reduced with less dermal extracel-
lular matrix       
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[ 18 ]. Reduction in total proteoglycans, which 
have important roles in binding water, leads to 
the increasingly dry skin associated with age [ 19 , 
 20 ]. Dermal fi broblasts are reduced in number 
[ 17 ,  21 ] and functionally altered producing more 
matrix metalloproteinases (MMPs) and less 
extracellular matrix proteins [ 21 ,  22 ]. Mast cells 
are generally reported to be reduced in aged tis-
sue [ 17 ]. However, Gunin et al. 2011 [ 23 ] report 
increased mast cells in aged skin which they sug-
gest to be an important driver of tissue damage in 
aging. Mechanically the skin becomes stiffer and 
more fragile with a loss of resilience [ 24 ] mak-
ing aged skin more susceptible to damage. 
Intriguingly, skin components are not equally 
affected by skin aging. Hair follicles, for exam-
ple, age relatively slowly and continue to func-
tion even at advanced age [ 25 ].  

6.4     Extrinsic Aging 

 While all tissues undergo intrinsic aging, the skin 
is also uniquely subject to extrinsic aging resulting 
from extensive exposure to environmental factors. 
The effects of extrinsic aging are particularly evi-
dent on the face, chest, hands and arms, which are 
subject to a high degree of UV exposure over a 
lifetime. Extrinsically aged skin is characterised 
by deeper wrinkles, a leathery appearance, irregu-
lar pigmentation and extensive loss of elasticity 
[ 26 ,  27 ]. At the cellular level the effects of extrin-
sic aging are extensive. Confusingly the epidermis 
of extrinsically aged skin is reported to be thick-
ened due to hyperplasia or thinned as a result of 
tissue atrophy dependent on the level and duration 
of UV damage [ 28 ]. However, it is the changes in 
the dermal components of photo-aged skin which 
have the most profound impact on appearance. 
Fibrillar collagens (type I and III) are dramatically 
reduced and become more fragmented [ 29 ,  30 ], 
directly leading to reduced tissue tensile strength. 
Collagen VII anchoring fi brils are specifi cally lost 
from the DEJ along with both fi brillin 1 and fi bulin 
5 [ 31 ]. Severe photo-aging causes extensive pro-
found remodelling of the elastic fi bres. In young 
skin elastic fi bres are highly ordered in structure; 
thick elastin-rich fi bres in the deeper dermis that 

run parallel to the DEJ branch into perpendicular 
fi brillin-rich fi bres in the papillary dermis. In 
severely photo-damaged skin, this structure is lost 
completely, and elastic fi bre production is patho-
logically increased, resulting in abundant ran-
domly orientated elastic material [ 31 ]. In contrast 
to intrinsically aged skin, proteoglycans are also 
increased and abnormally distributed as a result of 
extrinsic aging co- localising with the elastic fi bre 
material [ 32 ].  

6.5     Mechanisms of Aging 

 With the exception of severe photo damage, aged 
skin is characterised by a cumulative loss of com-
ponents and function. Numerous theories have 
been proposed to drive aging (reviewed in [ 33 ]). 
These range from the idea that aging is due to 
wear and tear and an accumulation of damage 
with the passage of time to more specifi c con-
cepts of preprogrammed life span defi ned by spe-
cifi c age-related genes. Of direct relevance to the 
role of hormones in the skin is the endocrine 
theory of aging, which places the HPA (hypotha-
lamic pituitary axis) as a “master regulator”, 
 signalling the termination and onset of life stages. 
In reality it is probably a complex accumulation 
of multiple different factors (i.e. aspects of each 
theory) that defi nes skin aging and in turn drives 
age-associated pathologies. 

 Aged cells are both slower to divide and com-
promised in their repair mechanisms. Aged fi bro-
blasts in culture, for example display a threefold 
reduction in population doubling time [ 34 ], with 
older cells reported to have an increased G0/G1 
phase proportion due to repression of cell cycle 
progression genes [ 35 ]. Accumulation of DNA 
damage is particularly detrimental to the numer-
ous stem cell populations that reside in the skin. 
Accumulated damage severely impairs the func-
tion of aged stem cells ultimately leading to loss 
of tissue homeostasis [ 36 ]. In aged dermis, fi bro-
blasts are reduced in both number and capacity to 
synthesise ECM proteins [ 17 ] contributing to 
age-associated atrophy. MMP overexpression is 
accompanied by reduced expression of the TIMP 
family of MMP inhibitors [ 37 ,  38 ]. 
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 One of the key contributors to the aging phe-
notype is the generation of reactive oxygen spe-
cies (ROS). These highly reactive molecules 
cause damage to DNA, proteins and lipids via 
breaks, cross-links and degradation. Intriguingly, 
active ROS generation is emerging as an essential 
early signal in wound repair [ 39 ]. Mechanistically, 
ROS acts via AP-1 to upregulate MMP transcrip-
tion and also directly activates MMPs [ 40 – 42 ], 
ultimately contributing to overall degradation of 
the ECM. Once activated these degradative 
mechanisms are maintained by a positive- 
feedback loop whereby MMPs are upregulated 
by fragmented ECM components [ 43 ]. 

 Another central contributor to organismal aging 
is cellular senescence. First observed in 1961, 
Hayfl ick and Moorhead [ 44 ] reported the phenom-
enon of replicative growth arrest in cultured human 
fi broblasts. Subsequent studies revealed that the 
number of cell divisions at which this limit was 
reached is inversely proportional to the age of the 
donor [ 45 ], now known to be a consequence of 
progressive telomere shortening [ 46 ]. Telomeres 
form a cap of repeated DNA sequence at the ends 
of chromosomes; during cell division these 
become progressively shorter until cells can no 
longer divide. Senescent cells, which were origi-
nally thought quiescent, have more recently 
emerged as an active driver of tissue aging, secret-
ing a number of proteases and cytokines, termed 
senescence-associated phenotype (SASP), which 
damage surrounding tissue [ 47 ]. In addition to the 
overexpression of proteases [ 37 ], there is also a 
reduction in the expression of TIMPs [ 38 ] to 
inhibit the actions of MMPs.  

6.6     Estrogen Synthesis 

 All estrogens are derived from the precursor cho-
lesterol via multiple biosynthetic steps. While 
the majority of circulating estrogens are gonad-
ally derived, estrogens can also be synthesised 
peripherally in nonreproductive tissues such as the 
liver, heart, bone and skin. Specifi cally, the skin 
contains all the components required for local 
estrogen synthesis, including 17β-hydroxysteroid 
 dehydrogenase (17β-HSD), 3β-hydroxysteroid 

dehydrogenase (3β-HSD), aromatase and 
5α-reductase [ 48 – 51 ]. Indeed, peripheral synthe-
sis is thought to provide the majority of estro-
gens post menopause, functioning as paracrine 
and/or intracrine factors to maintain important 
tissue- specifi c functions [ 52 ,  53 ]. Prior to meno-
pause 17β-estradiol (E 2 ) is the main gonadally 
derived circulating hormone. Following meno-
pause estrone (E) plays an important role, with 
high levels reportedly synthesised in adipose tis-
sue from the adrenally derived precursor DHEA 
[ 54 ,  55 ]. Estogen can also be locally regulated by 
interconversion between E, E2 and E3 forms or 
by estrogen-sulfotransferase-mediated conversion 
to inactive forms [ 56 ]. Thus, at any one time the 
local levels of active estrogens depend on fi nely 
balanced biosynthetic, metabolic and deactivation 
pathways. It remains unclear exactly how meno-
pause infl uences peripheral estrogen synthesis. 
Our data from both murine models and humans 
suggest that estrogen defi ciency leads to wide-
spread downregulation of peripheral hormone 
synthetic enzymes [ 57 ,  58 ]. The one exception is 
the enzyme aromatase, which is increased in sub-
cutaneous adipose tissue with advancing age [ 59 ]. 

 Aromatase, a key player in peripheral hor-
mone synthesis, is widely expressed across many 
tissues [ 60 ]. Its regulation is particularly com-
plex, with the human aromatase gene containing 
ten validated tissue-specifi c promoters [ 61 ]. In 
the skin, as in the bone, aromatase expression is 
driven by the glucocorticoid responsive distal 
promoter I.4 [ 61 ]. It is likely that skin injury and/
or disease will alter aromatase promoter usage, as 
is the case in breast cancer where promoter usage 
switches to the cAMP responsive promoter [ 62 ]. 
Aromatase activity can also be regulated at the 
level of posttranslational modifi cation, most 
notably phosphorylation [ 63 ]. Skin-derived fi bro-
blasts and adipocytes display high aromatase 
activity [ 64 ,  65 ] as do human osteoblasts [ 66 ].  

6.7     Estrogen Receptors 

 Estrogen signals via two distinct nuclear hor-
mone receptors, estrogen receptor alpha (ERα) 
and estrogen receptor beta (ERβ) encoded by 
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separate genes (ESR1 and ESR2), located on 
different chromosomes. ER expression is wide-
spread throughout the body; in some organs 
both receptors are expressed at similar levels, 
whereas in others one receptor is more highly 
expressed. For example, a large body of litera-
ture documents a predominance of ERα in 
reproductive tissues [ 67 ]. In the skin both recep-
tors are widely expressed; however, distribution 
varies depending on cell type and source. Both 
receptors are reported in human dermal fi bro-
blasts [ 68 ] and sebaceous glands [ 69 ]. ERβ 
appears to be the dominant receptor in human 
eccrine and apocrine glands [ 70 ] and hair folli-
cles, being expressed in dermal papilla cells, the 
outer root sheath and the bulge [ 69 ]. Keratinocyte 
expression is more contentious. Both receptors 
have been reported in neonatal foreskin-derived 
keratinocytes with estradiol specifi cally upregu-
lating ERα [ 71 ]; however, ERβ was reportedly 
highly expressed in human scalp skin with no 
ERα expression [ 72 ]. More recently still Inoue 
et al. [ 73 ] report signifi cantly reduced ERβ 
expression in the skin of subjects over 70. By 
contrast, both receptors have been reported in 
the upper inner arm epidermis of both young 
and old female subjects [ 74 ]. The receptors 
function as homo- or heterodimers, and in this 
context ERβ’s function in heterodimers has 
been suggested to dampen ERα-mediated gene 
expression [ 75 ,  76 ]. In addition, insulinlike 
growth factor-1 (IGF-1) has been shown to sig-
nal through ERs in various tissues [ 77 ].  

6.8     Menopause and Skin 
Changes 

 Post menopause, there is a rapid decline in the 
macroscopic and histological appearance of the 
skin with an increase in wrinkling, sagging and 
dryness [ 78 ,  79 ] (Fig.  6.2 ). The use of hormone 
replacement therapy (HRT) can prevent many of 
these changes, increasing extracellular matrix 
components, skin hydration and elasticity and 
reducing wrinkles [ 80 – 82 ]. One area that remains 
contentious in skin biology, as in other tissues, is 
the extent to which estrogen replacement can 

reverse detrimental changes that have already 
occurred and whether estrogen is benefi cial in 
skin that is decades post menopause rather than 
in the perimenopause period.

   Extensive clinical studies over recent decades 
have assessed the benefi cial effects of HRT post 
menopause. The epidermis is considerably thin-
ner post menopause [ 83 ], while HRT orally 
administered for 3 months or 6 months increases 
epidermal thickness [ 81 ,  84 ,  85 ]. Mechanistically, 
estrogen has been shown to directly infl uence 
keratinocyte proliferation over a far shorter 
period [ 86 ] and to prevent H 2 O 2 -induced apopto-
sis at least in vitro [ 87 ]. A large study of nearly 
4,000 women found postmenopausal skin to be 
signifi cantly dryer, with estrogen use function-
ally reversing this [ 78 ,  88 ]. Here HRT has been 
shown to signifi cantly increase the ability of the 
stratum corneum to hold water [ 89 ]. More spe-
cifi cally, epidermal sphingolipids have been 
shown to be altered only in aged female skin 
[ 90 ], an effect that can be reversed by HRT [ 91 , 
 92 ]. Postmenopausal changes in skin hydration 
are, in part, also due to changes in the dermal 
polysaccharides and changes in sebum levels. 
Here Danforth et al. [ 93 ] demonstrate that the 

  Fig. 6.2    Estrogen defi ciency accelerates skin aging. 
 Right  postmenopausal estrogen defi ciency leads to pro-
found structural changes in the skin, including epidermal 
atrophy and wrinkling, reduced dermal elastic fi bres and 
collagen. Collectively these changes lead to altered skin 
function and increased susceptibility to damage       
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high estrogen levels in pregnancy are linked to 
increased dermal hydration. Moreover, hyal-
uronic acid, which is known to have a high 
osmotic activity, is increased following estrogen 
treatment [ 94 ]. Sebum levels are also found to 
decline after menopause [ 95 ] with a decrease in 
both the size and activity of the sebaceous glands 
[ 96 ]. HRT increases the sebum level of post-
menopausal skin by 35 % compared to without 
HRT [ 91 ]. 

 The majority of studies have assessed the 
effect of menopause on dermal structure and 
function. The dermal extracellular matrix pro-
vides skin with many of its mechanical proper-
ties, such as resilience and tensile strength. Type 
I collagen is the major component of adult der-
mis providing tensile strength. Loss of collagen 
is one of the major changes implicated in the 
development of skin wrinkles [ 78 ,  97 ,  98 ]. 
Following    menopause, dermal collagen content 
has been reported to fall by 2–5 % per year [ 80 , 
 99 ,  100 ], leading to reduced dermal thickness 
and density. This decrease in dermal composi-
tion correlated only to postmenopausal years 
and not to chronological age. Affi nito et al. 
[ 100 ] reported a decline in both collagen I and 
III and a specifi c change in the ratio of these col-
lagen types. Brincat et al. [ 80 ] quantifi ed the 
rapid loss of collagen in the initial postmeno-
pausal period accompanied by a 1.1 % reduction 
in dermal thickness per year. The benefi cial 
effects of estrogen on dermal collagen have 
been reported across a number of studies and 
trials. Topically applied estrogen increases type 
I and III collagen expression [ 101 – 103 ]. In a 
double-blind randomised trial, Maheux et al. 
[ 104 ] reported up to 30 % increase in postmeno-
pausal skin dermal thickness following estrogen 
treatment. Estrogen appears to act by preferen-
tially inducing new expression of type III colla-
gen in aged skin, presumably invoking a 
“developmental”-type programme of expression 
[ 101 ,  105 ]. 

 The skin tensile strength provided by fi brillar 
collagens is complemented by the elastic fi bre 
network which endows skin with resilience, 
allowing it to return to a resting state following 
deformation. Skin resilience also negatively 

 correlates with postmenopausal years. Using a 
suction device Sumino et al. [ 106 ] were able to 
quantify a 0.55 % decline in skin elasticity per 
postmenopausal year. The same study also 
reported a 5.2 % increase in skin forearm elastic-
ity following 12 months of HRT. These observa-
tions are in line with previous studies that 
reported benefi cial effects of HR on the extensi-
bility and elasticity of forearm skin [ 82 ] and 
facial skin [ 107 ]. These changes in gross mechan-
ical properties following estrogen treatment cor-
relate with specifi c benefi cial changes at the 
histological level. Punnonen et al. [ 108 ] report 
that topical estrogen treatment modifi es the elas-
tic fi bre network, increasing elastic fi bre number 
and improving orientation. In addition, estradiol 
increases cutaneous expression of tropoelastin 
and fi brillin proteins, key modulators of elastic 
fi bre assembly and function [ 102 ]. By contrast, 
Bolognia et al. [ 109 ] report that women entering 
early menopause show premature degradation 
of elastic fi bres with signs of splitting and 
fragmentation.  

6.9     Murine Studies 

 Murine models provide an opportunity to mech-
anistically address hormonal aspects of skin 
aging. The ovariectomised (OVX) mouse is 
widely used as a model of the human meno-
pausal state; surgical removal of the ovaries 
leads to a rapid decline in circulating sex steroid 
hormones that mimics the menopause. OVX 
mice are widely used to model a range of human 
age-associated pathologies, including osteopo-
rosis, neurodegeneration and cardiac dysfunc-
tion, as well as perimenopausal symptoms, such 
as depression and hot fl ushes [ 110 – 112 ]. It is 
therefore surprising that comparatively little 
skin research has been carried out with this 
model. OVX is known to enhance the sensitivity 
of rat skin to UV-induced photo-aging, mea-
sured as wrinkling, a loss of elasticity and dam-
age to elastic fi bres [ 113 ]. This is supported by 
a mouse study where effects on skin extensibil-
ity and elastic recoil were measured. Here ovari-
ectomy signifi cantly increased recoil time in 
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UV-exposed skin associated with elevated tissue 
elastase activity [ 114 ]. Very recently Fang et al. 
[ 115 ] have combined  cryo- sectioning with AFM 
to reveal nanoscale changes in morphology of 
dermal collagen fi brils in ovine OVX samples. 
Other studies have explored the role of estrogen 
in protecting from ROS [ 116 ] and cellular 
senescence [ 117 ]. There are suggestions from 
the literature that estrogen may act as a direct 
antioxidant as well as induce antioxidant 
enzymes. Direct functional evidence was pro-
vided by Baeza et al. [ 118 ] who showed that 
OVX rats had increased levels of oxidised gluta-
thione, lipid peroxidation and mitochondrial 
DNA damage all of which could be reversed by 
estrogen replacement. More recently Bottai 
et al. [ 119 ] report that 17β-estradiol protects 
both human skin fi broblasts and keratinocytes 
against oxidative damage. 

 The second major advantage of mice is their 
genetic tractability, crucial in the context of 
unravelling estrogen signalling. Mice have been 
generated lacking one or both of the ERs [ 120 –
 125 ], or aromatase (ArKO), which disrupts 
estrogen biosynthesis [ 126 ], or more complex 
Cre/LoxP conditional ER nulls [ 121 ,  127 ,  128 ] 
and point mutants [ 129 – 131 ]. Phenotypic analy-
sis of these mice had provided, and continues to 
provide, insight into ER-mediated physiological 
roles across a range of tissues (reviewed in 
[ 132 ]). Relevant here ER null mice display a 
number of skin phenotypes. First to be reported 
were effects on hair follicles. Moverare et al. 
[ 133 ] identifi ed a role for ERα, but not ERβ, in 
regulating hair cycling. In a subsequent study 
Ohnemus et al. [ 134 ] demonstrated that ERβ 
does play a role, regulating catagen induction. 
In the same studies ERα was suggested to be 
important for estrogen’s effects on epidermal 
thickness. Markiewicz et al. [ 135 ] have recently 
reported increased skin collagen content in ERα 
null mice with decreased collagen content in 
ERβ nulls. Meanwhile Cho et al. [ 136 ] report a 
key role for ERβ in mediating UV-induced pho-
toimmune modulation. Clearly ERs play an 
important role in skin homeostasis, often with 
directly opposite effects, supporting “ying-
yang” ER interactions [ 75 ,  76 ].  

6.10     Aging Delays Wound Healing 

 Under normal circumstances the skin has evolved 
a highly coordinated response to injury, whereby 
numerous cell types are sequentially activated to 
orchestrate rapid tissue repair (reviewed in [ 137 ]). 
However, with increasing age the skin not only 
becomes more fragile and susceptible to damage 
but also less able to effectively heal following 
injury. Indeed, numerous studies have revealed 
signifi cant cellular changes in age- associated 
delayed healing: altered haemostasis [ 138 ,  139 ], 
reduced re-epithelialisation [ 140 ,  141 ], an exces-
sive infl ammatory response [ 142 ,  143 ] and upreg-
ulated protease activity associated with reduced 
matrix deposition [ 144 ]. Collectively, these age-
associated changes lead to delayed acute wound 
healing in the elderly that predisposes to the devel-
opment of chronic wounds [ 145 ]. Moreover, 
Wicke et al. [ 146 ] report a clinically measurable 
delay in chronic wound closure in those over 
60 years of age versus younger patients. 

6.10.1     Infl ammation 

 The infl ammatory response is delayed in elderly 
humans, and the overall number of infl ammatory 
cells recruited to sites of injury is increased [ 142 , 
 144 ,  147 ]. Despite these higher numbers aged 
macrophages are less active, with altered expres-
sion and function of TLRs [ 148 ], decreased cyto-
kine and growth factor production [ 149 ] and 
reduced phagocytic activity compared to macro-
phages from younger counterparts [ 150 ]. 
Functional signifi cance has been demonstrated in 
adoptive transfer experiments where macro-
phages from young mice are able to promote 
healing in aged mice [ 151 ]. Aged neutrophils are 
also functionally altered with reduced chemo-
taxis and phagocytosis [ 152 ].  

6.10.2     Re-epithelialisation 

 Multiple studies have reported delayed re- 
epithelisation in aged mice and humans [ 140 , 
 144 ,  147 ]. This observed delay is likely multifac-
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torial. Key cytokines and growth factors required 
to stimulate keratinocyte migration and prolifera-
tion, such as PDGF, EGF and KGF, are reduced 
with age [ 153 ,  154 ]. Keratinocytes from aged 
donors are also intrinsically altered with reduced 
hypoxia-induced migration [ 155 ]. Additionally, 
aged keratinocytes fail to induce MMPs and other 
proteases required to successfully migrate 
through the wound granulation tissue [ 155 ]. 
Finally, we have recently shown that the wound- 
induced switch to weak keratinocyte adhesion 
fails in chronic wounds from aged patients [ 156 ].  

6.10.3     Matrix Deposition 

 Fibroblasts are essential for effective repair, 
depositing and remodelling ECM and mediating 
wound contraction. Aged fi broblasts display 
reduced collagen synthesis [ 157 ] and impaired 
migration [ 158 ]. The general consensus is that 
aged fi broblasts are more prone to senescence 
with decreased proliferation with a reduced abil-
ity to respond to growth factors [ 159 – 161 ]. This 
is supported by studies indicating dysfunction in 
fi broblasts isolated from chronic wounds [ 162 –
 164 ]. Intriguingly, other studies report no change 
in fi broblast responsiveness with age [ 165 ].  

6.10.4     Angiogenesis 

 The literature on age-associated changes in new 
blood vessel formation following wounding is 
also confl icting. Ashcroft et al. [ 144 ] and Swift 
et al. [ 147 ] report increased and decreased angio-
genesis, respectively, in aged mice. While this 
may in part refl ect the different wound models 
used (incisional versus excisional), subsequent 
in vitro studies have shown that reduced angio-
genic growth factors are responsible for an age- 
associated reduction in angiogenesis [ 166 ]. 
Specifi cally FGF2 and VEGF are decreased in 
the wounds of aged mice [ 147 ].   

6.11     Estrogen Effects on Wound 
Healing 

 Post menopause, there is a rapid decline in wound 
healing ability. Studies have linked a range of 
menopause-associated hormones to this altered 
healing including progesterone [ 167 ], DHEA 
[ 168 ] and testosterone/DHT [ 169 ,  170 ]. The 
majority of research has, however, focussed on 
estrogen’s role in healing (Fig.  6.3 ). Studies by 
Ashcroft and colleagues were fi rst to show that 
HRT treatment could protect against delayed 
healing in postmenopausal women [ 171 ]. In a 

  Fig. 6.3    Estrogen defi ciency has a profound effect on skin 
wound healing.  Right  postmenopausal reduced estrogen leads 
to an inappropriately excessive but ineffective infl ammatory 

response and retarded re-epithelialisation. Suppressed fi bro-
blast function, decreased collagen synthesis and increased 
MMPs lead to a reduction in extracellular matrix       
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subsequent study topical estrogen was shown to 
accelerate acute wound repair in healthy elderly 
men and women [ 172 ]. Shortly after came the 
key observation that HRT was protective against 
developing chronic wounds, both pressure sores 
(age-adjusted relative risk 0.68) and venous 
ulcers (age-adjusted relative risk 0.65) [ 173 , 
 174 ]. More recently we have used microarray 
profi ling to demonstrate that the vast majority 
(78 %) of genes differentially expressed in 
wounds from elderly versus young men were 
estrogen-regulated [ 58 ]. Thus, estrogen is clearly 
clinically and physiologically important for 
effective skin repair.

   Subsequent studies focusing on estrogen’s 
mechanism of action have largely employed 
ovariectomised (OVX) rodents. OVX mice and 
rats display a pronounced delay in healing with 
altered re-epithelialisation, infl ammation, ECM 
deposition and protease levels. Short-term estro-
gen replacement reverses these effects promot-
ing keratinocyte migration, increasing matrix 
deposition and dampening infl ammation [ 58 , 
 171 ,  175 ].  

6.12     Infl ammation 

 In vitro studies have functionally linked estrogen 
to a range of infl ammatory cells, including neu-
trophils, macrophages and mast, dendritic and 
Langerhans cells [ 176 ,  177 ]. In acute healing 
estrogen acts to dampen the infl ammatory 
response and in human studies prevents excessive 
neutrophil recruitment via downregulation of 
L-selectin, inhibiting homing to the wound site 
[ 172 ]. The subsequent dampening of wound 
neutrophil- derived elastase levels prevents exces-
sive degradation of ECM proteins. Estrogen also 
appears essential for the switch from classical 
(TH1; CA) to alternative (TH2: AA) macrophage 
polarisation. Wounds from OVX rodents contain 
highly CA polarised macrophages [ 167 ,  178 ], 
while estrogen treatment shifts to AA polarisa-
tion, in line with a pro-healing role [ 58 ,  167 ]. 
Estrogen is also potently anti-infl ammatory in 
other tissues, such as the brain, where it protects 
against neurodegeneration [ 179 ]. Estrogen spe-

cifi cally dampens the expression of numerous 
proinfl ammatory cytokines, including TNF-α, 
MCP-1, Il-1β, Il-6 and macrophage migration 
inhibitory factor (MIF) [ 92 ,  180 ,  181 ]. MIF is 
particularly interesting and expressed by a range 
of wound cell types.  MIF  null mice are entirely 
resistant to the detrimental effects of OVX, 
implying that MIF acts as a key downstream 
mediator of both the detrimental effects of estro-
gen defi ciency and the benefi cial effects of estro-
gen replacement on skin wound healing [ 57 ,  175 , 
 182 ]. Of clinical relevance, human plasma MIF 
levels increase post menopause and fall follow-
ing HRT [ 57 ].  

6.13     Re-epithelialisation 

 A failure of re-epithelialisation is a key aspect of 
both age-associated delayed acute healing and 
chronic wounds. Estrogen is a keratinocyte mito-
gen [ 71 ] directly promoting in vitro scratch 
wound closure in both mouse and human cells 
[ 128 ,  175 ] and in vivo re-epithelisation in murine 
acute wounds [ 183 ,  184 ]. In humans the delayed 
re-epithelisation associated with the postmeno-
pausal state can be entirely reversed following 
3 months of HRT [ 171 ] or short-term topical 
estrogen treatment [ 172 ].  

6.14     Matrix Deposition 
and Angiogenesis 

 Wound collagen deposition and subsequent 
remodelling are delayed post menopause and pro-
moted by HRT or topical estrogen treatment [ 171 , 
 172 ]. Indeed in vivo estrogen promotes fi broblast 
proliferation and migration, with increased colla-
gen deposition conferring increased wound 
strength. Estrogen directly promotes fi broblast 
migration demonstrated via in vitro cell assays 
[ 128 ,  175 ,  185 – 187 ] and indirectly via macro-
phage-produced platelet-derived growth factor 
(PDGF). Estrogen-driven PDGF production has a 
signifi cant effect on angiogenesis, with estrogen 
demonstrated to be proangiogenic both in vitro 
and in vivo [ 188 ].  
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6.15     ERS and Wound Healing 

 Estrogen signals via two nuclear hormone recep-
tors: ERα predominates in reproductive tissues 
and is strongly associated with cancer [ 189 ], 
while ERβ is more widely expressed in periph-
eral tissues [ 190 ,  191 ]. Estrogen’s pleiotropic 
role in healing is supported by widespread cellu-
lar ER expression in wound tissue and skin from 
a range of body sites in both mouse and human 
[ 72 ,  128 ,  192 – 195 ]. Indeed, very recently we 
have employed the ERE-luciferase reporter 
mouse [ 196 ] to directly assess ER-mediated sig-
nalling following in vivo wounding [ 197 ]. Shortly 
after injury ER-mediated signalling is robustly 
upregulated in the skin immediately adjacent to 
the wound. Subsequent immunohistochemical 
analysis revealed the signal to be predominantly 
localised to wound edge keratinocytes and 
infl ammatory cells. 

 Crucially, in OVX mice ER-specifi c agonists 
confer entirely different effects. Treatment with 
the ERβ-specifi c agonist DPN promotes wound 
healing as effectively as estrogen treatment, 
while the ERα-specifi c agonist PPT has no 
effect. These agonist treatment effects are con-
fi rmed by estrogen replacement studies in OVX 
ER null mice, where ERβ null mice display a 
pronounced delay in healing [ 128 ]. Thus signal-
ling through ERβ is benefi cial and ERα detri-
mental to repair. Taking these observations 
further, epidermal- specifi c (K14-cre mediated) 
ER null mice were shown to phenocopy global 
ER nulls, and the ERβ agonist DPN was shown 
to directly promote keratinocyte migration 
in vitro, suggesting a key role for epidermal 
ERβ [ 128 ]. These studies are entirely consistent 
with clinical reports that polymorphisms in the 
human ERβ gene are signifi cantly associated 
with venous ulceration in the Caucasian popula-
tion [ 74 ,  198 ]. However, an alternative picture 
emerges for a skin fl ap necrosis model where 
the benefi cial effects of 17β-estradiol on out-
come are reportedly mediated via ERα [ 199 ]. 
The discrepancy between the two models may 
be explained by the observation that ERα, not 
ERβ, is important for controlling wound infl am-
mation in response to IGF1 [ 200 ].  

6.16     SERMs and Future Therapies 

 Pharmacological modulators of ERs have been 
developed. These include specifi c agonists that are 
experimentally invaluable and the more clinically 
relevant mixed agonist/antagonists, termed selec-
tive estrogen receptor modulators (SERMs). Here 
the SERMs tamoxifen, raloxifene and genistein 
have been shown to promote skin healing [ 183 , 
 184 ]. Raloxifene acts as an antagonist in breast tis-
sue and an agonist in bone tissue [ 201 ]. It has been 
shown to have a positive effect on wound healing 
[ 184 ]; this could be in part due to its ability to 
stimulate collagen synthesis in cultured fi broblasts 
[ 202 ] and also reduce infl ammation in the wound 
[ 184 ]. As well as the improvement in wound heal-
ing, raloxifene is also shown to improve skin elas-
ticity in humans following 12 months of treatment 
[ 203 ]. Tamoxifen was also shown to have a similar 
effect on wound healing reducing infl ammation 
and restoring wound healing time in the OVX 
mouse to that of the intact control and estrogen 
treated [ 184 ]. Tamoxifen has also been studied in 
the formation of keloid scars in burn patients 
where it appears to improve scarring, decreasing 
collagen synthesis via reduction of TGF-β signal-
ling and reducing fi broblast proliferation [ 204 ]. In 
the context of skin aging, the ERβ-selective ligand, 
WAY- 200070, has been suggested to dampen 
infl ammation and MMP expression in 
UV-damaged skin [ 205 ]. The phytoestrogen genis-
tein has also been reported to improve gross skin 
changes in OVX rats [ 206 ]. In summary SERMs, 
which are used clinically in tissues such as bone, 
clearly infl uence physiology of postmenopausal 
skin; however, the mechanisms remain to be fully 
elucidated.  

6.17     Summary 

 The skin undergoes widespread functional deterio-
ration with age and following menopause. It is 
now widely accepted that the age-associated 
reduction in circulating hormones, particularly 
estrogen, directly accelerates skin aging, a major 
clinical consequence being delayed repair leading 
to an increased incidence of chronic wounds. 
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Numerous studies have shown that estrogen 
replacement (in the form of HRT) can protect 
against, and possibly even reverse, skin aging, pro-
moting repair. While macroscopic and ultrastruc-
tural aspects of these hormone-mediated effects on 
skin have been documented, much remains 
unknown. Recent studies revealing differential 
roles for the two estrogen receptors in skin biology 
and pathology have opened exciting new avenues 
for therapeutic intervention.     
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