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25.1            Introduction 

 Cancer immunotherapy seeks to elicit or augment 
the antitumor immune response in a patient with 
detectable tumor or remaining tumor cells in the 
adjuvant setting in order to enlist the help of the 
patient’s own immune system for tumor control. 
In this context, active cancer immunotherapy 
refers to the use of cytokines (e.g., IL-2 in melanoma 
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and renal cell carcinoma), immunomodulatory 
monoclonal antibodies (e.g., antibodies (Abs) 
against CTLA-4, PD-L1, and PD-1), cell-based 
products (e.g., sipuleucel-T for metastatic hormone-
refractory prostate cancer), or experimental vac-
cines based on various antigen (Ag) formats. 
When evaluating immunotherapies, particularly 
in experimental settings, it is essential to monitor 
the immune response elicited by the treatment. 
Immunomonitoring delivers evidence of immu-
nogenicity, guides the choice and dosage of 
antigens, assesses the effects of immune modulators 
and therapy combinations, and has the potential 
to reveal early biomarkers of clinical effi cacy. In 
this respect, immunomonitoring is helpful for 
rational clinical development and supplements 
clinical effi cacy parameters such as disease-free 
period or survival, which are often only available 
at later clinical trial stages. 

 In view of their role in the anticancer immune 
response, the quantity and quality of tumor antigen- 
specifi c effector CD4 +  and CD8 +  T cells are of par-
ticular interest. In addition, the role of immune 
regulatory cells, e.g., regulatory T cells (Tregs) or 
myeloid-derived suppressor cells (MDSCs) that 
can suppress the effector immune response to a 
tumor, is increasingly recognized. Informative 
analysis requires multiple markers for identifi ca-
tion of phenotypic and functional properties and 
the accurate quantifi cation of cell subsets that are 
typically found at relatively low frequencies in 
the peripheral blood. These characteristics call for 
an assay that is multiparametric, robust, and sensi-
tive enough to characterize rare individual cells. 

 The canonical multiparameter assay for the 
characterization of single cells in solution is poly-
chromatic fl ow cytometry, and hence, it is ubiqui-
tously used for immune monitoring in preclinical 
tumor immunology and in cancer immunotherapy 
trials. While the fi rst fl uorescence-based fl ow 
cytometer dates back to 1968, the past several 
years have brought major advances in cytometer 
technology, reagents, range of applications, auto-
mated analysis techniques, and minimal informa-
tion standards. Much has also been learnt from 
large-scale profi ciency testing programs about the 
challenges facing th use of increasingly complex 
fl ow cytometry assays, and what needs to be done 

to harmonize the assays across multiple laborato-
ries. This chapter describes the main fl ow cytom-
etry methods being applied in cancer 
immunotherapy, with an emphasis on recent prog-
ress in the fi eld, challenges associated with quality 
control, its promise to reveal biomarkers of clinical 
effi cacy, and further developments that are likely 
to be rapidly implemented in routine cancer 
immunology.  

25.2     Main Flow Cytometry Assays 
in Cancer Immunotherapy 

 Together with immunohistochemistry, immuno-
phenotyping by fl ow cytometry is probably the 
most commonly used assay to investigate immune 
and other cell subsets of interest in cancer immu-
nology. Flow cytometry distinguishes human 
immune cells via a combination of physical prop-
erties and fl uorescent markers such as labeled 
monoclonal antibodies (mAbs) targeted against 
cell-specifi c molecules. Physical properties mea-
sured by the cytometer are forward scatter light 
(FSC) which is roughly proportional to the cell 
size and side-scattered light (SSC) which refl ects 
the granularity of cells. Markers targeted by fl uo-
rescent mAb are mostly categorized in Clusters 
of Differentiation (CD) nomenclature [ 1 ]. To 
date, the Human Cell Differentiation Molecules 
Association (  http://www.hcdm.org    ) has indexed 
more than 360 CD markers. Commonly used 
“basic” CD markers are CD3, CD4, and CD8 for 
T-cell subsets, CD19 for B cells, CD14 for mono-
cytes, CD11c for subsets of dendritic cells, CD56 
for natural killer (NK) cells, and CD15 for granu-
locytes. In addition to whole blood and PBMC 
samples, enumeration of the number and fre-
quencies of immune cell types can also be per-
formed on single-cell suspensions obtained from 
tissues (for instance malignant tumors) [ 2 ,  3 ]. 
When analyzing tumors, further markers can be 
added to identify endothelial cells (CD31), fi bro-
blasts (ER-TR7), epithelial cells (EpCAM, i.e., 
CD326), and particular tumor cells (e.g., CAIX 
for renal cell carcinoma). 

 Many cell populations can currently only 
be identified by the use of multiple mAb 
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simultaneously; this is the case for natural 
regulatory T cells (nTregs) [CD4 + /CD25high/
Foxp3 + /CD127low or various subsets of MDSCs 
[ 4 ]. Polychromatic fl ow cytometry is also neces-
sary to characterize the activation status, matu-
rity, clonality, and differentiation status of T 
lymphocytes. Commonly used markers for this 
purpose include CD25, CD27, CD28, CD45RA/
RO, CD69, CD137, and CD154, as well as anti-
bodies to different TCR Vβ family members [ 5 –
 9 ]. A combination of mAbs against activation 
markers and chemokine receptor (i.e., CCR7) 
can be used to identify naïve, effector memory, 
central memory, terminally differentiated effector 
memory (TEMRA), and memory T cells with 
stem cell- like features [ 10 – 12 ]. These differ-
entiation stages are associated with changes in 
functional and proliferative properties [ 13 ], are 
altered in the elderly [ 14 ], and hence are relevant 
for adoptive transfer therapy and for possibly 
predicting response to vaccination in aging 
cancer patients. However, up to now, there is no 
gold standard for markers that are necessary and 
suffi cient to identify most immune cell subsets; 
this is not surprising as our appreciation of the 
complexity and plasticity of human immune cell 
subsets is constantly evolving. 

 A major interest in immunotherapy clinical 
trials is to characterize the specifi city of tumor 
antigen- specifi c T cells, most notably in settings 
of active immunotherapy with defi ned Ags. The 
most direct characterization of antigen specifi city 
is via the use of HLA-peptide multimers, which 
bind directly to the peptide-specifi c T-cell receptors 
(TCR). First described more than 15 years ago 
[ 15 ], the HLA-class I multimer assay currently 
serves as a versatile tool for enumerating, charac-
terizing, and following CD8 +  T cell immune 
responses, and staining protocols are broadly 
available [ 16 – 18 ]. Hence, HLA- multimers are 
widely used to monitor T-cell responses, espe-
cially in the context of peptide- based vaccination 
approaches [ 19 – 22 ]. They can easily be combined 
with mAb panels to determine the phenotype and 
differentiation status of antigen-specifi c CD8 +  T 
cells [ 23 – 25 ]. Limitations of HLA-multimers are 
that both the precise T-cell epitope (i.e., the exact 
amino-acid sequence of the peptide recognized 

by the TCR) and its HLA-restriction (i.e., the 
HLA-molecule which binds and presents the 
peptide to the TCR) must be known in advance. 
To date, there also remains a lack of general 
availability of class II multimers for CD4 +  T-cell 
detection [ 26 ]. 

 Intracellular cytokine staining (ICS) is another 
common assay used for antigen-specifi c T-cell 
immune monitoring. It is the fl ow cytometric 
method of choice when HLA-multimers are not 
available, if the exact T-cell epitope is unknown, 
and for routine monitoring of CD4 +  T-cell 
responses. ICS enables monitoring of multiple 
effector functions of both CD4 +  and CD8 +  T-cell 
subsets [ 27 – 29 ], including polyfunctional T cells 
that have been associated with pathogen protec-
tion [ 30 ,  31 ]. A few groups have described poly-
functional T cells after cancer vaccination in 
patients, but whether these cells are associated 
with benefi cial and long-lasting antitumor T-cell 
responses remains an open question [ 32 ,  33 ]. 
Optimized Ab combinations, protocols, and 
standardization approaches have been published 
[ 34 – 36 ], and ICS assays are widely used in clinical 
studies. 

 Cytotoxicity or proliferation assays, which 
have traditionally relied on the detection of 
radioactivity (i.e.,  51 Cr release or  3 H thymidine 
incorporation) can also be conducted by fl ow 
cytometry. For assessment of killing activity, 
target cells (control and antigen-loaded cells 
or tumor cells expressing the antigen endoge-
nously) are differentially labeled using fluo-
rescent dyes (e.g., Paul Karl Horan (PKH) or 
6- carboxyfl uorescein diacetate succinimidyl 
ester (CFSE)) and incubated with the effector T 
cells to be tested. Apart from the obvious safety 
aspects over radioactivity-based assays, advantages 
of fl ow cytometry methods are that (1) several 
targets can be tested in the same tube; (2) as com-
pared to a classical  51 Cr release assay, effector- 
target incubation time can be signifi cantly 
prolonged (up to 24 h); and (3) the assay has been 
reported as being sensitive and effective even 
when low numbers of effectors are available [ 37 , 
 38 ,  39 ]. Another approach to indirectly deter-
mine the cytotoxic capacities of T cells is the use 
of a mAb directed against CD107a (LAMP-1) 
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which becomes extracellularly detectable after 
cytotoxic granules have fused with the cellular 
membrane (degranulation) [ 40 ]. For measuring 
proliferation by fl ow cytometry, effector cells are 
fi rst labeled with fl uorescent dyes (CFSE or other 
tracking dyes such as CellTrace ™  reagents) and 
cultured for several days in the presence of rele-
vant stimuli. Since the dyes are diluted from the 
mother to the daughter cells, the number of cell 
divisions is visible in the number of fl uorescent 
peaks detected [ 41 ]. The frequency of proliferat-
ing cells can also be assessed directly  ex vivo  by 
staining of the proliferation-associated nucleus 
Ag Ki67, expressed at all phases of the cell cycle 
except the resting G 0  stage [ 4 ,  42 ]. These 
measurements of target killing or cell division by 
fl uorescent dyes have rarely been used in large- 
scale vaccine studies so far [ 38 ,  43 ], probably 
because they are time-consuming and require 
careful optimization and technical expertise to 
achieve reproducible results. 

 Finally, cell-free cytokine analysis can also be 
performed by fl ow cytometry with the use of 
multiplex beads, a method that has been recently 
adapted to meet GCLP standards [ 44 – 46 ]. The 
method uses mixes of beads of different size and 
fl uorescence that are each coated with Abs spe-
cifi c for the different cytokines of interest. The 
soluble cytokines present in the sample (i.e., cul-
ture supernatant, serum, or plasma) bind to these 
Ab-coated beads, and a second Ab coupled to 
another fl uorescent label is used to visualize the 
amount of bound cytokine. Simultaneous quanti-
fi cation of several soluble factors in one sample 
can be done by comparison to standard curves 
provided by the manufacturer, for example, to 
evaluate Th1/Th2 profi les [ 28 ]. The assay is as 
sensitive as ELISA, with detection limits in the 
range of 20 pg/mL for most cytokines, and can be 
even more sensitive when an enhanced sensitivity 
system is used. 

 The examples above clearly show that fl ow 
cytometry is a versatile tool for investigations of 
the phenotype, frequency, and functional proper-
ties of immune cell subsets. Furthermore, assays 
can often be combined for multiparametric 
probing of cell properties which is benefi cial as 
precious patient samples are spared. However, 

the need for both robustness and sensitivity to 
detect tumor antigen-specifi c T cells and/or rare 
cell subsets poses specifi c challenges for the use 
of this complex tool in clinical research applica-
tions. This is addressed in the following sections.  

25.3      Panel Development 
and Quality Assurance 

 Current state-of-the-art polychromatic fl ow 
cytometry in cancer immunotherapy involves 
multistep, multi-reagent assays followed by sam-
ple acquisition on sophisticated instruments that 
are able to capture up to 20 parameters per cell at 
a rate of tens of thousands of cells per second. 
Analysis of these data can be a challenge, as stan-
dard tools require multistep gating strategies and 
preselection of the parameter combinations to be 
investigated. Obtaining reproducible results from 
such a complex assay requires well-trained staff, 
stringent quality management, and detailed 
standard operating procedures (SOPs) for panel 
development, cytometer calibration, reagent 
qualifi cation, sample preparation, use of appro-
priate technical and biological controls, and 
careful data analysis. 

 We start by considering the factors important 
to understand when developing a mAb staining 
panel. Target molecules in fl ow cytometry for 
cancer immunotherapy can have vastly different 
expression levels. While lineage markers such as 
CD45, CD3, or CD8 can be expressed at very 
high copy numbers per cell, some important mark-
ers such as transcription factors (e.g., FOXP3 for 
CD4 Tregs) or chemokine receptors (e.g., CCR5 
on CD4 Th1 cells) are expressed at much lower 
levels. In addition, the available probes (such as 
mAb or HLA-peptide multimers) can have vari-
able affi nities for their respective targets. Probes 
are labeled with different chemical classes of 
fl uorescent dyes that must be matched to the 
instrument, considering factors such as the avail-
ability of a high-power laser line with a wave-
length close to the maximum absorption of the 
fl uorescent dye and with a detector (photomul-
tiplier plus fi lters/mirrors) that has a high 
 sensitivity in the spectral emission range of the 
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given dye. Complicating matters further, cellular 
autofl uorescence (i.e., fl uorescence due to cellu-
lar molecules such as NADPH even in the 
absence of all dyes) limits the sensitivity that can 
be achieved with a given fl uorescent probe, laser, 
and detector. In practical terms, autofl uorescence 
of lymphocytes is usually limited to a distinct 
range of emission and absorption wavelengths 
[ 47 ,  48 ]. In general, the degree of autofl uores-
cence determines the limit of detection, which in 
earlier reports was of 3,000 molecules for a stan-
dard fl ow cytometer [ 49 ]. Consideration of all 
these factors leads to the following recommen-
dations for detecting cellular markers expressed 
at very low levels: use a high affi nity Ab conju-
gated to a fl uorescent dye with high quantum 
yield with emission spectral range far away from 
cellular autofl uorescence, for which the cytome-
ter has an appropriately matched high-power 
laser line and detector. 

 For polychromatic fl ow cytometry, additional 
constraints are set by the phenomena of optical 
spillover and spreading. In fl ow cytometry, cells 
are analyzed in a near-physiological aqueous 
solution to preserve the structural properties of 
biomolecules. Due to the spectral absorption of 
water and air, the useful spectral space is limited 
to the range from Near-UV (ca. 200 nm) to 
Near-IR (ca. 1,000 nm). Also, in aqueous solu-
tions, both the absorption and emission of fl uoro-
chromes show relatively broad spectral lines. 
Together, this means that the number of fl uoro-
chromes that can be analyzed at the same time is 
ultimately limited: the combination of 15–20 
different fl uorochromes appears to be the upper 
feasibility limit [ 50 ]. 

 As a further consequence, spectra of fl uores-
cent dyes routinely overlap (“spillover”) [ 51 ], 
requiring software deconvolution of true and 
observed signals (“compensation”). However, 
compensation cannot correct other errors caused 
by measurement, binning, and photon noise, and 
these errors accumulate to give an irreversible 
effect termed as “spreading error” [ 52 ] or “spillover 
spreading” [ 53 ]. Spreading error will cause the pres-
ence of one bright fl uorochrome to reduce sensi-
tivity for spectrally close fl uorochromes present 
on the same cell. Use of a high-power laser close 

to the absorption maximum can reduce errors in 
photon counting, and narrow bandpass fi lters 
can reduce spillover; both these measures will 
reduce spreading error. Finally, probe combina-
tions should be designed so that overlapping fl u-
orochromes are chosen for labeling markers 
which are expected to be expressed on different 
cells. 

 In practice, panel development usually starts 
with the defi nition of a “wish list” of cellular targets, 
followed by the prioritization of these cellular 
targets, characterization of their expression 
levels, and checking for the availability of probes 
and conjugated dyes appropriate for the cytometer 
to be used. Guidance documents [ 54 ] and helpful 
software (CytoGenie:   www.woodsidelogic.com    , 
Fluorish:   www.fl uorish.com     ,  Chromocyte:   www.
chromocyte.com    ) are available. A practical limi-
tation can be the lack of commercially available 
fl uorochrome conjugates for individual antibody 
clones. Indirect staining with secondary reagents 
(such as the biotin- streptavidin system) is 
 possible but often not practical for multicolor 
applications. A better alternative is the use of new 
methods now available for the self-conjugation 
of small amounts of Ab to fl uorescent dyes 
[ 55 ,  56 ]. Based on the discussion above, the cor-
nerstones of panel development guidance are the 
assignment of “bright” probes for “dim” targets 
and strategies to avoid spreading error and 
autofl uorescence in channels relevant for “dim” 
targets. It is also possible to change the optical 
pathway of the fl ow cytometer to optimize the 
instrument (e.g., choice of fi lters) according to 
the requirements of the panel. As the amount of 
potential interference between dyes rapidly 
increases with the number of colors in the panel, 
and as a large number of critical parameters 
should be optimized, development of large 
(≥8 colors) panels and especially those 
 involving separate staining steps for intracellular 
and extracellular targets can be an expensive iter-
ative process requiring several man-months 
of dedicated work. Hence, the fl ow community 
is encouraged to share rigorously calibrated 
and optimized polychromatic panels via the 
“Optimized Multicolor Immuno fl uorescence 
Panels” (OMIPs) project [ 57 ]. 
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 Quality assurance of a fl ow cytometry assay 
starts with the fl ow cytometer itself, consisting of 
optimization, calibration, and standardization 
of the machine, and we refer the reader to the 
technical report by the Roederer group for details 
[ 58 ]. These optimization steps must not be 
neglected, as they may identify faulty parts that 
need replacement, such as a photomultiplier tube 
(PMT) with reduced sensitivity or suboptimal 
fi lters, and are important to optimize general 
instrument parameters. Conveniently, some (but 
not all) of these steps have been incorporated in 
vendor software packages, such as the Cytometer 
Setup and Tracking (CS&T) application within 
BD FACSDiva 6 that uses a proprietary mixture 
of calibration beads. For long-term immuno-
monitoring, it is essential to maintain accurate 
records of daily monitoring checks to track 
reproducibility and stability. 

 For cell staining, reagent quality can be an 
issue, especially if the assay is performed repeat-
edly over time. Often, reagents used are classifi ed 
as “research use only” (RUO) and can show con-
siderable batch-to-batch variation in important 
properties, such as concentration of antibody-dye 
conjugate, concentration of free dye, and even 
in the spectral properties of the dye (as in the case 
of tandem dyes). In addition, the shelf life desig-
nated by vendors is not always based on quantita-
tive specifi cations. As a result, individual reagent 
batches have to be pretested and pre-titrated, and 
tests repeated even during the designated shelf 
life of a reagent. As batch sizes available from 
vendors are often limited, this can result in the 
requirement of reagent bridging (demonstration 
of the comparability of reagent batches) during 
the course of a study, leading to complex logistic 
and tracking processes. Reagent quality assurance 
may be facilitated by the preparation of mixtures 
of lyophilized reagents (“lyoplates”) [ 59 ] that can 
reduce pipetting error and lead to increased 
reagent stability. 

 Appropriate use of technical and biological 
controls is also vital for assay interpretation. In 
addition to instrument calibration beads, unstained 
and single-stained beads are used to determine 
the spillover matrix for compensation. Isotype 
and “fl uorescence minus one” (FMO) controls 

can help with setting gate boundaries at the 
analysis stage by defi ning the “negative” region. 
Pretested, aliquoted, cryopreserved samples with 
prescreened, predictable properties (such as 
being positive or negative for individual markers 
in the mAb panel) can serve as valuable biological 
controls which can be used in each assay run to 
track the variations in assay performance between 
operators and over time. 

 As fl ow cytometry-based methods become 
incorporated into clinical trials, the need for a 
stable and unlimited source of cell specimens 
that contains defi ned numbers of functional 
antigen- specifi c T cells as batch controls becomes 
paramount. Moreover, cell samples containing a 
known number of T cells specifi c for a defi ned 
Ag would allow easy assessment of the quality 
and accuracy of assays and provide standard con-
trols for comparison of results across laboratories 
or time. Currently available sources for reference 
samples are either (i) based on leukapheresis or 
buffy-coat material from healthy donors – which 
are restricted to reactivity against immunogenic 
viral Ags, expensive and available in limited 
amount, or (ii) dependent on the ability to gener-
ate and propagate T-cell lines/clones on a 
repetitive basis which is a burdensome task. The 
Cancer Immunotherapy (CIMT) Immunoguiding 
Program (CIP) group has recently established a 
process for the generation of reference samples 
(RS) that can be used in T-cell assays. In a fi rst 
proof-of-principle study, we showed that retrovi-
rally TCR-transduced T cells spiked at defi ned 
numbers in autologous PBMC can be used as 
standard samples. The T cells could be accurately 
detected at all dilutions in a linear fashion, 
down to frequencies of at least 0.02 %, and the 
feasibility of RS was confi rmed in a small-scale 
profi ciency panel [ 60 ]. Subsequently, we estab-
lished, optimized, and standardized the produc-
tion of RS obtained by transfection of modifi ed 
and stabilized RNA. Such a platform offers a 
simple, virus-free, and scalable process for the 
manufacturing of reference samples. In proof-of-
concept studies for HLA-multimer experiments, 
the feasibility of using such RNA-engineered RS 
was shown. RS offered favorable properties 
across a variety of CD8 +  and CD4 −  T-cell-derived 
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TCRs against multiple Ags, including clear clus-
tered populations, reproducible results, high sta-
bility over time, and the potential for linear 
dilution. Moreover, the analysis of the RS is simi-
lar to that of the tested cell samples in that the 
same gating strategy (and even the same gates) 
can be used. This suggests that RS are a useful 
tool to control T-cell assay performance. The 
suitability of these RS samples was subsequently 
tested in a profi ciency panel organized recently 
(manuscript submitted). 

 A fi nal, critical aspect of quality management 
is the careful documentation of each procedure 
performed, as well as provision of detailed 
standard operating procedures (SOPs) for each 
stage including data analysis. Technical staff 
needs to be well trained and perform the analyses 
on a regular basis to keep up performance. 
Participating in profi ciency panels will also help 
improve laboratory standards.  

25.4       Profi ciency Programs 
Addressing Flow 
Cytometry Assays 

 While HLA-multimers and ICS are commonly 
used for monitoring experimental vaccines or 
other anticancer immunotherapies such as adop-
tive transfer of  in vitro  expanded T cells, there are 
still notable obstacles to the advancement of these 
T-cell monitoring assays as robust biomarkers for 
clinical trials [ 61 ,  62 ]. First, there is no gold stan-
dard protocol for any of these assays. Second, 
correlations between  in vitro  immunomonitoring 
results and patient clinical benefi ts have rarely 
been reported [ 4 ,  28 ,  63 – 67 ]. The reality is that 
assays performed at different institutions are not 
equal; this results in diffi culties in comparing the 
effi cacy of the various immunotherapy approaches 
tested for recruiting a meaningful anticancer 
T-cell response, in turn hampering progress in 
the fi eld. 

 One approach for addressing these problems 
is by assay validation and standardization and/or 
centralization of the immunomonitoring at a 
dedicated core facility. An attractive alternative 
to these strategies is assay harmonization. The 

pros and cons of assay harmonization  vs . stan-
dardization have been discussed in detail else-
where [ 62 ,  68 ]. 

 Assay harmonization is based on the participa-
tion of single laboratories in iterative testing exer-
cises called profi ciency panels. Pretested PBMC 
samples, synthetic peptides, and/or HLA- peptide 
multimers are shipped from a central lab to all 
panel participants who then use their own 
reagents, protocols, and analysis strategies for 
detecting antigen-specifi c T cells. Participants 
then report their data, which are centrally ana-
lyzed, allowing comparison of individual assay 
variables and performance to detect T cells. Thus, 
parameters involved in assay performance may be 
successively identifi ed, corrected, and confi rmed 
to exert an impact in subsequent panels (i.e., mul-
tistep approach). Finally, benchmarks and guide-
lines are formulated and disseminated to the 
community. Participating laboratories benefi t by 
being able to measure their own performance in 
reference to peer laboratories, and regularly tak-
ing part in profi ciency panels over time can also 
be seen as a quality control of assay performance 
for individual labs. Additionally, the working 
group can guide laboratories to improve perfor-
mance if needed, while providing an exchange 
platform for assays and their application. 

 Profi ciency panels can in principle be applied 
for any T-cell assay, including those based on fl ow 
cytometry [ 69 – 71 ]. In 2005, two consortia, the 
European Cancer Immunotherapy (CIMT) 
Immunoguiding Program (CIP) and the Cancer 
Immunotherapy Consortium of the Cancer 
Research Institute in the USA (CIC/CRI) launched 
a large program of profi ciency panels and syner-
gistically pioneered the concept of assay harmo-
nization [ 62 ,  68 ]. From 2005 to 2012, the CIP 
(  www.CIMT.eu/workgroups/CIP    ) has organized 
15 small- to large-scale profi ciency panels, dedi-
cated to the measurement of antigen- specifi c 
CD8 +  T cells by HLA-multimers, ELISPOT, and 
intracellular cytokine staining. 

 Profi ciency panels have taught us that there 
are large variations in the performance of T-cell 
assays among the fl ow community. While the 
majority of labs do detect antigen-specifi c T cells 
present at quite high frequencies in PBMC samples 
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(approx. >0.2 % of CD8 +  cells), the detection rate 
drastically decreases for low-frequency effectors 
(<0.05 % of CD8 +  cells). This is very relevant for 
cancer immunotherapy, as tumor- specifi c T cells 
are expected to be present at low frequencies in 
the blood, even after patient vaccination. Another 
lesson is that comparable performance is achiev-
able with different laboratory-specifi c protocols 
and reagents, and full interlaboratory standard-
ization is not necessary for good results. 
Surprisingly, we also found that operator experi-
ence in a method does not necessarily predict 
performance, underlining the utility of regular 
quality control of established methods. Finally, 
adoption of simple measures can lead to signifi cant 
improvements in assay performance. For exam-
ple, staining and acquiring larger numbers of 
CD8 +  cells increase the ability to detect low-fre-
quency HLA-multimer-positive cells, and inclu-
sion of a cell-resting phase improved sensitivity 
in the IFN-γELISPOT. In contrast, a high back-
ground production of the cytokine (IFN-γ) both 
in ICS and ELISPOT is clearly associated with 
decreased performance [ 72 ,  73 ]. 

 Over several profi ciency panel iterations, it 
also became clear that all steps of the assays, 
starting from cell handling (freezing/thawing/
resting), assay conditions (reagents and protocols 
for mAbs and HLA-multimer staining, conditions 
of antigenic stimulation in ICS), result acquisi-
tion including instrument settings, down to the 
data analysis, can benefi t from harmonization for 
achieving comparable results between laborato-
ries. In fl ow cytometry specifi cally, instrumenta-
tion performance may be an issue, as we recently 
observed in a panel dedicated to the simultaneous 
detection of four Ag T-cell specifi cities by HLA-
multimers (manuscript in preparation). Both CIC 
and CIP have also observed in independent pan-
els conducted for ICS [ 73 ,  74 ], as well as for 
HLA-multimer staining [ 75 ,  76 ], that suboptimal 
gating strongly infl uenced the ultimate results – 
i.e., the detection and deduced frequencies of 
antigen- specifi c T cells. We also showed that 
analysis (gating) performed by a unique user sub-
stantially decreased the variation in the frequen-
cies of specifi c cells as compared to those 
reported by single labs analyzing their own data 

(unpublished data). This is not a surprise, since 
manual gating is subjective and highly dependent 
on the experience of the experimenter and tradi-
tion in the lab. Further work is therefore needed 
with a focus on both data acquisition and analy-
sis, including the potential for automated analy-
sis strategies to reduce the subjectivity inherent 
in gating as described in Sect.   25.7 .  

25.5      Structured Reporting 
of Immune Assay 
Experiments 

 An increasing number of minimal information 
projects have emerged in the last years to provide 
guidance for structured reporting of biological 
assays. The fi rst minimal information project that 
set the scene was the Minimal Information About 
Microarray Experiments (MIAME) published in 
2001 [ 77 ]. It is now an established and manda-
tory standard for publishing microarray data for a 
growing list of highly recognized journals (  http://
www.mged.org/Workgroups/MIAME/journals.
html    ). More than 30 such guidelines have emerged, 
asking for minimal information on reported 
results, including minimal information for cellu-
lar assays (MIACA) (  http://miaca.Sourceforge.
net/    ), specifi cation for in situ hybridization and 
immunohistochemistry experiments (MISFISHIE) 
[ 78 ], and fl ow cytometry experiments (MIFloCyt) 
[ 79 ]. Information on the majority of available MI 
projects can be found in a central portal for minimal 
information on biological and biomedical investi-
gations (MIBBI) (  http://mibbi.Sourceforge.net/    ). 
These guidelines aim at achieving two major 
goals: fi rst, to annotate data to such extent that 
they give transparent evidence on the quality, 
reliability, and possible error sources of reported 
results and, second, to use the reporting standard 
to systematically feed public databases [ 80 ]. 

 More recently, structured reporting guidelines 
have also been provided for the specifi c context 
of immune assay experiments. As outlined before, 
the continuous conduct of profi ciency panels 
over several years led to the identifi cation of 
steps in the assay that critically impact the results, 
namely, (i) the sample, (ii) the assay, (iii) the data 
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acquisition, (iv) the data analysis, and (v) certain 
characteristics of the lab environment. In concor-
dance with these fi ndings, a fl ow chart of deci-
sions that can affect the quality of data produced 
in clinical trials in which immunological param-
eters are monitored by fl ow cytometry was listed 
in a landmark publication [ 81 ]. Although the 
variables critically affecting the quality of results 
are – for most of them – well known, only very 
few scientifi c publications provide suffi cient 
information on these aspects in their material and 
method descriptions. This lack of transparency is 
one of the major reasons preventing meaningful 
comparison of published results generated across 
institutions. In contrast, study results reported 
with transparent information on the essential 
variables of assay conduct, explicitly indicate 
awareness of the investigator to control critical 
variables, thus can be much better interpreted and 
reproduced. 

 To reduce the discrepancy between available 
knowledge on immune assay conduct and lack of 
critical information in scientifi c publications, a 
group of T-cell immunologists from the cancer 
immunology, infectious diseases, autoimmunity, 
and transplantation fi elds initiated the Minimal 
Information About T-cell Assays (MIATA) 
project [ 82 ]. The group conducted an intensive 
vetting process with two public consultation peri-
ods, two open consensus workshops, and several 
webinars [ 83 ]. The process towards reaching a 
broadly acceptable guideline on the minimum 
information that should be provided for T-cell 
assays [ 84 ] can be found at the project’s webpage 
  www.miataproject.org    . With the MIATA consensus 
guidelines becoming available, the implementation 
of more structured reporting for T-cell immune 
monitoring can begin and should be considered 
by all investigators, especially for conducting 
T-cell assays in clinical trials [ 85 ]. So far, three 
peer-reviewed journals endorse the MIATA 
guidelines and assign the “MIATA label.” The 
label indicates that authors of accepted manu-
scripts take great care about reporting on and 
control of variables that matter for T-cell assays. 
All MIATA compliant manuscripts will be listed 
on the MIATA homepage leading to greater expo-
sure of the published work, which may increase 

interest and citations over time. The authors 
therefore recommend considering structured 
reporting of results from T-cell assays whenever 
possible.  

25.6     Organization of Immune 
Monitoring in Multicenter 
Trials 

 Clinical trials will often require the recruitment 
of patients at multiple sites in order to reduce the 
overall duration and costs of the trial. The labora-
tory data generated from all patients and at different 
sites should be comparable, but as the regulatory 
framework for the conduct of clinical trials 
(ICH-GCP) is not very detailed with respect to 
standards of laboratory analyses, further details 
are specifi ed by the more recent concept of good 
clinical laboratory practice (GCLP) [ 86 – 88 ]. 

 Two general strategies emerge on how analyti-
cal assays can be performed among different sites 
[ 89 ]: in the distributed analysis paradigm, each 
site analyzes its locally derived samples. In con-
trast, in the central lab paradigm, all samples are 
transported to a central lab for analysis. In either 
case, fl ow cytometry poses additional chal-
lenges due to the fragility of the sample and the 
complexity of the assay. 

 For distributed analysis, the assay and instru-
mentation at different sites must be comparable. 
This can be achieved via full interlaboratory stan-
dardization, as is already routinely performed in 
clinical fl ow cytometry with  in vitro  diagnostic 
(IVD)-certifi ed reagents and instruments [ 90 ]. 
Due to the high development costs, the number of 
clinical fl ow cytometry products for IVD on the 
market is limited and focuses on the clinically 
most relevant tasks as, e.g., the quantifi cation 
of CD4 +  T cells in blood. In many cases, these 
applications lack the technical capabilities of 
modern polychromatic fl ow cytometry. Full-scale 
interlaboratory standardization (with demon-
strated low interlaboratory variation) of research 
assays with RUO-grade reagents and customized 
fl ow cytometric instrumentation has been dem-
onstrated by some groups but requires great 
efforts [ 91 ]. An alternative to full interlaboratory 
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standardization discussed in Sect.  25.4  is harmo-
nization which can be achieved via regular 
participation in profi ciency panels. 

 For highly complex fl ow cytometric assays 
within clinical trials, having all samples analyzed 
by the same central laboratory eliminates the 
need for full-scale interlaboratory standardiza-
tion of participating institutes and may be less 
demanding. However, maintaining sample quality 
becomes a critical issue with this strategy. The 
initial sample material for fl ow cytometry contains 
living cells (in most cases derived from blood 
with the addition of anticoagulants). From this 
sample material, cells have to be isolated before 
the start of the fl ow cytometric assay. Cells are 
usually more fragile compared to biomolecules 
or small molecules. Several studies have been 
performed to determine how long blood can be 
stored or transported before peripheral blood 
mononuclear cell (PBMC) isolation (mostly 
using density gradient centrifugation) and how 
stable isolated cells are before the assay is started 
[ 34 ,  92 ,  93 ]. For simple phenotyping (e.g., CD4 
counting), a 48 h delay before centralized analysis 
is acceptable, while the most demanding applica-
tions (such as some functional T-cell assays) 
require isolation of the cells within 8 h of veni-
puncture, followed by immediate analysis or 
cryopreservation of the cells [ 94 ]. Shipment to a 
central lab followed by processing of blood 
samples within 8 h is however not feasible in 
international multicenter trials. Therefore, a 
mixed model may be chosen [ 4 ], whereby cells 
are isolated and cryopreserved from peripheral 
blood at individual labs close to the patient and 
then shipped in the frozen state to the central lab 
where they are stored frozen before analysis. All 
stages of isolation, cryopreservation, and trans-
port conditions should be fully standardized in 
this model. Standardized labeling of samples that 
allow the unambiguous assignment of a sample 
to a trial, site, patient, and visit is also critical. 
GCP regulation also requires special care to 
protect the privacy of patients, and this may be 
achieved by pseudonymization. These proce-
dures have to be clearly defi ned in the clinical 
trial protocol and are usually further detailed in 
the clinical trial laboratory manual. 

 As an example demonstrating feasibility of 
this approach, an international, multicentric 
immunotherapy trial was conducted recently 
including T-cell immunomonitoring in which 
more than 40 clinical sites were trained in blood 
sampling, labeling, and shipping, with labels and 
collection tubes provided by a central laboratory. 
Local PBMC isolation laboratories were centrally 
supplied with pretested kits containing all critical 
reagents required for isolation and cryopreserva-
tion of PBMCs. All laboratory technicians were 
trained and qualifi ed on central SOPs describing 
in detail the PBMC isolation and cryoconservation 
processes. Where required, the fresh blood was 
transported from the clinical sites to the PBMC 
isolating labs using temperature controlled ship-
ments. The isolated frozen PBMCs were shipped 
to the central lab in  validated dry ice containers. 
Patient visits involving a PBMC sampling were 
carefully coordinated in advance among the 
clinical sites, the PBMC isolating laboratories, 
and the logistic service providers to ensure that 
the blood could be processed within 8 h after 
venipuncture of a patient. This process led to a 
successful logistic chain for 361/362 (99.7 %) 
PBMC samples and an overall evaluability rate 
of 64/68 (94 %) patients for T-cell immunomoni-
toring [ 4 ].  

25.7      Towards Automated Analysis 

 As discussed in Sects.  25.4  and  25.5 , the standard 
approach for analyzing fl ow cytometry data is by 
the visual identifi cation of cell subsets of interest 
on histograms or two-dimensional scatter plots. 
With multiparameter data, gating consists of fi rst 
choosing a gating strategy – a sequence of dot 
plots that is designed to allow identifi cation of 
the cells of interest. For example, a possible 
gating strategy for identifying HLA-multimer- 
positive CD8 +  T cells might be FSC-A/FSC-H 
(singlets), FSC-A/SSC-A (lymphocytes), CD3/
viability dye (viable T lymphocytes), CD4/CD8 
(basic T lymphocyte subsets), and CD8/multi-
mer. In each dot plot, cells of interest are included 
and other events excluded by the use of elliptical 
or polygonal gates or sometimes by splitting the 
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dot plot into quadrants. The exact location and 
shape of these gates may be based on experience 
or by comparison with negative (e.g., isotype, 
FMO, or unstimulated control in ICS) and pos-
itive (reference sample or T-cell clone or super- 
antigen stimulation) controls. After a gating 
strategy has been set, it is typically applied in 
common to all fl ow cytometry samples in the 
batch being analyzed. Some researchers will 
also adjust gates for individual samples to take 
individual variability into account. In general, 
there is no consensus or accepted standard gating 
strategy, and individual laboratories may apply 
different gating strategies to identify the same 
target cell subset. Notably, profi ciency panels have 
made it very clear that the subjectivity of gating 
forms a signifi cant source of assay variability 
between laboratories in the absence of a harmo-
nization program [ 72 ,  95 ]. 

 To increase the objectivity of fl ow cytometry 
analysis, automated methods in which cell sub-
sets are directly quantifi ed by machine algorithms 
have been proposed [ 96 – 98 ]. In broad terms, 
these algorithms have to fi rst partition all the 
events in a data sample into disjoint subsets, based 
on properties of each individual event and its 
relationship to other events, and then to assign 
these subsets to biologically meaningful categories 
(e.g., HLA-multimer-binding CD8 +  lymphocytes). 
In the context of cancer immunology, a specifi c 
challenge for automated approaches is the high 
sensitivity required, since antigen- specifi c responses 
(e.g., HLA-multimer positivity or polyfunctional 
cells) may be relevant at relative frequencies of 
0.01–0.1 %. Data from multiple laboratories sig-
nifi cantly increases the challenges for automated 
analysis, since the algorithms have to also account 
for the variability across laboratories and issues 
with harmonization of sample annotation. 

 A typical automated analysis preprocessing 
pipeline starts with the extraction of the essential 
matrix of information stored in a fl ow cytometer 
FCS fi le, where each row represents an event and 
each column represents a detector channel, either 
scatter or fl uorescent intensity. Preprocessing 
algorithms may apply compensation or specifi c 
transformations to regularize the data distribution 
(e.g., bi-exponential transformation). Specifi c 

channels may be explicitly excluded from analysis 
at this stage if they are not likely to be informa-
tive for the cell subset targets of interest. Often, 
a quality control fi lter is also applied at this 
stage, and data sets with inconsistent annotation, 
too few events, and anomalous event distribu-
tions or signatures may be fl agged for manual 
evaluation [ 99 ]. 

 The core of most automated analysis is the 
unsupervised partitioning of events into cell 
subsets. There are a variety of approaches that 
can be taken to partition or cluster events, as sum-
marized in a recent publication [ 98 ]. One popular 
approach is the use of statistical mixture 
models, either identifying cell subsets with indi-
vidual mixture components (which are typically 
 multivariate Gaussian, student T, or skewed 
versions of these distributions) or using features 
of the estimated density to assign events to cell 
subsets [ 100 – 102 ]. Such probabilistic approaches 
provide a declarative framework to model domain 
knowledge and support formal statistical infer-
ences for structure learning, classifi cation, and 
prediction. The underlying statistical model for 
the domain knowledge can also be naturally 
extended in different contexts – for example, to 
incorporate specifi c assay details for combinato-
rial multimer encoding [ 103 ] or to incorporate 
multilevel effects via hierarchical modeling 
[ 104 ]. The power of probabilistic models comes 
at a price, in that these models tend to be much 
more computationally demanding than non-
probabilistic approaches [ 105 – 108 ], and the run-
time for analysis of high-volume, high-dimensional 
data sets may be prohibitive. However, recent 
developments in the use of highly parallel graphical 
processing units (GPU) [ 109 ] have accelerated 
run-times by orders of magnitude, making the 
probabilistic approaches a viable approach for 
many applications in cancer immunology. 

 The essential step in postprocessing is the 
alignment of cell subset clusters across multiple 
data samples, since comparative analysis of 
equivalent cell subsets is a necessary requirement 
of fl ow cytometry analysis in clinical research. 
Perhaps the most straightforward approach is to 
align each data sample with respect to either a 
reference or consensus clustering via an optimization 
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routine that minimizes some distance between 
pairs of clusters (e.g., Euclidean distance between 
cluster centroids). Other possible approaches 
skirt the problem entirely by enforcing a common 
clustering across all data samples or partition the 
clusters from fi tting all data samples into “super-
clusters” – all clusters in the super-cluster are 
then assigned to the same cell subset. The fi nal 
step of assigning meaningful cell subset labels to 
the aligned clusters is typically done manually, 
although there have been recent efforts to develop 
heuristics that can automatically label clusters 
by establishing a concordance between cluster 
features and cell phenotype characteristics in the 
Cell Ontology. Innovations in the visualization of 
high-dimensional cytometry data have also greatly 
increased our ability to interpret the results of 
automated analysis [ 110 – 112 ]. 

 The detection of antigen-specifi c cells poses a 
specifi c challenge for automated algorithms 
because of the extremely low frequency of these 
cell subsets in many patient samples – for exam-
ple, as few as 0.01–0.1 % of the CD8 +  T lympho-
cyte population may be specifi c for a particular 
tumor Ag multimer. Two nonexclusive approaches 
for improving the ability of automated algorithms 
to improve the limit of detection are biased sub-
sampling to enrich the sample for rare events 
[ 111 ,  113 ] or to increase the complexity of the 
statistical model [ 104 ]. The development of algo-
rithms that can accurately and robustly identify 
rare cell populations is a driving motivator for 
much current research in automated fl ow analysis, 
and we expect rapid advances in this area. 
Illustrative examples comparing manual and auto-
mated analysis of antigen-specifi c cells for HLA-
multimer and ICS assays are shown in Fig.  25.1 .

   Finally, we note that most of these automated 
analysis tools are developed under open source 
licenses and so free to use without restriction. 
Some packages require a modicum of program-
ming ability to use effectively (e.g., R or Python 
scripting skills) and others are available online, 
but in general, these algorithms are probably not 
easily used by the average fl ow operator in a 
clinical research laboratory. In the coming years, 
we expect that these automated analysis tools 
will become increasingly accessible to the average 

fl ow operator with the following developments – 
developers of these tools will continue to improve 
their ease of use; the most successful algorithms 
will be incorporated into commercial software 
analysis packages; and more workshops will be 
organized to train people in the use and potential 
pitfalls of these exciting new technologies.  

25.8     New Methods 
and Technologies 

 Flow cytometry has played an instrumental role 
in our comprehension of the immune system and 
its interplay with human tumors. The technique 
has recently experienced dramatic advances and 
the methods and technologies are evolving con-
tinuously. Due to space limitations, we focus 
here on the recent innovations that in our opinion 
have the potential to transform the fi eld of general 
cytometry and are directly relevant for cancer 
immunotherapy. 

 Since the fi rst description of a tumor Ag targeted 
by human T cells [ 114 ], many tumor- associated 
proteins and HLA-class I- and class II-restricted 
epitopes have been identifi ed. However, the 
antitumor T-cell immune response as a whole, 
i.e., the repertoire of Ag specifi cities recognized 
by T cells of individual patients, has only rarely 
been dissected [ 115 ,  116 ]. This is indeed a diffi -
cult task, due to the inherent complexity of such 
projects (many Ags and HLA-allele restrictions 
have to be taken into account), along with the 
limited amount of patient material generally 
available, and high requirements in terms of cost 
and time. Two groups simultaneously described a 
combinatorial encoding method which is a very 
elegant way to circumvent most of these hurdles 
[ 117 ,  118 ]. The technique is based on the combi-
nation of many HLA-peptide multimers, whereby 
a single multimer is coupled to several (two or 
three) fl uorochromes, generating a color code for 
each tested TCR specifi city. Currently, up to 27 
HLA-multimers labeled with eight fl uorochromes 
can be combined in routine analysis [ 117 ]. 
Coupled to the production of HLA-monomers by 
the UV exchange technology, this high-throughput 
method represents an important technical 
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  Fig. 25.1    (a) Manual and automated identifi cation of 
antigen-specifi c MHC class I multimer-positive CD8 +  T 
lymphocytes among PBMC of a HLA-A2 +  healthy donor. 
 Top panel  shows a manual gating strategy to identify CD8 +  
T cells specifi c for three HLA-A*0201-restricted epitopes 
derived from a EBV, infl uenza, and CMV viruses. From 
 left  to  right , the plots show gates to exclude artifacts due 
to fl ow stream bubbles or clumps (count/time), fi nd sin-
glets (FSC-A/FSC-H), exclude nonviable cells (FSC-A/
Aqua LiveDead), identify lymphocytes (FSC-A/SSC-A), 
exclude B lymphocytes (CD8/CD19), and quantify CD8 +  
T cells binding to EBV BRFL1 peptide-MHC multim-
ers (CD8/PE), infl uenza matrix peptide-MHC multim-
ers (CD8/APC), and CMV pp65 peptide-MHC multimers 
(QDot605).  Bottom panel  shows the corresponding pep-
tide-MHC binding CD8 +  T cells identifi ed using an auto-
mated analysis approach that fi tted a Dirichlet Process 
Gaussian Mixture Model with 256 components to the data 

[ 103 ]. Essentially identical frequencies of peptide-MHC 
multimer positive cells are found with manual and auto-
mated analyses. (b) Manual and automated analysis of 
antigen-specifi c T cells among PBMC of a second HLA-
A2 +  healthy donor tested in an intracellular cytokine stain-
ing ( ICS ) assay after incubation with a synthetic peptide 
corresponding to an HLA-A*0201- restricted epitope of 
pp65 CMV. Manual analysis fi nds cells positive for IFN 
and TNF, and a few events positive for IL-2. Without 
further gating, it is not possible to tell if the IFN- and 
TNF-positive events come from two separate or a single 
bifunctional population. Automated analysis reveals that 
there is indeed a single-cell population positive for IFN 
and TNF, with no evidence for an IL-2-positive popula-
tion. Again, the frequencies of antigen-specifi c events iden-
tifi ed by expert gating and automated analysis are almost 
equivalent         
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achievement for the T-cell immunology fi eld and 
has started to deliver precious information by 
dissecting the anti- melanoma TIL repertoire in 
melanoma patients [ 119 ,  120 ]. Combinatorial 
staining could easily be implemented for moni-
toring vaccination trials, for example, when 
applying cocktails of antigenic peptides for 
which many specifi cities need to be tested in a 
single PBMC sample. 

 The combination of extracellular phenotyping 
with determination of intracellular changes in 
phosphorylation patterns upon stimulation is start-
ing to provide new insights into signaling  pathways 
in healthy and disease conditions [ 121 ,  122 ]. The 

binding of cytokines to their specifi c cell surface 
receptors generally results in the activation (i.e., 
phosphorylation) of the downstream signal trans-
ducers and activators of transcription (STATs), 
which in turn regulate the expression of many 
genes involved in cell growth, survival, differentia-
tion, and polarization. Next to cytokines, the effect 
of unspecifi c mitogenic stimuli such as phorbol 
myristate acetate (PMA), phytohemagglutinin 
(PHA), or MHC-peptide complexes binding to the 
T-cell receptor (TCR) can be studied by measuring 
the level of other key signaling molecules such as 
phosphorylated (p)-Erk, p-S6, and p-NF-ĸB in 
T and B cells, whereas Toll-like receptor (TLR) 

0 50 100 150

Time

250k

200k

150k

100k

50k

0

250K200K150K100K50K0

F
S

C
-H

C
o

u
n

t

FSC-A

250K200K150K100K50K0

105

104

103

0

A
q

u
a 

liv
ed

ea
d

FSC-A

250k

200k

150k

100k

50k

0
250K200K150K100K50K0

S
S

C
-A

FSC-A

105

105

104

104

103

103

0

0

C
D

4

CD8

0.0777 % 0.0005 % 0.0773 %105

104

103

0

1051041030

105

104

103

0

1051041030

105

104

103

0

1051041030

IF
N

IL
2

T
N

F

CD8 CD8 CD8

F
S

C
-H

FSC-A

105

104

103

0

A
q

u
a 

liv
ed

ea
d

-A

FSC-A

S
S

C
-A

FSC-A

105

104

103

0

105

104

103

0

105

104

103

0

1051041030 1051041030

C
D

4

IF
N

y

IL
2

105

104

103

0

T
N

F

CD8 CD8

1051041030

CD8

1051041030

CD8

0.0804 %

5,000

4,000

3,000

2,000

1,000

0

b

0.0000 % 0.0804 %

Fig. 25.1 (continued)

C. Gouttefangeas et al.



485

ligand-induced activation can be followed with 
p-Akt, p-Erk, and p-NF-ĸB in B cells and mono-
cytes. The proof of principal for a “single-cell net-
work profi ling (SCNP) method” was obtained on 
healthy donors PBMCs [ 123 ]. In this initial study, 
age as well as race differences were observed, 
whereas intra-donor variability needs to be estab-
lished by testing blood samples taken at different 
time points over time. As T-cell signaling defects 
have been described in cancer patients [ 124 ,  125 ], 
insights in the intracellular phosphorylation pat-
terns of T cells, including during immunotherapy, 
may soon deliver precious information. 

 A fundamental advance in fl ow cytometry in 
recent years is an increase in the number of 
parameters that can be simultaneously evaluated 
on single cells. Access to an increasing number of 
reagents and fl uorochromes including tandem 
conjugates, semiconductor nanocrystals (quantum 
dots or eFluors), and organic polymers (brilliant 
violet family) [ 126 – 128 ], together with the wide 
availability of sophisticated fl ow cytometers, is 
making polychromatic analysis mainstream. 

 However, spectral overlap ultimately limits 
the number of fl uorochromes in a single panel to 
an upper bound of approximately 20, as described 
in Sect.  25.3 . An exciting new technology that 
has the potential to greatly increase the number 
of measurable parameters is mass cytometry 
(CyTOF), which uses stable heavy metal ions 
tagged to Abs (or, e.g., MHC multimers) in place 
of fl uorochromes. These isotope labels are 
detected by time-of-fl ight mass spectrometry 
after vaporization of the cell. Although isotope 
labels generally produce a signal of low intensity, 
they have a lower background and virtually no 
spillover, making the measurement of a much 
larger number of markers feasible. 

 Mass spectrometry has been reported to be 
qualitatively and quantitatively equivalent to fl ow 
cytometry, with the simultaneous analysis of 
more than 30 parameters being already possible 
[ 129 ]. However, this promising new technology 
has the current following limitations as compared 
to traditional flow cytometry: lower label 
sensitivity, substantial cell loss, low acquisition 
rate, and the impossibility to sort living cells. 
Nevertheless, this method has started to reveal 
the complexity of healthy hematopoietic cells 

and of CD8 +  T lymphocytes subsets and will 
certainly mature to become an indispensable 
technique in cancer immunology and immuno-
therapy [ 129 ,  130 ].  

25.9    Concluding Remarks 

 Flow cytometry is the prototypical multiparame-
ter single-cell assay, with applications in cancer 
immunotherapy ranging from epitope screening 
to immune monitoring of clinical studies. Due to 
its ability to characterize complex immune phe-
notypes and fl exibility in measuring multiple 
immune functions such as Ag binding, expression 
of activation and inhibitory markers, cytokine 
production, cytotoxicity, and proliferation, fl ow 
cytometry is indispensable in cancer immunology 
research. However, because of the complexity of 
the assay and the fragility of the sample, it is chal-
lenging to apply and maintain robustness, sensi-
tivity, and reproducibility, especially across 
multiple laboratories. Factors to consider when 
using fl ow cytometry in clinical research include 
understanding the range of fl ow- based assays 
available, as well as best practices for instrument, 
reagent, sample, and data analysis. 

 In order to harmonize laboratory protocols, 
practices, and analysis strategies, fl ow cytometry 
profi ciency testing programs have been orga-
nized to learn and raise awareness of best prac-
tices. We believe that participation in profi ciency 
testing programs, along with other initiatives 
delivering protocols, assay guidelines and reporting 
frames, is critical for raising the standard of fl ow 
cytometry analysis and strongly recommend that 
all clinical research laboratories that perform 
immune monitoring for clinical trials join such 
programs.     
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