
Counting Crossings for Layered Hypergraphs

Miro Spönemann, Christoph Daniel Schulze,
Ulf Rüegg, and Reinhard von Hanxleden

Department of Computer Science, Christian-Albrechts-Universität zu Kiel
{msp,cds,uru,rvh}@informatik.uni-kiel.de

Abstract. Orthogonally drawn hypergraphs have important applica-
tions, e. g. in actor-oriented data flow diagrams for modeling complex
software systems. Graph drawing algorithms based on the approach by
Sugiyama et al. place nodes into consecutive layers and try to minimize
the number of edge crossings by finding suitable orderings of the nodes
in each layer. With orthogonal hyperedges, however, the exact number
of crossings is not determined until the edges are actually routed in a
later phase of the algorithm, which makes it hard to evaluate the quality
of a given node ordering beforehand. In this paper, we present and eval-
uate two cross counting algorithms that predict the number of crossings
between orthogonally routed hyperedges much more accurately than the
traditional straight-line method.

Keywords: edge crossings, hypergraphs, graph drawing, layered graphs.

1 Introduction

Many kinds of diagrams, e. g. data flow diagrams and circuit diagrams, can be
formalized as directed hypergraphs. A directed hypergraph is a pair G = (V,H)
where V is a set of nodes and H ⊆ P(V) × P(V) is a set of hyperedges. Each
(S, T) ∈ H has a set of sources S and a set of targets T .

The layer-based approach to graph drawing proposed by Sugiyama et al. [1]
has been extended for drawing hypergraphs orthogonally [2,3]. This approach can
be structured in five phases: eliminate cycles by reversing edges, assign nodes
to layers, reorder the nodes of each layer such that the number of crossings is
low, determine concrete positions for the nodes, and finally route the hyperedges
by computing bend points and junction points. The reordering phase is usually
done with the layer sweep heuristic, where layers are processed one at a time
with several iterations until the number of crossings is not further improved.

In order to determine whether an iteration of the the layer sweep heuristic has
reduced the number of edge crossings, they need to be counted. A fundamental
problem with this approach is that the actual number of crossings in orthogonal
drawings does not depend only on the order of nodes in each layer, but also on
the routing of edges. This routing in turn depends on the concrete positions of
the nodes, which are unknown at the time the layer sweep heuristic is executed.

Standard algorithms for counting crossings in layered graphs assume that
edges are drawn as straight lines [4]. We call this standard approach Straight,

T. Dwyer et al. (Eds.): Diagrams 2014, LNAI 8578, pp. 9–15, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

10 M. Spönemann et al.

(a) cs > c (b) cs < c

Fig. 1. The number of crossings cs resulting from a straight-line drawing can be (a)
greater or (b) less than the actual number of crossings c resulting from an orthogonal
hyperedge routing.

and denote its result as cs. As noted by Eschbach et al. [5], there are simple
examples where cs is always different from the actual number of crossings c ob-
tained after routing edges orthogonally (see Fig. 1). In order to quantify this
difference, we measured c and cs for a number of data flow diagrams from the
Ptolemy project (see Sect. 3). The difference c − cs averaged −34 with a stan-
dard deviation of 190. As a general observation, the Straight approach tends
to overestimate the crossing number, possibly compromising the quality of the
resulting drawings.

Contributions. The number of crossings between straight-line edges is a bad
predictor for the number of crossings between orthogonal hyperedges in the final
drawing. We propose two methods for counting crossings that predict the number
of crossings much more accurately, as our evaluation shows.

Related Work. Eschbach et al. [2] and Sander [3] proposed methods for the
orthogonal routing of edges in the layer-based approach. They both noted that
the number of crossings determined during the node ordering phase is only an
approximation, but gave no proposals on how to solve this problem. In this paper,
we will present algorithms that give much more accurate approximations.

Several authors have addressed the problem of counting straight-line crossings
in layered graphs [4,6,7]. These methods produce exact results for normal graphs,
but not for hypergraphs, as explained above. The “Straight approach” which
we refer to in this paper represents any exact straight-line method. For our
experiments we implemented the method of Barth et al. [4].

2 Counting Crossings

The main concept for representing a hyperedge in the layer-based approach is
to replace the hyperedge by regular edges. Let (V,H) be a hypergraph and
h = (S, T) ∈ H be a hyperedge; for each v ∈ S and each v′ ∈ T we generate an
edge e = (v, v′). We call e a representing edge of h and define Eh to be the set
of all representing edges of h. For instance, the hyperedge connected to node 1
in Fig. 1(a) would be represented by three edges (1, 3), (1, 5), and (1, 6). These
edges may partly overlap each other in the final drawing.

Counting Crossings for Layered Hypergraphs 11

2.1 Lower Bound Method

Since counting straight-line crossings tends to yield rather pessimistic estimates
when hyperedges are involved, we assumed that a more accurate approach might
be to use a lower bound of the number of crossings.

In the following, let G = (V,H) be a hypergraph with a set E =
⋃

h∈H Eh of
representing edges and two layers L1, L2, i. e. V = L1 ∪L2, L1 ∩L2 = ∅, and all
h ∈ H have their sources in L1 and their targets in L2.

We propose an optimistic method MinOpt and denote its result as cm. This
method counts the minimal number of crossings to be expected by evaluating
each unordered pair h1, h2 ∈ H : if any edge e1 ∈ Eh1 crosses an edge e2 ∈ Eh2

if drawn as a straight line, h1 and h2 are regarded as crossing each other once,
denoted as h1��h2. The result is cm = |{{h1, h2} ⊆ H : h1��h2}|.
Observation 1. cm ≤ cs.

Observation 2. Let c be the number of hyperedge crossings in a layer-based
drawing of G. Then cm ≤ c.

Theorem 1. Let q = |H | and H = {h1, . . . , hq}. The time complexity of

MinOpt is O
(∑q−1

i=1

∑q
j=i+1 |Ehi | · |Ehj |

)
. If |S| = |T | = 1 for all (S, T) ∈ H,

the complexity can be simplified to O
(|H |2).

Proof. The result of MinOpt is |{{hi, hj} ⊂ H : hi��hj}|, which requires to
check all unordered pairs U = {{hi, hj} ⊂ H}. This is equivalent to U = {(i, j) ∈
N

2 : 1 ≤ i < q, i < j ≤ q}, hence |U | = ∑q−1
i=1

∑q
j=i+1 1. Whether hi �� hj is

determined by comparing all representing edges of hi with those of hj , which

requires |Ehi | · |Ehj | steps. In total we require
∑q−1

i=1

∑q
j=i+1 |Ehi | · |Ehj | steps.

The simplification follows immediately. 	

2.2 Approximating Method

Theorem 1 shows that MinOpt has a roughly quadratic time complexity. In
this section we propose a second method with better time complexity, which we
call ApproxOpt. The basic idea is to approximate the result of MinOpt by
checking three criteria explained below, hoping that at least one of them will
be satisfied for a given pair of hyperedges if they cross each other in the final
drawing.

Let again G = (V,H) be a hypergraph with layers L1, L2. Let π1 : L1 →
{1, . . . , |L1|} and π2 : L2 → {1, . . . , |L2|} be the permutations of L1 and L2 that
result from the layer sweep heuristic for crossing minimization. We denote the
result of ApproxOpt as ca.

The ApproxOpt method is based on the four corners of a hyperedge: for
each h = (Vh1, Vh2) ∈ H and i ∈ {1, 2}, we define the left corners κ←

i (h) =
min{πi(v) : v ∈ Vhi} and the right corners κ→

i (h) = max{πi(v) : v ∈ Vhi}.
The virtual edges are defined by E∗ = {(κ←

1 (h), κ←
2 (h)) : h ∈ H}. The method

consists of three steps:

12 M. Spönemann et al.

Algorithm 1. Counting crossings with the ApproxOpt method

Input: L1, L2 with permutations π1, π2, hyperedges H with arbitrary order ϑ
for each h ∈ H do // Step 1

Add (κ←
1 (h), κ←

2 (h)) to E∗

ca ← number of crossings caused by E∗, counted with a straight-line method

for i = 1 . . . 2 do // Steps 2 and 3
for each h ∈ H do

Add (κ←
i (h), κ→

i (h), ϑ(h),−1)) and (κ→
i (h), κ←

i (h), ϑ(h), 1)) to Ci

Sort Ci lexicographically
d ← 0
for each (x, x′, j, t) ∈ Ci in lexicographical order do

d ← d− t
if t = 1 then

ca ← ca + d

return ca

1. Compute the number of straight-line crossings caused by virtual edges be-
tween the left corners.

2. Compute the number of overlaps of ranges [κ←
1 (h), κ→

1 (h)] in the first layer
for all h ∈ H .

3. Compute the number of overlaps of ranges [κ←
2 (h), κ→

2 (h)] in the second
layer for all h ∈ H .

The result ca is the sum of the three numbers computed in these steps. A more
detailed description is given in Alg. 1.

Step 1 aims at “normal” crossings of hyperedges such as h1 and h2 in Fig. 2.
The hyperedge corners used in Steps 2 and 3 serve to check for overlapping areas,
as shown in Fig. 2(c). For instance, the ranges spanned by h4 and h5 overlap each
other both in the first layer and in the second layer. This is determined using a
linear pass over the hyperedge corners, which are sorted by their positions. The
sort keys are constructed such that the overlapping of two ranges is counted only
if it actually produces a crossing. The variable d is increased whenever a left-
side corner is found and decreased whenever a right-side corner is found. This
variable indicates how many ranges of other hyperedges surround the current
corner position, hence its value is added to the approximate number of crossings.

While MinOpt counts at most one crossing for each pair of hyperedges, Ap-
proxOpt may count up to three crossings, since the hyperedge pairs are consid-
ered independently in all three steps. Fig. 3(a) shows an example whereMinOpt
counts a crossing and ApproxOpt counts none, while Fig. 3(b) shows an ex-
ample where ApproxOpt counts a crossing and MinOpt counts none. Thus
neither cm ≤ kca nor ca ≤ kcm hold in general for any k ∈ N. However, as shown
in Sect. 3, the difference between cm and ca is rather small in practice.

Counting Crossings for Layered Hypergraphs 13

(a) A hypergraph (b) Representing edges (c) Overlapping areas

Fig. 2. The hypergraph (a) can be drawn orthogonally with c = 3 crossings. The
straight-line crossing number (b) is cs = 5, the result of MinOpt is cm = 2, and the
result of ApproxOpt is ca = 4. ApproxOpt counts three crossings between h4 and
h5 (c) because the virtual edges (2, 8) and (3, 7) cross (Step 1 in Alg. 1) and the ranges
spanned by the corners overlap both in the top layer and in the bottom layer (Steps 2
and 3).

(a) cm = 1, ca = 0 (b) cm = 0, ca = 1

Fig. 3. Differences between the MinOpt and ApproxOpt methods: (a) cm = 1 due to
the crossing of (1, 4) and (2, 3), but ca = 0 since none of the three steps of ApproxOpt
is able to detect that. (b) cm = 0 because (2, 4) crosses neither (1, 4) nor (3, 4); ca = 1
because one crossing is detected in Step 2 of Alg. 1.

Theorem 2. Let b =
∑

(S,T)∈H(|S|+|T |). The time complexity of ApproxOpt

is O(b+ |H |(log |V |+ log |H |)).
Proof. In order to determine the corners κ←

i (h), κ→
i (h) for each h ∈ H , i ∈

{1, 2}, all source and target nodes are traversed searching for those with minimal

and maximal index πi. This takes O
(∑

(S,T)∈H(|S|+ |T |)
)

= O(b) time. The

number of virtual edges created for Step 1 is |E∗| = |H |. Counting the crossings
caused by E∗ can be done in O(|E∗| log |V |) = O(|H | log |V |) time [4]. Steps 2
and 3 require the creation of a list Ci with 2 |H | elements, namely the lower-
index and the upper-index corners of all hyperedges. Sorting this list is done
with O(|Ci| log |Ci|) = O(|H | log |H |) steps. Afterwards, each element in the
list is visited once. The total required time is O(b+ |H | log |V |+ |H | log |H |) =
O(b+ |H |(log |V |+ log |H |)). 	

14 M. Spönemann et al.

(a) Ptolemy graphs, c̄ ≈ 18.75 (b) Random graphs, c̄ ≈ 1628

Fig. 4. Average number of crossings when using the given cross counting algorithm
(light) and average number of crossings predicted by the algorithm (dark).

3 Experimental Evaluation

For evaluating our algorithms, we used 171 diagrams taken from the set of demo
models shipping with the Ptolemy open source project [8].1 Since Ptolemy allows
models to be nested using composite actors that represent subsystems composed
of other actors, we eliminated the hierarchy by moving nested elements out of
their composite actors. Diagrams unsuitable for evaluations were left out, e. g.
those with very few nodes.

We executed our drawing algorithm once for each cross counting algorithm on
each of the selected Ptolemy diagrams. For each execution, the actual number
of crossings in the final diagram as well es the number predicted by the cross
counting algorithm were measured. The results can be seen in Fig. 4(a). Our
proposed methods are by far more accurate at predicting the number of cross-
ings compared to the straight-line method. While the average difference of the
actual and predicted numbers of crossings was 35.6 for Straight, the difference
averaged 5.3 for MinOpt and 5.7 for ApproxOpt. A further important obser-
vation is that the average number of actual crossings is reduced by 23.6% when
using MinOpt and by 23.8% when using ApproxOpt instead of Straight.
These differences of mean values are significant: the p-values resulting from a
t-test with paired samples are 4.5% for MinOpt and 4.0% for ApproxOpt.

We performed a second experiment with randomly generated bipartite graphs
with 5 to 100 nodes and 2 to 319 hyperedges each. We performed the same
measurements as for the Ptolemy diagrams, the results of which are shown in
Fig. 4(b). They confirm the general observations made before. The average num-
ber of actual crossings is reduced by 5.6% when using MinOpt and by 4.6%
when using ApproxOpt instead of Straight. Although the relative difference
of mean values is lower compared to the Ptolemy diagrams, their significance is
much higher: p ≈ 7.8×10−43 for MinOpt and p ≈ 3.2×10−32 for ApproxOpt.

1 http://ptolemy.eecs.berkeley.edu

http://ptolemy.eecs.berkeley.edu

Counting Crossings for Layered Hypergraphs 15

Performance evaluations conducted on a set of 100 randomly generated large
bipartite graphs (500 nodes, 3 edges per node) confirmed our theoretical results:
Straight (mean time 0.3ms) was significantly faster thanApproxOpt (1.7ms),
which in turn was significantly faster than MinOpt (24ms).

4 Conclusion

We proposed two methods for counting crossings in orthogonal hypergraph draw-
ings more accurately. Our experiments indicate that the algorithms lead to sig-
nificantly fewer edge crossings both with real-world and with random diagrams.

We see two main areas for future research. First, the number of crossings
between orthogonal hyperedges depends not only on the results of the crossing
minimization, but also on the exact placement of nodes. However, current node
placement algorithms only try to minimize either edge length or the number of
bend points. And second, limiting the routing of each hyperedge to one horizontal
segment reduces the number of bend points at the expense of edge crossings.
Future research could address routing algorithms that reduce the number of
edge crossings as well by creating multiple horizontal segments.

References

1. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2),
109–125 (1981)

2. Eschbach, T., Guenther, W., Becker, B.: Orthogonal hypergraph drawing for im-
proved visibility. Journal of Graph Algorithms and Applications 10(2), 141–157
(2006)

3. Sander, G.: Layout of directed hypergraphs with orthogonal hyperedges. In: Liotta,
G. (ed.) GD 2003. LNCS, vol. 2912, pp. 381–386. Springer, Heidelberg (2004)

4. Barth, W., Mutzel, P., Jünger, M.: Simple and efficient bilayer cross counting. Jour-
nal of Graph Algorithms and Applications 8(2), 179–194 (2004)

5. Eschbach, T., Guenther, W., Becker, B.: Crossing reduction for orthogonal cir-
cuit visualization. In: Proceedings of the 2003 International Conference on VLSI,
pp. 107–113. CSREA Press (2003)

6. Nagamochi, H., Yamada, N.: Counting edge crossings in a 2-layered drawing. Infor-
mation Processing Letters 91(5), 221–225 (2004)

7. Waddle, V., Malhotra, A.: An E logE line crossing algorithm for levelled graphs.
In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 59–71. Springer, Heidelberg
(1999)

8. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings of
the IEEE 91(1), 127–144 (2003)

	Counting Crossings for Layered Hypergraphs
	1 Introduction
	2 Counting Crossings
	2.1 Lower Bound Method
	2.2 Approximating Method

	3 Experimental Evaluation
	4 Conclusion
	References

