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 Several empirical observations suggested a long time ago that established 
human tumors could melt away in response to perturbations of the immune 
system such as during acute infection. Such regressions of tumors occurred 
most often but not exclusively when infection occurred at the tumor site and 
sparked the interest of investigators in identifying the mechanism leading to 
such occurrences based on the assumption that infection acted as an adjuvant 
to boost existing but insuffi cient immune surveillance against neoplasms. 
These anecdotal observations are refl ected not only in the scientifi c literature 
such as the classic reports of William Cooley in the late 1800s but even dis-
cussed by classic authors such as the doctor-writer Anton Chekhov. 

 It took time, however, to elevate these concepts derived from empirical 
observations to a science of molecular precision. Skepticism dominated the 
scene for a long time including during the late 1980s, when the introduction of 
systemic IL-2 therapy for the treatment of advanced melanoma and renal cell 
carcinoma provided consistent and reproducible evidence that some advanced 
cancers could regress and remain in long-term remission with a treatment that 
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had for sure no direct effect on cancer cells. Retrospectively, as too often 
occurs in science, this skepticism was unwarranted, and the detractors of can-
cer immunotherapy made a disservice by slowing the progression of this bud-
ding discipline. Common criticisms were not directed against the observation 
that cancers could regress but rather focused on denial about the overall effec-
tiveness of treatment, the sporadic nature of the regressions, and the relatively 
high toxicity. In other words, the skeptics confused the clinical effectiveness 
of a treatment with the value of a promising scientifi c observation. 

 I am emphasizing this because it is important to remember those diffi cult 
moments now that books as sophisticated and comprehensive are presented on 
a topic that was not even considered true science by most just a few decades 
ago. Fortunately, several investigators did not give up, but focusing on the 
value of an uncommon but reproducible observation carried the fi eld forward. 

 Thus this book! An achievement diffi cult to predict only two decades ago! 
 A book series that encompassed 77 chapters spanning biological aspects 

of innate and adaptive immune responses to system biology approaches to 
biomarker discovery, to portrays of clinical successes and discussion of regu-
latory processes that are about to revolutionize the  development and licensing 
of new investigational agents. 

 A signifi cant change occurred after the identifi cation and molecular char-
acterization of antigens recognized by antibodies and/or T cells. Moreover, 
the characterization of molecular mechanisms controlling the cross talks 
between cancer and non-neoplastic somatic cells expanded the fi eld and 
understanding of the mechanistic bases of immune-mediated tumor rejection. 
These unarguable observations gave molecular precision to what was previ-
ously perceived as pointless practice. However, the true revolution came with 
the clinical demonstration that some of the novel biological agents could sig-
nifi cantly improve the survival of patients, receiving, therefore, acceptance 
and recognition as standard therapies through regulatory licensing. 

 Yet, challenges remain, and it is not the time to relax. Still, the benefi ts, 
though reproducible, are marginal both in terms of number of patients bene-
fi ting from the treatment and in the length of survival for those who benefi t. 
Most importantly, the outcomes are capricious and unpredictable. Predictive 
and surrogate biomarkers are missing in spite of novel technologies and strat-
egies that could help in the identifi cation and stratifi cation of patients. Still, 
most clinical trials are designed to look at outcomes rather than comprehen-
sively learn in case of failures. Still, a gap exists between the potentials for 
what we could do to better understand the biology of immune responsiveness 
and what we actually do. 

 This book is written for those who want to move the fi eld forward both at the 
clinical and the scientifi c level. Such a compendium can provide a contempo-
rary overlook at what has happened lately, which is remarkably logarithmic on 
a time perspective. Yet, we wonder how elemental this edition may seem just 
within a few years if the fi eld continues to evolve at the current pace. We hope 
that a second edition will follow soon. Perhaps the editors should have asked 
for a clairvoyant’s chapter. Hopefully, one of the young readers of this edition 
may step forward and help defi ne the new frontiers of cancer immunotherapy. 

 Francesco M. Marincola, MD  
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 The rapid fl ow of studies in the fi eld of cancer immunology during the last 
decade has increased our understanding of the interactions between the 
immune system and cancerous cells. In particular, it is now well known that 
such interactions result in the induction of epigenetic changes in cancerous 
cells and the selection of less immunogenic clones as well as alterations in 
immune responses. Understanding the cross talk between nascent trans-
formed cells and cells of the immune system has led to the development of 
combinatorial immunotherapeutic strategies to combat cancer. 

  Cancer Immunology  Series, a three-volume book series, is intended as an 
up-to-date, clinically relevant review of cancer immunology and immuno-
therapy. The book  Cancer Immunology :  A Translational Medicine Context , is 
focused on the immunopathology of cancers.  Cancer Immunology :  Bench to 
Bedside Immunotherapy of Cancers , is a translation text explaining novel 
approaches in the immunotherapy of cancers. Finally, the book entitled 
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 Cancer Immunology :  Cancer Immunotherapy for Organ - Specifi c Tumors , 
thoroughly addresses the immunopathology and immunotherapy of organ- 
specifi c cancers. 

 In volume I, interactions between cancerous cells and various components 
of the innate and adaptive immune system are fully described. Notably, the 
principal focus is very much on clinical aspects, the aim being to educate 
clinicians on the clinical implications of the most recent fi ndings and novel 
developments in the fi eld. To meet this purpose, this volume consists of 26 
chapters. After an overview on cancer immunology in Chap.   1    , the role of 
innate immunity in cancers is explained in Chaps.   2     and   3    , followed by the 
adaptive immunity, including B cells, T cells, T regulatory and Th17 cells, 
cytokines, and chemokine receptors in Chaps.   4    ,   5    ,   6    ,   7    , and   8    , respectively. 
CD95/CD95L signaling pathway, MHC class I molecules, and plasmacytoid 
dendritic cells are separately described in Chaps.   9    ,   10    , and   11    , respectively. 
Chapter   12     focuses on cancer immunoediting, while Chaps.   13     and   14     explain 
apoptosis and autophagy in cancers. Subsequently, Chap.   15     presents the 
prognostic value of innate and adaptive immunity in cancers. Epigenetics and 
immunogenetics are explicated in Chaps.   16     and   17    , respectively. In addition, 
immunodefi ciencies (Chap.   18    ), immunosenescence (Chap.   19    ), nutrition 
(Chap.   20    ), allergies (Chap.   21    ), and transmissible cancers (Chap.   22    ) are 
individually described in the following chapters. Chapter   23     enlightens 
 systems biology in cancer immunology, while immunological diagnostic 
tests, including fl ow cytometry for cancers, are mentioned in both Chaps.   24     
and   25    . Finally, by allocating the fi nal chapter to immunohistochemistry of 
different cancers, volume I comes to its end. 

 The  Cancer Immunology  Series is the result of valuable contributions of 
266 scientists from 91 well-known universities/institutes worldwide. I would 
like to hereby acknowledge the expertise of all contributors for generously 
devoting their time and considerable effort in preparing their respective chap-
ters. I would also like to express my gratitude to the Springer publication for 
providing me the opportunity to publish the book. 

 Finally, I hope that this translational book will be comprehensible, cogent, 
and of special value for researchers and clinicians who wish to extend their 
knowledge on cancer immunology. 

  Nima Rezaei, MD, PhD  
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1.1            Introduction 

 Cancer is a life-threatening disease, which can 
involve all human organs and tissues. It is the 
second leading cause of death and is responsible 
for 25 % of all deaths in the United States. In 
2012, more than 1.6 million new cases (848,170 
men and 790,740 women) of invasive cancers 
were diagnosed in the United States alone [ 1 ]. 
The major cancers in adults include lung, breast, 
prostate, and colorectal cancer. In addition, 
60,824 adolescents and young adults aged 
15–29 years old were diagnosed with invasive 
cancers between 1975 and 2000 [ 2 ]. Among all 
invasive cancers, lymphoma was the most com-
mon cancer (20 %), followed by invasive skin 
cancer (15 %), male genital system cancer 
(11 %), and endocrine system cancer (11 %) [ 2 ]. 
Although cancer incidence has increased among 
people younger than 45 years old during 1975–
2000, overall cancer incidence has decreased in 
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men by 0.6 % per year during 2004–2008. 
Remarkably, the rate remained  stable among 
females due to the high rate of breast cancer [ 3 ]. 

 Many cancer predisposing factors have been 
recognized; it has been found that cancer inci-
dence is signifi cantly associated with age from 
10 to 60 years. Additionally, male gender is at 
higher risk of developing cancer compared to 
females [ 2 ]. Race is another important factor for 
cancer development; before 40 years of age, non- 
Hispanic whites and, after 40 years of age, 
African-Americans/blacks have the highest inci-
dence [ 4 ]. Other risks factors include life style 
choices such as tobacco use, obesity, and lack of 
exercise and environmental factors such as expo-
sure to excessive sun, radiation during childhood, 
human papilloma virus (HPV), human immuno-
defi ciency virus, and Epstein-Barr virus (EBV) 
infection [ 4 ]. 

 Cancer can be a life-threatening health prob-
lem, especially when the tumor has metastasized 
to other organs. It is estimated that 577,190 
patients (including 301,820 men and 275,370 
women) died from cancer in the United States in 
2012. Four cancers – lung and bronchus, prostate, 
and colorectal in men and lung and bronchus, 
breast, and colorectal in women – are responsible 
for approximately 50 % of cancer- related deaths. 
Fortunately, the overall cancer- related mortality 
has been decreasing in recent years. The death 
rate decreased by 1.8 % per year among men and 
1.6 % per year among women. The highest mor-
tality reduction has been found among African-
Americans (2.4 % per year), followed by 
Hispanics (2.3 % per year); however, American 
Indians/Alaska natives were an exception, and the 
rate remained unchanged in this population [ 1 ]. 

 Cancer survival signifi cantly impacts 
patients’ quality of life. Five-year mortality 
rates depend on several factors; survival is 
worse among males over 30 years of age, and 
the survival gets worse for patients over 
45 years old in both males and females. Non-
Hispanic whites have the best survival rate and 
African-Americans have the worst survival 
with survival differences as great as 20 % at 
5 years after cancer diagnosis [ 5 ]. Furthermore, 
the type of cancer is another risk factor for 

patient survival. Total mortality rates vary from 
6 % in thyroid cancer to 97 % in  pancreatic 
cancer [ 6 ].  

1.2     Cancer Immunity 

 Cancer immunology has been studied for a long 
time; however, the molecular and cellular basis of 
tumor immunity is not completely understood. 
Advances in understanding the basis of immuno-
surveillance and progress in the treatment of 
infectious disease have had a major impact on the 
development of tumor immunotherapy. The mod-
ern era of tumor immunology began in the 1950s 
when the role of T cell responses in tissue 
allograft rejection was initially identifi ed. Since 
then, it has been confi rmed that tumors occur in 
association with impaired function of T cells, 
indicating the importance of the immune system 
in the development and progression of cancer [ 7 ]. 
The identifi cation of tumor-associated antigens, 
knowledge of effector T cell responses, and the 
role of regulatory and suppressor T cell popula-
tions are now shaping the use of the immune sys-
tem to treat cancer. 

 In addition to an improved understanding of the 
immune system, signifi cant advances in under-
standing the molecular basis of neoplasia have 
occurred. Precise control of cellular activity and 
metabolism is crucial for proper physiologic func-
tion. Notably, cell division is an important process 
that requires precise regulation. The main differ-
ence between tumor cells and normal cells is lack 
of growth control during the cell division process. 
This uncontrolled cell division can originate from 
various factors, such as chemical agents, viral 
infections, and mutations that lead to escape of 
cells from the checkpoints which properly control 
cell division. According to the type of tumor and 
proliferation rate, cancers can be benign or malig-
nant [ 8 ]. It has been found that some tumors are 
caused by oncogenic viruses that induce malig-
nant transformation. These oncogenic viruses can 
be both RNA and DNA viruses. Also, viral infec-
tion may lead to leukopenia and immunodefi -
ciency, increasing the risk of malignancy. 
Therefore, prophylactic immunization against 
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oncogenic viruses (such as EBV, HPV, and HBV) 
might be a logical strategy for prevention of malig-
nancy [ 9 ]. Indeed, a  vaccine against the human 
papilloma virus has shown signifi cant impact on 
preventing cervical intraepithelial neoplasia and 
may prevent  development of cervical carcinoma.  

1.3     Cancer and Immune 
System Impairment 

 It has been reported that impaired immune 
response can induce tumor growth and prevent 
effective antitumor suppression, possibly through 
a process of “sneaking through” which allows 
improved growth of small tumors rather than 
large tumors [ 10 ]. Tumors may also produce 
immunosuppressive factors, such as interleukin-
 10 (IL-10), transforming growth factor-β 
 (TGF- β), and alpha-fetoprotein, which suppress 
innate immune responses against cancer. This has 
led to investigations using neutralizing antibodies 
against these immunosuppressive factors [ 7 ]. 
In contrast, tumor-specifi c cytotoxic T lympho-
cytes (CTLs) can be genetically altered to become 
resistant to the TGF-β inhibitory effect by trans-
gene expression of a mutant dominant-negative 
TGF-ß type II receptor (DNR). In addition, spe-
cifi c T cells genetically manipulated to produce 
IL-12 can overcome the inhibitory effects of 
IL-10. On the other hand, tumors may express 
FasL and stimulate apoptosis of tumor- infi ltrating 
effector T cells. Small interfering RNA (siRNA) 
can be used to knock down the Fas receptor in 
tumor-specifi c CTL, leading to a signifi cant 
decrease in their susceptibility to Fas-/FasL- 
mediated apoptosis [ 11 ]. 

 The interaction between the immune system 
and established cancers is complex, because in 
addition to increasing carcinogenesis by various 
carcinogens among compromised subjects, cancer 
cells themselves can lead to severe immunosup-
pression. It has been reported that patients involved 
with primary immunodefi ciency syndromes have 
higher risk of cancer development. In a report by 
Kersey et al., subjects that had an inherited abnor-
mal lymphoid system were susceptible to malig-
nant transformation and impairment of tumor 

immunosurveillance [ 12 ,  13 ]. In addition, tumors 
produce soluble factors which downregulate the 
interleukin-2 receptor-α (IL-2Rα), leading to sup-
pression of T cell function. Furthermore, estab-
lished tumors may result in severe protein 
expenditures in hosts, contributing to impairment 
of immune system function [ 14 ].  

1.4     Immune System 
Reaction to Cancer 

 A critical question is whether cancer cells are 
suffi ciently different from their normal cellular 
counterparts, and can thus be recognized by the 
immune system. The immune system also pro-
duces a group of complementary markers with 
protective effects against cancer and other immu-
nologic or infl ammatory stresses. These markers 
include proteins released by T cells and are gen-
erally classifi ed as “cytokines.” Cytokines 
include interleukins, interferons, tumor-necrosis 
factors (TNF), and lymphocyte-derived growth 
factors. The production of tumor-specifi c anti-
bodies and/or activation of tumor antigen- specifi c 
T cells target tumor-associated antigens typically 
found on the cell membrane. Studies have sug-
gested that vaccination in the presence of com-
plements can lead to tumor lysis. While 
incompletely defi ned, several soluble and cellular 
mediators of tumor rejection have been described, 
including complement factors, active macro-
phages, T cells, and NK cells. While T cells 
require antigen specifi city, the soluble and cellu-
lar mechanisms of the innate immune response 
can recognize the malignant phenotype in the 
absence of antigen specifi city [ 15 ]. 

 Since most tumor-associated antigens are self- 
proteins, the immune response is largely weak 
and patients may develop immune tolerance to 
tumor-associated antigens. Furthermore, the cells 
of the immune system may not adequately pene-
trate to the internal tumor microenvironment, 
resulting in slower immune-mediated tumor 
elimination. However, it is possible that the 
immune system may be more effective in control-
ling tumor growth rate rather than tumor regres-
sion [ 10 ]. Recently, it has been found that 
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nutrition also plays a crucial role in protection 
against human cancer, and normal levels of zinc 
are required for protection against the detrimen-
tal effects of various immunosuppressive cyto-
kines [ 16 ].  

1.5     Genetic and Environmental 
Carcinogenesis 

 It has been found that genetic factors are as 
important as environmental carcinogens. Trials 
have tested carcinogenesis of retrovirus infection 
between different breeds of animals. A unique 
carcinogen resulted in disparate outcomes among 
different breeds, indicating the importance of 
genetic background in the progression of cancer. 
Environmental factors may also suppress immune 
responses and dysregulate immunosurveillance 
mechanisms [ 17 ]. 

1.5.1     Cancer Cells Escape from Host 
Immunosurveillance 

    Antigens that distinguish tumor cells from nor-
mal cells depend on the histologic origin of the 
tumor. Tumor-associated antigens may be viral in 
origin, represent mutated self-antigens, be 
cancer- testis antigens which are expressed only 
by tumor cells and normal testes, or be normal 
differentiation antigens. Thus, tumor cells may 
express similar antigens to normal cells, allowing 
tumor cells to escape immune system attack 
through induction of innate and/or peripheral tol-
erance. A corollary to this is that immunotherapy 
or stimulation of immune responses to some 
tumor-associated antigens may lead to damage of 
normal tissues and organs, as exemplifi ed by the 
development of autoimmunity induced by 
anti-CTLA- 4 or anti-PD1 monoclonal antibody 
(mAb) treatment [ 18 ]. 

 A number of complex mechanisms have been 
suggested for the escape of cancer cells from 
host immunosurveillance. Tumors alter their 
characteristics by decreased expression of 
immunogenic tumor-associated antigens, MHC 
class I molecules, beta2-microglobulin, and 

costimulatory molecules, which mediate the 
activation of T cells. Another strategy resulting 
in failure of tumor immunosurveillance could be 
the expression of very low levels of antigens, 
unable to stimulate an immune response. Under 
some circumstances, such as failure of the 
immune response to induce a rapid response, 
cancer cells may proliferate rapidly. Further 
strategies for escape of tumor cells from immu-
nosurveillance are based on inhibitory tumor-
mediated signaling by CTLs, as occurs through 
changes in cell death receptor signaling. Other 
strategies which allow tumor cells to evade the 
immune system are the secretion immunosup-
pressive molecules dampening tumor-reactive 
effector T cells and the induction of regulatory 
and/or suppressor cells [ 19 ]. 

 To date, most direct evidence on tumor immu-
nosurveillance originates from experimental 
studies in animal models. These models have sup-
ported the potential for antitumor immunity via 
vaccination, as, for example, by administration of 
inactivated cancer cells, or through removal of a 
primary tumor. In addition, antitumor immunity 
can be adoptively transferred through administra-
tion of tumor-reactive T lymphocytes. The com-
plexities of immunotherapy are evident as nearly 
all immune system components can infl uence 
tumor growth and progression. Although there is 
evidence for antitumor immunity in humans and 
several new agents have gained regulatory 
approval for cancer therapy, further investigation 
is warranted to increase the impact of tumor 
immunotherapy for more cancer patients [ 20 ].  

1.5.2     Cancer Immunodiagnosis 

 Nowadays, new immunomolecular diagnostic 
approaches have been suggested for tumor detec-
tion. Monoclonal antibodies marked with radio-
isotopes have been used for  in vivo  diagnosis of 
small tumor foci. In addition, monoclonal anti-
bodies have been used for  in vitro  recognition of 
the cell of origin for tumors with poor differentia-
tion. Immunodiagnostics have also been used to 
determine the extent of metastatic disease, espe-
cially metastasis to the bone marrow [ 21 ].   

N. Rezaei et al.



5

1.6     Cancer Treatment 

 Systemic cancer treatment is based on four 
 general therapeutic approaches: (1) chemother-
apy, which contains a wide group of cytotoxic 
drugs that interfere with cell division and DNA 
synthesis; (2) hormonal therapy, which contains 
drugs that interfere with growth signaling via 
tumor cell hormone receptors; (3) targeted ther-
apy, which involves a novel group of antibodies 
and small-molecule kinase suppressors that prin-
cipally target proteins crucial in cancer cell 
growth signaling pathways; and (4) immunother-
apy, which targets the induction or expansion of 
antitumor immune responses [ 22 ]. 

1.6.1     Cancer Immunotherapy 

 Tumor immunotherapy is a novel therapeutic 
approach for cancer treatment, with increasing 
clinical benefi ts. Tumor immunotherapy is based 
on strategies which improve the cancer-related 
immune response through either promoting com-
ponents of the immune system that mediate an 
effective immune response or via suppressing 
components that inhibit the immune response. 
Two current approaches commonly used for 
immunotherapy are allogeneic bone marrow 
transplantation and mAbs targeting cancer cells 
or T cell checkpoints [ 23 ]. Recently, various 
other approaches have been tested for cancer 
immunotherapy, and some are undergoing further 
clinical evaluation. 

 Initially, anticancer vaccines were considered 
for prevention and treatment of various tumors 
[ 23 ]. It is estimated that more than 15 % of human 
cancers are caused by viral infection [ 24 ]. 
Vaccine-based immunotherapy may, thus, be 
most useful for virus-induced cancers. Consistent 
with this hypothesis, a 50 % complete remission 
(CR) of HPV-associated vulvar intraepithelial 
neoplasia grade III (VINIII) has been reported 
[ 25 ]. An attenuated, oncolytic herpes simplex 
type 1, which is genetically engineered to secrete 
granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), has been developed for cancer 
therapy. This oncolytic immunotherapeutic agent 

has been injected to the tumor mass and has had 
benefi cial effects in the treatment of melanoma 
and head and neck squamous cell carcinoma 
[ 26 ]. Although vaccine-based therapy has not 
been effective in some types of cancer, there are 
studies that have shown an overall survival bene-
fi t compared to placebo therapy [ 27 ]. 

 Another immune-targeted approach is mAbs 
which block T cell checkpoints functioning to 
suppress T cell responses. Cytotoxic T 
lymphocyte- associated antigen 4 (CTLA4) is a 
member of a large family of molecules regulating 
T cell immune responses. CTLA4 is expressed 
on CD4 +  and CD8 +  T cells, as well as on FOXP3 +  
regulatory T cells [ 28 ]. Administration of mAbs 
targeting human CTLA4 leads to the rejection of 
established tumors in a small cohort of patients 
with metastatic melanoma and demonstrated 
improved overall survival in patients with meta-
static melanoma, resulting in US FDA approval 
for the treatment of metastatic melanoma [ 29 ]. 

 Monoclonal antibodies which block other T 
cell checkpoints, such as the programmed cell 
death protein 1 (PDCD1/PD1), programmed cell 
death ligand 1 (PDL1/CD274), CD276 (B7H3) 
antigen, V-set domain-containing T cell function 
inhibitor 1 (B7x), and B and T lymphocyte atten-
uator, have also entered clinical trials. In addi-
tion, early phase studies have demonstrated 
signifi cant therapeutic activity in several types of 
cancer, including melanoma, renal cell carci-
noma, non-small cell lung carcinoma, and ovar-
ian cancer [ 30 ]. It has been reported that PDL1 
expression by tumor cells is associated with poor 
clinical outcome and may be associated with 
clinical response to anti-PD1 and anti-PDL1 
therapy. Also, ligation of PDL1 leads to inactiva-
tion of tumor-infi ltrating cells [ 31 ]. On the other 
hand, regulatory T cells have an immunosuppres-
sive role in the tumor microenvironment. Studies 
of anti-PD1 and anti-PDL1 are in progress. 
Moreover, the combination of these agents with 
anti-CTLA4 and other immunotherapy strategies 
has yielded promising results. 

 The combination of antitumor vaccines with 
agents targeting the IL-12 receptor resulted in 
confl icting results. This may be due to the 
 upregulation of IL-12 receptor by both activated 
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T effector cells and regulatory T cells [ 32 ]. Thus, 
new approaches focused on more specifi c 
 targeting of regulatory T cells which reduce their 
suppressive effects on the immune system are 
necessary. Adoptive T cell therapy has been 
described as an effective therapeutic approach for 
cancer immunotherapy in early phase clinical tri-
als. In this method, a large number of tumor- 
specifi c T cells derived from peripheral blood, or 
preferably from the tumor microenvironment 
(with or without genetic manipulation to express 
a high-affi nity antigen-specifi c T cell receptor 
(TCR)), are adoptively transferred to patients 
with established tumors [ 33 ]. Recently, CD19 
which is expressed by mature B cells and a 
majority of non-Hodgkin lymphoma (NHL) cells 
has been used as another novel promising thera-
peutic target [ 34 ]. Chemotherapy-mediated cell 
death leads to immune responses in a drug- 
induced biochemical cell death cascade- 
dependent manner, suggesting benefi cial effects 
of chemotherapy and immunotherapy in combi-
nation [ 35 ]. It seems that future goals of tumor 
immunotherapy are headed towards chemoim-
munotherapy. Potential candidates for this com-
bination approach include antitumor vaccines, 
Toll-like receptor (TLR) signaling pathway ago-
nists/antagonists, cytokines, and mAbs targeting 
T cell checkpoints, such as CTLA4, PD1, or 
PDL1/2 [ 36 ]. Also, it seems that radiation and 
radiofrequency ablation are future candidates for 
combination therapy with immunotherapy [ 37 ]. 
Although immunotherapy and its combination 
with other therapeutic approaches such as radio-
immunotherapy may be benefi cial for tumor 
treatment, there are several limitations that need 
to be addressed; defi ning the optimal target 
patient, optimal biological dose, and schedule, 
the need for better trial designs incorporating 
appropriate clinical endpoints, and the identifi ca-
tion and validation of predictive biomarkers are 
just a few to point to [ 23 ].  

1.6.2     Cancer Cell “Switch” 

 Cancer cells can switch on genes mostly related 
to the earlier embryonic stages of development. 

During rapid proliferation of cancer cells, pre-
cise orchestrated enzyme formation needed for 
suitable metabolism of its different compo-
nents might get unbalanced, and products 
which are not observed in normal dividing cells 
are produced [ 38 ]. Recently, it has been 
reported that these biochemical “switches” 
lead to uncontrolled multiplication of cancer 
cells. One switch has been found for a type of 
leukemia. It has been suggested that targeting 
tumor switches can make treatment of cancers 
very simple [ 20 ]. Nonetheless, it is unclear 
how this may be used to optimize tumor 
immunotherapy. 

 Since cancer immunology is a highly com-
plex process, further research is needed to more 
completely understand how the immune system 
recognizes and eradicates cancer. In this book, 
we will describe a variety of novel mechanisms 
currently under investigation for mediating 
aspects of tumor immunology with a particular 
focus on promising therapeutic approaches, pro-
ducing a complete comprehensive up-to-date 
textbook.   

1.7    Concluding Remarks 

 Cancer is a life-threatening health problem which 
is related to several genetic and environmental 
risk factors that manipulate immune system func-
tion. Cancers themselves produce immunosup-
pressor factors to impair cells division check 
points, leading to uncontrolled proliferation of 
cancer cells. Importantly, tumor cells have learned 
how to escape from immune system attack via 
presenting of similar antigens to normal cells and 
expression of very low levels of antigens. 
Therefore, diagnosis of tumors and their progres-
sion is not easy. Recently, immunodiagnostic 
methods are shown to be helpful in the diagnosis 
of cancers and determining the extent of metasta-
sis. On the other hand, classic treatment of cancers 
led to unsatisfactory results, and intelligent immu-
nological approaches, such as regulatory T-cell 
targeting, adoptive T-cell administration, and 
combination of immunotherapy and chemotherapy 
are addressed. Results of antitumor vaccines, 
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Toll-like receptor (TLR) signaling pathway ago-
nists/antagonists, cytokines, and mAbs targeting 
T-cell checkpoints, such as CTLA4, PD1, or 
PDL1/2 are promising. However, due to the 
highly complexity of the cancer immunology, 
still a lot of gaps exist in this fi eld that indicate the 
necessity of further researches for complete 
understanding of cancers’ immunological behav-
iors and emerging of more novel immunothera-
peutic strategies.     
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2.1            Introduction 

 Infl ammation is a consistent feature of the tumor 
microenvironment and has been considered the 
seventh hallmark of cancer [ 1 – 6 ]. As suggested 
by current estimates, 25 % of cancers are asso-
ciated with chronic infl ammation sustained by 
infections (e.g., hepatitis) or infl ammatory con-
ditions of diverse origin (e.g., prostatitis) [ 6 ]. 
In addition, even tumors not directly connected 
to infl ammation are characterized by the pres-
ence of cells and mediators of the infl ammatory 
response [ 7 ]. 

 Apart from malignant cells, host cells infi l-
trate tumors, including leukocytes, fi broblasts, 
and endothelial cells. Leukocytes, and in particu-
lar myeloid cells, are the most consistent cellular 
component of solid tumors. Tumor-associated 
myeloid cells (TAMC) mainly support tumor 
growth and progression, thereby contrasting the 
T-cell infi ltrate, which mainly has antitumoral 
activity. TAMC all arise from hematopoietic stem 
cells (HSC) within the bone marrow (Fig.  2.1 ) and 
further differentiate into macrophage/granulo-
cyte progenitors. The tumor infi ltrate comprising 
the myeloid populations skews tumor-mediated 
immunosuppression, tissue remodeling, tumor 
progression and metastasis [ 8 ,  9 ]. TAMC dem-
onstrated high plasticity, resulting in two extreme 
polarized macrophage (M1 and M2) and neutro-
phil (N1 and N2) phenotypes [ 10 ,  11 ]. Cross talk 
between the different cellular components was 
demonstrated, resulting in tuning of the adaptive 
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immune response, promotion of angiogenesis, 
and tissue remodeling [ 8 ].

   Results obtained so far clearly indicate that 
TAMC are major players in the connection 
between infl ammation and cancer. Ongoing 
efforts, which led to a better understanding of 
their biological properties, indicated that myeloid 
cell-infi ltrating growing tumor could have a 
prognostic value, thus representing an attractive 
target for novel biological therapies of tumors. 

 In this chapter, we will mainly focus on 
myeloid cells infi ltrating tumors and mention 
soluble mediators involved in their recruitment or 
released by TAMC, which affect tumor progres-
sion and dissemination (cytokines, chemokines, 
and proteases). Furthermore, new therapeutic 

approaches based on targeting of  tumor- infi ltrating 
myeloid cells and/or soluble mediators will be 
discussed.  

2.2     Heterogeneity of Myeloid 
Cells in the Tumor 
Microenvironment 

2.2.1     Myeloid Subsets in the Tumor 
Microenvironment 

 Solid tumors are characterized by the presence 
of a leukocyte infi ltrate including lymphocytes 
and myeloid cells from early stages. Growing 
evidence indicated that the leukocyte infi ltrate 

Bone marrow Blood/spleen

TEM

Monocyte

M-MDSC

MDSC

HSC CMP IMC

Neutrophil

iDC TADC

TAN

G-MDSC

M-MDSC

TAM

TEM

N2 TAN

N1 TAN

M2 TAM

M1 TAM

G-MDSC

Tumor

  Fig. 2.1    Differentiation pathways of tumor-associated 
myeloid cells. Myeloid cells originate from hematopoietic 
stem cells ( HSC ) in the bone marrow. Here the networks 
that give rise to the various myeloid cell lineages in diverse 
compartments (bone marrow, blood/spleen, and tumor) and 
their precursors are illustrated. In the tumor tissue, macro-
phages and neutrophils display a gradient of differently 
polarized phenotypes whose extreme are M1–M2 for TAM 

and N1–N2 for neutrophils.  CMP  common myeloid pro-
genitors,  IMC  immature myeloid cells,  TEM  Tie2-
expressing monocytes,  MDSC  myeloid-derived suppressor 
cells,  M - MDSC  myeloid MDSC,  G - MDSC  granulocytic 
MDSC,  TAM  tumor- associated macrophages,  TAN  tumor-
associated neutrophils,  iDC  immature dendritic cells, 
 TADC  tumor-associated dendritic cells       
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has a prognostic value. For instance, it has been 
described that infi ltrating T lymphocytes are 
associated with a favorable prognosis in colorec-
tal cancer, melanoma, ovarian cancer, and breast 
cancer [ 12 ,  13 ]. In contrast, myeloid cells are 
most frequently associated with a poor progno-
sis [ 14 ]. TAMC (Fig.  2.1 ) comprise fi ve distinct 
myeloid populations, namely, tumor-associ-
ated macrophages (TAM), monocytes express-
ing the angiopoietin-2 (Ang-2) receptor    Tie2 
(known as Tie2-expressing monocytes or TEM), 
myeloid- derived suppressor cells (MDSC), 
tumor- associated neutrophils (TAN), and tumor-
associated dendritic cells (TADC). 

 Tumor-associated macrophages belong to the 
early infi ltrating leukocyte populations within 
tumors, thus preceding lymphocytes, and are 
usually the most abundant immune population in 
the tumor microenvironment [ 6 ,  15 ]. They derive 
from blood monocytes actively recruited from 
the circulation into tumor tissues. Early studies 
demonstrated that appropriately stimulated mac-
rophages are able to kill tumor cells  in vitro ; 
however, TAM, conditioned by the tumor micro-
environment, loose the cytotoxic capability and 
rather exert several pro-tumoral functions, medi-
ating cancer-related infl ammation, angiogenesis, 
immunosuppression, tissue remodeling, and 
metastasis [ 16 ,  17 ,  6 ]. 

 The heterogeneous behavior of TAM is a 
hallmark of myeloid cells and is oversimplifi ed 
in a polarization concept with two extreme M1 
and M2 phenotypes [ 18 – 20 ] with distinct and 
somehow opposite functions. M1 macrophages 
are classically activated by bacterial products 
and Th1 cytokines (e.g., LPS/interferon-γ). 
They are potent producers of infl ammatory and 
immunostimulating cytokines, trigger adaptive 
responses, secrete reactive oxygen species (ROS) 
and nitrogen intermediates, and have cytotoxic 
effect towards transformed cells. On the other 
hand, M2 macrophages or alternatively activated 
macrophages differentiate in response to Th2 
cytokines (e.g., interleukin (IL)-4, IL-13) [ 21 ]. 
In contrast to their M1 counterpart, M2 macro-
phages produce growth factors, leading to tissue 
repair and angiogenesis activation, have high 
scavenging activity, and inhibit adaptive immune 

responses [ 22 ,  14 ,  23 ,  11 ,  24 ]. Thus, macro-
phages are a very heterogeneous cell population, 
able to display different functions depending on 
the context. Macrophages can be either immuno-
stimulatory at the beginning of the infl ammatory 
response or immunosuppressive which dampen 
infl ammation [ 25 ,  18 ,  14 ,  26 ,  27 ]. 

 A similar dichotomy with polarization towards 
two extreme phenotypes (N1 and N2) has been 
also described for neutrophils [ 28 ]. Besides 
exerting antibacterial functions, neutrophils can 
infi ltrate tumors playing a major role as key 
mediators in malignant transformation, tumor 
progression, and regulation of antitumor activity 
[ 29 ]. Tumor-associated neutrophils (TAN) have 
received interest only recently, mainly due to 
their short life span and the observation that 
tumor microenvironment can sustain and prolong 
the survival of polymorphonuclear leukocytes 
(PMN) [ 30 ,  31 ]. 

 A particular small subset of TAMC is repre-
sented by Tie2-expressing monocytes (TEM): 
they express several monocyte/macrophage mark-
ers, along with the angiopoetin-2 receptor, Tie2, 
and are endowed with proangiogenic properties 
[ 32 – 35 ]. Tie2-expressing monocytes can be dis-
tinguished from the majority of TAM by their sur-
face marker profi le (Tie2 + , CD11b + ) and their 
preferential localization to areas of angiogenesis 
[ 33 ], while    they are largely missing in nonneo-
plastic area adjacent to tumors [ 35 ]. Indeed, Tie2 
is constitutively expressed at low levels by a sub-
stantial fraction (20 %) of  circulating monocytes 
and is overexpressed upon monocyte homing into 
growing tumors or regenerating tissues [ 33 ,  36 ]. 
Following Ang-2 stimulation, Tie2 +  monocytes 
acquire an M2-like phenotype, with increased 
expression of IL-10, CCL17, arginase 1 (Arg-1), 
and scavenger and mannose receptors and low 
expression of proinfl ammatory molecules such as 
IL-12 and TNF-α [ 37 ,  38 ]. 

 Myeloid-derived suppressor cells (MDSC) are 
a heterogeneous population of immature myeloid 
cells, having the ability to suppress T-cell func-
tions [ 39 ,  40 ]. They are derived from myeloid 
progenitors in bone marrows which do not differ-
entiate into mature granulocytes, macrophages, 
or dendritic cells. MDSC have been isolated from 
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blood, spleen, and bone marrow of tumor-bearing 
mice and infi ltrate the tumor tissue, where local 
tumor-associated factors promote their activa-
tion [ 41 ]. In tumor-bearing mice, two main 
subsets of MDSC were identifi ed: monocytic 
MDSC (M-MDSC), characterized by CD11b + , 
Ly6G − , and Ly6C high , and granulocytic MDSC 
(G-MDSC), characterized by CD11b + , Ly6G high , 
and Ly6C −  [ 42 ]. M-MDSC were shown to gov-
ern the ability of differentiating into monocytes 
(macrophages) and (DC), whereas G-MDSC do 
not possess this potential [ 43 ]. These subsets 
are functionally different: M-MDSC-mediated 
immunosuppression is based on upregulation of 
inducible nitric oxide synthase (iNOS), expres-
sion of  Arg-1 , and production of suppressive 
cytokines, whereas G-MDSC-mediated immuno-
suppression is characterized by antigen-specifi c 
responses (including ROS release requiring pro-
longed MDSC and T-cell contacts) [ 44 ]. Tumor-
associated MDSC generally exhibit an M2-like 
phenotype, while M1 and M2 phenotypes could 
coexist in some mouse tumor models [ 45 ,  46 ]. 

 Human MDSC are still poorly defi ned [ 47 ], 
even if they have been isolated from blood of 
patients with glioblastoma, colon cancer, breast 
cancer, lung cancer, or kidney cancer [ 48 – 52 ]. 
Recent studies have proposed that human MDSC 
have a characteristic CD34 + , CD33 + , CD11b + , and 
HLA-DR −  profi le [ 42 ]. Similarly to the murine 
counterpart, human MDSC are divided into two 
main subsets: monocytic MDSC (M-MDSC), 
characterized by the expression of CD14, and 
granulocytic MDSC (G-MDSC), identifi ed by 
positivity for CD15. 

 A small number of dendritic (DC) are found 
in most human and murine neoplasms. Similarly 
to macrophages and neutrophils, plasticity is a 
main feature of these cells. DC are differentially 
localized in tumors; for example, in breast cancer 
immature langerin +  DC are interspersed within 
the tumor mass, whereas more mature CD83 + , 
DC-LAMP +  DC are confi ned to the peritumoral 
area [ 53 ]. In contrast to TAM, tumor-associated 
dendritic cells (TADC) were found in the invasive 
front of papillary thyroid carcinoma [ 54 ]. Growing 
evidences demonstrate that the majority of TADC 
found within the tumor microenvironment have an 

immature phenotype (iDC) [ 55 – 57 ]. The immature 
stage of TADC is responsible for the tolerogenic 
response of adaptive immunity against tumors and 
strongly contributes to tumor immune evasion [ 58 ].  

2.2.2     Recruitment of Myeloid Cells 
in Tumors 

 TAMC derive from monocytes and granulocytes, 
extravasated from the circulation and infi ltrating 
the tumor mass. Recruitment of blood cells into 
tumors is mediated by chemoattractants released 
by tumor and stromal cells. CC chemokine 2 
(CCL2), originally known as monocyte chemotac-
tic protein 1 (MCP1), was the fi rst relevant tumor-
derived chemotactic factor described [ 59 ,  60 ]. 
Several other chemokines attracting myeloid cells 
have been identifi ed, including CCL5, CCL7, 
CCL8, and CXC chemokine 1 (CXCL1) and 
CXCL12 [ 61 – 63 ]. Furthermore, urokinase plas-
minogen activator (uPA); growth factors such as 
colony-stimulating factor (CSF)-1, transforming 
growth factor β (TGF-β), basic fi broblast growth 
factor (bFGF, also known as FGF-2), and vascular 
endothelial growth factor (VEGF); and antimicro-
bial peptides (e.g., human beta-defensin- 3) were 
shown to be involved in myeloid recruitment into 
neoplastic tissues [ 64 ,  9 ,  65 – 67 ]. 

 The prototypic chemoattractant for neutro-
phils, CXCL8, is mainly responsible for the 
recruitment of TAN; other related chemokines of 
the CXC subfamily are also involved, including 
CXCL1, CXCL2, and CXCL6 [ 68 ,  69 ]. Moreover, 
tumor-derived TGF-β can promote neutrophil 
migration [ 70 ]. 

 CC chemokine receptor 2 (CCR2), CCL2 recep-
tor, CXCL12, CXCL5, and stem cell factor (SCF, 
also known as KIT ligand) play a pivotal role in the 
recruitment of MDSC into tumors [ 71 – 73 ]; in addi-
tion, Bv8, also known as prokineticine 2 (PROK2), 
might be essential for MDSC recruitment [ 74 ,  75 ]. 
Finally, the proinfl ammatory proteins S-100A9 and 
S-100A8, produced by MDSC, are implicated in an 
autocrine loop promoting accumulation of suppres-
sor cells into tumors [ 76 ,  77 ]. 

 TEM do not express CCR2 and are therefore 
recruited towards tumors by different mechanisms 
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[ 35 ,  78 ,  79 ]. Other CC chemokines, such as 
CCL3, CCL5, and CCL8, are produced by tumor 
cells and could play a role in TEM recruitment 
[ 80 ].  Ang-2 , overexpressed by tumor cells and 
infl amed tissues, has been shown to exert a che-
motactic effect on Tie2-expressing blood mono-
cytes  in vitro , suggesting that the Ang-2/Tie2 axis 
might be involved in recruiting TEM into tumors 
[ 81 ,  32 ,  35 ,  34 ,  82 ]. In addition, recent data sug-
gest the involvement of the CXCL12-CXCR4 
homing axis for TEM infi ltration [ 82 ]. 

 In recent years, it has been shown that tumor- 
derived factors such as VEGF, CXCL12, CXCL8, 
β-defensins, and hepatocyte growth factor (HGF) 
are secreted into the bloodstream and are believed 
to attract iDC into the tumor bed [ 83 – 86 ]. 
Moreover, CCL20, CCL7, as well as the receptors 
CCR5 and CCR6 were demonstrated to be impor-
tant for TADC recruitment towards the tumor [ 87 ]. 

 Proliferation can also contribute to sustaining 
TAMC levels in solid tumors. A paracrine loop 
has been evidenced for TAM, with production of 
colony-stimulating factor 1 (CSF-1) by murine 
fi brosarcoma cells acting on TAM-expressing 
CSF-1 receptor (CSF-1R) [ 88 ]. A fi nding con-
fi rmed more recently by Condeelis and Pollard 
[ 89 ] showed the effect of epidermal growth factor 
(EGF) produced by TAM and tumor-derived 
CSF-1 on recruitment and survival of macro-
phages during tumor growth. Indeed, macro-
phage proliferation has been demonstrated to 
occur during type II infl ammation [ 90 ].  

2.2.3     Tumor-Derived Factors 
Affecting Myeloid 
Differentiation and Polarized 
Functions 

 Upon arrival in the tumor, monocytes differenti-
ate to macrophages primarily in response to 
CSF-1 produced by tumor cells. Although coex-
istence of diverse TAM subpopulations with dis-
tinct functions depending on tumor stage and 
geographical localization within the same tumor 
has been proposed, they mostly have an M2-like 
phenotype [ 91 ]. Many different studies demon-
strated that M2 (pro-tumoral) TAM polarization 

is driven by cytokines and other signals released 
in the tumor microenvironment [ 92 ]. Among 
these IL-10, IL-6, CCL2, CSF-1, and prostaglan-
din E2 (PGE2) were reported to promote M2-like 
polarization [ 93 ,  94 ]. TGF-β is overexpressed by 
tumor cells and plays a crucial role in promoting 
an immunosuppressive phenotype, in addition to 
driving N2 polarization of TAN [ 31 ]. 

 Many tumor-derived factors were implicated 
in MDSC expansion such as GM-CSF, M-CSF, 
IL-6, IL-1β, VEGF, and PGE2 [ 44 ,  95 ]. In addi-
tion, Bronte and coworkers recently found that 
cytokine-mediated induction of MDSC was com-
pletely dependent on the transcription factor 
CCAT/enhancer-binding protein b (C/EBPb), 
shown to function as a master regulator in this 
process [ 96 ]. Further it was proposed that a com-
bination of at least two signals is necessary for 
MDSC functionality and expansion, for example, 
GM-CSF, inhibiting maturation of myeloid cells, 
and a proinfl ammatory molecule such as 
interferon-γ (INF-γ) [ 41 ]. 

 Soluble factors released by tumor cells (i.e., 
IL-10, VEGF, TGF-β, etc.) contribute to keep 
DC in an immature pro- tumorigenic phenotype. 
Furthermore, in  preclinical studies of breast 
cancer, it was shown that tumor-derived factors 
altered DC maturation by secretion of thymic stro-
mal lymphopoietin (TSLP), which in turn induces 
the expression and secretion of the OX40 ligand, 
a molecule that contributes to sustain the M2-like 
phenotype of TAM.   

2.3     Pro-tumoral Functions 
of Tumor-Associated 
Myeloid Cells 

 Myeloid cells exposed to the tumor microenviron-
ment most frequently promote tumor progression. 
They can secrete soluble factors which support 
proliferation and invasion of tumor cells, activate 
angiogenesis, and promote resistance to therapies 
(Fig.  2.2 ). High TAM or TAN infi ltration generally 
correlates with poor patient outcome [ 97 ,  6 ,  16 , 
 11 ,  98 – 101 ], but few exceptions to this fi nding are 
also reported. For instance, in colorectal cancer 
(CRC) contrasting results reported that TAM 
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 density is associated with positive or negative 
patient outcome [ 102 ,  103 – 105 ]. On the same line, 
TAN infi ltrate is associated with a favorable prog-
nosis in patients with gastric carcinomas [ 106 ], but 
also with more aggressive pancreatic tumors 
[ 107 ]. Macrophage subsets might have distinct 
roles, as observed in lung adenocarcinoma were 
the number of CD204 +  TAM showed a strong 
association with poor patient outcome, while the 
CD68 +  TAM population did not [ 108 ]. The con-
cept that not only the number and the presence of 
specifi c cell subsets but also the localization of 
infi ltrating cells might have specifi c functions and 
predictive values is increasingly emerging. 
Accordingly, peritumoral TAM density with high 
expression of co-stimulatory molecules (CD80 

and CD86) was associated with better patient sur-
vival in CRC, whereas the same cell population 
within the tumors did not have any predictive 
value [ 109 ,  110 ]. Thus, TAMC exert complex 
roles on growing tumors affecting different aspects 
of tumor progression, i.e. tumor cell proliferation 
and survival, angiogenesis, tumor dissemination, 
and resistance to therapies.

2.3.1       Tumor Proliferation 
and Survival 

 TAM were shown to have the ability to promote 
tumor growth directly through the production of 
trophic and activating factors for stromal and 

TAM
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Immunosuppression

Tumor survival
proliferation
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metastasis
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AngiogenesisMatrix degradation
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Tumor cell
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  Fig. 2.2    Pro-tumoral functions of tumor-associated 
myeloid cells. TAMC exposed to the tumor microenviron-
ment exert several pro-tumoral functions, including promo-
tion of angiogenesis, matrix degradation, and suppression 
of adaptive immunity. These effects are mediated through 

the release of soluble factors (i.e., cytokines, growth and 
proangiogenic factors, proteolytic enzymes, etc.) and result 
in higher tumor survival and proliferation, local invasion 
and dissemination, resistance to therapies       
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cancer cells (EGF, bFGF, VEGF, platelet-derived 
growth factor β [PDGF], TGF-β) [ 111 ,  112 ,  6 , 
 113 ] in response to stimuli from the tumor micro-
environment. For example, IL-13 and IL-4 pro-
duced by CD4 +  T-cell-infi ltrating tumors, such as 
breast cancer, led to the production and secretion 
of EGF by TAM [ 114 ]. Moreover, production of 
proinfl ammatory cytokines, including TNF-α 
and IL-6, by TAM and other cells of the tumor 
microenvironment (e.g., epithelial cells), sustains 
tumor growth and inhibits apoptosis [ 115 – 119 ]. 

 Several lines of evidence suggest that TAN are 
required for the rapid growth of tumor cells and 
their depletion inhibits tumor development [ 120 , 
 28 ]. Proteins stored within neutrophil granules 
(e.g., elastase) may have a role in tumor initiation 
[ 121 ]. In addition, neutrophil-derived ROS have 
been associated with DNA damage [ 122 ]. TAN 
were shown to be able to produce soluble factors 
(cytokines and chemokines, HGF, oncostatin M), 
driving processes like angiogenesis, wound heal-
ing, and hematopoiesis and thus exerting a role in 
tumor promotion and growth [ 123 – 125 ,  121 , 
 101 ]. For instance, HGF released by neutrophils 
enhances the invasiveness of human cholangio-
cellular and hepatocellular carcinoma cells 
 in vitro , and HGF levels in bronchoalveolar 
lavage fl uids were found to correlate with neutro-
phil number in patients with bronchoalveolar car-
cinomas, which further correlates with poor 
patient prognosis [ 101 ].  

2.3.2     Angiogenesis 

 To sustain the increased metabolic demand of 
growing tumors, the development of a tumor vas-
culature is required. VEGF is the primary, but not 
the only, angiogenic factor released by tumor cells 
and is involved in the “angiogenic switch” that 
can occur at various stages of tumor progression, 
depending on the tumor type and the microenvi-
ronment. Other factors are involved, including 
PDGF-β, bFGF, angiopoietins, and CXCL12 
(SDF-1) [ 126 ]. Tumor-associated myeloid cells 
were shown to contribute to tumor angiogenesis 
by production of growth factors, cytokines, and 
proteases [ 80 ] such as VEGFA, Bv8, and metal-
loproteases (MMP) [ 10 ,  127 ,  65 ,  128 ]. 

 The prototypic myeloid cell with angiogenic 
properties is the Tie2 monocyte [ 32 ,  35 ]. TEM 
can be found in close proximity to nascent blood 
vessels within solid tumors. In addition, TEM 
depletion completely prevented neovasculariza-
tion in preclinical models (spontaneous pancre-
atic adenocarcinoma, human glioma grown 
orthotopically in the mouse) [ 33 ]. Interestingly, 
TEM ablation did not affect the number of infi l-
trating TAM or TAN, suggesting that TEM are an 
entity on their own and not just precursors of 
TAM [ 35 ]. How TEM stimulate angiogenesis has 
not been clarifi ed yet, but preliminary indications 
in murine tumor models point to the fact that 
perivascular TEM secrete bFGF. It is believed 
that release of such factors in close proximity to 
vessels could directly stimulate angiogenesis or 
MMP9 secretion, which in turn would release 
growth factors entrapped within the extracellular 
matrix (ECM). 

 TAM have also a profound infl uence on the 
regulation of tumor angiogenesis [ 129 ]. It was 
demonstrated in several preclinical studies that 
TAM positively correlated with microvascular 
density (MVD) [ 130 – 133 ]. Lin and coworkers 
were the fi rst to describe the direct role of TAM 
in driving the “angiogenic switch” in a spontane-
ous mammary carcinoma mouse model [ 134 ]. 
Likewise, depletion of monocytes by clodronate 
treatment in a preclinical model with Lewis lung 
carcinoma led to lower TAM infi ltration and 
angiogenesis, further underlining the importance 
and the involvement of macrophages in tumor 
angiogenesis [ 135 ]. 

 TAM express various molecules modulating 
angiogenesis, such as VEGF, bFGF, TNF-α, 
IL-1β, CXCL8, cyclooxygenase 2 (COX2, also 
known as PTGS2), plasminogen activator, uPA, 
PDGF-β, MMP7, MMP9, and MMP12 [ 136 ]. 
Hypoxia exerts a crucial role in the upregulation 
of gene transcription in TAM, promoting VEGF 
expression [ 137 – 141 ]. Other recent studies 
showed a direct involvement of TAM in tumor 
angiogenesis and neovascularization via transdif-
ferentiation into endothelial cells when stimu-
lated by angiogenic factors [ 142 ,  143 ]. 

 More recent studies have shown that MDSC 
can contribute to tumor angiogenesis. In a pre-
clinical model for colon cancer, MDSC positively 
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correlated with tumor growth rate and blood ves-
sel density [ 144 ]. Moreover, tumor angiogenesis 
was signifi cantly lowered by blocking Bv8 with a 
neutralizing antibody, a treatment that signifi -
cantly reduced the number of MDSC [ 74 ]. 
Metalloproteases, particularly MMP9, MMP2, 
MMP13, and MMP14, produced by MDSC, were 
shown to enhance VEGF bioavailability by mobi-
lization from the ECM [ 144 ,  145 ]. Increased 
recruitment of MDSC has also been demonstrated 
in the presence of hypoxia, possibly stimulating 
tumor angiogenesis [ 126 ,  74 ]. Parallel to TEM, 
MDSC were also observed to be localized in the 
vicinity of blood vessels. Under certain condi-
tions, some MDSC acquire endothelial cell shape, 
start to express endothelial markers including 
CD31 and VEGFR2, and are eventually incorpo-
rated into the tumor endothelium [ 144 ]. 

 TAN were shown to rapidly release VEGF 
from internal storage compartments, leading to 
endothelial proliferation and tubule formation 
[ 146 ,  147 ]. In addition, TNF-α and GM-CSF 
secreted by tumor cells were shown to trigger the 
release of proangiogenic chemokines by 
TAN. The number of TAN in myxofi brosarcoma 
positively correlated with tumor MVD [ 148 ]. 
Furthermore, in a xenograft mouse model of 
human melanoma where cancer cells were engi-
neered to constitutively produce CXCL6, it was 
found that the number of TAN as well as angio-
genesis was markedly increased [ 149 ]. Studies in 
the RIP1-TAG2 mouse model for pancreatic car-
cinogenesis revealed formation of dysplastic, 
neutrophil-bearing, angiogenic islets upon malig-
nant transformation. In the abovementioned 
model, neutrophil depletion of the islets led to 
dramatically lowered angiogenesis [ 150 ]. 

 In recent years, it has become more and more 
apparent that iDC make a profound contribution 
to tumor angiogenesis [ 85 ]. TNF-α and CXCL8 
produced by iDC from ovarian cancer ascites 
triggered the release of various growth factors 
from EC [ 85 ,  151 ]. Moreover, iDC were shown 
to release osteopontin which promotes monocyte 
secretion of the proangiogenic IL-1β [ 152 ]. 
Finally, it was recently observed that iDC pro-
duced high levels of VEGF and CXCL8 under 
hypoxic conditions, which, in turn, might inhibit 

DC maturation and further promote angiogenesis 
via this autocrine loop [ 153 ,  151 ].  

2.3.3     Cancer Cell Dissemination 

 The major cause of death in cancer results from 
therapy-resistant metastases. Stephen Paget’s 
conclusion in the late nineteenth century that the 
metastatic process depends on cross talk between 
selected cancer cells (the “seeds”) and a specifi c 
organ microenvironment (“the soil”) is still valid 
and is experimentally confi rmed [ 154 ,  155 ]. 
Tumor metastasis is a complex multistep process, 
during which malignant cells spread from the pri-
mary tumor site to secondary distant organs. The 
different steps of cancer cell dissemination can be 
subdivided into local invasion, entry into the 
bloodstream (intravasation), survival in the blood-
stream, extravasation, and colonization [ 156 ]. 
Mesenchymal, endothelial, and immune cells are 
required to form an appropriate microenviron-
ment for tumor progression [ 157 ]. Immune cells, 
particularly macrophages, neutrophils, T lympho-
cytes, and natural killer (NK) cells, are major 
sources of proteases that degrade the host tissue, 
allowing cancer cells to disseminate. 

 The set of proteolytic enzymes found in tumor 
microenvironment comprises matrix metallopro-
teases, serine proteases, and cysteine proteases 
(i.e., cathepsin) [ 158 – 162 ]. Matrix proteases exert 
essential functions in physiological conditions as 
active regulators of postnatal tissue development 
and remodeling. In addition, they are important 
for tissue repair in response to injury and regulate 
cancer progression modulating the tumor micro-
environment, particularly the leukocyte infi ltrate 
[ 163 ]. MMP were shown to activate TGF-β, 
which is an important regulator of T-cell and TAN 
functions [ 164 ]. Proteases also produce specifi c 
cleavage fragments of target chemokines with 
independent biological activity, ranging from 
anergic products (CXCL7, CXCL4, CXCL1), 
antagonists (CCL7), or more potent chemoattrac-
tants (CXCL8), thereby modulating the leukocyte 
composition within a tumor [ 165 – 167 ]. 

 Besides their infl uence on the tumor infi ltrate, 
proteases were shown to promote cancer cell 
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invasion and intravasation. The cleavage of cell- 
adhesion molecules like E-cadherin induces the 
disruption of cell-cell junctions leading to loos-
ening of cell-cell contacts which, together with 
ECM protein turnover, facilitated cancer cell 
migration and invasion into the surrounding tis-
sue and vasculature. Tight regulation of the sin-
gle proteases within the tumor microenvironment 
allows the control of tumor cell invasion [ 168 ]. 

 After invasion to the surrounding tissues, can-
cer cells enter the blood circulatory system directly 
or indirectly via the lymphatic system. Since the 
majority of circulating tumor cells (CTC) are 
eliminated by NK cells [ 169 ], only about 0.01 % 
of CTC survive in the bloodstream [ 157 ]. Platelets 
play a key role in hematogenous metastasis and 
contribute to the survival of CTC in the blood-
stream by both thrombin-dependent and thrombin-
independent mechanisms [ 170 ]. After a passage 
into the bloodstream, CTC adhere to vessel walls 
for extravasation when they are in the vicinity of 
secondary metastatic organs. Circulating tumor 
cells take advantage of the capability of neutro-
phils and platelets to produce and secrete adhesion 
molecules, such as integrins and selectins which 
all aid the nearby CTC to adhere and ultimately 
extravasate [ 170 ,  171 ]. 

 The arrest of cancer cells to specifi c organs 
seems to be primarily “mechanical” [ 172 ]. 
However, chemokines and chemokine receptors 
are also involved in organ-specifi c colonization, 
which fi nally drive cells along tissue-specifi c 
chemokine gradients. Furthermore, a non- 
chemokine pathway also exists, in which immune 
cells support organ-specifi c cancer cell dissemi-
nation. One example is represented by the two 
infl ammatory mediators S100-A8 and S100-A9, 
which were shown to promote metastasis through 
serum amyloid A 3 (SAA-3) [ 173 ]. 

 The subsequent growth of arrested tumor cells 
will depend on the molecular interactions 
between cancer cells and the microenvironment 
of the new organ. Although cancer cells are 
sometimes said to “home” to specifi c organs 
(e.g., breast tumors metastasizing to bone), it is 
more likely that this organ specifi city is due to 
effi cient organ-specifi c growth rather than prefer-
ential “homing” of cells to a particular organ. 

 It has been suggested that tumor cells can 
infl uence the microenvironment of secondary 
organs promoting the formation of a pre- 
metastatic niche [ 174 ,  175 ]. Tumor-derived fac-
tors and HSC are crucial components of the 
pre-metastatic niche. VEGF derived from tumor 
cells promote recruitment to the secondary organs 
of VEGFR1-expressing HSC that induce fi bro-
nectin and MMP9 expression by resident fi bro-
blasts, creating favorable conditions for 
settlement of future metastases [ 176 ]. Other solu-
ble factors released by tumor cells can promote 
the formation of pre-metastatic niche. In a murine 
model of breast cancer, tumor cells were found to 
induce production of CCL17 and CCL22 in the 
lung; both attracting CCR4 +  tumor and immune 
cells which establish a microenvironment for 
metastases settlement at secondary organs [ 177 ]. 
Moreover, it was demonstrated that the proto-
typic hypoxia-induced protein lysyl oxidase 
(LOX), often found in tumors, leads to cross- 
linking of collagen IV in basement membranes, 
in addition to recruitment of CD11b +  myeloid 
cells which adhere to the abovementioned colla-
gen meshwork. The captured CD11b +  myeloid 
cells were shown to secrete MMP2, which facili-
tated invasion and recruitment of metastasizing 
tumor cells [ 178 ]. 

 TAMC, TAM and MDSC in particular, are 
important players of tumor progression and met-
astatic colonization through the cross talk with 
tumor cells. For instance, macrophages play a 
crucial role in conferring an invasive phenotype 
to epidermal keratinocytes from Snail transgenic 
mice [ 179 ]. TAM contribute to cancer cell dis-
semination by releasing enzymes involved in 
degradation of the ECM (i.e., MMP and cathep-
sin) [ 168 ,  161 ,  180 ,  76 ], or motility factors. 
Recently we found that tumor-derived soluble 
factors, particularly CSF-1, activate a transcrip-
tion program in macrophages resulting in upreg-
ulation of a series of genes, especially 
 migration-stimulating factor (MSF) . MSF is a 
truncated isoform of human fi bronectin 1, physi-
ologically expressed during fetal life and upregu-
lated in M2-like macrophages [ 181 ,  182 ]. MSF 
exerts a chemotactic effect on tumor cells, indi-
cating that macrophage products released in the 
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tumor microenvironment can support the pro- 
invasive phenotype of tumor cells [ 181 ]. An 
example of the cross talk between TAM and 
tumor cells involved in metastatic colonization is 
shown in breast cancer, where EGF secreted by 
TAM increases migration and invasion of neigh-
boring breast cancer cells which express high 
levels of EGF receptor (EGFR). On the other 
hand, cancer cells secrete high levels of CSF-1, a 
main chemoattractant for TAM which expresses 
the cognate receptor CSF-R1. Therapies aiming 
at inhibiting this cross talk by blocking CSF-R1 
and/or EGFR were shown to be successful [ 183 , 
 184 ]. Macrophages and their reciprocal cross talk 
with tumor cells are mandatory for tumor cell 
migration, regardless of the factor inducing cell 
invasion (i.e., SDF-1). 

 A myeloid cell population involved in tumor 
progression, including invasion, is represented by 
MDSC. A direct role for MDSC in tumor metasta-
sis has not been demonstrated; however, a connec-
tion was suggested by the study on mice defi cient 
for the TGF-β receptor type 2 (TGF-β- R2), in which 
MDSC were concentrated on the invasive margin. 
In addition, it is possible to reduce lung metastases 
by antagonizing CXCR2 and CXCR4, two recep-
tors involved in homing of MDSC [ 145 ]. As previ-
ously mentioned, PGE2 and the proinfl ammatory 
molecule S100A9 have been identifi ed as main 
effectors of MDSC accumulation and function. 
Accordingly, S100A9 defi cient mice rejected 
implantation of colorectal cancer, while administra-
tion of wild-type MDSC reverted the phenotype 
and colorectal cancer cells could successfully 
engraft [ 76 ]. In addition, TGF-β was demonstrated 
to be instrumental in MDSC homing, mediated via 
CXCL12-CXCR4 and CXCL5-CXCR2 axis in a 
preclinical mammary cancer model [ 145 ].  

2.3.4     Suppression of Adaptive 
Immunity 

 Besides the effect on tumor growth and dissemi-
nation, TAMC have also the potential to suppress 
the adaptive immune response, leading to cancer 
immune evasion [ 185 ]. 

 M2-like polarized tumor-infi ltrating macro-
phages are characterized by an immunosuppres-

sive phenotype, with production of high levels of 
the immunosuppressive cytokines IL-10 and 
TGF-β and reduced expressions of IL-12 [ 19 , 
 186 ,  92 ,  187 ,  188 ]. In addition, they have reduced 
tumoricidal activity and are poor in antigen pre-
sentation [ 189 ]. Furthermore, TAM secret che-
mokines, such as CCL17 or CCL22, that 
preferentially attract Th1, Th2, and T regulatory 
(Treg) lymphocytes with defective cytotoxic 
functions, or such as CCL18, that recruit naïve 
T cells which become anergic in contact with 
M2 macrophages and iDC [ 8 ,  190 – 192 ]. 

 MDSC play a prominent role in the inhibition 
of tumor-specifi c immune responses. MDSC 
localized within the tumor microenvironment has 
an M2-like phenotype and mediate immunosup-
pression through multiple pathways, that is, pro-
duction of Arg-1 [ 193 ], iNOS [ 194 ,  195 ], ROI, 
and suppressive cytokines including IL-10 and 
TGF-β [ 196 ], or via the activation and recruitment 
of Treg [ 196 ,  197 ]. MDSC inhibit homing to 
lymph nodes of CD4 +  and CD8 +  T cells and sup-
press their activation [ 198 ,  199 ]. It was found that 
cysteine uptake by MDSC limited its availability 
for uptake by T cells, which in turn disables their 
activation and renders them nonfunctional. 
Furthermore, it was shown that posttranslational 
T-cell receptor modifi cations mediated via gener-
ation of peroxynitrite species led to anergy of 
effector CD8 +  T cells [ 196 ]. MDSC can also 
impair innate immunity through cross talk with 
macrophages which led to decreased production 
of IL-12 by macrophages and increased produc-
tion of IL-10 by MDSC, thus driving a polariza-
tion towards an M2-like phenotype [ 200 ]. 

 In addition to the above described mecha-
nisms in TAM and MDSC, TADC were found to 
be involved in suppression of adaptive immunity. 
One mechanism leading to the induction of 
tumor-specifi c T-cell tolerance was via upregula-
tion of inhibitory molecules such as B7-H1 [ 201 ] 
or by inducing the expression of Arg-1 [ 202 ]. 
Moreover, it was shown that the induction of 
oxygen-dependent pathways led to the downreg-
ulation of CD3 epsilon and T-cell apoptosis 
[ 203 ]. Furthermore, Muller and coworkers dem-
onstrated that upregulation of indoleamine 
2,3-dioxygenase (IDO) in TADC contributed to 
immunosuppression [ 204 ].   
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2.4     Selected Aspects 
of Therapeutic Targeting 
of TAMC 

 The above summarized data describing the pro- 
tumoral role of the myeloid infi ltrate of tumors 
make clear that TAMC are reasonable targets for 
novel therapeutic approaches. As illustrated 
above, TAMC can directly promote tumor cell 
growth releasing growth factors and proangio-
genic molecules, in addition to suppression of 
tumor-specifi c immune responses. Strategies 
explored in the last years are focused on the stop-
page of the mechanisms leading to suppression 
of lymphocyte activity and, on the other side, on 
the reduction of recruitment of myeloid cells and 
repolarization of M2-like pro-tumoral cells to 
proinfl ammatory M1 macrophages. There is a 
wide range of preclinical and clinical research 
aimed at eliminating or reprogramming TAMC 
[ 39 ]: here we only mention some examples of the 
results obtained so far in this growing fi eld of 
anticancer research. 

 Many studies have shown that targeting TAM 
might be a successful strategy to limit tumor 
growth and metastasization    and to achieve bet-
ter therapeutic responses [ 32 ,  44 ,  59 ,  82 ,  189 , 
 205 ,  206 ,  207 ]. One example is represented by 
bisphosphonates [ 208 ] traditionally used in the 
clinic to treat osteoporosis, which were shown to 
be very effective in depleting TAM and inhibit-
ing angiogenesis as well as metastatic spread 
in preclinical animal models for breast cancer 
[ 209 ,  210 ]. Furthermore, Germano and cowork-
ers recently showed that specifi c targeting of 
macrophages with the marine antitumor agent 
trabectedin was very successful in four different 
preclinical tumor animal models [ 211 ]. 

 An alternative strategy is to target circulating 
monocytes known as precursors of TAM. Two 
candidate molecules are the M-CSF receptor 
(solely expressed by monocyte-macrophages) 
and the chemokine CCL2, involved in monocyte 
recruitment within tumors. Since preclinical 
studies on prostate and colon cancer [ 212 – 215 ] 
identifi ed CCR2 + Ly6C +  cells as targets involved 
in cancer progression and metastasis, CCL2 anti-
bodies are currently investigated for therapeutic 
applications in human cancer treatment. Another 

approach to affect TAM specifi cally is to try to 
reeducate them to become tumoricidal or, in 
terms of polarization, to try to repolarize them 
towards an M1 phenotype. Several successful tri-
als using CpG-oligodeoxynucleotide (TLR9 ago-
nists) were performed in combination with 
anti-IL-10 receptor or anti-CD40 antibodies, 
which reverted pro-tumoral M2-like TAM to M1 
macrophages displaying antitumor activity [ 216 –
 218 ]. Rolny et al. recently demonstrated that 
skewing of M2 TAM towards M1 leads to effec-
tive antitumoral activity of host histidine-rich 
glycoprotein (HRG), which in consequence leads 
to inhibition of angiogenesis and promoted anti-
tumor immune responses [ 219 ]. Gazzaniga and 
coworkers reported promising results using the 
molecule legumain, which targets M2 polarized 
TAM specifi cally, and was able to induce a robust 
CD8 +  T-cell answer leading to reduced tumor 
growth and inhibition of tumor angiogenesis 
[ 220 ]. Furthermore, it was shown that zoledronic 
acid was able to revert M2 towards M1 TAM and 
inhibit breast carcinogenesis by targeting the 
mevalonate pathway [ 221 ]. Moreover, it was 
demonstrated that direct reeducation of TAM 
using the prototypical M1 polarizing cytokine 
INF-γ [ 222 ] is successful in promoting antitumor 
activity in minimal residual disease [ 8 ]. In line 
with the abovementioned results are the fi ndings 
that inhibition of M2 polarization led to restora-
tion of M1 proinfl ammatory phenotype and inhi-
bition of tumor growth in several preclinical 
animal models [ 92 ,  223 ,  224 ]. 

 To counteract the pro-tumoral activities of 
MDSC, two general strategies can be envisaged; 
the fi rst consists of transforming these immature 
cells into mature cells devoid of suppressive 
activity, and the second is focused on blocking 
MDSC suppressive functions. Depletion of 
MDSC producing high levels of TGF-β (in an 
IL-13-dependent manner) led to the restoration 
of T-cell-mediated immunosurveillance in a pre-
clinical mouse model for fi brosarcoma [ 225 ]. 
Several studies have shown that metabolites of 
all-trans-retinoic acid are able to differentiate 
MDSC into DC and macrophages, reducing 
MDSC accumulation [ 226 ,  227 ]. This effect was 
demonstrated to be benefi cial for patients suffer-
ing from metastasizing renal cancer, since in 
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these patient less circulating MDSC were 
detected in the bloodstream [ 228 ]. Furthermore, 
one of the benefi cial effects of the anticancer 
drug gemcitabine is its potential to eliminate 
MDSC without affecting T, B, NK cells, or mac-
rophages [ 229 ]. 

 The second possibility to counteract MDSC 
function is to block their inhibitory function, for 
example, by using COX2 inhibitors, phosphodi-
esterase (PDE5), and nonsteroidal anti- 
infl ammatory drugs releasing NO [ 44 ]. Blocking 
of IL-1β inhibits cancer progression and metasta-
sis [ 230 ] and decreases MDSC accumulation and 
suppressive activity [ 42 ]. Moreover, the proan-
giogenic chemokine Bv8 was shown to be impor-
tant for mobilization and homing of MDSC to 
tumor sites and therefore qualifi es as an interest-
ing therapeutic target [ 74 ]. 

 Complete neutrophil depletion in already 
immunocompromised patients is not desirable; 
therefore, the strategy of choice concerning TAN 
might be to disturb their tumor homing ability, in 
other words to interfere with their ability to 
migrate. To this purpose, preclinical experiments 
using anti-CXCR2 antibodies were performed 
and were shown to be successful [ 231 ]. 
Furthermore, considering the well-documented 
key role of TGF-β in skewing TAN towards a N2 
phenotype, this cytokine keeps promising poten-
tial for treatment [ 70 ,  31 ]. 

 Some studies indicate that blocking IL-10 
together with the administration of CpG oligo-
nucleotides are able to unblock the functionally 
paralyzed TADCs and to reactivate antitumor 
responses [ 232 ]. Another strategy enhancing 
immunotherapy might be targeting of soluble 
factors like VEGF, IL-10, TGF-β, gangliosides, 
and others, which are all tumor secreted factors 
leading to abnormal differentiation of DC, often 
leaving them in an immature state [ 233 ]. Other 
and more recent strategies make use of siRNA 
nano-complexes which lead to reprogramming of 
TADC from an immunosuppressive to an acti-
vated anticancer phenotype [ 234 ]. Furthermore, 
it was shown that in situ stimulated CD40 and 
toll-like receptor 3 (TLR3) TADC were success-
fully transformed from immunosuppressive to 
immunostimulatory cells [ 235 ]. More recently it 

was demonstrated that delivery of regulatory 
miRNA, particularly miRNA 155 in a nanoparti-
cle formulation, leads to reprogramming of 
immunosuppressive TADC to highly active anti-
tumoral TADC which provoked regression of 
established ovarian tumors [ 236 ]. 

 In light of the recent results, tumor therapy 
with drugs targeting the infl ammatory tumor 
microenvironment in combination with treatment 
aimed at defeating TAM, TAN, and other myeloid 
cells holds promise for the future.  

2.5    Concluding Remarks 

 In recent years, it has become clear that infl am-
mation has an essential role in tumor promotion 
[ 1 – 6 ]. The infl ammatory tumor microenviron-
ment, mainly consisting of soluble factors and 
host cells, has a predominant role in all aspects 
of the disease (progression, angiogenesis, 
immune surveillance). In particular, a heteroge-
neous group of myeloid cells is the most consis-
tent host cell component of solid tumor [ 8 ,  9 ]. 
TAM, TEM, MDSC, TAN, and TADC display 
distinct specialized functions, as well as overlap-
ping activities (e.g. angiogenesis). Tumor and 
stromal cells release different chemoattractants 
involved in the recruitment of myeloid cells from 
the blood into the growing tumor. Cytokines and 
other soluble factors released in the tumor micro-
environment can contribute to induce a protu-
moral phenotype, promoting M2 polarization of 
TAM [ 92 ], N2 polarization of TAN [ 31 ], MDSC 
expansion [ 41 ], or preventing maturation of 
DCs. Thus the different TAMC populations 
potentially represent a target for new therapeutic 
approaches aimed at breaking the protumoral 
networks established by cancer-associated 
myeloid cells.     
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3.1            Introduction 

 Cellular components of the innate immune system 
serve as a “fi rst line of defense” against tumori-
genic cells. Recognition of transformed cells by 
pattern-recognition receptor (PRRs) on the innate 
immune cells activates specialized infl ammatory 
signaling cascades, including transcription factor 
nuclear factor-kappa B (NF-κB) and interferon 
regulatory transcription factor (IRF), which lead 
to the release of various cytokines and chemo-
kines attracting and activating effector lympho-
cytes at the tumor site. In addition, effector cells 
kill transformed cells through the activation of 
perforin or death receptor- mediated pathways, 
as well as secretion of cytokines necessary 
for the initiation of immune responses against 
transformed cells [ 1 ,  2 ]. However, some tumor 
cells escape from the innate immune machinery, 
which leads to the dysfunction of innate immune 
compartment, signaling pathways, and effector 
functions. This manipulation of innate immune 
systems by tumor microenvironments includes 
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impairment of antigen processing and presen-
tation by antigen- presenting cells (APCs) [ 3 ], 
inhibition of innate immune signaling pathways 
[ 4 ,  5 ], and anti- infl ammatory cytokines such as 
IL-10 and transforming growth factor-β (TGF-
β) [ 6 ,  7 ]. Moreover, tumors manipulate innate 
immune systems to create protumorigenic envi-
ronments, which lead to further tumor progres-
sion and metastasis. Therefore, it is critical 
to clarify the molecular mechanisms through 
which the interaction between tumors and innate 
immune systems is modifi ed during different 
phases of tumorigenesis. 

 In this chapter, we describe the general func-
tions of innate immunity in cancer and antitumor 
host response. In addition, an overview is pro-
vided on the mechanism through which coor-
dinated actions of innate immune signals and 
their downstream effectors have an impact on 
the immunosurveillance and immune subversion 
within the tumor microenvironment.  

3.2     Role of Innate Immune Cells 
in Cancer and Antitumor 
Immunity 

3.2.1     Natural Killer (NK) Cells 

 NK cells are important effector cells for protec-
tion against viruses and some tumors, since NK 
cell-depleted mice were more susceptible to 
3-methylcholanthrene (MCA)-induced tumors 
[ 8 ]. Chemokines such as CXCL12 and 
CXCL3L1 are key factors for NK migration to 
tumor sites [ 9 ], where they play an important 
role in the tumor immunosurveillance [ 10 ]. NK 
cells recognize and eliminate transformed cells 
by releasing perforin or death signal-associated 
receptors such as FAS and TRAIL (tumor 
 necrosis factor-related apoptosis-inducing 
ligand) [ 11 – 13 ]. NK cells secrete interferon 
gamma (IFN-γ) which helps to activate T-cell-
mediated immunity and suppress tumor angio-
genesis [ 14 ,  15 ]. Moreover, various innate 
immune networks such as cytokines and PRR 
recognition systems play an important role in 
stimulating effector functions of NK cells as dis-
cussed later. 

 NK cells have the ability to distinguish trans-
formed cells from normal cells by recognizing a 
variety of cell surface receptors, including killer 
activation receptors (KARs), killer inhibitory 
receptors (KIRs), natural killer group two mem-
ber D (NKG2D), DNAX-accessory molecule 
(DNAM), etc., which will be discussed later in 
this chapter. For example, KIRs on NK cells has a 
high affi nity to the specifi c alleles in HLA class I 
molecules, transducing an inhibitory signal to the 
NK cells and preventing it from eliminating non-
transformed cells. However, deletion of a single 
allele in HLA class I and/or induction of activat-
ing receptors such as NKG2D ligands, which fre-
quently occurs on transformed cells, triggers 
effector functions of NK cells against tumor cells 
[ 10 ,  16 ]. Recent studies have focused on “licens-
ing” NK cells to become functionally competent 
through the interaction with self-MHC mole-
cules. Ly49C is an inhibitory receptor expressed 
on a subset of NK cells, which interact with self-
MHC molecules on target cells, and plays an 
unexpected role in enabling immature NK cells to 
develop into functioning, mature cells. On the 
other hand, Ly49C-negative NK cells are consid-
ered as “non-licensed” and remain at an imma-
ture stage [ 17 ]. These evolutionary processes of 
NK cell development and activation may help 
explain why donor NK cells administrated to leu-
kemia patients during bone marrow transplanta-
tion do not always show antitumor effects [ 18 ]. 
The NK cell-mediated cytotoxic activities medi-
ate the release of granule contents (perforin and 
granzyme) onto the surface of the tumor cell [ 19 ]. 

 The interaction between NK cells and dendritic 
cells (DCs) is crucial for the amplifi cation of 
innate responses and the induction of potent adap-
tive immunity. Immature DCs are susceptible to 
NK cell-mediated cytolysis [ 20 ], while mature 
DCs are activated by NK cells through cytokines 
(TNF-α and IFN-γ) and receptor (NKp30 and 
NKG2D)-mediated mechanisms [ 21 ,  22 ]. On the 
other hand, activated DCs trigger effector activi-
ties of NK cells, such as IFN-γ production, prolif-
eration, and cytotoxic activities [ 23 ]. In addition, 
treatment with TLR3 agonist polyinosinic-poly-
cytidylic acid (Poly (I: C)) triggers DCs to activate 
antitumor activities of NK cells [ 24 ,  25 ]. Thus, the 
reciprocal interaction between NK and DC 

M. Jinushi and M. Baghdadi



31

 regulates the direction and quality of antitumor 
immunity, which is important for the development 
of effective cancer immunotherapy.  

3.2.2     Natural Killer T (NKT) Cells 

 NKT cells are innate lymphocytes which share 
features of both NK cells and T cells. NKT cells 
express particular NK cell markers such as 
CD161 or NKR-P1, in addition to an invariant 
T-cell receptor alpha chain (Vα14-Jα18 in mice 
and Vα24-Jα18 in humans) [ 26 ]. The invariant    
T-cell receptor alpha chain is specifi c for glyco-
lipid antigens presented by CD1d, which is an 
MHC class I-related molecule expressed on 
antigen- presenting cells and also found in some 
tumor cells. NKT cells were shown to play a role 
in the tumor immunosurveillance, since  Jα18  −/−  
mice showed increased susceptibility to chemi-
cally induced tumors and experimentally induced 
metastases [ 27 ]. Moreover, the administration of 
α-galactosylceramide, a natural lipid isolated 
from marine sponges which effi ciently binds to 
CD1d and thus activates NKT cells, induces anti-
tumor immune responses against established 
murine tumors [ 28 ]. The antitumor activities of 
NKT cells are mediated by IFN-γ production, 
which also activates NK and CD8 +  T cells. NKT 
cell activities are also important for granulocyte 
macrophage colony-stimulating factor (GM-CSF) 
and IL-12-based cytokine strategies [ 29 ,  30 ]. 
Recent reports have identifi ed subpopulations of 
NKT cells which secrete TH1 or TH2 cytokines 
and thus play different roles in the pathogenesis 
of many diseases. For example, CD4 −  NKT cells 
serve as potent effectors for triggering tumor 
rejection in various murine tumor models, while 
CD4 +  NKT cells contribute to the pathogenesis of 
allergic diseases and tumors by promoting the 
release of IL-4, IL-5, and IL-13 [ 31 ,  32 ]. Indeed, 
IL-13 released from NKT cells antagonizes 
tumor immunosurveillance by promoting TGF-β 
secretion from Gr-1 +  myeloid suppressor cells 
[ 33 ,  34 ]. Thus, the identifi cation of factors infl u-
encing the differentiation of specifi c NKT cell 
subsets during tumor development is important in 
order to optimize the therapeutic interventions 
which utilize NKT cell functions against tumors.  

3.2.3     γδ-T Cells 

 Although γδ-T cells represent a small popula-
tion among T lymphocytes, they share  several 
features with innate immune cells. γδ-T cells 
show high frequencies in intraepithelial lym-
phocytes (IELs) in the skin and gut mucosa and 
possess a distinct T-cell receptor on their sur-
face with limited diversity, which may serve as 
a pattern- recognition receptor [ 35 ]. Moreover, 
γδ-T cells lack CD4 and CD8 expressed by 
αβ-T cells and express a number of molecules 
shared with NK cells or APCs, such as Fc 
gamma RIII/CD16 and PRRs. γδ-T cells also 
recognize lipid-derived antigens and function 
as professional phagocytes which recognize 
and ingest apoptotic tumor cells and may infl u-
ence antitumor immune responses [ 36 ,  37 ]. 

 Mice lacking γδ-T cells showed increased 
incidence of chemically induced sarcoma and 
spindle cell carcinoma, indicating the importance 
of these cells in tumor immunosurveillance [ 38 ]. 
In addition, γδ-T cells express NKG2D receptors 
and interact with their ligands on transformed 
cells, leading to enhanced cytotoxic activities and 
effector cytokine production [ 39 ,  40 ]. The acti-
vated γδ-T cells then serve as the major early 
source of IFN-γ, which contribute to maturation 
of APCs and prime αβ-T cells, and mediate cyto-
toxicity against tumor cells [ 40 ,  41 ].  

3.2.4     Macrophages 

 Macrophages serve as a fi rst line of defense 
against tumorigenesis by directly killing tumor 
cells and producing various antitumor mediators 
[ 42 ]. On the other hand, macrophages render 
tumor cells with the ability to acquire invasive 
and metastatic activities [ 43 ]. Macrophages are 
differentiated from immature myeloid precursors 
or circulating monocytes released from the bone 
marrow [ 44 ]. In particular, the infl ammatory 
monocytes expressing  Ly6C   are  preferentially 
attracted from the circulation into the tumor site 
by tumor-derived chemokines, such as CCL2 
(MCP1-1) and CCL5 (RANTES) and CXCL12 
(SDF1) [ 45 – 47 ]. Immature monocytes are then 
differentiated into either M1 or M2 macrophages 

3 Role of Innate Immunity in Cancers and Antitumor Response



32

by distinct sets of cytokines when entered into 
distinct tumor microenvironments [ 48 ]. M1 mac-
rophages may induce antitumor response by pro-
ducing IFN-γ and IL-12 and triggering cytotoxic 
activities [ 49 ,  50 ]. In contrast, tumor microen-
vironments adopt multiple strategies to tip a 
balance in the favor of differentiating M2-type 
macrophages through complex network of cyto-
kines, chemokines, and growth factors [ 43 ,  51 ]. 

 Taken together, macrophages have a dual role 
in modulating tumorigenesis and antitumor host 
responses. Thus, detailed characterization of 
molecular machineries which govern macro-
phage polarization in tumors seems necessary for 
a thorough understanding of pharmacological 
targeting of macrophages and their derivatives.  

3.2.5     Dendritic Cells 

 DCs are professional APCs contributing to the 
induction of both innate and adaptive immune 
responses against pathogens as well as tumors. 
DCs express Toll-like receptors (TLRs) and co- 
stimulatory molecules necessary for the activation 
of various effectors [ 52 ]. Due to the potent immu-
nogenicity of DC, tumor microenvironments adopt 
multiple tactics to subvert DC functions. In addi-
tion, tumor-infi ltrating DCs can both induce tumor 
growth and metastasis by regulating angiogenesis, 
host immunity, and tumor metastasis [ 53 – 56 ]. 
Moreover, indoleamine 2, 3-dioxygenase (IDO)-
producing DCs cause poor tumor immunogenicity 
via generating Foxp3- positive regulatory T cells 
[ 57 ] and interacting with other innate lymphocytes 
such as γδ-T cells [ 58 ] and NKT cells [ 59 ]. 

 In summary, tumor-infi ltrating DCs represent a 
double-edged sword which can induce an immune 
response against tumors or tolerize the immune 
system against tumors and contribute to tumor 
growth and metastasis. Thus, a deep understand-
ing about DC biology at tumor microenvironment 
is critical to optimize anticancer therapies and 
improve the clinical output of DC vaccines.  

3.2.6     Granulocytes 

 Granulocytes, the key mediators of infl amma-
tion, have a potential role in the initiation of 

immune response cascades against tumors [ 60 ]. 
Granulocytes induce tumor destruction through 
the release of cathepsin G, azurocidin, reactive 
oxygen species, and infl ammatory cytokines. 
Moreover, granulocytes, along with macrophages 
and T cells, are main effectors that elicit antitu-
mor responses by DNA vaccines in murine tumor 
models [ 61 ]. In addition, dense infi ltration of gran-
ulocytes in tumor tissues is associated with clini-
cal responses of GM-CSF-secreting cancer cells 
and Bacillus Calmette-Guérin (BCG) in patients 
with advanced melanoma and bladder carcinoma, 
respectively [ 62 ,  63 ]. On the other hand, granu-
locytes contribute to tumor angiogenesis and 
metastasis by promoting secretion of proteinases, 
ROS, and cytokines that may acts as antitumor 
effectors in different conditions [ 64 ]. Therefore, 
granulocytes have both pro- and antitumor activi-
ties depending on distinct environments.   

3.3     The Role of Innate Immune 
Receptors on Innate Immune 
Cells in Cancer 
and Antitumor Immunity 

3.3.1     Toll-Like Receptors (TLRs) 

 Toll-like receptors (TLRs) are innate immune recep-
tors mainly expressed on APCs, such as macro-
phages and dendritic cells. They play an important 
role in host defense against pathogens by recogniz-
ing pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular pattern 
molecules (DAMPs). The recognition of PAMPs 
and DAMPs by PRRs activates infl ammatory path-
ways such as NF-κB and IRF- mediated signals, 
leading to antitumor mediators like type I interfer-
ons, as well as cell survival and proliferation [ 65 ]. 

 Various sets of TLR ligands induce the upregula-
tion of co-stimulatory molecules and proinfl amma-
tory cytokine production by APCs, thus breaking 
the tolerogenic status to various tumor antigens 
and inducing antigen-specifi c antitumor immune 
responses [ 66 – 68 ]. In addition, TLR4 on DCs could 
interact with high mobility group box 1 (HMGB1) 
and facilitate antigen cross- presentation to anti-
tumor T lymphocytes [ 69 ]. Thus, TLRs agonists 
serve as effective adjuvants in harnessing potent 
antitumor immune response and clinical responses. 

M. Jinushi and M. Baghdadi



33

 In contrast, tumor cells license TLRs on 
myeloid cells to acquire invasive and metastatic 
activities by promoting the secretion of vari-
ous protumorigenic mediators, such as TNF-α 
and S100A8 [ 70 ,  71 ]. Thus, the careful opti-
mization of suitable TLRs ligands for cancer 
immunotherapy is critical in order to avoid pro-
tumorigenic infl ammation caused by the TLRs 
expressed on innate immune cells in tumor 
microenvironments.  

3.3.2     RIG-I-Like Helicases (RLHs) 

 RIG-I-like helicases (RLHs) are specifi c fami-
lies of pattern-recognition receptors bear-
ing caspase- recruitment domain (CARD) at 
N-terminus and helicase domains, which are 
responsible for detecting intracellular dou-
ble-strand RNA and inducing innate immune 
responses. RLHs include retinoic acid-inducible 
gene-I (RIG-I), myeloid differentiation anti-
gen-5 (MDA5), and laboratory of genetics and 
physiology-2 (LGP2 or DHX58), which are 
expressed constitutively in both immune and 
nonimmune cells. RLHs recruit specifi c intra-
cellular adaptors to initiate NF-κB- and IRF-
mediated infl ammatory signaling pathways that 
lead to the synthesis of type I interferons (IFNs) 
and other proinfl ammatory cytokines [ 72 ,  73 ]. 
The utilization of RLHs ligands as adjuvants to 
trigger antitumor immune responses has been 
validated by several studies. Its administration 
with retinoic acid-inducible gene-I  (RIG-I) 
ligand triphosphate RNA triggers antitumor 
immune response by inducing the production 
of IFN-α/IFN-β and various immunogenic cyto-
kines, as well as activating antitumor immune 
response cells [ 74 ,  75 ]. 

 Taken together, RLHs ligands may be utilized 
as adjuvants with other immunotherapies in order 
to overcome immunosuppressive tumor microen-
vironments.  

3.3.3     NOD-Like Receptors (NLRs) 

 NOD-like receptors (NLRs) are especially 
important for the recognition of sterile infl am-
mation such as uric acids and silica [ 76 ,  77 ]. 

NLR- mediated innate immune systems play an 
important role in both antitumor immunity and 
tumorigenicity. For example, nucleotide-binding 
oligomerization domain-containing protein 1 
(NOD1) has a protective role against tumors, and 
the knockdown of NOD1 promotes tumor growth 
in breast cancer model  in vivo  [ 78 ,  79 ]. NOD-
like receptor family pyrin domain containing 3 
(NLRP3) serves as a sensor for activating the 
infl ammasome pathway which regulates pro-cas-
pase- 1 cleavage and subsequent IL-1β activation 
[ 80 ]. NLRP3 is a negative regulator of chemical 
colon carcinogenesis. In a dextran sulfate sodium 
(DSS) and azoxymethane-induced colon cancer 
model,  NLRP3  −/−  mice showed increased colitis 
and colitis-associated cancer, which was corre-
lated with attenuated levels of IL-1β and IL-18 
at the tumor site [ 81 ]. However, in other models, 
NLRP3 may also have a role in the promotion 
of tumors as in infl ammation- induced skin can-
cers through the enhancement of infl ammatory 
environment [ 82 ], which suggest a dual role for 
NLLRP3 in the regulation of host immunity for 
pro- or antitumor responses. ATP released by 
dying tumor cells serves as a “fi nd- me” signal 
and recruits phagocytes to facilitate the engulf-
ment of apoptotic cells [ 83 ]. Thus, ATP serves as 
an agonist for NLRP3 whose activation triggers 
IL-1β production and cross-priming of antitumor 
CD8 +  T cells [ 84 ].  

3.3.4     Phagocytosis Receptors 

 Phagocytes are specialized eating cells respon-
sible for removing apoptotic cells in the body 
through a function of ligand-receptor interac-
tion. Dying tumor cells attacked by immune 
cells or targeted by cytotoxic chemothera-
peutic reagents are subject to recognition and 
removal by phagocytic myeloid cells [ 85 ,  86 ]. 
Molecules responsible for delivering “eat 
me” signals, including milk-fat globule-EGF 
 factor 8 (MFG-E8), growth arrest-specific 
6 (Gas-6), T-cell immunoglobulin- mucin 
domain protein-4 (TIM-4), and calreticulin 
(CRT), recognize the phosphatidylserine (PS) 
on apoptotic cells by integrin αvβ3 on phago-
cytes [ 87 – 90 ]. On the other hand, the “do not 
eat me” signal serves as negative regulators 
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for phagocytes. One example includes the 
interaction between CD47 and signal-regu-
latory protein-α (SIRP-α), which provides 
inhibitory signals that block phagocytosis [ 91 ] 
(Fig.  3.1a ).

   Manipulation of phagocytic systems has 
emerged as one of the tumor immune evasion 
machineries, and pharmacological targeting of 
these pathways provides a feasible option to aug-
ment host immune responses and eradicate 
tumors. For example, blocking CD47 with a 
monoclonal antibody triggers tumor destruction 
by inducing phagocytosis of malignant cells [ 90 , 
 92 ], and the treatment with anti-MFG-E8 anti-
bodies elicits potent antitumor responses in com-
bination with conventional anticancer drugs [ 93 ].  

3.3.5     C-Type Lectin-Like Receptors 
(CLRs) 

 Carbohydrate-binding C-type lectin and lectin- 
like receptors (CLRs) are a large family of 
molecules expressed in innate immune cells 
and play an important role in the regulation of 
antitumor immunity. For example, the interac-
tion between DC-SIGN (dendritic cell-specifi c 
ICAM-3 grabbing non-integrin) and ICAM-3 

(intercellular adhesion molecule 3) facilitates 
the cross talk between DCs and T lymphocytes, 
hence infl uences immunogenic responses against 
pathogens and tumors [ 94 ]. DEC-205 is highly 
expressed on DCs and promotes cross-presenta-
tion of tumor antigens to cytotoxic T lymphocytes 
[ 95 ]. Indeed, agonistic antibody targeting DEC-
205 elicits potent antitumor immunity and durable 
tumor regression in various murine tumor models 
[ 96 ]. In addition, C-type lectin domain family 9A 
(CLEC9A) utilizes necrotic cells for uptake, anti-
gen presentation, and immune response, hence 
raising the possibility that CLEC9A-mediated rec-
ognition of immunogenic antigens may enhance 
antitumor immunity and clinical responses [ 97 ] 
(Fig.  3.1a ). Therefore, CLRs serve as promising 
candidates for improving therapeutic responses 
to cancer immunotherapy. Moreover, deep under-
standing of the mechanism through which CLRs 
regulate innate immune response will lead to 
improvement in cancer vaccines.  

3.3.6     NK Cell Receptors 

 NK cells possess various sets of pattern- 
recognition receptors which activate or sup-
press immune responses upon encountering 

  Fig. 3.1    Role of    innate immune receptors in the regula-
tion of antitumor immunity. ( a ) The functions of the 
innate immune system are regulated by various receptors 
expressed in immune cells. C-type lectin-like receptors 
(CLRs) regulate recognition and uptake of antigens (such 
as DEC-205), the interactions between immune cells 
(such as the interaction between DC-SIGN on APCs and 
ICAM-3 on T cells), and the recognition of dead cells, 
such as CLEC-9A which recognizes necrotic cells and 
enhances cross-presentation of antigens derived from 
necrotic cells to CD8 +  T cells. Members of B7 family 
regulate the functions of APCs, such as B7-H1 and 
B7-H4, which have immune suppressive effects, while 
other members regulate the interaction with immune cells, 
such as B7-H3, which interacts with NK cells and sup-
press its functions, and B7-1/B7-2 which regulates APCs-

T-cell interactions. Phagocytosis receptors expressed on 
APCs interact with ligands on apoptotic cells and mediate 
its removal by APCs. In some cases, ligand-phagocytosis 
receptor interactions (such as CD47-SIRP-α) provide an 
inhibitory signal which blocks phagocytosis, a system uti-
lized by tumors to evade immune machineries. ( b ) The 
balance between activating and inhibiting signals is criti-
cal for NK cell activities. Upon interaction with corre-
sponsive ligands, activating and inhibitory receptors 
deliver a signal which is mediated by ITAM and ITIM in 
their cytoplasmic domain. Phosphorylated ITAM motifs 
in activating receptors recruit adaptor proteins which acti-
vate downstream signaling pathways, while phosphory-
lated ITIM motifs in inhibitor receptors recruit proteins 
such as SHP-1 which dephosphorylates downstream sig-
nal molecules and inhibit NK activities       

M. Jinushi and M. Baghdadi



35

a

b

3 Role of Innate Immunity in Cancers and Antitumor Response



36

their  target cells. The balance between activation 
and inhibition signals is carefully mediated by 
 signals triggered by both activation and inhibi-
tion receptors in combination with cytokines. 
Signals delivered from NK receptors mainly 
mediate through immunoreceptor tyrosine-
based activation motif (ITAM) and immunore-
ceptor tyrosine-based inhibition motif (ITIM). 
ITAM and ITIM bear conserved sequences of 
four amino acids repeated twice in the cytoplas-
mic tails of NK cell receptors. Phosphorylation 
of tyrosine within ITAM motifs recruits adaptor 
proteins such as DNAX- activating protein-12 
(DAP12) and DNAX- activating protein-10 
(DAP10) involved in activating downstream sig-
naling pathways. On the other hand, phosphory-
lation of tyrosine within ITIM motifs recruits 
proteins such as SHP which dephosphorylates 
downstream signal molecules to inhibit NK 
stimulation [ 98 ] (Fig.  3.1b ). 

 Tumor cells evolve multiple strategies to 
evade NK cells by modulating ligand expression, 
ligand shedding, and upregulation of MHC mol-
ecules, in addition to the production of immu-
nosuppressive cytokines. Thus, it is important 
to understand the underlying mechanism of NK 
cell activation and inhibition by their receptors, 
which eventually regulate immunosurveillance. 
NKG2D is a homodimeric C-type lectin- 
activating receptor expressed on NK, NKT, and 
activated CD8 +  T cells [ 16 ,  99 ]. Ligands for 
NKG2D include stress-induced proteins, such 
as MHC class I chain-related A and B (MICA 
and MICB) as well as unique long 16 binding 
proteins (ULBPs) in human [ 99 ] and RAE1, 
H60, and Mult1 in mice. NKG2D ligands are 
upregulated in stress conditions, such as viral 
infection and transformation [ 99 – 102 ]. Several 
signaling pathways are involved in the induction 
of NKG2D ligands, including HSP70-mediated 
cellular stress [ 101 ] and ATM/ATR-mediated 
DNA damage pathways [ 103 ]. Importantly, 
blocking of NKG2D pathways increases the 
susceptibility of mice to chemically induced car-
cinogenesis [ 104 ], indicating the importance of 
NKG2D in tumor immunosurveillance. Natural 

cytotoxicity receptor (NCR) family consists of 
three activating receptors: NKp30, NKp44, and 
NKp46, which are able to induce a strong cyto-
toxic reaction by NK cells. Expression levels 
of NCRs are correlated with cytotoxic ability 
of NK cells. MHC class I molecules counteract 
with NCR-mediated activation signals; in addi-
tion, the loss of MHC-I molecules, frequently 
observed in transformed cells, activates NCRs 
on NK cells [ 105 – 107 ]. 

 Killer cell immunoglobulin-like receptors 
(KIRs) are a family of cell surface molecules 
expressed on NK cells. KIRs have many mem-
bers divided into two groups depending on the 
number of extracellular Ig domains (2D or 3D) or 
the length of their cytoplasmic tail, long  vs.  short 
(L or S). L-forms are shown to have inhibitory 
functions, while S-forms enhance cytotoxic 
activities of NK cells in DAP12-mediated signal 
pathways. KIRs regulate NK cells’ killing func-
tion through the interaction with MHC class I 
molecules [ 100 ,  108 ]. 

 The interaction between inhibitory KIRs 
and normal MHC-I molecules inhibits NK cell 
stimulation. Correspondingly, NK cell stimu-
lation can occur due to an interaction between 
activating KIRs and polymorphic self-MHC 
class I molecules. Inhibitory KIRs were shown 
to be involved in the escape mechanism of acute 
myeloid leukemia (AML) from NK cell immune 
surveillance, mechanism of which includes a 
mismatch between donor KIRs and recipient 
human leukocyte antigen ligands [ 109 ]. Thus, 
the understanding of KIR-mediated recognition 
of missing self is important in the treatment of 
AML [ 110 ]. 

 Ly49 family is a large group of receptors 
expressed in mice but not in humans [ 111 ]. 
Functionally Ly49 is similar to human KIRs, 
containing both activating and inhibitory recep-
tors. Inhibitory Ly94 receptors possess ITIM 
motifs which recruit SHP-1 to trigger an inhibi-
tory signal, while activation receptors interact 
with DAP12 to activate lytic machinery in NK 
cells [ 112 ]. Ly49H is an activating NK receptor 
which recognizes m157 glycoprotein encoded by 
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mouse cytomegalovirus (MCMV). Upon interac-
tion with m157, Ly49H associates with DAP12 
and DAP10 to stimulate NK cell-mediated cyto-
toxic activities against infected cells [ 113 ], sug-
gesting a role for Ly49H in the protection against 
viral infection-associated tumors [ 114 ]. 

 DNAM-1 (CD226) is an adhesion molecule 
expressed on the surface of NK cells, monocytes, 
and a subset of T cells. DNAM-1 belongs to the 
immunoglobulin superfamily containing 2 Ig-like 
domains of the V-set. DNAM-1 is reported to 
bind to two ligands: CD112 and CD155 [ 115 ]. 
CD112 and CD155 are highly expressed in some 
tumors like melanoma and neuroblastoma. 
Importantly, neuroblastoma cells that do not 
express CD112 and CD155 are resistant to NK 
cells, indicating that NK lysis of this neuroblas-
toma cells requires DNAM-1 interaction with its 
ligands on tumor cells [ 116 ].  

3.3.7     B7 Family 

 B7 family consists of co-stimulatory and co- 
inhibitory receptors found on activated APC and 
T cells, which regulate the interaction between 
APCs and T cells. B7-1 and B7-2 are expressed 
on APCs and are involved in the stimulation of 
T-cell response. B7-1 and B7-2 on APCs serve 
as co-stimulatory molecules and play a critical 
role in regulating antitumor immune responses 
through reciprocal interaction of their receptor 
CD28 and cytotoxic T-lymphocyte antigen-4 
(CTLA-4) on T lymphocytes [ 117 ,  118 ]. B7-H1 
(PD-L1) expression in DCs is induced by IL-10 
and VEGF at ovarian tumors [ 119 ]. B7-H1 on 
DCs suppresses IL-12 and promotes IL-10 secre-
tion, creating an immunosuppressive tumor 
environment. Moreover, the blockade of B7-H1 
enhances antitumor immunity by DC-mediated 
T-cell activation [ 119 ,  120 ]. In addition, treat-
ment with PD-1 neutralizing antibodies has been 
found to decrease tumor growth and metastasis 
in B16 melanoma and colon cancer models [ 121 , 
 122 ]. B7-H3 on APCs bind to an unidentifi ed 
receptor on NK cells and transduce an inhibi-

tory signal which suppress cytotoxic activities of 
NK cell. In addition, blocking of B7-H3 could 
restore the antitumor effects of NK cells [ 116 ]. 
Finally, B7-H4 promotes protumorigenic and 
immunosuppressive phenotypes of macrophages; 
for example, the blockade of B7-H4 normalized 
immunogenicity of macrophages and augmented 
antitumor immunity in ovarian tumor tissues 
[ 123 ] (Fig.  3.1a ).   

3.4     The Role of Effectors 
Produced from Innate 
Immune Cells in Cancer 
and Antitumor Immunity 

3.4.1     Interferons (IFNs) 

 Type I IFNs are produced by many different cells 
in response to viral or bacterial infections. Type I 
IFNs (IFN-α/IFN-β) enhance proliferation and 
activation of innate immune cells such as DCs, 
macrophages, and NK cells [ 124 ]. In addition, 
they stimulate antigen processing and presenta-
tion to antigen-specifi c lymphocytes, which 
greatly contribute to tumor immunosurveillance 
[ 125 ]. The importance of type I IFNs in tumor 
immunosurveillance also validated enhanced 
susceptibility to tumorigenesis by treatment with 
anti-IFN-α/IFN-β neutralizing antibodies or in 
mice with targeted mutations of type I IFN recep-
tor [ 126 ,  127 ]. 

 Type II IFN (IFN-γ) is a cytokine involved in 
the activation of adaptive immune cells. IFN-γ is 
primarily produced by various innate immune 
lymphocytes such as NK, NKT, and γδ-T cells 
and plays a critical role in the induction of Th1 
immune responses and the production of NO and 
ROS by macrophages, leading to enhanced cyto-
toxic activities against transformed cells [ 128 ]. 
IFN-γ has an important role in the protection 
against transplanted tumors or chemically 
induced tumors by increasing intrinsic immuno-
genicity of tumor cells [ 129 ,  130 ]. IFNGR −/−  
mice or mice defi cient in IFN-γ-downstream 
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signaling molecule Stat-1 developed tumors 
more rapidly and in greater frequencies com-
pared to wild-type mice [ 131 ,  132 ]. Thus, IFN-γ- 
mediated regulation of tumor immunogenicity 
has a great impact on innate immunity and tumor 
immunosurveillance.  

3.4.2     Other Cytokines 

 Interleukins have an important role in regulat-
ing innate immune functions in tumor micro-
environments. Several cytokines, such as IL-2, 
IL-12, IL-18, IL-15, and IL-21, serve as NK 
cell- stimulants, competent in targeting trans-
formed cells. Mice defi cient for IL-12p40 are 
susceptible to carcinogen-induced tumorigen-
esis; in addition, IL-21 −/−  mice showed reduced 
colitis- associated cancers [ 133 ], indicating the 
role of these cytokine in protecting hosts from 
arising tumors. With respect to the mechanisms 
of action, NKG2D systems are involved in the 
enhancement of NK cell cytotoxic activities by 
all cytokines suggested above, and perforin-gran-
zyme pathways play an important role in exert-
ing NK cell cytolysis by IL-18. Moreover, IL-21 
induces NK cell effector functions by increasing 
sensitivities to IFN-γ, and IL-15 regulates sur-
vival, activation, and proliferation of NK cells 
[ 134 ]. Cytokines produced from innate immune 
cells serve as feasible adjuvants in activating 
antitumor responses in patients with advanced 
cancer. For example, the systemic administra-
tion of high doses of recombinant IL-2 or the 
adaptive transfer of IL-2-stimulated NK cell can 
trigger potent antitumor responses and medi-
ate durable tumor regressions in patients with 
advanced melanoma and renal cell carcinoma 
[ 135 ]. The clinical effi cacy of IL-12 has been 
evaluated as a monotherapy or in combination 
with other immunotherapies in patients with can-
cer; however, they did not induce durable clinical 
responses [ 136 ,  137 ]. 

 Several cytokines antagonize immuno-
genic potential of tumors and innate lympho-
cytes. IL-10 downregulates the expression of 

immunogenic cytokines, such as IFN-γ, IL-2, 
 TNF-α, and GM-CSF, and also suppresses anti-
gen presentation by APCs. On the other hand, 
the carcinogen- mediated tumor incidence was 
increased in IL-10-knockout mice, whereas 
IL-10 overexpression protects mice from aris-
ing tumors [ 138 ]. Thus, IL-10 has a complex 
role in tumorigenesis, and the pro- and antitu-
mor effects of IL-10 may depend on the differ-
ent experimental models. TGF-β is a regulatory 
cytokine which has important roles in the regu-
lation of immune responses and immune toler-
ance as well as carcinogenesis [ 139 ,  140 ]. TGF-β 
can inhibit the activities of NK cells through the 
suppression of IFN-γ production [ 141 ], as well 
as the downregulation of activating receptors 
such as NKp30 and NKG2D [ 142 ]. On the other 
hand, TGF-β negatively regulates recruitment 
and differentiation of myeloid- derived suppres-
sor cells (MDSCs) in tumor tissues derived from 
mammary carcinomas, contributing to enhanced 
host immunity and tumor rejection [ 143 ]. 
Therefore, TGF-β has different roles in antitu-
mor immunity and tumorigenicity, which are in 
part dependent on the phase of tumor progres-
sion and different cellular components in tumor 
microenvironments [ 144 ]. Vascular endothelial 
growth factor-A (VEGF-A) also plays a critical 
role in suppressing DC maturation and differ-
entiation, therefore impacting tumor immuno-
genicity and host immunosurveillance [ 145 ]. 
Thus, various cytokines are responsible for 
attenuating immunogenic potentials of innate 
immune systems in tumors. 

 Several cytokines derived from innate lym-
phocytes contribute to smoldering infl ammation 
and tumor progression. IL-23-IL-17 pathway 
operated in endogenous tumor microenviron-
ments represents prototypical mediators which 
promote tumor-associate infl ammation. IL-23 
promotes tumor cell growth and invasion through 
upregulation of proteins of the matrix metallo-
proteinase- 9 (MMP9), COX-2, and angiogen-
esis. In contrast, IL-23 −/−  mice showed reduced 
infl ammation and thus attenuated tumor forma-
tion [ 146 ]. IL-17 is elevated in various tumors, 
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where it plays an important role in tumor growth. 
IL-17 can enhance tumor growth by direct effects 
on tumor cells and tumor-associated stromal 
cells by activating IL-6-Stat3 pathways [ 147 ]. 
Furthermore, the altered composition of com-
mensal microbes and disruption of epithelial 
barrier functions facilitate differentiation of 
IL-17-producing T lymphocytes by IL-23 from 
myeloid cells in intestine, leading to increased 
colon tumorigenesis [ 148 ,  149 ]. 

 Granulocyte-macrophage colony-stimulating 
factor (GM-CSF) is produced  in vivo  by many 
cells including mast cells, macrophages, T cells, 
fi broblasts, and endothelial cells in response to 
immune activation and proinfl ammatory cyto-
kines. GM-CSF creates an immunosuppressive 
tumor microenvironment by differentiating 
immature myeloid-derived suppressor cells 
(MDSCs) into tumor tissues [ 150 ]. On the other 
hand, the therapeutic administration of GM-CSF 
has been emerged as a potent immunogenic adju-
vant to stimulate antitumor immunity by enhanc-
ing APC functions [ 151 ]. 

 Macrophage colony-stimulating factor M-CSF 
(also known as CSF-1) is a dimeric polypeptide 
growth factor which regulates the proliferation, 
differentiation, and survival of macrophages and 
their bone marrow progenitors. CSF-1 expression 
is elevated in different tumors and is found to be 
accompanied by high grade and poor prognosis 
[ 152 ]. Targeting of CSF-1 has been evaluated in 
preclinical and clinical studies [ 153 ]. The admin-
istration of anti-CSF1R-neutralizing antibody 
(AFS98) or a CSF-1R inhibitor (Ki20227) 
resulted in reduced numbers of tumor-infi ltrated 
macrophages in an implanted osteosarcoma 
model and reduced vascularization, angiogene-
sis, and tumor growth [ 154 ,  155 ].  

3.4.3     Chemokines 

 Chemokines are small cytokines secreted by 
many cell types in response to pathological con-
ditions, in order to activate and attract effector 

cells which express appropriate chemokine 
receptors. Two types of chemokines have been 
identifi ed: CC chemokines that are chemotactic 
for monocytes and CXC chemokines which 
attract polymorphonuclear leukocytes (PMNs). 
Chemokines have a central role in tumor progres-
sion through the recruitment of innate immune 
cells into tumor site. Most studies have focused 
on CCL2 and CCL5 as the major chemokines in 
tumor microenvironment. 

 CCL2 (MCP-1) is produced by tumor cells 
and tumor-associated stromal cells and attracts 
CCR2 +  infl ammatory monocytes to the tumor 
microenvironment, which differentiate into 
tumor-associated macrophages and promote 
tumor aggressiveness, and the blockade of CCL2- 
CCR2 signaling by neutralizing antibodies sup-
presses metastasis and prolongs overall survival 
of tumor-bearing mice [ 156 ]. The levels of CCL2 
expression and macrophage infi ltration into 
tumors are correlated with poor prognosis and 
metastases in human breast cancer, suggesting 
signifi cance of CCL2-mediated immune regula-
tion in cancer patients [ 157 ]. 

 CCL5, another important chemokine, plays an 
important role in the recruitment of monocytes 
into the tumor microenvironment [ 158 ]. CCL5 
induces expression of CCL2, CCL3 (MIP-α), 
CCL4 (MIP-β), and CXCL8 (IL-8) by mono-
cytes, which leads to the recruitment of myeloid 
cells into tumor site [ 159 ]. CCL5 also induces 
CCR1 expression on monocytes [ 160 ]. Hence, 
chemokines lead to the recruitment of mono-
cytes, which produce more chemokines to further 
attract more monocytes as well as other leuko-
cytes into the tumor site. CCL5 enhances antitu-
mor immune responses against tumors [ 161 ], 
while it promotes tumorigenesis and metastases 
in some conditions [ 162 ,  163 ]. These fi ndings 
suggest dual function of CCL5 in cancer and 
antitumor immunity. 

 Taken together, the dynamic interactions 
between tumor cells and innate immune cells 
governed by chemokine networks play a pivotal 
role in the regulation of tumor immunosurveil-
lance and tumorigenicity (Fig.  3.2 ).    
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3.5    Concluding Remarks 

 Innate immune system serves as the fi rst line of 
defense against pathogens and cancers. In tumors, 
innate immune cells are attracted into the tumor 
site. Factors released from stressed cells at the 
tumor microenvironment, such as PAMPs and 
DAMPs, are recognized by another set of recep-
tors, including TLRs, RLRs, and NLRs, which 
trigger distinct innate signaling pathways; these 
pathways lead to maturation, activation, as well 
as production of cytokines and chemokines from 
immune cells, to attract more immune cells into 
the tumor site and initiate an immune response 
against tumor cells. Thus, a deep knowledge of 
the role of innate immune system in tumor 
 immunity and tumorigenesis is critical to develop 
new strategies for the immunotherapy of cancer.   
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4.1            Introduction 

 In the 1960s, B cells were fi rst defi ned in birds 
when researchers found that removal of the bursa 
in newly hatched chicks severely impaired the 
ability of the adult birds to produce Abs [ 1 ,  2 ]. 
A decade later, it was found that mammalian B 
cells are derived from bone marrow and develop 
into plasma cells that are the source of antibodies 
(Abs). Over the years, most studies on B cell 
function in immune response have focused on 
antigen presentation and antibody production. 
However, recent advances in B cell biology have 
capitalized on old fi ndings and demonstrated that 
B cells can also act as effector cells or as regula-
tory cells [ 3 ,  4 ]. 

 B cells are often overlooked in tumor immu-
nology, likely because of the common notion that 
humoral and cytolytic responses work in opposi-
tion. The fi eld of tumor immunology has focused 
on CD8 +  T cells due to their ability to directly kill 
tumor cells, as well as the close association 
between tumor-infi ltrating CD8 +  T cells and can-
cer patients’ survival [ 5 ]. To date, the role of B 
cells in tumor immunity has remained largely 
elusive. Results from different research groups 
are somewhat controversial. In this chapter, we 
review the roles of B cells in tumor immunology, 
which may either positively or negatively affect 
tumor growth and patient outcomes.  

4.2     CD40-Activated B 
(CD40-B) Cells  

 CD40-activated B (CD40-B) cells are thought to 
be an excellent source of professional antigen- 
presenting cells (APCs) for antigen-specifi c tumor 
immunotherapy. They have demonstrated potent 
effects on cellular immunotherapy of  cancers 
[ 6 – 17 ]. CD40-B cells induce potent  expansion of 
antigen-specifi c CD4 +  and CD8 +  T cells, includ-
ing naïve CD8 +  T cells [ 6 – 9 ,  12 ,  16 ]. One reason 
that dendritic cells (DCs) are considered as excel-
lent APCs in tumor immunotherapy is that they 
can powerfully prime naïve T cells, while rest-
ing B cells cannot. Resting B cells poorly express 
costimulatory molecules, resulting in immune 

tolerance regarding the induction of naïve T 
cells. Recent studies have shown that activa-
tion of mouse and human B cells using CD40L 
 in vitro  upregulates the expression of major his-
tocompatibility complex (MHC) I, MHC II, and 
costimulatory molecules on B cells [ 6 – 9 ,  13 ,  14 , 
 16 ]. These B cells present exogenous antigens by 
MHC class I or II molecules and stimulate anti-
gen-specifi c T cells [ 7 ,  8 ]. CD40-B cells induce 
T cell proliferation, interferon-γ (IFN-γ) produc-
tion, and specifi c cytotoxic T lymphocyte (CTL) 
responses [ 6 – 9 ,  11 – 15 ]. In mouse models, it has 
been shown that CD40-B cells directly present 
antigen to naïve CD8 +  T cells, in order to induce 
the generation of potent T effectors which are 
able to secrete cytokines and kill target cells [ 16 ]. 
Moreover, CD40-B cells express the full lymph 
node homing triad CD62L, CCR7/CXCR4, and 
leukocyte function antigen-1 (LFA1), suggesting 
that they could co-localize with T cells in the T 
cell-rich areas of secondary lymphoid organs [ 11 , 
 15 ]. This will facilitate CD40-B cell and T cell 
contact for antigen presentation. 

 Using a metastatic mouse model, Li et al. pro-
vided direct experimental evidence that the aug-
mented antitumor activity by anti-CD40 
monoclonal antibody (mAb)-stimulated tumor- 
draining lymph node (TDLN) cells requires the 
presence of APCs, e.g., B cells as well as DCs. 
They found that anti-CD40 mAb augments anti-
tumor responses of TDLN cells via ligation to 
CD40 on both B cells and DCs [ 17 ]. 

 Typically, TDLN cells are composed of 
approximately 60 % CD3 +  T cells, 30 % CD40 +  B 
cells, and 5 % DCs. In a murine sarcoma model, 
anti-CD3-/anti-CD40-activated MCA205 TDLN 
T cells secreted signifi cantly higher amount of 
IFN-γ in an antigen-specifi c manner (in response 
to MCA205 tumor, but not to MCA 207 tumor), 
in comparison with solely anti-CD3-activated 
TDLN T cells (Fig.  4.1a ). However, when B cells 
were depleted from MCA205 TDLN cells, anti-
 CD3/anti-CD40 activation could not increase the 
IFN-γ anymore. This effect is very similar to DC 
depletion (Fig.  4.1a ).  In vivo , adoptive transfer of 
anti-CD3-/anti-CD40-activated MCA205 TDLN 
T cells mediated signifi cantly higher MCA205 
tumor regression in a pulmonary metastasis 
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 setting, compared to anti-CD3-alone-activated 
TDLN T cells (Fig.  4.1b ). However, B cell 
removal signifi cantly reduced the therapeutic 
effi cacy conferred by CD40 engagement, and so 
did DC removal. Together, these studies indicate 
that B cells, as well as DCs, are required in the 
generation of potent antitumor T effector cells 
from TDLN cells via simultaneous targeting of 
CD3 on T cells and CD40 on B and dendritic 
cells.

   In a separate study, Iuchi et al. reported that 
host B cells were required for adoptive trans-
ferred T cells to mediate optimal antitumor 
immunity [ 18 ]. Tumor-bearing mice were treated 
with adoptive transfer of T cells accompanied 
with IL-2 and IL-21 administration in wild-type 
and B cell knockout (B −/− ) animals, respectively. 

They found that tumor growth inhibition was 
 signifi cantly diminished in the B cell-defi cient 
mice after T cell + IL-2 + IL-21 combined ther-
apy (Fig.  4.2 ).

   In contrast to DCs, large numbers of B cells 
can be obtained from the blood of patients after 
ex vivo expansion (up to 1,000-fold) in the 
presence of CD40L [ 6 ]. For example, only 
about 10 6  DCs can be generated from 10 ml of 
blood, while 10 9 –10 10  B cells can be produced 
from the same volume of the blood sample. 
Additionally, CD40-B cells can be continu-
ously expanded in long-term culture (>65 days) 
without the loss of APC functionality [ 6 ]. 
Therefore, CD40-B cells have the advantage 
over DCs in terms of isolation, generation, and 
long-term expansion. These characteristics 
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  Fig. 4.1    Anti-CD40 mAb 
augmented antitumor 
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make CD40-B cells a promising alternative as 
cell-based vaccines. 

 In current B cell vaccine preparations, 
 activated B cells can be loaded with antigens by 
pulsing with peptides, proteins, tumor lysates, or 
by transfection with DNA or RNA, or transduc-
tion with viral vectors [ 9 ,  10 ,  19 ]. Coughlin et al. 
loaded RNA on CD40-B cells from pediatric 
patients. Vaccination using these B cells resulted 
in simultaneous targeting of multiple antigenic 
epitopes and induced CTLs [ 9 ]. Chung et al. 
reported that B cells stimulated with iNKT 
(CD1d-restricted invariant T cells) ligand 
 alpha- galactosylceramide (alphaGalCer) could 
directly prime CTLs and generate long-lasting 
cytotoxic antitumor immunity  in vivo  [ 10 ]. 
Furthermore, Garbe et al. reported that semi- 
allogeneic fusions of microsatellite instability 
(MSI) tumor cells with B cells primed B cells to 
induce MSI- specifi c T cell responses [ 19 ].  

4.3     Tumor Killer B Cells 

 B cells can directly kill tumor cells through anti-
body (Ab)-independent mechanisms [ 20 ]. Recent 
studies have shown that B cells express death- 
inducing ligands and can therefore mediate cell 
death under many circumstances. Evidence has 
emerged that B cells express Fas ligand (FasL), 
tumor necrosis factor-related apoptosis-inducing 

ligand (TRAIL), programmed death ligands 1 
and 2 (PD-L1 and PD-L2), and granzyme B 
(GrB), which are potentially involved in B cell- 
mediated direct cytotoxicity against tumor cells 
[ 21 – 29 ]. 

 Due to the well-known fact that B cells can 
produce Abs which lead to CDC and ADCC, as 
well as the recent fi ndings that B cells may 
kill tumor cells directly through antibody- 
independent mechanisms, it is hypothesized that 
appropriately sensitized and activated B cells can 
function as effector cells to mediate antitumor 
immunity. Indeed, Li et al. [ 30 ] proved that 
 in vivo  sensitized and  in vitro  activated B cells 
could mediate tumor regression in cancer adop-
tive immunotherapy.  In vivo  sensitized TDLN 
cells were activated and expanded  in vitro  with 
LPS/anti-CD40, resulting in B cell proliferation 
and differentiation. These activated B cells were 
then adoptively transferred into tumor-bearing 
recipients for therapy. These tumor-primed and 
tumor-activated B cells signifi cantly reduced 
lung metastases in an adoptive immunotherapy 
model (Fig.  4.3 ). Furthermore, total body irradia-
tion (TBI) could enhance the antitumor activity 
of the adoptively transferred B cells. This study 
represents one of the early studies demonstrating 
that effector B cells could confer antitumor 
immunity after adoptive transfer into tumor- 
bearing mice [ 30 ].
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   Using a murine 4T1 pulmonary metastatic 
model, it was found that adoptive transfer of 
4T1-primed and LPS-/anti-CD40-activated 
TDLN B cells signifi cantly inhibited 4T1 pulmo-
nary metastasis in tumor-bearing mice [ 31 ] 
(Fig.  4.4 ). The effi cacy mediated by B cells was 
comparable to that mediated by an equal number 
of T cells, which served as a positive control in 
the experiment (Fig.  4.4a ). Of note, adoptively 
transferred 4T1 TDLN T + B cells mediated inhi-
bition of the spontaneous pulmonary metastasis 
of 4T1 in a dose-dependent manner (Fig.  4.4b ).

   This study also showed that activated 4T1 
TDLN B cells caused tumor cell lysis directly 
 in vitro  in the absence of Ab and other effector 
cells and this direct cytotoxicity was tumor spe-
cifi c (Fig.  4.5 ). In these experiments, 4T1 mam-
mary carcinoma murine tumor-primed TDLN B 
cells were activated with LPS and anti-CD40 
mAb, washed thoroughly, and then co-cultured 
with 4T1 tumor cells or irrelevant tumor controls, 
Renca (renal cell carcinoma) and TSA (sarcoma). 
The effector B cells killed 4T1 cells directly in a 
dose-dependent way and were signifi cantly more 
effective than their killing of the control tumors. 
These data support the conclusion that tumor 
antigen-primed and  in vitro  activated B cells are 
able to kill tumor cells independent of Ab or 
complement. However, the mechanism(s) by 
which the killer B cells lyse tumor cells directly 
in such a setting remains to be identifi ed.

   In line with these fi ndings, Kemp et al. dem-
onstrated that CpG-A oligodeoxynucleotide 
(CpG-A ODN) stimulation of human PBMCs 
leads to high levels of functional TRAIL/Apo-2L 
expression on B cells, and these B cells mediate 
TRAIL-/Apo-2L-dependent tumor cell lysis [ 25 ]. 

 Additional studies support the observation 
that B cell can function as effector cells in antitu-
mor responses. For example, Penafuerte et al. 
reported that B effector cells activated with a 
 chimeric protein consisting of IL-2 and the 
 ectodomain of TGF-β receptor II (also known as 
FIST) induce potent antitumor immunity [ 32 ]. 
In this study, the B effector cells were 
 characterized by the production of TNFα and 
IFN-γ and potent antigen presentation properties 
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  Fig. 4.4    ( a ) Adoptively transferred 4T1 TDLN B cells 
mediated effective inhibition of the spontaneous pulmo-
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[ 32 ]. In addition, Forte et al. found that 
 administration of a specifi c CD73 inhibitor, ade-
nosine 5′-(α, β-methylene) diphosphate (APCP), 
to melanoma-bearing mice induced signifi cant 
tumor regression [ 33 ]. They observed that after 
APCP administration, the presence of B cells in 
the melanoma tissue was more than that observed 
in control mice. This was associated with the pro-
duction of IgG2b within the melanoma, implying 
a critical role for B cells in the antitumor activity 
of APCP [ 33 ]. Together, these studies suggest 
that the mechanisms underlining B cell-mediated 
antitumor immunity may involve multiple cellu-
lar and molecular events, as well as direct killing 
of the tumor cells.  

4.4     Tumor-Infi ltrating B Cells 
(TIL-Bs) in Cancer 

 Tumor-infi ltrating B cells (TIL-Bs) have 
revealed controversial roles in antitumor immu-
nity. They have been found in breast cancer 
 [ 34 – 36 ], ovarian cancer [ 37 ], lung cancer [ 38 ], 
colorectal cancer [ 39 ,  40 ], cervical cancer [ 41 ], 
cutaneous melanoma [ 42 ], and prostate cancer 
(CaP) [ 43 ]. A few studies have indicated that 
TIL-Bs are correlated with favorable survival of 

patients [ 36 ,  37 ,  42 ,  44 ,  45 ], lower relapse rate 
[ 41 ], or low metastasis [ 42 ]. In a study on immune 
infi ltrates in high-grade serous ovarian cancer, it 
was revealed that intraepithelial CD20 +  TIL-Bs 
are associated with increased disease-specifi c 
survival [ 37 ]. Importantly, the association 
between the immune infi ltrates and survival was 
dependent on histological subtype, because 
immune infi ltrates were less prevalent in the 
other histological subtypes compared to the high-
grade serous cases [ 37 ]. In breast cancer, TIL-Bs 
are present in about 24 % of tumors and comprise 
up to 40 % of the lymphocytic infi ltrates [ 34 ]. 
TIL-Bs have been shown to undergo antigen- 
driven clonal proliferation and affi nity matura-
tion in situ [ 35 ]. Very recently, in a large patient 
cohort of different histological and biological 
subtypes, Mahmoud and colleagues provided 
evidence for a favorable outcome when high 
numbers of CD20 +  TIL-Bs were present [ 36 ]. 
Additionally, TIL-Bs may be involved in humoral 
immune response in situ. Using recombinant Ab 
cloning techniques, Hansen et al. reported an 
antigen-driven humoral immune response 
directed against β-actin exposed on apoptotic 
mammary carcinoma cells [ 46 ]. Yasuda and 
coworkers identifi ed TIL-Bs which produce 
tumor-specifi c Abs against mutated p53 [ 47 ]. 
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Maletzki et al. also reported that TIL-Bs from 
colorectal carcinoma show an activated 
 immunophenotype (CD23 + , CD80 + ) and produce 
IgGs that specifi cally bind to allogeneic target 
tumor cells [ 40 ]. 

 On the other hand, TIL-Bs may produce cyto-
kines contributing to tumor development. It has 
been reported that TIL-Bs in castration-resistant 
CaP produce lymphotoxin by an infl ammation- 
responsive IκB kinase (IKK)-β-dependent path-
way, which then in turn activates IKK-α and 
STAT3 in tumor cells to enhance hormone-free 
tumor survival [ 43 ]. In this study, B cell infi ltra-
tion was detected in 100 % of human CaP sam-
ples, while B cells were undetectable in normal 
prostate or benign prostatic hyperplasia [ 43 ]. 
Castration-resistant CaP growth was delayed in 
mice reconstituted with bone marrow from JH −/−  
mice, which lack mature B cells [ 43 ]. It was fur-
ther found that these CaP allografts exhibited 
IKK-α nuclear translocation, which was depen-
dent on IKK-β in B cells. IKK-β deletion abol-
ished lymphotoxin expression by B cells. When 
lymphotoxin-β was ablated in B cells, growth of 
castration-resistant CaP was delayed. Similarly, 
another study showed that tumor-infi ltrating T 
and B cells were not associated with long-term 
survival of patients with non-small-cell lung can-
cer [ 38 ]. 

 The roles of TIL-Bs may be complicated, 
since the tumor environment is dynamic and 
changes during tumor onset and progression. 
TIL-Bs need to contact other immune cells or 
tumor cells to be activated or regulated, so their 
contributions to immune responses are likely to 
vary in different cancers and during the course of 
cancer.  

4.5     Resting B Cells 
and Regulatory 
B Cells in Cancer 

 In contrast to activated B cells, there is abundant 
evidence indicating that resting B cells can 
 promote the development or progression of 
 cancer. Resting B cells are small B cells in the G0 
stage of cell cycle, prior to activation. Studies 
have shown that B cell-defi cient mice exhibit 

enhanced T cell antitumor activity and signifi cant 
improvement in survival rate [ 48 – 52 ]. It has been 
reported that there are increased effector T cells 
[ 48 ], increased T cell infi ltration of tumors [ 52 ], 
higher Th1 cytokine and antitumor CTL response 
[ 49 ,  51 ,  52 ], and even reduced T regulatory cell 
(Treg) frequencies [ 53 ] in these B cell-defi cient 
mice. Some studies explored the possible mecha-
nisms involved. B cells present in the priming 
phase result in disabled CD4 +  T cell help for 
CTL- mediated tumor immunity [ 51 ]. B cells 
 produce IL-10 which can repress antitumor 
immunity [ 49 ,  54 ]. Similarly, Abs were shown to 
promote primary tumor formation in a trans-
genic mouse model of infl ammation-associated 
 carcinogenesis [ 55 ]. Autoantibody responses to 
self-proteins triggered by cancer vaccines may 
infl uence the effi cacy of vaccination [ 56 ]. 
Additionally, B cells have been shown to have 
other pro-tumorigenic roles. For example, 
enhanced NK cell antitumor activity has been 
reported in B cell-defi cient mice [ 48 ,  50 ,  52 ]; 
however, the mechanisms are poorly understood. 

 We hypothesize that the effects of B cells on 
antitumor immunity depend on the presence of 
B cell subsets mainly involved under certain 
tumor conditions. In the past two decades, 
investigators have identifi ed B cell subsets 
which are capable of suppressing the immune 
response. Suppression of an immune response 
was fi rst reported in 1974 where spleen B cells 
were found to impair delayed-type hypersensi-
tivity (DTH) responses in guinea pigs [ 57 ,  58 ]. 
This fi nding led to the conclusion that DTH 
responses and T cell  function can be regulated 
by suppressor B cells. Subsequently, convincing 
data have demonstrated that IL-10-producing B 
cells, termed  regulatory B cells (Bregs) by 
Mizoguchi et al. [ 59 ], can suppress infl amma-
tory responses in experimental autoimmune 
encephalomyelitis (EAE), collagen-induced 
arthritis (CIA), and colitis [ 59 – 61 ]. Recently, 
Bregs and their potential immunomodulatory 
activities have been examined in several 
immune-related diseases. In the majority of 
these studies, the function of Bregs is dependent 
on IL-10 production, whereas the mechanisms 
are still undefi ned partly because of confl icting 
results regarding the phenotypic  characterization 
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of IL-10-producing cells. For example, the 
 following B cells have been reported as putative 
mouse Bregs: CD1d high  subset of B cells in 
chronic colitis in TCRα-defi cient mice [ 59 ], 
CD21 high CD23 low  B cells in contact hypersensi-
tivity (CHS) mouse model [ 62 ], CD21 high CD23 high  
T2-MZ precursor B cells in CIA model [ 63 ], 
CD1d high CD5 +  B cells (termed B10 cells by 
Yanaba et al.) in CHS [ 64 ] and EAE models 
[ 65 ], CD138 + CD19 +  plasmablasts in  Salmonella 
typhimurium  infection [ 66 ], and T cell Ig 
domain and mucin domain protein (TIM)-1 +  B 
cells [ 67 ]. For human, CD19 + CD24 hi CD38 hi  B 
cells have been found as putative Bregs [ 68 ,  69 ]. 

 Triggering Toll-like receptors (TLRs)  [ 70 – 72 ], 
the BCR [ 64 ], CD40 [ 73 ], or combinations 
thereof have been shown to promote IL-10 
 production by B cells. BCR-mediated Ca 2+  fl ux 
appears to be required for IL-10 production, since 
B cells defi cient in the calcium sensors stromal 
interaction molecule (STIM) 1 and STIM2 have a 
profound defect in IL-10 secretion and abrogated 
suppression abilities  in vivo  [ 74 ]. Nuclear factor 
of activated T cells (NFAT) 1, a transcription fac-
tor, is involved in Ca 2+ -dependent IL-10 produc-
tion [ 74 ]. Therefore, their proposed model for 
IL-10 production by B cells is that, after BCR 
stimulation, STIM and Orai-dependent Ca 2+  
increase by store-operated Ca 2+  entry (SOCE) 
activates calmodulin/calcineurin and then 
NFAT1, leading to IL-10 expression. In addition, 
the TLR signaling pathway is also required 
for IL-10 secretion [ 70 – 72 ]. Given that TLR 
 stimulation does not induce Ca 2+  mobilization in 
B cells, crosstalk between Ca 2+  and Ca 2+ -
independent TLR cascades may be involved in 
IL-10 production. 

 IL-10 is an immunomodulatory cytokine 
and inhibits Th1 polarization, prevents Th2 
responses, and suppresses pro-infl ammatory 
cytokine  production by monocytes and macro-
phages [ 75 ]. So far, the potential role of Bregs 
in tumor immunology is not clear, but several 
studies suggest that Bregs can negatively 
 regulate antitumor immunity. Using a mouse 
chemical carcinogenesis model, Schioppa et al. 
found that resistance to papilloma development 
in  Tnf   −/−   mice was associated with a signifi cant 
reduction in IL-10- producing B regulatory cells 

alongside an increase in IFN-γ-producing CD8 +  
T cells in the spleen [ 54 ]. In this study,  Tnf   −/−   
mice were resistant to chemical carcinogenesis 
of the skin. LPS-stimulated CD19 +  B cells iso-
lated from  Tnf   −/−   mice produced less IL-10. 
These mice had a reduced absolute number of 
IL-10 + CD19 +  B cells in their spleens, and  Tnf   −/−   
mice were defi cient for CD19 + CD21 high  B cells. 
The authors speculated that resistance to carci-
nogenesis in  Tnf   −/−   mice may result from 
increased CD8 +  IFN-γ-producing T cells and 
decreased IL-10- producing B cells. In another 
study, Horikawa et al. reported that production 
of IL-10 by Breg inhibits lymphoma depletion 
during CD20 immunotherapy in mice [ 76 ]. 
They found that adoptive transfer of 
CD1d high CD5 +  B cells (that are enriched for B10 
cells) eliminates the therapeutic benefi t of CD20 
mAbs in mouse lymphoma model. The trans-
ferred B10 cells in this model downregulated 
the expression of MHC II molecules and CD86 
on macrophages and reduced LPS-induced 
nitric oxide and TNF-α production by macro-
phages, indicating that B10 cells suppress the 
antitumor response at least partly by downregu-
lation of macrophage activity. Our unpublished 
data support that Bregs play a negative role in 
antitumor immunity. In melanoma and breast 
carcinoma models, depletion of IL-10-producing 
B cells from TDLN cells resulted in the genera-
tion of potent effector B cells which dramati-
cally inhibit tumor metastasis after adoptive 
transfer in two genetically distinct immune 
competent hosts, B6 and Balb/c mice, 
respectively. 

 Although little is known about the mecha-
nisms by which Bregs undermine effective 
 antitumor immunity, several possibilities are 
suggested by studies on infl ammation and auto-
immunity. Bregs impair Th1 immune responses. 
The initial fi nding about Th1 response regulated 
by Bregs was reported by Skok et al. [ 77 ]; they 
found that IL-10 produced by B cells is involved 
in the feedback regulation of Th1 development. 
It has been reported that Bregs suppress the Th1 
cell-mediated immune reactions in a number of 
mouse models, including EAE, CIA, CHS, and 
diabetes mellitus [ 60 ,  61 ,  64 ,  65 ,  72 ,  78 ,  79 ]. 
Fillatreau et al. reported that B cell IL-10 
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 defi ciency correlates with enhanced type I 
 autoreactivity; in addition, transfer of IL-10 +  B 
cells was found to result in resolution of EAE, 
characterized by enhanced encephalitogenic 
Th1 response [ 60 ]. Later, Lampropoulou et al. 
showed that TLR signaling in B cells suppresses 
infl ammatory T cell responses (both Th1 and 
Th17) and stimulates recovery from EAE [ 72 ]. 
Similarly, using mouse model of CIA, Mauri 
et al. showed that transfer of IL-10-producing B 
cells inhibits T helper type 1 differentiation and 
prevents arthritis development [ 61 ]. Yanaba 
et al. also revealed that CD1d high CD5 +  B cell 
transfer normalized infl ammation in CHS model 
[ 64 ]. Using NOD mouse model of type 1 diabe-
tes (T1D), Hussain et al. found that BCR-
stimulated B cells produce IL-10 and attenuate 
islet infl ammation by polarizing CD4 +  T cell 
response toward a Th2 phenotype [ 79 ]. 

 Bregs induce the differentiation of Tregs. 
Given that μMT −/−  B cell-defi cient mice display 
reduced Treg frequencies in comparison with 
wild-type mice [ 53 ] and that these mice develop 
exacerbated EAE and Ag-induced arthritis (AIA) 
[ 60 ,  80 ], a role for Bregs in modulating Tregs was 
proposed. Several disease models have demon-
strated that IL-10 produced by Bregs is important 
for the generation and/or maintenance of Tregs. 
Sun et al. reported that after oral tolerance 
 induction, Treg cells increase much more in WT 
than in μMT −/−  mice. However, adoptive transfer 
of B cells before treatment normalized Treg 
cell development in μMT −/−  mice [ 81 ]. In this 
study, they found that sublingual tolerization 
with OVA/CTB (Ag conjugated to cholera toxin 
B subunit) enhances the tolerogenic activity of B 
cells and their production of IL-10, which was 
associated with the generation of Ag-specifi c 
Foxp3 + CD25 + CD4 +  Tregs [ 81 ]. This relationship 
between Bregs and Tregs is further supported 
by the results from mouse models of airway 
 sensitization. These results showed that Bregs 
prevent and reverse allergic airway infl ammation 
via FoxP3 +  T regulatory cells [ 82 ,  83 ]. 
Additionally, Bregs can induce the differentiation 
of T regulatory 1 (Tr1) cells [ 84 – 86 ]. Gray et al. 
reported that autoimmune infl ammation could be 
protected by the induction of Bregs which induce 
T cell-derived IL-10 [ 84 ]. Blair et al. used the 

transitional 2 immature (T2) B cells stimulated 
with agonistic anti-CD40 (T2-like Bregs) to 
 convert autologous effector T cells into Tr1 cells 
[ 86 ]. Sayi et al. also showed that B cells activated 
by  Helicobacter  TLR-2 ligands produce IL-10 
and induce IL-10-producing CD4 + CD25 +  Tr1 
cells depending on TCR signaling and a direct 
T-B cell interaction through CD40/CD40L and 
CD80/CD28 pathways [ 85 ].  

4.6     Concluding Remarks 

 B cells are phenotypically and functionally het-
erogeneous. Characterization of B cell subpopu-
lations is shown in Table  4.1 . B cells play multiple 
roles in tumor immunity (Fig.  4.6 ). On one hand, 
accumulating literature indicate that B cells are 
signifi cantly involved in antitumor responses. In 
this regard, B cells present tumor antigens to T 
cells to generate antitumor CTLs. Upon tumor 
antigen stimulation, B cells can differentiate into 
plasma cells to produce antibodies to target tumor 
cells via ADCC and/or CDC. In addition, B cells 
may act as killer cells to directly cause tumor cell 
lysis in the absence of antibodies. B cells migrate 
to tumor tissue and become TIL-Bs which may 
induce humoral immune response or act as killer 
cells in situ. On the other hand, regulatory B cells 
have been described which downregulate antitu-
mor responses by producing immunomodulatory 
cytokine IL-10, suppressing Th1 immune 
responses, and enhancing Treg and Tr1 responses. 
Further characterization of B cell subsets respon-
sible for these confl icting functions demonstrated 
in tumor immunity and understanding of the 
molecular mechanisms involved would help 
develop novel clinical strategies for cancer 
immunotherapy.
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   Table 4.1    Phenotypic characterization of B cell subpopulations   

 Marker  Source  References 

 Resting B cells  Human  CD19 + CD38 − IgD + CD27 −   Tonsils  [ 87 ,  88 ] 
 CD38 − IgM + IgD + CD27 −   Blood  [ 88 ] 

 Mouse  IgM low IgD high HSA low CD21 int CD23 bright Mel14  Lymph node  [ 89 ] 
 (CD62L) bright CD44 int CD69 −  
 IgM high IgD high CD23 bright   Spleen  [ 90 ] 

 CD40 B cell  Human  CD19 + CD38 + CD80 + CD86 + CD71 +   Tonsils  [ 87 ] 
 CD95 + CPM(carboxypeptidase-M) +  
 CD19 + CD23 + CD54 + CD58 + CD80 +   Blood  [ 6 ] 
 CD86 + MHCI high MHCII bright  

 Mouse  B7.1 high B7.2 high ICAM + MHCI high   Spleen  [ 90 ,  91 ] 
 MHCII bright  

 Putative Breg  Human  CD19 + CD24 high CD38 high   Blood  [ 68 ,  69 ] 
 Mouse  B220 + CD1d high CD21 intermediate(int)   Lymph nodes a   [ 59 ] 

 CD62 low IgM int CD23 high  
 B220 + CD21 high CD23 low   Spleen in CHS model  [ 62 ] 
 B220 + CD21 high CD23 high  IgM bright CD1d high   Spleen in CIA model  [ 63 ] 
 CD1d high CD5 +  CD19 +  B220 +   Spleen in CHS model  [ 64 ] 
 CD1d high CD5 +  CD19 +   Spleen in EAE model  [ 65 ] 
 CD138 + CD19 +   Spleen of mice infected 

with  Salmonella  
 [ 66 ] 

 TIM-1(T cell Ig domain and mucin domain 
protein) + CD19 +  

 Spleen  [ 67 ] 

 TIL-Bs  Mostly unknown. Related to cancer types and progression 
 Human  CD19 + CD20 +  CD23 + CD80 +   From colorectal 

carcinomas 
 [ 40 ] 

 Killer B  Unknown 

   a From TCRα-defi cient mice  
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5.1            Introduction 

 T cells are divided into two major functional 
types: helper and cytotoxic T cells. Helper T cells 
(CD4 + ) release an array of cytokines and orches-
trate diverse immune responses, which integrate 
both adaptive and innate effector mechanisms. 
Cytotoxic T cells (CD8 +  effector T cells) are pri-
marily involved in the recognition and elimina-
tion of body cells compromised by intracellular 
pathogens or oncogenic transformation. 

 Thus, T cells are essential components of the 
immune system, which have been the major 
focus of immunotherapeutic strategies to boost 
endogenous antitumor immunity. However, 
despite homing to tumor sites, infi ltrating T cells 
seldom control tumor growth, as a consequence 
of the tumor microenvironment, which contains a 
wide array of suppressive mechanisms that allow 
tumors to escape T cell effector functions. 

 Even when T cell anergy has been considered 
responsible for T cell hyporesponsiveness in can-
cer patients, cancer is also regarded as a chronic 
disease, similar to chronic viral infections, where 
T cells are continuously stimulated. Thus, with 
chronic stimulation, tumor-specifi c T cells grad-
ually become less functional until they undergo 
cell death, a phenomenon known as T cell 
exhaustion. This chapter will focus on the latter 
mechanism and its participation in cancer- 
induced T cell dysfunction.  
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5.2     T Cell Activation 

 T cell activation requires two signals delivered 
by antigen-presenting cells (APCs). The fi rst 
signal involves the presentation of antigen by 
APCs, in the form of peptides bound to MHC 
class I or class II molecules, to the T cell recep-
tor (TCR), expressed on the surface of the T cell. 
The second signal, or costimulatory signal, stim-
ulates T cells in conjunction with the antigen. 
The molecules expressed on APCs engage their 
corresponding costimulatory receptors on the 
surface of T cells generating costimulatory sig-
nals. CD80 (B7-1) and CD86 (B7-2) are well-
characterized costimulatory signal molecules, 

which interact with CD28 expressed on the 
T cell membrane [ 1 ] (Fig.  5.1 ). CD28 is the 
primary costimulatory molecule for naïve T 
cells; this molecule is essential for initiating 
T cell responses. The interaction of CD80 and 
CD86 with CD28, together with TCR signal-
ing, promotes the expansion and differentiation 
of antigen-stimulated T cells into effector and 
memory cells. The interaction of CD28 with its 
ligands (1) enhances the production of interleu-
kin-2 (IL-2) and other cytokines, (2) promotes 
energetic metabolism, (3) induces the cell cycle 
progression, (4) promotes T cell survival, and 
(5) maintains T cell responsiveness upon subse-
quent restimulation [ 1 ].

  Fig. 5.1    T cell activation 
requires recognition of the 
antigen and costimulatory 
signals. Infl ammation 
generated by tissue damage 
or infections activates 
antigen-presenting cells 
( APCs ) and stimulates the 
expression of costimulatory 
molecules, such as CD80/
CD86. Presentation of the 
antigen to the T cell receptor 
( TCR ), in the context of major 
histocompatibility complex 
( MHC ) molecules and CD80/
CD86 that interact with 
CD28, stimulates the 
expansion and differentiation 
of naïve T cells ( top panel ). 
Resting APCs express few or 
no costimulatory molecules 
and fail to activate T cells, 
this leads to anergy ( middle 
panel ). CTLA-4 is a 
coregulatory molecule that 
binds CD80 and CD86 and is 
upregulated on activated T 
cells. CD80/CD86-CTLA-4 
interactions inhibit T cell 
responses and mediate 
tolerance       
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   Although costimulatory molecules were 
initially identifi ed as stimulators of T cell 
responses, some costimulatory (coregula-
tory) receptors inhibit T cells [ 1 ]. Cytotoxic 
T-lymphocyte- associated antigen-4 (CTLA-4) 
is a CD28 homolog that also binds CD80 and 
CD86. Nevertheless, CTLA-4 expression is 
inducible after T cell activation, and is involved 
in the induction and maintenance of tolerance, as 
its ligation inhibits IL-2 production and blocks 
cell cycle progression [ 1 ]. 

 After the discovery of homologs of CD28/
CTLA-4 and their ligands, many other coregu-
latory molecules have been identifi ed, some of 
which include the inducible T cell costimula-
tor (ICOS or CD278) with its ligand CD275 
(ICOS-L, B7h, B7-RP), the inhibitory pro-
grammed death-1 (PD-1, CD279) with its 
ligands PD-L1 (B7-H1, CD274) and PD-L2 
(B7-DC, CD273), and the B- and T-lymphocyte 
attenuator (BTLA, CD272) which binds the 
herpesvirus entry mediator (HVEM). BTLA 
is an additional receptor of the immunoglobu-
lin superfamily that negatively regulates T cell 
activation. In addition, HVEM interacts with 
another negative regulator of T cells, CD160. 
Recent studies of the lymphocyte activation 
gene-3 (LAG-3, CD223) suggest that this mol-
ecule also plays an important role in the regula-
tion of T cell responses. Moreover, the T cell 
immunoglobulin domain and mucin domain-3 
(TIM-3), with its ligand galectin-9, are involved 
in terminating Th1 cell responses and establish-
ing tolerance [ 2 ,  3 ]. 

 T cells that recognize antigen in the absence 
of costimulation either fail to respond and 
undergo cell death or enter a state of unrespon-
siveness, a phenomenon known as anergy. Thus, 
costimulation is a key factor in the outcome of T 
cell interactions with the antigen. Signifi cant 
efforts have been undertaken to characterize 
costimulatory molecules in order to augment 
antitumor responses; recent evidence has demon-
strated the importance of coregulatory molecules 
in the inhibition of immune responses. Thus, 
interfering with these regulatory pathways has 
gained interest as a potential strategy for cancer 
therapy [ 4 ].  

5.3     T Cell Anergy 

 T cell anergy induces peripheral tolerance; this 
mechanism protects the host from autoimmune dis-
eases. In addition, anergy has been suggested to 
play an important role in the induction of T cell dys-
function in cancer patients. T cell anergy is a toler-
ance mechanism in which, after antigen encounter, 
the T cell is intrinsically and functionally inacti-
vated [ 5 ]. The cell remains alive in this hyporespon-
sive state for an extended period of time. Anergic T 
cells neither produce nor respond to proliferative 
signals and are unable to exert effector functions, 
such as cytolysis or cytokine secretion. A character-
istic of anergy is that it must be cell autonomous, 
which distinguishes this process from immunoregu-
lation mediated through other regulatory cells, such 
as regulatory T cells (Tregs) [ 5 ,  6 ]. 

 There are at least fi ve distinct sets of circum-
stances that lead to T cell anergy [ 5 ,  7 ]: (1) TCR 
ligation in the absence of full costimulation; (2) 
exposure to partial agonists, peptides with minor 
sequence differences from native agonist antigenic 
peptides that exhibit reduced avidity for TCR liga-
tion; (3) full signaling without IL-2 receptor-
driven cell division; (4) TCR ligation in the 
presence of IL-10 or transforming growth factor-β 
(TGF-β); and (5) anergy induced through CTLA-4 
or other coregulatory molecules (Fig.  5.1 ). 

 Thus, anergy is the consequence of factors 
that negatively regulate proximal TCR-coupled 
signal transduction, together with active tran-
scriptional silencing, which is reinforced through 
epigenetic modifi cations [ 8 ]. This state of nonre-
sponsiveness is molecularly distinct from T cell 
exhaustion. T cell anergy is induced upon the fi rst 
encounter with the antigen and is quickly initi-
ated, in contrast with T cell exhaustion, which 
is progressive. Gene expression profi les show 
that anergy and exhaustion are partially distinct. 
Genes, such as  Rnf128  ( Grail ),  Egr2 , and  Egr3 , 
are upregulated in anergic but not in exhausted 
T cells, whereas NFAT is upregulated under 
both conditions [ 9 ]. The detailed characteriza-
tion of the differences between anergy and T cell 
exhaustion will have important implications for 
therapeutic interventions in immune- mediated 
diseases and chronic infections.
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5.3.1       T Cell Anergy in Cancer 

 Anergy has been proposed to play a role in the 
impairment of T cell function in human cancers. 
Tumor cells are poor APCs, as these cells express 
antigens on MHC class I molecules but do not 
express costimulatory molecules to provide a 
second signal for full T cell activation; thus, 
tumor-infi ltrating lymphocytes (TILs) are ren-
dered anergic [ 10 ]. In addition, immature 
myeloid-derived dendritic cells (mDCs), 
 plasmocytoid dendritic cells (pDCs), myeloid-
derived suppressor cells (MDSCs), and tumor-
associated macrophages (TAMs) potentially 
induce anergy in TILs [ 8 ,  11 ,  12 ]. Several studies 
have shown that human tumor cells, mDCs, 
pDCs, MDSCs, and TAMs express high levels of 

coregulatory molecules, such as PD-L1, PD-L2, 
ICOS-L (B7-H2, CD275), and B7-H3 (CD276), 
indicating a poor costimulatory and a high inhibi-
tory anergy- promoting environment. Evidence 
that cancer induces T cell anergy comes from 
studies where the transfection of CD80 in tumor 
cells or the blockage of the B7 family coregula-
tory molecules results in reduced tumor growth 
or tumor rejection in mice models [ 2 ,  11 – 14 ]. 

 Analysis of the functional state of TILs has 
demonstrated that these cells are characterized by 
impairment of cytolytic activity, decreased cyto-
kine secretion, reduced expression of IL-2Rα 
(CD25), and diminished activation of extracellu-
lar signal- regulated kinase (ERK) after TCR acti-
vation. Thus, T cell anergy occurs in the tumor 
microenvironment of some human tumors [ 14 – 16 ]. 

  Fig. 5.2    T cell exhaustion during chronic infl ammation. 
In an acute infl ammatory process, naïve T cells are primed 
by an antigen, costimulatory molecules, and cytokines that 
promote differentiation into effector T cells. After clear-
ance of the antigen and once infl ammation is resolved, a 
subset of effector T cells differentiates to become mem-
ory cells. During chronic processes, such as viral infec-
tions, the antigen persists, and T cells go through several 

stages of dysfunction, losing effector functions (cytolysis 
and secretion of cytokines) and proliferative potential in a 
hierarchical manner. Finally, deletion of T cells by apop-
tosis occurs. As antigen load increases or CD4 +  T helper 
subpopulation decreases, T cells become more exhausted. 
Expression of coregulatory receptors is correlated with the 
level of exhaustion. The scale of each activity is presented 
from high (+++) to low (−)       
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Nevertheless, direct evidence that T cell anergy 
occurs in cancer has been diffi cult to obtain due 
to the lack of surface markers to identify anergic 
T cells [ 8 ]. 

 Based on mouse tumor models, the induction 
of antigen-specifi c T cell anergy has been sug-
gested to be an early event in the progression of 
tumors, which occurs in the equilibrium phase of 
immunoediting, before immunosuppression 
takes place in advanced tumors (escape phase) 
[ 10 ,  17 ]. However, Klein et al. showed that highly 
immunogenic tumors evade immunosurveillance 
due to antigen overload and an insuffi cient num-
ber of tumor-specifi c T cells, resulting in the 
exhaustion of the immune cells [ 18 ]. Thus, from 
a temporal perspective, T cell anergy predomi-
nantly occurs during the early stages of tumor 
progression, whereas T cell exhaustion might 
play a crucial role in T cell dysfunction during 
the late stages of cancer [ 10 ].   

5.4     T Cell Exhaustion 

 T cell exhaustion has been defi ned as a stage of T 
cell differentiation where T cells have poor effec-
tor functions, sustained coregulatory receptor 
expression, and a transcriptional state distinct 
from that of functional effector or memory T 
cells [ 19 ]. Originally, this phenomenon was iden-
tifi ed in chronic viral infections in mice and later 
in chronic viral infections in humans, e.g., human 
immunodefi ciency virus (HIV), hepatitis B virus 
(HBV), and hepatitis C virus (HCV) [ 19 – 22 ]. 
Chronic bacterial and parasitic infections have 
been demonstrated to induce T cell exhaustion; 
also, cancer has been suggested to induce a simi-
lar phenomenon [ 20 ,  23 ]. 

 During chronic infections, antigen-specifi c 
CD8 +  T cells initially acquire effector functions, 
but gradually become less functional as the infec-
tion progresses. The dysfunction of exhausted T 
cells is hierarchical, showing the initial loss of 
properties, such as cytotoxic activity, prolifera-
tive potential, and interleukin 2 (IL-2) synthesis; 
followed by diminished tumor necrosis factor-
alpha (TNF-α) secretion and subsequent loss of 
interferon-gamma (IFN-γ) production during the 

late stages of exhaustion. Finally, during the most 
extreme stages of exhaustion,  deletion of T cells 
occurs through apoptosis [ 19 ,  24 ] (Fig.  5.2 ). Like 
CD8 +  T cells, CD4 +  T cells also lose function 
during chronic infections; however, there is little 
information about the mechanisms of exhaustion 
in this T cell subpopulation [ 19 ]. 

 Exhausted T cells possess a molecular profi le 
that is distinct from those of memory, effector, 
and anergic T cells [ 9 ]. First, many membrane 
inhibitory receptors are upregulated, for instance, 
PD-1, LAG-3, and TIM-3. Second, transcription 
of genes encoding molecules involved in TCR 
signaling (such as Lck and NFATc) and cytokine 
receptors (IL7 and IL-15 receptors) are down-
regulated. Third, the pattern of genes involved in 
chemotaxis, migration, and adhesion is changed. 
Fourth, there is an altered pattern of differentia-
tion compared with memory or effector T cells. 
Finally, exhausted T cells present defi ciencies in 
translational, metabolic, and bioenergetic pro-
cesses, such as the Krebs cycle [ 9 ]. 

5.4.1     Mechanisms for Inducing 
T Cell Exhaustion 

 Immunoregulation is critical in T cell exhaustion. 
Coregulatory receptors play a key role in many 
aspects of adaptive immunity, including self- 
tolerance, prevention of autoimmunity, and can-
cer. The mechanisms of regulation through 
coregulatory receptors have not been character-
ized in detail; nevertheless, several studies sug-
gest that these receptors attenuate T cell responses 
in many ways. Accumulating evidence highlights 
the pivotal role of the PD-1/PD-L1 pathway in 
maintaining an immunosuppressive tumor micro-
environment. This pathway has been proposed to 
be the most important coregulatory pathway 
involved in T cell exhaustion [ 25 ,  26 ]. 

 A transmembrane receptor of the Ig superfam-
ily, PD-1 (CD279), is upregulated in mice chroni-
cally infected with lymphocytic choriomeningitis 
virus (LCMV) [ 25 ]. PD-1 interacts with its 
ligands PD-L1 (B7-H1, CD274) or PD-L2 (B7- 
DC, CD273), which are members of the B7 fam-
ily [ 26 ]. PD-1 is rapidly upregulated on activated 
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T cells; then, after antigen clearance, the expres-
sion of this receptor is reduced on effector T 
cells. Upon subsequent antigen stimulation, 
effector T cells show upregulated PD-1 expres-
sion. Thus, the continuous stimulation of T cells 
(naïve or effector) during chronic infections 
induces the accumulation of PD-1 +  T cells [ 19 ]. 
High levels of PD-L1 expression on APCs (or 
tumor cells) might sustain PD-1 expression on T 
cells, impair T cell effector maturation, and allow 
the progression of chronic infection [ 27 – 29 ]. 

 Studies in mouse tumor models demon-
strated that the inhibition of PD-L1 or PD-1 
using blocking monoclonal antibodies (mAbs) 
increases the cytolytic activity of CD8 +  T 
cells and reverses T cell dysfunction [ 30 ,  31 ]. 
Subsequently, Barber et al. showed that the inhi-
bition of PD-1 using anti-PD-1 mAbs in chroni-
cally infected mice enhances the proliferation 
and effector functions of exhausted T cells [ 25 ]. 
Since the publication of these seminal reports, 
many other studies have shown that PD-1 with 
its ligand (PD-L1) is crucially involved in T cell 
exhaustion in chronic human pathogen infec-
tions and cancer [ 21 – 24 ,  32 – 34 ]. 

 In addition to PD-1, many other cell surface 
inhibitory receptors also participate in T cell 
exhaustion. These coregulatory receptors regu-
late distinct cellular functions. For instance, PD-1 
pathway affects T cell survival and proliferation, 
whereas LAG-3 affects cell cycle progression, 
but has less infl uence on apoptosis [ 19 ]. Several 
receptors belonging to the tumor necrosis recep-
tor family are upregulated in exhausted T cells, 
such as Fas, TNF-R, and tumor necrosis factor- 
related apoptosis-inducing ligand (TRAIL) 
receptors; hence, these death receptors have been 
implicated in the induction of exhaustion, as T 
cells might become prone to activation-induced 
cell death (AICD) [ 19 ,  35 ,  36 ]. 

 TIM-3 is an inhibitory molecule that down-
regulates effector Th1 responses; upregulation of 
this molecule has been found in HIV-specifi c and 
HCV-specifi c CD8 +  T cells in patients with pro-
gressive HIV and HCV infections, respectively. 
Importantly, the coexpression of TIM-3 and PD-1 
has been associated with severe CD8 +  T cell 
exhaustion in terms of the proliferation as well as 

 secretion of effector cytokines, such as IFN-γ, 
TNF-α, and IL-2 [ 19 ]. Interestingly, CD8 +  T cells 
expressing both coregulatory receptors also pro-
duce the suppressive cytokine IL-10 [ 37 ]. 

 Remarkably, functional effector T cells express 
coregulatory receptors during activation; however, 
as indicated above, the prolonged and increased 
expression of multiple coregulatory receptors is 
a key feature of CD4 +  and CD8 +  T cell exhaus-
tion. However, exhausted T cells do not necessar-
ily coexpress all of the coregulatory molecules. 
The pattern as well as the level of expression of 
coregulatory receptors simultaneously expressed 
in the same CD8 +  T cell might considerably infl u-
ence the severity of dysfunction [ 38 ]. 

 Several factors, such as duration of the infec-
tion, level of antigen exposure, availability of 
CD4 +  T cell help, and the type of APCs that 
present the antigen, have been implicated in the 
severity of T cell exhaustion. Ligand availability 
for coregulatory receptors could also infl uence 
the degree of exhaustion, as well as environmen-
tal factors such as the presence of immunoregu-
latory cytokines [ 19 ]. In chronic viral infections, 
IL-10 expression is associated with T cell dys-
function [ 38 ,  39 ]. In addition, TGF-β has also 
been linked to exhaustion in chronic infections 
in humans [ 40 ,  41 ]; nevertheless, the mecha-
nisms underlying IL-10 and TGF-β-mediated T 
cell exhaustion are unclear. Interestingly, both 
cytokines are secreted by several human tumors 
[ 42 ,  43 ].  

5.4.2     Identifi cation of Exhausted 
T Cells  

 Exhausted T cells show a poorly differentiated 
phenotype (CD27 hi CD28 lo CD57 lo CD127 lo CCR7 - 
CD45RA  +  or CD27 + CD45RO + ) correlated with T 
cell dysfunction. Although PD-1 upregulation in 
T cells was initially considered as a hallmark of T 
cell exhaustion, this molecule is upregulated 
along with activation markers, such as CD38 or 
HLA-DR [ 44 ]. In healthy adults, the percentage 
of PD-1 +  cells varies from 40 to 80 % of 
(CCR7 +/− CD45RA − ) memory T cells; remark-
ably, these cells do not exhibit characteristics of 
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exhaustion [ 45 ]. Thus, PD-1 is also associated 
with T cell activation and differentiation. 

 Many cell surface coregulatory receptors are 
expressed in exhausted T cells. LAG-3, TIM-3, 
CD244 (2B4), CD160, CTLA-4, and the recently 
described B- and T-lymphocyte attenuator 
(BTLA) are coexpressed in antigen-specifi c CD8 +  
T cells during chronic infection. The pattern and 
level of coregulatory receptors simultaneously 
expressed in the same CD8 +  T cell consider-
ably infl uence the severity of dysfunction [ 38 ]. 
However, depending on the chronic infections or 
cancer, exhausted T cells might express a differ-
ent pattern of coregulatory molecules. 

 Genomic strategies have provided a molecular 
profi le for exhausted T cells. These genomic 
studies support the notion that T cell exhaustion 
represents a particular state of differentiation, 
different from that of effector or memory T cells 
[ 9 ,  19 ]. 

 Several transcriptional pathways have been 
associated with T cell exhaustion. The increased 
expression of transcriptional repressor Blimp-1 is 
associated with the upregulation of many coregu-
latory receptors (PD-1, LAG-3, CD160, and 
CD244). In addition, the transcription factor 
NFATc1 (NFAT2) is also upregulated but shows a 
dysregulated function [ 9 ]. The transcription fac-
tor T-bet also plays a role in protection against T 
cell exhaustion, as T-bet promotes terminal dif-
ferentiation after acute infection, and the 
increased expression of this transcription factor 
inhibits the expression of coregulatory receptors 
during chronic viral infection. T-bet expression is 
downregulated through persistent antigenic stim-
ulation, resulting in T cell exhaustion [ 46 ].   

5.5     T Cell Exhaustion in Cancer 

 Cancer and chronic viral infections have been 
thought to share similar mechanisms in establish-
ing high antigen load and an immunosuppressive 
environment. However, there is a fundamental 
difference between both diseases: viral antigens 
are exogenous and extremely immunogenic, 
whereas tumor antigens are self-molecules that 
are weakly immunogenic. Thus, compared with 

tumor-specifi c T cells, virus-specifi c T cells are 
more frequent and easily detectable, facilitating 
the ease in identifi cation, phenotypic character-
ization, and isolation of T cells [ 10 ]. However, in 
the tumor microenvironment, infi ltrating T cells 
become dysfunctional and show reduced effector 
functions. Several reports suggest that PD-L1 
expression on tumor cells plays an important role 
in tumor-induced T cell dysfunction. PD-L1 
membrane expression has been observed using 
immunohistochemistry on many human tumors, 
such as melanoma, lung, larynx, colon, breast, 
cervix, and stomach [ 26 ]. In breast, esophageal, 
gastric, and renal carcinomas, the increased 
expression of PD-L1 on the surface of tumor 
cells is strongly associated with poor prognosis 
[ 26 ,  47 ]. Thus, T cell exhaustion has been pro-
posed as a mechanism for inducing T cell dys-
function through the PDL-1/PD-1 pathway. 
However, as previously indicated, PD-1 expres-
sion cannot be considered as the sole marker of T 
cell exhaustion in chronic diseases and cancer; 
hence, other markers must be considered. 

 In human metastatic-melanoma lesions, TILs 
show upregulation of PD-1 expression, accompa-
nied with reduced production of IFN-γ TNF-α, and 
IL-2. Both tumor-infi ltrating CD8 +  T cells, par-
ticularly MART-1-specifi c, and tumor- infi ltrating 
CD4 +  T cells show signifi cantly higher levels of 
PD-1 expression than CD8 +  and CD4 +  T cells 
from peripheral blood and normal tissues from 
cancer patients. In addition, a large proportion 
of CD8 +  T cells from TILs were PD-1 + CTLA-4 +  
cells compared with normal tissues and blood. 
Furthermore, PD-1 + CD8 +  cells from TILs lacked 
CD25 as well as IL-7RA expression, suggesting 
that these cells were unable to proliferate, pro-
duce effector cytokines, and differentiate into 
memory cells [ 48 ]. PD-1 + NY-ESO-1-specifi c 
CD8 +  T cells, from patients with advanced mela-
noma, upregulate TIM3 expression and are more 
dysfunctional than TIM3 - PD-1 +  and TIM3 - PD-
1 − NY-ESO-1- specifi c CD8 +  T cells, producing 
less IFN-γ, TNF-α, and IL-2 [ 49 ]. 

 Derré et al. showed that tumor antigen 
(Melan-A/Mart-1)-specifi c CD8 +  T cells express 
high levels of BTLA and are susceptible to func-
tional inhibition through its ligand HVEM [ 50 ]. 
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In addition, Baitsch et al. recently showed that in 
melanoma, tumor antigen-specifi c CD8 +  T cells 
with effector phenotypes simultaneously express 
four or more of the inhibitory receptors BTLA, 
TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1, or 
CTLA-4 [ 51 ]. Moreover, tumor antigen-specifi c 
CD8 +  T cells present a large variety of genes with 
a similar genetic profi le as that of exhausted T 
cells from chronic viral infections [ 52 ]. Taken 
together, these reports show that tumor antigen- 
specifi c CD8 +  T cells are exhausted in melanoma 
patients. 

 Additional evidence for T cell exhaustion in 
other cancers comes from studies in patients with 
ovarian cancer. Matsusaki et al. reported that 
NY-ESO-1-specifi c CD8 +  T cells, from the 
peripheral blood of patients with ovarian cancer, 
show impaired effector functions along with 
coexpression of the inhibitory molecules LAG-3 
and PD-1. The expression of LAG-3 and PD-1 on 
the surface of CD8 +  T cells is upregulated through 
IL-10, IL-6, and tumor-derived APCs. In addi-
tion, LAG-3 + PD-1 + CD8 +  T cells are defi cient in 
IFN-γ/TNF-α secretion compared with LAG- 
3  + PD-1 −  or LAG-3 − PD-1 −  subsets [ 53 ]. 

 In hepatocellular carcinoma, PD-1 + CD8 +  T 
cells are higher in tumor tissues than in non- 
tumor tissues, presenting decreased proliferative 
abilities as well as effector functions, as demon-
strated by reduced granule and cytokine expres-
sion compared with PD-1 − CD8 +  T cells [ 54 ]. 
Nevertheless, no other marker of T cell exhaus-
tion was analyzed. 

 PD-L1 expression is upregulated in Hodgkin 
lymphoma (HL) and several T cell lymphomas, 
but not in B cell lymphomas. In addition, PD-1 is 
upregulated in TILs as well as peripheral blood 
T cells from HL patients and the blockade of the 
PD-1 pathway restores IFN-γ production in 
T cells [ 55 ]. Moreover, LAG-3 is expressed on 
TILs from patients with this malignancy [ 56 ]. 
Taken together, these reports suggest that TILs 
from patients with HL are exhausted. 

 In patients with chronic lymphocytic leuke-
mia (CLL), CD8 +  and CD4 +  effector T cells show 
the increased expression of CD244, CD160, and 
PD-1, with the expansion of the PD-1 +  BlimpH1 
subset. CD8 +  T cells from CCL patients show 

defects in proliferation and cytotoxicity, but with 
increased production of IFN-γ and TNF-α, nor-
mal production of IL-2, and increased expression 
of T-bet. Thus, although CD8 +  T cells show fea-
tures of T cell exhaustion, these cells retain the 
ability to produce cytokines [ 57 ]. However, head 
and neck cancers that are positive for human pap-
illomavirus (HPV) present a high infi ltration of 
PD-1 +  T cells, and the numbers of PD-1 +  cells are 
positively associated with a favorable clinical 
outcome. Nevertheless, these PD-1 +  T cells 
express activation markers, 50 % of this popula-
tion lack TIM-3 expression, and are functional 
after the blockade of the PD-1/PD-L1 pathway, 
suggesting that PD-1 +  T cells are activated rather 
than exhausted [ 58 ]. 

 Interestingly, Haymaker et al. proposed that 
PD-1 high CD8 +  T cells in cancer patients are not 
exhausted [ 59 ]. This hypothesis is based on the 
observation that CD8 +  T cells from the TILs of 
melanoma patients recover their proliferative 
potential ex vivo, despite expressing high levels 
of PD-1. These TILs mediate antitumor responses 
upon adoptive transfer into patients [ 60 ,  61 ]. 
Under this hypothesis, infi ltrating and peripheral 
blood CD8 +  T cells, expressing PD-1, BTLA, 
along with other coregulatory receptors, are not 
exhausted. Instead, these cells are highly acti-
vated effector- memory cells T cells that can be 
stimulated through immunotherapy [ 59 ]. 
Nevertheless, these observations have been pri-
marily achieved in melanomas. In other cancers, 
the reduced proliferative and effector capacities 
persist, even after stimulation, and immunothera-
peutic strategies have failed to induce potent anti-
tumoral responses [ 53 ,  57 ,  62 ,  63 ]. 

 Some of the phenotypic, functional, and 
molecular changes that occur in T cells during 
chronic infections are exhibited in TILs as well 
as peripheral blood T cells from several cancer 
types. The initial aim of tumor immunotherapy 
was to prevent anergy and tolerance towards 
tumor antigens. However, the effi cacy of this 
strategy is potentially limited by T cell exhaus-
tion [ 10 ]. Interestingly, Hailemichael et al. 
showed that in mice vaccinated with gp100 mela-
noma peptide, the persisting tumor antigen at 
vaccination sites induces the sequestration of 
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CD8 +  T cells, resulting in the dysfunction and 
death of these cells [ 63 ]. 

 PD-1 blockage results in the recovery of T cell 
effector functions  in vitro  and in animal models 
in several tumors, thus signifi cantly enhancing 
antitumor immunity [ 30 ,  31 ,  49 ,  64 ]. This knowl-
edge has been translated into several clinical tri-
als [ 34 ,  65 ]. Recently, Brahmer et al. showed that 
the antibody-mediated blockade of PD-L1 
induced durable tumor regression along with pro-
longed disease stabilization in patients with 
selected advanced cancers, including non-small 
cell lung cancer [ 65 ]. Thus, understanding T cell 
exhaustion in cancer will contribute to the 
advancement of tumor immunotherapy. 

5.5.1     A Particular Case: T Cell 
Exhaustion in Lung Cancer 
Patients 

 Lung cancer is the leading cause of cancer-related 
mortality in developed countries and the second 
leading cause of death in countries with emerging 
economies. Lung cancer is one of the most com-
monly diagnosed cancers worldwide, represent-
ing 13 % of all cancer cases and approximately 
18 % of all cancer deaths [ 66 ]. Some reports 
show that the presence of TILs with memory 
phenotype in lung cancer is predictive of a favor-
able clinical outcome [ 67 – 69 ]. Also, it has been 
shown that CD8 +  T cell subpopulation is 
decreased in the pleural compartment with 
respect to peripheral blood from lung cancer 
patients, whereas the CD4 +  T cell subpopulation 
is increased [ 70 ,  71 ]. 

 Both in TIL and in the pleural compartment, 
CD8 +  T cells are functionally impaired and are 
poorly responsive or unresponsive to several T 
cell-activating stimuli, even though memory cells 
infi ltrate lung tumors. CD8 +  T cells present low 
proliferation rate, diminished production of some 
Th1 cytokines, and reduced cytotoxic potential 
[ 70 ,  72 – 74 ]. Pleural effusion CD8 +  T cells from 
lung cancer patients express cell markers associ-
ated with a memory phenotype (CD45RA- 
CD45RO  + CD27 + Granzyme A low Perforin − ), 
similar to those markers found in CD8 +  T cells 

from chronic viral infections [ 24 ], which sug-
gests that CD8 +  T cells are exhausted. 

 Recently, pleural effusion CD8 +  T cells, 
derived from lung cancer patients, have been 
shown to be susceptible to AICD. This phenome-
non is preferentially observed in memory as well 
as terminally differentiated CD8 +  T cells. AICD 
is associated with upregulation of FasL and 
TRAIL molecules. Interestingly, CD4 +  T cells 
from malignant pleural effusions are not prone 
to AICD [ 75 ]. Thus, chronic stimulation by the 
lung tumor mass may sensitize CD8 +  T cells to 
AICD, as it has been shown in TILs from vari-
ous types of human cancers [ 75 ]. Nevertheless, 
evaluation of exhaustion in lung tumor-specifi c 
CD8 +  T cells has not been possible, since lung 
tumor- associated antigens are not shared among 
all lung cancer patients [ 62 ]. 

 Here, it is shown PD-1 expression on CD8 +  
and CD4 +  T cells from pleural effusions and 
peripheral blood of lung cancer patients who 
were admitted to the National Institute of 
Respiratory Diseases “Ismael Cosío Villegas.” 
Pleural fl uid was obtained by thoracocentesis 
used for routine diagnostic procedures. Diagnosis 
was established by histological examination of 
pleural biopsy or cytological observation of 
malignant cells in pleural effusion. None of the 
patients received any type of anticancer therapy 
before the study or had clinical signs of acute or 
chronic infection, which might interfere with the 
PD-1 analysis. For comparison, two groups of 
patients with acute (pneumonias) and chronic 
(tuberculosis) infections that presented pleural 
effusion were included. In lung cancer patients, 
PD-1 was expressed on average at about 40 % of 
pleural effusion CD8 +  T cells, which was signifi -
cantly higher compared to percentages of 
PD-1 + CD8 +  T cells from pleural effusions sec-
ondary to acute or chronic tuberculosis infec-
tions. Also, PD-1 was expressed in more than 
30 % of peripheral blood CD8 +  T cells from lung 
cancer patients; in contrast, approximately 23 % 
of peripheral blood CD8 +  T cells from healthy 
subjects expressed PD-1 (Fig.  5.3 ). With respect 
to CD4 +  T cells, the percentages of PD-1 +  cells 
were signifi cantly higher in malignant effusions 
compared to tuberculosis and acute effusions 
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(Fig.  5.3 ). Similar percentages of PD-1 + CD4 +  T 
cells were found in peripheral blood, between 
lung cancer patients and healthy donors. Thus, a 
greater percentage of CD8 +  and CD4 +  T cells 
from the pleural compartment are PD-1 + , which 
is a consequence of the underlying pathology, 
rather than the anatomical compartment.

   Recently, Zhang et al. reported that tumor- 
infi ltrating CD8 +  T cells derived from patients 
with non-small cell lung carcinoma express 
increased levels of PD-1 [ 76 ]. These CD8 +  T 
cells are impaired in cytokine production as well 
as proliferative potential. Blockade of the PD-1/
PD-L1 pathway by anti-PD-L1 antibody partially 
restores cytokine production and cell prolifera-
tion. However, PD-1 expression cannot be con-
sidered as the sole marker of T cell exhaustion; 
additionally, TIM-3 has been shown to mark 
exhausted CD8 +  T cells [ 38 ]. In a study by Gao 
et al., TIM-3 was found to be highly upregulated 
on both CD4 +  and CD8 +  T cells from lung tumor 
tissues, but almost undetectable on T cells from 

peripheral blood. However, TIM-3 expression on 
CD8 +  T cells was not associated with any clinical 
pathological parameter in lung cancer patients 
(e.g., tumor size, lymph node metastasis, and 
tumor stage) [ 77 ]. 

 In this chapter, TIM-3 expression on 
CD4 +  and CD8 +  T cells derived from pleu-
ral effusion of lung cancer patients is shown 
(Fig.  5.4 ). Percentages of TIM-3 +  cells were 
signifi cantly higher in pleural effusion CD8 +  
T cells in comparison with CD4 +  T cells from 
the same cancer patients (Figs.  5.4  and  5.5 ). 
Interestingly, pleural effusion CD8 +  T cells 
from cancer patients showed higher percent-
ages of TIM-3 +  cells compared to those from 
the nonmalignant group (tuberculosis). Hence, 
TIM-3 is likely to be upregulated in response 
to tumor-derived environmental factors absent 
in pleural effusions from patients with tuber-
culosis. Nevertheless, in contrast with results 
reported by Gao et al., who found that in lung 
tumor  tissues the majority of TIM-3 + TILs are 

  Fig. 5.3    Determination of PD-1 on CD4 +  and CD8 +  T 
cells. Pleural effusion ( PE ) and peripheral blood ( PB ) of 
lung cancer patients ( n  = 23), patients with acute diseases 
(non-chronic  n  = 8), patients with tuberculosis ( TB ,  n  = 9), 
and PB from healthy donors ( HD ,  n  = 9) were evaluated. 
For PD-1 membrane staining, peripheral blood mononu-
clear cells (PBMCs) or pleural effusion mononuclear cells 
(PEMCs) were incubated with anti-CD4 PE or anti-CD8-
PECy5 monoclonal antibodies (mAbs), in addition to 

FITC-conjugated anti-PD-1 or isotype control mAb. Cells 
were washed, fi xed with 1 % paraformaldehyde, and ana-
lyzed using fl ow cytometry. FSC  vs . SSC dot-plot graphs 
were done for cellular debris and necrotic cell exclusion. 
From a lymphocyte gate containing 50,000 lymphocytes, 
CD4 +  or CD8 +  cells were gated from a CD4 +  or CD8 +   vs . 
SSC  dot-plot  graph. For the analysis of PD-1 expressions, 
and to rule out nonspecifi c antibody binding and autofl uo-
rescence, quadrants were set according to isotype control       

 

H. Prado-Garcia et al.



71

PD-1 +  [ 77 ], in the  pleural compartment, most 
PD-1 + CD8 +  T cells did not  coexpress TIM-3 
(Figs.  5.4  and  5.5 ). Thus, PD-1 + CD8 +  T cells 
might be activated in a microenvironment that 
does not provide the suffi cient signals to fully 
differentiate into effector T cells. Because 
PD-1 was not coexpressed in TIM-3 +  CD8 +  T 
cells (Fig.  5.5 ), further studies are required to 
defi ne whether this subset belongs to a popula-

tion of exhausted CD8 +  T cells. Nevertheless, 
TIM-3 expression is likely responsible for 
the absence of CD8 +  T cell responses in lung 
 cancer patients.

    Interestingly, the administration of PD-1 anti-
body as a blocking agent against PD-1 pathway 
has shown durable partial tumor regression in 
patients with lung cancer, which was long thought 
to be a “non-immunogenic” tumor [ 65 ]. Thus, 
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  Fig. 5.4    Gating strategy for the analysis of PD-1 and 
TIM-3 expression on T cells. PEMCs were plotted fi rst on 
SSC  vs . FSC with selection of the lymphocyte population. 
Gated cells were then plotted on CD3 (PE-Texas Red)  vs . 
FSC and further gated on CD4 (Alexa 700)  vs . CD8 cells 
(APC-Cy7). CD4 +  ( lower row ) or CD8 +  ( upper row ) cells 

were plotted on PD-1 (FITC)  vs . TIM-3 (APC) 5 % con-
tour outlier plots; quadrants were set according to isotype 
controls. Immunostaining was done as indicated in 
Fig.  5.3 . Representative data from patients with lung can-
cer or tuberculosis are shown       

  Fig. 5.5    ( a ) Percentage of 
TIM-3 +  cells on CD4 +  and 
CD8 +  T cells from lung 
cancer ( n  = 9) and tuberculo-
sis patients ( n  = 5). ( b ) 
Percentage of cells express-
ing PD-1 and TIM-3 in 
pleural effusion CD8 +  T 
cells. Determination of 
TIM-3 and PD-1 was done 
as indicated in Fig.  5.4 . 
*  p  = 0.015, **  p  = 0.023. 
Bars depict mean ± standard 
error       
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reactivation of immune responses in lung cancer 
patients, via blocking PD-1, TIM-3, or other reg-
ulatory pathways, in combination with other ther-
apeutic modalities, such as radiotherapy or 
chemotherapy, will provide major clinical bene-
fi ts to lung cancer patients.   

5.6     Concluding Remarks 

 T cell exhaustion is a stage of T cell differentia-
tion where T cells show poor effector functions, 
sustained coregulatory receptor expression, as 
well as a transcriptional state distinct from mem-
ory, effector, and even anergic T cells. From a 
temporal perspective, T cell anergy possibly 
occurs during the early stages of tumor progres-
sion, whereas T cell exhaustion might play a cru-
cial role in T cell dysfunction during the late 
stages of cancer. Several types of cancer have 
been shown to induce T cell exhaustion; this phe-
nomenon is attributed to the tumor microenviron-
ment, which has been shown to provide and 
maintain the required conditions for T cell 
exhaustion. Among other conditions, tumor mass 
is a source of antigens that chronically stimulate 
infi ltrating T cells. In most cancers, tumor cells 
expressing PD-L1 have been associated with a 
negative disease outcome. Many tumors also 
secrete IL-10 and TGF-β, immunosuppressive 
cytokines that are associated with exhaustion in 
chronic viral infections. 

 The reduced functions of T cell observed 
 in vitro , the correlation of the clinical prog-
nosis of cancer patients with the expression 
PD-L1 in tumor cells, and the limited success 
of T cell- based immunotherapy provide evi-
dence that T cell exhaustion plays an important 
role as a tumor evasion mechanism from the 
host immune system. However, caution must 
be taken with studies defi ning T cell exhaus-
tion based only on the marker PD-1; thus, it is 
necessary to evaluate several cell surface and 
functional markers to defi ne whether T cells are 
exhausted rather than  activated. Baitsch et al. 
fi rst showed that tumor- specifi c CD8 +  T cells 
from melanoma patients share similarities with 
chronic exhaustion observed in viral  infections 

[ 52 ]. Nevertheless, it is not clear whether 
exhausted T cells share similar molecular and 
genetic patterns in patients with chronic infec-
tions and other types of cancer. 

 Understanding the mechanisms of tumor- 
induced T cell exhaustion will conduce to the 
development of vaccine-induced T cells aimed at 
promoting tumor rejection. Preliminary clinical 
fi ndings with blockers of immune-regulatory 
pathways, such as the PD-1/PD-L1 pathway, sug-
gest that this strategy is promising for enhancing 
antitumor immunity with the potential to produce 
long-lasting clinical responses.     
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6.1            Introduction 

 Organs and tissues in the body are highly 
 heterogeneous in producing tissue factors that 
affect the development and maintenance of 
immune cells. In general, organs and tissues in 
the body maintain highly tolerogenic conditions. 
This is important to prevent unwanted autoim-
mune or infl ammatory responses to harmless 
antigens and immune stimulants. Tumors, formed 
in tolerogenic tissue environments, are naturally 
hypoimmunogenic and utilize a number of mech-
anisms to actively suppress the generation of 
effector T cells [ 1 ,  2 ]. Tumors maintain tolero-
genic environments to avoid antitumor immune 
responses. Tumors harbor high numbers of 
FoxP3 +  T cells (commonly called Tregs). Despite 
the tolerogenic nature of the tumor microenviron-
ment, tumors variably produce many factors that 
affect T-cell differentiation and maintenance. The 
numbers of effector T-cell populations in tumors 
are relatively more variable. Certain cancers are 
linked to chronic infl ammation [ 3 ]. Cancers 
formed in certain tissues, such as the intestine 
and in patients with chronic infection, are 
exposed to microbes, which can form infl amma-
tory conditions in tumors. Cancers formed in 
these tissues would be infl uenced by infl amma-
tory conditions. Necrotic tumor cells also induce 
infl ammation through damage-associated molec-
ular pattern (DAMP) receptors such as TLR2, 
TLR4, and the receptor for advanced glycation 
end products (RAGE) [ 4 ]. Infl ammatory tumors 
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harbor FoxP3 +  T cells and effector T cells, includ-
ing Th17 cells and Th1 cells [ 5 ,  6 ]. FoxP3 +  T 
cells can suppress the function of antitumor 
effector T cells and other immune cells to pro-
mote tumorigenesis (Fig.  6.1 ). On the other hand, 
FoxP3 +  T cells can suppress tissue infl ammation 
to prevent the emergence of tumor cells follow-
ing chronic tissue infl ammation. Effector T cells 
produce infl ammatory cytokines that promote 
tumorigenesis by increasing tissue infl ammation 
and angiogenesis, but they can also promote anti-
tumor immunity. An inverse correlation was 
observed between frequencies of FoxP3 +  T cells 
and effector T cells such as Th17 cells and Th1 

cells [ 7 – 9 ]. In certain cancers, FoxP3 +  T cells 
increase, whereas Th17 cells decrease in number 
as cancers advance to more aggressive stages [ 9 ]. 
The presence of FoxP3 +  T cells and Th17 cells in 
tumors and associated tissues not only refl ects 
the nature of tumor microenvironments but also 
indicates the types of active T-cell- mediated 
immune responses in tumors. In this chapter, we 
will discuss tumor factors that regulate T-cell dif-
ferentiation into Tregs and Th17 cells, migration 
of the T-cell subsets into tumors and associated 
lymphoid tissues, and the functions of Tregs and 
Th17 cells in regulating antitumor immune 
responses.

a b c

Naive

Naive
FoxP3

Th1

Th17 Th17 Th17

Th17 Th1/CD8/γδTh17/Th1/CD8/γδ

FoxP3

FoxP3

FoxP3 FoxP3

FoxP3

Non-inflammatory Inflammatory

  Fig. 6.1    Potential roles of FoxP3 +  T cells and Th17 cells 
in tumors. ( a ) FoxP3 +  T cells are made in the thymus as 
naïve- type FoxP3 +  T cells, which migrate to lymphoid tis-
sues. These FoxP3 +  T cells can become the memory type 
after activation in secondary lymphoid tissues. Induced 
FoxP3 +  T cells with memory-type FoxP3 +  T cells and 
Th17 cells are made from naïve CD4 +  T cells. FoxP3 +  T 
cells suppress effector T cells and other immune cells and 
decrease tissue infl ammation. Th17 cells produce IL-17 to 
induce infl ammatory responses. FoxP3 +  T cells and Th17 
cells can trans- differentiate into other T-cell subsets such 
as Th1 and T-FH cells in appropriate cytokine and antigen 

priming conditions. ( b ) FoxP3 +  T cells can promote tumor 
growth by suppressing antitumor immune responses at 
early and late stages. On the other hand, Th17 cells can 
induce immune responses that lead to eradication of 
tumor cells in a manner similar to other effector, CD8 + , 
and γδ T cells. ( c ) In infl ammatory conditions, FoxP3 +  T 
cells and Th17 cells have the potential to play different 
roles. Th17 cells cause infl ammation in tissues; hence, 
infl ammatory tumors are formed and stimulated to grow. 
FoxP3 +  T cells suppress the function of Th17 cells and 
other infl ammatory T cells, leading to suppression of the 
tumorigenic process in infl amed tissues       
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6.2        Diversity of Tumor 
Microenvironments 
and Tumor Tissue Factors 

 Tumor microenvironment is highly heterogeneous, 
depending on tumor types and sites of formation. 
Together with tumor cells, fi broblasts, myofi bro-
blasts, endothelial cells, mast cells, and other tissue 
cells make up tumors. Moreover, immune cells are 
an important component of tumors and are mainly 
composed of T cells, B cells, innate lymphoid cells, 
and myeloid cells. Tumor-associated myeloid cells 
are heterogeneous as well and contain immature 
and mature myeloid cells. 

Myeloid-derived suppressor cells (MDSC) are 
immature myeloid cells and highly enriched in 
tumors [ 10 ]. MDSC are composed of heteroge-
neous myeloid cells at various different stages. 
Compared to mature myelocytes such as dendritic 
cells (DCs) and macrophages, MDSC do not 
highly express cytokines, co-stimulatory mole-
cules, and MHC class molecules. Therefore, they 
poorly support antitumor effector T-cell responses. 
Moreover, MDSC express various molecules that 
dampen immune responses. MDSC produce per-
oxynitrite for nitration and nitrosylation of many 
proteins in the tumor environment [ 11 ,  12 ]. A 
major target protein for nitration and nitrosylation 
is TCR, which becomes ineffective at activating 
T cells after the modifi cations [ 13 ]. They also 
express Arg1, inducible nitric oxide synthase 
(iNOS), and TGF- β1, among others [ 14 ]. Tumors 
also harbor many macrophages, which can be 
made from MDSC or myeloid progenitor cells 
[ 15 ]. Dendritic cells express indoleamine 
2,3-dioxygenase (IDO) to regulate available tryp-
tophan [ 16 ]. Other immune cells such as mast 
cells, NK cells, CD8 +  T cells, and B cells are fre-
quently found in many tumor types. 

 The tumor environment is low in both oxygen 
and pH. Tumor cells rapidly divide and therefore 
vigorously consume oxygen supplied via blood 
vessels. Tumor cells mainly utilize the aerobic gly-
colysis pathway to generate energy [ 17 ]. This can 
accumulate lactic acid and protons, leading to low 
extracellular pH [ 18 ]. The most common pH range 
in tumors is 6–6.5. The low acidic tumor environ-
ment leads to immune cell anergy. For example, 

cytotoxicity and cytokine secretion by CD8 +  T 
cells are impaired at the low pH range [ 19 ]. 

 Cells in the tumor microenvironment produce 
various cytokines and growth factors [ 20 ]. Some 
of these factors are drained into lymphatic ves-
sels and form tumor-associated microenviron-
mental milieu in lymph nodes. If tumors have 
tumor-specifi c or tumor-associated antigens, 
these antigens are drained or transported into 
lymph nodes and presented to T cells via antigen- 
presenting cells (APCs). Effector and regulatory 
T cells can be made during this antigen priming 
process. The cytokine milieu is critical in deter-
mining the fate of differentiating T cells in tumor- 
draining lymph nodes. Again, the type and 
amount of cytokines and other factors produced 
in tumors are highly diverse among tumor types. 
Expression of IL-1α, IL-1β, IL-6, IL-11, and 
TNF-α was observed in colon carcinoma, colon 
adenoma, ovarian cancer, and gastric cancer [ 21 –
 27 ]. IL-2 and IL-15 are expressed in melanoma. 
IL-10 and TGF-β are expressed in myeloma, 
colon cancer, lung cancer, and mammary carci-
noma [ 28 ,  29 ]. Expression of IL-17, IFN-γ, and 
IL-4 has been observed in certain tumor types 
[ 30 – 32 ]. Expression of M-CSF, GM-CSF, and 
IL-3 has been observed as well [ 33 – 35 ]. These 
tumor-derived hematopoietic cytokines regulate 
myeloid cell-mediated infl ammation and affect 
T-cell activity in tumors. Chemokines such as 
CXCL chemokines (CXCL1, 3, 6, 8, 10, and 12) 
and CCL chemokines (CCL1, 2, 5, 17, 25, and 
28) are expressed in various tumor types [ 36 – 39 ]. 
Growth and angiogenic factors such as VEGF, 
EGF, and HGF are broadly expressed in a num-
ber of cancer types [ 40 ,  41 ]. The cell types pro-
ducing these factors are not limited to tumor cells 
but can be from various cell types in tumors. For 
example, tumor-associated macrophages produce 
both infl ammatory and immunosuppressive cyto-
kines such as IL-1, IL-6, IL-10, and TGF-β [ 42 ]. 

 T-cell receptor (TCR) activation signals are 
modifi ed by the signals from co-stimulatory and 
co-inhibitory molecules, which are expressed by 
tumor cells and tumor-associated APC [ 43 ]. These 
molecules include B7-1, B7-2, programmed 
cell death-1 ligand (PD-L1), PD-L2, ICOS-L, 
B7-H2, B7-H3, B7-H4, and B7-H6. Among these, 
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PD-L1-PD and B7-1/2-CTLA-4 play important 
roles in the formation of Tregs in tumor micro-
environments [ 44 – 46 ]. Moreover, TNF receptor 
family members such as OX40, GITR, 4-1BB, and 
CD40 are expressed in tumors and regulate antitu-
mor immune responses [ 47 ,  48 ]. 

 Infl ammatory mediators are produced in 
tumors. Cyclooxygenase-2 (COX-2) is highly 
expressed in malignant tumors [ 49 ,  50 ]. COX-2 
expression is induced in hypoxic conditions or by 
cytokines and growth factors [ 51 ]. COX-2 gener-
ates prostaglandin H2 from arachidonic acid, 
which is processed to generate major infl amma-
tory mediators such as PGD2, PGE2, PGI2, and 
TXA2. These mediators regulate angiogenesis 
and various aspects of infl ammatory responses in 
tumors [ 49 ]. 

 Some tumor types are under the infl uence of 
microbe-associated molecular pattern (MAMP) 
receptor ligands if tumors are formed in barrier tis-
sues such as the intestine or in patients infected 
with pathogens. In mucosal tissues, decreased bar-
rier functions due to tumorigenesis or preexisting 
infl ammation can lead to bacterial invasion and 
induction of infl ammatory responses. Furthermore, 
tumors that are associated with infection by papil-
lomavirus (uterine cervical carcinoma), hepatitis 
B virus (hepatocellular carcinoma), Epstein-Barr 
virus (Burkitt’s lymphoma), human T-cell leuke-
mia virus (adult T-cell leukemia), or herpes virus 
(Kaposi’s sarcoma) would be infl uenced by viral 
MAMPs. MAMPs and DAMPs activate Toll-like 
receptors (TLRs) [ 52 ]. TLR activation can induce 
tissue infl ammation that promotes cancer [ 53 ]. 
MYD88 signaling is also required for activation of 
dendritic cells for proper formation of effector T 
cells. Without proper MYD88 signaling, Th2 cells 
ineffective in antitumor immunity can be made 
[ 54 ]. TLR signaling can work together with STAT3 
and Notch pathways to activate MAPK and NFkB, 
which promote the survival and proliferation of 
tumor cells [ 55 ]. 

 Retinoic acid is an anticancer agent. Retinoic 
acids such as all-trans retinoic acid (ATRA) and 
9-cis RA are produced from retinol (vitamin A) 
by retinol metabolizing enzymes such as ADH 
and RALDH [ 56 ]. Epithelial cells and APCs in 
the intestine highly express these enzymes [ 57 ]. 

RALDH2 expression is induced during immune 
responses to increase the concentration of RA 
available in local tissue environments. Infl amed 
tissues or tumors are low in expression of 
RA-producing RALDH but are high in expres-
sion of RA-catabolizing CYP26 [ 58 ,  59 ]. In sum, 
the tumor microenvironment is made of highly 
diverse factors. Some are from tumor cells, while 
others are from tissue cells and immune cells. 
These factors have profound effects on T cells in 
tumors and associated lymphoid tissues as dis-
cussed in detail later in this chapter.  

6.3     Generation of Tregs 
and Th17 Cells 

 FoxP3 +  Tregs are made in the thymus as natural 
FoxP3 +  T cells. They are also induced in the periph-
ery from naïve CD4 +  T cells. In addition, IL-10-
producing Tregs (Tr1 cells) are made from naïve 
CD4 +  T cells. Tregs produce suppressive cytokines 
such as IL-10, IL-35, and TGF-β [ 60 – 62 ]. These 
Tregs play critical roles in preventing autoimmune 
diseases. Tregs are generally made whenever effec-
tor T cells are formed during immune responses. 
This is important to limit the potentially infl amma-
tory activities of effector T cells. 

 Induction of effector T cells and Tregs occurs 
mainly in secondary lymphoid tissues. One reason 
for this is that naive CD4 +  T cells that become effec-
tor T cells and Tregs migrate mainly to secondary 
lymphoid tissues. However, memory/effector T 
cells can trans-differentiate into each other at any 
tissue sites upon antigen priming (Fig.  6.1a ). Th1 
cells are the most readily made effector T cells from 
naïve CD4 +  T cells. IL-12, a cytokine produced 
from DCs, promotes the generation of Th1 cells. 
Th2 cells are made when IL-4 is abundant. Th17 
cells are generated when IL-6, TGF-β, and other 
infl ammatory cytokines are present during T-cell 
priming. MAMPs and TLR activation in tissues 
promote the generation of Th17 cells. Th1 cells are 
effi cient in the promotion of cell-mediated immu-
nity through production of IFN-γ Th17 cells that 
are effective at inducing infl ammatory conditions 
through producing IL-17. A number of infl amma-
tory cytokines, neutrophil-attracting  chemokines, and 
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infl ammatory mediators are induced by IL-17 [ 63 ]. 
IL-2 is required for the induction of T-cell prolifera-
tion. IL-7 and IL-15 drive proliferation of T cells 
in an antigen-independent manner in lymphopenic 
conditions [ 64 ,  65 ]. IL-2 suppresses the formation 
of Th17 cells [ 66 ]. IL-4, while inducing Th2 cells, 
suppresses the formation of induced FoxP3 +  T cells 
and Th1 cells [ 67 ,  68 ]. IL-27 promotes the genera-
tion of Tr1 cells [ 69 ,  70 ]. Expression or activation 
of specifi c transcription factors is required for the 
generation of specialized effector T cells and Tregs. 
For example, RORγt, STAT3, and AHR are impor-
tant for Th17 cells. FoxP3 and STAT5 are important 
for the formation of induced Tregs. c-Maf and aryl 
hydrocarbon receptor (AHR) are important for for-
mation of Tr1 cells [ 61 ,  60 ,  71 ]. Beyond cytokines, 
many other factors can modulate the generation of 
Tregs and Th17 cells. This subject will not be dis-
cussed in detail, as the generation of Tregs and Th17 
cells during basic immune responses is exhaustively 
discussed elsewhere.  

6.4     Impact of Tumor-Derived 
Factors on Regulation 
of T-Cell Differentiation 

 Most T cells in tumors are memory T cells [ 72 ]. 
Both antigen-specifi c and nonspecifi c bystander T 
cells would be present in tumors. In general, the 
presence of memory T cells and CD8 +  T cells is 
linked to positive prognosis in cancer patients. This 
indicates that it is benefi cial to have these T cells in 
tumors. About 30–50 % of CD4 +  T cells in various 
tumors formed in animals are FoxP3 +  T cells [ 72 ]. 
Th17 cells are also found in tumors, particularly 
tumors formed in mucosal tissues [ 73 ,  7 ,  74 ]. In 
contrast, Th17 cells are hard to fi nd in transplanted 
tumors in animal models at ectopic sites [ 72 ]. 
Many factors of the tumor microenvironment can 
promote the generation of FoxP3 +  T cells. First, 
APCs in tumor environments are prone to generate 
FoxP3 +  T cells. During infection, DCs uptake anti-
gens and undergo maturation in response to TLR 
activation. Activated DCs emigrate tissue sites of 
infection and migrate into secondary lymphoid 
tissues through lymphatic vessels. Only mature 
DCs express MHC molecules and co-stimulatory 

molecules such as B7-1 and B7-2 at high levels. 
In tumors, the signals to maturate DCs are diverse 
and not as apparent as those in infection. Thus, 
APCs maturated in tumor microenvironment do 
not highly express the co-stimulatory molecules 
[ 75 ]. Moreover, tumor-associated APCs express 
co- inhibitory receptor ligands such as PD-L1 and 
PD-L2 [ 76 ,  77 ]. This affects T-cell activation and 
differentiation. Therefore, DCs in or from tumors 
have low activation potentials for T cells. This con-
dition typically generates induced FoxP3 +  T cells 
but not effector T cells. Other APCs in tumors, 
such as macrophages and MDSC, are also ineffec-
tive in generating effector T cells but are prone to 
induce Tregs [ 78 ]. 

 As mentioned, the hypoxic condition in the 
tumors is another regulatory factor for T cells [ 79 ]. 
It is expected that draining lymph nodes or tertiary 
lymphoid tissues within tumors have low oxygen 
levels. T cells become FoxP3 +  T cells when they are 
activated in hypoxia [ 80 ]. This is in part mediated 
by a transcription factor called HIF-1α. The high 
glycolytic activity in tumors leads to accumulation 
of lactic acid [ 81 – 83 ]. This promotes the generation 
of FoxP3 +  T cells. TGF- β1 is a characteristic cyto-
kine produced in the tumor environment [ 84 – 86 ]. 
TGF-β1 is the most effi cient cytokine that induces 
FoxP3 +  T cells in the periphery. Along with TGF-
β1, IL-10 acts to suppress antitumor immune 
responses and the promotion of Tregs [ 87 ,  88 ]. 
IL-10 is produced by various cell types, including T 
cells, myeloid cells, B cells, and tumor cells. 

 PGE2 is highly produced in the tumor envi-
ronment. PGE2 induces FoxP3 +  T cells. This 
induction is mediated by EP4 and EP2 receptors 
[ 89 ,  90 ]. In this regard, inhibition of cyclooxy-
genase- 2 (COX-2) decreased  FoxP3  expression 
in tumors and reduced tumor burden [ 91 ]. 
Interestingly, FoxP3 +  Tregs express COX-2 and 
produce PGE2 [ 92 ]. The PGE2 produced by 
Tregs suppresses effector T cells. In addition, 
prostaglandin D2 (PGD2) acts on DCs to induce 
FoxP3 +  T cells [ 93 ]. This effect is mediated 
through the D prostanoid receptor and cyclic 
AMP-dependent protein kinase A. In this regard, 
enforced expression of COX-2 in head and neck 
squamous cell carcinoma led to expansion of 
IL-10 +  FoxP3 +  T cells [ 94 ]. 
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 Commensal bacterial products that activate 
TLR2 are implicated in selectively promoting 
FoxP3 +  T cells and Th17 cells. Segmented fi la-
mentous bacteria (SFB) promote Th17 cells in the 
small intestine [ 95 ]. Certain bacterial groups such 
as  Clostridium  and  Bacteroides fragilis  promote 
the generation of FoxP3 +  T cells in the intestine 
[ 96 ,  97 ]. Tumors, formed in the intestine, female 
reproductive tract, and skin, are expected to be 
heavily infl uenced by commensal bacteria. In 
these tumors, bacterial MAMPs would activate 
APC and T cells to regulate the generation of 
FoxP3 +  T cells and Th17 cells. Thus, depending 
on the bacterial group that is dominant in the 
tumor environment, FoxP3 +  T cells and Th17 
cells can be differentially generated. 

 As mentioned, retinoic acid is an important 
tumor factor. Retinoic acid affects T cells and 
tumor cells. Retinoic acid promotes the generation 
of FoxP3 +  T cells but suppresses that of Th17 cells 
[ 98 ,  99 ]. Retinoic acid affects the development of 
DCs and generates tolerogenic DCs expressing 
Arg1 [ 100 ]. These DCs promote the generation of 
FoxP3 +  T cells but suppress the formation of Th17 
cells. This function seems to be mediated through 
RAR-α. It is also reported that retinoic acid at low 
concentrations (i.e., 0.5–5 nM) is required for nor-
mal function of effector T cells [ 101 ,  102 ]. Low 
concentrations of RA are found in bodily fl uids in 
most tissues. In vitamin A defi ciency, the migration 
and function of effector T cells are severely 
impaired. As mentioned, tumor cells express 
CYP26 and can decrease retinoic acid concentra-
tion in tumors and associated tissues [ 58 ]. This 
hyporetinoic acid condition would signifi cantly 
affect the T-cell profi le in tumors and associated 
lymphoid tissues. Moreover, retinoic acid can pro-
mote differentiation of tumor-associated MDSC 
into dendritic cells and macrophages [ 103 ].  

6.5     Migration of Tregs and Th17 
Cells into Tumors 

 Migration of T cells, including Tregs and Th17 
cells, is regulated by traffi cking receptors such as 
chemokine receptors and adhesion molecules 
[ 104 ,  105 ]. Adhesion molecules such as selectins 

and integrins mediate rolling and fi rm adhesion 
of leukocytes on endothelial cell vessels [ 106 , 
 107 ]. Chemokines induce integrin activation 
between rolling and fi rm adhesion of immune 
cells on endothelial cells. Chemokines also 
induce chemotaxis for migration of immune cells 
within tissues. Organs and tissues express  distinct 
and overlapping chemokines and adhesion mole-
cules for regulation of immune cell migration 
[ 108 ]. Since tumors are formed within special-
ized organs and tissues, there are similarities in 
expression of traffi cking signals between normal 
tissues and tumors formed within the tissues. 
Compared to normal tissues, however, tumors 
have altered expression of chemokines and adhe-
sion molecules [ 109 ]. The traffi cking signals and 
receptors required for T-cell migration into the 
intestine are well established. In the intestine, 
CCL20 and CCL25 are, respectively, expressed 
in the subepithelial cell dome (SED) of Peyer’s 
patches and by small intestinal epithelial cells 
[ 110 – 113 ]. Endothelial cells in the intestine, 
Peyer’s patches, and mesenteric lymph nodes 
express mucosal addressin cell adhesion mole-
cule- 1 (MAdCAM-1) [ 114 ]. T cells migrating to 
the small intestine express  CCR9  and  α4β7  [ 115 –
 117 ]. Memory T cells migrating to the Peyer’s 
patches express CCR6 [ 118 ,  119 ]. Naïve T cells 
migrating to Peyer’s patches, MLN, and PLN 
express CCR7, α4β7, and CD62L [ 120 ]. Memory 
T cells migrating to other tissues or infl amed tis-
sues variably express CCR1-6, CCR8, CCR9, 
CCR10, CXCR3, CXCR5, and CXCR6 [ 108 ]. 
Effector T cells frequently express P-selectin gly-
coprotein ligand-1 (PSGL-1), E-selectin ligand-1 
(ESL-1), CXCR3, CCR5, and CCR4 [ 105 ,  120 ]. 

 The traffi cking receptors of Tregs and Th17 
cells have been determined. FoxP3 +  T cells that 
are freshly made in the thymus express CCR7, 
CXCR4, and CD62L [ 121 ,  122 ]. FoxP3 +  T cells 
activated or induced in the periphery express 
memory-type traffi cking receptors that are fre-
quently expressed by Th1 or Th2 cells. Th17 cells 
express most memory-type chemokine receptors 
[ 123 ,  124 ]. CCR6 is a characteristic chemokine 
receptor expressed by most Th17 cells. In general, 
FoxP3 +  Tregs and Th17 cells follow the traffi ck-
ing pattern of conventional naïve and memory/
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effector T cells. Conventional naïve CD4 +  T cells 
expressing CCR7 and CD62L lose these receptors 
upon T-cell activation in the secondary lymphoid 
tissues and migrate into nonlymphoid or infl amed 
tissues. Various tissue factors infl uence the 
expression of traffi cking receptors on FoxP3 +  T 
cells and Th17 cells [ 125 ,  126 ]. For example, reti-
noic acid acts on T cells undergoing activation to 
induce gut-homing receptors such as CCR9 and 
α4β7. FoxP3 +  T cells and Th17 cells express these 
gut-homing receptors and migrate to the intestine 
[ 98 ,  127 ]. In vitamin A defi ciency, the number of 
FoxP3 +  T cells and Th17 cells in the gut is signifi -
cantly decreased in part because most T cells do 
not migrate to the small intestine [ 128 ]. In addi-
tion, TGF-β1 is a major cytokine that induces the 
expression of CCR6 on FoxP3 +  T cells and Th17 
cells [ 123 ]. Moreover, IL-2 is a cytokine that 
effectively downregulates CCR6 expression 
induced by TGF- β1. Thus, cytokines and tissue 
factors can co-regulate the expression of traffi ck-
ing receptors on T cells. 

 Researchers have been searching for che-
mokines that regulate immune cell traffi cking 
and antitumor immune responses [ 129 – 133 ]. 
Chemokines such as CCL3-5, CCL20, and 
CXCL10, often expressed in infl amed tissues, are 
also expressed in tumors [ 134 – 139 ]. Chemokines 
induce chemotaxis of immune cells and tumor 
cells. They can co-stimulate T cells and pro-
mote angiogenesis [ 140 ,  141 ]. CCR2-10 and 
CXCR3-5 regulate T-cell traffi cking in various 
tumors [ 132 ]. Most of these receptors are highly 
expressed by FoxP3 +  T cells and Th17 cells 
in mice and humans [ 105 ,  123 ,  124 ,  121 ,  122 , 
 142 ]. CCL17 and CCL22 are highly expressed in 
gastric cancer with CCR4-expressing FoxP3 +  T 
cells [ 131 ]. CCR7 is expressed by some T cells 
in colorectal cancers and is predictive of positive 
prognosis [ 143 ]. CXCR4 +  T cells are increased 
in lung adenocarcinoma [ 144 ]. Chemokines 
expressed in tumors also attract hematopoietic 
progenitors, myeloid cells, NK cells, and CD8 +  
T cells [ 136 ,  145 ,  10 ]. An important point is 
that chemokine signals in cancer patients are 
highly diverse among different tumors. They are 
also affected by tissue sites and infl ammatory 
responses in tumors. Therefore, it is diffi cult to 

fi nd universal traffi cking signals which govern 
T-cell traffi cking in most tumors. 

 Our group investigated the traffi cking recep-
tors expressed by tumor-infi ltrating FoxP3 +  T 
cells [ 72 ]. FoxP3 +  T cells account for 25–50 % 
of CD4 +  T cells infi ltrating A20, CT26, 4T1, and 
B16 tumors. Most of these FoxP3 +  T cells are 
memory CD44 +  CD62 -  T cells, which are down-
regulated for CD62L and CCR7. Downregulation 
of CCR7 was critical for the migration of FoxP3 +  
T cells into tumors, as CCR7 high  FoxP3 +  T cells 
were not effi cient at migrating into tumors [ 72 ]. 
Downregulation of CCR7 and CD62L occurs 
in tumor-draining lymph nodes during antigen 
priming. Therefore, migration of T cells into sec-
ondary lymphoid tissues is required to acquire a 
proper traffi cking receptor phenotype for migra-
tion into tumors. While downregulated for CCR7 
and CD62L, tumor-infi ltrating FoxP3 +  T cells 
express CCR8 and CXCR4 at high levels [ 72 ]. 
This traffi cking receptor phenotype refl ects the 
differentiation status of the tumor-infi ltrating T 
cells and/or the traffi cking receptor requirement 
for FoxP3 +  T-cell migration into the tumors. 
Induction of FoxP3 +  T cells from FoxP3 -  T cells 
in tumors was assessed, and the results indicate 
that this induction is ineffi cient [ 72 ]. Thus, the 
tumor-infi ltrating FoxP3 +  T cell in these tumors 
is largely from the FoxP3 +  T cells made in the 
thymus or secondary lymphoid tissues rather 
than FoxP3 +  T cells induced directly in tumors. 
However, this can be quite different in other types 
of tumors where the tumor microenvironment is 
more conducive in priming T cells for differ-
entiation into Tregs. In tumors, FoxP3 +  T cells 
appear highly stable in maintaining their FoxP3 
expression. While detailed information on Th17 
cell migration into tumors is not available, Th17 
cells would probably utilize the same tissue- or 
infl ammation- associated traffi cking signals uti-
lized by Th17 cells for regulation of general 
immune responses. Th17 cells are prevalent in 
the gastrointestinal (GI) tract and other muco-
sal tissues. High numbers of Th17 cells were 
observed in aggressive forms of GI cancers [ 73 , 
 7 ,  74 ]. Thus, these tumors would have traffi cking 
and cytokine signals appropriate for recruitment 
and maintenance of Th17 cells or their progenitors. 
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Migration of FoxP3 +  T cells and Th17 cells into 
tumors and draining lymph nodes is summarized 
in Fig.  6.2 .

6.6        Impact of Tregs and Th17 
Cells on Antitumor Immune 
Responses 

 The presence of T cells in tumors is a highly reli-
able prognostic factor for survival of cancer 
patients [ 146 ,  147 ]. There is a strong posi-
tive  correlation between patient survival and 

 frequencies of memory CD4 +  T cells and CD8 +  T 
cells in many cancer types. Tumorigenesis is 
increased in pan-T-cell- or γδ-T-cell-defi cient 
animals or humans [ 148 ]. Strikingly, αβ T cells 
have a small negative effect on tumor numbers, 
but a greater positive effect on tumor size. This 
implies that αβ T cells are composed of heteroge-
neous subsets with different functions, and some 
of these T cells may even promote tumor growth. 
FoxP3 +  T cells and other regulatory T cells are 
likely the T cells that suppress antitumor immune 
responses. FoxP3 +  T cells can inhibit antitumor 
immune responses and promote tumor growth 
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  Fig. 6.2    Migration of FoxP3 +  T cells and Th17 cells into 
tumors. Natural FoxP3 +  T cells made in the thymus can 
migrate into lymph nodes, but cannot migrate directly into 
tumors unless tumors are formed in lymphoid tissues. 
FoxP3 +  T cells can migrate into tumors after they are anti-
gen primed in secondary lymphoid tissues and gain the 
memory/effector-type traffi cking receptors. Loss of CCR7 
and CD62L occurs during antigen priming and is required 
for migration of antigen-primed FoxP3 +  T cells into 
tumors. Induced FoxP3 +  T cells in the tumor-draining 
lymph nodes can migrate into tumors, as they are down-
regulated for CCR7 and CD62L but upregulated for mem-
ory/effector-type traffi cking receptors such as CCR4, 

CCR5, CCR8, CCR10, and/or CXCR4. Dendritic cells 
(DCs) transport and present tumor tissue antigens and 
play important roles in the generation of FoxP3 +  T cells 
and Th17 cells in lymph nodes. Soluble tumor tissue fac-
tors are collected in tumor-draining lymph nodes, and 
some affect T-cell priming and differentiation. In tumors, 
macrophages (Mac), DCs, and MDSC suboptimally acti-
vate T cells in tumors. These APCs play potentially 
important roles in maintaining the phenotype of FoxP3 +  T 
cells and Th17 cells in tumors. There is no such thing as 
tumor-specifi c traffi cking receptors. Instead, T cells vari-
ably use conventional traffi cking receptors to migrate into 
different tumors       
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[ 149 ]. Many FoxP3 +  T cells are self-reactive and 
effective in preventing autoimmune diseases. The 
same function can be used to promote tumor 
growth. This is because tumor cells basically 
express self-antigens, and FoxP3 +  T cells can 
effectively suppress immune responses to self- 
antigens [ 150 ]. In the same line, the frequencies 
of FoxP3 +  T cells in many tumor types are 
inversely correlated with patient survival rates 
[ 151 ,  147 ]. However, lack of correlation or posi-
tive correlation has been noticed as well [ 152 , 
 153 ]. A good example is colorectal carcinoma, in 
which high frequencies of FoxP3 +  T cells are 
associated with a favorable prognosis [ 5 ]. It is 
expected that FoxP3 +  T cells can even prevent the 
formation of some tumors by suppressing tissue 
infl ammation at early stages of tumorigenesis. 
Therefore, FoxP3 +  T cells have the potential to 
either promote or suppress tumorigenesis depend-
ing on tumor type, tissue site, and immune 
response. The potentially complex functions of 
Tregs in tumorigenesis are depicted in Fig.  6.1 . 

 It has been observed that Th17 cells can pro-
mote CD8 +  T-cell-mediated antitumor immune 
responses in a mouse model [ 154 ]. Moreover, 
polarization of CD8 +  T cells into Tc17 cells 
increased their antitumor immunity [ 155 ]. Th17 
cells may become Th1 cells or activate CD8 +  T 
cells to increase antitumor immunity. 
Paradoxically, Th17 cells can cause infl ammation 
to initiate development of infl ammatory tumors 
at early stages of tumorigenesis. In colorectal 
cancer, Th17 cells are linked to poor prognosis, 
whereas Th1 cells are positively linked to patient 
survival [ 156 ]. The major cytokine product of 
Th17 cells, IL-17, can induce tissue infl amma-
tion and the expression of certain angiogenic fac-
tors, including CXCL8, MMP-2, MMP-9, and 
VEGF [ 157 ]. The function of Th17 cells in can-
cer can be complex and appears to be determined 
again by cancer type, stage, and site. The poten-
tially complex functions of Th17 cells in tumori-
genesis are depicted in Fig.  6.1 . 

 Apart from their effector functions, the fre-
quencies of FoxP3 +  T cells and Th17 cells refl ect 
the context of the tumor microenvironment. 
Noninfl ammatory tumors with low expression of 
IL-6 and other infl ammatory cytokines would 
have high numbers of FoxP3 +  T cells, whereas 

infl ammatory tumors with high expression of 
infl ammatory cytokines would harbor high 
 numbers of Th17 cells. Tumors are heteroge-
neous in the tumor microenvironment even 
within the same group of cancers, and not all 
tumors fi t into the infl ammatory  vs . noninfl am-
matory tumor model. While there is an inverse 
correlation between FoxP3 +  T cells and Th17 
cells, both T-cell subsets can be increased or 
decreased depending on the balance of cytokines 
and other tissue factors. An example for this situ-
ation is invasive ductal breast carcinoma [ 157 ].  

6.7    Concluding Remarks 

 As discussed throughout this chapter, FoxP3 +  T 
cells and Th17 cells play both positive and nega-
tive roles in regulating antitumor immune 
responses (Fig.  6.1 ). Despite the presence of 
these T cells, some tumors still develop and grow. 
Thus, these T cells by themselves are not suffi -
cient to effectively mount antitumor immune 
responses. More detailed studies on FoxP3 +  T 
cells and Th17 cells in various tumors can pro-
vide systematic information regarding the tumor 
microenvironment and therapeutic interventions. 
It is important to develop novel strategies to boost 
the benefi cial effects of the T-cell subsets and to 
suppress their tumor-promoting effects. The key 
is to alter tumor microenvironment to regulate 
these T-cell subsets. This is expected to be 
achieved through control of antigen-presenting 
cells, metabolism, cytokines, chemokines, co- 
stimulatory/inhibitory receptors, infl ammatory 
mediators, and nuclear hormone receptor ligands 
such as retinoic acid. Regulation of multiple fac-
tors at the same time would provide more effec-
tive strategies in tipping the T-cell balance toward 
tumor-eradicating immune responses. A one-
size- fi ts-all approach is not likely to be effective 
in changing the microenvironment and T-cell 
activity in all tumors. In this regard, another point 
is that antitumor therapy strategies should be 
tailor- made based on cancer type, tissue site, and 
tumor microenvironment. It is expected that 
application of wrong immunotherapy strategies 
to regulate the T-cell subsets could even worsen 
the prognosis of cancer patients. More research 
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into classifi cation of cancer types based on tumor 
microenvironment and immunological milieu 
would be highly useful.     
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7.1            Introduction 

 Strong evidence has been accumulated 
 demonstrating that cancer cells in humans and 
animals are recognized in general as nonself 
by the immune system [ 1 ,  2 ]. Both innate and 
adaptive immune reactions to cancer have been 
described. Many cases of spontaneous tumor 
regression in patients with cancer have been 
reported. In addition, such spontaneous regres-
sions normally occur following an infection. 
Moreover, immunosuppressed patients are at 
increased risk for virally induced tumors [ 3 ]. In 
fact, the presence of highly adaptive immune cell 
infi ltrates within the tumor can be a positive prog-
nostic indicator of patient survival [ 4 ]. Murine 
models of spontaneously arising or chemically 
induced tumors have been useful in demonstrat-
ing that the immune system naturally surveys for 
aberrant cells and has an important role in pre-
venting tumor formation [ 2 ]. 

 An antitumor immune response is initiated 
when the cells of the innate immune system 
become alerted to the presence of a growing 
tumor, at least in part owing to the local tissue 
damage that occurs as a result of stromal remod-
eling process integral to the basic physiology of 
solid tumor development [ 2 ,  5 ]. Once solid tumors 
reach a certain size, they begin to grow invasively 
and require an enhanced blood supply that arises 
as a consequence of the production of angiogenic 
proteins [ 6 ]. Invasive growth causes minor disrup-
tions within the surrounding tissue that induces 
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 infl ammatory cytokines and chemokines leading 
to recruitment of cells of the innate immune system 
[ 7 ]. The innate response includes several cellular 
factors, such as natural killer (NK) cells, natural 
killer T (NKT) cells, γδ T cells, macrophages, 
dendritic cells (DCs), and neutrophils [ 8 ]. These 
cells can reject tumors either by direct killing of 
the tumor cells or by inhibition of angiogenesis. 
The components of innate immunity use pattern 
recognition receptors and other cell surface mol-
ecules to detect tumor cells. Cancer cells express 
families of stress-related genes such as MHC 
class I-related stress-inducible surface glycopro-
tein A and B (MICA and MICB), which function 
as ligands for NKG2D receptors expressed on NK 
cells [ 9 ]. In addition, NK cells can be triggered for 
cytolytic activity by DCs depending on direct cell 
contact through their expression of cell surface 
molecules such as CD48 and CD70 which are 
ligands for NK cell-activating receptors 2B4 and 
CD27, respectively [ 9 ]. The DCs that have been 
recruited to the tumor site become activated either 
by exposure to the cytokine milieu created during 
the ongoing attack by the innate immune system 
or by interacting with NK cells. The activated 
DC can acquire tumor antigens directly by inges-
tion of tumor cell debris or potentially through 
indirect mechanisms involving transfer of tumor 
cell-derived heat shock protein/tumor antigen 
complexes [ 10 ]. The activated antigen- bearing 
DCs then migrate to the draining lymph nodes, 
where they trigger the activation of tumor antigen-
specifi c CD4 +  Th1 cells. In addition, DCs activate 
CD8 +  cytotoxic T lymphocytes (CTL) via cross-
presentation of tumor antigenic peptides on MHC 
class I molecules [ 11 ]. Activated tumor-specifi c 
CD4 +  and CD8 +  T cells home to the tumor site 
where they kill tumor cells. Mice lacking adaptive 
immunity (RAG-2 gene-defi cient mice lacking 
T cells) were more susceptible to carcinogen-
induced and spontaneous primary tumor forma-
tion. Thus, the development of adaptive immunity 
may provide the host with the capacity to com-
pletely eliminate the developing tumor. However, 
the development of clinically evident cancers 
indicates that these innate and adaptive immune 
responses are not always enough to prevent dis-
ease progression as cancer cells manage to escape 
host-tumor immunity. 

 Tumors use several mechanisms that facilitate 
immune escape and prevent tumor elimination 
including impairment of antigen presentation, 
activation of negative co-stimulatory signals, and 
elaboration of immunosuppressive factors [ 12 ]. 
In addition, tumor cells may promote the expan-
sion and/or recruitment of regulatory immune 
cell populations which can contribute to the 
immunosuppressive network; these populations 
include regulatory T cells (Tregs), myeloid- 
derived suppressor cells (MDSCs), and distinct 
subsets of immature and mature regulatory DCs 
[ 12 ]. All these host-derived immune cell popula-
tions can impair antitumor effector cell responses, 
both locally at the tumor microenvironment and 
systemically in the lymphoid organs. In fact, both 
tumor-promoting and tumor-inhibitory immune 
cell populations have been found in patients with 
various cancers. Several recent studies have 
found correlations between particular immune 
cell infi ltrates in tumors and patient prognosis. 
Infi ltration of CD8 +  T cells and mature DC is 
associated with a favorable prognosis in patients 
with cancer. However, an extensive macrophage 
infi ltration correlates with poor patient prognosis 
in most of the cancers analyzed. Thus, the com-
plexity of the immune cell populations infi ltrat-
ing tumors with their synergistic or opposing 
effects may infl uence tumor growth differently, 
depending on their cytokine secretion. A number 
of immune-enhancing cytokines have been 
shown to promote or inhibit antitumor immunity 
in multiple experimental models and in patients 
with cancer. This chapter reviews the role of anti-
tumor cytokines IL-12 and IL-27 in tumor immu-
nity and immunotherapy while discussing the 
role of pro-tumor cytokines (TGF-β, IL-17, 
IL-23, IL-35, and IL-10) that have pathogenic 
signifi cance in cancer progression.  

7.2     Cytokine Regulation 
of the Antitumor Immune 
Response 

 Cytokines comprise a large family of intracellu-
lar communicating molecules that play important 
roles in immunity, infl ammation, and repair, as 
well as general tissue homeostasis. In addition, 
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cytokines’ functions extend to many other aspects 
of biology, including cancer [ 13 ]. In the tumor 
microenvironment, cytokines are produced by 
host stromal and immune cells, in response to 
molecules secreted by the cancer cells. In addi-
tion, cancer cells also produce cytokines in the 
same environment. Increased levels of circulating 
cytokines and their receptors have been found in 
patients with various types of cancer, both at 
diagnosis of the primary disease and in those 
with metastases, compared with healthy people 
[ 14 ,  15 ]. The cytokine repertoire present at the 
tumor site determines the type of host response 
directed against the tumor. Immunosuppressive 
cytokines secreted by tumor cells or tumor- 
infi ltrating immune cells can impair the host anti-
tumor response, whereas cytokines promoting 
the development of T-cell-mediated immunity 
can induce or enhance antitumor immunity. 
Studies of cytokine-defi cient mice have revealed 
dual role for the immune system in suppressing 
and promoting tumor growth. 

7.2.1     IL-12 

7.2.1.1     Overview 
 IL-12 is a heterodimeric cytokine containing a 
35 kD and a 40 kD subunit that signals through 
a receptor of the type I family of cytokine recep-
tors. The principal sources of IL-12 are APCs 
such as DCs and macrophages. Secretion of 
IL-12 is generally activated via the physiologi-
cal stimuli of CD40 and toll-like receptors 
which recognize structurally conserved mole-
cules derived from microbes [ 16 ]. IL-12 plays a 
major role in the development of antitumor 
immune responses [ 17 ]. Numerous studies 
report that IL-12 promotes an effective destruc-
tion of cancer cells through the induction of the 
innate and adaptive arms of antitumor immu-
nity. In addition, IL-12 has potent antiangio-
genic activity. Due to these features, IL-12 has 
been used as a systemic cancer therapeutic 
agent, but the clinical development of IL-12 has 
been hindered by its signifi cant toxicity and dis-
appointing antitumor effects seen in cancer 
patients. However, emerging studies suggest 
that IL-12 in combination with other cytokines 

boosts antitumor  immunity by contributing to 
the development of NK cells and CTLs without 
any toxic side effects.  

7.2.1.2     IL-12: Linking Innate 
and Adaptive Antitumor 
Immunity 

 IL-12 plays an essential role in the interaction 
between the innate and adaptive arms of antitu-
mor immunity [ 17 ] (Fig.  7.1 ). It induces IFN-γ 
production by NK cells and T cells. In fact, NK 
cells and T cells were fi rst shown to express high- 
affi nity receptors for IL-12 [ 18 ]. Tumor eradica-
tion after vaccinations supported by IL-12 is 
dependent on NK cells in several animal models 
[ 19 – 21 ]. IL-12 enhances  in vitro  lysis of both NK 
cell-sensitive and NK cell-resistant tumor cells. 
Consistent with animal studies, in patients with 
cancer, IL-12 enhances the cytolytic activity of 
NK cells and increases the expression of CD2, 
LFA-1, and CD56 molecules which mediate NK 
cell migration [ 22 ]. Moreover, IL-12 was shown 
to enhance the cytotoxicity mediated by NK cells 
from healthy donors against cancer cells derived 
from patients with cancer.

   In addition to its effect on NK cell cytotoxic-
ity, IL-12 enhances T-cell-mediated cytotoxicity 
and has an enhancing effect on CD8 +  T cells [ 23 ]. 
DCs play a crucial role in facilitating the interac-
tion between CD4 +  T cells and antigen-specifi c 
CD8 +  T cells. Priming of CTL is enabled by the 
ligation of CD40 on DC and its ligand CD154 on 
activated CD4 +  T cells [ 24 ,  25 ]. The induction of 
IL-12 synthesis that occurs as a result of CD40 
ligation suggests an important role for IL-12 in 
the molecular mechanisms responsible for CTL 
priming [ 26 ]. It was then shown that IL-12, in the 
presence of antigen, acts directly on naive CD8 +  
T cells to promote clonal expansion and differen-
tiation [ 27 ]. In addition, priming of CD8 +  T cells 
in the absence of IL-12 rendered them unrespon-
sive to the same antigen [ 28 ]. Agonistic CD40 
antibodies (Abs) were shown to substitute the 
function of CD4 +  T cells in murine models of 
T-cell-mediated immunity, resulting in rapid 
expansion of CTLs that cleared established lym-
phomas and provided long-term protection 
against tumor rechallenge [ 29 ,  30 ]. These obser-
vations provided an  explanation for the impaired 
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tumor antigen-specifi c CTL activation in CD40- 
defi cient mice and confi rmed the key role of the 
CD40-IL-12 pathway in the regulation of antitu-
mor immunity. A series of experiments, con-

ducted by different groups, indicated that the 
injection of IL-12 directly into subcutaneous 
tumors results in CTL response against the tumor 
in mice [ 31 – 33 ]. 
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  Fig. 7.1    IL-12 links innate and adaptive antitumor immu-
nity. IL-12 utilizes several mechanisms to induce antitu-
mor effects. IL-27 activates innate effectors, such as NK 
cells, NKT cells, and γδ − T cells and promotes their cyto-
lytic activity and cytokine production. IL-12 induces 
IFN-γ production in macrophages that can have a cyto-
toxic effect on tumor cells. IL-12 induces the production 
of antiangiogenic molecules from endothelial cells. In 

addition, IL-12 has a direct toxic effect on the some tumor 
cells. Furthermore, IL-12 secretion by DCs can induce 
adaptive arms of antitumor immunity. IL-12 can augment 
Th1 response necessary for cellular immune response. 
Il-12 stimulates the differentiation and lytic capacity of 
CTL and promotes immune memory. Finally, IL-12 can 
mediate antibody-mediated tumor clearance via B-cell 
activation       
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 The rejection of tumors requires CD8 +  T cells 
whose activation and maintenance depends on 
CD4 +  T cells. Upon stimulation, naïve CD4 +  T 
cells differentiate into different lineages of T 
helper subsets including Th1, Th2, Th17, and 
Tregs. These distinct CD4 +  T-cell subsets have 
varied impact on tumor growth. While Th1 cells 
promote CD8 +  T-cell-mediated immunity to 
tumors, the other CD4 +  T-cell subsets Th2 and 
Tregs negatively regulate CD8 +  T-cell function. 
In the presence of IL-12, naïve CD4 +  T cells dif-
ferentiate into IFN-γ-secreting Th1 cells [ 34 ]. 
Th1 cytokines, IL-2, and IFN-γ, stimulate the 
cytolytic activity of NK cells. High production 
of IFN-γ by CD8 +  T cells and a Th2 to Th1 shift 
in the cytokine secretion profi le of CD4 +  T cells 
were also seen in the IL-12-treated mice [ 35 ]. By 
altering the balance between Th1 and Th2 cyto-
kines, IL-12 plays a critically important role in 
antitumor immune responses. A shift from Th1 
to Th2 cytokine production has been reported 
in progressive cancer patients, and a vaccine 
inducing Th2 to Th1 shift in a murine model of 
tumor was shown to induce tumor rejection [ 36 ]. 
In addition, Th2 cytokines have been shown to 
accelerate tumor growth in multiple experimental 
models [ 37 ]. In fact, CD4 +  T cells can directly 
interact with CD8 +  T cells via CD40-CD154 
interactions [ 38 ], which directly contrast with 
the early notion that CD4 +  and CD8 +  T cells are 
brought together on the same antigen-presenting 
cell for the effective delivery of IL-2 to neighbor-
ing CD8 +  T cells. Moreover, a full CD8 +  T-cell 
response is elicited by a temporal release of IL-2 
from CD4 +  T cells, which is consistent with the 
fi ndings that neutralization of IL-2 signifi cantly 
limits CD8 +  T-cell growth [ 39 ]. IL-12 also plays 
an important role in the establishment of mem-
ory CD8 +  T cells [ 40 ]. A strong specifi c CTL 
response was observed in patients with advanced 
melanoma after administration of IL-12. The 
number of tumor-specifi c CTL increased in the 
circulation, and infl ux of specifi c memory CD8 +  
T cells into metastasized lesions was docu-
mented [ 41 ]. Additionally, IL-12 was shown to 
stimulate humoral immunity. In a model of colon 
 carcinoma, vaccination with IL-12-transduced 
tumor cells cured 40 % of tumor-bearing mice. 

Favorable antitumor responses were related to the 
synthesis of Abs against tumor antigens inducing 
tumor cell lysis in a complement- dependent cyto-
toxicity assay [ 42 ]. 

 The ability of IL-12 to facilitate cell-mediated 
immune responses, including enhancement of 
NK cytotoxicity, generation of CTL, and DC 
activation, suggests its role in both the innate and 
adaptive immunity resistance mechanisms 
against tumors. Experimental studies of systemic 
administration of the cytokine have indicated that 
IL-12 exerts potent antitumor activity against a 
variety of metastatic tumors and can even prevent 
spontaneous tumor development in HER-2/neu 
transgenic mice. In addition, models based on 
intra-tumor cytokine delivery or  in vivo  transfer 
of cytokine-secreting tumors have indicated that 
IL-12 has signifi cant dose-dependent antitumor 
activity against a wide spectrum of murine tumors 
including melanoma and breast, ovarian, and 
bladder tumors [ 17 ,  43 ,  44 ]. All these studies 
have demonstrated that IL-12 can inhibit tumor 
growth and improve the survival of tumor- bearing 
animals that are dependent on not only its ability 
to activate the innate and adaptive arms of antitu-
mor immunity but also through its antiangiogenic 
activity.  

7.2.1.3     IL-12 and Angiogenesis 
Inhibition 

 Accumulating evidence indicates that the antitu-
mor effects of IL-12 are mediated, at least in part, 
through mechanisms involving angiogenesis and 
its direct effects on tumors. Angiogenesis is an 
essential process for tumor growth and metasta-
ses. In addition, it is the result of a complex bal-
ance between angiogenic and antiangiogenic 
factors. The balance between angiogenic and 
angiostatic molecules in the tumor microenviron-
ment can determine tumor growth and survival. 
The antiangiogenic properties of IL-12 were fi rst 
observed by Voest et al. who demonstrated that 
IL-12 treatment almost completely inhibited neo-
vascularization in immunocompetent mice, 
severe combined immunodefi cient mice, and 
T-cell-defi cient nude mice [ 45 ]. However, sup-
pression of angiogenesis by IL-12 was dependent 
on its ability to induce IFN-γ expression. 
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Accordingly, administration of IFN-γ reproduced 
the antiangiogenic effects promoted by IL-12. 
Moreover, it was shown that inhibition of tumor 
growth by IL-12 or IFN-γ required an intact sig-
naling from IFN-γ receptors expressed in neo-
plastic cells. This indicated that IL-12 could 
inhibit tumor growth by inducing neoplastic cells 
to produce antiangiogenic factors. Two of the 
most relevant factors were identifi ed as the IFN-γ-
 inducible genes, IFN-inducible protein 10 (IP- 
10) and monokine induced by interferon-γ (MIG) 
[ 46 ,  47 ]. Local and systemic treatment with IL-12 
was associated with the expression of IFN-γ, 
IP-10, and MIG in the tumor; in addition, intra- 
tumor delivery of MIG into subcutaneously 
growing tumor in nude mice led to tumor necro-
sis associated with vascular damage. 
Administration of neutralizing Abs to IP-10 and 
MIG substantially reduced the antitumor effects 
of IL-12 [ 48 ]. IP   -10 and MIG interact with their 
receptor CXCR3 to mediate their angiostatic 
activity. These results support the notion that 
these chemokines, both ligands of the receptor 
CXCR3, contribute to the antitumor effects of 
IL-12 through their inhibitory effect on tumor 
vasculature. In addition to IFN-γ stimulation, 
IL-12 promotes the expression of interferon regu-
latory factors 1 (IRF-1) and 4 (IRF-4), which are 
necessary for Th1 cell differentiation [ 49 ]. IRF-1 
has tumor suppressor activities in cancer cells 
 in vitro  and decreases the tumorigenicity of cells 
inoculated into athymic nude mice [ 50 ,  51 ]. 
Similarly, IRF-4 suppresses c-Myc-induced leu-
kemia in animal models and inhibits BCR/ABL- 
induced B-cell acute lymphoblastic leukemia 
[ 52 ,  53 ]. 

 Emerging evidence indicates the involve-
ment of lymphocyte-endothelial cell crosstalk 
at the beginning of the process of angiogen-
esis inhibition by IL-12. It has been shown that 
neutralization of NK cell function reversed 
IL-12 inhibition of angiogenesis in athymic 
nude mice. Immunohistochemistry analysis 
revealed that neovascularization inhibited by 
IL-12 displayed accumulation of NK cells and 
IP-10-positive cells. In addition, experimental 
Burkitt  lymphomas treated locally with IL-12 
displayed tumor tissue necrosis, vascular dam-

age, and NK cell infi ltration surrounding small 
vessels [ 54 ]. These results documented that 
NK cell cytotoxicity of endothelial cells is a 
potential mechanism by which IL-12 can sup-
press neovascularization. The antiangiogenic 
program activated in lymphocytes by IL-12 can 
also directly affect gene expression in neoplastic 
cells. In fact, upregulation of signal transducers 
and activators of transcription- 1 (STAT-1) and 
angiopoietin 2 together with down-modulation 
of vascular endothelial growth factor (VEGF) 
has been observed in neoplastic cells exposed 
to soluble factors released by IL-12-stimulated 
lymphocytes [ 55 ]. In addition, IL-12 treat-
ment reduced the production of metallopro-
teases, playing a role in matrix remodeling, a 
process required during neoangiogenesis [ 56 ]. 
Moreover, the activation of integrin αVβ3 on 
endothelial cells is reduced by the IL-2- induced 
IFN-γ, which leads to decreased endothelial cell 
adhesion and survival [ 57 ]. IL-12-induced secre-
tion of IFN-γ leads to an increase in p53 activity, 
which subsequently results in tumor suppression 
due to the induction of apoptosis in cancer cells 
[ 58 ]. Furthermore, IL-12 dramatically decreased 
tumor-supportive activities of tumor-associated 
macrophages (TAMs), which are involved in 
tumor angiogenesis and metastasis. The anti-
angiogenic mechanisms mediated by IL-12 are 
complex and dependent not only on the direct 
effect on endothelial cells of the proinfl amma-
tory cytokine/chemokines induced by IL-12 but 
also on the recruitment of immune effector cells 
such as NK and T cells.  

7.2.1.4     Regulation of IL-12 in Tumor 
Microenvironment 

 Although controlled Th1 and CTL responses can 
exert a signifi cant antitumor immunity, the same 
responses, if exaggerated, may result in host- 
tissue destruction and autoimmunity. Therefore, 
as a part of immune homeostasis, the infl amma-
tory responses need to be counter-regulated. 
Tregs play a major role in controlling unwanted 
immune response to self-antigens [ 59 ]. Studies 
have revealed a signifi cant role for Tregs in defec-
tive immune responses to tumor antigens. Treg 
functions are mediated in part through secre-
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tion of immunosuppressive cytokines IL-10 and 
TGF- β. Both TGF-β and IL-10 can inhibit DC 
antigen presentation, IL-12 secretion, and effec-
tor functions of both CD4 +  and CD8 +  T cells 
[ 12 ]. Thus, it is possible that as an immunosup-
pressive environment develops in the growing 
tumor, DCs secreting IL-12 become scarce. This 
   might be due to an absence of DC activation sig-
nals, CD40, or inhibition of activated CD4 +  T 
cells which could themselves activate 
DC. Moreover, the CD40-CD40L interaction 
between DCs and T cells leads to the induction 
of not only IL-12 but also IL-10, a pro-tumor 
cytokine that may act in an autocrine or a para-
crine manner to downregulate IL-12 secretion 
from DCs [ 60 ]. Indeed, reduced CD40 expres-
sion on DC or CD40-L on T cells from tumor-
bearing hosts may explain the reason for reduced 
levels of IL-12 observed in patients with cancer 
[ 61 ]. In accordance with this, reduced expres-
sion of IL-12 was observed in patients with 
advanced cancer types including glioblastoma, 
renal cell carcinoma, head and neck squamous 
cell carcinoma, gastric cancer, melanoma, 
colorectal cancer, hepatocellular carcinoma, and 
gastric cancer [ 15 ]. Moreover, IL-12 production 
by stimulated peripheral blood mononuclear 
cells decreased signifi cantly in patients with gas-
tric and colorectal cancer with advanced disease. 
In addition to the immunosuppressive cytokines 
TGF-β and IL-10, other factors present in the 
tumor microenvironment can downregulate 
IL-12 production, for example, prostaglandin E2 
(PGE2) produced by tumor cells or tumor- 
associated host cells (macrophages, endothelial 
cells, and stromal cells) known to inhibit IL-12 
production [ 62 ].  

7.2.1.5     Clinical Studies with IL-12 
 Based on the provocative preclinical studies, 
IL-12 was evaluated in patients with differ-
ent malignancies. However, clinical experience 
with IL-12 in humans is limited. Several phase 
I clinical trials of IL-12 in patients with solid 
tumors and hematological malignancies have 
been reported [ 63 ]. IL-12 administration in 
patients with advanced colorectal cancer (CRC), 
 melanoma, and renal cell carcinoma resulted in 

only one partial response (renal cell  carcinoma) 
and one transient complete response (mela-
noma), among the 40 enrolled patients. However, 
common signs and symptoms of toxicity    such as 
fever/chills, nausea, vomiting, fatigue, and head-
ache were observed [ 64 ]. Administration of IL-12 
resulted in stabilization of the disease in several 
renal cancer patients and partial regression of a 
metastatic lesion, but has not proceeded further 
in clinical development due to signs and symp-
toms of toxicity, including fever, vomiting, and 
elevation of hepatic enzymes [ 65 ]. Clinical trials 
of IL-12 treatment in combination with rituximab 
in patients with B-cell non-Hodgkin lymphoma 
(NHL) did not result in clinical response [ 66 ]. 
However, several clinical studies revealed posi-
tive results with IL-12 administration. During 
IL-12 treatment in patients with NHL, 21 % of 
the patients had a partial or complete response 
without major side effects [ 67 ]. Similarly, sub-
cutaneous IL-12 treatment resulted in complete 
response in 56 % of the treated patients with T-cell 
lymphoma with minor toxicity [ 68 ]. Furthermore, 
clinical trials on metastatic melanoma revealed 
that IL-12 administration induces tumor shrink-
age in patients accompanied with increased fre-
quency of circulating antitumor CTLs [ 41 ]. The 
low effi cacy of IL-12 in the abovementioned 
clinical trials may be due to an immunosuppres-
sive microenvironment in advanced tumors. In 
addition, IL-12 may self- limit its own therapeutic 
effi cacy by inducing IL-10 and other suppressive 
factors. For example, IFN-γ induced by IL-12 
can activate immunoregulatory molecules such as 
programmed death ligand-1 (PD-L1) and indole-
amine 2,3 dioxygenase (IDO) on a variety of cells 
(DC, T cells, and endothelial cells) [ 69 ]. Both 
PD-L1 and IDO can abrogate antitumor immu-
nity through various mechanisms. Furthermore, 
other factors such as environment and diet may 
alter the effectiveness of IL-12-mediated antican-
cer immunity. Although systemic administration 
of IL-12 in patients is limited by its signifi cant 
toxicity, emerging studies in animal models indi-
cate that IL-12 in combination with other cyto-
kines boosts antitumor immunity without any 
toxic side effects [ 44 ]. Thus, selective targeted 
delivery of IL-12 to tumors and/or reducing the 
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dose of IL-12 while combining it with other ther-
apeutics may yield better outcome.   

7.2.2     IL-27 

7.2.2.1     Overview 
 IL-27 is a member of the IL-12 family cytokine 
that plays potent antitumor effects against vari-
ous tumor models via different mechanisms, 
depending on the characteristics of each tumor 
[ 70 ]. Unlike IL-12, IL-27-mediated antitumor 
functions are independent of IFN-γ, and IL-27- 
treated mice do not manifest any toxic side 
effects. IL-27 is mainly produced by activated 
APCs including DCs and macrophages. DCs 
secrete IL-27 on exposure to physiological 
stimuli such as type I and type II interferons 
(INF) and CD40 [ 71 – 73 ]. In addition, IL-27 
expression is induced in APCs upon stimula-
tion by various TLR ligands such as poly(I:C), 
lipopolysaccharide (LPS), and CpG-DNA, 
which are agonists of toll-like receptors 
(TLR)3, TLR4, and TLR9, respectively 
[ 74 – 76 ].  

7.2.2.2     IL-27 in Antitumor Immunity 
 IL-27 has a wide array of functions necessary 
for the induction of antitumor immune response. 
IL-27 has been shown to act on NK cells to 
enhance their cytotoxic activity both  in vitro  
and  in vivo ; in addition, therapeutic administra-
tion of IL-27 increased NK cell susceptibility of 
tumors [ 77 ]. By activating NK cells, IL-27 might 
enhance adaptive immunity to tumors in part; the 
killing of tumor target by NK cells could provide 
DCs with increased access to tumor antigens; 
thus, IL-27 serves as a link between innate and 
adaptive antitumor immunity. In addition to NK 
cell activation, IL-27 acts on CD8 +  T cells and 
induces the generation of CTL through enhanc-
ing the expression of effector molecules such as 
granzyme B and perforin [ 78 ]. Similar to mice, 
IL-27 promotes IFN-γ and granzyme B produc-
tion from human CD8 +  T cells [ 79 ]. The over-
expression of IL-27 in highly immunogenic 
murine tumor cells facilitated CTL development 
with enhanced IFN-γ production [ 80 ,  81 ]. In line 

with these observations, IL-27R −/−  mice failed 
to regulate tumor growth  in vivo , reiterating the 
importance of IL-27 signaling in the genera-
tion of antitumor immunity [ 82 ]. Most recently, 
DC-derived IL-27 has been shown to induce 
NK and NKT cell-dependent antitumor immu-
nity against methylcholanthrene-induced fi bro-
sarcoma and transplanted B16 melanoma [ 83 ]. 
Moreover, IL-27 in combination with other cyto-
kines such as IL-2 and IL-12 boosts antitumor 
immunity by contributing to the development of 
CTLs and NK cells [ 84 ]. 

 In addition to the direct effect of IL-27 on 
CD8 +  T-cell activation, the infl uence of IL-27 on 
CD4 +  T-cell responses might provide further 
therapeutic opportunities. Initial studies have 
indicated that IL-27 leads to the differentiation of 
Th1 cells [ 85 ]. IL-27 synergizes with IL-12 to 
enhance IFN-γ production [ 86 ]. Moreover, it has 
been shown that IL-27 inhibits Th2 polarization 
of naïve CD4 +  T cells and suppresses Th2 cyto-
kine production from  in vitro  polarized Th2 cells 
[ 87 – 89 ]. By altering the balance between Th1 
and Th2 cytokines, IL-27 plays a critically impor-
tant role in antitumor immune responses. In line 
with this, a recent study confi rmed IL-27’s capa-
bility in the reversion of the Th2 polarization of 
 in vivo  primed lymphocytes from pancreatic can-
cer patients [ 90 ]. IL-27-dependent enhancement 
of preexisting antigen-specifi c Th1 responses has 
also been demonstrated [ 36 ]. IL-27 may promote 
tumor regression through the inhibition of Tregs. 
IL-27 inhibits the generation of Foxp3 +  Tregs 
both  in vitro  and  in vivo . IL-27 blocks Treg dif-
ferentiation through a mechanism that is at least 
partially dependent on STAT-3 [ 91 ,  92 ]. In addi-
tion, IL-27 can limit Treg cell expansion by 
inhibiting IL-2, a cytokine necessary for Treg 
development [ 93 ]. In a murine model of neuro-
blastoma, IL-27 has been shown to inhibit IL-2- 
induced Treg expansion in the tumor, promoting 
antitumor immune responses [ 84 ]. IL-27 also 
induces tumor-specifi c Ab response which coop-
eratively elicits ADCC activity [ 94 ].  

7.2.2.3    Direct Effect of IL-27 on Tumors 
 IL-27 possesses multiple antitumor effects medi-
ated by mechanisms involving angiogenesis 
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and its direct effects on tumors. IL-27 has been 
shown to have antiproliferative activities which 
inhibit tumor growth and metastasis in murine 
melanoma [ 95 ]. The major antitumor role of 
IL-27 relies on its antiangiogenic property of sur-
rounding endothelial cells and fi broblasts. IL-27 
signifi cantly inhibited tumor growth in SCID 
mice through the induction of antiangiogenic 
factors such as IP-10 and MIG from endothelial 
cells [ 96 ]. Consistent with these results, IL-27 
has been shown to directly act on human umbili-
cal cord endothelial cells and induce production 
of the antiangiogenic chemokines such as IP-10 
and MIG [ 97 ]. IL-27 strongly inhibited tumor 
growth of primary multiple myeloma (MM) 
cells through inhibition of angiogenesis [ 98 ]. In 
addition, IL-27 downregulated a wide panel of 
proangiogenic genes, including matrix metallo-
proteinase- 9 ( MMP-9 ),  TGF-β , and  VEGF  with a 
concomitant upregulation of the angiostatic che-
mokines IP-10 and MIG. 

 IL-27 may further promote tumor regression 
through the inhibition of a proangiogenic cyto-
kine IL-17. IL-27 suppresses the Th17 key tran-
scription factor RORγt and thus inhibits 
expression of IL-17 by T cells both in humans 
and mice [ 99 ,  100 ]. Accordingly, mice defi cient 
in either the IL-27 EBI3 subunit or IL-27R have 
increased levels of IL-17 [ 101 ]. Among the Th17 
suppressive molecules found in the tumor micro-
environment, IL-27 is one of the most potent 
inhibitors of Th17 differentiation. IL-27 can be 
induced in tumor-infi ltrating DCs by galactin-1, 
IFN-γ, and apoptotic tumor cells in the tumor 
microenvironment [ 71 ,  102 ,  103 ]. However, the 
proangiogenic molecules which dominate the 
microenvironment in advanced tumors can limit 
the availability of IL-27. Osteopontin (OPN), a 
proinfl ammatory cytokine, inhibits the expres-
sion of IL-27 in DCs while inducing Th17 dif-
ferentiation [ 72 ]. OPN promotes tumor growth 
through mechanisms involving angiogenesis, 
tumor migration, and metastasis, suggesting that 
OPN may release the brake on Th17 cell 
responses by suppressing IL-27 in DCs. Both 
OPN and IL-27 are expressed in DCs and macro-
phages; thus, the outcome of Th17 accumulation 
in tumor microenvironment may depend on the 

fi ne balance with other myeloid cell populations 
especially tumor-infi ltrating macrophages and 
DCs expressing OPN and IL-27.  

7.2.2.4    Advantages of IL-27 Over IL-12 
in Tumor Immunity 

 IL-27-mediated antitumor mechanisms are com-
plex. Similar to IL-12, IL-27 utilizes effector 
mechanisms of innate and adaptive immunity 
to mediate antitumor immunity. IL-27 promotes 
tumor immunity through the induction of Th1 
and CTL responses while inhibiting immu-
nosuppressive Th2 and Tregs. Unlike IL-12, 
IL-27- mediated antiangiogenic functions are 
independent of IFN-γ. Thus, IL-27-treated mice 
are not observed with any toxic side effects [ 104 ]. 
The central role of IL-27 in orchestrating both the 
innate and adaptive arms of immunity together 
with multiple antiangiogenic functions explains 
the essential contribution of this molecule to 
the development of antitumor immunity against 
both high and poor immunogenic tumors. These 
observations together with the lack of toxicity 
observed  in vivo  in preclinical trials with IL-27 
treatment highlight the enormous therapeutic 
potential of this approach.    

7.3     Cytokines in Immune 
Tolerance to Cancer 

 Although certain cytokines produced in the tumor 
microenvironment can function to inhibit tumor 
growth, others can promote tumor growth and 
progression. Several cytokines were found to 
serve as growth and survival factors that act on 
premalignant cells, stimulate angiogenesis and 
metastasis, and maintain tumor-promoting 
immunosuppression and infl ammation. 

7.3.1     TGF-β 

7.3.1.1    Overview 
    Transforming growth factor-β (TGF-β) is a pleio-
tropic cytokine with broad tissue distribution that 
plays critical roles during embryonic develop-
ment, normal tissue homeostasis, and cancer [ 105 ]. 
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Elevated TGF-β serum concentrations were 
observed in patients with different malignancies 
and were associated with poor prognosis. TGF-β 
is released not only by a variety of cells in human 
and murine tumors including T cells, macro-
phages, and DCs but also by tumor cells them-
selves [ 106 ]. Almost all human cell types are 
responsive to TGF-β, which signals through type 
I and type II TGF-β receptors (TβRI and TβRII, 
respectively). Upon binding of TGF-β to TβRII, 
TβRI is recruited and activated to phosphorylate 
the downstream mediators, SMAD2 and SMAD3. 
Phosphorylated SMAD2 and SMAD3 combine 
with SMAD4 to enter the nucleus to modulate 
gene transcription [ 107 ]. 

 The function of TGF-β in cancer is complex. 
TGF-β can act as a tumor suppressor or a tumor 
promoter depending on the stages of tumor devel-
opment. Initially, it acts as a tumor suppressor 
since it induces apoptosis and inhibits the growth 
of normal and premalignant tumor cells [ 108 ]. At 
later stages of tumor progression, TGF-β acts as 
a tumor promoter. At this stage, cancer cells pro-
tect themselves and tend to acquire resistance to 

TGF-β growth inhibitory signals which is an 
important reason for the shift from being a tumor 
suppressor to a tumor promoter. Subsequently, 
cancer cells start secreting nonphysiological lev-
els of TGF-β in an autocrine and paracrine man-
ner which may affect the differentiation of the 
tumor cells and the surrounding cellular environ-
ment, respectively, leading to development of the 
tumor and metastasis [ 108 ]. Notably, TGF-β 
induces epithelial-mesenchymal transition 
(EMT), whereby epithelial tumor cells acquire an 
invasive, mesenchymal-like phenotype accompa-
nied by changes in the expression of cell-cell 
adhesion molecules and secretion of metallopro-
teinases, leading to metastasis [ 109 ,  110 ]. The 
potent regulatory activity of TGF-β on immune 
cell functions represents an important  mechanism 
of immune tolerance to tumors. The presence of 
TGF-β in the microenvironment of the develop-
ing tumor is predicted to disable effective immu-
nosurveillance by multiple mechanisms, most of 
which converge on the impairment of tumor cell 
killing by innate and adaptive immune cells 
(Fig.  7.2 ).
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  Fig. 7.2    TGF-β-mediated 
immunosuppression. TGF-β 
affects components of both 
innate and adaptive immune 
systems. TGF-β inhibits NK 
cell activation and its effector 
function. In addition, TGF-β 
inhibits DC maturation and 
antigen- presenting function 
while promoting polarization 
of M2 macrophages. TGF-β 
inhibits CD8 +  T-cell-
mediated antitumor immune 
response. TGF-β also has a 
signifi cant impact on CD4 +  
T-cell differentiation and 
function. TGF-β induces 
Treg and Th17 differentiation 
while inhibiting Th1 and Th2 
differentiation. Furthermore, 
TGF-β inhibits B-cell 
proliferation and antibody 
secretion       
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7.3.1.2       Effect of TGF-β on Innate 
Immunity to Tumors 

 TGF-β is an important regulator of NK cell 
function, being a potent antagonist of IL-12-
induced production of IFN-γ in NK cells [ 111 ]. 
In addition, TGF-β inhibits the activity of NK 
cells by limiting expression of the activating 
receptor NKG2D, NKp30, and DNAM-1 [ 112 ]. 
In fact, reduced expression of NKG2D is associ-
ated with elevated levels of TGF-β in patients 
with cancer. It has been shown that surface-
bound TGF-β on MDSCs can inhibit NK cell 
cytolytic activity against mammary adenocarci-
noma [ 113 ,  114 ]. Moreover, TGF-β has been 
shown to suppress MHC class I and MHC class 
II expression in a number of cell populations 
[ 115 – 117 ]. Importantly, the TGF-β-dependent 
decrease of MHC class I expression in tumor 
cells has been shown to result in reduced tumor 
cell lysis by NK cells [ 117 ]. Although NK cells 
are the major innate effectors, they require acti-
vation by DCs. TGF-β has been demonstrated to 
impair DC function both  in vitro  and  in vivo . 
TGF-β inhibits upregulation of critical co-stim-
ulatory molecules on the surface of DCs and 
reduces cytokine production and their antigen-
presenting capacity [ 118 ,  119 ]. TGF-β can 
immobilize DCs, thereby interfering with their 
migration and the transport of antigen to drain-
ing lymph nodes for presentation to T cells. 
Moreover, TGF-β can also induce apoptosis of 
DCs [ 120 ]. In recent years, more correlative 
clinical data has supported the inhibitory role of 
TGF-β in the observed defects in cancer. 
Increased serum TGF-β in human colorectal 
cancer correlates with reduced circulating DCs 
[ 121 ]. Moreover, tumor-infi ltrating DCs both 
secrete and respond to TGF-β, in either an auto-
crine or paracrine manner. These TGF-β- 
secreting DCs promote the formation of Tregs 
[ 122 ] that potently inhibit the function of other 
T cells, and that Treg production of TGF-β can 
inhibit NKG2D-mediated NK cell cytotoxicity, 
thereby enhancing tumor growth and metastasis. 
In addition to DCs, TGF-β can suppress or alter 
the activation and function of other innate 
immune cells such as NKT cells, macrophages, 
and neutrophils [ 106 ]. 

 Macrophages, the predominant leukocyte, 
play a key role in tumor growth. The role of 
tumor-associated macrophages (TAMs) in 
tumors is controversial [ 123 ]. TAMs origi-
nate from recruited myeloid cells, such as 
blood monocytes or MDSCs by a number of 
chemoattractants produced by tumor cells 
and stromal cells. Tumor- derived chemokine 
CCL2 is critical for the recruitment of macro-
phages to the tumor site [ 124 ]. Macrophages 
can exert different properties when polarized 
with distinct inducers. Differential cytokine 
production is a key feature of polarized mac-
rophages. When stimulated with IFN-γ, M1 
macrophages secrete high levels of IL-12, but 
low levels of IL-10. In contrast, M2 macro-
phages express high levels of IL-10 but low 
levels of IL-12 [ 125 ]. Due to their different 
cytokine profi les, these polarized macrophages 
have distinct functions. For example, the IL-12 
produced by M1 macrophages can promote the 
differentiation of Th1 cells, which can improve 
antigen phagocytosis and contribute to antitu-
mor immunity. Whereas, the IL-10 expressed 
by M2 macrophages can promote the produc-
tion of IL-4 and IL-13 by Th2 cells. Both IL-4 
and IL-13 have been shown to impair antitu-
mor T-cell responses. TGF-β promotes tumor-
associated macrophage polarization to an M2 
 vs . M1 phenotype, which further promotes 
TGF-β production and deepens immunosup-
pression [ 126 ]. In most tumors, the infi ltrated 
macrophages are considered to be of the M2 
phenotype. TAMs orchestrate various aspects 
of cancer, such as tumor progression, angio-
genesis, metastasis, and immunosuppression 
[ 127 ]. It has been shown that NKT cells can 
suppress CTL responses through mechanisms 
involving TGF-β. Therefore, blockade of 
TGF-β signaling not only enhances the fre-
quency of antitumor CTLs but also restores the 
activities of the cytolytic machinery and pre-
vents NKT cell- mediated immunosuppression 
[ 128 ]. Furthermore, TGF-β also inhibits effec-
tor functions of other innate immune cells such 
as γδ-T cells [ 106 ]. Thus a dampened innate 
immune response leads to poor adaptive immu-
nity, resulting in persistence of the tumor.  
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7.3.1.3     Effect of TGF-β on Adaptive 
Immunity to Tumors 

 The presence of TGF-β in the tumor microenvi-
ronment can have a profound impact upon antitu-
mor activity of T cells. It has been shown that 
TGF-β can suppress CTL differentiation and 
CTL-mediated lysis of tumor cells [ 129 ,  130 ]. 
TGF-β    acts on CTLs to specifi cally repress the 
expression of different cytolytic effector mole-
cules such as perforin, granzyme A, granzyme B, 
Fas ligand (FasL), and IFN-β, which are collec-
tively responsible for CTL-mediated tumor kill-
ing [ 131 ]. Blockade of TGF-β in tumor models 
has been shown to reduce tumor burden by 
improving CD8 +  T-cell-mediated tumor immu-
nity [ 131 ]. Furthermore, TGF-β could suppress 
IL-2 production and IL-2-induced T-cell differ-
entiation [ 132 ]. Tumor cells transfected with 
TGF-β were shown to attenuate the effi cacy of 
DC-based tumor vaccines [ 118 ]. In addition, 
TGF-β functionally regulates the differentiation 
of T helper cell subpopulations both  in vitro  and 
 in vivo . TGF-β inhibits Th1 and Th2 cells, 
whereas it promotes Treg and Th17 cell differen-
tiation [ 133 ]. Most recently, TGF-β has also been 
shown to play an important role in the develop-
ment of IL-9-secreting Th9 cells [ 134 ]. 

 Although there are many sources of TGF-β in 
the tumor microenvironment, it has been shown 
that Tregs can provide a signifi cant source of 
TGF-β responsible for attenuation of tumor anti-
gen expanded CTLs. Tregs hamper the functions 
of Th1, CD8 +  T cells, NK cells, DCs, and other 
key effector cells of antitumor immunity [ 106 ]. 
Accordingly, Treg-mediated immunosuppression 
has been proposed to be one of the important 
mechanisms involved in tumor immune evasion. 
An accumulation of Tregs in tumors can dampen 
T-cell immunity to tumors and is thus the main 
obstacle to successful immunotherapy [ 59 ]. The 
frequency of Tregs present in the peripheral blood 
of patients with various cancers is higher than 
that of normal population [ 135 ]. Notably, Tregs 
isolated from peripheral blood and solid tumors 
remain suppressive to T-cell activation  in vitro  
[ 136 ]. Likewise, Tregs from tumor- bearing mice 
inhibited tumor rejection, indicating that Treg 
cells suppress tumor-specifi c immunity and 

limit antitumor resistance. In contrast, depletion 
of Tregs with anti-CD25 Ab in animal models 
enhances antitumor immunity and tumor regres-
sion, further suggesting the involvement of Tregs 
in tumor growth. Furthermore, when tumor-spe-
cifi c CD8 +  T cells were adoptively transferred 
with either Tregs or CD4 + CD25 −  T cells into 
hosts with tumor, CD8 +  T-cell-mediated immu-
nity was abolished in those receiving Tregs but 
not CD4 + CD25 −  T cells [ 137 ,  138 ]. Collectively, 
these studies provide strong evidence that Tregs 
can attenuate the antitumor immunity by down-
regulating the antitumor immune responses and 
ultimately facilitating the development of cancer.  

7.3.1.4     TGF-β, Treg, and Tumor 
Angiogenesis 

 Angiogenesis and tumor-associated immuno-
suppression are hallmarks of tumorigenesis. The 
association between angiogenesis and immunosup-
pression is related to hypoxia which induces both 
angiogenesis and immunosuppression via activa-
tion of hypoxia-induced factor 1 (HIF-1). The 
induction of VEGF during hypoxia is primarily 
mediated by HIF-1. HIF-1-induced VEGF pro-
motes angiogenesis by inducing the recruitment 
of various proangiogenic bone marrow- derived 
cells including endothelial progenitors and 
myeloid cells [ 139 ]. Although hypoxia- VEGF 
axis has been thought to be solely involved in 
vascular growth and permeability, recent stud-
ies suggest its role in immuno suppression in 
the tumor microenvironment. Within the tumor 
microenvironment multiple cell types with 
established roles in immunosuppression have 
been shown to promote angiogenesis. Among 
the immunosuppressive cell types found in the 
tumor microenvironment, Tregs are consid-
ered pivotal regulators of immunosuppression. 
Tregs can traffi c to tumors from the periphery 
under the infl uence of chemokines in the tumor 
microenvironment. It has been shown that tumor 
hypoxia leads to the recruitment of Tregs via 
chemokine CCL28 [ 140 ]. Forced expression of 
CCL28 in mouse tumor cells resulted in accel-
erated tumor growth and Treg accumulation 
associated with increased VEGF levels and 
angiogenesis. In addition, Tregs were shown 
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to express CCR4, the receptor for CCL22, and 
can therefore migrate to CCL22 present in the 
tumor microenvironment [ 141 ,  142 ]. Beyond 
recruitment of Tregs through chemokines, the 
tumor microenvironment promotes the continued 
expansion of Tregs and the generation of Tregs 
due to a tumor microenvironment rich in TGF-β. 
The recruited Tregs in turn dampen the antitumor 
immune response and promote angiogenesis. The 
accumulation of Tregs at tumors has been cor-
related with VEGF overexpression and increased 
angiogenesis in cancers, providing evidence for 
an association between Tregs and angiogenesis 
[ 143 ,  144 ]. Tregs can contribute to tumor angio-
genesis through different mechanisms. They pro-
mote angiogenesis indirectly by suppressing Th1 
cells that release angiostatic cytokine IFN-γ, as 
well as interferon- induced chemokines such as 
CXCL9 and CXCL10. Indeed, Tregs have been 
shown to promote tumor angiogenesis by spe-
cifi cally inhibiting tumor-reactive T cells. Tregs 
can signifi cantly contribute to the direct promo-
tion of tumor angiogenesis through the induc-
tion of VEGF and endothelial cell proliferation 
[ 144 ]. Additional therapeutic opportunities may 
be provided by Tregs’ capability in suppress-
ing tumor-specifi c immunity while promoting 
tumor angiogenesis by well-planned manipu-
lations of Tregs, including depletion, block-
ing traffi cking into tumors, and reducing their 
differentiation and suppressive mechanisms. It 
will be benefi cial to tumor  eradication by com-
bining this strategy with various current thera-
peutic approaches. In an early phase I clinical 
trial in patients with metastatic breast cancer, 
the anti-CD25 Ab daclizumab signifi cantly 
depleted Tregs and enhanced the immunogenic-
ity of a cancer vaccine [ 145 ]. In addition, block-
ing Treg function using Abs targeted against 
glucocorticoid-induced tumor necrosis factor 
receptor-related protein (GITR) and cytotoxic 
T-lymphocyte antigen 4 (CTLA-4) is under 
clinical evaluation in patients with cancer.  

7.3.1.5    TGF-β in Clinical Trials 
 As a result of the wide variety of effects of TGF-β 
on tumorigenesis, blockade of TGF-β and its sig-
naling pathway can be a potent approach to 

improve tumor immunity. There are many TGF-β 
signaling antagonist agents under development at 
both the preclinical and clinical stages. Mice with 
fully or partially disrupted TGF-β function have 
phenotypes with severe self-reactive immune 
responses [ 146 ,  147 ]. However, clinical trials of 
TGF-β antagonists, such as a monoclonal Ab or 
small molecules that interfere with TGF-β recep-
tor signaling, in cancer patients have been tested 
and are ongoing. In phase I/II clinical trials, intra- 
tumoral administration of AP-12009, an anti-
sense oligonucleotide to TGF-β, resulted in a 
signifi cant increase of survival time [ 148 ]. Some 
clinical benefi t without apparent induction of 
autoimmune disease was found in a clinical trial 
of a human monoclonal anti-TGF-β in melanoma 
patients [ 149 ,  150 ]. In addition, a vaccine that 
contains allogeneic tumor cells that are modifi ed 
to express antisense TGF-β has been tested in a 
phase I/II clinical trial. Using this approach, a 
response rate of 30 % has been reported in non- 
small cell lung carcinoma (NSCLC), with no 
serious toxicities observed [ 151 ]. LY2157299 is a 
small molecule inhibitor which is selective for 
the kinase domain of the type 1 TGF-β receptor. 
LY2157299 is currently being evaluated in 
patients with metastatic malignancies.   

7.3.2     IL-17 

7.3.2.1    Overview 
 IL-17 is a proinfl ammatory cytokine produced by 
Th17 cells [ 152 ]. In addition to Th17 cells, IL-17 
can also be produced by cells other than T helper 
cells, such as iNKT, CD8 +  T, and γδ-T cells [ 153 –
 155 ]. Since Th17 cells produce large quantities of 
IL-17A, most Th17-mediated effects are attrib-
uted to this cytokine. Many factors are required 
for the induction and stabilization of Th17 cells. 
Of these, TGF-β and IL-6 are the most crucial 
cytokines for its differentiation. IL-6 induces 
production of IL-21, which subsequently favors 
Th17 differentiation in an autocrine manner [ 156 , 
 152 ]. These cells require CD40-induced IL-23 to 
maintain their Th17 phenotype  in vivo . The dif-
ferentiation of Th17 cells into IL-17- secreting 
cells requires the expression of the transcription 
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factor ROR-γt [ 157 ]. It has been shown that Th17 
cells are gradually increased in the tumor micro-
environment during tumor development. In addi-
tion, Th17 cells have been found in patients with 
different tumors. The frequent association of 
raised IL-17 concentrations with negative prog-
nosis links the increased systemic IL-17 con-
centrations with the later stages of cancer. Many    
factors released by the tumor cells and molecules 
secreted by tumor-infi ltrating immune cells such 
as TGF-β, IL-6, prostaglandin E2 (PGE2), IL-21, 
IL-23, osteopontin, IL-1β, and TNF-α can play 
major roles in the induction of Th17 differentia-
tion [ 158 – 161 ].  

7.3.2.2    Th17 Differentiation in the Tumor 
Microenvironment 

 There are many sources for Th17 cells in the 
tumor microenvironment. Th17 cells found in the 
tumor microenvironment can either be migrated 
from the periphery or differentiated from naïve 
T cells under the infl uence of tumor microen-
vironmental factors. Th17 cells can traffi c to 
tumors from the periphery under the infl uence of 
tumor microenvironmental chemokines such as 
RANTES and monocyte chemotactic protein-1 
(MCP-1) [ 162 ]. In addition, high levels of che-
mokines CXCL12 and CCL20 have been found 
in tumor microenvironments, which could facili-
tate Th17 cell traffi cking and migration into the 
tumor sites. Moreover, Th17 cells in the tumor 
microenvironment might clonally expand follow-
ing stimulation by tumor-associated macrophages 
[ 163 ]. In addition, Th17 cells can be induced 
and differentiate in the tumor microenvironment 
[ 164 ]. It has become clear that IL-17 producing 
Th17 cells and Tregs share a common pathway. 
Although TGF-β favors differentiation of naïve T 
cells into Tregs, the simultaneous presence of both 
TGF-β and IL-6 promotes the differentiation of 
Th17 cells. Given the tight association of TGF-β 
and IL-6 with tumor incidence and progression, 
naïve T cells entering an established tumor are 
more likely to be exposed to conditions favor-
ing Th17 differentiation. Upon stimulation with 
TGF-β and IL-6, CD8 +  T cells not only lose their 
cytotoxic ability but are also induced to secrete 
IL-17 [ 165 ]. IFN-γ expressed by Th1 or CD8 +  

T cells inhibits angiogenesis and induces major 
histocompatibility complex I in tumor cells, thus 
favoring immune recognition and subsequent 
arrest of tumor growth [ 166 ]. In contrast, IL-17 
favors angiogenesis and tumor growth; therefore, 
replacing IFN-γ with IL-17 in the tumor micro-
environment may have severe consequences for 
immune recognition and surveillance.  

7.3.2.3    Tumor-Promoting Functions 
of IL-17 

 Many functions of IL-17 in the tumor micro-
environment contribute to tumor progression, 
besides their minor direct effect on the prolifera-
tion and survival of tumor cells [ 167 ]. The major 
pro- tumor role of IL-17 in cancer relies on its 
proangiogenic property of the surrounding endo-
thelial cells and fi broblasts. For example, IL-17- 
overexpressing human cervical cancer cells and 
NSCLC cells show greater ability in developing 
tumors in immunocompromised mice compared 
with control cells with no IL-17 expression [ 168 , 
 169 ]. In addition, IL-17 overexpression in fi bro-
sarcoma cells enhances their tumorigenic growth 
in syngenic mice, primarily owing to the proan-
giogenic activity of IL-17. Moreover, the levels 
of Th17 cells were positively correlated with 
microvessel density in tumors [ 170 ]. By acting 
on stromal cells and fi broblasts, IL-17 induces a 
wide range of angiogenic mediators [ 171 ,  172 ] 
including VEGF. In addition, they markedly 
promote infl ammatory and tumor angiogenesis 
[ 173 ]. IL-17 is able to upregulate VEGF pro-
duction by fi broblasts and therefore promotes 
fi broblast- induced new vessel formation in the 
infl ammatory microenvironment and tumors. The 
IL-17-VEGF loop that modulates angiogenesis 
includes another angiogenic factor, TGF-β. IL-17 
induces VEGF, which in turn induces TGF-β fol-
lowed by VEGF-mediated angiogenesis [ 174 ]. 
TGF-β enhances the VEGF receptivity of endo-
thelial cells by increasing VEGF receptor expres-
sion [ 175 ]. IL-17 also induces IL-6 and PGE2 
and enhances intercellular adhesion molecule 
(ICAM)-1 expression in fi broblasts. All these 
molecules were known to have a major role in 
angiogenesis and tumor invasion. IL-17 appears 
to stimulate production of IL-8 [ 176 ]. IL-8 sig-
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naling promotes angiogenic responses in endo-
thelial cells, increases proliferation and survival 
of endothelial and cancer cells, and potentiates 
the migration of cancer cells and infi ltrating 
neutrophils at the tumor site. Moreover, IL-17 
was found to induce IL-1β and TNF-α in mac-
rophages and cytokines which can further syn-
ergize with IL-17 to activate neutrophil-specifi c 
chemokine, thereby recruiting neutrophils to the 
site of infl ammation [ 177 ]. 

 One of the most important mechanisms under-
lying IL-17 regulation of infl ammation which 
orchestrates the tumor microenvironment is 
through NF-κB signaling, the master regulator of 
the infl ammation [ 178 ]. IL-17R signaling results 
in the activation of NF-κB and regulates the activi-
ties of extracellular-regulated kinase 1 (ERK1), 
ERK2, c-Jun N-terminal kinase, and p38 mitogen-
activated protein kinases [ 179 ,  180 ]. While the 
IL-17-mediated cytokine expression is regulated 
primarily by NF-κB, the same cytokines can fur-
ther stimulate NF-κB-mediated transcription of 
themselves in tumor cells and tumor-associated 
stromal cells, thereby creating a sustained chronic 
infl ammatory state within the tumor microenvi-
ronment. In support of this notion, enhanced cervi-
cal cancer growth elicited by IL-17 was associated 
with increased expression of IL-6 and macrophage 
recruitment to the tumor sites [ 169 ]. Therefore, 
IL-17 might also function through IL-6 to promote 
tumor development. Chemokines can stimulate or 
inhibit proliferation and chemotaxis of the blood 
vessel endothelial cells which serve the tumor. 
IL-17 has been shown to selectively enhance the 
production of angiogenic chemokines such as 
CXCL1, CXCL5, CXCL6, and CXCL8 from 
tumor cells and epithelial cells [ 168 ,  181 ]. In addi-
tion, IL-17 is also known to inhibit angiostatic 
chemokine secretion by fi broblasts [ 168 ]. Thus, 
IL-17 may shift the local biologic balance between 
angiogenic and angiostatic chemokines toward a 
predominance of angiogenic chemokines in order 
to enhance the net angiogenic activity.  

7.3.2.4    Antitumor Functions of IL-17 
 Although IL-17 seemed to be a potential tumor- 
promoting cytokine, a considerable number of 
reports have described tumor-inhibitory effects 

of IL-17. Th17-polarized cells were found to be 
more effective than Th1 cells in eliminating large 
established tumors [ 182 ]. However, the Th17- 
mediated tumor responses were highly dependent 
on IFN-γ-based mechanisms. Indeed, the effects 
of Th17-polarized cells were completely abro-
gated by the administration of IFN-γ-depleting 
Ab and not by IL-17- or IL-23-depleting Abs. 
Adoptively transferred IL-17-secreting CD8 +  T 
cells also enhanced antitumor immunity resulting 
in regression of B16 melanoma [ 183 ]. In addi-
tion, IL-17 has been shown to inhibit the growth 
of hematopoietic tumors such as mastocytoma 
and plasmocytoma by enhancing CTL activity 
[ 184 ]. Different mechanisms have been proposed 
for the IL-17 enhancement of tumor-specifi c 
CTLs. IL-17 has been shown to induce IL-6 from 
a variety of cells. Moreover, IL-17 stimulation 
can induce IL-12 production from macrophages 
[ 185 ]. Both IL-6 and IL-12 have been associated 
with induction of tumor-specifi c CTL. IL-17 pro-
motes maturation of DC progenitors as indicated 
by increased expressions of co-stimulatory mol-
ecules, MHC-II antigens, and allostimulatory 
capacity [ 186 ]. This may lead to further improve-
ment in T-cell priming by tumor cells producing 
IL-17. In addition, IL-17-transduced fi brosar-
coma cells induced tumor-specifi c antitumor 
immunity by augmenting the expression of MHC 
class I and class II antigens [ 187 ]. These studies 
were focused on the effects of exogenous IL-17 in 
established mouse tumor cell lines. A recent 
demonstration shows that tumor growth in subcu-
taneous and lung tumor metastasis are enhanced 
in IL-17-defi cient mice [ 188 ]. The effect is 
accompanied by reduced IFN-γ levels in tumor- 
infi ltrating NK cells and T cells. 

 The evidence reviewed here demonstrates 
that IL-17-secreting Th17 cells can either stim-
ulate or inhibit tumor growth and progression. 
The benefi cial effects of IL-17 on upregulating 
host immune response may be present early in 
infl ammation, but is eventually overcome by 
increasingly large tumor burden   . Clearly, as dis-
cussed above, many of the infl ammatory func-
tions of IL-17 can  benefi t the tumor. The shift 
from benefi cial infl ammatory functions of IL-17 
to a detrimental one may depend on the tumor 
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type and infl ammatory mediators in the tumor 
microenvironment. The pro-tumor  vs . antitumor 
effects of IL-17 are thus functions of a number of 
combinations of all these IL-17-induced infl am-
matory mediators and, perhaps, mediators which 
counter- regulate IL-17 production as well, oper-
ating in tandem.   

7.3.3     IL-23 

7.3.3.1    Overview 
 IL-23 is a heterodimeric protein composed of two 
subunits IL-23p19 and IL-12p40. IL-23 is secreted 
by activated DCs and macrophages. IL-23 binds 
the IL-23R complex, composed of IL-23R and 
IL-12Rβ1. Upon binding IL-23, IL-12Rβ1, and 
IL-23R associate, marking the beginning of the 
IL-23 signal-transduction cascade [ 189 ]. IL-23 
plays an important role in bridging innate and 
adaptive responses. Therefore, IL-23 has been 
described as a key cytokine promoting infl amma-
tion in peripheral tissues. The activity of IL-23 in 
the regulation of tumor immunity is just begin-
ning to be  elucidated [ 190 ].  

7.3.3.2    Pro- vs. Antitumor Functions 
of IL-23 

 Belonging to the IL-12 family, IL-23 performs 
both pro-tumor and antitumor functions. IL-23 is 
spontaneously produced by TAM in several 
mouse tumor models. Tumor-secreted PGE2 
enhances the production of IL-23 and IL-1β in 
macrophages and DCs while downregulating 
IL-12 production [ 191 – 193 ]. While IL-12 pro-
duction is decreased, IL-23 production is 
increased in tumors [ 194 ]. PGE2, together with 
IL-23, favors the expansion of human Th17 cells 
from PBMCs; on the other hand, PGE2 enhances 
IL-17 production from memory CD4 +  cells 
induced by IL-23 [ 161 ]. The involvement of 
IL-23 in the induction of Th17 was established 
when investigators showed that IL-23 promotes 
the production of IL-17 by activated T cells 
[ 195 ]. Although IL-23 is not involved in the ini-
tial differentiation of Th17 cells, it is crucial for 
the function, survival, and propagation of this 
T-cell population in the infl amed environment. In    

contrast to the antitumor role of IL-12, IL-23 
upregulates infl ammatory processes, including 
matrix metalloproteinase expression and angio-
genesis and reduces infi ltration and the function 
of CTLs, thus contributing to tumor growth 
[ 196 ]. Indeed, the mice lacking IL-23/p19 are 
completely resistant to carcinogen-induced 
tumor. The absence of tumor formation in these 
mice correlated with the absence of various 
markers including IL-17, GR-1+, and CD11b+ 
myeloid cells which are indicative of tumor- 
associated infl ammation [ 196 ]. Recently, tumor- 
secreted lactic acid has been shown to activate 
the IL-23/Th17 pathway [ 159 ]. 

 In contrast, IL-23-overexpressing tumors 
show reduced growth and metastasis [ 197 – 201 ]. 
The antitumor effects of IL-23 in these studies 
were found to be mediated through enhancement 
of CD8 +  T-cell response. In addition, intra- 
tumoral injection of IL-23-overexpressing DCs 
resulted in a similar phenotype [ 201 ]. Artifi cial 
overexpression of IL-23 could induce potent anti-
tumor immunity through various mechanisms. 
IL-23 can mediate myeloid infi ltration consisting 
of DCs, macrophages, and granulocytes, which 
instead may contribute to the inhibition of tumor 
growth and boost an immune reaction to these 
immune-sensitive tumors. In addition, overex-
pression of IL-23 is likely to increase the sys-
temic IL-23 levels that could lead to the growth 
and survival of memory CD8 +  T cells.   

7.3.4     IL-35 

7.3.4.1    Overview 
 IL-35 is a recently discovered IL-12 family cyto-
kine composed of an IL-12 p35 subunit and an 
IL-12 p40-related protein subunit, EBI3 [ 202 ]. 
IL-35 is not constitutively expressed in tissues 
and is produced mainly by Tregs. IL-35 induces 
the transformation of CD4 +  effector T cells into 
Tregs, which in turn express IL-35 but lack the 
expression of conventional Treg markers such as 
Foxp3, TGF-β, and IL-10 (Treg35 cells) [ 203 ]. 
The Treg35 cells generated  in vitro  can pre-
vent the development of autoimmunity in vari-
ous mouse models [ 204 – 207 ]. Most recently, it 
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has been shown that human Tregs express and 
require IL-35 for maximal suppressive function. 
Substantial upregulation of EBI3 and IL12A, 
but not IL10 and TGF-β, was observed in acti-
vated human Tregs compared with conventional 
T cells [ 208 ].  

7.3.4.2    Pro-tumor Functions of IL-35 
 Evidence on the role of IL-35 in tumor immunity 
is beginning to emerge. IL-35 subunit EBI3 is 
expressed in Hodgkin lymphoma cells, acute 
myeloid leukemia cells, and lung cancer cells 
[ 209 – 211 ]. Small interfering RNA silencing of 
EBI3 in lung cancer cells inhibits cancer cell pro-
liferation, whereas stable expression of EBI3 in 
lung cancer cells confers growth-promoting 
activity  in vitro  [ 211 ]. High EBI3 expression in 
human lung cancer cells was shown to be associ-
ated with poor prognosis [ 211 ]. Recently, IL-35- 
secreting Ag-specifi c Tregs have been observed 
in patients with prostate cancer [ 212 ]. Treg- 
derived IL-35 was shown to inhibit antitumor 
T-cell responses.  In vitro  generated Treg35 cells 
accelerate the development of B16 melanoma 
and prevent the generation of antitumor CD8 +  
T-cell responses [ 203 ]. In addition, T cells that 
secrete IL-35 and have suppressive functions can 
be induced in the tumor beds of melanoma and 
colorectal adenocarcinoma. Blockade of IL-35 
has been shown to relieve suppression mediated 
by Tregs [ 212 ]. Forced expression of IL-35 in 
tumor cells leads to signifi cantly increased 
tumorigenesis in mice. IL-35 in the tumor micro-
environment signifi cantly increased the numbers 
of CD11b + Gr1 +  myeloid cells in tumors and sub-
sequently promoted tumor angiogenesis [ 213 ]. 
Furthermore, IL-35 renders tumor target cells 
more resistant to CTL destruction.   

7.3.5     IL-10 

7.3.5.1    Overview 
 IL-10 is an important immunoregulatory cyto-
kine produced by many cell populations. Due to 
its ability in inhibiting the production of IL-2 and 
IFN-γ by murine and human Th1 cells, IL-10 was 
initially named a cytokine synthesis inhibitory 

factor [ 214 ]. The function of IL-10 in cancer is 
enigmatic. Depending on the experimental 
model, IL-10 displays both immunosuppressive 
and immunostimulating activities. On the one 
hand, IL-10 promotes an antitumor CTL response 
leading to tumor regression. On the other hand, 
IL-10 induces immunosuppression and assists in 
the escape from tumor immune surveillance, 
hence promoting tumor growth.  

7.3.5.2    IL-10-Mediated 
Immunosuppression in Cancer 

 The cellular sources of IL-10 are Th2, Treg, Tr1, 
and Th17 cells; however, cytotoxic CD8 +  T cells 
can also produce IL-10, as can some subsets of 
DCs, macrophages, B cells, granulocytes, mast 
cells, keratinocytes, and epithelial cells. In addi-
tion, various cancer cells produce IL-10; among 
those are multiple myeloma, melanoma, human 
colon carcinoma, lung cancer, oral squamous cell 
carcinoma, renal cell carcinoma, non-Hodgkin 
lymphoma, and chronic lymphocytic leukemia 
[ 15 ,  215 ]. Circulating concentrations of IL-10 
were raised in patients with different cancer types 
and were associated with adverse disease stage or 
with negative prognosis in those patients. It has 
been shown that serum levels of IL-10 increased 
in parallel to clinical disease progression in 
patients with metastatic melanoma, as well as 
colon cancer. Moreover, preoperative serum lev-
els of IL-10 predicted the likelihood of colon 
cancer recurrence [ 215 ,  216 ]. IL-10 can be 
induced and sustained in the tumor microenvi-
ronment by a variety of cytokines. Macrophage- 
derived IL-6 has been shown to induce production 
of IL-10 by cancer cells. Similarly, IL-6 in asso-
ciation with TGF-β can induce IL-10 production 
in Th17 cells. However, TGF-β alone can induce 
IL-10, whereas IL-10 enhances the expression of 
TGF-β in a positive feedback circuit [ 217 ]. 
TNF-β promotes proinfl ammatory reactions 
while upregulating IL-10 in macrophages and 
monocytes as a negative feedback, thereby termi-
nating the infl ammatory response. In addition, 
IL-12 and IL-27 can also induce IL-10 produc-
tion from T cells [ 99 ,  218 ]. 

 IL-10 inhibits NKG2D ligand expression on 
tumor cells and suppresses cytotoxicity mediated 
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by NK cells. Furthermore, IL-10 induces HLA-G 
molecules that prevent the attack by NK cells 
[ 219 ]. These changes allow tumor cells to survive 
from immunological attack by immune cells and to 
grow exponentially. IL-10 can act as a negative reg-
ulator in the crosstalk between innate and adaptive 
antitumor immunity (Fig.  7.3 ): For    instance, T cells 
suppress NK and NKT cells by elaborating IL-10, 
which ultimately leads to impaired activation of 
CTL and Th1 CD4 +  T cells and tumor immune 
privilege [ 220 ].  In vitro , IL-10 pretreatment can 
convert different types of tumor cells to a CTL-
resistant phenotype by decreasing the expression 
of HLA class I molecules on their surface [ 221 ].

   IL-10 acts on DCs and macrophages and inhib-
its the differentiation and the antigen- presenting 
properties of these cells. IL-10 inhibits essential 
steps in immune detection such as the expres-
sion of HLA-DR and co-stimulatory molecules, 
CD80 and CD86, on DCs. IL-10 also prevents the 
production of the Th1-polarizing cytokines IL-12 
and IFN-γ from DCs [ 222 ]. Administration of 
IL-10 before and immediately after DC cancer 

vaccine results in immune suppression and tumor 
progression, in line with a predominant inhibi-
tory activity of IL-10 on DC-mediated antigen 
presentation. Moreover, IL-10-defi cient DCs are 
shown to be more effective in inducing protec-
tive antitumor immune response in mice [ 60 ]. 
Exposure of DCs to tumor cell lysates resulted 
in increased IL-10 production and expansion of 
regulatory Tr1 cells. Tr1 cells have been shown 
to down-modulate immune responses through the 
production of IL-10. In addition, IL-10 has been 
shown to mediate the immunosuppressive activ-
ity of Tregs [ 223 ]. Therefore, DCs that encounter 
tumor antigens in the presence of IL-10  in vivo  
acquire tolerogenic properties and subsequently 
induce T-cell tolerance to tumor antigens. In 
addition, IL-10 signifi cantly suppresses other 
infl ammatory cytokines such as IL-1β, IL- 6, and 
TNFα expression in DCs. Moreover, inhibition 
of IL-10 production by T cells or malignant cells 
using anti-IL-10-/IL-10R-blocking Abs or anti-
IL-10 antisense oligonucleotides improves anti-
tumor immune responses in animal models.  
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  Fig. 7.3    IL-10-mediated 
tumor immunosuppression. 
IL-10 can be induced in the 
tumor microenvironment by 
many cell types including 
Th2 cells, Tr1 cells, Tregs, 
DCs, TAM, and tumor cells. 
IL-10 has a multitude of 
suppressive effects on the 
antitumor immune response. 
For example, IL-10 can 
inhibit the maturation of DCs 
and disrupt the differentia-
tion of CTLs and Th1 cells. 
IL-10 can also inhibit the 
cytolytic activity of NK 
cells. In addition, IL-10 can 
promote tumor growth 
through the promotion of 
IL-10-producing Tr1 cells       

 

M. Gopal



111

7.3.5.3    Antitumor Functions of IL-10 
 Data from experimental models suggest that 
IL-10 may possess immunostimulating    and anti-
tumor properties. For example, overexpression 
of IL-10 in tumor cells leads to the loss of tumor-
igenicity concurrent with an increased immuno-
genicity accompanied by strong antitumor 
immune response. IL-10 has been shown to 
increase CD8 + T-cell numbers, IFN-γ secretion, 
and cytotoxicity in established tumors. 
Overexpression of IL-10 in tumor cells trans-
planted in mice leads to tumor rejection [ 222 , 
 224 ]. Such observations suggest that IL-10 
might maintain the number of antigen-specifi c 
CTL. Therapeutic administration of recombinant 
IL-10 induced antitumor immunity against fi bro-
sarcomas in mice [ 225 ]. However, higher expres-
sions of IL-10 correlated with tumor progression 
and metastasis in patients with cancer. Serum 
levels of IL-10 increased in parallel to clinical 
disease progression in patients with metastatic 
melanoma as well as colon cancer; in addition, 
preoperative serum levels of IL-10 predicted the 
likelihood of colon cancer recurrence. These 
fi nding may indicate that IL-10 production in the 
clinical setting may be detrimental. To conclude, 
the pleiotropic activity of IL-10 on different 
immune cell population and the variability of 
cancer models used to address the role of 
IL-10 in tumor immunity are likely responsible 
for the controversial fi ndings reported in the 
literature.    

7.4    Concluding Remarks 

 Coordinated, effective development of both 
innate and adaptive antitumor immune responses. 
While certain cytokines that are produced in the 
tumor microenvironment can function to inhibit 
tumor growth, others can promote tumor growth 
and progression. A more detailed understand-
ing of tumor-cytokine and immune cell inter-
actions in the tumor microenvironment and 
thereby manipulating the balance of pro-  vs.  
antitumor cytokines may achieve effective cancer 
immunotherapy.     

   References 

       1.    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoed-
iting: integrating immunity’s roles in cancer 
 suppression and promotion. Science. 2011;331(6024):
1565–70.  

      2.    Pardoll D. Does the immune system see tumors as 
foreign or self? Annu Rev Immunol. 2003;21:
807–39.  

    3.    Vesely MD, Kershaw MH, Schreiber RD, Smyth 
MJ. Natural innate and adaptive immunity to cancer. 
Annu Rev Immunol. 2011;29:235–71.  

    4.    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, 
Sautes-Fridman C, Fridman WH. Immune infi ltration 
in human tumors: a prognostic factor that should not 
be ignored. Oncogene. 2010;29(8):1093–102.  

    5.    Hanahan D, Weinberg RA. The hallmarks of cancer. 
Cell. 2000;100(1):57–70.  

    6.    Carmeliet P, Jain RK. Angiogenesis in cancer and 
other diseases. Nature. 2000;407(6801):249–57.  

    7.    Vicari AP, Caux C. Chemokines in cancer. Cytokine 
Growth Factor Rev. 2002;13(2):143–54.  

    8.    Mattarollo SR, Smyth MJ. A novel axis of innate 
immunity in cancer. Nat Immunol. 2010;11(11):
981–2.  

     9.    Wu J, Lanier LL. Natural killer cells and cancer. Adv 
Cancer Res. 2003;90:127–56.  

    10.    Srivastava P. Interaction of heat shock proteins with 
peptides and antigen presenting cells: chaperoning of 
the innate and adaptive immune responses. Annu Rev 
Immunol. 2002;20:395–425.  

    11.    Shurin MR. Dendritic cells presenting tumor  antigen. 
Cancer Immunol Immunother. 1996;43(3):158–64.  

      12.    Rabinovich GA, Gabrilovich D, Sotomayor 
EM. Immunosuppressive strategies that are mediated 
by tumor cells. Annu Rev Immunol. 2007;25:
267–96.  

    13.    Dranoff G. Cytokines in cancer pathogenesis and can-
cer therapy. Nat Rev Cancer. 2004;4(1):11–22.  

    14.    Seruga B, Zhang H, Bernstein LJ, Tannock 
IF. Cytokines and their relationship to the symptoms 
and outcome of cancer. Nat Rev Cancer. 2008;8(11):
887–99.  

      15.    Lippitz BE. Cytokine patterns in patients with  cancer: 
a systematic review. Lancet Oncol. 2013;14(6):
e218–28.  

    16.    Trinchieri G. Interleukin-12: a proinfl ammatory cyto-
kine with immunoregulatory functions that bridge 
innate resistance and antigen-specifi c  adaptive immu-
nity. Annu Rev Immunol. 1995;13:251–76.  

      17.    Colombo MP, Trinchieri G. Interleukin-12 in anti- 
tumor immunity and immunotherapy. Cytokine 
Growth Factor Rev. 2002;13(2):155–68.  

    18.    Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, 
Wu CY, et al. A functional interleukin 12 receptor 
complex is composed of two beta-type cytokine 
receptor subunits. Proc Natl Acad Sci U S A. 
1996;93(24):14002–7.  

7 Role of Cytokines in Tumor Immunity and Immune Tolerance to Cancer



112

    19.    Jyothi MD, Khar A. Regulation of CD40L expression 
on natural killer cells by interleukin-12 and interferon 
gamma: its role in the elicitation of an effective antitu-
mor immune response. Cancer Immunol Immunother. 
2000;49(10):563–72.  

   20.    Kodama T, Takeda K, Shimozato O, Hayakawa Y, 
Atsuta M, Kobayashi K, et al. Perforin-dependent NK 
cell cytotoxicity is suffi cient for anti-metastatic effect 
of IL-12. Eur J Immunol. 1999;29(4):1390–6.  

    21.    Smyth MJ, Crowe NY, Godfrey DI. NK cells and 
NKT cells collaborate in host protection from 
methylcholanthrene- induced fi brosarcoma. Int 
Immunol. 2001;13(4):459–63.  

    22.    Robertson MJ, Cameron C, Atkins MB, Gordon MS, 
Lotze MT, Sherman ML, et al. Immunological effects 
of interleukin 12 administered by bolus intravenous 
injection to patients with cancer. Clin Cancer Res. 
1999;5(1):9–16.  

    23.    Chouaib S, Chehimi J, Bani L, Genetet N, Tursz T, 
Gay F, et al. Interleukin 12 induces the differentiation 
of major histocompatibility complex class I-primed 
cytotoxic T-lymphocyte precursors into allospecifi c 
cytotoxic effectors. Proc Natl Acad Sci U S A. 
1994;91(26):12659–63.  

    24.    Chiodoni C, Paglia P, Stoppacciaro A, Rodolfo M, 
Parenza M, Colombo MP. Dendritic cells infi ltrating 
tumors cotransduced with granulocyte/macrophage 
colony-stimulating factor (GM-CSF) and CD40 
ligand genes take up and present endogenous tumor- 
associated antigens, and prime naive mice for a cyto-
toxic T lymphocyte response. J Exp Med. 1999;
190(1):125–33.  

    25.    Toes RE, Schoenberger SP, van der Voort EI, Offringa 
R, Melief CJ. CD40-CD40 Ligand interactions and 
their role in cytotoxic T lymphocyte priming and 
anti-tumor immunity. Semin Immunol. 1998;10(6):
443–8.  

    26.    Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, 
Lanzavecchia A, Alber G. Ligation of CD40 on den-
dritic cells triggers production of high levels of inter-
leukin-12 and enhances T cell stimulatory capacity: 
T-T help via APC activation. J Exp Med. 
1996;184(2):747–52.  

    27.    Curtsinger JM, Johnson CM, Mescher MF. CD8 T 
cell clonal expansion and development of effector 
function require prolonged exposure to antigen, 
costimulation, and signal 3 cytokine. J Immunol. 
2003;171(10):5165–71.  

    28.    Curtsinger JM, Lins DC, Mescher MF. Signal 3 deter-
mines tolerance versus full activation of naive CD8 T 
cells: dissociating proliferation and development of 
effector function. J Exp Med. 2003;197(9):1141–51.  

    29.    van Mierlo GJ, den Boer AT, Medema JP, van der 
Voort EI, Fransen MF, Offringa R, et al. CD40 stimu-
lation leads to effective therapy of CD40(-) tumors 
through induction of strong systemic cytotoxic T lym-
phocyte immunity. Proc Natl Acad Sci U S A. 
2002;99(8):5561–6.  

    30.    Schoenberger SP, Toes RE, van der Voort EI, Offringa 
R, Melief CJ. T-cell help for cytotoxic T lymphocytes 

is mediated by CD40-CD40L interactions. Nature. 
1998;393(6684):480–3.  

    31.    Brunda MJ, Luistro L, Warrier RR, Wright RB, 
Hubbard BR, Murphy M, et al. Antitumor and anti-
metastatic activity of interleukin 12 against murine 
tumors. J Exp Med. 1993;178(4):1223–30.  

   32.    Nastala CL, Edington HD, McKinney TG, Tahara H, 
Nalesnik MA, Brunda MJ, et al. Recombinant IL-12 
administration induces tumor regression in associa-
tion with IFN-gamma production. J Immunol. 
1994;153(4):1697–706.  

    33.    Hill HC, Conway Jr TF, Sabel MS, Jong YS, 
Mathiowitz E, Bankert RB, et al. Cancer immuno-
therapy with interleukin 12 and granulocyte- 
macrophage colony-stimulating factor-encapsulated 
microspheres: coinduction of innate and adaptive 
antitumor immunity and cure of disseminated disease. 
Cancer Res. 2002;62(24):7254–63.  

    34.    Trinchieri G. Interleukin-12 and its role in the 
 generation of TH1 cells. Immunol Today. 1993;
14(7):335–8.  

    35.    Noguchi Y, Jungbluth A, Richards EC, Old LJ. Effect 
of interleukin 12 on tumor induction by 
3- methylcholanthrene. Proc Natl Acad Sci U S A. 
1996;93(21):11798–801.  

     36.    Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld 
RA. Cancer associated fi broblasts promote tumor 
growth and metastasis by modulating the tumor 
immune microenvironment in a 4T1 murine breast 
cancer model. PLoS One. 2009;4(11):e7965.  

    37.    Ellyard JI, Simson L, Parish CR. Th2-mediated anti- 
tumour immunity: friend or foe? Tissue Antigens. 
2007;70(1):1–11.  

    38.    Bourgeois C, Rocha B, Tanchot C. A role for 
CD40 expression on CD8+ T cells in the generation of 
CD8+ T cell memory. Science. 2002;297(5589):
2060–3.  

    39.    Livingstone AM, Wilson EB, Ontiveros F, Wang 
JC. Unravelling the mechanisms of help for CD8+ T 
cell responses. Immunol Res. 2009;45(2–3):209–17.  

    40.    Xiao Z, Casey KA, Jameson SC, Curtsinger JM, 
Mescher MF. Programming for CD8 T cell memory 
development requires IL-12 or type I IFN. J Immunol. 
2009;182(5):2786–94.  

     41.    Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, 
Bajetta E, et al. Peripheral burst of tumor-specifi c 
cytotoxic T lymphocytes and infi ltration of metastatic 
lesions by memory CD8+ T cells in melanoma 
patients receiving interleukin 12. Cancer Res. 
2000;60(13):3559–68.  

    42.    Adris S, Chuluyan E, Bravo A, Berenstein M, Klein S, 
Jasnis M, et al. Mice vaccination with interleukin 
12-transduced colon cancer cells potentiates rejection 
of syngeneic non-organ-related tumor cells. Cancer 
Res. 2000;60(23):6696–703.  

    43.    Robertson MJ, Ritz J. Interleukin 12: basic biology 
and potential applications in cancer treatment. 
Oncologist. 1996;1(1 & 2):88–97.  

     44.    Weiss JM, Subleski JJ, Wigginton JM, Wiltrout 
RH. Immunotherapy of cancer by IL-12-based 

M. Gopal



113

 cytokine combinations. Expert Opin Biol Ther. 2007;
7(11):1705–21.  

    45.    Voest EE, Kenyon BM, O’Reilly MS, Truitt G, 
D’Amato RJ, Folkman J. Inhibition of angiogenesis 
in vivo by interleukin 12. J Natl Cancer Inst. 
1995;87(8):581–6.  

    46.    Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber 
JM, Maheshwari S, et al. Human interferon- inducible 
protein 10 is a potent inhibitor of angiogenesis in vivo. 
J Exp Med. 1995;182(1):155–62.  

    47.    Angiolillo AL, Sgadari C, Tosato G. A role for the 
interferon-inducible protein 10 in inhibition of angio-
genesis by interleukin-12. Ann N Y Acad Sci. 
1996;795:158–67.  

    48.    Kanegane C, Sgadari C, Kanegane H, Teruya- 
Feldstein J, Yao L, Gupta G, et al. Contribution of the 
CXC chemokines IP-10 and Mig to the antitumor 
effects of IL-12. J Leukoc Biol. 1998;64(3):384–92.  

    49.    Lehtonen A, Lund R, Lahesmaa R, Julkunen I, 
Sareneva T, Matikainen S. IFN-alpha and IL-12 acti-
vate IFN regulatory factor 1 (IRF-1), IRF-4, and 
IRF-8 gene expression in human NK and T cells. 
Cytokine. 2003;24(3):81–90.  

    50.    Bouker KB, Skaar TC, Riggins RB, Harburger DS, 
Fernandez DR, Zwart A, et al. Interferon regulatory 
factor-1 (IRF-1) exhibits tumor suppressor activities 
in breast cancer associated with caspase activation 
and induction of apoptosis. Carcinogenesis. 2005;
26(9):1527–35.  

    51.    Bowie ML, Ibarra C, Seewalt VL. IRF-1 promotes 
apoptosis in p53-damaged basal-type human mam-
mary epithelial cells: a model for early basal-type 
mammary carcinogenesis. Adv Exp Med Biol. 
2008;617:367–74.  

    52.    Acquaviva J, Chen X, Ren R. IRF-4 functions as a 
tumor suppressor in early B-cell development. Blood. 
2008;112(9):3798–806.  

    53.    Pathak S, Ma S, Trinh L, Eudy J, Wagner KU, Joshi 
SS, et al. IRF4 is a suppressor of c-Myc induced B 
cell leukemia. PLoS One. 2011;6(7):e22628.  

    54.    Yao L, Sgadari C, Furuke K, Bloom ET, Teruya- 
Feldstein J, Tosato G. Contribution of natural killer 
cells to inhibition of angiogenesis by interleukin-12. 
Blood. 1999;93(5):1612–21.  

    55.    Cavallo F, Quaglino E, Cifaldi L, Di Carlo E, Andre 
A, Bernabei P, et al. Interleukin 12-activated lympho-
cytes infl uence tumor genetic programs. Cancer Res. 
2001;61(8):3518–23.  

    56.    Mitola S, Strasly M, Prato M, Ghia P, Bussolino 
F. IL-12 regulates an endothelial cell-lymphocyte net-
work: effect on metalloproteinase-9 production. J 
Immunol. 2003;171(7):3725–33.  

    57.    Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, 
Lejeune FJ. Evidence for the involvement of endothe-
lial cell integrin alphaVbeta3 in the disruption of the 
tumor vasculature induced by TNF and IFN- gamma. 
Nat Med. 1998;4(4):408–14.  

    58.    Takaoka A, Hayakawa S, Yanai H, Stoiber D, 
Negishi H, Kikuchi H, et al. Integration of interferon- 
alpha/beta signalling to p53 responses in tumour 

suppression and antiviral defence. Nature. 2003;
424(6948):516–23.  

     59.    Colombo MP, Piconese S. Regulatory-T-cell inhibition 
versus depletion: the right choice in cancer immuno-
therapy. Nat Rev Cancer. 2007;7(11):880–7.  

     60.    Murugaiyan G, Martin S, Saha B. CD40-induced 
countercurrent conduits for tumor escape or elimina-
tion? Trends Immunol. 2007;28(11):467–73.  

    61.    Murugaiyan G, Martin S, Saha B. Levels of CD40 
expression on dendritic cells dictate tumour growth or 
regression. Clin Exp Immunol. 2007;149(1):194–202.  

    62.    Mitsuhashi M, Liu J, Cao S, Shi X, Ma X. Regulation 
of interleukin-12 gene expression and its anti-tumor 
activities by prostaglandin E2 derived from mammary 
carcinomas. J Leukoc Biol. 2004;76(2):322–32.  

    63.    Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa 
A, Parmiani G, et al. Interleukin-12: biological prop-
erties and clinical application. Clin Cancer Res. 
2007;13(16):4677–85.  

    64.    Atkins MB, Robertson MJ, Gordon M, Lotze MT, 
DeCoste M, DuBois JS, et al. Phase I evaluation of 
intravenous recombinant human interleukin 12 in 
patients with advanced malignancies. Clin Cancer 
Res. 1997;3(3):409–17.  

    65.    Portielje JE, Kruit WH, Schuler M, Beck J, Lamers 
CH, Stoter G, et al. Phase I study of subcutaneously 
administered recombinant human interleukin 12 in 
patients with advanced renal cell cancer. Clin Cancer 
Res. 1999;5(12):3983–9.  

    66.    Ansell SM, Geyer SM, Maurer MJ, Kurtin PJ, 
Micallef IN, Stella P, et al. Randomized phase II study 
of interleukin-12 in combination with  rituximab in 
previously treated non-Hodgkin’s  lymphoma patients. 
Clin Cancer Res. 2006;12(20 Pt 1):6056–63.  

    67.    Younes A, Pro B, Robertson MJ, Flinn IW, Romaguera 
JE, Hagemeister F, et al. Phase II clinical trial of inter-
leukin-12 in patients with relapsed and refractory 
non-Hodgkin’s lymphoma and Hodgkin’s disease. 
Clin Cancer Res. 2004;10(16):5432–8.  

    68.    Rook AH, Wood GS, Yoo EK, Elenitsas R, Kao DM, 
Sherman ML, et al. Interleukin-12 therapy of cutane-
ous T-cell lymphoma induces lesion regression and 
cytotoxic T-cell responses. Blood. 1999;94(3):902–8.  

    69.    Wilke CM, Wei S, Wang L, Kryczek I, Kao J, Zou 
W. Dual biological effects of the cytokines interleu-
kin- 10 and interferon-gamma. Cancer Immunol 
Immunother. 2011;60(11):1529–41.  

    70.    Murugaiyan G, Saha B. IL-27 in tumor immunity and 
immunotherapy. Trends Mol Med. 2013;19(2):
108–16.  

     71.    Murugaiyan G, Mittal A, Weiner HL. Identifi cation of 
an IL-27/osteopontin axis in dendritic cells and its 
modulation by IFN-gamma limits IL-17-mediated 
autoimmune infl ammation. Proc Natl Acad Sci U S A. 
2010;107(25):11495–500.  

    72.    Shinohara ML, Kim JH, Garcia VA, Cantor 
H. Engagement of the type I interferon receptor on 
dendritic cells inhibits T helper 17 cell development: 
role of intracellular osteopontin. Immunity. 2008;
29(1):68–78.  

7 Role of Cytokines in Tumor Immunity and Immune Tolerance to Cancer



114

    73.    Schnurr M, Toy T, Shin A, Wagner M, Cebon J, 
Maraskovsky E. Extracellular nucleotide signaling by 
P2 receptors inhibits IL-12 and enhances IL-23 
expression in human dendritic cells: a novel role for 
the cAMP pathway. Blood. 2005;105(4):1582–9.  

    74.    Pirhonen J, Siren J, Julkunen I, Matikainen S. IFN- 
alpha regulates Toll-like receptor-mediated IL-27 
gene expression in human macrophages. J Leukoc 
Biol. 2007;82(5):1185–92.  

   75.    Remoli ME, Gafa V, Giacomini E, Severa M, Lande 
R, Coccia EM. IFN-beta modulates the response to 
TLR stimulation in human DC: involvement of IFN 
regulatory factor-1 (IRF-1) in IL-27 gene expression. 
Eur J Immunol. 2007;37(12):3499–508.  

    76.    Schuetze N, Schoeneberger S, Mueller U, Freudenberg 
MA, Alber G, Straubinger RK. IL-12 family  members: 
differential kinetics of their TLR4- mediated induction 
by Salmonella enteritidis and the impact of IL-10 in 
bone marrow-derived macrophages. Int Immunol. 
2005;17(5):649–59.  

    77.    Liu L, Wang S, Shan B, Shao L, Sato A, Kawamura 
K, et al. IL-27-mediated activation of natural killer 
cells and infl ammation produced antitumour effects 
for human oesophageal carcinoma cells. Scand J 
Immunol. 2008;68(1):22–9.  

    78.    Morishima N, Owaki T, Asakawa M, Kamiya S, 
Mizuguchi J, Yoshimoto T. Augmentation of effector 
CD8+ T cell generation with enhanced granzyme B 
expression by IL-27. J Immunol. 2005;175(3):
1686–93.  

    79.    Schneider R, Yaneva T, Beauseigle D, El-Khoury L, 
Arbour N. IL-27 increases the proliferation and effec-
tor functions of human naive CD8+ T lymphocytes 
and promotes their development into Tc1 cells. Eur J 
Immunol. 2011;41(1):47–59.  

    80.    Hisada M, Kamiya S, Fujita K, Belladonna ML, Aoki 
T, Koyanagi Y, et al. Potent antitumor activity of inter-
leukin-27. Cancer Res. 2004;64(3):1152–6.  

    81.    Salcedo R, Stauffer JK, Lincoln E, Back TC, Hixon 
JA, Hahn C, et al. IL-27 mediates complete regression 
of orthotopic primary and metastatic murine neuro-
blastoma tumors: role for CD8+ T cells. J Immunol. 
2004;173(12):7170–82.  

    82.    Shinozaki Y, Wang S, Miyazaki Y, Miyazaki K, 
Yamada H, Yoshikai Y, et al. Tumor-specifi c cytotoxic 
T cell generation and dendritic cell function are dif-
ferentially regulated by interleukin 27 during devel-
opment of anti-tumor immunity. Int J Cancer. 
2009;124(6):1372–8.  

    83.    Wei J, Xia S, Sun H, Zhang S, Wang J, Zhao H, et al. 
Critical role of dendritic cell-derived IL-27 in antitu-
mor immunity through regulating the recruitment and 
activation of NK and NKT cells. J Immunol. 
2013;191(1):500–8.  

     84.    Salcedo R, Hixon JA, Stauffer JK, Jalah R, Brooks 
AD, Khan T, et al. Immunologic and therapeutic syn-
ergy of IL-27 and IL-2: enhancement of T cell sensiti-
zation, tumor-specifi c CTL reactivity and complete 
regression of disseminated neuroblastoma metastases 
in the liver and bone marrow. J Immunol. 
2009;182(7):4328–38.  

    85.    Takeda A, Hamano S, Yamanaka A, Hanada T, 
Ishibashi T, Mak TW, et al. Cutting edge: role of 
IL-27/WSX-1 signaling for induction of T-bet through 
activation of STAT1 during initial Th1 commitment. J 
Immunol. 2003;170(10):4886–90.  

    86.    Kamiya S, Owaki T, Morishima N, Fukai F, Mizuguchi 
J, Yoshimoto T. An indispensable role for STAT1 in 
IL-27-induced T-bet expression but not proliferation 
of naive CD4+ T cells. J Immunol. 
2004;173(6):3871–7.  

    87.    Lucas S, Ghilardi N, Li J, de Sauvage FJ. IL-27 regu-
lates IL-12 responsiveness of naive CD4+ T cells 
through Stat1-dependent and -independent mecha-
nisms. Proc Natl Acad Sci U S A. 2003;100(25):
15047–52.  

   88.    Artis D, Villarino A, Silverman M, He W, Thornton 
EM, Mu S, et al. The IL-27 receptor (WSX-1) is an 
inhibitor of innate and adaptive elements of type 2 
immunity. J Immunol. 2004;173(9):5626–34.  

    89.    Yoshimoto T, Yasuda K, Mizuguchi J, Nakanishi 
K. IL-27 suppresses Th2 cell development and Th2 
cytokines production from polarized Th2 cells: a 
novel therapeutic way for Th2-mediated allergic 
infl ammation. J Immunol. 2007;179(7):4415–23.  

    90.    Tassi E, Braga M, Longhi R, Gavazzi F, Parmiani G, 
Di Carlo V, et al. Non-redundant role for IL-12 and 
IL-27 in modulating Th2 polarization of carcinoem-
bryonic antigen specifi c CD4 T cells from pancreatic 
cancer patients. PLoS One. 2009;4(10):e7234.  

    91.    Huber M, Steinwald V, Guralnik A, Brustle A, 
Kleemann P, Rosenplanter C, et al. IL-27 inhibits the 
development of regulatory T cells via STAT3. Int 
Immunol. 2008;20(2):223–34.  

    92.    Wojno ED, Hosken N, Stumhofer JS, O’Hara AC, 
Mauldin E, Fang Q, et al. A role for IL-27 in limiting 
T regulatory cell populations. J Immunol. 2011;
187(1):266–73.  

    93.    Villarino AV, Stumhofer JS, Saris CJ, Kastelein RA, 
de Sauvage FJ, Hunter CA. IL-27 limits IL-2 pro-
duction during Th1 differentiation. J Immunol. 
2006;176(1):237–47.  

    94.    Matsui M, Kishida T, Nakano H, Yoshimoto K, 
Shin-Ya M, Shimada T, et al. Interleukin-27 acti-
vates natural killer cells and suppresses NK-resistant 
head and neck squamous cell carcinoma through 
inducing antibody-dependent cellular cytotoxicity. 
Cancer Res. 2009;69(6):2523–30.  

    95.    Yoshimoto T, Morishima N, Mizoguchi I, Shimizu 
M, Nagai H, Oniki S, et al. Antiproliferative activity 
of IL-27 on melanoma. J Immunol. 2008;180(10):
6527–35.  

    96.    Shimizu M, Shimamura M, Owaki T, Asakawa M, 
Fujita K, Kudo M, et al. Antiangiogenic and antitu-
mor activities of IL-27. J Immunol. 2006;176(12):
7317–24.  

    97.    Feng XM, Chen XL, Liu N, Chen Z, Zhou YL, Han 
ZB, et al. Interleukin-27 upregulates major histo-
compatibility complex class II expression in primary 
human endothelial cells through induction of major 
histocompatibility complex class II transactivator. 
Hum Immunol. 2007;68(12):965–72.  

M. Gopal



115

    98.    Cocco C, Giuliani N, Di Carlo E, Ognio E, Storti P, 
Abeltino M, et al. Interleukin-27 acts as multifunc-
tional antitumor agent in multiple myeloma. Clin 
Cancer Res. 2010;16(16):4188–97.  

     99.    Murugaiyan G, Mittal A, Lopez-Diego R, Maier 
LM, Anderson DE, Weiner HL. IL-27 is a key regu-
lator of IL-10 and IL-17 production by human CD4+ 
T cells. J Immunol. 2009;183(4):2435–43.  

    100.    Diveu C, McGeachy MJ, Boniface K, Stumhofer JS, 
Sathe M, Joyce-Shaikh B, et al. IL-27 blocks RORc 
expression to inhibit lineage commitment of Th17 
cells. J Immunol. 2009;182(9):5748–56.  

    101.    Stumhofer JS, Laurence A, Wilson EH, Huang E, 
Tato CM, Johnson LM, et al. Interleukin 27 
 negatively regulates the development of interleukin 
17-producing T helper cells during chronic infl am-
mation of the central nervous system. Nat Immunol. 
2006;7(9):937–45.  

    102.    Sekar D, Hahn C, Brune B, Roberts E, Weigert 
A. Apoptotic tumor cells induce IL-27 release from 
human DCs to activate Treg cells that express CD69 
and attenuate cytotoxicity. Eur J Immunol. 2012;
42(6):1585–98.  

    103.    Ilarregui JM, Croci DO, Bianco GA, Toscano MA, 
Salatino M, Vermeulen ME, et al. Tolerogenic sig-
nals delivered by dendritic cells to T cells through a 
galectin-1-driven immunoregulatory circuit involv-
ing interleukin 27 and interleukin 10. Nat Immunol. 
2009;10(9):981–91.  

    104.    Oniki S, Nagai H, Horikawa T, Furukawa J, 
Belladonna ML, Yoshimoto T, et al. Interleukin-23 
and interleukin-27 exert quite different antitumor 
and vaccine effects on poorly immunogenic mela-
noma. Cancer Res. 2006;66(12):6395–404.  

    105.    Massague J. TGFbeta in cancer. Cell. 2008;134(2):
215–30.  

       106.    Flavell RA, Sanjabi S, Wrzesinski SH, Licona- 
Limon P. The polarization of immune cells in the 
tumour environment by TGFbeta. Nat Rev Immunol. 
2010;10(8):554–67.  

    107.    Shi Y, Massague J. Mechanisms of TGF-beta signal-
ing from cell membrane to the nucleus. Cell. 
2003;113(6):685–700.  

     108.    Ikushima H, Miyazono K. TGFbeta signalling: a 
complex web in cancer progression. Nat Rev Cancer. 
2010;10(6):415–24.  

    109.    Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF- 
beta induced transdifferentiation of mammary epithe-
lial cells to mesenchymal cells: involvement of type I 
receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36.  

    110.    Meulmeester E, Ten Dijke P. The dynamic roles of 
TGF-beta in cancer. J Pathol. 2011;223(2):205–18.  

    111.    Bellone G, Aste-Amezaga M, Trinchieri G, Rodeck 
U. Regulation of NK cell functions by TGF-beta 1. J 
Immunol. 1995;155(3):1066–73.  

    112.    Castriconi R, Cantoni C, Della Chiesa M, Vitale M, 
Marcenaro E, Conte R, et al. Transforming growth 
factor beta 1 inhibits expression of NKp30 and 
NKG2D receptors: consequences for the 
NK-mediated killing of dendritic cells. Proc Natl 
Acad Sci U S A. 2003;100(7):4120–5.  

    113.    Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn 
KR, et al. Expansion of spleen myeloid suppressor 
cells represses NK cell cytotoxicity in tumor-bearing 
host. Blood. 2007;109(10):4336–42.  

    114.    Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, 
Parsa AT. TGF-beta downregulates the activating 
receptor NKG2D on NK cells and CD8+ T cells in 
glioma patients. Neuro Oncol. 2010;12(1):7–13.  

    115.    Ruscetti F, Varesio L, Ochoa A, Ortaldo J. Pleiotropic 
effects of transforming growth factor-beta on cells of 
the immune system. Ann N Y Acad Sci. 1993;685:
488–500.  

   116.    Czarniecki CW, Chiu HH, Wong GH, McCabe SM, 
Palladino MA. Transforming growth factor-beta 1 
modulates the expression of class II histocompatibil-
ity antigens on human cells. J Immunol. 1988;
140(12):4217–23.  

     117.    Bierie B, Moses HL. Tumour microenvironment: 
TGFbeta: the molecular Jekyll and Hyde of cancer. 
Nat Rev Cancer. 2006;6(7):506–20.  

     118.    Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, 
Whitesell LJ, et al. Transforming growth factor beta 
inhibits the antigen-presenting functions and antitu-
mor activity of dendritic cell vaccines. Cancer Res. 
2003;63(8):1860–4.  

    119.    Fainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, 
Goldenberg D, et al. Runx3 regulates mouse TGF-
beta- mediated dendritic cell function and its absence 
results in airway infl ammation. EMBO J. 2004;
23(4):969–79.  

    120.    Ito M, Minamiya Y, Kawai H, Saito S, Saito H, 
Nakagawa T, et al. Tumor-derived TGFbeta-1 
induces dendritic cell apoptosis in the sentinel lymph 
node. J Immunol. 2006;176(9):5637–43.  

    121.    Huang A, Gilmour JW, Imami N, Amjadi P, 
Henderson DC, Allen-Mersh TG. Increased serum 
transforming growth factor-beta1 in human colorec-
tal cancer correlates with reduced circulating den-
dritic cells and increased colonic Langerhans cell 
infi ltration. Clin Exp Immunol. 2003;134(2):270–8.  

    122.    Chen W, Konkel JE. TGF-beta and ‘adaptive’ 
Foxp3(+) regulatory T cells. J Mol Cell Biol. 
2010;2(1):30–6.  

    123.    De Palma M, Lewis CE. Macrophage regulation of 
tumor responses to anticancer therapies. Cancer 
Cell. 2013;23(3):277–86.  

    124.    Goede V, Brogelli L, Ziche M, Augustin 
HG. Induction of infl ammatory angiogenesis by 
monocyte chemoattractant protein-1. Int J Cancer. 
1999;82(5):765–70.  

    125.    Lamagna C, Aurrand-Lions M, Imhof BA. Dual role 
of macrophages in tumor growth and angiogenesis. 
J Leukoc Biol. 2006;80(4):705–13.  

    126.    Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang 
SM. Macrophages in tumor microenvironments and 
the progression of tumors. Clin Dev Immunol. 
2012;2012:948098.  

    127.    Mantovani A, Sozzani S, Locati M, Allavena P, Sica 
A. Macrophage polarization: tumor-associated macro-
phages as a paradigm for polarized M2 mononuclear 
phagocytes. Trends Immunol. 2002;23(11):549–55.  

7 Role of Cytokines in Tumor Immunity and Immune Tolerance to Cancer



116

    128.    Terabe M, Matsui S, Noben-Trauth N, Chen H, 
Watson C, Donaldson DD, et al. NKT cell-mediated 
repression of tumor immunosurveillance by IL-13 
and the IL-4R-STAT6 pathway. Nat Immunol. 
2000;1(6):515–20.  

    129.    Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa 
AC. Regulation of lymphokine-activated killer 
activity and pore-forming protein gene expression in 
human peripheral blood CD8+ T lymphocytes. 
Inhibition by transforming growth factor-beta. 
J Immunol. 1991;146(10):3289–97.  

    130.    Ranges GE, Figari IS, Espevik T, Palladino Jr 
MA. Inhibition of cytotoxic T cell development by 
transforming growth factor beta and reversal by 
recombinant tumor necrosis factor alpha. J Exp Med. 
1987;166(4):991–8.  

     131.    Thomas DA, Massague J. TGF-beta directly targets 
cytotoxic T cell functions during tumor evasion of 
immune surveillance. Cancer Cell. 2005;8(5):369–80.  

    132.    McKarns SC, Schwartz RH, Kaminski NE. Smad3 is 
essential for TGF-beta 1 to suppress IL-2 production 
and TCR-induced proliferation, but not IL-2-induced 
proliferation. J Immunol. 2004;172(7):4275–84.  

    133.    Li MO, Flavell RA. TGF-beta: a master of all T cell 
trades. Cell. 2008;134(3):392–404.  

    134.    Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao 
W, Sobel RA, et al. IL-4 inhibits TGF-beta-induced 
Foxp3+ T cells and, together with TGF-beta, gener-
ates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat 
Immunol. 2008;9(12):1347–55.  

    135.    Facciabene A, Motz GT, Coukos G. T-regulatory 
cells: key players in tumor immune escape and 
angiogenesis. Cancer Res. 2012;72(9):2162–71.  

    136.    Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, 
Riley JL, et al. Cutting edge: regulatory T cells from 
lung cancer patients directly inhibit autologous T 
cell proliferation. J Immunol. 2002;168(9):4272–6.  

    137.    Curiel TJ. Regulatory T cells and treatment of can-
cer. Curr Opin Immunol. 2008;20(2):241–6.  

    138.    Zou W. Regulatory T cells, tumour immunity and 
immunotherapy. Nat Rev Immunol. 2006;6(4):
295–307.  

    139.    Liao D, Johnson RS. Hypoxia: a key regulator of 
angiogenesis in cancer. Cancer Metastasis Rev. 
2007;26(2):281–90.  

    140.    Facciabene A, Peng X, Hagemann IS, Balint K, 
Barchetti A, Wang LP, et al. Tumour hypoxia pro-
motes tolerance and angiogenesis via CCL28 and 
T(reg) cells. Nature. 2011;475(7355):226–30.  

    141.    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, 
Mottram P, et al. Specifi c recruitment of regulatory T 
cells in ovarian carcinoma fosters immune privilege 
and predicts reduced survival. Nat Med. 2004;10(9):
942–9.  

    142.    Gobert M, Treilleux I, Bendriss-Vermare N, 
Bachelot T, Goddard-Leon S, Arfi  V, et al. Regulatory 
T cells recruited through CCL22/CCR4 are selec-
tively activated in lymphoid infi ltrates surrounding 
primary breast tumors and lead to an adverse clinical 
outcome. Cancer Res. 2009;69(5):2000–9.  

    143.    Giatromanolaki A, Bates GJ, Koukourakis MI, 
Sivridis E, Gatter KC, Harris AL, et al. The presence 
of tumor-infi ltrating FOXP3+ lymphocytes corre-
lates with intratumoral angiogenesis in endometrial 
cancer. Gynecol Oncol. 2008;110(2):216–21.  

     144.    Motz GT, Coukos G. The parallel lives of angiogen-
esis and immunosuppression: cancer and other tales. 
Nat Rev Immunol. 2011;11(10):702–11.  

    145.    Rech AJ, Vonderheide RH. Clinical use of anti-
 CD25 antibody daclizumab to enhance immune 
responses to tumor antigen vaccination by targeting 
regulatory T cells. Ann N Y Acad Sci. 2009;1174:
99–106.  

    146.    Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght 
M, Flanders KC, et al. Transforming growth factor 
beta 1 null mutation in mice causes excessive infl am-
matory response and early death. Proc Natl Acad Sci 
U S A. 1993;90(2):770–4.  

    147.    Shull MM, Ormsby I, Kier AB, Pawlowski S, 
Diebold RJ, Yin M, et al. Targeted disruption of the 
mouse transforming growth factor-beta 1 gene 
results in multifocal infl ammatory disease. Nature. 
1992;359(6397):693–9.  

    148.    Bogdahn U, Hau P, Stockhammer G, Venkataramana 
NK, Mahapatra AK, Suri A, et al. Targeted therapy 
for high-grade glioma with the TGF-beta2 inhibitor 
trabedersen: results of a randomized and controlled 
phase IIb study. Neuro Oncol. 2011;13(1):132–42.  

    149.    Lonning S, Mannick J, McPherson JM. Antibody 
targeting of TGF-beta in cancer patients. Curr Pharm 
Biotechnol. 2011;12(12):2176–89.  

    150.    Connolly EC, Freimuth J, Akhurst RJ. Complexities 
of TGF-beta targeted cancer therapy. Int J Biol Sci. 
2012;8(7):964–78.  

    151.    Nemunaitis J, Jahan T, Ross H, Sterman D, Richards 
D, Fox B, et al. Phase 1/2 trial of autologous tumor 
mixed with an allogeneic GVAX vaccine in 
advanced-stage non-small-cell lung cancer. Cancer 
Gene Ther. 2006;13(6):555–62.  

     152.    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 
and Th17 Cells. Annu Rev Immunol. 2009;27:
485–517.  

    153.    Michel ML, Mendes-da-Cruz D, Keller AC, Lochner 
M, Schneider E, Dy M, et al. Critical role of ROR- 
gammat in a new thymic pathway leading to IL-17- 
producing invariant NKT cell differentiation. Proc 
Natl Acad Sci U S A. 2008;105(50):19845–50.  

   154.    Ciric B, El-behi M, Cabrera R, Zhang GX, Rostami 
A. IL-23 drives pathogenic IL-17-producing CD8+ 
T cells. J Immunol. 2009;182(9):5296–305.  

    155.    O’Brien RL, Roark CL, Born WK. IL-17-producing 
gammadelta T cells. Eur J Immunol. 2009;39(3):
662–6.  

    156.    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, 
Oukka M, et al. Reciprocal developmental path-
ways for the generation of pathogenic effector 
TH17 and regulatory T cells. Nature. 2006;
441(7090):235–8.  

    157.    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, 
Lepelley A, Lafaille JJ, et al. The orphan nuclear 

M. Gopal



117

receptor RORgammat directs the differentiation pro-
gram of proinfl ammatory IL-17+ T helper cells. 
Cell. 2006;126(6):1121–33.  

    158.    Nam JS, Terabe M, Kang MJ, Chae H, Voong N, 
Yang YA, et al. Transforming growth factor beta 
subverts the immune system into directly promoting 
tumor growth through interleukin-17. Cancer Res. 
2008;68(10):3915–23.  

    159.    Shime H, Yabu M, Akazawa T, Kodama K, 
Matsumoto M, Seya T, et al. Tumor-secreted lactic 
acid promotes IL-23/IL-17 proinfl ammatory path-
way. J Immunol. 2008;180(11):7175–83.  

   160.    Murugaiyan G, Mittal A, Weiner HL. Increased 
osteopontin expression in dendritic cells amplifi es 
IL-17 production by CD4+ T cells in experimental 
autoimmune encephalomyelitis and in multiple scle-
rosis. J Immunol. 2008;181(11):7480–8.  

     161.    Chizzolini C, Chicheportiche R, Alvarez M, de 
Rham C, Roux-Lombard P, Ferrari-Lacraz S, et al. 
Prostaglandin E2 synergistically with interleukin-23 
favors human Th17 expansion. Blood. 2008;112(9):
3696–703.  

    162.    Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng 
G. Tumor microenvironments direct the recruitment 
and expansion of human Th17 cells. J Immunol. 
2010;184(3):1630–41.  

    163.    Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga 
W, Wei S, et al. Phenotype, distribution, generation, 
and functional and clinical relevance of Th17 cells in 
the human tumor environments. Blood. 2009;114(6):
1141–9.  

    164.    Murugaiyan G, Saha B. Protumor vs antitumor func-
tions of IL-17. J Immunol. 2009;183(7):4169–75.  

    165.    Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh 
YC, et al. Induction of a distinct CD8 Tnc17 subset 
by transforming growth factor-beta and interleukin-
 6. J Leukoc Biol. 2007;82(2):354–60.  

    166.    Blankenstein T, Qin Z. The role of IFN-gamma in 
tumor transplantation immunity and inhibition of 
chemical carcinogenesis. Curr Opin Immunol. 2003;
15(2):148–54.  

    167.    Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, 
et al. The prevalence of Th17 cells in patients with 
gastric cancer. Biochem Biophys Res Commun. 
2008;374(3):533–7.  

      168.    Numasaki M, Watanabe M, Suzuki T, Takahashi H, 
Nakamura A, McAllister F, et al. IL-17 enhances the 
net angiogenic activity and in vivo growth of human 
non-small cell lung cancer in SCID mice through 
promoting CXCR-2-dependent angiogenesis. J 
Immunol. 2005;175(9):6177–89.  

     169.    Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, 
Claret E, et al. Interleukin 17, a T-cell-derived cyto-
kine, promotes tumorigenicity of human cervical 
tumors in nude mice. Cancer Res. 1999;59(15):
3698–704.  

    170.    Numasaki M, Fukushi J, Ono M, Narula SK, 
Zavodny PJ, Kudo T, et al. Interleukin-17 promotes 
angiogenesis and tumor growth. Blood. 2003;101(7):
2620–7.  

    171.    Numasaki M, Lotze MT, Sasaki H. Interleukin-17 
augments tumor necrosis factor-alpha-induced elab-
oration of proangiogenic factors from fi broblasts. 
Immunol Lett. 2004;93(1):39–43.  

    172.    Takahashi H, Numasaki M, Lotze MT, Sasaki 
H. Interleukin-17 enhances bFGF-, HGF- and 
VEGF-induced growth of vascular endothelial cells. 
Immunol Lett. 2005;98(2):189–93.  

    173.    Honorati MC, Neri S, Cattini L, Facchini 
A. Interleukin-17, a regulator of angiogenic factor 
release by synovial fi broblasts. Osteoarthritis 
Cartilage. 2006;14(4):345–52.  

    174.    Jeon SH, Chae BC, Kim HA, Seo GY, Seo DW, 
Chun GT, et al. Mechanisms underlying TGF-beta1- 
induced expression of VEGF and Flk-1 in mouse 
macrophages and their implications for angiogene-
sis. J Leukoc Biol. 2007;81(2):557–66.  

    175.    Huang X, Lee C. Regulation of stromal prolifera-
tion, growth arrest, differentiation and apoptosis in 
benign prostatic hyperplasia by TGF-beta. Front 
Biosci. 2003;8:s740–9.  

    176.    Kehlen A, Thiele K, Riemann D, Rainov N, Langner 
J. Interleukin-17 stimulates the expression of 
IkappaB alpha mRNA and the secretion of IL-6 and 
IL-8 in glioblastoma cell lines. J Neuroimmunol. 
1999;101(1):1–6.  

    177.    Aggarwal S, Gurney AL. IL-17: prototype member 
of an emerging cytokine family. J Leukoc Biol. 
2002;71(1):1–8.  

    178.    Karin M, Greten FR. NF-kappaB: linking infl amma-
tion and immunity to cancer development and pro-
gression. Nat Rev Immunol. 2005;5(10):749–59.  

    179.    Shalom-Barak T, Quach J, Lotz M. Interleukin-17- 
induced gene expression in articular chondrocytes is 
associated with activation of mitogen-activated pro-
tein kinases and NF-kappaB. J Biol Chem. 
1998;273(42):27467–73.  

    180.    Subramaniam SV, Cooper RS, Adunyah SE. 
Evidence for the involvement of JAK/STAT pathway 
in the signaling mechanism of interleukin- 17. 
Biochem Biophys Res Commun. 1999;262(1):14–9.  

    181.    Lee JW, Wang P, Kattah MG, Youssef S, Steinman 
L, DeFea K, et al. Differential regulation of chemo-
kines by IL-17 in colonic epithelial cells. J Immunol. 
2008;181(9):6536–45.  

    182.    Muranski P, Boni A, Antony PA, Cassard L, Irvine 
KR, Kaiser A, et al. Tumor-specifi c Th17-polarized 
cells eradicate large established melanoma. Blood. 
2008;112(2):362–73.  

    183.    Hinrichs CS, Kaiser A, Paulos CM, Cassard L, 
Sanchez-Perez L, Heemskerk B, et al. Type 17 
CD8+ T cells display enhanced antitumor immunity. 
Blood. 2009;114(3):596–9.  

    184.    Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, 
Sautes-Fridman C, et al. Interleukin-17 inhibits 
tumor cell growth by means of a T-cell-dependent 
mechanism. Blood. 2002;99(6):2114–21.  

    185.    Jovanovic DV, Di Battista JA, Martel-Pelletier J, 
Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates 
the production and expression of proinfl ammatory 

7 Role of Cytokines in Tumor Immunity and Immune Tolerance to Cancer



118

cytokines, IL-beta and TNF-alpha, by human macro-
phages. J Immunol. 1998;160(7):3513–21.  

    186.    Antonysamy MA, Fanslow WC, Fu F, Li W, Qian S, 
Troutt AB, et al. Evidence for a role of IL-17 in 
organ allograft rejection: IL-17 promotes the func-
tional differentiation of dendritic cell progenitors. J 
Immunol. 1999;162(1):577–84.  

    187.    Hirahara N, Nio Y, Sasaki S, Minari Y, Takamura M, 
Iguchi C, et al. Inoculation of human interleukin-17 
gene-transfected Meth-A fi brosarcoma cells induces 
T cell-dependent tumor-specifi c immunity in mice. 
Oncology. 2001;61(1):79–89.  

    188.    Kryczek I, Wei S, Szeliga W, Vatan L, Zou 
W. Endogenous IL-17 contributes to reduced tumor 
growth and metastasis. Blood. 2009;114(2):357–9.  

    189.    Kastelein RA, Hunter CA, Cua DJ. Discovery and 
biology of IL-23 and IL-27: related but functionally 
distinct regulators of infl ammation. Annu Rev 
Immunol. 2007;25:221–42.  

    190.    Langowski JL, Kastelein RA, Oft M. Swords into 
plowshares: IL-23 repurposes tumor immune sur-
veillance. Trends Immunol. 2007;28(5):207–12.  

    191.    Kocieda VP, Adhikary S, Emig F, Yen JH, Toscano 
MG, Ganea D. Prostaglandin E2-induced IL-23p19 
subunit is regulated by cAMP-responsive element- 
binding protein and C/AATT enhancer-binding 
 protein beta in bone marrow-derived dendritic cells. 
J Biol Chem. 2012;287(44):36922–35.  

   192.    Qian X, Gu L, Ning H, Zhang Y, Hsueh EC, Fu M, 
et al. Increased Th17 cells in the tumor microenviron-
ment is mediated by IL-23 via tumor-secreted prosta-
glandin E2. J Immunol. 2013;190(11):5894–902.  

    193.    Poloso NJ, Urquhart P, Nicolaou A, Wang J, 
Woodward DF. PGE2 differentially regulates 
monocyte- derived dendritic cell cytokine responses 
depending on receptor usage (EP2/EP4). Mol 
Immunol. 2013;54(3–4):284–95.  

    194.    Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, 
Harris T, et al. Regulation of the IL-23 and IL-12 
balance by Stat3 signaling in the tumor microenvi-
ronment. Cancer Cell. 2009;15(2):114–23.  

    195.    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, 
Gurney AL. Interleukin-23 promotes a distinct CD4 T 
cell activation state characterized by the production of 
interleukin-17. J Biol Chem. 2003;278(3):1910–4.  

     196.    Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, 
Smith K, et al. IL-23 promotes tumour incidence and 
growth. Nature. 2006;442(7101):461–5.  

    197.    Wang YQ, Ugai S, Shimozato O, Yu L, Kawamura 
K, Yamamoto H, et al. Induction of systemic immu-
nity by expression of interleukin-23 in murine colon 
carcinoma cells. Int J Cancer. 2003;105(6):820–4.  

   198.    Shimozato O, Ugai S, Chiyo M, Takenobu H, 
Nagakawa H, Wada A, et al. The secreted form of 
the p40 subunit of interleukin (IL)-12 inhibits IL-23 
functions and abrogates IL-23-mediated antitumour 
effects. Immunology. 2006;117(1):22–8.  

   199.    Shan B, Yu L, Shimozato O, Li Q, Tagawa 
M. Expression of interleukin-21 and -23 in human 

esophageal tumors produced antitumor effects in 
nude mice. Anticancer Res. 2004;24(1):79–82.  

   200.    Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, 
et al. Antitumor and antimetastatic activity of IL-23. 
J Immunol. 2003;171(2):600–7.  

     201.    Shan BE, Hao JS, Li QX, Tagawa M. Antitumor 
activity and immune enhancement of murine inter-
leukin- 23 expressed in murine colon carcinoma 
cells. Cell Mol Immunol. 2006;3(1):47–52.  

    202.    Vignali DA, Kuchroo VK. IL-12 family cytokines: 
immunological playmakers. Nat Immunol. 2012;
13(8):722–8.  

     203.    Collison LW, Chaturvedi V, Henderson AL, 
Giacomin PR, Guy C, Bankoti J, et al. IL-35- 
mediated induction of a potent regulatory T cell 
population. Nat Immunol. 2010;11(12):1093–101.  

    204.    McNamee EN, Masterson JC, Jedlicka P, McManus 
M, Grenz A, Collins CB, et al. Interleukin 37 expres-
sion protects mice from colitis. Proc Natl Acad Sci U 
S A. 2011;108(40):16711–6.  

   205.    Bulau AM, Fink M, Maucksch C, Kappler R, Mayr D, 
Wagner K, et al. In vivo expression of interleukin- 37 
reduces local and systemic infl ammation in concana-
valin A-induced hepatitis. Scientifi cWorldJournal. 
2011;11:2480–90.  

   206.    Wirtz S, Billmeier U, McHedlidze T, Blumberg RS, 
Neurath MF. Interleukin-35 mediates mucosal immune 
responses that protect against T-cell- dependent colitis. 
Gastroenterology. 2011;141(5):1875–86.  

    207.    Kochetkova I, Golden S, Holderness K, Callis G, 
Pascual DW. IL-35 stimulation of CD39+ regula-
tory T cells confers protection against collagen 
II-induced arthritis via the production of IL-10. 
J Immunol. 2010;184(12):7144–53.  

    208.    Chaturvedi V, Collison LW, Guy CS, Workman CJ, 
Vignali DA. Cutting edge: human regulatory T cells 
require IL-35 to mediate suppression and infectious 
tolerance. J Immunol. 2011;186(12):6661–6.  

    209.    Niedobitek G, Pazolt D, Teichmann M, Devergne 
O. Frequent expression of the Epstein-Barr virus 
(EBV)-induced gene, EBI3, an IL-12 p40-related 
cytokine, in Hodgkin and Reed-Sternberg cells. 
J Pathol. 2002;198(3):310–6.  

   210.    Poleganov MA, Bachmann M, Pfeilschifter J, Muhl 
H. Genome-wide analysis displays marked induc-
tion of EBI3/IL-27B in IL-18-activated AML- 
derived KG1 cells: critical role of two kappaB 
binding sites in the human EBI3 promotor. Mol 
Immunol. 2008;45(10):2869–80.  

      211.    Nishino R, Takano A, Oshita H, Ishikawa N, 
Akiyama H, Ito H, et al. Identifi cation of Epstein- 
Barr virus-induced gene 3 as a novel serum and tis-
sue biomarker and a therapeutic target for lung 
cancer. Clin Cancer Res. 2011;17(19):6272–86.  

     212.    Olson BM, Jankowska-Gan E, Becker JT, Vignali 
DA, Burlingham WJ, McNeel DG. Human prostate 
tumor antigen-specifi c CD8+ regulatory T cells are 
inhibited by CTLA-4 or IL-35 blockade. J Immunol. 
2012;189(12):5590–601.  

M. Gopal



119

    213.    Wang Z, Liu JQ, Liu Z, Shen R, Zhang G, Xu J, et al. 
Tumor-derived IL-35 promotes tumor growth by 
enhancing myeloid cell accumulation and angiogen-
esis. J Immunol. 2013;190(5):2415–23.  

    214.    Saraiva M, O’Garra A. The regulation of IL-10 pro-
duction by immune cells. Nat Rev Immunol. 2010;
10(3):170–81.  

     215.    Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo 
MJ, Selvan SR. Interleukin 10 in the tumor microen-
vironment: a target for anticancer immunotherapy. 
Immunol Res. 2011;51(2–3):170–82.  

    216.    Galizia G, Orditura M, Romano C, Lieto E, 
Castellano P, Pelosio L, et al. Prognostic signifi cance 
of circulating IL-10 and IL-6 serum levels in colon 
cancer patients undergoing surgery. Clin Immunol. 
2002;102(2):169–78.  

    217.    Li MO, Flavell RA. Contextual regulation of 
infl ammation: a duet by transforming growth fac-
tor-beta and interleukin-10. Immunity. 2008;28(4):
468–76.  

    218.    Saraiva M, Christensen JR, Veldhoen M, Murphy 
TL, Murphy KM, O’Garra A. Interleukin-10 produc-
tion by Th1 cells requires interleukin-12-induced 
STAT4 transcription factor and ERK MAP kinase 
activation by high antigen dose. Immunity. 2009;
31(2):209–19.  

    219.    Huang S, Ullrich SE, Bar-Eli M. Regulation of 
tumor growth and metastasis by interleukin-10: the 

melanoma experience. J Interferon Cytokine Res. 
1999;19(7):697–703.  

    220.    Seo N, Hayakawa S, Tokura Y. Mechanisms of 
immune privilege for tumor cells by regulatory cyto-
kines produced by innate and acquired immune 
cells. Semin Cancer Biol. 2002;12(4):291–300.  

    221.    Kurte M, Lopez M, Aguirre A, Escobar A, Aguillon 
JC, Charo J, et al. A synthetic peptide homologous to 
functional domain of human IL-10 down-regulates 
expression of MHC class I and transporter associ-
ated with antigen processing 1/2 in human mela-
noma cells. J Immunol. 2004;173(3):1731–7.  

     222.    Mocellin S, Marincola FM, Young 
HA. Interleukin-10 and the immune response against 
cancer: a counterpoint. J Leukoc Biol. 2005;78(5):
1043–51.  

    223.    Roncarolo MG, Gregori S, Battaglia M, Bacchetta 
R, Fleischhauer K, Levings MK. Interleukin-10- 
secreting type 1 regulatory T cells in rodents and 
humans. Immunol Rev. 2006;212:28–50.  

    224.    Teng MW, Darcy PK, Smyth MJ. Stable IL-10: a 
new therapeutic that promotes tumor immunity. 
Cancer Cell. 2011;20(6):691–3.  

    225.    Berman RM, Suzuki T, Tahara H, Robbins PD, 
Narula SK, Lotze MT. Systemic administration of 
cellular IL-10 induces an effective, specifi c, and 
long-lived immune response against established 
tumors in mice. J Immunol. 1996;157(1):231–8.      

7 Role of Cytokines in Tumor Immunity and Immune Tolerance to Cancer



121N. Rezaei (ed.), Cancer Immunology: A Translational Medicine Context,
DOI 10.1007/978-3-662-44006-3_8, © Springer-Verlag Berlin Heidelberg 2015

8.1            Introduction 

 Living tissues are highly organized and dynamic 
structures at the cellular level. Tissue renewal, 
remodeling, and repair, immunosurveillance, and 
cell-to-cell interaction and communication are 
examples of physiological processes relying on 
the fi ne recruitment and displacement of numer-
ous cell types. This equilibrium is strictly depen-
dent on the principle of “recruiting the right cell at 
the right place and the right moment.” One major 
component of this principle is the chemokine and 
chemokine receptor system. Chemokines (CKs) 
for chemoattractant cytokines are small, secreted 
molecules historically defi ned on the basis of their 
functional chemotactic activity [ 1 – 3 ]. They con-
stitute a family of over 50 members which inter-
act with about 20 defi ned corresponding/cognate 
receptors (CKRs). This discrepancy highlights 
the complexity of this system as several CKs can 
bind to a single receptor. Conversely, one  receptor 
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can bind several  different CKs. This redundancy 
associated with differential avidity of the CK 
for their CKR and the specifi c expression by the 
different cell population contributes to the fi ne 
tuning of cell migration (Fig.  8.1 ) and explains 
that a modest deregulation of the system can 
lead to severe pathological conditions. In addi-
tion, there is overwhelming evidence describing 
alternative functions of the CK/CKR couple in 
hematopoiesis, reproduction, angiogenesis, and 
immune- associated functions such as cell activa-
tion, proliferation, effector function, and survival 
[ 4 ,  5 ]. Numerous reports from the past two 
decades have validated the importance of the CK/
CKR network with its diverse range of physi-
ological properties and its involvement in various 
physiopathological disorders [ 6 – 8 ].

   Cancer constitutes a very complex pathology 
in many aspects. Neoplastic cells result from the 
environmental, viral-induced, or inherited dereg-
ulation of genes known as “oncogenes” or “tumor 
suppressor genes.” This primary modifi cation 
often leads to uncontrolled expansion of undif-
ferentiated cells for which the transcriptome and 
the proteome are highly modifi ed in comparison 
with the original cell. Nevertheless, it is impor-
tant to note that tumor development does not 
result from the simple expansion of neoplastic 
cell. Indeed, solid tumors (primary tumor as well 
as metastasis) are also constituted by a wide vari-
ety of stromal cells. Stroma is composed of non-
hematopoietic cells, such as “healthy” cells of the 
affected tissue, fi broblasts, or endothelial cells, as 
well as hematopoietic cells. Hematopoietic cell 
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  Fig. 8.1    Fine modulation 
of cellular recruitment by 
chemokines. The chemokine 
network is organized around 
several levels of complexity. 
( a ) Most of the cell types 
(1, 2, 3) express several 
chemokine receptors and a 
same receptor is found on 
several cell types. Moreover, 
different chemokines can 
bind to a same receptor and 
most of the receptors can 
bind several chemokines 
with distinct affi nity 
(color gradient represent 
differential affi nity). This 
apparent complexity allows 
for the fi ne control of cell 
population recruitment. 
( b ) The schematic 
 representation illustrates 
the selective recruitment 
of cell populations according 
to the respective colored CK 
gradient. The number of cell 
recruited is related to the 
affi nity of the respective CK 
for its receptor       
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populations are mainly composed of innate 
immune cells, such as tumor-associated macro-
phages (TAMs), dendritic cells (DCs), natural 
killers (NK cells), neutrophils, and partners of 
the adaptive immune response such as T and B 
lymphocytes. 

 The relative importance of the stroma compared 
to tumor cells depends on the type of cancer [ 9 ], 
but it is now well described that several stromal 
cells are important predictive markers of cancer 
evolution (macrophages, regulatory T cells, and 
endothelial progenitor cells). Even though the 
stroma cannot be characterized properly in circu-
lating hematological tumors, leukocytes will have 
an important impact on the expansion, survival, 
and potential homing of tumor cells to the specifi c 
tissue. This phenomenon is distinguishable from 
the metastatic process where the tumor cells need 
to cross the endothelial barrier from a primary 
tumor site and home to a distant tissue. The stroma 
contributes to the global organization and progres-
sion of the tumor known as “tumor microenviron-
ment” through the production of growth factors, 
cytokines, CKs, exchange of nutrients, and tissue 
remodeling and repair. In contrast, immune cells 
are responsible for the control of tumor growth. 
The concept of immunosurveillance proposed by 
Burnett et al. [ 10 ] in the early 1970s has been 
widely debated. Recently, Schreiber and colleagues 
provided experimental evidence for the clinical 
emergence of cancer as a result of strong selection 
and modeling of tumors by the immune system in a 
process termed as “tumor editing” [ 11 ]. In this pro-
cess, neoplastic transformation occurs, and tumor 
cell expansion is detected by the innate and adap-
tive immune systems, which either succeed in com-
plete tumor elimination or maintain a state of 
equilibrium between tumor cell expansion and 
elimination. This phase leads to the immune selec-
tion of tumor cell variants that develop immune 
resistance and  immunesuppressive mechanisms 
resulting in tumor escape and cancer progression to 
a clinical outcome. 

 Cancer is a complex process whereby undif-
ferentiated tumor cells expand locally in special-
ized tissues, migrate in an active manner by 
leaving the primary tumor site through the endo-
thelial barrier, establish in a distant and different 

specialized tissue and fi nally generate metasta-
ses. Infl ammation generated by neoplastic trans-
formation contributes to the recruitment of 
protumoral population and the production of 
growth factors as well as the recruitment of 
immune component with antitumor activity. 
Thus, tumorigenesis is a dynamic process involv-
ing important tissue remodeling and angiogene-
sis, recruitment and local migratory mechanisms, 
and survival and cell death for both tumor and 
stromal cells in which the CK/CKR network has 
major implication. 

 The CK/CKR network appears to be a promis-
ing target in cancer therapy and has already been 
used in standard therapeutic approaches, as well 
as in immunotherapy. Numerous basic and clini-
cal interventions rely on the development of ago-
nist or antagonist CKR in order to manipulate 
their critical biological function toward antitu-
mor activity. 

 In this chapter, the role of the CK/CKR net-
work in these aspects of cancer development, as 
well as its potential application in the improve-
ment of cancer therapy, is described in detail.  

8.2     Chemokines and Chemokine 
Receptors 

 Chemokines are small cytokines initially 
described for their chemotactic properties on leu-
kocytes. During cell recruitment from the blood 
to infl amed tissues, CKs initiate the activation of 
circulating cells, promoting cell rolling, adhesion 
to activated endothelium, and extravasation 
(Fig.  8.2 ). In tissues, CKs determine cell direc-
tional migration, by establishing a concentration 
gradient (Fig.  8.3 ). Evidence from previous stud-
ies has shown that the control of cell mobility by 
CKs is implicated in developmental mechanisms 
and cell homeostasis, as well as in the induction 
and tuning of acute and chronic infl ammation 
and control of the immune response. Numerous 
reviews have extensively described the CK clas-
sifi cation, structural organization, and their asso-
ciated biological properties [ 12 ,  13 ]. CKs are 
subdivided in four subfamilies based on the 
 number and spacing between conserved cysteine 
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in the primary amino acids sequence [ 14 ]. CKRs 
are seven transmembrane G-protein-coupled 
receptor classifi ed according to the CK family 
they bind. As previously mentioned, most CKs 
bind to several receptors, and most of the recep-
tors can bind several CKs with different affi ni-
ties. Additionally, one cell subset can express 
different CKR and the same CKR is expressed by 
different cell subsets. This apparent redundancy 

is in reality a tool to tightly regulated leukocytes, 
stem cells, and other cell types’ migrations  during 
physiological and pathological condition.

    It is now well established that CK function is 
not limited to cell migration. It has been clearly 
demonstrated that CKs directly control cell 
 proliferation, survival and senescence, as well as 
cytokine secretion and phagocytic properties 
(Fig.  8.4 ). It is the balance between these 
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  Fig. 8.2    Chemokine-
associated extravasation 
process. ( a ) Circulating cell 
within the bloodstream. 
( b ) Chemokine presented by 
proteoglycan on activated 
endothelial cells, induce the 
expression of adhesion 
molecules implicated in the 
slow rolling and the capture 
process. ( c ) Once stuck to 
the endothelium, cell exerts 
crawling behavior on the 
luminal side of the blood 
vessel and ( d ) extravasates 
and migrates through the 
tissue toward a chemokine 
gradient       
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  Fig. 8.3    Interstitial migration. ( a ) Upon activation, 
( b ) stromal cells will produce chemokines forming a 
 gradient within the tissue. ( c ) Tissue-infi ltrated immune 

cells will migrate through the tissue toward the higher 
concentration of chemokine       
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 migratory, secretion, phagocytic, survival, and 
proliferation signals which explains the central 
roles of CK in development, tissue homeostasis, 
repair, infl ammation, and immunity.

8.3        Control of Tumor Cell 
Behavior 

 The biological property controlled by the CK/
CKR recognition system is not restricted to che-
motactism. Several important processes involved 
in the behavior of tumor cells will be affected by 
these axes. In this section, the effect of CK/CKR 
expression on tumor cell behavior and cancer 
progression is discussed. 

8.3.1     Chemokines and Chemokine 
Receptor Alterations During 
Neoplastic Transformation 

 Primary neoplastic transformation leads to strong 
modifi cation of the transcriptome and proteome 
which is mainly shaped by immune selection of 

resistant tumor variants. CK and CKR are not 
oncogenes per se; however, modulation in the 
production of CK or their receptors by tumor 
cells is often the result of oncogenic modifi ca-
tions and immune selection (Fig.  8.5 ). The fi rst 
evidence came from a human papillary thyroid 
cancer. The authors showed that RET (rearranged 
during transfection)-tyrosine kinase rearrange-
ment promotes the secretion of numerous infl am-
matory cytokines, including CCL2, CCL20, 
and CXCL12, and increases the expression of 
CXCR4 [ 15 ]. Later studies have shown that Myc 
overexpression in pancreatic cancer has been 
associated with increased CK expression [ 16 ,  17 ]. 
Nevertheless, the predictive outcome of onco-
genic modifi cations on the regulation of CK and 
CKR expression is diffi cult to assess. While 
RAS-RAF signaling pathway promotes CXCL8 
and CXCL1 transcription in pancreatic and ovar-
ian cancer, it inhibits CCL27 transcription in skin 
cancer [ 18 – 20 ]. Similarly, Von Hippel-Lindau 
tumor suppressor mutation in renal cancer [ 21 ] 
and TP53 mutation in cancer stem cells promote 
CXCR4 expression [ 22 ] while downregulating its 
expression in breast cancer cells [ 23 ].

Inhibition
Activation

Cytokine secretion

Phagocytosis

SenescenceProliferation

Apoptosis

  Fig. 8.4    Control of cell 
biology by chemokines. 
Besides cell migration, 
chemokines are implicated 
in multiple cellular functions 
including apoptosis, 
proliferation, and 
 senescence. Chemokines 
are also directly implicated 
in cell activation, cytokine 
secretion, or phagocytosis       
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   Through modifi cation in the profi le of CKR 
expression, tumor cells will change their sensitiv-
ity to the microenvironment and acquire new 
migratory and homing capabilities.  

8.3.2     Metastasis/Homing 

 The metastasis index is undoubtedly the major 
factor of prognosis and determines the therapeu-
tic attitude. Metastasis defi nes the process 
through which tumor cells leave a primary site to 
settle in a distant location and creates a new 
 colony. This phenomenon is a characteristic of 
tumor malignancy including tumor invasion, 
intravasation, and homing to different sites. This 
has to be distinguished from the potential sec-
ondary localization of circulating tumor cells 
which only involves the homing mechanism. 

8.3.2.1     Tumor Invasion 
 The fi rst step of metastasis spreading relies on 
either tumor cell or stromal cell-mediated fi brosis 
activity and the ability of tumor cells to acquire 
migration and intravasation capabilities, in order 
to leave the primary tumor site and reach the 
bloodstream. Chemotaxis of tumor cells is well 
characterized [ 24 ]. This process requires a para-
crine loop between tumor cells and stromal cells, 
such as macrophages shaping the microenviron-
ment to favor metastasis [ 25 ]. Different chemical 

gradients may induce tumor cell chemotaxis, but 
the direct implication of CKs in this specifi c pro-
cess is poorly documented. We can distinguish 
the indirect contribution of CK to the chemotaxis 
activity of cancer cells through angiogenesis, 
fi brogenesis, and matrix remodeling mediated by 
stromal cells. 

 CXCL12/CXCR4 is the major axis directly 
involved in tumor cell metastases. Overexpression 
of CXCR4 in rat mammary adenocarcinoma 
enhances the motility of tumor cells in the pri-
mary tumor [ 26 ]. This receptor is widely involved 
in the epithelial-to-mesenchymal transition 
(EMT) process, which is a major step leading to 
metastasis [ 27 ,  28 ]. Few studies have reported the 
implication of other CKs and CKRs such as 
CCL18, CCL2, or CXCR7 [ 29 – 31 ] through the 
activation of EMT-implicated signaling path-
ways. IL8/IL8R axis might also favor mainte-
nance of the mesenchymal status of the tumor 
cell [ 32 ]. Interestingly, the integration of multiple 
CKR axes adds complexity to the tumor invasion 
process. Indeed, overexpression of CXCR4 pro-
motes invasion. However, coexpression of 
CXCR7 which binds the same ligand CXCL12 
impairs invasion but favors angiogenesis and pri-
mary tumor growth [ 26 ].  

8.3.2.2     Homing 
 Once in the bloodstream, the tumor cell needs to 
migrate to a site that will allow its engraftment, 
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  Fig. 8.5    Oncogenes induce 
altered chemokine and 
chemokine receptor 
expression by tumor cells. 
Common oncogene mutations 
are associated with 
 modifi cation of chemokine 
or chemokine receptor 
transcription, resulting in 
tumor promotion.  RET/PTC  
rearranged RET tyrosine 
kinase,  VHL  Von Hippel-
Lindau tumor suppressor 
gene,  Sc  skin cancer,  Pc  
pancreatic cancer,  Oc  ovarian 
cancer,  HPTc  human papillary 
thyroid cancer,  cSC  cancer 
stem cell,  Rc  renal cancer       
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survival, and proliferation. In 2001, Muller et al. 
demonstrated for the fi rst time that the expression 
of specifi c CKRs by tumor cells could predict the 
implantation of malignant cells in tissues express-
ing high levels of the receptor ligands [ 33 ]. Since 
then, several other studies have established asso-
ciations between metastases, CKR expression, 
and implantation sites for various cancer types 
(Table  8.1 ). Consistently with their homeostatic 
functions, CCR7 expression by tumor cells is 
associated with lymph node metastases; CCR10 
with skin metastasis; CX3CR1 with brain, liver, 
and bone metastases; CCR9 with intestine metas-
tases; and CXCR4 with bone and liver metastases 
[ 33 – 36 ].

   Overall, these observations show that CK 
axes generate a complex relationship between 
tumor cell and the environment and deserve 
further attention in preclinical studies as it 
represents an important target with clinical 
application.   

8.3.3     Senescence, Proliferation, 
and Survival 

 Tumor expansion results in the capacity of tumor 
cells to proliferate infi nitely without developing 
senescent mechanisms. Several CKs have dem-
onstrated the ability to activate signaling path-
ways in favor of this goal. 

 Cellular senescence is generally defi ned as an 
irreversible state of G1 cell cycle arrest in which 
the cell is refractory to growth factor stimulation. 
Activation of CXCR2 by either CXCL1 or 

CXCL8 can result in senescence induction [ 37 ]. 
CXCR2 activation is thus able to act as a suppres-
sor of malignancy in prostate and breast cancer 
[ 38 ,  39 ]. 

 Inhibition of tumor proliferation by CXCR2 
ligand is probably limited to tumor models and to 
early stages of tumor development. Indeed, the 
same CK axes display opposite effects in other 
tumor models. CXCR1 and CXCR2 activation by 
CXCL8 promotes the proliferation of gastric can-
cer, esophageal cancer, non-small lung cancer, 
and melanoma cell lines [ 40 – 43 ]. Other receptors 
of the CXC receptor family are involved in tumor 
cell proliferation. CXCR6 is involved in cell pro-
liferation of pancreatic cancer cells [ 44 ], and 
CXCR4 is associated with tumor proliferation in 
numerous models, including ovarian, melanoma, 
glioma, renal, lung, and thyroid cancer cells [ 27 , 
 45 ]. Few studies have investigated the implication 
of CCRs in the control of tumor cell proliferation. 
CCR6 favors colon tumor cell proliferation upon 
CCL20 activation [ 46 ], and CCR9 favors 
 pancreatic cancer cell proliferations upon CCL25 
activation [ 47 ]. 

 Another role of CK in tumor cell biology is 
the ability to control tumor cell survival, essen-
tially mediated through the CC receptor family. 
CCR10 activation promotes phosphatidylinositol-
3- kinase-mediated protection from apoptosis of 
melanoma cells [ 48 ]. The same mechanisms are 
observed in squamous cell carcinoma of the head 
and neck after CCR7 activation [ 49 ]. CCR7 
engagement by CCL21 is also implicated in the 
prevention of apoptosis in NLCLC, through 
ERK-dependant activation pathways [ 50 ]. 

   Table 8.1    Metastases implantation of various cancer types based on their chemokine receptor expression       
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 CK direct promotion of tumor cell survival is 
not limited to CC chemokines; CXCL12 through 
CXCR4 activation promotes hepatoma, ovarian, 
and chronic leukemia tumor cells survival [ 51 ], 
and CXCR7 activation increases cell survival by 
reducing apoptosis [ 52 ]. 

 Overall, these observations highlight extended 
functional contributions of the CK system to 
tumor development and reveal that they are not 
merely restrained to chemotaxis.   

8.4     Control of Immune Cell 
Behaviors 

 As described previously, the immune system is 
known to shape the tumor through the “tumor 
editing” phenomenon. In this context, CKs are 
directly or indirectly implicated in the control of 
immune cell activation, migration to the priming 
site, and immune response induction. It is now 
clear that in most cases, the CK network is 
shunted by the tumor, favoring its escape from 
immunosurveillance and tumor progression. 
Nevertheless, the production of some CKs pro-
motes the antitumor immune response and has 
been associated with improved patient outcome, 
including lower recurrence rate or increased 
patient survival [ 53 ]. 

8.4.1     Chemokines Involved in T-Cell 
Antitumor Immune Response 

 Induction of antigen (Ag)-specifi c antitumor 
immune response requires the uptake of tumor Ag 
by professional antigen-presenting cells (APCs) 
and migration from the tumor site to the corre-
sponding draining lymph node, in order to present 
the processed tumor-Ag to T lymphocytes. These 
major immune functions can be divided into dif-
ferent steps for which the CKR network has 
important regulatory implications [ 54 ]. 

8.4.1.1     Migration of APCs 
to the Priming Site 

 Encounter with tumor Ag induces maturation of 
APCs present in the tumor environment. One 

 feature of this maturation is the downregulation 
of peripheral tissue-associated CKR like CCR1, 
CCR5, and CCR6 and the upregulation of CCR7. 
Due to the constitutive expression of CCR7 
ligand, CCL19, and CCL21 by peripheral lymph 
nodes, this switch of CKR expression by APCs 
promotes their migration toward the priming site. 
Once in the draining lymph node, APCs will 
locate in the preferential area to present the tumor 
Ag to the CCR7 expressing naive lymphocyte.  

8.4.1.2     Ag Presentation to T 
Lymphocytes 

 Despite the fact that APCs display low dynamic 
activity, naïve lymphocytes have a high basal 
mobility favoring scanning of thousand APCs per 
hour [ 55 ,  56 ]. This behavior requires CCR7 
expression by T lymphocytes [ 57 ]. An additional 
CKR-dependant mechanism favors the probabil-
ity of encounter between APCs and T lympho-
cytes. Encounter of Ag-specifi c CD4 +  or CD8 +  T 
cells with an APC bearing their cognate Ag 
induces the secretion of CC-chemokines by the 
conjugate, namely, CCL19, CCL5, CCL3, and 
CCL4. These CKs will promote naïve T-cell 
scanning behaviors and attraction toward the 
conjugate [ 58 – 60 ], which is known to favor the 
establishment of memory immune response, in 
addition to the induction of polyclonal responses 
against different tumor Ags [ 61 ]. 

 CKs are also implicated in the improvement 
of APC/T-cell adhesion mechanism as well as in 
immunological synapse stabilization, promoting 
T-cell priming (Fig.  8.6 ). CCR7 ligands secreted 
in the lymph node promote immunological syn-
apse formation by T cells [ 62 ]. CXCR4 and 
CCR5 expressed by T cells are recruited toward 
the immunological synapses made with the 
APC. This polarization results in desensitization 
of T cells from external sources of CKs and 
improves synapse stability. A similar mechanism 
is observed during the interaction between tumor- 
infi ltrated lymphocytes (TILs) and tumor cells. 
Indeed, the recruitment of CCR5 at the immune 
synapse formed between the TIL and the tumor 
cell results in defective responses to TIL toward a 
CCR5 gradient [ 63 ]. This mechanism allows for 
the modulation of the “GO” signals generated by 
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CKs, competing with the “STOP” signals medi-
ated by the TCR-MHC interaction [ 64 ].

8.4.1.3        Migration of Effector T 
Lymphocytes to Tumor 

 Naive T cells, after clonal expansion and differ-
entiation into effector T cells, migrate toward the 
tumor site, implying that T cells downregulate 
the expression of the CKRs implicated in the 
retention at the priming site like CCR7. In addi-
tion, they upregulate various CKRs including 
CCR1, CCR3, CCR5, and CXCR3 allowing their 
movement toward the tumor site [ 65 ]. Cytotoxic 
T lymphocytes (CTLs) recruitment to the tumor 
site is consistent with this pattern of CKRs 
expression and is mainly mediated by CCL3, 
CCL5, CCL20, CXCL9, and CXCL10 [ 54 ]. 
Membrane-anchored CKs expression such as 
CXCL16 and CX3CL1 have also been shown to 
correlate with greater numbers of tumor- 
infi ltrated lymphocytes and improved prognosis 
in colorectal cancer [ 66 ,  67 ]. The antitumor effect 
of the membrane-bound CK form  vs . the soluble 
form is yet to be clearly established. 

 The control of TIL localization within the 
tumor is ill-defi ned. It is obvious that in most 
cases, TILs are mainly found at the tumor 

 periphery; however, the underlying mechanisms 
remain unclear. Several clues could help us specu-
late on the mechanism of trapping the TILs at the 
tumor periphery. The recent contribution of real-
time imaging showed that dense peripheral extra-
cellular matrix might restrain TILs’ access to the 
tumor parenchyma [ 68 ]. Whether specifi c niches 
of CKs are expressed on collagen fi bers is unclear 
and needs further investigation. In addition, 
dynamic analysis showed that Ag-specifi c CTLs 
are trapped in the network of tumor-associated 
APCs restraining their infi ltration and probably 
favoring immunosuppression [ 69 ,  70 ]. The role of 
CKs in this trapping is not defi ned, but Ag expres-
sion by APC at least induces stable engagement 
between the CTL and the APC. In addition, 
experimental evidences showed that non-tumor- 
Ag-specifi c TIL cannot infi ltrate the tumor deeply 
without the prior tumor cells’ destruction by 
Ag-specifi c CTL. These results suggest that deep 
infi ltration of the tumor by TIL might be favored 
by chemotactic agents secreted upon tumor cell 
destruction by CTL or on extensive ECM remod-
eling to allow their interstitial migration [ 71 ]. 

 Overall, considering the numerous CKs 
expressed by the various cell subsets of the tumor 
microenvironment, it is very diffi cult to address 

a b c

Chemokine receptors TCR MHC Co-stimulatory molecules

Immune synapse

  Fig. 8.6    Control of cell polarization toward immune syn-
apse. ( a ) T-cell scan for their cognate antigen-presenting 
cell. ( b ) Upon recognition, T cell will polarize chemokine 
receptors toward the immune synapse. ( c ) This 

 sequestration of CKR leads to reduced sensitivity to dis-
tant CK gradient and may participate in the stabilization 
of the immune synapse       
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specifi c contributions of CK/CKR couple in the 
interstitial migration and positioning of T lym-
phocytes within the tumor parenchyma. The 
 various properties of these molecules have dem-
onstrated that this positioning is controlled by 
sensitivity to the chemotactic gradient and the 
subsequent desensitization upon polarization 
toward the synapse or the downregulation of the 
expression of CKRs.   

8.4.2     Chemokines in Innate 
Immune Components 

 Innate immune cells constitute a fi rst barrier 
against tumor development. However, due to 
their plasticity and capacity to produce a myriad 
of cytokines, chronically activated innate immune 
cells are key modulators of cell activation and 
survival, as well as regulators of the ECM metab-
olism. Several physiological processes necessary 
for tumor development, such as increased cell 
survival, tissue remodeling, angiogenesis, and 
suppression of antitumor adaptive immune 
responses, are regulated by innate immune cell 
infi ltrate in the tumor. 

 Macrophages are the main stromal cell popu-
lation present in the tumor parenchyma. They can 
account for more than 50 % of the tumor mass. 
The role of TAM in tumor development is criti-
cal, as these cells, depending on their state of 
activation, can display antitumor properties asso-
ciated with production of Th1 cytokine, high 
quantity of reactive oxygen species, and effi cient 
Ag presentation or they could display protumor 
properties mediated by the secretion of Th2 cyto-
kine, proangiogenic factors, growth factors that 
support tumor survival, and proliferation and the 
secretion of MMP which promote tumor invasion 
and metastases. Consistently, the impact of TAM 
on tumor development and metastases will 
depend on the balance between M1 antitumor 
macrophages and M2 protumor macrophages. 

 Depending on the tissue, resident macro-
phages are in a small proportion derived from 
the recruitment of circulating monocytes assur-
ing immunosurveillance and mainly origin from 
self-renewal of interstitial resident macrophages 

derived from the yolk sac or fetal liver [ 72 ]. 
Within neoplastic tissues, it is  suggested that 
TAMs are mostly recruited from the periphery. 
Nonetheless, knowledge of the  relative propor-
tion of native resident macrophages remains a 
poorly investigated fi eld in oncology. CCL2, also 
called MCP-1 for monocyte  chemoattractant pro-
tein-1, is probably the most frequently found 
CC-CK in tumors involving recruitment of circu-
lating monocytes [ 73 ]. Interestingly, in a mela-
noma system where tumorigenesis is dependent 
on an external growth factor CCL2, there is a 
biphasic effect depending on its secreted quan-
tity. High amounts are associated with a massive 
recruitment of TAM into the tumor with domi-
nant antitumor activity, while lower amounts 
induce lower infi ltration into the tumor resulting 
in tumor promotion through the secretion of 
growth factor by the macrophages [ 74 ]. These 
results point out the importance of the ratio 
between protumor and antitumor macrophages 
recruited into the tumor. 

 Other CKRs implicated in TAM recruitment 
are CX3CR1 and CCR1. In human glioblastoma, 
the level of tumor infi ltration by microglial cells 
is dependent on CX3CR1. Patients with a func-
tional mutation in the CX3CR1 gene associated 
with impaired monocyte migration have a 
reduced TAM infi ltration into the tumor [ 75 ]. 
Injection of a thymoma tumor cell line (EL4) 
with a liver tropism to mice results in an increased 
infi ltration of the liver by immune cells, includ-
ing macrophages. In CCR1 KO mice, this recruit-
ment during the fi rst stage of the tumor 
development is massively reduced [ 76 ]. 

 CXC chemokine receptors could also be 
implicated in TAM recruitment. In humans, IL-4 
and IL-13, two cytokines secreted in the tumor 
environment, sensitize monocytes to CXCL1 and 
CXCL8 by upregulating their receptors (CXCR1 
and CXCR2). Thus, these cytokines indirectly 
promote the recruitment of TAM into the tumor 
through CXC chemokine receptors [ 77 ]. 

 As previously discussed, CKs not only con-
trol leukocyte recruitment into the tumor but 
also organize their localization within the 
tumor. Lack of proper vascularization at the 
center of the tumor induces the secretion of 
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 several hypoxic factors like hypoxia-inducible 
factors (HIFs). HIFs promote the expression of 
CXCR4 by macrophages, favoring their recruit-
ment toward tumor hypoxic areas [ 78 ]. On the 
other hand, tumor environment decreases CKR 
expression on monocytes. Indeed, macrophages 
from tumor sites express low levels of CKR 
[ 79 ]. Time-lapse imaging of TAMs in experi-
mental murine model revealed that TAMs dis-
play reduced displacement but intense 
protrusive activity [ 69 ,  70 ]. Downregulation of 
CKR might explain this retention at the tumor 
site. 

 CKs do not only act on leukocyte attraction 
but are also implicated in their activation. 
Induction of copper/zinc-superoxide dismutase 
by CCL5/CCR5 activation causes tumor necrosis 
factor-alpha and reactive oxygen species produc-
tion by macrophages [ 80 ], promoting tumor 
destruction. Inversely, in human monocytes, CC 
chemokines induce the transcription of metallo-
proteinase, implicated in tumor invasion and 
spreading. The fact that both TAM recruitment 
and activation are regulated by CK increases the 
potential interest of targeting TAM for antitumor 
therapies. 

 NK cells represent another component of the 
innate immune system highly involved in antitu-
mor immune responses. NK cell recruitment to 
the tumor is mainly mediated through the 
CXCL10-CXCR3, CX3CL1/CX3CR1, and 
CCL3-4-5/CCR5 axes. High CX3CL1 quantity is 
associated with increased NK cell recruitment 
into the tumor in both human and mice [ 81 ,  82 ]. 
Similar phenomenon is observed with increased 
CCL5 and CCL3 expression by tumor cells in 
mouse models [ 83 ,  84 ]. CXCR3 is implicated in 
the recruitment of human NK cells to breast can-
cer tumor, which is mediated by CXCL10 secre-
tion from tumor cells in response to IFN-γ 
produced by the NK cells themselves [ 85 ,  86 ]. 
Thus, CKs not only control NK cell recruitment 
but also regulate their antitumor properties. 
CX3CR1 activation by CX3CL1 results in 
improved antitumor cytotoxicity of NK cells [ 87 , 
 88 ]. CCL3, CCL4 and CCL5 have been shown to 
activate NK cytotoxicity through induction of 
degranulation [ 89 ,  90 ].  

8.4.3     Chemokine and Tumor-Induced 
Tolerance 

 Recruitment of tolerogenic cells such as regula-
tory T cells or immunosuppressive myeloid sub-
sets is a feature or immune escape. Tumor cells 
secrete ligands of CKRs expressed by immature, 
regulatory or Th2 polarized cells. CCL22 and 
CCL17 produced by tumor cells recruit mono-
cytes, as well as Th2 lymphocytes and regulatory 
T cells through CCR4 signaling [ 91 ]. This strat-
egy of immune escape has been also selected in 
viral-induced oncogenesis process. HHV8 virus, 
the pathogen of Kaposi’s sarcoma, encodes three 
viral CKs which bind to CCR3, CCR4, and CCR8 
involved in the recruitment of Th2 and regulatory 
T cells [ 92 ]. 

 Stromal cells produce CKs which promote the 
recruitment of protumoral cells. Amongst others, 
TAM produces CCL18 which is induced by IL10 
[ 93 ]. CCL18 favors the recruitment of naïve T 
cells through activation of an unknown receptor. 
It is proposed that these naïve T cells acquired 
tolerogenic properties in contact with the tumor 
environment. CCR6 +  immature lymphoid DCs 
recruitment into the tumor is favored by the 
secretion of CCL20 from both tumor cells and 
TAM [ 94 ]. CCL5 recruits immature DCs as well 
by binding CCR1 and CCR5 [ 95 ]. Immature DCs 
acquire tolerogenic properties in the tumor envi-
ronment and participate in the immune tolerance 
loops against tumor Ags [ 96 ]. 

 Subversion of tumor immune component is 
a central point of tumor outcome. The above 
described implication of CK in cellular mech-
anisms should provide the basis to better 
understanding the clinical implication of CK 
network in cancer pathology. The regulation 
of the balance between immunogenic and 
tolerogenic components has deserved major 
attention for a long time and is the basis of 
immunotherapy which represents an apparent 
inexhaustible field of innovative anticancer 
strategies. Targeting the CK system in this 
goal is in the course of important investigation 
through the development of pharmaceutical 
compounds able to stimulate or antagonize 
CKR axes.   
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8.5     Alternative Tumor- 
Associated Physiological 
Functions of Chemokines 

8.5.1     Angiogenesis 

 One of the features of CKs is their dual role in the 
angiogenic process. In the tumor environment, 
there is increased production of proangiogenic 
CK, while angiostatic CKs are downregulated. 
In addition to a direct angiogenic effect of CKs, 
this activity is indirectly potentialized by the 
CK-induced recruitment of leukocyte display-
ing angiogenic properties such as neutrophils or 
macrophages [ 97 ]. 

 CK from the CXC family are probably the 
most described for their direct implication in 
tumor- associated angiogenesis. CXCLs 1, 2, 3, 5, 
6, 7, and 8 display angiogenic properties. All 
these CKs contain a specifi c amino acid sequence 
of glutamic acid-leucine-arginine (or ELR for 
short) immediately before the fi rst cysteine of the 
CXC motif (ELR-positive). This ELR sequence 
absence from the other CXC chemokines is 
responsible of the proangiogenic properties of 
most of the CXC chemokine [ 98 ]. 

 ELR +  chemokines mediate angiogenesis 
through binding to the CXCR2 receptor. ELR +  
chemokines are able to recruit endothelial pre-
cursor cells, induce cell proliferation, and pro-
mote maturation. These mechanisms could be 
negatively regulated by a decoy CKR expressed 
by endothelial cells called duffy antigen receptor 
for CK (DARC). Unlike most of the other CKR, 
DARC is not linked to G protein, and its activa-
tion does not induce calcium fl ux. DARC reduces 
angiogenesis by sequestering all the ELR +  CKs. 

 One specifi city within ELR −  chemokines is 
attributed to CXCL12 which is the only ELR −  
chemokine with proangiogenic activity. CXCL12 
mediates its proangiogenic effect by directly pro-
moting the recruitment of endothelial progenitor 
cells [ 99 ,  100 ] or indirectly by promoting tumor 
angiogenesis through the recruitment of CXCR4 +  
proangiogenic monocyte [ 78 ,  101 ] and through 
the secretion of vascular endothelial growth fac-
tor (VEGF) by CXCR7 activation [ 102 ]. 

 In contrast, ELR −  chemokine secretion is 
often associated with attenuation of angiogene-
sis. ELR −  CXC chemokines are described by 
their angiostatic properties. ELR −  CXC chemo-
kine secretion is induced by IFN-α and IFN-β. 
Through CXCR3 binding, these CKs mediate 
their angiostatic properties by inhibition of ELR +  
chemokine, VEGFα, and βFGF proangiogenic 
effects  in vitro  [ 103 ]. Interestingly, the expres-
sion of CXCR3 is dependant of the cell cycle 
phase, limiting the angiostatic properties of ELR −  
CXC chemokines to the S/G2-M phase [ 104 ]. 

 This important association of CKs and angio-
genesis within the tumor environment sets the 
inhibition of ELR +  chemokine as a robust antitu-
mor therapy.  

8.5.2     Fibrosis and Extracellular 
Matrix Remodeling 

 The association of CKs in EMT leading to fi bro-
sis activity has been previously suggested by 
studies; however, there is no clear evidence that 
CKs play a direct role in this process. 

 Fibrosis and extracellular matrix remodeling 
are continuous processes present in the tumor 
parenchyma refl ecting the intense dynamic and 
migratory activity of the neoplastic tissue. Two 
different types of migratory activity are defi ned, 
namely, the amoeboid and mesenchymal migra-
tion. The amoeboid migration does not require 
extracellular matrix (ECM) remodeling through 
matrix metalloproteinases (MMPs) activity due 
to the ability of the cell to squeeze through the 
ECM. The mesenchymal migration relies on pre-
vious proteolysis and degradation of the ECM to 
generate suffi cient space for cell displacement. 
CK-mediated induction of MMP is mostly medi-
ated by CC chemokines; CCL5 and CCL9 pro-
duced by mesenchymal stem cell promote tumor 
cell invasion in a MMP-dependant manner [ 105 , 
 106 ]. CCL25 promotes MMP secretion in ovar-
ian cancer cells through CCR9 binding and favors 
tumor cell invasion [ 107 ]. CCL21/CCR7 interac-
tion favors MMP-9 secretion, tumor invasion, 
and metastases in colon cancer cells and in B-cell 
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chronic lymphocytic leukemia cells [ 108 ,  109 ]. 
At least, one CXC chemokine has been related to 
MMP activity; thus, CXCL12 is implicated in 
increased MMP2 activation and increased cell 
invasion in a pancreatic cancer cell line [ 110 ]. 

 Studies have suggested that the extracellular 
matrix promotes tumor escape from the immune 
system by trapping antitumor leukocytes at dis-
tance from tumor cell niches [ 111 ]. However, 
tumor progression and metastases require degra-
dation of this extracellular matrix surrounding 
the tumor. The main protagonists of these physi-
ological activities are represented by mesenchy-
mal stem cell (MSC)-derived cell populations. 
CXCL12 is implicated in the recruitment of mes-
enchymal stem cells (MSCs) from the bone mar-
row. Bone marrow-derived MSCs can account 
for up to 25 % of the cancer-associated fi bro-
blasts, the main source of fi brosis within the 
tumor [ 112 ]. 

 There is ongoing evidence that targeting pro-
teolysis activity in combination with chemotaxis 
would provide promising results in the strategy to 
inhibit tumor cell invasion and metastasis.   

8.6     Clinical Aspect 

 CKs are implicated in several aspects of tumor 
development. Due to these pivotal roles in tumor 
biology, CKs have been frequently associated 
with tumor evolution and clinical outcomes and 
have been highlighted for their potential use as 
prognostic or diagnostic markers. Therefore, they 
represent a promising target with a potential for a 
diverse range of therapeutic strategies. 

8.6.1     Prognosis 

 Due to its importance across a wide range of 
physiological mechanisms, CK/CKR network 
alteration could impact tumor development. 
Correlative studies using genetic polymorphisms 
provide essential information for prognosis. 
Several functional polymorphisms in CKs or 
CKRs have been studied in order to establish 

 correlation between functional variants and 
tumor risk or progression (Table  8.2 ).

   The paragraphs below focus on the most com-
monly described polymorphisms, their functional 
relevancies, and their subsequent prognostic 
value in tumor risk and/or progression.  

8.6.2     CC Chemokines/Chemokine 
Receptors 

8.6.2.1     CCL2 
 A single-nucleotide polymorphism (SNP) in the 
CCL2 promoter, based on the substitution of an 
adenine by a guanine in position −2518 
(A < −2518 < G), is associated with increased 
CCL2 secretion [ 113 ]. This polymorphism with 
an allelic frequency close to 30 % is associated 
with an increased susceptibility to the develop-
ment of breast, gastric, and oral squamous can-
cer. However, it is not associated with an 
increased risk of developing hepatocellular and 
prostate cancer, glioblastoma, and melanoma. 
Despite this lack of association with the devel-
opment of melanoma, CCL2 polymorphism is 
associated with increased Breslow index, sug-
gesting its link with melanoma progression 
[ 114 ]. CCL2- 2518G variant is also associated 
with increased metastases development in naso-
pharyngeal and breast cancer. In the former 
case, the deleterious effect of the polymorphism 
is observed only after radiotherapy [ 115 ]. 
Overall, the deleterious effect of the CCL2-
2518G allele-associated increase of CCL2 
expression is consistent with the protumoral 
effect of TAM in most tumors, as previously 
described above.  

8.6.2.2     CCL5 
 Confl icting data arises from the study of the 
CCL5 G < −403 < A polymorphism on cancer 
risk. This mutation is thought to be responsible 
for the decreased secretion of CCL5 and is asso-
ciated with decreased risk for leukemia and gas-
tric cancer in women [ 116 ], as well as an 
increased risk for prostate and pancreatic cancer 
[ 117 ]. This discrepancy could refl ect the balance 
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   Table 8.2    Association between 
chemokines and chemokine 
receptor polymorphisms and 
tumor risk and/or progression       

   Prog  prognosis, + good indicator, − poor indicator, = no association, * meta-analysis  

between the antitumor effects of CCL5 through 
recruitment of cytotoxic CTL and the protumoral 
effect of CCL5 through recruitment of immature 
DC. Nonetheless, there is no evidence supporting 
an association between CCL5 polymorphism and 
tumor progression.  

8.6.2.3     CCR5 
 CCL5 main receptor ( CCR5 ) is also subject to 
another relevant polymorphism. A deletion of 
32 base pairs named CCR5 delta 32 results in a 
reading frame shift, associated with complete 
defect in receptor expression. The impact of the 
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 polymorphism in tumor risk and progression is 
not well documented. Most studies conclude a 
lack of association; however, one report suggests 
that CCR5Δ32 could be associated with higher 
risks of the development of gallbladder cancer 
[ 118 ]. In melanoma, CCR5Δ32 is associated with 
reduced survival of patients with grade 4 tumor 
treated by immunotherapy strategies [ 119 ]. These 
observations might refl ect the role of CCR5 in the 
induction of T-cell priming and memory.  

8.6.2.4     CCR2 
 CCR2 V64I polymorphism has also been studied 
for its implication in tumor risk and progression. 
There is no known effect of the genetic variation 
on the CCR2/CCL2-signaling pathway, but it is 
associated with CCR5 instability, which could be 
explained by stability alteration of the CCR2/
CCR5 dimer. Most of the studies conclude that 
there is an increased risk for people carrying the 
rare variant. This is the case for cervical, oral, 
bladder, prostate, and endometrial cancer. A recent 
meta-analysis with 2,661 cancer patients and 
5,801 healthy controls found an overall signifi cant 
association between the CCR2-V64I polymor-
phism and cancer risk [ 120 ]. In the subgroup anal-
ysis stratifi ed by cancer types, there was a 
signifi cant association between this polymorphism 
and the risk of bladder, cervical, and oral cancer.   

8.6.3     CXC Chemokines 

 Two CXC chemokines, CXCL8 (also referred as 
interleukin-8) and CXCL12 (SDF-1), have been 
intensively investigated for their association between 
polymorphisms and tumor risk and development. 

8.6.3.1     CXCL8 
 CXCL8 T < −251 < A polymorphism is prob-
ably one of the most studied CK polymorphism 
in cancer. Its physiological effect and its impact 
on CXCL8 expression remain to be elucidated. 
There is an apparent discrepancy between stud-
ies on these effects; however, this may refl ect 
specifi city depending on the cell type or the cell 
activation status. The implication of CXCL8 poly-
morphism in cancer risk and outcome remains 
unclear. Unfortunately, controversies in the litera-

ture make any interpretation challenging. Several 
meta-analyses have been performed in order to 
gain some clarity, and despite some variation in 
the conclusion, it appears likely that the rare vari-
ant of CXCL8 promoter region is associated with 
increased risk of gastric and oral cancer [ 121 – 123 ].  

8.6.3.2     CXCL12 
  CXCL12  is subject to a polymorphism in a 3′ 
untranslated region named CXCL12 3′ G801A. The 
rare variant is associated with increased secretion 
of CXCL12. Consistent with the protumoral effect 
of CXCL12 mentioned above, studies essentially 
report that CXCL12 801A variant is associated 
with an increased risk for several cancers (lung, 
breast, oral, prostate, hepatocellular, and colorectal 
cancer). It is also thought to favor tumor progres-
sion or metastases in lung cancer, hepatocellular 
carcinoma, colorectal cancer, and myeloid leuke-
mia. The only three meta-analyses performed to 
date conclude that there is an increased risk for 
breast and lung cancer, without any signifi cant 
effect on other cancer types [ 124 – 126 ].   

8.6.4     CX3C Chemokine Receptors 

 The only receptor for the CX3C chemokine fam-
ily is CX3CR1, which is also subject to poly-
morphisms associated with cancer outcome. 
Substitution of a valin by an isoleucine in position 
249 results in increased adhesion of the couple 
CX3CR1/CX3CL1 and defective migration of 
CX3CR1 +  cells. The rare variant is associated with 
increased risk of colorectal cancer, but not hepa-
tocellular cancer, melanoma, and glioblastoma. 
In this last case, the rare variant is associated with 
improved patient survival after tumor biopsies and 
decreased infi ltration of the tumor by microglial 
cells [ 75 ]. This is consistent with the promotion 
of glioblastoma invasion by microglial cells [ 127 ].  

8.6.5    Chemokine Circulating Expression 

 CK circulating levels have also been related to can-
cer progression. A high concentration of CCL17 is 
associated with the progression of Hodgkin lym-
phoma (HL) after treatment [ 128 ]. Interestingly, 
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opposite effects are observed in melanoma, where 
high  CCL17  expression is associated with progres-
sion-free survival in patients with immunotherapeu-
tic treatment [ 129 ]. Elevated concentrations of 
CXCL10 in the serum before treatment (monoclonal 
antibody therapy together with combination chemo-
therapy) are associated with an increased likelihood 
of clinical relapse and an inferior survival in patients 
with diffuse large B-cell lymphoma [ 130 ].  Despite 
numerous promising results, CK and CKR genes 
and molecules are not currently used in clinical 
settings to evaluate a patients’ risk of developing 
cancer or to predict tumor  progression. This 
could be explained in part by the nonhomoge-
neous distribution of the polymorphism variants 
amongst ethnic communities. Additionally, in 
most cases,  CK  and  CKR  gene polymorphisms 
are not singularly powerful predictive tools. Their 
clinical utility is most likely to be dependent on 
their association with other markers.  

8.6.6     Therapeutic Strategies 

 As discussed throughout this chapter, CKs are 
implicated in all steps of the tumor development, 
invasion, and dissemination. Several tools have 

been developed to target CKs or CKR as innova-
tive strategies in cancer treatment. To date, there 
is no molecule targeting macrophage release; 
however, multiple clinical trials from phase I to 
phase III are recorded at clinical trial.gov website 
(Table  8.3 ). Some strategies aim to promote the 
production of CKs implicated in the recruitment 
of immune-competent cells to the tumor by injec-
tion of IFN, “celecoxib,” and “rintatolimod” 
(NCT01545141). In another trial, patients with 
lung adenocarcinoma were directly injected with 
CKs implicated in the recruitment of antitumor 
effector T cells, in combination with vaccination 
approach (NCT01433172). Inversely, another 
trial aimed to inhibit the recruitment of protu-
moral leukocyte using an Ab against CCL2 in 
order to control metastatic castrate-resistant pros-
tate cancer (MCRPC) (NCT00992186). However, 
this strategy failed as all the patients were 
removed from the study, due to progression of the 
tumor despite anti-CCL2 treatment.

   Another approach aimed to directly target 
 CKR  expressed by neoplastic cells in order to 
control tumor or metastases development. The 
CCR5 antagonist, named “maravirok,” originally 
commercialized for AIDS treatment, is under 
evaluation for its antitumor property in colorectal 

   Table 8.3    Current clinical trials evaluating the benefi ts of targeting chemokines or chemokine receptors cancer 
therapies   

 Inclusion criteria  Phase  Treatment 

 Colorectal cancer  Phase I/II  Chemokine-modulatory regimen 
 Stage IV adenocarcinoma of the lung  Phase I/II  GM.CD40L and CCL21 
 Metastatic castrate-resistant prostate 
cancer 

 Phase II  Anti-CCL2 carlumab 

 Solid tumors  Phase I  Human monoclonal antibody against CCL2 (CNTO 888) 
 Colorectal cancer patients with hepatic 
liver metastases 

 Phase I  CCR5 antagonist (Maravirok) 

 Previously treated peripheral T-cell 
lymphoma 

 Phase II  Anti-CCR4 monoclonal antibody KW-0761 
(Mogamulizumab) 

 CCR4-positive adult T-cell 
leukemia-lymphoma 

 Phase II  Anti-CCR4 (KW-0761) 

 High-grade glioma  Phase I  CXCR4 antagonist (Plerixafor/AMD3100) and 
bevacizumab 

 Multiple myeloma previously treated 
with lenalidomide 

 Phase III  Filgrastim with or without CXCR4 antagonist 
(plerixafor/AMD3100) 

 Non-Hodgkin lymphoma  Phase III  CXCR4 antagonist (Plerixafor/AMD3100) and G-CSF 
 Multiple myeloma  Phase Ib  Anti-CXCR4 (BMS-936564) alone or plus lenalidomide/

dexamethasone or bortezomib/dexamethasone 
 Multiple myeloma  Phase I/IIA  CXCR4 antagonist (BKT-140) 
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cancer (NCT01736813). Promising results have 
been obtained with an anti-CCR4 Ab named 
“KW-0761.” Injection of KW-0761 in subjects 
with CCR4-positive adult T-cell leukemia- 
lymphoma resulted in the stabilization of tumor 
progression in half of them. This molecule is now 
under evaluation in cutaneous T-cell lymphoma 
(NCT01728805) and in second-phase treatment 
for peripheral T-cell lymphoma (NCT01611142). 

 CXCR4 antagonists are probably the most 
widely used molecules in trials targeting the CK 
network. “plerixafor” is a FDA-approved CXCR4 
antagonist for use in patients with non-Hodgkin 
lymphoma (NHL) and multiple myeloma. It is 
used as a preconditioning regimen for its ability to 
mobilize bone marrow resident hematopoietic 
stem cells and tumor stem cells toward circulation 
before chemotherapy. Plerixafor and other mole-
cules targeting CXCR4 are now evaluated in sev-
eral clinical trials from grades I to III phase in 
combination with other treatment, in various forms 
of leukemia and myeloma. Evaluation of CXCR4 
targeting in cancer therapies is not limited to blood 
tumors. Plerixafor is currently being evaluated in a 
phase I trial in conjunction with “bevacizumab” for 
patients with high-grade glioma (NCT01339039).   

8.7     Concluding Remarks 

 The advantages of targeting the CK network, 
through distinct strategies, have already been 
demonstrated as well as its limitations. A new 
generation of clinical trials based on a combina-
tion of approaches from standard chemotherapies 
to innovative immunotherapies offer new per-
spectives in CK network targeting strategies. 

 The 10 years following the discovery of the 
majority of CKs were characterized by exten-
sive investigations in the involvement of these 
 molecules in the control of cellular traffi ck-
ing, specifi cally leukocytes. Later on, scientists 
demonstrated that CKs do not only control cell 
migration but also cell proliferation, survival, and 
activation state. It is now obvious that CKs act on 
a wider range of cell types rather than only leuko-
cytes for which they were primarily characterized. 
The complex physiological processes in which 
CKs are involved such as tissue  homeostasis, 

immune system maturation and surveillance, and 
tissue remodeling functions like angiogenesis or 
fi brosis are shunted in most cases toward tumor 
promotion. The central role of the CK network 
in these processes positions the CK system as an 
attractive target against tumor development, pro-
gression, and dissemination. Clinically,  CK  and 
 CKR  polymorphisms or serum levels are already 
associated with susceptibility or prognostic mark-
ers. Current investigations aiming at controlling 
tumor development by targeting the CK network 
are not limited to the direct effect on tumor cells. 
For instance, it is proposed that CKs could modu-
late the involvement of TAMs in tumor eradica-
tion or protection after chemotherapy suggesting 
that chemoattractant molecules could be used 
in combination with standard chemical chemo-
therapies to favor tumor eradication through 
modulation of the TAM activity. Despite numer-
ous promising results, few molecules targeting 
CKRs have received FDA approval. The CXCL12 
antagonism is already being used in patients 
with leukemia or myeloma to promote tumor 
cell mobilization toward the bloodstream before 
treatment, and the CCR5 antagonist maravirok 
is currently being evaluated in colorectal cancer. 
These low numbers of molecules targeting CKs 
in the market could be explained by the relatively 
recent discovery and characterization of the CKs. 
In addition, the central role of CKs in most bio-
logical functions would lead to potential numer-
ous side effects. Given the phenomenal amount 
of progress made by the scientifi c and the medical 
community, it is most likely that these challenges 
will be overcome. Several innovative technolo-
gies allowing for more effi cient and specifi c deliv-
ery of chemical compounds have been proposed 
and optimized during the last few years, such as 
Ab-coupled treatment and encapsulated or viral 
delivered constructs. Targeting the CK network 
using these tools will probably constitute the next 
step in the development of a cancer therapy with 
minimal side effect.     
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9.1            Introduction 

 Apoptosis, or programmed cell death, plays a 
pivotal role in development, organ homeostasis, 
and immunosurveillance. The term apoptosis was 
coined by Kerr et al. in 1972 [ 1 ] to describe the 
process of cell death associated with morphologi-
cal changes, including nucleus and cytoplasm 
condensation and protuberances from the plasma 
membrane producing apoptotic bodies, so-called 
blebs, which are rapidly phagocytosed [ 1 ,  2 ]. 
Inhibition of this cellular process is observed in 
different pathologies, such as cancer and autoim-
munity, while amplifi cation of the apoptotic sig-
nal was reported in neurodegenerative disorders 
including Alzheimer’s and Parkinson’s diseases 
[ 3 ,  4 ], as well as infection by human immunode-
fi ciency virus (HIV). 

 The origin of the apoptotic signal has been 
used to distinguish two main signaling path-
ways. The intrinsic pathway stems from accu-
mulation of DNA damage, deregulation of 
mitochondrial function, or virus infection and 
induces the release of proapoptotic factors from 
the mitochondria, whereas extrinsic signals are 
 transmitted by the binding of apoptotic ligands 
to death receptors present at the cell surface. 
Interconnections exist between these two 
 signaling pathways: both leading to the activa-
tion of a family of cysteine proteases specifi c for 
aspartic acid residues, called caspases [ 5 ]. The 
apoptotic role of mitochondria is associated 
with reduction in its transmembrane potential 
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and the loss of its extracellular membrane integ-
rity, leading to the release of different apopto-
genic factors in the cytosol. Among them, 
cytochrome c associates with the caspase-9/
APAF1 complex to form the apoptosome and 
trigger apoptosis [ 6 ]. 

 These two signaling pathways share common 
features, and both require the aggregation of ini-
tiator caspases as their preliminary events. During 
interactions with respective ligands, members of 
the death receptor superfamily recruit adaptor 
proteins such as Fas-associating protein with a 
death domain (FADD) [ 7 ,  8 ] or tumor necrosis 
factor (TNF) receptor 1-associated death domain 
protein (TRADD) [ 9 ], resulting in the aggrega-
tion and activation of the initiator caspase-8 and 
caspase-10 to form the death-inducing signaling 
complex (DISC) [ 10 ]. In a similar manner, 
release of cytochrome c and ATP by mitochon-
dria promotes the formation of the apoptosome 
with the cytosolic APAF-1, thereby aggregating 
and activating the initiator caspase-9, which in 
turn cleaves caspase-3 [ 11 ]. 

 It should be kept in mind that death recep-
tors CD95 [ 12 ], TNFR1 [ 13 ], DR4 [ 14 ], DR5 
[ 15 ], and DR6 [ 16 ] have been cloned based 
on their ability to elicit apoptosis. Although 
studies have revealed the ability of Fas/CD95, 
DR4, and DR5 in triggering non-apoptotic sig-
naling pathways even immediately after their 
cloning [ 17 ,  18 ], most, if not all, studies have 
been focused on characterizing the molecu-
lar events leading to cell death. Accordingly, 
several agonistic molecules were developed in 
order to kill cancer cells, neglecting the impact 
of non-apoptotic signals in pathophysiological 
contexts. More recent data changed this vision 
by evaluating the biological role of death recep-
tor-mediated non-apoptotic signaling path-
ways in chronic infl ammatory disorders and 
carcinogenesis. 

 In this chapter, apoptotic signaling pathways 
induced by death receptors are discussed. 
Moreover, recent evidences pointing to the non- 
apoptotic signals transmitted by the same recep-
tors are brought up, which may imply their 
tremendous impact on tumor progression and the 
design of therapeutic tools.  

9.2     TNF Receptor Family 

 Death receptors TNFR1, Fas, DR3, DR4, DR5, 
and DR6 belong to the tumor necrosis factor 
receptor (TNF-R) superfamily. These type I 
transmembrane proteins share common fea-
tures, such as extracellular amino-terminal 
cysteine- rich domains (CRDs) [ 19 ,  20 ], which 
contribute to ligand specifi city [ 21 ], and pre-
association of the receptor at the plasma mem-
brane [ 22 – 24 ] and a conserved 80 amino acid 
sequence located in their cytoplasmic tail called 
death domain (DD), which is necessary for 
DISC formation and initiation of the apoptotic 
signal [ 25 ,  26 ]. 

9.2.1     TNFR1 Signaling Pathways 

 TNF-α exerts its effects by binding to two recep-
tors, TNFR1 and TNFR2 [ 20 ]. Recently, pro-
granulin was identifi ed as a ligand of TNFR 
with a higher affi nity than TNF-α. Progranulin 
antagonizes TNF-α signaling and plays a criti-
cal role in the pathogenesis of infl ammatory 
arthritis in mice [ 27 ]. TNFR1, a 55 kDa protein 
expressed in almost all cell types, presents a DD 
in its intracellular region; whereas TNFR2, a 
75 kDa protein, is mainly detected in oligoden-
drocytes, astrocytes, T cells, myocytes, thymo-
cytes, endothelial cells, and human mesenchymal 
stem cells [ 28 ]. Uncertainty remains on the 
TNFR2 signaling pathway, which has been pre-
viously reviewed [ 28 ]. The CRD1 of CD95, 
TNFR1, and TNFR2 is involved in homotypic 
interactions, leading to pre-association of the 
receptor as a homotrimer in the absence of 
ligand [ 23 ,  24 ,  29 ]. This domain has been desig-
nated as the pre-ligand binding assembly 
domain (PLAD) [ 29 ]. Receptors of the TNFR 
superfamily do not possess any enzymatic activ-
ity on their own and rely on the recruitment of 
adaptor proteins for signaling. Among these 
adaptor proteins, TRADD or FADD are instru-
mental in the implementation of cell death pro-
cesses [ 7 – 10 ]. 

 TNF is synthesized as a 26 kDa transmem-
brane type II protein (m-TNF) of 233 amino 
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acids [ 30 ] which can be cleaved by the 
 metalloprotease TACE [ 31 ,  32 ] to release the 
17 kDa soluble form of the cytokine (cl-TNF). 
In  contrast to cl-TNF, which only activates 
TNFR1, m-TNF can bind and activate both 
TNFR1 and TNFR2 [ 33 ]. 

 Activation of TNFR1 leads to the induction 
of cellular processes ranging from cell death 
(apoptosis or necroptosis) to cell proliferation, 
migration, and differentiation; the implementa-
tion of such different cellular responses refl ects 
the formation of different molecular complexes 
after receptor activation [ 28 ]. Binding of TNF to 
TNFR1 causes the formation of two consecutive 
complexes. While the plasma membrane com-
plex (complex I) elicits a non- apoptotic signal-
ing pathway, a second, internalized, complex 
(complex II or DISC) triggers cell death [ 2 ]. In 
the presence of TNF, the adaptor protein 
TRADD interacts with TNFR1 and recruits 
other proteins involved in the signaling of the 
receptor, such as TRAF2, cIAP1, cIAP2, and 
RIP1, to form complex I. At the plasma mem-
brane, this complex activates the NF-κB signal-
ing pathway, which in turn promotes the 
transcription of antiapoptotic genes such as 
cIAP-1, cIAP-2, and c-FLIP [ 34 ]. The linear 
ubiquitin chain assembly complex (LUBAC) is 
also recruited to complex I via cIAP-generated 
ubiquitin chains [ 35 ]. HOIL-1, HOIP, and 
sharpin constitute the LUBAC complex. HOIL-1 
and HOIP add a linear ubiquitin chain by cata-
lyzing the head-to-tail ligation of ubiquitin [ 36 ] 
to RIP1 and NEMO (IKKγ) in complex I [ 37 ], 
thereby activating NF-κB. 

 TNF-induced caspase activation is mediated 
by a second, intracellular complex II, which is 
formed when complex I dissociates from the 
receptor, along with FADD and caspase-8 
recruitment [ 2 ]. NF-κB activation leads to 
c-FLIP overexpression, preventing formation 
of complex II. Contrariwise, when NF-κB acti-
vation is blocked, c-FLIP, whose protein half-
life is short [ 38 ], is absent, and cells experience 
death [ 2 ]. RIP1 is deubiquitinated by enzymes 
such as Cezanne [ 39 ] and CYLD [ 40 ] and the 
complex composed of TRADD and RIP1 
moves to the cytosol to form complex II. FADD 

is recruited to TRADD by DD-DD interaction 
and binds caspase-8 [ 2 ]. Noteworthy, when 
caspase-8 activity is inhibited or its expression 
is extinguished, DISC is unable to trigger the 
apoptotic signaling pathway, but TNFR1 or 
CD95 stimulation leads to the activation of 
another cell death signal, namely, necroptosis 
[ 41 ,  42 ]. To prevent the induction of the 
necroptotic signal, caspase-8 cleaves and inac-
tivates RIP1 and RIP3 [ 43 ]. The fi ne-tuned 
control of necroptosis by members of the apop-
totic signaling pathway in the organism has 
been elegantly confi rmed by experiments 
showing that the embryonic lethality of mice 
harboring the single KO of caspase-8 or FADD 
is rescued by an additional KO of the RIP3 
gene [ 44 – 46 ].  

9.2.2     TNF/TNFR: A Gold Mine 
for Therapeutic Tools 

 Many studies on TNF demonstrated its pivotal 
role in fueling infl ammation, a multistep process 
that promotes autoimmunity (e.g., rheumatoid 
arthritis, ankylosing spondylitis, Crohn’s disease, 
psoriasis, and refractory asthma) and cancer. 
Many TNF inhibitors, such as neutralizing mono-
clonal antibodies (mAbs) (e.g., infl iximab, 
 adalimumab, and golimumab), have been devel-
oped to treat these chronic infl ammatory disor-
ders, demonstrating that altering ligand/receptor 
interactions with neutralizing mAbs is an invalu-
able opportunity to treat certain chronic infl am-
matory disorders. Other TNF-α antagonists, such 
as etanercept, a TNFR2-immunoglobulin Fc 
fusion protein, can improve the clinical course of 
rheumatoid arthritis [ 47 ]. 

 While fi ndings accumulate to decipher the 
molecular mechanisms involved in the induc-
tion of apoptotic and non-apoptotic signaling 
pathways by TNFR1 and to elucidate how the 
receptor can switch from one signal to the other, 
the mechanistic links involved in the implemen-
tation of non-apoptotic signaling pathways by 
CD95 remain elusive. However, recent fi ndings 
have revealed its proinfl ammatory effects 
[ 48 – 54 ].   
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9.3     CD95: A Death Receptor? 

 In 1989, identifi cation of the mAb APO-1 by 
Peter Krammer et al. revealed the existence of a 
52 kDa protein whose aggregation was able to 
transmit an apoptotic signal in cancer cells [ 55 ]. 
This receptor was identifi ed in 1991 by Nagata 
and colleagues and called Fas (CD95 or APO-1) 
[ 12 ]. Its ligand, FasL, was cloned in 1993 by the 
same group and was found to be mainly 
expressed at the surface of activated T lympho-
cytes [ 56 ] and natural killer (NK) cells [ 57 ]; 
however, its expression was also detected in dif-
ferent tissues in which the presence of acute or 
chronic infl ammation is undesirable including 
the eyes [ 58 ] and testes [ 59 ]. In addition, two 
mouse models, in which either the level of CD95 
expression was downregulated [due to an inser-
tion of a retrotransposon in intron 2 of the recep-
tor gene, these mice are called  lymphoproliferation  
(Lpr) [ 60 – 62 ]] or the CD95L affi nity for CD95 
was reduced [due to the germ line mutation 
F273L in CD95L, called  generalized lymphop-
roliferative disease  ( gld ), which decreases 
CD95L binding to CD95 [ 63 ,  64 ]], have pro-
vided some insight into the pivotal role played 
by this interaction in immunosurveillance and 
immune tolerance [ 65 ]. 

9.3.1     Structure/Function 

 The CD95 gene ( APT - 1 ) consists of nine exons, 
with exon 6 encoding the transmembrane 
domain [ 66 ] (Fig.  9.1 ). CD95 can be resolved 
under denaturing conditions between 40 and 

50 kDa by SDS-PAGE. The receptor is a type I 
transmembrane protein harboring three CRDs. 
Similar to the TNF receptor [ 29 ], CD95 is pre-
associated at the plasma membrane as a homotri-
mer, and this quaternary structure is mandatory 
for transmission of the apoptotic signals in the 
presence of CD95L [ 23 ,  24 ]. Homotrimerization 
of CD95 occurs mainly through homotypic inter-
actions of the CD95-CRD1 [ 22 – 24 ]. Binding of 
CD95L or agonistic anti-CD95 mAbs to CD95 
alters both the conformation and the extent to 
which the receptor is multimerized at the plasma 
membrane. The intracellular region of CD95 
encompasses an 80 amino acid stretch designated 
as the DD (Fig.  9.1 ), which consists of six anti-
parallel α-helices [ 67 ]. Upon addition of CD95L, 
CD95 undergoes conformational modifi cation 
of its DD, which induces a shift of helix 6 and 
fusion with helix 5, promoting both oligomer-
ization of the receptor and recruitment of the 
adaptor protein FADD [ 68 ]. A consequence of 
the opening of the globular structure of CD95 
is that the receptor becomes connected through 
this bridge, which increases the magnitude of 
its homo- aggregation. This long helix allows 
the stabilization of the complex by recruiting 
FADD. Overall, the CD95-DD:FADD-DD crys-
tal structure provides some insights into the for-
mation of the large CD95 clusters observed using 
imaging or biochemical methods in cells stimu-
lated with CD95L. In  addition, it also confi rms 
that alteration in the CD95 conformation plays 
an instrumental role during signal induction [ 68 ] 
However, this elongated C-terminal α-helix favor-
ing the  cis -dimerization of CD95-DD was chal-
lenged by Driscoll et al. who did not observe the 
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  Fig. 9.1    CD95: mRNA to protein       
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fusion of the last two helices at a more neutral pH 
(pH 6.2),  compared to the acidic condition (pH 
4) used in the  initial study to resolve the CD95- 
DD:FADD-DD structure [ 68 ]. Consequently, at 
pH 6.2, association of CD95 with FADD pre-
dominantly consisted of a 5:5 complex, which 
occurred via a polymerization mechanism 
involving three types of asymmetric interactions 
but without major alteration of the DD globular 
structure [ 69 ,  70 ]. It is likely that the low pH 
condition used in the study performed by Scott 
et al. altered CD95 conformation and resulted in 
the formation of nonphysiological CD95:FADD 
oligomers [ 68 ]. Nonetheless, it cannot be 
excluded that a local decrease in the intracellular 
pH affects the initial steps of the CD95 signaling 
pathway  in vivo , through promoting the opening 
of the CD95-DD and  eventually  contributing to 

the formation of a complex eliciting a sequence 
of events different from the one occurring at 
physiologic pH.

   Once docked on CD95-DD, FADD self- 
associates [ 71 ] and binds procaspases-8 and 
procaspases- 10, which are auto-processed and 
released in the cytosol as active caspases, 
which cleave many substrates leading to the 
execution of the apoptotic program and cell 
death. The complex CD95/FADD/caspase-8/
caspase-10 is called DISC (Fig.  9.2 ) [ 10 ]. Due 
to the importance of DISC formation in the fate 
of cells, it is not surprising that numerous cel-
lular and viral proteins were reported to ham-
per the formation of this structure, such as 
FLIP [ 72 ,  73 ] and PED/PEA-15 [ 74 ], which 
interfere with the recruitment of caspase-8/cas-
pase-10 (Fig.  9.2 ).

Apoptotic signaling pathway Type I

Immune cell

CD95

tBid Bid Caspase-8

Cytochrome c

Caspase-3/7

Smac

Mitochondrion

Procaspase-8

Caspase-8

FLIP/PEA-15

FADD

DD

Apaf-1
Pro-caspase 9

Caspase 9

Caspase-3/7

FLIP/PEA-15

APOPTOSOME

mCD95L
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Immune cell

Type II

Apoptosis

DNA fragmentation

Nucleus
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c-IAP1, c-IAP2
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  Fig. 9.2    Type I/II cells. Binding of transmembrane 
CD95L to CD95 leads to DISC formation. DISC consists 
of FADD and procaspase-8. C-FLIP and PEA-15 bind to 
FADD and prevent caspase-8 recruitment. At the DISC 
level, aggregation of procaspase-8 promotes its auto-
cleavage and activation. Cleaved caspase-8 is then 
released in the cytosol where it promotes the cascade of 

caspase activation leading to apoptosis. Type I cells are 
characterized by an effi cient DISC formation, which 
releases suffi cient caspase-8 to directly activate caspase-3. 
By contrast, type II cells present a weak DISC formation, 
and the low amount of released caspase-8 activates the 
mitochondrion-dependent apoptotic pathway to amplify 
death signal       
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9.3.2        Type I/II Signaling Pathways 

 Following the discovery of CD95 and the fi rst 
steps of its signaling pathway, Peter and col-
leagues described that cells can be divided in 
two groups with regard to the kinetics through 
which they respond to CD95-mediated apoptotic 
signals, the magnitude of DISC formation and 
the role played by the mitochondrion in this 
pathway [ 75 ]. DISC formation occurs rapidly 
and effi ciently in type I cells releasing a large 
amount of activated caspase-8 in the cytosol, 
while type II cells have diffi culty forming this 
complex, and the amount of active caspase-8 is 
insuffi cient to directly activate the effector cas-
pase-3 and  caspase- 7 [ 75 ]. Nonetheless, type II 
cells experience cell death upon CD95 engage-
ment and are even more sensitive to the CD95-
mediated apoptotic signal compared to type I 
cells [ 75 – 77 ]. This discrepancy can be partly 
explained by the fact that the low amount of acti-
vated caspase-8 in type II cells is suffi cient to 
cleave BID, a BH3-only protein, which consti-
tutes the molecular link between caspase-8 acti-
vation and the apoptotic activity of mitochondria. 
Indeed, after cleavage by caspase-8, truncated 
BID (tBID) translocates to mitochondria, where 
it triggers the release of proapoptotic factors 
(Fig.  9.2 ) [ 78 ,  79 ]. Although CD95 stimulation 
activates the mitochondrion- dependent apop-
totic signal in type I and type II cells, it seems 
that only type II cells are addicted to this signal 
as they display a higher amount of the caspase-3 
inhibitor XIAP compared to type I cells [ 80 ]. 
Among the inhibitor of apoptosis protein (IAP) 
family, XIAP, c-IAP1, and c-IAP2 inhibit cas-
pase-3, caspase-7 [ 81 ,  82 ], and procaspase- 9 
[ 83 ] activity by direct binding, thereby prevent-
ing access to substrates. Furthermore, XIAP can 
function as an E3 ligase whose activity is 
involved in the ubiquitination of active caspase-
 3 and its subsequent degradation through the 
proteasome [ 84 ]. To detach XIAP from caspase-
 3 and restore the apoptotic signal, cells require 
the release of SMAC/DIABLO (second mito-
chondria-derived activator of caspase/direct 
IAP-binding protein with low PI) by the mito-
chondrion [ 85 ,  86 ], explaining why type II cells 

are more addicted to this organelle compared to 
type I cells (Fig.  9.2 ). 

 To summarize, DISC formation and IAP 
amount are two cellular markers allowing a clear 
discrimination between type I and type II cells. 
Even though IAP overexpression can account for 
the mitochondrion dependency observed in type 
II cells, it remains unclear why DISC formation 
is hampered in type II cells and/or enhanced in 
their type I counterparts. Recently, high activity 
of the lipid kinase phosphoinositide 3-kinase 
(PI3K) or downregulation of its neutralizing 
phosphatase, phosphatase and tensin homologue 
on chromosome 10 (PTEN), was found in type II 
cells, while this signal is blocked in type I cell 
lines [ 87 ,  88 ]. The PI3K signaling pathway was 
reported to prevent the aggregation of CD95 [ 89 ], 
probably by retaining the receptor outside of 
lipid rafts [ 87 ,  90 ]. PEA-15, also known as PED, 
is a protein containing a death effector domain 
(DED) that has been shown to inhibit the CD95 
and TNFR1 apoptotic signals (Fig.  9.2 ) [ 74 ]. 
Activation of PI3K and its downstream effector, 
serine-threonine kinase Akt, leads to phosphory-
lation of PEA-15 at serine 116 [ 87 ,  90 ]; this post-
translational modifi cation promotes its interaction 
with FADD, ultimately inhibiting DISC forma-
tion [ 91 ,  92 ]. 

 Notably, the existence of type I and type II 
cells is not only an  in vitro  observation, but has 
been identifi ed physiologically in human body. 
CD95-mediated apoptotic signal cannot be 
altered in thymocytes or activated T cells express-
ing a Bcl-2 transgene, conferring to their type I 
nature [ 93 ], whereas hepatocytes expressing the 
same transgene resist CD95-induced apoptosis 
and thus behave as type II cells [ 94 ,  95 ].  

9.3.3     What Can We Learn 
from CD95 Mutations? 

 Germinal mutations in  APT - 1  have been reported 
in patients developing a syndrome termed 
 autoimmune lymphoproliferative syndrome 
type Ia (ALPS, also called Canale-Smith syn-
drome) [ 96 – 98 ]. ALPS patients show chronic 
lymphadenopathy and splenomegaly, expanded 
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populations of double-negative α/β Τ lympho-
cytes (CD3 + CD4 − CD8 − ), and often develop auto-
immunity [ 96 ,  97 ,  99 ,  100 ]. In agreement with 
the notion that CD95 behaves as a tumor suppres-
sor, ALPS patients display an increased risk of 
Hodgkin and non-Hodgkin lymphoma [ 101 ]. 
Predominance of post-germinal center (GC) lym-
phomas in patients exhibiting either germ line or 
somatic CD95 mutations can be explained by the 
fact that, inside germinal centers of the secondary 
lymphoid follicles, the CD95 signal plays a piv-
otal role in the deletion of self-reactive maturat-
ing B lymphocytes [ 102 ], in addition to the fact 
that  APT1  belongs to a set of rare genes (i.e., 
PIM1, c-myc, PAX5, RhoH/TTF, and Bcl-6) sub-
ject to somatic hypermutation [ 103 ,  104 ], which 
may affect biological function. In addition to 
post-GC lymphomas, signifi cant amounts of 
mutations in the CD95 gene were found in tumors 

of various histological origins (reviewed in [ 54 ]). 
Extensive analysis of CD95 mutations and their 
distribution in  APT - 1  reveals that, with some 
exceptions, most are gathered in exons 8 and 9 
encoding the CD95 intracellular region (Fig.  9.3 ) 
[ 105 ]. Remarkably, most of these mutations are 
heterozygous, mainly localized in CD95-DD, 
and lead to inhibition of the CD95-mediated 
apoptotic signal. Indeed, in agreement with the 
notion that CD95 is expressed at the plasma 
membrane as a pre-associated homotrimer [ 23 , 
 24 ], formation of heterocomplexes  containing 
wild-type and mutated CD95 prevents FADD 
recruitment and abrogates the ignition of the 
apoptotic signal in a dominant manner.

   Extensive analysis and positioning of various 
CD95 mutations described in the literature seem 
to highlight mutation “hot spots” in the CD95 
sequence (Fig.  9.3 ). Among these hot spots, 
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  Fig. 9.3    Distribution of somatic and germinal mutations within CD95 protein sequence       
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 arginine 234, aspartic acid 244, and valine 251 
account for a signifi cant amount of the docu-
mented CD95 mutations. Indeed, among the 189 
mutations annotated in the 335 amino acids of 
CD95, 30 (~16 %) are localized on these three 
amino acids (Fig.  9.3 ). Strikingly, the pivotal role 
played by these amino acids in stabilization or 
formation of intra- and inter-bridges between 
CD95 and FADD may explain these hot spots. 
For instance, both R234 and D244 contribute to 
the homotypic aggregation of the receptor and 
FADD recruitment [ 67 ]. Nevertheless, the 
 observation of death domain hot spots is in 
 contradiction with the study of Scott and col-
leagues demonstrating that the region of the 
CD95-DD interacting with the FADD-DD 
extends over a disperse surface through weak 
binding affi nity [ 68 ]. 

 Most ALPS type Ia patients affected by 
 malignancies do not undergo loss of heterozy-
gosity (LOH), which formed the hypothesize that 
preservation of a wild-type allele may contribute 
to carcinogenesis [ 106 ,  107 ]. In the same line, it 
was demonstrated that expression of a unique 
mutated CD95 allele blocks the induction of 
apoptotic signals, while it fails to prevent non- 
apoptotic signals such as NF-κB and MAPK 
[ 106 ,  107 ], whose induction promotes invasive-
ness in tumor cells [ 105 ,  108 ]. In addition, muta-
tions found in the intracellular CD95-DD exhibit 
a higher penetrance of ALPS phenotype features 
in mutation-bearing relatives compared to extra-
cellular mutations. These results suggest that 
unlike DD mutations, CD95 mutations localized 
outside the DD somehow prevent the apoptotic 
signal but may fail to promote non-apoptotic 
pathways, which may contribute to disease 
aggressiveness.  

9.3.4     Regulation of the Initial Steps 
of CD95-Mediated Signaling 

9.3.4.1     Lipid Rafts 
 In addition to CD95 downregulation or expres-
sion of the mutated allele of the receptor, the 
plasma membrane distribution of CD95 repre-
sents an additional pathway for tumor cells to 

develop resistance to CD95L-expressing immune 
cells. Indeed, the plasma membrane is a hetero-
geneous lipid bilayer comprising compacted or 
liquid-ordered domains, called microdomains, 
lipid rafts, or detergent-resistant microdomains 
(DRMs). These domains are described as fl oat-
ing in a more fl uid or liquid-disordered 2-D lipid 
bilayer and are enriched in ceramides [ 109 ]. It 
has been elegantly shown that while CD95 is 
mostly excluded from lipid rafts in activated T 
lymphocytes, TCR-dependent reactivation of 
these cells leads to rapid distribution of the death 
receptor into lipid rafts [ 110 ]. This CD95 com-
partmentalization contributes to reducing the 
apoptotic threshold leading to the clonotypic 
elimination of activated T lymphocytes through 
activation of the CD95-mediated apoptotic sig-
nal [ 110 ]. Similarly, the reorganization of CD95 
into DRMs can occur independent from ligand 
upon addition of certain chemotherapeutic drugs 
(e.g., rituximab [ 111 ], resveratrol [ 112 ,  113 ], 
edelfosine [ 87 ,  114 ,  115 ], aplidin [ 116 ], perifo-
sine [ 115 ], cisplatin [ 117 ]). The molecular cas-
cades that underlie this process remain elusive. 
Nevertheless, a growing body of evidence leads 
us to postulate that alteration of intracellular sig-
naling pathway(s), such as the aforementioned 
PI3K signal [ 87 ,  90 ], may change biophysical 
properties of the plasma membrane, such as 
membrane fl uidity, which in turn may facilitate 
CD95 clustering into large lipid raft-enriched 
platforms, favoring DISC formation and induc-
tion of the apoptotic program [ 118 ].  

9.3.4.2     Posttranslational Modifi cations 
 Accumulation of CD95 mutations is not the only 
mechanism by which malignant cells inhibit the 
extrinsic signaling pathway. Posttranslational 
modifi cations in the intracellular tail of CD95, 
such as reversible oxidation or covalent attach-
ment of a palmitic acid, were reported to alter the 
plasma membrane distribution of CD95 and 
thereby its subsequent signaling pathway. For 
instance, S-glutathionylation of mouse CD95 at 
cysteine 294 promotes clustering of CD95 and its 
distribution into lipid rafts [ 119 ]. This amino acid 
is conserved in the human CD95 sequence and 
corresponds to cysteine 304 (or C288 when 
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 subtraction of the 16 amino acid signal peptide is 
taken into consideration [ 12 ,  120 ]). Interestingly, 
Janssen-Heininger and colleagues emphasize 
that death receptor glutathionylation occurs 
downstream of caspase-8 and caspase-3 activa-
tion whose catalytic activity damages the thiol 
transferase glutaredoxin 1 (Grx1), an enzyme 
implicated in the denitrosylation of proteins 
[ 119 ]. The consequence of Grx1 inactivation is 
the accumulation of glutathionylated CD95, 
which clusters into lipid rafts, sensitizing cells to 
the CD95-mediated apoptotic signal. Based on 
these fi ndings, caspase-8 activation occurs prior 
to aggregation of CD95 and redistribution into 
lipid rafts, both of which are requisite to form the 
DISC and subsequently activate larger amounts 
of caspase-8. In agreement with these observa-
tions, activation of caspase-8 was reported to 
occur in a two-step process. First, an immediate 
and small amount of activated caspase-8 (<1 %) 
is generated when CD95L interacts with CD95 
that orchestrates acid sphingomyelinase (ASM) 
activation, ceramide production, and CD95 clus-
tering, which in turn promote DISC formation 
and the outburst of caspase-8 processing essen-
tial to mount the apoptotic signal [ 121 ]. 

 S-Glutathionylation consists in a bond 
between a reactive Cys-thiol and reduced gluta-
thione (GSH), a tripeptide consisting of glycine, 
cysteine, and glutamate; its attachment to the 
protein will alter its structure and function in a 
manner similar to the addition of a phosphate 
[ 122 ]. S-Glutathionylation is not the only post-
translational modifi cation of CD95 on a cysteine. 
S-nitrosylation of cysteine 199 (corresponding to 
C183 after subtraction of signal peptide sequence) 
and 304 (C288) in colon and breast tumor cells 
also promotes the redistribution of CD95 into 
DRMs, the formation of the DISC, and the trans-
mission of the apoptotic signal [ 123 ]. 

 Two reports have brought into light that 
 covalent coupling of a 16-carbon fatty acid 
 (palmitic acid) to cysteine 199 (C183) elicits the 
redistribution of CD95 into DRMs, the formation 
of SDS- stable CD95 microaggregates resistant to 
denaturing and reducing treatments, and internal-
ization of the receptor [ 124 ,  125 ]. Although their 
order remains to be fi ne-tuned, these molecular 

steps play a critical role in the implementation 
of apoptotic signals. 

 Of note, similar to S-nitrosylation, both the 
aforementioned S-glutathionylation at C304 
(C288) and palmitoylation at C199 (C183) pro-
mote the partition of CD95 into lipid rafts and 
enhance the subsequent apoptotic signal. Further 
investigation is required to address whether these 
posttranslational modifi cations are redundant and 
occur simultaneously in dying cells or are elic-
ited in a cell-specifi c and/or in a microenvironment- 
specifi c manner. Understanding the molecular 
mechanisms controlling these posttranslational 
modifi cations would be of great interest in order 
to identify the mechanism by which tumor cells 
block them, leading to their resistance to the 
extrinsic signaling pathway.  

9.3.4.3     CD95 Internalization 
 Using a powerful magnetic method to isolate 
receptor-containing endocytic vesicles, it has 
been shown that CD95 promptly associates with 
endosomal and lysosomal markers when incu-
bated with an agonistic anti-CD95 mAb [ 126 ]. In 
addition, expression of a CD95 mutant in which 
the DD-located tyrosine 291 (Y275) is changed 
to phenylalanine does not seem to alter the capac-
ity to bind FADD but compromises CD95L- 
mediated CD95 internalization occurring through 
an AP-2/clathrin-driven endocytic pathway 
[ 126 ]. More strikingly, expression of the 
internalization- defective CD95 mutant Y291F 
abrogates the transmission of apoptotic signals, 
but fails to alter the non-apoptotic signaling path-
ways (i.e., NFkB and ERK), and even promotes 
them (Fig.  9.3 ). These fi ndings provide insight 
into the presence of a region in the DD, interact-
ing with AP2 and promoting a clathrin-dependent 
endocytic pathway in a FADD-independent man-
ner. Regarding the role of palmitoylation in 
receptor internalization, the interplay between 
lipid alteration and the AP2/clathrin-driven inter-
nalization of CD95 remains to be elucidated.  

9.3.4.4     Ca 2+  Response 
 It has been recently demonstrated that CD95 
engagement evokes a rapid and transient Ca 2+  
signaling, which stimulates the recruitment of 
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protein kinase C-β2 (PKC-β2) from the cytosol to 
the DISC [ 127 ]. This kinase transiently brakes 
DISC formation, providing a checkpoint before 
the irreversible commitment to cell death [ 128 ]. 
These fi ndings raised the following questions: 
what are the Ca 2+ -dependent molecular mecha-
nisms transiently inhibiting DISC formation, and 
do tumor cells use this signal to escape the 
immune response and/or resist chemotherapy?   

9.3.5     Programmed Necrosis Also 
Known as Necroptosis 

 In 1998, inhibition of caspase activity was shown 
to sensitize fi broblastic L929 cell line to TNF- 
mediated necrotic cell death [ 42 ]. With respect to 
CD95 signal, Tschopp et al. showed that FADD 
and RIP1 participate in the implementation of a 
non-apoptotic signaling pathway, which leads to 
a necrotic morphology without chromatin con-
densation and with loss of plasma membrane 
integrity [ 41 ]. Of note, BID cleavage was not 
observed in this necrotic signal. While FADD 
plays a crucial role in both apoptotic and necrotic 
pathways, RIP1 recruitment to CD95 occurs 
independently of this adaptor protein. Indeed, 
yeast two-hybrid experiments showed that RIP1 
can bind directly to the CD95 DD, while this 
interaction is lost when a bait corresponding to 
mutated CD95-DD (replacement of Val 238 to 
Asn) is used [ 129 ]. In addition, RIP3 (RIPK3, a 
member of the RIP kinase family) is an indis-
pensable factor for the induction of the necrotic 
signaling pathway [ 78 – 80 ]. A growing body of 
evidence supports the existence of necroptosis 
(programmed necrosis). In addition, identifi ca-
tion of necrostatin, a chemical inhibitor of 
necroptosis [ 130 ], which specifi cally inhibits 
RIP1 kinase activity [ 131 ], has accelerated the 
pace of discovery in this fi eld of cell death. 
Interplays exist between apoptosis and necropto-
sis; for instance, caspase-8, a potent inhibitor of 
necroptosis for both CD95 and TNFR1 [ 132 ], 
plays a critical role in necroptosis by its ability to 
process and inactivate RIP1 and RIP3 [ 133 ,  134 ]. 
At least for TNF signaling, the necrotic signal 
relies on the activity of CYLD, a deubiquitinat-

ing enzyme that is also cleaved and inactivated 
by caspase-8 [ 135 ]. 

 Overall, these fi ndings suggest that the apop-
totic machinery controls the necrotic one. This 
concept has been recently established  in vivo  by 
double-KO experiments [ 44 – 46 ,  136 ]. The KO of 
FADD or caspase-8 is deleterious in mice mainly 
by the fact that these two apoptotic factors are 
benefi cial in inhibiting a RIP1-/RIP3-dependent 
necrotic signal; thus, their loss unleashes the 
necroptotic program and leads to embryonic 
lethality. Yet, most studies on necroptosis have 
focused on the TNF signaling pathway, whereas 
the mechanism by which CD95 can elicit this cell 
death pathway, and how the switch in this recep-
tor occurs between non-apoptotic, apoptotic, and 
necroptotic signals remains unclear. Importantly, 
the impact of each cell death on antigen presenta-
tion, and on the effi ciency of immune response 
after elimination of infected or transformed cells, 
remains unclear.  

9.3.6     CD95L, an  Infl ammatory/
Oncogenic Cytokine? 

9.3.6.1     A Ligand to Create Immune 
Privileges 

 The transmembrane CD95L (CD178/FasL) is 
present at the surface of activated lymphocytes 
[ 64 ] and NK cells [ 137 ] where it orchestrates the 
elimination of transformed and infected cells. In 
addition, CD95L is expressed on the surface of 
neurons [ 138 ], corneal epithelia and endothelia 
[ 58 ,  139 ], and sertoli cells [ 59 ] to prevent the 
infi ltration of immune cells and thus to prohibit 
the spread of infl ammation in these sensitive 
organs (i.e., brain, eyes, and testis, respectively), 
commonly called “immune-privileged” sites. 
The description of physiological immune privi-
lege was followed by tumor-mediated immune 
privilege, since two groups reported that the 
 ectopic expression of CD95L by malignant cells 
participated in the elimination of infi ltrating T 
lymphocytes and thus could play a role in the 
establishment of a tumor site whose access was 
denied to immune cells [ 140 ,  141 ]. However, 
these observations are controversial since 
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 ectopic expression of CD95L in allogenic 
 transplant of β-islets [ 142 ,  143 ] and in tumor cell 
lines [ 144 ] led to a more rapid elimination of 
these cells than control cells, due to increased 
infi ltration of neutrophils and macrophages 
endowed with antitumor activity.  

9.3.6.2     At Least Two Different Ligands 
and Two Different Signals 

 Among the weapons at the disposal of immune 
cells, transmembrane CD95L contributes to the 
elimination of pre-tumor cells. Therefore, pre- 
tumor cells that escape the immunosurveillance 
will be shaped to develop resistance to CD95, a 
process termed immunoediting [ 145 ]. In other 
words, imprinting of the immune system on pre- 
tumor cells will select malignant cells with 
increased resistance towards the CD95L-induced 
signal. As previously mentioned, these altera-
tions of the CD95 signal not only block the 
CD95-mediated apoptotic signal but also pro-
mote the transmission of non-apoptotic signals 
by CD95L, which may play a critical role in car-
cinogenesis [ 106 – 108 ,  146 ]. In agreement with 
this hypothesis, a complete loss of CD95 expres-
sion is rarely observed in malignant cells [ 147 ]. 

 Accumulating evidence indicates that the 
apoptotic ligand CD95L behaves as a chemoat-
tractant for neutrophils, macrophages [ 50 ,  143 , 
 144 ], T lymphocytes [ 53 ], and malignant cells in 
which the CD95-mediated apoptotic signal is 
nonproductive [ 108 ,  148 ]. Nonetheless, the bio-
logical role of CD95L has to be clarifi ed due to 
the fact that pathophysiologically the ligand is 
present in at least two forms with different stoi-
chiometries. Indeed, CD95L is a transmembrane 
cytokine whose ectodomain can be cleaved by 
metalloproteases such as MMP3 [ 149 ], MMP7 
[ 150 ], MMP9 [ 151 ], and ADAM-10 (A disinteg-
rin and metalloproteinase 10) [ 152 ,  153 ] and 
released as a soluble ligand in the bloodstream. 
Based on the data demonstrating that a hexameric 
CD95L represents the minimal level of self- 
association required to signal apoptosis [ 154 ] and 
that cleavage by metalloproteases releases an 
homotrimeric ligand [ 154 ,  155 ], this soluble 
ligand has long been considered as an inert ligand 
competing with its membrane-bound counterpart 

for CD95 binding, thus acting as an antagonist of 
the death signal [ 155 ,  156 ]. It has been recently 
demonstrated that this metalloprotease-cleaved 
CD95L (cl-CD95L) actively participates in the 
aggravation of infl ammation and autoimmunity 
in patients affected by systemic lupus erythema-
tosus (SLE) by inducing the non-apoptotic 
NF-κB and PI3K [ 51 ,  53 ] signaling pathways 
(Fig.  9.4 ). Unlike transmembrane CD95L, 
 induction of the PI3K signaling pathway by its 
metalloprotease- cleaved counterpart occurs 
through the formation of a complex devoid of 
FADD and caspase-8 which recruits the src 
kinase c-yes instead [ 53 ,  148 ]; this unconven-
tional receptosome was designated motility- 
inducing signaling complex (MISC) [ 53 ,  157 ] 
(Fig.  9.4 ). Even though experiments by the 
authors did not detect any trace of caspase-8 in 
the MISC, this enzyme has been shown to partici-
pate in cell migration. The protease activity of 
caspase-8 can be abolished by its phosphoryla-
tion at tyrosine 380 by src kinase [ 158 ]. This 
posttranslational modifi cation was observed in 
cells stimulated with EGF and in colon cancer 
cells exhibiting constitutive activation of src; 
from a molecular standpoint, this modifi cation 
does not alter caspase homodimerization or 
recruitment in DISC [ 158 ]. Moreover, the EGFR- 
driven phosphorylation of caspase-8 at Y380 
turns out to be a potent inducer of the PI3K sig-
naling pathway by recruiting the PI3K adaptor 
p85 alpha subunit [ 159 ]. Ultimately, caspase-8 
phosphorylation triggers cell migration. 
Nonetheless, it is noteworthy that CD95-induced 
migration and invasion do not appear to require 
an intact DD (reviewed in [ 160 ]), suggesting that 
either the caspase-8-dependent mode of cell 
migration occurs as an alternative signal for death 
receptors or that it only participates in non-death 
receptor-induced cell motility. It would be inter-
esting to address this question in the future. To 
date, it can only be surmise that phosphorylation 
of caspase-8 at Y380 upon EGFR stimulation 
may prime certain cancer cells to become unre-
sponsive to the apoptotic signal triggered by 
cytotoxic CD95L and meanwhile promote cell 
migration, an essential event in the course of 
 cancer cell metastasis (Fig.  9.4 ).
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   It is noteworthy that in a similar manner, a 
decrease in the plasma membrane level of CD95 or 
expression of a mutated CD95 allele, as observed 
in ALPS patients and malignant cells, inhibits 
the implementation of the apoptotic signal but 
does not affect the transmission of non- apoptotic 
signals, such as NF-κB, MAPK, and PI3K [ 106 , 
 107 ,  147 ], suggesting that these signals may stem 
from a different domain than CD95-DD or rely 
on different thresholds to be elicited. In summary, 
although the CD95/CD95L interaction can elimi-
nate malignant cells by implementation of the 
DISC or can promote carcinogenesis by sustain-
ing infl ammation and/or by inducing metastatic 
dissemination [ 50 ,  51 ,  53 ,  108 ,  147 ,  148 ,  161 ], 
the molecular mechanisms underlying the switch 
between these  different signaling pathways 
remain enigmatic. An  important question to be 
addressed is how the magnitude of CD95 aggre-
gation controls the formation of “death”-  vs . 
“motility”-ISCs. Addressing these questions will 
lead to the  development of new therapeutic agents 

with the ability to contain the spread of infl amma-
tion or impede carcinogenesis at least in patholo-
gies involving increased soluble CD95L such as 
cancers (e.g., pancreatic cancer [ 162 ], large gran-
ular lymphocytic leukemia, breast cancer [ 157 ], 
and NK cell lymphoma [ 163 ]) or autoimmune 
disorders (e.g., rheumatoid arthritis and osteoar-
thritis [ 164 ], graft-versus- host-disease (GVDH) 
[ 165 ,  166 ] or SLE [ 53 ,  167 ]). Altogether, these 
studies support the notion that the death function 
of CD95 may correspond to its “day job,” while 
the receptor may act as “a night killer” by fuel-
ing infl ammation in certain pathophysiological 
contexts. 

 Strikingly, while the soluble form of CD95L 
generated by MMP7 (cleavage site inside the 
 113 ELR 115  sequence, Fig.  9.5 ) induces apoptosis 
[ 150 ], its counterpart processed between serine 
126 and leucine 127 does not [ 51 ,  53 ,  155 ]. 
To explain this discrepancy, one may speculate 
that the different quaternary structures of the 
 naturally processed CD95L underlie the 
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 implementation of a “death”-  vs . “non-death”-
inducing signaling complexes and downstream 
signals. In agreement with this notion, soluble 
CD95L bathed in the bronchoalveolar lavage 
(BALs) of patients suffering from acute 
 respiratory distress syndrome (ARDS) undergoes 
 oxidation at methionines 224 and 225 (Fig.  9.5 ), 
which enhances the aggregation level of the solu-
ble ligand followed by its cytotoxic activity 
[ 168 ]. The same authors observed that the stalk 
region of CD95L, corresponding to amino acids 
 103–136 and encompassing the metalloprotease 
 cleavage sites (Fig.  9.5 ), participates in the multi-
merization of CD95L, which accounts for the 
damage of the lung epithelium in ARDS [ 168 ]. 
Of note, in ARDS BALs, additional oxidation 
occurs at methionine 121 (Fig.  9.5 ), which in 
turn prevents the processing of CD95L by 
MMP7, and explains why this cytotoxic ligand 
keeps its stalk region [ 168 ]. Nonetheless, preser-
vation of this region in soluble CD95L raises the 
question that whether an unidentifi ed MMP7-
independent cleavage site exists in the juxta-
membrane region of CD95L, near the plasma 
membrane, or the ligand detected in ARDS 
patients corresponds to the full-length CD95L 
embedded in exosomes [ 169 ,  170 ]. Indeed, this 
peculiar exosome-bound CD95L can be 
expressed by human prostate cancer cells (i.e., 
LNCaP), and evokes apoptosis in activated T 
lymphocytes [ 171 ].

   Overall, these fi ndings emphasize that it will 
be of great interest in the future to fi nely charac-
terize the quaternary structure of the naturally 
processed CD95L from the sera of patients 
affected by cancers or chronic/acute infl amma-
tory disorders, to better understand the molecular 
mechanisms implemented by this ligand and thus 
predict its subsequent biological functions.    

9.4    Concluding Remarks 

 Apoptosis is a fundamental process contributing 
to tissue homeostasis, immune response, and 
development. CD95, also called Fas, is a member 
of the tumor necrosis factor receptor (TNF-R) 
superfamily. Its ligand, CD95L, was initially 
detected at the plasma membrane of activated T 
lymphocytes and natural killer (NK) cells where 
it contributes to the elimination of transformed 
and infected cells. Given its implication in 
immune homeostasis and immune surveillance 
combined with the fact that various lineages of 
malignant cells exhibit loss-of-function muta-
tions, CD95 was initially classifi ed as a tumor 
suppressor gene. Nonetheless, in different patho-
physiological contexts, this receptor is able to 
transmit non-apoptotic signals and promote 
infl ammation and carcinogenesis. Although the 
different non-apoptotic signaling pathways 
(NF-κB, MAPK, and PI3K) triggered by CD95 
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are known, the initial molecular events leading to 
these signals, the mechanisms by which the 
receptor switches from an apoptotic function to 
an infl ammatory role, and, more importantly, the 
biological functions of these signals remain 
elusive.     
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10.1            Introduction 

 Major histocompatibility complex (MHC) is 
composed of a set of molecules that play a pivotal 
role in the immune response against different 
pathogens and tumors cells. These molecules 
were described in mice for the fi rst time by Gorer 
while performing transplantation studies with 
tumor cell lines injected in inbred strains of mice 
[ 1 ]. In the middle of the 1950s, Jean Dausset 
described the HLA system in humans which is 
equivalent to the mouse H-2 complex [ 2 ]. MHC 
class I (MHC-I) molecules comprise the classical 
(class Ia) HLA-A, HLA-B and HLA-C antigens 
in humans and H-2 K, H-2 D, and H-2 L in mice 
and the nonclassical (class Ib) -E, -F, and -G in 
humans and Qa and Tla antigens in mice [ 3 ]. 
Their structure is quite similar in human and 
mice, forming a trimolecular complex consisting 
of a 45 kDa highly polymorphic heavy chain, 
peptide antigen, and the nonpolymorphic 12 kDa 
β 2 -microglobulin (β2m) light chain [ 4 ]. HLA/H-2 
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class I molecules are expressed on the surface of 
nucleated cells [ 5 ]. It is estimated that there are 
up to 250,000 of each MHC-I molecule on the 
surface of a somatic cell [ 6 ]. 

 MHC-I molecules bind antigens in the form of 
peptides, generated from endogenous proteins, 
present on the cell surface to CD8 +  T cells. In 
tumor cells, MHC-I molecules present tumor- 
associated antigens (TAAs) to T cytotoxic lym-
phocytes (CTLs) activating cell proliferation, 
cytokine production, and target cell lysis. These 
TAAs are generated from degraded foreign 
endogenous proteins by the antigen presentation 
machinery (APM). This process is carried out by 
a large number of proteins and accessories mol-
ecules [ 7 – 9 ]. Correct functioning of these APM 
components gives rise to cells with normal surface 
expression of the MHC-I molecules [ 10 ,  11 ]. Any 
defect in these processes will lead to non- 
expression of MHC-I molecules on the cell sur-
face. These MHC-I-defi cient tumor cells might 
be recognized by natural killer (NK) cells [ 12 ]. 

 In this chapter, we will focus on analyzing the 
role of MHC-I antigens in cancer immunosurveil-
lance in murine tumor models without obviating 
the great contributions done in human tumor 
models; the authors’ laboratory is the reference 
to the fi ndings described.  

10.2     MHC-I Cell Surface 
Expression on Tumor Cells 
and Primary Tumor Growth 

 For over 30 years ago, our group of investigators 
is working on human and mouse preclinical 
tumor models in an attempt to defi ne the mecha-
nisms through which tumor cells evade immune 
system. We have found that tumor cells develop 
sophisticated molecular and biological mecha-
nisms which allow them to escape immunosur-
veillance. Among the mechanisms studied, MHC 
alteration is one of the most important and fre-
quent mechanisms, possibly playing a relevant 
role in the tumor-host scenario [ 13 – 15 ]. Any 
alteration affecting the surface expression of 
MHC-I molecules, as the expression and function 
of APM components, the expression of MHC-I 

heavy chains or β2m in tumor cells will have a 
profound effect on the recognition and killing of 
those tumor cells by T lymphocytes [ 16 ,  17 ]. In 
this context, a new phase has been proposed into 
the tumor evolution, called the  immunoblindness  
phase, which comes after the three phases of 
immunoedition process [ 18 ]. During this phase, 
CTLs lose control over tumor cells, since losing 
MHC-I surface expression makes them invisible. 

 Our research group has a long and well- 
established history identifying and defi ning the 
HLA class I altered phenotypes present in human 
tumors. In fact, the data accumulated indicate 
that alterations in HLA class I expression are 
commonly found in most human tumors [ 19 ,  20 ]. 
Seven different altered HLA class I phenotypes 
have been defi ned in a large variety of human 
tumors, and the molecular mechanisms that have 
been found to underlie these alterations in MHC-I 
expression are multiple [ 21 ]. These defects can 
occur at any step required for MHC synthesis, 
assembly, transport, or expression on cell surface. 
Only some of these defects can be recovered by 
cytokines or other agents, while others remain 
unrecovered. Thus, MHC alterations can be clas-
sifi ed into two main groups: reversible defects 
(regulatory or soft) and irreversible defects 
(structural or hard) [ 22 ,  23 ]. 

 Many studies in human and experimental 
tumors have reported variations in MHC-I antigen 
cell surface expression [ 24 – 27 ]. These  variations 
have been associated with important changes in 
tumor behavior and metastatic colonization [ 28 , 
 29 ]. The crucial role of MHC-I in local tumor 
growth and metastasis has also been demon-
strated in many different murine tumor models. 
The fi rst detection of MHC-I lack in mouse 
tumors was described in 1976; loss of one H-2 K k  
private specifi city was reported in Gardener 
lymphoma derived from a C3H mouse [ 25 ]. 
Following these studies, different groups reported 
altered expression of MHC molecules in other 
tumors, i.e., the absence of some H-2 d  molecules 
in a methylcholanthrene-induced sarcoma (MCG4) 
in a BALB/c mouse [ 30 ]; loss of K k  antigen (Ag) 
expression in a particular AKR tumor cell line 
designated K36.16, this tumor cell line showed 
resistance to killing by AKR anti- MuLV CTLs 
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 in vitro  [ 31 ]; loss of the products of the H-2 L d  
locus in a BALB/c fi brosarcoma [ 32 ]; and 
absence of H-2 Ds Ags in SJL/J lymphomas [ 33 ]. 

 Another fi eld in the study of MHC-I Ags in 
murine tumors originates from transfection of 
MHC-I molecules in MHC-I-defi cient murine 
tumors. The transfection and cell surface expres-
sion of one  H-2   k  gene product in the AKR lym-
phoma cell line K36.16, a subline of K36 
(H-2 K k -negative) lymphoma, inhibited the syn-
geneic growth of this tumor [ 34 ,  35 ]. Studies 
with the methylcholanthrene (MCA)-induced 
T10 sarcoma demonstrated that the transfection 
of  K  k  or  K  b  gene into H-2 K-negative parental 
cells reduced tumorigenicity and abolished the 
formation of metastasis in syngeneic mice [ 36 ]. 
Similar results were obtained in other experimen-
tal models [ 37 ]. In all these studies, absence of 
MHC-I molecules has been interpreted as a factor 
which selects immunodefi cient variants and rep-
resents a major escape mechanism from T cell 
recognition. The reconstitution of H-2 class I 
expression has demonstrated that even MHC-I 
molecules on tumor cells are responsible for reg-
ulation of NK susceptibility. Restoration of these 
molecules by transfection with  β2m  gene resulted 
in a strong decrease in susceptibility to NK lysis 
in S3 cell line, a negative variant for H-2 D b  and 
K b  of the murine thymoma EL4 [ 38 ]. 

 The differential expression of H-2 class I K, 
H-2 class I D, and H-2 class I L molecules is 
another event present in some tumors. Studies on 
AKR-derived B cell lymphomas (H-2 k ) have 
shown that D k  molecules are processed slower 
than K k  molecules, with a half-time of 4–5 h [ 39 ]. 
Other studies have shown that L d  Ags are 
expressed at levels three to four times lower than 
D d  or K d  Ags [ 40 ]. This is in line with the studies 
that show that in BALB/c S49 lymphoma sublines, 
there is a locus-specifi c regulation for K d , D d , and 
L d  surface molecules [ 41 ]. The differential 
expression of these molecules on the cell surface 
could be a mechanism used by the tumor cells to 
escape from immunosurveillance. Therefore, 
these studies all together could add to our knowl-
edge about tumor biology [ 39 ]. Some examples 
of this locus-specifi c regulation have been docu-
mented in other tumor models. Green and 

coworkers have studied an MuLV-induced AKR 
tumor in which the expressed H-2 K and H-2 D 
Ags are differentially induced by IFN-γ [ 42 ]. In 
the spontaneous BALB/c line 1 murine carci-
noma, it has been shown that the induction of 
MHC-I antigen expression by IFN-γ and DMSO 
differ at the molecular level. A point mutation in 
the D1 region of the D d  promoter diminished 
IFN-γ responsiveness, but did not alter induction 
of D d  molecule by DMSO. Thus, DMSO appears 
to regulate MHC-I transcription through multiple 
regions of the MHC-I heavy chain promoter by 
mechanisms distinct from IFN-γ [ 43 ]. Studies 
with mutant phenotypes have led to the descrip-
tion of factors controlling the folding, the intra-
cellular transport, and surface expression of class 
I molecules [ 44 ]. 

 Components of APM are important elements in 
the MHC-I cell surface expression. Alteration in 
the Ag presentation pathway may serve as an eva-
sive mechanism rendering tumors unrecognizable 
by host immunosurveillance mechanisms. Certain 
murine tumor cell lines, such as the chemical-
induced CMS-5, EL4, MCA102, and MCA205 
cells, with defi cient expression and/or function of 
multiple APM components, in particular the pep-
tide transporters (TAPs) and tapasin, show reduced 
levels of MHC-I surface expression accompanied 
by low immunogenicity, hence evading T cell-
mediated immune  recognition  in vivo  [ 45 ]. In the 
B16 melanoma, MHC-I- defi cient phenotype has 
been attributed to the downregulation or loss of the 
expression and function of multiple APM com-
ponents [ 46 ]. In other studies, it has been shown 
that inoculation of C57BL/6 mice with a mixture 
of TAP-1- positive and TAP-1-negative tumor cell 
lines, generated from a transformed murine fi bro-
blast line, produced tumors exclusively composed 
of TAP-1-negative cells, indicating an  in vivo  
selection for TAP-defi cient cells. Thus, loss of 
TAP function can allow tumor cells to avoid T cell 
immunity producing tumor cells with increased 
tumorigenicity [ 16 ]. In the APM-defi cient mouse 
lung carcinoma cell line CMT.64, re-expression 
of TAP-1 after infection with TAP-1 adenovirus 
vector led to an increase of MHC-I cell surface 
expression and increased susceptibility to specifi c 
CTLs [ 47 ]. 
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 In addition, there are examples of tumor 
progression associated with increased expression 
of MHC Ags. For instance, one H-2 class 
I-defi cient cell line from RBL-5 lymphoma 
(RMA-S), isolated after mutagenization and sev-
eral cycles of selection by lysis of MHC-I-
positive cells, was rejected in syngeneic C57BL/6 
mice. In contrast, the H-2-positive wild-type cell 
line (RMA) was highly tumorigenic [ 48 ]. The 
transfection of this H-2 class I-defi cient mutant 
(RMA-S) with  TAP-2  gene led to a marked 
increase in tumor outgrowth potential  in vivo . 
This occurred despite restored antigen presenta-
tion and sensitivity to CTLs and was found to be 
due to escape from NK cell-mediated rejection. 
These data suggest that a defect in the machinery 
responsible for processing and loading of pep-
tides into MHC-I molecules is suffi cient to ren-
der cells sensitive to elimination by NK cells 
[ 49 ]. These data are in accordance with the  miss-
ing self hypothesis  [ 12 ] in which NK cells are 
able to distinguish class I-expressing and class 
I-defi cient tumor cells. These cells are able to kill 
TAP-defi cient RMA-S cells (H-2 class I nega-
tive) more effi ciently compared to RMA cells 
(MHC-I positive). NK cells refrain from killing 
when target cells express self MHC-I molecules 
[ 50 ]. Similar results have been obtained after 
IFN-γ treatment in murine H-2-negative YAC-1 
lymphoma cell line. In this case, re-expression of 
H-2 antigens abrogated NK lysis of the cells [ 51 ]. 
In other tumors including EL4 lymphoma [ 12 , 
 48 ] and murine tumor cell lines expressing 
human papilloma virus (HPV) 16-derived E6/E7 
oncoproteins TC-1 (MHC-I-positive) and MK16 
(MHC-I-negative) variants, NK cells appear to be 
an effective tool against MHC-I-defi cient cells 
[ 52 ,  53 ]. In this case, immunization with the 
MHC-I-negative (MK16), but not with TC-1 
(MHC-I-positive), cell line inhibits the growth of 
MHC-I-negative tumors. NK cells are responsi-
ble for this immunity, although IFN-γ production 
by CD4 +  and CD8 +  T cells cannot be excluded 
[ 54 ]. The heterogeneity of MHC-I expression in 
tumor cell population and the balance of the 
MHC-restricted CTLs and MHC-unrestricted NK 
cells immune mechanisms determine the fi nal 

outcome of the MHC-I expression in the primary 
tumor [ 55 ]. 

10.2.1     Studies in GR9 Tumor Model: 
H-2 Antigen Surface 
Expression and Tumorigenic 
Capacity 

 Since the generation of the GR9 tumor model in 
the 1980s, our knowledge about the role of 
MHC-I molecules in the tumor scene has 
increased dramatically [ 28 ,  29 ,  56 ,  57 ,  58 ]. GR9 
tumor model is a subcutaneously induced meth-
ylcholanthrene (MCA) fi brosarcoma in BALB/c. 
The original tumor mass was directly adapted to 
tissue culture without any  in vivo  passage in 
syngeneic or allogeneic mice to avoid immu-
noselection [ 56 ]. Forty-three cell lines were 
obtained after cloning using a phase contrast 
microscope and limit dilution, adapted to tissue 
culture and criopreserved. The GR9 fi brosarcoma 
tumor and the GR9-derived clones have been 
extensively studied and characterized by our 
group. The H-2 class I phenotype of the different 
cell lines were analyzed (Fig.  10.1 ) [ 13 ,  56 ,  59 ]. 
GR9 cell line presents surface expression of the 
three H-2 class I molecules (K d , D d , and L d ), and 
it is composed of tumor clones with a great het-
erogeneity in H-2 phenotype which could be 
classifi ed in four groups: highly positive clones 
(D8, A7, G2), middle positive clones (B10, B7, 
B3), low positive clones (B6, C11, C5, G10), and 
very low/negative clones (B9, B11) (Fig.  10.1 ) 
[ 13 ,  56 ,  59 ]. Transcriptional analysis of the H-2 
class I heavy chains, β2m, and APM components 
genes showed a correlation between the expres-
sion of these genes and the surface expression of 
MHC-I molecules [ 59 ]. A coordinate transcrip-
tional downregulation of H-2 L d  heavy chain, cal-
reticulin, LMP-2, and TAP-1 has been found in 
B11, B7, and C5 clones in comparison with A7 
clone. In all instances, H-2 class I K d , D d , and L d  
molecules of all tumor cell lines could be recov-
ered after IFN-γ treatment [ 59 ]. This data indi-
cates that tumor cells have reversible (soft) 
defects underlying MHC alterations [ 23 ,  60 ]. 
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More recently, we have shown that the tumor 
suppressor gene  Fhit  is involved in the coordi-
nated transcriptional regulation of various APM 
components and/or MHC-I heavy chains [ 58 ]. 
Transcriptional levels of Fhit are signifi cantly 
lower in tumor clones with low expression of 
MHC-I molecules. Results have shown that 
transcriptional level of  Fhit  in A7 clone is 1.4 
higher than those found in B7 clones and 3.6 and 
3.2 time higher than that expressed in C5 and 
B11 clones [ 59 ].

   The intratumoral heterogeneity in H-2 class I 
expression presented in GR9 cell lines is not an 
unusual case since other MCA-induced tumors 
obtained in our laboratory (GRB7.1, GRB7.2, 
and GRIR5) presented similar levels of H-2 class 
I heterogeneity. These differences have a strong 
infl uence on  in vivo  tumor behavior in immuno-
competent mice [ 13 ]. Local tumor growth of 
different clones of GR9 in syngeneic immuno-

competent BALB/c mice showed an inverse 
correlation between the MHC-I phenotype of 
tumor clones and their local tumorigenic capacity 
[ 59 ,  61 ]. Comparing local tumor growth after 
subcutaneous injection of 6.25 × 10 5  cells of A7, 
B7, C5, and B11, we found that all cell lines grew 
 in vivo  locally. A7 and B7 showed similar growth 
rate, but different from C5 and B11. Thus, local 
tumors of mice injected with C5 and B11 cell 
clones began to grow at day 8 and were removed 
at days 23 and 28, respectively. In contrast, the 
other two clones, A7 and B7 cells, began to grow 
later at days 14 and 16 postinjection, respec-
tively; the primary tumor was removed at day 39. 
Clones with high MHC-I expression are very 
immunogenic in local tumor growth experiments; 
in contrast, clones with decreased MHC-I expres-
sion grew rapidly  in vivo  when injected subcuta-
neously. The behavior is totally opposite in 
spontaneous metastatic capacity (see following 

  Fig. 10.1    GR9 fi brosarcoma tumor model. Cell clones are adapted to tissue culture from the primary tumor and clas-
sifi ed according to MHC-I surface expression       
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section). In brief, results clearly show that in this 
tumor model, an inverse correlation between 
MHC-I surface expression on tumor clones and 
local tumorigenic capacity exists. Moreover, 
these differences in local tumor growth were 
associated with an immune response, since the 
clones progressed similarly in irradiated synge-
neic BALB/c mice [ 61 ].   

10.3     MHC-I Expression 
and Metastatic Progression 

 Metastatic progression is a complex process dur-
ing which cancer cells leave the heterogeneous 
primary tumor to spread to secondary sites. Thus, 
pathogenesis of cancer metastases involves a set 
of sequential events initiated when tumor cells 
acquire an invasive phenotype [ 62 – 64 ]. These 
invasive tumor cells detach from matrix, invade 
the tissue, and migrate toward blood or lymphatic 
vessels to fi nally get access to the systemic circu-
lation. However, most tumor cells are destroyed 
after extravasation into circulation by the immune 
system or hemodynamic forces, and only a small 
proportion eventually extravasate and arrive at 
the new site [ 65 ,  66 ]. This last step requires com-
plex interactions between tumor cells and distant 
tissue microenvironment [ 67 ,  68 ]. Some  in vitro  
model systems have contributed to the study of 
individual steps of metastatic cascade [ 69 ,  70 ]. 
However, the major limitation of these models is 
that they do not incorporate the complex inter-
play between host and tumor cells; therefore, it is 
necessary to work with  in vivo  models. One of 
the most common problems about cancer research 
and treatment is diffi culty reproducing metastatic 
human disease using  in vivo  models. Preclinical 
tumor models must mimic the fundamental steps 
associated with the metastatic cascade [ 71 ,  72 ]. 
Three main types of models  in vivo  have been 
employed to approximate the situation observed 
in patients with advanced metastatic disease: 
genetically engineered mouse models (GEMM), 
transplantable tumor model systems (GRAFT) or 
spontaneous metastasis assays, and experimental 
metastasis assays. At fi rst, an oncogenic altera-
tion is introduced (deletion or overexpression) in 

a specifi c tissue [ 63 ,  73 – 75 ]. The other alternative 
extensively used, GRAFTs, recapitulate all steps 
of secondary colonization by spontaneous visceral 
metastasis. In these models, tumors or tumor cell 
lines are transplanted into mouse, generating a 
primary tumor that will be excised to prolong 
survival of hosts, thus increasing the possibility 
of distant spontaneous metastases [ 76 – 79 ]. 
Experimental metastasis assay also is the other 
common test to investigate biological behavior of 
tumor cells  in vivo . In experimental metastasis 
assays, tumor cells are directly injected into 
blood circulation to spread to organs. We consid-
ered that spontaneous metastases assay resem-
bles all sequential steps associated with the 
metastatic cascade, from primary local tumor to 
secondary colonization. In contrast, experimental 
metastasis assay is a bypass in the metastatic cas-
cade, evading the fi rst steps: local primary tumor 
growth, migration, and extravasation into blood 
and/or lymphatic vessels. Our research group has 
compared the behavior of different tumor cell 
lines in experimental and spontaneous metastases 
assays, fi nding that it is opposite. Tumor cell 
lines with high spontaneous metastatic ability 
showed very low experimental metastatic capacity 
[ 59 ]. In consequence, we think that experimental 
metastasis assays should not be used as a model 
for studying metastatic advance disease. 

10.3.1     MHC Class I Expression 
on Primary Tumor Cells May 
Determine Spontaneous 
Metastatic Capacity 

 During the late 1970s, heterogeneity in metastatic 
potential of tumor populations was demonstrated 
by Fidler and Kripke, using a mouse malignant 
melanoma [ 80 ]. Great difference between the abil-
ity of clones from B16 cell line was observed in 
terms of developing metastatic colonies  in vivo . 
This fact suggests that a heterogeneous population 
composed the primary tumor where there were 
nonmetastatic and metastatic tumor cells. Later 
research on various cell lines including clones 
with different metastatic potentials isolated in 
tumor cell populations of BALB/cfC3H mammary 
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adenocarcinoma [ 81 ], methylcholanthrene [ 82 ], or 
ultraviolet-light-induced fi brosarcomas [ 83 ,  84 ] 
supported these fi ndings. However, Haywood and 
McKhann were the fi rst to suggest the possible 
infl uence of the MHC-I genes on metastatic 
capacities of tumor cell populations [ 85 ]. They 
compared metastatic capacity of fi ve methylcho-
lanthrene-induced sarcomas, fi nding that tumors 
more metastatic had quantitatively more H-2 sur-
face expression. These results, as well as later evi-
dences observed by other groups, showed that the 
level of MHC-I expression was implicated in the 
metastatic capacity of the tumor cells. Three dif-
ferent spontaneous tumors originated in mouse, 
Lewis lung carcinoma (3LL), B16 melanoma, and 
BW T lymphoma, have been used by Eisenbach’s 
research group to show whether metastasis disease 
is infl uenced by MHC-associated mechanisms. 
They worked with different tumor cell variants of 
these tumors, fi nding that metastatic ability 
directly correlated with surface expression levels 
of the H-2 D Ags and inversely with the of H-2 K 
Ags [ 86 – 89 ]. Moreover, H-2 K-negative/D-positive 
clones with high metastatic ability reverted their 
metastatic phenotype, inducing H-2 K-restricted 
CTLs when transfected with the  H-2 K  gene [ 87 , 
 90 ,  91 ,  92 ]. In brief, these results support that the 
metastatic phenotype is associated with H-2 D sur-
face expression and loss of H-2 K surface expres-
sion in primary tumor cells. In this context, Kazav 
et al. using T10 sarcoma (H-2 b × H-2 k) [induced 
by methylcholanthrene in a (C57BL/6J X C3HeB/-
FeJ) mouse] reported that expression of MHC-I 
increased the metastatic capacity of tumor cells 
[ 93 ,  94 ]. Several clones of T10 sarcoma presented 
differential expression of H-2 b  and H-2 k  haplo-
types: H-2 b  x H-2 k  positive and only H-2 b  positive. 
Metastatic clones characterized to express both 
parental haplotypes and nonmetastatic clones only 
showed expression of H-2 b  haplotype [ 95 ]. 
Furthermore, metastatic potential in this tumor 
system was only acquired when H-2 D k -Ags were 
expressed on the surface of tumor clones. 
Moreover, T10 clones expressing only H-2 D k -
Ags were more metastatic than clones expressing 
both H-2 D b  and H-2 D k -Ags, while clones 
merely expressing H-2 D b  Ag were nonmetastatic 
[ 95 ,  96 ].  

10.3.2     Different MHC-I Surface 
Expression on GR9 Tumor 
Clones Determines Their 
Spontaneous Metastatic 
Capacity 

 In our laboratory, the GR9 fi brosarcoma murine 
model was used to assess whether levels of 
MHC-I surface expression on primary tumor 
cells exert infl uence on their spontaneous meta-
static capacity. Four cell clones (A7, B7, C5, and 
B11) with different MHC-I surface expressions 
were chosen for spontaneous metastasis assays 
(Fig.  10.1 ). Results showed signifi cant differ-
ences in metastatic capacity between these clones 
[ 59 ]. For example, A7 clone with a strong H-2 
class I surface expression was highly metastatic, 
generating metastases in 90 % of the hosts and 
resulting in 1–50 metastases per animal. Clones 
with intermediate or low H-2 class I expression, 
as B7 or C5, presented lower metastatic capacity, 
50 and 20 %, respectively. In contrast, MHC-I- 
negative B11 clone did not present spontaneous 
metastatic capacity, and the B11 tumor-bearing 
mice remained free of metastasis at the end of the 
assays for more than 24 months. In brief, cell 
clones with high surface expression of H-2 class 
I molecules were also highly metastatic, but those 
clones with low or negative H-2 class I expres-
sion were weekly or nonmetastatic (Fig.  10.2 ). 
Our experimental evidences support the idea that 
levels of MHC-I surface expression of primary 
tumor cells directly correlated with spontaneous 
metastasis ability and inversely with local onco-
genicity, as it was shown above [ 59 ] (Fig.  10.2 ). 
Consequently, extrapolation of oncogenic and 
metastatic behavior of tumor cells  in vivo  is not 
always possible, because they may be completely 
opposite.

   Analysis of MHC-I cell surface expression on 
spontaneous metastases derived from these fi bro-
sarcoma clones displayed that in all cases the 
metastases presented the same or lower MHC-I 
surface expression than the original clone [ 59 ]. In 
consequence, metastatic progression promoted a 
downregulation in MHC-I surface expression. 
Analysis of leukocyte subpopulations in tumor- 
bearing mice revealed a distinct behavior among 
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different clones. A7 and B7 produced immuno-
suppression characterized by decrease in T lym-
phocytes and increase in Treg cells [ 29 ]. In 
contrast, B11 tumor-bearing mice developed a 
strong immunostimulation characterized by an 
increase in T lymphocytes, dendritic, and macro-
phages cells ( unpublished observations ). In brief, 
A7 and B7 cells progressed to metastatic disease 
suppressing the immune response, whereas that 
B11 clone promoted an immune response which 
avoided metastatic progression. The other GR9 
tumor clone studied was B9, with H-2-negative 
surface expression and with weak spontaneous 
metastatic capacity (0–1 metastasis per mouse). 

In contrast, this clone is highly metastatic using 
nu/nu BALB/c mice, ranging 5–7 per mouse [ 28 , 
 97 ]. Moreover, metastases were H-2 class I nega-
tive in immunocompetent hosts and H-2 positive 
in immunodefi cient hosts. Thus, we observed that 
H-2 phenotype of spontaneous metastases was 
infl uenced by immunological state of the hosts. 

 GR9 fi brosarcoma cell line, composed of dif-
ferent cell clones, presented intermediate levels 
of H-2 K d , H-2 D d , and H-2 L d  molecules. 
Analysis of spontaneous metastases assay with 
GR9 tumor cells revealed that GR9 cells have 
high spontaneous metastatic capacity; 90 % of 
tumor-bearing mice develop metastases, ranging 

  Fig. 10.2    Schematic 
representation of the 
dissemination and invasion of 
GR9 primary tumor cells. 
MHC-I-positive tumor cells 
from GR9 primary tumor 
presented a high spontaneous 
metastatic capacity, whereas 
MHC-I-negative tumor cells 
presented a weak spontane-
ous metastatic capacity       
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1–9 per animal. GR9 produced strong immuno-
suppression in tumor-bearing mice. Interestingly, 
96 % of metastases derived from GR9 clone 
showed downregulation of MHC-I surface 
expression. These results suggest that MHC-I- 
positive clones, as A7 or B7, produced immuno-
suppression, favoring the growth of MHC-I low 
or negative clones. 

 Other experimental evidences from our 
tumor model also support the idea that in GR9 
fi brosarcoma tumor, the amount of MHC-I Ags 
also affects NK cell cytotoxicity [ 98 ]. Since NK 
cells have been recognized as one of the main 
host immunological mechanisms against metas-
tasis disease, this notion seems imperative [ 99 ]. 
In our system, tumor clones with no or low 
expression of MHC-I molecules were found to 
be sensitive to NK mediated lysis, while clones 
with high levels of MHC-I expression were rela-
tively resistant [ 98 ].   

10.4     Immunotherapy 
as a Treatment Against 
Cancers Expressing Different 
MHC-I Surface Expression 

10.4.1     Immunotherapy 
as a Treatment Against 
Primary Tumors with Different 
Levels of MHC-I Expression 

 As mentioned above, MHC-I molecules present 
TAA to CTLs; therefore, MHC-I surface expres-
sion on tumor cells may play an important role in 
the outcome of immunotherapies as anticancer 
treatments. During treatment with vaccines con-
taining peptides derived from TAAs, MHC-I- 
positive surface expression on tumor cells 
presenting these TAAs is crucial to make this 
immunotherapy effective. As a consequence, 
before the application of immunotherapies, 
MHC-I surface expression on tumor cells must 
be analyzed. Furthermore, two immunosuppres-
sive mechanisms have been described recently 
showing evasion of tumor cells from CTLs attack, 
mediated by expression of noncognate MHC-I 

molecules or by myeloid-derived suppressor 
cells (MDSCs) [ 100 ,  101 ]. 

 Several murine tumor models have been used 
to evaluate the application of different immu-
notherapies to recover MHC-I surface expres-
sion in MHC-I-defi cient tumor cells, in order 
to promote an antitumor immune response. In 
MHC-I- negative B16 melanoma cells, intratu-
moral electroporation of IL-12 cDNA promoted 
an increase in their MHC-I surface expression, 
mediated by IFN-γ, leading to the eradication of 
established melanomas by activation of CTLs 
[ 102 ]. In cervical carcinoma cells, administration 
of synthetic oligodeoxynucleotide-bearing CpG 
motifs (CpG- ODNs) upregulated MHC-I surface 
expression causing tumor regression mediated 
by CTLs [ 103 ]. Other studies also have reported 
that CpG- ODNs immunotherapies delayed the 
growth or inhibited minimal residual tumor dis-
ease of both MHC-defi cient and MHC-positive 
tumors [ 104 ,  105 ]. Moreover, combination of 
dendritic cell- based vaccines with CpG gener-
ated inhibition of tumor growth in MHC-positive 
and  MHC- negative tumors [ 106 ]. CpG-ODN 
1585 only produced regression of MHC-defi cient 
tumors, principally activating NK cells [ 105 ]. In 
other assays, depletion of T(reg) cells avoided 
the growth of recurrent tumors after surgery of 
MHC-negative and MHC-positive tumors [ 107 ]. 
In all these assays, the action against MHC-I- 
defi cient tumors was mediated by NK or NK1.1 +  
cells [ 108 ]. Previous to the application of immu-
notherapy, MHC-I-defi cient tumor cells may 
be treated with agents to upregulate MHC-I 
surface expression. Epigenetic mechanisms 
are frequently implicated in MHC-I downregu-
lation of tumor cells; as a result, application of 
agents as 5-azacytidine (5AC) or trichostatin A 
could increase MHC-I surface expression [ 109 , 
 110 ]. Treatment of 5AC with CpG-ODN or with 
IL-12 showed additive effect against MHC-I-
defi cient tumors, being the immune response 
mediated by CD8 +  T cells [ 111 ]. Other chemo- 
immunotherapies, based on ifosfamide derivative 
CBM-4A together with IL-12, also led to signifi -
cant inhibition in the growth of MHC-I-defi cient 
tumors [ 112 ].  
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10.4.2     Immunotherapy as a Treatment 
Against Metastatic Progression 
Derived from Primary Tumors 
with Different MHC-I Expression 

 Immunotherapy has also been used as an anti-
metastatic treatment against spontaneous metas-
tasis derived from primary tumors with different 
MHC-I expressions. As mentioned above, stud-
ies performed by Eisenbach’s et al. showed an 
inverse correlation between H-2 K tumor cell 
surface expression and spontaneous metastatic 
capacity [ 86 ,  89 ,  90 ,  113 ]. Tumor cell lines 
derived from H-2 K-low or H-2 K-defi cient pri-
mary tumors presented high spontaneous meta-
static capacity, which was reverted by transfection 
of tumor cells with  H-2 K  gene [ 86 ,  114 ,  115 ]. 
Moreover, injection of the H-2 K-transfected 
tumor cells that protect against metastatic disease 
originated from H-2 K-low or H-2 K-defi cient 
tumors. Furthermore, therapy with IFN-γ-treated 
tumor cells or with H-2 K-transfected tumor cells 
promoted upregulation of H-2 K surface expres-
sion and protected against metastatic dissemina-
tion from parental tumor cells [ 113 ,  115 ]. An 
additional effect was reached when tumor cells 
were jointly transfected with IFN-γ and alloge-
neic  MHC class I  genes [ 116 ]. 

 In GR9 murine tumor model, the infl uence of 
MHC-I cell surface expression on primary 
tumors has been investigated with respect to the 
success of immunotherapy as antimetastatic 
treatment. A7 is a fi brosarcoma clone with strong 
spontaneous metastatic capacity. Four treat-
ments were used: two immunotherapies (CpG + 
irradiated autologous A7 cells, and PSK) [ 117 ], 
one chemotherapy (docetaxel), and one chemo- 
immunotherapy (PSK + docetaxel). A7 tumor 
clone was injected subcutaneously in BALB/c 
mice, and the primary tumor was excised when 
the large tumor diameter reached 10 mm. 
Treatment began 1 week after tumor removal, on 
a weekly basis during 6 weeks; 1 week after the 
last dose, mice were euthanized and autopsy was 
performed. Interestingly, all mice treated with 
each immunotherapy or chemo-immunotherapy 
appeared metastases-free (Fig.  10.3 ) [ 29 ]. In 
contrast, partial reduction in the number of 
metastases occurred in the mice treated with 

chemotherapy. In the control group, mice 
injected with A7 tumor cells and treated with 
saline solution, a high number of spontaneous 
metastases in all mice were observed (Fig.  10.3 ) 
[ 29 ]. In brief, the two immunotherapy protocols 
and the one chemo-immunotherapy protocol 
eradicated metastasis completely and cured the 
mice, whereas chemotherapy treatment reduced 
the number of metastases partially. When the 
same four treatment protocols were applied 
against spontaneous metastases generated from 
B7 fi brosarcoma clone (intermediate MHC-I 
expression level and with lower spontaneous 
metastatic capacity than A7 clone), the antimeta-
static effect was not as effective (Fig.  10.3 ). 
PSK, PSK + docetaxel, and docetaxel promoted 
partial reduction in the number of metastases, 
whereas that CpG + irradiated autologous B7 
cells treatment did not produce any antimeta-
static effect (unpublished data). In the case of 
spontaneous metastases derived from GR9 fi bro-
sarcoma, neither treatment had any antimeta-
static effect. Analysis of lymphocyte 
subpopulations in different assays showed that 
growth of local tumors promotes strong immu-
nosuppression in the three cases. However, this 
immunosuppression was completely reverted by 
immunotherapies in the case of A7-injected 
mice, partially reverted for B7-injected mice, 
and remained unchanged in GR9-injected mice 
[ 29 ]. All these results suggest that immunothera-
pies may be potential antimetastatic treatments 
against primary tumors with high MHC-I cell 
surface expression.    

10.5    Concluding Remarks 

 In tumor cells, MHC-I molecules may present 
peptides derived from tumor-associated antigens, 
which are new proteins expressed or overex-
pressed in tumor cells. Presentation of these new 
peptides may allow recognition and destruction 
of tumor cells by CD8+ T lymphocytes. Loss of 
MHC-I expression on tumor cells is a widespread 
and frequent mechanism developed to escape 
from immunosurveillance. Alteration in MHC-I 
in both human and murine experimental tumors 
has been widely reported. Results show an 

I. Romero et al.



171

inverse correlation between MHC-I expression 
on tumor cells and primary tumor growth, i.e., 
MHC-I-negative tumors grew more rapidly com-
pared to MHC-I-positive tumors. In contrast, a 
direct correlation was found between MHC-I 
expression on primary tumors and spontaneous 
metastatic capacity. Immunotherapy as an anti-
metastatic treatment was completely effective 
against MHC-I highly positive tumors and was 
partially effective on tumors with intermediate 
level of MHC-I expression.     
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11.1            Introduction 

 Dendritic cells (DCs) are highly specialized 
antigen- presenting cells (APCs) essential to 
 generate immune responses [ 1 ], recognizing, pro-
cessing, and presenting “danger signals” to the 
adaptive immune system. It is now clear that DCs 
are not a unique homogeneous cell population, 
but rather a pool of subsets with different origins, 
phenotypes, and functions [ 2 ,  3 ]. However, two 
are the most important DC subsets: myeloid-
derived dendritic cells (mDCs) and plasmocytoid 
dendritic cells (pDCs). mDCs reside in an imma-
ture state in peripheral tissues where they behave 
as sentinels to actively capture and process anti-
gens (Ags). Following exposure to proinfl amma-
tory cytokines or pathogen- derived products 
(pathogen-associated molecular patterns: 
PAMPs), they undergo a maturation process and 
migrate to the draining local lymph nodes via the 
afferent lymphatics [ 4 ]. In contrast, pDCs do not 
reside in peripheral tissues during homeostasis, 
but are encountered in the peripheral blood and 
lymphoid organs [ 1 ,  5 ]. The hallmark of pDCs is 
their unique capability to produce large amounts 
of interferon-α and interferon-β (type I IFN) in 
response to viruses [ 6 ]. Furthermore, pDCs can 
differentiate into mature DCs when stimulated by 
viruses [ 7 ,  8 ]. Thus, pDCs represent key effectors 
in innate immunity and the ideal cell population 
in connecting innate and adaptive immunity [ 6 ]. 
Their discovery dates back to more than 50 years 
ago when Lennert and Remmele [ 9 ] identifi ed a 
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previously unrecognized rare cell types with 
plasma cell-like morphology in the paracortical 
area of reactive lymph nodes. Later data revealed 
that these cells express both T-cell and monocyte 
markers and, therefore, designated plasmacytoid 
T cells or plasmacytoid monocytes [ 2 ,  3 ,  10 ]. In 
the 1980s, pathologists became increasingly 
aware of this enigmatic cell, and its tissue accu-
mulation was shown to be restricted to lymphoid 
organs affl icted by reactive or neoplastic disor-
ders [ 3 ,  4 ], as well as skin-associated lymphoid 
tissue [ 11 ,  12 ]. However, despite an increasing 
interest in these cells, their functional signifi -
cance has still remained enigmatic.  

11.2     Localization and Traffi cking 
Patterns of Plasmacytoid 
Dendritic Cells (pDCs) 

 The development and molecular regulation of 
pDCs is still under investigation. FMS like tyro-
sine kinase 3 ligand (Flt3L) is the main growth 
factor that induces the differentiation of common 
myeloid progenitor cells into both mDCs and 
pDCs [ 13 ]; however, the E2–2 transcription fac-
tor is uniquely required for pDC differentiation 
[ 14 ]. During steady-state conditions, mouse 
pDCs reside in lymphoid organs and blood, as 
well as the liver, lung, and skin; nonetheless, their 
proliferation rate is very low [ 15 ]. Human pDCs 
reside in primary, secondary, and tertiary lym-
phoid organs (aggregates/follicles – lymph nodes 
(LNs), tonsils, spleen, thymus, bone marrow, and 
Peyer’s patches [ 16 ], in addition to the liver and 
blood [ 17 ]. They can migrate from lymphoid 
organs toward T-cell-rich areas of secondary 
lymphoid tissues through high endothelial 
venules (HEV) and toward the marginal zone of 
the spleen [ 18 ]. In contrast, during pathological 
conditions, pDCs leave the bone marrow or the 
circulation and infi ltrate infl amed tissues where 
they can “sense” danger signals, both PAMPs and 
endogenous danger signals (danger-associated 
molecular patterns: DAMPs), leading to the 
release of large amounts of type I IFNs [ 16 ,  18 ]. 
In this scenario they generate protective  immunity 
as type I IFNs can activate mDCs, B, T, and NK 

cells [ 16 ,  18 ]. In particular, pDCs accumulate in 
infl ammatory sites, e.g., lymphoid hyperplasia of 
the skin [ 11 ], cutaneous systemic lupus erythe-
matosus (SLE), psoriasis vulgaris (basal epider-
mis and papillary dermis, but not normal skin), 
contact dermatitis, and allergic mucosa [ 19 ]. 
pDCs also infi ltrate ascites associated with pri-
mary and malignant melanoma [ 20 ,  21 ], head 
and neck carcinoma [ 22 ], and ovarian carcinoma 
[ 23 ]. Recruitment into these sites  suggests that 
pDCs may contribute to the ongoing infl amma-
tory response through the release of cytokines 
and chemokines and lead to the  activation of lym-
phocytes [ 24 ] or, alternatively, to the induction of 
tolerogenic responses [ 25 ]. 

 An intriguing question is how do pDCs enter 
LNs and infl ammatory sites? Chemokines are 
important regulators of DC traffi cking  in vivo . 
Similar to mDCs, blood pre-pDCs (an immedi-
ate precursor of pDCs) undergo maturation and 
upregulate functional CCR7 after activation 
with microbial stimuli or CD40 ligation, thereby 
acquiring responsiveness toward CCL19 and 
CCL21 expressed by HEVs and LN constituents 
[ 26 ,  27 ]. Furthermore, pDCs express L-selectin 
(CD62L), which recognizes corresponding 
ligands (peripheral lymph node addressin 
[PNAd]) on HEVs [ 18 ]. These observations may 
account for the localization of pDCs around 
HEVs and in T-cell-rich areas of LNs during 
pathological conditions. pDCs also express 
ligands for VCAM-1, an inducible molecule on 
endothelial cells which may enhance migration 
to draining LNs [ 25 ]. Pre-pDCs express several 
additional chemokine receptors, e.g., CCR2, 
CCR5, and CXCR3 [ 28 ,  29 ]. Nevertheless, 
unlike mDCs, they marginally respond to the 
 corresponding ligands (MCP-1; RANTES, 
MIP-1α, and MIP-1β; Mig [CXCL9], IP-10 
[CXCL10], and I-TAC [CXCL11], respec-
tively). Instead, they migrate effi ciently follow-
ing the recognition of CXCR4 ligand SDF-1/
CXCL12, which is expressed on dermal endo-
thelial cells, in LN-derived HEVs, and in malig-
nant cells [ 25 ]. Although relatively inactive on 
their own, CXCR3 ligands produced by Th1 
cells can enhance the responsiveness of pre-
pDCs to SDF-1 by 20- to 50-fold [ 26 ,  29 ]. 
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During  microbial infection or infl ammation, the 
induction of CXCR3 ligands might drive the 
recruitment of immature pDCs to tissues respon-
sible for SDF-1 production. In tonsils and in 
psoriatic skin, epithelial cells expressing SDF-1 
have been associated with the expression of 
CXCR3 ligands [ 29 ]. However, pDCs lose their 
responsiveness to SDF-1 once differentiated 
[ 28 ]. Interestingly, pDCs express cutaneous 
lymphocyte-associated antigen (CLA), which 
binds to E-selectin on dermal endothelial cells 
and which may enhance their recruitment to 
cutaneous infl ammatory lesions [ 30 ]. 

 Adenosine has recently been identifi ed as a 
potent chemotactic factor for immature pDCs via 
an A1 receptor-mediated mechanism [ 31 ]. Upon 
maturation, the receptor is downregulated, result-
ing in loss of migratory function. In turn, the A2a 
receptor is upregulated, through which adenos-
ine reduces the production of proinfl ammatory 
cytokines [ 31 ]. Thus, adenosine, as a resultant of 
tissue injury from the degradation of the 
increased release of ATP, as well as SDF-1 and 
CXCR3 ligands, facilitates the recruitment of 
immature pDCs from blood to infl ammatory 
sites, but subsequently limit their contribution to 
an infl ammatory response upon maturation after 
an encounter with virus, bacteria, or activated T 
cells [ 31 ]. 

 “Local” maturation upregulates CCR7, allow-
ing pDCs to migrate to LNs in response to CCL19 
and CCL21 and resist apoptosis [ 32 ]. At this site, 
pDCs could potentially present peripherally 
acquired Ags to T cells. Recently, IL-18 produced 
by mDCs in infl amed sites was shown to attract 
pre-pDCs and modulate their function to skew Th 
cells toward Th1 cells [ 33 ].  

11.3     Plasmacytoid Dendritic Cells 
(pDCs) Phenotype 

 pDCs are a rare cell type representing only 0.5 % 
of circulating cells in healthy individuals [ 16 ]. 
They are round-shaped cells characterized by a 
prominent endoplasmic reticulum [ 18 ]. Mouse 
pDCs manifest most of the morphological and 
phenotypical features of their human counterpart 

[ 16 ,  18 ,  34 ]. Human pDCs are CD4 + , CD45RA + , 
IL-3αR (CD123) + , immunoglobulin-like tran-
script factor (ILT)-3 + , ILT-1 low/− ,    Siglec-H + , and 
CD11c low/−  cells (Table  11.1 ) [ 18 ]. Two additional 
surface markers for human pDCs are represented 
by BDCA-2 and BDCA-4 that correspond to the 
murine mPDCA-1, restricted to the peripheral 
blood and bone marrow-derived pDCs [ 18 ]. 
BDCA-2 is a C-type lectin transmembrane gly-
coprotein which can internalize Ags for present-
ing to T cells. Some data show that triggering 
BDCA-2 can potently inhibit  in vitro  induction of 
   IFN-α/   IFN-β expression in pDCs by viruses [ 35 ]. 
On the other hand, BDCA-4 does not have a sub-
stantial effect on pDC function, but can be used 
for the purifi cation of pDCs by magnetic selec-
tion (Table  11.1 ).

   In addition, recent evidence demonstrated that 
CD9 +  Siglec-H low  pDCs secrete IFN-α when 
stimulated with TLR agonists, induce CTLs, and 
 promote protective antitumor immunity. By con-
trast, CD9 neg  Siglec-H high  pDCs secrete negligible 
amounts of IFN-α, induce Foxp3 +  CD4 +  T cells, 
and fail to promote antitumor immunity [ 36 ]. 
Although newly formed pDCs in the bone mar-
row are CD9 +  and are capable of producing 
IFN-α after aggregating in peripheral tissues, 
they lose CD9 expression and the ability to pro-
duce IFN-α. Therefore, recognition of the pDC 
surface markers is actually very important not 
only to distinguish pDCs from mDCs and other 
cell types but also to identify their function and to 
allow researchers to isolate them. To date, Bdca2-
DTR [ 37 ] and Siglec-H-DTR models [ 38 ] are the 
recently developed appropriate murine models 
used to study the role of pDCs in the pathogene-
sis of various diseases. These mouse models 
allow the study of pDCs in pathophysiological 
conditions through the depletion of pDCs by 
diphtheria toxin (DT) using the human diphtheria 
toxin receptor (DTR) that is driven by the BDCA2 
promoter, as the mouse receptor for DTR binds 
several orders of magnitude more weakly to 
DT. However, many studies have also been con-
ducted by using specifi c depleting antibodies 
(Abs), such as 120G8 Ab [ 39 ], BST-2 Ab [ 40 ], 
and mPDCA-1 [ 41 ]  in vivo . All these Abs bind to 
the same surface marker (BST-2 or CD317). 
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Ab-depletion models seem to be less specifi c 
than DTR models, but still very effi cient in pDC 
depletion, thus allowing the investigation of the 
role of pDCs during steady state and pathological 
conditions. The limitation of Ab-mediated pDC 
depletion stands on the role of some molecules, 
such as BST-2, which is also expressed by stro-
mal and other immune cells after an infl amma-
tory stimulus [ 40 ].  

11.4     Activation of pDCs 

 Plasmacytoid dendritic cells are highly 
 specialized at sensing nucleic acids via the intra-
cellular pattern recognition receptors, Toll-like 
receptors (TLR) 7, and TLR9 [ 16 ,  34 ]. pDCs 
and mDCs have a different repertoire of TLR 
expression [ 16 ,  18 ,  34 ]. Human and mouse 
mDCs can express TLR1, TLR2, TLR4, TLR5, 

    Table 11.1    Markers currently identifi ed on pDCs   

 Marker  Structure/function  Ligand  Effect of activation 

 BDCA-2/BDCA-4  Associated with FcεRlγ to form 
a signaling receptor complex 

 ITAM  Upon ligation, they inhibit 
TLR activation and release 
of type I IFN 

 CD4  A glycoprotein expressed on 
the surface of T-helper cells, 
monocytes, macrophages, 
and dendritic cells 

 It recognizes the TCR-
MHC class II complex and 
is required together with 
the CD3 zeta chain for the 
recognition of antigens 

 Activation of pDCs 

 CD 123  The IL-3 receptor (70KD) is 
composed of a ligand specifi c 
alpha subunit and a signal-
transducing beta subunit shared by 
the receptors for interleukin 3 
(IL3), colony-stimulating factor 2 
(CSF2/GM-CSF), and interleukin 
5 (IL-5) 

 IL-3  Amplifi cation 
of infl ammation 

 IL-T3  Characterized by its cytoplasmic 
ITIM domain 

 Fc receptor  Tolerance induction 

 IL-T7  Characterized by its cytoplasmic 
ITIM domain and is also 
expressed on B, T, and NK cells 

 IFN I  Inhibition of release of Type I 
IFN (negative feedback) 

 CD-11 c  A heterodimeric integral 
membrane protein composed of an 
alpha chain and a beta chain. It is 
present only on mouse, but not 
human, pDCs 

 ICAM-2 and VCAM-1  Induces cell activation; it is 
an adhesion receptor that is 
implicated in phagocytosis of 
latex beads and bacteria in 
the absence of complement. It 
plays an important role in the 
infl ammatory response and 
can lead to the production of 
proinfl ammatory cytokines 
after an APC response 

 TLR-7  An intracellular endosomal 
pattern recognition receptor 

 Single-stranded RNA  Upregulation of CD40, 
CD80, CD86, and CCR7. 
Induction of high levels of 
Type I IFN. Does not induce 
IL-12p70 production 

 TLR-9  An intracellular endosomal 
pattern recognition receptor 

 Unmethylated CpG 
oligonucleotides from 
bacterial DNA 

 Upregulation of CD40, 
CD80, CD86, CD83, 
HLA-DR, and CCR7. 
Upregulation of Type I IFN, 
IL-6, TNFa, IL-8, and IP-10. 
Does not induce IL-10 
secretion 
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TLR7, and TLR8, while pDCs selectively 
express high  levels of TLR7/TLR8 and TLR9 
[ 42 ]. TLRs are a family of receptors associated 
with the innate immune response [ 43 ]. In par-
ticular, TLR7  recognizes single-stranded RNA 
enriched with guanosine or uridine from viruses, 
synthetic imidazoquinolines, and guanosine 
analogs [ 43 ]. On the other hand, TLR9 is acti-
vated by unmethylated CpG oligodeoxynucleo-
tide (CpG-ODN) motifs typical of viruses and 
bacteria [ 43 ]. Interestingly, the response of 
human pDCs is dependent upon the class of syn-
thetic CpG-ODN used to stimulate them. 
   Stimulation with CpG-A (D)/2216 ODN induces 
sustained high IFN-α production by pDCs, but 
minimal upregulation of cell surface maturation 
markers including CD80, CD86, and major his-
tocompatibility complex class II (MHC-II) [ 44 , 
 45 ] has no effect on B cells (which also express 
TLR9). On the other hand, stimulation with 
CpG-B (K)/2006, a strong B-cell activator, 
results in increased expression of costimulatory 
and Ag-presenting molecules and higher IL-8 
and    TNF-α secretion, but lower levels of IFN-α 
production by pDCs. Two distinct pathways of 
IFN-α/IFN-β production have been identifi ed 
regarding stimulation with CpG-A  vs . CpG-B 
[ 45 ]. pDCs constitutively express IRF-7 and 
synthesize high levels of IFN-α in response to 
CpG-A, which also triggers an autocrine feed-
back loop involving the IFN receptor- dependent 
pathway [ 42 ]. In contrast, IFN-α/IFN-β induc-
tion by CpG-B is independent of the IFN-α/
IFN-β receptor loop [ 45 ,  46 ]. Recently, CpG-C, 
a new class of CpG ODN in which structural ele-
ments of CpG-A and CpG-B have been com-
bined, has emerged. This sequence activates B 
cells and induces IFN-α production by pDCs 
[ 47 ]. Furthermore, non-CpG-containing ODNs 
have been shown to bind human TLR9 [ 47 ,  48 ] 
and to stimulate pDCs [ 49 ]. 

 TLR7 and TLR9 are very sensitive to different 
stimuli; the fi rst triggers ssRNA viruses and the 
latter responds to DNA viruses [ 50 ]. TLR7 and 
TLR9 activation recruits a cytoplasmic  adaptor, 
myeloid differentiation primary response gene 
88 (MyD88), which is able to assemble a mul-
tiprotein signal-transducing complex- inducing 

 interferon regulatory-factor 7 (IRF-7)  activation 
[ 43 ]. MyD88 also leads to TRAF-6-mediated 
NF-κB and MAP-kinases (MAPKs) activation, 
essential for the transcription of proinfl ammatory 
cytokines, chemokines, and costimulatory mol-
ecules [ 43 ,  51 ]. 

 The exposure of pDCs to TLR7 or TLR9 
ligands can lead to the production of type I IFN 
and proinfl ammatory cytokines, such as TNF-α, 
and chemokines, such as IL-8 (CXCL8) [ 1 ,  16 , 
 18 ]. Constitutive expression of IRF7, which is 
different from mDCs in which induction is 
needed, renders pDCs high producers of type I 
IFN [ 1 ,  16 ,  18 ], regulating T-cell immunity, 
leading toward a Th1 and cytotoxic T  lymphocyte 
polarization and activation of mDCs, NK cells, 
and B cells [ 1 ,  16 ,  18 ]. Remarkably, IFN-α mod-
ulates several aspects of the immune system, 
including pDC survival [ 52 ], mDC differentia-
tion,  modulation of Th1 and CD8 +  T-cell 
responses, cross- presentation, upregulation of 
MHC and costimulatory molecules, activation of 
NK cells, and induction of primary Ab responses 
[ 53 ]. However, a recent study found that type I 
IFN negatively controls pDC turnover in that an 
overproduction of type I IFNs can lead to the 
death of pDCs during steady-state conditions 
and viral infections [ 50 ]. pDC activation can 
also lead to the production of IL-12p70, IL-1β, 
and IL-6 [ 54 ]. Furthermore, recent discovery 
found that pDCs may mediate the release of 
IL-10 [ 26 ]; however, another group [ 55 ] showed 
that these cells do not directly produce IL-10 
(Fig.  11.1 ).

   Moreover, it was recently demonstrated that 
pDCs produce high amounts of granzyme B [ 56 ], 
which is effective only in combination with perfo-
rins mainly produced by cytotoxic T lymphocytes 
(CTLs). This further connects pDCs to adaptive 
immunity. Additionally, in the absence of an “effi -
cient” adaptive CTL immunity, pDCs can behave 
as killing DCs due to the release of tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) 
and to the induction of DR5 expression, a TRAIL 
receptor, on the cell target [ 37 ,  56 ]. 

 A diversity of C-type lectin receptors (CLRs) 
has been identifi ed on DC subsets, includ-
ing DC-SIGN (CD209), DEC-205 (CD205), 

11 Role of Plasmacytoid Dendritic Cells in Cancer



182

 langerin (CD207), mannose receptor (CD206), 
BDCA-2, and dectin-1. CLRs typically recog-
nize carbohydrate-rich structures on microbes 
and self-antigens [ 35 ]. They have been impli-
cated in cell adhesion and regulation of signaling 
events (e.g., BDCA-2), migration and homing 
(e.g., DC-SIGN), Ag uptake and processing for 
MHC-II presentation to T cells (e.g., DC-SIGN, 
BDCA-2, langerin, and mannose receptor), cell- 
cell transmission of pathogens (e.g., DC-SIGN), 
and tolerance to self-antigens (e.g., DEC-205). 
pDCs express BDCA-2 and BDCA-4, dectin-1, 
and possibly DEC-205 but lack DC-SIGN and 
langerin, found on CD34 +  and monocyte-derived 
DCs and Langerhans cells (LCs), respectively 
[ 57 ]. The physiologic function of CLRs on 
pDCs remains unknown. Anti-BDCA-2 Abs are 
rapidly internalized and effi ciently presented to 
T cells, suggesting a role in Ag capture and pre-
sentation [ 35 ]. Interesting relationships between 
CLRs and TLRs have been documented. In 
mDCs, interaction of DC-SIGN with lipoara-
binomannan secreted by mycobacteria inhibits 
lipopolysaccharide (LPS)-induced DC activa-
tion through TLR4 [ 58 ]. This mechanism may 
permit pathogens to evade immune responses 
and perpetuate tolerance to self-antigens in the 

face of TLR activation by microbes. On the 
other hand, it has been shown that dectin-1 col-
laborates with TLR2 in inducing proinfl amma-
tory cytokine secretion in murine macrophages 
and DCs [ 59 ]. Whether BDCA-2 has any con-
nection to TLRs in pDCs remains to be eluci-
dated. However, early reports have shown that 
secretion of type I IFNs by pDCs in response to 
infl uenza virus (most likely triggering TLR7/8) 
or to complexes of plasmid DNA and anti-DNA 
Abs (possibly stimulating both FcR and TLR9) 
is signifi cantly inhibited by ligation of BDCA-2 
with  anti-BDCA- 2 Ab [ 35 ]. It is worth noting 
that BDCA-2 is downregulated after pDCs mat-
uration and that mature pDCs secrete less IFN-α/
IFN-β in response to viral stimuli than immature 
pDCs do [ 60 ,  61 ]. BDCA-2 has an intracellular 
domain of 21 amino acids without known motifs 
implicated in signal transduction; however, liga-
tion induces Src family protein-tyrosine kinase-
dependent intracellular calcium mobilization 
and protein- tyrosine phosphorylation of intra-
cellular proteins [ 35 ]. BDCA-4 (neuropilin-1) is 
also upregulated in blood mDCs after overnight 
culture and may participate in DC-lymphocyte 
interactions [ 62 ].  

Stimuli (i.e. DNA/RNA from virus and/or bacteria: CpG /Imiquimod) 
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  Fig. 11.1    The recognition of stimuli, such as DNA or 
RNA motifs from viruses and bacteria, by pDCs via TLR7 
and/or TLR9, induces the activation of MyD88-dependent 

signalling pathways that lead to the expression of cyto-
kines such as IL-6 and TNF-α, costimulatory molecules 
such as CD80, and the synthesis/release of type I IFN       
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11.5     pDCs: Bridging the Gap 
Between Innate 
and Adaptive Immunity 

 The production of type I IFNs by pDCs  represents 
the bridge between the innate and adaptive 
immune system. Type I IFN (IFN-α and IFN-β) is 
an important component of the innate immunity, 
especially during viral infections [ 16 ,  18 ]. 
In  contrast to mDCs, pDCs produce high amounts 
of type I IFNs upon activation [ 16 ,  18 ], which 
both amplify its own production in an auto-
crine manner and induce the release of other 

 proinfl ammatory cytokines such as IL-12p70 
from mDCs and NK cells [ 63 ] (Fig.  11.2a ). 
Activation of mDCs diverts the immune environ-
ment toward a Th1-like bias, during which IFN-γ 
production facilitates Th1 differentiation [ 16 ,  18 , 
 63 ], long- term T-cell immunity [ 18 ,  63 ], and a 
CTL- mediated response [ 64 ], as well as prolifer-
ation and survival of T cells [ 63 ,  64 ]. Moreover, 
through the production of IL-6 and type I IFNs, 
pDCs induce B cells to differentiate into plasma 
cells which are immunoglobulin (preferentially 
IgG and IgM)-producing cells (Fig.  11.2b ). In the 
process of B-cell activation, a key role is played 

IFN I
IFNAR

pDCs

Stimulus

mDCs

NK cells
IL-12p70 CTL response

Th1
polarization

a

b

B cell

PLASMACELL

Y Y Y
Y

Y
Y

IMMUNOCOMPLEXES

pDCs

Stimulus

IFN I

IL-6

CD70
CD27

IFNAR

IL-6R

T Reg-cell

CTLA-4
or PD-1

CD80 or
CD86

or PDL1

IDO

T cell DeathKYNURENINES

pDCs Immune-suppression

c

Stimulus

  Fig. 11.2    ( a ) Activated pDCs produce high amounts of 
Type I IFNs which both amplify its own production in an 
autocrine manner via the expression of IFNAR on them-
selves and induce the release of other proinfl ammatory 
cytokines such as IL-12p70 from mDCs and NK cells that 
lead to Th1 and CTL polarization; ( b ) pDCs induce B cells 

to differentiate into plasma cells via the activation of 
IFNAR, IL-6R activation, and the interaction of CD70-CD27 
on B cells; ( c ) pDCs can lead to immunosuppression via 
both direct interaction with Treg (CD80 or CD86 + CTLA-4 
or PD-L1 + PD1) and the release of IDO-induced kynuren-
ines metabolites which induce Th1 cell toward death       
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by the CD70 receptor expressed on pDCs, as it 
can induce the differentiation and the prolifera-
tion of IgG-producing B cells [ 65 ] (Fig.  11.2b ).

   In addition, activated pDCs can undergo other 
important phenotypic changes that induce them 
to change their phenotype toward an mDC phe-
notype [ 1 ]. The upregulation of MHC and T-cell 
costimulatory molecules enables pDCs to engage 
and activate naïve T cells [ 66 – 68 ]. There have 
been many controversies regarding the role of 
pDCs to prime T cells and cross-present Ags 
[ 68 ]. The expression of MHC and T-cell costimu-
latory molecules is not as high as in mDCs, and 
this is why pDCs are less effi cient than mDCs at 
priming T cells [ 69 ]. Moreover, the repertoire of 
Ags that can be presented by pDC-derived MHC 
molecules is more restricted than those of mDCs 
because not all of these Ags reach the endocytic 
compartment into pDCs [ 68 ,  69 ]. However, some 
pDC receptors such as BDCA2, Siglec-H, and 
DCIR are able to bind Ags, mediate endocytosis, 
and process and present to T cells [ 68 ,  69 ]. 

 Interestingly, activated pDCs can also pro-
mote Th2-like immune responses [ 63 ] underlin-
ing their functional plasticity. There is evidence 
that IFN-α stimulates the differentiation of pDCs 
into Th1-polarizing pDCs, whereas in the absence 
of IFN-α but only in the presence of proinfl am-
matory signals, pDCs can also stimulate Th2 
polarization/differentiation [ 70 ]. Moreover, some 
authors reported that CpG-activated pDCs exert a 
strong immunosuppression and induce the differ-
entiation of allogeneic CD4 + CD25 +  T cells into 
CD4 + CD25 +  regulatory T cells in tumor condi-
tions [ 50 ,  55 ]. Very interestingly, pDCs can 
directly or indirectly recruit Treg cells via PD-L1/
PD-1 axis [ 71 ] (Fig.  11.2c ), release of immuno-
suppressive cytokines, such as IL-10 [ 55 ,  71 ], 
and the membrane tolerogenic inducible costim-
ulator ligand (ICOS-L) [ 72 ]. 

 pDCs can also synthesize large amounts of 
functional indoleamine 2,3-dioxygenase (IDO), 
which requires autocrine release of type I IFN, 
upon TLR9 and CD200R ligands’ stimulation 
[ 16 ]. IDO-derived metabolites promote T-cell 
death [ 55 ,  73 ] and suppresses T-cell immunity in 
normal and pathological settings. In the same 
manner, reduced tryptophan amounts can lead to 
the release of regulatory cytokines, such as IL-10 
[ 74 ], associated with a tolerogenic environment. 

 Taken together as a whole, these data suggest 
that pDCs represent a key effector cell in both 
innate and adaptive immunity regulation [ 1 ].  

11.6     pDCs and Human Diseases 

 A wide spectrum of human diseases including 
infection, autoimmunity, and cancer are associ-
ated with accumulation of pDCs in lymphoid and 
peripheral tissues strictly correlated to the reduc-
tion of these cells in the peripheral blood [ 21 ]. 
For many of these diseases, compelling evidence 
supports a pathogenic role of pDCs, mainly 
related to either the increase or reduction of pro-
infl ammatory or antiinfl ammatory functions of 
pDCs. Alternatively, pDC accumulation might 
exert an adjuvant immune function, as in viral 
infection, and in imiquimod-treated cancers, 
where they seem to encounter an antiviral and 
antitumor activity. In many other pathologies, 
information available is still limited, and pDC 
biology is largely unknown. 

11.6.1     Role of pDCs in Human 
Infections 

 pDCs have been most extensively studied during 
HIV and chronic viral hepatitis, particularly hep-
atitis C virus (HCV) infections. The emerging 
picture suggests an important role for pDCs in 
these infections; however, the exact mechanism 
and consequences of pDC activity are controver-
sial at present [ 75 ]. pDCs can respond to HCV 
and particularly to HCV-infected hepatocytes 
which induce pDCs to signal via an endocytosis- 
and IRF7-dependent mechanism, but not via the 
NF-κB pathway, implying a non-full functional 
response of pDCs that contribute to the evasion 
of immune responses by HCV [ 76 ]. In contrast, 
other studies demonstrated normal pDC func-
tionality in chronic HCV infection [ 77 ]. The res-
olution of this controversy would establish pDCs 
either as a weak link of anti-HCV immune 
response or as a potentially powerful effector 
type that can be harnessed for immunotherapy of 
chronic HCV. 

 Similarly, pDC dichotomy is observed in HIV 
infection, in which some authors assume that 
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pDCs can be infected with the HIV and/or 
respond to it with robust IFN secretion [ 78 ], 
while others reported impaired activity of pDCs 
in HIV infected patients [ 79 ,  80 ]. Interestingly, 
pDCs are progressively depleted from the blood 
of infected patients, either through infection- 
induced death or due to redistribution to lym-
phoid organs. The key unresolved question is 
whether HIV-induced pDC activation is benefi -
cial or harmful for the host. On one hand, IFN 
secretion by pDCs was shown to inhibit viral rep-
lication in T cells and promote pDC and cDC 
maturation, leading to the killing of infected T 
cells. In this context, it is likely that HIV may 
have evolved mechanisms to suppress pDC acti-
vation, e.g., through BDCA-2 ligation [ 81 ], 
which disables pDC functions as APCs and type I 
IFN-producing cells. On the other hand, the same 
functions of pDCs may exacerbate T-cell deple-
tion, e.g., by disseminating HIV to uninfected 
CD4 +  T cells or by bystander T-cell killing. Most 
importantly, elevated IFN response by pDCs may 
contribute to chronic immune activation and 
faster T-cell depletion [ 82 ]. It is plausible that the 
function of pDCs in HIV infection changes from 
protective to pathogenic as the disease progresses. 
At the early stages of infection, IFN production 
and virus cross-presentation by pDCs may help 
limit virus spread and mount cytotoxic T lympho-
cyte responses; whereas as the virus replication 
escapes control, IFN secretion may drive poly-
clonal T-cell hyperactivation and depletion [ 77 ]. 
The eventual loss, redistribution, or functional 
impairment of pDCs at the late stages of infection 
would contribute to immunodefi ciency. Thus, the 
role of pDCs in HIV and HCV infections high-
lights the power and the danger of pDC activation 
and reveals another strategy of immune system 
subversion by these viruses.  

11.6.2     Role of pDCs in 
Autoimmune Diseases 

 Several autoimmune diseases are associated 
with elevated levels of type I IFNs, implying a 
potential role for pDCs in cytokine production 
[ 83 ]. To date, the strongest evidence for pDC 
involvement has been accumulated from the 
study of two diseases: psoriasis and systemic 

lupus erythematosus (SLE) [ 84 ]. In psoriasis, 
early skin lesions are highly infi ltrated by 
 activated pDCs, corresponding with decreased 
numbers of circulating pDCs [ 85 ]. Blocking IFN 
production by pDCs using anti-BDCA-2 Ab 
inhibited the development of skin lesions in a 
xenograft mouse model, providing causal proof 
of pDC function in the disease [ 85 ]. Gilliet’s    
group [ 86 ] identifi ed the activating stimulus for 
pDCs as complexes of self-DNA with the antimi-
crobial peptide LL-37. This and possibly other 
homologous proteins promote the aggregation of 
released cellular DNA and RNA into large com-
plexes that effi ciently activate pDCs [ 86 ,  87 ]. 
Although the origin of these immunostimulatory 
complexes and the consequences of pDC activa-
tion remain to be elucidated, the major role of 
pDCs in psoriasis is well established. Similarly, 
lupus patients show a decrease in circulating 
pDCs and the accumulation of activated, IFN-
producing pDCs in affected tissues such as the 
skin [ 88 ]. The hallmark of lupus is the production 
of antinuclear Abs and immune complexes of 
such Abs with endogenous nucleic acids were 
shown to activate pDCs through TLR7/9 [ 89 ,  90 ]. 
These complexes may be delivered into the endo-
somal compartment of pDCs via Fc receptor II 
(FcγRII) [ 89 ,  91 ], and their stimulatory capacity 
can be augmented by the nuclear DNA-binding 
protein HMGB1 [ 92 ]. In addition, self-DNA 
forms complexes with LL-37 and other antimi-
crobial peptides released by neutrophils, and the 
resulting complexes induce IFN secretion in 
pDCs through TLR9 [ 92 ]. Notably, TLR-
activated pDCs become resistant to glucocorti-
coids, which could underlie the limited effi cacy 
of these drugs in lupus [ 93 ,  94 ]. The direct causal 
relationship between pDC- derived IFN and lupus 
progression/severity is hard to establish in the 
human system and should await for elucidation in 
animal models.    Nevertheless, the likely connec-
tion between the formation of nucleic acid-con-
taining immune complexes, pDC activation, and 
IFN secretion and the pronounced IFN signature 
of the disease makes a strong case for the pDC as 
a major player in lupus pathogenesis [ 77 ]. 
Overall, the aberrant conversion of self-nucleic 
acids into ligands for TLR7/TLR9 on pDCs (via 
immune complex formation, antimicrobial 
 peptide binding, and other mechanisms to be 
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 discovered) may represent a common pathogen-
esis step in psoriasis, lupus, and possibly other 
autoimmune diseases such as Sjögren’s syn-
drome [ 95 ]. 

 The activity of pDCs in viral and autoimmune 
diseases might teach us how and why pDCs highly 
populate cancerous masses playing a pivotal role 
for the tumor immune microenvironment.  

11.6.3     Role of pDCs in Cancer 

 Recent studies have shown that the density and 
location of immune cells in primary tumors can 
predict patient survival [ 96 ], supporting the 
notion that monitoring local immune response 
might represent a critical step in predicting 
patient prognosis and likely the response to anti-
tumor strategies [ 97 ]. pDCs have been found in a 
variety of neoplasms; nonetheless their function 
is still unknown. Solid tumors, such as head and 
neck, breast, ovarian, lung cancer, and skin 
tumors, are populated by non-active pDCs [ 97 ]. 
Clinical studies have suggested a direct correla-
tion between reduced numbers of circulating 
pDCs and higher presence of these cells into 
malignant masses [ 1 ,  97 ]. Although the causal 
relationship is still under investigation, recent 
results from mouse models are starting to defi ne 
the specifi c role(s) of pDCs in tumor masses. The 
mechanism that induces the recruitment of pDCs 
to the tumor site is not clear. Circulating pDCs 
express multiple chemotactic receptors such as 
CXCR4 and ChemR23 being the only biological 
active receptors in healthy donors [ 28 ]. CXCR4 
binds CXCL12, widely expressed in tissues and 
which most likely represents the main axis for 
pDC accumulation in human tumors [ 25 ]. 
CXCL9, CXCL10, and CXCL11, which bind 
CXCR3, present on pDCs, are all IFN-inducible 
proteins and might be involved in pDC infi ltra-
tion [ 98 ]. In addition, cytokines such as CXCL10, 
CXCL12, and chemokines, such as CCL2, are 
released by tumor and stromal tumor-associated 
cells, such as cancer-associated fi broblasts 
(CAFs), allowing pDCs to migrate from the 
 circulation to the injured tissue [ 23 ]. Accordingly, 
Drobits et al. demonstrated that CCL2 produced 

in the infl amed skin of tumor-bearing mice 
 facilitated pDC recruitment [ 56 ]. 

 Once recruited, pDCs seem to be important 
players in cancer immunoediting as their capac-
ity to bring together the innate and the adaptive 
immunity. In particular, it seems that critical role 
is played by type I IFNs. Endogenously produced 
IFN-α/IFN-β was required for the prevention of 
the growth of primary carcinogen-induced sar-
coma [ 99 ]. In this study, host hematopoietic cells 
were critical targets of IFN-α/IFN-β during the 
development of protective antitumor responses 
[ 99 ]. pDCs have been widely described as profes-
sional type I IFN-producing cells; therefore, the 
higher presence of pDCs in the tumor mass might 
directly link pDCs to cancer immunoediting in 
that pDCs may behave as antitumor cells. 
However, other reports showed opposite activi-
ties of pDCs in cancer. Animal studies demon-
strated that tumor-associated pDCs (TApDCs) 
are defective in type I IFN production but instead 
secrete immunosuppressive factors responsible 
for tumor progression [ 100 ,  101 ]. Similar to what 
described for viral infections and autoimmune 
diseases, the dichotomy of pDCs in cancer might 
underlie their phenotype and maturation state. 

11.6.3.1     Antitumor Activity of pDCs 
 Type I IFNs are pleiotropic cytokines with a dem-
onstrated clinical benefi t to cancer patients and 
have recently emerged as the connection bridge 
between tumor cells and the immune system 
[ 102 ]. pDCs produce large amounts of type I 
IFNs upon TLR7 and TLR9 stimulation. Drobits 
et al. showed that the intratumoral stimulation of 
pDCs with imiquimod renders these cells cyto-
toxic and contributes to tumor regression inde-
pendently from conventional adaptive immune 
mechanisms, but via the production of TRAIL 
and granzyme B secretion by pDCs via IFNAR1 
signaling [ 56 ]. However, the role of TApDC- 
derived granzyme B in the absence of perforins 
not produced by pDCs still remains to be 
elucidated. 

 Another mechanism that may underlie the 
antitumor activity of TApDCs is their antigen- 
presenting activity. Although in their immature 
state, TApDC are still capable to internalize Ags 

M. Terlizzi et al.



187

 in vivo  and to activate CD4 +  T cells [ 103 ]. 
The immature state of pDCs is refl ected in that 
they have altered cytokine production in response 
to TLR-9 ligands  in vitro , while preserving 
 unaltered response to TLR7 ligands [ 104 ], which 
instead seem to have potential antitumor activity. 
To date, imiquimod is in phase III clinical trial 
against melanoma. In contrast to these results, 
systemic administration of CpG favored pDC- 
induced lung tumor progression [ 105 ], as also 
observed in a mouse model of breast cancer 
[ 104 ]. Similar to the data showed by Drobits 
et al., Mercier et al. proved that, although CpG 
did not alter TApDC activity, the intratumoral 
administration of a TLR7 ligand led to TApDC 
activation and displayed a potent curative effect 
in a type I IFN-dependent manner [ 56 ]. In addi-
tion, Liu et al. [ 106 ] demonstrated that the intra-
tumoral activation of pDCs via CpG could induce 
NK cell-dependent tumor regression in a mela-
noma animal model. Remarkable is that TLR9 
expression and responsiveness is impaired by 
tumor-derived components [ 107 ]. ILT7 on pDCs 
binds BST-2 expressed by tumor cells and their 
interaction inhibits type I IFN production by 
pDCs, disabling TLR9-dependent signaling path-
ways [ 108 ]. Moreover, tumor-derived    TGF-β and 
TNF-α have been identifi ed as the main  in vivo 
 mechanisms blocking type I IFN production by 
pDC in tumors through inhibition of IRF7 signal-
ing complex, leading to a negative impact of 
defective pDCs in breast cancer through Treg 
expansion [ 109 ]. 

 Taken altogether, these data supported the 
rationale to use TLR7 ligands to restore TApDC 
activation in both breast and skin cancer. 
However, it still remains to be determined how 
the activation of TLR7 and TLR9, which is 
MyD88-dependent, on pDCs, can behave differ-
ently according to the tissue specifi city and on 
the route of administration.  

11.6.3.2     Pro-tumor Activity of pDCs 
 Several evidence have shown the prevailing 
immunosuppressive activity of pDCs due to both 
of the impairment in type I IFN production and 
the release of pro-tumor factors [ 1 ]. Stimulation 
of lung tumor-bearing mice with systemic CpG, a 

TLR9 ligand, did not lead to the same results as 
observed by Liu et al. [ 106 ]. Activation of pDCs 
through CpG had the opposite effect in that pDC 
activation increased the recruitment of Tregs and 
limited the infl ammatory cell infl ux to the lung, 
thereby establishing an immunosuppressive envi-
ronment enabling tumor growth [ 1 ,  105 ,  109 ]. 
The same was observed in another mouse model 
of breast cancer in which  in vivo  depletion of 
pDCs delayed tumor growth showing that 
TApDC provide an immune-subversive environ-
ment, most likely through Treg activation thus 
favoring breast tumor progression [ 110 ]. The dis-
crepancy in these data and the one from Liu et al. 
[ 106 ] could be a result of tissue-specifi city and 
route of CpG administration which is very impor-
tant in determining the tumor microenvironment, 
which in turn strongly infl uences immune cell 
phenotype. Moreover, in the absence of a specifi c 
stimulus, pDCs in the tumor mass have been 
associated with the development and mainte-
nance of the immunosuppressive microenviron-
ment [ 111 ]. Similar to mice, human pDCs in 
tumor masses are in their immature phenotype; 
nonetheless, a thorough study has never been 
conducted on the role of these cells in human 
tumor microenvironment. Nevertheless, it is clear 
that pDCs play a fundamental role in the tumor 
microenvironment. The specifi c depletion of 
pDCs induced lung tumor regression with a con-
comitant Th1 polarization that arrested tumor 
progression [ 105 ]. On the other hand, stimulation 
of TLR7, rather than TLR9, can subvert the 
immunosuppressive activity of TApDCs. TLR7- 
dependent pathway induced melanoma regres-
sion in mice [ 56 ] through the transformation of 
pDCs into tumor-killing cells able to produce 
granzyme B and TRAIL. Likewise, another 
group revealed that human pDCs can kill mela-
noma cells  in vitro  under imiquimod and IFN-α 
stimulation [ 112 ]. While pDCs can produce high 
levels of granzyme B, their role as cytotoxic 
immune cells remains to be determined as they 
lack the pore-forming perforin [ 112 ]. On the 
other hand, it has been proposed that under IL-3 
and IL-10 exposure, pDCs release abundant 
granzyme B, which in turn is capable of 
 blocking T-cell proliferation, thus suggesting a 
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new  potential mechanism for tumor-immune 
 evasion [ 112 ]. 

 Several mechanisms have been postulated 
for the immunosuppressive nature of tumor- 
associated pDCs: (1) release of tolerogenic fac-
tors, (2) ILT-7 expression, (3) PD-L1 expression, 
(4) Siglec-H activity, and (5) induction of a Th2- 
like environment. Tolerogenic factors produced 
by tumor cells, such as PGE2 [ 113 ] and TGF-β 
[ 109 ], can alter type I IFN signaling pathway. 
Tumor-derived PGE2 and TGF-β act synergisti-
cally to block IFN-α and TNF-α secretion by 
pDCs [ 16 ,  109 ]. Opposite to IFN-α and TNF-α, 
IL-6 and IL-8 production are enhanced in PGE2- 
and TGF-β-treated pDC [ 114 ]. Both IL-6 and 
IL-8 promote immune-cell survival and chemo-
taxis but also enhance tumor cell proliferation 
and angiogenesis [ 115 ,  116 ]. Moreover, PGE2 is 
crucial for the secretion of other immunomodula-
tory factors such as SDF-1, the ligand for 
CXCR4, which is upregulated on both human 
pDCs and tumor environment [ 117 ]. Thus, pDCs 
can be retained in the tumor tissue via PGE2-
induced sensitization for SDF-1 [ 29 ]. In further 
support, PGE2- and TGF-β-mediated retention of 
pDCs in the tumor tissue is accompanied by the 
suppression of the lymph node-homing receptor, 
CCR7 [ 113 ]. PGE2-exposed pDCs are unlikely 
to present Ags and to prime T cells in the regional 
LNs. Concomitantly, suppression of CD40 
expression and the overexpression of CD80/86 
on pDCs enhances and even promotes Treg acti-
vation via the negative regulatory receptor cyto-
toxic T-lymphocyte antigen-4 (CTLA-4) [ 118 , 
 119 ] (Fig.  11.2c ). 

 Another potential mechanism for pDCs favor-
ing tumor immune escape is the release of IDO- 
derived metabolites [ 119 ] from both pDCs 
(Fig.  11.2c ) and tumor cells, inducing Treg dif-
ferentiation and Th1 cell apoptosis [ 55 ,  74 ]. Most 
human tumors overexpress IDO [ 120 ], explain-
ing the elevated tryptophan catabolism in cancer 
patients. Interestingly, the activation of IDO in 
either cancerous cells or regulatory DCs can be 
suffi cient to promote tumor immune escape 
[ 121 ]. Some cancer cells, such as lung cancer- 
derived cells, highly express ILT7L, which can 
bind to ILT7 that is on pDCs [ 122 ]. ILT7L is 

induced by IFN-γ and inhibits IFN-α production 
by human pDCs, indicating that the ILT7L-ILT7 
interaction between cancer cells and pDCs may 
cause impairment of pDCs in the tumor microen-
vironment, possibly leading to immunosuppres-
sion and poor prognosis of cancer patients as 
observed in preclinical studies [ 119 ]. Moreover, 
under tumoral conditions pDCs can also direct 
mDC phenotype toward a more immature state, 
as already reported for human lung cancer [ 16 , 
 70 ,  105 ]. However, the underlying mechanism is 
still not defi ned. 

 To date, pDCs can directly interact with Treg 
via the PD-1/PD-L1 axis [ 55 ] (Fig.  11.2c ), pav-
ing the road to another mechanism of action of 
the newly approved monoclonal Ab, anti-PD-1 
for cancer immunotherapy. 

 Moreover, Ag targeting to pDCs via Siglec-H 
inhibits Th1 cell-dependent immunity [ 103 ]. The 
administration of CpG increased Siglec-H 
expression on pDCs recruited to the lung of 
tumor-bearing mice, further supporting their 
implication in the inhibition of Th1 cell expan-
sion [ 105 ]. 

 pDCs activated by IL-3 and CD40 ligand 
(CD40L) promote the differentiation of naive 
CD4 +  and CD8 +  T cells into Th2 cells and aner-
gic IL-10-producing CD8 +  regulatory T cells, 
respectively [ 123 ]. This state of anergy is medi-
ated by IL-10, either directly (by interaction 
with cytotoxic T lymphocytes, CTLs) or indi-
rectly (by inhibition of DCs) [ 114 ]. Since the 
tumor microenvironment is Th2-like, pDCs par-
ticipate in this scenario by further augmenting 
immunosuppression. 

 Overall, these effects may allow pDCs to 
establish a reduced infl ammatory pattern but, at 
the same time to favor tumor progression/estab-
lishment, as observed in asthma [ 124 ], virus 
infection [ 125 ], and cigarette smoke exposure 
[ 70 ]. To note, the aforementioned studies describe 
the role of pDCs which are not activated by a spe-
cifi c stimulus; then, it seems obvious that the 
activation of pDCs at the tumor site is a limiting 
step in tumor regression. Therefore, the dichot-
omy of pDCs in cancer may rely on the stimula-
tion/activation of pDCs with specifi c stimuli as in 
the case of imiquimod.    
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11.7     Potential Therapies: Clinical 
Signifi cance 

 Secreted factors by tumor cells, such as TGF-β, 
VEGF, and IL-10, may inhibit pDCs functions 
with the resulting prevailing of the suppressive 
immune response dictated by the same pDCs and 
adaptive immune cells. On the contrary, other 
studies reported tumor-infi ltrating pDCs as func-
tional and fully competent APCs. Production of 
IFN-α renders TApDCs as antitumor cells. In this 
context, the activation of intratumoral pDCs by 
means of imiquimod (TLR7 ligand) and/or CpG 
(TLR9 ligand) has been successfully used in the 
clinic to treat basal cell carcinoma and melanoma 
[ 1 ]. TLR signaling on pDCs can be used to induce 
type I IFNs and possibly protect pDCs from 
tumor-derived inhibitory factors (such as TGF-β 
and IL-10), as well as support T-cell-mediated 
antitumor immune response. However, this prac-
tice can only refer to the activation of TApDCs 
in loco, as mouse models showed that systemic 
administration of CpG rendered pDCs immuno-
suppressive, favoring lung and breast tumor pro-
gression [ 1 ,  101 ,  105 ,  109 ,  110 ]. 

 Many therapeutic trials have been designed to 
potentiate CTL responses. Myeloid-derived 
 dendritic cells-based vaccines succeeded in induc-
ing specifi c T cells in patients, but without suffi -
cient clinical effi cacy [ 126 ]. A potential 
explanation of this failure may underlie the role of 
pDCs at modulating tumor immune-environment 
and, more specifi cally, mDCs activity [ 105 ]. 
Animal studies on several diseases, such as 
asthma, virus infection, and cigarette-exposed and 
lung cancer models, revealed that pDCs can ham-
per the activity of mDCs [ 105 ]. In particular, the 
presence of high levels of pDCs in tumor masses 
was associated with immature mDCs incapable of 
mounting an effective adaptive immune response 
against cancer. Specifi c ablation of pDCs ren-
dered mDCs active and prone to induction of a 
CTL response against tumor cell proliferation 
[ 105 ]. Therefore, we speculate that pharmacologi-
cal manipulation of pDC phenotype could result 
in successful antitumor therapy together with the 
conventional strategies. In support, our unpub-
lished data showed that  doxorubicin or oxalipla-

tin, drugs that are highly used in the clinical 
antitumor practice, had a much effective activity 
against lung tumor progression due to the induc-
tion of proinfl ammatory pDCs, activated by tumor 
cell death. This latter study was conducted on 
mouse models. Therefore, clinical correspon-
dence could prove the potential antitumor activity 
of proinfl ammatory pDCs resulting in tumor 
regression. In addition, previous studies on the 
role of pDCs as antitumor cells only after intratu-
moral activation of these cells by means of imiqui-
mod and CpG could underlie the same mechanism 
of action. In other words, several endogenous 
molecules (DAMPs) that participate to the sterile 
infl ammation have been described as potential 
TLR ligands. Similarly, we could speculate that 
tumor cell death can induce the release of DAMPs 
which activate pDCs in a TLR7- or TLR9- 
dependent manner leading to type I IFN produc-
tion by pDCs. This prevails and allows the gap 
between the innate and the adaptive immunity to 
overcome tumor-mediated immunosuppression. 
In this scenario, Aspord et al. demonstrated that 
stimulation of PBMCs from HLA-A*0201 +  
donors by HLA-A*0201 matched allogeneic 
pDCs pulsed with tumor-derived peptides trig-
gered high levels of antigen-specifi c and func-
tional cytotoxic T lymphocyte responses; this 
resulted in melanoma regression in a humanized 
mouse model [ 127 ]. This semi-allogeneic pDC 
vaccine was more effective than conventional 
mDC- based vaccines, endowing a strong potential 
for clinical application in cancer treatment [ 127 ].  

11.8    Concluding Remarks 

 In the last decade several studies provided evi-
dence that pDCs actively participate in a wide 
spectrum of human diseases including infection, 
autoimmunity, and cancer. In particular, human 
neoplasms are populated by pDCs which pres-
ence is related to a poor prognosis. However, the 
role of tumor-associated pDCs (TApDCs) 
remains controversial. Various studies indicate 
that pDCs play an immunosuppressive role and 
facilitate tumor progression in both animal mod-
els and humans. In contrast, others found that the 
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presence of activated pDCs results in tumor 
regression in mice. Given these fi ndings, it is 
clear that pDC function plays a critical role in 
tumor biology. Understanding pDC biology in 
cancer represents an important necessity and will 
pave the road to novel therapeutic strategies to 
fi ght malignancies.     
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12.1            Introduction 

 The immune system’s regulation of the  cancerous 
process is a long-known fact. However, the role 
played by it in malignancies has been a matter of 
debate. The history of cancer immunity dates 
back to 1909 when Paul Ehrlich proposed the 
concept of immunosurveillance in cancers for the 
fi rst time [ 1 ]. However, due to lack of  experimental 
evidence, this concept fell into disrepute. In 1957 
Burnet and Thomas argued that indeed, the 
immune system fi ghts and eliminates certain 
 cancers and the frequency of malignancy would 
have been much higher if immunity was not there 
[ 2 ]. In 1970s, several experiments were con-
ducted in athymic mice to prove immunosurveil-
lance in cancers; however, the results were not as 
expected, which was thought to be due to the 
presence of residual immunity in the animals 
used for these studies [ 3 – 5 ]. Consequently, the 
experiments done again on animal models with 
specifi c molecular immune defects revealed more 
frequent development of carcinogen-induced 
tumors in these immunodefi cient animals [ 6 ]. 
However, more recently, the recognition of the 
dual nature of the part played by immune system 
in malignancies has led to the modern concept of 
cancer immunoediting. Since then, immunoedit-
ing in cancer has served as the foundation stone 
of most of the work being carried out in cancer 
immunity [ 7 , 8 ].  
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12.2     Cancer Immunoediting 
with Its Three Es: Refl ection 
of the Dual Role of Immunity 
in Cancer 

 The cancer immunoediting theory states that 
tumors are sculpted by the immune system, result-
ing in the selective growth of the variants which 
are better equipped to fi ght the immune system 
(Fig.  12.1 ). This selective growth advantage con-
ferred on tumors is a consequence of a number of 
genetic and epigenetic events occurring within the 

tumors. The clue to the tumor- editing role of the 
immune system came from the experiments of 
Robert Schreiber’s group on spontaneous and 
3′-methylcholanthrene (MCA)-induced tumors in 
129/SvEv mice (Fig.  12.2 ) [ 6 ]. The concept of 
immunoediting was introduced by Dunn et al. in 
2002 to explain the antitumor as well as pro-tumor 
features of our immune response at different stages 
of cancer [ 3 ]. Since then, many studies conducted 
over a period of time have demonstrated the edit-
ing of tumors by host adoptive cells, leading to 
their complete reprogramming. A more recent 
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study has linked processes such as epithelial mes-
enchymal transition in tumor cells, which result in 
an invasive phenotype, to the immunoediting pro-
cess through the involvement of cytokines such as 
TNF-α and TGF-β [ 9 ]. Cancer immunoediting is a 
broad concept which includes three “Es” of elimi-
nation, equilibrium, and escape which together 
sum up to all the events occurring during an 
immune response to cancer [ 3 ].

12.2.1        Immune Elimination: 
Evidences For and Against 

 The immune elimination phase of cancer immu-
noediting is sine qua non of the original 
 immunosurveillance process. It envisages the 
destruction or eradication of cancer by the host 
immune  system and is believed to occur when a 
cell gets transformed by overcoming its  intrinsic 
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Late tumors
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Early tumors
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  Fig. 12.2    Mice experiments by Shankaran et al. [ 6 ] demon-
strating surveillance and sculpting roles of immune system. 
( a ) Immunodefi cient (RAG-2−/−/IFNGR1/STAT1−/− or 
combined RAG-2−/− STAT1−/−, RkSk) mice developed 
tumors earlier than wild type and with greater frequency on 
subcutaneous injection of MCA, thus necessitating the 
presence of intact T, NKT, and B cells for prevention of 
chemically induced tumors. ( b ) Spontaneous tumor devel-
opment was also observed to be higher in RAG-2−/− and 
RkSk mice as compared to unmanipulated 129/SvEv wild-
type mice. Moreover, the later merely developed benign 
tumors and no malignancy was noted. ( c ) Furthermore, 
cells were taken from MCA- induced tumors in wild and 

RAG-2−/− mice and were injected into immunocompe-
tent and RAG-2−/− mice. Progressive tumor growth was 
noted in immunodefi cient mice transplanted with sarcoma 
cells derived from wild or RAG-2−/− mice. The immuno-
competent mice transplanted with sarcoma cells from 
wild mice also showed progressive tumor growth; how-
ever, many mice transplanted with sarcoma cells derived 
from RAG-2−/− mice rejected the transplanted tumor 
cells. This occurred due to sculpting of sarcoma by the 
immune  system in wild mice, thus rendering it less immu-
nogenic. Tumors from the immunodefi cient mice which 
were not edited were more immunogenic and thus were 
rejected by immunocompetent mice       
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tumor suppressor mechanisms, before being 
able to establish a full-blown tumor. Although 
the existence of such a phenomenon has been 
hypothesized since long, the early experiments 
carried out on nude mice models which are only 
partially immunodefi cient failed to prove it. 
The defi nitive experimental proof to its pres-
ence came from the work of Shankaran et al. in 
the last decade (Table  12.1 , Fig.  12.2 ) [ 6 ]. 
However, despite the experimental evidence of 
its presence in mice, it has been diffi cult to 
demonstrate it in the clinical scenario. Still, the 
data obtained from various cancer registries 
wherein a higher cancer incidence especially of 
viral etiology has been observed in immuno-
suppressed transplant recipients suggests its 
existence in human subjects as well. Currently, 
a similar trend has been noticed in the setting of 
acquired immunodefi ciency  syndrome [ 13 , 14 ]. 
The proponents of this stage in cancer immu-
nity state that many of the cell transformation 
events occurring in our body may be removed 

quietly by the immune system  without us ever 
being aware about it. Spontaneous regression 
has been reported in some tumors including 
cutaneous melanoma, retinoblastoma, osteosar-
coma, etc., in humans [ 15 ]. Studies have shown 
that both innate as well as adaptive immune 
response contribute to fi ghting off the cancer 
from our body.

12.2.1.1       The Key Players in Anticancer 
Immunity 

 The key players responsible for launching an 
effective immune response against cancer include 
the immune cells and soluble molecules secreted 
into the tumor milieu (Fig.  12.3 ). In case, the 
tumor exhibits high immunogenicity, a specifi c 
immune response occurs against it. However, if 
tumor immunogenicity is low, the nonspecifi c 
effector responses gain importance.

   The major cell types involved in an antitumor 
immune response are adoptive T cells, which 
not only kill tumor cells directly with the help 

   Table 12.1    Timeline of events depicting evolution of cancer immunity from immunosurveillance to immunoediting   

 Study  Hypothesis/observation/experimental evidence  Results 

 William B Cooley 
(1891) [ 10 ] 

 Injected cultures of heat-inactivated bacteria or 
bacterial culture supernatants into cancer patients 

 Demonstrated marked regression 
of tumors and prolonged survival 
after the treatment 

 Paul Ehrlich 
(1909) [ 1 ] 

 Immune system protects the host from malignancy  Gave birth to the idea of immune 
control of malignancies 

 Burnet 
and Thomas 
(1957) [ 2 ] 

 Immune system must be removing the carcinogenic 
events arising out of ongoing evolutionary genetic 
remodeling taking place in an individual 

 Formal emergence of 
immunosurveillance hypothesis 

 Several groups 
(1965–1973) 

 Induced immunodefi ciency by thymectomy or 
heterologous antilymphocyte serum or 
pharmacological agents. Immunodefi cient animals 
are more prone to develop cancers 

 No consensus regarding 
immunosurveillance 

 Stutman O 
(1975) [ 11 ] 

 The methylcholanthrene (MCA)-induced cancer 
incidence in immunodefi cient nude athymic mice 
was not higher than the control mice 

 Rejection of immunosurveillance 
hypothesis 

 Kaplan et al. 
(1998) [ 12 ] 

 IFN-γ and perforin defi cient animals were more 
prone to MCA-induced tumors as compared to 
controls 

 Resurrection of immunosurveillance 
in cancer 

 Shankaran et al. 
(2001) [ 6 ] 

    Experiments in RAG-2 null mice (lacking T, B, 
and NKT cells) revealed higher incidence of both 
MCA-induced sarcomas and spontaneous epithelial 
tumors in these animals 

 Defi nitive evidence of existence 
of cancer immunosurveillance 

 Dunn et al. 
(2002) [ 3 ] 

 Concept of cancer immunoediting to explain the 
tumor sculpting role of immune system 

 Coined the term immune elimination 
as a part of broader concept of cancer 
immunoediting with 3 Es of 
elimination, equilibrium, and escape 
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of TNF-α but are also essential for the activation 
of other components of the immune machin-
ery. The CD8 +  cytotoxic lymphocytes (CTLs) 
are able to directly recognize tumor cells which 
express MHC I and can also be activated by 
CD4 +  T-helper cells. They may cause lysis of the 
tumor cells via perforin- and granzyme-depen-
dent mechanisms. The CD4 +  T cells also secrete 
factors to induce proliferation of B cells and to 
promote their differentiation to antibody (Ab)-
secreting plasma cells. The later may contribute 
to antitumor immunity by complement- mediated 
lysis or by antibody-dependent cellular  cytotoxity 
(ADCC). The CD4 +  T-helper cells also activate 
macrophages by secreting IFN-γ, TNF, IL-4, 
and granulocyte- macrophage  colony-stimulating 

 factor (GM-CSF). The activated macrophages 
may phagocytize tumor cells and kill them by 
releasing toxic free radicals including O 2  −  and 
NO 2  −  or by becoming antigen-presenting cells 
(APCs) which present tumor antigens to CD4 +  T 
cells such as dendritic cells (DCs). Natural killer 
(NK) cells also have the potential to directly rec-
ognize and destroy tumor cells via tumor necrosis 
factor-related apoptosis- inducing ligand (TRAIL) 
and IFN-γ- dependent mechanisms. Loss of MHC 
class I as commonly observed in tumors may 
be responsible for their increased susceptibility 
to NK-cell- mediated lysis. In addition, NK-cell 
activity may also be enhanced by IL-2 and IFN-γ 
produced by the CD4 +  T-helper cells. NKT and γδ 
T cells also recognize the danger signals released 
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  Fig. 12.3    Diagram showing key players involved in anti-
tumor immune response. The tumor releases Ags which 
are chaperoned by heat-shock proteins and taken up by the 
APCs which process them and present to CD4 +  T cells. 
The later being the central point of immune response acti-
vate various other cells including NK cells, CD8 +  cells, 
macrophages, and B cells which act in various ways to 

counteract the tumors. In addition, tumors may directly 
activate the cytotoxic cells including CD8 +  and NK cells 
and phagocytic cells. While the former two can cause 
direct tumor lysis primarily via perforin and granzymes, 
the later may engulf tumor cells and kill them by releasing 
lytic molecules or may process and present tumor Ags to 
CD4 +  T cells       
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from the tumors and become activated. The NKT 
cells especially the invariant or the type I NKT, 
which are CD4 −  CD8 −  and mainly recognize the 
 lipid/glycolipid antigens (Ags) via CD1d mol-
ecule, have been recognized to protect against 
certain cancers. The protective role is however 
supposed to be indirectly exerted via secretion of 
IFN-γ and subsequent activation of NK and CD8 +  
T cells. The γδ T cells which represent 1–5 % of 
peripheral blood T cells are also reported to infi l-
trate and cause lysis of tumors, both  in vitro  and 
 in vivo  [ 16 – 20 ]. 

 In various clinical studies on different cancers 
including colon, ovary, lung carcinomas, and 
melanoma, the tumor-infi ltrating lymphocytes 
(TILs) have been associated with increased 
time to disease recurrence, an enhanced 5-year 
survival, and an overall good prognosis. Also, 
in a study on metastatic colorectal cancer, TIL 
density at the invasive margin was linked to a 
better chemotherapeutic response. Similarly, 
increased infi ltration by CD3 +  and CD8 +  T 
cells, NK cells, and γδT cells has been corre-
lated with improved outcomes in epithelial 
ovarian cancers. Some of the above studies 
have done quantitative assessment of the TILs 
in tumors, thus impressed upon the need to have 
a scoring system for TILs in order to determine 
the exact tumor behavior [ 21 , 22 ].   

12.2.2     The Equilibrium Phase : 
The Most Controversial 
and the Least 
Understood Phase  

 This phase represents an intermediate stage of 
immune response in cancer. During this phase, 
the cancer and the immune system both coexist 
without allowing each other to dominate. The 
immune system cannot eliminate the cancer dur-
ing this phase; however, it does not allow it to 
expand or metastasize. The cancer in turn is 
sculpted by the immune system, thus leading to 
the emergence of variants resistant to the immu-
nological attack [ 3 ]. 

 Various studies in mice have pointed toward 
the occurrence of the equilibrium phase in cancer 

immunity. In experiments on MCA-induced 
tumors in mice, Koebel et al. demonstrated the 
presence of inert lesions in healthy mice, which 
grew when subjected to immunological oppres-
sion (Fig.  12.4 ) [ 23 ]. The study served to be an 
important milestone in proving the existence of 
the equilibrium phase in cancers. Likewise, the 
tumors have been observed to stay dormant for 
decades after remission in human cancer patients, 
which is believed to be due to the fact that immune 
system keeps them in check. The immune system 
is believed to synergize with chemoradiotherapy 
in treatment-induced remission which renders the 
tumors silent. However, they relapse promptly 
after any kind of immune insult, thereby, further 
proving the presence of immune dormancy. The 
minimal residual disease commonly observed in 
hematological malignancies and the emerging 
donor-derived malignancies in immunosup-
pressed transplant recipients are considered two 
examples of the equilibrium phase in humans. 
Even though the immune system prevents mono-
clonal gammopathy of unknown signifi cance 
(MGUS) from progressing to myeloma, it fails to 
eliminate the MGUS cells [ 24 , 25 ].

   Adoptive T cells, both CD4 +  and CD8 + , have 
been observed to play a pivotal role in cancer 
immune equilibrium. Immune-suffi cient mice 
with inert tumors are shown to develop into full- 
fl edged tumors only upon depletion of T cells/
IFN-γ/IL-12. However, the depletion of innate 
immune cells was not found to result in the devel-
opment of tumors. Moreover, tumor cells were 
found to be highly immunogenic during the equi-
librium phase, as they are unedited by the immune 
system and become less immunogenic at the end 
of this phase [ 23 , 26 , 27 ]. 

 In addition, the mechanisms including cellular 
and angiogenic dormancy also complement the 
immune system in maintaining cancer cells in the 
dormant state. In the former, the tumor cells hide 
themselves in specialized niches, become quies-
cent, and wait for the opportunity to regrow. In 
the later condition, expansion is not possible, due 
to the lack of adequate vascularization. When 
faced with favorable conditions, tumor cells 
come out of their slumber and undergo a series of 
genetic and epigenetic  modifi cations which 
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increase their immune resistance, eventually 
leading to the next phase of cancer immunity, 
known as immune escape. Studies are being con-
ducted to identify the genetic and molecular sig-
natures of dormant tumor cells which allow them 
to retain their  dormant status or facilitate their 
escape [ 23 , 26 – 29 ].  

12.2.3     Immune Escape: The Best 
Studied Phase 

 The escape phase represents the fi nal and most 
extensively studied phase of the immunoediting 
process. The unleashing of mechanisms  underlying 

the escape phase has formed the basis for the 
development of various therapeutic agents with 
the aim to stop the progress of the neoplastic pro-
cess. Due to increasing genomic instability, can-
cer cells acquire various characteristics enabling 
them to ward off the immune process or to mod-
ify it in such a way which is benefi cial to tumor 
cells. Tumors utilize a number of strategies to 
evade an effective immune response (Fig.  12.5 ). 
The basis of an effective immune response 
against any Ag is its recognition as a nonself and 
its presentation to immune effector cells. Tumors 
escape recognition by either presenting self Ags 
to which the immune system is already tolerized 
or by modulating their antigenicity. The later 

Low dose MCA
25μg subcutaneously

C57BL/6&
129/SvEv mice

a

Wild

↑Ki67
↓Tunnel

200-230 days

Atypical Fibroblasts
↓Ki67
↑Tunnel

Small stable tumorsProgressive tumors

Removed
Control

Monoclonal antibody
T-cell and IFN-γ depleting

monoclonal antibodies

b

No additional tumors Progressive tumors in 60%

Anti -NK 1.1 /
-NKG2D /
-TRAIL
antibodies

No additional tumors

  Fig. 12.4    Experiments conducted in mice by Koebel 
et al. demonstrating the presence of equilibrium phase in 
tumorigenesis. ( a ) Groups of wild-type C57BL/6 or 129/
SvEv mice were injected with a single low dose of 
MCA. After monitoring for 200–230 days, the mice with 
rapidly growing sarcomas were set aside. ( b ) The remain-
ing mice displaying small stable masses at injection site 
were injected with control Ab or mAbs depleting specifi c 

components of innate and adoptive immunity. The mice in 
former two groups did not develop any additional tumors; 
however, those in the last group (T cell and IFN-γ 
depleted) showed rapid tumor growth. This could only be 
explained by cancer immune equilibrium in which the 
tumors were not removed, but restricted by the immune 
process. However, on suppression of adoptive immunity 
progressive tumor growth was observed       

 

12 Cancer Immunoediting: Immunosurveillance, Immune Equilibrium, and Immune Escape



202

involves the shedding of tumor Ags into the cir-
culation from where they may be removed [ 30 ]. 
The next line of defense adopted by tumor cells is 
the modulation of APCs, rendering them incapa-
ble of effectively presenting cancer Ags to 
immune cells. The APCs like DCs are either 
deleted or functionally compromised in response 
to the factors secreted by malignant cells [ 31 ]. 
Tumor-induced co-inhibition of the second signal 
of the Ag presentation and consequent immuno-
suppression has now been recognized in several 
cancer types [ 32 ]. In addition, the tumors alter 
MHC molecules especially MHC class I and 
other components of Ag processing machinery in 
the APCs, so as to further incapacitate the pre-
sentation of its Ags to the immune system [ 33 ]. 
Besides, tumor cells plunge into an active battle 
against the immune process by attacking its 
adoptive and innate immune cells. Tumor cells 
subvert T cells and render them anergic through 
co-inhibitory molecules including cytotoxic 

T-lymphocyte  antigen-4 (CTLA-4) and PD-L1 
[ 34 ]. Anergic T cells are unable to produce cyto-
kines such as IL-2 and IFN-γ. Therefore, the 
autocrine and paracrine activation of CD4 +  cells 
and other immune cells including B cells, macro-
phages, and CD8 +  cells are blocked, leading to 
further suppression of the immune cascade [ 35 ]. 
Moreover, tumors also express Fas ligands on T 
cells, leading to lymphocyte apoptosis [ 36 ]. Not 
only do they suppress CD4 +  and CD8 +  cells, but 
also promote the suppressor T-cell phenotype 
such as CD25 + Foxp3 +  T-regulatory cells. These 
cells secrete IL-10, TGF-β, and VEGF which 
suppress the antitumor response and promote 
tumoral angiogenesis (Table  12.2 ) [ 37 ]. Besides, 
tumors also inhibit innate immune response by 
induction of quantitative and qualitative defects 
in NK cells, macrophages, and neutrophils. NK 
cells have been found to exhibit decreased cyto-
toxic potentiality due to the presence of tumor- 
secreted factors including TGF-β in the tumor 
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  Fig. 12.5    Mechanisms of immune evasion by the cancer       
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microenvironment (TME) [ 38 ]. The later along 
with other cytokines (IL-4, IL-13, etc.) present in 
the tumor bed favors the accumulation of M2 
macrophages, which also induce immunosup-
pression [ 39 ]. Recruitment of immature myeloid 
cells like myeloid-derived suppressor cells 
(MDSCs) further complements the tumor- 
immunodefi cient environment by reducing T-cell 
and NK-cell activation and promoting neovascu-
larization via factors like VEGF [ 40 ].

    Other mechanisms such as anaerobic  glycolysis, 
hypoxia, and acidity of the TME along with the 
existent defects in tryptophan metabolism induced 
by increased expression of the enzyme indole-
amine 2,3-dioxygenase (IDO) further depress the 
antitumor immunity, thereby leading to cancer 
progression and metastasis [ 41 – 43 ].   

12.3     Tumor Antigens and Cancer 
Immunoediting 

 Antigenicity of tumors has always been a matter of 
discussion. In the past, it was believed that since 
tumors are derived from self cells, the immune 
system is more receptive to their Ags. However, it 

was subsequently noticed that tumors may express 
Ags which are quantitatively or qualitatively dif-
ferent from self Ags, thus rendering them sensitive 
to the immune attack. Quantitative differences 
include signifi cantly increased expression of Ags, 
which are less expressed in normal or benign con-
ditions or  reexpression of Ags only expressed 
at a specifi c stage of embryonic development 
(Table  12.3 ). Moreover, the lineage-specifi c Ags 
expressed normally in specifi c tissues may be 
expressed aberrantly in tumor cells. Qualitative 
differences are produced due to mutational events 
occurring during carcinogenesis. Over the years, 
several efforts have been made for the identifi ca-
tion and mapping of the Ags expressed on tumor 
cells; various nomenclatures have been used to 
characterize them such as tumor-associated Ags 
and tumor-specifi c Ags. Antigens capable of evok-
ing a tumor-specifi c immune response have also 
been designated as tumor rejection Ags in some 
textbooks, e.g., tyrosinase, MUC-1, Her-2/neu, 
β-catenin, caspase-8, etc. [ 44 ]. Previous studies on 
tumor antigens (TAs) have mainly focused on the 
discovery of new Ags and their classifi cation into 
two subclasses, a group which can evoke a protec-
tive immune response and another group serving 
as potential therapeutic targets. However, the 
advent of cancer immunoediting theory has 
changed our insight on TAs, as they are now con-
sidered to be one of the prime targets of the above 
process. Currently, ongoing studies are attempting 
to differentiate between the antigenicity of the 
original or unedited tumors and those sculpted 
by the immune system [ 17 , 45 , 46 ]. Differences 
between the immunogenicity of tumors derived 
from carcinogen MCA (more immunogenic) and 
those arising spontaneously (less immunogenic) in 
mice have been described by DuPage et al. [ 47 ]. 
They also showed that primary sarcomas are 
edited by the immune system and, hence, become 
less immunogenic in order to escape the T-cell 
response. In the same line, Matsushita et al. 
obtained similar results in their study on tumor 
exomes [ 48 ]. A recent study has revealed the pres-
ence of antiinfl ammatory antibodies to tumor-
associated Ags like NY-ESO-1, thereby suggesting 
the importance of humoral immune system in can-
cer immunoediting [ 49 ]. Novel genetic-based 

   Table 12.2    Mechanisms of immunosuppression induced 
by T-regulatory cells and myeloid-derived suppressor cells   

  T-regulatory cells  
 Secretion of immunosuppressive molecules like IL-10, 
IL-35, and TGFβ 
 Polarization of DCs toward tolerogenic phenotypes 
 Direct cytolysis of effector T cells via granzyme B, 
TRAIL, and galectin-1 
 Metabolic changes like increased IDO in DCs and 
increased conversion of ATP to adenosine promoting 
immunosuppression 
 Stimulation of tumoral angiogenesis via VEGF 
secretion 
  Myeloid-derived suppressor cells  
 Inhibition of effector T-cell proliferation and function 
via L-arginine-dependent mechanisms 
 T-cell inhibition via production of ROS and TGFβ 
 Reduced T-cell homing via depletion of L-selectin 
 Promotion of Th2 and T-regulatory phenotypes via 
IL-10 secretion 
 Inhibition of DC function via IL-10 
 Promotion of angiogenesis via secretion of VEGF, 
basic fi broblast growth factor, HIF-1, etc. 
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approaches including exome sequencing, in silico 
analysis, and CD8 +  T-cell cloning are likely to fur-
ther help in understanding the alterations in tumor 
antigenicity occurring during different phases of 
cancer immunity [ 48 ].

12.4        The Tumor 
Microenvironment During 
Cancer Immunoediting 

 The microenvironment surrounding the tumor 
plays a critical role in determining cancer 
 behavior. TME is composed of cells (tumor as 
well as immune), various factors secreted by 
them, and the stroma. The TME is a dynamic 
 system switching from host protective to tumor 
friendly during different phases of the immu-

noediting process. During the elimination phase, 
the milieu of the tumor comprises of factors 
which promote its eradication. Collaboration of 
factors including IFN-γ and lymphocytes has 
been found to help in regulating the develop-
ment of tumors. In  different studies, IFN- g   - and 
perforin-defi cient mice together with T-cell and 
NK-cell defects are found to exhibit a greater 
propensity for tumor development. Cytokines 
like IL-2, IL-12, and IL-7 have been found to 
promote antitumor immunity, suppress recruit-
ment of suppressor cells, and inhibit tumor 
angiogenesis. 

 During the equilibrium phase, TME assumes 
the role of a niche, concealing relatively dormant 
cancer cells. The niche environment allows cancer 
cells to thrive without progression by maintaining 
a balance between the cytostasis and cytolysis. 

   Table 12.3    Examples of common categories of antigens present in tumors [ 44 ]   

 Antigen type  Antigen class  Antigen 
 Characteristics 
of antigens  Tumor 

 Tumor-
associated 
antigens 

 Oncofetal antigens  CEA  Expressed in fetal 
tissues, reexpressed in 
tumors 

 Colon cancer 
 AFP  Germ cell tumors, 

HCC 
 Differentiation and 
lineage-specifi c antigens 

 CD5  Normally in T cell but 
aberrantly in B cells in 
CLL 

 CLL 

 Melan A, tyrosinase  Melanocyte lineage  Melanoma 
 Gp 100  Prostate carcinoma 
 PSA 

 Cancer testes antigens  MAGE 1  Expressed in germinal 
tissues and reexpressed in 
malignancies 

 Melanoma 
 NY-ESO-1 

 Heat-shock proteins  Gp 96  Fibrosarcoma, 
colon cancer  HSP70 

 Gene amplifi cation  Her-2/neu  Receptor tyrosine kinase  Breast cancer 
 Ovarian cancer 

 Aberrant post 
translational modifi cation 

 MUC1  Under glycosylated 
mucin 

 Breast 
 Pancreas 

 Tumor-
specifi c 
antigens 

 Mutated oncogenes or 
proteins 

 Mutated p53  Point mutations  Many tumors 
 BCR-ABL  Translocation 9;22  CML 
 β-Catenin  Signal transduction 

pathway 
 Melanoma 

 Caspase 8  Apoptosis regulation  Squamous cell 
carcinoma 

 Oncoviral 
proteins 

 HPV 16, E6 and E7 
proteins 

 Viral transforming gene 
products 

 Carcinoma cervix 

   CEA  carcinoembryonic antigen,  AFP  alpha fetoprotein,  Gp  glycoprotein,  PSA  prostate-specifi c antigen,  MAGE-1  
melanoma- associated antigen 1,  NY-ESO-1  New York-ESO-1,  BCR-ABL  breakpoint cluster region-Abelson,  HPV  
human papilloma virus  
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However, molecules which precisely maintain this 
balance during the immune equilibrium state 
remain to be defi ned. 

 During the escape phase, tumor bed gets 
packed with factors and cells which promote 
immune suppression. Factors like IL-6, TGF-β, 
IL-8, and IL-10 help in generalized subversion 
of an effective anticancer immune response. 
Growth factors like VEGF not only promote 
angiogenesis but also facilitate the recruitment 
of T-regulatory cells and MDSCs to the tumor 
site. Besides, tumor cells induce downregulation 
of antitumor cytokines including IL-12 and 
IFN-γ. In addition, the abundant presence of 
other factors within the TME including prosta-
glandin E2, reactive oxygen and nitrogen species 
and phosphatidylserine, etc., aids cancer cells to 
evade the immune response. Furthermore, the 
stroma including cancer-associated fi broblasts, 
chemokines, matrix metalloproteinases, and 
adhesion molecules also participates in cancer’s 
conquest over antitumor immunity. 

 Although the above few paragraphs have tried 
to provide a simplifi ed view of the events occur-
ring during various phases of the immunoediting 
process, there are several paradoxes involved. 
One set of factors may play an immunostimula-
tory and antitumor role under particular condi-
tions, whereas they may exert an immune 
inhibitory and pro-tumor role under other cir-
cumstances. For example, IFN-γ which is a 
potent cytokine responsible for antitumor immu-
nity is now emerging as an important player in 
cancer immune evasion. The pro-tumor effects of 
IFN-γ are believed to be related to an increase in 
T-regulatory cells and MDSCs and a decrease in 
neutrophilic infi ltrate in the TME [ 50 – 53 ].  

12.5     Clinical Relevance 
of the Immunoediting 
Process in Cancer 

 The introduction of immunoediting concept has 
added a new insight to understanding of cancer 
immunity. A clear understanding of the mecha-
nisms underlying the three phases of cancer 
immunity is vital for designing the immunothera-

peutic strategies to prevent, stop the progression, 
or treat cancers. In addition, it has contributed to 
the development of new markers for the diagnosis 
and prognostication of malignancies. Identifi cation 
and manipulation of various molecules involved 
in different phases of the immune response to 
cancer has emerged as a promising approach for 
the development of novel immunotherapeutic 
strategies for cancer treatment and eradication. 
Table  12.4  provides examples of the immuno-
therapeutic approaches directed toward the three 
phases of the immunoediting process.

   Deciphering the nature of the cellular infi ltrate 
and secretory molecules produced in response to 
the transformation events and characterization of 
the mechanisms involved in the elimination of 
tumor cells at early stages has led to the develop-
ment of novel cancer therapeutics. Moreover, 
quantitative as well as qualitative assessment of the 
immune cells present in TME may contribute to the 
development of algorithms demonstrating tumors’ 
response to chemoradiotherapy.  In vivo  or  in vitro  
expansion of tumor-specifi c effector cells is being 
applied as a strategy to boost up the antitumor 
immune response. Recognition of TAs which 
evoke an effective antitumor immune response has 
served as the basis for the development of different 
types of cancer vaccines. Monoclonal antibodies 
(mAbs) targeting diverse TAs have entered clinical 
trials for several cancer types. Besides, TAs such as 
CEA have also been used as biomarkers for early 
detection and for determining tumor prognosis. 
The concept of immunogenic chemotherapy which 
stimulates adaptive immunity is also gaining impe-
tus in recent years. 

 The equilibrium phase has also emerged as a 
potential target to immunotherapists, as main-
taining cancer cells in the equilibrium phase 
indicates prevention or delay in cancer progres-
sion and fatality. In cases treated with mAbs 
which exert their effect via NK cells, an adop-
tive T-cell response was also found to be evoked, 
leading to the maintenance of tumors in equilib-
rium phase [ 69 ]. Furthermore, development of 
sensitive techniques to seek out the occult tumor 
cells in various organs may help in their specifi c 
targeting, resulting in their complete eradica-
tion. Identifi cation and targeting of immune or 
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nonimmune events shifting the balance from 
equilibrium to the elimination or to the escape 
phase may lead to tumor removal or at least pro-
gression restriction. 

 As discussed in earlier sections, tumor cells 
apply a variety of tactics to combat with the host 
immune system. The assessment of factors 
involved in the escape mechanism served as the 
mainstay for the discovery of many anticancer 
immunotherapeutic agents. Some developed 
agents like ipilimumab (anti-CTLA-4) are now 
being used clinically along with other forms of 
therapy, whereas many other agents have entered 
different phases of clinical trials, and a large num-
ber are still in experimental stages (Table  12.4 ).  

12.6      Concluding Remarks 

 In conclusion, it could be stated that enough 
proof is available to establish the presence of can-
cer immunoediting in animals as well as in 
humans. Understanding the sequence of events 
occurring during the immunoediting process and 
recognition of the cellular and molecular mecha-
nisms underlying its different phases has led to a 
spurt in cancer immunotherapeutic approaches. 

Further knowledge on the genetic and epigenetic 
features characterizing the three Es of cancer 
immunoediting are warranted for the develop-
ment of more precise cancer  immunotherapeutic 
approaches in the future.     
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13.1            Introduction 

 The concept of life and death has been a topic of 
interest among scientists, philosophers, and theo-
logians. It was such an intriguing subject that an 
Immortality Project was established in mid-2012 
to fi nd answers to human immortality. The highly 
funded project, headed by a well-known philoso-
pher, employs empirical studies to address 
research areas such as near-death experiences, 
alleged out-of-body experiences, postmortem 
survival, and the infl uence of beliefs about 
immortality on human behavior, attitudes, and 
character. Scientifi cally, life and death are essen-
tial parts of a natural cycle of all multicellular 
organisms. Cell division, death, shape modifi ca-
tion, and cell rearrangements form critical pro-
cesses on which tissues are shaped and organs are 
made [ 1 ]. The orchestration of these processes 
depends on a genetic program operating on cell 
behavior: for example, some signaling molecules 
and growth factors promote cell divisions and 
control tissue size, whereas other proteins control 
the orientation of cell divisions and cell rear-
rangements. Control of tissue size is manifested 
in the process of cell competition whereby faster 
growing cells can out-compete slow growing 
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cells. Competition also involves apoptotic elimi-
nation of the slow growing cells and their engulf-
ment by fast growing cells [ 1 ,  2 ]. Hence, cell 
death plays an important role in the development 
and homeostasis of normal tissues [ 3 ,  4 ]. Cells 
produced in excess during the development 
 process eventually undergo cell death, thereby 
contribute to sculpturing of organs and tissues [ 5 ]. 

 Historically, cell death phenomenon was fi rst 
reported in 1842 by Carl Vogt [ 6 ,  7 ]. Subsequently, 
the term programmed cell death (PCD) was men-
tioned by Lockshin and Williams in 1965 [ 8 ]. 
The phenomenon describes coordinated deaths of 
certain larval muscles during transformation into 
adult moths. Kerr and co-workers later described 
a series of similar morphological characteristics 
following the death of a variety of tissue sources, 
which was coined as “apoptosis” [ 9 ]. About the 
same time, Horvitz and colleagues started a sys-
tematic search for genes controlling PCD in the 
nematode worms,  Caenorhabditis elegans . The 
discovery of cell death defective genes, such as 
 ced - 3 ,  ced - 4 , and  ced - 9 , implicated that PCD is a 
process with strict genetic program [ 10 ]. This 
was quickly followed by the identifi cation of sub-
strates and homologous genes in mammals and 
realization that mutations of some of these cell 
death genes were contributing factors in various 
cancers. The 2002 Nobel Prize in Physiology or 
Medicine was awarded jointly to Sydney Brenner, 
H. Robert Horvitz, and John E. Sulston for their 
extensive work and discoveries on genetic regu-
lation of organ development and PCD. 

 An imbalance between cell growth and cell 
death is implicated in a variety of human diseases 
including cancer, autoimmune diseases, neurode-
generative disorders, viral infections, and AIDS 
[ 11 – 15 ]. Cell death has a profound effect on  cancer 
growth and progression [ 16 – 18 ]. Malfunction of 
the cell death machinery, as a direct consequence 
of mutations of the signaling molecules involved 
either directly or indirectly in the cell death path-
ways, has long been identifi ed as an important 
contributing factor in cancer. Continuous efforts 
in deciphering the mechanisms and signaling 
pathways of these cell deaths have also brought 
forward a new paradigm of which cancer may 
be effi ciently targeted. Novel and specifi c cancer 
therapeutics and techniques directed at members 
of the cell death signaling pathways have been 
developed, and newer generation of drugs is cur-
rently being tested in clinical trials. 

 Figure  13.1  illustrates the most recent cell 
death classifi cations by the Nomenclature 
Committee on Cell Death (NCCD). NCCD has 
suggested limiting the use of the term “pro-
grammed” only for those physiological 
instances of cell death, irrespective of the 
modality by which they are executed, and which 
occur in the context of embryonic and postem-
bryonic development and tissue homeostasis 
[ 19 ]. On the other hand, the term “regulated” 
cell death should be used to indicate cases of 
cell death, be it programmed or not and whose 
initiation and/or execution is mediated by a 
dedicated molecular machinery and can be 
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  Fig. 13.1    Functional classifi cation of cell death modalities as described by the Nomenclature Committee on Cell 
Death (NCCD) [ 19 ]       
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inhibited by targeted pharmacologic and/or 
genetic interventions [ 19 ]. Apoptosis and its 
possible roles in tumorigenesis and some of the 
novel antitumor strategies and therapeutics will 
be discussed in this chapter.

13.2        Mechanisms of Apoptosis 

 The term “apoptosis” was introduced by Kerr and 
co-workers in 1972, derived from a Greek term 
meaning “dropping off” of leaves or petals from 
trees or fl owers [ 9 ]. Earlier methods to defi ne cell 
death rely much on morphological criteria and the 
use of microscopes [ 7 ]. The earliest recognized 
morphological changes in apoptosis involve 
 compaction and segregation of nuclear chromatin 
and condensation of the cytoplasm [ 9 ,  20 ]. The 
process is followed by the convolution of the 
plasma membrane and cell blebbing in a fl orid 
manner, producing fragments of cells known as 
apoptotic bodies. These fragments are membrane- 
bounded and contain nuclear components [ 20 , 

 21 ]. Apoptotic bodies are quickly taken up by 
nearby cells and degraded within their lysosomes, 
usually with no associated infl ammation [ 9 ,  20 ]. 

 It is important to note that despite the various 
types of apoptosis characterized by their biochem-
ical features and signaling pathways, they share 
similar morphological features. Biochemically, 
apoptosis is universally characterized by the 
 double-stranded cleavage at the linker regions 
between nucleosomes, resulting in the formation 
of multiple DNA fragments [ 21 ] and phosphati-
dylserine externalization [ 22 ], and is accompanied 
by a series of gene and protein expressions. 
Figure  13.2  illustrates the morphological charac-
teristics of apoptosis and how it is compared with 
necroptosis and autophagic cell death.

   The NCCD has formulated several rounds 
of recommendations to propose guidelines 
and unify criteria on the use of cell death ter-
minologies [ 19 ,  23 ]. According to the latest 
NCCD  publication, apoptosis is functionally 
classifi ed into intrinsic or extrinsic apoptosis. 
Intrinsic  apoptosis is either caspase-dependent 
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or  caspase- independent, whereas extrinsic apop-
tosis is  categorized depending on source of trig-
ger, as mediated either by death receptors or by 
dependence receptors. 

13.2.1     Extrinsic Apoptosis Pathway 

 Extrinsic apoptosis is essentially caspase- 
dependent and is induced by extracellular stress 
signals which are mediated by specifi c transmem-
brane receptors. In the extrinsic apoptosis induced 
by death receptors, the signaling pathway is medi-
ated by receptors belonging to the tumor necrosis 
factor (TNF) receptor superfamily and is charac-
terized by extracellular cysteine- rich domains 
(CRDs) and intracellular death domain (DD). 
Ligands such as TNF ligand, TNF ligand super-
family member 10 (TNFSF10), FAS ligand, and 
tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) interact with their respective death 
receptors [FAS/CD95, TNF-α receptor 1 (TNFR1), 
or TRAIL receptor (TRAIL-R1 or TRAIL-R2)], 
recruit Fas-associating protein with a death domain 
(FADD), and form the death-inducing  signaling 
complex (DISC) [ 24 ,  25 ]. This complex recruits 
pro-caspase-8 and pro-caspase-10, leading to the 
activation of the executioner caspase-3, caspase-6, 
and caspase-7 [ 26 ,  27 ]. 

 On the other hand, extrinsic apoptotic signals 
can be alternatively mediated by dependence 
receptors such as UNC-5 homolog family 
 receptors (UNC-5A, UNC-5B, UNC-5C, and 
UNC-5D) and deleted in colorectal cancer (DCC) 
family receptors. These receptors are activated by 
netrins, a family of extracellular proteins that 
direct cell and axon migration during embryo-
genesis [ 28 ]. Netrins are members of the laminin 
superfamily and contribute to the regulation of 
cell-cell adhesion and tissue organization [ 29 ]. 
Netrin-1 has been recently identifi ed to be an 
anti-apoptotic survival factor in tumorigenesis 
[ 30 ]. DCC and UNC-5 homologs mediate cell 
death in the absence of netrin-1 and the binding 
of the ligand to these receptors switches between 
a pro-apoptotic signal and the promotion of sur-
vival and motility [ 30 ]. UNC-5B (also known as 
UNC-5H2) complex responds to the withdrawal 

of netrin-1 by recruiting a signaling complex 
consisting of protein phosphatase 2A (PP2A) and 
death-associated protein kinase 1 (DAPK1) [ 31 ]. 
In the presence of netrin-1, the PP2A complex is 
repressed by the recruitment of cancerous inhibi-
tor of PP2A (CIP2A) into the UNC-5B/DAPK1 
complex, of which DAPK1 is autophosphory-
lated and remained inactive. Conversely, netrin-1 
withdrawal is associated with a conformational 
change in UNC-5B, resulting in the exposure of 
the death domain, releasing of CIP2A, and the 
recruitment of PP2A to the UNC-5B-DAPK1 
complex. PP2A-mediated dephosphorylation of 
DAPK1 results in the activation of downstream 
apoptotic pathway. PP2A-like activity has been 
linked to the formation of DISC, and is known to 
inhibit B-cell lymphoma 2 (Bcl-2) phosphoryla-
tion, leading to apoptotic cell death [ 32 ,  33 ]. In 
certain cell types, where the extrinsic apoptotic 
pathway is triggered but lower levels of DISC 
followed by lower levels of active caspase-8 are 
formed, amplifi cation of the death signal is pos-
sible through the cleavage of Bid by caspase-8, 
which directly mediates Bak/Bax oligomeriza-
tion, and triggers the release of cytochrome (Cyt) 
 c  [ 34 ,  35 ]. 

 Another signaling pathway mediated by 
dependence receptors are the DCC and the 
Patched dependence receptor (Ptc). DCC encodes 
an approximately 200 kDa type I membrane pro-
tein, which displays homology with cell adhesion 
molecules in its extracellular domain, suggesting 
that DCC may play a role in cell-cell or cell- 
matrix interactions [ 36 ,  37 ]. DCC appears to 
drive apoptosis independent of both 
mitochondrial- dependent and death receptor/
caspase- 8 pathways. DCC interacts and drives 
the activation of caspase-3 through caspase-9 
without requiring Cyt  c  or Apaf-1 [ 38 ]. Ptc, iden-
tifi ed as a tumor suppressor, induces apoptosis, 
but is suppressed by its ligand, sonic hedgehog 
(Shh) [ 39 ,  40 ]. Ptc interacts with the adapter pro-
tein DRAL/FHL2 in the absence of Shh and 
recruits a protein complex that includes DRAL/
FHL2, the CARD-containing domain protein 
TUCAN, and apical caspase-9. Ptc triggers cas-
pase- 9 activation and enhances cell death via a 
caspase-9-dependent mechanism [ 41 ,  42 ]. 
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 The death receptor and dependence receptor 
pathways converge at the activation of caspase-3, 
followed by cleavage and activation of down-
stream caspases. Caspases or cysteine aspartic 
acid-specifi c proteases are synthesized as inac-
tive zymogens (or proenzymes) and are usually 
cleaved to form active enzymes or undergo auto-
proteolysis in a cascade manner. Initiator  caspases 
such as caspase-8, caspase-9, and caspase-10 
couple cell death stimuli to the downstream 
effector caspases such as caspase-3, caspase- 6, 
and caspase-7. The major proteolysis activity that 
takes place during apoptosis is carried out by 
effector caspases. Caspase-3 appears to be the 
major executioner caspase during the demolition 
phase of apoptosis [ 43 ,  44 ]. Caspase-3 cleaves a 
number of structural proteins such as fodrin, gel-
solin, rabaptin, nuclear lamin B, and vimentin 
[ 44 – 46 ]. On the other hand, caspase-6 appears to 
merely cleave the nuclear lamin A during apopto-
sis [ 44 ]. Caspase-3 also cleaves diverse regula-
tory proteins and enzymes, including focal 
adhesion kinase (FAK), protein kinase C delta, 
retinoblastoma protein (Rb) (a protein involved 
in cell survival), p21-activated kinase (PAK), U1 
small nuclear ribonucleoprotein (U1snRNP), 
DNA fragmentation factor 45 (DFF45)/inhibitor 
of caspase-activated DNase (ICAD), receptor 
interacting protein (RIP), X-linked inhibitor of 
apoptosis protein (X-IAP), signal transducer and 
activator of transcription-1 (STAT1), and topoi-
somerase I [ 44 ,  45 ,  47 ]. Initially, poly (ADP- 
ribose) polymerase (PARP) is reported to be an 
exclusive substrate for caspase-7 [ 44 ], but a later 
study proved that it is cleaved by both caspase-3 
and caspase-7 [ 48 ]. 

 Caspase-mediated cleavage of structural pro-
teins is essential for the apoptosis-associated 
morphological changes. For example, cleavage 
of gelsolin in multiple cell types causes cells to 
round up, detach from the plate, and undergo 
nuclear fragmentation [ 49 ]. Inactivation of 
rabaptin-5 causes fragmentation of endosomes 
during the execution phase of apoptosis [ 50 ]. 
Fodrin is a major component of the cortical cyto-
skeleton of most eukaryotic cells; it has binding 
sites for actin, calmodulin, and microtubules 
[ 51 ]. Its proteolysis contributes to structural 

 rearrangements including blebbing during apop-
tosis [ 52 ,  53 ]. 

 FAK is a tyrosine kinase of which its phos-
phorylation state and activity are linked to cell 
adhesion to the extracellular matrix through inte-
grin receptors. It has a direct infl uence on the 
cytoskeleton, structures of cell adhesion sites, 
and membrane protrusions, leading to regulation 
of cell movement [ 54 ,  55 ]. Caspase-mediated 
cleavage of FAK is known to contribute to the 
morphological changes in apoptosis. On the other 
hand, PAK, a serine-threonine kinase, regulates 
morphological and cytoskeletal changes in a vari-
ety of cell types [ 56 ,  57 ]. Blocking PAK function 
during Fas-induced apoptosis inhibits the mor-
phological changes, but accelerates the phospha-
tidylserine externalization in the membrane. 
Stable Jurkat cell lines that expressed a dominant- 
negative PAK mutant are resistant to Fas-induced 
formation of apoptotic bodies and cleavage of 
PAK [ 58 ]. 

 PARP cleavage is believed to attenuate the 
cell’s ability to carry out DNA repair [ 45 ,  59 ]. 
Caspase-8 is also found to cleave PARP-2, 
a member of the PARP family involved in DNA 
repair, suggesting that caspase-8 is both an initia-
tor and effector caspase [ 60 ]. Active caspase-3 or 
caspase-7 proteolytically cleaves DFF45, which 
subsequently releases active DFF40, the inhibi-
tor’s associated endonuclease. It is responsible 
for the degradation of chromosomes into nucleo-
somal fragments, considered as the characteristic 
hallmark of apoptosis [ 61 ,  62 ]. Cleavage of both 
structural and regulatory proteins is essential for 
the apoptotic-associated chromatin condensa-
tion, DNA fragmentation, nuclear collapse, and 
morphological changes such as cell shrinkage 
and detachment, membrane blebbing, and forma-
tion of apoptotic bodies. Figure  13.3  illustrates 
the extrinsic apoptosis signaling pathway.

13.2.2        Intrinsic Apoptosis Pathway 

 Intrinsic apoptosis is known as either caspase- 
dependent or caspase-independent, and both sig-
naling pathways are centrally mediated by the 
mitochondria. Intrinsic apoptosis can be  triggered 
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by DNA damage, γ-irradiation, oxidative stress, 
cytosolic Ca 2+  overload, serum deprivation, and 
many other intracellular stress conditions. Upon 
stimulation, various molecules are released into 
the cytoplasm including Cyt  c  [ 27 ,  63 ], second 
mitochondria-derived activator of caspases/direct 
IAP-binding protein with low pI (Smac/Diablo) 
[ 64 ,  65 ], apoptosis-inducing factor (AIF; pro-
motes chromatin condensation) [ 66 ], endonucle-
ase G (EndoG; facilitates chromatin degradation) 
[ 67 ,  68 ], and high- temperature requirement pro-
tein A2 (HtrA2/Omi) [ 69 ]. Cyt  c  binds to and 
activates Apaf-1 protein in the cytoplasm, induc-
ing the formation of apoptosome which subse-
quently recruits the initiator pro-caspase- 9, 
yielding activated caspase-9 and fi nally mediat-
ing the activation of caspase-3 and caspase-7 
[ 35 ]. Loss of Cyt  c  from the mitochondria also 
results in the inhibition of the respiratory chain. 
The condition elicits and aggravates reactive 
oxygen species (ROS) overproduction and is 
thought to activate a feedforward circuit for the 
amplifi cation of the apoptotic signal [ 70 ]. The 
function of Cyt  c  and its role in apoptosis are 
widely reviewed and discussed elsewhere 
[ 71 – 73 ]. 

 Bcl-2 family of proteins plays an important 
role in the regulation of mitochondrial-linked 
apoptosis [ 74 ]. Bcl-2 subfamilies such as Bax, 
Bak, and Bcl-2 homolog (BH)3-only subfamily 
proteins (e.g., Bid) play a pro-apoptotic role, 
while Bcl-2 and Bcl-X L  are functionally anti- 
apoptotic. Activated Bax and Bak form homo- 
oligomer which creates pores on the mitochondrial 
membrane and releases toxic proteins from the 
mitochondria. Bcl-2 and Bcl-X L  inhibit the action 
by blocking the activation of Bax and Bak and 
preventing the release of pro-apoptotic proteins 
[ 75 ]. Nevertheless, the activation of Bax and Bak 
can be restored with the presence of pro-apoptotic 
BH3-only proteins. BH3-only proteins function 
as antagonists of specifi c subsets of their 
 pro- survival relatives [ 76 ,  77 ]. The pore-forming 
activities of Bax and Bak trigger a condition 
known as mitochondrial outer membrane permea-
bilization (MOMP). MOMP can also be triggered 
by the opening of a multiprotein complex known 
as permeability transition pore complex (PTPC) 

[ 78 ,  79 ]. MOMP causes generalized and irrevers-
ible inner mitochondrial transmembrane potential 
(ΔΨm) dissipation. In the inner mitochondrial 
membrane (IM) of a healthy cell, the frontier 
between the intermembrane/intercristal space and 
the matrix is nearly impermeable to all ions, 
including protons which help create the proton 
gradient required for oxidative phosphorylation 
[ 70 ]. The charge imbalance that results from the 
generation of an electrochemical gradient across 
the IM forms the basis of the ΔΨm [ 70 ]. A loss of 
the ΔΨm or long-lasting or permanent ΔΨm dis-
sipation can lead to cell death [ 80 ]. MOMP causes 
the release of toxic proteins from the mitochon-
dria to the cytosol as mentioned above. Pro-
apoptotic Bcl-2 proteins appear to cause the 
release of Cyt  c , Smac/Diablo, and HtrA2/Omi 
but not EndoG and AIF [ 81 ]. On the other hand, 
BH3-only protein Bid cleavage by caspase-8 
serves to engage a mitochondrial amplifi cation 
loop during extrinsic apoptosis. Caspase-8 cleaves 
Bid, generating a truncated fragment known as 
truncated Bid (tBid) that can permeabilize the 
mitochondrion, resulting in MOMP [ 82 ]. 

 Inhibitors of apoptosis proteins (IAPs) play an 
important role in the regulation of apoptosis. 
Eight human IAPs have been identifi ed consist-
ing of X-IAP, IAP-like protein-2 (ILP-2), cIAP- 
1, cIAP-2, melanoma inhibitor of apoptosis 
protein (ML-IAP), neuronal apoptosis inhibitory 
protein (NAIP), survivin, and apollon [ 83 ]. 
Human IAP family members such as X-IAP, 
cIAP-1, and cIAP-2 are potent caspase inhibitors 
[ 84 ,  85 ]. X-IAP, cIAP-1, and cIAP-2 block Cyt 
 c -induced activation of caspase-9, thus prevent-
ing the activation of caspase-3, caspase-6, and 
caspase-7. Furthermore, these IAPs bind to and 
inhibit the enzymatic activity of caspase-3 fol-
lowing its activation by caspase-8, thereby arrest-
ing the proteolytic cascade initiated by the 
initiator caspase [ 86 ]. X-IAP primarily inhibits 
caspase by disrupting the conformation of the 
active caspase and masking the substrate-binding 
active site [ 83 ]. 

 Smac/Diablo and HtrA2/Omi inhibit the anti- 
apoptotic function of several members of the IAP 
family [ 87 ,  88 ]. Smac/Diablo and HtrA2/Omi are 
two nuclear-encoded mitochondrial proteins 
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functioning as IAP antagonists, identifi ed in 
mammals [ 69 ,  89 – 92 ]. After their release into the 
cytosol stimulated by apoptotic triggers, Smac/
Diablo and HtrA2/Omi competitively bind to the 
BIR domains of IAPs via the IAP-binding motif, 
so that the BIR-bound caspases are released and 
reactivated [ 93 – 95 ]. Smac/Diablo and HtrA2/
Omi manifest distinct physical characteristics 
and biochemical activities, of which the active 
Smac/Diablo is a homodimer, whereas HtrA2/
Omi is a homotrimer [ 87 ,  96 ]. Despite Smac/
Diablo, HtrA2/Omi is a mitochondrial serine pro-
tease [ 97 ,  98 ]. HtrA2/Omi has diverse roles, 
including maintenance of mitochondrial homeo-
stasis and regulation of cellular apoptosis [ 99 ]. 
A comprehensive proteome-wide analysis of 
Jurkat cell lysates leads to the identifi cation of 
potential HtrA2/Omi substrates, for example, the 
cytoskeleton- associated proteins such as actin, α- 
and β-tubulin, and vimentin, further suggest its 
role in the caspase-independent pathway [ 100 ]. 

 AIF and EndoG function in a caspase- 
independent manner, by relocating to the 
nucleus, where they mediate large-scale DNA 
fragmentation, independent of caspases [ 101 , 
 102 ]. Mammalian EndoG is a nuclear-encoded 
protein targeted to mitochondria and compart-
mentalized in the intermembrane space (IMS) 
and is known to possess DNase/RNase activity 
[ 103 ]. It is implicated in the mitochondrial DNA 
replication and is shown to be involved in apop-
totic DNA degradation [ 102 ]. In isolated non-
apoptotic nuclei, EndoG fi rst generates large 
fragments of DNA (>50 kb) and then cleaves at 
inter- and intra-nucleosomal sites [ 104 ]. 
Although EndoG apoptotic activity appears to 
occur in the absence of caspase activation, the 
pathway leading to EndoG-dependent DNA 
damage remains controversial [ 105 ,  106 ]. 

 AIF was originally discovered as an IMS 
component capable of inducing chromatin con-
densation and DNA loss in the nuclei isolated 
from healthy cells [ 104 ,  107 ]. AIF is a fl avopro-
tein which was fi rst proposed to act as a protease 
or protease activator [ 108 ]; notably, its apopto-
genic activity is not affected by z-VAD-fmk 
[ 109 ]. Contribution of AIF to apoptosis depends 
on the cell types and death triggers [ 104 ]. Both 

endogenous and recombinant AIF are found to 
trigger peripheral chromatin condensation and 
large- scale DNA fragmentation in a caspase- 
independent manner [ 110 ,  111 ]. AIF is not known 
to possess nuclease activity; therefore, AIF is pos-
tulated to directly interact with DNA and disrupt/
collapse chromatin structure by displacing chro-
matin-associated proteins and/or by recruiting 
proteases and nucleases to form DNA- degrading 
complexes or degradosomes [ 104 ,  112 ]. 

 Another important signaling pathway affecting 
the regulation of apoptosis worth mention is the 
nuclear factor-kappa B (NF-κB). NF-κB is a 
sequence-specifi c transcription factor known to 
be involved in the infl ammatory and innate 
immune responses. Under normal conditions, 
NF-κB becomes activated only upon stimulation 
and subsequently upregulates the transcription of 
its target genes. NF-κB is activated by many 
divergent stimuli, including proinfl ammatory 
cytokines such as TNF-α, TRAIL, interleukin-1β 
(IL-1β), epidermal growth factor (EGF), T- and 
B-cell mitogens, bacteria and lipopolysaccharides 
(LPS), viral proteins, double-stranded RNA, 
drugs, and a variety of physical and chemical 
stresses [ 113 ]. However, in tumor cells, molecular 
alterations result in impaired regulation of NF-κB 
and become constitutively activated in such cases, 
leading to deregulated expression of NF-κB-
controlled genes [ 114 ]. Some genes targeted by 
NF-κB include cytokines/chemokines and their 
modulators, immunoreceptors, transcription fac-
tors, and regulators of apoptosis such as Bcl-X L , 
Fas, FasL, and IAPs [ 113 ]. 

 NF-κB is also known to play a pro-apoptotic 
role, in addition to its more common anti- 
apoptotic role. Examples of its pro-apoptotic 
effects in cells include those found in B cells 
[ 115 ], T cells [ 116 ,  117 ], and neuronal cells [ 118 , 
 119 ]. On the other hand, the anti-apoptotic effects 
of NF-κB appeared to be cell-type specifi c and/or 
dependent on the inducing signal. Normally, 
NF-κB is transcriptionally inactive in the cyto-
plasm of most cells as it is bound to its cytoplas-
mic inhibitor IκBα. Upon stimulation with 
proinfl ammatory cytokines, such as TNF-α or 
IL-1, IκBα protein is phosphorylated, ubiquiti-
nated, and subsequently degraded by the 
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 proteasome (the role of proteasome is further 
 discussed under proteasome inhibitors). This 
process exposes the previously masked nuclear 
localization signal of NF-κB, allowing it to trans-
locate into the nucleus upon IκBα proteolysis and 
subsequently activate the expression of important 
target genes involved in cell growth, survival, and 
adhesion [ 120 ,  121 ]. Activated NF-κB leads to 
the activation of A1/Bfl -1, a member of the Bcl-2 
family, which suppresses Cyt  c  release from the 
mitochondria [ 122 ]. NF-κB activation blocks 
caspase-8 cleavage and Cyt  c  release, indicating 
that NF-κB suppresses the earliest signaling 
components of the caspase cascade. The IAP 
family genes ( cIAP - 1  and  cIAP - 2 ) and TRAF 
family genes ( TRAF1  and  TRAF2 ) are positively 
regulated by NF-κB with rapid kinetics following 
TNF addition [ 123 ,  124 ]. Another member of the 
IAP family, X-IAP, has been shown to be acti-
vated by NF-κB in endothelial cells [ 125 ,  126 ]. 
Thus, NF-κB activation functions to suppress 
apoptosis at multiple levels. 

 The Nomenclature Committee on Cell Death 
(NCCD) suggests to defi ne “intrinsic apoptosis” 
as cell death mediated by MOMP and associated 
with generalized and irreversible ΔΨm dissipa-
tion, release of IMS proteins, and respiratory 
chain inhibition [ 19 ]. On the other hand, differen-
tiation between caspase-dependent and caspase- 
independent intrinsic apoptosis pathways is based 
on the extent of cytoprotection as conferred by 
inhibition of caspases. The caspase- independent 
mechanisms mediated by AIF, EndoG, or ATP 
depletion tend to prevail over caspase inhibition 
and kill cells in conditions that would have been 
rapidly executed by the caspase cascade [ 19 ]. 
However, the caspase-independent signaling 
pathway is still vague, and the exact mechanisms 
remain to be investigated. Figure  13.4  illustrates 
the caspase-dependent and caspase-independent 
intrinsic apoptosis pathway.

13.3         Apoptosis and Cancer 

 Apoptosis is an essential developmental process 
to maintain tissue homeostasis. Therefore, defect 
in apoptosis regulation plays an important role in 

cancer development. Deregulation in the 
 apoptosis pathway is one of the reasons why 
 neoplastic cells gain extended lifespan, develop 
genetic mutations capable of growth under stress 
conditions, and undergo angiogenesis [ 12 ]. 
Several key pathways controlling apoptosis are 
commonly altered in cancer [ 127 ]. Tumor resis-
tance to apoptotic cell death is often a hallmark 
of cancer and contributes to chemoresistance 
[ 12 ]. Alteration of many proteins involved in 
both intrinsic and extrinsic signaling pathways 
has been described, and many more to be discov-
ered in near future. For example, overexpression 
of certain anti-apoptotic proteins, such as Bcl-2, 
Bcl-X L , Akt, NF-κB, and IAP protein family, is 
found in various human tumors [ 128 ]. 

 The apoptotic pathway of Fas, one of the TNF 
receptor family members, is frequently blocked 
by several mechanisms in cancer, one of which is 
 Fas  gene mutation [ 129 – 131 ].  Fas  mutations 
have been detected in several types of human 
cancers with frequent allelic losses of chromo-
some 10q24 where the gene resides [ 130 – 132 ]. 
Both  TRAIL - R1  and  TRAIL - R2  genes are mapped 
on chromosome 8p21-22 [ 133 ,  134 ]. Allelic 
losses of the chromosome 8p21-22 have been 
reported as a frequent event in several cancers, 
including non-Hodgkin lymphoma (NHL), lung 
cancer, breast cancer, colon cancer, prostate can-
cer, hepatocellular carcinoma, and head and neck 
cancer [ 135 – 141 ]. Mutations of  TRAIL - R2  gene 
have been reported in head and neck cancer [ 142 ] 
and non-small cell lung cancer (NSCLC) [ 143 ]. 
In addition, somatic mutations of  TRAIL - R1  and 
 TRAIL - R2  genes are found in NHL [ 144 ] and 
breast cancer [ 145 ]. The number of pancreatic 
tumor tissues with positive membrane staining 
for TRAIL-R1 and TRAIL-R2 is lower than non-
tumor tissues [ 146 ]. Loss of  TRAIL-R2  expres-
sion is associated with poorer prognosis in 
patients [ 146 ]. A signifi cant association is also 
observed between lower expression of  TNF  gene 
and poor prognosis in childhood adrenocortical 
tumors [ 147 ]. 

 On the other hand, PP2A inactivation in can-
cer occurs frequently through the upregulation of 
CIP2A, a PR65 interactor and PP2A inhibitor 
[ 148 ]. PR65β, a scaffold protein which interacts 
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with the catalytic subunit of PP2A, appears to 
play a key regulatory role in cancer. This scaffold 
protein is decreased or mutated in a large fraction 
of human cancers and has been recently linked to 
cancer development [ 149 ]. On the other hand, 
 Ptc  is a tumor suppressor and mutations of  Ptc  
are associated with neoplasia, especially in basal 
cell carcinoma and medulloblastoma [ 39 ,  40 ]. 
DCC expression is shown to be markedly reduced 
in more than 50 % of colorectal tumors. The loss 
of DCC is not restricted to colon carcinoma, but 
has been observed in other tumor types, includ-
ing carcinoma of the stomach, pancreas, esopha-
gus, prostate, bladder, and breast, male germ 
tumors, neuroblastomas, gliomas, and some leu-
kemias [ 36 ,  150 ,  151 ]. 

 Members of the Bcl-2 family of proteins as 
prominent regulators of apoptosis signaling are 
often deregulated in many cancers, including 
lung carcinoma, lymphoma, and glioblastoma 
[ 152 – 156 ]. Aberrant expression of  Bcl-2  is com-
mon in chronic lymphocytic leukemia (CLL) and 
is associated with poor response to chemotherapy 
and decreased overall survival [ 157 ].  Bcl - 2  gene 
amplifi cation is reported in diffuse large B-cell 
lymphomas (DLBCL) and overexpression of 
Bcl-2 protein has been associated with poor 
prognosis in some forms of NHL [ 158 – 160 ]. 
 Myc/Bcl-2  co-expression in DLBCL is associated 
with aggressiveness, is more common in the 
unfavorable activated B-cell-like subtypes, and 
contributes to the overall inferior prognosis of 
patients with activated B cell-DLBCL [ 161 ]. 
Single-nucleotide polymorphisms in  Bcl-2  are 
found to have an association with survival in 
advanced-stage NSCLC patients who received 
chemotherapy [ 162 ]. Furthermore, mutations 
that inactivate the pro-apoptotic  Bax  gene have 
been observed in solid tumors and hematologic 
malignancies [ 163 ,  164 ]. Higher  Bcl-2  to  Bax  
ratios has been associated with progression of 
CLL, shorter remission duration, and shorter sur-
vival [ 165 ,  166 ]. Therefore, cancer therapeutics 
that specifi cally inhibit the anti-apoptotic pro-
teins or activate the pro-apoptotic members of the 
Bcl-2 family proteins are an attractive strategy to 
reverse the intrinsic or acquired resistance of can-
cer cells to apoptosis [ 167 ]. 

 Studies have reported that polymorphic 
 variants of the  caspase - 8  gene are associated 
with the risk of multiple cancers [ 168 – 172 ]. For 
example, a six-nucleotide insertion-deletion 
 variant polymorphism (6 N ins/del) of  caspase - 8  
promoter is linked to a signifi cant decreased risk 
of bladder and lung cancer in Chinese popula-
tions [ 171 ,  172 ]. Since cancer cells are highly 
dependent on these genetic changes in the apop-
totic pathways for survival, designing novel anti-
cancer drugs that selectively kill cancer cells 
while sparing normal cells seem appealing [ 173 ]. 
Survivin, a member of the IAP family, is unde-
tectable in terminally differentiated adult tissues, 
but abundantly expressed in human cancers such 
as lung, colon, pancreas, prostate, and breast 
[ 167 ]. Increased survivin mRNA is associated 
with decreased overall survival in colon cancer 
patients [ 174 ]. Furthermore, increased levels of 
cIAPs in malignant cells are associated with a 
shorter relapse-free survival in patients with 
prostate cancer [ 175 ]. Livin or ML-IAP, another 
member of the IAP family of proteins, is found to 
be expressed in tumor cells [ 176 ,  177 ]. Thus, the 
possibility of IAP inactivation through therapeu-
tic intervention is rather attractive and has gained 
much interest over the years. 

 Another important pathway linked to the 
apoptotic cell death is the p53 pathway, which is 
often inactivated and deregulated in human can-
cers [ 178 ,  179 ]. The p53 protein is a transcription 
factor with tumor suppressor activities. Its role in 
tumor suppression relies partly on its ability to 
regulate the transcription of genes important in 
cell cycle arrest and in apoptosis. The p53 protein 
upregulates the expression of a number of genes 
in response to genotoxic stress, including the pro- 
apoptotic Bax [ 180 ]. It is also found to inhibit the 
expression of the  Bcl - 2  gene [ 181 ]. Studies have 
also shown that Bid is a p53-responsive chemo-
sensitivity gene which may enhance the cell 
death response to chemotherapy [ 182 ]. The fact 
that a majority of human cancers harbor muta-
tions in the  p53  gene suggests that such  mutations 
would have contributed to the apoptosis-resistant 
environment. However, the p53 network and the 
mechanism by which p53 determines the fate of 
cells remain to be explored.  
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13.4     Apoptosis Signaling 
Pathways and Therapeutic 
Targets in Cancer 

13.4.1     TRAIL (TRAIL Ligands, 
Monoclonal Antibodies 
Against TRAIL-R1 
and TRAIL-R2) 

 TRAIL (Apo2 ligand) induces cell death via the 
extrinsic pathway by recruiting and activating 
caspase-8 and caspase-10 to its R1 and R2 recep-
tors [ 183 ]. It activates the intrinsic pathway via 
the TRAIL-caspase-8-tBid-Bax cascade, through 
the cleavage of Bid, which promotes Bax and 
Bak oligomerization, leading to Cyt  c  release and 
activation of caspase-9 [ 184 ]. These processes 
collectively amplify the activities of the related 
executioner caspases. TRAIL is a promising can-
cer therapeutic agent, known to induce apoptosis 
in a wide variety of tumor cells while sparing 
normal cells [ 185 ,  186 ]. TRAIL activity is also 
known to be independent of the p53 status, mak-
ing it potentially effective against chemotherapy- 
resistant tumors [ 187 ]. Early clinical trials have 
been initiated in cancer patients, using soluble 
recombinant TRAIL (rhApo2L, codeveloped by 
Genentech and Amgen) [ 188 ,  189 ] and monoclo-
nal antibodies (mAbs) (agonists) targeting 
TRAIL-R1, such as mapatumumab [HGS-ERT1 
is developed by Human Genome Sciences 
(HGS)], and anti-TRAIL-R2 agents, such as 
lexatumumab (HGS-ETR2 is developed by 
HGS), conatumumab (developed by Amgen), 
and apomab (developed by Genentech) [ 190 ]. 

 In an early phase I safety and pharmacokinetic 
trial of rhApo2L used as a single agent in patients 
with advanced solid tumors and NHL, of 32 
patients with post-baseline tumor assessment, 17 
(53 %) had stable disease and 13 (41 %) pro-
ceeded with disease progression. Only a single 
patient was reported to have a partial response to 
the drug [ 188 ]. Phase I/Ib trials of rhApo2L in 
advanced cancer [ 191 ], advanced NSCLC [ 192 ], 
and NHL [ 193 ] reported that this drug was well 
tolerated by patients and no anti-rhApo2L Abs 
were detected. Promising outcome in phase Ib 
trial of rhApo2L in combination with cytotoxic 

chemotherapy (paclitaxel and carboplatin) and 
targeted anti-angiogenesis agent (bevacizumab) 
in advanced NSCLC has led to a randomized 
phase II study [ 192 ]. Despite the encouraging 
phase Ib results, the addition of rhApo2L to pacli-
taxel/carboplatin or paclitaxel/carboplatin/bevaci-
zumab combination did not improve the outcome 
and produced a higher incidence of treatment-
related adverse effects [ 194 ]. Similarly, the addi-
tion of rhApo2L to rituximab did not improve the 
objective outcome in phase II NHL study despite 
its promising activity in phase Ib study [ 193 ,  195 ]. 
Adverse effects commonly associated with 
rhApo2L include neutropenia and serum lipase 
elevation [ 194 ,  195 ]. Phase I trials of rhApo2L in 
colorectal cancer are ongoing (Table  13.1 ).

   Mapatumumab, a fully human agonistic mAb 
targeting TRAIL-R1, either used alone or in 
combination with other chemotherapy drugs in 
phase I or phase II trials, has yet to produce 
impressive trial outcomes, as in most cases, few 
patients ended with partial response or stable dis-
ease [ 260 – 263 ]. Despite its favorable safety pro-
fi le, mapatumumab demonstrated limited or no 
clinical activity in phase I and II trials in advanced 
solid malignancies [ 196 ,  197 ], NHL [ 199 ], 
NSCLC [ 201 ], refractory colorectal cancer [ 200 ], 
and advanced hepatocellular carcinoma [ 198 ]. 
Additional trials of mapatumumab in advanced 
hepatocellular carcinoma and advanced cervical 
cancer may provide additional data on the useful-
ness of this drug (Table  13.1 ). 

 Lexatumumab, apomab, and conatumumab 
are agonistic human mAbs against TRAIL-R2. 
Generally, the percentage of patients who devel-
oped partial response or stable disease in several 
early phase I trials involving these novel drugs is 
low, despite being well tolerated by patients. For 
example, no objective activity of apomab was 
demonstrated in a phase II study among patients 
with NHL [ 206 ], despite some evidence of activ-
ity in phase I study in patients with advanced 
malignancies [ 204 ]. The effects of apomab in 
phase II NSCLC trial coincide with rhApo2L, 
where addition of apomab to paclitaxel/carbopla-
tin/bevacizumab combination did not improve 
the effi cacy, while increasing the rate of some 
adverse effects [ 194 ,  205 ]. 
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 As for conatumumab, a phase I study in 
advanced solid tumors showed that this drug is 
generally well tolerated [ 207 ,  208 ]. Conatumumab 
in combination with gemcitabine shows evidence 
of an improved 6-month survival rate and  tolerable 
toxicity in phase Ib and II metastatic pancreatic 
cancer trials [ 209 ,  214 ]. In metastatic colorectal 
cancer, conatumumab improves progression- free 
survival (PFS) when combined with FOLFIRI 
[ 215 ], but limited activity when combined with 
modifi ed FOLFOX6 and bevacizumab [ 211 ], and 
no activity when combined with panitumumab 
[ 213 ]. The effect of conatumumab in NSCLC is 
similar as compared with rhApo2L [ 192 ,  194 ], of 
which combination of this drug with paclitaxel 
and carboplatin did not produce promising results 
[ 210 ,  216 ]. Combination of conatumumab with 
other chemotherapy drugs also produces no evi-
dence of activity in soft tissue sarcomas [ 212 ]. The 
common adverse effects with this drug are neutro-
penia and thrombocytopenia [ 214 – 216 ]. Generally, 
these early trials lacked data on the correlation 
between patient’s TRAIL status and response to 
therapy. Preferential TRAIL sensitivity and pres-
ence of TRAIL-R1 and TRAIL-R2 expression in 
certain cancers are considered factors in patient’s 
response. Therefore, rhApo2L and agonistic anti-
TRAIL- R therapies may be limited to patients 
with TRAIL-sensitive tumors. The effi cacy of 
TRAIL targeting therapies may be improved if 
diagnostic methods determining TRAIL sensitiv-
ity of clinically detectable human cancers are 
available [ 190 ]. Trials are still ongoing, especially 
those involving the combination of these agents 
with current chemotherapy drugs.  

13.4.2     Bcl-2 Family Proteins (BH3 
Mimetics and Bcl-2 Antisense) 

 Bcl-2 family proteins can regulate apoptosis both 
positively and negatively. The Bcl-2 family mem-
bers consist of anti-apoptotic (Bcl-2, Bcl-X L , Bcl-
W, Bag-1, Mcl-1, and A1/Bfl -1) as well as 
pro-apoptotic (Bad, Bax, Bak, Bcl-xs, Bid, Bik, and 
Hrk) molecules [ 264 ,  265 ]. The balance and inter-
action between Bcl-2 gene family members and 

posttranslational modifi cations of Bcl-2- related 
proteins have been demonstrated to play important 
roles in regulating cell survival and death. 

 The Bcl-2 family is characterized by specifi c 
regions of homology termed Bcl-2 homology 
(BH1, BH2, BH3, and BH4) domains. Anti- 
apoptotic proteins have BH1–BH4 domains (e.g., 
Bcl-2 and Bcl-X L ). Pro-apoptotic proteins have 
either BH1–BH3 domains (e.g., Bax and Bak) or 
BH3-only domains (e.g., Bid, Bim, Puma, Bad, 
Noxa, Hrk, Bik) [ 77 ,  266 ,  267 ]. These domains 
are critical to the function of these proteins, espe-
cially their impact on cell survival and cell death 
and their ability to interact with other family 
members and regulatory proteins. The molecular 
surface of the multidomain anti-apoptotic Bcl-2 
protein contains a BH3-binding groove, which 
accommodates BH3 domain from pro-apoptotic 
Bcl-2 protein family members. The BH3-only 
proteins are known to function as antagonists of 
anti-apoptotic Bcl-2 family proteins and act as 
tumor suppressors [ 77 ]. This forms the basis or 
platform for subsequent drug discovery strategies 
based on mimicking BH3 peptides with chemical 
compounds that bind in the same groove [ 268 ]. 

 The earlier observation that apoptosis deregu-
lation in cancer cells primarily affects the 
upstream of the signaling pathways of Bax/Bak 
and mitochondria, leaving the downstream core 
of the apoptotic machinery mostly intact, has led 
to a therapeutic strategy of which manipulation 
of the equilibrium between the pro- and anti- 
apoptotic Bcl-2 family members could possibly 
restore apoptosis [ 128 ,  173 ]. Since pro-apoptotic 
BH3 domains directly bind to the hydrophobic 
grooves of pro-survival proteins with high affi n-
ity, and are necessary and suffi cient for initiation 
of apoptosis, agents mimicking the BH3 domains 
may provide some degree of selectivity against 
cancer cells. This is mainly because cancer cells 
are postulated to be more sensitive to inhibition 
of pro-survival proteins compared with their nor-
mal counterparts [ 12 ]. Cancer cells often express 
high levels of Bcl-2-like anti-apoptotic proteins 
to evade the apoptotic fate imposed by aberrant 
cell proliferation, activation of oncogenes, or 
DNA damage [ 269 ]. Therefore, it is possible to 
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design BH3 mimetics to target specifi c anti- 
apoptotic proteins that are overexpressed in a 
particular type of cancer for improved specifi city 
[ 173 ]. Several chemicals mimicking BH3 pep-
tides exclusively targeting the Bcl-2 anti- 
apoptotic proteins have since been described 
[ 268 ,  270 ,  271 ]. Another antitumor strategy is 
direct inhibition of Bcl-2 mRNA, in the form of 
antisense. 

 One of the earliest small-molecule BH3 
mimetics or more accurately Bcl-2 and Bcl-X L  
inhibitor that went through several phase I/II 
clinical trials is gossypol, an orally available 
compound derived from cottonseed extracts 
[ 272 ]. It binds to the BH3-binding grooves of 
Bcl-2, Bcl-X L , and Mcl-1 [ 273 ]. However, sev-
eral past clinical trials have not indicated this 
compound as an effective anticancer agent. Either 
used alone or in combination, patients treated 
with gossypol failed to show evidence of tumor 
regression or any therapeutic responses in several 
clinical trials [ 274 – 276 ]. A derivative of R-(-)-
gossypol (AT-101) is found to be well tolerated in 
a phase I trial involving CLL patients [ 217 ]. 
However, later studies showed that either AT-101 
is not active in patients or the response rates are 
too low that it did not meet the criteria for addi-
tional enrolment in further trials for small cell 
lung cancer (SCLC) [ 218 ,  219 ]. In NSCLC, 
patients did not meet the primary endpoint of 
improved PFS when given a combination of 
AT-101 and docetaxel [ 220 ]. Current trials to 
evaluate the potency of this drug in other forms 
of cancer are still ongoing, for example, as a 
combination therapy in squamous cell carcinoma 
of the head and neck (SCCHN) and advanced 
laryngeal cancer. A semisynthetic analog of gos-
sypol with improved pharmacologic properties, 
such as apogossypolone (ApoG2), was found to 
inhibit the growth of diffuse large cell lymphoma 
cells  in vitro  and  in vivo  [ 277 ]. However, this 
compound has yet to proceed to clinical trials. 

 GX15-070 (obatoclax mesylate) is an indole 
derivative and a broad-spectrum inhibitor of pro- 
survival Bcl-2 family proteins; it has been exten-
sively evaluated in clinical trials. A phase I 
clinical trial of obatoclax mesylate in 44 patients 
with refractory leukemia and myelodysplasia has 

demonstrated that the drug is well tolerated up to 
the highest dose. However, only a single patient 
with acute myeloid leukemia (AML) with mixed 
lineage leukemia t(9;11) rearrangement achieved 
complete remission, which lasted 8 months, and 
of 14 patients with myelodysplasia, only three 
showed hematologic improvement [ 221 ]. In 
another phase I trial, where obatoclax was admin-
istered to patients with advanced CLL, activation 
of Bax and Bak was demonstrated in peripheral 
blood mononuclear cells, and induction of apop-
tosis was related to overall obatoclax exposure, 
as monitored by the plasma concentration of oli-
gonucleosomal DNA/histone complexes. 
Obatoclax is noted to have some biological activ-
ity and modest single-agent activity in heavily 
pretreated patients with advanced CLL [ 222 ]. In 
advanced solid tumor and lymphoma, of 35 
patients given obatoclax infusions, only one 
patient with relapsed NHL achieved partial 
response of 2 months duration, and one patient 
had stable disease for 18 months [ 224 ]. In a phase 
II study in patients with relapsed SCLC, obato-
clax added to topotecan produced no difference 
in response rates as compared to topotecan alone, 
even though the drug was generally well toler-
ated [ 223 ,  225 ]. Obatoclax has also showed lim-
ited clinical activity in heavily pretreated patients 
with classic Hodgkin lymphoma (HL) [ 226 ]. 
Neurological symptoms are reported as the most 
common adverse effects in patients. Obatoclax 
appears to have limited effi cacy as a single agent 
or even in combination with some of the more 
common anticancer drugs. Clinical trials using 
obatoclax in combination with other chemother-
apy drugs in solid tumor, leukemia, and SCLC 
are currently ongoing (Table  13.1 ). 

 Another BH3 mimetic, ABT-737, possesses 
greater binding affi nity to BH3-only proteins, 
enhances the effect of death signal, and is syner-
gistic with cytotoxic agents and radiation [ 268 ]. 
To overcome the low solubility and oral bioavail-
ability of ABT-737, the ABT-263 analog (navito-
clax) was developed for clinical investigation. 
Preclinical studies confi rmed that navitoclax has 
high affi nity for the anti-apoptotic Bcl-2 family 
proteins and kills cancer cells in a Bax/Bak- 
dependent manner [ 227 ]. In a phase II clinical 
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study, navitoclax exhibits limited single-agent 
activity against advanced and recurrent SCLC 
[ 228 ]. Clinical trials of navitoclax as a single 
agent or as combination therapy in a variety of 
cancers such as lymphoid, leukemia, and other 
solid tumors are ongoing. 

 A nuclease-resistant phosphorothioate anti-
sense oligonucleotide targeting Bcl-2 mRNA 
(oblimersen sodium) has shown promising activ-
ity for CLL and malignant melanoma in random-
ized phase III trials [ 232 – 234 ]. It is an 18-mer 
phosphorothioate antisense oligonucleotide 
designed to bind to the fi rst six codons of the 
human Bcl-2 mRNA [ 278 ]. The use of oblim-
ersen in combination with chemotherapy in a 
variety of cancers has shown diverse response 
rates with good tolerability. In the Oblimersen 
Melanoma Study Group, the addition of oblim-
ersen to dacarbazine improved the multiple clini-
cal outcomes in patients with advanced melanoma 
and increased overall patient’s survival [ 232 ]. In 
another phase III trial, the addition of oblimersen 
to fl udarabine and cyclophosphamide signifi -
cantly increased the complete response/nodular 
partial response rate in patients with relapsed or 
refractory CLL [ 233 ]. In the same study, a sig-
nifi cant 5-year survival benefi t was observed 
with oblimersen in combination with fl udarabine 
and cyclophosphamide. Among patients with 
fl udarabine-sensitive disease who had previously 
demonstrated maximum benefi t with the same 
treatment, a 50 % reduction in the risk of death 
was observed [ 234 ]. 

 However, not all combination therapies pro-
duce desirable outcomes. In the Cancer and 
Leukemia Group B Study 10107 (CALGB), 
although the combination of oblimersen and ima-
tinib was safe and feasible, no clinical benefi ts 
were observed in imatinib-resistant chronic 
myeloid leukemia (CML) patients [ 230 ]. In a ran-
domized phase II study of carboplatin and etopo-
side with or without oblimersen for extensive- stage 
SCLC (CALGB 30103), the addition of oblim-
ersen to a standard regimen did not improve any 
clinical outcome measure [ 231 ]. A randomized 
study of dexamethasone with or without oblim-
ersen sodium in patients with advanced multiple 
myeloma (MM) demonstrated no signifi cant 

 differences in time to tumor progression or objec-
tive response rate [ 235 ]. Interestingly, in a recent 
phase I study, the combination of oblimersen, 
temozolomide, and albumin- bound paclitaxel was 
well tolerated and demonstrated encouraging 
activity in patients with advanced melanoma, with 
objective response rate and disease control rate at 
40.6 % and 75 %, respectively [ 229 ]. Some of the 
common adverse effects associated with oblim-
ersen sodium administration include fatigue, 
transaminase elevation [ 279 ,  280 ], and hemato-
logic disorders [ 231 – 233 ]. There are a number of 
trials listed in the NIH ClinicalTrials.gov website; 
some trials are terminated, and some are com-
pleted, while the outcome of trials involving some 
other tumor types is unknown at this point of time.  

13.4.3     Proteasome Inhibitors 

 The proteasome is a multicatalytic enzyme com-
plex that degrades intracellular proteins by a tar-
geted and controlled mechanism. The 26S 
proteasome, a large protein complex, composes 
approximately 50 subunits that function as a 
highly specifi c molecular shredder by hydrolyz-
ing ubiquitinated proteins into small peptides 
[ 281 ]. The 26S proteasome can be further divided 
into two sub-complexes, a central 20S proteolytic 
core particle (CP) that is capped at either end by 
one or two 19S regulatory particles (19S RP). 
The 20S CP is the degradation unit and contains 
the active sites required to hydrolyze proteins 
into peptides [ 281 ]. On the other hand, the 19S 
RP controls the degradation of ubiquitin-tagged 
substrates by acting as a receptor for poly- 
ubiquitinated proteins and facilitating their ATP- 
dependent translocation into the catalytic 
chamber of the 20S CP [ 281 ]. 

 The ubiquitin-proteasome pathway (UPP) is 
responsible for proteolytic degradation of the 
majority of damaged and misfolded proteins 
within the eukaryotic cell. The UPP is essentially 
important for controlled degradation of key regu-
latory proteins involved in a wide variety of cel-
lular functions such as apoptosis [ 282 ], cell cycle 
control, proliferation [ 283 ], and transcriptional 
regulation [ 284 ]. However, overactivity of the 
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UPP results in an accelerated turnover of proteins 
that regulate the cell cycle, leading to a deregu-
lated mitosis, thereby supporting cancer growth 
[ 285 ]. A defect in the proteasome function is 
associated with the development of different dis-
eases such as neurodegenerative disorders, car-
diovascular and rheumatoid diseases, and 
cachexia, but not cancer, suggesting that cancer 
cells use the proteasome for their survival [ 286 ]. 
In humans, three deubiquitinases (DUBs) are 
associated with the 19S RP. Two of these 
(UCHL5/Uch37 and USP14/Ubp6) are cysteine 
proteases and members of the ubiquitin 
C-terminal hydrolases (UCH) and ubiquitin- 
specifi c proteases (USP) families, respectively. 
The expression of the cysteine DUBs UCHL5 
and USP14 is also deregulated in cancer. 
Activities of UCHL5 (along with several other 
DUBs) are found to be enhanced in tumor biop-
sies of cervical carcinoma when compared to 
adjacent normal tissues [ 287 ]. 

 The transcription factor NF-κB is inactive in 
the cytoplasm under normal conditions and is 
activated when its binding partner, IκBα, is 
degraded by the proteasome. Constitutive NF-κB 
activity has been observed in a variety of tumors 
including MM; sustained activity of NF-κB may 
lead to aberrant expression of target genes pro-
moting tumor cell proliferation and survival 
[ 288 ]. Bcl-2 is identifi ed as a key target of NF-κB 
in B-cell lymphoma [ 289 ]. NF-κB, a centrally 
important transcription factor involved in 
immune and infl ammatory cellular responses 
affecting both cell growth and survival, appears 
to be pivotally involved in the pathogenesis of 
aggressive lymphoid malignancies [ 290 ]. As a 
result, the inhibition of proteasome function 
serves as an important mechanism in anticancer 
therapy. Proteasome inhibitors have recently 
emerged as an interesting and potentially new 
group of chemotherapeutic agents for various 
human cancers, including breast, prostate, and 
lung carcinomas, that function in part by stabiliz-
ing the IκBα protein and, fi nally, inhibiting 
NF-κB activation [ 121 ,  291 ]. Preclinical studies 
have shown that the proteasome inhibitor, bort-
ezomib, decreases proliferation, induces apopto-
sis, enhances the activity of chemotherapy and 

radiation, and reverses chemoresistance in a vari-
ety of hematologic and solid malignancy models 
 in vitro  and  in vivo  [ 292 ]. Bortezomib is a novel 
synthetic dipeptide boronic acid that reversibly 
inhibits the chymotryptic-like activity and, to a 
lesser extent, the caspase-like activity of the β5- 
and β1-subunits of the 20S CP [ 293 ]. 

 However, the role of NF-κB as a key determi-
nant of bortezomib-induced cytotoxicity is rather 
controversial, as several studies have shown that 
direct inhibition of NF-κB signaling is insuffi -
cient to induce apoptosis in bortezomib-sensitive 
cells [ 294 – 296 ]. Recent studies also found that 
bortezomib exerts no inhibition of constitutive 
NF-κB activity in MM or mantle cell lymphoma 
cells [ 297 ,  298 ]. Results of the genome-wide 
siRNA screen performed by Chen and co- workers 
showed that bortezomib induces cell death by 
interfering with ribosome function and DNA 
damage pathways and through deregulation of 
Myc signaling [ 299 ]. A separate screen by Zhu 
and co-workers demonstrates that knockdown of 
cyclin-dependent kinase 5 (CDK5), as well as a 
number of other genes, potentiated bortezomib- 
induced cytotoxicity in MM cells [ 300 ]. In addi-
tion, proteasome inhibitors are also potent 
inducers of endoplasmic reticulum (ER) stress 
[ 295 ,  301 ]. Acute ER stress response caused by 
proteasome inhibition results in apoptosis [ 301 ]. 
In addition to ER stress, several reports indicate 
that proteasome inhibitors induce the rapid pro-
duction of ROS, known to be involved in apop-
totic signaling [ 295 ,  302 ,  303 ]. 

 Bortezomib (Velcade ® , Millennium 
Pharmaceuticals, Inc., Cambridge, MA and 
Johnson & Johnson Pharmaceutical Research 
and Development, L.L.C.) is the fi rst proteasome 
inhibitor approved by the US Food and Drug 
Administration (FDA) in 2005 for the treatment 
of progressive MM in patients who have received 
at least one prior therapy [ 236 ]. The drug is later 
approved for the treatment of mantle cell lym-
phoma, a lymphoid malignancy derived from 
mature B cells [ 237 ,  242 ,  245 ]. Bortezomib has 
undergone a series of successful preclinical and 
clinical studies. Phase I and II trial results pro-
duced encouraging prospects. In a retrospective 
study [based on data from phase II (SUMMIT or 
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CREST) or phase III (APEX) registration stud-
ies] to clarify the utility of bortezomib as a repeat 
therapy, bortezomib retreatment appeared to be 
safe and effective in patients with relapsed MM 
[ 304 ]. In a separate phase I/II trial, weekly bort-
ezomib plus oral cyclophosphamide and predni-
sone produced more than 50 % complete response 
rate and an encouraging 1-year survival in 
relapsed/refractory patients with MM [ 240 ]. The 
regulatory approval of bortezomib was based on 
its effi cacy and safety in a large, international, 
multicenter phase III prospective study. This ran-
domized, open-label trial compared single-agent 
bortezomib with single-agent, high-dose dexa-
methasone in patients with progressive MM after 
at least one prior therapy [ 236 ,  247 ]. Bortezomib 
manifested signifi cant effi cacy and safety, sup-
ported by an improved response rate, including 
achieving near-complete responses [ 236 ,  247 ]. 
Updated results of a multicenter phase II 
PINNACLE study of bortezomib in patients with 
relapsed or refractory mantle cell lymphoma 
indicate that single-agent bortezomib is associ-
ated with lengthy responses and notable survival 
in these patients [ 245 ]. However, clinical trials 
using bortezomib in combination with other che-
motherapy drugs in cancers such as HL [ 243 ]; 
advanced solid tumors such as breast, ovarian, 
and prostate [ 239 ]; and metastatic gastroesopha-
geal cancer [ 244 ] lacked favorable outcomes. 

 It is clear that although bortezomib has potent 
anti-multiple myeloma activity, not all patients 
respond to bortezomib, and most responders ulti-
mately relapsed [ 305 ,  306 ]. To date, however, no 
marker has been identifi ed and validated in a man-
ner that would allow clinical use and to distin-
guish patients likely to respond to bortezomib 
treatment from those who would not [ 305 ]. The 
most common adverse events are gastrointestinal 
symptoms, fatigue, thrombocytopenia, and sen-
sory neuropathy, which comprised a major reason 
of treatment discontinuation [ 241 ]. Despite the 
clinical success of bortezomib in MM and mantle 
cell lymphoma, resistance to this drug remains a 
clinically signifi cant problem. For example, in 
studies of bortezomib in relapsed refractory 
patients [ 241 ,  306 ], almost all responding patients 
ultimately experienced disease  progression. Even 

when bortezomib was used as a single agent in 
newly diagnosed patients, 52 % did not achieve a 
partial response or a better outcome [ 246 ]. 
Furthermore, the clinical response to bortezomib 
in other hematologic malignancies and solid 
tumors remains low [ 238 ,  306 ]. 

 Resistance to proteasome inhibitors has been 
examined in cell-based studies, and potential 
clinical mechanisms of bortezomib resistance 
have been highlighted. Understanding the molec-
ular basis of resistance to proteasome inhibitors 
in patients with myeloma and other malignancies 
will aid in the development of therapeutic strate-
gies to overcome bortezomib resistance. In an 
effort to overcome bortezomib resistance, novel 
proteasome inhibitors have been developed that 
act through mechanisms distinct from bortezo-
mib. These newer proteasome inhibitors may also 
possess side effect profi les distinct from that of 
bortezomib. Second-generation proteasome 
inhibitors with novel properties, such as NPI- 
0052 and carfi lzomib, are currently evaluated in 
clinical trials and have shown evidence of anti- 
myeloma activity. Carfi lzomib (previously 
known as PR-171) is a tetrapeptide epoxyketone- 
based, irreversible proteasome inhibitor, more 
potent and selective, and produces more sus-
tained inhibition of the proteasome [ 307 ,  308 ]. 

 Although a recent phase I study of carfi lzomib 
revealed tolerability and some clinical activity in 
patients with multiple hematologic malignancies, 
the response rates were rather low [ 248 ]. 
Currently, various trials are ongoing for carfi lzo-
mib, either as a single agent or in combination 
with other chemotherapy drugs for MM patients 
who have relapsed or are refractory to bortezomib- 
containing treatments. Other clinical studies are 
currently exploring the potential benefi t of this 
drug in patients with relapsed AML or acute lym-
phoblastic leukemia (ALL) (Table  13.1 ).  

13.4.4     Inhibitor of Apoptosis Protein 
(IAP) Antagonists 

 During apoptosis, natural IAP antagonists such 
as Smac/Diablo and HtrA2/Omi translocate from 
the mitochondria and inactivate IAPs to facilitate 
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caspase activation and cell death. Smac/Diablo 
and HtrA2/Omi promote apoptosis by antagoniz-
ing the IAPs, such as X-IAP, cIAP-1, and cIAP-2, 
which are often upregulated in many cancer cells 
[ 309 ]. X-IAP is a potent direct inhibitor of cas-
pase- 3, caspase-7, and caspase-9 [ 310 ]. Smac/
Diablo contains an IAP-binding motif which 
forms the basis for the design of the novel class 
of anticancer drugs named Smac mimetics [ 311 ]. 
Peptides that mimic Smac/Diablo functions are 
capable of inducing death or increasing the apop-
totic effect of chemotherapeutic agents [ 64 ,  309 ]. 
In a preclinical study, the synthesized Smac/
DIABLO-N7 peptides are found to increase the 
apoptosis-inducing potential of chemotherapeu-
tic drugs (paclitaxel, doxorubicin, and tamoxi-
fen) and irradiation; in addition, they sensitize 
TRAIL-resistant cells to undergo apoptosis 
[ 312 ]. Smac mimetic such as AEG40730 triggers 
the autoubiquitination of cIAP-1 and cIAP-2 and 
targets them for proteasomal degradation. Loss 
of cIAPs leads to TNF-dependent cell death in 
some cell types [ 313 ]. 

 AEG35156, an X-IAP antisense oligonucle-
otide, is the fi rst IAP antagonist that has advanced 
to human clinical trial. A phase I trial of 
AEG35156 in advanced refractory cancer pro-
duced reduction in X-IAP mRNA level; however, 
the suppression was not preserved. Nonetheless, 
it is well tolerated in patients after intravenous 
infusion and some clinical evidence of antitumor 
activities are observed [ 249 ]. However, in a ran-
domized phase II trial of patients with primary 
refractory AML, the addition of AEG35156 to 
idarubicin and cytarabine did not improve the 
rate of remission as compared with the control 
arm consisting of cytarabine and idarubicin alone 
[ 250 ,  251 ]. The mRNA level of X-IAP was not 
determined in this study, therefore, whether effi -
cient knockdown of X-IAP mRNA was achieved 
in this phase II trial remains unknown [ 251 ]. 

 A phase I report of another novel IAP antago-
nist, LCL161, indicated that this orally bioavail-
able agent is well tolerated in patients with 
advanced cancer. However, no objective 
responses were observed, despite the fact that 
LCL161 treatment results in target inhibition, as 
shown by cIAP-1 degradation and cytokine 
induction [ 252 ]. Phase Ib study of LCL161 in 

combination with paclitaxel in advanced solid 
tumors is currently underway. Early report shows 
that this combination is well tolerated and dem-
onstrates preliminary antitumor activity in breast 
cancer patients [ 253 ]. Two other small-molecule 
IAP antagonists, HGS1029 and TL32711, are 
also reported to be well tolerated in phase I stud-
ies and have produced some evidence of antitu-
mor activity as well as suppression of cIAP-1 
level [ 254 ,  255 ]. YM155, a small-molecule 
inhibitor of survivin, another human IAP, has 
also demonstrated to be safe and to possess anti-
tumor activity in phase I studies [ 256 ,  257 ]. 
However, a phase II trial reported modest single- 
agent activity of YM155 in NSCLC [ 258 ]. In 
patients with stage III or IV melanoma, prespeci-
fi ed primary endpoint was not achieved in a 
phase II trial [ 259 ]. LY2181308, a survivin anti-
sense oligonucleotide, has been reported to be 
safe in the fi rst-in-human phase I study, although 
further studies would be needed to assess its 
activities [ 314 ]. The overall effi cacy of IAP 
antagonists remains uncertain at this point of 
time. Table  13.1  summarizes the various drugs 
targeting the apoptosis pathways and clinical 
trial stages based on published reports as well as 
ongoing trials listed in the NIH ClinicalTrials.
gov website. 

 The crosstalk between apoptosis, autophagy, 
and necroptosis signaling pathways and future 
directions of cancer therapeutic targets will be 
discussed in Chap.   14    .   

13.5    Concluding Remarks 

 Resistance to cell death induction has long been 
recognized as a hallmark of cancer. Therefore, 
increased understanding of the underlying molec-
ular events regulating different cell death mecha-
nisms such as apoptosis, necroptosis, and 
autophagy has provided new possibilities for tar-
geted interference of these pathways. Various 
phases of clinical trials have been conducted 
which interfere with these pathways.     
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14.1            Introduction 

 The ubiquitin-proteasome system (UPS) and 
lysosomes are two primary intracellular protein 
degradation pathways recognized in eukaryotic 
cells. Differences between these two major pro-
tein degradation systems depend on their func-
tional signifi cance and the type of substrates 
taken in for degradation [ 1 ]. The UPS catalyzes 
the rapid degradation of abnormal proteins and 
short-lived regulatory proteins, leading to a con-
trol of a diversity of essential cellular processes 
[ 2 ]. In the lysosomal protein degradation path-
way, degradation of extracellular materials is 
mediated by endocytosis, whereas degradation of 
intracellular long-lived cytoplasmic proteins and 
damaged organelles is mediated by three types of 
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autophagy: macroautophagy, microautophagy, 
and chaperone-mediated autophagy (CMA), 
which are classifi ed based on their transport of 
cytoplasmic materials into the lysosome for deg-
radation [ 3 ,  4 ]. 

 Autophagy literally means self-digestion in 
Greek [ 5 ]. Macroautophagy, usually referred to 
autophagy, is responsible for the turnover of 
unnecessary or dysfunctional organelles and pro-
teins, such as damaged mitochondria [ 6 ]. These 
processes are important to maintain a well- 
controlled balance between anabolism and catab-
olism to facilitate normal cell growth and 
development. It is also a survival pathway, 
required during starvation or growth factor depri-
vation as it provides an alternative energy source 
[ 7 ,  8 ]. Autophagy process provides catabolic 
intermediates for intracellular production of ATP 
when energy supplies are limited. It plays an 
essential role during starvation, cellular differen-
tiation, cell death, cell survival, aging, and tumor 
prevention [ 4 ,  6 ,  9 ]. 

 Autophagy is a multistep process character-
ized by induction, vesicle nucleation, extension, 
and completion of an isolation membrane to form 
an organelle called autophagosome [ 10 ]. Briefl y, 
the autophagy process begins with the formation 
of a pre-autophagosomal structure known as iso-
lation membrane or phagophore [ 11 ]. The isola-
tion membrane engulfs and elongates to form the 
autophagosome, surrounding the components 
destined to be recycled. The autophagosome, 
which is a double membrane- bounded structure, 
undergoes maturation and fuses with both endo-
somal and lysosomal vesicles to form autolyso-
some [ 11 – 13 ]. The sequestered contents are 
subsequently degraded by lysosomal hydrolases 
and are recycled. Based on morphological fea-
tures, the term “autophagic cell death” has been 
described in instances of cell death that are 
accompanied by massive cytoplasmic vacuoliza-
tion. The morphology characteristics of cells 
undergoing autophagic cell death are depicted in 
Chap.   13     (Fig.   13.2    ). 

 The core autophagy machinery composes of 
four major functional groups: (1) the Atg1-
Atg13- Atg17 kinase complex; (2) the Class III 
phosphoinositide-3-kinase (PI3K) complex I, 

including Class III PI3K (the mammalian ortho-
log of vascular protein sorting 34; Vps34), p150 
(the mammalian ortholog of Vps15), Beclin-1 
(the mammalian ortholog of Atg6, also called 
Vps30), and Atg14; (3) two ubiquitin-like conju-
gation systems, Atg12 and Atg8; and (4) Atg9 
and its cycling system [ 14 ]. The unc-51-like 
kinases (ULKs; the mammalian orthologs of 
Atg1), which exist in a large complex with mam-
malian Atg13 (mAtg13), focal adhesion kinase 
family interacting protein of 200 kDa (FIP200; 
the mammalian homolog of Atg17), and the 
recently identifi ed Atg101, plays a crucial role in 
autophagy induction [ 15 – 19 ]. Phosphorylation of 
Atg13 and FIP200 by ULK1 is an important step 
in the initiation of autophagy, although the exact 
role of phosphorylation in generating autophago-
somes is currently unclear. 

 The early stages of the phagophore membrane 
nucleation are dependent on the Class III PI3K com-
plex which consists of the Class III PI3K protein, 
its regulatory protein kinase p150, and Beclin-1 
[ 20 ]. Beclin-1 is a 60 kDa tumor  suppressor pro-
tein and is identifi ed from a yeast two- hybrid 
screen as a Bcl-2 interacting protein [ 21 ]. Recent 
studies have demonstrated that several binding 
molecules positively regulate Beclin-1 activity 
and autophagosome formation and maturation. 
Ultraviolet (UV) radiation resistance- associated 
gene (UVRAG), Atg14L, and autophagy/Beclin-1 
regulator 1 (Ambra1) associate with Beclin-1 to 
activate autophagy [ 22 – 26 ]. 

 The next stage of phagophore membrane elon-
gation (expansion and closure of the autophago-
some) requires two ubiquitin-like systems [ 27 ]. 
The ubiquitin-like protein Atg12 conjugates with 
Atg5 in an Atg7- and Atg10-dependent manner 
[ 1 ]. The Atg5-Atg12 complex interacts with 
Atg16 to form a stable and large multimeric com-
plex called the Atg16L complex, which localizes 
on the outer surface of the extending autophago-
somal membrane [ 10 ]. This complex is important 
in the stimulation and localization of the 
microtubule- associated protein 1 light chain 3 
(LC3) conjugation reactions. LC3 is fi rst cleaved 
by Atg4 to expose a C-terminal glycine residue 
required for subsequent activation and conjuga-
tion reactions [ 28 ]. It is then conjugated to the 
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lipid phosphatidylethanolamine (PE), also via 
Atg7 and E2-like Atg3, and is subsequently 
recruited to both outer and inner surfaces of the 
autophagosomal membrane [ 27 ,  29 ]. Actually, 
two forms of LC3 are produced posttranslation-
ally in various cells; the unconjugated form 
(LC3-I) is in the cytosol, while the conjugated 
form (LC3-II) targets to the autophagosomal 
membrane with the assistance of the Atg16L 
complex [ 29 ,  30 ]. The Atg5-Atg12-Atg16 com-
plex is recycled, while the LC3 complex stays on 
the membrane until it is degraded by the lyso-
some [ 1 ]. In mammalian autophagy, LC3-II pro-
tein is used as an index of autophagosome 
formation or as an autophagosomal marker [ 31 ]. 

 Atg16L complex is a ubiquitin-protein ligase 
(E3)-like enzyme that functions as a scaffold for 
LC3-II lipidation by localizing to the source 
membranes for autophagosome formation [ 30 , 
 32 ]. The association of LC3-II to the autophago-
some is crucial for membrane elongation of the 
autophagosome and the fi nal limitation of the 
membrane to form the vacuoles [ 1 ]. These conju-
gation systems are considered to be uniquely 
important to the autophagosome formation and 
have been identifi ed as possible drug targets in 
cancer [ 33 ]. On the other hand, Atg9 provides 
lipids to the isolation membrane by cycling 
between distinct subcellular compartments. The 
cycling of Atg9 requires Atg1/ULK1 and the 
kinase activity of Vps34 [ 34 ]. However, the role 
of Atg9 is currently not completely understood. 

 The completed autophagosome mem-
brane subsequently fuses with lysosome via 
the actions of the lysosomal proteins including 
the lysosomal- associated membrane protein 1 
(LAMP1), LAMP2, member RAS oncogene 
family (Rab7), and UVRAG [ 35 ]. The eventual 
autolysosome is a single-membrane-bound acidic 
vesicle where the contents are digested and recy-
cled by lysosomal hydrolases such as cathepsins 
(CTS), and its nutrient and energy are recycled 
[ 36 ]. These single-membrane autolysosomes, 
fi lled with degraded cytoplasmic materials, can 
be easily observed using transmission electron 
microscopy (TEM) [ 10 ]. As a precautionary 
note, the Nomenclature Committee on Cell Death 
(NCCD) recommends that the term “autophagic 

cell death” to be used based on some biochemi-
cal and functional considerations, before indicat-
ing that a cell death is mediated by autophagy. 
Some of the considerations include making sure 
that the investigated cell death can be suppressed 
by the inhibition of the autophagic pathway 
using chemicals and/or genetic means (e.g., gene 
knockout or RNAi silencing of essential autoph-
agy modulators such as AMBRA1, Atg5, Atg12, 
or Beclin-1) [ 37 ]. 

 One of the most studied and important path-
ways involved in autophagy regulation is the 
PI3K-Akt-mTOR signaling pathway. The mam-
malian target of rapamycin, commonly known 
as mTOR, is a serine/threonine kinase which 
belongs to the family of phosphatidylinositol-
3- kinase-related kinases. It regulates translation 
and cell growth by its ability to phosphorylate 
both binding protein of eukaryotic translation 
initiation factor 4E (4E-BP1) and p70 ribosomal 
S6 kinase (p70S6k). Upon stimulation by a vari-
ety of signals including cytokines, growth fac-
tors, cellular stress such as heat shock, hypoxia, 
and oxidative stress, PI3K is recruited to the inner 
cell membrane via phosphorylated receptor tyro-
sine kinases and catalyzes the phosphorylation of 
phosphatidylinositol-3,4- bisphosphate (PIP2) to 
phosphatidylinositol-3,4,5-triphosphate (PIP3). 
The recruitment of inactive Akt from the cytosol 
to the plasma membrane requires that the pleck-
strin homology (PH) domain of Akt binds to PIP3 
synthesized at the plasma membrane by PI3K. Akt 
is then phosphorylated at Thr 308 by phosphati-
dylinositol-dependent kinase 1 (PDK1) [ 38 ,  39 ]. 
PTEN phosphatase antagonizes PI3K- Akt signal-
ing by converting PIP3 back to PIP2 [ 38 ]. 

 Upstream PI3K and Akt activation by growth 
factors leads to the activation of mTOR and sub-
sequently phosphorylation of downstream sub-
strates. Phosphorylation of p70S6k promotes 
ribosome biogenesis and increases the capacity 
of the translational machinery for protein synthe-
sis [ 40 ]. Phosphorylation of 4E-BP1 initiates the 
transcription of a subset of mRNAs important for 
cell growth and proliferation [ 40 – 42 ]. The mTOR 
kinase is a key regulatory component that con-
trols the induction of autophagy [ 43 ]. Inhibition 
of mTOR (by nutrient depletion, starvation, or 
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rapamycin) leads to cell cycle arrest, inhibition of 
cell proliferation, immunosuppression, and 
induction of autophagy. Increased levels of the 
mTOR kinase are found to inhibit the autophagy 
process, resulting in an increase in cell growth 
and tumor development [ 13 ]. Rapamycin, a spe-
cifi c mTOR inhibitor, complexes with the cyto-
solic receptor FK506-binding protein (FKBP12) 
and subsequently binds to a distinct region of 
mTOR upstream of the catalytic domain [ 44 ]. It 
induces autophagy and inhibits the proliferation 
of a variety of cells [ 45 ]. 

 In eukaryotic cells, mTOR exists in two differ-
ent complexes: mTORC1, a rapamycin-sensitive 
complex defi ned by its interaction with the sup-
plementary protein Raptor (regulatory-associated 
protein of mTOR), and mTORC2, a rapamycin- 
insensitive complex defi ned by its interaction 
with Rictor (rapamycin-insensitive companion of 
mTOR) [ 46 – 48 ]. mTORC1 and mTORC2 acces-
sorial complexes consist of mTOR, mammalian 
lethal with SEC13 protein 8 (mLST8) (also 
known as GßL), and DEP domain containing 
mTOR-interacting protein (Deptor) [ 49 ]. mLST8 
binds to the kinase domain of mTOR and stabi-
lizes the interaction of Raptor with mTOR in a 
rapamycin-sensitive pathway [ 50 ]. Raptor is the 
fi rst protein shown to bind directly to mTOR that 
is required to mediate mTOR regulation of 
p70S6k and 4E-BP1 activities [ 47 ,  51 ]. On the 
other hand, PRAS40 and Deptor play roles as 
distinct negative regulators of mTORC1 [ 52 ,  53 ]. 

 In a rapamycin-sensitive mTOR signaling 
pathway, much of the knowledge about mTORC1 
function comes from the use of rapamycin, a bac-
terial macrolide antibiotic [ 54 ]. Upon entering 
the cell, rapamycin binds FKBP12, its intracel-
lular receptor, which subsequently binds to the 
FKBP12-rapamycin-binding domain (FRB) of 
mTOR, thus inhibiting the mTORC1 functions 
[ 55 ,  56 ]. Rapamycin weakens the interaction 
between mTOR and Raptor [ 57 ]. However, the 
exact mechanism of how rapamycin and several 
rapamycin derivatives bind to FKBP12 to inhibit 
mTORC1 signaling is not completely understood 
[ 58 ]. Various conditions including starvation or 
lack of nutrients such as amino acids and/or glu-
cose mimic rapamycin treatment, hence inhibit 
mTOR function in cultured cells, as indicated by 

rapid inactivation of p70S6k and hypophosphor-
ylation of the 4E-BP1 [ 59 ]. 

 Studies have shown that mTORC1 controls 
autophagy through the regulation of a protein 
complex consisting of ULK1, mAtg13, and 
FIP200 [ 16 ,  18 ,  60 ]. The ULK complex is directly 
controlled by mTOR, leading to maintenance of 
the mAtg13 hyperphosphorylation state and sup-
pression of autophagy induction [ 61 ]. A recent 
study has demonstrated that inhibition of mTOR 
by rapamycin leads to dephosphorylation of 
ULK1, ULK2, and mAtg13 and activates ULKs 
to phosphorylate FIP200. These results suggested 
that the ULK-Atg13-FIP200 complexes are 
direct targets of mTOR and important regulators 
of autophagy in response to mTOR signaling 
[ 18 ]. One of the most important proteins involved 
in the regulation of mTORC1 activity is the 
tuberous sclerosis complex (TSC), which is a 
heterodimer of two proteins, TSC1 (also known 
as hamartin) and TSC2 (also known as tuberin) 
[ 56 ]. TSC1 and TSC2 function as a GAP 
(GTPase-activating protein) that negatively regu-
lates a small GTPase called Rheb (Ras homolog 
enriched in brain). TSC1 and TSC2 inhibit 
mTORC1 signaling by transforming Rheb into 
its inactive GDP-bound state [ 62 ,  63 ]. 

 In contrast to mTORC1, relatively little is 
known about the regulatory pathway infl uencing 
mTORC2 (mTOR-Rictor) [ 64 ]. mTORC2 con-
sists of mTOR, mLST8, Rictor, Deptor, mamma-
lian stress-activated map kinase-interacting protein 
1 (mSIN1; also known as MAPKAP1), and the 
recently identifi ed protein observed with Rictor 
(PROTOR) [ 49 ,  65 ]. Rictor is defi ned as a novel 
mTOR-interacting protein which is Raptor-
independent [ 46 ,  66 ]. Unlike mTOR-Raptor, the 
mTOR-Rictor complex does not bind to FKBP12-
rapamycin and is insensitive to rapamycin treat-
ment [ 46 ,  48 ]. Therefore, rapamycin treatment 
does not represent a complete inhibition of mTOR 
function [ 67 ]. mTORC2 stimulates cell signaling 
through activation and phosphorylation of the pro- 
proliferative and pro-survival kinase Akt [ 68 ]. 
Inhibitors of the mTOR kinase domain have been 
developed to suppress the activity of both mTOR 
complexes (mTORC1 and mTORC2) [ 69 ,  70 ]. 
Figure  14.1  illustrates the simplifi ed autophagy 
signaling pathways.
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14.2        Autophagy and Cancer 

 The role of autophagy in cancer is rather per-
plexing. It is widely postulated that the autopha-
gic pathway is deregulated in tumor cells. 
Several proteins and pathways related to autoph-
agy signaling are deregulated during cancer 
development [ 25 ,  71 ]. Cell lines derived from 

hepatic, pancreatic, and breast carcinoma exhibit 
low autophagic activity, as compared with nor-
mal cells from the same origin [ 25 ,  72 ]. 
Autophagic capacity is known to increase during 
the premalignant stages of pancreatic carcino-
genesis and then decreases during the transition 
of pancreatic adenoma into adenocarcinoma, 
suggesting that a decreased autophagic activity 
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possibly contributing to the malignancy of pan-
creatic cancer [ 73 ,  74 ]. A decrease in autophagic 
capacity is also observed during animal experi-
mental carcinogenesis, where cells from preneo-
plastic liver nodules or primary hepatocellular 
carcinomas induced by chemical carcinogens 
showed a decreased autophagic capacity as com-
pared to normal liver cells [ 74 ,  75 ]. In addition, 
 Beclin-1  is found to be mono-allelically deleted 
in a high percentage of ovarian, breast, and pros-
tate cancers (based on the 17q21 and gene map-
ping studies). It has been demonstrated to have a 
direct link between tumorigenesis and the dis-
ruption of autophagy [ 25 ].  PTEN  deletions as 
well as the amplifi cations of both  Class III PI3K  
and  Akt  are found in several cancers [ 76 ,  77 ]. 

 The mTOR signaling pathway is constitu-
tively activated in many tumor types. For exam-
ple, the mTOR pathway is frequently found to be 
hyperactive in cancers such as breast cancer, sug-
gesting that mTOR is an attractive target for can-
cer drug development and therapy [ 78 – 80 ]. The 
mTOR signaling network contains a number of 
tumor suppressor genes which includes  PTEN , 
 LKB1  (liver kinase B1),  TSC1/2 , and a number of 
proto-oncogenes such as  PI3K ,  Akt , and  eIF4E  
genes [ 81 ]. Cancer-related changes in pathways 
at the downstream of mTOR such as p70S6k and 
eIF4E are reported in breast carcinoma [ 82 ,  83 ]. 
In addition, malignant cell types undergo autoph-
agic cell death when responding to anticancer 
agents and traditional herbs, indicating the poten-
tial utility of autophagic cell death induction in 
cancer therapy [ 13 ,  84 ,  85 ]. Autophagic cell 
death characterized by an increase in the number 
of autophagic vacuoles in the cytoplasm, fol-
lowed by cell demise, has been observed in vari-
ous diseases such as Alzheimer’s disease [ 86 ], 
Huntington’s disease [ 87 – 90 ], and Parkinson’s 
disease [ 91 ]. Therefore, manipulation of autoph-
agy may provide an attractive strategy to increase 
the effi cacy of cancer treatments, prevent cancer 
development, and limit tumor progression. 

 However, autophagy is divergent in nature in 
both tumor suppression and tumor progression 
[ 92 ]. Although the argument supports that if cells 
cannot activate autophagy, protein synthesis will 
predominate over protein degradation, and cellu-

lar growth continues (typical characteristic of 
tumor cells), there are some exceptional cases. 
For example, a study in human epidermoid lung 
carcinoma cells revealed that the autophagic 
pathway in response to nutrient deprivation is not 
downregulated when compared to their normal 
counterparts [ 93 ]. Human colon cancer cells 
which are able to survive for long period of time 
in the absence of nutrients have a high rate of 
autophagy activity [ 94 ]. Studies in colorectal 
cancer cells revealed that these cancerous cells 
harbor functional autophagic machinery to pro-
long cell survival during shortages of nutrients 
[ 95 ]. A recent study by Fuji and co-workers has 
also showed that strong LC3 expression in the 
peripheral area of pancreatic cancer tissue is cor-
related with poor outcome and short disease-free 
period [ 96 ]. Activated autophagy observed in 
pancreatic cancer cells is thought to be a response 
to factors in the cancer microenvironment, such 
as hypoxia and poor nutrient supply. 

 Autophagy has been identifi ed as the key 
mechanism of cell survival in estrogen receptor- 
positive (ER + ) breast cancer cells undergoing 
treatment with 4-hydroxytamoxifen (4-OHT) 
[ 97 ]. Antiestrogen therapy is the standard treat-
ment for ER +  breast cancers which improves 
overall survival and provides chemoprevention 
[ 98 ,  99 ]. Unfortunately, approximately half of the 
women treated with antiestrogen therapy either 
do not respond or their breast cancer ultimately 
acquires resistance during treatment [ 100 ,  101 ]. 
Studies have shown that autophagy activity 
reduces the effi cacy of chemotherapy and tamox-
ifen therapy in ER +  breast cancer cells [ 97 ,  102 , 
 103 ], supporting the thesis that blocking autoph-
agy signaling pathways may provide a new 
mechanism of anticancer therapy for resistant 
tumors. 

 In another example, electron microscopy 
examination of autophagic vesicles in melanoma 
tumors from 12 patients enrolled in a Phase II 
clinical trial of temozolomide and sorafenib ther-
apy revealed that autophagic index (mean num-
ber of autophagic vacuoles per cell) is signifi cantly 
higher in patients who derived little or no clinical 
benefi t from the combination of temozolomide 
and sorafenib treatment. Patients who had stable 

M.L. Tan et al.



249

disease or responded to therapy had low levels of 
autophagy in their tumors. These fi ndings vali-
date the emerging preclinical evidence that 
autophagy plays a critical role in resistance to 
chemotherapy. Results of this study indicate that 
pretreatment levels of autophagy can predict 
resistance to therapy. Patients with aggressive 
melanoma are more likely to have higher levels 
of autophagy in their tumor and therefore may 
respond to autophagy inhibition as a therapeutic 
strategy [ 104 ]. Hence, the divergent nature of 
autophagy has resulted in strategies for using 
pro-autophagics or autophagy inhibitors depend-
ing on the inherent nature of the cancer involved.  

14.3     Autophagy Signaling 
Pathways and Therapeutic 
Strategies in Cancer 

14.3.1     mTOR Signaling Pathway 
Inhibitors 

 Rapamycin, as the fi rst prototype of an mTOR 
inhibitor, has a strong immunosuppressive prop-
erty but poor aqueous solubility. Therefore, its 
utilization at doses capable of exerting anticancer 
effects is rather limited [ 105 ]. Nevertheless, trials 
utilizing rapamycin as a single-agent or combina-
tion therapy are still being carried out. In a recent 
Phase I study of rapamycin and sunitinib in 
patients with advanced non-small-cell lung can-
cer (NSCLC), combination of rapamycin and 
sunitinib is reported to be well tolerated and has 
warranted further investigation in Phase II trials 
[ 106 ]. 

 Various rapamycin analogs have since been 
developed. Temsirolimus (CCI-779) is the fi rst 
mTOR inhibitor approved by the US FDA for 
cancer treatment and is considered a fi rst-line 
treatment for patients with advanced renal cell 
carcinoma (RCC) with poor prognostic features 
[ 107 ]. A great deal of clinical trials was carried 
out for this drug, mainly as combination therapy 
with other chemotherapy drugs. Generally, clini-
cal activity is observed in patients with bone and 
soft tissue sarcoma given a combination of temsi-
rolimus and cixutumumab [ 108 ]; in patients with 

metastatic adrenocortical carcinoma, the same 
combination therapy results in 40 % of patients 
achieving prolonged stable disease [ 109 ]. 
However, Phase I and II clinical trials with temsi-
rolimus and sorafenib carried out in patients with 
metastatic melanoma did not produce suffi cient 
activity to justify further use [ 110 ,  111 ]. In Phase 
II trial for metastatic colorectal cancer, temsiroli-
mus has limited effi cacy in chemotherapy- 
resistant KRAS-mutant disease [ 112 ]. 

 Everolimus is another rapamycin analog 
which is already approved as an anticancer agent. 
Everolimus (RAD001;  ra pamycin derivative 
001) is a hydroxyethyl ether derivative of rapamy-
cin that has been developed for oral administra-
tion [ 113 ]. This drug was approved by FDA for 
use in a variety of cancers, including advanced 
RCC, advanced pancreatic neuroendocrine 
tumors, renal angiomyolipoma, and HER2-
negative breast cancer. Everolimus, a derivative 
of rapamycin, is structurally similar to temsiroli-
mus and binds to an intracellular protein, FKBP-
12, forming a complex that inhibits the mTOR 
kinase. A recent Phase II trial showed that evero-
limus demonstrates effi cacy and acceptable toler-
ability in patients with advanced endometrial 
cancer [ 114 ]. A randomized Phase II study indi-
cates that combination therapy of everolimus 
with tamoxifen increases the clinical benefi t rate 
(defi ned as the percentage of all patients with 
complete or partial response or stable disease at 
6 months), time to progression (TTP), and overall 
survival compared with tamoxifen in postmeno-
pausal women with aromatase inhibitor-resistant 
metastatic breast cancer [ 115 ]. In patients with 
advanced NSCLC, Phase I study showed that 
combination therapy with everolimus and erlo-
tinib provides acceptable tolerability and disease 
control [ 116 ]. 

 Ridaforolimus (deforolimus or AP23573) has 
been tested in Phase I and II clinical trials and has 
shown promising results in several tumor types 
including sarcoma [ 105 ,  117 ]. In a Phase II clini-
cal study of ridaforolimus in 216 patients with 
advanced bone and soft tissue sarcomas, the over-
all clinical benefi t response (CBR) was 28.8 % 
with a median progression-free survival of 
15.3 weeks. Interestingly, the archival tumor 
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 protein markers analyzed were not correlated with 
CBR [ 118 ]. Ridaforolimus receives fast track and 
orphan drug status from the US FDA, as well as 
orphan status from the European Medicines 
Agency. The FDA is currently reviewing its regis-
tration for maintenance therapy in patients with 
sarcoma [ 119 ]. In another Phase II trial study on 
the effi cacy and safety of single-agent ridaforoli-
mus in patients with relapsed or refractory hema-
tologic malignancies, results were unremarkable. 
Of the 52 patients evaluated, partial responses 
were noted in fi ve subjects, while hematologic 
improvement/stable disease was observed in less 
than half of the patients [ 120 ]. 

 PI3K-Akt-mTOR pathway is often constitu-
tively activated in human tumor cells and thus 
has been considered as a promising drug target. 
NVP-BEZ235 is a potent imidazo(4,5-c)quino-
line derivative that inhibits PI3K and mTOR 
kinase activities by binding to the ATP-binding 
cleft of these enzymes and induces G1 arrest 
[ 121 ]. Preclinical studies have suggested that 
NVP-BEZ235 is a potent dual PI3K/mTOR 
modulator with favorable pharmaceutical prop-
erties. For example, it inhibits VEGF-induced 
HUVEC cell proliferation and survival  in vitro  
and VEGF- induced angiogenesis  in vivo  [ 122 ]. 
The compound also inhibits microvessel perme-
ability in BN472 mammary carcinoma grown 
orthotopically in syngeneic rats, suggesting that 
this compound is potentially anti-angiogenic 
[ 122 ]. Deregulated angiogenesis and high tumor 
vasculature permeability are known VEGF-
mediated characteristics of human tumors. In 
addition, NVP-BEZ235 is found to produce sig-
nifi cant tumor growth inhibition in xenograft 
models of pancreatic cancers and breast cancer 
cells [ 123 ,  124 ]. Phase I/II clinical trials of NVP-
BEZ235 in patients with advanced solid malig-
nancies and breast cancer were completed, but 
reports on the safety and effi cacy of this drug 
have yet to be published. Other ongoing trials 
either as a single- agent or combination therapy 
with other chemotherapy drugs in breast cancer, 
prostate cancer, leukemia, and other advanced 
solid tumors are listed in the NIH ClinicalTrials.
gov website.  

14.3.2     Pro-autophagics 

 Temozolomide is the fi rst pro-autophagic cyto-
toxic drug used to overcome apoptosis resistance 
in cancer cells and was approved for use in glio-
blastoma multiforme (GBM) [ 125 ]. It demon-
strates therapeutic benefi ts in patients with 
glioblastoma and has been evaluated for several 
types of apoptosis-resistant cancers [ 126 ]. 
Temozolomide is a prodrug, is a monofunctional 
alkylating agent, and is chemically related to 
dacarbazine. It is the 3-methyl derivative of the 
experimental anticancer drug, mitozolomide. The 
ability of temozolomide in inducing autophagic 
cell death is reported in various preclinical stud-
ies [ 127 – 130 ]. In addition, temozolomide also 
demonstrates pro-apoptotic activities in malig-
nant melanoma cells [ 131 ]. In a systematic 
assessment of three randomized controlled trials 
addressing whether temozolomide holds any 
advantage over conventional therapy for high- 
grade gliomas, it was shown that temozolomide 
is an effective therapy for GBM. The drug pro-
longs survival, delays disease progression, and 
has a low incidence of early adverse events [ 132 ]. 
Similar outcomes were observed in a Phase II 
study involving erlotinib in combination with 
radiation therapy and temozolomide to treat 
GBM and gliosarcoma. Patients treated with the 
combination of erlotinib and temozolomide dur-
ing and following radiotherapy have better sur-
vival than historical controls [ 133 ]. 

 In a recent Phase II trial, patients with unre-
sectable or multifocal glioblastoma, an upfront 
regimen of temozolomide and bevacizumab was 
well tolerated and provided a signifi cant level of 
disease stabilization [ 134 ]. In patients with recur-
rent glioblastoma, either used as a single agent in 
a dose-intense schedule or in combination with 
other chemotherapeutic agents, temozolomide is 
proven to be well tolerated and safe [ 135 – 137 ]. 
In pediatric patients with recurrent solid tumors 
or brain tumors, low-dose temozolomide 
improves tolerability and is convenient as outpa-
tient therapy [ 138 ]. Temozolomide in combina-
tion with vorinostat is also well tolerated in 
children with recurrent central nervous system 
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(CNS) malignancies with myelosuppression 
[ 139 ]. However, good therapeutic effects are not 
observed in patients with NSCLC. In a current 
effi cacy and safety study of temozolomide in a 
total of 31 pretreated patients with NSCLC, only 
two patients achieved partial response, and three 
had stable disease [ 140 ]. Moreover, the research-
ers pointed out that prolonged low daily doses of 
temozolomide produces minimal activity in 
patients with advanced NSCLC. Hence, more 
Phase II and III studies to characterize the effi -
cacy of this drug in various cancers are defi nitely 
warranted. 

 Arsenic trioxide (ATO) has recently been 
introduced as part of a regimen in the therapy 
and management of acute promyelocytic leuke-
mia (APL) [ 141 ]. It is now considered to be “the 
most biologically active single drug in APL” by 
a panel of international leukemia experts for the 
European LeukemiaNet. The combination of 
ATO and all-trans retinoic acid (ATRA) holds the 
promise to “replace conventional approaches for 
most, if not all, patients in the very near future” 
[ 142 ]. ATO is known to induce both autophagy 
and apoptosis depending on cell types; there-
fore, its role as an autophagy inducer remains 
largely uncertain. In some preclinical trials, 
ATO has induced the autophagic pathway in 
ovarian carcinoma cells and has synergized with 
everolimus to induce the cytotoxicity of ovar-
ian cancer cells. The enhanced cytotoxicity is 
accompanied by the upregulation of Atg5-Atg12 
conjugate and LC3-II, a hallmark of autophagy 
[ 143 ]. In another recent study, ATO induced 
the autophagic degradation of the BCR-ABL1 
oncoprotein, known to cause chronic myeloid 
leukemia (CML) and Ph +  acute lymphoblastic 
leukemia (ALL) [ 144 ]. However, in other stud-
ies, in the presence or absence of ionizing radia-
tion and in specifi c low concentrations, ATO 
induced apoptosis in MTLn3 cells, known to be 
highly malignant and resistant to both radio- and 
chemotherapy [ 145 ]. Interestingly, in human 
glioma cells, ATO induces both autophagy and 
apoptosis  in vitro  and  in vivo , mediated by the 
inhibition of PI3K/Akt and activation of MAPK 
signaling pathway [ 146 ]. 

 In a Phase I clinical study, ATO given con-
comitantly with radiation therapy in children 
with newly diagnosed anaplastic astrocytoma, 
glioblastoma, or diffuse intrinsic pontine glioma 
was safe and well tolerated by patients through-
out the entire dose escalation [ 147 ]. ATO is also 
reported to be well tolerated when used in combi-
nation with temozolomide and radiotherapy in 
malignant gliomas [ 148 ] or when used in combi-
nation with bortezomib, high-dose melphalan, 
and ascorbic acid in multiple myeloma (MM) 
patients [ 149 ]. A Phase II study to evaluate the 
effi cacy and feasibility of a sequential treatment 
consisting of induction and consolidation with 
ATO followed by autologous hematopoietic cell 
transplantation for relapsed APL revealed that 
ATO demonstrates outstanding effi cacy. Of the 
23 patients who underwent autologous hemato-
poietic cell transplantation with PML-RARα- 
negative PBSC graft, posttransplant relapse 
occurred only in three patients, and there was no 
transplant-related mortality. The 5-year event- 
free and overall survival rates were 65 % and 
77 %, respectively [ 150 ]. Phase I/II/III clinical 
trials using ATO mostly as combination therapy 
with other chemotherapy drugs are currently 
ongoing for CML and APL.  

14.3.3     Autophagy Inhibitors 

 The knowledge that autophagy plays a role as a 
cell survival pathway in response to therapeutic 
and cellular stresses in the tumor microenviron-
ment (which is highly acidic and hypoxic) implies 
that autophagy may work in favor of cancer cells. 
Therefore, inhibition of protective autophagy may 
break the resistance mechanism for survival of the 
harsh tumor microenvironment and lead to cell 
death [ 151 ]. Since autophagy activities are known 
to differ according to stages of cancer, modulation 
of autophagy is postulated to enhance the effi cacy 
of anticancer therapy. In a preclinical study, 
effects of imatinib, with or without different types 
of autophagy inhibitors, on human malignant 
 glioma cells were carried out [ 152 ]. It is demon-
strated that suppression of imatinib- induced 
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autophagy by 3-methyladenine (3-MA) or siRNA 
against Atg5 (which inhibits autophagy at an 
early stage) attenuates the imatinib-induced cyto-
toxicity. On the other hand, inhibition of autoph-
agy at a late stage by bafi lomycin A1 or RTA 203 
enhanced imatinib-induced cytotoxicity through 
the induction of apoptosis [ 152 ]. Thus, the authors 
have even suggested that therapeutic effi ciency of 
imatinib for malignant glioma may be augmented 
by inhibition of autophagy at a late stage, which 
could help sensitize tumor cells to anticancer 
 therapy [ 152 ]. 

 The current autophagy inhibitors used in trials 
for human cancer are chloroquine (CQ) and 
hydroxychloroquine. Both drugs are widely used 
as antimalarials and have recently received atten-
tion as potential chemosensitizers in treating 
tumors when used in combination with cytotoxic 
chemotherapeutic agents [ 153 – 155 ]. CQ inhibits 
lysosomal acidifi cation and therefore prevents 
autophagy by blocking autophagosome fusion 
and degradation [ 154 ,  156 ,  157 ]. A number of 
clinical trials are now revealing the promising 
role of CQ, an autophagy inhibitor, as a novel 
antitumor drug. For example, adding chloroquine 
to conventional treatment for GBM improves 
midterm survival of patients [ 158 ]. In a Phase I 
study involving patients with advanced NSCLC, 
hydroxychloroquine, with or without erlotinib, 
was safe and well tolerated, although the overall 
response rate was as low as 5 % [ 159 ]. Other tri-
als on metastatic breast cancer, pancreatic cancer, 
RCC, NSCLC, and MM are currently ongoing. 
Table  14.1  summarizes the various drugs target-
ing the autophagy pathways and clinical trial 
stages based on published reports as well as 
ongoing trials listed in the NIH ClinicalTrials.
gov website. 

14.4        Mechanisms of Necroptosis 

 Necrosis is initially known as a passive and 
uncontrolled death process usually caused by 
physical or chemical insult. An irreversible drop 
in intracellular ATP and energy insuffi ciency lead 
to the morphological characteristics of organelle 
swelling, plasma membrane rupture, and spillage 

of cytoplasmic content [ 160 ,  161 ]. DNA in 
necrotic cells is usually degraded randomly, giv-
ing rise to a smear of DNA [ 162 ]. The cellular 
content leaks into the extracellular environment 
and is usually associated with infl ammation [ 163 , 
 164 ]. Release of cytokines and other factors from 
the necrotic cells and the secretion of pro-infl am-
matory cytokines from activated macrophages 
triggered by necrotic cells are thought to be 
responsible for the infl ammatory response [ 165 , 
 166 ]. Interestingly, in the past decade, studies 
have revealed necrosis as a form of regulated cell 
death, executed through a mechanism termed 
necroptosis or programmed necrosis [ 167 ,  168 ]. 
Necroptosis can be stimulated via a class of death 
receptors including TNFR1, TNFR2, TRAIL-R, 
and Fas. Upon binding to their agonists, these 
death receptors can induce cells toward either 
survival or death. Depending on the circum-
stances, the induction of cell death may be either 
apoptosis or necroptosis. However, the exact 
mechanisms that dictate the cellular decision to 
undergo apoptosis or necroptosis remained 
largely unknown. 

 TNF-α can be massively generated during 
hyperinfl ammatory shock, accumulated upon 
infection or produced primarily by macrophages. 
It induces apoptosis in many cells, while trigger-
ing necrosis in some [ 161 ,  169 ]. In necroptosis, 
TNF-α binds to the extracellular portion of the 
death receptors and triggers downstream signal-
ing pathway by forming complex I with proteins 
containing a death domain, such as TNF-receptor-
associated death domain (TRADD), receptor- 
interacting protein kinase 1 (RIP1), and several 
E3 ubiquitin ligases, such as TNF-receptor- 
associated factor 2/5 (TRAF2/5), cIAP-1, and 
cIAP-2. Ubiquitination of these proteins is 
important for the regulation of the activity of 
complex I and impacts the outcome of the cell 
survival [ 170 ]. The ubiquitination and phosphor-
ylation states of RIP1 determine whether it func-
tions as a pro-survival molecule or a kinase 
promoting cell death. RIP1 is a member of the 
RIP family exhibiting a homologous N-terminal 
kinase domain and has recently emerged as an 
essential mediator of cellular stress and cell 
death. RIP1 is polyubiquitinated by TRAF2/5, 
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cIAP-1, and cIAP-2 at the 63rd position of lysine 
(K63) [ 171 ,  172 ]. K63-linked ubiquitination 
of RIP1 by cIAP-1/cIAP-2 is known to inhibit 
TNF-α-induced apoptosis [ 173 ,  174 ]. 

 Complex I is crucial for activating the NF-κB 
and mitogen-activated protein kinase (MAPK) 
pathways. cIAPs direct the formation of polyu-
biquitin chains on RIP1, allowing it to interact 
with TGF (transforming growth factor)-β-
activated kinase 1/TAK-1-binding protein 2/3 
(TAK1/TAB2/3) complex. TAK1 activates the 
IκB kinases (IKK) complex and, in turn, phos-
phorylates IκBα. When IκBα is degraded by the 
proteasome, it allows NF-κB to translocate to the 
nucleus and activate its target genes in a pro-sur-
vival manner. Inhibitors of NF-κB are known to 
facilitate TNF-α-induced necrotic cell death, sug-
gesting that NF-κB suppresses the necrotic cell 
death pathway [ 175 ]. On the other hand, deubiq-
uitination of RIP1 could inhibit NF-κB pathway, 
leading to cell death pathways. Cylindromatosis 
(CYLD) blocks the activation of NF-κB by cleav-
ing K63-linked polyubiquitin chains, and its deu-
biquitinating activity on RIP1 facilitates the 
direct interaction of RIP1 with caspase-8 and ini-
tiation of cell death [ 176 ,  177 ]. Knockdown of 
CYLD inhibits TNF-α-induced necroptosis, 
which indicates that the deubiquitination of RIP1 
is an important step in TNF-α-induced necropto-
sis [ 178 ]. CYLD also interacts directly with 
TRAF2, an adaptor molecule involved in signal-
ing of the TNF/nerve growth factor family recep-
tors. TRAF2, an E3 ligase, has been demonstrated 
to be essential for TNF-α-induced necroptosis, as 
TRAF2−/−cells are resistant to TNF-α-induced 
necroptosis [ 175 ]. 

 When RIP1 is deubiquitilitized by CYLD, 
RIP1 can dissociate from complex I and is released 
into the cytoplasm, forming complex II with 
FADD, RIP3, and caspase-8. If the conditions are 
apoptotic competent, TNF-α stimulation induces 
the sequential protein complexes, complex I and 
complex IIa, leading to the activation of NF-κB 
and apoptosis, respectively [ 168 ,  179 ]. However, 
proteolytical cleavage of RIP1 by caspase- 8 dur-
ing TNF-induced apoptosis abolishes NF-κB 
activation and enhances pro-apoptotic signaling 
through the TRADD-FADD  interaction [ 180 ]. 

Cleavage of RIP3 by caspase-8 induces caspase-
dependent apoptosis [ 181 ]. However, if the apop-
totic machinery is defi cient or when the apoptosis 
pathway is blocked by pan-caspase inhibitors 
such as Z-VAD-FMK, or caspase-specifi c inhibi-
tors such as cytokine response modifi er A (CrmA) 
or in cells defi cient in FADD or caspase- 8, trig-
gering TNFR1 results in necrosis [ 182 – 186 ]. This 
process involves the formation of complex IIb, 
consisting of mainly RIP1 and RIP3. It appears 
that FLICE-inhibitory protein (FLIP), together 
with caspase-8, is recruited to FADD and the for-
mation of this complex is dominant for inhibiting 
apoptosis [ 187 ]. Cellular FLICE-inhibitory pro-
tein (c-FLIP) is known as a crucial inhibitor of 
death receptor-mediated apoptosis by interfering 
with caspase-8 activation at the death-inducing 
signaling complex (DISC) signaling [ 188 ]. Due 
to its structural similarity to caspase-8 and cas-
pase-10, c-FLIP can bind to FADD and inhibit 
complete caspase-8 processing and activation 
[ 189 ]. However, the involvement of FADD, cas-
pase-8, and FLIP in complex IIb remains unclear. 

 RIP3 has an N-terminal kinase domain and 
a C-terminus lacking a death domain or CARD 
motif. RIP3 binds RIP1 through this unique 
C-terminal segment to inhibit RIP1- and TNF-
receptor-1-mediated NF-κB activation [ 190 ]. 
However, the interaction between RIP1 and RIP3 
via the RIP homotypic interaction motif (RHIM) 
domain is required for necroptosis [ 191 ]. RHIMs 
of RIP1 and RIP3 mediate the assembly of het-
erodimeric functional amyloid signaling com-
plex which is ultrastable [ 192 ]. Mutations in the 
RHIMs of RIP1 and RIP3 which render them 
defective in interactions compromise kinase acti-
vation and necroptosis  in vivo , indicating the cru-
cial role of RHIM in necroptosis [ 192 ]. Mutations 
of RHIMs in RIP1 or RIP3 block the formation 
of necrosomes and protect cells from necroptosis 
[ 190 ]. RIP3 acts upstream to phosphorylate RIP1, 
which in turn mediates downstream RIP3 phos-
phorylation. Phosphorylation of RIP3 is essential 
in necroptosis, but the exact mechanism remains 
unclear [ 191 ]. Both RIP3 and the kinase activity 
of RIP1 are essential for stable formation of the 
RIP1-RIP3 pro-necrotic complex, which criti-
cally controls downstream ROS production [ 191 ]. 
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RIP3 is essential in necroptosis induced by vari-
ous stimuli, and RIP3 knockdown leads to a 
notable inhibition of necroptosis [ 191 ,  193 ]. Cells 
with low levels of RIP3 expression are resistant 
to necroptosis, but transfection of these cells with 
the  RIP3  gene enables them to undergo necropto-
sis when the apoptotic pathway is blocked, clearly 
highlighting RIP3 as an essential mediator in 
TNF-α-induced necroptosis [ 194 ]. In addition to 
TNF-α, IFN-γ also induces an NF-κB- dependent 
transcriptional response that is cytoprotective. 
However, in mammalian cells defi cient in NF-κB 
signaling, IFN-γ promotes mitochondrial ROS 
accumulation, loss of mitochondrial membrane 
potential, and necroptosis [ 195 ]. The necroptosis 
signaling pathway is illustrated in Fig.  14.2 .  

 Necroptosis shows identical subcellular events 
with necrosis and secondary necrosis. The cellu-
lar disintegration phases are characterized by 
lysosomal membrane permeabilization, mito-
chondrial hyperpolarization, oxidative burst, and 
eventually plasma membrane permeabilization; 
however, the kinetics and timing may be different 
[ 196 ]. A number of events have been implicated 
and proposed to contribute to the downstream 
events in necroptosis. One important downstream 
event is the production of ROS which acts as an 
executioner of necroptosis [ 168 ]. The ROS is 
implicated to play an important role in necropto-
sis; in addition, RIP, TRAF2, and FADD are cru-
cial in mediating ROS accumulation in 
TNF-induced necroptotic cell death [ 175 ]. This 
was based on the observation that in TNF- induced 
necroptosis, the cellular ROS level was signifi -
cantly elevated in wild type, but not in RIP (−/−) , 
TRAF2 (−/−) , and FADD (−/−)  cells [ 175 ]. 

 Interestingly, RIP3 has been reported to interact 
with several metabolic enzymes including glyco-
gen phosphorylase (PYGL), glutamate- ammonia 
ligase (GLUL), and glutamate dehydrogenase 1 
(GLUD1) [ 197 ]. PYGL plays a key role in using 
reserved glycogen as an energy source and cata-
lyzes the rate-limiting step in the degradation of 
glycogen by releasing glucose- 1-phosphate. On 
the other hand, GLUL is a cytosolic enzyme cata-
lyzing the condensation of glutamate (Glu) and 
ammonia to form glutamine (Gln). Gln transfers 
into the mitochondria to function as an energy 

substrate. GLUD1 is a mitochondrial matrix 
enzyme that converts Glu to α-ketoglutarate. 
GLUL and GLUD1 are essential for the use of 
amino acid Glu or Gln as substrates for adenos-
ine triphosphate (ATP) production by means of 
oxidative phosphorylation [ 197 ]. Taken together, 
these enzymes increase substrates for oxidative 
phosphorylation, which is a major source of ROS 
in the cell. RIP3-defi cient cells have reduced 
ROS production downstream of TNF-α signal-
ing [ 191 ]. Zhang and co-workers postulated that 
RIP3 activation of all these enzymes results in 
an increased energy metabolism and subsequent 
ROS production [ 197 ]. 

 Nicotinamide adenine dinucleotide phosphate 
oxidases (NADPH) are a family of enzymes spe-
cifi cally important in ROS production and have 
been implicated in TNF-α-induced necroptosis. 
For example, TNF treatment induces the forma-
tion of a signaling complex containing TRADD, 
RIP1, Nox1, and the small GTPase Rac1. RIP1 is 
shown to be essential for Nox1 recruitment, and 
activation of Nox1 is implicated in ROS produc-
tion [ 198 ]. Other NADPH oxidases, such as Nox1, 
Nox2, Nox3, and Nox4, are also shown to be 
upregulated in the presence of TNF-α [ 198 – 200 ]. 
In addition, ribofl avin kinase (RFK), a TNFR1-
binding protein, functionally couples TNFR1 to 
NADPH oxidase. RFK binds to both the TNFR1 
death domain and p22 phox , the common subunit 
of NADPH oxidase isoforms and triggers TNF-
induced ROS production [ 201 ]. Both RFK and 
the NADPH oxidases are found to be crucial for 
downstream ROS production [ 198 ,  201 ]. 

 ROS are thought to act by oxidizing MAP 
kinase phosphatases (MKPs) whose normal func-
tion is to downregulate the c-Jun N-terminal 
kinase (JNK) signaling pathway [ 202 ]. Sustained 
JNK activation is required for Cyt  c  release and 
caspase-3 cleavage in apoptosis as well as necrop-
tosis [ 202 ]. In necroptosis, JNK is activated in the 
downstream of RIP1 and TRAF2 [ 203 ,  204 ]. ROS 
and JNK appear to form a loop to enhance necrop-
tosis as JNK also affects the mitochondrial func-
tion and produces ROS [ 205 ]. JNK activation is 
required for mitochondrial depolarization, AIF 
translocation, and subsequent cell death in PARP-
1-hyperactivated cells [ 204 ]. 
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 Activation of phospholipase A 2  (PLA 2 ) and 
lipoxygenase pathways are also known to con-
tribute to the TNF-α-induced necrotic death 
[ 206 ]. Cytosolic PLA 2  (cPLA 2 ), a subfamily of 
PLA 2 , is an intracellular enzyme that hydrolyzes 

arachidonate-containing phospholipids and facil-
itates the release of arachidonic acid. Arachidonic 
acid is the main substrate for lipoxygenase, which 
further catalyzes the conversion of the fatty acids 
into hydroperoxides [ 163 ]. Overexpression of 

IFN

Complex I

IKK

Complex IIb Complex IIa

Apoptosis

Generation of
ROS

Mitochondrial
ATP synthesis

arrest

Z-VAD-FMK,
CrmA,
c-FLIP

Ca2+
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  Fig. 14.2    Necroptosis signaling pathways       
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cPLA 2  sensitizes TNF-α-resistant cells to TNF-
α-induced necrosis, emphasizing the role of 
cPLA 2  in necroptosis [ 207 ,  208 ]. Lipid peroxida-
tion leading to disruption of organelle and plasma 
membranes are key features of necrosis. 

 The mitochondrion has been implicated down-
stream of RIP1. Mitochondrial synthesis of ATP 
requires ADP transport from cytosol into mito-
chondria by the inner mitochondrial membrane 
ADP/ATP carrier adenine nucleotide translocase 
(ANT) [ 209 ]. ADP/ATP exchange depends on 
transition between two conformational states of 
ANT. In the cytosolic state (c-state), the hydro-
philic loop of the ANT nucleotide-binding site 
faces the cytosol, while in the matrix state 
(m-state), this binding site faces the matrix [ 209 , 
 210 ]. The interaction of ANT with cyclophilin D 
(CYPD) and voltage-dependent anion channel 
(VDAC) is important in regulating the mitochon-
drial permeability transition pore (MPTP); in 
addition, CYPD is an important regulator of 
MPTP [ 211 ]. Z-VAD-FMK is found to block the 
ability of ANT to transport cytoplasmic ADP, 
thereby inducing a massive ATP depletion in the 
mitochondria [ 212 ]. The inhibition of ADP/ATP 
exchange coincides with the loss of interaction 
between ANT and CYPD as well as with the 
inability of ANT to adopt the cytosolic confor-
mational state, which prevents Cyt  c  release and 
subsequently necroptosis [ 212 ]. 

 The release of cytosolic Ca 2+  and overactiva-
tion of calpains are also thought to play important 
roles in necroptosis. Yamashima and co-workers 
postulated that excessive Ca 2+  overload leads to 
calpain-mediated lysosomal disruption with 
releases of cathepsins B and L [ 213 ]. Cathepsin 
B is shown to be involved in caspase-independent 
cell death induced by death receptor ligands 
[ 213 ]. Lysosomal membrane permeability (LMP) 
is associated with activation of PLA 2 , causing the 
production of ROS [ 214 ]. LMP is also known to 
activate mitochondrial permeability transition 
(MPT), leading to cell death. The opening of 
MPTP accounts for the MPT resulting in disrup-
tion of the inner mitochondrial transmembrane 
potential (Δψm) during cell death [ 215 – 217 ]. 
Oxidative stress can serve as a facultative inducer 
of MPTP opening; moreover, ROS are potent 

inducers of MPTP opening [ 218 – 220 ]. The 
induction of MPT, which increases mitochon-
drial membrane permeability, causes the mito-
chondria to become further depolarized, resulting 
in the abolishment of Δψm as well as allowing 
the release of ROS and other molecules such as 
AIF and necrotic danger-associated molecular 
patterns (DAMPs) into the cytosol. 

 AIF is a FAD-dependent oxidoreductase that 
has a vital role in oxidative phosphorylation [ 221 ]. 
After a caspase-independent cell death insult, 
AIF is cleaved by calpains and/or cathepsins to 
yield truncated AIF (tAIF), the pro- apoptotic AIF 
form (~57 kDa) [ 222 ,  223 ]. The tAIF relocates 
from the mitochondria to the cytosol and nucleus, 
where it associates with histone H2AX in the 
nucleus, through its C-terminal proline- rich-
binding domain (PBD, residues 543–559). This 
interaction generates an active DNA-degrading 
complex with cyclophilin A, leading to chro-
matin condensation and DNA fragmentation, as 
observed in necroptotic cells [ 224 ]. 

 Interestingly, necroptosis induced by high 
doses of the alkylating DNA-damaging agent 
N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) 
is found to be regulated by the kinase RIP1 and 
executed by the activation of PARP-1, Ca 2+ -
dependent calpain Cys proteases, and the pro- 
apoptotic Bcl-2 member Bax [ 225 ]. MNNG 
treatment induces a PARP-1 hyperactivity that 
leads to calpain activation. Calpains generate 
tBid, which redistributes from the cytosol to 
mitochondria, where it regulates Bax activation. 
Once activated, Bax provokes mitochondrial 
damage and tAIF mitochondrial release. The 
tAIF relocalizes to the nucleus, associates with 
H2AX and cyclophilin A, and subsequently 
induces chromatinolysis [ 226 ]. PARP-1 is a 
nuclear enzyme activated by DNA strand breaks 
and plays a key role in repairing DNA damage. 
PARP-2, the closest homolog to PARP-1, has 
been identifi ed as one of the essential regulators 
of necroptosis by a genome-wide siRNA screen 
study [ 178 ]. PARP activation is also found to 
play a critical role in glutamate-induced necrop-
tosis [ 227 ]. The mechanisms of PARP-induced 
mitochondria dysfunction in necroptosis remain 
to be explored. 
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 Necroptotic cells spill their contents which 
contain DAMPs. DAMPs can trigger infl amma-
tion by activating pattern recognition receptors 
(PRRs), including Toll-like receptors (TLRs), 
nucleotide-binding oligomerization domain 
(NOD)-like receptors, and retinoic acid- inducible 
gene I (RIG-1)-like receptors [ 228 ]. DAMPs are 
intracellular molecules that have infl ammation- 
inducing capacities when released from cells, 
resulting in the activation of macrophages and 
subsequently the infl ammation processes [ 229 ].  

14.5     Necroptosis and Possible 
Therapeutic Targets in Cancer 

 Necroptosis is found to occur during the early 
phases of T-cell clonal expansion, indicating that 
this mode of cell death may be involved in the 
regulation of the immune system [ 230 ]. In addi-
tion, virus-infected cells, which are resistant to 
apoptosis, are found to be highly sensitive to 
necroptosis, indicating that it may serve as an 
alternative mechanism of cell death other than 
apoptosis [ 231 ]. In acute lymphoblastic leukemia 
(ALL), necroptosis cell death can be induced to 
overcome the glucocorticoid resistance of ALL 
cells. Resistance to the initial phase of chemo-
therapy, in particular poor response to glucocorti-
coids, is a strong predictor of adverse outcome 
for childhood ALL. In a clinical study using pri-
mary leukemia cells from patients with very 
high-risk disease, obatoclax mesylate, a Bcl-2 
antagonist, and rapamycin increased RIP1 activ-
ity and restored the response to dexamethasone 
by inducing a type of cell death morphologically 
consistent with necroptosis [ 232 ]. In addition, 
necroptosis appears to cause cancer cell death as 
a response to several anticancer treatment strate-
gies, clearly indicating the role of this cell death 
in cancer [ 233 – 236 ]. 

 Defects in necroptosis or variations of 
necroptosis- related genes may contribute to the 
pathological process of human malignancies, 
based on several observations and studies.  
 Deubiquitination of RIP1 by CYLD is important 
for the formation of complex II, leading to either 
apoptosis or necroptosis. Tumors carrying the 

mutated CYLD(C/S) [catalytically inactive form 
of CYLD that mimics the identifi ed mutations of 
CYLD in human tumors] exhibit a faster growth, 
are poorly differentiated, have robust angiogenesis 
activity, and are aggressive tumors [ 237 ]. Both 
cIAP-1 and cIAP-2 may promote cancer cell sur-
vival by functioning as E3 ubiquitin ligases that 
maintain constitutive ubiquitination of the RIP1 
adaptor protein [ 174 ]. cIAP-1 and cIAP-2 directly 
ubiquitinate RIP1 and induce constitutive RIP1 
ubiquitination in cancer cells which then associ-
ates with the pro-survival kinase TAK1 and sup-
presses apoptosis [ 174 ]. Immunohistochemical 
analysis of cIAP-1 and cIAP-2 in archival bladder 
specimens revealed that both cIAP-1 and cIAP-2 
expression are signifi cantly increased in bladder 
cancer compared with normal bladder urothelium. 
Nuclear cIAP-1 expression is strongly correlated 
to bladder cancer stage, tumor grade, and tumor 
recurrence suggesting the possibility of using 
cIAP-1 as a marker in bladder cancer prognosis 
[ 238 ]. Furthermore, X-IAP, cIAP-1, and cIAP-2 
are found to be highly expressed in chronic lym-
phocytic leukemia samples [ 239 – 242 ]. Thus, the 
IAPs should be an attractive antitumor strategy. In 
addition, RIP1 polyubiquitination by TRAF2/
TRAF5 at the position of K63 inhibits TNF-α-
induced apoptosis [ 171 ,  172 ] and TRAF2 knock-
down by siRNA radiosensitizes cancer cells via a 
reduced NF-κB activation, suggesting that TRAF2 
may also be an attractive target for anticancer 
activity [ 243 ]. 

 Necroptosis in cancer cells is induced by vari-
ous approaches including administration of 
alkylating DNA-damaging agents [ 244 ] and the 
application of photodynamic therapy through 
which photosensitizing compounds accumulated 
in tumor cells generate ROS following excitation 
with light from various spectra [ 245 ,  246 ]. 
Necroptosis induction is speculated to be useful 
in cancers which are resistant to the apoptotic 
effects of chemotherapy. One preclinical study 
on shikonin, a naturally occurring naphthoqui-
none, has demonstrated that induction of necrop-
tosis by the compound is able to overcome 
resistance to cancer drugs mediated by 
P-glycoprotein, Bcl-2, and Bcl-X L  in cancer cell 
lines [ 236 ]. All these results indicate that 
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 necroptosis could be a potent therapeutic strategy 
for the treatment of cancer. The further explora-
tion of the necroptosis signaling pathway will be 
important to identify strategies and novel antitu-
mor drugs which can be brought forward to the 
human clinical trials.  

14.6     Crosstalk in Apoptosis, 
Autophagy, and Necroptosis 

 Functional relationships between apoptosis and 
autophagy are gaining much interest, as both cell 
deaths are not mutually exclusive. Perturbations 
in the apoptotic machinery, such as caspase 
inhibition, have been reported to induce both 
autophagic cell death and necroptosis [ 247 ,  248 ]. 
Inhibition of autophagy in cancer cells results 
in an accelerated cell death that manifests the 
hallmarks of apoptosis including chromatin con-
densation, MOMP, and activation of caspases 
[ 249 ]. In some cases, mixed phenotypes of both 
autophagy and apoptosis are detected in response 
to common stimuli [ 156 ,  249 ]. Studies in a vari-
ety of experimental systems indicate that autoph-
agy cell death is likely to be cell type dependent. 
Autophagy can delay the onset of apoptosis, 
following starvation, DNA damage, and hemo-
dynamic stress [ 13 ]. For example, 1-day fasting 
causes liver autophagy in rats, but when starva-
tion is prolonged for a few days, hepatocytes 
succumb to apoptosis [ 250 ]. Similarly, hemato-
poietic cell lines withdrawn from growth factor 
fi rst activate autophagy and eventually apoptosis 
[ 7 ]. Studies have also demonstrated that certain 
compounds have the ability to trigger both apop-
tosis and autophagy cell deaths simultaneously 
in cancer cells [ 251 ,  252 ]. Blocking of one path-
way will trigger the activation of another [ 253 ]. 
Researchers have also hypothesized that there 
are factors (either external or internal) that may 
affect the preferential shunting into either bio-
chemical cascades that will ultimately result in 
either apoptosis or autophagic cell death [ 254 ]. 

 Crosstalks between autophagy and apoptosis 
exist at multiple levels because both pathways 
share mediators and pathway regulators. Several 
signals and pathways involved in autophagy are 

in common with apoptosis. Starvation and oxida-
tive stress can trigger both apoptosis and autoph-
agy. Bcl-2 proteins function to inhibit both 
apoptosis and autophagy, providing another clue 
to the interplay between both processes. Beclin-1, 
the essential autophagy protein and haplo- 
insuffi cient tumor suppressor, interacts with sev-
eral cofactors such as Ambra1, Bif-1, and 
UVRAG to activate the lipid kinase Class III 
PI3K and induce autophagy [ 255 ]. In normal 
conditions, Beclin-1 is bound to and inhibited by 
Bcl-2 or the Bcl-2 homolog Bcl-X L , well-charac-
terized apoptosis regulators, which involve an 
interaction between the BH3 domain in Beclin-1 
and the BH3-binding groove of Bcl-2/Bcl-X L . 
BH3-only proteins can competitively disrupt the 
interaction between Beclin-1 and Bcl-2/Bcl-X L  
to induce autophagy. Nutrient starvation can 
stimulate the dissociation of Beclin-1 from its 
inhibitors, either by activating BH3-only proteins 
(such as Bad) or by posttranslational modifi ca-
tions of Bcl-2 (such as phosphorylation) that may 
reduce its affi nity for Beclin-1 and BH3-only 
proteins [ 255 ]. Anti- apoptotic Bcl-2 family mem-
bers participate in the inhibition of autophagy, 
whereas the pro- apoptotic BH3-only proteins 
participate in the induction of autophagy. 

 A recent fi nding suggests a link between 
autophagy and the extrinsic apoptotic pathway 
mediated by p62/SQSTM1. Autophagy is 
recently known to be responsible in selective 
degradation of polyubiquitinated proteins via 
sequestosome-1 (SQSTM1), which encodes for 
p62 protein. p62 interacts with LC3 via its LC3 
interacting region (LIR). Recent studies indicate 
that p62 is recruited to damaged mitochondria 
via binding to ubiquitinated outer mitochondrial 
membrane proteins, suggesting that p62 may 
serve as an autophagy receptor for ubiquitinated 
proteins and damaged mitochondria [ 256 – 258 ]. 
In addition to its role in autophagy, p62 medi-
ates a cell’s decision to undergo apoptosis or 
survival through its organization of signaling 
complexes in the cytoplasm [ 257 ,  259 ,  260 ]. 
Upon cytokine stimulation, p62 activates the 
NF-κB pathway, which subsequently induces 
the pro-survival genes, such as anti-apoptotic 
and cell proliferation genes and induces the 
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expression of infl ammatory genes such as cyto-
kines, chemokines, and adhesion molecules 
[ 260 – 263 ]. However, p62 is also found to acti-
vate caspase-8 in the extrinsic apoptosis path-
way, resulting in the initiation of apoptosis and 
cell death [ 259 ]. 

 The expression of Ptc induces apoptosis, but 
this activity is suppressed by its ligand, sonic 
hedgehog (Shh). Interestingly, hedgehog inhibi-
tion is found to induce autophagy through upreg-
ulation of Bnip3 and is also found to increase 
apoptosis in hepatocellular carcinoma cells at the 
same time [ 264 ]. In a very recent study, apoptosis 
suppressed by the knocking down of PP2A can 
be reversed by the administration of 3-MA, a 
known autophagy inhibitor. The elevated accu-
mulation of LC3-II and the decline of the autoph-
agy substrate p62 are also observed in 
PP2Ac-small interfering RNA transfected cells. 
However, overexpression of  PP2Ac  suppresses 
the accumulation of LC3-II and restores p62 
[ 265 ]. Interestingly, 3-MA increases cell death 
induced by diamindichloridoplatin (DDP), which 
suggests the protective function of autophagy in 
DDP-induced cell death [ 265 ]. 

 The relationship between autophagy and 
necroptosis is said to be complex, at least at this 
point of time. There is increasing evidence sug-
gesting that necroptosis is associated with 
autophagy [ 232 ], is suppressed by autophagy 
[ 266 ], or is not associated with autophagy at all 
[ 230 ]. For example, in ALL cells, reversal of glu-
cocorticoid resistance occurred through rapid 
activation of autophagy-dependent necroptosis, 
and the effect was associated with dissociation of 
the autophagy inducer Beclin-1 from the anti- 
apoptotic Bcl-2 family member Mcl-1, as well as 
a marked decrease in mTOR activity. Combination 
of rapamycin with the glucocorticoid dexametha-
sone triggered autophagy-dependent cell death, 
with characteristic features of necroptosis [ 232 ]. 

 In addition, necroptosis signaling appears to 
activate autophagy process as a cleanup mecha-
nism for cell death. Experiments using proliferat-
ing T cells have shown that caspase-8-defi cient T 
cells exhibit RIP1-dependent necroptosis [ 267 , 
 268 ]. On the other hand, caspase-8 is known to 
inhibit autophagy [ 269 ], probably through direct 

cleavage of RIP1 [ 180 ]. Cleavage of RIP1 by 
active caspase-8 constitutes a negative feedback 
loop to limit autophagic induction. In T cells, 
autophagy is induced in response to energetic 
demands, resulting in formation of a DISC-like 
complex including Atg5–12/Atg16L, FADD, 
caspase-8, and RIP1. In addition, blocking of 
necroptosis by necroptosis inhibitor necrostatin-1 
(Nec-1) was suffi cient to rescue the hyperactive 
autophagy and restored the cell cycle profi le and 
survival capacity of actively dividing FADDdd 
(cells expressing a dominantly interfering form 
of FADD) and caspase-8 −/−  T cells. When autoph-
agy is inhibited with 3-MA, Nec-1 reduces LC3 
processing, suggesting that RIP1-dependent 
necroptotic signaling, or perhaps necroptosis 
itself, promotes autophagy. Since autophagy is 
directly induced by RIP1 activity, RIP1 may 
infl uence autophagic signaling either directly or 
perhaps indirectly as a response to necroptotic 
stress [ 267 ,  269 ]. While autophagy is necessary 
for rapid T-cell proliferation, studies suggest that 
FADD and caspase-8 form a feedback loop to 
limit autophagy and prevent this salvage pathway 
from inducing RIP1-dependent necroptosis. 
Thus, the linkage of FADD and caspase-8 to 
autophagic signaling intermediates is essential 
for rapid T-cell clonal expansion and may serve 
to promote caspase-dependent apoptosis under 
hyperautophagic conditions, thereby averting 
necroptosis and infl ammation  in vivo  [ 267 ]. 

 However, other reports tend to demonstrate 
that inhibition of autophagy promotes necropto-
sis in various human cancer cells. For example, 
TNF-α signifi cantly induces necroptosis and 
autophagy in murine fi brosarcoma L929 cells. 
Nec-1 completely blocks TNF-α-induced necrop-
tosis and autophagy, but inhibition of autophagy 
with 3-MA or Beclin-1 siRNA promotes necrop-
tosis, indicating that autophagy acts as a negative 
regulator of TNF-α-induced necroptosis [ 270 ]. In 
other studies, T-cell receptor-induced necroptosis 
is found to be death receptor and autophagy inde-
pendent, indicating the existence of an alternate 
RIP1-dependent necroptotic pathway down-
stream of T-cell receptor signaling [ 230 ]. The 
molecular link between necroptosis and autoph-
agy remains elusive.  
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14.7     Future Directions 

 There is increasing evidence that the three major 
cell deaths, i.e., apoptosis, necroptosis, and 
autophagic cell death, share overlapping molecu-
lar pathways and can occur in parallel under simi-
lar conditions. Fundamental knowledge in 
apoptosis, necroptosis, and autophagy has also 
generated a great deal of insight into the patho-
genesis of cancer and has provided important con-
siderations in strategizing cancer pharmacotherapy. 
Much effort and investment has been devoted to 
experimental drugs modulating autophagy or 
apoptosis, and scientists are beginning to look at 
necroptosis in a different light. A number of drugs 
have proven to be promising during preclinical 
studies and experimental anticancer therapies, but 
these drugs appear to be effective in one type of 
cancer and not the other. The percentage of 
patients who totally responded or partially 
responded to these treatments, either as single-
agent or in combination therapies, is relatively 
low, even though the outcome of these trials sug-
gests some potential. These unforeseen effects are 
probably due to the specifi c-targeted nature of the 
therapy, in addition to the interconnected relation-
ships between these cell death pathways. The con-
tradictory role of autophagy and the status of 
autophagy in the human tumors concerned remain 
speculative and further complicate the response to 
conventional anticancer treatment. 

 Thus, modulating apoptosis, necroptosis, and 
autophagy by various means may be an important 
strategy to fi ght against the disease. Cancers, 
which are resistant to the apoptotic effects of cer-
tain chemotherapy drugs, may be sensitive to 
drugs that evoke necroptosis or autophagic cell 
deaths. An intact autophagy pathway has a role in 
promoting carcinogenesis as well as suppressing 
it. It also has a role in the development of resis-
tance to treatment. Therefore, if autophagy 
response and activity are normal in tumors, com-
bining standard chemotherapy drugs with autoph-
agy inhibitors may sensitize tumor cells to 
anticancer agents. Cancer cells which present 
defects in the autophagy pathway may be man-
aged by replacement of autophagy-inducing sig-
nals, e.g., pro-autophagics, or by inhibiting mTOR 

kinase. In some other cases, utilizing both autoph-
agy and apoptosis inducers may present a deadly 
strategy against highly resistant tumors. Devising 
personalized pharmacotherapeutic strategy based 
on the autophagy status of the tumors has become 
an attractive option and offers signifi cant potential 
to be translated into the clinic. 

 So far, targeted drugs like oblimersen, bortezo-
mib, and mTOR inhibitors such as everolimus and 
ridaforolimus have shown to be useful in some 
clinical trials. These novel classes of drugs appear 
to work synergistically in combination with other 
chemotherapeutics and have also showed specifi c 
activities against certain cancers. Since these drugs 
are specifi cally targeted against certain molecules 
or receptors in the pathway, further unveiling of 
the tumor’s characteristics such as receptor or pro-
tein status may be critical in assessing patient’s 
response and clinical trial success. Furthermore, a 
number of known genes that play a role in these 
cell death pathways are either activated or inacti-
vated in several cancers. This will certainly affect 
not only the promotion and progression of cancer 
but also their response to treatment. Therefore, to 
optimize and personalize treatment strategies, the 
genetic profi le of the tumors is important. This 
may provide information on the optimal point in 
the pathway to be targeted and can be identifi ed as 
prognostic markers. At the same time, the devel-
opment of both robust tissue markers and relevant 
techniques that can be used in the clinical context 
needs to occur along with novel treatments, which 
will be another challenge.  

14.8    Concluding Remarks 

 Although recent studies have incorporated some 
predictive biomarkers by examining tumor status, 
the utility of such practice remains non- conclusive. 
For example, the expression of peptidyl 
O-glycosyltransferase GaLNT14 has been pro-
posed to be a potential marker of dulanermin or 
Apo2L/TRAIL activity in NSCLC as high 
GaLNT14 mRNA and protein expression in 
tumor cell lines are associated with Apo2L/
TRAIL sensitivity [ 271 ]. An increase in 
progression- free survival and overall survival was 
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observed in GaLNT14-positive patients with 
advanced NSCLC in the dulanermin arm, indicat-
ing the potential predictive response biomarker 
for Apo2L/TRAIL-based cancer therapy [ 272 ]. 
On the other hand, in a Phase Ib/II trial on mapa-
tumumab, a humanized mAb against TRAIL-R1, 
strong expression of TRAIL-R1 (indicated by 
immunohistochemical staining), did not appear to 
be a prerequisite for the effectiveness of mapatu-
mumab in patients with replased or refractory fol-
licular lymphoma [ 273 ]. Noteworthy, in the two 
patients who experienced a partial or complete 
response, the TRAIL-R1 staining was either 
undetected or weak [ 273 ]. However, this could be 
an isolated case, and trials with bigger sample size 
should be carried out. Tumor profi ling would be a 
good strategy to identify patients who may 
respond to the relevant treatment. 

 Fundamental knowledge of cell death path-
ways remain an area of major interest among sci-
entists in the fi eld of cancer. More studies to 
characterize these pathways and identify poten-
tial targets and further evaluation of the effi cacy 
of the current drugs in various cancers are cer-
tainly warranted.     
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15.1            Introduction 

 It is now accepted that human carcinogenesis is a 
dynamic process depending on multiple variables 
and is regulated at multiple spatial and temporal 
scales [ 1 – 4 ]. According to the theory of multistep 
carcinogenesis, cancer cells accumulate a num-
ber of molecular changes to eventually become 
fully malignant. The “reductionist” view of can-
cer expressed in myriads of molecular biology- 
based investigations stated that all the information 
necessary for a cell to transform itself into a neo-
plastic cell can be attributed to changes at the 
genomic level [ 5 ]. This “certainty” is based on 
the fact that the genome carries all of the infor-
mation related to any cell process and that any 
cellular transformation is due to a specifi c 
genomic change [ 6 ]. Today, cancer is recognized 
as a highly heterogeneous disease: more than 100 
distinct types of human cancer have been 
described, and various tumor subtypes can be 
found within specifi c organs. In addition, tumors 
have somatic mutations and epigenetic changes, 
many of which are specifi c to the individual neo-
plasm [ 7 ]. It is now recognized that this genetic 
and phenotypical variability primarily determines 
the self-progressive growth, invasiveness, and 
metastatic potential of neoplastic disease and its 
response or resistance to therapy. It seems that 
the multilevel complexity of cancer explains the 
clinical diversity of histologically similar neopla-
sia [ 8 ,  9 ]. In simple mathematical terms, carcino-
genesis is a nonlinear process, and the behavior 
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of which does not follow clearly predictable and 
repeatable pathways. In linear systems, the 
behavior of a system changes linearly in response 
to an environmental factor. In contrast, the behav-
ior of nonlinear complex systems may be per-
ceived as surprising and unpredictable. Periods 
of inactivity may be punctuated by sudden 
change, apparent patterns of behavior may disap-
pear, and new patterns may unexpectedly emerge 
[ 2 ]. Moreover, nonlinear systems do not react 
proportionally to the magnitude of their inputs 
and depend on their initial conditions, i.e., small 
changes in the initial conditions may generate 
signifi cantly different end points. These charac-
teristics are commonly highlighted by the fre-
quency with which differences in progression or 
therapeutic response are seen in the same tumor 
type and by the fact that cancer morphology does 
not always reveal a similar underlying biology 
[ 10 ]. It is now ascertained that tumors grow in a 
complex network of epithelial, mesenchymal, 
infl ammatory, and immune cells, as well as vas-
cular and lymphatic vessels [ 11 – 13 ]. Neoplastic 
cells take advantage from their surrounding 
microenvironment, as they are supplied by nutri-
ents supplied by the blood stream and growth 
factors produced by infl ammatory and stromal 
cells, in addition to fi ghting for space to expand 
and escape the immune attack [ 14 ]. When tumor 
cells metastasize to distant organs, the same 
crosstalk is established at the new site. Therefore, 
these complex interactions determine the overall 
tumor aggressiveness and the clinical outcome.  

15.2     Immune Infi ltration as a Major 
Player of the Tumor 
Microenvironment 

 Among the various factors infl uencing tumor 
establishment, growth, local invasion, and metas-
tasis, the impact of immunity has been debated 
for a long time [ 15 ]. While infl ammation is 
known to contribute to cancer progression [ 16 ], 
the immune system is programmed to recognize 
tumors from their inception. Immunosurveillance 
against the tumor is stimulated by the presence of 
 tumor-associated antigens (TAA) and by stress-

induced molecules. However, only recent murine 
models have unraveled the role of 
the immune system in cancer progression, a 
 process termed cancer immunoediting [ 17 ]. 
Immunoediting is a dynamic process composed 
of three phases: fi rst, the elimination of tumor 
cells by immunosurveillance; then an equilibrium 
phase, during which the tumor is subjected to 
immune-mediated latency, and the immune sys-
tem is in balance with the tumor; and the last 
phase, during which tumor cells escape immune 
restraints and co-opt the immune system to pro-
mote malignancy. Tumor cells employ diverse 
mechanisms to escape from immunosurveillance, 
as well as to manipulate the immune  system and 
their microenvironment in order to facilitate the 
development of a malignant phenotype. These 
include mechanisms that promote escape, such as 
the downregulation of TAA and the decrease in 
expression/secretion of proinfl ammatory cyto-
kines, as well as mechanisms that induce immune 
suppression, such as the production of immuno-
suppressive cytokines, metabolites, and immune 
checkpoint molecules. Immunoediting enables 
tumor cells to evade immune system detection, 
disseminate from the initial niche, survive in the 
circulation, and settle at new metastatic sites. 

 Histopathological analyses of solid tumors 
reveal that they are infi ltrated by cells of 
the innate and adaptive immunity [ 18 – 20 ]. 
Macrophages represent a signifi cant portion 
of the tumor mass, where they are commonly 
termed tumor-associated macrophages (TAMs) 
[ 21 ]. These cells are generated from blood 
monocytes [ 22 ], which differentiate into two 
distinct macrophage types, identifi ed as M1 (or 
classically activated) and M2 (or alternatively 
activated). M1- and M2-polarized macrophages 
are endowed with opposite functional roles in 
terms of tumor suppression and immune stimu-
lation, M1 cells enhance immune responses, and 
restrain tumor progression through eliciting the 
Toll-Like Receptor (TLR) pathway, whereas 
M2 macrophages switch-off the immune sys-
tem and promote tumor development. Mast 
cells, myeloid-derived suppressor cells (i.e., the 
most abundant type of hematopoietic cells in the 
immune system) [ 23 ] and neutrophils [ 24 ] have 
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also been reported to invade the intra-tumoral 
space. Dendritic cells (DCs) are found in dif-
ferent locations within a tumor, most immature 
Langerhans cell-type DCs home in the tumor 
nests, and are tightly linked to malignant cells, 
whereas both immature interstitial DCs and 
plasmacytoid DCs are located in the stroma 
[ 25 ]. Mature DCs concentrate in lymphoid islets 
adjacent to the tumor nests and some draining 
lymph nodes. NK cells are usually found in the 
stroma of most tumors [ 26 ,  27 ] but can also be 
found in close contact with tumor cells in renal 
cell carcinoma. The distribution of lymphocytes 
may be differently orchestrated depending on 
the tumoral architecture [ 28 ]. T lymphocytes 
are mainly located in the core, often referred 
to as the center of the tumor, its invasive mar-
gin and in adjacent lymphoid islets. Among T 
lymphocytes, most have a memory phenotype, 
with naïve cells being found mostly in adjacent 
lymphoid aggregates [ 29 ]. Some CD8 +  T lym-
phocytes contact malignant cells, whereas oth-
ers are dispersed in the stromal compartment. 
Forkhead/winged helix transcription factor 
(FoxP3) +  T lymphocytes, T lymphocytes helper 
17 (Th17), T follicular helper (TFH) cells, and 
B lymphocytes concentrate in the stromal tissue 
and in lymphoid islets. A similar organization 
is found in metastatic sites, as in the primary 
tumors; however, their organization may vary 
among tumors and between patients. Signifi cant 
correlations between the level of immune cell 
infi ltration in tumors and their clinical outcome 
have been investigated in several cancers of 
unrelated histological origin [ 30 – 33 ]. A strong 
lymphocytic infi ltration is found to be associated 
with good clinical outcome in different tumor 
types and subtypes, including melanoma, head 
and neck, breast, bladder, ovarian, colorectal, 
renal, prostatic, and lung cancer [ 33 – 35 ,  30 ,  36 , 
 31 ,  37 ,  38 ]. The role of other T lymphocyte infi l-
trates has also yielded apparently contradictory 
results. It is reported that Th17 cell infi ltration 
is associated with poor prognosis in colorectal, 
lung, and hepatocellular carcinoma, whereas it 
is considered as a predictor of better survival in 
some esophageal and gastric cancers. The effect 
of intra-tumoral B lymphocytes in cancer is far 

from clear; B cells have recently been appre-
ciated as paracrine mediators of solid tumor 
development [ 39 ]. However, their capability 
to enhance T cell activation might have a posi-
tive impact on the organization of the antitumor 
immune response [ 40 ]. Here, the roles played by 
innate and adaptive immune system in the local 
progression and metastasis of human cancers 
of unrelated histologic origin are discussed; in 
addition their prognostic roles understood and 
exploited to date are pointed out.  

15.3     Cellular Players of the Innate 
Immunity in Cancer 

 Rudolf Virchow (1821–1902) observed infi ltrat-
ing leukocytes in tumors for the fi rst time and 
proposed the infl ammatory microenvironment as 
a primary site of cancer occurrence [ 41 ]. Later, 
epidemiological and experimental studies have 
associated chronic infections to about 15–20 % 
of tumors [ 42 ,  43 ] and linked infl ammation to 
tumorigenesis by modulation of a variety of com-
plex processes, including the increased cell pro-
liferation, rate of mutagenesis, angiogenesis, and 
inhibition of apoptosis. Therefore, infl ammation 
has been acknowledged as a critical element in 
cancer occurrence and has been included as a 
new “hallmark of cancer” [ 16 ]. 

15.3.1     Tumor-Associated 
Macrophages (TAM) 

 A number of studies appraised tumor-associated 
macrophages (TAM) as crucial mediators of the 
connection between infl ammation and cancer 
occurrence [ 44 ,  45 ]. TAMs secrete a plethora of 
cytokines and chemokine, which are the soluble 
mediators of infl ammation and are mainly respon-
sible to mediate such processes [ 46 ]. It is widely 
accepted that in the majority of cancers TAMs 
have a pro-tumoral effect [ 47 ]. However, these 
cells are intrinsically “plastic” in their functions, 
and they were shown to acquire antagonistic 
properties ranging from immunosuppressive to 
immune-stimulatory properties in the  complexity 
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of tumor microenvironment. While the antitumor 
role of TAM has been previously linked to the 
orchestration of T lymphocyte antitumor immune 
response, recent fi ndings have shown that tumor 
immunosurveillance can be fi rmly directed by 
TAMs when “educated” by specifi c treatments, 
in a T cell independent fashion [ 48 ]. The func-
tional plasticity of macrophages is regulated by 
environmental stimuli, thus their immune profi le 
results in the identifi cation of two distinct polar-
ized functions, schematically simplifi ed as M1/
M2 classifi cation. Macrophages are recruited at 
peripheral sites by locally secreted chemotactic 
factors and cytokines, including infl ammatory 
chemokines and growth factors [i.e., vascular 
endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF), and macrophage 
colony-stimulating factor (M-CSF)] [ 49 ]. These 
cytokines can also promote macrophage sur-
vival and polarization. Although mobilization 
of the circulating pool of monocytes is the main 
mechanism of macrophage recruitment, local 
proliferation can contribute to macrophage accu-
mulation at the tumor site [ 50 ]. In the tumor 
context, both tumor and stromal cells secrete a 
variety of chemoattractants for blood-circulating 
monocytes, including CCL-2, originally discov-
ered as a tumor-derived chemotactic factor [ 51 ]. 
Molecular profi ling analyses of both human and 
murine TAMs have evidenced a profi le closer to 
that of M2 macrophages [ 52 ,  53 ], whose remod-
eling, immunosuppressive activities, and produc-
tion of trophic factors for tumor and stromal cells 
functionally correlate to important pro-tumor 
activities [ 54 ], including proteolytic activity [ 55 ], 
remodeling of the extracellular matrix [ 56 ], and 
induction of angiogenesis [ 57 ]. Liu et al. have 
shown that M2-polarized TAMs increased fi bro-
blastic morphology, upregulated mesenchymal 
markers (i.e., vimentin and Snail) at the mRNA 
and protein levels, and increased proliferation, 
migration, and metalloproteinase MMP2 and 
MMP9 proteolytic activity in pancreatic cancer 
cells [ 58 ]. In addition, it has been shown that the 
MMP-9 inhibitor is associated with decreased 
survival in breast cancer [ 59 ]. Leifl er et al. identi-
fi ed MMP-9 as a potent player in modulating the 
innate immune response into antitumor activities 

[ 59 ]. Notably, TAMs exert their pro-tumor func-
tions both directly, by acting on tumor cells, and 
indirectly, by orchestrating suppression of the 
adaptive immune response. Macrophages, when 
adequately activated, have the capability to both 
directly kill tumor cells [ 60 ,  61 ], a property medi-
ated by contact-dependent [ 62 ] as well as inde-
pendent mechanisms [ 48 ], and to orchestrate an 
antitumor adaptive immune response, through 
the activation of cytotoxic lymphocytes.  

15.3.2     Tumor-Associated 
Neutrophils (TAN) 

 Although TAMs are the most prevalent innate 
 cellular components of the tumor microenviron-
ment, the role of tumor-associated neutrophils 
(TANs) on tumor progression has been reconsid-
ered [ 63 ,  64 ]. Accordingly, TANs have been 
 recognized as a source of cytokines and chemo-
kine, as well as anti-infl ammatory mediators in 
different settings, thus likely to mediate a dual 
effect on tumor progression depending on their 
polarization state, i.e., N1 and N2 [ 65 ,  66 ]. TAMs 
and TANs functional polarization and prognostic 
value refl ect the intrinsic plasticity as it varies 
along with the tumor type, location in the tumor 
tissue (i.e., necrotic and hypoxic areas), and the 
tumor stage. Studies have demonstrated specifi c 
examples of tumor-mediated signals (such as 
transforming growth factor-β, TGF-β) that induce 
the formation of a pro-tumorigenic N2 phenotype 
capable of supporting tumor growth and suppress-
ing the antitumor immune response. However, 
there are evidences showing that TAN can also 
have an anti-tumorigenic N1 phenotype [ 67 ].   

15.4     Cellular Players 
of the Adaptive Immunity 
in Cancer 

 It has been accepted that immune cells infi ltrate 
the tumor stroma and are essential players of the 
tumor microenvironment. Cells of the adaptive 
immune system are mainly represented by CD8 +  
cytotoxic T lymphocytes (CTLs) and CD4 +  
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T-helper lymphocytes. The main function of 
CD4 +  T lymphocytes is to sustain activation of 
other cells, including macrophages, B cells, and 
CTLs, by the release of several cytokines, such as 
interleukin-2 (IL-2), tumor necrosis factor alpha 
(TNF-α), and interferon gamma (INF-γ). 
Identifi cation and specifi c elimination of tumor 
cells are mediated by CTLs CD8 +  T cells [ 68 ,  69 ], 
which produce perforin and granzyme B [ 70 ]. 
Antigen (Ag) recognition by lymphocytes after 
the fi rst encounter is kept at a higher activation 
level compared to baseline. Activated T lympho-
cytes have a long life, are more reactive to stimu-
lation than naïve T lymphocytes, and are 
detectable by specifi c surface molecules, sug-
gesting that their presence in the context of solid 
tumors has important implications. Accordingly, 
antigen-experienced CTLs phenotypically switch 
CD45 isoform from CD45RA to CD45RO when 
activated [ 71 ]. 

 T lymphocyte activation is also modulated by 
a subpopulation of T lymphocytes indicated as 
Tregs, which suppress immune responses [ 72 ]. 
The transcription factor FOXP3 is a specifi c Treg 
cell marker [ 73 ,  72 ]. Treg lymphocytes include 
different subpopulations, although the most 
investigated are CD4 +  CD25 +  [ 72 ,  74 ]. However, 
these markers are not completely specifi c for 
Tregs as CD25 and FOXP3 might also be 
expressed by activated CTLs [ 71 ]. Moreover, it is 
not clear whether regulatory cells are capable to 
suppress T lymphocytes with tumor antigen 
specifi city. The identifi cation and targeting of 
Tregs selectively suppressing tumor-specifi c T 
cells would avoid unwanted depletion of regula-
tory cells involved in peripheral immune regula-
tion and generation of autoimmunity. Tregs may 
exert different functions according to the tumor 
contexture, i.e., they might block antitumor 
immunity or decrease chronic pro-tumor infl am-
mation [ 71 ]. 

 In the clinical setting of some human cancers, 
lymphocytic reaction can comprise different 
components beside dispersed tumor infi ltrating 
lymphocytes (TILs) and include discrete “lym-
phoid aggregates,” resembling lymph-node-like 
structures. These aggregates are similar to those 
observed in chronic infl ammatory conditions, 

where tissues harboring target Ags are infi ltrated 
by cellular effectors of the adaptive immune sys-
tem, which are organized anatomically and func-
tionally as in secondary lymphoid organs, with 
recruitment of B cells and T cells, follicular den-
dritic cells with germinal centers, and specialized 
vessels suited to mediate traffi c of immune cells 
[ 75 ,  76 ]. Those structures are named tertiary 
lymphoid tissue (TLT) and might be involved in 
the organization of the immune response. Few 
studies have reported the presence of TLTs in 
cancer [ 77 ,  78 ]. Moreover, the concept of ectopic 
lymphoid structures within solid tumors has only 
recently become appreciated, and it is still unclear 
whether these structures retain functional 
immune activities to mediate recruitment and 
activation of TILs.  

15.5     Prognostic Value of Innate 
and Adaptive Cells 
of the Immune System 
in Cancer 

 The stromal compartment of solid tumors is infi l-
trated by immune and infl ammatory cells express-
ing a wide array of specifi c markers and exerting 
critical effects on tumor outcome depending on 
their specifi c subset, density, spatial location 
[ 79 ], and the staging of tumor at diagnosis [ 80 –
 82 ]. It is widely accepted that in preclinical stud-
ies cellular mediators of the innate immunity 
favor tumor progression [ 16 ,  54 ,  83 ]. Accordingly, 
the quantifi cation of the number of CD68 +  TAMs 
was linked to a poor prognosis in pancreatic can-
cer and Hodgkin lymphoma [ 84 ,  85 ]. In the case 
of pancreatic cancer, expression of M1 markers 
of macrophage polarization was associated with 
better prognosis, while M2 markers were linked 
to worst prognosis [ 85 ]. In lung cancer, 
IL10 + -CD68 +  TAMs were associated with worst 
prognosis in patients with late-stage disease at 
diagnosis [ 86 ], while in a subsequent study a 
high ratio of M1/M2 macrophages was a feature 
of patients with good outcome [ 87 ]. Thus, 
according to the simplifi ed view of macrophage 
polarization provided by Mantovani et al., in 
clinical studies macrophages infi ltrate tumor nest 
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as a heterogeneous population, which seem to 
retain different functional and molecular proper-
ties that may vary according to the instructions 
provided by the tumor milieu. On the contrary, a 
meaningful correlation between high number of 
TAMs and better prognosis has been described in 
colorectal cancer [ 62 ,  88 ]; in addition, this cor-
relation held true regardless of TAM polarization 
in another study [ 89 ]. Discrepancies among clini-
cal studies on prognostic abilities of innate 
immune cells underline the importance of the 
tumor type when trying to determine the infl u-
ence of TAMs on tumor progression. Further 
clinical data are warranted to determine whether 
the effect of TAM differs along tumor progres-
sion, as well as in response to chemotherapy 
treatments in a clinical relevant scenario. Several 
retrospective clinical studies on colorectal, mela-
noma, ovarian, breast, and non-small-cell lung 
tumors have generally underlined tumor infi ltra-
tion of the adaptive immune cells as a prognostic 
indicator of good prognosis [ 90 – 92 ,  79 ,  93 ,  77 , 
 94 ]. Variability with respect to prognostic poten-
tial of the markers employed relies on the specifi c 
population of T lymphocytes and the type of 
tumor settings investigated. In this view, colorec-
tal cancer represents a paradigm since its milieu 
is highly permeated by adaptive immune cells 
with potential antitumor abilities. A seminal 
paper by Galon et al. claimed that concomitant 
local infi ltration of CD3 +  lymphocytes at the 
tumor invasive margin and in the intra-tumoral 
location was a better predictor of survival com-
pared to the tumor-node-metastasis (TNM) stag-
ing system [ 79 ]. However, TNM is still the gold 
standard predictor of CRC patient prognosis, 
while TILs have not been employed in clinical 
practice to date. A subsequent study by Laghi 
et al. raised doubts on previous claim and showed 
that while CD3 +  T-infi ltrating lymphocytes 
(TILs) were not independent from TNM staging 
in predicting patient’s prognosis, TILs were a 
strong prognostic factor only among lymph-
node- negative but not among lymph-node- 
positive CRCs [ 80 ]. Later Mlecnik et al. showed 
that an immune score was re-proposed, although 
represented by partly overlapping subpopulations 
of TILs (i.e., CD8 +  and CD45RO + ), which had to 

be concomitantly located at the tumor invasive 
margin and intra-tumoral region in each CRCs 
specimen [ 95 ]. By these means, these immune 
features identifi ed a benchmarking population 
with a dismal prognosis and devoid of TILs rep-
resenting only 6.5 % of the CRCs (stages I–III) 
[ 95 ]. This strategy fostered statistical analysis, 
but might not provide proper clinical prognostic 
relevance when addressing surveillance strate-
gies and allocation to chemotherapy in the over-
all population of CRC. The biological relevance 
of tumor lymph node infi ltration in the context of 
TILs prognostic abilities was previously shown 
in ovarian cancer in a study suggesting a negative 
interaction of nodal status with antitumor immu-
nity [ 81 ]. In CRC, the density of activated CD8 +  
TILs decreased in patients with metastatic lymph 
nodes and advanced tumor staging, suggesting 
that immune escape might occur along CRC 
 disease progression [ 96 ]. Accordingly, in a 
 different study, the expression of eumesodermin, 
a transcription factor critically involved in the 
production of perforin, was inversely associated 
with tumor lymph node involvement [ 97 ]. In 
melanoma, these observations were supported by 
the fact that a primary tumor devoid of TILs was 
shown to predict sentinel lymph node metastasis. 
These studies underline that the plasticity of TILs 
with regard to their recruitment and antitumor 
activity seems to differ along the clinical progres-
sion of different solid cancers [ 82 ]. Therefore, 
future design of clinical trials aimed to employ 
TILs as diagnostic tools or novel immunothera-
peutic strategies should take these considerations 
into account. Recruitment of Treg cells into the 
tumor milieu is another mechanism of tumor 
immune evasion. In ovarian cancer, recruitment 
of Tregs decreased specifi c antitumor TILs and 
was associated with a worst prognosis [ 98 ]. In 
hepatocellular, renal cell, and breast carcinomas, 
the number of CD4 + CD25 + Foxp3 +  cells was 
 associated with worst patients outcome [ 99 – 101 ], 
although not independently by other histopatho-
logical features in the case of breast cancer. 
Counterintuitively, different CRC studies showed 
that a high density of Foxp3 +  cells was 
 independently associated with better prognosis 
[ 102 – 104 ]. This discrepancy might be explained 
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by hypothesizing that Foxp3 +  cells instead of 
inhibiting antitumor immunity decrease chronic 
pro- tumor infl ammation. However, the biological 
basis explaining differing roles of Treg cells in 
tumor progression with respect to the tumor type 
is still unknown. New experimental models prop-
erly simulating tumor development will be help-
ful in better understanding Tregs activity in 
tumor.  

15.6     Concluding Remarks 

 Solid tumors contain a heterogeneous mixture of 
malignant and nonmalignant cells within an 
extracellular matrix supported by an irregular 
vascular network [ 105 ,  106 ]. The cancer micro-
environment makes up the stroma of the neo-
plasm and is the tissue that determines tumor 
growth, progression, and ability to initiate metas-
tases. Due to the role played by cancer microen-
vironment in each stage of tumor development, 
better knowledge about the interactions of the 
tumor with its microenvironment would seem to 
be of utmost importance for developing new 
treatment strategies [ 107 ,  108 ]. It has been ascer-
tained that cancerous stroma coevolves alongside 
tumor progression, thereby promoting the malig-
nant conversion of epithelial carcinoma cells 
[ 109 ]. However, tumor stroma is infi ltrated by a 
variety of immune cells with the ability to infl u-
ence tumor development and with a relevant 
impact on prognosis. The understanding that the 
immune system plays an important role in cancer 
progression has led to the recent development of 
targeted immunotherapies [ 110 ]. Moreover, the 
recognition that immune cells are key determi-
nant of cancer progression has reinforced the 
idea that immune elements might represent new 
biomarkers of outcome or response to therapy. 

 It is indubitable that the analysis of the type, 
quantity, location, and the functions of the 
immune infi ltrate becomes a primary step in 
understanding the history of cancer in a clinical 
relevant perspective. A comprehensive analysis 
of all components of the lymphocytic infi ltrates 
in the context of their localization, organization, 
and impact at various steps of tumor progression 

remains largely, if not entirely, to be addressed in 
prospective studies [ 111 ,  112 ]. In parallel, under-
standing the mechanisms of effi cient immune 
reactions, the place where they are initiated, the 
cellular and molecular mediators involved, and 
their impact at different stages of the disease 
should provide new tools and goals for more 
effective and less toxic targeted therapies.     
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16.1            Introduction 

 MicroRNAs (miRNAs) are small noncoding 
RNAs (ncRNAs) which regulate gene expression 
by directly binding mostly, but not exclusively, 
to the 3′-untranslated region (3′-UTR) of target 
mRNAs [ 1 ]. In 1993, Victor Ambros fi rst identi-
fi ed a small ncRNA, called lin-4, able to regulate 
the expression of a gene called lin-14 involved 
in the development of  C. elegans  [ 2 ]. In 2001, 
Lagos-Quintana M. et al. showed for the fi rst 
time that many of these small ncRNAs (in the 
meantime called microRNAs) are present not 
only in invertebrates but also in vertebrates [ 3 ]. In 
2002, Croce’s group provided the fi rst evidence 
of miRNA involvement in cancer by showing 
that a specifi c cluster of miRNAs (namely, the 
 miR- 15a/16-1 cluster) is located in the frequently 
deleted chromosomal region 13q14 in chronic 
lymphocytic leukemia (CLL) [ 4 ]. In 2005 Frank 
Slack supported this molecular evidence of 
miRNA involvement by demonstrating that let-7 
directly targets the  RAS  oncogene in lung cancer 
[ 5 ]. In the same year, Cimmino et al. found that 
the miR-15a/16-1 cluster directly targets the anti-
apoptotic  BCL2  gene in human CLL [ 6 ]. From 
this time on, we assist at a plethora of studies 
identifying dysregulation of miRNAs in almost 
all types of human cancers and unraveling their 
contribution to human carcinogenesis by identi-
fying which genes are modulated by the dysregu-
lated miRNAs. Overall, these studies clearly state 
that aberrancies of the miRNome (defi ned as the 
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full spectrum of miRNAs in a specifi c genome) 
contribute to human cancer development 
and can be therapeutically targeted to restore 
miRNA expression to normal [ 7 ]. Moreover, it 
has become clearer that miRNA involvement 
goes beyond cancer, since they are involved in 
a variety of biological processes, spanning from 
development, differentiation, apoptosis, and pro-
liferation to senescence and metabolism [ 8 – 13 ]. 

  MiRNAs  are genes, like any other  protein 
coding gene (PCG) , transcribed by RNA poly-
merase II into a capped and polyadenylated 
precursor, called pri-miRNA [ 14 ,  15 ]. A dou-
ble-stranded RNA-specifi c ribonuclease called 
Drosha, in conjunction with its binding partner 
DGCR8 (DiGeorge syndrome critical region 
gene 8, or Pasha), cleaves the pri-miRNA into 
a hairpin-shaped RNA precursor (pre- miRNA), 
about 70–100 nucleotides (nt) long [ 16 ]. 
Transferred to the cytoplasm by Exportin 5, the 
pre-miRNA is cleaved into an 18–24 nt duplex 
by a ribonucleoproteic complex, composed of 
a ribonuclease III (Dicer), and TRBP (HIV-1 
transactivating response RNA binding protein). 
Finally, the duplex interacts with a large protein 
complex called RISC (RNA-induced silenc-
ing complex), which includes proteins of the 
Argonaute family (Ago1-4 in humans), which 
drives one strand of the duplex (the so-called 
mature miRNA) mainly, but not exclusively, to 
the 3′-UTR of the target mRNAs. Overall, miR-
NAs exert its effect by modulating the expres-
sion of the target mRNAs either by mRNA 
cleavage or by translational repression. In 2007, 
Vasudevan et al. discovered that miRNAs can 
also increase the expression of target mRNAs 
[ 17 ]. Each miRNA can target several different 
transcripts. For instance, it has been demon-
strated that a cluster of two miRNAs (namely, 
miR-15a and miR- 16) can affect the expression 
of about 14 % of the human genome in a leuke-
mic cell line [ 18 ]. In addition, the same mRNA 
can be targeted by several miRNAs [ 19 ]. 

 Epigenetics is defi ned as all heritable changes in 
gene expression not associated with concomitant 
alterations in the DNA sequence. In a traditional 
sense, gene epigenetic regulation usually includes 

DNA promoter methylation and chromatin histone 
modifi cations which are catalyzed by specifi c 
enzymes, overall indicated as effectors of the epi-
genetic machinery. However, if we consider the 
above defi nition, also  miRNA  gene regulation sensu 
stricto represents a component of epigenetics. 
Interestingly, it has been discovered that there is a 
two-way correlation between miRNAs and other 
epigenetic mechanisms: miRNAs can regulate the 
expression of effectors of the epigenetic machinery 
and miRNA genes undergo the same epigenetic 
regulatory mechanisms of any other  PCG . These 
two main aspects of miRNome-epigenome cross-
regulation and their implications in human carcino-
genesis will be the main focus of this chapter.  

16.2     MiRNAs Regulate Effectors 
of the Epigenetic Machinery 

 In 2007, Fabbri et al. provided the fi rst evidence 
that miRNAs can affect the expression of epige-
netically regulated  PCG  in cancer by directly tar-
geting key effectors of the epigenetic machinery, 
such as DNA methyltransferases (DNMTs) [ 20 ]. 
The miR-29 family (composed of miR-29a, miR- 
29b, and miR-29c) can directly silence the expres-
sion of de novo  DNMT3A  and  DNMT3B  in 
non-small cell lung cancer (NSCLC), leading to a 
global hypomethylation status of cancer cells and 
re-expression of  tumor suppressor genes (TSGs)  
such as  FHIT  and  WWOX , whose expression is 
silenced in NSCLC by promoter hypermethyl-
ation. As a result of the re-expression of these 
TSGs, NSCLC cells undergo apoptosis both 
 in vitro  and in an  in vivo  xenograft model [ 20 ]. 
Subsequently, Garzon et al. showed that in addi-
tion to directly targeting de novo  DNMTs , miR-
29b is also capable of targeting the  maintenance  
 DNMT1 , even though in an indirect way: by 
directly silencing Sp1, a transactivator of  DNMT1 
 [ 21 ]. These combined effects of miR- 29s on all 
three major  DNMTs  highlight their relevance for 
epigenetic processes and explain the profound 
effects of their restoration on the global methyla-
tion status of cells. MiRNAs such as the miR-29 
family, able to directly target  effectors of the 
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 epigenetic machinery, have been called “epi-miR-
NAs.” In mouse embryonic stem (ES) cells, two 
independent groups have shown that members of 
miR-290 cluster directly target RBL2, an inhibitor 
of  DNMT3  genes [ 22 ,  23 ]. ES Dicer null cells are 
characterized by no expression of the miR-290 
cluster, overexpression  of RBL2 , and disruption of 
de novo methylation pathway, leading to increased 
telomere recombination and aberrant telomere 
elongation. Restoration of the miRNA cluster 
reverted this phenotype [ 23 ,  22 ]. Interestingly, the 
regulatory effect of miR-290 cluster on de novo 
 DNMTs  was not observed in human embryonic 
kidney 293 cells following Dicer knockdown, sug-
gesting that miR-290 targeting effect on  DNMT3s 
 might be cell- and/or species-specifi c [ 22 ]. 

 Another important family of epi-miRNAs is 
the miR-148a/b-152 family. In 2008, Duursma 
et al. showed that miR-148a and miR-148b can 
indeed bind to the coding region (not the 3′-UTR) 
of DNMT3b mRNA, affecting the expression of 
this gene [ 24 ]. This seminal study also concluded 
that by binding to this unusual site, miR-148 fam-
ily might be responsible for the several different 
splice variants of DNMT3b [ 24 ]. A role for the 
miR-148a/b-152 family was further confi rmed in 
cholangiocarcinoma, where it was shown that these 
miRNAs, in addition to miR- 301, can directly tar-
get DNMT1, and their expression is silenced by 
IL-6, which is involved in cholangio-cancerogen-
esis [ 25 ]. This paper provided the fi rst evidence of 
a correlation between epi-miRNAs, infl ammation, 
and cancer. In 2010, Das et al. showed that all-
trans-retinoic acid (ATRA)-treated neuroblastoma 
cells undergo downregulation of MYCN, hence 
leading to overexpression of MYCN repressed 
miRNAs such as miR-152, miR-26a/b, and miR-
125a/b [ 26 ]. They also showed that these miRNAs 
are epi-miRNAs in this model, since they downreg-
ulate DNMT1 and DNMT3B expression, leading 
to re-expression of epigenetically silenced NOS1, 
which promotes neural cell differentiation. Also, 
the expression of miR-152 was normally down-
regulated with concurrent increase of  DNMT1 
 expression in HBV-induced HCCs [ 27 ]. More 
recently, Wang et al. identifi ed miR-342 as another 
epi-miRNA involved in colon carcinogenesis [ 28 ]. 

They showed that the expression of  miR-342  is 
inversely correlated to DNMT1 levels in colorectal 
cancer (CRC) tissues and cell lines, and that this 
miRNA targets DNMT1, leading to reactivation 
of epigenetically silenced TSGs such as  ADAM23 , 
 Hint1 ,  RASSF1A , and  RECKS . Functionally, res-
toration of miR-342 resulted in a reduction of 
 DNMT1  expression, reduced cell proliferation, 
and invasiveness in CRC cells and inhibition of 
tumor growth and lung metastasis formation in 
nude mice [ 28 ]. In 2010, viral epi-miRNAs have 
been shown to control the epigenetic machinery of 
host cells through DNMTs [ 29 ]. MiR-K12- 4-5p, 
a Kaposi sarcoma-associated herpesvirus (KSHV) 
miRNA, was found to regulate the expression of 
DNMT1, 3A, and 3B indirectly, by targeting the 
expression of Rbl2, a known repressor of DNMT1, 
3A, and 3B transcription. Ectopic expression of 
miR-K12-4-5p reduces Rbl2 protein expression 
and increases DNMT1, 3A, and 3B mRNA levels 
   in 293 cells, thus affecting the overall epigenetic 
reprogramming of the host cell [ 29 ]. 

 Epi-miRNAs are also involved in regulating 
the expression of histone deacetylases ( HDACs ) 
and Polycomb Repressive Complex ( PRC ) genes. 
For instance, HDAC4 is a direct target of both 
miR-1 and miR-140 [ 30 ,  31 ], while miR-449a 
binds to the 3′-UTR region of  HDAC1  [ 32 ]. 
 HDAC1  is upregulated in several kind of cancers, 
and  miR-449a  re-expression in prostate cancer 
cells induces cell-cycle arrest, apoptosis, and a 
senescent-like phenotype by reducing the levels 
of HDAC1 [ 32 ]. Recently, Jeon et al. showed that 
miR-449a,b regulate  HDAC1  expression by 
directly targeting its 3′UTR transcript, indicating 
that this might be one of the reasons for the low 
miR-449a, b expression and the high expression 
of  HDAC1  in lung cancer [ 33 ]. MiR-140 has also 
been shown to be involved in chemoresistance 
mechanisms by targeting  HDAC4  [ 34 ]. Inhibition 
of endogenous miR-140 by locked nucleic acid 
(LNA)-modifi ed anti-miRNAs partially sensi-
tized resistant colon cancer stemlike cells to 
5-FU treatment by increasing HDAC4 levels, 
leading to a G 1  and G 2  phase arrest [ 34 ]. Low 
expression of miR-9 along with high expression 
levels of  HDACs  ( HDAC4  and  5 ) were  discovered 
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in Waldenstrom macroglobulinemia (WM) [ 35 ]. 
Mir-9 targets HDAC4 and HDAC5 in WM cells. 
Overexpression of miR-9 causes downregulation 
of HDAC4, 5, leading to an upregulation of acet-
ylated-histone-H3 and acetylated-histone- H4. 
This provides evidence that the loss of miR-9 
might be responsible for upregulation of HDAC4 
and HDAC5 in WM cells, contributing to the 
pathogenesis of WM disease [ 35 ]. 

 EZH2 is the catalytic subunit of the Polycomb 
Repressive Complex 2 (PRC2) and is responsi-
ble for heterochromatin formation by trimethyl-
ating histone H3 lysine 27 (H3K27me3), leading 
to the silencing of several TSGs. Varambally 
et al. showed that in prostate cancer cell lines 
and primary tumors, the expression of miR-101 
decreases during cancer progression, inversely 
correlating with an increase of EZH2. These 
fi ndings are suggestive of a role as epi-miRNA 
for miR-101, a hypothesis which was tested and 
confi rmed by showing that miR-101 directly tar-
gets EZH2 both in prostate and in bladder cancer 
models [ 36 ,  37 ]. Moreover, miR-101-mediated 
suppression of EZH2 inhibits cancer cell prolif-
eration and colony formation, revealing a TSG 
role for miR-101, mediated by its modulatory 
effects on cancer epigenome [ 37 ]. The inverse 
correlation between  miR-101  and  EZH2  was also 
observed in glioblastoma [ 38 ], gastric cancer 
[ 39 ], and NSCLC [ 40 ]. In prostate cancer it has 
been shown that  miR-101  can be inhibited by 
androgen receptor and HIF-1α/HIF-1β [ 41 ]. 
Ectopic expression of miR-26a targets  EZH2  in 
Burkitt’s lymphoma, leading to reduced cell pro-
liferation, increased percentage of cells in G 1 - 
phase, and increased apoptosis in Raji and 
Namalwa cells [ 42 ]. Intriguingly, the authors 
also found that c-Myc negatively regulates miR-
26a, therefore maintaining high  EZH2  expres-
sion levels in cells and signifi cantly contributing 
to c-Myc-induced tumorigenesis [ 42 ]. In 2009, 
Juan et al. analyzed a regulatory double-negative 
feedback loop between miR-214 and EZH2 in 
controlling PcG-dependent gene expression dur-
ing differentiation [ 43 ]. PcG proteins suppress 
the transcription of miR-214 in undifferentiated 
skeletal muscle cells (SMC). Ectopic expression 
of miR-214 directly targets  EZH2 , increases 

 myogenin expression, and promotes muscle dif-
ferentiation [ 43 ].  EZH2  is also highly expressed 
in nasopharyngeal carcinoma (NPC) patients 
and correlates with a higher risk of relapse [ 44 ]. 
 MiR- 26a ,  miR-98 , and  miR-101 , whose expres-
sion is consistently downregulated in human 
NPC specimens when compared to normal naso-
pharyngeal epithelial tissue samples, have been 
shown to directly target  EZH2  [ 44 ], suggesting a 
prognostic role for these three miRNAs in 
NPC. Recently, there has been an extensive 
series of studies unraveling the central role of 
miR-101 in the regulation of  EZH2 , in several 
types of cancer. In hepatoma tissues, it was 
shown that miR-101 and miR-29c are downregu-
lated, but their expression can be restored (lead-
ing to reduced levels of EZH2, EED, and 
H3K27me3 proteins) after treatment with TPA 
(12-O-tetradecanoylphorbol 13-acetate), which 
is dependent on protein kinase C (PKC) and 
ERK pathways in HepG2 cells [ 45 ]. Also, 
Smiths et al. have established a pro- angiogenic 
effect of miRNA-101 working together with 
EZH2 and VEGF during the process of angio-
genesis [ 46 ]. The group analyzed the expression 
of miR-101 in endothelial cells derived from 
glioma patients and found it to be low. VEGF 
downregulates the expression of miR-101 result-
ing in increased protein expression of EZH2 and 
induces the elongation of endothelial cells lead-
ing to a pro-angiogenic response. Transfection 
with pre-miR-101, or EZH2 siRNA, or treat-
ments with DZNep, a small inhibitor of EZH2 
methyltransferase activity, reverses this process 
in HBMVECs controls, providing a network 
between VEGF/miR-101/EZH2 proteins toward 
pro-angiogenic response in endothelial cells 
[ 46 ]. A summary of the described epi-miRNAs 
is provided. 

 Overall, these studies indicate that epi- 
miRNAs can modulate several key effectors of 
the epigenetic machinery, which indirectly affects 
the expression of epigenetically regulated genes. 
Considering that inactivation of  TSGs  by epigen-
etic mechanisms represents one of the main strat-
egies adopted by cancer cells to promote their 
oncogenic phenotype, it is of the utmost impor-
tance to completely dissect these mechanisms, 
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since they could provide new molecular targets 
for anticancer treatments.  

16.3     MiRNAs Are Epigenetically 
Regulated in Several Types 
of Human Cancers 

 As previously anticipated, the relationship 
between miRNome and epigenome is bidirec-
tional. Not only do miRNAs regulate the expres-
sion of effectors of the epigenetic machinery, but 
they also undergo the same epigenetic regulation 
of any other  PCG . 

 By treating bladder cancer cell lines with both 
a DNA demethylating agent (5-aza-2′-
deoxycytidine, 5-AZA) and an HDAC inhibitor 
(4-phenylbutyric acid), Saito et al. found that 
about 5 % of all human miRNAs increased their 
expression levels [ 47 ]. MiR-127 was the most 
upregulated after this treatment, and its re- 
expression led to direct targeting and downregu-
lation of the oncogene  BCL-6 , inducing a tumor 
suppressor function. MiR-127 is part of a cluster 
which includes miR-136, miR-431, miR-432, 
and miR-433 and is embedded in a CpG island 
region; however,  miR-127  is the only member of 
the cluster whose expression increases upon 
treatment with the two epigenetic drugs [ 47 ]. 
Moreover, when each drug was used alone, no 
variation in  miR-127  expression was observed 
[ 47 ], suggesting that both DNA methylation and 
histone modifi cations affect the epigenetic regu-
lation of  miR-127 . This seminal work shows that 
indeed miRNAs undergo epigenetic regulation, 
that it is a complex epigenetic regulation (involv-
ing both methylation and histone modifi cations), 
and that there are differences among miRNAs 
which even belong to the same cluster. Lujambio 
et al. created a double knockout (DKO) for 
DNMT1 and DNMT3B in the CRC cell line 
HCT-116 and compared miRNA expression pro-
fi le of DKO and wild-type cells. About 6 % ana-
lyzed miRNAs were re-expressed in the DKO 
cells [ 48 ]. Among them, miR-124a (embedded in 
a CpG island heavily methylated in this cell line) 
was re-expressed, reducing the levels of its direct 
target gene  CDK6  and impacting on the phos-

phorylation status of CDK6-downstream effector 
Rb protein [ 48 ]. Prosper’s work has identifi ed a 
signature of 13 miRNAs embedded in CpG 
islands, with high heterochromatic markers (such 
as high levels of K9H3me2 and/or low levels of 
K4H3me3) in acute lymphoblastic leukemia 
(ALL) patients [ 49 ,  50 ]. Among these, miR-124a 
was methylated in 59 % of ALLs, and its pro-
moter hypermethylation was associated with 
higher relapse rate and mortality rate  vs . non- 
hypermethylated cases; hence, miR-124a pro-
moter methylation status was an independent 
prognostic factor for disease-free and overall sur-
vival [ 50 ]. Finally, supporting Lujambio’s results, 
also in ALL the impact of miR-124a in the 
CDK6-Rb pathway was confi rmed by showing 
that miR-124a directly silences  CDK6  [ 50 ]. 
Hypermethylation of miR-124a promoter is also 
involved in the formation of epigenetic fi eld 
defect which is a gastric cancer predisposing con-
dition characterized by accumulation of abnor-
mal DNA methylation in normal-appearing 
gastric mucosa, mostly induced by  H. pylori  
infection [ 51 ]. These fi ndings also suggest that 
miR-124a promoter hypermethylation is an early 
event in gastric carcinogenesis. MiR-107, another 
epigenetically controlled miRNA, targets 
 CDK6  in pancreatic cancer as well and impacts 
this oncogenic pathway [ 52 ]. In HCT-116 cells, 
defi cient for DNMT1 and DNMT3B, Bruckner 
et al. showed increased expression of let-7a-3, an 
miRNA normally silenced by promoter hyper-
methylation in the wild-type cell line [ 53 ]. In 
lung adenocarcinoma, primary tumors let-7a-3 
promoter was found hypomethylated with respect 
to the normal counterpart [ 53 ], whereas hyper-
methylation of let-7a-3 promoter was described 
in epithelial ovarian cancer, paralleled the low 
expression of insulin-like growth factor-II expres-
sion, and was associated with a good prognosis 
[ 54 ]. Therefore, DNA methylation could act as a 
protective mechanism by silencing miRNA with 
oncogenic function. Also, the miRNA-200 fam-
ily participates in the maintenance of an epithe-
lial phenotype, and loss of its expression can 
result in epithelial to mesenchymal transition 
(EMT). Furthermore, the loss of expression of 
miR-200 family members is associated with an 
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aggressive cancer phenotype. Vrba et al. found 
that hypermethylation of the miR-200c/141 CpG 
island is closely linked to their inappropriate 
silencing in cancer cells, and the epigenetic regu-
lation of this cluster appears evolutionarily con-
served, since similar results were obtained in 
mouse [ 55 ]. Interestingly, no variation in miRNA 
expression was observed in lung cancer cells 
treated with either demethylating agents or 
HDAC inhibitors or their combination [ 56 ]. 
Another miRNA which is under epigenetic con-
trol is miR-1. In hepatocarcinoma, miR-1 is fre-
quently silenced by promoter hypermethylation 
[ 57 ]. However, in DNMT1 null HCT-116 cells 
(but not in DNMT3B null cells), hypomethyl-
ation and re-expression of miR-1-1 were observed 
[ 57 ], revealing a key role for the maintenance 
DNMT in the regulation of this miRNA. Han 
et al. observed that neither  5-AZA  nor  DNMT1  
deletion alone can recapitulate miRNA expres-
sion profi le of DKO DNMT1/DNMT3B HCT- 
116 cells [ 58 ]. Also, Lehmann et al. found that in 
breast cancer cell lines, 5-AZA re-activates miR-
9- 1 (hypermethylated in up to 86 % of primary 
tumors), but not miR-124a-3, miR-148, miR- 
152, or miR-663 (hypermethylated as well) [ 59 ]. 
Previously, Meng et al. observed that in malig-
nant, but not in normal cholangiocytes, 5-AZA 
induces re-expression of miR-370 [ 60 ]. Overall, 
these results indicate that the epigenetic control 
of miRNAs is both cancer specifi c and miRNA 
specifi c. More recently, Chang and Sharan 
reported that  BRCA1  recruits the  HDAC2  com-
plex to the miR-155 promoter, which is conse-
quently silenced epigenetically through the 
deacetylation of H2A and H3 histones [ 61 ]. The 
study also showed the upregulation of miR- 
155 in BRCA1-defi cient or BRCA1-mutant 
human tumors. The knockdown of miR-155 in a 
BRCA1 mutant tumor cell line attenuates  in vivo 
 tumor growth. However, a knockdown of BRCA1 
results in a two- to threefold increase in miR-155 
levels  in vitro . In contrast, a 50 to 150-fold 
increase in miR-155 in human breast cancer cell 
lines or tumor samples was observed, suggesting 
that this increase may not be caused only by 
 BRCA1  loss; other transcription factors may acti-
vate the miR-155 promoter after it is  epigenetically 

activated due to the loss of BRCA1 [ 61 ]. Mazar 
et al. studied which miRNAs were re- expressed 
upon treatment of a melanoma cell line with 
demethylating agents [ 62 ]. Among the 15 re-
expressed miRNAs, miR-375 and miR-34b were 
also involved in melanoma progression [ 62 ]. Liu 
et al. [ 63 ] found that miR-182 was signifi cantly 
upregulated in human melanoma cells after com-
bined treatment with 5-AZA and trichostatin 
A. Genome sequence analysis revealed the pres-
ence of a prominent CpG island 8–10 kb upstream 
of miR-182, but methylation analysis showed 
that this genomic region was exclusively methyl-
ated in melanoma cells, not in normal human 
melanocytes. Since miR-182 has been shown to 
harbor oncogenic properties, this fi nding raises a 
possible concern for melanoma patients treated 
with epigenetic drugs [ 63 ]. MiR- 31 maps at 
9p21, a genomic region frequently deleted in 
solid cancers including melanoma. Asangani 
et al. [ 64 ] found recurrent downregulation of 
miR-31 in melanoma primary tumors and was 
associated with genomic loss or epigenetic 
silencing by DNA methylation and EZH2- 
mediated histone methylation. Moreover, miR-31 
overexpression resulted in downregulation of 
EZH2 and a derepression of its target gene rap-
1GAP. The increased expression of EZH2 was 
associated with melanoma progression and poor 
overall survival [ 64 ]. 

 Nickel (Ni) compounds are well described 
human carcinogens. Recently an important regu-
latory double-negative feedback loop has been 
discovered between  miR-152  and  DNMT1  in 
nickel sulfi de (NiS)-transformed human bronchial 
epithelial (16HBE) cells [ 65 ]. Expression of  miR-
152  was specifi cally downregulated by promoter 
hypermethylation, whereas ectopic expression of 
 miR-152  resulted in a remarkable reduction of 
 DNMT1  expression in transformed cells. 
Interestingly, treatment with 5-AZA or knock 
down of DNMT1 reversed this process. Further, 
inhibition of  miR-152  expression in 16HBE cells 
was found to increase  DNMT1  expression and 
DNA methylation. Moreover, ectopic expression 
of  miR-152  caused a signifi cant decrease of cell 
growth, whereas inhibition of  miR-152  reversed 
this process in 16HBE cells, suggesting the 
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 existence of an important functional negative 
feedback loop between  miR-152  and  DNMT1 , 
likely to play an important role in NiS-induced 
lung carcinogenesis [ 65 ]. The relationship 
between miRNA and cognate host gene epigene-
tic regulation was addressed by Grady et al. by 
studying miR-342, located in an intron of the  EVL  
( Ena/Vasp-like ) gene [ 66 ]. EVL promoter hyper-
methylation occurs in 86 % of colorectal cancers 
and is already present in 67 % of adenomas, sug-
gesting that it is an early event in colon carcino-
genesis. The combined treatment with 5-AZA and 
the HDAC inhibitor trichostatin A restores the 
synchronized expression of EVL and miR-342. 
The  EGFL7  gene, frequently downregulated in 
several cancer cell lines and in primary bladder 
and prostate tumors, hosts miR- 126 in one of its 
introns. While the mature miR- 126 can be 
encoded by three different transcripts of the cog-
nate host gene, each of them with its own pro-
moter,  miR-126  is concomitantly upregulated 
with one of  EGFL7  transcripts which has a CpG 
island promoter, when cancer cell lines are treated 
with inhibitors of DNA methylation and histone 
deacetylation, indicating that silencing of intronic 
miRNAs in cancer may occur by means of epi-
genetic changes of cognate host genes [ 67 ]. In 
summary, miRNAs are encoded by either  ncRNA  
genes with their own promoters or by noncoding 
sequences in introns of  PCGs . In the latter case, 
miRNA expression is usually driven by the same 
promoters of the corresponding  PCGs . 

 The role of miRNA epigenetic modifi cations 
in the metastatic process has also been investi-
gated by several groups. Lujambio et al. treated 
three lymph-node metastatic cell lines with 
5-AZA and identifi ed 3 miRNAs which showed 
cancer-specifi c CpG island hypermethylation: 
miR-148a, miR-34b/c, and miR-9 [ 68 ]. The    rein-
troduction of miR-148a and miR-34b/c in cancer 
cells with epigenetic inactivation inhibited cell 
motility and their metastatic potential in xeno-
graft models and was associated with downregu-
lation of miRNA oncogenic target genes, such as 
 c-MYC, E2F3, CDK6 , and  TGIF2  [ 68 ]. Finally, 
promoter hypermethylation of these three miR-
NAs was signifi cantly associated with metastasis 
formation also in human malignancies [ 68 ]. 

MiR-34b/c cluster is also epigenetically regu-
lated in CRC (promoter hypermethylation in 
90 % of primary CRC samples  vs  normal colon 
mucosa) [ 69 ], whereas epigenetic silencing of 
miR-9 and miR-148a (together with miR-152, 
miR-124a, and miR-663) was described also in 
breast cancer [ 59 ]. 

 Finally, Fazi et al. showed that transcription 
factors can recruit epigenetic effectors at miRNA 
promoter regions and contribute to the regulation 
of their expression. The AML1/ETO fusion onco-
protein is the aberrant product of t(8;21) translo-
cation in acute myeloid leukemia (AML) and can 
bind to the pre-miR-223 region. The oncoprotein 
recruits epigenetic effectors (i.e., DNMTs, 
HDAC1, and MeCP2), leading to  aberrant hyper-
methylation of the CpG in close proximity to the 
AML1/ETO binding site and H3-H4 deacety-
lation of the same chromatin region [ 70 ]. In SkBr3 
breast cancer cell line, Scott et al. were able to 
demonstrate that 27 miRNA expression levels are 
rapidly modifi ed (5 up- and 22 downregulated) by 
a treatment with the HDAC inhibitor LAQ824 
[ 71 ], indicating that some miRNAs are mainly 
silenced by histone modifi cations. In A549 lung 
cancer cell line, the HDAC inhibitor SAHA 
deregulates 64 miRNA (>2 fold change) targeting 
genes involved in angiogenesis, apoptosis, chro-
matin modifi cation, cell proliferation, and differ-
entiation [ 72 ]. A list of the discussed epigenetically 
regulated miRNAs is provided. 

 In summary, these studies convincingly sup-
port an epigenetic regulation of miRNAs, and the 
fact that cancer cells adopt epigenetic mecha-
nisms to silence/re-express key miRNAs modu-
lating relevant PCGs for the development of their 
oncogenic phenotype. The metastatic process 
also seems to be driven, at least in part, by the 
selected epigenetic regulation of miRNAs, in 
addition to the well-known epigenetic regulation 
of relevant PCGs.  

16.4     Concluding Remarks 

 The series of studies listed in this chapter should 
have convinced the readers that a tight connec-
tion relates miRNAs and epigenetics, and this 
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relationship harbors signifi cant  implications in 
the development and spreading of malignancies. 
Aberrancies of the miRNome can effectively be 
reversed by overexpressing miRNAs that are 
downregulated in cancer and/or by silencing 
miRNAs overexpressed by cancer cells. 
Synthetically generated miRNA-mimic mole-
cules can be effectively delivered to cancer cells. 
Conversely, miRNAs can be administered as 
anti-miRNA molecules in case the silencing of a 
miRNA needs to be achieved. Most commonly, 
anti-miRNAs can be administered as antagomiRs 
[ 73 ], or LNA anti-miRNAs [ 74 ], which are oligo-
nucleotides complementary to the sequence of 
the targeted mature miRNA, but biochemically 
modifi ed to reduce the risk of degradation by cel-
lular RNAses, and are conjugated with choles-
terol to facilitate their entrance in the cells. By 
designing mimics and/or anti-miRNAs of epi- 
miRNAs, a profound modulation of several epi-
genetically regulated PCGs is anticipated. 
Similarly, epigenetic drugs such as 5-AZA and 
histone active drugs will directly affect the 
expression of several epigenetically regulated 
miRNAs, as well as indirectly the expression of 
those mRNAs modulated by these epigenetically 
regulated miRNAs. The overall effect on cell 
phenotype is the combination of these modifi ca-
tions in the transcriptome and miRNome. 
Therefore, a clear and deep understanding of 
these basic mechanisms is necessary in order to 
avoid re-expression of oncogenes and/or onco- 
miRNAs. Despite the complexity suggested by 
these interactions, an increasing number of excel-
lent works is bringing us on the right track by 
dissecting the complexity of such mechanisms 
and supporting a general optimistic view: that in 
a future not too far to come, we will be able to 
effectively translate these discoveries into new 
strategies to fi ght cancer, resulting in decreased 
mortality.     
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17.1            Introduction 

 The infl uence of genes in the development of 
cancers can be very high, very well depicted in 
numerous hereditary cancers or very low in some 
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cancers. Although the roles played by genes in 
the pathophysiology and prognosis of the 
 malignant transformation are highly variable in 
different cancers, their role cannot be ignored. 
For sure, polymorphisms in immune-related 
genes, known as immune polymorphisms, have 
an undeniable role in shaping undeniable but 
complex interactions between the immune sys-
tem and malignancies which can signifi cantly 
infl uence the face of malignancy with respect to 
predisposition, nature, prognosis and response to 
treatment in each individual.  

17.2     Cancers: Why Are There 
Different Faces? 

 It has been long observed that individuals are 
different with respect to predisposition nature, 
prognosis, and response to treatment in cancer 
[ 1 ,  2 ]. Since the fi rst observations, scientifi c 
minds have been preoccupied with the question 
that, what is the reason for this high inter-indi-
vidual variation. Nowadays, it is obvious that 
behind the ugly scene of cancers, there is a 
 complex interplay between genes and environ-
ment and this question can be answered 
 straightforwardly by the high variability of 
genetic and environmental factors for each indi-
vidual [ 1 ]. Although it is estimated that less 
than 0.1 % of the genome is different between 
any two individuals, this variability is equal to 
at least several million nucleotide differences 
per individual [ 3 ,  4 ]. The infl uence of genes in 

the development of cancers can be very high, 
very well depicted in numerous hereditary can-
cers like familial  adenomatous polyposis, or 
very low in some cancers like cancer of the cer-
vix (Fig.  17.1 ) [ 5 ]. Although the roles played by 
genes in the pathophysiology and prognosis of 
the malignant transformation are highly variable 
in different cancers, their role cannot be ignored 
[ 6 ,  7 ]. Malignant transformation is not just a 
result of a cell-autonomous process and is 
shaped by intrinsic properties, but also its cross 
talk with microenvironment governed by the 
immune and endocrine systems, stroma, vascu-
lar system, and other systems [ 6 ]. Therefore, 
this heritability results from additive effects of 
low-penetrance genetic factors, each one con-
tributing a small amount of risk [ 6 ].

17.3        Immune Polymorphism 

 The role of immune system in defense against 
malignancies was proposed in the early 1990s by 
Paul Ehrlich [ 8 ]. So far this book, page by page, 
has tried to show the undeniable but complex 
interactions between the immune system and 
malignancies. This complex interaction mostly 
results from the manipulation of the immune sys-
tem by cancer cells evoluting to prevent self- 
destruction [ 8 ]. Four phenomena contribute to 
the escape of malignant cells from the 
immunosurveillance:
    1.     Immunoedition : Natural selection of malignant 

cells which are most successful in deceiving 
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the immune system occurs by the pressure of 
the immune system itself. This pressure leads 
a somatic evolution toward variants  profi cient 
in immune escape in primary tumor lesions 
[ 9 ,  10 ]. 

  Down regulation of the local immune  system :  
Several tumors can manipulate the local defense 
by producing inhibitory molecules such as 
indoleamine 2,3-dioxygenase (IDO) and differ-
ent cytokines or expression of apoptose- 
inducing ligands such as Fas-ligand [ 9 ,  11 ]   

   2.     Tolerance induction and losing immunogenic-
ity : The absence of co-stimulatory molecules, 
localization in natural environment of healthy 
cells and therefore absence of danger signals, 
losing human leukocyte antigen (HLA) class I 
molecules, and aberrant expression of immu-
nomodulatory non-classical HLA class I 
 antigen (Ag) can all induce tolerance in the 
immune system [ 9 ,  11 ,  12 ].   

   3.     Host immunodefi ciency : Any defi ciency in the 
immune status of individuals can predispose 
them to various malignancies.    
  In addition, once the immune escape occurred, 

the immune system can profoundly infl uence the 
prognosis, natural history, and response to differ-
ent therapies either by direct effects on malignant 
cells or indirect effects on angiogenesis and 
infl ammation [ 9 ,  11 – 13 ]. 

 The immune system of each individual is 
 subject to variability due to different environ-
ments, different diets and nutritional status, and 
different antigenic exposures and most impor-
tantly due to an uncountable number of polymor-
phisms in genes governing the immune system 
elements and cells [ 14 ,  15 ]. 

 Genetic polymorphisms are defined as 
 variations in human genome present in at least 
1 % of the population [ 16 ]. These polymor-
phisms were beneficiary either in their cross 
talk with certain environmental factors alone 
or in combination with their associated poly-
morphisms, or they were at least neutral 
enough not to compromise the life of the indi-
vidual bearing them; therefore they were not 
erased by the evolutionary pressure [ 14 ,  16 , 
 17 ]. Immune response-associated genes are 
not an exception, and they have an uncount-
able number of polymorphisms [ 14 ]. For 
example, HLA region includes the most poly-
morphic genes in the human genome [ 14 ]. This 
high variety in immune-associated genes is a 
product of a long interaction with an environ-
ment consisting of numerous ever-evolving 
pathogens [ 14 ]. In this context, majority of 
polymorphisms had the chance to be benefi-
ciary in defense against some pathogens [ 15 , 
 18 ,  19 ]. 

 Single nucleotide polymorphisms (SNP), 
 variable number of tandem repeats (VNTRs) (a 
repeat unit includes 15–100 nucleotides) and 
microsatellites are three important types of 
 polymorphisms [ 20 ]. 

 SNP is defi ned as a difference in a single 
nucleotide in the DNA sequence and is estimated 
to account for 90 % of the human genome varia-
tions. Microsatellites, scattered through the 
genome with an average density of one in every 
2,000 pb, are variable tandem repeats of 2–8 bp, 
most commonly CA dinucleotide, and their 
alleles are differentiated by the number of repeats 
(Fig.  17.2 ) [ 20 ,  21 ].
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  Fig. 17.2    Different types of polymorphisms in the human genome       
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   Polymorphisms are able to change the immune 
function at several levels from expression pat-
terns to posttranslation modifi cations:
    1.    Some polymorphisms might change DNA 

methylation and consequently chromatin 
structure and expression patterns [ 22 ,  23 ].   

   2.    Some polymorphisms may disrupt transcrip-
tion factor binding sites (TFBSs) and conse-
quently infl uence the expression [ 20 ,  24 ,  25 ].   

   3.    mRNAs splicing patterns can be modifi ed by 
polymorphisms as a result of deletion of a 
splice site, creation of a new splice site, or 
modifi cation of exon-splicing enhancers and 
silencers [ 24 ].   

   4.    MicroRNAs (miRNAs) are important ele-
ments in gene regulation with various actions. 
Their binding sites might be disrupted as a 
result of polymorphisms [ 24 ].   

   5.    Some polymorphisms can cause mRNA insta-
bility and its early destruction [ 20 ,  26 ].   

   6.    Polymorphisms may create premature termi-
nation codons [ 24 ].   

   7.    Exonic polymorphisms can substitute an 
amino acid in protein sequence, change pro-
tein structure, and consequently alter protein 
function [ 20 ,  25 ,  26 ].   

   8.    Some polymorphisms may change post-
translational modifi cation (PTM) site and 
consequently infl uence posttranslational mod-
ifi cations [ 24 ].     
 Therefore, it seems that this high genetic vari-

ability in immune response associated genes 
known as immune polymorphism contributes to 
the observed interindividual differences [ 14 ,  19 ].  

17.4     Immunogenetics 

17.4.1     Background 

 Immunogenetics, as the meeting point of two 
exciting fi elds of immunology and genetics, is a 
new but rapidly expanding fi eld of science study-
ing this immune polymorphism in order to under-
stand the governance of genetics on the immune 
system [ 14 ,  27 ,  28 ]. 

 Although the term “immunogenetics” was 
used earlier [ 29 ], the fi rst milestone in the history 
of immunogenetics was coincident with the failed 
study of blood transfusion in 1952 [ 30 ]. This fail-
ure resulted in the discovery of HLA system [ 14 , 
 31 ], which attracted the attention of biomedical 
researchers to interindividual differences in the 
immune system. From that point on, for decades, 
investigators tried to associate different complex 
diseases with various HLA types using serologi-
cal methods [ 32 ,  33 ]. However, modern immuno-
genetics required more than one century of 
biomedical advances remarked by Mendel’s laws 
of heredity in 1865 [ 16 ,  34 ], discovery of chro-
mosomes as the cellular basis of heredity in 1902, 
discovery of DNA double helix as the molecular 
basis of heredity in 1953 [ 35 ], decoding the 
genetic codes, and last but not least the  completion 
of Human Genome Project in April 2003 [ 16 ,  36 , 
 37 ]. Human Genome Project not only contributed 
to the discovery of genetic polymorphisms but 
also provided a infrastructure for other large-
scale projects like International HapMap Project 
and “1,000 Genomes Project” [ 38 ]. Discovery of 
approximately 25–35 % of estimated nine to ten 
million SNPs is just one of the uncountable 
achievements of such projects [ 14 ,  37 – 39 ]. 
Genetic polymorphisms in the immune system 
contribute to a large part of the interindividual 
variation in immune response and today, immu-
nogenetic studies have provided a vast knowl-
edge of the effects of immune polymorphism on 
the host defense. However, just the estimation 
that there is one SNP per every 290 bp shows that 
there is much more to be brought to light [ 38 ,  39 ].  

17.4.2     Immunogenetic Tools 

 Along with the concert of conceptual advance-
ments, tools employed in this fi eld have changed 
in order to gather immunogenetic information 
more accurately, in less time and less cost [ 14 ]. 
Twin studies recruit twins in order to remark the 
importance of genetic component in susceptibil-
ity to traits and diseases [ 16 ,  40 ]. The result of 
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such studies provides a rough estimation of 
genetic contribution to interindividual differ-
ences in immune system by comparison of 
 concordance rates of immune traits between 
monozygotic and dizygotic twins [ 16 ,  33 ,  40 ]. 
The higher the concordance difference is, the 
greater the heritability [ 7 ,  16 ]. 

 Upon introduction of immune polymorphism, 
several association studies tried to show the con-
tribution of specifi c genes using the candidate 
gene approach or hypothesis-driven approach 
[ 16 ,  41 ]. This approach includes looking into the 
differences between patients and controls in 
allele frequencies of SNPs in genes selected 
based on the known pathophysiologic pathways 
of the disease. These studies at fi rst employed 
restriction enzymes to identify specifi c SNPs 
called restriction fragment length polymorphisms 
(RFLPs) in the restriction site of the enzyme [ 42 ]. 
This approach is also known as a reductionist 
approach, since studies employing this approach 
investigate only a few genes and polymorphisms 
at a time [ 16 ,  41 ,  43 ]. 

 In the early 1990s, discovery of hundreds of 
informative microsatellites provided the possibil-
ity of a dramatic change in the approach of immu-
nogenetic studies from a hypothesis-driven 
approach to positional approach [ 4 ,  16 ,  44 ]. In 
this approach, studies known as genome-wide 
association studies (GWAS) mainly aim to iden-
tify the genome regions bearing disease- associated 
genes and to localize causal genetic variants of 
disease as accurately as possible [ 44 ,  45 ]. 
Therefore, in this approach, new hypothesis are 
generated after making thousands of unbiased 
observations [ 4 ,  33 ,  41 ,  44 ]. They are especially 
helpful in order to fi nd unexpected genes as repre-
sentatives of unknown disease-related pathway 
[ 4 ,  16 ]. In mid-1990s, early GWASs employed 
informative microsatellite markers distributed 
evenly in the 23 chromosomes and investigated 
their aggregation in multi-case families and large 
pedigrees identifi ed major susceptibility loci for 
complex diseases [ 4 ,  42 ,  44 ]. 

 By introduction of linkage disequilibrium 
(LD) defi ned as the coinheritance of alleles of a 

block of neighboring SNPs; in 2002, the 
International HapMap Project, as a global 
movement, began to identify these blocks 
(known as haplotypes) and pattern of LD in the 
human genome [ 38 ,  39 ]. LD results in organiza-
tion of genetic variation in haplotype blocks 
with strong LD separated by recombination 
hotspots [ 16 ,  39 ]. The information from this 
project provided the immunogenetic scientists 
with the most suitable SNPs for genotyping in 
order to indirectly gather as much as informa-
tion about the genome variation of an individual 
[ 16 ,  46 ]. These SNPs, which are representative 
of a block of SNPs, are known as tagSNPs. The 
extent of LD in a region determines the number 
of tagSNPs required to cover a region. The 
lower the LD is in a region, the higher number 
of tagSNPs are needed and therefore the higher 
the cost of genotyping the region is [ 47 ]. 
Nowadays, availability of high- throughput gene 
technologies such as gene chips or microarrays 
has enabled investigators to genotype cost-
effectively, rapidly, and almost  effortless hun-
dreds of thousands to millions of SNPs at the 
same time [ 4 ,  33 ,  41 ,  44 ]; therefore this approach 
is also known as “nonreductionist” approach 
[ 4 ]. These technological advancements were 
employed in community-based and large- scale 
GWASs in order to identify trait-associated 
regions with higher resolution. The results of 
such studies is a trait-associated SNP (TAS) as a 
representative of the true casual variant which 
might be each of the known and unknown vari-
ants in whole TAS block. The TAS block is 
defi ned as all known and unknown polymor-
phisms in strong LD with the tagSNP [ 4 ,  16 , 
 48 ]. Therefore, LD along with technological 
advances turned SNPs, the most common and 
more importantly the most stable genetic varia-
tions in human DNA, into application [ 49 ]. 

 However, there are major limitations in 
GWASs to be overcome.
    1.    Generally, the genetic component of complex 

diseases originates from several major suscep-
tibility loci and a component of as many as a 
dozen minor susceptibility loci known as 
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polygenes (Fig.  17.3 ). These polygenes 
 individually have small to medium impact on 
the overall genetic component; therefore, 
GWASs require a large study sample with 
homogenous ethnicity and phenotype to have 
enough high power to identify these poly-
genes [ 4 ,  21 ,  48 ,  50 ]. This is a major problem 
in immunogenetic studies of cancers as 
patients with cancers present with highly vari-
able phenotypes. As a result, the odds ratio for 
each allele is typically below 1.5, and the  P  
value should be less than 10 −6  to show a 
 signifi cant association [ 6 ,  51 ].

       2.    The genetic component and therefore effect of 
any risk allele decreases by increased expo-
sure of populations to environmental risk fac-
tors which is the reason why some results 
could not be replicated in different popula-
tions [ 6 ]. For example, increased prevalence 
of acquired immune defi ciency syndrome 
(AIDS) in some African populations predis-
poses population to different cancers disre-
garding their genetic background [ 52 ,  53 ]. 
This is also the case in regard to some extreme 
dietary patterns, smoking habits, and other 
environmental factors [ 54 ,  55 ].   

   3.    Some cancer susceptibility variants have 
 nonadditive interactions with other genetic 

and environmental factors. It is possible that 
the effect of one variant depends on the pres-
ence of one or several specifi c alleles in 
another locus or even certain environmental 
risk  factors. Therefore, such susceptibility 
variants can be detected only in GWASs with 
samples of patients with particular genetic and 
 environmental background [ 6 ].   

   4.    At least 10 % of SNPs within a range of 
1 kpb of hotspots are untaggable which means 
they don’t have any LD with tagSNPs [ 47 ]. 
The presence of these numerous untaggable 
SNPs always limits the power of GWASs in 
fi nding all possible genetic associations [ 39 ]. 
Therefore, GWASs should employ additional 
sequencing within known recombination 
hotspots [ 39 ].   

   5.    GWASs are less effective in some old popula-
tion like African countries, since LD is gener-
ally lower in these populations due to the 
longer duration being affected by genetic 
recombination [ 4 ,  16 ,  48 ,  49 ].   

   6.    The different LD, hotspots, and haplotype 
 patterns in different populations might com-
plicate replication studies in different popula-
tions [ 49 ]. For example, in some population, 
the causal variant may be separated from the 
associated TAS block by a hotspot.   
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   7.    Sometimes the associated TAS block does not 
include a causative allele but an allele 
 benefi ciary for the affected individuals with 
the disease, and therefore the natural selection 
has selected them instead of those affected 
individuals without the allele [ 16 ].   

   8.    Population stratifi cation is another source of 
bias in such studies as the association of the 
trait and TAS block may be due to an ancient 
branching of the population bearing both 
causal trait alleles and the TAS block; 
 however, this bias can be minimized by the 
careful selection of the control group or by 
assessing population structure and correcting 
for it [ 16 ,  49 ,  56 ].   

   9.    If certain alleles are associated with a more 
aggressive disease and lower survival, they 
are less presented in patients and may not be 
detected as a susceptibility allele [ 57 ].     
 After identifi cation of associated TAS blocks 

by GWASs, the actual functional variant in the 
associated TAS block can be found by further 
genetic association studies employing more 
accurate low-throughput technologies and other 
SNP markers in order to fi nely map the associ-
ated genes and alleles in the associated TAS 
block [ 44 ]. In these studies, allele frequencies of 
polymorphisms are compared in groups of cases 
and controls. However, results of such associa-
tion studies are often contradictory due to the het-
erogeneous nature of the cancers, numerous 
gene–gene and gene–environment interactions 
[ 58 ,  59 ]. In addition, another source of discrep-
ancy between these studies is the limitation in 
study design. For example, using hospital-based 
controls can result in a serious selection bias 
since polymorphisms under investigation might 
have association with the diseases that hospital- 
based controls may have [ 60 ,  61 ]. Moreover, 
some association studies failed to consider other 
genetic and environmental risk factors such as 
socioeconomic status, nutritional statues, smok-
ing patterns, etc. [ 60 ]. Lacking such information 
may cause serious confounding bias [ 62 ]. 
Therefore, in order to get the most benefi t from 
results of genetic association studies and to sys-
tematize their fi ndings, employing meta-analyses 

as a powerful statistical method is essential 
[ 26 ,  63 ]. Meta-analysis by pooling the results of 
old studies allows us to see the whole picture of 
the effect of a certain polymorphism [ 26 ]. 

 Regardless of interspecies differences, there 
are similarities in cancer development between 
humans and rodents, and therefore mouse studies 
are a complementary tool for genetic association 
studies within human population [ 6 ,  64 ,  65 ]. 
Numerous genetically engineered mouse (GEM) 
models provide a simplifi ed model of various 
cancers with controllable genetic and environ-
mental background in which the effects of a 
unique polymorphism on the malignancy can be 
studied [ 6 ,  66 ]. 

 Exact mechanism of action of polymor-
phisms can be identifi ed using different bioin-
formatic tools and  in vitro  studies [ 24 ]. 
Numerous bioinformatic online and offl ine tools 
are available which can predict the effect of 
polymorphisms by considering amino acid bio-
physical properties, active site residues, metal 
and lipid binding sites of gene product, TFBSs, 
splice sites and its regulatory motifs, miRNA 
binding sites, and PTM sites (Table  17.1 ) [ 24 ]. 
However, bioinformatics is limited by the extent 
of our knowledge [ 22 ,  24 ].

   Different  in vitro  methods are developed to 
identify functional polymorphisms. The most 
important ones are reporter gene assay and elec-
trophoretic mobility shift assay (EMSA) 
(Figs.  17.4  and  17.5 ) [ 22 ]. The reporter gene 
assay employs a reporter gene with a quantifi able 
product and clones the promoter of interest in its 
upstream [ 22 ,  67 ,  68 ]. Therefore, quantifi cation 
of reporter gene product can provide information 
about the promoter strength [ 22 ,  67 ,  68 ]. On the 
other hand, EMSA can measure the effect of dif-
ferent polymorphisms on the affi nity of TFBS 
sequence for different transcription factors. In 
these studies, double-stranded oligonucleotide 
containing the polymorphism of interest is mixed 
with nuclear extract with various transcription 
factors [ 22 ,  69 ,  70 ]. Higher affi nity for these fac-
tors results in the formation of more protein–
DNA complex resulting in retardation of mobility 
in electrophoresis [ 22 ,  69 ,  70 ].
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   Table 17.1    A small example of different bioinformatics tool   

 Title  Address  Description 

 dbSNP    http://www.ncbi.nlm.nih.gov/SNP/      A database for SNP information 
 Ensembl    http://www.ensembl.org/      A database for genome information, comparative 

genomics, variation, and regulatory data 
 HapMap 
consortium 

   http://www.hapmap.org/      A database for haplotype blocks 

 SNPper    http://snpper.chip.org/      Online tool available for SNP analysis 
 SNP3D    http://www.snps3d.org/      Online tool available for functional analysis of SNPs 

based on structure and sequence analysis 
 SNPeffect    http://snpeffect.vib.be/index.php      A database for phenotyping human SNPs and for 

fi nding information regarding SNPs effect on structure 
stability functional sites, structural features, and 
PTM sites 

 MutDB    http://www.mutdb.org/      Online database for human variation data with protein 
structural information and other functionally relevant 
information 

 dbSNP    http://www.ncbi.nlm.nih.gov/SNP/      A database for SNP information 
 Ensembl    http://www.ensembl.org/      A database for genome information, comparative 

genomics, variation, and regulatory data 
 HapMap 
consortium 

   http://www.hapmap.org/      A database for haplotype blocks 

 SNPper    http://snpper.chip.org/      Online tool available for SNP analysis 
 SNP3D    http://www.snps3d.org/      Online tool available for functional analysis of SNPs 

based on structure and sequence analysis 
 SNPeffect    http://snpeffect.vib.be/index.php      A database for phenotyping human SNPs and for 

fi nding information regarding SNPs effect on structure 
stability functional sites, structural features, and 
PTM sites 

 MutDB    http://www.mutdb.org/      Online database for human variation data with protein 
structural information and other functionally relevant 
information 
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  Fig. 17.4    EMSA, an  in vitro  experiment to measure binding affi nities of different TFBS for transcription factors       
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    The results from immunogenetic studies should 
always be interpreted with consideration of infor-
mation from immunogenomics and immunopro-
teomics [ 33 ]. It should be noted that information 
from each type of study i.e., GWASs, genetic asso-
ciation studies,  in vitro  and mouse studies and bio-
informatics, are just pieces of the complex puzzle of 
immunogenetics and cancer. No individual method 
is precise enough to see the fi nal picture (Fig.  17.6 ).

17.5         Immunogenetics: 
A Champion in Fighting 
the Losing Battle Against 
Cancer 

 The application of immunogenetics in cancer is more 
than promising. Some variations in immune poly-
morphism reduce the immune capacity in clearing 
either malignant transformations or  cancer- inducing 
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  Fig. 17.5    Reporter gene assay, an  in vitro  tool to measure strength of different promoters       
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infectious agents and predispose bearing individuals 
to various cancers as  exaggerated in case of most 
primary immunodefi ciency diseases [ 4 ,  16 ,  19 ,  33 ]. 
Although each individual variant has a little infor-
mative potential for clinical application, understand-
ing their interactions and therefore their cumulative 
effect is of high clinical importance [ 6 ]. 

 Immunogenetic studies not only can help 
 clinicians in risk assessment of individuals for sus-
ceptibility to certain cancers in order to employ 
preventive strategies but also may open new win-
dows for treatment [ 4 ,  16 ,  19 ,  33 ,  48 ,  71 – 73 ]. 
GWASs might result in the identifi cation of unex-
pected genes which in turn result in identifi cation 
of new pathways in pathophysiology of cancers 
[ 48 ]. These new pathways not only provide a 
broader insight into how and why of the cancers 
but also may suggest new molecular targets for 
prevention and immunopharmacology and immu-
notherapy [ 4 ,  16 ,  33 ,  42 ,  48 ]. Keeping in mind that 
immune system provides the only antineoplastic 
reaction completely specifi c to cancer cells, it is 
vital to completely understand the genetic factors 
governing the immune system–cancer interactions 
and employ this knowledge in eliminating the can-
cers [ 4 ,  74 ]. In addition, this knowledge might 
begin a post-genomic era in individualized medi-
cine [ 4 ,  33 ]. The presence of some variants in 
immune associated genes might affect the success 
or failure in applying a particular therapy and 
immunogenetic information provides a way to pre-
dict toxicity and clinical effectiveness of different 
immune-based therapies [ 4 ,  14 ,  20 ,  33 ]. Therefore, 
employing the knowledge from immune polymor-
phism in prediction of treatment outcome may jus-
tify the application of an expensive partly effective 
treatment option [ 4 ,  14 ,  33 ,  75 ].  

17.6     Human Leukocyte Antigen 

17.6.1     Background 

 Human leukocyte antigens are specialized ele-
ments of the immune system in recognition of self 
from non-self. HLA is responsible for  presenting 
Ags to T cells and therefore serves as a door to the 
specifi c immune system. HLA class 1 Ags are on 

the surface of almost all nucleated cells and gen-
erally present processed endogenous antigens to 
CD8 +  cells [ 13 ,  76 ]. Presentation of abnormal Ags 
derived from intracellular pathogens or malignant 
transformations potentially initiate a cytotoxic T 
lymphocyte (CTL) response and consequently 
target cell lysis [ 77 ]. By their interaction with 
killer cell immunoglobulin-like receptors (KIRs) 
on the surface of natural killer (NK) cells, HLA 
class 1 antigens regulate lytic activity of NK cells. 
Therefore, any change in either in expression or 
structure of HLA class 1 profoundly infl uence T 
and NK cell-mediated immunity [ 10 ]. 

 On the other hand, HLA class 2 Ags are 
 exclusively expressed on the surface of profes-
sional antigen-presenting cells (APC) and pres-
ent processed exogenous Ags to T helper (Th) 
cells. Following presentation of unfamiliar Ags 
and in the presence of appropriate costimulatory 
molecules, Th cells activate effector elements of 
the immune system [ 13 ,  77 ]. 

 Both classes of Ags comprise an intracellular, 
transmembrane, and an extracellular part which 
includes highly polymorphic antigen binding 
groove. From the evolutionary view, this high 
variety favors the chance of heterozygosity and 
consequently Ag presenting potential for each 
individual along with a signifi cant increase in the 
general repertoire of the whole specie for Ag 
 presentation [ 14 ,  77 ].  

17.6.2     Genes Behind HLA 

 HLA loci, located in 6p21.3 region, occupy only a 
small part of major histocompatibility complex 
(MHC) genetic system which is home to at least 
220 genes [ 78 ,  79 ] (Fig.  17.7 ). MHC is divided into 
three classes of genes distributed from centromere 
to telomere. Class 2 with 0.9 mb is the nearest one 
to the centromere; class I with 1·9 Mb is near telo-
mere, and class 3 with 0·7 Mb lies in between [ 80 ]. 
The fi rst two classes encode for HLA class 1 and 2 
and the third class consists of a group of genes 
encoding some members of the complement 
 system, some cytokines like tumor necrosis factor 
alpha (TNF-α), heat shock proteins (HSP) and an 
enzyme called 21-OH hydroxylase [ 31 ,  80 ].
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   In class 1, there are three highly polymorphic 
classic genes known as  HLA-A ,  HLA-B  and  HLA-
C , while there are numbers of nonclassical genes 
known as  HLA-E ,  HLA-F  and  HLA-G  [ 81 ,  82 ]. 
Class 1 genes encode the highly  polymorphic 
heavy chain of HLA class 1 (45 kDa) which later 
joins the non-polymorphic B2 microglobulin 
encoded by chromosome 15 [ 81 ,  82 ]. Classic 
genes consist of eight exons, but the most 
 important exons are exons 2 and 3 encoding for 
peptide binding groove. Other exons encode for 
transmembrane region and cytoplasmic tail [ 31 , 
 83 ]. Beside these highly polymorphic classic 
HLA class 1 genes, there are three other HLA 
genes in class 1 known as  HLA-E ,  HLA-F  and 
 HLA-G  which are more conserved. Most 
 probably, they are not involved in Ag presenta-
tion but in interaction with more conserved parts 
of the immune system. For example,  HLA-E , 
which is minimally polymorphic, regulates cyto-
toxic activity of NK cells by interacting with 
CD94/NKG2 lectin-like receptors. The conserva-

tion within this gene guarantees that there is a 
constant protection for healthy cells in most peo-
ple and provides a minimum safeguard for auto-
immunity [ 32 ,  84 ,  85 ]. Some of them like HLA-G 
are expressed on trophoblastic cells and placental 
chorionic endothelium and induce immune 
 tolerance during pregnancy [ 81 ,  86 – 90 ]. 

 Class 2 consists of classic genes called  DP ,  DQ  
and  DR  and nonclassic genes known as  DM  and 
 DO . Classic genes encode for one highly poly-
morphic beta chain (26–28 kDa) and a less poly-
morphic alpha chain (33–35 kDa) [ 80 ]. Therefore, 
there are six classic  D  genes in this region. Genes 
for alpha chain consist of fi ve exons, while beta 
chains are encoded by six exons. The exons 2 and 
3 in both set of genes are responsible for encoding 
peptide binding domains [ 31 ]. 

  HLA class 1  and  2  genes are the most poly-
morphic genes in the human genome with 2,365, 
3,005 and 1,848 alleles for  HLA-A ,  HLA-B  and 
 HLA-C , respectively, and 2,156 alleles for class 2 
genes (based on IMGT/HLA database, release 
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3.13 on July 2013) [ 91 ]. This high polymorphism 
is mostly clustered in several hypervariable 
blocks in exons 2 and 3 which are responsible for 
encoding antigen binding groove. Therefore, a 
unique combination of sequence motifs in these 
hypervariable regions determine each allele [ 13 ]. 
This genetic structure is accompanied by high 
LD not only between  HLA  genes but also non- 
HLA genes constituting extended haplotypes 
[ 92 ]. The majority of polymorphisms in hyper-
variable regions result in amino acid substitu-
tions in peptidebinding grooves, which in turn 
dramatically changes Ag binding affi nity of the 
fi nal product [ 13 ]; on the other hand, variants in 
noncoding regions, infl uence transcription, 
translation, and splicing and thereby expression 
levels [ 77 ]. 

 Nowadays, with a few exceptions, HLA alleles 
are named by six or even eight digits. The fi rst 
two digits are representative of the serological 
family the allele belongs to, while the third and 
fourth digits distinguish between different 
sequences affecting amino acid sequences. The 
next two digits are identifi ers of synonymous 
polymorphisms, and seventh and eighth digits are 
used to distinguish intronic polymorphisms or 
ones located into untranslated regions [ 93 ].  

17.6.3     From Polymorphisms to Clinic 

 HLAs are involved in cancer immunity and 
therefore in susceptibility and prognosis mainly 
by presenting certain Ags known as tumor- 
associated antigens (TAA). TAA are the fi rst con-
tact of malignant cells with adaptive immunity. 
Since introduction of the fi rst TAA in melanoma 
patients in 1991, a broad heterogeneous group of 
Ags were discovered and associated with differ-
ent malignancies. This heterogeneous group can 
be divided in to four classes of Ags [ 8 ,  94 ]:
    1.    Cancer–testis Ags are a result of epigenetic 

alterations leading to reactivation of silence 
genes. One of the famous examples is Ags 
from MAGE family. These Ags are not exclu-
sive to just one type of cancer. The reason for 
this naming is that they are normally expressed 
in MHC-negative testicular germ cells and 
placental trophoblasts.   

   2.    Differentiation Ags are normally expressed in 
the tissue of origin of the tumor, like Melan-A, 
and tyrosinase in melanomas   

   3.    Unique tumor Ags are products of mutated 
tumor suppressor genes and oncogenes like 
abnormal product of RAS or p53. Fusion 
 proteins as a result of chromosomal aberra-
tions are also included in this group.   

   4.    Infectious tumor Ags are expressed by onco-
genic viruses associated with some malig-
nancies. The examples are latent membrane 
proteins 1 and 2 (LMP-1 and LMP-2) in 
Epstein-Barr Virus (EBV)-associated Hodgkin 
lymphoma (HL) and E6 and E7 associated 
with human papillomavirus (HPV)-associated 
cervical cancer.    
  Nowadays, hundreds of HLA association 

studies prove that HLA alleles are important ele-
ments in predisposition to cancer. Seven mecha-
nisms are suggested for complex relationship of 
HLA genotypes and susceptibility, prognosis, 
recurrence, and clinical response to immunother-
apy and tumor vaccines:
    1.     Effi ciency in TAA presentation : One of the 

major factors in Ag presenting ability of dif-
ferent HLA is the affi nity of their Ag binding 
grooves to different epitopes. This affi nity is 
highly dependent on the amino acid sequence 
in the hypervariable regions. Even one change 
in this sequence due to polymorphisms pro-
foundly infl uences binding affi nities to TAAs 
and Ags used in tumor vaccines and therefore 
susceptibility prognosis and response to tumor 
vaccines [ 32 ,  82 ,  95 – 97 ]. For instance,  HLA - 
A*0207 is associated with susceptibility to 
EBV-associated lymphoma in East Asian pop-
ulation, while  HLA-A*0201  is a protective 
factor; however, this huge difference at the 
clinical level is a result of a single amino acid 
change (Y99 to C) at the protein level [ 98 ,  99 ].   

   2.     Interaction with T cells and NK cells : Change 
in variable regions and constant regions 
involved in interaction with T cells and NK 
cells can change HLA potential for inducing 
an effective immune response [ 96 ,  100 ].   

   3.     Effi ciency in inducing immune response to 
in fectious agents : Antigen binding abilities of 
 different HLA alleles infl uence immune reaction 
to infectious agents associated with malignant 
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transformation. For example, EBV is frequently 
emphasized as an important environmental fac-
tor in the pathogenesis of HL and nasopharyn-
geal carcinoma (NPC) [ 101 ]. Latent membrane 
protein-1 (LMP-1) and Epstein-Barr virus 
nuclear antigen (EBNA-4 and EBNA-6) pro-
teins produced during latent infection by EBV, 
are effi ciently presented by A*0201 and A*1101 
respectively [ 83 ]. Therefore, these alleles can 
induce a strong immune response which conse-
quently results in resolving the infection and 
lower chance of malignant transformation. 
Another example is the protective effect of 
DQB1*0301 allele on hepatitis C virus (HCV) 
infection, HCV- associated liver cirrhosis, and 
HCV-associated Hepatocellular carcinoma 
(HCC). This allele can effi ciently present major-
ity of immunodominant epitopes of HCV [ 102 ].   

   4.     Change in HLA expression patterns : In some 
malignancies like melanoma, Burkitt’s 
 lymphoma, and carcinoma of the cervix and 
lung, HLA expression and Ag processing 
machinery are disturbed in order to prevent 
TAA presentation and consequently immune 
recognition of malignant cells. This mechanism 
is one of the major pathways for the immune 
escape of tumoral cells [ 10 ]. Some polymor-
phisms within the noncoding regions can infl u-
ence expression levels [ 32 ]. In addition, some 
HLA alleles are specifi cally lost during malig-
nant transformation [ 103 ]. Loss of HLA-A2 in 
colorectal cancers, breast cancer, and cervical 
cancer or lower expression levels of HLA-DR4 
and HLA-DR6 in melanoma is a good example 
for these phenomena [ 104 ,  105 ]. On the con-
trary, some alleles like HLA-B*4405 are not 
dependent on some elements of the regular Ag 
processing machinery like transporter associ-
ated with Ag presentation (TAP) and therefore, 
can present antigens without susceptibility to 
viral-induced diminished TAP function [ 106 ].   

   5.     Increased susceptibility to chronic infections 
or autoimmunity : Some HLA haplotypes and 
alleles are associated with various chronic 
infl ammatory diseases which in turn predispose 
individuals to various cancers [ 75 ,  107 ]. Excess 
growth factors and prolonged proliferation in 
the background of chronic destruction increase 
the risk of malignant transformation [ 107 ]. 

 In addition, chronic immune stimulation of 
B cells and prolonged and repeated DNA 
double- strand breaks associated with somatic 
hypermutation (SHM) and class switch recom-
bination (CSR) signifi cantly increase the chance 
of malignant transformation, and therefore, 
autoimmunity and chronic infection are impor-
tant risk factors for some hematological malig-
nancies like non-Hodgkin lymphoma (NHL) 
[ 107 ]. In these cases, HLA alleles can affect the 
extent of immune reaction and stimulation of B 
cells [ 107 ]. For instance,  HLA - DRB1 * 0301 , 
 HLA - B * 0801 HLA - DRB1 * 0101,  and  HLA -
 DRB1 * 0401 , the susceptibility alleles of NHL 
is associated with autoimmune diseases such as 
systemic lupus erythematosus (SLE), rheuma-
toid arthritis (RA), Sjögren’s syndrome, and 
celiac disease [ 97 ,  102 ,  108 ]. The more promi-
nent example is the paradoxical relationship of 
DQB1*0301 with HCV infection and HCV- 
related B-cell lymphoma. While DQB1*0301 is 
associated with a better immunologic control of 
HCV and a self-limiting infection, it is a suscep-
tibility factor for HCV-related NHL. In this 
case, effi cient presentation of viral antigens by 
DQB1*0301 in the context of persistent HCV 
infection results in CD4 + -dependent chronic 
stimulation of B cells [ 102 ].   

   6.     Sensitivity to mutation : It is suggested that 
some HLA alleles are more susceptible to 
mutations like rearrangements of the DNA 
material and crossover. Such dramatic altera-
tions might infl uence the function of onco-
genes or tumor suppressors in the proximity of 
HLA genes. An example of such an oncogene 
is Waf1/p21 gene, located in 6p21.1 [ 100 ].   

   7.     Linkage disequilibrium : LD with non-HLA 
genes of class 3 or even nonclassical HLA in 
the form of extended haplotypes can justify 
some of the founded associations. Some clas-
sical genes are in LD with certain HLA-G and 
HLA-E alleles which are both involved in 
suppression of NK cell-mediated immunity 
against tumors [ 73 ]. LD with non-HLA genes 
like  TNF-α , in context with extended haplo-
type, can infl uence the relationship between 
toxicity of immunotherapy and HLA alleles. 
For example, high TNF-α increases the IL-2 
toxicity in patients with melanoma [ 109 ,  110 ].      
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17.6.4     HLA Typing and HLA 
Association Studies: 
Lessons from the Past 

 HLA has a history as long as immmunogenetics 
itself. An observation of transfusion failures in 
1952 paved the road to the discovery of the fi rst 
HLA allele by Jean Dausset in 1958 [ 111 ]. Since 
1958, there was a continuous international effort 
in order to share experimental data and HLA typ-
ing technologies, identify new HLA alleles and 
serotypes, and uncover the role of HLA system in 
pathogenesis of numerous diseases [ 31 ]. The 
result of such effort was the identifi cation of over 
9,500 alleles for HLA class 1 and 2 over a short 
period of four decades [ 31 ]. Along with the dis-
covery of new alleles, the fi rst nomenclature 
committee was held in 1987 followed by several 
nomenclature committees to unify the nomencla-
ture and classifi cation [ 31 ]. 

 Early studies employed low-resolution serolog-
ical methods which detected HLA on T cells or B 
cells [ 112 ]. Although these serological methods 
were subject to huge development in detection 
methods from complement-dependent cytotoxicity 
test to ELISA method, fl ow cytometry, and 
Luminex technique, the real breakthrough in HLA 
association studies was the introduction of PCR 
and high resolution DNA- based typing methods 
[ 31 ]. This technology allowed not only detection 
of high HLA polymorphisms with higher sensitiv-
ity and specifi city but also the detection of new 
alleles with more fl exibility by simply adding new 
probes to the old panels [ 113 ]. Nowadays, the old 
DNA-based method employing PCR-RFLP has 
been replaced by more rapid tests [ 113 ]. Generally, 
they either identify PCR products containing 
hypervariable regions by hybridization with 
sequence-specifi c probes (SSO) or employ 
sequence-specifi c primers (SSP) to identify vari-
ants as part of PCR process itself [ 13 ,  31 ,  114 ]. The 
latter was extensively used back in mid-1990 [ 13 , 
 31 ,  114 ]. Even though aberrant typing as a sign of 
new allele can be followed by direct DNA sequenc-
ing, both methods are ineffective in case there is a 
new allele [ 13 ]. Later this limitation was overcome 
by polymerase chain reaction-sequence-based typ-
ing which can directly detect the sequence of 

alleles. In this method which is based on dye termi-
nator chemistry, dye bounded 2,3 dideoxynucleo-
tides are used as substrates for PCR process. 
Randomly addition of labeled dideoxynucleotides, 
and consequently, a stop in elongation of DNA 
chain result in the development of numerous DNA 
fragments with different sizes. These DNA frag-
ments can easily be separated by capillary electro-
phoresis, and the ending dideoxynucleotides can 
be identifi ed by specifi c fl uorescence emitted from 
the related dye. 

 In parallel, huge efforts were made to under-
stand the role of these alleles in etiology and nat-
ural history of several diseases. In oncology, the 
fi rst association was found in HL in 1967 [ 32 ]. 
This fi nding triggered a series of HLA associa-
tion studies on different cancers worldwide. The 
fruit of this global movement was fi nding associ-
ation between HLA alleles and susceptibility to 
several hematological malignancy including HL, 
NHL, childhood acute lymphoblastic leukemia, 
Kaposi’s sarcoma, chronic myeloid leukemia 
(CML), and also non-hematological malignan-
cies including nasopharyngeal carcinoma, thy-
roid cancer, renal cell carcinoma (RCC), cervical 
cancer, and both melanoma and non- melanoma 
skin cancers [ 13 ,  115 ]. Moreover, investigations 
on natural history of cancers showed relationship 
of several alleles from both classes with mortality 
in ovarian cancer, non- small cell lung carcinoma, 
head and neck squamous carcinoma, and local 
recurrence in melanoma [ 73 ,  96 ,  100 ]. Several 
studies showed importance of HLA context in the 
outcome of immunotherapy and tumor vaccines 
in melanoma, RCC, cervical carcinoma and CML 
[ 73 ,  95 ,  110 ,  116 ]. 

 Although the result of such studies was 
 inconsistent in some cases, most studies pointed 
to the undeniable role of HLA polymorphism 
in susceptibility, prognosis, natural history, and 
response to immunotherapy in different cancers 
[ 32 ]. These past experiences emphasize that a 
prestigious HLA association study is a complex 
art rather than a simple case-control study and 
several factors should be considered in interpret-
ing their results. In this regard, results of meta- 
analysis of these association studies are more 
reliable (Table  17.2 ).
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17.6.5        Typing Methods 

 Indeed, immunogenetic studies are deeply 
 infl uenced by technological advances. Low-
resolution serologic HLA typing was one of the 
major limitations in early studies [ 83 ]. Serologic 
typing is only enabled to identify the family of 
alleles. This family often comprises a heteroge-
neous group of alleles with different affi nities 
and different potential for Ag presentation. Since 
 distribution of alleles belonging to the same sero-
type is different in various populations, such 
studies often obtained confl icting results in dif-
ferent populations. One of the best historical 
examples is HLA association studies in nasopha-
ryngeal carcinoma (NPC). 

 NPC, as an epithelial carcinoma of the head 
and neck origin, was one of the main focuses of 
early HLA association studies. Early serological 
studies showed an association between HLA-A2 
and NPC-in Chinese population, while studies in 
Caucasians found HLA-A2 as a protective allele 
for both NPC and EBV-associated HLA [ 106 , 
 120 – 124 ]. Later, higher-resolution studies 
showed HLA-A*02:07, a common allele in 
Chinese population but rare among Caucasians, 
as the main risk factor, while HLA-A*02:01, a 
common allele in Caucasians, was shown to be 
the actual protective factor in this population 
[ 125 ,  126 ]. It is possible that future studies 
employing higher-resolution methods reveal 
even new causal variants within the current 
associations.  

17.6.6     Environmental Factors 

 Various environmental and genetic factors play 
roles behind scenario of cancer, and malignant 
transformation is the result of a complex interac-
tion between these factors. It is often the case that 
certain genetic factors need certain environmen-
tal factors to play their role in pathogenesis of 
cancer. The role of environmental factors in HLA 
association studies is more prominent in virus- 
associated malignancies like HL, NPC and cervi-
cal cancer. Each virus has different strains with 
different Ags and the prevalence of these strains 

is not the same in different populations. Each 
strain is best presented by certain HLA alleles. 
Therefore, one HLA allele effi cient for present-
ing Ags of one population’s prevalent strain may 
not present Ags of another population’s prevalent 
strain effi ciently [ 83 ]. Such a phenomenon might 
be extended to other environmental factors like 
virus prevalence, viral load, diet, cigarette smok-
ing, and socioeconomic status, all of which are 
highly dependent on the population under study 
[ 74 ,  127 ]. For instance, pathogenesis of cervical 
cancer is dependent on persistent infection with 
high-risk human papillomavirus (HPV) and this 
risk factor itself is highly related to socioeco-
nomic status, sexual relationship, and prevalence 
of high risk variants in the region [ 127 ,  128 ].  

17.6.7     Linkage Disequilibrium 

 MHC region is home to more than 200 genes 
beside classic HLA genes. Due to the low recom-
bination rates, these genes are often in strong 
linkage disequilibrium together [ 78 ]. This strong 
LD can complicate fi nding the actual causal 
allele. The problem gets worse when the causal 
allele is an unknown allele in strong LD with the 
associated allele. This limitation can be over-
come by whole genome sequencing (WGS) of 
the region in close proximity of the associated 
allele [ 101 ]. One example is the association of 
NPC with HLA-A*0207 and HLA-B*4601 
which are in strong LD. In this case, either allele, 
both of them, or even a third allele in LD with 
both of them might infl uence the pathogenesis of 
NPC [ 126 ]. 

 Some studies reported extraordinary LD in 
MHC region between alleles from one class and 
alleles of other classes and even non-HLA genes. 
This extraordinary haplotypes are known as 
extended haplotypes [ 83 ]. Thus, in interpreting 
results of HLA association studies or design of 
one, non-HLA genes such as the  transporter 
associated with Ag processing (TAP) MHC class 
I chain-related A (MIC-A), heat shock proteins 
(HSP) , and  TNF-α  which are located nearby or 
within the classic HLA genes should be consid-
ered [ 78 ,  83 ]. These extended haplotypes are 
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especially of importance in immunogenetic 
 studies of cancers, since numerous elements of 
the immune system are in the front line of defense 
against cancer. 

 For instance, the ancestral haplotype 8.1 (AH 
8.1: HLA-A*01-B*08-Cw*07-DRB1*03-TNF- 
G308A), in which HLA alleles are in LD with 
TNF-α, is the most frequent extended MHC hap-
lotype in Caucasian populations [ 109 ]. Primarily, 
this extended haplotype was associated with 
 clinical course of NHL [ 75 ,  109 ]; however, later 
studies showed that polymorphism in  TNF-α  
gene has a more prominent effect in this associa-
tion compared to Cw*07 and DRB1*03 alleles 
[ 8 ,  75 ]. In this case, polymorphisms in TNF-α 
promoter infl uence TNF-α expression levels. 
TNF-α level consequently affects the extent of 
immune activation upon tumor challenge. In 
addition, increased TNF-α impairs Ag presenta-
tion potential of APCs and by its effect on cyto-
kine profi le results in a bias toward Th2 immune 
responses [ 75 ]. All these factors can contribute to 
the exacerbation of systemic symptoms, anemia, 
hypoalbuminemia, and poor outcome [ 8 ]. 

 Another example is the association of HLA- 
A*03 and chronic myeloid leukemia (CML) 
[ 78 ]. A translocation between t(9;22)(q34;q11) 
creating a truncated chromosome 22 known as 
Philadelphia chromosome is present in majority 
of patients with CML [ 129 ]. Depending on the 
precise location of the fusion, different fusion 
proteins are encoded. Keeping this in mind and 
the absence of costimulatory molecules on 
CML cells, it is improbable that the association 
of HLA-A*03 is due to its effi ciency in present-
ing fusion proteins and its ability to induce an 
effective immune response [ 78 ]. However, this 
allele is in with the C282Y mutation of the 
 hemochromatosis gene , a susceptibility marker 
for CML [ 78 ]. 

 In some cases, an optimal immune response 
is dependent on optimal Ag presentation by 
both HLA classes and the presence of certain 
alleles in non-HLA genes. An absence of one of 
these optimal alleles may result in anergy and 
immune escape. In some populations, these 
alleles might be in LD in form of an unknown 
extended haplotype, while in other populations 

this haplotype might be absent [ 57 ]. One of 
such associations has been reported between 
cervical squamous cell carcinoma and 
 multi-locus haplotype of B*4402-Cw*0501-
DRB1*0401-DQB1*0301 [ 57 ].   

17.7     The Cytokine Network 

17.7.1     Background 

 Cytokines are a group of soluble regulatory fac-
tors by which the immune system controls and 
modulates different activities of its cells. Each 
cytokine triggers certain cascade of events in 
their target cells by binding to their receptors and 
activating intracellular signal transduction path-
way [ 14 ,  20 ]. Cytokine network is responsible for 
coordination of effector actions of different ele-
ments of the immune system, as well as the dif-
ferentiation and proliferation of different immune 
cells. In addition, secretion of antibodies and 
infl ammation is tightly regulated by complex 
interaction between these cytokines [ 13 ,  23 ,  26 ]. 

 Chronic infl ammation, by inducing chronic 
tissue damage and compensatory cell prolifera-
tion, is a considered a major promoter of malig-
nant transformations. As an example, nitric 
oxide, produced during infl ammation, might 
damage DNA structure in different tumor sup-
pressor genes and oncogenes [ 130 ]. Therefore, 
any dysregulation in cytokine network can result 
in excessive production of tumor-inducing fac-
tors, DNA damage, angiogenesis, and dysplasia 
and consequent development of various infl am-
matory diseases including different cancers [ 26 , 
 131 ]. Cytokine network is a determinant factor 
in the development of metastasis and natural 
history of cancers [ 26 ]. In some cancers, malig-
nant cells can manipulate cytokine network in 
order to escape immunosurveillance or promote 
their own proliferation [ 130 ,  132 ]. In addition, 
cytokine network can infl uence the outcome and 
toxicity of different immunotherapy methods 
[ 13 ,  20 ,  133 ]. Several cancers including hepato-
cellular carcinoma (HCC), oral squamous cell 
carcinoma, melanoma, the gastric, pancreatic, 
and prostate cancer were associated with high 
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levels of  certain proinfl ammatory or antiinfl am-
matory cytokines [ 26 ]. 

 Cytokine levels are not the same in all 
 individuals. Interindividual differences in cyto-
kine levels in both baseline and stimulated phases 
are a result of both genetic and environmental 
factors [ 133 ]. Since there is no an intracellular 
storage for cytokines, their secretion is dependent 
on the transcriptional and translational rates of 
their genes [ 14 ,  26 ]. Not surprisingly, genes 
responsible for encoding cytokines and their 
receptors are relatively polymorphic [ 13 ,  20 ,  23 ]. 
Several polymorphisms in their gene can affect 
their expression, structure, and activity [ 20 ,  23 , 
 26 ,  130 ,  134 ]. Most of these polymorphisms are 
in non- coding regions including promoter or 
intronic sequences and exonic regions are usually 
highly conserved [ 13 ,  14 ]. So far, numerous 
genetic association studies have been suggested 
as associations of these SNPs with various can-
cers in different populations. However, results of 
such studies were often inconsistent, and the 
reported associations varied not only in different 
populations but also in different cancers and even 
in their different subtypes [ 131 ]. Therefore, a 
meta- analysis of these studies can show some 
more conclusive evidence of these associations. 

 In addition to polymorphisms of cytokine 
genes, there are other polymorphic elements such 
as various transcription factors and cytokine- 
specifi c receptors which are involved in actions 
of cytokine network [ 20 ,  26 ]. For instance, 
 polymorphisms in the  NF-κB  nuclear  factor-kappa 

B gene, one of the most important transcription 
 factors, can result in extensive changes in the 
cytokine network by altering transcription of 
TNF-a, IL-1, IL-6, and IL-8 [ 20 ]. Although the 
exact roles of these polymorphisms in tumor 
immunology are less clear, the relevance of this 
role is becoming more and more apparent in 
recent years [ 20 ].  

17.7.2     Interleukin-1 Superfamily 

 IL-1α and IL-1β and their antagonist IL-1Ra 
are members of this superfamily with pleiotro-
pic effects on infl ammation, immunity, and 
hemopoietic system. High levels of IL-1 are 
found in tumor sites, however IL-1 family plays 
an ambivalent role in tumor immunity. IL-1 
induces cytokine secretion from T cells to 
potentiate the differentiation and function of 
immunosurveillance cells. On the other hand, 
IL-1 induces the expression of adhesion mole-
cules, matrix metalloproteinases, growth fac-
tors, and angiogenic factors and promotes 
invasiveness and metastasis of malignant cells 
[ 135 ,  136 ]. 

17.7.2.1     Interleukin-1 α 
 IL-1α is encoded by seven exons of a gene located 
in 2q14. Variant−889 C>T (rs1800587) is one of 
the common promoter variants of IL-1α gene 
(Table  17.3 ). Although, the promoter containing 
T allele has been shown to result in a marginally 

   Table 17.3    Genotype details for SNPS of IL-1   

 SNP  GMAF a  [ 137 ]  Population diversity b  [ 138 ] 
 Change at 
DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs1800587   T  = 0.253 

  

CEU
HCB
JPT
YRI

AVG
0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −889 C>T  NA c   T allele: ↑ 

 rs17561   T  = 0.203 

  

CEU
HCB
JPT
YRI

AVG
0 20 40 60 80 100

(G;G) (G;T) (T;T)     

 +4845 G>T  Ala114Ser  T allele: ↑ 

   a GMAF: the minor allele frequency in 1,094 worldwide individuals provided from 1,000 genome phase 1 genotype data 
  b  CEU  European,  CHB  Han Chinese,  JPT  Japanese Tokyo,  YRI  Yoruba African,  AVG  Mathematical average of all 
samples 
  c  NA  not applicable  
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higher level of expression, at the protein level, T 
allele was associated with signifi cantly increased 
IL-1α levels which could not be justifi ed by only 
different expression patterns. Further studies 
showed that this SNP has high LD with an exonic 
SNP in +4845 G>T (rs17561) resulting in substi-
tution of alanine with serine at the position of 114 
which results in more effi cient process of pre- 
IL-1α comparing to Ala114 and consequently 
higher release of IL-1α [ 23 ].

17.7.2.2        Interleukin-1 β 
 High levels of IL-1β have been shown to be asso-
ciated with increased risk of most human cancers 
and also poor prognosis in cancer patients [ 130 , 
 132 ,  139 ]. IL-1β is encoded by a 7.5 kb gene with 
seven exons located on 2q14. Its expression is 
regulated by two distal and proximal promoter 
elements [ 140 ,  141 ]. So far, several polymor-
phisms have been identifi ed in this gene. 
−598T>C (rs16944) and −31 C>T (rs1143627) 
are two common variants in the promoter region, 
and +3954 C>T (rs1143634) is a common syn-
onymous polymorphism in coding region of 
IL-1β gene (Table  17.4 ) [ 26 ].

   In northern and western European ancestry 
(CEU), −598T>C (rs16944) and −31 C>T 
(rs1143627) had strong LD ( r  2  = 0.94) [ 26 ,  132 ]. 
 In vivo , −598C/−31T haplotype has been associ-
ated with higher IL-1β levels in the lungs and 
gastric mucosa. It is suggested that −31 C>T 
(rs1143627) is the causal variant of this 

 haplotype [ 23 ,  141 ]. In the same line,  in vitro  
studies like luciferase reporter assay showed 
higher expression of luciferase gene with pro-
moter containing T allele in −31 C>T (rs1143627) 
[ 23 ]. Results of EMSA studies suggested that this 
higher expression is a result of higher affi nity for 
several transcription factors as a result of a 
change in a TATA-box motif [ 23 ]. 

 T allele in rs1143634 was associated with 
increased IL-1β secretion and several infl amma-
tory diseases [ 132 ]. However, no evidence on the 
functionality of +3954 C>T (rs1143634) is avail-
able, and it seems that +3954 C>T (rs1143634) is 
just a marker for a functional polymorphism such 
as −31 T>C (rs1143627) [ 23 ,  26 ]. 

 One recent meta-analysis of 81 case-control 
studies with 19,547 patients with HCC, gastric, 
lung, blood, cervical, esophageal, prostate, 
breast, and skin cancers and 23,935 controls 
showed that, overall, −598T>C (rs16944) has no 
signifi cant association with cancers [ 132 ], while 
another meta-analysis of 26 studies with 8,083 
patients with cancer and 9,183 controls showed a 
signifi cant association of +3954 C>T (rs1143634) 
with increased risk of cancers in a dominant 
model which is in accordance with the results of 
another metaanalysis of 33 studies (Table  17.5 ) 
[ 132 ,  145 ].

   A meta-analysis of studies on associations 
between  IL-1β  gene polymorphisms and gas-
tric cancer published from January 2000 to 
December 2009 (including 18 studies with 4,111 

   Table 17.4    Genotype details for SNPS of IL-1β   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change at 
DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs16944   C  = 0.465 

  

CEU
HCB
JPT
YRI

AVG
0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −598 T>C  NA  C allele: ↑ 

 rs1143627   C  = 0.4808 

  

CEU
HCB
JPT
YRI

AVG
0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −31 C>T  NA  T allele: ↑ 

 rs1143634   T  = 0.146 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 +3954 C>T  NA  UA a  

   a  UA  unavailable  
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controls and 3,295 cases for −598T>C (rs16944), 
21  studies with 5,883 controls and 3,786 cases 
for −31 T>C (rs1143627) polymorphism, 10 
studies with 3,610 controls and 1,559 cases for 
+3954 C>T (rs1143634)) showed signifi cantly 
increased risk of cancer in individuals with IL-1β 
−598T allele. In stratifi ed analysis for different 
ethnicities, such an association was present in 
Caucasians but not in Asians or in Hispanics. 
This study also showed such an association for 
intestinal-subtype and noncardia gastric cancer 
[ 146 ,  147 ]. However, this study didn’t show any 
signifi cant associations between gastric cancer 
risk and −31 T>C (rs1143627) and +3954 C>T 
(rs1143634) [ 146 ]. Older studies conducted on 
2005 and 2007 more or less showed such pattern 
for this SNP [ 142 ,  147 ]. However, a meta-analy-
sis of fi ve studies published up to September 2008 
showed association of +3954 C>T (rs1143634) 
and gastric cancer risk in Chinese and Japanese 
population [ 148 ]. 

 Another systematic review evaluating associa-
tions of HCC with polymorphisms of IL-1 gene 
(reported up to September 2010) and a meta- 
analysis of 1,279 patients with lung cancer and 
2,248 controls failed to support any signifi cant 
increased risk for −598T>C (rs16944) and −31 
C>T (rs1143627) [ 143 ,  149 ].  

17.7.2.3     Interleukin-1Ra (IL-1Ra) 
 IL-1RA has antiinfl ammatory properties by com-
peting with IL-1 cytokines in binding to their 
receptors. This cytokine is encoded by  IL-1RN  
gene located on 2q14.2. Its transcript may con-
tain six, fi ve, or four exons [ 23 ,  130 ]. There is an 
86-bp variable number tandem repeat (VNTR) in 
intron 2 of this gene [ 23 ]. The short allele of this 
VNTR contain only two repeats (IL-1RN*2), 
while long alleles may have three to six repeats 
(IL-1RN L) [ 58 ,  146 ]. The more prevalent allele 
containing four repeats is named IL1RN*1 [ 150 ]. 
 In vitro  and  in vivo  studies have shown extensive 
associations of this variant with the members of 
IL-1 superfamily. IL-1RN*2 was associated with 
not only higher IL-1RA levels but also enhanced 
IL-1β production and decreased IL-1α produc-
tion [ 151 ]. However, the fi nal result of IL-1RN*2 
was decreased IL-1RA/IL-1β ratio, followed by 

prolonged proinfl ammatory immune response 
[ 23 ]. Although, intronic VNTR contains poten-
tial binding sites for an interferon-α silencer, an 
interferon-β silencer, and an acute-phase 
response element, all leading to its functional 
importance, these associations are suggested to 
be a result of LD with other variants [ 140 ,  152 ]. 
Some authors suggested that the enhancing effect 
of IL-1RN*2 on IL-1RA levels is dependent on 
the presence of −511T allele or the absence of 
+3954T in IL-1β [ 23 ]. 

 A meta-analysis of 71 case-control studies 
(including 37 studies on gastric cancer, six stud-
ies on HCC, four on cervical cancer, four on 
breast cancer, four on lung cancer, and 16 studies 
on other cancers) with 14,854 cases and 19,337 
controls showed that overall carriers of IL-1RN*2 
are signifi cantly more susceptible to cancer 
(Table  17.6 ) [ 145 ].

17.7.3         Interleukin-4 

 Interleukin-4 (IL-4) is a pleiotropic cytokine with 
major roles in regulation of humoral immunity by 
its various effects on production of several other 
cytokines and dedifferentiation of B cells and 
promoting expression of class II MHC Ags [ 26 , 
 130 ]. It also has potent antitumor activity against 
various tumors by its inhibitory effect on the 
growth of tumor cells and its growth stimulatory 
effect on lymphocytes [ 153 ,  154 ]. 

  IL-4  gene is located on the long arm of chro-
mosome 5 (5q31.1), and through recent years, 
many variants identifi ed on this gene. Among 
these variants, −589 C>T (rs2243250) is a pro-
moter SNP of which T allele is associated with 
increased production of IL-4 in  in-vivo  studies 
[ 26 ,  155 ]. The other variant of this gene is a 
70-bp VNTR at intron 3 (Table  17.7 ) [ 155 ].

   A meta-analysis of 8,715 patients with various 
cancers and 9,532 controls presented in 23 case- 
control studies found no signifi cant association 
between this SNP and overall cancer susceptibil-
ity. This study also didn’t fi nd any signifi cant 
relationship in stratifi ed analysis for ethnicity or 
different cancer types [ 156 ]. However, another 
meta-analysis of 14 studies involving 3,562 
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 cancer cases found that T allele was signifi cantly 
associated with decreased oral cancer risk and 
increased risk of RCC (for oral cancer, TT  vs . 
CC: OR = 0.40, 95 % CI = 0.19–0.84; TT + CT  vs . 
CC: OR = 0.45, 95 % CI 0.22–0.94; and for renal 
cell carcinoma, TT  vs . CC: OR = 1.98, 95 % 
CI = 1.06–3.69; TT  vs . CC + CT OR = 1.43, 95 % 
CI = 1.05–1.95) [ 157 ].  

17.7.4     Interleukin-6 (IL-6) 

 IL-6, a 23.7 kD proinfl ammatory cytokine, is 
involved in inducing acute-phase response, 
 differentiation of monocytes to macrophages, 
proliferation of T cells and Th2 cytokine pro-
duction [ 158 ]. It has been previously shown to 
be of importance in susceptibility, natural his-
tory, and prognosis of several malignancies 
including prostate cancer, colorectal carcinoma, 

and breast  cancer [ 23 ,  26 ]. This cytokine is 
encoded by a gene on chromosome 7p21 with 
fi ve exons [ 159 ]. Two common promoter variants 
of IL-6, −174G>C (rs1800795) and −572G>C 
(rs1800796), were extensively studied in different 
infl ammatory diseases (Table  17.8 ). −174G>C 
(rs1800795) is the fi rst identifi ed common pro-
moter variant of IL-6 [ 23 ]. C allele in both of these 
 variants was  associated with lower IL-6 levels in 
 several  studies [ 134 ,  138 ,  160 – 165 ]. However, 
such an effect on IL-6 levels was not confi rmed 
by some studies on −174G>C (rs1800795) [ 134 , 
 160 – 164 ]; therefore, this inconsistency might be 
the result of partial LD between this SNP and 
an actual functional SNP [ 23 ]. EMSA studies 
showed that −572G>C (rs1800796) is not in a 
TFBS; therefore, its infl uence on IL-6 serum lev-
els probably results from strong LD with a func-
tional variant such as −6331 T>C (rs10499563) 
[ 160 ]. C allele in −572G>C (rs1800796) is 

   Table 17.6    Signifi cant results from published meta-analysis of associations of IL-1RN VNTR with cancers   

 Cancer site 

 Total 
number 
of cases 

 Total 
number of 
controls  Analysis type  OR ± 95 % CI  Population included  Reference 

 Malignancy  14,854  19,337  22  vs . LL  1.37 (1.07–1.75)  40 studies of Asian 
descendents, 29 of 
Caucasian descendents, 
and two with mixed 
ethnicity 

 Zhang 
et al. 
[ 145 ] 

 2 L  vs . LL  1.19 (1.07–1.32) 
 22 + 2 L  vs . LL  1.25 (1.12–1.41) 
 2  vs . L  1.23 (1.10–1.38) 

 Breast 
cancer 

 1,145  1,102  2 L  vs . LL  0.74 (0.58–0.93)  Japan, Germany, 
Korea, India 

 Zhang 
et al. 
[ 145 ] 

 22 + 2 L  vs . LL  0.78 (0.62–0.97) 

 Gastric 
cancer 

 3,209  4,856  2 L  vs . LL  1.22 (1.05–1.41)  Portugal, China, 
Germany, Brazil, 
Taiwan, Thailand, 
UK, Italy 

 Zhang 
et al. 
[ 145 ] 

 22 + 2 L  vs . LL  1.25 (1.09–1.43) 
 2  vs . L  1.20 (1.05–1.38) 

 3,418  5,789  22 + 2 L  vs . LL  1.26 (1.06–1.51)  Arab, Brazil, 
Netherland, Korea, 
USA, China, Italy, 
Mexico, South Korea, 
Germany, Taiwan, 
Portugal, Poland 

 Xue et al. 
[ 146 ] 

   Table 17.7    Genotype details for SNPS of IL-4   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change 
at DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs2243250   T  = 0.484 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −589C>T  NA  T allele: ↑ 
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highly associated with T allele in −6331 T>C 
(rs10499563) [ 160 ]. Interestingly, T allele in this 
SNP is associated with higher expression of IL-6 
gene [ 160 ]. −6331 T>C (rs10499563) is near the 
distal promoter of IL-6 located between −5202 
and −5307. EMSA studies showed that T allele in 
−6331 T>C (rs10499563) resulted in more affi n-
ity for Oct-1 of which binding changes the chro-
matin structure and locates the distal promoter to 
the transcription start site [ 23 ].

   A systematic review of 12 case-control studies 
on breast cancer (published till December 2009) 
with 10,137 cases and 15,566 controls found no 
signifi cant association between −174G>C 
(rs1800795) and susceptibility to breast cancer 
[ 134 ]. Similarly, another meta-analysis of 7,210 
patients with colorectal cancer and 9,467 controls 
did not show any signifi cant association in any 
genetic model between −174G>C (rs1800795) 
and colorectal cancer [ 166 ]. However, in strati-
fi ed analysis in a subgroup of patients with the 
history of current or habitual use of NSAIDs 
(3,061 cases and 4,024 controls), carriers of C 
allele in −174G>C (rs1800795) had signifi cantly 
lower risk for colorectal cancer (Table  17.9 ) 

[ 166 ]. This study didn’t show any signifi cant 
association between colorectal cancer and 
−572G>C (rs1800796) in 2,574 cases and 3,344 
controls [ 166 ]. In line with this, two recent 
 meta- analyses on gastric cancer patients did not 
confi rm any effect of these two SNPs on suscep-
tibility to cancer [ 167 ,  168 ]. The most recent one 
 evaluated 13 studies reporting associations of 
−174G>C (rs1800795) (1,581 gastric cancer 
patients and 2,563 controls) and four studies on 
−572G>C (rs1800796) [ 167 ]. In addition, a sys-
tematic review of 2,949 patients with lung cancer 
and 3,375 controls did not show any signifi cant 
association between −174G>C (rs1800795) and 
lung cancer [ 143 ].

17.7.5        Interleukin-8 

 IL-8, a member of human α-chemokine subfam-
ily, has a major infl uence on tumor invasion and 
metastasis by its stimulatory properties on angio-
genesis and infl ammation [ 23 ,  26 ,  59 ,  169 ,  170 ]. 
A gene located on chromosome 4q13–q21 with 
four exons is responsible for encoding this 

   Table 17.9    Signifi cant results from published meta-analysis of associations of −174G>C (rs1800795) in IL-6 gene 
with cancers   

 Cancer site 

 Total 
number of 
cases 

 Total number 
of controls  Analysis type 

 OR ± 95 % 
CI 

 Population 
included  Reference 

 Colorectal cancer  3,061  4,024  GC/CC  vs . 
GG 

 0.75 
(0.64–0.88) 

 Individuals from 
Denmark, USA, 
and Spain who 
regularly or 
currently took 
NSAIDs 

 Yu et al. [ 166 ] 

   Table 17.8    Genotype details for SNPS of IL-6   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change at 
DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs1800795   C  = 0.185 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;G) (G;G)     

 −174G>C  NA  C allele: ↑ 

 rs1800796   C  = 0.290 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;G) (G;G)     

 −572G>C  NA  C allele: ↑ 
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 cytokine [ 169 ]. Fifteen functional SNPs have 
been identifi ed within this gene including 
–251A>T (rs4073), +396T>G (rs2227307), and 
+781C>T (rs2227306) (Table  17.10 ) [ 26 ]. 
–251A>T (rs4073), located in the promoter 
region, was identifi ed in 2000. Although there 
was little evidence on the functionality of this 
SNP  in vitro , several  in vivo  studies showed 
higher levels of IL-8 in carriers of A allele [ 23 ]. 
On the contrary, one study showed higher tran-
scription for T allele in gastric carcinoma cell 
line [ 131 ,  171 ]. EMSA studies showed that T 
allele in +781 C>T allele (rs2227306) is associ-
ated with higher binding ability for a transcrip-
tion factor (C/EBPb) [ 23 ]. Several studies 
showed associations of –251 A>T (rs4073) with 
lung, gastric, colorectal, bladder, and prostate 
cancer in different populations (Table  17.11 ) 
[ 155 ]. A meta-analysis of 13,189 patients with 
lung, prostate, breast, colorectal, and nasopha-
ryngeal cancers and 16,828 controls showed that 
carriers of A allele in –251 A>T (rs4073) which 
were more susceptible to different cancers [ 131 ]. 
Another study reviewed results of 45 studies 
including 14,876 cases and 18,465 controls 
and showed such an association only among 
 hospital-based studies and surprisingly showed 
signifi cantly decreased risk of cancers for AA 
genotype among population-based studies [ 171 ]. 
It should be noted that hospital-based studies 
have an increased chance of a selection bias 
since hospital-based controls might have disease 
conditions under the infl uence of the studied 
polymorphism [ 169 ].

    Another systematic review of ten papers 
including 2,195 gastric cancer patients and 3,505 
controls confi rmed that AA genotype was a risk 
factor for gastric cancer in whole population and 

in Asian population. In stratifi ed analysis for 
tumor location and histology, this association 
remained signifi cant only in the cardia gastric 
cancer and diffused type [ 59 ]. A more recent 
meta-analysis evaluating papers on gastric can-
cer published from January 2000 to January 
2011 (18 papers including 6,554 controls and 
4,163 cases) also found such an association in 
Asians but not in Caucasians. However, unlike 
the previous study, when stratifying for pathol-
ogy types, the association remained signifi cant 
only in intestinal- type cancer but not in the dif-
fused type [ 174 ]. 

 A systematic review of 1,324 patients with 
oral cancer and 1,879 controls reported in six 
studies (published till October 2012) also showed 
higher risks of oral cancer in carriers of A allele 
in –251A>T (rs4073). In subgroup analysis for 
ethnicity, there were only signifi cant associations 
among Caucasians but not in Asians [ 172 ]. 

 On the contrary, T allele in this SNP was asso-
ciated with an increased risk of breast cancer in 
Asian and African populations. However, this 
study showed no signifi cant associations between 
this SNP and breast cancer in 1,880 breast cancer 
patients and 2,013 controls [ 173 ]. There were not 
any signifi cant associations between this SNP 
and colorectal cancer in a meta-analysis of nine 
case-control studies with 3,019 cases and 3,984 
controls [ 175 ].  

17.7.6     Interleukin-10 

 IL-10 is a pleiotropic, immunoregulatory 
 cytokine which can affect both the innate and 
adaptive immune systems [ 176 ]. IL-10 has 
 pleiotropic effects on tumor immunology. It 

   Table 17.10    Genotype details for SNPS of IL-8   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change at 
DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs4073   T  = 0.497  UA  –251A/T  NA  A allele: ↑ 
 rs2227306   T  = 0.294 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 +781C/T  NA  T allele: ↑ 

 rs2227307   G  = 0.422  UA  +396T/G  NA  UA 
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plays an antiinfl ammatory role by inhibiting 
 production of proinfl ammatory mediators such 
as IL-1α, IL-1β, IL-6, IL-8, IL-12, TNF-α and 
IFN-γ [ 23 ,  63 ]; in addition, IL-10 inhibits 
 presentation of tumor Ags by suppressing the 
expression of HLA molecules [ 130 ,  133 ]. On the 
other hand, IL-10 induces proliferation in B cells 
and T cells and regulates angiogenesis in various 
cancers [ 26 ,  177 ]. 

 Twin studies demonstrated that IL-10 levels 
are signifi cantly infl uenced by genetic factors 
with a heritability of 74 % [ 23 ,  178 ]. IL-10 is 
encoded by fi ve exons of a gene located on 
1q31-1q32. At least 40 SNPs have been identifi ed 
in this gene [ 62 ,  63 ,  179 ]. Several common vari-
ants including −1082 A>G (rs1800896), −819 
C>T (rs1800871), and −592 A>C (also called 
−571 rs1800872) have been identifi ed within the 
promoter region of this gene (Table  17.12 ) [ 177 ].

    In vivo  studies showed higher levels of 
IL-10 in individuals with GCC haplotype of these 
three SNPs, while ATA haplotype was associ-
ated with the lowest levels of IL-10 [ 23 ,  133 ]. It 
is suggested that −1082 A>G (rs1800896) is the 
most functional SNP of these three variants and 
G allele in this SNP results in higher IL-10 levels 
[ 23 ]. EMSA studies showed different affi nities of 
alleles of this SNP for a nuclear protein identi-
fi ed as poly ADP-ribose polymerase1 (PARP-
1) which acts as a transcription repressor [ 23 , 
 62 ]. So far, several studies have evaluated the 
 associations of different IL-10 polymorphisms 

with various cancers including lung cancer, breast 
cancer, cervical cancer, gastric cancer, melanoma 
and nasopharyngeal cancer, and  prostate cancer 
[ 62 ,  63 ]. A systematic review evaluated associa-
tions of −1082 A>G (rs1800896) with risk of 
malignancy by reviewing results of 61 articles 
(published up to September 2010) with a total of 
14,499 cancer patients and 16,967 controls. This 
study found no signifi cant association between 
alleles of this SNP and overall susceptibility to 
cancers. However, carriers of G allele in Asian 
population had signifi cantly more susceptibility 
to various cancers. In stratifi ed analysis for can-
cer types, there was increased risk of lung can-
cer and NHL in carriers of G allele (Table  17.13 ) 
[ 62 ]. The fi rst systematic reviews of gastric 
cancer studies showed signifi cant associations 
between −1082 A>G (rs1800896) and gastric 
cancer not in overall population but only when 
the analysis was limited to the Asian populations 
[ 184 ]. However, a more recent systematic review 
of 22 studies with 4,289 patients and 5,965 con-
trols evaluated the association of −1082 A>G 
(rs1800896) with susceptibility to gastric can-
cer. This meta-analysis showed that carriers of G 
allele has signifi cantly increased the risk for gas-
tric cancer especially in Caucasian populations 
[ 177 ]. Another meta-analysis with 3,631 patients 
and 6,431 controls showed similar results; none-
theless, results remained signifi cant in Asian 
population but not in Caucasians. This study, in 
stratifi ed analysis, showed that this association is 

   Table 17.12    Genotype details for SNPS of IL-10   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change at 
DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs1800896   G  = 0.303 
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 −1082 A>G  NA  G allele: ↑ 
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signifi cant in  cardiac subtype and intestinal-type 
but not in noncardia subtype or diffuse-type can-
cer [ 183 ]. Regarding −819 C>T (rs1800871), a 
systematic review based on 11 studies and 4,008 
controls and 1,490 cases showed signifi cantly 
increased risk for carriers of C allele among 
Asians but not Caucasians. Such increased risk 
was also noted for diffuse-subtype cancer but not 
for intestinal-subtype [ 182 ].

   A systematic review of studies on −592 A>C 
(rs1800872) found signifi cantly increased risk of 
gastric cancer in carriers of C allele only in Asian 
populations but not in Caucasians and Latinos. 
In stratifi ed analysis for non-cardia and cardia 
subtypes or intestinal, diffuse, or mixed subtypes, 
no signifi cant association was found [ 181 ]. 

 A meta-analysis of seven articles published on 
association of −1082 A>G (rs1800896) and HCC 
with 1,012 HCC cases and 2,308 controls showed 
no association between this SNP and susceptibil-
ity to HCC. The same systematic review based on 
the results of four studies showed carriers of C 
allele in −592 A>C (rs1800872) had an increased 
risk of HCC. This study also showed no signifi -
cant association between −819 C>T (rs1800871) 
and HCC based on results of three studies [ 63 ]. 

 A meta-analysis reviewed the results of 13 
studies with 9,692 patients with prostate can-
cer and 10,488 healthy individuals as controls. 
However, this review did not show any signifi -
cant association for the three SNPs which was 
in accordance with the results of an older review 
on the basis of ten studies [ 179 ,  185 ]. Another 
review, which analyzed results of eight studies 
with 1,636 breast cancer patients and 1,670 con-
trols did not show any altered risk of breast cancer 
for different alleles of −1082 A>G (rs1800896). 
This review also showed no signifi cant associa-
tions between −592 A>C (rs1800872) and breast 
cancer in any genetic model [ 186 ]. 

 In addition to its regulating effects on the 
immune system, IL-10 can induce transcription 
of one of the promoters of HPV [ 180 ]. Therefore, 
polymorphisms of this cytokine were under focus 
of researchers in the fi eld of cervical cancer. 
However, no signifi cant association was found 
between −1082 G>A (rs1800896) and suscepti-
bility to cervical cancer in a meta-analysis of 

studies published up to June 2012. The same 
review indicated signifi cant increased suscepti-
bility to cervical cancer in carriers of A allele in 
−592 A>C (rs1800872) [ 180 ].  

17.7.7     Interleukin-12 

 Interleukin-12 (IL-12) is a proinfl ammatory cyto-
kine with several functions including differentia-
tion of Th1 pathway, the critical pathway involved 
in protection against malignancy [ 23 ]. It can also 
induce IFN-γ production by T and NK cells and 
therefore suppress angiogenesis. In addition, 
IL-12 has a major role in the reactivation and sur-
vival of memory CD4 +  T cells which results in 
repolarization of CD4 +  T cells from dysfunc-
tional antitumor Th2 into Th1 cells [ 187 ,  188 ]. 

 IL-12 is composed of two parts, a p35 unit 
which is encoded by  IL-12a  on 3q25.33 and a 
p40 unit encoded by  IL12b  on 5q33.3 [ 23 ]. One 
common variant in IL-12b gene, including 
+1188A>C (rs3212227) in 3′ UTR, and three 
common variants of IL-12a including +277 G>A 
(rs568408) in 3′ UTR, IVS2 T>A (798 T>A; 
rs582054), and −564 T>G (rs2243115) in 5′UTR 
have been extensively studied previously 
(Table  17.14 ) [ 189 ].  In vitro  and  in vivo  studies 
showed that A allele in +1188A>C (rs3212227) 
was associated with higher expression and greater 
mRNA stability [ 23 ,  190 ]. It is suggested that 
+277 G>A (rs568408) may disrupt exon-splicing 
enhancers and miRNAs binding and therefore 
results in an unstable IL-12 mRNA and lower 
IL-12 secretion [ 191 ].

   One meta-analysis of ten studies involving 
2,954 cancer patients and 3,276 controls showed 
signifi cant associations between +1188A>C 
(rs3212227) and susceptibility to cancer 
(Table  17.15 ). In addition, by stratifi ed analysis 
for cancer type, this study showed signifi cant 
increased susceptibility to cervical cancer and 
nasopharyngeal cancer in C allele carriers [ 190 ].

   A recent meta-analysis of 18 studies evaluated 
the associations of polymorphisms of both  IL-12  
genes and cancer susceptibility. This study 
reviewed results of 13 studies on +1188A>C 
(rs3212227), including nine studies in Asians, 
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three studies in Caucasians, and one in Africans, 
and showed increased risk of all cancers in C 
allele carriers. This association remained signifi -
cant in Asian population but not in Caucasians 
[ 189 ]. This study like the previous one showed 
increased susceptibility to cervical and nasopha-
ryngeal cancer in carriers of C allele. However, 
no signifi cant association was found between 
cancer susceptibility and +277 G>A (rs568408). 
Also, there was no signifi cant association for 
+564 T>G (rs2243115) and IVS2 T>A (rs582054) 
of IL-12a [ 189 ].  

17.7.8     Tumor Necrosis Factor-α 
and Lymphotoxin-α 

 Tumor necrosis factor-α (TNF-α), by its trigger-
ing effect on the cytokine cascade of IL-1, IL-6 

and other mediators, is one of the most important 
pro-infl ammatory cytokines in the maintenance 
and homeostasis of the immune system, infl am-
mation, and host defense [ 192 ]. TNF-α has both 
procarcinogenic and anticarcinogenic properties, 
and its importance in cancer is evidenced by 
 previous studies which repeatedly reported high 
levels of TNF-α in cancer patients [ 193 – 195 ]. 
Some tumor cells can even produce TNF-α in an 
autocrine manner [ 130 ]. Consistent with its 
name, high levels of TNF-α result in tumor 
necrosis, but low levels of this cytokine impair 
antitumor immune response and induce tumor 
angiogenesis and therefore is associated with 
increased tumor growth, progression, invasion, 
and metastasis of tumor cells [ 193 – 196 ]. In addi-
tion, TNF-α levels can infl uence weight loss 
cachexia, and anemia in the host and also its 
response to treatment [ 197 ]. 

   Table 17.14    Genotype details for SNPS of IL-12   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change at 
DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs3212227   C  = 0.338 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(A;A) (A;C) (C;C)     

 +1188A>C  NA  A allele: ↑ 

 rs568408   A  = 0.128 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(A;A) (A;G) (G;G)     

 +277 G>A  NA  G allele: ↑ 

 rs582054   A  = 0.489  UA  +798 T>A  NA  UA 
 rs2243115   G  = 0.107 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(G;G) (G;T) (T;T)     

 −564 T>G  NA  UA 

   Table 17.15    Signifi cant results from published meta-analysis of associations of 1188A>C (rs3212227) in IL-12b with 
cancers   

 Cancer site 
 Total number 
of cases 

 Total number 
of controls  Analysis type  OR ± 95 % CI 

 Population 
included  Reference 

 Malignancy  2,954  3,276  (CC + AC)  vs . AA  1.32 (1.06–1.63)  UK, Bulgaria, 
China, France 

 Chen et al. 
[ 190 ]  AC  vs . AA  1.30 (1.07–1.57) 

 CC  vs . AA  1.39 (1.05–1.86) 
 CC  vs . AC + AA  1.17 (1.02–1.33) 

 10,404  10,861  C  vs . A  1.14 (1.02–1.27)  UK, USA, Italy, 
China, Russia, 
Korea, Bulgaria, 
Tunisia 

 Zhou et al. 
[ 189 ]  (AC + CC)  vs . AA  1.20 (1.01–1.15) 
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 Lymphotoxin-α (LTA), another cytokine of 
the TNF family, is similar to TNF-α with respect 
to amino acid sequence, receptors, and biologic 
activities [ 193 – 196 ]. 

 TNF-α is encoded by a gene located on 
 chromosome 6 (region p21.3) and is a member of 
HLA class 3. −308G>A (rs1800629) and −238 
G>A (rs361525) are two common promoter vari-
ants of  TNF-α  gene [ 23 ]. Other variants include 
−1031 C>T (rs1799964), −863 C>A (rs1800630) 
and −857 C>T (rs1799724), −376 G>A 
(rs1800750), and IVS1 + 123G>A (rs1800610) 
(Table  17.16 ) [ 23 ]. The  LTA  gene is located in the 
same region and has an  Nco I restriction  fragment 
length polymorphism (+252 A>G) in its fi rst 
intron (rs909253).

   A allele of −308G>A (rs1800629) is associ-
ated with higher levels of TNF-α [ 198 ]. While 
several  in vitro  studies did not show any 

 functionality for this SNP, some authors 
 suggested that this allele had more affi nity for a 
transcriptional activator and another study 
showed that A allele disrupts a 10-bp binding 
region for activator protein-2 (AP-2) (a repressor 
protein) [ 23 ,  197 ]. Of interest, −308G>A 
(rs1800629) is in high LD with +252G>A, a 
functional SNP in  lymphotoxin alpha  gene, and 
other  HLA  genes within ancestral haplotype, 
 HLA   A1-B8-DR3- DQ2-TNF_308A-LT_252A  
[ 197 ,  199 ,  200 ]. 

 An allele of −238 G>A (rs361525) was asso-
ciated with lower levels of TNF-α in peripheral 
blood mononuclear cells carrying TNF-α-238A 
allele [ 193 ]. However, several  in vitro  studies did 
not provide any evidence on the functionality of 
this SNP [ 23 ]. 

 A Japanese  in vitro  study showed that C 
allele in rs1799964 is associated with higher 

   Table 17.16    Genotype details for SNPS of TNF-α and Lymphotoxin-α   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change 
at DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs1800629   A  = 0.096 

  

CEU
HCB
JPT

AVG

0 20 40 60 80 100

(A;A) (A;G) (G;G)     

 −308G>A  NA  A allele: ↑ 

 rs361525   A  = 0.051  UA  −238 G>A  NA  G allele: ↑ 
 rs1799964   C  = 0.200 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −1031 C>T  NA  C allele: ↑ 

 rs1800630   A  = 0.145 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −863 C>A  NA  A allele: ↑ 

 rs1799724   T  = 0.097 

  

CEU
CHB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −857 C>T  NA  T allele: ↑ 

 rs1800610   A  = 0.102  UA  IVS1 + 123G>A  NA  UA 
 rs1800750   A  = 0.013 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 −376 G>A  NA  A allele: ↑ 

 rs909253   C  = 0.398 

  

CEU
HCB
JPT
YRI

AVG

0 20 40 60 80 100

(C;C) (C;T) (T;T)     

 +252 A>G  NA  G allele: ↑ 
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 production of TNF-α by concanavalin A 
(Con A)-activated peripheral blood mononuclear 
cells [ 201 ]. Reporter assays showed increased 
promoter activity for A allele of −376 G>A 
(rs1800750), and EMSA studies showed more 
affi nity of this allele for Oct-1 transcription factor 
comparing to other allele [ 20 ,  23 ].  In vivo  studies 
showed that individuals carrying at least one 
allele out of three (−1031C, −863A, −857T) had 
higher TNF-α production and higher transcrip-
tional activity [ 20 ,  23 ,  202 ]. In the same line, 
minor alleles of −863 C>A (rs1800630) and −857 
C>T (rs1799724) were associated with higher 
promoter activity and more affi nity for oct-1 tran-
scription factor [ 20 ,  23 ,  202 ]. On the contrary, 
one study showed that −863A allele had less 
affi nity for NF-κB [ 20 ,  23 ,  203 ]. 

  In vitro  studies showed that phytohemagglu-
tinin-activated mononuclear cells having +252G 
allele (rs909253) produce more LTA and interest-
ingly TNF-α [ 204 ,  205 ]. 

 Previously, several associations have been 
reported between TNF-α polymorphisms and 
susceptibility to NHL, gastric carcinoma, breast 
cancers, prostate, uterine endometrium, lung, 
cervix, and nasopharynx. However, a meta- 
analysis reviewed 34 studies (published up to 
March 2011) including 34,679 cancer patients 
and 41,186 controls and found no signifi cant 
association between −238 G>A (rs361525) poly-
morphism and susceptibility to cancer [ 206 ]. In 
line with this, a meta-analysis of 30,000 breast 
cancer cases and 30,000 controls from 30 studies 
of the breast cancer association consortium could 
not fi nd any signifi cant association between −238 
G>A (rs361525) and susceptibility to breast 
 cancer [ 207 ]. 

 A review of 18 studies with 11,320 breast 
 cancer patients and 14,112 controls found a 
 signifi cant relationship between −308G>A 
(rs1800629) polymorphism and breast cancer 
only in Caucasian population (Table  17.17 ) 
[ 192 ]. In addition, after excluding hospital-based 
studies a signifi cant decreased risk in carriers of 
A allele was found. This study also reviewed 
33,112 patients and 35,814 (reported in 35 stud-
ies) and found no signifi cant association for −238 
G>A (rs361525). This study also did not fi nd any 

 signifi cant  association between breast cancer 
and −863 C>A (rs1800630) and −857 C>T 
(rs1799724), −1,031 C>T (rs1799964) polymor-
phisms, which may be due to the fact that the 
overall sample analyzed for these polymorphisms 
was very small [ 192 ]. Consistent with the previ-
ous study, a meta-analysis of 11 studies on 10,184 
patients with breast cancer and 12,911 controls 
found that G allele in −308G>A (rs1800629) is 
associated with signifi cantly increased risk of 
breast cancer [ 196 ]. Another meta-analysis eval-
uated 10,236 breast cancer cases and 13,143 con-
trols presented in 13 studies [ 212 ]. This study 
could confi rm such a decreased breast cancer risk 
in carriers of −308A allele only in Caucasians 
[ 212 ]. However, no signifi cant association 
between breast cancer susceptibility and other 
polymorphisms of TNF-α was found [ 212 ]. A 
meta-analysis of 4,625 breast cancer patients and 
4,373 controls for LTA-252 A>G (results from 
seven studies published up to January 2012) did 
not fi nd any signifi cant association between gen-
otypes of this polymorphism and breast cancer. 
However, in stratifi ed analysis for ethnicity, carri-
ers of G allele had signifi cantly increased risk of 
breast cancer in Asian population [ 213 ]. A sys-
tematic review of 11 studies with 3,094 cervical 
cancer cases and 3,037 controls found that carri-
ers of AA genotype for −308G>A (rs1800629) 
had 39 % increased risk of cervical cancer com-
pared with −308GA/GG genotypes [ 195 ]. In 
addition, in stratifi ed analysis, such an associa-
tion remained signifi cant in Asian population 
[ 195 ]. This meta-analysis by its review on 1,190 
cases and 1,784 controls showed decreased risk 
of cervical cancer in carriers of A allele in −238 
G>A (rs361525) [ 195 ]. In a meta-analysis of 13 
studies reported up to October 2011 which 
involved 3,294 cervical cancer patients and 3,468 
controls, no association was found between 
−308G>A (rs1800629) and cervical cancer [ 189 ]. 
However, in Caucasian and African population, 
signifi cantly increased risk of cervical cancer 
was observed in carriers of A allele in this 
SNP. This study also meta-analyzed results of six 
studies on −238 G>A (rs361525) (2,416 cases 
and 2,010 controls) and found that carriers of 
−238A allele had lower risk of cervical cancer 
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which remained signifi cant in Caucasian 
 populations [ 189 ]. A recent meta-analysis 
reviewed results of 12 case-control studies 
including 1,751 cases with upper aerodigestive 
tract (UADT) cancer and 3,345 controls [ 209 ]. 
Oropharynx cancer was investigated in six of 
these studies, while fi ve studies investigated 
esophagus cancer and one investigated larynx 
cancer. Squamous cell carcinoma and adenocar-
cinoma were investigated in nine and two studies, 
respectively, and one study investigated both can-
cer types. This study overall found a signifi cant 
increased risk of UADT cancer in carriers of AA 
genotype in −308G>A (rs1800629) compared to 
individuals who had GA or GG genotypes [ 209 ]. 
In addition, signifi cantly increased risks were 
found in oropharynx cancer but not in esophagus 
cancer or larynx cancer. In the subgroup analysis 
for histologic type, this association remained sig-
nifi cant only for squamous cell carcinoma, but 
not for adenocarcinoma [ 209 ]. 

  The most recent meta-analysis on gastric can-
cer and −308G>A (rs1800629) reviewed 5,225 
patients and 8,473 controls in 26 papers. This 
study found a signifi cant increased risk of gastric 
cancer in carriers of A allele in comparison with 
G allele [ 214 ]. Another meta-analysis on gastric 
cancer evaluated 4,399 cases and 6,855 controls 
presented in 24 studies published up to October 
2007 [ 208 ]. This study found a signifi cant 
increased risk of gastric cancer in carriers of AA 
genotype in −308G>A (rs1800629) polymor-
phism. In stratifi ed analysis, AA genotype was 
signifi cantly associated with an increased risk of 
noncardia cancers and intestinal type of gastric 
cancer compared to the GG genotype [ 208 ]. 
Another meta-analysis on gastric cancer and 
−308G>A (rs1800629) polymorphism included 
19 studies with 3,335 GC patients and 5,286 con-
trols [ 211 ]. In addition, this study included fi ve 
studies with 1,118 GC patients and 1,591 con-
trols for −857 C>T (rs1799724). This study also 
found a signifi cant increased risk of gastric can-
cer in carriers of A allele and AA genotype in 
−308G>A (rs1800629) compared with G allele in 
the whole population and in Caucasians but not 
in East Asian [ 211 ]. This study also found a weak 
but signifi cant association between T allele of 

−857 C>T (rs1799724) and GC risk compared 
with the C allele [ 211 ]. 

 Several systematic reviews have been pub-
lished on the associations of TNF-α polymor-
phisms and susceptibility to HCC. The most 
recent one evaluated results of 11 case-control 
studies (reported up to July, 2012) with a total of 
1,572 HCC cases and 1,875 controls revealed an 
increased risk of HCC in carriers of A allele in 
−238 G>A (rs361525) [ 210 ]. In stratifi ed analy-
sis, this association remained signifi cant only in 
Asian populations [ 210 ]. Another meta-analysis 
included 2,357 cases and 3,161 controls pre-
sented in 17 studies published till November 
2010 [ 203 ]. This study showed that A allele in 
both −238 G>A (rs361525) and −308G>A 
(rs1800629) was associated with an increased 
risk of HCC. In stratifi ed analysis for ethnicity, 
these associations remained signifi cant in Asians 
but not in Caucasians [ 203 ]. AA and AC geno-
types in −863 C>A (rs1800630) were also associ-
ated with increased HCC risk compared to CC 
genotype. However, this study did not fi nd any 
signifi cant association for −857 C>T (rs1799724) 
and −1031 C>T (rs1799964) polymorphisms 
[ 203 ]. The pattern for −238 G>A (rs361525) and 
−308G>A (rs1800629) was also repeated in other 
systematic reviews [ 149 ,  215 ,  216 ]. 

 A meta-analysis of seven case-control studies 
with 1,311 bladder cancer cases and 1,436 con-
trols found that carriers of A allele in −308G>A 
(rs1800629) had an increased risk of bladder can-
cer [ 217 ]. A multicenter study investigated asso-
ciations between six polymorphisms of TNF-α 
(rs1799964, rs1800630, rs1799724, rs1800629, 
rs361525, rs1800610) and prostate cancer risk in 
2,321 cases and 2,560 controls from two nested 
case-control studies within the Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening Trials 
and the Cancer Prevention Study II Nutrition 
Cohort for [ 218 ]. Overall, this study found no 
signifi cant association between these polymor-
phisms and prostate cancer risk. But this study 
found a signifi cant decreased risk in carriers of 
T-C-T-G-A haplotype in rs1799964, rs1800630, 
rs1799724, rs1800629, and rs1800610 compar-
ing to the most frequent haplotype (T-C-C-G-G) 
[ 218 ]. In subgroup analysis, T allele in −1036 
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C>T (rs1799724) in individuals who did not 
 regularly use NSAID was associated with signifi -
cantly less susceptibility to prostate cancer 
compared to the CC genotype. In addition, when 
limiting analysis to non-advanced tumors, carri-
ers of −1036T or A allele in IVS1 + 123G>A 
(rs1800610) had a signifi cantly decreased chance 
for prostate cancer [ 218 ]. 

 Another multicenter study evaluated associa-
tions of −308G>A (rs1800629) with NHL in 
7,999 cases and 8,452 controls from participating 
studies from the InterLymph Consortium. 
Carriers of −308A allele had increased risk for 
NHL, B-cell NHL, diffuse large B-cell lym-
phoma (DLBCL), and other marginal zone lym-
phoma. However, no signifi cant associations was 
found between −308G>A (rs1800629) and 
chronic small lymphocytic lymphoma CLL/SLL 
or T-cell NHL [ 219 ]. 

 Although this study also did not fi nd any sig-
nifi cant association between LTA +252 A>G 
(rs909253) and NHL, carriers of G allele in this 
SNP had increased risk to DLBCL and mycosis 
fungoides [ 219 ]. 

 In a meta-analysis of 33 studies with 14,435 
cancer patients and 10,583 healthy controls, sta-
tistically signifi cant increased risk of malignant 
transformation was found in carriers of G allele 
in +252 A>G (rs909253) which remained signifi -
cant in both Asian population and Caucasians 
[ 220 ]. A recent study performed a meta-analysis 
on 11 individual case-control studies with 2,270 
cases and 4,404 controls and found that G allele 
of +252 A>G (rs909253) is associated with a sig-
nifi cant increased risk of gastric cancer, but this 
risk was signifi cant only in Asians, but not 
Caucasians [ 221 ]. An older study also showed 
such a risk only in Asians especially those with 
 H. pylori  infection [ 222 ].  

17.7.9     Interferon Gamma (IFN-γ) 

 Interferon gamma (IFN-γ) is a proinfl ammatory 
cytokine of Th1 subset with major roles in antitu-
mor immune response. This cytokine enhances 
differentiation of lymphocytes and their function 
and Ag presentation through inducing expression 

of HLA molecules [ 130 ]. In addition, it inhibits 
angiogenesis in various tumors [ 61 ,  223 ]. 

 IFN-γ gene with four exons and a length of 
5.4 kb is located on chromosome 12q24 [ 223 ]. 
Two common SNPs including an intronic SNP 
(+874 T>A (rs2430561)) and a promoter variant 
in (−179 T>G (rs2069707)) have been previously 
identifi ed [ 23 ,  61 ,  223 ]. This promoter variant is 
adjacent to a HSF-binding motif. In addition, 
there is a CA repeat microsatellite within the fi rst 
intron of the gene ranging from 12 to 15 repeats 
[ 23 ,  223 ]. It was shown that allele 2 of the micro-
satellite and T allele in +874 T>A (rs2430561) 
are in complete LD [ 23 ]. 

  In vitro  studies showed that T allele of +874 
T>A (rs2430561) is associated with higher IFN-γ 
production. EMSA studies showed that this allele 
has higher affi nity for NF-κB which is in accor-
dance with the location of this SNP in the fi rst 
intron of the gene, a region related to binding of 
NF-κB [ 61 ,  223 ]. 

 A meta-analysis of 17 studies with 1,929 can-
cer cases and 2,830 controls showed a nonsignifi -
cant increased risk of cancer in the presence of 
AA genotype for +874 T>A (rs2430561). 
However, this study showed signifi cant increased 
susceptibility in individuals with AT genotype 
compared with TT genotype (Table  17.18 ) [ 223 ]. 
Another meta-analysis with 32 studies and 4,524 
cases and 5,684 controls did not fi nd a signifi cant 
association either [ 61 ]. Interestingly, in stratifi ed 
meta-analysis for ethnicity, carriers of T allele 
had signifi cant increased susceptibility to cancer 
in European and African population but not in 
Asian population [ 61 ]. This study also found that 
TT genotype signifi cantly contributes to the risk 
of breast cancer in all ethnicities [ 61 ]. 

17.7.10       Transforming Growth 
Factor-β (TGF-β) 

 Transforming growth factor-β (TGF-β) is a func-
tional mediator of epithelial and fi broblast cell 
proliferation and a regulator of immune cell pop-
ulations [ 224 ]. In early stages of tumor progres-
sion, it acts as a tumor suppressor; however, in 
advanced cancers, TGF-β induces many activities 
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that lead to growth, invasion, and metastasis of 
cancer cells [ 224 – 226 ]. 

 TGF-β family consists of three isoforms with 
pleiotropic roles in cancer immunity [ 227 – 229 ]. 
TGF-β1 as the most common isoform of this 
family has enhancing effects on angiogenesis and 
its regulatory role in growth, differentiation, and 
apoptosis of different cells [ 60 ,  133 ,  229 ]. It also 
results in escape of malignant cells from immu-
nosurveillance by suppressing expression of 
HLA molecules [ 130 ,  133 ,  228 ,  229 ]. 

  TGF-β1  gene is located in the long arm 
of chromosome 19 (19q13.1). +869 T>C 
(rs1800470; also called +29 T>C, or rs1982037) 
is a common variant in the fi rst exonic region of 
 TGF-β1  which results in substitution of leucine 
to proline at codon 10 in signal sequence [ 227 ]. 
+915 G>C (also called +74 or rs1800471) is 
another exonic variant resulting in an arginine-
to- proline substitution at codon 25. −509C>T 
(rs1800469) and −800G>A are two promoter 
variants in a proximal negative regulatory region 
(Table  17.19 ) [ 230 ,  231 ].  In vivo  studies showed 
that T allele in −509 C>T (rs1800469) was asso-
ciated with higher levels of TGF-β1 in plasma 
and also higher expression [ 23 ,  71 ]. Despite 
some contrary results, C allele in +869 T>C 
(rs1800470) was associated with higher secretion 

of TGF-β1 in  in vitro  studies [ 23 ,  228 ]. Arginine 
in +915 G>C (rs1800471) was also associated 
with higher levels of TGF-β1 in  in vivo  stud-
ies [ 23 ].  In vitro  studies showed that A allele in 
−1287 G>A (rs11466314), another variant of 
this gene, is associated with higher expression of 
TGF-β1 [ 23 ]. EMSA studies showed that C allele 
in −387 C>T (rs11466315) had greater affi nity 
for Sp1 and Sp3 complexes [ 23 ]. 

  Results of 40 case-control studies (includ-
ing three studies with African population, 14 on 
Asian descendants, and 23 studies with European 
population) with 16,166 patients with various 
cancers and 19,126 controls were analyzed in a 
systematic review. Although this meta-analysis 
did not fi nd any signifi cant association with over-
all risk of cancer, its result suggested that indi-
viduals with C allele in +869 T>C (rs1800470) 
have signifi cantly greater risk for prostate cancer. 
In addition, in Asian populations, this allele was 
signifi cantly associated with susceptibility to 
cancers (Table  17.20 ) [ 229 ]. 

  A meta-analysis of 30 studies including 
20,401 patients with breast cancer and 27,416 
controls showed increased risk of breast cancer in 
individuals with C allele in +869 T>C 
(rs1800470). In stratifi ed analysis, this  association 
remained signifi cant in Caucasian  population and 

   Table 17.18    Signifi cant results from published meta-analysis of associations of (+874 T>A (rs2430561) in IFN-γ 
gene with cancers   

 Cancer site 
 Total number 
of cases 

 Total number 
of controls  Analysis type  OR ± 95 % CI 

 Population 
included  Reference 

 Cervical cancer  661  835  AT  vs . TT  1.10 (1.02–1.19)  India, South 
Africa 

 Mi et al. [ 223 ] 

 Breast cancer  527  715  TT  vs . AA  1.58 (1.10–2.27)  Iran, Italy, 
Turkey, 
China, USA 

 Liu et al. [ 61 ] 
 TT  vs . AT/AA  1.53 (1.14–2.06) 

   Table 17.19    Genotype details for SNPS of TGF-β   

 SNP  GMAF [ 137 ]  Population diversity [ 138 ] 
 Change at 
DNA level 

 Change at 
protein level 

 Effect on 
cytokine level 

 rs1800470   G  = 0.444  UA  +29 T>C  Pro10Leu  C allele: ↑ 
 rs1800471   G  = 0.046  UA  +74G>C  Arg25Pro  G allele: ↑ 
 rs1800469   T  = 0.359 

  

CEU
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JPT
YRI

AVG

0 20 40 60 80 100
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 −509 C>T  NA  T allele: ↑ 
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population- based studies [ 60 ,  234 ]. However, 
older meta-analysis on breast cancer with almost 
half of this sample could not fi nd such an associa-
tion [ 234 ,  235 ]. Another recent meta-analysis of 
20,022 cases and 24,423 controls could fi nd this 
increased risk for C allele just in Caucasians 
[ 231 ]. This study also reviewed results of 8 stud-
ies with 10,633 cases and 13,648 controls for 
−509 C>T (rs1800469) and did not fi nd any sig-
nifi cant association between alleles of this poly-
morphism and risk of breast cancer in accordance 
with another meta-analysis (including 10,197 
patients with breast cancer and 13,382 healthy 
controls) [ 231 ,  236 ,  237 ]. Some authors sug-
gested that the effect of TGF-β1 is different 
according to expression of estrogen receptor and 
progesterone receptor in breast cancer tumors 
[ 230 ]. 

 A systematic review analyzed results of 55 
studies with a total number of 21,639 cancer 
patients and 28,460 controls for associations of 
−509 C>T (rs1800469) and susceptibility to dif-
ferent cancers. Although there was no a signifi -
cant association between overall risk of cancer 
and genotypes of this SNP, this study found 
increased susceptibility of carriers of C allele to 
colorectal cancer particularly in Caucasians 
[ 238 ]. In addition, a meta-analysis of fi ve studies 
with 994 colorectal cancer patients and 2,335 
controls found increased risk of colorectal cancer 
for C allele of −509C>T (rs1800469) which 
remained signifi cant only in Asian population but 
not Caucasians in stratifi ed analysis [ 232 ]. On the 
other hand, a systematic review of seven original 
articles with a total of 2,130 patients with gastric 
cancer and 2,374 controls found signifi cant 
increased susceptibility to gastric cancer in carri-
ers of T allele in −509C>T (rs1800469) in a 
recessive model [ 71 ]. Another meta-analysis 
pooled the results of 29 case-controls studies 
with 8,664 patients with digestive tract cancers 
and 12,532 controls. This study did not show any 
signifi cant association with overall risk of diges-
tive tract cancers. However, this study found that 
C allele in −509 C>T (rs1800469) is signifi cantly 
contributed to the risk of digestive tract cancers 
in Caucasians. In addition, carriers of C allele in 
the whole study sample had increased risk for 

colorectal cancer [ 239 ]. Another systematic 
review of 12 studies with 4,440 colorectal cancer 
patients and 6,785 controls could fi nd such an 
association only in colon cancer [ 233 ]. Regarding 
HCC, a review of 11 studies including 2,577 
HCC cases and 4,107 controls revealed a signifi -
cant association between this SNP and the risk of 
HCC only in Caucasians [ 240 ].   

17.8     Concluding Remarks 

 In the recent decades, a great scientifi c effort has 
uncovered the importance of immune polymor-
phisms in cancers. However, this uncovered part, 
although is promising, only reminds us that there 
is much more to reveal in this fi eld. There comes 
a day that gathering immunogenetic data becomes 
one main part of every clinical trial in cancer. 
This information will help understand more about 
subgroups of patients, natural history of the can-
cers, responsiveness of cancer to treatment, or 
toxicity of treatment, all in relation to immune 
polymorphism [ 14 ]. One day, it might be possible 
to assess the degree of predisposition to different 
cancers for each individual and to employ preven-
tive measurement, and in case of suffering from 
cancers, to effi ciently choose between treatment 
options and predict their clinical effectiveness 
[ 26 ]. Although it seems a vague dream in the far 
future, it is becoming closer to reality everyday 
considering the pace of scientifi c advancements.     
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18.1            Introduction 

 Immunodefi ciency disorders are classifi ed as 
either primary (genetic) or secondary (acquired). 
Primary immunodefi ciencies (PIDs) are a hetero-
geneous group of disorders that predispose to 
frequent and severe infections, autoimmunity, 
and, in certain diseases, malignancies. According 
to the updated classifi cation of PIDs by the 
International Union of Immunological Societies 
Expert Committee in 2011 [ 1 ], over 175 PIDs 
have been identifi ed, with a total incidence of 
1 in 10,000 births [ 2 ]. The overall risk for devel-
oping malignancies in children with PIDs is 
4–25 % [ 3 ], with lymphomas representing up to 
60 % of all cancer types [ 4 ]. Considering the 
improved therapeutic options and increasing 
life expectancy of PID patients, it is possible that 
the incidence of malignancies may increase as 
patients live longer lives. Increasing evidence 
suggests that defective immunosurveillance 
mechanisms, interacting with oncogenic viruses, 
chronic antigen stimulation, defective DNA 
damage response, and genetic alterations of 
oncogenic and tumor suppressor genes, are the 
major factors driving the development of cancer 
in patients with PIDs [ 5 – 9 ]. While further eluci-
dation of the precise molecular pathogenesis of 
malignancies in the context of immunodefi ciency 
syndromes offers an exciting prospect for the 
development of targeted cancer therapies, we 
report here the most recent clinical observations 
on the incidence and types of malignancies, 
which should alert clinicians to the potential 
importance of more vigilant screening in immu-
nodefi cient patients. It should be noted, 
however, that surveillance protocols should 
be applied judiciously, without indiscriminate 
and frequent use of certain radiological proce-
dures, due to increased risk of radiosensitivity 
in some syndromes [ 10 ]. Furthermore, early 
intervention with hematopoietic cell transplanta-
tion, which is indicated in certain PIDs, may 
decrease not only the infection but also the 
cancer risk [ 11 ].  

18.2     Primary Antibody 
Defi ciencies 

18.2.1     Common Variable 
Immunodefi ciency 

 Common variable immunodefi ciency (CVID) is the 
second most common PID (second to selective 
IgA defi ciency), which is estimated to affect as 
many as 1 in 25,000 individuals [ 12 ]. CVID is a 
clinically and genetically heterogeneous group of 
diseases characterized by hypogammaglobu-
linemia of two or more isotypes (IgG, IgA, or 
IgM), impaired functional antibody responses, 
and consequently increased susceptibility to 
chronic recurrent bacterial infections [ 13 ]. 
Furthermore, affected individuals are predisposed 
to autoimmune and granulomatous diseases as 
well as hematological and certain solid malig-
nancies in up to 15 % of subjects [ 13 ,  14 ]. Non-
Hodgkin lymphomas (NHLs) represent the most 
common malignancies with up to a 259- fold 
increase in risk compared to the general population 
[ 15 – 17 ]. NHLs in CVID are mostly extranodal, well 
differentiated, and of B-cell origin [ 15 ]. In older 
studies, there was an increased risk of gastric 
cancer (up to 47-fold) [ 16 ,  18 ], probably related 
to the increased frequency of pernicious anemia 
or  Helicobacter pylori  infection [ 19 ]. However, a 
2010 study of 476 patients revealed that gastric 
cancer was diagnosed in only 0.6 % of patients, 
suggesting a potential downward trend. In this 
study, 6.7 % of patients developed NHL and 
0.8 % developed Hodgkin lymphoma (HL). 
Other solid malignancies, including breast, colon, 
oral, and other cancers, collectively accounted 
for cancer in up to 4 % of patients [ 14 ]. 

 Defects in genes encoding the inducible 
costimulator ( ICOS ; OMIM*604558) [ 20 ], 
tumor necrosis factor ( TNF ) receptor super-
family members 13B ( TNFRSF13B  or  TACI ; 
OMIM*604907) [ 21 ,  22 ] and 13C (TNFRSF13C 
or  BAFF-R ; OMIM*606269) [ 23 ],  CD19  
(OMIM*107265) [ 24 ],  CD20  (OMIM*112210) 
[ 25 ],  CD81  (OMIM*186845) [ 26 ],  CD21  (CR2; 
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OMIM*120650) [ 27 ], and  LRBA  (OMIM*606453) 
[ 28 ] have thus far been identifi ed in patients 
with CVID. 

 The immunologic defects in CVID are multi-
faceted. Despite normal numbers of B cells in 
the majority of affected individuals, their 
inability to undergo terminal differentiation into 
immunoglobulin- secreting plasma cells forms the 
core common defect [ 15 ,  29 ]. T-cell abnormalities 
are also frequently encountered in patients with 
CVID, including impaired T-cell proliferative 
responses, partly due to defects in T-cell receptor 
signaling [ 30 ,  31 ]; decreased numbers of CD 4  +  T 
cells in conjunction with normal to increased 
numbers of CD 8  +  T cells, giving rise to reversed 
CD 4 :CD 8  ratio [ 32 ,  33 ]; imbalanced T-helper cell 
responses, representing a shift toward a Th1 
phenotype [ 34 – 36 ]; increased suppressor T-cell 
activity [ 34 ]; and diminished expression of the 
costimulatory molecule CD40 ligand [ 37 ]. 
Moreover, the absolute and relative NK, invariant 
NKT, and plasmacytoid dendritic cell numbers 
are reported to be decreased in patients with 
CVID [ 38 – 40 ]. 

 The complex derangement in numerical and 
functional characteristics of B, T, NK, and den-
dritic cells results in impaired humoral and 
cellular immune responses. As a result, patients 
often develop chronic infl ammatory and autoim-
mune diseases, as well as recurrent bacterial 
infections. These factors, along with persistent 
antigenic stimulation, mainly from chronic 
 Helicobacter pylori  [ 41 ,  42 ], human herpesvirus 
8 [ 43 ], and cytomegalovirus [ 44 ] infections, may 
ultimately drive tumorigenesis; however, their 
relative contribution and the precise underlying 
mechanisms remain to be elucidated [ 13 ]. 
Furthermore, given the possible role of an auto-
crine B-cell activating factor (BAFF) signaling 
circuit in promoting tumor cell survival and pro-
liferation [ 45 ,  46 ], it is possible that aberrant 
BAFF-R signal transduction resulting from 
CVID-related mutations might enhance malignant 
transformation [ 13 ]. Finally, defective DNA repair, 

as evident by enhanced radiosensitivity, has been 
reported in patients with CVID [ 47 ,  48 ], with 
those having the highest rate of chromosomal 
aberration developing lymphoma [ 48 ].  

18.2.2     X-Linked 
Agammaglobulinemia 

 X-linked agammaglobulinemia (XLA) is the 
prototypic humoral immunodefi ciency arising 
from a defect in B-cell maturation, affecting the 
transition of B-cell progenitors into mature B 
lymphocytes and leading to the consequent failure 
of immunoglobulin production. It is estimated to 
affl ict three to six out of every million males of 
all racial and ethnic groups. As the maternally 
derived antibodies (Abs) are degraded, most 
patients with XLA begin to experience recurrent 
infections by the end of the fi rst year of life 
[ 18 ,  49 ]. Approximately 10–15 % of individuals 
with XLA have higher concentrations of serum 
immunoglobulin than expected or are not recog-
nized to have immunodefi ciency until after the 
age of 5 years. XLA is mainly characterized by 
recurrent bacterial infections, in particular with 
extracellular encapsulated bacteria, most com-
monly localized in the respiratory tract. Diarrhea 
and skin infections are also frequently seen [ 18 , 
 49 ,  50 ]. Despite general resistance to viral infec-
tions, affected individuals are susceptible to 
severe and chronic enteroviral infections [ 51 ]. 

 The gene defective in XLA, Bruton’s tyrosine 
kinase ( BTK ; OMIM*300300), encodes a cyto-
plasmic tyrosine kinase of the Btk/Tec family [ 52 ]. 
The crucial role of BTK in B-cell growth and 
differentiation has been documented by a devel-
opmental block at the pro-B-cell to pre-B- cell 
transition with a reduction in mature B cells [ 50 ], 
whereas T-lymphocyte subsets are normal and 
may show a relative increase. In B cells, B-cell 
antigen receptor (BCR) cross-linking activates 
BTK downstream of the Src family kinases [ 53 ,  54 ], 
where it is a critical component in BCR- coupled 
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calcium signaling cascade [ 55 ,  56 ]. BTK also 
acts as a mediator of oxidative stress-induced 
apoptosis of irradiated neoplastic B cells and 
B-cell precursors [ 57 ], probably via the negative 
regulation of the antiapoptotic signal transducer 
and activator of transcription 3 (STAT3) function 
[ 58 ]. BTK also interacts with and functions 
downstream of Toll-like receptor (TLR)-8 and 
TLR9. These latter functions might explain the 
susceptibility to enteroviral infections in XLA 
patients [ 59 ,  60 ]. 

 Although the overall chance of developing 
malignancies in XLA is low, there are reports of 
a 30-fold increased risk of colorectal cancer in 
patients with XLA [ 61 ,  62 ]. Aberrant immuno-
logical function and/or persistent asymptomatic 
infl ammation in the colon is generally thought to 
contribute to the increased risk of colorectal 
cancer. However, it has been shown that  BTK  
loss of function is associated with excessive 
Wnt-β- catenin signaling [ 63 ], which is known as 
a major contributor to the development of 
colorectal carcinoma [ 64 ]. In addition to colorectal 
cancer, cases of pituitary adenomas [ 18 ], gastric 
adenocarcinoma [ 65 ], and squamous lung cancer 
[ 66 ] have been reported.  

18.2.3     Selective IgA Defi ciency 

 Selective IgA defi ciency (IgAD) is the most 
common PID with a prevalence that varies from 
1 in 143 to 1 in 18,550 in different ethnic groups 
[ 67 ,  68 ]. It is defi ned as occurring when serum 
IgA levels are equal to or below 0.07 g/L with 
normal IgM and IgG levels in individuals 4 years 
of age or older in whom other causes of hypo-
gammaglobulinemia have been excluded [ 69 ]. 
As many as 85–90 % of patients with IgAD are 
asymptomatic, which could be explained by a 
compensatory increase in IgM production and 
subsequent increase in secretary IgM in the 
mucosal lumen [ 70 ]. However, IgAD can present 
with a broad spectrum of clinical manifestations, 
including recurrent sinopulmonary and gastroin-
testinal infections, allergic disorders, GI diseases 
(especially celiac disease), progressive neurode-
generative disorders, autoimmunity, and malignancy, 
with gastric carcinomas and lymphomas being 
frequently associated with the disease [ 70 – 75 ]. 

 In IgAD, the common fi nding is a defect in 
the maturation of B cells producing IgA [ 73 ]. 
The genetic basis of IgAD is complex and has 
remained unclear. Autosomal recessive, autoso-
mal dominant, and sporadic transmission pat-
terns have all been observed. In view of the lack 
of an identifi ed primary genetic defect and the 
variation in the inheritance patterns, it is likely 
that IgAD represents a heterogeneous group of 
genetic abnormalities such as CVID. In support 
of this notion is the observation that mutations in 
transmembrane activator and calcium modulator 
and cyclophilin ligand interactor ( TACI ) gene 
( TNFRSF13B ; OMIM*604907), which appear 
to act as a disease-modifying mutation, have 
been found in IgA defi ciency and CVID [ 22 ]. 
Moreover, a novel shared risk locus associated 
with lower inducible costimulator (ICOS) 
and higher cytotoxic T-lymphocyte-associated 
protein- 4 (CTLA4) expression has been recently 
defi ned in both diseases [ 76 ]. The presence of 
specifi c major histocompatibility complex (MHC) 
haplotypes, in particular the ancestral HLA-A1, 
B8, DR3, and DQ2 (8.1), have been associated 
with susceptibility to IgAD [ 77 ]. 

 The association of malignancy, especially of 
the lymphoreticular and gastrointestinal systems, 
with IgAD has been documented mainly in adults 
[ 78 ,  79 ] with an estimated two fold increased risk 
compared to general population [ 80 ]. However, 
in a combined Danish and Swedish study of 386 
patients with IgAD, the incidence of cancer was 
not increased. Yet, the investigators in the same 
study found that relatives of the same patients 
had slightly elevated cancer rates. In contrast to 
adults, children with IgAD appear not to be at 
risk of malignancy [ 81 ,  82 ], which has only been 
reported in case reports [ 83 – 85 ].   

18.3     Combined 
Immunodefi ciencies 

18.3.1     IL-2-Inducible T-Cell Kinase 
Defi ciency 

 IL-2-inducible T-cell kinase (ITK) defi ciency is a 
novel PID characterized by severe EVB- associated 
immune dysregulation, with a clinical picture 
similar to that seen in X-linked lymphoproliferative 
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disease (XLP) [ 86 ,  87 ]. ITK defi ciency was 
originally described in 2009, where two ITK-
defi cient female siblings from a consanguineous 
Turkish family developed uncontrolled Epstein–
Barr virus (EBV) infection resembling hemo-
phagocytic lymphohistiocytosis (HLH) with 
eventual progression to HL [ 86 ]. In a report of 
three cases from a single Arab family, the fi rst 
presentation was HL, whereas fulminant hemo-
phagocytosis and severe mononucleosis appeared 
after remission of lymphoma [ 87 ]. Adding to the 
complexity of the disease, seven additional ITK- 
defi cient patients, of whom four developed HL, 
were identifi ed following the screen of patients 
with autoimmune lymphoproliferative syndrome 
or suspicion of congenital forms of HLH [ 88 , 
 89 ]. More recently, the clinical spectrum of ITK 
defi ciency has been further extended to include 
late-onset isolated involvement of the lungs and 
the mediastinal lymph nodes with a polyclonal 
proliferation of small B cells not suggestive of 
any malignant lymphoma [ 90 ]. 

 In ITK defi ciency, germ line loss-of-function 
mutations in the  ITK  gene (OMIM*186973) 
result in pronounced instability or truncation of 
the ITK protein [ 86 ,  87 ]. ITK, a member of the 
Tec family tyrosine kinases, is expressed in T as 
well as NK cells, invariant NKT cells, and mast 
cells [ 91 – 93 ]. ITK plays a critical modulatory role 
in the T-cell receptor (TCR) signaling cascade. 
In mice, it functions in the positive/negative 
selection of thymocyte development, as well as 
regulation of conventional  vs . innate-type CD8 +  
T-cell development [ 94 ,  95 ]. Moreover,  Itk  −⁄−  
CD8 +  T cells fail to mount effective primary or 
memory immune responses to a variety of viral 
infections [ 95 – 97 ]. Itk is also crucial for invariant 
NKT-cell development and function in mice [ 93 ]. 
Similarly, a characteristic reduction in naive 
CD45RA +  T cells and NKT cells has been 
reported in ITK-defi cient patients [ 86 – 88 ]. 
Moreover, ITK has been shown to differentially 
regulate NK-cell-mediated cytotoxicity, which might 
be impaired in the absence of ITK protein [ 98 ]. 

 The development of LPDs in ITK-defi cient 
patients almost always follows primary EBV 
infection and is diagnosed as HL, as opposed to 
Burkitt’s lymphoma or other NHL seen in XLP. It 
is speculated that perturbed innate and adaptive 
antitumor immunosurveillance, including lack of 

NKT cells and impaired NK- and T-cell-mediated 
cytotoxicity, plays contributory roles in the devel-
opment of EBV-associated LPDs in ITK-defi cient 
patients [ 99 ].  

18.3.2     Purine Nucleoside 
Phosphorylase Defi ciency 

 Purine nucleoside phosphorylase (PNP) defi -
ciency is a rare, autosomal recessive, combined 
immunodefi ciency disorder, with an estimated 
frequency of 4 % among patients with SCID [ 100 ]. 
The disease usually manifests during the fi rst 
year of life; however, the onset of symptoms may 
vary, with some patients having no apparent 
clinical immunodefi ciency until later in childhood 
[ 101 – 104 ]. Common clinical manifestations in 
patients with PNP defi ciency include recurrent, 
bacterial, viral, and opportunistic infections; 
prolonged diarrhea; failure to thrive; neurologic 
abnormalities, including nonprogressive cerebral 
palsy, ataxia diplegia, or disequilibrium; and 
autoimmune disorders, including autoimmune 
hemolytic anemia, idiopathic thrombocytopenia, 
autoimmune neutropenia, lupus, and central 
nervous system vasculitis [ 100 – 102 ,  105 – 108 ]. 
Due to profound T-cell abnormalities, patients 
are extremely susceptible to viral infections and 
may develop disseminated or even fatal disease 
[ 100 ,  103 ]. A high frequency of malignancy is 
also noted, including pharyngeal tumors, lym-
phoma, and lymphosarcoma [ 100 ,  109 ,  110 ]. In a 
report of 33 patients with PNP defi ciency, four 
had developed lymphoma or lymphosarcoma and 
one had a pharyngeal tumor [ 100 ]. Immunological 
evaluations of patients with PNP defi ciency 
revealed marked T-cell lymphopenia, with 
decreased T-cell proliferative responses and 
abnormal humoral immunity in most cases, as 
assessed by B-cell number, total immunoglobulin 
levels, and specifi c antibody formation. NK numbers 
may be variable. 

 Several disease-causing mutations have been 
identifi ed in the  PNP  gene (OMIM*164010), 
producing proteins with differing degrees of 
enzymatic activity that inversely correlate with 
clinical severity (i.e., more functional proteins 
are associated with milder forms of disease, 
while less functional proteins lead to severe 
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phenotypes) [ 104 ,  111 ,  112 ]. PNP is an enzyme 
in the purine salvage pathway that reversibly con-
verts inosine to hypoxanthine and guanosine to 
guanine. Of all accumulated PNP substrates, only 
deoxyguanosine can be phosphorylated further 
in the mammalian cells. Thus, in PNP defi ciency, 
there is accumulation of abnormally high levels 
of lymphotoxic dGTP [ 113 ,  114 ]. This, in turn, 
inhibits ribonucleotidase reductase activity, 
depletes dCTP, and inhibits DNA synthesis and 
repair [ 113 ,  114 ]. Moreover, mitochondrial dGTP 
is also likely to inhibit mitochondrial DNA repair 
and initiate the apoptotic protease cascade trig-
gered by cytochrome C release [ 115 – 117 ]. The 
most characteristic immune abnormality is thus a 
profound defect in T-cell number and function; 
however, abnormal B-cell functions, including 
defective Ab production, are common and in part 
due to abnormal T-cell help [ 100 ,  118 ]. However, 
an intrinsic defect in B-cell function has not been 
excluded. The T-cell specifi city of PNP lies in the 
high deoxyguanosine phosphorylating activity in 
the T lymphocytes, as compared with B lympho-
cytes or other tissues [ 119 ,  120 ], and the inherent 
susceptibility of immature thymocytes to apoptosis 
during T-cell selection [ 121 ,  122 ].  

18.3.3     Dedicator of Cytokinesis 8 
Defi ciency 

 Dedicator of cytokinesis 8 (DOCK8) defi ciency, 
initially described as a form of autosomal reces-
sive hyper-IgE syndrome [ 123 ], is now regarded 
as a combined immunodefi ciency disorder [ 1 ], 
presenting early in life with: (1) recurrent sin-
opulmonary infections; (2) cutaneous viral, bac-
terial, and fungal infections; (3) severe atopy, 
asthma, and allergies; (4) immune-mediated 
pathologies including autoimmune hemolytic 
anemia and vasculitis; (5) neurological complica-
tions; (6) malignancies; and (7) extremely high 
serum IgE levels and eosinophilia [ 123 – 127 ]. 
Cutaneous viral infections are the most distinctive 
clinical feature and often identifi ed as recalcitrant, 
extensive lesions caused by herpes simplex (HS), 
human papilloma (HP), molluscum contagiosum 
(MC), and varicella zoster (VZ) viruses [ 124 – 127 ]. 

Moreover, EBV and/or cytomegalovirus infections 
are documented in up to 40 % of patients 
[ 126 ,  127 ]. Increased frequencies of malignancies, 
including squamous cell carcinoma (SCC), 
cutaneous T-cell lymphoma/leukemia, Burkitt’s 
lymphoma, anaplastic B-cell lymphoma, as well 
as adrenal leiomyoma and microcytic adnexal 
carcinoma, have been reported in up to 17 % of 
DOCK8-defi cient patients [ 124 ,  125 ,  127 ,  128 ]. 

 The disease is due to biallelic mutations in the 
 DOCK8  gene (OMIM*611432), which encodes 
DOCK8, a member of the DOCK180-related 
family of atypical guanine nucleotide exchange 
factors (GEFs) [ 129 ]. DOCK8 was shown to bind 
to the Rho GTPases Cdc42, Rac1, RHOJ, and 
RHOQ in a yeast two-hybrid system but not in 
GST pulldown assay [ 130 ]. Following the gen-
eration of DOCK8-knockout mice, it has been 
documented that DOCK8 is a Cdc42-specifi c 
GEF [ 131 ] and that DOCK8 exists in a macromo-
lecular complex with the Wiskott–Aldrich syndrome 
protein (WASP), an actin nucleation-promoting 
factor activated by Cdc42, as well as with talin, a 
protein required for integrin- mediated adhesion 
[ 132 ]. These fi ndings further support the role of 
DOCK8 in the regulation of actin dynamics and 
formation of the immunologic synapse, which are 
required for full T-cell activation, proliferation, 
and acquisition of effector functions. 

 Immunological features of DOCK8 defi -
ciency, besides high serum IgE levels and eosino-
philia, include lymphopenia (progressive with 
age) affecting CD4 +  and CD8 +  T cells (especially 
the CD4 +  T cells) and, to a lesser extent, NK and 
B cells [ 124 – 127 ], plus a virtual lack of circulat-
ing CD19 + CD27 +  memory B cells [ 133 ]. Studies 
in DOCK8-defi cient patients have demonstrated 
decreased T-cell activation and proliferation in 
response to mitogens [ 124 – 127 ], but not to spe-
cifi c antigens [ 126 ]; however, these functional 
studies are inconclusive due to the diffi culty in 
isolating naive T cells from the peripheral blood. 
In murine models of DOCK8 defi ciency, the 
defect has been localized to normal survival of 
CD8 +  memory T cells [ 134 ]. DOCK8-defi cient 
humans and/or mice also exhibit abnormalities in 
cytokine secretion associated with a T-helper 
2-biased immune response [ 124 ,  126 ,  134 ], 
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low serum IgM levels and impaired Ab responses 
[ 133 ,  135 ], decreased CD4 +  T-helper type 17 
cells, and impaired NK-cell cytotoxicity [ 124 , 
 125 ,  132 ,  136 ]. 

 Increased susceptibility to malignancy in 
DOCK8-defi cient patients can be explained by 
failure of CD8 +  T- and NK-cell-mediated tumor 
immunosurveillance, as well as chronic antigenic 
stimulation. Moreover, there is evidence that 
DOCK8 itself might have direct tumor sup-
pressor activity [ 137 – 140 ], and that loss of 
DOCK8 expression might contribute to carcino-
genesis [ 141 ]. Reduced DOCK8 expression has 
been demonstrated in the vast majority of primary 
lung cancers, irrespective of the histological type, 
compared with normal lung tissue. Epigenetic 
mechanisms, including DNA methylation and 
histone deacetylation, were indicated to be 
involved in DOCK8 downregulation in lung 
cancer cells [ 137 ], as with other candidate tumor 
suppressor genes, such as p16, RASSF1A, and 
MYO18B [ 142 – 145 ]. Moreover, homozygous 
deletions of the  DOCK8  gene has been shown in 
breast and gastric cancer cell lines. These results 
suggest that genetic and epigenetic inactivation 
of DOCK8 is involved in the development and/or 
progression of lung cancers and other cancers by 
disturbing the regulatory functions of DOCK8 in 
cell migration, morphology, adhesion, and growth 
of cells [ 137 ].  

18.3.4     RHOH Defi ciency 

 Ras homolog family member H (RHOH) defi -
ciency is a novel form of PID recently identifi ed 
by genome-wide linkage analysis in two young 
adult siblings born to consanguineous French 
parents [ 146 ]. Since childhood, both patients 
displayed a phenotype resembling epidermodys-
plasia verruciformis (EV), characterized by per-
sistent cutaneous infections with EV-specifi c 
HPV (EV-HPV) genotypes. The older sibling had 
also developed Burkitt’s lymphoma in childhood, 
granulomatous lung disease, and psoriatic-like 
lesions, whereas the younger sibling had mol-
luscum contagiosum, psoriatic lesions, and 
gingivostomatitis, indicating that the phenotypic 

spectrum of the disease is not restricted to 
susceptibility to HPV [ 146 ]. 

 RHOH defi ciency results from homozygous 
loss-of-expression mutations (Y38X) in the 
 RHOH  gene (OMIM*602037) located on chro-
mosome 4p13, which encodes an atypical Rho 
GTPase (RHOH) expressed predominantly in 
hematopoietic cells. RHOH is GTPase defi cient 
and remains constitutively in the active, GTP- 
bound state, suggesting that its activity is likely 
regulated by the level of the protein expressed in 
the cells rather than guanine nucleotide cycling 
[ 147 ]. It has been shown to counteract Rac 
GTPase activities in lymphoid cell lines and 
cytokine-stimulated hematopoietic progenitor 
cells, resulting in reduced proliferation, increased 
apoptosis, and defective actin polymerization 
[ 147 – 150 ]. 

 Immunologic evaluation of RHOH-defi cient 
patients revealed no major abnormality in the 
frequencies of B-cell subsets, NK cells, NKT cells, 
monocytes, and polymorphonuclear cells and in 
Ab production. Despite maintaining normal 
T-cell counts, both patients displayed a restricted 
T-cell repertoire, lack of circulating naive T cells 
consistent with the defect in thymic T-cell devel-
opment observed in  Rhoh -/- mice [ 149 ], expan-
sion of effector memory T cells (more likely to be 
consequences of chronic infection), altered 
expression of T-cell tissue-homing markers with 
strikingly lower than normal proportion of 
skin- homing β7 +  T cells, and impaired T-cell 
 proliferative responses to anti-CD3 but variable 
responses to mitogens and recall antigens (Ags) 
[ 146 ]. It is evident that on TCR stimulation, 
murine RHOH undergoes tyrosine phosphoryla-
tion and mediates recruitment of ZAP70 and Lck 
to the TCR/linker of activation in T-cell (LAT) 
signalosome [ 151 ]. This fi nding has been con-
fi rmed in RHOH- defi cient T cells of patients, 
showing little or no ZAP70 phosphorylation in 
the presence or absence of CD3 stimulation [ 146 ]. 
The combination of T-cell defects common to 
both mice and humans, including impaired T-cell 
responses, a lack of naive cells, and smaller than 
normal proportion of β7 +  T cells, might explain 
the pathogenesis of susceptibility to cutaneous 
EV-HPVs. 
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 The  RhoH / TTF  (translocation three four) gene 
was fi rst identifi ed by fusion to the  BCL6 / LAZ3  
oncogene resulting from t(3;4)(q27;p11) translo-
cation in an NHL cell line [ 152 – 154 ]. Another 
chromosomal alteration involving the  RhoH / TTF  
gene in a patient with multiple myeloma and 
t(4;14)(p13;q32) translocation has also been 
identifi ed [ 154 ]. Moreover, aberrant somatic 
hypermutations in  RHOH  gene have been 
previously reported in various B-cell malignan-
cies, including diffuse large B-cell lymphomas 
[ 155 ], AIDS-related NHL [ 156 ], primary central 
nervous system lymphomas [ 157 ], and, rarely, 
Burkitt’s lymphoma [ 155 ]. However, it remains 
unclear whether these mutations translate into 
abnormal levels of RhoH expression in lympho-
mas and what pathophysiological contribution 
hypermutation in the RhoH gene plays in 
lymphomagenesis.  

18.3.5     MAGT1 Defi ciency 

 A novel X-linked immunodefi ciency has been 
recently identifi ed in seven male patients (two of 
which were siblings) with mutations in the mag-
nesium transporter 1 ( MAGT1 ) gene [ 158 ,  159 ]. 
The clinical phenotype of MAGT1 defi ciency is 
characterized by chronic viral infections, EBV in 
particular, which led to the development of EBV- 
related lymphomas or related lymphoprolifera-
tive disorders in four patients. Other clinical 
features include recurrent upper respiratory tract 
infections, viral pneumonia, HSV-1 infections, 
recurrent shingles, molluscum contagiosum, and 
chronic diarrhea. [ 158 ,  159 ] 

 MAGT1 defi ciency (OMIM*300715), named 
X-linked immunodefi ciency with Mg 2+  defect, 
EBV infection, and neoplasia (XMEN) disease, 
has been reported to be caused by null mutations 
in the  MAGT1  gene [ 158 ].  MAGT1  encodes a 
membrane-associated transporter that selectively 
conducts Mg 2+  across the membrane, with almost 
no permeability to other cations including Ca 2+  
[ 160 ,  161 ]. Despite the well-known essential 
roles of Mg 2+  as a cofactor for ATP, nucleic acids, 
and numerous metabolic enzymes, its critical 

role as a second messenger in intracellular 
signaling has only begun to be unraveled [ 158 , 
 162 – 165 ]. 

 Immunological investigations in patients with 
MAGT1 defi ciency revealed CD4 lymphopenia, 
leading to an inverted CD4:CD8 ratio and 
reduced number of recent thymic emigrant T 
cells, indicating that impaired thymopoiesis may 
contribute to CD4 lymphopenia. No major distur-
bance was observed in other lymphocyte popula-
tions. MAGT1-defi cient T cells showed impaired 
proliferation and activation upon  in vitro  stimula-
tion with anti-CD3 Ab. In contrast, T-cell activa-
tion in response to phorbol myristate acetate and 
ionomycin was intact, showing that the patients 
had a proximal TCR signaling defect prior to the 
induction of the Ca 2+  fl ux. MAGT1-defi cint B 
cells showed normal activation upon BCR 
stimulation [ 158 ]. Recapitulating the patients’ 
phenotype by knocking down MGAT1 in normal 
T cells, as well as rescuing patients’ T cells with 
ectopic expression of MAGT1, established that 
MAGT1 is required for TCR-stimulated Mg 2+  
infl ux that transiently raises free [Mg 2+ ] i  in 
order to temporarily coordinate T-cell activation 
[ 158 ,  166 ]. 

 Individuals with genetic defi ciencies in 
MAGT1 have uncontrolled EBV infection and a 
predisposition to lymphoma. This has been attrib-
uted to a selective loss of NKG2D expression 
(posttranscriptional, accelerated protein turn-
over) and the resultant impaired cytolytic 
responses of NK and cytotoxic CD8 +  T lympho-
cytes [ 159 ], which are essential for control of 
viral infections and tumor immunosurveillance 
[ 167 ]. Hence, MAGT1 not only mediates TCR- 
induced Mg 2+  fl ux but also regulates the basal- 
free [Mg 2+ ] i  homeostasis required for NKG2D 
cytolytic activity. This has been verifi ed by culti-
vation of NK and cytotoxic CD8 +  T lymphocytes 
from XMEN patients in Mg 2+ -supplemented 
medium, causing a dose-dependent increase in 
free [Mg 2+ ] i , which did recover the cytotoxicity 
defect partially in cytotoxic CD8 +  T lymphocytes 
and almost completely in NK cells [ 159 ]. Most 
notably, magnesium supplementation  in vivo  
concurrently reduced EBV-infected cells, which 
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may provide an adjunctive treatment to prevent 
early lymphoma development and mortality in 
XMEN patients.   

18.4     Phagocyte Defects 

 The underlying mechanism of cancer develop-
ment in PIDs caused by defects of phagocytic 
cells is quite different from that observed in other 
immunodefi ciency disorders. Here the implicated 
genes are important for proper myeloid cell 
development; thus cancers form due to dysregu-
lated myelopoiesis. This is distinct from cancers 
that occur in some other conditions including 
impaired immunosurveillance and presence of 
specifi c viruses. 

18.4.1     Severe Congenital 
Neutropenia (Kostmann 
Syndrome) 

 Severe congenital neutropenia (SCN) is a rare 
PID characterized by a maturation arrest of 
myelopoiesis at the level of the promyelocyte/
myelocyte stage with peripheral blood absolute 
neutrophil counts (ANCs) below 0.5 × 10 9 /L, in 
addition to early-onset superfi cial and systemic 
bacterial infections [ 168 ,  169 ]. The skin and 
mucous membranes are usually affected by 
ulceration, gingival hyperplasia, periodontitis, 
and abscess formation [ 170 ]. Patients may also 
suffer from neurological disorders including 
developmental delay, mental retardation, epilepsy, 
and decreased cognitive function [ 171 ,  172 ]. 

 SCN follows an autosomal dominant or reces-
sive pattern of inheritance or can occur sporadi-
cally. It is a genetically heterogeneous disorder 
caused by a variety of mutations in several differ-
ent genes. Nonetheless, the different genetic 
forms of SCN share a rather similar clinical phe-
notype. Mutations in the neutrophil elastase 
( ELA2 ) gene (OMIM*130130) are found in 
approximately 50 % of all cases, i.e., those with 
dominant autosomal or sporadic SCN [ 170 ,  173 ]. 
ELA2 is a serine protease, exclusively expressed 

in neutrophils and monocytes, and is stored in 
the primary granules of neutrophils [ 174 ]. 
Interestingly, mutations in the  ELA2  gene are 
also responsible for the clinical phenotype of 
cyclic neutropenia. The pathophysiological 
mechanisms responsible for the development of 
different phenotypes, congenital or cyclic neutro-
penia, are not yet understood [ 175 ]. Most patients 
with autosomal recessive disease, which comprises 
approximately 30 % of SCN, have mutations in 
the HS-1-associated protein X ( HAX1 ) gene 
(OMIM*605998) [ 176 ]. HAX-1, a mitochondria- 
targeted protein containing Bcl-2 homology 
domains, is an apoptosis-regulating protein [ 176 ]. 
Mutations in the glucose-6- phosphatase catalytic 
subunit 3 ( G6PC3 ) gene (OMIM*611045) have 
recently been identifi ed in a group of autosomal 
recessive SCN patients with additional syn-
dromic features including cardiac and urogenital 
anomalies and increased venous marking [ 177 ]. 
Patients with X-linked SCN harbor activating 
mutations in Wiskott–Aldrich syndrome ( WAS ) 
gene (OMIM*300392), leading to a constitu-
tively active form of the WAS protein and unreg-
ulated actin polymerization [ 178 ]. Inactivating 
mutations in the proto- oncogene growth factor-
independent 1 ( GFI1 ) gene (OMIM*600871) are 
also associated with SCN [ 179 ]. In addition, SCN 
without a maturation arrest has recently been 
associated with p14 protein defi ciency [ 180 ]. 
Finally, acquired nonsense mutations in colony-
stimulating factor 3 receptor ( CSF3R ) gene 
(OMIM*138971) have also been found to affect 
20 % of SCN patients [ 181 ]. 

 SCN patients are at an increased risk of 
myelodysplasia (MDS) and acute myeloid leuke-
mia (AML) development with a cumulative inci-
dence of leukemia of 22 % after 15 years of 
G-CSF treatment [ 182 ,  183 ]. Independent of the 
genetic subtype, conversion to leukemia in 
patients with SCN is often associated with one or 
more somatic cellular genetic abnormalities 
(e.g., monosomy 7,  RAS  mutations, trisomy 21, or 
 CSF3R  mutations), which may be diagnostically 
useful to identify subgroups of patients at high 
risk of developing leukemia [ 175 ]. Other risk 
factors for progression to MDS and/or AML are 
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the severity of neutropenia, younger age at 
diagnosis, and prior exposure to G-CSF. [ 184 ] 
Interestingly, marrow cells from nearly 80 % of 
patients with SCN who transform to leukemia 
show point mutations in  CSF3R , suggesting that 
these mutations play an important role in leuke-
mogenesis [ 185 ]. 

 Hematopoietic stem-cell transplantation (HSCT) 
is the only defi nitive treatment for patients with 
bone marrow failure, MDS, or leukemia; how-
ever, it seems that patients with SCN may be at 
increased risk of transplant-related mortality for 
unknown reasons. As a result, there is no clear 
consensus on when a patient with SCN should 
undergo HSCT [ 186 ].  

18.4.2     Shwachman–Diamond 
Syndrome 

 Shwachman–Diamond syndrome (SDS) is a rare 
autosomal recessive, systemic disease charac-
terized by exocrine pancreatic insuffi ciency, 
impaired hematopoiesis, and leukemia predis-
position [ 187 ]. Other clinical features include 
skeletal, immunologic, hepatic, and cardiac dis-
orders [ 186 ]. There is considerable phenotypic 
variability between individuals, and making the 
diagnosis can be challenging, particularly in 
older patients in whom symptoms such as steat-
orrhea may have resolved [ 186 ] or may not be 
present [ 188 ]. The most common hematologic 
abnormality in patients with SDS is neutropenia, 
which can be chronic or intermittent. Anemia and 
thrombocytopenia are also common manifestations. 
Patients with SDS are susceptible to recurrent 
infections [ 189 ] likely due to neutropenia. Other 
immune defects have also been reported. These 
include neutrophil chemotactic defects [ 190 , 
 191 ], decreased proportions of circulating B 
cells, low immunoglobulin levels, decreased 
 in vitro  B-cell proliferation, lack of specifi c 
antibodies or decreased total circulating T lym-
phocytes, as well as decreased proliferative 
responses [ 192 ,  193 ]. 

 Around 90 % of patients with clinical features 
of SDS have mutations in the Shwachman–
Bodian–Diamond syndrome ( SBDS ) gene 

(OMIM*607444) [ 194 ], with the encoded protein 
being essential for normal ribosome maturation, 
though its precise molecular function remains 
unclear [ 195 ,  196 ]. In addition to a stem- cell 
defect [ 197 ,  198 ], patients with SDS have also a 
serious, generalized marrow dysfunction with an 
abnormal bone marrow stroma in terms of its 
ability to support and maintain hematopoiesis 
[ 196 ,  199 ]. 

 Similar to other marrow failure syndromes, 
patients with SDS have an increased risk for 
MDS and AML [ 200 ], with an estimated risk of 
19 % at 20 years and 36 % at 30 years [ 184 ]. 
There are also three reported cases of solid 
tumors in patients with SDS [ 201 – 203 ]. The rea-
son behind this malignant predisposition is not 
known. However, several theories have been 
proposed, including chromosome instability 
[ 204 ,  205 ], accelerated apoptosis linked to 
increased expression of the Fas Ag and to hyper-
activation of the Fas signaling pathway [ 206 ], 
and abnormal gene expression patterns as 
evident by upregulation of several oncogenes, 
including  LARG ,  TAL1 , and  MLL , and down-
regulation of several tumor suppressor genes, 
including  DLEU1 ,  RUNX1 ,  FANCD2 , and 
 DKC1 , which might result in continuous stimu-
lation favoring evolution or progression of 
malignant clones [ 207 ]. Accordingly, all 
patients with SDS should be monitored with 
peripheral blood counts every 3–4 months and 
marrow evaluation on a yearly basis, and if indi-
cated, HSCT should be done prior to the devel-
opment of overt leukemia.  

18.4.3     GATA2 Defi ciency 

 A novel inherited immunodefi ciency clinically 
characterized by disseminated mycobacterial 
infections (typically Mycobacterium avium com-
plex [MAC]), opportunistic fungal infections, 
disseminated HPV infections, and pulmonary 
alveolar proteinosis, with an increased risk of 
myelodysplasia, cytogenetic abnormalities, and 
myeloid leukemias, has been recently described 
[ 208 – 211 ]. This novel inherited immunodefi -
ciency, termed monocytopenia and mycobacterial 
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infection (MonoMAC) syndrome, precedes the 
development of overt MDS by many years, and 
eventually leukemias. This form of immunodefi -
ciency occurs either as an autosomal dominant 
form or sporadically [ 212 ]. 

 Heterozygous mutations in the critical hema-
topoietic regulator of stem-cell integrity,  GATA2  
gene (OMIM*137295), have been recently impli-
cated as the cause of the MonoMAC syndrome, 
suggesting dominant interference of gene func-
tion by either dominant negative effects or haplo-
insuffi ciency [ 209 ,  213 ,  214 ]. Mutations in the 
same gene may result in two more different phe-
notypes: familial MDS/AML without other 
hematopoietic defects [ 215 ,  216 ], and Emberger 
syndrome, which is characterized by congenital 
deafness and primary lymphedema of the lower 
limb with a predisposition to MDS or AML 
[ 217 ]. The GATA family of transcription factors, 
which contain zinc fi ngers in their DNA-binding 
domain, have emerged as candidate regulators of 
gene expression in hematopoietic cells. GATA2 
functions in the regulation of hematopoiesis and, 
in particular, is required for maintenance and sur-
vival of the hematopoietic stem-cell pool [ 218 , 
 219 ]. GATA2 also functions in the formation of 
early blood and lymphatic vessels [ 220 ,  221 ]. 
The role of  GATA2  mutation in disease manifes-
tation is incompletely understood but likely com-
plex and thought to be linked to the generation or 
maintenance of progenitors required for the 
affected cell subsets [ 213 ]. 

 Immunological characterization of patients 
with the MonoMAC syndrome revealed pro-
foundly decreased or absent monocytes, NK 
cells, and B cells as well as a severe decrease in 
circulating and tissue dendritic cells (DCs). In 
most cases, GATA2 defi ciency is accompanied by 
a severe reduction in peripheral blood NK cells, 
specifi cally the CD56 bright  subset, with marked 
functional impairment [ 209 ], which predispose to 
signifi cant HPV and other viral infections, as well 
as HPV-associated SCC. Bone marrow failure 
resulting from loss of stem cells may underlie the 
multilineage cytopenias described in most 
patients; however, the underlying mechanisms for 
cytogenetic abnormalities or the leukemic trans-
formation need to be further clarifi ed.   

18.5     Defects in Innate Immunity 

18.5.1     Epidermodysplasia 
Verruciformis 

 Epidermodysplasia verruciformis (EV) is a 
chronic, genetically inherited skin condition 
characterized by increased susceptibility to cuta-
neous infection with certain HPV genotypes, 
referred to as EV-HPVs. [ 222 ,  223 ] EV begins 
during infancy or early childhood, and the more 
benign lesions manifest as fl at, wart-like, 
hypopigmented, or hyperpigmented papules or 
pityriasis versicolor-like plaques, whereas lesions 
with greater potential for malignant transforma-
tion present more variably as verrucous and seb-
orrheic keratosis-like lesions, occurring mainly 
on sun-exposed areas [ 222 – 224 ]. Approximately 
30–60 % of individuals eventually develop skin 
malignancies, eventually in the fourth to fi fth 
decades, with Bowen carcinoma in situ being 
the most frequent tumor, followed by invasive 
SCC and, less frequently, basal-cell carcinoma 
[ 224 – 227 ]. 

 EV is inherited primarily in an autosomal 
recessive pattern [ 228 ], although both X-linked 
recessive and autosomal dominant modes of 
inheritance have been reported [ 229 ,  230 ]. 
Genome-wide linkage studies have identifi ed two 
EV susceptibility loci  EV1  and  EV2 , on chromo-
somes 17 and 2, respectively [ 231 ]. Mutations 
in the  EVER1  (OMIM*605828) and  EVER2  
(OMIM*605829) genes, which are part of the 
EV1 locus, have been identifi ed in approximately 
75 % of patients with EV [ 222 ]. 

 The EVER proteins, localized in the endo-
plasmic reticulum of human keratinocytes 
[ 232 ], interact with ZnT-1 [ 233 ], a zinc trans-
porter regulating cellular zinc homeostasis. 
Loss of EVER zinc homeostasis enhances the 
expression of viral genes, specifi cally the pro-
oncogenic  E6  and  E7 , contributing to HPV-
mediated carcinogenesis. Besides keratinocytes, 
EVER proteins are expressed in T and B lym-
phocytes, NK cells, endothelial cells, myeloid 
cells, and DCs. Zinc has been shown to con-
tribute to TCR signaling by increasing ZAP70 
phosphorylation [ 234 ]. Mutated, dysfunctional 
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 EVER  genes would disrupt zinc homeostasis 
and consequently produce a defect in cell-medi-
ated immunity, which could compromise viral 
clearance and lead to malignant transformation 
[ 222 ,  233 ]. Although the immunological pheno-
type of EV might be normal, it can also mani-
fest with decreased total T-lymphocyte counts; 
reduced cell-mediated immunity, as measured 
by reduced responsiveness to mitogens and 
Ags as well as cutaneous anergy to recall Ags 
[ 235 ,  236 ]; and defective cell-mediated immu-
nity toward EV-HPVs or infected keratinocytes 
[ 237 ,  238 ].  

18.5.2     Warts, Hypogammaglobulinemia, 
Infections, and Myelokathexis 
Syndrome 

 Warts, hypogammaglobulinemia, infections, and 
myelokathexis (WHIM) syndrome is a rare, 
dominantly inherited PID characterized by warts, 
hypogammaglobulinemia, infections, and myelo-
kathexis, which refers to neutropenia resulting 
from abnormal retention of mature neutrophils 
and increased neutrophils apoptosis in the bone 
marrow [ 239 – 241 ]. The incidence of WHIM 
syndrome has been estimated to be 0.23 cases per 
million births [ 242 ]. The clinical onset usually 
occurs during infancy or early childhood with 
recurrent gastrointestinal, respiratory, and cuta-
neous bacterial infections and increased suscep-
tibility to HPV infection, causing numerous, 
recalcitrant skin and genital warts [ 240 ,  241 ]. 
Genital warts (condylomata acuminata) may 
undergo dysplastic changes conferring to an 
increased risk of malignancy [ 239 – 241 ]. Contrary 
to the long-held belief, HPV is not the only 
unique viral susceptibility in WHIM syndrome; 
more recently, EBV-associated lymphoproliferative 
disease [ 243 ,  244 ] as well as herpes zoster [ 245 ], 
herpes simplex virus [ 245 ,  246 ], and molluscum 
contagiosum [ 243 ] infections have been 
reported, indicating a generalized susceptibility 
to  Herpesviridae  viruses. 

 WHIM syndrome is primarily caused by gain-
of- function mutations in the gene encoding the 

chemokine receptor CXCR4 (OMIM*162643) 
[ 247 ], a member of the G-protein-coupled recep-
tor superfamily specifi c for the CXC chemokine 
stromal cell-derived factor 1 (SDF-1) [ 248 ], also 
known as CXCL12. All  CXCR4  mutations 
reported to date disrupt receptor downregulation 
leading to enhanced and prolonged chemotactic 
responsiveness to SDF-1 [ 249 ,  250 ]. 

 Immunological and hematological abnormali-
ties in WHIM syndrome include peripheral 
neutropenia, B lymphopenia with a particular 
reduction in the number of switched memory B 
cells (CD27 +  IgD − ), T lymphopenia with 
decreased number of naïve T cells, and a relative 
expansion of memory T cells with a restricted 
repertoire, defi ciency of plasmacytoid DCS, and 
hypogammaglobulinemia [ 251 – 254 ]. The mech-
anisms by which dysregulated CXCR4 signaling 
affects leukocyte homeostasis and predisposes 
to a selective susceptibility to HPV infection and 
carcinogenesis are still unknown. It remains pos-
sible that defective traffi cking of effector cells (T 
cells and NK cells) and Ag-presenting cells might 
contribute to defective cutaneous immunity, 
explaining the abnormal susceptibility to viruses 
affecting the skin [ 99 ].   

18.6     Diseases of Immune 
Dysregulation 

18.6.1     X-Linked Lymphoproliferative 
Disease 

 X-linked lymphoproliferative disease (XLP), 
formerly known as Duncan disease, is a rare and 
often fatal inherited immunodefi ciency disorder, 
initially described by Purtilo et al. [ 255 ], with an 
estimated incidence of one to three per million 
male births [ 256 ]. It is characterized by severe 
immune dysregulation in males with a variable 
clinical presentation, often following EBV 
infection, manifesting as fulminant infectious 
mononucleosis and/or acquired hemophagocytic 
lymphohistiocytosis (HLH), dysgammaglobu-
linemia, and malignant lymphoma [ 257 – 260 ]. 
Other, albeit less common, clinical features of 
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XLP include aplastic anemia, lymphocytic 
vasculitis, pulmonary lymphoid granulomatosis, 
arthritis, colitis, and psoriasis [ 260 – 262 ]. 

 Most cases of XLP are caused by germ-
line mutations in the Src homology 2 domain- 
containing gene 1A ( SH2D1A ; OMIM*300490) 
encoding the 128 amino acid signaling lympho-
cytic activation molecule (SLAM)-associated 
protein (SAP) [ 263 – 265 ]. A second XLP-like dis-
order caused by mutations in the X-linked inhibi-
tor of apoptosis protein ( XIAP ; OMIM*300079) 
was described in 2006 [ 266 ]. Although XIAP 
defi ciency is predominantly associated with 
recurrent EBV-associated HLH, no lymphoma 
occurrence has been reported in affected patients 
till now [ 141 ,  260 ,  266 ]. In humans, SAP is 
expressed predominantly in NK, NKT, and T 
cells [ 267 – 269 ]. It has been shown to serve as 
an adaptor molecule downstream of several 
SLAM immunomodulatory receptors family 
[ 270 ]. The SLAM–SAP association potentiates 
the development of NKT cells, T–B-cell conju-
gation required for the development of germinal 
centers and immunoglobulin production, and 
EBV-directed cytotoxicity by T and NK cells. In 
addition, it is required for normal T-cell homeo-
stasis mediated by reactivation-induced cell 
death (RICD) [ 271 ,  272 ]. 

 SAP-defi cient patients are at increased risk of 
lymphoma development, as well as other lym-
phoproliferative diseases. Approximately 30 % 
of patients develop lymphoma at a mean age of 
15 years at diagnosis [ 260 ,  273 ]. Expectedly, the 
majority are of B-cell origin, arising in extrano-
dal sites, most commonly localized in the ileoce-
cal region, with Burkitt’s lymphoma comprising 
approximately 50–60 % of total lymphomas 
[ 260 ,  274 ,  275 ]. Notably, not all cases of lympho-
mas arise due to malignant transformation of 
EBV-infected B cells, as up to one-third of 
patients with lymphoma are EBV seronegative 
[ 260 ,  273 ,  275 ], indicating that the genetic defect 
per se can result in lymphoma. It is likely that 
defective antitumor immunosurveillance due to 
poor CD8 +  T- and NK-cell cytotoxic responses 
and lack of NKT cells contributes to lymphoma-
genesis [ 99 ].   

18.7     Syndromes 
with Autoimmunity 

18.7.1     Autoimmune 
Lymphoproliferative 
Syndrome 

 Autoimmune lymphoproliferative syndrome 
(ALPS) is a rare disease characterized by defec-
tive Fas-mediated apoptosis [ 276 ]. The incidence 
and prevalence of ALPS are unknown. Estimated 
cases of ALPS exceed 500 cases worldwide; 
however, it is not reliably confi rmed. Classically, 
patients present with autoimmunity, lymphade-
nopathy, and/or splenomegaly along with elevation 
in TCR α/β +  B220 + CD4 + CD8 +  double-negative T 
(DNT) cells (a constant feature of the disease 
with undetermined origin) and defective  in vitro  
Fas-mediated lymphocyte apoptosis [ 277 ]. 
Furthermore, certain biomarkers may be useful to 
aid in diagnosis [ 278 ]. These include elevated 
circulating levels of sFASL, IL-10, vitamin B12, 
and IL-18. Patients who do not fulfi ll the ALPS 
diagnostic criteria are now classifi ed as having 
ALPS-related conditions caused by germ-line 
mutations in  CASP8 ,  NRAS , and  SH2D1A  [ 277 ]. 
XLP, a genetic immunodefi ciency caused by 
mutations or deletions in the  SH2D1A  gene, can 
be included in the spectrum of ALPS-like disor-
ders, since these patients frequently display 
defective apoptosis in response to TCR restimu-
lation [ 279 ,  280 ]. Mutations in the ALPS and 
ALPS-related genes often manifest with variable 
penetrance [ 281 ]. Thus, patients with ALPS often 
have family members with the same genetic 
mutation with no clinical phenotype or very mild 
symptoms. The penetrance of the mutation is not 
related to the type of mutation but probably 
depends on unknown genetic and environmental 
modifi ers. Hence, the clinical signifi cance of 
isolated detection of a heterozygous Fas mutation 
in a healthy relative of a patient with ALPS is 
not yet clear. 

 Autoimmunity, affecting over 70 % of patients, 
is mainly directed against blood cells [ 282 ]. 
Other autoimmune manifestations are rare and 
include autoimmune nephritis, hepatitis, arthritis, 
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uveitis, iridocyclitis, and vasculitis [ 283 ]. 
Autoantibodies are more common than obvious 
clinical disease and present in up to 92 % of 
patients [ 284 ]. Elevation of TCR α/β +  DNT cells 
in the peripheral blood and lymphoid tissues is a 
hallmark of ALPS, but it is not pathognomonic as 
patients with other autoimmune diseases such as 
SLE and ITP may also have mild elevations in 
these cells [ 285 ]. 

 ALPS is caused by germ-line or somatic 
mutations in  FAS  gene ( TNFRSF6 , or  CD95 ; 
OMIM*134637), or germ-line mutations in the 
FAS ligand ( FASL ) ( TNFSF6 , or  CD95L ; 
OMIM*134638) or  CASP10  (OMIM*601762) 
genes. 

 Apoptosis is critical in tumor scrutiny as FAS, 
a putative tumor suppressor, is silenced in many 
tumors [ 286 – 288 ]. As anticipated, patients with 
ALPS who harbor germ-line mutations in the 
ALPS-related genes have an increased risk of 
developing malignancy [ 289 ], with the risk of 
NHL and HL, respectively, being 14 and 51 times 
greater than expected [ 290 ]. An increased risk of 
cancer has also been observed in unaffected fam-
ily members who may inherit the same mutation 
but fail to develop an overt ALPS phenotype 
[ 290 ]. Sporadic NHL harbors somatic mutations 
of the  FAS  gene in 11 % [ 291 ] of cases and in 
the  CASP10  gene in 14.5 % of cases [ 292 ]. 
Furthermore, in HL, somatic  FAS  gene mutations 
are found in Reed–Sternberg cells in 10–20 % of 
cases [ 286 ,  293 ].  

18.7.2     Autoimmune 
Polyendocrinopathy 
with Candidiasis 
and Ectodermal Dystrophy 

 Autoimmune polyendocrinopathy with candidi-
asis and ectodermal dystrophy (APECED), also 
called autoimmune polyendocrine syndrome 
type I (APS-1), is a rare autosomal recessive 
disease, most commonly seen in Iranian Jews, 
Sardinians, and Finns. The diagnosis of APECED 
is reached if patients manifest at least two of the 
following conditions: (1) chronic mucocutaneous 
candidiasis (CMC), (2) hypoparathyroidism, or 

(3) Addison’s disease. Additional autoimmune 
components may appear throughout life and 
include gonadal failure, type 1 diabetes, hypothy-
roidism, pernicious anemia, hepatitis, alopecia, 
vitiligo, and/or ectodermal dystrophies. 

 The disease is characterized by loss of toler-
ance against self-antigens [ 294 ,  295 ], which is 
caused by mutations in the autoimmune regulator 
( AIRE ) gene (OMIM*607358) [ 296 ,  297 ]. 
Although the endocrine features are clearly 
autoimmune, the underlying immunodefi ciency 
predisposing to CMC has been a long-standing 
puzzle. Recently, autoantibodies against the 
Th17-related cytokines IL-22, IL-17A, and 
IL-17F, which are implicated in protection against 
fungi at epithelial surfaces, were discovered in 
the sera of APS-1 patients [ 298 ,  299 ], suggesting 
that the underlying immunodefi ciency in patients 
with APECED has an autoimmune basis. 

 Several cases of oral and esophageal SCC 
have been reported in APECED patients with 
CMC [ 300 – 303 ]. In a cohort of 92 Finnish 
patients, six had developed oral or esophageal 
SCC by the mean age of 37, representing 10 % of 
patients older than 25 years [ 300 ]. The partial 
T-cell defect of APECED seems to favor the 
growth of  Candida albicans  and predispose to 
chronic mucositis and the development of 
SCC. Besides chronic infl ammation and increased 
cell turnover,  Candida albicans  biotypes are 
capable of producing the carcinogenic nitrosa-
mine N-nitrosobenzylmethylamine [ 304 ,  305 ], 
and can also act to promote oral carcinogenesis in 
rats when a known carcinogen, 4-nitroquinoline- 
1-oxide, is repeatedly applied [ 306 ].   

18.8     Other Well-Defi ned 
Immunodefi ciencies 

18.8.1     DNA Repair Defects 

 B- and T-lymphocyte development depends 
largely on multiplex genetic rearrangements, 
i.e., V(D)J recombination, class switch recombi-
nation, and somatic hypermutation, carried out 
by multiple DNA repair and damage response 
protein complexes [ 307 ]. Variations in the DNA 
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repair genes might compromise the delicate bal-
ance between the generation of genetic variation 
and replication fi delity of DNA [ 308 ,  309 ]. PIDs 
associated with defects in DNA repair, collec-
tively termed genomic instability syndromes, are 
generally associated with cellular radiosensitiv-
ity, developmental defects, and predisposition to 
cancer [ 309 – 311 ]. Syndromes known to be asso-
ciated with malignancies, including ataxia–tel-
angiectasia, Nijmegen syndrome, Bloom 
syndrome, DNA ligase IV defi ciency, Artemis 
defi ciency, cartilage hair hypoplasia, and PMS2 
defi ciency, are summarized in Table  18.1 . 
Although these defects are associated with an 
increased risk of lymphoid malignancies, mainly 
NHL, nonlymphoid tumors affecting the brain, 
skin, breast, and gastrointestinal tract have also 
been reported [ 311 ,  312 ,  314 ,  316 ,  319 – 321 ]. 
This is partly due to the fact that diverse DNA 
repair processes are not specifi c to Ag receptor 
diversifi cation. DNA double-strand breaks, aris-
ing from multiple sources, including exposure to 
ionizing radiation, can potentially lead to repli-
cation errors, loss or rearrangements of genomic 
material, and eventually cell death or carcino-
genesis. The DNA damage response pathway, 
responsible for sensing and repairing the dam-
aged DNA, comprises the most powerful tumor 
surveillance mechanism [ 320 ]. The observation 
of an increased risk of cancer development in 
heterozygote carriers provides additional insight 
into their tumorigenic potential [ 321 – 324 ]. 
Additionally, defects in immunosurveillance 
mechanisms per se, similar to certain PIDs not 
associated with DNA repair defects, contribute 
to cancer development.

18.8.2        Signal Transducer 
and Activator of Transcription 
3 Defi ciency 

 Hyper-IgE syndrome (HIES) is a complex PID 
characterized by recurrent staphylococcal infec-
tions beginning early in infancy, predominantly 
involving the skin and lungs, chronic eczema, 
and markedly high serum IgE concentrations 
[ 325 – 327 ]. Skin infections due to  S. aureus  lack 

the usual local or systemic features of infl amma-
tion, forming so- called cold abscesses [ 328 ]. 
Recurrent sinopulmonary infections, resulting in 
bronchiectasis and pneumatocele formation fre-
quently superimposed with bacterial and fungal 
infections, are the major causes of morbidity and 
mortality in patients with HIES [ 329 ]. Despite 
having extremely high serum IgE levels and 
eosinophilia, patients with HIES are usually free 
from other allergic manifestations, recognized as 
a marked difference from DOCK8 defi ciency 
[ 325 ,  327 ]. In patients with HIES, serum IgG, 
IgM, and IgA levels are usually normal; however, 
most have impaired antigen-specifi c Ab response 
to immunization [ 330 ]. Diminished circulating 
memory B cells and defects in the differentiation 
of Th17 cells have also been demonstrated 
[ 330 – 332 ]. The multisystem nature of the disease 
extends beyond the immune system and 
accounts for the characteristics craniofacial, 
musculoskeletal, dental, and vascular abnormalities 
[ 333 – 336 ]. 

 Dominant negative mutations in  STAT3  
(OMIM*102582) have been identifi ed as the 
major molecular etiology of autosomal dominant 
and sporadic cases of HIES [ 337 ,  338 ]. STAT3, 
one of the seven STAT proteins in the human, is a 
transcription factor and plays a critical role in 
responses to many cytokines and growth factors 
through the shared signal-transducing molecule 
gp130 [ 326 ,  327 ]. It is crucial for cell prolifera-
tion, survival, migration, apoptosis, and infl am-
mation in various tissues [ 339 ], probably 
explaining the diverse clinical fi ndings in patients 
with HIES. 

 STAT3 defi ciency is associated with an 
increased risk of LPDs, most notably HL and 
NHL (relative risk: 259), with the majority of 
B-cell origin and aggressive histology [ 340 – 342 ]. 
Other cancers described in patients with HIES 
include leukemia and cancers of the vulva, liver, 
and lung [ 343 ]. The underlying mechanisms, 
however, remain unclear. The higher risk of 
tumor formation has been attributed to defective 
immunosurveillance and chronic B-cell stimula-
tion, resulting in an increased turnover of B cells 
and accumulating genetic aberrations, giving rise 
to malignant B-cell clones [ 99 ].  
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18.8.3     Wiskott–Aldrich Syndrome 

 Wiskott–Aldrich syndrome (WAS) is a rare 
X-linked immunodefi ciency with highly variable 
manifestations characterized by thrombocytope-
nia with small platelets, eczema, and humoral 
and cellular immunodefi ciency with increased 
susceptibility to pyogenic and opportunistic 
infections. Patients with WAS may also manifest 
with an increased incidence of autoimmunity and 
malignancies [ 344 – 349 ]. 

 The disease is caused by mutations in the  WAS  
gene (OMIM*300392), which is expressed 
exclusively in hematopoietic cells. Around 300 
unique mutations spanning the  WAS  gene have 
been described. The effect of a given mutation on 
WASp expression correlates with the disease 
severity: mutations that cause decreased WASp 
levels result in the mild variant X-linked throm-
bocytopenia (XLT), characterized mainly by 
thrombocytopenia [ 350 ,  351 ], whereas mutations 
that abolish WASp expression or result in the 
expression of a truncated protein are associated 
with classic WAS. In addition, a third disorder 
termed X-linked neutropenia (XLN), character-
ized by neutropenia and variable myelodysplasia, 
has been attributed to activating mutations in the 
GTPase-binding domain of WASp [ 178 ,  352 ,  353 ]. 

 The WAS protein (WASp) is a multifaceted 
protein which exists in complex with several 
partners involved in relaying signals from cell 
surface receptors to the actin cytoskeleton; lack 
of WASp results in cytoskeletal defects that 
compromise multiple aspects of normal cellular 
activity including proliferation, phagocytosis, 
immune synapse formation, adhesion, and directed 
migration [ 347 ]. It is therefore not surprising that 
lack of WASp results in a wide range of defects in 
cellular function involving all hematopoietic cell 
lineages [ 347 ]. 

 Malignancies are relatively common in older 
patients (adolescent and young adults), especially 
in those with autoimmune manifestations, and 
are frequently associated with a poor prognosis 
[ 345 ,  348 ,  354 ]. The most frequent malignancy 
reported is B-cell lymphoma, which often occurs 
in EBV-positive patients [ 345 ,  349 ]. In a report of 

154 patients with WAS, 21 (13 %) developed 
malignancies, mostly of lymphoreticular origin, 
with the average age at onset of 9.5 years [ 345 ]. 
Nonlymphoid malignancies, including glioma, 
acoustic neuroma, testicular carcinoma, and 
Kaposi sarcoma, have infrequently been reported 
[ 345 ,  355 ]. The development of hematological 
malignancies in WAS patients is at least partly 
due to NK cell and cytotoxic T-lymphocyte 
dysfunction [ 356 – 358 ], absent of invariant NKT 
cells [ 359 ,  360 ], and chronic stimulation of auto-
reactive cells and ineffective clearance of virally 
infected cells [ 361 ,  362 ]. It has been reported 
that despite normal expression levels of lytic 
molecules, the cytotoxic CD8 +  T cells from WAS 
patients failed to effectively kill B-cell lymphoma 
target cells due to ineffi cient polarization of cyto-
toxic granules toward the target tumor cells 
[ 356 ]. Recently, activating mutations in WASp 
(which give rise to XLN) have been found to lead 
to genetic instability through dysregulation of 
actin polymerization. Enhanced and delocalized 
actin polymerization throughout the cell was 
shown to inhibit myelopoiesis through defective 
mitosis and cytokinesis, with micronuclei forma-
tion indicative of genomic instability [ 363 ]. 
Despite lack of direct evidence, genomic instability 
might contribute to the development of malig-
nancies in WAS patients [ 347 ]. 

 Early HSCT is the treatment of choice for 
patients with classic WAS, preferably from a 
matched related donor [ 364 ]. Furthermore, 
immune reconstitution in WAS patients following 
HSCT leads to a decrease in cancer risk [ 364 ]. 
Gene therapy is an alternative to HSCT in the 
treatment of WAS [ 365 ]; however, the long- term 
outcome needs to be further monitored. This 
could be explained by the fact that the viruses 
used for therapy integrate in the host genome, 
with preferential insertion at transcription start 
sites, promoter and enhancer regions of active genes, 
and at conserved noncoding DNA, resulting in a 
high rate of transformations and the development 
of secondary malignancies [ 366 ,  367 ]. Acute 
T-cell leukemia due to vector insertion in the 
vicinity of the T-cell oncogene  LMO2  has been 
reported in one patient [ 368 ,  369 ].  
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18.8.4     Chromosome 22q11.2 
Deletion Syndrome 

 Chromosome 22q11.2 deletion syndrome is 
relatively common (estimated in 1 in 4,000 
births) [ 370 ], and about 6 % of newly diagnosed 
cases are familial [ 371 ]. The presenting symp-
toms of chromosome 22q11.2 deletion syndrome 
vary depending on the patients’ age. While devel-
opmental delay and speech issues are the usual 
presenting symptoms in older children and adults, 
cardiac anomalies, hypocalcemia, and infection 
are the major manifestations in infants. Cardiac 
defects are seen in approximately 80 % of 
patients; on the other hand, tetralogy of Fallot 
and interrupted aortic arch type B have a strong 
positive predictive value for chromosome 
22q11.2 deletion syndrome [ 372 ,  373 ]. Palatal 
dysfunction, feeding problems, facial dysmor-
phism, renal anomalies, and gastrointestinal 
manifestations also are seen in most of these 
patients [ 374 ]. Patients are also at an increased 
risk of atopy and autoimmune disease develop-
ment [ 375 ,  376 ]. 

 The immune system is affected in approxi-
mately 75 % of the patients [ 374 ,  376 ,  377 ]. 
The severity ranges from absent thymic tissue 
and no circulating T cells to completely normal 
T-cell counts. Many infants with low T-cell 
counts will demonstrate improvement in the 
fi rst year of life, but after that, T-cell counts 
decline [ 378 ]. Patients may also suffer from 
variable degrees of B-cell defects [ 379 ,  380 ]. In 
a cohort of 687 patients with chromosome 
22q11.2 deletion syndrome, six cases of malig-
nancy were identifi ed. This gives an overall fre-
quency of 0.9 % (900 per 100,000) in this large 
pediatric group of patients, whereas the overall 
risk of malignancy in children under the age 
of 14 years is 3.4 per 100,000 children [ 381 ]. 
As reported in the literature, patients with chro-
mosome 22q11.2 deletion syndrome have a 
clearly increased risk of lymphoma, particu-
larly B-cell lymphoma [ 382 – 385 ]. This is a 
general phenomenon in patients with severe 
immunodefi ciency. There have also been 
reports of myelodysplasia, acute lymphoblastic 

leukemia, SCC, astrocytoma, neuroblastoma, 
hepatoblastoma, renal cell carcinoma, and 
rhabdoid tumors [ 381 ,  386 – 390 ].   

18.9    Concluding Remarks 

 The expanded life expectancy of patients with 
PIDs has increased the overall risk for developing 
cancers. However, the management of cancers in 
such patients remains challenging, in part due to 
the rarity, the increased risk for infection and 
other complications, as well as the rather slow 
pace of scientifi c advancement related to these 
conditions. Continued progress in understanding 
the interplay between chronic Ag stimulation, 
oncogenic viruses, genetic factors, and impaired 
host immunity during tumor formation in various 
PIDs will facilitate refi nement of current and 
emerging therapeutic approaches.     
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19.1            Introduction 

 The most important risk factor for cancer devel-
opment is age [ 1 ]. With increasing age, numerous 
alterations at multiple levels including molecular, 
cellular, organ, and systemic levels are observed. 
On the one hand, cellular senescence seems to be 
an anticancer mechanism related to aging due to 
the combined effects of proliferation and envi-
ronmental factors such as oxidative stress or 
DNA damage and telomere shortening [ 2 ]; on the 
other hand, there are various interactions among 
physiological systems which can favor the devel-
opment and progression of cancers with aging 
where cellular senescence is also a contributor, 
together with hormonal changes [ 2 ]. One of the 
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 physiological systems involved is the immune 
system. After several years of debate, it is now 
clear that the immune system plays a major role 
in the control of the emergence of cancerous cells 
[ 3 ,  4 ]. With aging there are changes in the 
immune system collectively called immunose-
nescence which might adversely affect the anti-
cancer activity [ 5 ,  6 ]. One of the most important 
characteristics of immunosenescence is the 
occurrence of “infl ammaging” [ 7 – 9 ], indicating 
that aging is accompanied by a state of low-grade 
infl ammation which can also contribute to the 
increase in cancer incidence, and, more effec-
tively, combat the emergence of tumor cells. 
Experimental data implicating immune aging at 
various stages of cancer development are accu-
mulating, but there remains much to discover. 
Here, we describe changes in innate and adaptive 
immune systems with age in relation to age- 
related increased cancer development.  

19.2     Immune System and Cancer 

 It took some time to understand how the immune 
system may interact with the cancer at various 
stages of its development [ 10 – 12 ]. Currently, this 
synthesis of ideas developed over the decades 
following the original suggestion of immunosur-
veillance against tumors, known as “immunoed-
iting” that describes all facets of the interaction 
between the immune system and cancer. 
Immunity plays an important role in the host 
defense against tumor development. Despite the 
fact that cancer originates from self cells and as 
such may be only weakly antigenic. This phase 
of the interaction is called the elimination stage 
or true immunosurveillance. At this level the 
immune system involves many different immune 
cells and is effi cient at eliminating cancer cells. 
However, this action can result in the emergence 
of tumor variants and the establishment of a tem-
porary equilibrium between the transformed cells 
and the effi cient immune defense. At this stage, 
the cancer remains clinically insignifi cant. As the 
equilibrium shifts and the continuously growing 
genetically unstable malignant cells generate 
variants, the immune response can become 

 inhibited or exhausted, and resistant cancer cells 
will survive and proliferate as explained by the 
defi cit of the built-in tumor suppressor mecha-
nisms such as cell senescence, DNA damage-
induced apoptosis, etc. Eventually, the tumor 
escapes from immune surveillance and becomes 
clinically apparent. At this stage the tumor is 
orchestrating the behavior of the immune system 
by actively suppressing the immune response 
through the production of various inhibitory sub-
stances, such as NO, IDO, PGE2, and via other 
pathways. At the same time, immune suppressor 
cells including Tregs and MDSCs may become 
dominant, hence inhibiting the tumor-eliminating 
activity of the immune system. Thus, to eliminate 
the nascent tumor cells, organisms need a com-
pletely and fully functioning immune system. As 
we age there are several physiological alterations 
in the immune system ultimately contributing to 
the appearance of cancers with higher incidence 
in the elderly. 

19.2.1     Immunosenescence or 
Immune Aging 

 It is currently well established that the immune 
response is profoundly altered with aging [ 13 ]. 
Most changes concern the adaptive immune sys-
tem, but it is now accepted that the innate immune 
system is also affected [ 14 – 17 ]. Collectively, it is 
very diffi cult to establish whether the changes are 
only detrimental or are at least partly an  adaptation 
to sustain decreasing immune responses by chang-
ing the threshold for immune activation. The pres-
ence of low-grade infl ammation can be part of this 
adaptation process. This phenomenon can over-
come the decreased immune reserve with aging. 
Nevertheless, as the immune response is impli-
cated in cancer immunosurveillance, it can be 
hypothesized that even if the changes in the aging 
immune system may be adaptive in respect to the 
pathogenic environment, they can still contribute 
to the increased incidence of cancers [ 18 – 21 ]. The 
age-related changes in the innate and adaptive 
immune system in view of their implication in 
putative cancer development and progression will 
be discussed here.  
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19.2.2     Innate Immune System 

 The innate immune system plays an essential role 
in cancer immunosurveillance by directly elimi-
nating the tumor cells and maintaining them in a 
quiescent state – but may also favor the develop-
ment and progression of cancers in some ways. It 
should be stressed that interactions between the 
innate and adaptive immune system are recog-
nized as essential for an effi cient adaptive immune 
response. These functions are mediated by vari-
ous innate cells including neutrophils, monocyte/
macrophages, NK cells, and ILL. It is now recog-
nized that most phenotypes and functions of the 
cells of the innate immune system are altered with 
aging, as briefl y summarized in the following. 

19.2.2.1     Neutrophils 
 Neutrophils are the most abundant innate immune 
cells. They are the fi rst to arrive at the site of any 
aggression but are markedly altered with aging [ 17 , 
 22 ]. It is interesting to note that not all their func-
tions are changed with aging. Thus, the number of 
neutrophils and their capacity to adhere at infl am-
matory sites is not altered with aging [ 23 ,  24 ]. It is 
also of note that while most of the effector func-
tions are increased with aging at the basal level, 
they cannot be further modulated [ 25 – 28 ]. The 
most important functions increased at quiescent 
state are the production of free radicals and the pro-
duction of proteases [ 25 ,  26 ] which can be impor-
tant for tumor fi ghting/development. Nonetheless, 
this can also contribute to the low- grade infl amma-
tion observed with aging, which can be detrimen-
tal. In contrast, an acute stimulation of neutrophils 
in the elderly reveals that they are unable to per-
form correctly by increasing chemotaxis, phagocy-
tosis, and intra- and extracellular killing and to stay 
viable and active for a longer functional period 
[ 27 ]. These functions are mediated through the 
activation of specifi c receptors such as pattern rec-
ognition receptors (PRRs), Fcγ, and complement 
receptors. Another important function recently rec-
ognized for the elimination of foreign invaders is 
autophagy. Engagement of different Toll-like 
receptors (TLRs) such as TLR4 and TLR7 has 
been implicated in the activation of macroautoph-
agy [ 29 ], which has been shown to be defective 

with aging [ 30 – 32 ] suggesting altered foreign anti-
gen (Ag) processing. Recently, it has been shown 
that the infl ammasome is a complex of molecules 
activated by specifi c PRRs (NLRs and AIM2) 
responding specifi cally to challenge via the activa-
tion of infl ammatory caspases such as caspase- 1 
and caspase-5. This ultimately results in the pro-
duction of a wide range of cytokines, particularly 
IL-1β [ 33 ], playing a role in infl ammation. There 
are currently no data on how these infl ammasomes 
are affected by aging. After the alterations observed 
in neutrophil functions, it can only be suggested 
that their assembly and function may be altered. 

 The causes of these dysregulated effector 
functions remain unknown, but changes in the 
infl ammatory environment and in the signaling 
pathways may contribute. Neutrophils can also 
be stimulated via their pattern recognition receptors 
by Ags that may be present in higher amounts in 
the periphery of aged individuals, such as DNA 
degradation products, altered proteins, latent/
chronic viral antigen, and/or tumor-derived Ags. 
Recently, one of the most important discoveries 
was of PRRs on the surface of many immune 
cells including neutrophils recognizing pathogen- 
associated molecular patterns (PAMPs) [ 34 ]. The 
ever-growing family of the PRRs now includes 
three main types: the TLRs, the retinoic 
 acid- inducible gene 1 protein (RIG-1)-like heli-
cases (RLRs), and the nucleotide-binding domain 
and leucine-rich-repeat-containing proteins 
(NLRs) [ 35 ]. It is now recognized that they play 
an essential role in many cell functions, including 
neutrophil biology, allowing immune cells to dis-
criminate between self and nonself and acting as 
danger-sensing receptors to alert the organism to 
the presence of microorganisms, transformed 
cells, or damaged cells. 

 There are currently 13 TLRs described with 
different recognition specifi cities and signaling 
pathways leading to well-characterized cellular 
responses [ 34 ]. Bacterial products are recognized 
by TLR2 and TLR4, while TLR3 and TLR7 rec-
ognize intracellular pathogens. Signaling is medi-
ated either by the MyD88 pathway [ 36 ] or by the 
TRIF pathway [ 37 ,  38 ]. Activation of these TLRs 
results in the activation of NF-κB, a transcription 
factor furthering strong cytokine production [ 39 ]. 
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Neutrophils from aged individuals display altera-
tions in the signaling of these TLRs leading to 
their altered functionality [ 14 ,  27 ]. While the num-
ber of these receptors is not signifi cantly changed 
with age, there is a signifi cant alteration in the 
traffi cking of signaling molecules in and out of 
lipid rafts. There is a need for further studies in 
order to truly appreciate the role of TLR in the 
altered functions of neutrophils with age [ 27 ]. 

 Taken together, all available experimental evi-
dence indicate that neutrophils participate in 
infl ammaging but can no longer effectively coun-
teract pathological challenges and as such may 
contribute to the infl ammatory process becoming 
more chronic. Neutrophils also interact with other 
cells of the immune system, in addition to the 
adaptive arm such as B cells for antibody produc-
tion and T cells for effi cient effector functions [ 40 , 
 41 ]. They also participate in the recruitment of 
monocyte/macrophages to the challenge site which 
take over their functions for a longer time period.  

19.2.2.2     Monocyte/Macrophages 
 Monocyte/macrophages have been relatively 
poorly studied in human aging. However, cur-
rently available data indicate that there are pheno-
typic changes associated with altered effector 
functions in older individuals. Recent studies 
characterizing monocytes showed the existence of 
two distinct subpopulations: CD14 ++ (high) CD16- 
and CD14 + (low) CD16 +  [ 42 ]. These subpopula-
tions are very distinct in their surface protein 
expression and their functions. The fi rst 
CD14 ++ (high) CD16 –  subpopulation expresses 
CD62L, CD64, and CCR2 with low levels of 
CXCR1. The second CD14 + (low) CD16 +  lacks all 
these surface markers but expresses high levels of 
CX3CR1. These latter cells are considered to be 
mainly proinfl ammatory as they produce high lev-
els of TNF-α in response to TLR2 and TLR4 liga-
tion. By analyzing the four subpopulations of 
human monocytes, it was found the CD14 +  (low) 
CD16 +  and the CD14 ++ (high) CD16 +  populations 
were increased with aging, whereas the propor-
tion and number of CD14 +  (low) CD16- were 
decreased compared to the young [ 43 ]. 

 The few existing data suggest that monocyte/
macrophages from aged individuals display 

 age- related dysfunction [ 44 – 46 ]. These altera-
tions include a decrease of cell surface TLR 
expression (TLR1 and TLR4), although this fi nd-
ing is controversial [ 31 ,  47 ,  48 ]. Other receptors 
also show an altered expression, such as the 
expression of the important T-cell CD80/CD86 
co-stimulatory receptors which is decreased on 
monocytes upon TLR stimulation [ 49 ].  In vitro  
studies in humans demonstrated a higher proin-
fl ammatory cytokine profi le, especially for IL-6 
and IL-8 production by resting monocytes [ 9 ], 
despite the fi nding that cytokine production fol-
lowing stimulation with LPS is reduced. 
Consistent with this, another recent study found 
that the four monocyte subsets had lower IL-6 
production upon TLR1/TLR2 stimulation, con-
fi rming earlier studies on TLR stimulation [ 50 , 
 51 ], which indicates that monocytes are not a 
homogeneous population and react differently 
depending on the nature of the stimuli. 

 Many years ago, it was shown that several 
 surface receptors such as Fcγ and FMLP had 
altered signal transduction upon appropriate 
stimulation, resulting in altered function [ 25 ,  26 ]. 
Recent data further suggest that in addition to the 
decrease in some TLR expression, the TLR sig-
naling pathways show age-related alterations 
[ 27 ] linked to altered chemotaxis as evident by 
the reduced number of infi ltrating macrophages 
in wounds of elderly humans. Alteration in the 
MAPK signaling pathways including p38 MAPK 
and ERK1/2 MAPKs has been reported in human 
monocytes with aging. 

 Macrophages from elderly people produce 
more prostaglandin E2, which suppresses T-cell 
activation via decreased IL-12 production [ 52 ]. 
Furthermore, it was demonstrated that phagocy-
tosis, free radical production, and chemotaxis 
were reduced in monocytes/macrophages from 
healthy aged subjects [ 53 ]. No data seem to exist 
regarding age-related changes in the clearance of 
apoptotic cells, known as an important macro-
phage function. We can only speculate that con-
sidering the functional changes described above 
and the “infl ammaging,” the clearance of apop-
totic cells may be impaired with aging. Decrease 
in some receptors, as well as altered signaling 
leading to changes in chemotaxis and phagocytosis, 
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supports the hypothesis that apoptotic cells are 
not cleared effi ciently. This could lead to their 
persistence in becoming proinfl ammatory and 
sustaining the quiescent state stimulation of 
monocyte/macrophages, fi nally contributing to 
the process of “infl ammaging.” Furthermore, 
these data confi rm that, like neutrophils, mono-
cytes are to some degree activated at the basal 
state, but cannot be further stimulated through 
their surface receptors. This baseline activation 
state may be very important to maintain their 
functions for combating/constraining constant 
and chronic challenges but insuffi cient for elimi-
nating new infections. Therefore, it seems that 
neutrophils and monocytes are probably both 
contributing to the low-grade infl ammation with 
aging which not only impairs the immune envi-
ronment but also creates a vicious circle which 
maintains their functioning at an adequate level 
whereas impairing their contribution to combat-
ing new invaders, including tumor cells. Taken 
together, all the experimental data available sug-
gest that with aging, most monocyte/macrophage 
functions are changed with age, leading to altered 
tumor cell and pathogen clearing and altered reg-
ulation of the adaptive immune response and the 
infl ammatory process resulting in chronic low- 
grade infl ammation and ultimately to increased 
age-related diseases such as infections, cardio-
vascular disease, and cancers.  

19.2.2.3     Dendritic Cells 
 Dendritic cells (DCs) are the most potent 
antigen- presenting cells (APC) that can prime 
specifi c T cells. There are several types of DCs 
[ 54 ]: Plasmacytoid dendritic cells (pDCs) are 
important in host defense as they are one of the 
fi rst cells to produce type I interferon, hence ini-
tiating several other responses, including NK 
cell activation which amplifi es host response 
[ 55 – 57 ]. The second type of DC is the conven-
tional or myeloid-derived dendritic cell (mDC), 
regarded as the most important APC for T-cell 
activation. They express TLRs and C-type lec-
tins for the detection of Ags and subsequently 
produce IL-12, IL-15, and IL-18. IL-12 is essen-
tial for induction of Th1 cell responses which 
will induce cytotoxic T lymphocyte responses to 

clear virus-infected cells [ 39 ]. They can also 
activate NK cells, which directly eliminate tumor 
cells. In addition to presenting Ag, they also provide 
co-stimulatory signals and cytokines for optimal 
T cell priming, differentiation, and proliferation 
[ 58 ]. Whether the numbers of DCs change dur-
ing aging is still controversial. 

 There are several studies demonstrating alter-
ations in pDC function in aged humans including 
reduced type I interferon production following 
TLR stimulation, e.g., via TLR7 and TLR9. It has 
been suggested that the increased basal oxidative 
stress related to aging could be the underlying 
cause of the decreased upregulation of the inter-
feron regulatory factors by TLRs [ 59 ,  60 ]. In con-
trast, mDCs from aged humans showed increased 
expression of CD86 signaling, another sign of 
activation even in the “quiescent” state. However, 
these fi ndings have not been corroborated by 
 in vitro  studies. Nonetheless, they do seem to 
retain the capacity to produce  proinfl ammatory 
cytokines and to activate CD8 +  T cells [ 61 ], as 
well as to induce IL-17 production, which is 
known to recruit neutrophils [ 62 ]. DCs have also 
been reported to have a decreased ability in naïve 
CD4 +  T cell activation via Ag presentation [ 63 , 
 64 ], attributed to decreased PI3K activity, a major 
pathway mediating cell function. Reduced PI3K 
was implicated in both age-related reduced DC 
migration and also as a negative regulator of TLR 
signaling. Thus, the global result of this decreased 
PI3K activation is a higher stimulation of the 
NF-kB pathway further contributing to “infl am-
maging” due to greater production of proinfl am-
matory cytokines such as IL-6 and TNF-α in the 
basal state [ 63 ]. DCs have reduced Ag processing 
capacity concomitant with the altered expression 
and function of their co-stimulatory molecules. 

 Natural killer (NK) cells are one of the most 
important antitumor players in the innate immune 
system [ 10 ]. The NK cell population is now also 
divided into different subpopulations; those with 
a CD16-CD56 +  or CD16 + CD56 ++  phenotype pro-
duce high amounts of IFN-γ and are among the 
most cytotoxic subtypes [ 65 ]. Subset distribution 
changes with aging, and the number of CD56 dim  
NK cells increases, while CD56 bright  cells decrease 
[ 66 ,  67 ]. Furthermore, the expression of CD57 is 
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increased on CD56 dim  NK cells from elderly 
subjects, representing a highly differentiated 
subset of NK cells. These observations were 
recently extended by the fi nding that CD94 
(member of the C-type lectin family) and KLRG1 
expression on NK cells was signifi cantly 
decreased in elderly subjects. Although the exact 
consequence of this decrease is not known, it was 
hypothesized that the decreased expression of 
these surface markers induces unregulated cell 
lysis contributing to chronic infl ammatory condi-
tions. Moreover, the same study revealed the 
presence of a greater proportion of IFN-γ-positive 
CD3 - CD56 bright  NK cells with aging. This may 
suggest a shift to a more cytotoxic, cytokine-pro-
ducing and potentially immunomodulatory NK 
cell phenotype occurring as a mechanism to com-
pensate for the decreased proportion of CD56 bright  
NK cells. Aging also infl uences the dynamics of 
NK cells [ 65 ]. NK cells from the elderly have a 
signifi cantly decreased proliferation and produc-
tion rate, and there is an increased proportion of 
long- lived NK cells which can be related to the 
increased proportion of CD56 dim  NK cells. The 
increased expression of CD57 may also suggest 
that the NK cells of elderly people are late-stage 
or terminally differentiated, like many of their 
CD8 +  T cells [ 68 ]. Taken together, the data indi-
cate that although the number of NK cells often 
increases with age, there is a profound redistribu-
tion of NK cell subsets with altered receptor 
expression, explaining the functional alterations 
leading either to decreased direct defense against 
virus-infected and tumor cells and/or decreased 
regulatory activity for other components of the 
innate immune response, ultimately resulting in 
decreased modulation of the adaptive immune 
response. Recently, it has been shown that NK 
cell activity is also under the control of IL15Rα/
IL15, released by nonimmune cells such as 
muscle cells, which, by its decrease with aging 
can also contribute to these NK cell functional 
alterations [ 69 ]. 

 Studies in very healthy elderly populations 
revealed that the total NK cell number tends to 
increase with age, while their cytotoxicity is not 
signifi cantly affected [ 70 ]. However, other stud-
ies in unselected elderly populations revealed 

that decreased NK cell functions with aging were 
associated with a higher incidence of infectious 
diseases [ 71 ]. IL-2-induced NK cell proliferation 
is decreased with aging and many cytokines and 
chemokines produced by NK cells, such as IL-2, 
IL-8, are also decreased but with maintenance of 
IFN-γ production [ 72 ]. This decreased production 
of cytokines contributes to the altered activation 
of macrophages with aging, resulting in decreased 
microbicidal and tumoricidal activities. Thus, 
NK cells of elderly people show decreased prolif-
erative responses to cytokines; higher total cyto-
toxic capacity when stimulated with certain 
cytokines including IL-2, IL-12, or IFN-γ; and a 
greater sensitivity to stimulation via CD16. The 
cytotoxic activity of NK cells depends on whether 
the whole NK cell population or activity per cell 
is considered. On a per cell basis it is decreased, 
which might be important for protection against 
developing cancer cells. 

 Furthermore, other receptors involved in the 
cytotoxic activity of NK cells including members 
of the natural cytotoxicity receptor family, 
namely, NKp30 and NKp46, decrease with aging 
[ 73 ]. NKp30 has also been shown to be important 
in the regulation of the cross-talk between NK 
cells and DCs. By this interaction the NK cells 
can activate the DCs to more effi ciently prime 
T cells. DCs release Th1 cytokines which further 
enhance NK activation. Thus, NK cells can mod-
ulate the adaptive immune response against 
virus-infected or tumor cells via this interaction 
with DCs. 

 NKT cells are innate T lymphocyte population 
that recognize lipid Ags presented in the context 
of the CD1d molecule found on monocytes, 
macrophages, and DCs [ 74 ]. They can increase 
the functions of NK cells. NKT cells are rapidly 
recruited from the circulation during acute 
infl ammation and interact with various APCs 
expressing the CD1d molecule. Recently, it has 
been shown that NKT cells are able to recruit 
neutrophils and activate them via their IFN-γ 
secretion [ 75 ]. Thus, NKT cells may play an 
important regulatory role in the acute phase of a 
microbial and/or tumor cell challenge by inter-
acting with various APCs via CD1d lipid anti-
genic presentation and secretion of different 
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cytokines. There are only a few reports on NKT 
cell functioning in the elderly [ 72 ]. However, it 
can be hypothesized that the altered activation of 
APCs via their TLR receptors will create an unfa-
vorable milieu for NKT activation either directly 
or by their cytokine secretion. 

 IL-17 is mainly secreted by γδ T cells, Th-17, 
and NKT cells [ 76 ]. This cytokine acts indirectly 
on neutrophil survival through stimulation of the 
secretion of G-CSF. IL-17 is also released by 
neutrophils themselves and reinforces their 
survival and recruitment [ 77 ]. It can also promote 
tumor vascularization by angiogenic factors. 
These immune cells as well as IL-17 itself may 
have pro- and antitumor activities; currently it is 
not known what determines this dual effect on 
cancer. However, their differentiation in various 
subtypes, expression of specifi c receptors, and 
production of various cytokines is likely to be 
determined by and in turn infl uence the tumor 
microenvironment [ 75 ]. How aging affects γδ 
T cells has not been well investigated to date.   

19.2.3     Adaptive Immune System 

 Although there are changes in the innate immune 
response with aging as described above, it is still 
thought that the most important and relevant 
changes occur in the adaptive immune response. 
Among the cells composing the adaptive immune 
response, the T cells are thought to be the most 
affected; in addition, more and more data are 
emerging showing that B cells are also changed 
with aging. Nonetheless, it is well recognized that 
some of the most marked immune alterations 
associated with aging concern T lymphocyte sub-
populations and functions [ 13 ]. The most recog-
nized model for T-cell subpopulations identifi es 
naïve (CD45RA +  CCR7 + ), central memory T CM  
(CD45RA −  CCR7 + ), effector memory T EM  
(CD45RA -  CCR7 - ), and T EMRA  (CD45RA +  CCR7 − ) 
cells. Among these subpopulations, the highly dif-
ferentiated populations of EM (effector memory: 
 CCR7-, CD28-, CD27-, CD45RA- ) and EMRA-
like CD4 and CD8 T cells (T effector memory 
cells re-expressing CD45RA) have been shown to 
accumulate in older humans [ 13 ]. Currently, the 

suggested reason for this accumulation is a chronic 
antigenic stimulation especially caused by chronic 
viral infections (predominantly CMV); however, 
other chronic infl ammatory stimulations related to 
specifi c diseases may also contribute (including 
diabetes mellitus type 2, atherosclerosis, and pos-
sibly Alzheimer disease) [ 78 – 81 ]. Interestingly, 
there are some reports showing that these cells 
also accumulate in cancer, such as at the early 
stage of breast cancer [ 82 ] and in renal carcinoma 
[ 83 ]. Furthermore, they also express the character-
istic inhibitory surface receptors of exhausted and/
or senescent cells like KLRG1, CD57, PD-1, and 
CTLA-4, as well as having reduced replicative 
capacity and decreased survival after TCR activa-
tion [ 84 ]. The role of these cells in cancer develop-
ment is still questionable. Whether they are 
metabolically inert as senescent cells with short 
telomeres and decreased telomerase activity or 
they are metabolically active and able to secrete 
various proinfl ammatory cytokines and contribute 
to cancer development is a matter which is yet to 
be elucidated. The cause of this exhaustion is not 
known with certainty, but could either be due to 
direct antigenic stimulation by viral Ags such as 
CMV or they could be innocent bystanders 
affected by the chronic low-grade infl ammatory 
environment induced by such chronic antigenic 
stimulation caused by constant basal proinfl am-
matory cytokines such as TNF-α produced by the 
innate immune system [ 85 ]. It was shown that p38 
has a role in cell activation, proliferation, and cell 
cycle progression [ 86 ,  87 ]. TNF-α can further acti-
vate p38, thus contributing to immunosenescence 
[ 85 ]. Interestingly, p38 is constitutively phosphor-
ylated in EM and EMRA T cells, contributing to 
their reduced telomerase activity. Thus, the proin-
fl ammatory environment causing hyperphosphor-
ylation of signaling molecules, such as p38, may 
infl uence the development of T-cell subpopula-
tions as found in aging and infl ammatory diseases. 
Together, these changes may be well tumorigenic 
by altering adequate tumor-specifi c immune 
response; they may be good targets for therapeutic 
modulation, as recently demonstrated so encour-
agingly for PD-1/PDL-1 [ 88 – 90 ]. Considering 
these changes, it is reasonable to assume that an 
alteration in T lymphocyte activation is a central 
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issue in the age-related modifi cations of the 
immune response. Currently, the most important 
paradigm underlying these changes is the repetitive 
antigenic stimulation over the life span that could 
lead to partial unresponsiveness (immune exhaus-
tion) and accumulation of memory cells. This has 
been shown for both CD4 +  and CD8 +  T cells with 
distinct senescent status, surface molecule expres-
sion, telomere length, and functionality. This was 
further supported by a longitudinal study, the 
OCTA/NONA study, resulting in the development 
of the Immune Risk Profi le integrating several of 
these parameters [ 91 – 94 ]. It is of note that as 
appealing as the CMV paradigm may appear, it is 
not yet proven [ 95 – 97 ]. It is likely that other fac-
tors could also contribute to causing the changes in 
the T cell compartment of the immune system 
with aging including the slight but detectable 
amounts of the proinfl ammatory cytokines con-
comitant with increased reactive oxygen species 
found in this basal proinfl ammatory state. 
Moreover, the intracellular T cell redox environ-
ment infl uences T cell function in aging [ 98 ,  99 ] 
which will be discussed later. Concomitant with 
these phenotypic changes, the functions of T cells 
are also altered, and there is increasing evidence to 
implicate altered activation in the decreased T cell 
functions with increasing age. 

 Studies of elderly humans and animals have 
revealed that one function of T cells most notice-
ably altered is the production of interleukin-2 
(IL-2) compared to younger counterparts [ 100 ]. 
It can be hypothesized that defects or alterations 
in the proximal events during T cell activation 
will strongly affect the effi ciency of immune 
responses [ 100 ]. Thus, appropriate signal trans-
duction cascades trigger an appropriate T-cell 
response, whereas alterations in the early events 
of T cell signaling will result in less effective, 
altered overall responses [ 101 – 104 ]. The most 
important changes occur in CD4 +  T cells result-
ing in decreased production of IL-2 and clonal 
expansion. Although there are no changes in 
TCR number at the cell surface, the number of 
CD28 co-stimulatory molecules decreases with 
aging, especially on CD8 +  T cells. One of the 
most important driving forces to decrease surface 
CD28 expression is TNF-α. This cytokine can 
also activate p38 which plays an essential role in 

fi broblast senescence [ 85 ]. Nearly all of the 
signaling pathways associated with TCR activa-
tion or IL-2 receptor responses are found to be 
altered with aging [ 105 ,  106 ]. There is an alteration 
in the early steps of T-cell activation including 
protein tyrosine phosphorylation, calcium mobi-
lization, and the translocation of PKC to the 
plasma membrane. In addition, subsequent steps 
of the signaling pathways including the Raf-Ras-
MAP kinase pathway are impaired. Decline in 
proximal and intermediate events of transmem-
brane signaling leads to the decreased activity of 
transcription factors, especially NF-kB and 
NF-AT. Not only activation signaling but also the 
negative regulatory network is altered with aging 
[ 106 ]. This altered signaling followed by 
decreased activation may be caused by a differen-
tial infl ammatory state and subsequent T cell 
phenotypic and functional change. 

 There are also age-related changes in the B 
cell compartment [ 107 – 111 ]. Production of B 
cells is altered with aging at different levels, 
resulting in decreased naive B cells. In addition, 
an age-dependent loss of diversity of B cell 
receptors is also observed which has been corre-
lated to poor health and may refl ect expanded 
clones of memory B cells. These changes may 
also lead to a shift in antibody specifi city and the 
increase of autoantibodies. These alterations in 
the B cell compartment may also favor the emer-
gence of cancers related to aging. 

 Taken together, aging is associated with an 
exhaustion of the adaptive immune response, 
especially by rendering T cells dysfunctional and 
unable to appropriately respond to receptor 
ligation. This, together with B cell alterations, 
contributes to the establishment of a chronic 
infl ammatory state, leading to higher susceptibility 
to diseases such as cancer and increased mortal-
ity predicted by the Immune Risk Profi le [ 91 ].  

19.2.4     Interaction Between Innate 
and Adaptive Immune 
Responses: Effect of Aging 

 It is evident that if any component of the immune 
response is not functioning, the outcome cannot 
be optimal. Thus, the fi rst line of defense of the 
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organism, the innate immune response, is not 
only a powerful eradicator of foreign invaders but 
is also responsible for the activation of the adaptive 
immune system for long-lasting and highly spe-
cifi c immunity by Ag specifi c, clonally expanded 
B and T lymphocytes. The reduced functioning 
of both monocytes/macrophages and DCs with 
aging will lead to reduced Ag presentation and 
activation of T cell immune responses by these 
APCs. In addition, neutrophils secrete many mol-
ecules such as HMG-B1 and alarmins which can 
directly induce DC maturation or the activation 
of both the innate and the adaptive immune 
response. It is possible that the reduced neutro-
phil function with aging will also affect this 
aspect of their role in immune response. 

 A very effi cient network exists among the dif-
ferent cells participating in the innate immune 
response aiming to eradicate invaders, restore 
homeostasis by resolving acute infl ammation, 
and ultimately to effi ciently activate the adaptive 
immune response [ 16 ]. The individual function-
ing of the innate immune cells was shown to be 
dysregulated with aging either because of 
receptor- driven signaling pathway alterations or 
because of an age-related proinfl ammatory 
milieu sustained by cytokines and oxidative 
stress [ 22 ]. These alterations will induce a dis-
ruption in their functioning and in their mutually 
supporting network resulting in ineffi cient eradi-
cation of the challenge, contribution in chronic 
antigenic stimulation, and a chronic low-grade 
infl ammation. On the other hand, they ultimately 
lead to the altered and inadequate activation of 
the adaptive immune response. 

 One of the important central players of the 
cooperation of the innate and adaptive immune 
response is TNF-α. This factor is at center stage 
of the cytokines secreted by various cells of the 
innate immune system, such as monocytes stim-
ulated by many external or internal agents lead-
ing to modulation of the T-cell response either 
to enhance it or dampen it via downregulation of 
CD28 or exhaustion of T cells [ 112 ]. TNF-α 
production is increased in oxidative stress, 
chronic antigenic stimulation, CMV infection, 
and visceral adiposity [ 113 – 115 ]. Thus, the reg-
ulation and control of this vital molecule to 
maintain it under a benefi cial threshold may be 

the key to aging and age-related pathologies 
such as cancer. 

 Alterations in the T-cell compartment can also 
trigger changes in the innate immune system 
because the accumulation of memory and termi-
nally differentiated/exhausted T cells secreting 
more proinfl ammatory cytokines and chemo-
kines will chronically stimulate and attract the 
innate immune cells. The increased susceptibility 
to apoptosis of certain T-cell subsets like CD4 +  
naive T cells may also chronically contribute to 
the stimulation of innate cells. 

 All these data demonstrate that with aging, 
alterations in both arms of the immune system, as 
well as in their effi cient cooperation, contribute 
to altered protection against different challenges 
and participate in the development and mainte-
nance of age-related low-grade infl ammation and 
increased susceptibility to diseases such as can-
cer [ 9 ]. The same interaction between the innate 
and adaptive immune response may either favor 
the eradication or the progression of cancers 
depending on their state of activation, the pheno-
type repartition, and the microenvironment.   

19.3     Infl ammation Aging 
and Oxidative Stress 

 The relationship between chronic low-grade 
infl ammation related to immunosenescence and 
age-associated diseases, such as cancer, remains 
to be elucidated. It is of note that alterations of 
certain proinfl ammatory (IL-6, TNF, IL-1) as 
well as anti-infl ammatory cytokines (IL-10, IL-4) 
are observed at greater frequencies in age- 
associated diseases compared to healthy aging [ 9 ]. 
Thus, age-related immune dysregulation manifested 
essentially by a basic chronic low- grade infl am-
mation and a suppression of the adaptive response 
may eventually lead to the development of 
clinically signifi cant pathological conditions 
including cardiovascular disease, dementia, dia-
betes mellitus, osteoporosis, and cancer [ 8 ]. Age-
related low-grade infl ammatory process seems to 
accelerate the progression of chronic diseases, as 
well as having an immunosuppressive effect on 
cellular immune responses by contributing to 
their exhaustion. The question arises as to 
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whether this proinfl ammatory activity is the 
 primum movens  for disease development or just a 
secondary reaction following latent chronic 
infl ammatory diseases. Moreover, this low-grade 
infl ammation may also represent an adaptive 
mechanism to maintain an acceptable level of 
response against cells including nascent tumor 
cells. However, when increasing over a certain 
level, it could become predominantly detrimental 
by favoring their proliferation and the clinical 
appearance of cancer. 

 What are the molecular events underlying 
infl ammaging? It seems that NF-kB is at the cen-
ter stage of metabolic pathways, as it controls the 
secretion of proinfl ammatory molecules, such as 
cytokines, chemokines, MMPs, COX2, and 
iNOS [ 116 ,  117 ]. NF-kB is also activated by 
many of these molecules via various pathways 
such as the MAPK and the IP3/Akt pathway. As 
might be expected from knowledge of the path-
ways leading to their development, NF-kB activ-
ity is highest in CD8 +  TEMRA cells [ 118 ]. 
Moreover, the FOXO family of transcription fac-
tors plays a role in longevity, cell survival, and 
proliferation via the modulation of NF-kB by 
free radical production [ 119 ]. Thus, NF-kB mod-
ulating pathways are heavily implicated in the 
occurrence, as well as in the perpetuation of this 
low-grade infl ammation. 

 Thus, what is the relation between infl ammag-
ing and free radicals which have been shown to 
increase with aging as a result of increased oxida-
tive stress [ 120 ]? The degree of oxidative stress is 
the result of the disequilibrium between the pro-
duction of ROS and endogenous antioxidant spe-
cies. Free radicals are produced as by-products of 
aerobic respiration [ 121 ]. They are benefi cial for 
signaling, enzyme activation, and microbial elim-
ination, but over a certain threshold, they may 
become detrimental by causing mutations in 
DNA and oxidation of macromolecules [ 122 ]. 
The role of free radicals became the basis of one 
of the leading theories of aging and consequently 
has been related to many age-associated diseases 
including cancer [ 123 ,  124 ]. In this context, it has 
been known for many years that age-related 
increased ROS production due to mitochondrial 
dysfunction may cause DNA damage and favor 

cancer development [ 125 ]. Recently, it was 
recognized that local infl ammatory processes 
such as in the intestine and stomach may lead to 
the development of cancers. However, the rela-
tionship between oxidative stress and “infl am-
maging” is less well established. When innate 
immune cells are chronically activated, they 
continuously release free radicals which can con-
tribute to tumorigenesis directly as well as via the 
alterations they cause to the adaptive immune 
system, as already mentioned [ 126 ]. It is of note 
that free radicals can create a vicious circle by 
maintaining (through TLRs and infl ammasome 
activation) the production of free radicals by 
other innate immune cells such as neutrophils, 
DCs, and monocyte/macrophages which in turn 
reactivate them. Thus, free radicals directly and 
indirectly via oxidatively modifi ed proteins or 
lipids activate NF-kB leading to proinfl ammatory 
cytokine production. Similarly these free radicals 
and lipid peroxides also activate the Nalp3 
infl ammasome. These events lead to low level of 
activation of innate cells at the basal level and 
participate in its maintenance. 

 Oxidatively modifi ed proteins are also con-
tinuously produced as a result of the low-grade 
infl ammation [ 127 ,  128 ], accumulating in 
immune cells, especially in T cells, which interfere 
with their functioning. Many proteins including 
TCR, CD45, and enzymes are targeted by free 
radicals and become carbonylated or glycoxy-
dated. This accumulation is further enhanced by 
decreased proteasome activity to eliminate these 
altered proteins [ 129 ,  130 ]. Thus, the free radicals 
create an altered cellular environment favoring 
the activation of innate cells and decreased 
functioning of adaptive immune cells. 

 Furthermore, these free radicals will affect the 
surrounding cells in infi ltrating tissues by inducing 
cell proliferation, evasion of apoptosis, tissue 
invasion, angiogenesis, autophagy, and altera-
tions in macromolecule functions either by gain 
of functions or by loss of functions. All these 
activities may contribute to some extent of 
tumorigenesis. Free radicals mediate these func-
tions by stimulating different molecular pathways 
including the Ras, MAPK, PI3K, mTOR, and 
NF-kB pathways. Consequently, ROS also alter 

T. Fulop et al.



387

Nrf2 activity which is considered to be the master 
regulator of the antioxidant response [ 126 ]. Nrf2 
modulates a large number of genes that control 
several processes including immune and infl am-
matory responses [ 131 ]. We have shown that with 
T cell aging, the Nrf2 is altered [ 22 ], which is 
also hypothesized in innate immune cells, and 
further contributes to the infl ammatory process 
and consequently to carcinogenesis. Thus, the 
immunosenescence associated infl ammaging 
contributes to cancer development by many 
pathways, especially by t increased basal free 
radical production, which in turn further activates 
these cells by propagating infl ammatory signal 
by free radicals.  

19.4     Immunosenescence 
and Cancer 

 A causative connection between infl ammation 
and some cancers is well established [ 132 ]. 
Infl ammation in its uncontrolled state highly 
favors tumorigenesis by increasing genomic 
instability via the production of free radicals, 
persistence of proinfl ammatory cytokines and 
chemokines and the subversion of Treg, γδT cell, 
and MDSC functions, as well as through angio-
genesis [ 133 ]. The apparent disequilibrium 
between the retention of a reactive innate immune 
response at basal state and the more severely 
altered adaptive immune response with aging 
leads to the presence of the low-grade infl ammatory 
status commonly present in the elderly, termed as 
“infl ammaging” as discussed above. Although 
the cause of this increased basal infl ammatory 
state is certainly multifactorial, it is likely that 
one of the most important causes is chronic 
antigenic stimulation concomitant with increased 
free radical production related to oxidative stress. 
The Ag source can be exogenous, as with persistent 
viral infections such as CMV [ 95 ] and subclini-
cal bacterial infections, or endogenous like the 
various posttranslationally modifi ed macromole-
cules such as DNA or proteins which can be 
modifi ed by oxidation, acylation, or glycosyl-
ation. Such altered molecules can stimulate the 
innate immune response, particularly macro-

phages via TLRs, thus contributing to a sustained 
proinfl ammatory state which is measurable in 
some circumstances via increased circulating 
levels of IL-6, IL-1β, or TNF-α. Thus, aging is 
accompanied by a chronic low-grade infl amma-
tory process and by many other changes, some 
related to infl ammaging, some independent 
thereof. Hence, this may be the price that has to 
be paid for maintaining immunosurveillance 
against persistent pathogens or endogenous 
stressors such as cancer cells. All these changes 
contribute to a decreasingly effective immune 
environment, probably unable to appropriately 
respond either to new Ags such as represented by 
the continuous risk of exposure to new pathogens, 
or to chronic persisting Ags such as those from 
CMV or tumor cells during the life span. 
Therefore, infl ammaging related to immunose-
nescence is likely to be one of the most important 
general driving forces for cancer development. It 
is of note that every individual alteration at all 
cellular and molecular levels also contributes to 
increased tumorigenesis. The most important ele-
ments for immunosenescence are the decreased 
neutrophil, macrophage, and DC functions but 
maintaining uncontrolled proinfl ammatory cyto-
kine production, as well as the decreased specifi c 
adaptive immune response by T cells to tumor 
Ags. TNF-α seems to play a particularly impor-
tant role as it is secreted mainly by immune cells, 
in contrast to IL-6. It is the consequence of and 
the support for infl ammaging via NF-kB and 
AP-1 signaling. 

 Furthermore, an important aspect of the 
infl ammatory response is the production of free 
radicals which leads to the activation of various 
signaling cascades resulting in effector functions 
and apoptosis as well as in the further production 
of proinfl ammatory cytokines. They also increase 
the possibility of genomic instability and epigenetic 
deregulation leading to enhanced mutations [ 134 ]. 
These proinfl ammatory cytokines secreted by the 
cells of the innate immune system are also able to 
induce the production of free radicals. Thus, the 
deregulation of innate immune responses strongly 
contributes to age-related chronic infl ammatory 
processes and associated pathologies, as well as a 
functionally neutral consequence of the aging 
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process. As a result, its modulation could be 
benefi cial in the treatment of these diseases. 

 Moreover, the deregulated immune response 
with aging also produces directly pro-tumor mol-
ecules as well as inducing the accumulation of 
immunosuppressive immune cells either systemi-
cally or in the tumor microenvironment. Data 
suggest that pro-tumor molecules such as NO, 
indoleamine-2,3-dioxygenase (IDO), TGFβ, 
IL-10, VEGF, PD-1 are increasing with age, as 
well as MDSCs ( CD11b+, CD33+, CD34+, CD14-

HLADR- ) under the high proinfl ammatory cyto-
kine micro- and macroenvironment, and Tregs 
which suppress the antitumor activities of T cells, 
NK, and NKT cells [ 18 ,  21 ]. These changes com-
pletely alter tumor-immune interactions neces-
sary for cancer eradication or at least for the 
maintenance of the equilibrium stage. 

 Finally, altered immune network functioning 
also favors tumorigenesis. The altered presenta-
tion of antigens by DC and macrophages decreases 
the activation of T cells, the functions of which are 
further altered by oxidative stress and proinfl am-
matory cytokines produced by innate immune 
cells. In contrast, the altered T cell phenotype and 
functions are further increasing the innate cell 
functions. Thus, a vicious circle is created leading 
to the appearance of tumor cells.  

19.5     Modulation 

 Due to our increased understanding of tumor- 
immune interactions now, the patient’s immune 
system, even in nonimmunological treatments, 
like radiotherapy, should be taken into consid-
eration [ 12 ,  135 ], in order to achieve long-term 
tumor control or complete tumor elimination. 
Thus, the patient’s immune system needs to 
become integral to cancer therapy. It is also 
clear that immunotherapies are mostly used in 
late- stage cancers when the immune system is 
already subverted. Thus, immunotherapy 
should be initiated when the immune system is 
still able to react. 

 Dendritic cells (DCs) possess the specialized 
potential to present exogenously derived anti-

gen to cytotoxic T lymphocytes in order to elicit 
an immune response. This process, termed 
cross- presentation, is crucial for the generation 
of immune response to viruses and tumors and 
in autoimmune disease. The ability of DCs to 
cross- present exogenous Ag to CTLs makes 
them an attractive target for exploitation in 
immunotherapy. In recent years, signifi cant 
advances have been made in understanding the 
mechanism of cross-presentation and the DC 
subsets involved. The recent discovery of human 
cross-presenting DC has given this fi eld a new 
lease of life relative to cancer immunotherapy 
[ 136 ]. Such an example is the injection of mono-
clonal antibodies (mAbs) which not only 
directly eliminate tumor cells but also result in 
the release of new tumor antigens by killing 
tumor cells. These can then participate in cross-
presentation to T and B cells, thus amplifying 
the primary treatment [ 137 ]. 

 Modern immunotherapy clearly needs to con-
sider many aspects of tumor biology and associ-
ated immune reactions. The heterogeneity of 
tumors and their microenvironment combined 
with the diversity of immune cells/molecules 
will need complex approaches to immunother-
apy. The new paradigm is to use autologous 
tumor cells for vaccine and/or in combination 
with personalized peptide vaccination which 
would lead to eradication of tumors or at least to 
the retardation of their development and metas-
tasis formation [ 21 ]. In an aging/geriatric envi-
ronment, certain characteristics specifi c to 
elderly subjects, such as functional status and 
comorbidities, should defi nitely be further 
considered.  

19.6    Concluding Remarks 

 There is no doubt that aging is the main risk fac-
tor for the development of many diseases includ-
ing cancers, type 2 diabetes, and cardiovascular 
and neurodegenerative diseases. Understanding 
the mechanisms regulating aging is the most 
important for the comprehension of the occur-
rence of these different diseases. The low-grade 
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infl ammation seen with aging can be a common 
factor linking aging to these diseases; thus, it is 
strictly  deleterious. However, from a different 
perspective considering infl ammaging as a con-
sequence of immunosenescence, it may be 
essential to survival probably ensuring that 
elderly can probably react to challenge much 
more easily and rapidly than they would be able 
to with an immune response similar to young 
people. In fact this could be an evolutionary 
adaptation to maintain a response without losing 
control if the immune system would have a 
youngish function in an aging milieu. There are 
several examples, such as the increase in the 
number of NK cells and CMV-specifi c late dif-
ferentiated CD8 +  T cells, as well as their IFN-γ 
secretion [ 70 ,  95 ,  96 ]. Therefore, understanding 
the interaction between this low-grade infl am-
mation and its shifting toward pathogenic path-
ways, either in cells or their microenvironment, 
can provide the key to unveiling why aging is the 
most important risk factor for these diseases. It is 
also evident that a unifying picture starts to 
emerge implicating genomic instability, metabo-
lism, and immunity in the development of cancer 
and other infl ammation- related diseases. 
However, the challenge is to discover why dif-
ferentiation toward individual diseases occurs 
under the presence of the same elements. 
Notably, the occurrence of each disease predis-
poses to other conditions as well; the best exam-
ple would be diabetes, recognized to be a very 
high risk for the development of cancer or rheu-
matoid arthritis, as well as cardiovascular dis-
eases. The problem is to intervene in the aging 
process to maintain its reactivity toward different 
challenges and at the same time decrease the risk 
for the development of disease. Thus, under-
standing the real mechanism underlying aging 
may lead to delay in the onset of these patholo-
gies, ultimately extending the healthiest life span 
possible with aging.     
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20.1            Introduction 

 Changes in immunologic pathways have a lead-
ing role in all stages of cancer. Proinfl ammatory 
cytokines such as tumor necrosis factor-α (TNF- 
α), interferon-γ (IFN-γ), and interleukins 1 and 6 
(IL-1 and IL-6) are important mediators of cancer 
complications such as cachexia [ 1 ]. A tumor can 
trigger the release of cytokines such as IL-6 [ 2 ], 
which is associated with an increase in lipolysis 
and proteolysis, which in turn affect the appetite 
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and host  neuroendocrine axis and induce anorexia 
and cachexia [ 2 ,  3 ]. Several neu ropeptides such 
as neuropeptide Y (NPY) and  adipokines such as 
leptin have been implicated in the pathogenesis of 
cancer cachexia syndrome [ 3 ,  4 ]. NPY receptors 
appear to be resistant to NPY, and production of 
NPY appears to be decreased in cancer cachexia. 
This hypoleptinemia may play a role in increased 
insulin resistance seen in cancer patients [ 5 ,  6 ]. 
Nuclear factor-kappa B (NF-κB) plays an impor-
tant role in cancer development and may be infl u-
enced by proinfl ammatory chemokines to activate 
infl ammatory response genes and regulate cell 
proliferation and apoptosis [ 7 ]. NF-κB activa-
tion also promotes the cyclooxygenase-2 (COX2) 
cascade, leading to increased oxygen free radical 
synthesis and cell damage [ 8 ,  9 ]. Thus, an imbal-
ance of cytokine production and neuropeptide and 
adipokine dysfunction may be a major cause of 
the nutritional consequences of cancer.  

20.2     Role of Nutrition 
in Predisposition of Cancer 
from an Immunologic View 

 One of the known risk factors for cancer is obesity, 
especially with the modern lifestyle and low physi-
cal activity [ 1 ]. Dietary patterns have a signifi cant 
effect on the cytokine profi le; for instance, the high 
intake of saturated fats, especially in obese people, 
leads to infi ltration of adipose tissue by macro-
phages producing IL-1b, IL-6, and macrophage 
inhibitory factor (MIF) [ 2 – 4 ]. Moreover, a decrease 
in the secretion of anti-infl ammatory adipokines 
such as adiponectin may maintain proinfl ammatory 
signals and activate the production of C-reactive 
protein (CRP) by the liver [ 5 ,  6 ]. Based on previous 
studies, this chronic infl ammatory process is related 
to an increased susceptibility to various types of 
cancer, including cancers of the gastrointestinal, 
respiratory, and genitourinary systems [ 7 ,  10 ]. 

 Infl uenced by this important effect of nutrition 
on the immune system, characteristics of the human 
diet can directly stimulate gastrointestinal malig-
nancies [ 11 ]. A diet low in fi ber and vegetables 

may affect the regulation of carbohydrate absorp-
tion and short chain fatty acid formation, which 
affects the metabolism of carcinogens [ 12 ]. This 
process is linked to colon cancer and its progres-
sion [ 13 ]; apparently, a decrease in fi ber intake may 
allow more time for exposure of colon cells and the 
immune system to the potential carcinogens, affect-
ing intestinal transit [ 14 ]. Moreover, based on the 
evidence used to draw conclusions about a gluten-
free diet in patients with celiac disease leading to 
cancer protection, it seems reasonable to consider 
gluten as a booster for cancer in celiac patients [ 15 ]. 

 Meat consumption is a risk factor for some 
cancers, especially colon, rectum, and prostate. 
Red meat consumption increases the risk of colon 
cancer by causing increased production of het-
erocyclic amines [ 16 ,  17 ]. 

 On the other hand, a change in the normal diet 
and defi ciency of vitamins or minerals may affect 
the adequacy of either innate immunity (phago-
cytic activity, chemotaxis of neutrophils, or 
release of cytokines from monocytes) or adaptive 
immunity (immunoglobulin production of B cells 
or cell-mediated immunity) [ 18 ,  19 ]. Many of the 
consequences of malnutrition in the regulation of 
signal transduction and immunoregulatory gene 
expression were fi rst recognized in the early 
1800s as nutrigenomics [ 20 ,  21 ]. The majority of 
these changes are reversible after administration 
of adequate nutrition supplements [ 22 – 24 ]. 

 The following list of specifi c dietary factors 
has been studied in relation to the immune aspects 
of cancer. 

20.2.1     Protein-Calorie Balance 

 The formation of lymphocytes, eosinophils, and 
vital immune system proteins such as thymic 
hormones, antibody (Ab) responses to T-cell- 
dependent antigens (Ags), and Ab affi nity are 
affected by protein-calorie imbalance [ 25 ]. It has 
long been recognized that caloric restriction with 
a well-balanced diet avoiding certain nutrient 
defi ciencies can increase longevity and has can-
cer preventive effects in mammals [ 26 ].  
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20.2.2     Essential Fatty Acids 

 Essential fatty acids in our body can regulate the 
production of prostaglandins, prostacyclins, 
thromboxanes, and leukotrienes, causing a sig-
nifi cant effect on the host immune system and 
regulation of infl ammation [ 27 ].  

20.2.3     Antioxidants (Selenium, 
Vitamin E, and Vitamin C) 

 These nutrients have strong antioxidative effects 
and may reduce the risk of cancer by neutralizing 
reactive oxygen species or free radicals that can 
damage DNA [ 28 – 30 ]. 

20.2.3.1     Vitamin A 
 Vitamin A plays an important role in protection 
against measles, white blood cell (WBC) func-
tion, resistance to carcinogens, and skin and 
mucous membrane defenses. Vitamin A precur-
sor carotenoids, such as lycopene, have a poten-
tial effect on cancer prevention [ 31 ,  32 ].   

20.2.4     Vitamin D 

 Vitamin D has been of interest based on eco-
logic studies on populations with greater expo-
sure to ultraviolet light who had a lower risk of 
breast cancer [ 33 ], colon cancer [ 34 ], and 
 prostate cancer [ 35 ]. This vitamin regulates 
humoral Ab response and supports a Th2-
mediated anti- infl ammatory profi le of cyto-
kines; therefore, its anticancer properties are 
strongly suggested [ 36 ].  

20.2.5     Vitamin B6 

 Pyridoxine induces WBC responses, Th1 cyto-
kine-mediated immune responses, and shrinkage 
of the thymus [ 36 ]. Epidemiologic studies and 
laboratory animal models have shown that vita-
min B6 modulates the risk of cancer. It is not 

clear how vitamin B6 mediates this effect, but it 
has been reported that high dietary vitamin B6 
attenuates and low dietary vitamin B6 increases 
the risk of cancer [ 37 ].  

20.2.6     Folate 

 Folate is important for DNA methylation, repair, 
and synthesis [ 38 – 41 ]. Epidemiologic studies 
have shown that low folic acid intake is associ-
ated with a higher risk of various cancers, most 
notably colon [ 42 ], breast [ 43 ], and probably 
cervical cancer [ 43 ]. The fact that methylenetet-
rahydrofolate reductase, an enzyme predicted to 
reduce the risk of colon cancer, is associated with 
folate status supports the role of folate in cancers 
[ 42 ,  44 ].  

20.2.7     Calcium 

 Many studies show that calcium may reduce the 
risk of colorectal cancer via direct and indirect 
effects. Calcium has a direct effect on prolifera-
tion, stimulating differentiation, and apoptosis in 
the colonic mucosa [ 45 ,  46 ]. Its indirect effect is 
binding to toxic secondary bile acids and ionized 
fatty acids to form insoluble soaps in the lumen 
of the colon [ 47 ,  48 ]. 

 In addition to defi ciency, an overdose of some 
micronutrients can also have an immunosup-
pressive effect, especially megadoses of vitamin 
E [ 49 ]. High doses of certain minerals such as 
chromium, copper, iron, manganese, and zinc 
also may induce cancer and immune dysfunction 
[ 50 – 52 ]. 

 In summary, attenuated innate and adaptive 
immunity as a result of an inadequate diet 
leads to a higher risk of cancer and lower 
homeostasis for cancerous antigens, thus 
reducing nutrient intake, increasing losses, and 
interfering with utilization due to altering met-
abolic pathways. Thus, nutrition may have a 
significant role in prevention and treatment of 
cancer [ 40 ].   
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20.3     Aging as a Confounder 
of the Triangle of Nutrition, 
Immunity, and Cancer 

 Aging may be a confounder of the triangle of 
nutrition, immunity, and cancer; however, neither 
the relationships nor the mechanisms of interac-
tion are known. Unfortunately, only a few studies 
have considered that nutrition and immune func-
tion simultaneously decrease in elderly individu-
als [ 53 ]. It is known that increased age adversely 
affects the function of the immune system as well 
as nutrient intake habits [ 54 ]. Therefore, both 
immunosuppression (decreased effectiveness of 
T and natural killer cells) and nutritional defi -
ciencies (as defi ned by the 1989 recommended 
dietary allowances) in the elderly may have inde-
pendent correlations with increased risk of infec-
tion and neoplasia development [ 55 ,  56 ]. One of 
the probable mechanisms that may affect both 
immunity and nutrition in old people is turnover 
fl uctuations of cellular components in lysosomes 
or autophagy. Advanced age leads to a reduction 
in the autophagy of loading viral Ags and cross- 
presentation of tumor Ags into MHC class I mol-
ecules, as well as pathogen killing [ 57 ,  58 ]. 
Similarly, the capability of autophagy for ener-
getic balance recycling of amino acids to main-
tain protein synthesis under starvation conditions 
and the capacity of intracellular lipid stores or 
glycogen mobilization are disturbed [ 59 ,  60 ]. 
However, only minimal information has been 
produced concerning human cancer initiation as 
a direct result of a specifi c dietary etiology in the 
elderly.  

20.4     Role of Cancer 
in Predisposition 
to Malnutrition 
from an Immunologic View 

 Despite the role of nutrition in either prevent-
ing or causing cancer in humans, malnutrition 
is a common problem (global percentage of 
56.5 %) [ 61 ], and weight loss is often predictive 
of shortened survival in these patients [ 62 ]. In 
advanced stages of cancer, up to 35 % of related 

deaths may be linked to improper diet [ 63 – 65 ]. 
Moreover, a proportion of patients with malig-
nancy develop cachexia, a progressive invol-
untary weight loss status that is attributed to 
clinicopathologic factors of the tumor (origin, 
metastasis, and size), host immunity, and anti-
tumor treatment (Fig.  20.2 ) [ 65 ,  66 ]. During 
the development of cancer-associated cachexia, 
several Th2- dominant condition mediators such 
as IL-2 and TNF-α (prognostic markers) are 
implicated in appetite loss and metabolic dis-
turbances, as well as leptin, IL-1, IL-6, IFN-γ, 
leukemia inhibitory factor, NPY, and proteogly-
can 24K [ 67 ,  68 ]. These immunologic and meta-
bolic changes induce cancer cachexia syndrome, 
which is characterized by patient tissue wasting, 
anorexia, appetite loss, prolonged fatigue and 
lethargy, insulin resistance, microcytic anemia, 
hyperlipidemia, and hypoalbuminemia [ 69 ,  70 ]. 
Metabolic features of this syndrome include 
increases in heterogeneity of energy require-
ment, substrate cycling and turnover, Cori cycle 
activity, and hepatic protein synthesis, as well as 
decreases in peripheral muscle protein synthesis, 
serum protein lipase activity, and plasma concen-
tration of branched chain amino acids [ 71 ,  72 ]. In 
general, the severity of malnutrition and cachexia 
in digestive neoplasias is in highest percentages 
(from 79 % in esophageal cancer to 40 % in rec-
tum cancers) due to the involvement of all areas 
described in Fig.  20.2  during the development of 
cancer and in chemotherapy or tumor resection.

  Fig. 20.1    Schematic overview of complex network of 
diet-immunity-cancer       
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    It should be noted that antitumor agents with 
their side effect on cells with high turnover may 
exacerbate malnutrition. This could be explained 
by the competition between cancerous regions 
and normal cells of the gastrointestinal system to 
use nutrients to repair the adverse effects of anti-
tumor drugs (hypermetabolic state). Briefl y, 
impaired caloric intake, side effects of therapy, 
changes in taste and mood, pain and other adverse 
consequences of eating, obstruction, fi stula, and 
malabsorption all promote malnutrition in cancer 
patients [ 73 – 77 ]; therefore, well-nourished 
patients with intact gastrointestinal integrity have 
lower morbidity and mortality than others [ 78 ]. 

 It should be noted that cachexia after can-
cer differs from cachexia following starvation. 
Increased protein and glucose turnover, high 
whole body synthesis and catabolism, accelerated 
hepatic protein production (especially acute phase 
agents), increased serum free fatty acid levels, and 
depletion of fat stores were reported only in can-
cer patients. However, metabolic abnormalities 
and, paradoxically, impaired immune response 
are probable consequences of cancer cachexia, 
as explained in the previous section [ 79 ,  80 ]. 
Increased levels of immunosuppressive mediators 
(e.g., TGF-β), decreased C3 and delayed hyper-
sensitivity response, and diminished  numbers 

and activity of (NK) cells are the most common 
changes in the defense system of patients with 
cancer cachexia, leading to more infectious com-
plications and poor prognosis [ 81 ]. Neutrophil 
chemotaxis, monocyte phagocytosis and killing, 
number of T cells, and proliferation of lympho-
cytes are also defective in patients with lung can-
cer [ 82 ]. Phagocytic and bactericidal activities of 
neutrophils were low in hepatocellular carcinoma 
patients [ 83 ]. In addition, surgical stress in can-
cer patients enhances Th2 and compromises the 
Th1/Th2 balance and expression of HLA-DR on 
monocytes, which is considered to be a central 
marker of immune paralysis after surgical trauma 
[ 84 ]. Most of these immune parameters are also 
reduced during radiotherapy and chemotherapy 
because of their side effects on bone marrow. 
However, these factors are reversible after nutri-
tion improvement [ 85 ].  

20.5     Role of Nutritional Support 
in Immune Restoration 
of Cancer Patients 

 Adjuvant therapy of cancer patients by different 
nutritional support strategies (dietary counsel-
ing, oral nutritional supplements, enteral tube 

  Fig. 20.2    The casual 
pathways of cachexia 
occurrence after malignancy       
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feeding, and parenteral tube feeding) is the 
mainstream recommendation to increase their 
quality of life and to obviate the risks associ-
ated with gastrointestinal complications and 
reverse malnutrition [ 86 ]. However, there is no 
comprehensive approach based on the needs 
of cancer patients with cachexia or those with 
increased nutrient requirements [ 87 ]. Several 
studies have shown the effectiveness of nutri-
tional supply in groups of patients with malig-
nancy that resulted in weight gain, increased 
appetite, increased energy and protein intake, 
reduced gastrointestinal toxicity, and enhanced 
immune function [ 88 – 90 ]. In the clinical set-
ting with standard treatment protocols, it turns 
out that the implementation of nutrition support 
in patients with cancer is most effective when 
it is limited to special, well- described circum-
stances. Nonetheless, the potential advantages 
of some specifi c nutrients have been described 
and are outlined below. 

20.5.1     Arginine 

 Arginine is a semi-essential amino acid with 
immunomodulatory potential such as stimulated 
thymic growth and mononuclear cell response to 
mitogens, which enhances lymphokine-activated 
killer cell generation via a nitric oxide-mediated 
mechanism and stimulates the release of poly-
amines by the small intestine. In one randomized 
trial of malnourished patients with head and neck 
cancer, follow-up at 10 years indicated better sur-
vival in those who received supplemental argi-
nine preoperatively [ 91 ,  92 ].  

20.5.2     Glutamine 

 Glutamine is the most abundant amino acid in the 
human body and the preferential fuel of rapidly 
dividing cells such as lymphocytes and macro-
phages [ 93 ]. However, supplementing glutamine 
in the diets of patients with cancer may be coun-
terproductive because glutamine (which is essen-
tial for fast growing cells in culture) may promote 
accelerated tumor growth [ 94 ]. A meta-analysis 

of studies that used parenteral glutamine postop-
eratively showed it was associated with a shorter 
hospital stay and a lower incidence of infectious 
complications [ 95 ].  

20.5.3     Branched Chain Amino Acids 

 L-valine, L-leucine, and L-isoleucine can 
improve the immune response and maintain 
serum albumin level in the course of hepatocel-
lular carcinoma recurrence [ 96 ].  

20.5.4     Nucleotides, Long-Chain 
Omega-3 Polyunsaturated 
Fatty Acids, and 
Eicosapentaenoic Acid 

 These lipid agents have anti-infl ammatory, anti- 
cachectic, immunomodulating, and antitumor 
effects [ 97 – 100 ].  

20.5.5     Fructooligosaccharides 

 This group of functional fi bers associated with 
increased lactic acid bacteria acts as an immuno-
modulator by stimulating IgA synthesis, promot-
ing mucin production, modulating infl ammatory 
cytokines, and decreasing Ag absorption [ 101 ].  

20.5.6     Bioactive Compounds 

  Agaricaceae  fungus consisting of ergosterol, 
oleic acid, and triterpenes may inhibit neovascu-
larization induced by tumors and therefore atten-
uate cancer progression [ 102 ].  

20.5.7     Vitamins C and E 

 Since chemotherapy may induce mucositis and 
bleomycin in particular induces chromosomal 
damage in lymphocytes, the administration of 
vitamins C and E may reduce the side effects of 
therapy [ 103 – 105 ]. 
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20.5.8      Vitamin A 

 This fat-soluble vitamin can increase the numbers 
of NK cells or regulatory lymphocytes in cancer 
patients [ 66 ]. A recent study showed that all- trans  
retinoic acid can potentiate the chemotherapeutic 
effect of cisplatin by inducing differentiation of 
tumor initiating cells in liver cancer [ 106 ].   

20.6    Concluding Remarks 

 In summary, due to the safety and cost- effectiveness 
of oral dietary therapies, nutrition counseling and 
the implementation of nutritional supplements 
should be the initial approaches to nutritional sup-
port [ 107 ]. Even though parenteral nutrition may 
also lead to weight gain and improvement in nitro-
gen balance in patients with cancer, it does not 
clearly improve serum albumin levels or alter 
whole body protein turnover even with prolonged 
administration. Therefore, when nutrition support 
is chosen as a therapy, the use of enteral nutrition 
is preferred if the gastrointestinal tract is func-
tional [ 108 ,  109 ]. The use of parenteral nutrition 
should be limited to malnourished cancer patients 
who are receiving active anticancer treatment, 
whose gastrointestinal tract is not functional or 
who cannot tolerate enteral nutrition, and who are 
anticipated to be unable to meet their nutrient 
requirements for 14 days or more [ 108 ]. 

 Moreover, it is proposed that preoperative and 
postoperative immune-nutrition intervention by 
total parenteral nutrition using a lipid-based regi-
men is the method of choice in cancer patients 
who have undergone major surgery to reduce 
immune dysfunction without enhancing tumor 
growth (increased augmentation of lymphocyte 
blastogenesis and production of helper 
T-lymphocyte lymphokine IL-2, increased 
ICAM-1 level, and decreased IL-4 and IL-10 val-
ues) [ 111 – 113 ]. This observed preference of par-
enteral nutrition is marginal, and enteral methods 
are always the preferable route for cancer patients 
with an intact digestive system. It is also reported 
that complement components and lymphocyte 
response may be better with enteral rather than 
parenteral nutrition [ 110 ,  113 ].     
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21.1            Introduction 

 Worldwide, especially in industrialized countries, 
allergies and cancer cause high morbidity, mortal-
ity, and fi nancial burden to healthcare systems. A 
total of 12.7 million people were diagnosed with 
cancer, and 7.6 million died from cancer in 2008, 
whereby incidences in industrialized countries are 
nearly twice as high as in developing countries 
[ 1 ]. In developed countries, for instance, in 
Germany and in the USA, cancer is the second 
leading cause of death after cardiovascular 
diseases [ 2 ,  3 ]. Cancer rates are rising due to an 
increasingly aging population and changes in life-
style [ 1 ]. Allergies are more prevalent, but mortal-
ity is much lower. In Germany, about 40 % of all 
adults have experienced some type of allergy 
during their life time, and about 300 million peo-
ple are suffering from asthma worldwide [ 4 ,  5 ]. 

 Interest in possible relationships between 
these prevalent diseases arose in the 1950s. 
Following studies revealed a decreased preva-
lence of allergies among cancer patients [ 6 ]. 
Since then, much research has been done, but still 
no generally accepted statement about the corre-
lation has been established. As the immune system 
is involved in both allergic and neoplastic diseases, 
a connection might be obvious;  nonetheless, the 
nature of this connection is dichotomous. On the 
one hand, allergies are regarded as a hyperactive 
state of the immune system which leads to better 
detection and destruction of tumor cells. On the 
other hand, allergic reactions go along with 
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infl ammatory processes which may initiate and 
support tumor growth [ 7 ]. Hence, there are dif-
ferent hypotheses on the relationship which 
appears to be complex and not universally appli-
cable for every type of cancer or allergy. This 
chapter will give an overview about studies 
examining these relationships and describes 
possible mechanisms which could explain them.  

21.2     Molecular Mechanisms 
of Allergy 

 By defi nition, allergy is an immunologic reaction 
to normally innocuous environmental antigens 
(Ags), so-called allergens, and it is mostly 
equated with type I hypersensitivity (immediate- 
type hypersensitivity) according to the classifi ca-
tion by Coombs and Gell. This type is mediated 
by immunoglobulin (Ig) E in response to T helper 
cell type 2 (Th2) polarization of CD4 +  T cells [ 8 ]. 
Usually IgE is associated with defense against 
helminthic infections [ 9 ]. Atopy is the hereditary 
tendency to immediate-type reactions and increased 
production of IgE; however, not every allergic 
disease has to be atopic [ 10 ]. There are different 
genes associated with atopy, but environmental 
factors are of great importance as well. During 
fetal and postnatal periods, the immune system is 
rather Th2 polarized which shifts toward Th1 
during the fi rst years of life [ 9 ]. According to the 
hygiene hypothesis, infectious diseases in childhood 
are important for Th1 bias. This corresponds with 
an increasing incidence of allergic diseases in 
industrialized countries where excessive hygiene 
leads to an inadequate Th1/Th2 balance [ 11 ]. 

 Allergic reactions are induced by low doses of 
allergens. Allergens are proteins, many of which 
are enzymes, and their allergenicity is determined 
by protease activity, surface features, or glycosyl-
ation patterns. Soluble allergens enter the body, 
orally or by inhalation, where they are taken up 
by antigen-presenting cells (APCs) such as 
dendritic cells (DCs) which present them to naïve 
CD4 +  T cells via major histocompatibility 
complex (MHC) class II [ 12 ]. In the presence of 
interleukin (IL)-4, naïve CD4 +  T cells differenti-
ate into Th2 cells which are characterized by the 

production of mainly IL-4 and IL-5. On the 
contrary, Th1 cells which develop under the 
infl uence of IL-12 from the same precursor cells 
predominantly produce interferon (IFN-γ) and 
IL-2. Further factors determining polarization are 
the Ag’s route of entry, Ag dose, and the way of 
Ag presentation [ 13 ,  14 ]. Th2 cells organize 
the further allergic response toward the specifi c 
allergen, as shown in Fig.  21.1 . Secretion of IL-4 
or IL-13 by Th2 cells causes the isotype switch to 
IgE in B cells. Additionally, a costimulatory 
signal, namely, the engagement of CD40 on the 
surface of B cells and CD40 ligand on the surface 
of Th2 cells, is required for the stimulation of 
the B cell [ 15 ]. As a result, sensitized B cells 
differentiate into plasma cells and produce 
allergen- specifi c IgE. Moreover, B cells them-
selves are also able to take up soluble Ags via 
specifi c B cell receptors and present them to 
naïve CD4 +  T cells inducing Th2 differentiation 
[ 9 ]. IL-5, IL-6, and IL-9 may enhance IgE pro-
duction, whereas Th1 cytokines like IFN-γ and 
IL-12 act as inhibitors [ 14 ].

   Most of the IgE engage to the high-affi nity 
receptor FcεRI on the surface of mast cells even 
in absence of Ag. If allergens bind to specifi c 
IgE, FcεRI is cross-linked, followed by an infl am-
matory reaction [ 15 ]. Mast cell mediators such as 
histamine, lipid mediators, and cytokines are 
released during the effector phase of an allergic 
reaction and induce typical allergic symptoms. 
FcεRI is also expressed on basophils which are 
also able to release allergic mediators being 
stored in granules [ 16 ]. As basophils are able to 
produce IL-4 as well, they can amplify IgE pro-
duction [ 17 ]. When specifi c IgE was once built, 
further exposition to the corresponding allergen 
elicits an allergic reaction without renewed sensi-
tization [ 9 ]. 

 Production of IL-5 by Th2 cells and mast cells 
activates eosinophils to secrete infl ammatory 
mediators as well as highly toxic proteins and 
free radicals from their granules [ 8 ,  9 ]. Hours 
after the early phase of the reaction, the late phase 
may take place which is characterized by infi ltra-
tion of further infl ammatory leukocytes and 
eventually a chronic infl ammation may be estab-
lished [ 18 ]. The cells involved in allergic 
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 reactions reside predominantly in tissues close to 
the body surface as their actual function is to 
defend against multicellular parasites which 
invade primarily into skin and mucosa-associ-
ated lymphoid tissue. Therefore, these cells are 
specialized to evoke Th2 immune responses [ 8 ].  

21.3     Types of Allergic Diseases 

 Allergic asthma is a chronic infl ammatory disease 
of the airways caused by inhaled allergens. 
Symptoms are breathlessness, wheezing and 
coughing due to bronchial constriction, and 
increased mucus secretion. It is often accompa-
nied by hyperreactivity of the airways to other 
stimuli [ 10 ,  19 ]. Allergic rhinitis or hay fever is 
an allergic infl ammation of the nasal mucosa 
which results in sneezing, itching, and runny or 
blocked nose and is often combined with allergic 
conjunctivitis [ 20 ]. Atopic dermatitis or eczema 
is a manifestation of atopy which occurs predom-
inantly among children, showing symptoms like 
itching, red rashes, and small vesicles on the skin 
[ 20 ,  21 ]. Food allergies mostly cause diarrhea or 
vomiting, but they may also affect the respiratory 

tract and others [ 8 ]. Anaphylaxis is a systemic 
reaction against an allergen with life-threatening 
symptoms like hypotension or airway constric-
tion [ 20 ].  

21.4     Molecular Basics 
of Carcinogenesis 

 Cancer is a genetic disease in consequence of a 
number of mutations in somatic cells. Unlimited 
growth of the mutated cells leads to formation of 
neoplasms. Tumor cells are capable of invading 
into tissues and eventually of disseminating and 
building metastases in distant regions of the 
body. The clinical phenotype is varying as well as 
the implications, depending on the type of cancer 
and the affected patient. Although the incidence 
of cancer increases with age, tumors occur in 
every age group [ 22 ]. 

 The development of cancer, carcinogenesis, is a 
multistep process which requires progressive 
alterations in the genome of normal cells. 
Mutations can occur spontaneously or can be 
generated by so-called carcinogens [ 23 ]. A car-
cinogen is an environmental factor like a chemical 
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compound, a biological substance, a virus, or 
radiation that is able to interact with DNA and 
cause damages or alterations in the genome. 
Usually cells have several mechanisms to repair 
DNA damages. During the process of repair, the 
cell cycle is stalled, preventing that this mutation is 
multiplied. If no repair is possible, the cell is 
destroyed by apoptosis [ 24 ]. An abolition of these 
mechanisms is a precondition for oncogenesis. 
Therefore, mutations have to occur in genes which 
are responsible for the control of cell proliferation, 
differentiation, or apoptosis [ 25 ]. Such critical 
genes can be divided into two groups: oncogenes 
and tumor suppressor genes [ 26 ]. Products of 
oncogenes are, e.g., transcription factors, growth fac-
tors, or their receptors. Tumor cells are character-
ized by gain-of-function mutations in oncogenes, 
resulting in overexpression of oncogene proteins 
and subsequent increased growth [ 27 ]. Tumor sup-
pressor genes, or rather their products, have a 
repressive effect on cell growth. Loss-of-function 
mutations in tumor suppressor genes result in unim-
peded proliferation or evasion of apoptosis [ 25 ]. 

 However, one single mutation is not suffi cient for 
the formation of a cancer cell. Carcinogenesis is a 
multistep process involving several events that inca-
pacitate control of the cell cycle, thereby creating a 
cell with growth advantages [ 28 ]. The initiation pro-
cess of carcinogenesis, characterized by somatic 
changes, is followed by the process of promotion. 
Different promoters like chemical irritants, hor-
mones, or infl ammation induce proliferation of the 
damaged cells and further mutations, as the genome 
of cancer cells is very unstable [ 25 ,  29 ]. The next 
step is tumor progression. By means of alteration of 
cell adhesion molecules and protease activity, can-
cer cells are capable of leaving the primary tumor 
and infi ltrating into tissues. Subsequently, tumor 
cells spread through blood or lymphoid vessels and 
build metastases in distant parts of the body while 
they are displacing healthy tissue [ 30 ].  

21.5     Types of Cancers 

 Pancreatic cancer is one of the cancer types with 
the poorest prognosis, as mortality rates almost 
correspond to incidence rates [ 31 ]. The most 

common type is adenocarcinoma which affects 
the exocrine component of the pancreas, but other 
components of the pancreas may also be affected. 
Main causes are smoking, diabetes mellitus, and 
chronic pancreatitis [ 22 ]. Lung cancer is the third 
leading type of cancer among men and women 
and the leading cause of death from cancer among 
men. More than two thirds of the cases are caused 
by cigarette smoke [ 31 ]. Cancers of the colon and 
rectum represent the second most common type 
of cancer. Besides the hereditary component, 
dietary habits are a major risk factor [ 3 ,  31 ]. Skin 
cancer includes malignant melanoma, basal cell 
carcinoma, squamous cell carcinoma, and some 
others [ 22 ]. The fi rst one causes more deaths; 
however, the others are more prevalent, yet with 
higher curing rates [ 31 ]. Meningioma and glioma 
are the two most common types of brain cancer, 
whereby the causes are largely unknown [ 32 ]. 
Lymphatic and hematopoietic cancers are, e.g., 
leukemia, Hodgkin lymphoma, or non-Hodgkin 
lymphoma. Leukemia is characterized by an 
abnormal proliferation of leukocytes and can be 
classifi ed into acute or chronic and myelogenous 
or lymphocytic forms [ 22 ]. Acute lymphocytic 
leukemia is the most common tumor disease in 
childhood, whereas the etiology is still not identi-
fi ed [ 31 ]. Among reproductive cancer, prostate 
cancer in men and breast cancer in women are 
the leading types of cancer. Furthermore, breast 
cancer is the most frequent cancer-induced cause 
of death among women. Other common reproduc-
tive tumors are tumors of the uterus, cervix, and 
ovaries [ 31 ].  

21.6     Antitumor Immunity 

 In 1970, Burnet and Thomas established the 
hypothesis of cancer immunosurveillance. It 
states that, to a certain degree, the immune sys-
tem is able to detect and destroy tumor cells 
before they can arise to clinically detectable 
malignancies. Meanwhile this hypothesis has 
been expanded to the theory of immunoediting 
which is comprised of three phases: the elimina-
tion phase, the equilibrium phase, and fi nally the 
escape phase [ 33 ]. 
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 The elimination phase complies with the 
process of immunosurveillance. Immune cells of 
innate and adaptive immune response identify 
tumor cells by so-called tumor Ags [ 34 ]. If these 
are presented to an activated CD8 +  T cell, the 
tumor cell is directly destroyed by the release of 
cytotoxic proteins. Moreover, antigen-specifi c B 
cells produce specifi c antibodies which can 
opsonize tumor cells and lead to either antibody- 
dependent cellular cytotoxicity (ADCC) or 
complement-dependent cytotoxicity (CDC) [ 35 ]. 

 Besides this adaptive immune reaction, there 
are cells of the innate immune system involved in 
immunosurveillance which execute antigen- 
independent immune responses. Among them are 
natural killer (NK) cells and NK T cells which 
are able to recognize and directly kill tumor cells 
[ 25 ]. In addition, these two cell types produce 
IFN-γ which is probably the most important 
cytokine in antitumor immunity [ 33 ]. It acts 
indirectly by modulating the immune response, 
e.g., by activation of macrophages or augmenta-
tion of T cell response and NK cell activity, and it 
is able to increase immunogenicity of tumor 
cells. Moreover IFN-γ itself has anti-proliferative, 
apoptotic, and angiostatic capacities which 
directly affect tumor cells [ 36 ,  37 ]. However, 
cancer cells are capable of defending against 
these immune mechanisms. Either they lack cer-
tain MHC peptides, making them unrecognizable 
to T cells, or they do not express costimulating 
signals which lead to T cell tolerance [ 38 ]. Hence, 
if the immune system is not able to kill the entire 
tumor cells, the process of immunoediting 
reaches the equilibrium phase, characterized by 
dynamic dying and generation of further mutated 
cancer cells [ 34 ]. Following Darwin’s rules, those 
cells, which show surviving advantages through 
reduced immunogenicity, resist the immune 
attacks. Thus tumor cells also get shaped and 
sculpted by immune cells, leading to cell popula-
tions that are capable of evading any immune 
reactions [ 33 ]. In this case, surviving tumor cells 
enter the escape phase. Besides the absent immu-
nogenicity, tumor cells are also able to suppress 
immune reactivity so that they can proliferate 
continuously and eventually develop a malignant 
tumor [ 38 ]. 

 Altogether the immunosurveillance hypothesis 
describes that the immune system is in fact able 
to fi ght tumor cells, but also promotes carcinogen-
esis by sculpting poorly immunogenic mutants.  

21.7     Relationship Between 
Allergies and Cancers 
in General 

 The fi rst studies relating to possible associations 
between allergies and cancer date back to more 
than half a century [ 39 ,  40 ]. Anyway until now 
the results have not been consistent, despite 
various researches in this regard [ 41 ]. 

 Regarding cancer in general, there seems to be 
a balance between studies reporting positive and 
negative correlations with different types of aller-
gies. While analyses of the Cancer Prevention 
Study II indicate a slightly decreased risk for 
people suffering from hay fever or asthma [ 42 ], 
data from the First National Health and Nutrition 
Examination Survey (NHANES I) show an up to 
50 % increased risk of developing any type of 
cancer [ 43 ]. Together with several other studies 
[ 19 ,  21 ,  39 ,  44 – 55 ], no conclusion can be drawn 
which identifi es the role of allergies in cancer 
epidemiology. As the term cancer includes 
diseases of diverse etiologies and a variety of 
affected tissues, it is necessary to distinguish 
between different cancer sites as well as specifi c 
types of allergy. In the following, those associa-
tions which are supported by the majority of 
studies are presented. 

21.7.1     Cancers Positively Correlated 
with Allergies 

 Without exception, all of the evaluated studies 
suggest a positive association between a history 
of asthma and lung cancer. Without controlling 
for smoking, a study of 78,000 asthmatic patients 
found an increased risk for women as well as for 
men [ 49 ]. Another study observed a positive 
association with asthma, yet no associations with 
hay fever only, both asthma and hay fever, and 
any of these conditions [ 42 ]. A further survey 
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calculated a lower, but still elevated, risk for 
asthma when controlling for smoking. An additional 
analysis of the effect of respiratory drugs taken 
for the treatment of asthma showed no connection 
to cancer development [ 19 ]. In a Taiwanese 
study, asthma was the only type of allergy associ-
ated with risk of lung cancer [ 48 ]. 

 The prevalence of skin cancer was predomi-
nantly examined among subjects suffering from 
atopic dermatitis, for other types of allergy there is 
only little evidence available. Atopic dermatitis 
was associated with a clearly increased risk of 
keratinocyte carcinoma which made up half of all 
observed excess cancers in this study. Among 
6,275 hospitalized patients with atopic dermatitis, 
not a single case of malignant melanoma was 
found [ 50 ]. Another study involving patients with 
atopic dermatitis found an increased risk of mela-
noma as well as of nonmelanoma skin cancer [ 51 ].  

21.7.2     Tumor-Promoting Effects 
of Allergies 

 The positive association between specifi c types of 
cancer and allergies is mainly explained by exem-
plary description of the relationship between 
asthma and lung cancer. Increased susceptibility 
to inhaled carcinogens due to impaired mucociliary 
clearance and pulmonary obstruction and, above 
all, infl ammatory processes are regarded to be 
responsible for the increased prevalence of lung 
cancer among asthmatic patients [ 49 ,  56 – 58 ]. As 
described before, allergic reactions go along with 
chronic or subchronic infl ammation. There is 
evidence that tumors predominantly arise at the 
sites of infl ammation and that infl ammatory cells 
and mediators are found in all tumors [ 59 ]. 

 Infl ammatory reactions are usually triggered 
by infections. Macrophages, which have detected 
infectious agents, release chemokines that attract 
other infl ammatory leukocytes, such as neutrophils 
and further macrophages. Additionally they release 
cytokines which increase vascular permeability 
to facilitate migration of attracted cells into 
affl icted tissues. Leukocyte recruitment is mediated 
by adhesion molecules and extracellular prote-
ases which relieve movement into the tissue [ 29 ]. 

Since infl ammatory responses are supposed to 
remove the causes as well as to rebuild damaged 
tissues, an environment rich in growth promoting, 
but also rich in damage causing, factors is required. 
Consequently, the conditions for carcinogenesis 
are established. 

 Reactive oxygen species (ROS) released by 
macrophages are capable of causing DNA dam-
ages, thus promoting tumor initiation. Permanent 
cell regeneration raises the probability of carci-
nogenic mutations [ 29 ]. Cancer promotion is 
supported by growth factors like TGF, IL-1, IL-6, 
or IL-8. Furthermore, several infl ammatory media-
tors have angiogenic properties or stimulate the 
production of angiogenic factors. For dissemina-
tion, cancer cells exploit the mechanisms that 
leukocytes utilize for extravasation into infl amed 
tissues. These are activation of selectin molecules, 
interactions between integrins and adhesion 
molecules of the immunoglobulin superfamily, 
and secretion of proteinases [ 29 ]. 

 Apparently, an infl ammatory microenviron-
ment is essential for tumor progression, but vice 
versa, tumors themselves also secrete infl amma-
tory mediators which recruit leukocytes and 
mediate infl ammation [ 38 ,  60 ]. Accordingly, 
Dvorak described tumors as “wounds that do 
not heal” [ 61 ], indicating that pathogen-induced 
infl ammation is usually self-limiting, while 
cancer- related infl ammation is triggered perma-
nently [ 29 ]. Oncogenic mutations that initiate 
carcinogenesis may also lead to the establishment 
of an infl ammatory environment. The activation 
of the Ras oncogene by mutation, for instance, 
leads to the expression of proteins that induce the 
production of infl ammatory mediators [ 38 ,  59 ]. 
The main mediator cells of tumor- induced infl am-
mation are tumor-associated macrophages (TAM). 
They are able to release almost all of the cytokines 
and chemokines required for tumor progression, 
and their abundance has been shown to correlate 
with a poor prognosis [ 29 ,  62 ]. 

 One of the key molecules in the connec-
tion between infl ammation and carcinogen-
esis is the transcription factor nuclear factor 
(TNF)-κB. TNF-κB is an endogenous tumor pro-
moter as it is activated immoderately by carcino-
genic mutations. In addition, it is a coordinator of 
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infl ammation by regulating expression of several 
proinfl ammatory and survival factors [ 59 ,  62 ].  

21.7.3     Cancers Negatively Correlated 
with Allergies 

 The association between a history of allergy and 
pancreatic cancer seems to be quite defi nite. Five 
surveys could demonstrate an inverse association. 
Holly et al. reported a decreased prevalence of 
any self-reported allergy among pancreatic cancer 
patients. This correlation was available for 
multiple allergens like house dust, plants, molds, 
animals, and food. Furthermore, with increasing 
numbers of allergies and increasing severity of 
symptoms, the risk of cancer development 
decreased. It should be noted that even after 
receiving a hyposensitization therapy, allergic 
patients still showed a reduced risk [ 63 ]. Hay 
fever was correlated with a reduced risk of pan-
creatic cancer in Turner’s prospective study [ 42 ]. 
Eppel et al. found a risk of pancreatic cancer in 
allergic patients that was scaled down by more 
than 50 %, but not for asthma patients. For males 
separately, the risk was even lower [ 64 ]. Another 
study that additionally investigated a possible 
association between variants in IL-4 and IL-4 
receptor α genes and cancer prevalence found a 
negative correlation for any allergy, hay fever, 
and reaction to animals. But variants in the 
abovementioned genes were not correlated to 
cancer [ 65 ]. A more recent study detected a 
signifi cantly increased survival of non-resected 
pancreatic cancer patients with self-reported 
allergies. In the cohort that has undergone a 
resection, results were nonsignifi cant [ 66 ]. 

 Cancers of the colon and rectum are less prev-
alent among individuals that show a history of 
allergy. Several studies identifi ed allergies to be 
inversely associated with colorectal cancer. The 
probability of developing colorectal cancer with 
any self-reported allergy in an Italian study was 
lowered, whereas the association was stronger 
when allergy was diagnosed at age 35 or older. 
Regarding colon and rectum cancer separately, 
the risk of rectum cancer development was lower 
than colon cancer, whereas the latter was not 

statistically signifi cant [ 67 ]. Another case-control 
study obtained a protective effect of any allergy 
on cancer development. Self-reported allergy 
was inversely associated with both colon and rec-
tum cancer [ 68 ]. The risk of colorectal cancer 
calculated by Turner et al. was reduced by more 
than 20 % among patients suffering from both 
asthma and hay fever, and less reduction was 
observed among patients suffering from hay 
fever only [ 42 ]. A prospective study from Iowa 
involving only women noted an inverse correlation 
for allergy in general which was the strongest in 
patients with skin allergies. Moreover, the risk 
was decreasing with an increasing number of 
allergies [ 69 ]. Allergic rhinitis was negatively 
associated with rectum cancer among Taiwanese 
patients, and the association was stronger for 
males than for females [ 48 ]. Combining the 
cohorts from the Cancer Prevention Study (CPS) 
I and II, Jacobs et al. calculated a relative risk of 
0.83 for colorectal cancer mortality when having 
both asthma and hay fever [ 70 ]. 

 Most studies agree about a decreased risk of 
tumors of the brain, specifi cally glioma, being 
associated with atopic diseases. In a hospital- based 
case-control study, the prevalence of glioma was 
reduced in combination with physician-diag-
nosed history of any allergy and asthma as well 
as with self-reported allergy to chemicals. 
Meningioma risk was not associated with any 
type of allergy. In addition, the risk of acoustic 
neuroma was positively associated with hay 
fever, allergy to food, and allergy to other 
substances [ 71 ]. One further case-control study 
found hospitalized glioma cases to be less likely 
to suffer from asthma, as well as hay fever, atopic 
dermatitis, or allergy in general. Moreover, there 
was a stronger risk reduction in conjunction with 
use of any allergic medication like nasal spray 
or antihistamines [ 72 ]. Wigertz et al. contrasted 
the prevalence of allergy among glioma and 
meningioma cases with noncancerous individu-
als. They showed a decreased risk of glioma 
among subjects with asthma, atopic dermatitis, 
and hay fever. Treatment of hay fever with nasal 
spray or eye drops was associated with lower risks 
than non-treated disease. Meningioma risk was 
only reduced among atopic dermatitis patients [ 73 ]. 
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In children having asthma, a 45 % risk reduction 
could be observed [ 74 ]. One case-control study 
used IgE levels for the measurement of allergy 
besides a self-reported history of allergy. As IgE 
levels did not signifi cantly confi rm self-reported 
allergies, odds ratios for the risk of glioma devel-
opment varied but both implicated a decreased 
risk [ 75 ]. A few years later the same research 
group reported similar risks for meningioma 
development [ 32 ]. A more recent study con-
fi rmed this with an odds ratio of 0.46 for aller-
gen-specifi c IgE levels and glioma [ 76 ]. Besides 
glioma and meningioma, data from the 
INTERPHONE study also indicate allergies to 
protect from acoustic neuroma [ 77 ].   

21.8     Tumor-Protecting Effects 
of Allergies 

 The majority of the presented studies attribute 
negative associations between allergies and cancers 
to an enhanced immunosurveillance among allergic 
patients due to a hypersensitive and hyperactive 
immune system. This implies that immune cells 
of allergic subjects are more effective in detecting 
and destroying cancer cells [ 48 ,  53 ]. The pivotal 
cells of immunosurveillance are NK cells by virtue 
of their capacity to carry out ADCC and to produce 
IFN-γ [ 37 ]. There is evidence for increased numbers 
and activity of NK cells in subjects suffering from 
asthma or allergic rhinitis [ 78 – 80 ]. Additionally, 
it could be proved that there is a negative correla-
tion between cancer incidence and natural cyto-
toxicity which would further explain an improved 
potential for immunosurveillance among allergic 
individuals [ 81 ]. 

 Besides the classical cells of immunosurveil-
lance, other immune cells may be antitumor effec-
tors as well. Below, critical cells and mediators of 
allergic reactions and their possible antitumor 
activities are given. While in nonallergic individu-
als their activity may be negligible due to low 
occurrences, their actions may be increased among 
allergic subjects, explaining a negative correlation 
between allergies and cancer incidence. 

 Allergic disorders are marked by increased lev-
els of eosinophils, a condition named  eosinophilia, 

as eosinophils are important effector cells in 
allergic reactions [ 82 ]. A role for eosinophils in 
immunosurveillance of tumors was considered 
since they were observed in different tumor infi l-
trates. Indeed, higher numbers of tissue or blood 
eosinophils correlated with better prognosis, e.g., 
improved survival rates in lung and colon cancer 
[ 83 ,  84 ]. Although eosinophils might contribute 
to tumor growth by release of VEGF, thereby ini-
tiating angiogenesis,  in vitro  and  in vivo  studies 
substantiated rather antitumor activities [ 6 ,  85 ]. 

 Eosinophils are recruited by secretion of IL-5 
from Th2 cells and eotaxin-1, a specifi c chemo-
kine. Particularly IL-5 induces differentiation 
from CD34 +  precursor cells, stimulates synthesis 
of granule proteins, and activates eosinophil 
effector functions [ 86 ,  87 ]. These effector func-
tions are mainly mediated by the release of their 
granule proteins which are highly toxic toward 
pathogens, as well as toward tumor cells.  In vitro  
studies could prove the direct cytotoxicity of 
eosinophil cationic protein (ECP) [ 83 ,  84 ,  87 ]. 
ECP causes lysis of tumor cells by creating pores 
in the cell membrane [ 88 ]. Further granule 
proteins like major basic protein or eosinophil 
peroxidase have indirect antitumor properties in 
terms of triggering the release of histamine from 
mast cells. Besides the IL-5 dependent activation, 
eosinophils are also responsive to specifi c IgE. As 
they express IgE receptors on their surface, binding 
of IgE leads to tumor-specifi c antibody- dependent 
cellular phagocytosis (ADCP) [ 6 ]. 

 A study which involved lung cancer patients 
investigated antitumor activities of eosinophils 
 in vitro . For this purpose, eosinophilia was induced 
by IL-2 treatment in cancer patients. Eosinophils 
were then purifi ed from blood samples and added 
to tumor cells. ADCC and direct lysis by eosinophils 
from IL-2 treated patients were highly increased 
compared to those of non- treated patients or 
healthy donors, which did not harm tumor cells at 
all [ 83 ]. This suggests that in fact there are differences 
in cytotoxic potentials between allergic and nonal-
lergic individuals. The infl uence of IL-2 was to 
ascribe to secondary cytokine production because 
IL-2 has no direct effect on eosinophils, but stimu-
lates lymphocytes. Thus, eosinophil activation was 
most likely mediated by IL-5. 
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 Another study confi rmed the  involvement of 
eosinophils in antitumor immunity in methyl-
cholanthrene-induced fi brosarcoma models. Among 
IL-5 transgenic mice, which show increased levels 
of eosinophils, tumor growth and incidence were 
reduced, whereas among eotaxin- defi cient mice, 
incidence was increased. An even greater increase 
of incidence was observed in eosinophil-defi cient 
mice. This provides evidence that, at least, chemi-
cally induced cancers may be effectively fought and 
inhibited in growth by eosinophils [ 86 ]. 

 IgE is the key mediator of allergic reactions. 
Binding of IgE to the high-affi nity receptor FcεRI 
on the surface of mast cells and basophils leads to 
ADCC, whereas binding to the low-affi nity 
receptor CD23 on the surface of macrophages or 
eosinophils leads to ADCP [ 6 ]. Usually IgE is 
predominantly present in tissues bound to its 
receptors, but in allergic patients, serum IgE lev-
els are up to ten fold higher than normal [ 89 ]. In 
addition to defense against helminths and hyper-
sensitivity toward allergens, IgE antibodies may 
also be directed against tumor Ags, thereby 
mediating antitumor activities.  In vitro  studies 
could demonstrate IgE-mediated effector activi-
ties against human ovarian carcinoma cells [ 89 , 
 90 ]. Furthermore, treatment of mice with IgE tar-
geted on tumor cells resulted in decreased growth 
of induced cancer. The effect was signifi cantly 
stronger for IgE than for treatment with IgG. 
Besides the curative potential of IgE, a protective 
long-term immunity against the specifi c tumor 
cells were observed as well [ 91 ]. The incidence 
of survival was monitored within a case- control 
study among glioma patients. Those who had 
elevated levels of IgE were observed to survive 
on average 9 months longer compared to patients 
with moderate or borderline IgE levels. 
Additionally, elevated IgE levels were more com-
mon among control subjects than in patients 
which might support the assumption of an antitu-
mor capacity of IgE [ 92 ]. Among pancreatic can-
cer patients, IgE levels were detected to be fi ve 
fold higher than in control groups, whereas levels 
of other Igs were similar. Tumor-specifi c IgE was 
found to mediate ADCC against tumor cells, 
whereas IgE isolated from healthy controls did 
not [ 93 ]. Recapitulating, IgE is an effective medi-

ator of antitumor cytotoxicity as well as phagocy-
tosis of tumor cells. 

 Typical Th2 cytokines are IL-4, IL-5, IL-13, 
and IL-10. The role of IL-5 in recruiting and acti-
vating eosinophils has already been described. 
IL-10 and IL-13 exhibit rather tumor-promoting 
than antitumor activities [ 85 ,  94 ]. IL-4 is known 
as Th2 differentiation factor and mediator of IgE 
isotype switch in B cells [ 95 ]. However, IL-4 also 
shows antitumor activities. First, IL-4 induces the 
infi ltration of macrophages and eosinophils 
which mediate cytotoxicity toward tumor cells [ 96 ]. 
Second, IL-4 is one of the most potent inhibitors 
of angiogenesis by blocking migration of endothe-
lial cells. The resulting restricted tumor growth 
could be proved for local as well as for systemic 
application of IL-4  in vivo  [ 97 ]. Moreover IL-4 
receptor has been shown to be expressed on dif-
ferent human tumors, and immunogenicity of 
melanoma cells could be increased by IL-4 by 
means of enhanced MHC class II expression [ 98 ]. 

 As described, many crucial components of 
allergic reactions were separately shown to have 
antitumor activities, but only little research has 
been done yet to evaluate the combined effects 
of these cells. One study evaluated growth of 
inoculated tumor cells in mice that were sensi-
tized against ovalbumin. Tumor cells in allergic 
mice showed the same proliferation rate like 
those in nonallergic mice, whereas apoptosis was 
increased [ 99 ]. Consequently, tumor progression 
was decreased in allergic mice which might sup-
port the relationship between allergy and some 
types of cancer in humans.  

21.9    Concluding Remarks 

 Even despite extensive research, the relationship 
between allergies and cancer remains poorly 
understood. As there are studies which show neg-
ative as well as positive correlations, one has to 
take a closer look at the specifi c type of cancer 
and the location it arises. Allergies are accompa-
nied by infl ammatory reactions which constitute 
an optimal environment for carcinogenesis, thus 
promoting the development of tumors at this spe-
cifi c site. Additionally, systemic effects in terms 
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of enhanced immunosurveillance can likewise be 
evoked, thus preventing from cancer at other 
areas. The presented examples of a positive cor-
relation between asthma and lung cancer as well 
as atopic dermatitis and lung cancer and a nega-
tive correlation between allergies and pancreatic 
cancer, colorectal cancer, and glioma fi t this clas-
sifi cation. Nonetheless, there is still a need for 
well-conducted epidemiological studies, as well 
as for investigations on the molecular level to 
clearly defi ne the relationship between allergy 
and cancer.     
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22.1            Introduction 

 Cancer, an affl iction primarily of vertebrate 
 animals, is a disease characterised by 
 uncontrolled cell proliferation which frequently 
results in the death of the host. Cancer clones are 
under natural selection to avoid host immune 
response and resist treatment, resulting in the 
generation of increasingly aggressive subclones. 
Cancers nearly always originate and spread 
within a  single  individual, ending either with the 
 elimination of the tumor or the death of its host. 
Cancers may be triggered by contagious 
 pathogens, most  commonly viruses, such as 
human papillomavirus which can cause cervical 
cancer in humans or the Jaagsiekte sheep 
 retrovirus which causes  pulmonary tumors in 
sheep. However, cases in which cancer cells 
themselves form a pathogenic agent do occur, 
although they are extremely rare. There are only 
two naturally occurring cancers able to spread 
between individuals. These are canine 
 transmissible venereal tumor (CTVT) found in 
dogs and devil facial tumor disease (DFTD) of 
Tasmanian devils. These cancers act as a para-
site transmitting from one host to the next. While 
all tumor must adapt in order to avoid their 
host’s immune response, these two tumors have 
evolved to avoid immune  destruction not only 
from their original host but also from the 
 immunologically disparate hosts that they are 
transmitted to. These two diseases give two 
 different perspectives on transmissible cancers 
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and give us unique insights into the immunology 
of cancers. These cancers provide an ideal model 
for studying the battle between tumor and host. 
For a comparison of CTVT and DFTD, see 
Table  22.1 .

22.2        Canine Transmissible 
Venereal Tumor 

22.2.1     Prevalence and Transmission 

 Canine transmissible venereal tumor is a 
 contagious neoplasm found in domestic dogs [ 1 ]. 
The disease is found worldwide, but is mostly 
prevalent in stray dog populations [ 2 ]. While it is 
most commonly found in dogs, it can be trans-
mitted to a wide range of canine species includ-
ing wolves, foxes, jackals and coyotes [ 3 ]. In 
some regions, such as Japan, it is the most com-
mon tumor found in dogs [ 4 ]. Transmission 
occurs by transplantation of  viable tumor cells 
during coitus [ 3 ]. The tumor establishes on the 
external genital mucosa of the infected dog and 

can affect both sexes of any breed of dog [ 3 ]. 
Metastases are rare and are most commonly 
found in the lymph nodes [ 2 ]. CTVT in domestic 
dogs can be  successfully treated with chemother-
apy [ 3 ]. CTVT can also be induced in adult 
immunocompetent dogs by inoculation with liv-
ing tumor cells [ 5 ].  

22.2.2     Histology and Clonality 

 Histologically, CTVT is described as an undiffer-
entiated round-cell neoplasm of histiocytic origin 
[ 6 ]. Cytologically, CTVT cells do not have many 
distinctive ultrastructural features [ 7 ]. CTVT has 
been proposed to be of macrophage lineage based 
on its expression of several macrophage charac-
teristic proteins [ 8 ] and its ability to be parasit-
ised by  Leishmania infantum  [ 9 ], a p arasite 
usually infecting macrophages. The transmissi-
bility of CTVT cells has been demonstrated by 
studies which found that the disease can be 
induced by transplanting live cells, but not killed 
cells or cell fi ltrates [ 3 ]. The chromosome num-
ber of CTVT (57–59 chromosomes) is consistent 
across geographically dispersed samples and is 
different to the normal number of dogs (76 chro-
mosomes) [ 10 – 12 ]. CTVT genomes share chro-
mosomal duplications and deletions which are 
not found in the dog genome [ 13 ]. Transmissibility 
has been further supported by the presence of a 
LINE insertion near the c-myc gene which is 
found in all CTVT tumor studied to date but is 
not found in the normal dog genome [ 14 ]. 
Recently clonal transmission of CTVT has been 
confi rmed by molecular genetic studies. Rebbeck 
et al. [ 13 ] and Murgia et al. [ 15 ] found that the 
pattern of microsatellite polymorphism strongly 
suggests a monophyletic origin. The most recent 
common origin of CTVT may have been rela-
tively recent, predicted to be between 47 and 
470 years [ 13 ] or between 250 and 2,500 years 
[ 15 ]. However, the date of CTVT origin is 
ancient, predicted to have occurred at least 
6,000 years ago in either the dog or wolf and may 
have predated the domestication of dogs [ 13 ]. 
This makes CTVT the oldest known malignant 
cell line.  

   Table 22.1    Comparison of DFTD and CTVT   

 Disease  DFTD  CTVT 

 Species affected  Tasmanian devil  Dog, wolf, 
coyote, jackals, 
foxes 

 Distribution  Tasmania  Worldwide 
 Age of origin  About 

18 years ago 
 At least 
6,000 years ago 

 Likely cell of 
origin 

 Schwann cell  Macrophage 

 Site of primary 
infection 

 Face, 
mouth or neck 

 External genitalia 

 Mode of 
transmission 

 Biting  Coitus 

 Frequency of 
metastases 

 65 %  7 % 

 Mortality  100 %  Rare 
 Effect on host 
population 

 Decline of host 
population of 
80 %, extinction 
in wild likely 
within 30 years 

 Little or no effect 

 Treatment  Surgical excision 
if treated early 

 Chemotherapy 
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22.2.3     Disease Progression 

 In experimental transplantation, the disease has a 
predictable growth pattern featuring three distinct 
stages of progressive growth, stable growth and 
then regression [ 3 ]. The initial progressive phase 
lasts several weeks and is characterised by rapid 
tumor growth with a doubling time of about 
4–7 days [ 16 ]. During the stable growth phase, 
tumor expansion slows [ 16 ]. During regression, 
the tumor shrinks and eventually disappears [ 16 ]. 
Spontaneous regression is associated with an 
intense local lymphocytic infi ltration [ 17 ]. The 
number and size of tumor-infi ltrating lymphocyte 
subpopulations vary with CTVT growth phase 
[ 17 ]. In natural transmission, the disease will usu-
ally regress after 6–9 months of growth, unless 
treated earlier [ 2 ]. Experimental transplantation 
to immunosuppressed dogs results in tumors that 
do not regress [ 18 ]. Additionally, the host is 
immune to subsequent reinfection after remis-
sion, and offspring of infected mothers are par-
tially protected from infection [ 19 ]. These 
fi ndings demonstrate that host immune response 
is involved in tumor regression and protection 
from subsequent reinfection.  

22.2.4     Immunology 

 CTVT is initially capable of downregulating host 
immune response, but in the majority of cases, it 
is eventually overcome by the host defences [ 2 ]. 
Regression of CTVT involves both humoral and 
cell-mediated immunity. Rejection of foreign tis-
sue is initiated by the presence of major histo-
compatibility complex (MHC) antigens (Ags) on 
the surface of foreign cells. MHC Ags present 
peptides to T cells. There are two classes of MHC 
antigen. Class I peptides are recognised by CD8 +  
T cells, while class II peptides are recognised by 
CD4 +  T cells. Cells without MHC, mutated or 
foreign MHC, or MHC presenting abnormal 
 peptides can trigger an immune response; there-
fore, regulation of MHC is important for cancers 
to escape host immunosurveillance. CTVT has 
the additional distinction in that it is capable of 
transmitting across MHC barriers. Many tumors 

have selective mechanisms for downregulating 
MHC class I molecules to escape recognition by 
CD8 +  cells [ 20 ]. CTVT cells express none, or 
very few, MHC class I and II molecules during 
the progressive phase [ 21 ,  22 ]. Additionally they 
do not express β 2 M, a component of MHC class I, 
on the cell surface [ 23 ]. 

 The initial lack of cell surface MHC should 
result in cell destruction by natural killer (NK) 
cells [ 24 ]. However, migration of NK cells to the 
tumor is impaired due to tumor expression of 
TGF-β1 [ 25 ]. TGF-β1 is a potent immunosup-
pressive cytokine which commonly plays a role 
in immune avoidance in cancers [ 26 ]. TGF-β1 is 
expressed in high concentrations in CTVT 
tumors where it suppresses the killing activity of 
tumor-infi ltrating lymphocytes (TIL) [ 25 ]. 
Natural killer cells, which migrate to the tumor 
due to the lack of cell surface MHC expression, 
are impaired by TGF-β1 [ 25 ]. In addition, the 
function of dendritic cells (DCs) is impaired with 
inhibited antigen uptake and presentation, 
impaired differentiation and apoptosis of mono-
cytes and DCs [ 27 ]. 

 Host expression of interleukin-6 (IL-6) 
appears to be critical in forcing the tumor into 
regression. At the onset of regression, expression 
of IL-6 by TILs is increased, antagonising the 
activity of tumor TGF-β1 [ 25 ]. By downregulat-
ing TGF-β1, the ability of interferon γ (IFN-γ) to 
promote MHC class I and II expressions is 
restored [ 28 ]. IFN-γ and IL-6 work synergisti-
cally to enhance MHC expression [ 28 ]. It has 
been postulated that IFN-γ induces expression of 
an MHC class II transactivator, resulting in an 
increased MHC class II expression [ 28 ]. This 
results in the attraction of CD4 +  cells which pro-
mote the generation of antibodies (Abs) against 
CTVT, driving tumor rejection and the subse-
quent immunity against it. Host IL-6 may also 
enhance T cell  cytotoxcity when MHC molecules 
are expressed [ 25 ]. Additionally, during regres-
sion TILs secrete a heat-sensitive factor, enhanc-
ing MHC class I and II expressions [ 29 ]. At 
commencement of regression, 30–40 % of cells 
express both class I and II MHCs [ 21 ,  22 ]. DC 
activity is substantially recovered during 
 regression [ 27 ]. Expression of IL-6 and the 
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 re- establishment of DCs are believed to be the 
critical factors in initiating tumor regression. 

 There is evidence that humoral immunity is 
also involved in regression. Treating CTVT- 
infected dogs with the sera of post -regressive 
dogs caused regression, while dogs  simul taneously 
given CTVT and immune serum did not develop 
the disease [ 18 ]. Antibodies to CTVT have been 
found in dogs after CTVT regression [ 30 ]. B lym-
phocytes and plasma cells appear in higher con-
centration in regressive than progressive tumors 
[ 17 ]. Additionally, Liao et al. [ 31 ] detected a 
 CTVT-secreted factor which was specifi cally 
 cytotoxic to B cells.   

22.3     Devil Facial Tumor Disease 

22.3.1     Prevalence and Appearance 

 Tasmanian devils are the world’s largest marsu-
pial carnivore since the extinction of the 
Tasmanian tiger in the early twentieth century. 
Devils were once widespread on mainland 
Australia, but today are restricted to the island of 
Tasmania. Although several population crashes 
have been reported over the last two centuries, 
Tasmanian devils were classifi ed as a species of 
least concern prior to the outbreak of DFTD with 
a population of around 150,000 animals. DFTD 
was fi rst witnessed in 1996 by a wildlife photog-
rapher in Mount William National Park in the far 
north-east of Tasmania [ 32 ]. Since then, the dis-
ease has spread rapidly across the state, with the 
disease found in 85 % of the devil distribution as 
of 2012 [ 33 ]. The disease is projected to have 
spread to the entirety of devil distribution by 
2016 [ 34 ]. Since its emergence, DFTD has wiped 
out over 80 % of the devil population [ 34 ], and 
unless acted upon, the devil is expected to be 
extinct within 30 years [ 33 ]. This had led to 
 devils being listed as endangered by the IUCN as 
well as national and state authorities [ 35 ]. 

 DFTD appears as tumors mostly around the 
head and neck of the devil [ 36 ]. After appearance 
of the fi rst lesions, death usually occurs within 
6 months [ 36 ], and there have been no verifi ed 
cases of devils having survived the disease. Death 

may occur due to starvation or complications from 
metastases [ 37 ]. The tumors are undifferentiated 
soft tissue neoplasm, believed to be derived from 
Schwann cell originator cells [ 38 ]. Metastases 
occur in around 65 % of cases [ 36 ].  

22.3.2     Transmission 

 DFTD was discovered to be a transmissible 
allograft from karyotypes of the tumors and hosts 
[ 39 ]. Similar to CTVT, DFTD samples have a 
conserved karyotype which is distinct from the 
normal devil karyotype [ 39 ]. The DFTD karyo-
type is highly rearranged with the absence of 
both copies of chromosome 1, one copy of chro-
mosome 5 and both sex chromosomes [ 39 ,  40 ]. 
Clonality has been confi rmed by genotyping 
which has shown that DFTD specimens taken 
from different individuals are identical to each 
other, but usually different to their hosts, at 
 several microsatellite markers as well as MHC 
genes [ 41 ]. Further support for clonality comes 
from next-generation sequencing [ 42 ]. The 
d isease is spread by biting. Devils bite one 
another frequently when fi ghting over food and 
territory or during mating [ 43 ]. DFTD cells are 
transferred when a devil bites into the tumor of a 
diseased devil [ 44 ]. DFTD cells can then  establish 
into a tumor around wounds in the mouth or face 
of the new host [ 39 ,  45 ].  

22.3.3     Immunology 

 While much is known about the immunology and 
pathology of CTVT, very little is known about 
the same aspects of DFTD. Unlike CTVT, DFTD 
cells pass from one animal to another without 
provoking an immune response [ 46 ]. Both tumor 
and host characteristics have been hypothesised 
to be responsible for the ability of this cancer to 
spread and go undetected by the host immune 
system. It has been suggested that an impaired 
immune system and a lack of genetic diversity, in 
particular at MHC genes, may make the devil 
population susceptible to the spread of DFTD 
[ 47 ]. However, it is likely that the tumor itself 
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actively avoids immune detection. Both down-
regulation of cell surface MHC and the expres-
sion of immunosuppressive factors have been 
investigated. Each of these host and tumor char-
acteristics will be discussed below.  

22.3.4     Do Devils Have an Impaired 
Immune System? 

 Soon after the emergence of DFTD, it was 
hypothesised that the spread of this disease may 
be enabled by an impaired devil immune system 
[ 47 ]. Tasmanian devils are known to be highly 
susceptible to neoplasms [ 48 ]. However, research 
over the last decade has demonstrated that devils 
have a robust immune system functionally 
 equivalent to other marsupial and eutherian 
immune systems. Their immune tissue architec-
ture and immune cell distribution are similar to 
that seen in eutherians; their lymphocytes prolif-
erate in response to mitogen stimulation, and 
subcutaneous injection of a cellular Ag produces 
a strong antibody response [ 46 ,  49 ]. Additionally, 
NK-cell responses have been demonstrated [ 50 ]. 
Therefore, with a robust immune response, it is 
unlikely that the absence of immune response to 
DFTD is due to a lack of functionality in the 
 devils’ immune system.  

22.3.5     Devils Have Low MHC 
Diversity 

 Devils lack genetic diversity across the genome 
[ 42 ,  51 ] as well as at MHC class I and class II 
genes [ 41 ,  52 ]. Having an important role in the 
recognition of both cancerous and foreign cells, 
MHC class I presentation should be critical in the 
recognition of DFTD cells by the devil’s immune 
system. However, this recognition may be 
impaired if MHC diversity is so low that it impairs 
the host immune system from  recognising these 
cells as foreign. Siddle et al. [ 41 ] found that dev-
ils have critically low MHC diversity and sug-
gested that this was the fi rst link between a lack of 
MHC diversity and the spread of disease. 
However, the role of MHC diversity in DFTD 

spread has been questioned by recent studies. 
Kriess et al. [ 53 ] conducted skin grafts in devils 
and found that even MHC similar hosts were 
capable of rejection. This suggests that minor 
 histocompatibility Ags may play a role in allograft 
rejection. Most recently Lane et al. [ 54 ] found no 
link between MHC diversity and susceptibility to 
DFTD, suggesting that MHC is not critical to the 
disease spread. However, the lack of genetic 
diversity in devils may still be responsible for the 
spread of this disease. There is likely to be low 
diversity at other key immune genes such as 
minor histocompatibility Ags and genes of the 
innate immune system, which may have a role in 
disease susceptibility.  

22.3.6     Expression 
of Immunosuppressive 
Cytokines 

 Expression of immunosuppressive cytokines is 
found in many cancers and allows the cancers to 
avoid host detection and destruction of tumor cells 
by suppressing the host immune response. As dis-
cussed, the expression of TGFβ1 by CTVT cells is 
involved in preventing NK-cell response [ 25 ]. 
However, it has been recently shown that TGFβ1 
as well as three other cytokines commonly 
expressed by cancers to downregulate immune 
detection are not over-expressed in DTFD tumors 
compared to control tissues [ 55 ]. This includes 
VEGF-A, IL-6 and IL-10. It therefore appears that 
in DFTD, unlike CTVT, suppression of the 
immune system by release of immunosuppressive 
cytokines does not play a key role in the  pathology 
of DFTD [ 56 ].  

22.3.7     Regulation of Cell 
Surface MHC 

 Like CTVT, regulation of cell surface MHC may 
allow DFTD to avoid rejection. Recent research 
has shown that DFTD cells express functional 
MHC class I and class IIB RNA transcripts, but 
little or no transcripts for genes involved in Ag 
processing including B2M, TAP, MHC class IIA 
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and DMB [ 56 ]. This study found only trace 
amounts of MHC I proteins at the surface of 
DFTD cells both  in vivo  and  in vitro  [ 56 ]. These 
fi ndings may explain how DFTD cells evade rec-
ognition by T cells, though further work is needed 
to build a full picture of how DFTD cells avoid 
immune recognition.   

22.4     Comparison of DFTD 
and CTVT 

 DFTD and CTVT are the only naturally occur-
ring clonally transmissible cancers. Over the last 
decade, our understanding of the pathology and 
immunology of these diseases has greatly devel-
oped, but much is still unknown. Further research 
into their origin, evolution and immunology will 
not only provide insights into transmissible can-
cers, but may also have medical applications to 
human cancers. These two diseases differ in 
many aspects of their pathology and immunol-
ogy. However, they also share features in com-
mon which may help reveal circumstances 
favoring the generation of such diseases. 

 While CTVT is an ancient disease having 
been around for at least 6000 years, DFTD is a 
very new disease less than 20 years old. This 
allows us to compare a transmissible cancer 
which has been through thousands of years of 
 co-evolution with its host species to one which 
has recently emerged. CTVT, as a successful par-
asite, has likely undergone selection to become a 
benign tumor which does not kill its host popula-
tion, resulting in the low rate of metastases and 
the characteristic regression. On the other hand, 
the newly emerged DFTD results in 100 % mor-
tality and may drive its host population to extinc-
tion. Immunologically there are both similarities 
and differences in how these diseases avoid host 
immune rejection. CTVT initially has low or no 
expression of MHC classes I and II to avoid 
rejection by T cells, and the expression of host 
TGFβ1 appears to be important in preventing 
NK-mediated destruction of tumor cells [ 25 ]. 
Similarly, recent evidence has shown that DFTD 
has low or no expression of MHC class I on the 

cell surface [ 57 ]. However, TGFβ1 is not upregu-
lated in DFTD cells [ 55 ]. Therefore, it is yet to be 
seen how DFTD cells avoid NK-mediated 
destruction. 

 With only two naturally occurring transmissi-
ble cancers worldwide, it is somewhat surprising 
that these diseases do not occur more frequently. 
There are several commonalities between CTVT 
and DFTD which appear to be signifi cant factors 
making their host species susceptible to this form 
of disease. Firstly, for such a disease to occur, a 
route of transmission must be present. In both 
species, transmission of cancer cells appears to 
occur at the site of tissue damage. Devils’ biting 
behavior [ 43 ] and the extended, rough copulation 
that occurs in dogs [ 57 ] provide routes of trans-
mission for the transfer of tumor cells. The prob-
able low genetic diversity in both of the original 
host populations is another commonality. 
Tasmanian devils have low genetic diversity, par-
ticularly at MHC genes [ 41 ,  51 ], while it has 
been hypothesised the CTVT arose in an inbred 
wolf population due to homozygosity at a num-
ber of loci in CTVT [ 15 ]. Additionally, a sponta-
neously arising sarcoma was found to be 
transmissible among a colony of laboratory 
Syrian hamsters which also had low MHC diver-
sity [ 58 ]. A further trait which may predispose 
populations to disease is susceptibility to neo-
plasms. Devils are naturally highly susceptible to 
neoplasms [ 48 ]; however, this is not a trait shared 
by dogs or wolves. If the presence of all these 
factors is indeed required for the development of 
transmissible cancers, this may explain the rarity 
of such diseases. However, with wildlife species 
increasingly losing diversity due to anthropo-
genic effects, the chance of seeing similar disease 
occurring in wild vertebrate species may be 
increasing.  

22.5     Evolution of Transmissible 
Cancers 

 A further intriguing aspect of DFTD is that it 
allows us to observe the evolution of a transmis-
sible cancer in real time. DFTD, as a clonal cell 
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line, has already gone through two stages of 
adaptation: one in order to establish as a tumor in 
its initial host and a second stage of adaptation in 
order to be capable of transmission to other hosts. 
The disease is now going through further evolu-
tion as it spreads through the population. A num-
ber of strains have been identifi ed based on 
karyotype [ 59 ]. Although the functional signifi -
cance of these changes is unknown, when cul-
tured, the strains display different morphology 
and growth rates [ 59 ]. These changes provide 
variation which selection can act on. The pres-
ence of devils with distinct genotypes at the dis-
ease front [ 60 ], some of which may offer partial 
or full resistance to the disease, may provide a 
strong selective force to the disease. Another pos-
sibility is that the disease may adapt to become 
more benign and slow growing. Devils which can 
survive longer with the disease have the capabil-
ity of infecting more devils, possibly resulting in 
the evolution of a more benign form of DFTD. A 
similar adaptation may have occurred early in the 
history of CTVT. However, it is also possible that 
the modern characteristics of CTVT were present 
at its origin and have gone through little 
 adaptation since this time. 

 Fassati and Mitchison [ 61 ] fi rst suggested that 
epigenetics must be involved in the regulation of 
CTVT. Although epigenetics has yet to be inves-
tigated in CTVT, several studies are beginning to 
suggest that epigenetics may have a role in the 
regulation and evolution of DFTD. Increased 
expression of the DNA methyltransferase 1 gene 
in DFTD cells has been observed resulting in 
hypermethylation [ 62 ]. This results in different 
patterns of gene silencing in different DFTD 
tumors, providing variation on which selection 
can act. One such area that selection is likely to 
act is in expression of MHC. Siddle et al. [ 56 ] 
have shown that the regulation of Ag processing 
proteins, which enable DFTD cells to evade the 
immune system, is controlled by epigenetic 
mechanisms. This may mean that regulation of 
MHC can vary depending on circumstances. This 
provides a mechanism for fi ne tuning of the 
immunology of the cancer cells, allowing DFTD 
to adapt to immunologically disparate hosts.  

22.6     Transmissible Tumors 
as a Cancer Model 

 CTVT and DFTD provide  in vivo  models for 
studying the battle between tumor and host 
immune response. CTVT has been used as a 
model for human cancer since at least 1980 [ 63 , 
 64 ]. As these cancers have been propagated 
through many hosts over many years, they have 
had a long exposure to host immunosurveillance, 
thus providing insight into the evolutionary strate-
gies developed by cancers to evade immune 
 recognition. The strategy of immune evasion 
employed by CTVT has many features in com-
mon with many human tumors including the regu-
lation of MHC expression and expression of 
immune-modulating cytokines. Thus, CTVT 
 provides an excellent model for studying these 
features. Additionally, CTVT is one of the only 
 in vivo  models for studying tumor regression, 
allowing investigation into the mechanism 
through which host immune system overcomes 
tumors. Understanding how the tumor controls 
host immune response and how the host 
forces regression of the tumor could be useful 
in the development of cancer immunotherapy 
approaches in human patients. Following the dis-
covery that host expression of IL-6 antagonises 
the effects of tumor-expressed TGFβ1 leading to 
regression, Chou et al. [ 65 ] found that a combina-
tion of IL-6 and IL-15 could induce regression in 
progressing CTVT tumors. Such a therapy may be 
useful in human cancers which also produce TGF-
β1 to suppress host immune response [ 65 ]. CTVT 
and DFTD are similar to a number of rare cancers 
that can be transmitted between humans and may 
 provide a model for these diseases. In humans, the 
most comparable diseases are cases of malignan-
cies vertically transmitted during pregnancy. 
Mother to foetus transmissions of melanoma, 
lymphoma, leukemia and  carcinomas have all 
been reported. Parallels exist between the forma-
tion of a fetus and  transmissible cancers. The 
semi-allogenic fetus downregulates cell surface 
MHC class I but upregulates the  nonclassical 
HLA-G to avoid destruction by NK cells [ 66 ], 
thus using a similar strategy to avoid immune 

22 Cancer Immunology of Transmissible Cancers



426

rejection as is used by both CTVT and DFTD. Fetal 
trophoblasts and choriocarcinomas regulate MHC 
in a similar way to the foetus in order to avoid 
immune detection, and this contributes to the very 
aggressive nature of choriocarcinomas [ 67 ]. 
Choriocarcinomas can metastasize to the mother 
[ 68 ] or the fetus [ 69 ]. There are even cases of cho-
riocarcinomas forming during pregnancy and 
metastasizing to both the mother and the fetus 
[ 70 ]. Another route of tumor transmission in 
humans is through organ or hematopoietic stem-
cell donations. About one third of recipients who 
receive organs from a donor who had some form 
of cancer at the time of donation developed the 
same cancer as the donor [ 71 ]. Unlike dogs and 
devils, donor recipients are under immunosup-
pressive treatment, and usually once immunosup-
pression is withdrawn the malignancy will regress 
[ 72 ]. However a parallel exists between donor-
derived malignancies and transmissible tumors in 
MHC similarity between individuals. In organ 
transplantations, MHC genotypes are matched 
between the recipient and the donor, and this may 
be a feature shared with CTVT and DFTD, both 
of which likely originated in populations with low 
MHC diversity. Therefore DFTD and CTVT 
could be used as a naturally occurring model for 
transplant- transmitted cancers.  

22.7    Concluding Remarks 

 CTVT and DFTD are two tumors which have 
progressed to infect thousands of individuals 
since their origin. These unique cancers give a 
fascinating perspective on cancer evolution and 
immunology. Little is currently understood about 
the pathology and immunology of these diseases. 
However, further investigation into these novel 
diseases will reveal clues as to how tumors can 
adapt to their host and evade the immune system. 
This advance in our understanding of cancer may 
lead to practical treatments for cancers in humans.     
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23.1  Introduction

Biomedicine has evolved extremely fast in the 

last decade. Many challenging new insights into 

the nature of biological systems and the avenue 

of new experimental techniques have synergized 

during this period to change our perception 

about biomedicine. Biological systems are now-

adays envisioned as complex networks com-

posed of dozens to thousands of proteins, genes, 

and miRNAs, which interact to control cellular- 

and tissue- level phenotypes. One can say that 

biology is the science of the ultimate complex-

ity because in one sense every single cell 
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 contains as much complexity as entire solar sys-

tems or galaxies. In this context of increasing 

complexity, systems biology has emerged a 

decade ago.

Systems biology is a methodological approach 

that combines quantitative experimental data, 

mathematical modeling, and other tools from 

computational biology to address biological and 

biomedical questions from a systemic perspec-

tive. It is almost a mandatory research strategy 

when: (a) analyzing massive amounts of high- 

throughput quantitative experimental data, (b) 

trying to understand the function and regulation 

of biochemical networks enriched in regulatory 

motifs like feedback loops, and (c) integrating 

biological data from diverse sources across tem-

poral and spatial scales. Within the methodology, 

the use of mathematical modeling is an essential 

step, necessary to integrate and analyze data, for-

mulate and explore biological hypothesis, or per-

form quantitative predictions with a therapeutic 

aim [1]. It has a clear interdisciplinary nature 

because it involves expertise in biomedicine, 

quantitative experimental techniques, data engi-

neering, mathematical modeling, and bioinfor-

matics, only to mention some of the scientific 

profiles of researchers that can get involved in a 

systems biology project.

Due to this multiplicity of disciplines, over the 

years the concept of systems biology has become 

fuzzy and difficult to define precisely. At the 

moment, systems biology describes at least three 

different approaches, all of them relying on the 

use of quantitative experimental data and mathe-

matical modeling. They are briefly described in 

the following subsections.

23.1.1  The “Omics” Paradigm 
and the Use of Statistical 
Models

In the last few years, it has become technically 

and economically affordable to perform quantita-

tive, high-throughput experiments to measure the 

concentrations or activation state of proteins and 

other biomolecules like RNAs or metabolites. This 

has given rise to several new experimental fields 

(e.g., genomics, transcriptomics,  proteomics, and 

metabolomics, collectively known as “omics” 

techniques). When applied to samples obtained 

from large cohorts of patients  suffering complex 

multifactorial diseases, especially cancer, these 

techniques have already generated massive 

amounts of clinical and biomedical data. These 

data are a precious resource to discover the 

molecular mechanism behind the emergence of a 

disease. From an applied perspective, these tech-

niques can be used to generate new protocols and 

tools for early diagnosis or more efficient and 

personalized therapeutic treatments. However, 

the data alone are not sufficient: human intuition 

and direct interpretation are not well-suited tools 

for the analysis of massive volumes of high- 

throughput data. Complex mathematical models, 

which rely on the intensive use of advanced sta-

tistical and computational methods, are  necessary 

to interpret and analyze the amount and type of 

data generated through the “omics” paradigm.

These statistical models have been success-

fully exploited in the search of biomarkers for 

cancer progression, metastasis, or resistance [2]. 

In this case, patients in a clinical study are clas-

sified in groups according to the progression sta-

tus of the tumor. Expression profiles of proteins, 

RNAs, or other biomolecules, obtained from 

patient samples, are analyzed using statistical 

models to find one or more disease-associated 

genetic signatures. These genetic signatures 

account for groups of genes having an expres-

sion pattern that, considered globally, can be 

used to discriminate between patient groups. The 

ultimate aim is to use these genetic signatures 

for improving diagnosis and/or prognosis. For 

some tumor entities, genetic signatures have 

been already found that could be successfully 

associated with progression and are currently 

used in prognosis tests [3, 4]. However, one has 

to say that the statistic elucidation of this kind of 

signatures should never be the end point of a 

research process. It has to be followed by addi-

tional in vitro/in vitro experiments and clinical 

studies to find a mechanistic interpretation for 

them [5].
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23.1.2  Mathematical Modeling 
and Systems Theory: 
Dissecting the Complexity 
Emerging Out of the Structure 
of Biochemical Networks

Accumulating experimental evidences indicate 

that, at the molecular level, cells are organized 

in large and complex regulatory networks that 

involve genes, interacting proteins, different 

kinds of coding and non-coding RNAs and 

metabolites. When trying to find a mechanistic 

interpretation for the behavior behind these 

large networks, simple human intuition and 

direct data analysis fail because they involve 

too many interacting variables [1, 6]. 

Furthermore, these networks contain a plethora 

of cross-talking regulatory motifs, like feed-

back and feedforward loops that show often 

counterintuitive behavior. In engineering and 

physics, mathematical modeling has been used 

for a century to investigate the dynamics, regu-

lation, and controllability of other physical or 

artificial systems containing similar regulatory 

motifs. It is therefore not a surprise that bio-

logical data-based mathematical modeling has 

emerged as a powerful tool, able to dissect the 

nature of biochemical networks, interpret the 

complex nonintuitive relations between their 

compounds, and provide support in the design 

of hypothesis and experiments. This strategy 

has been used with remarkable success in the 

last years in molecular oncology and cancer 

signaling. It has proved to be useful in: (a) the 

detection and analysis of the nonlinear behavior 

emerging from the combination of feedback, 

feedforward, and other regulatory motifs in 

biochemical networks [7, 8]; (b) the integration 

of diverse sources of high-throughput data 

accounting for the regulation and dynamics of 

large cross-talked biochemical networks, with 

hundreds of compounds [9]; (c) the derivation, 

analysis, and validation of hypotheses concern-

ing the structure and regulation of cancer-

related pathways [10, 11]; or (d) the design and 

assessment of conventional, targeted, or com-

bined anticancer therapies [12, 13].

23.1.3  Bridging Biological Scales 
Through the Integration 
of Biological Data in Multi- 
scale Models

Evidences are growing in recent years pointing to 

the fact that, in many cases, the influence of the 

surrounding media in the tumor cannot be sepa-

rated from the tumor biology [14]. The microen-

vironment interacts with the tumor and affects its 

progression via a number of selective forces 

including hypoxia, lack of nutrients, or immune- 

driven apoptosis, while the tumor can modify the 

features of its microenvironment to subvert the 

body’s protective mechanisms [15]. This notion 

is the motivation behind the many efforts to 

develop data-driven mathematical models of can-

cer progression, able to account for the spatial 

organization of tumors and the interaction with 

the surrounding microenvironment [16]. The so- 

called cancer multi-scale models are  mathematical 

constructs that are able to simulate global spatio-

temporal features of tumors like growth, angio-

genesis, as well as therapy- or hypoxia- mediated 

apoptosis and necrosis [17].

23.2  One Step Further: 
Integrating the Different 
Perspectives of Systems 
Biology into a Unified 
Framework

Although each one of these mathematical model- 

based approaches has proved to be quite success-

ful in accelerating the discovery in tumor basic 

biology and clinics, they have limitations that 

cannot be ignored. Statistic models are extremely 

useful tools to analyze enormous amount of 

patient data and find expression patterns associ-

ated to given clinical phenotypes; however, those 

statistical expression patterns alone suffer with 

the lack of support provided by a truly mechanis-

tic interpretation of the data, the sort of analysis 

that provides biological causation. Mathematical 

models of biochemical networks can pro-

vide insights into the biological mechanisms 
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underlying cancer progression, but are not able to 

account for the effects of the tumor-microenvi-

ronment interaction. Current multi-scale models 

are accurate describing biomechanical forces, 

cell phenotypes, and spatial interactions between 

tumor cells and their surroundings. However, 

they lack a precise description of the intracellular 

mechanisms driving those phenotypic features, 

as well as a connection to the clinical understand-

ing of the tumor biology.

These limitations are the motivation why 

researches have tried to integrate the different 

scopes into a unified conception of systems 

 biology in recent years [18–21, 8]. The idea is to 

develop a unique framework that integrates tools 

and methods from statistics, bioinformatics, 

computational biology, and mathematical model-

ing with the aim of integrating biomedical data 

across biological and spatiotemporal scales. This 

approach must be able to: (a) link massive clinical 

patient data with the function and (dis)regulation 

of biochemical networks; (b) provide a strategy 

to combine different kinds of quantitative high-

throughput biological data into integrative 

 pictures of cancer; (c) connect cancer genotypes 

and phenotypes from a mechanistic, causal, data-

driven perspective; (d) provide tools to detect and 

investigate regulatory, feedback loop-like struc-

tures that extend across multiple biological orga-

nization levels like paracrine and autocrine loops; 

and (e) determine the consequences of this multi-

level cross talk in the context of cancer and the 

immune response. In our vision, this ultimate 

version of the systems biology method involves 

iterative integration of data from clinical trials 

and in vitro/in vivo biomedical research using 

techniques of data analysis, bioinformatics, and 

mathematical modeling and simulation. The pro-

posed workflow is sketched in the following 

paragraphs (Fig. 23.1).

STEP 1. In clinical cohorts of, for example, cancer 

patients vs. healthy individuals, high- 

throughput data of tissue and/or plasma con-

centrations for proteins, RNAs, or other 

molecules are collected together with biometric 

data from the patients. The data are processed, 

integrated, and analyzed using statistical mod-

els aiming to group them according to their 

gene expression vs. the progression status 

 profiles. In this way, one can obtain cancer-

associated genetic signatures relevant to the 

phenotype under investigation (e.g., chemore-

sistance, aggressiveness, metastatic potential). 

These signatures account for a group of genes, 

proteins, miRNAs, or other molecules, for 

which a robust statistical correlation is found 

between their combined expression pattern and 

the investigated cancer phenotype [5].

STEP 2. Relevant biomedical and clinical 

 knowledge is gathered from databases, com-

putational algorithms, and publications 

inspected via manual curation or text mining. 

This information is used to find feasible bio-

chemical interactions (i.e., protein-protein 

interactions, transcriptional regulation, etc.) 

between compounds of the genetic signature, 

but also with other kinases, transcription fac-

tors, or microRNAs, all of them relevant to 

the investigated cancer phenotype. In this 

way, we can construct a network of cross-

talked intracellular pathways relevant to the 

investigation of the aimed cancer pheno-

types. Furthermore, similar networks can be 

constructed for the cell types in the tumor 

microenvironment related to the phenotype 

investigated. Since tumor cells and cells in 

the microenvironment secrete cytokines and 

other molecules signaling each other, the 

obtained network is one of cell-to- cell com-

munication, accounting for the tumor- 

microenvironment interaction in the cancer 

phenotype under investigation. The network 

obtained is often called regulatory map, noth-

ing but a visualization of the state of the art 

of the biochemical and  biomedical knowl-

edge about the cancer  phenotype under 

investigation. Tools from network biology 

can be used to dissect the topology of the 

regulatory map and isolate regulatory motifs 

relevant for the derivation of hypothesis and 

experiments [22, 8].

STEP 3. The parts of the network relevant to the 

biomedical scenarios which are related to the 

investigated cancer phenotype are translated 

into a mathematical model. The model consists 

of mathematical equations, in an adequate 
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modeling formalism, accounting for the time 

evolution of the expression and/or activation 

status of the network compounds, as well as 

their connection to the phenotypes. Many 

modeling formalisms are available, all of 

which are with advantages and disadvantages 

[6]. To circumvent some of these disadvan-

tages, one can combine them in hybrid  models. 

For example, we have combined intercon-

nected sub-modules in ordinary differential 

equations and Boolean logic [23]. Ordinary 

differential equations are excellent tools to 

analyze the nonlinear behavior of signaling 

pathways with multiple, nested feedback and 

feedforward loops, while logic models are an 

ideal representation of massive transcriptional 

networks. The combination of both model 

types allows the analysis of large- scale, non-

linear transcriptional and posttranscriptional 

networks and their connection to cancer cell 

phenotypes [23].

STEP 4. Additional quantitative in vitro/in vivo 

experimental data are used to improve the bio-

logical characterization of the model, that is, 

to make it more accurate in terms of predic-

tion of the relevant biomedical scenarios. This 

is often called model calibration and allows 

assigning appropriate values to model param-

eters and other model features. Alternatively, 

this process also allows for the validation of 

hypothesis concerning the structure and regu-

lation of the network in the biomedical con-

text analyzed; in this case, iterative cycles of 

modeling and experimentation can be used to 

formulate, refine, prove, or disprove hypothe-

sis concerning the existence and relevance of 

given biochemical interactions [24]. With the 

use of the mathematical model, one can ana-

lyze spatiotemporal regulatory features of the 

network that elude the elucidation via conven-

tional experimentation, like self-sustained 

oscillations, or bistability.

Fig. 23.1 Sketch of an advanced systems biology workflow
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STEP 5. In recent years, various studies have 

proved that a well-calibrated, data-driven 

mathematical model can be used with predic-

tive purposes in the context of molecular 

oncology. The underlying idea is to use model 

simulations and other tools to assess existing 

therapies in a personalized manner, design 

new therapies, or detect sets of biomarkers for 

cancer prognosis. In a final step, one has to go 

back to the bench and design additional 

in vivo/in vitro experiments to confirm the 

model predictions. Alternatively, the model 

predictions can be combined with virtual 

screening and other techniques from computa-

tional biology and immunoinformatics and 

used in the process of drug discovery or vaccine 

development. For example, potential drug tar-

gets, identified via mathematical modeling, 

can be used as most promising candidates in a 

drug screening procedure via protein docking-

based techniques [21].

23.3  Does Cancer Immunology 
Need a Systems Biology 
Approach?

In our opinion, the immune system is one of the 

most complex realizations of a biological system. 

The immune system is actually a multi-scale sys-

tem (Fig. 23.2). It involves many types of cells, 

whose fate, proliferation, or activation status is 

controlled by feedback loop-regulated pathways. 

These pathways very often cross talk creating 

complex networks. Furthermore, the activation 

status of given immune cells depends on other 

immune cells by direct contact or through secre-

tion of local or global signaling molecules, espe-

cially cytokines. In this way, the immune system 

is enriched in cell-to-cell communication circuits 

and autocrine loops. When we further consider 

the interaction between the immune system and a 

tumor, the picture becomes more systemic-like. 

Tumor cells and the immune cells in the 

 surroundings communicate through chemical 

signals and affect each other’s fate. Tumors 

secrete antigens (Ags) detected by immune cells 

like dendritic cells, while cells from the immune 

system secrete cytokines and antibodies (Abs) 

 targeting the tumor cells. In addition, features of 

the microenvironment in which the tumor is 

hosted can affect the response of the immune 

cells. Finally, all these processes are happening at 

the same time and affecting each other at differ-

ent biological and temporal scales. Altogether, 

this suggests the use of a systemic strategy to 

tackle the complexities of the tumor-immune 

 system interaction. In the following section, we 

discuss some published results that illustrate how 

systems biology can be used in the context of 

oncology and tumor immunology.

23.4  A Quick View on Current 
Results

23.4.1  Computational Biology, 
Bioinformatics, and High- 
Throughput Data Analysis 
Used in the Design of Immune 
Therapies for Cancer

The availability of next-generation sequencing 

along with omics data shifted the paradigm for 

cancer treatment and opens the doors toward pos-

sible cancer immunotherapy. Like traditional 

vaccines that stimulate the host immune system 

to recognize and destroy pathogens, cancer vac-

cines are aimed to generate an immune response 

that differentiates tumor cells from the normal 

cells for their possible elimination. For several of 

the pathogenic cancers, such as cervical cancer 

caused by human papillomavirus; hepatocellular 

carcinoma caused by hepatitis B and hepatitis 

C virus; Hodgkin lymphoma by Epstein-Barr 

virus; T-cell leukemia by human T-cell leukemia 

virus; and Kaposi’s sarcoma by Kaposi’s sar-

coma herpes virus, there has been considerable 

success in designing cancer vaccines in the 

past, and many of them are currently in use or in 

the advanced stages of clinical trials. Most of 

these vaccines are designed in a similar way as 

the traditional epitope-based vaccine-designing 

approaches. However, for the non-pathogenic can-

cer, the major challenge for the immune  system is 

to distinguish cancer cells from the healthy cells 
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in order to activate B lymphocytes to produce 

Abs or T lymphocytes. In order to trigger anti-

body-dependent cellular cytotoxicity or phagocy-

tosis to kill cancer cells, these Abs need to 

recognize specific proteins normally on the outer 

membrane of the cancer cells [25]. T lympho-

cytes have the capacity to selectively  recognize 

peptides (antigens) derived from self/ nonself 

proteins attached with major histocompatibility 

complexes on the antigen-presenting cells 

(APCs). The use of cytotoxic T cells (CTLs), 

dendritic cells (DCs), and monoclonal antibodies 

is now a well-established strategy to design 

potential cancer immunotherapeutics [26].

The major challenge in the development of 

cancer vaccines is that Ags normally recognized 

by the immune system are expressed as the 

“self”-Ags to which the immune system is 

already tolerized. Therefore, the potential 

approach is to identify non-tolerogenic, tumor- 

associated antigens (TAAs) suitable to develop 

Ag-specific anticancer vaccines [27]. In spite of 

success in other infectious diseases, the use of 

small self-peptides as Ags in cancer vaccines did 

not attain much interest in the past because of 

their poor immune response and minimal thera-

peutic benefits. Most of these free peptides are 

likely to have a short half-life and poor pharma-

cokinetics properties and are thus rapidly cleared 

before they can be loaded on the dendritic cell 

 surfaces in the complex with MHC molecules to 

stimulate CD8+ and CD4+ T cells for the initia-

tion of adaptive immune responses [28]. However, 

the coadministration of suitable dendritic 

Fig. 23.2 Tumor-immune cells interaction envisioned as 

a multilevel system. The immune system involves many 

types of cells, whose fate is controlled by feedback loop-

regulated pathways, but also some immune cell types 

affect the activation of others by direct contact or local/

global signaling molecules. Furthermore, the immune 

system and the tumor are affected by cell-to-cell commu-

nication circuits involving tumor antigens and immune 

cell-secreted antibodies and cytokines
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 cell- activating adjuvant along with short TAA 

peptides was shown to boost immune responses 

in advanced melanoma [29] and vulvar intraepi-

thelial neoplasia patients [30]. These studies gen-

erated the hope to design effective therapeutic 

cancer vaccines.

In order to avoid the “self”-recognition that 

normally results in the weakened immune 

responses for cancer vaccines, researchers have 

validated the use of DNA vaccines in preclinical 

studies where the tumor-derived sequences were 

initially fused with the genes encoding microbial 

proteins [31]. This strategy helped T helper cells 

in the induction of Abs against tumor Ags along 

with epitope-specific antimicrobial CD8+ T cells. 

Another example PROSTVAC, a DNA vaccine 

for prostate cancer, which includes recombinant 

vaccinia virus encoding prostate TAAs along 

with adhesion molecules and DCs stimulators, is 

already in the clinical trial phase III [32]. Besides, 

several monoclonal antibodies (mAbs) and other 

small molecules such as kinase inhibitors, angio-

genesis inhibitors, proteasome inhibitors, and 

molecular receptor blockers are also combined 

with immunotherapy for developing targeted 

anticancer therapies [33]. Many Abs boost the 

immune response against cancer cells. 

Ofatumumab and ipilimumab are two such mAbs 

recently approved by the US FDA. While ofatu-

mumab targets CD20 protein which inhibits 

early-stage B-lymphocyte activation in chronic 

lymphocytic leukemia [34], ipilimumab specifi-

cally targets cytotoxic T-lymphocyte-associated 

antigen 4 (CTLA 4) that provides inhibitory 

 signal for activated T cells [35]. Unconventionally, 

mAbs are also shown to target intracellular 

 oncoproteins; this finding opens a new possibility 

to predict potential targets for TAA discovery 

[36, 37].

Still, the detection of effective non-tolero-

genic TAAs from extra-/ intracellular oncopro-

teins is one of the major challenges in cancer 

immunotherapy. To recognize TAAs, one has to 

carefully investigate sites for cancer-specific 

point mutations, chromosomal aberrations, 

splicing variants, alternative reading frames 

along with overexpressed genes, and other 

 regulatory elements (transcription factors, 

 miRNAs, etc.) [38–40]. For many of these data 

mining approaches, well-established computa-

tional pipelines already exist in the public 

domain. For therapeutic cancer vaccines, the 

idea is to either amplify or induce new immu-

nogenic responses in cancer patients based on 

CD8+ or CD4+ T-cell responses by recognizing 

differentially expressing TAAs from microar-

ray data repositories [41]. One of such database 

is Oncomine, which has a huge repository of 

gene expression profiles from microarray stud-

ies to identify differentially expressing genes in 

various stages of major types of cancer [42]. 

These data analysis pipelines facilitate the dis-

covery of novel cancer biomarkers and drug/

vaccine candidates. In the following section, 

we will describe the use of bioinformatics tools 

and computational pipelines to discover poten-

tial cancer vaccine candidates with a case study.

23.4.1.1  Case Study: Computational 
Approaches to Design DNA 
Vaccine for Cervical Cancer 
Caused by Human 
Papillomavirus

Cervical cancer is the most common and slow- 

growing malignant cancer present in the tissues 

of the cervix or cervical area in women. Persistent 

infection with human papillomavirus (HPV) is 

considered to be one of the major etiological fac-

tors for cervical cancer [43]. More than 100 dif-

ferent types of human papillomaviruses (HPV) 

have been identified [44] and categorized into 

high-risk and low-risk strains. A total of 16 dif-

ferent high-risk strains have already been identi-

fied, among them strain 16 and 18 are together 

responsible for approximately 70 % of all cervi-

cal cancer cases [45]. Two HPV vaccines 

GARDASIL and CERVARIX are currently in use 

as prophylactic vaccines and offer no therapeutic 

benefit for patients already infected with the virus 

or those with precancerous lesions or cervical 

cancer [46]; also they are not completely effec-

tive against all high-risk strains of this virus. In 

contrast, therapeutic vaccines generate a T-cell 

immune response to eliminate existing viral 

infection. Epitope-based vaccines provide a spe-

cific strategy for prophylactic and therapeutic 
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application of pathogen-specific immunity. The 

identification of epitopes suitable for diagnostic 

use and for therapeutic or prophylactic interven-

tion is clearly a crucial prerequisite of these strat-

egies. The selection of immunogenic, consensus, 

and conserved epitopes from proteins of major 

high-risk strains may provide an experimental 

basis for the design of very specific T-cell and 

DNA vaccines effective against all high-risk 

strains. Herein, we will highlight the computa-

tional pipeline adopted in one of our previously 

published research works which was used to 

design in silico DNA vaccines against (HPV) by 

using consensus epitopic sequences of L2 capsid 

protein from all high-risk HPV strains [47]. In 

addition, various computational parameters were 

optimized to increase the immunogenicity of the 

vaccine by considering multiepitopic sequences, 

codon optimization, CpG motifs optimization, 

and inclusion of promoter and other immune-

stimulatory molecules. A generalized computa-

tional pipeline for the design of DNA vaccine is 

highlighted in Fig. 23.3. The work initiates with 

the detection of differentially expressing genes 

in cancer (non-pathogenic) or the identification 

of conserved immunogenic regions from patho-

gens involved as the major etiological agents. 

From the conserved regions, MHC class I and 

class II epitopes are predicted followed by the 

inclusion of proteosomal/lysosomal cleavage 

sites. Various computational approaches may 

follow to filter the immunogenic peptide such as 

3D structure modeling to calculate the solvent 

accessibility of cleavage sites, post cleavage 

conservancy of epitopes, and then long half-life 

for proper immunogenicity using molecular 

dynamics simulations. The selected peptide can 

then be back- translated and optimized for codons 

and CpG motifs. In silico cloning experiments 

may also be performed for the selection of good 

expression systems to be used for vaccine 

development.

Retrieval of Sequence Data 
and Identification of Conserved Regions 
in the Protein
In case of previously designed HPV vaccines, 

researchers thoroughly investigated L1 and L2 

capsid proteins form the virus to detect potential 

vaccine candidates. Some of the previous in vitro 

neutralization studies demonstrated high cross- 

reactivity with L2 antisera. We retrieved HPV L2 

capsid protein sequences for various strains from 

the NCBI (http://www.ncbi.nlm.nih.gov) and the 

UniProt (http://www.uniprot.org) database. To 

identify conserved regions in the protein, we per-

formed multiple sequence alignment using the 

ClustalX software. Based on the multiple align-

ment files, we identified conserved regions in the 

L2 capsid proteins using the Shannon entropy 

function available on the Protein Variability 

Server (http://imed.med.ucm.es/PVS). From the 

alignment file, Shannon entropy is calculated as
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where Pi is the fraction of residues of amino acid 

type i and M is the number of amino acid types.

To identify the conserved regions in the L2 

capsid proteins of all high-risk HPV strains, the 

cutoff score for the Shannon entropy was set to 

2.0 (Fig. 23.4). The fragments with Shannon 

variability score ≤2.0 and continuous length of 

≥9 amino acid residues were further selected for 

the epitope identification.

Prediction of MHC Class-I and Class-II 
Epitopes
Epitope mapping is always the key step in  vaccine 

designing. Epitopes are usually thought to be 

derived from nonself protein Ag that interacts 

with Abs or T-cell receptors thereby activating an 

immune response. Besides nonself proteins, epit-

opic sequences from the host can also be recog-

nized by MHC molecules. For an effective 

vaccine, it is important for the epitopes to invoke 

strong response from T and B cells. A large num-

ber of bioinformatics algorithms were designed 

for this purpose, such as Position-Specific 

Scoring Matrix (PSSM)-based SYFPEITHI [48], 

Artificial Neural Networks (ANN) [49], 

Stabilized Matrix Method (SMM) [50], and 

Average Relative Binding (ARB) [51]. In this 

work, we used the RANKPEP server (http://

imed.med.ucm.es/Tools/rankpep.html) for the 

prediction of consensus binding epitopes (9 mers) 
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Fig. 23.3 Generalized workflow for computer-aided epitope-based DNA vaccine design
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for both MHC class-I and class-II molecules with 

default parameters. In total, we used 75 MHC 

class-I and 49 for MHC class-II matrices for the 

prediction of potential epitopes from all the con-

sensus L2  capsid proteins.

Reverse Translation of Immunogenic 
Peptide Fragments
To back-translate a peptide sequence into the 

DNA sequence, a large number of bioinformatics 

tools are available in the public domain. Because 

of the degeneracy of the genetic code, the back- 

translation is ambiguous as most amino acid resi-

dues are encoded by multiple codons. To design 

an optimal DNA sequence, most of these tools 

use a codon frequency table specific for the 

organism of interest. We used Backtranseq pro-

gram of mEMBOSS 6.0.1 for this purpose.

Optimization of Codons and CpG Motifs
Codon optimization is the process to enhance the 

efficiency of DNA expression vector to express 

the foreign gene in the host’s cell environment. 

DyNAVacS server (http://miracle.igib.res.in/

dynavac) was used to compute the optimal codon 

for each of the amino acid residue encoded by the 

stretch of DNA. The server optimizes codons 

according to the codon usage table derived from 

the Kazusa Codon Usage Database (http://

kazusa.or.jp/codon). We used a codon frequency 

table for Homo sapiens that ranks codons by ana-

lyzing their frequency of occurrence in 93,487 

coding sequences [52]. Immunogenicity of 

Ag-specific DNA vaccine was previously shown 

to significantly increase by the optimization of 

CpG motifs [53]. We again used the DyNAVacs 

server for CpG optimization [54]. In this process, 

the consensus motif XCGY (where X is any base 

but C and Y is any base but G) was incorporated 

in the sequence as triplet (XCG or CGY) by sub-

stituting the less frequent codons that codes the 

same amino acid residues.

Insertion of Cleavage Motifs 
and Finalization of DNA Sequence
For the purpose of generating specific epitopes, 

proteasomal and lysosomal cleavage motifs were 

also included before and after each MHC class-I 

and class-II epitope, respectively. These cleavage 

motifs are targeted by the proteasomal and lyso-

somal cleavage machineries to generate immune 

responses in the host. The corresponding nucleo-

tide sequence of the 12-residue long peptide 

HEYGAEALERAG was added as proteosomal 

cleavage motif before and after the optimized 

DNA sequence of each MHC class-I epitope. The 

HEYGAEALERAG motif contains all five cleav-

age sites Y3-G4, A5-E6, A7-L8, L8-E9, and 

R10-A11 defined for eukaryotic proteasomes in 

which A5-E6 is the major cleavage site [55]. 

Similarly, the nucleotide sequence of the 

5- residue long peptide KFERQ was added as 

lysosomal cleave motif before and after the DNA 

sequence of each MHC class-II epitope. KFERQ 

specifically acts as a recognition motif toward 

heat shock proteins and facilitates further steps 

for the degradation of proteins by lysosomes [56] 

to generate MHC class-II epitopes. At the end, 

start and stop codons were added to finalize the 

DNA vaccine. Arrangement of the epitopes is 

very crucial and one of the deterministic factors 

for the efficacy of the DNA vaccine. The folding 
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Fig. 23.4 Figure showing the Shannon variability score 

of individual positions in the multiple alignment files of 

L2 capsid protein from high-risk HPV strains. Red bars 

indicate the variability score of amino acid residue i at the 

given position in the multiple alignment file. Blue line rep-

resents the cutoff Shannon variability score. All the red 
bars below the blue line are potential conserved sites for 

analysis
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of the protein product in the host will largely 

depend on the arrangement of these epitopes and 

also determine the solvent accessibility of the 

cleavage motifs. Various computational tools can 

be used for this purpose including molecular 

dynamics simulation approaches. The overall 

arrangement of the DNA vaccine construct is 

shown in Fig. 23.5.

In Silico Cloning Experiments of DNA 
Vaccine Construct
Several expression systems have been success-

fully designed in the past, for the cloning of the 

number of genes encoding surface antigens 

from pathogens to facilitate vaccine develop-

ment. A good DNA vaccine vector should be 

designed with minimal functions so that the 

only gene expressed in mammalian cells is the 

antigen-encoding gene. We performed the clon-

ing experiments using clc- DNA Workbench 

5.0.1. For our purpose, the pVAX1 vector was 

selected as an expression system. pVAX1 is a 

nonfusion vector specifically designed to stimu-

late cellular as well as humoral immune 

responses [57] and requires that the inserted 

gene of interest contains the Kozak translation 

initiation sequence, an initiation codon (ATG), 

and a termination codon (TAA, TGA, or TAG). 

When this designed DNA vaccine is injected 

into the host, the antigenic protein gets trans-

lated and alerts the body’s immune system to 

generate immunization memory cells.

The methodology described above highlights 

how various bioinformatics algorithms and com-

putational tools can be combined to design novel 

and effective vaccine candidates before being 

subjected to in vitro confirmatory studies.

23.4.2  Mathematical Models Used 
in Basic Oncology Research

23.4.2.1  Pathways and Networks
The successful use of systems biology to eluci-

date the regulation and function of cancer-related 

pathways is well proved by a large body of 

 literature published in the last decade. In this 

context, mathematical modeling has been used 

to investigate the time-dependent behavior of 

biochemical systems, to integrate multiple data 

sources, or to validate the existence of new regu-

latory or transcriptional interactions in given 

regulatory pathways. A question in biochemical 

networks for which data-driven mathematical 

modeling is necessary is the elucidation of the 

nonlinear properties emerging from the combi-

nation of regulatory motifs containing positive/

negative feedback and coherent/incoherent feed-

forward loops. When biochemical pathways or 

networks hold these regulatory structures, they 

often display behavior that evades direct reason-

ing. Many papers, which use a data-driven mod-

eling approach, succeeded proving how signal 

amplification [11], sustained oscillations [58], or 

bistability [59] emerged as hallmarks of signal-

ing and transcriptional networks.

To mention an example on immune-related 

pathways, Das and colleagues [60] integrated dif-

ferent modeling approaches with in vitro experi-

ments to elucidate the interplay between Ras 

Fig. 23.5 Arrangement of various segments of DNA vaccine constructs. The arrangement of epitopes in the sequence 

is very crucial to increase the efficacy of DNA vaccine
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activation and SOS proteins in the activation of T 

and B lymphocytes. What makes their work 

interesting is that both proteins, Ras and SOS, are 

integrated in a positive feedback loop that partici-

pates in the Ag receptor stimulation of lympho-

cytes. In this feedback loop, Ras gets strongly 

activated upon membrane receptor stimulation, a 

process which is mediated by members of the 

SOS family. In turn, SOS activity at the plasma 

membrane is allosterically upregulated by active 

RasGTP. To validate the existence of this positive 

feedback loop and its functional consequences, 

the authors combined model simulations and 

time-dependent in vitro experiments with human 

and chicken lymphocytic cell lines. They found 

that under some stimulatory conditions, the bio-

chemical system displays bistability. That is, for 

high doses of stimulus, the pathway works like an 

all-or-nothing system: transient but intense stim-

ulus can trigger a sustained activation of the sys-

tem and the downstream pathway. When we 

consider a population of lymphocytes, this prop-

erty may induce the emergence of a bimodal 

response, with a subpopulation of lymphocytes 

getting full and sustained activation, while others 

remain inactive. From an immunological per-

spective, the authors hypothesize that this system 

induces the emergence of a short-term mecha-

nism of molecular memory. This mechanism can 

improve the activation of T lymphocytes which 

were stimulated in previous serial encounters 

with rare antigen-bearing cells.

In the study by Das et al. [60] the focus was to 

elucidate the dynamics of a small signaling sys-

tem containing regulatory loops. In other cases 

one tries to address how several pathways cross 

talk to each other and integrate their signals to 

achieve the regulation of given phenotypic 

responses. This has also been explored using 

mathematical models of large regulatory net-

works in the context of cancer [61] and immunol-

ogy [62]. For example, Carbo and collaborators 

[63] used a systems biology approach to investi-

gate the regulation of the pathways underlying 

CD4+ T-cell differentiation. By collecting and 

organizing the state of the art of biomedical 

knowledge, they constructed a comprehensive 

regulatory map of the critical pathways regulating 

the differentiation of naïve CD4+ T lymphocytes 

into Th1, Th2, Th17, or iTreg. The regulatory 

map was translated into a mathematical model in 

ordinary differential equations and characterized 

using perturbation experiments, in which differ-

ent concentrations of relevant cytokines were 

used to stimulate the shift between different 

 signaling and transcriptional pathways and there-

fore the distinctive differentiation of the naïve T 

cells. Once the model was calibrated and vali-

dated, model simulations and sensitivity analysis 

were combined to determine the model parame-

ters controlling the activation of different path-

ways. They found that the pathway regulating the 

nuclear receptor PPARc function plays a major 

role controlling the shift between the Th17 and 

iTreg transcriptional and phenotypic programs. 

Based on these findings, they foresee a therapeu-

tic potential to the regulation of PPARc signaling 

in the context of chronic inflammatory and infec-

tious diseases. In this way, the authors show how 

a full systems biology strategy can be extremely 

useful to dissect the signaling and transcriptional 

networks controlling differentiation and plastic-

ity of immune cells.

23.4.2.2  Genotype-Phenotype 
Mapping

Mathematical models can be used to bridge the 

gap between intracellular pathways and the cel-

lular phenotypes they regulate. In this case, the 

idea is to develop mathematical models that con-

sider how genetic or epigenetic changes in criti-

cal cancer-related pathways can affect the fate of 

tumor cells and trigger (or disrupt) phenotypic 

responses at the cellular level. Some authors call 

this the genotype-phenotype mapping [64].

We have recently applied this idea to investi-

gate the deregulation of critical cancer signaling- 

transcriptional networks during the emergence of 

a phenotype of chemoresistance ([8], see 

Fig. 23.6). To this end, we constructed a data- 

driven mathematical model in ordinary differen-

tial equations (ODEs) accounting for an 

intracellular network around E2F1, a transcrip-

tion factor involved in abnormal cell prolifera-

tion, apoptosis, and chemoresistance. The 

network included the interaction of E2F1 with 
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two isoforms of p73 and the microRNA miR- 

205, as well as a number of transcriptional targets 

whose regulation after anticancer drug adminis-

tration is controlled by these E2F1/p73/miR-205 

networks. To make the genotype-phenotype map-

ping possible, we connected our model with an 

additional equation that describes the size of a 

population of tumor cells whose response upon 

stimulation with anticancer drugs was controlled 

by the E2F1-centered network. In this equation, 

basic phenotypic traits of the modeled cells like 

proliferation or death rate were connected and 

therefore controlled by the E2F1-regulated tran-

scriptional targets. These transcriptional targets 

represent the triggering of proliferative, apop-

totic, or antiapoptotic programs in the model.

This equation computationally connects the 

genome of cancer cells with their phenotypic 

response by linking the expression of intracellular 

network components to the dynamics of the tumor 

cell population. We could simulate tumor hetero-

geneity by considering several subpopulations of 

tumor cells, each one of them represented with a 

set of model equations. Using model simulations, 

we detected genetic signatures for the network 

that conferred resistance to either genotoxic or 

cytostatic drugs and even double drug resistance. 

Furthermore, our model predicted that genotoxic 

drugs, when applied to heterogeneous tumors, can 

favor the selection of subpopulations of chemore-

sistant tumor cells.

23.4.2.3  Multi-scale Modeling
In a more refined version of the previous strategy, 

systems biology and data-driven modeling can be 

used to account for spatial features of tumor 

organization and the interaction of the tumor with 

the surrounding microenvironment. This is the 

rationale for the so-called cancer multi-scale 

models, which has been successfully used in the 

last years to investigate the detailed dynamics of 

tumor growth or angiogenesis [17]. In the recent 

literature, there are several excellent reviews 

about the topic [65], as well as a number of 

Fig. 23.6 Model-based genotype-phenotype mapping: 

modeling genetic signatures promoting chemoresistance. 

In Vera et al. (2013) [8], we derived a data-driven model 

in ODEs accounting for an intracellular network around 

E2F1, involved in cancer resistance to genotoxic and cyto-

toxic drugs. We connected the network model with an 

additional equation describing the size of a population of 

tumor cells whose response upon anticancer drugs admin-

istration was controlled by the E2F1 network. Model 

simulations of heterogeneous tumors predicted that geno-

toxic drugs can favor the selection of subpopulations of 

chemoresistant tumor cells
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examples of cancer multi-scale models [16, 66], 

many of which referred to angiogenesis.

To mention an example with a cancer immu-

nology focus, Pak and coauthors [67] derived a 

mathematical model to investigate features of the 

delivery of recombinant immunotoxins, a family 

of new molecules with anticancer activity. They 

are composed of an Ab fragment targeting spe-

cific tumor cell Ags and a protein toxin fragment, 

which is released and triggers cytotoxic effects 

upon recognition, internalization, and processing 

of the molecule. The authors derived a mathemat-

ical model that links recombinant immunotoxin 

dosing and changes in tumor volume. In the 

model, a tumor is divided into a series of spheri-

cal subunits that contain a blood vessel and a 

number of tumor cells surrounding it, which can 

be present as normal, intoxicated, or dead 

tumor cells. For each one of these structures, the 

model contains a set of differential equations 

accounting for the dynamics of immunotoxin, 

from its release from the blood vessel until its 

internalization in a tumor cell, which becomes 

intoxicated. In this way, the model accounts for 

the amount of immunotoxin released, present, 

and degraded in each tumor subunit. The other 

part of the model describes the dynamics of 

tumor cell populations existing in the subunit. 

This part of the model considers processes like 

cell growth, immunotoxin- related death, and cell 

migration to occupy the space cleared after the 

death of highly intoxicated cells. Using model 

simulations, Pak and colleagues found that Ag 

shedding, a key mechanism in the dynamics of 

tumor-specific surface Ags, is critical for the 

 success of the therapy. Using model simulations, 

they found that Ag shedding homogenizes 

the distribution of the immunotoxin in solid 

tumors, therefore increasing the efficiency of the 

therapy.

23.4.2.4  Mathematical Models Used 
to Assess and Design 
Therapies

Previous results illustrate the potential of systems 

biology and data-driven modeling to explore the 

structure, function, and regulation of biochemical 

networks, as well as their interplay with 

 cancer- related cell and tissue phenotypes. In 

addition, systems biology can play a major role 

in translational medicine, providing tools for 

clinical data integration, as well as for design, 

assessment, and personalization of anticancer 

therapies [68, 69]. In the following, we illustrate 

these possibilities with several recent examples.

Assessment of Conventional Therapies
A very promising use for systems biology is the 

personalized assessment of anticancer therapies. 

The literature contains many recent works illus-

trating how data-driven modeling can be used to 

maximize the efficiency of current therapies but 

also to detect patient subpopulations for which 

they are not suitable. For example, mathematical 

models can be used to determine under which 

conditions a conventional therapy: (a) is toxico-

logically safe [70, 71], (b) does not induce further 

resistance [8, 72], and (c) can be combined with 

other therapies [8]. Furthermore data-driven 

models can be used to establish the drug dosage 

and timing that optimizes the anticancer effect 

and/or reduce toxicity [73].

For example, Engel and collaborators [70] 

made use of data-driven mathematical modeling to 

look for the optimal administration dose and 

 timing of several conventional anticancer drugs 

minimizing the risk of acute neutropenia, a side 

effect of anticancer therapy in malignant lymphoma 

and other cancers. What makes therapy- associated 

acute neutropenia important for cancer patients is 

that they get a drastic reduction of neutrophil 

blood levels, which makes them more vulnerable 

to bacterial infections and increases the risk of life-

threatening sepsis. Engel and coworkers derived, 

characterized, and tested a quantitative data-based 

ODE model that describes the generation, 

 proliferation, and differentiation of neutrophils 

and other human granulocytes. The model was 

extended to account for the changes in the 

 granulocyte dynamics suffered by patients with 

lymphoma and treated with cytostatic drugs and 

recombinant GSCF, an adjuvant therapy that 

 stimulates granulocyte production and accelerates 

the recover from neutropenia. The model was 

characterized with patient data obtained from 

 several large randomized clinical trials, in which 
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efficacy and safety of multidrug chemotherapies 

were assessed. The obtained model describes pre-

cisely the time response of white blood cell levels 

for ten different therapeutic regimes. Furthermore, 

the authors suggest that the model can be used as a 

predictive tool, able to assess the safety of other 

non-explored conventional anticancer drugs 

regimes. Although the model was characterized 

with data from patients suffering malignant 

 lymphoma, they claim the model can be adapted to 

assess the risk of therapy- associated neutropenia 

in other tumor entities.

This idea can be extended to other conven-

tional anticancer therapies. For example, Ribba 

and colleagues [71] developed a multi-scale 

model to investigate the effect of some tumor 

 features in the efficiency of radiotherapy. The 

authors constructed a model for colorectal cancer 

progression that links cell cycle progression, 

DNA damage level, and other signaling pathways 

to the sensitivity of individual cells to the irradia-

tion doses. Their model integrated four modules, 

implemented using different modeling frame-

works. Some of the key features of the model are: 

(a) it includes regulatory pathways controlling 

cell cycle, cell division, and apoptosis; (b) these 

pathways are connected with the fate of individ-

ual tumor cells and actually control tumor cell 

death and proliferation; (c) the model also con-

siders the spatial structure of the tumor, that is, 

how cells get distributed and interact with the 

tumor microenvironment through gradients of 

growth and antigrowth factors and hypoxia; (d) 

additional model equations describe how differ-

ent irradiation dosing (time and dose) triggers 

DNA damage in proliferative tumor cells. When 

they simulated radiotherapy administration with 

their model, they found that the efficacy of con-

ventional irradiation protocols can be improved if 

the cell cycle-regulated dynamics of tumor 

growth is considered when planning the schedule 

of irradiation sessions. This result is in line with 

others suggesting similar optimal schedules of 

chemotherapy sessions, something known as 

cancer chronotherapy [74].

Design of New Chemo- and Immune 
Therapies
Systems biology has become a valuable approach 

to boost the procedure of drug discovery and the 

design of combined therapies that integrate 

 conventional and targeted chemotherapy. The 

underlying idea is to combine predictive model 

simulations, sensitivity analysis, and other 

advanced model-based computational methods to 

help detect single or combined potential drug tar-

gets. These model-obtained potential drug targets 

can later direct the search from new drugs [21, 

75, 76]. In a quite remarkable example of this 

strategy, Schoeberl and colleagues combined 

high-throughput and time series data with math-

ematical modeling of the receptor tyrosine kinase 

signaling family to detect new anticancer drug 

targets [12, 77]. They derived, calibrated, and 

validated an ODE-based mathematical model 

describing the known features of the ErbB/PI3K 

signaling network in the context of cancer pro-

gression. Predictive model simulations were 

combined with computational sensitivity analysis 

to identify which members of the ErbB family 

have a major effect in the activation of AKT sig-

naling in cancer cell lines. They later synthesized 

a human monoclonal antibody that inhibits the 

phosphorylation and subsequent activation of 

their top one model-detected drug target, the 

ErbB3 receptor. The model predictions were vali-

dated by showing that this antibody stops the 

growth of human tumor xenografts in mice mod-

els. Interestingly, the team is entirely composed 

of researchers from a biotech company devoted 

to the use of systems biology in drug discovery 

(Merrimack Pharmaceuticals, Cambridge, USA).

This strategy has also delivered some interesting 

results in the context of immune anticancer thera-

pies. Kim and Lee [78] used data-driven modeling 

of the lymph node-tumor interaction to analyze 

whether preventive vaccination with cytotoxic T 

lymphocytes (CTLs) can be employed to promote 

the clearance of microtumors before clinical detec-

tion (Fig. 23.7). Toward this end, they derived a 

hybrid mathematical model composed of two 
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Fig. 23.7 Data-driven modeling of the lymph node-tumor 

interaction and the clearance of microtumors with cytotoxic 

T-lymphocyte (CTL) vaccination. The model describes the 

dynamics of CTL activation, including tumor Ag production, 

its detection by antigen-presenting cells, and the activation of 

cytotoxic T lymphocytes by the matured antigen- presenting 

cells. In addition, the model describes tumor cell detection by 

CTLs and CTL-mediated tumor cell death. The model can 

simulate variations over time for the populations of the dif-

ferent immune cells and the tumor cells

 interconnected modules. The first module describes 

the dynamics of CTL activation, including the 

tumor antigen production at the tumor site, its 

detection by antigen-presenting cells, and the sub-

sequent maturation and their migration to the lymph 

node. Furthermore, the module includes the activa-

tion of CTL by the matured APCs and its subse-

quent proliferation, maturation and migration, as 

well as the emergence of memory T cells. The sec-

ond module describes the interplay between active 

cytotoxic T lymphocytes and tumor cells, including 

tumor cell  detection, recruitment of additional 

CTLS, and CTL-mediated tumor cell death. The 

model was characterized using data from breast 
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cancer. The authors used the mathematical model to 

determine a threshold in the size of the anticancer 

memory CTL pool able to promote an effective 

clearance of microtumors. Furthermore, the model 

predictions attribute an important role in the success 

of the immune response to the rapidity in which 

CTLs detect the tumor site. Paradoxically, the 

model simulations suggested that tumors with fast 

growth rate are more prone for CTL destruction due 

to the faster production of tumor antigens and, 

hence, faster detection by CTLs.

Unconventional Therapies
A fascinating option with data-driven mathemati-

cal modeling is to explore therapies inspired in 

not yet experimentally proven concepts and ideas. 

In this sense, modeling is used to formulate new 

hypothesis on the origin and progress of cancer, as 

well as to foresee how one could derive new ther-

apies based on this. In the recent literature, there 

are some examples of this procedure [79, 80]. In 

a series of recent papers, Gatenby and coworkers 

hypothesized that  adaption to chemotherapeutic 

agents has an energetic cost for cancer cells, and 

this can be exploited to design anticancer thera-

pies [80, 81]. In fact, the starting point of their 

hypothesis is that chemoresistant cells need addi-

tional energetic resources to keep working the 

resistance mechanisms against drugs. Their adap-

tive therapy relies on considering the existence of 

several coexisting subpopulations of cancer cells 

in the tumor, with different genetic and pheno-

typic backgrounds regarding chemoresistance. In 

their hypothesis, one can favor the proliferation 

of chemosensitive cells by manipulating the tim-

ing and dose of conventional chemotherapy, in a 

manner which these cells can effectively compete 

with chemoresistant ones for space and resources 

and delay the development of a fully resistant 

tumor. To substantiate their hypothesis, they have 

derived a series of in vitro data-driven mathemati-

cal models, which describe the growth of tumors 

composed by chemosensitive and  chemoresistant 

cancer cell  subpopulations. For the most updated 

version of the model, they  performed in vitro 

experiments under conditions of normal growth 

and genotoxic drug  administration using either 

normal MCF-7 cell lines or mutant cell lines 

overexpressing  proteins involved in the efflux of 

anticancer drugs. Using data from these experi-

ments, they characterized the rates of growth and 

drug sensitivity of both tumor cell subpopulations 

in the model. Later, model simulations were per-

formed to analyze the tumor growth rate when 

different versions of their adaptive therapy were 

used; they compared the results with the tumor 

growth rate under conventional genotoxic chemo-

therapy. They found that the combination of their 

adaptive therapy (which tunes the timing and dose 

of conventional chemotherapy) with the adminis-

tration of non- chemotherapeutic membrane pump 

substrates (a kind of “competitive” inhibitors of 

drug efflux) and 2-deoxyglucose (an inhibitor of 

glucose transporters and glycolysis) provokes a 

fourfold increase in the progression-free survival 

in their computational models.

23.5 Concluding Remarks

Systems biology emerged a decade ago as a 

methodological approach that combines quanti-

tative experimental data, mathematical modeling, 

and other tools from computational biology, aim-

ing to understand the regulation of these complex 

biochemical systems. The interaction between 

tumors and the immune system is not an excep-

tion to this scenario. The immune system is by 

definition a multi-scale system not only because 

it involves biochemical networks that regulate the 

fate of immune cells but also because immune 

cells communicate with each other by direct con-

tact or through secretion of local or global sig-

nals. Furthermore, tumor and immune cells 

communicate, and this interaction is affected by 

the features of the microenvironment in which 

the tumor is hosted. Altogether, we are envision-

ing a complex multi-scale biological system, 

whose analysis requires a systemic view to suc-

ceed integrating massive amounts of quantitative 

experimental data coming from different tempo-

ral and spatial scales.
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24.1            Introduction 

 Through the use of deliberate mutation of 
 immunoglobulin genes, the immune system has 
evolved the ability to produce antibodies (Abs) 
able to bind targets with exquisite specifi city 
(i.e., recognition of ONLY the target) and impres-
sive affi nity (i.e., strong binding to the target). 
These abilities explain why Abs remain an 
invaluable tool for the detection and measure-
ment of biological phenomena and already repre-
sent some of the treatment modalities of the 
present and near future. While most of the work 
with Abs is currently  ex vivo , their use  in vivo  has 
already shown signifi cant progress and benefi ts. 
Antibodies are currently used for biosensing of 
specifi c targets in the body, in order to deliver 
radioactive isotopes or cytotoxic drugs (reviewed 
in Ricart and Tolcher [ 1 ]). Antibodies have also 
been used for visualizing specifi c biological pro-
cesses such as tumor shrinking and tumor growth 
[ 2 – 5 ] or to aid in the imaging of tumors. These 
types of applications for antibodies will likely 
become more common as immunoglobulin engi-
neering becomes more sophisticated, increasing 
the potential of using Abs  in vivo  for the targeting 
of specifi c lesions or tumors or even for the neu-
tralization of specifi c biological processes. In the 
meantime, Abs are widely used in multiple for-
mats and platforms to aid in the detection of a 
wide range of cancers. This chapter will intro-
duce the structure of the immunoglobulin pro-
tein, including the most commonly used altered 
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and engineered variants created by researchers, 
and provide detail on how these various Abs can 
be labeled to allow their detection. A number of 
different applications then become possible. The 
principles of these applications and the ways in 
which they can be combined to create diagnostic 
tests will be outlined, including how diagnostic 
assays are increasingly being designed to include 
the detection of large numbers of  targets simulta-
neously, a technique known as multiplexing.  

24.2     Overview of Antibodies 

 Antibodies, or soluble forms of immunoglobulin 
(Ig), possess a vast array of possible specifi cities 
and a structure that is one of the more stable among 
mammalian proteins. Researchers have capitalized 
on the large pool of specifi cities provided by naïve 
B lymphocytes as well as on the refi nement of 
specifi cities for the recognized motif, or epitope, 
provided by the process of somatic hypermutation 
during clonal expansion of activated B cells. 
However, the  ex vivo  generation of Abs is becom-
ing the standard for the purposes of research, diag-
nostics, and therapy. This allows for an increased 
amount of versatility through a large number of 
sources and formats. Clinicians and researchers 
have the choice of intact Ab molecules or frag-
ments, as well as polyclonal or monoclonal anti-
bodies (mAbs) from a number of different species. 
Each of these various Ab molecules can also be 
chemically linked to a multitude of reporter mole-
cules, allowing the use of Abs in a wide range of 
assay platforms. The most common of these plat-
form variants are described below. 

24.2.1     Monoclonal vs. Polyclonal 
Antibodies 

 A polyclonal Ab preparation consists of a mix-
ture of immunoglobulin molecules with multiple 
specifi cities, all of which are directed against the 
target. Most polyclonal Ab mixtures are created 

by the injection of a purifi ed full-length recombi-
nant protein into an animal, which can lead to the 
generation of Abs that recognize many portions 
of the protein. In other instances, a short peptide 
comprising a more specifi c region of interest is 
used, creating a number of different Abs that 
recognize a very specifi c region or “epitope.” In 
most cases the rabbit is used to generate poly-
clonal Ab mixtures. Many other species can also 
be used to create these Abs, contributing to the 
multiplexing fl exibility of Abs. The injected pep-
tide or protein, known as an immunogen, is 
selected to include a very specifi c, and preferably 
unique, region of interest in a target molecule. 
When the injected animal’s immune system rec-
ognizes the peptide or recombinant protein as 
foreign, the resulting immune response will gen-
erate multiple immunogen-specifi c Abs, which 
can then be isolated from the animal to yield a 
polyclonal antiserum. In some cases, this antise-
rum is purifi ed further using affi nity chromatog-
raphy [ 6 ]. 

 Because of a higher degree of confidence in 
their affinity and specificity, mAbs are often 
chosen over polyclonal preparations when 
possible. Kohler and Milstein developed the 
first mAbs in the mid-1970s by expanding on 
the techniques used to generate polyclonal Ab 
preparations. As with polyclonal Ab stimula-
tion, an immune response is elicited to an 
injected immunogen. In this case, however, 
multiple antibody-producing daughter B cells 
are isolated from the spleen of the injected 
animal after several days. Myeloma cells are 
then fused with the harvested antibody- 
producing B lymphocytes to generate hybrid-
omas. These hybridomas can produce large 
amounts of the Abs expressed by the original 
activated daughter B cells and are capable of 
proliferating in culture indefinitely. Single 
hybri domas are separated and expanded in 
culture to create monoclonal populations. The 
Abs produced by the monoclonal populations 
are then screened for affinity and specificity 
[ 7 ,  8 ]. 
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 Several technologies for more cost-effective, 
rapid, and simpler generation of mAbs have since 
been developed. Chimeric or “humanized” Abs 
have been made possible by recombinant tech-
niques, combining human Ab DNA with the 
sequence encoding the binding site of a mouse 
mAb [ 9 ]. Recent years have also seen the emer-
gence of bacterial expression of anti bodies, 
which allows for the selection of advantageous 
Ab specifi cities via phage display. The displayed 
Ab fragments are generated from the plasma 
cells of human donors or from the spleen of an 
immunized animal. Increasingly, however, these 
phage libraries and other screening tools are gen-
erated by genetic engineering (discussed in 
greater detail in Donzeau and Knappik [ 9 ]). The 
highly specifi c high-affi nity mAbs required for 
therapies, diagnosis, and basic research are cre-
ated using these methods.  

24.2.2     Antibody Fragments 

 Depending on the requirements of the assay plat-
form, Abs can be used in a number of different 
formats, including the intact immunoglobulin 
molecule as well as multiple types of smaller 
fragments (Fig.  24.1 ). The Fab fragment includes 
the entire light chain, as well as the variable and 
fi rst constant region of the heavy chain, and can 
form stable H/L heterodimers without being 
covalently linked. In some cases Fab fragments 
can remain joined through a C-terminal disulfi de 
bond (Fig.  24.1c ) [ 9 ]. Fab fragments can be created 
by papain digestion of intact immunoglobulin 
molecules, or more recently, through genetic 
manipulation. The F(ab’) 2  fragment is similar, in 
that it also retains the disulfi de bond which cova-
lently links the two chains of the Fab fragment 
(Fig.  24.1b ). In the case of the F(ab’) 2  fragment, 
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  Fig. 24.1    Intact immunoglobulin and common antibody 
fragments. ( a ) Schematic representation of an intact 
immunoglobulin molecule. Each heavy chain ( blue ) con-
sists of three constant domains (C H 1-3) and the variable 
domain (V H ). C H 1 and C H 2 are linked by the fl exible 
hinge region, which forms two disulfi de bonds with the 
hinge region of the complementary heavy chain. Each 
light chain ( purple ) consists of one constant domain (C L ) 
and one variable domain ( V   L  ) and is associated with the 
heavy chain through a disulfi de bond proximal to the 
carboxy-termini of the two chains (COOH). The anti-
gen-binding regions of the molecule (Ag Binding) are 
found at the amino-termini of the V H /V L  pairs (NH 2 ) and 

are circled in red. The Fc portion of the molecule, con-
sisting of C H 2–3, is indicated. Domain labels are con-
stant throughout the fi gure. ( b ) The F(ab’) 2  antibody 
fragment. Enzymatic digestion of intact immunoglobu-
lin with pepsin results in the cleavage of the molecule at 
the hinge region, maintaining the disulfi de bonds and 
yielding the F(ab’) 2  fragment. ( c ) Papain cleaves the 
hinge region of intact immunoglobulin just above the 
disulfi de bonds, generating two Fab fragments. Fab frag-
ments can also be created through genetic manipulation. 
The heavy and light chains can associate non-covalently 
( right ) or may maintain a disulfi de bond near the car-
boxy-termini ( left )       
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however, a portion of the fl exible hinge region 
remains intact following its creation by digestion 
of intact Abs with pepsin. Additional small frag-
ments and multivalent engineered Abs can also 
be created through genetic engineering and may 
enjoy increasing use in diagnostic assays and 
possibly cancer therapy in the coming years.

24.2.3        Reporter Labeling 

 There are a number of reporter molecules avail-
able for use in visualizing and even quantifying 
the binding of an Ab to its target [ 10 ]. One such 
class of reporters is the group of laser-activated 
fl uorescent molecules called fl uorophores or fl u-
orochromes, commonly used in fl ow cytometry 
(see Sect.   24.8    ). Other reporters can be enzymatic 
and therefore depend on chemical reactions to be 
detected. For these reporters, the Abs are chemi-
cally linked, or conjugated, to an enzyme such as 
alkaline phosphatase (ALP) or horseradish per-
oxidase (HRP). An intense color is generated by 
the product created when these enzymes are 
incubated with chromogenic substrates, allowing 
measurement with a spectrophotometer. It is also 
possible to incubate these enzyme-linked Abs 
with a chemiluminescent substrate, the product 
of which gives off light, which can then be quan-
tifi ed by a number of different instruments and 
even captured on fi lm. 

 A common third approach, often used to allow 
greater fl exibility for the multiplexing of targets, 
includes biotin-conjugated Abs [ 11 ]. Biotin rec-
ognizes streptavidin with a high level of specifi c-
ity and affi nity, forming one of the strongest 
known non-covalent bonds. Streptavidin can be 
linked either to fl uorophores or to enzymes like 
HRP and ALP, providing the fl exibility to use a 
particular biotinylated Ab across multiple assay 
platforms. Similarly, within a single platform, the 
same biotinylated Ab can be used in multiple 
wells or tubes and, if necessary, be identifi ed by 
different colors by using varied streptavidin- 
conjugated reporters, as with the multiple fl uoro-
phores used in fl ow cytometry [ 12 ].  

24.2.4     Primary and Secondary 
Antibodies 

 Some diagnostic assay formats require the use of 
Ab pairs for detection (see Fig.  24.6b  for a sche-
matic representation). The fi rst, or primary, Ab is 
specifi c for the target. A secondary reporter- 
conjugated Ab can be used in cases where the 
primary Ab does not include a reporter. Anti- 
species Abs, which are directed against immuno-
globulin molecules produced by a different 
species, are commonly used as secondary Abs. 
For example, mouse immunoglobulin is injected 
into a goat to produce an immune response, 
resulting in a polyclonal goat anti-mouse Ab 
preparation that can be labeled with a reporter 
molecule. The goat anti-mouse Ab preparation is 
used to detect the presence of the primary mouse 
mAb wherever it may be bound to the target. 
However, in order to avoid possible cross- 
reactivity and to minimize the complexity of the 
assay, simpler assays in which the primary Ab is 
directly conjugated to a reporter are preferred 
when the assay system permits.   

24.3     Immunoprecipitation 

 For many years, specifi c Abs have been used as a 
means to bind and concentrate targets in solution 
[ 13 ]. This process, known as immunoprecipita-
tion (IP), involves the mixing and incubation of 
the specifi c Ab with a solution containing the 
molecule of interest (Fig.  24.2 ). After suffi cient 
time to allow the Ab to bind the target, the Ab 
itself can be captured through binding to beads 
coated with bacterial protein A, protein G, or a 
mixture of both. The solution can then be centri-
fuged to pellet the beads at the bottom of the 
tube, allowing the supernatant to be transferred 
or discarded. Through this process, the target has 
been isolated and greatly concentrated and is now 
more readily detected.

   When searching for comparatively rare pro-
teins, which are present at much lower concentra-
tions, a larger number of cells or volume of bodily 
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fl uids like plasma are required. This larger amount 
of material often presents problems for the detec-
tion system, which can be solved through the 
capture and concentration of the target by IP. In 
other cases, IP is used to diminish the amount of 
background detected by the assay system. The 
background can be minimized either by pulling 
the target out of the sample mixture for detection 
or by specifi cally depleting the mixture of an 
unwanted protein(s) that has been found to confl ict 
with the detection of the target. IP is often used as 
a fi rst step before detection by immunoblotting.  

24.4     Immunoblotting 

 Also known as Western blotting, immunoblotting 
(IB) makes use of specifi c Abs for the detection 
of proteins of interest [ 14 ]. Sodium dodecyl 
sulfate (SDS) and heat are used to denature the 
proteins in a sample, which can range from a 

bodily fl uid such as plasma, to a solution of 
cellular proteins released from cells by treatment 
with a lysis buffer. These proteins are separated 
according to mass via polyacrylamide gel elec-
trophoresis (SDS-PAGE) and transferred to a 
membrane for detection (Fig.  24.3 ). The specifi c 
primary Ab is washed over the surface of the 
membrane for a prolonged incubation period, 
allowing it to bind the target protein, followed by 
incubation with a secondary enzyme-conjugated 
anti-species Ab. After the addition of a chemilu-
minescent substrate, a band of light will be gen-
erated at the position where the primary and 
secondary Abs are bound to the membrane. The 
amount of protein present dictates the amount of 
primary and secondary Ab bound to the mem-
brane, which in turn dictates the intensity of the 
light generated. This light signal is traditionally 
detected by exposure to autoradiography fi lm, 
but advances in low-light camera-based systems 
have led to increasing use of these documentation 
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Other protein
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Target bound to antibody
Protein A/G microbead
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  Fig. 24.2    Immunoprecipitation. ( a ) Cell lysate or other 
biological sample is incubated with specifi c antibody ( Ab ), 
which binds to the target in solution. ( b ) Microbeads coated 
with bacterial protein A, protein G, or a combination of 
both are added to the solution. The Abs, whether bound to 
target protein or free, will be bound by the bacterial proteins 

coating the bead. ( c ) Following centrifugation, the beads 
and their cargo of Ab and target protein will form a pellet at 
the bottom of the tube. The supernatant, now depleted of 
the target protein, can be transferred to another tube or dis-
carded. These schematic representations of Abs and their 
targets will be used for all subsequent fi gures       
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methods. On a traditional immunoblot exposed to 
fi lm, lower-intensity signals correspond to fainter, 
thinner bands, while larger amounts of signal 
create fatter, darker bands (Fig.  24.3 ).

   Due to the fact that it provides an opportunity to 
physically view the interactions of an Ab with the 
proteins present in a sample matrix,  immunoblotting 
is still widely used in a research setting despite 
being an older technique. This characteristic can 
help researchers determine the specifi city of an Ab 
during the development of a cancer test, even if 
another technique will ultimately be used for detec-
tion. However, despite the fact that the method is 
comparatively time- consuming and labor inten-
sive, there are still some cancer-related diagnostic 
tests which make use of Western blotting. Examples 
include con fi rmatory tests for Ri, Hu, or Yo, which 
are found in paraneoplastic syndromes associated 

with a number of cancers. The proteins of interest 
in these Western-based tests are actually Abs them-
selves. The Ri immunoblot detects the anti-Ri Ab 
present in patients with paraneoplastic myoclonus/
opsoclonus syndrome, which is most often associ-
ated with gynecological cancers, breast cancer, and 
small cell lung cancer. The Yo, or Purkinje cell, Ab 
is also found in patients with breast, ovarian, and 
other gynecological cancers, in this case suffering 
from paraneoplastic cerebellar degeneration. Hu 
antineuronal nuclear Abs are detected by Western 
blot in a small percentage of patients with small 
cell lung cancer and are associated with paraneo-
plastic sensory neuropathy and encephalomyelitis. 
The highly specifi c Abs used in these Western blots 
provide confi rmation of the identity of the Hu, Yo, 
and Ri Abs initially detected by fi rst-line screening 
tests.  
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  Fig. 24.3    Immunoblotting. ( a ) Samples are denatured in 
lysis buffer, loaded onto a polyacrylamide gel, and separated 
by electrophoresis ( PAGE ). The presence of sodium 
dodecyl sulfate ( SDS ) in the buffer masks the native 
charges of the proteins and lends an overall negative charge, 
allowing the proteins to migrate toward the cathode 
according to size, with smaller proteins traveling farther 
through the matrix than large proteins (SDS-PAGE). 
Proteins can also be analyzed by their native conforma-
tions under non-denaturing conditions in the absence of 
SDS (not shown). ( b ) Separated proteins are transferred to 
a nitrocellulose or polyvinylidene fl uoride ( PVDF ) 
membrane via the application of electrical current. The 
membrane is then probed with primary Ab specifi c for 
the target protein or residue, followed by an enzyme-
conjugated secondary anti-species Ab (more detail on 

secondary antibodies and reporters is given in Fig.  24.5 ). 
A molecular weight standard containing multiple proteins 
of known molecular weights is usually included in each 
experiment (size ladder), to provide an estimation of the 
distribution of the sample proteins. The proteins in these 
ladders are often dyed, sometimes with multiple colors, to 
allow visualization on the membrane. ( c ) The target is 
visualized by incubating the membrane with the chemilu-
minescent substrate of the reporter enzyme, which emits 
light. The signal is captured by exposure to autoradiogra-
phy fi lm or by a camera-based gel-documentation system. 
The quantity of target can then be extrapolated from 
signal intensity and/or band size, with larger bands corre-
sponding to more bound target, although this measure is 
not truly quantitative, but relative to the other samples in 
that experiment only       

 

A.C. Donahue and Y.-l. Peng



457

24.5     Radioimmunoassays 

 One of the fi rst highly sensitive methods for 
measuring the levels of proteins such as hormones 
in the blood was the radioimmunoassay (RIA) 
[ 15 ]. In a classic RIA, a known quantity of puri-
fi ed target protein is radiolabeled, most often 
with a gamma radioisotope of iodine. This “hot” 
protein is mixed with a specifi c Ab that has been 
immobilized on a surface, and then the biological 
sample containing unlabeled or “cold” protein is 
added to the mixture (Fig.  24.4 ). In a standard 
competition assay, the cold protein will then 
compete with the radiolabeled protein for bind-
ing to the Ab, leading to the displacement of a 
fraction of the radiolabeled protein. The amount 
of target protein present in the sample can then be 
extrapolated by measuring the amount of dis-
placed radioactivity.

   RIA technology allowed some of the fi rst spe-
cifi c and sensitive tracking of important hor-
mones like insulin in human blood [ 16 ] and is 
still used in some cancer-related diagnostics 
today, including thyroid hormone testing. Some 
thyroid hormone tests, including reverse T3, free 
T4, and especially thyroid-stimulating hormone 
(TSH), are still offered via RIA. These thyroid 
hormone tests are included as diagnostic tests in 
the preliminary characterization of thyroid nod-
ules as malignant or benign and in the diagnosis 

of TSH-secreting pituitary adenomas. In the 
interest of laboratory safety, however, technology 
has moved away from techniques requiring the 
handling of radioactivity, and the RIA method 
has largely been replaced by enzymatic 
immunoassays.  

24.6     Enzymatic Immunoassays 

 Enzymatic immunoassays, or EIAs, are the 
archetypal antibody-based detection format and a 
foundation of basic cellular biology research. 
The best known EIA format is the enzyme-linked 
immunosorbent assay (ELISA) [ 17 ], which has 
been used for the detection of targets in both cell 
lysates and in nearly every bodily fl uid, ranging 
from whole blood to sputum to cerebrospinal 
fl uid. Most commonly, ELISA assays are per-
formed in microtiter plates containing 96 or more 
wells, providing the opportunity to test a large 
number of samples in a single run. Further, as the 
treatment of each well is often identical, the for-
mat of the ELISA assay lends itself to a high 
degree of automation using liquid handling 
robots and plate washers. Since the ELISA often 
contains multiple lengthy incubation steps, the 
ease with which it can be automated provides 
valuable time and labor savings in a high- 
throughput cancer diagnostics laboratory. 

Radiolabeled purified target protein
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  Fig. 24.4    Radioimmunoassay. ( a ) Purifi ed target protein 
is radiolabeled, often with the gamma isotope of iodine 
(γ) and incubated with immobilized specifi c antibody 
( Ab ). Sample containing unlabeled target protein is then 
added to the well. ( b ) The unlabeled target protein com-
petes with the purifi ed radiolabeled protein for binding to 

the Abs, displacing some of the radiolabeled protein when 
present at high enough concentrations. The unbound pro-
tein is removed from the well, and the radioactivity of the 
displaced radiolabeled protein is measured to give an indi-
rect measure of the amount of unlabeled target protein 
present in the sample       
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 ELISA formats can range from simple to 
complex, incorporating from one to four Abs 
(Fig.  24.5 ) [ 17 ]. At the most basic end of the 
spectrum is the “direct” ELISA, which uses a 
single reporter-labeled primary Ab to detect the 
target that has been adsorbed to the surface of the 
well or plate (Fig.  24.5a ). More commonly used, 
however, is the “sandwich” ELISA, which can 
use from two to four Abs as shown in Fig.  24.5b . 
In many cases the sandwich format is preferred 
due to the greater level of specifi city conferred by 
requiring two different specifi c antibodies to bind 
the target before detection is achieved. The fi rst 
Ab which binds the target is referred to as the 
“capture” Ab and is bound to the plate/well either 
through direct adsorption or through interaction 
with a corresponding anti-species Ab that is 
bound to the plate instead. The capture Ab will 
bind the target during incubation with the lysate 
or bodily fl uid, after which the irrelevant proteins 
are washed away, leaving the enriched and puri-
fi ed target. The second, or “detection,” Ab is now 
incubated in the well and allowed to bind to the 
target wherever it has been captured in the well. 
The detection Ab can be directly labeled with a 
reporter or can be detected itself by a secondary 
reporter-conjugated anti-species Ab. The impor-
tant consideration to remember when designing a 
sandwich ELISA is that if a secondary anti- 
species Ab will be used for detection, the capture 
and detection Abs must have been generated in 

different species, to prevent the binding of the 
secondary detection Ab to both.

   The fl exibility made possible by the sandwich 
ELISA allows the detection of specialized pro-
tein motifs. Examples include the differentiation 
between isoforms created by alternative splicing 
[ 18 ] or detection of posttranslational modifi ca-
tions such as phosphorylation, acetylation, glyco-
sylation, methylation, ubiquitination, and even 
protein cleavage [ 18 – 23 ]. The turnover rate of 
important proteins, the activation status of spe-
cifi c pathways, and other important cellular 
activities can be inferred from the posttransla-
tional modifi cations of important cell signaling 
proteins. For detection of these modifi cations, the 
target protein can be bound by the capture Ab, 
the unbound background protein is washed away, 
and then a detection antibody specifi c for the 
modifi cation of interest can be used to determine 
whether the protein contains that posttransla-
tional change. The opposite approach can also be 
taken, in which a detection Ab specifi c for the 
target protein can be used to probe the proteins 
pulled out of solution by a capture Ab specifi c for 
phosphotyrosine, for example. In some cases, the 
posttranslational modifi cation at a specifi c amino 
acid residue is even included in the immunogen, 
in order to generate an Ab specifi c ONLY for the 
version of the protein containing a phosphory-
lated residue at a given position rather than the 
non-phosphorylated version. 
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  Fig. 24.5    ELISA. ( a ) The simplest ELISA consists of 
proteins adsorbed to the surface of a well and incubated 
with specifi c enzyme-conjugated Abs. After binding of 
the Abs to the target protein, the well is washed, and the 
colorimetric or chemiluminescent substrate is added. The 
reporter enzyme acts on the substrate, generating signal in 
the form of color or light, respectively. ( b ) The sandwich 

ELISA and its possible variations. The specifi c capture 
Ab can be directly coated onto the surface of the well or 
be bound itself by an anti-species Ab. After capture of the 
target protein, the target is bound by the detection Ab, 
which can be conjugated to a reporter itself or bound by a 
reporter-conjugated secondary anti-species Ab. Each of 
these permutations is represented       
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 It is also theoretically possible, though 
generally technically diffi cult, to use a sand-
wich ELISA to detect the protein product of a 
gene fusion, such often happens in cancer. One 
such example is the BCR-ABL fusion protein 
which is the result of the so-called Philadelphia 
chromosome, or the reciprocal translocation 
t(9;22);(q34;q11), that occurs most often in 
chronic myeloid leukemia (CML). In this exam-
ple, a capture Ab specifi c for the BCR  protein 
would immobilize both wild-type (WT) and 
fused BCR, while only the fusion protein would 
be bound by the anti-Abl detection Ab. 

 The ability to detect multiple targets side by 
side in a single aliquot of sample can provide a 
great deal of important information, as well as 
maximize the information derived from the often 
inadequate and precious samples received in can-
cer diagnostic laboratories. Newer ELISA tech-
nologies have emerged in the last decade that 
make multiplexing possible through the use of 
multi-spot wells. In this assay layout, a number 
of different capture Abs are bound to the bottom 
of each well in discrete spots, ranging from 2 to 4 
up to 100 (Fig.  24.6a ). Flexibility has been fur-
ther increased by breakthroughs in chemical link-
ers, which allow assay designers to mix and 

match the capture Abs in a given well and do it 
in-house (Fig.  24.6b ). These linker-conjugated 
capture Abs are used with specialized plates, in 
which the binding partner of each chemical linker 
has already been spotted in a specifi c position on 
the bottom of the well. Each capture Ab will 
therefore only bind to one particular spot within 
the well, and the sample can then be added to the 
well and interrogated for the presence of many 
target proteins at once.

   These sorts of multiplexed ELISA platforms 
generally require camera-based detection sys-
tems that include sophisticated software capable 
of discriminating and parsing the signal gener-
ated by multiple spots in a single small well. 
Adding an ever greater level of control over the 
process, some more advanced ELISA platforms 
now include computer-controlled initiation of the 
chemiluminescent reaction. In this system the 
reporter is a true electrochemiluminescent (ECL) 
reagent, requiring an electrical current to undergo 
the chemical reaction, and the assay is performed 
in a specialized plate containing a small electrode 
in each well. The computer controls the applica-
tion of current, usually breaking the plate down 
into sections read in sequence. These sorts of 
adaptations to the ELISA platform represent 
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  Fig. 24.6    Multi-spot ELISAs. ( a ) A schematic represen-
tation of a 16-spot multi-spot ELISA well. Each spot, or 
letter, corresponds to a different capture Ab that is carefully 
applied to the plate in one discrete area, usually by robot. A 
single sample can then be incubated in the well and 16 
different sandwich ELISAs performed simultaneously on 
one small volume of analyte. ( b ) Chemical linkers can create 

multi-spot assays without robotic spotting of the capture 
antibodies, allowing mixing and matching of desired ana-
lytes. Each capture Ab is conjugated to one of several 
chemical linkers and incubated simultaneously in the well. 
Each linker binds only to its corresponding spot, isolating 
each capture Ab in one specifi c region of the plate. Multiple 
sandwich ELISAs can then be performed as in ( a )       
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some of the advances made in the last decade and 
will likely see increasing uptake in the design of 
cancer tests. 

 This versatility in the sandwich ELISA plat-
form, as well as the fl exibility provided by the 
large number of available reporter/detection for-
mats, suggests that similarly ingenious ELISAs 
will continue to be developed. Most commonly in 
cancer diagnostics, however, more straightforward 
sandwich ELISAs are used for the purposes of 
quantitative detection and monitoring of relevant 
proteins. An example is the HER2 ELISA, which 
measures the level of HER2/neu present in the 
serum of breast cancer patients. With the inclu-
sion of a standard curve on the ELISA plate, the 
amount of HER2/neu protein present in the well 
can be quantifi ed, and the concentration of the 
protein circulating in the body can be extrapo-
lated. These data can be used by the clinician to 
assess the patient’s prognosis and to determine the 
likely response of the patient to a given therapy. 
Further, if a baseline concentration of the circu-
lating protein is established prior to administering 
therapy, subsequent longitudinal measurements 

can be compared to that baseline and used to 
monitor the effi cacy of therapy.  

24.7     Immunocytochemical 
and Immunohistochemical 
Assays 

 Immunohistochemistry (IHC) and immunocyto-
chemistry (ICC) are similar techniques used by 
researchers and pathologists to recognize particu-
lar cell types or to determine the location of 
important proteins within the cell. These proteins 
can include indicators of apoptosis or prolifera-
tion, as well as tumor markers. IHC and ICC 
assays can provide a wealth of information to the 
trained observer (Fig.  24.7 ) [ 24 ,  25 ]. The cells 
being studied can be found in an intact tissue 
section as is the case in IHC or taken from sus-
pension or from a smear as in ICC. As with an 
ELISA, these cells are incubated with the pri-
mary Ab specifi c for the protein of interest and 
can be detected either through direct conjuga-
tion of that primary Ab or by the binding of a 

Tissue section

b
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  Fig. 24.7    Immunocytochemistry and immunohisto-
chemistry. ( a ) Simplifi ed schematic of ICC, depicting a sin-
gle cell probed for two specifi c proteins. One protein is found 
to be localized to the cytoplasm ( green ), while the other pro-
tein is localized to the nucleus ( red ). This nuclear localization 
is confi rmed by a co-stain which identifi es the nucleus ( blue ). 

( b ) Simplifi ed schematic of IHC, depicting a slide-mounted 
tissue section. Only a few cells in the tissue section express 
the protein for which the sample has been stained ( dark 
blue ). IHC and ICC can make use of both colored stains and 
fl uorescent markers and often require microscopes with 
multiple excitation and/or emission fi lters (not shown)       
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secondary reporter-conjugated anti-species Ab. 
ICC and IHC can use both enzymatic and fl uores-
cent reporters; the use of fl uorescent reporters is 
also sometimes referred to as immunofl uores-
cence, differentiating the technique slightly due 
to the requirement for a fl uorescent or confocal 
microscope, as opposed to the light microscope 
that can be used to visualize enzymatic reporters. 
Additional common antibodies or dyes are 
often used to identify structures within the cell, 
such as the nucleus. The prepared samples are 
viewed using advanced microscopy techniques 
and often computer-based image analysis systems 
as well.

   In recent years, advances in automation have 
generated higher-throughput solutions for IHC 
and ICC. One such advance, tissue arrays, allows 
the placement of multiple patients’ samples on a 
single slide, which leads to a signifi cant increase 
in the uniformity and speed of slide preparation. 
Further, increasingly sophisticated software and 
new automation systems reduce the amount of 
time that is required to screen slides, thereby 
greatly increasing throughput. An example is the 
InScape system, which includes the scanning of 
the slide to create a high-resolution digital image, 
and automated determination of results using 
marker-based algorithms after the region of inter-
est is chosen by a pathologist. The result is then 
verifi ed by the pathologist, saving a great deal of 
time in the analysis of IHC stains. 

 ICC and IHC continue to be valuable tools for 
pathologists due to the ability of the technique to 
map the location of the target protein to a specifi c 
position within the cell. Some types of proteins, 
such as transcription factors, are regulated wholly 
or in part by localization. For example, many 
transcription factors are found in the cytoplasm 
when inactive and shuttled to the nucleus follow-
ing activation. Mutations in some proteins that 
lead to improper localization within the cell have 
been demonstrated to contribute to malignancy. 
ICC/IHC assays for the visualization of the local-
ization of these proteins, as well as assays that 
detect the presence or absence of posttransla-
tional modifi cations, different isoforms, and even 
mutant proteins, are all valuable diagnostic and 
prognostic tools for pathologists. 

 One of the best known and most commonly 
used IHC tests in cancer diagnostics is the stain-
ing of breast cancer sections for the presence of 
the estrogen receptor protein (ER). As a predic-
tive marker, ER is currently the most useful test 
for establishing patient prognosis. In addition, it 
continues at this time to be the best predictor of 
patient response to hormone therapies. ER is 
often ordered in tandem with IHC staining for the 
progesterone receptor (PR) as well, which pro-
vides similar, if less statistically signifi cant pre-
dictive information.  

24.8     Flow Cytometry 

 One of the most powerful techniques to make use 
of the versatility of Abs is fl ow cytometry [ 26 ]. 
An ever-increasing number of fl uorophores are 
available as reporters, allowing high orders of 
multiplexing with newer instruments; in some 
cases, up to 11 different parameters can be 
recorded simultaneously. These reporter fl uoro-
phores absorb the energy provided by laser light 
at a specifi c “excitation” wavelength and then 
emit energy at a different “emission” wavelength. 
This emitted light is captured by the cytometer 
using an elegant and elaborate series of optical 
fi lters and photomultipliers (Fig.  24.8 ). In newer 
cytometers, multiple lasers are used to increase 
the available excitation spectrum and thus take 
advantage of the range of available fl uorophores; 
these cytometers therefore require computer- 
controlled timing of the lasers and optical fi lters. 
The combination of these numerous reporters 
with the adaptability provided by streptavidin 
conjugation of the fl uorophores and pairing with 
biotin-conjugated Abs provides an impressive 
number of possible analyte combinations that can 
be studied for a particular cell type or biological 
fl uid.

   Initially, and perhaps still predominantly, fl ow 
cytometry was used as a platform for the study of 
intact cells, intended to measure the levels of pro-
teins present on the surface of the cell. The multi-
plexing ability provided by the range of fl uorophores 
and number of possible parameters allows the anal-
ysis of several surface markers simultaneously and 
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has made possible the  characterization of the 
numerous subsets of cell types present in the human 
body. However, advances in the technology in the 
last few decades have also allowed the detection 
and quantitation of both intracellular and soluble 
proteins using fl ow cytometry, as well as cellular 
DNA content, greatly expanding the possibilities 
afforded by this platform. 

 The events occurring inside a given cell can 
provide valuable insights, including whether 
the cell is activated, in the process of proliferat-
ing or in the process of dying under particular 
conditions. In more traditional cell biology 
research, these questions would generally be 
answered using Western blotting or perhaps 
even ELISAs. Despite being powerful methods 
which characterize the response of a population 
of cells to a given condition, both techniques 

actually offer the average response of the entire 
population tested. Even the most carefully puri-
fi ed cell pre parations generally contain a mix-
ture of different cell types, and this 
heterogeneous population may very well 
express the protein of interest at different levels 
or even exhibit a differential reaction to the 
conditions being studied. This heterogeneity 
can make it diffi cult to interpret results and rep-
resents a major roadblock for the study of rare 
cell types, which are in short supply and often 
diffi cult to adequately purify. For these reasons, 
the ability of fl ow cytometry to discriminate 
between lineages by surface marker expression, 
and combine this with intracellular cytokine 
staining in preparations of fi xed and permeabi-
lized cells, is an important advance in studying 
intracellular events in mixed populations of 
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  Fig. 24.8    Basic principles of fl ow cytometry. ( a ) Cells, 
which have been incubated with fl uorophore-conjugated 
Abs, are drawn from the sample tube into the machine, 
where they pass the beam(s) of laser light in single fi le and 
continue on to a waste receptacle. ( b ) As the cells pass the 
interrogation point, any bound fl uorophores are excited by 
the laser light. The excited fl uorophores then emit light at 
slightly different wavelengths, which are captured by 

detectors after passing through a complex system of optics 
(not shown). ( c ) Software manipulation of the recorded 
light signals results in data that can be analyzed in many 
ways and combinations. Each target assayed, or parame-
ter, can be analyzed in tandem with any other in a dot plot 
( left ; see Fig.  24.9  for more details) or analyzed singly in 
the form of histograms and then compared to the histo-
grams of other samples ( right )       
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  Fig. 24.9    Surface and intracellular cytokine staining of 
permeabilized cells. ( a ) Mixed cell populations are labeled 
with Abs specifi c for surface markers that identify subsets 
such as different lineages, different activation states, and 
others. Two different cell subsets are indicated here by 
binding to two different surface marker Abs, represented 
here by green (“A,”  upper ) and red (“B,”  lower ) reporters 
which will be seen by the cytometer as different param-
eters. The cells are then permeabilized to allow passage 
of Abs across the membrane, represented by the dashed 
line surrounding the cell. Permeabilized cells are incu-
bated with Abs specifi c for the intracellular target ( purple  
reporter), which will be seen by the cytometer as a third 
parameter that is the same for all cells. ( b ) After sample 
acquisition by the fl ow cytometer, the different cell sub-
sets are differentiated by their expression of the surface 
markers for which they were stained. Comparison of two 
parameters is generally done with a dot plot, in which each 
dot represents a single cell; the dot plot shown here is col-
ored like a heat map to indicate areas of greater and lesser 

cell density. Surface marker “A” ( green  reporter; y-axis) 
is present at high levels on the upper cell, while surface 
marker “B” ( red  reporter; x-axis) is absent, indicating that 
these cells will fall in the top left corner of the dot plot. 
Conversely, the lower cell shows high levels of marker “B” 
and low levels of marker “A,” placing them in the lower 
right corner of the dot plot. These expression patterns cre-
ate two distinct populations in the dot plot. “Gates” can 
then be drawn around the popu lations ( rectangles ), telling 
the software to consider only those cells falling within the 
gate in downstream ana lyses. ( c ) The cells within each gate 
are analyzed for levels of the intracellular protein ( purple  
reporter). Levels are suggested by the intensity of the stain-
ing for the third parameter ( “ Intracellular Marker,” x-axis). 
The diagram in ( a ) depicts the upper cell as having a lower 
level of the target intracellular protein, and this is refl ected 
by the green histogram falling farther to the left on the 
scale than the red histogram, indicating a higher intensity 
of staining in the surface marker B-positive cells than in 
the marker A-positive cells       
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cells (Fig.  24.9 ) [ 27 – 32 ]. These sorts of intra-
cellular cytokine staining  protocols have 
allowed the study of cell signaling cascades in 
intact normal cells [ 33 ], as well as characteriza-
tion of aberrant signaling in mutation-bearing 
cancer cells and in cancer cells exposed to 
emerging therapies.

   Further advances in fl ow cytometry have even 
made it possible to mix samples from two differ-
ent sources, including from two discrete patients 
or from a single patient pre- and posttreatment, 
using a “barcoding” method [ 34 ]. Each sample is 
mixed with a different fl uorescent dye that emits 
at a distinct “signature” wavelength, which, when 
the samples are mixed, allows discrimination of 
each through sorting based on the detection of the 
signature. Although a boon for researchers, this 
technique has yet to become standard practice in 
clinical oncology diagnostics laboratories. Flow 
cytometry itself, however, is fi rmly entrenched, 
primarily as a valuable tool for hematopatholo-
gists, who use fl ow cytometry to examine the 
populations of circulating cells in the blood in 
order to discover subsets of abnormal cells, such 
as those present in hematological malignancies 
like leukemias and lymphomas. Flow cytometry 
panels for differential diagnosis of leukemia/
lymphoma can contain upwards of 20 cell surface 
markers, and algorithms characterizing the 
 patterns of these markers on the surface of cell 
populations in the blood help pathologists iden-
tify the particular type of leukemia or lymphoma 
present.  

24.9     Bead-Based Assays 

 As with the detection of intracellular proteins, the 
study of soluble proteins present in bodily fl uids 
and in cell culture supernatants was traditionally 
performed by immunoblots or ELISA. But again, 
as with intracellular proteins, fl ow cytometry now 
represents an additional platform for the detection 
of soluble proteins through the use of bead-based 
assays. In a design that combines the best features 
of IP and sandwich ELISAs, Abs are coated onto 
microbeads rather than plates, and these beads 
can then be incubated with the sample fl uid puta-

tively containing the protein of interest. Following 
capture by the beads, the  protein can then be 
bound by a specifi c detection Ab. As with sand-
wich ELISAs, the bead-based assay can use up to 
four Abs, but again, fewer Abs are generally pre-
ferred (Fig.  24.10 ). One successful application of 
this technology is the detection of soluble proteins 
released into the bloodstream by dying leukemia 
cells [ 35 – 37 ]. Despite the similarities of the tech-
nique to the sandwich ELISA, the bead-based 
assay benefi ts from greater multiplexing possi-
bilities, inclu ding the Luminex and cytometric 
bead array technologies.

   As stated above, the most advanced cytome-
ters can measure upwards of 11 or more parame-
ters. This often presents calibration issues due to 
the slight spectral overlap of the fl uorophores 
available. One approach to avoiding this problem 
is to use a single fl uorophore to measure different 
analytes, rather than a large number of different 
“colors.” The cytometric bead array (CBA) 
makes use of beads of different sizes, one size for 
each of the different capture antibodies to be 
used. All detection antibodies can then be conju-
gated to the same reporter fl uorophore, because 
the discrimination between the different proteins 
detected will be provided by the size of the bead, 
which is one of the parameters measured as the 
particle fl ows past the cytometer’s detector. These 
different bead sizes will result in easily distin-
guishable populations and thus analytes, as 
shown in Fig.  24.11a , while the level of protein 
captured and detected by a given antibody pair 
will be quantifi ed by the intensity of the report-
er’s fl uorescence (not shown). In this way, the 
CBA assay allows the measurement of multiple 
analytes side by side in the same sample.

   Beyond just determining the relative amounts 
of protein captured by the CBA assay, however, 
researchers have applied a standard curve to the 
assay, allowing the quantitation of detection Ab 
molecules bound to a bead. Each experiment 
includes a tube containing four groups of beads, 
each with a different known level of bound 
reporter fl uorophore. The data derived from this 
sample is used to generate a standard curve, plot-
ting the known number of reporter molecules 
against the mean fl uorescence intensity (MFI) 
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measured by the cytometer. Using this curve and 
the MFI value recorded for a given sample, the 
number of bound reporter-conjugated detection 
Abs can be calculated. This technique provides 
an even more accurate quantitation of the level of 
the target protein present in the matrix and can 
even be applied to the more traditional non-bead- 
based fl ow cytometry methods of intracellular 
and surface protein detection. 

 The Luminex technology makes use of a 
combination of the advantages of both micro-
bead assays and fl ow cytometry, creating a 
method ostensibly able to analyze up to 100 tar-
gets in one well (see Luminex Corporation for 
examples). Luminex makes use of polystyrene 
microspheres impregnated with carefully con-
trolled levels of both red and infrared dyes. 
These different titrations create different color 
signatures for each population of beads, much 
like the barcoding technique described above 
(Fig.  24.11b ). These different beads can then be 
coated with discrete capture Abs, mixed together, 
and incubated with the biological matrix. 
Following capture of the target proteins,  detection 

Abs are added, all conjugated to the same 
reporter fl uorophore as in the case of the CBA 
assay. The data are then  collected using the basic 
principles of fl ow cytometry, in that the dyes 
inside the beads are excited with a red laser to 
reveal the “signature” identifying which target 
should be captured by that particular bead, and a 
green laser is used to excite the reporter fl uoro-
phore to allow the  measurement of the levels of 
protein actually captured [ 38 ]. The multiplexing 
capabilities of this platform provide the potential 
for Luminex to provide as much information 
about a sample as some types of antibody micro-
arrays or multi-spot ELISAs (see below) and is 
therefore currently more often used in a cancer 
research or clinical trial setting.  

24.10     Antibody Arrays 

 The antibody microarray makes possible the 
detection of a very large number of analytes in 
a complex sample, similar to its predecessor, 
the DNA microarray [ 39 ,  40 ]. Most antibody 

Target

Add sample

a b c

Add detection Ab

Wash and analyze

Other protein
Other protein
Antibody
Target bound to antibody
Microbead
Detection antibody

  Fig. 24.10    Bead-based fl ow cytometry assays. ( a ) 
Capture Abs are coated on microspheres. ( b ) The beads 
are incubated with proteins in solution (e.g., lysate, cell 
culture supernatant, or plasma) and bind only the target 

protein. ( c ) The target protein is bound by fl uorophore-
conjugated detection antibody, the sample is washed to 
remove unbound detection antibody, and the beads are 
analyzed by fl ow cytometry       
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 microarray formats are essentially ELISAs on a 
necessarily grand scale, as shown in Fig.  24.12 . 
These arrays are valuable both for basic research 
and in the search for diagnostic and prognostic 
markers of cancer. A small volume of biological 
material can yield a substantial amount of infor-
mation using this technique, and often of greater 
importance, relationships and patterns within the 
data can be recognized and characterized in a 
single snapshot experiment. Antibody microar-
rays can be designed in a number of different for-

mats, including the variable of whether it is 
protein or antibody bound to the array itself.

   In its infancy, antibody array technology most 
closely paralleled that of DNA microarrays by 
spotting the surface of the array with probes con-
sisting of mAbs. Universally labeled proteins are 
then incubated with the array, and the captured 
protein is identifi ed by its binding position on the 
array (Fig.  24.12a ) [ 39 ]. The protein-labeling pro-
cess includes either direct labeling with reporters 
or indirect detection using biotin or digoxigenin. 
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  Fig. 24.11    Cytometric bead array and Luminex technol-
ogies. ( a ) The CBA platform consists of the Abs specifi c 
for each target being conjugated to beads of a different 
size. The beads are incubated with the sample at the same 
time, allowing capture of the target proteins. The beads are 
then incubated with detection Abs for each target, all con-
jugated to the same fl uorophore ( left ). When analyzed, the 
different bead sizes are recognized by the cytometer via 
the forward and side scatter parameters and are identifi able 
as discrete populations that can be analyzed separately via 
gating ( right ). ( b ) Luminex technology makes use of beads 

of the same size which have been impregnated with dyes of 
slightly different wavelengths. Each set of beads is coated 
with a different capture Ab, incubated with sample to capture 
target protein, and detected with a fl uorophore-conjugated 
detection Ab ( left ). The cytometer-based analysis instru-
ment detects the slight variations in the color of the bead 
(Parameter X), creating discrete populations based on bead 
color which can be gated ( right ). The reporter fl uorophore 
intensities within each population can then be analyzed, 
yielding information about the concentration of each target 
analyte       
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Through the use of multiple reporters, it is also 
possible to compare two samples by incubating 
them together in a classic competition assay 
(Fig.  24.12a ). This antibody array format is gen-
erally referred to as a direct array and is the best 
option for assaying truly large numbers of ana-
lytes in a single array, as the only major limita-
tions are space and the availability of specifi c 
antibodies for the desired targets. To date, most 
arrays offered commercially contain analytes 
numbered in the hundreds. The primary technical 
hurdles encountered when using direct Ab arrays 
include limited specifi city and sensitivity and 
fi ltering out background signal. In addition, there 

is always the concern that the direct labeling of 
the proteins may interfere with recognition of the 
protein by the Ab due to the physical masking or 
alteration of the epitope. 

 With these limitations in mind, additional 
antibody microarray formats were developed to 
include both capture and detection antibodies 
(Fig.  24.12b ) [ 41 ]. Specifi city is greatly enhanced 
when relying on the recognition of the target pro-
tein by two different Abs for detection, as one 
source of background is minimized. In addition, 
the problem of possible epitope masking is also 
solved by removing the necessity of labeling 
the proteins. One limitation of this sandwich 

Direct array

a

b

c

Competitive direct array

Sandwich array

Pre-therapy Post-therapy

Reverse phase array

  Fig. 24.12    Antibody array formats. ( a ) Direct antibody 
arrays involve the spotting of specifi c Abs onto a surface. 
The array is then incubated with reporter-labeled proteins 
( left ). The identity of a target protein that binds to the array 
is determined by matching the location of the signal to the 
known layout of the Abs. In a competitive direct array, the 
proteins in two separate samples are labeled with distinct 
reporters ( red  and  green ) and incubated with the array 
simultaneously ( right ). The target proteins will compete for 
binding to the Abs on the array, and the relative signal 
intensities will indicate which sample contained greater 
quantities of each protein assayed. ( b ) The sandwich anti-
body array is highly similar to the sandwich ELISA 

depicted in Fig.  24.5b , simply with a large number of cap-
ture Ab specifi cities combined into a single assay and 
requiring one small volume of analyte. ( c ) The reverse-
phase array consists of the proteins in a sample being 
adsorbed to the array surface, followed by detection with 
reporter-conjugated Abs as in Fig.  24.6a . Although the 
number of targets that can be analyzed simultaneously is 
limited here, the value of the reverse- phase array is that it 
allows multiple samples to be analyzed side by side. The 
example represented here is pre- and post-therapy, and the 
changes in protein expression resulting from the treatment 
are clear       
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approach, in both basic ELISAs and the antibody 
array, is the occasional lack of good matched 
antibody pairs. Another concern is the problem 
of cross-reactivity among the detection antibod-
ies, which generally serves to limit the number of 
possible targets when using a sandwich microar-
ray in contrast to a direct array. However, as the 
targets of greatest interest or benefi t for a given 
model or cancer type are determined, highly cus-
tomized arrays are being developed for diagnos-
tic, prognostic, and research uses. For example, 
some arrays are designed to study groups of puta-
tive or known breast cancer markers, while others 
are used to screen the effects of drug candidates 
on their target cells. 

 There is also, as might be expected, an anti-
body microarray design in which it is the protein 
mixture that is immobilized on the surface of the 
array (Fig.  24.12c ) [ 41 ]. These protein spots can 
then be probed with reporter-conjugated specifi c 
Abs. This reverse-phase array allows the immo-
bilization of multiple samples’ proteins on a 
single array, providing side-by-side analysis, and 
simplifi es the analysis of insoluble proteins. This 
assay format is also plagued by nonspecifi c 
interactions, however, and restricted to a smaller 
number of detection Abs by the limited reporter 
multiplexing options. In spite of these techno-
logical restrictions, the reverse-phase Ab array is 
also a valuable tool for clinicians and research-
ers alike.  

24.11    Concluding Remarks 

 Many of the most spectacular breakthroughs in 
the fi eld of cancer diagnostics in recent years 
have been on the molecular side of the coin, with 
the advent of next-generation or advanced 
sequencing leading the charge. In the shadow of 
such advances, many of the techniques described 
in this chapter tend to look outdated and simplis-
tic. Despite this (likely unfair) comparison, 
many of the diagnostic assays based on the plat-
forms discussed herein continue to be the foun-
dation of cancer patient workups and represent 
many of the gold standards in diagnosis, progno-
sis, and  treatment decision-making. One chief 
reason for the importance of these assays is that 

molecular assays don’t tell the whole story. For 
example, it has been amply demonstrated that 
the level of mRNA, though often useful as a 
marker in and of itself, does not always directly 
correlate to the level of the protein that will be 
translated. Similarly, molecular assays reveal 
nothing about the posttranslational modifi ca-
tions that can dictate subcellular localization or 
activation of a protein, which can be a more tell-
ing measure of aberrant function than the 
sequence of the gene. The ability to study the 
actual protein of interest itself is an important 
aspect of learning as much as possible about the 
malignancy, to better fi ght and defeat it. To this 
end, researchers have harnessed the power of the 
immune system to create clever tools for the 
study of proteins via the exquisite sensitivity of 
Abs, and these tools continue to be absolutely 
invaluable in the diagnostic workup of cancer 
patients.     
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25.1            Introduction 

 Cancer immunotherapy seeks to elicit or augment 
the antitumor immune response in a patient with 
detectable tumor or remaining tumor cells in the 
adjuvant setting in order to enlist the help of the 
patient’s own immune system for tumor control. 
In this context, active cancer immunotherapy 
refers to the use of cytokines (e.g., IL-2 in melanoma 
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and renal cell carcinoma), immunomodulatory 
monoclonal antibodies (e.g., antibodies (Abs) 
against CTLA-4, PD-L1, and PD-1), cell-based 
products (e.g., sipuleucel-T for metastatic hormone-
refractory prostate cancer), or experimental vac-
cines based on various antigen (Ag) formats. 
When evaluating immunotherapies, particularly 
in experimental settings, it is essential to monitor 
the immune response elicited by the treatment. 
Immunomonitoring delivers evidence of immu-
nogenicity, guides the choice and dosage of 
antigens, assesses the effects of immune modulators 
and therapy combinations, and has the potential 
to reveal early biomarkers of clinical effi cacy. In 
this respect, immunomonitoring is helpful for 
rational clinical development and supplements 
clinical effi cacy parameters such as disease-free 
period or survival, which are often only available 
at later clinical trial stages. 

 In view of their role in the anticancer immune 
response, the quantity and quality of tumor antigen- 
specifi c effector CD4 +  and CD8 +  T cells are of par-
ticular interest. In addition, the role of immune 
regulatory cells, e.g., regulatory T cells (Tregs) or 
myeloid-derived suppressor cells (MDSCs) that 
can suppress the effector immune response to a 
tumor, is increasingly recognized. Informative 
analysis requires multiple markers for identifi ca-
tion of phenotypic and functional properties and 
the accurate quantifi cation of cell subsets that are 
typically found at relatively low frequencies in 
the peripheral blood. These characteristics call for 
an assay that is multiparametric, robust, and sensi-
tive enough to characterize rare individual cells. 

 The canonical multiparameter assay for the 
characterization of single cells in solution is poly-
chromatic fl ow cytometry, and hence, it is ubiqui-
tously used for immune monitoring in preclinical 
tumor immunology and in cancer immunotherapy 
trials. While the fi rst fl uorescence-based fl ow 
cytometer dates back to 1968, the past several 
years have brought major advances in cytometer 
technology, reagents, range of applications, auto-
mated analysis techniques, and minimal informa-
tion standards. Much has also been learnt from 
large-scale profi ciency testing programs about the 
challenges facing th use of increasingly complex 
fl ow cytometry assays, and what needs to be done 

to harmonize the assays across multiple laborato-
ries. This chapter describes the main fl ow cytom-
etry methods being applied in cancer 
immunotherapy, with an emphasis on recent prog-
ress in the fi eld, challenges associated with quality 
control, its promise to reveal biomarkers of clinical 
effi cacy, and further developments that are likely 
to be rapidly implemented in routine cancer 
immunology.  

25.2     Main Flow Cytometry Assays 
in Cancer Immunotherapy 

 Together with immunohistochemistry, immuno-
phenotyping by fl ow cytometry is probably the 
most commonly used assay to investigate immune 
and other cell subsets of interest in cancer immu-
nology. Flow cytometry distinguishes human 
immune cells via a combination of physical prop-
erties and fl uorescent markers such as labeled 
monoclonal antibodies (mAbs) targeted against 
cell-specifi c molecules. Physical properties mea-
sured by the cytometer are forward scatter light 
(FSC) which is roughly proportional to the cell 
size and side-scattered light (SSC) which refl ects 
the granularity of cells. Markers targeted by fl uo-
rescent mAb are mostly categorized in Clusters 
of Differentiation (CD) nomenclature [ 1 ]. To 
date, the Human Cell Differentiation Molecules 
Association (  http://www.hcdm.org    ) has indexed 
more than 360 CD markers. Commonly used 
“basic” CD markers are CD3, CD4, and CD8 for 
T-cell subsets, CD19 for B cells, CD14 for mono-
cytes, CD11c for subsets of dendritic cells, CD56 
for natural killer (NK) cells, and CD15 for granu-
locytes. In addition to whole blood and PBMC 
samples, enumeration of the number and fre-
quencies of immune cell types can also be per-
formed on single-cell suspensions obtained from 
tissues (for instance malignant tumors) [ 2 ,  3 ]. 
When analyzing tumors, further markers can be 
added to identify endothelial cells (CD31), fi bro-
blasts (ER-TR7), epithelial cells (EpCAM, i.e., 
CD326), and particular tumor cells (e.g., CAIX 
for renal cell carcinoma). 

 Many cell populations can currently only 
be identified by the use of multiple mAb 
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simultaneously; this is the case for natural 
regulatory T cells (nTregs) [CD4 + /CD25high/
Foxp3 + /CD127low or various subsets of MDSCs 
[ 4 ]. Polychromatic fl ow cytometry is also neces-
sary to characterize the activation status, matu-
rity, clonality, and differentiation status of T 
lymphocytes. Commonly used markers for this 
purpose include CD25, CD27, CD28, CD45RA/
RO, CD69, CD137, and CD154, as well as anti-
bodies to different TCR Vβ family members [ 5 –
 9 ]. A combination of mAbs against activation 
markers and chemokine receptor (i.e., CCR7) 
can be used to identify naïve, effector memory, 
central memory, terminally differentiated effector 
memory (TEMRA), and memory T cells with 
stem cell- like features [ 10 – 12 ]. These differ-
entiation stages are associated with changes in 
functional and proliferative properties [ 13 ], are 
altered in the elderly [ 14 ], and hence are relevant 
for adoptive transfer therapy and for possibly 
predicting response to vaccination in aging 
cancer patients. However, up to now, there is no 
gold standard for markers that are necessary and 
suffi cient to identify most immune cell subsets; 
this is not surprising as our appreciation of the 
complexity and plasticity of human immune cell 
subsets is constantly evolving. 

 A major interest in immunotherapy clinical 
trials is to characterize the specifi city of tumor 
antigen- specifi c T cells, most notably in settings 
of active immunotherapy with defi ned Ags. The 
most direct characterization of antigen specifi city 
is via the use of HLA-peptide multimers, which 
bind directly to the peptide-specifi c T-cell receptors 
(TCR). First described more than 15 years ago 
[ 15 ], the HLA-class I multimer assay currently 
serves as a versatile tool for enumerating, charac-
terizing, and following CD8 +  T cell immune 
responses, and staining protocols are broadly 
available [ 16 – 18 ]. Hence, HLA- multimers are 
widely used to monitor T-cell responses, espe-
cially in the context of peptide- based vaccination 
approaches [ 19 – 22 ]. They can easily be combined 
with mAb panels to determine the phenotype and 
differentiation status of antigen-specifi c CD8 +  T 
cells [ 23 – 25 ]. Limitations of HLA-multimers are 
that both the precise T-cell epitope (i.e., the exact 
amino-acid sequence of the peptide recognized 

by the TCR) and its HLA-restriction (i.e., the 
HLA-molecule which binds and presents the 
peptide to the TCR) must be known in advance. 
To date, there also remains a lack of general 
availability of class II multimers for CD4 +  T-cell 
detection [ 26 ]. 

 Intracellular cytokine staining (ICS) is another 
common assay used for antigen-specifi c T-cell 
immune monitoring. It is the fl ow cytometric 
method of choice when HLA-multimers are not 
available, if the exact T-cell epitope is unknown, 
and for routine monitoring of CD4 +  T-cell 
responses. ICS enables monitoring of multiple 
effector functions of both CD4 +  and CD8 +  T-cell 
subsets [ 27 – 29 ], including polyfunctional T cells 
that have been associated with pathogen protec-
tion [ 30 ,  31 ]. A few groups have described poly-
functional T cells after cancer vaccination in 
patients, but whether these cells are associated 
with benefi cial and long-lasting antitumor T-cell 
responses remains an open question [ 32 ,  33 ]. 
Optimized Ab combinations, protocols, and 
standardization approaches have been published 
[ 34 – 36 ], and ICS assays are widely used in clinical 
studies. 

 Cytotoxicity or proliferation assays, which 
have traditionally relied on the detection of 
radioactivity (i.e.,  51 Cr release or  3 H thymidine 
incorporation) can also be conducted by fl ow 
cytometry. For assessment of killing activity, 
target cells (control and antigen-loaded cells 
or tumor cells expressing the antigen endoge-
nously) are differentially labeled using fluo-
rescent dyes (e.g., Paul Karl Horan (PKH) or 
6- carboxyfl uorescein diacetate succinimidyl 
ester (CFSE)) and incubated with the effector T 
cells to be tested. Apart from the obvious safety 
aspects over radioactivity-based assays, advantages 
of fl ow cytometry methods are that (1) several 
targets can be tested in the same tube; (2) as com-
pared to a classical  51 Cr release assay, effector- 
target incubation time can be signifi cantly 
prolonged (up to 24 h); and (3) the assay has been 
reported as being sensitive and effective even 
when low numbers of effectors are available [ 37 , 
 38 ,  39 ]. Another approach to indirectly deter-
mine the cytotoxic capacities of T cells is the use 
of a mAb directed against CD107a (LAMP-1) 
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which becomes extracellularly detectable after 
cytotoxic granules have fused with the cellular 
membrane (degranulation) [ 40 ]. For measuring 
proliferation by fl ow cytometry, effector cells are 
fi rst labeled with fl uorescent dyes (CFSE or other 
tracking dyes such as CellTrace ™  reagents) and 
cultured for several days in the presence of rele-
vant stimuli. Since the dyes are diluted from the 
mother to the daughter cells, the number of cell 
divisions is visible in the number of fl uorescent 
peaks detected [ 41 ]. The frequency of proliferat-
ing cells can also be assessed directly  ex vivo  by 
staining of the proliferation-associated nucleus 
Ag Ki67, expressed at all phases of the cell cycle 
except the resting G 0  stage [ 4 ,  42 ]. These 
measurements of target killing or cell division by 
fl uorescent dyes have rarely been used in large- 
scale vaccine studies so far [ 38 ,  43 ], probably 
because they are time-consuming and require 
careful optimization and technical expertise to 
achieve reproducible results. 

 Finally, cell-free cytokine analysis can also be 
performed by fl ow cytometry with the use of 
multiplex beads, a method that has been recently 
adapted to meet GCLP standards [ 44 – 46 ]. The 
method uses mixes of beads of different size and 
fl uorescence that are each coated with Abs spe-
cifi c for the different cytokines of interest. The 
soluble cytokines present in the sample (i.e., cul-
ture supernatant, serum, or plasma) bind to these 
Ab-coated beads, and a second Ab coupled to 
another fl uorescent label is used to visualize the 
amount of bound cytokine. Simultaneous quanti-
fi cation of several soluble factors in one sample 
can be done by comparison to standard curves 
provided by the manufacturer, for example, to 
evaluate Th1/Th2 profi les [ 28 ]. The assay is as 
sensitive as ELISA, with detection limits in the 
range of 20 pg/mL for most cytokines, and can be 
even more sensitive when an enhanced sensitivity 
system is used. 

 The examples above clearly show that fl ow 
cytometry is a versatile tool for investigations of 
the phenotype, frequency, and functional proper-
ties of immune cell subsets. Furthermore, assays 
can often be combined for multiparametric 
probing of cell properties which is benefi cial as 
precious patient samples are spared. However, 

the need for both robustness and sensitivity to 
detect tumor antigen-specifi c T cells and/or rare 
cell subsets poses specifi c challenges for the use 
of this complex tool in clinical research applica-
tions. This is addressed in the following sections.  

25.3      Panel Development 
and Quality Assurance 

 Current state-of-the-art polychromatic fl ow 
cytometry in cancer immunotherapy involves 
multistep, multi-reagent assays followed by sam-
ple acquisition on sophisticated instruments that 
are able to capture up to 20 parameters per cell at 
a rate of tens of thousands of cells per second. 
Analysis of these data can be a challenge, as stan-
dard tools require multistep gating strategies and 
preselection of the parameter combinations to be 
investigated. Obtaining reproducible results from 
such a complex assay requires well-trained staff, 
stringent quality management, and detailed 
standard operating procedures (SOPs) for panel 
development, cytometer calibration, reagent 
qualifi cation, sample preparation, use of appro-
priate technical and biological controls, and 
careful data analysis. 

 We start by considering the factors important 
to understand when developing a mAb staining 
panel. Target molecules in fl ow cytometry for 
cancer immunotherapy can have vastly different 
expression levels. While lineage markers such as 
CD45, CD3, or CD8 can be expressed at very 
high copy numbers per cell, some important mark-
ers such as transcription factors (e.g., FOXP3 for 
CD4 Tregs) or chemokine receptors (e.g., CCR5 
on CD4 Th1 cells) are expressed at much lower 
levels. In addition, the available probes (such as 
mAb or HLA-peptide multimers) can have vari-
able affi nities for their respective targets. Probes 
are labeled with different chemical classes of 
fl uorescent dyes that must be matched to the 
instrument, considering factors such as the avail-
ability of a high-power laser line with a wave-
length close to the maximum absorption of the 
fl uorescent dye and with a detector (photomul-
tiplier plus fi lters/mirrors) that has a high 
 sensitivity in the spectral emission range of the 
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given dye. Complicating matters further, cellular 
autofl uorescence (i.e., fl uorescence due to cellu-
lar molecules such as NADPH even in the 
absence of all dyes) limits the sensitivity that can 
be achieved with a given fl uorescent probe, laser, 
and detector. In practical terms, autofl uorescence 
of lymphocytes is usually limited to a distinct 
range of emission and absorption wavelengths 
[ 47 ,  48 ]. In general, the degree of autofl uores-
cence determines the limit of detection, which in 
earlier reports was of 3,000 molecules for a stan-
dard fl ow cytometer [ 49 ]. Consideration of all 
these factors leads to the following recommen-
dations for detecting cellular markers expressed 
at very low levels: use a high affi nity Ab conju-
gated to a fl uorescent dye with high quantum 
yield with emission spectral range far away from 
cellular autofl uorescence, for which the cytome-
ter has an appropriately matched high-power 
laser line and detector. 

 For polychromatic fl ow cytometry, additional 
constraints are set by the phenomena of optical 
spillover and spreading. In fl ow cytometry, cells 
are analyzed in a near-physiological aqueous 
solution to preserve the structural properties of 
biomolecules. Due to the spectral absorption of 
water and air, the useful spectral space is limited 
to the range from Near-UV (ca. 200 nm) to 
Near-IR (ca. 1,000 nm). Also, in aqueous solu-
tions, both the absorption and emission of fl uoro-
chromes show relatively broad spectral lines. 
Together, this means that the number of fl uoro-
chromes that can be analyzed at the same time is 
ultimately limited: the combination of 15–20 
different fl uorochromes appears to be the upper 
feasibility limit [ 50 ]. 

 As a further consequence, spectra of fl uores-
cent dyes routinely overlap (“spillover”) [ 51 ], 
requiring software deconvolution of true and 
observed signals (“compensation”). However, 
compensation cannot correct other errors caused 
by measurement, binning, and photon noise, and 
these errors accumulate to give an irreversible 
effect termed as “spreading error” [ 52 ] or “spillover 
spreading” [ 53 ]. Spreading error will cause the pres-
ence of one bright fl uorochrome to reduce sensi-
tivity for spectrally close fl uorochromes present 
on the same cell. Use of a high-power laser close 

to the absorption maximum can reduce errors in 
photon counting, and narrow bandpass fi lters 
can reduce spillover; both these measures will 
reduce spreading error. Finally, probe combina-
tions should be designed so that overlapping fl u-
orochromes are chosen for labeling markers 
which are expected to be expressed on different 
cells. 

 In practice, panel development usually starts 
with the defi nition of a “wish list” of cellular targets, 
followed by the prioritization of these cellular 
targets, characterization of their expression 
levels, and checking for the availability of probes 
and conjugated dyes appropriate for the cytometer 
to be used. Guidance documents [ 54 ] and helpful 
software (CytoGenie:   www.woodsidelogic.com    , 
Fluorish:   www.fl uorish.com     ,  Chromocyte:   www.
chromocyte.com    ) are available. A practical limi-
tation can be the lack of commercially available 
fl uorochrome conjugates for individual antibody 
clones. Indirect staining with secondary reagents 
(such as the biotin- streptavidin system) is 
 possible but often not practical for multicolor 
applications. A better alternative is the use of new 
methods now available for the self-conjugation 
of small amounts of Ab to fl uorescent dyes 
[ 55 ,  56 ]. Based on the discussion above, the cor-
nerstones of panel development guidance are the 
assignment of “bright” probes for “dim” targets 
and strategies to avoid spreading error and 
autofl uorescence in channels relevant for “dim” 
targets. It is also possible to change the optical 
pathway of the fl ow cytometer to optimize the 
instrument (e.g., choice of fi lters) according to 
the requirements of the panel. As the amount of 
potential interference between dyes rapidly 
increases with the number of colors in the panel, 
and as a large number of critical parameters 
should be optimized, development of large 
(≥8 colors) panels and especially those 
 involving separate staining steps for intracellular 
and extracellular targets can be an expensive iter-
ative process requiring several man-months 
of dedicated work. Hence, the fl ow community 
is encouraged to share rigorously calibrated 
and optimized polychromatic panels via the 
“Optimized Multicolor Immuno fl uorescence 
Panels” (OMIPs) project [ 57 ]. 
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 Quality assurance of a fl ow cytometry assay 
starts with the fl ow cytometer itself, consisting of 
optimization, calibration, and standardization 
of the machine, and we refer the reader to the 
technical report by the Roederer group for details 
[ 58 ]. These optimization steps must not be 
neglected, as they may identify faulty parts that 
need replacement, such as a photomultiplier tube 
(PMT) with reduced sensitivity or suboptimal 
fi lters, and are important to optimize general 
instrument parameters. Conveniently, some (but 
not all) of these steps have been incorporated in 
vendor software packages, such as the Cytometer 
Setup and Tracking (CS&T) application within 
BD FACSDiva 6 that uses a proprietary mixture 
of calibration beads. For long-term immuno-
monitoring, it is essential to maintain accurate 
records of daily monitoring checks to track 
reproducibility and stability. 

 For cell staining, reagent quality can be an 
issue, especially if the assay is performed repeat-
edly over time. Often, reagents used are classifi ed 
as “research use only” (RUO) and can show con-
siderable batch-to-batch variation in important 
properties, such as concentration of antibody-dye 
conjugate, concentration of free dye, and even 
in the spectral properties of the dye (as in the case 
of tandem dyes). In addition, the shelf life desig-
nated by vendors is not always based on quantita-
tive specifi cations. As a result, individual reagent 
batches have to be pretested and pre-titrated, and 
tests repeated even during the designated shelf 
life of a reagent. As batch sizes available from 
vendors are often limited, this can result in the 
requirement of reagent bridging (demonstration 
of the comparability of reagent batches) during 
the course of a study, leading to complex logistic 
and tracking processes. Reagent quality assurance 
may be facilitated by the preparation of mixtures 
of lyophilized reagents (“lyoplates”) [ 59 ] that can 
reduce pipetting error and lead to increased 
reagent stability. 

 Appropriate use of technical and biological 
controls is also vital for assay interpretation. In 
addition to instrument calibration beads, unstained 
and single-stained beads are used to determine 
the spillover matrix for compensation. Isotype 
and “fl uorescence minus one” (FMO) controls 

can help with setting gate boundaries at the 
analysis stage by defi ning the “negative” region. 
Pretested, aliquoted, cryopreserved samples with 
prescreened, predictable properties (such as 
being positive or negative for individual markers 
in the mAb panel) can serve as valuable biological 
controls which can be used in each assay run to 
track the variations in assay performance between 
operators and over time. 

 As fl ow cytometry-based methods become 
incorporated into clinical trials, the need for a 
stable and unlimited source of cell specimens 
that contains defi ned numbers of functional 
antigen- specifi c T cells as batch controls becomes 
paramount. Moreover, cell samples containing a 
known number of T cells specifi c for a defi ned 
Ag would allow easy assessment of the quality 
and accuracy of assays and provide standard con-
trols for comparison of results across laboratories 
or time. Currently available sources for reference 
samples are either (i) based on leukapheresis or 
buffy-coat material from healthy donors – which 
are restricted to reactivity against immunogenic 
viral Ags, expensive and available in limited 
amount, or (ii) dependent on the ability to gener-
ate and propagate T-cell lines/clones on a 
repetitive basis which is a burdensome task. The 
Cancer Immunotherapy (CIMT) Immunoguiding 
Program (CIP) group has recently established a 
process for the generation of reference samples 
(RS) that can be used in T-cell assays. In a fi rst 
proof-of-principle study, we showed that retrovi-
rally TCR-transduced T cells spiked at defi ned 
numbers in autologous PBMC can be used as 
standard samples. The T cells could be accurately 
detected at all dilutions in a linear fashion, 
down to frequencies of at least 0.02 %, and the 
feasibility of RS was confi rmed in a small-scale 
profi ciency panel [ 60 ]. Subsequently, we estab-
lished, optimized, and standardized the produc-
tion of RS obtained by transfection of modifi ed 
and stabilized RNA. Such a platform offers a 
simple, virus-free, and scalable process for the 
manufacturing of reference samples. In proof-of-
concept studies for HLA-multimer experiments, 
the feasibility of using such RNA-engineered RS 
was shown. RS offered favorable properties 
across a variety of CD8 +  and CD4 −  T-cell-derived 
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TCRs against multiple Ags, including clear clus-
tered populations, reproducible results, high sta-
bility over time, and the potential for linear 
dilution. Moreover, the analysis of the RS is simi-
lar to that of the tested cell samples in that the 
same gating strategy (and even the same gates) 
can be used. This suggests that RS are a useful 
tool to control T-cell assay performance. The 
suitability of these RS samples was subsequently 
tested in a profi ciency panel organized recently 
(manuscript submitted). 

 A fi nal, critical aspect of quality management 
is the careful documentation of each procedure 
performed, as well as provision of detailed 
standard operating procedures (SOPs) for each 
stage including data analysis. Technical staff 
needs to be well trained and perform the analyses 
on a regular basis to keep up performance. 
Participating in profi ciency panels will also help 
improve laboratory standards.  

25.4       Profi ciency Programs 
Addressing Flow 
Cytometry Assays 

 While HLA-multimers and ICS are commonly 
used for monitoring experimental vaccines or 
other anticancer immunotherapies such as adop-
tive transfer of  in vitro  expanded T cells, there are 
still notable obstacles to the advancement of these 
T-cell monitoring assays as robust biomarkers for 
clinical trials [ 61 ,  62 ]. First, there is no gold stan-
dard protocol for any of these assays. Second, 
correlations between  in vitro  immunomonitoring 
results and patient clinical benefi ts have rarely 
been reported [ 4 ,  28 ,  63 – 67 ]. The reality is that 
assays performed at different institutions are not 
equal; this results in diffi culties in comparing the 
effi cacy of the various immunotherapy approaches 
tested for recruiting a meaningful anticancer 
T-cell response, in turn hampering progress in 
the fi eld. 

 One approach for addressing these problems 
is by assay validation and standardization and/or 
centralization of the immunomonitoring at a 
dedicated core facility. An attractive alternative 
to these strategies is assay harmonization. The 

pros and cons of assay harmonization  vs . stan-
dardization have been discussed in detail else-
where [ 62 ,  68 ]. 

 Assay harmonization is based on the participa-
tion of single laboratories in iterative testing exer-
cises called profi ciency panels. Pretested PBMC 
samples, synthetic peptides, and/or HLA- peptide 
multimers are shipped from a central lab to all 
panel participants who then use their own 
reagents, protocols, and analysis strategies for 
detecting antigen-specifi c T cells. Participants 
then report their data, which are centrally ana-
lyzed, allowing comparison of individual assay 
variables and performance to detect T cells. Thus, 
parameters involved in assay performance may be 
successively identifi ed, corrected, and confi rmed 
to exert an impact in subsequent panels (i.e., mul-
tistep approach). Finally, benchmarks and guide-
lines are formulated and disseminated to the 
community. Participating laboratories benefi t by 
being able to measure their own performance in 
reference to peer laboratories, and regularly tak-
ing part in profi ciency panels over time can also 
be seen as a quality control of assay performance 
for individual labs. Additionally, the working 
group can guide laboratories to improve perfor-
mance if needed, while providing an exchange 
platform for assays and their application. 

 Profi ciency panels can in principle be applied 
for any T-cell assay, including those based on fl ow 
cytometry [ 69 – 71 ]. In 2005, two consortia, the 
European Cancer Immunotherapy (CIMT) 
Immunoguiding Program (CIP) and the Cancer 
Immunotherapy Consortium of the Cancer 
Research Institute in the USA (CIC/CRI) launched 
a large program of profi ciency panels and syner-
gistically pioneered the concept of assay harmo-
nization [ 62 ,  68 ]. From 2005 to 2012, the CIP 
(  www.CIMT.eu/workgroups/CIP    ) has organized 
15 small- to large-scale profi ciency panels, dedi-
cated to the measurement of antigen- specifi c 
CD8 +  T cells by HLA-multimers, ELISPOT, and 
intracellular cytokine staining. 

 Profi ciency panels have taught us that there 
are large variations in the performance of T-cell 
assays among the fl ow community. While the 
majority of labs do detect antigen-specifi c T cells 
present at quite high frequencies in PBMC samples 
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(approx. >0.2 % of CD8 +  cells), the detection rate 
drastically decreases for low-frequency effectors 
(<0.05 % of CD8 +  cells). This is very relevant for 
cancer immunotherapy, as tumor- specifi c T cells 
are expected to be present at low frequencies in 
the blood, even after patient vaccination. Another 
lesson is that comparable performance is achiev-
able with different laboratory-specifi c protocols 
and reagents, and full interlaboratory standard-
ization is not necessary for good results. 
Surprisingly, we also found that operator experi-
ence in a method does not necessarily predict 
performance, underlining the utility of regular 
quality control of established methods. Finally, 
adoption of simple measures can lead to signifi cant 
improvements in assay performance. For exam-
ple, staining and acquiring larger numbers of 
CD8 +  cells increase the ability to detect low-fre-
quency HLA-multimer-positive cells, and inclu-
sion of a cell-resting phase improved sensitivity 
in the IFN-γELISPOT. In contrast, a high back-
ground production of the cytokine (IFN-γ) both 
in ICS and ELISPOT is clearly associated with 
decreased performance [ 72 ,  73 ]. 

 Over several profi ciency panel iterations, it 
also became clear that all steps of the assays, 
starting from cell handling (freezing/thawing/
resting), assay conditions (reagents and protocols 
for mAbs and HLA-multimer staining, conditions 
of antigenic stimulation in ICS), result acquisi-
tion including instrument settings, down to the 
data analysis, can benefi t from harmonization for 
achieving comparable results between laborato-
ries. In fl ow cytometry specifi cally, instrumenta-
tion performance may be an issue, as we recently 
observed in a panel dedicated to the simultaneous 
detection of four Ag T-cell specifi cities by HLA-
multimers (manuscript in preparation). Both CIC 
and CIP have also observed in independent pan-
els conducted for ICS [ 73 ,  74 ], as well as for 
HLA-multimer staining [ 75 ,  76 ], that suboptimal 
gating strongly infl uenced the ultimate results – 
i.e., the detection and deduced frequencies of 
antigen- specifi c T cells. We also showed that 
analysis (gating) performed by a unique user sub-
stantially decreased the variation in the frequen-
cies of specifi c cells as compared to those 
reported by single labs analyzing their own data 

(unpublished data). This is not a surprise, since 
manual gating is subjective and highly dependent 
on the experience of the experimenter and tradi-
tion in the lab. Further work is therefore needed 
with a focus on both data acquisition and analy-
sis, including the potential for automated analy-
sis strategies to reduce the subjectivity inherent 
in gating as described in Sect.   25.7 .  

25.5      Structured Reporting 
of Immune Assay 
Experiments 

 An increasing number of minimal information 
projects have emerged in the last years to provide 
guidance for structured reporting of biological 
assays. The fi rst minimal information project that 
set the scene was the Minimal Information About 
Microarray Experiments (MIAME) published in 
2001 [ 77 ]. It is now an established and manda-
tory standard for publishing microarray data for a 
growing list of highly recognized journals (  http://
www.mged.org/Workgroups/MIAME/journals.
html    ). More than 30 such guidelines have emerged, 
asking for minimal information on reported 
results, including minimal information for cellu-
lar assays (MIACA) (  http://miaca.Sourceforge.
net/    ), specifi cation for in situ hybridization and 
immunohistochemistry experiments (MISFISHIE) 
[ 78 ], and fl ow cytometry experiments (MIFloCyt) 
[ 79 ]. Information on the majority of available MI 
projects can be found in a central portal for minimal 
information on biological and biomedical investi-
gations (MIBBI) (  http://mibbi.Sourceforge.net/    ). 
These guidelines aim at achieving two major 
goals: fi rst, to annotate data to such extent that 
they give transparent evidence on the quality, 
reliability, and possible error sources of reported 
results and, second, to use the reporting standard 
to systematically feed public databases [ 80 ]. 

 More recently, structured reporting guidelines 
have also been provided for the specifi c context 
of immune assay experiments. As outlined before, 
the continuous conduct of profi ciency panels 
over several years led to the identifi cation of 
steps in the assay that critically impact the results, 
namely, (i) the sample, (ii) the assay, (iii) the data 
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acquisition, (iv) the data analysis, and (v) certain 
characteristics of the lab environment. In concor-
dance with these fi ndings, a fl ow chart of deci-
sions that can affect the quality of data produced 
in clinical trials in which immunological param-
eters are monitored by fl ow cytometry was listed 
in a landmark publication [ 81 ]. Although the 
variables critically affecting the quality of results 
are – for most of them – well known, only very 
few scientifi c publications provide suffi cient 
information on these aspects in their material and 
method descriptions. This lack of transparency is 
one of the major reasons preventing meaningful 
comparison of published results generated across 
institutions. In contrast, study results reported 
with transparent information on the essential 
variables of assay conduct, explicitly indicate 
awareness of the investigator to control critical 
variables, thus can be much better interpreted and 
reproduced. 

 To reduce the discrepancy between available 
knowledge on immune assay conduct and lack of 
critical information in scientifi c publications, a 
group of T-cell immunologists from the cancer 
immunology, infectious diseases, autoimmunity, 
and transplantation fi elds initiated the Minimal 
Information About T-cell Assays (MIATA) 
project [ 82 ]. The group conducted an intensive 
vetting process with two public consultation peri-
ods, two open consensus workshops, and several 
webinars [ 83 ]. The process towards reaching a 
broadly acceptable guideline on the minimum 
information that should be provided for T-cell 
assays [ 84 ] can be found at the project’s webpage 
  www.miataproject.org    . With the MIATA consensus 
guidelines becoming available, the implementation 
of more structured reporting for T-cell immune 
monitoring can begin and should be considered 
by all investigators, especially for conducting 
T-cell assays in clinical trials [ 85 ]. So far, three 
peer-reviewed journals endorse the MIATA 
guidelines and assign the “MIATA label.” The 
label indicates that authors of accepted manu-
scripts take great care about reporting on and 
control of variables that matter for T-cell assays. 
All MIATA compliant manuscripts will be listed 
on the MIATA homepage leading to greater expo-
sure of the published work, which may increase 

interest and citations over time. The authors 
therefore recommend considering structured 
reporting of results from T-cell assays whenever 
possible.  

25.6     Organization of Immune 
Monitoring in Multicenter 
Trials 

 Clinical trials will often require the recruitment 
of patients at multiple sites in order to reduce the 
overall duration and costs of the trial. The labora-
tory data generated from all patients and at different 
sites should be comparable, but as the regulatory 
framework for the conduct of clinical trials 
(ICH-GCP) is not very detailed with respect to 
standards of laboratory analyses, further details 
are specifi ed by the more recent concept of good 
clinical laboratory practice (GCLP) [ 86 – 88 ]. 

 Two general strategies emerge on how analyti-
cal assays can be performed among different sites 
[ 89 ]: in the distributed analysis paradigm, each 
site analyzes its locally derived samples. In con-
trast, in the central lab paradigm, all samples are 
transported to a central lab for analysis. In either 
case, fl ow cytometry poses additional chal-
lenges due to the fragility of the sample and the 
complexity of the assay. 

 For distributed analysis, the assay and instru-
mentation at different sites must be comparable. 
This can be achieved via full interlaboratory stan-
dardization, as is already routinely performed in 
clinical fl ow cytometry with  in vitro  diagnostic 
(IVD)-certifi ed reagents and instruments [ 90 ]. 
Due to the high development costs, the number of 
clinical fl ow cytometry products for IVD on the 
market is limited and focuses on the clinically 
most relevant tasks as, e.g., the quantifi cation 
of CD4 +  T cells in blood. In many cases, these 
applications lack the technical capabilities of 
modern polychromatic fl ow cytometry. Full-scale 
interlaboratory standardization (with demon-
strated low interlaboratory variation) of research 
assays with RUO-grade reagents and customized 
fl ow cytometric instrumentation has been dem-
onstrated by some groups but requires great 
efforts [ 91 ]. An alternative to full interlaboratory 
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standardization discussed in Sect.  25.4  is harmo-
nization which can be achieved via regular 
participation in profi ciency panels. 

 For highly complex fl ow cytometric assays 
within clinical trials, having all samples analyzed 
by the same central laboratory eliminates the 
need for full-scale interlaboratory standardiza-
tion of participating institutes and may be less 
demanding. However, maintaining sample quality 
becomes a critical issue with this strategy. The 
initial sample material for fl ow cytometry contains 
living cells (in most cases derived from blood 
with the addition of anticoagulants). From this 
sample material, cells have to be isolated before 
the start of the fl ow cytometric assay. Cells are 
usually more fragile compared to biomolecules 
or small molecules. Several studies have been 
performed to determine how long blood can be 
stored or transported before peripheral blood 
mononuclear cell (PBMC) isolation (mostly 
using density gradient centrifugation) and how 
stable isolated cells are before the assay is started 
[ 34 ,  92 ,  93 ]. For simple phenotyping (e.g., CD4 
counting), a 48 h delay before centralized analysis 
is acceptable, while the most demanding applica-
tions (such as some functional T-cell assays) 
require isolation of the cells within 8 h of veni-
puncture, followed by immediate analysis or 
cryopreservation of the cells [ 94 ]. Shipment to a 
central lab followed by processing of blood 
samples within 8 h is however not feasible in 
international multicenter trials. Therefore, a 
mixed model may be chosen [ 4 ], whereby cells 
are isolated and cryopreserved from peripheral 
blood at individual labs close to the patient and 
then shipped in the frozen state to the central lab 
where they are stored frozen before analysis. All 
stages of isolation, cryopreservation, and trans-
port conditions should be fully standardized in 
this model. Standardized labeling of samples that 
allow the unambiguous assignment of a sample 
to a trial, site, patient, and visit is also critical. 
GCP regulation also requires special care to 
protect the privacy of patients, and this may be 
achieved by pseudonymization. These proce-
dures have to be clearly defi ned in the clinical 
trial protocol and are usually further detailed in 
the clinical trial laboratory manual. 

 As an example demonstrating feasibility of 
this approach, an international, multicentric 
immunotherapy trial was conducted recently 
including T-cell immunomonitoring in which 
more than 40 clinical sites were trained in blood 
sampling, labeling, and shipping, with labels and 
collection tubes provided by a central laboratory. 
Local PBMC isolation laboratories were centrally 
supplied with pretested kits containing all critical 
reagents required for isolation and cryopreserva-
tion of PBMCs. All laboratory technicians were 
trained and qualifi ed on central SOPs describing 
in detail the PBMC isolation and cryoconservation 
processes. Where required, the fresh blood was 
transported from the clinical sites to the PBMC 
isolating labs using temperature controlled ship-
ments. The isolated frozen PBMCs were shipped 
to the central lab in  validated dry ice containers. 
Patient visits involving a PBMC sampling were 
carefully coordinated in advance among the 
clinical sites, the PBMC isolating laboratories, 
and the logistic service providers to ensure that 
the blood could be processed within 8 h after 
venipuncture of a patient. This process led to a 
successful logistic chain for 361/362 (99.7 %) 
PBMC samples and an overall evaluability rate 
of 64/68 (94 %) patients for T-cell immunomoni-
toring [ 4 ].  

25.7      Towards Automated Analysis 

 As discussed in Sects.  25.4  and  25.5 , the standard 
approach for analyzing fl ow cytometry data is by 
the visual identifi cation of cell subsets of interest 
on histograms or two-dimensional scatter plots. 
With multiparameter data, gating consists of fi rst 
choosing a gating strategy – a sequence of dot 
plots that is designed to allow identifi cation of 
the cells of interest. For example, a possible 
gating strategy for identifying HLA-multimer- 
positive CD8 +  T cells might be FSC-A/FSC-H 
(singlets), FSC-A/SSC-A (lymphocytes), CD3/
viability dye (viable T lymphocytes), CD4/CD8 
(basic T lymphocyte subsets), and CD8/multi-
mer. In each dot plot, cells of interest are included 
and other events excluded by the use of elliptical 
or polygonal gates or sometimes by splitting the 
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dot plot into quadrants. The exact location and 
shape of these gates may be based on experience 
or by comparison with negative (e.g., isotype, 
FMO, or unstimulated control in ICS) and pos-
itive (reference sample or T-cell clone or super- 
antigen stimulation) controls. After a gating 
strategy has been set, it is typically applied in 
common to all fl ow cytometry samples in the 
batch being analyzed. Some researchers will 
also adjust gates for individual samples to take 
individual variability into account. In general, 
there is no consensus or accepted standard gating 
strategy, and individual laboratories may apply 
different gating strategies to identify the same 
target cell subset. Notably, profi ciency panels have 
made it very clear that the subjectivity of gating 
forms a signifi cant source of assay variability 
between laboratories in the absence of a harmo-
nization program [ 72 ,  95 ]. 

 To increase the objectivity of fl ow cytometry 
analysis, automated methods in which cell sub-
sets are directly quantifi ed by machine algorithms 
have been proposed [ 96 – 98 ]. In broad terms, 
these algorithms have to fi rst partition all the 
events in a data sample into disjoint subsets, based 
on properties of each individual event and its 
relationship to other events, and then to assign 
these subsets to biologically meaningful categories 
(e.g., HLA-multimer-binding CD8 +  lymphocytes). 
In the context of cancer immunology, a specifi c 
challenge for automated approaches is the high 
sensitivity required, since antigen- specifi c responses 
(e.g., HLA-multimer positivity or polyfunctional 
cells) may be relevant at relative frequencies of 
0.01–0.1 %. Data from multiple laboratories sig-
nifi cantly increases the challenges for automated 
analysis, since the algorithms have to also account 
for the variability across laboratories and issues 
with harmonization of sample annotation. 

 A typical automated analysis preprocessing 
pipeline starts with the extraction of the essential 
matrix of information stored in a fl ow cytometer 
FCS fi le, where each row represents an event and 
each column represents a detector channel, either 
scatter or fl uorescent intensity. Preprocessing 
algorithms may apply compensation or specifi c 
transformations to regularize the data distribution 
(e.g., bi-exponential transformation). Specifi c 

channels may be explicitly excluded from analysis 
at this stage if they are not likely to be informa-
tive for the cell subset targets of interest. Often, 
a quality control fi lter is also applied at this 
stage, and data sets with inconsistent annotation, 
too few events, and anomalous event distribu-
tions or signatures may be fl agged for manual 
evaluation [ 99 ]. 

 The core of most automated analysis is the 
unsupervised partitioning of events into cell 
subsets. There are a variety of approaches that 
can be taken to partition or cluster events, as sum-
marized in a recent publication [ 98 ]. One popular 
approach is the use of statistical mixture 
models, either identifying cell subsets with indi-
vidual mixture components (which are typically 
 multivariate Gaussian, student T, or skewed 
versions of these distributions) or using features 
of the estimated density to assign events to cell 
subsets [ 100 – 102 ]. Such probabilistic approaches 
provide a declarative framework to model domain 
knowledge and support formal statistical infer-
ences for structure learning, classifi cation, and 
prediction. The underlying statistical model for 
the domain knowledge can also be naturally 
extended in different contexts – for example, to 
incorporate specifi c assay details for combinato-
rial multimer encoding [ 103 ] or to incorporate 
multilevel effects via hierarchical modeling 
[ 104 ]. The power of probabilistic models comes 
at a price, in that these models tend to be much 
more computationally demanding than non-
probabilistic approaches [ 105 – 108 ], and the run-
time for analysis of high-volume, high-dimensional 
data sets may be prohibitive. However, recent 
developments in the use of highly parallel graphical 
processing units (GPU) [ 109 ] have accelerated 
run-times by orders of magnitude, making the 
probabilistic approaches a viable approach for 
many applications in cancer immunology. 

 The essential step in postprocessing is the 
alignment of cell subset clusters across multiple 
data samples, since comparative analysis of 
equivalent cell subsets is a necessary requirement 
of fl ow cytometry analysis in clinical research. 
Perhaps the most straightforward approach is to 
align each data sample with respect to either a 
reference or consensus clustering via an optimization 
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routine that minimizes some distance between 
pairs of clusters (e.g., Euclidean distance between 
cluster centroids). Other possible approaches 
skirt the problem entirely by enforcing a common 
clustering across all data samples or partition the 
clusters from fi tting all data samples into “super-
clusters” – all clusters in the super-cluster are 
then assigned to the same cell subset. The fi nal 
step of assigning meaningful cell subset labels to 
the aligned clusters is typically done manually, 
although there have been recent efforts to develop 
heuristics that can automatically label clusters 
by establishing a concordance between cluster 
features and cell phenotype characteristics in the 
Cell Ontology. Innovations in the visualization of 
high-dimensional cytometry data have also greatly 
increased our ability to interpret the results of 
automated analysis [ 110 – 112 ]. 

 The detection of antigen-specifi c cells poses a 
specifi c challenge for automated algorithms 
because of the extremely low frequency of these 
cell subsets in many patient samples – for exam-
ple, as few as 0.01–0.1 % of the CD8 +  T lympho-
cyte population may be specifi c for a particular 
tumor Ag multimer. Two nonexclusive approaches 
for improving the ability of automated algorithms 
to improve the limit of detection are biased sub-
sampling to enrich the sample for rare events 
[ 111 ,  113 ] or to increase the complexity of the 
statistical model [ 104 ]. The development of algo-
rithms that can accurately and robustly identify 
rare cell populations is a driving motivator for 
much current research in automated fl ow analysis, 
and we expect rapid advances in this area. 
Illustrative examples comparing manual and auto-
mated analysis of antigen-specifi c cells for HLA-
multimer and ICS assays are shown in Fig.  25.1 .

   Finally, we note that most of these automated 
analysis tools are developed under open source 
licenses and so free to use without restriction. 
Some packages require a modicum of program-
ming ability to use effectively (e.g., R or Python 
scripting skills) and others are available online, 
but in general, these algorithms are probably not 
easily used by the average fl ow operator in a 
clinical research laboratory. In the coming years, 
we expect that these automated analysis tools 
will become increasingly accessible to the average 

fl ow operator with the following developments – 
developers of these tools will continue to improve 
their ease of use; the most successful algorithms 
will be incorporated into commercial software 
analysis packages; and more workshops will be 
organized to train people in the use and potential 
pitfalls of these exciting new technologies.  

25.8     New Methods 
and Technologies 

 Flow cytometry has played an instrumental role 
in our comprehension of the immune system and 
its interplay with human tumors. The technique 
has recently experienced dramatic advances and 
the methods and technologies are evolving con-
tinuously. Due to space limitations, we focus 
here on the recent innovations that in our opinion 
have the potential to transform the fi eld of general 
cytometry and are directly relevant for cancer 
immunotherapy. 

 Since the fi rst description of a tumor Ag targeted 
by human T cells [ 114 ], many tumor- associated 
proteins and HLA-class I- and class II-restricted 
epitopes have been identifi ed. However, the 
antitumor T-cell immune response as a whole, 
i.e., the repertoire of Ag specifi cities recognized 
by T cells of individual patients, has only rarely 
been dissected [ 115 ,  116 ]. This is indeed a diffi -
cult task, due to the inherent complexity of such 
projects (many Ags and HLA-allele restrictions 
have to be taken into account), along with the 
limited amount of patient material generally 
available, and high requirements in terms of cost 
and time. Two groups simultaneously described a 
combinatorial encoding method which is a very 
elegant way to circumvent most of these hurdles 
[ 117 ,  118 ]. The technique is based on the combi-
nation of many HLA-peptide multimers, whereby 
a single multimer is coupled to several (two or 
three) fl uorochromes, generating a color code for 
each tested TCR specifi city. Currently, up to 27 
HLA-multimers labeled with eight fl uorochromes 
can be combined in routine analysis [ 117 ]. 
Coupled to the production of HLA-monomers by 
the UV exchange technology, this high-throughput 
method represents an important technical 
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  Fig. 25.1    (a) Manual and automated identifi cation of 
antigen-specifi c MHC class I multimer-positive CD8 +  T 
lymphocytes among PBMC of a HLA-A2 +  healthy donor. 
 Top panel  shows a manual gating strategy to identify CD8 +  
T cells specifi c for three HLA-A*0201-restricted epitopes 
derived from a EBV, infl uenza, and CMV viruses. From 
 left  to  right , the plots show gates to exclude artifacts due 
to fl ow stream bubbles or clumps (count/time), fi nd sin-
glets (FSC-A/FSC-H), exclude nonviable cells (FSC-A/
Aqua LiveDead), identify lymphocytes (FSC-A/SSC-A), 
exclude B lymphocytes (CD8/CD19), and quantify CD8 +  
T cells binding to EBV BRFL1 peptide-MHC multim-
ers (CD8/PE), infl uenza matrix peptide-MHC multim-
ers (CD8/APC), and CMV pp65 peptide-MHC multimers 
(QDot605).  Bottom panel  shows the corresponding pep-
tide-MHC binding CD8 +  T cells identifi ed using an auto-
mated analysis approach that fi tted a Dirichlet Process 
Gaussian Mixture Model with 256 components to the data 

[ 103 ]. Essentially identical frequencies of peptide-MHC 
multimer positive cells are found with manual and auto-
mated analyses. (b) Manual and automated analysis of 
antigen-specifi c T cells among PBMC of a second HLA-
A2 +  healthy donor tested in an intracellular cytokine stain-
ing ( ICS ) assay after incubation with a synthetic peptide 
corresponding to an HLA-A*0201- restricted epitope of 
pp65 CMV. Manual analysis fi nds cells positive for IFN 
and TNF, and a few events positive for IL-2. Without 
further gating, it is not possible to tell if the IFN- and 
TNF-positive events come from two separate or a single 
bifunctional population. Automated analysis reveals that 
there is indeed a single-cell population positive for IFN 
and TNF, with no evidence for an IL-2-positive popula-
tion. Again, the frequencies of antigen-specifi c events iden-
tifi ed by expert gating and automated analysis are almost 
equivalent         
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achievement for the T-cell immunology fi eld and 
has started to deliver precious information by 
dissecting the anti- melanoma TIL repertoire in 
melanoma patients [ 119 ,  120 ]. Combinatorial 
staining could easily be implemented for moni-
toring vaccination trials, for example, when 
applying cocktails of antigenic peptides for 
which many specifi cities need to be tested in a 
single PBMC sample. 

 The combination of extracellular phenotyping 
with determination of intracellular changes in 
phosphorylation patterns upon stimulation is start-
ing to provide new insights into signaling  pathways 
in healthy and disease conditions [ 121 ,  122 ]. The 

binding of cytokines to their specifi c cell surface 
receptors generally results in the activation (i.e., 
phosphorylation) of the downstream signal trans-
ducers and activators of transcription (STATs), 
which in turn regulate the expression of many 
genes involved in cell growth, survival, differentia-
tion, and polarization. Next to cytokines, the effect 
of unspecifi c mitogenic stimuli such as phorbol 
myristate acetate (PMA), phytohemagglutinin 
(PHA), or MHC-peptide complexes binding to the 
T-cell receptor (TCR) can be studied by measuring 
the level of other key signaling molecules such as 
phosphorylated (p)-Erk, p-S6, and p-NF-ĸB in 
T and B cells, whereas Toll-like receptor (TLR) 
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ligand-induced activation can be followed with 
p-Akt, p-Erk, and p-NF-ĸB in B cells and mono-
cytes. The proof of principal for a “single-cell net-
work profi ling (SCNP) method” was obtained on 
healthy donors PBMCs [ 123 ]. In this initial study, 
age as well as race differences were observed, 
whereas intra-donor variability needs to be estab-
lished by testing blood samples taken at different 
time points over time. As T-cell signaling defects 
have been described in cancer patients [ 124 ,  125 ], 
insights in the intracellular phosphorylation pat-
terns of T cells, including during immunotherapy, 
may soon deliver precious information. 

 A fundamental advance in fl ow cytometry in 
recent years is an increase in the number of 
parameters that can be simultaneously evaluated 
on single cells. Access to an increasing number of 
reagents and fl uorochromes including tandem 
conjugates, semiconductor nanocrystals (quantum 
dots or eFluors), and organic polymers (brilliant 
violet family) [ 126 – 128 ], together with the wide 
availability of sophisticated fl ow cytometers, is 
making polychromatic analysis mainstream. 

 However, spectral overlap ultimately limits 
the number of fl uorochromes in a single panel to 
an upper bound of approximately 20, as described 
in Sect.  25.3 . An exciting new technology that 
has the potential to greatly increase the number 
of measurable parameters is mass cytometry 
(CyTOF), which uses stable heavy metal ions 
tagged to Abs (or, e.g., MHC multimers) in place 
of fl uorochromes. These isotope labels are 
detected by time-of-fl ight mass spectrometry 
after vaporization of the cell. Although isotope 
labels generally produce a signal of low intensity, 
they have a lower background and virtually no 
spillover, making the measurement of a much 
larger number of markers feasible. 

 Mass spectrometry has been reported to be 
qualitatively and quantitatively equivalent to fl ow 
cytometry, with the simultaneous analysis of 
more than 30 parameters being already possible 
[ 129 ]. However, this promising new technology 
has the current following limitations as compared 
to traditional flow cytometry: lower label 
sensitivity, substantial cell loss, low acquisition 
rate, and the impossibility to sort living cells. 
Nevertheless, this method has started to reveal 
the complexity of healthy hematopoietic cells 

and of CD8 +  T lymphocytes subsets and will 
certainly mature to become an indispensable 
technique in cancer immunology and immuno-
therapy [ 129 ,  130 ].  

25.9    Concluding Remarks 

 Flow cytometry is the prototypical multiparame-
ter single-cell assay, with applications in cancer 
immunotherapy ranging from epitope screening 
to immune monitoring of clinical studies. Due to 
its ability to characterize complex immune phe-
notypes and fl exibility in measuring multiple 
immune functions such as Ag binding, expression 
of activation and inhibitory markers, cytokine 
production, cytotoxicity, and proliferation, fl ow 
cytometry is indispensable in cancer immunology 
research. However, because of the complexity of 
the assay and the fragility of the sample, it is chal-
lenging to apply and maintain robustness, sensi-
tivity, and reproducibility, especially across 
multiple laboratories. Factors to consider when 
using fl ow cytometry in clinical research include 
understanding the range of fl ow- based assays 
available, as well as best practices for instrument, 
reagent, sample, and data analysis. 

 In order to harmonize laboratory protocols, 
practices, and analysis strategies, fl ow cytometry 
profi ciency testing programs have been orga-
nized to learn and raise awareness of best prac-
tices. We believe that participation in profi ciency 
testing programs, along with other initiatives 
delivering protocols, assay guidelines and reporting 
frames, is critical for raising the standard of fl ow 
cytometry analysis and strongly recommend that 
all clinical research laboratories that perform 
immune monitoring for clinical trials join such 
programs.     
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26.1            Introduction 

 Immunohistochemistry (IHC) is the art of using 
antibodies (Abs) to detect specifi c antigens 
(Ags) in tissues. Histopathologic evaluation of 
diseases has been altered and enhanced by the 
advent of IHC, and some sophisticated tech-
niques have been replaced by IHC due to its easy 
and versatile immunohistochemical techniques. 
Of course, disorganized application of IHC 
could be misleading. 

 Immunohistochemistry is based on specifi c 
Ab-Ag interactions. The Abs which are used to 
detect Ag(s) are called primary Abs. Primary Abs 
are linked to enzymes (main part of chromogenic 
system) via another Ab called link Ab. This link-
age to enzymes is mediated by polymers or some 
molecules such as streptavidin-biotin complexes. 
Peroxidase is the enzyme mostly used in immu-
nohistochemistry. Alkaline phosphatase is also 
used (but less frequently). Some mechanisms are 
shown in Fig.  26.1 .

   Immunohistochemistry has wide application 
including research uses, diagnostic purposes, and 
prognostic and therapeutic aims. IHC is a nice 
technique for tracking of proteins and haptens, so 
it is used to defi ne expression of specifi c genes at 
the level of proteins. It is also very useful in diag-
nostic pathology including defi nition of cellular 
lineage (epithelial, vascular, lymphoid, etc.) or 
subtyping of some specifi c lesions and malignan-
cies such as malignant lymphomas. Prognostic 
and therapeutic applications have gradually 
become widely popular such as the defi nition of 
hormone receptor status of breast cancer (ER, 
PR, and AR) and oncogene products (e.g., Her2, 
EGFR, c-kit, etc.) which could be a part of guide-
lines for targeted therapy of the tumors.  

26.2     Immunohistochemistry 
of Skin Tumors 

26.2.1     Markers of Normal Skin 

 Skin tissue is composed of epidermal and 
adnexal components as well as mesenchymal 
dermal components. All epithelial cells in the 
epidermis, folliculosebaceous unit, and sweat 
glands reveal pan-keratin markers such as AE1/
AE3 (Fig.  26.2a ). Keratinized squamous cells 

Peroxidase Polymer

Link Ab

Ag

Biotin

Biotinylated Ab(link) Labeled streptavidin

Peroxidase

Ag

Primary Ab

Primary Ab

  Fig. 26.1    Schematic mechanism of two immunohisto-
chemistry methods.  Top : secondary antibodies and 
enzymes link to polymer molecule.  Bottom : biotinylated 
secondary antibody and labeled streptavidine       
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and proliferative keratinocytes express cytokera-
tin (CK) 6/16, nonkeratinized squamous cells 
reacts with CK4/13, and basal keratinocytes 
exhibit reactivity for CK5/14/15 (Fig.  26.2b ). 
Squamous cells in palm and sole are reactive for 
CK1/9/10 [ 1 ,  2 ]. Eccrine and apocrine glands 

comprise sweat structures of the skin. Normal 
eccrine glands show reactivity with CD7, CD20 
(Fig.  26.2c, d ), CEA, and S100, while apocrine 
glands exhibit immunostaining for CEA and 
GCDFP15 [ 3 ,  4 ]. Sebaceous glands exhibit 
 reactivity for CK10 as well as EMA rimming 

a b

c d

e f

  Fig. 26.2    Normal skin. ( a ) Pan-keratin of AE1/AE3 
stains the epidermis, folliculosebaceous unit epithelium, 
and sweat glands. Basal keratinocytes are highlighted by 
CK5 ( b ). Sweat glands are immunostained by CK7 

( c ) and CK20 ( d ). EMA ( e ) reacts with sebaceous glands 
rimming cytoplasmic vacuoles, and CD1a highlights den-
dritic Langerhans cells in the epidermis ( f )       
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cytoplasmic lipid vesicles (Fig.  26.2e ) [ 5 ]. 
Normal melanocytes express S100, HMB45, and 
MART-1/melan-A but do not react with tyrosi-
nase [ 6 ]. Langerhans cells are stained with CD1a 
(Fig.  26.2f ), S100, langerin, and CD31 [ 7 ]. 
Displaying neurotactile differentiation, Merkel 
cells of normal skin are reactive for CK20, 
MOC-31, neurofi lament, and CD56 [ 8 – 10 ]. 
Markers of the normal epidermal components 
are depicted in Fig.  26.3 . The immunoprofi le of 
normal skin components and respective cancers 
is summarized in Table  26.1 .

26.2.2          Epithelial Tumors 

 Squamous cell carcinoma (SCC) and basal cell 
carcinoma (BCC) are derived from the spinous 
layer and basal layer of the epidermis, respec-
tively. Well-differentiated SCC expresses high 
molecular cytokeratin, while those with poor dif-
ferentiation express low molecular cytokeratin. 
Cytokeratin, p63, and vimentin are present in the 
sarcomatoid variant of SCC [ 11 ]. EMA, one of the 
human milk fat globule proteins not expressed in 
normal keratinocytes, is expressed on malignant 

Stratum
corneum

Grannular
layer

Spinous
layer

Basal
layer

Keratinocyte

Melanocyte

Langerhans cell CD1a, S100, langerin
S100, HMB45, MART1,
Melan-A

CK5/14/15

Nonkeratinized squamous cells
CK4/13
Keratinized squamous cells 
CK6/16

Filaggrin, involucrine

Markers

  Fig. 26.3    Immunohistochemistry antibodies in schematic normal epidermal components       

   Table 26.1    Immunoprofi le of normal epidermis, folliculosebaceous, and sweat gland structures in comparison with 
respective tumors   

 Cell  Antibodies  Tumor  Markers 

 Keratinocyte  CK6/16  Squamous cell carcinoma  EMA, p63 
 Basal keratinocyte  CK5/14/15  Basal cell carcinoma  BerEp4 
 Eccrine cell  CK7, CK20, CK5/14, 

CK1/10, CEA, S100 
 Eccrine carcinoma  EMA, CEA, CD15, p63, 

S100 
 Apocrine cell  CEA, GCDFP15  Apocrine carcinoma  EMA, CEA, CD15, p63, 

CA72.4, GCDFP15 
 Trichogenic cell  CK14/15/19  Trichilemmal carcinoma  CEA, S100 

 Proliferating trichilemmal carcinoma  EMA, CD34 
 Sebaceocyte  CK5/14/15, CK8/18  Sebaceous carcinoma  EMA 

 

A. Ghanadan et al.



495

squamous cells. Basal cell carcinoma expresses 
BerEp4 (Fig.  26.4 ) but does not demonstrate reac-
tivity with EMA and p63, distinguishing it from 
SCC [ 12 ].

26.2.3        Sweat Gland Tumors 

 Malignant eccrine tumors are distinct from 
benign eccrine tumors by displaying reactivity 
with EMA. Eccrine tumors display CEA, CD15, 
and p63 which are also common with apocrine 
tumors. Differentiating markers of apocrine 
tumors are TAG-72 (CA72.4) and GCDFP15 
(Fig.  26.5 ) which are not expressed on eccrine 
tumors [ 4 ]. S100 is demonstrated in 50 % of 

eccrine tumors, but not in apocrine tumors. A 
remaining challenge is distinguishing primary 
eccrine carcinoma from metastatic carcinoma 
by immunoprofi le of CK5/6 and p63 which are 
positive in eccrine carcinoma, but not in meta-
static carcinoma [ 13 ]. Paget disease is an 
intraepidermal extension of neoplastic cells into 
the epidermis which shares similar histopatho-
logic features with malignant melanoma and 
Bowen disease. Immunohistochemistry study 
can be a helpful method in differentiating these 
tumors as denoted in Table  26.2  [ 14 ]. CK20 and 
GCDFP-15 are useful markers in distinguishing 
primary and secondary perianal Paget diseases, 
respectively [ 15 ].

26.2.4         Trichogenic Tumors 

 Tumors with trichilemmal differentiation display 
reaction with CK14/15/19, BerEP4, and p63 but 
do not react with EMA (except proliferating 
trichilemmal tumor), CEA, S100, CD15, CA72.4, 
HMB45, and GCDFP15 [ 3 ]. Trichilemmal carci-
noma displays reactivity with CEA and S100, 
and proliferating trichilemmal carcinoma (malig-
nant proliferating tumor) shows reactivity with 
EMA and CD34 [ 17 ]. Desmoplastic trichoepithe-
lioma shares histopathologic similarities with 
infi ltrating BCC and microcystic adnexal carci-
noma. The immunoprofi le of these tumors are 
demonstrated in Table  26.3 .

  Fig. 26.4    Immunoreaction of basal cell carcinoma with 
BerEP4       

a b

  Fig. 26.5    Primary skin apocrine carcinoma ( a ) immunostained by GCDFP15 ( b )       
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26.2.5        Sebaceous Tumors 

 Sebaceous tumors exhibit reactivity with 
CK5/14/15, CK8/18, EMA, CD15, anti- 
adipophilin (ADP) and androgen receptor. CK15 
is positive in sebaceoma but does not exhibit reac-
tivity with sebaceous carcinoma [ 21 ]. Sebaceous 
tumors do not express CEA, S100, CA72.4, and 
GCDFP-15 in comparison with sweat gland 
tumors, which are positive for these markers [ 4 , 
 22 ]. Sebaceous carcinoma is differentiated from 
BCC by showing reactivity for EMA (Fig.  26.6 ) 
and negative reaction to BerEP4, vice versa of 
BCC [ 23 ]. Proliferating markers are good mark-
ers to differentiate sebaceous adenoma from 
sebaceous carcinoma (Table  26.4 ).

26.2.6         Melanocytic Tumors 

 Being a sensitive but a nonspecifi c marker of 
melanoma, S100 is a calcium-binding protein 
given its name because of solubility in 100 % 
saturated ammonium sulfate solution. Other 
S100-positive tumors include undifferentiated 
carcinoma, nerve sheath and glial tumors, adi-
pose tumors, and histiocytic and Langerhans cell 
proliferations [ 26 ,  27 ]. Considering as highly 
specifi c marker of melanocytes, the gp100 group 
includes HMB-45 and MART-1/melan-A with 60 
and 80 % sensitivity, respectively. Melanoma 
antigen recognized by T-cells-1 (MART-1) is a 
protein which serves as a potential target for 
cytotoxic T lymphocytes recognized by two 
monoclonal antibodies (mAbs), A103 and melan-
 A [ 28 ]. Desmoplastic/spindle cell variant of mel-
anomas does not show reactivity with HMB45 
and MART/melan-A. Instead, these melanomas 
are more reactive with S100, p75-NGF-R, and 
tyrosinase [ 29 ]. Small cell melanoma is another 
variant of the melanoma which could be distin-
guished from other small cell undifferentiated 
tumors of the skin and subcutaneous tissue by 
Abs panel (Fig.  26.7 ). The immunoprofi les of 
these tumors are summarized in Table  26.5 .

   Table 26.2    Immunophenotype of mammary and extramammary Paget disease (PD), Bowen disease, and malignant 
melanoma   

 Makers  Mammary PD 
 Extramammary PD (apocrine 
carcinoma in situ) 

 Bowen disease 
(SCC in situ)  Melanoma (in situ) 

 CK7  +  +  −  − 
 CEA  +  +  −  − 
 CAM5.2  +  +  −  − 
 GCDFP15  +  +  −  − 
 MUC1  +  +  −  − 
 MUC5AC  −  +  −  − 
 CA15-3  +  −  −  − 
 CA72.4  −  +  −  − 
 KA-93  −  +  −  − 
 CK5/6  −  −  +  − 
 S100/HMB45/MART  −  −  −  + 

  Refs. [ 14 – 16 ]  

   Table 26.3    Immunoprofi le of desmoplastic trichoepi-
thelioma (DTE), infi ltrating basal cell carcinoma (IBCC), 
and microcystic adnexal carcinoma (MAC)   

 Tumor  DTE  IBCC  MAC 

 Panel 
antibodies 

 EMA, CK5/6, 
CD10 
(stroma), 
CK15, CK20, 
p63, Bcl-2, 
BerEP4 

 CK5/6, CD10 
(epithelial), p63, 
Bcl-2, BerEP4, 
stromelysin-3, 
p53 

 EMA, 
CK7, 
Ck5/6, 
CK15, 
p63, 
SMA 

  Refs. [ 18 – 20 ]  
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26.2.7         Prognostic Markers 
of Melanoma 

 Detection of  BRAF   p.V600E  mutation by immu-
nohistochemistry in melanomas could be used as 
a fi rst step to identify patients with melanoma as 
candidates for BRAF inhibitors. Displaying by 
immunohistochemistry, melanoma progression is 
correlated with MERTK expression: highest in 

metastatic melanomas, followed by primary 
 melanomas and nevi [ 32 ,  33 ]. Other prognostic 
markers correlated with melanoma progression 
and prognosis include MIB-1 (Ki-67), Bcl2, p53, 
p16, cyclin-D1, cyclin-D3, osteopontin, NM23, 
E-cadherin, beta-catenin, Wnt5a/frizzled, Cdc42, 
and CXCR4 [ 34 – 40 ].  

26.2.8     Specifi c Mesenchymal Tumors 
of the Skin 

 Mesenchymal tumors are discussed in soft tissue 
tumors, but some tumors which are more seen in 
skin are discussed here. Kaposi sarcoma which 
originates from endothelial cells is an intermedi-
ate malignant potential vascular tumor of the skin 
positive for a highly sensitive and specifi c Ab 

a b

c

  Fig. 26.6    Sebaceous carcinoma ( a ). Sebocytes are stained with EMA ( b ). Nuclear reactivity of tumor cells for andro-
gen receptor ( c )       

   Table 26.4    Immunoprofi le of sebaceous adenoma (SA) 
and sebaceous carcinoma (SC)   

 Tumor  Ki-67 (%)  p53 (%)  Bcl2 (%)  p21 (%) 

 Sebaceous 
adenoma 

 10  11  56  34 

 Sebaceous 
carcinoma 

 30  50  7  16 

  Refs. [ 24 ,  25 ]  
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called HHV8 latent nuclear antigen-1 [ 41 ]. 
Dermatofi brosarcoma protuberance is an interme-
diate tumor of fi brohistiocytic cell origin which is 
diffusely positive for CD34 (Fig.  26.8 ) and nega-
tive for factor XIIIa separate from  dermatofi broma 
which is in reverse of DFSP ( CD34− , factor 
XIIIa+) [ 42 ]. Considering it as a superfi cial vari-
ant of malignant fi brous  histiocytoma, atypical 

 fi broxanthoma is a fi brohistiocytic tumor exhibit-
ing reactivity with vimentin, CD10, and CD99 
(Fig.  26.9 ) [ 43 ]. Among tumors with smooth 
muscle differentiation, leiomyoma and leiomyo-
sarcoma are  reactive for SMA, desmin, and calde-
smon  similar to extracutaneous equivalents 
[ 44 ,  45 ]. Neurothekeoma (NTKs) is a distinctive 
 neoplasm of the skin showing schwannian and 

a b

c d

e f

  Fig. 26.7    Small round cell tumor in the skin. Malignant melanoma ( a ) reacts with S100 ( b ) and melan-A ( c ) antibod-
ies. Merkel cell carcinoma ( d ) immunostained by CK20 as paranuclear dots ( e ) and shows weak reaction with CD99 ( f )       
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neuroectodermal differentiation which typically 
labels with S100 (conventional variant), CD99, 
and NKI-C3 (cellular variant) [ 46 ].

26.3          Immunohistochemistry 
of Head and Neck Tumors 

26.3.1     Tumors of the Nasal Cavity 
and Paranasal Sinuses 

 Tumors of the nose and paranasal sinuses can be 
categorized in two groups of small cell carcino-
mas and undifferentiated carcinomas. Small cell 
carcinomas of the nasal cavity and paranasal 
sinuses include olfactory neuroblastoma (ONB), 
melanoma, lymphoma, rhabdomyosarcoma, 

small cell neuroendocrine carcinoma, and ES/
PNET (Table  26.6 ). Undifferentiated carcinomas 
include sinonasal undifferentiated carcinoma, 
undifferentiated nasopharyngeal carcinoma 
(Fig.  26.10 ), and undifferentiated neuroendo-
crine carcinoma (Fig.  26.11 ) [ 47 ,  48 ]. All poorly 
differentiated and undifferentiated carcinomas 
express cytokeratin [ 49 ]. Undifferentiated naso-
pharyngeal carcinoma reacts with EBV, and 
undifferentiated neuroendocrine carcinoma is 
positive for neuroendocrine markers and S100 
[ 50 ]. NUT midline carcinoma (NMC) is an 
aggressive tumor with translocation of the  NUT  
( nuclear protein in testis ) gene resulting in the 
formation of  BRD4 - NUT  fusion gene. Recently, 
new mAbs against the NUT Ag have been 
designed which will improve the diagnosis of 

   Table 26.5    Immunopanel of small cell melanoma (SCM), Merkel cell carcinoma (MCC), small cell squamous carci-
noma (SSCC), small cell eccrine carcinoma (SEC), peripheral neuroectodermal tumor/extraskeletal Ewing sarcoma 
(PNET/ES), lymphoma, rhabdomyosarcoma (RMS), and metastatic pulmonary small cell carcinoma (MPSC)   

 Panel antibodies  SCM  MCC  SSCC  SEC  PNET/ES  Lymphoma  RMS  MPSC 

 S100/HMB45/MART  +  −  −  −  −  −  −  − 
 CK20/CD56/SYN/CGN  −  +  −  −  −  −  −  − 
 CK/EMA  −  −  +  +  −  −  −  + 
 CD15/MOC31/TAG-72  −  −  −  +  −  −  −  − 
 CD99/CD56/SYN/CGN  −  +  −  −  +  −  −  − 
 LCA/CD3/CD20  −  −  −  −  −  +  −  − 
 DES/MSA/MYG  −  −  −  −  −  −  +  − 
 CEA/TTF-1  −  −  −  −  −  −  −  + 

  Refs. [ 26 – 31 ] 
 Note:  CGN  chromogranin A,  DES  desmin,  MYG  myogenin,  MSA  muscle-specifi c antigen.  LCA  leukocyte common 
antigen,  SYN  synaptophysin  

a b

  Fig. 26.8    Dermatofi brosarcoma protuberans. Spindle fi brohistiocytic cells, entrapping subcutaneous fat tissue ( a ) 
highlighted by CD34 ( b )       
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NMC [ 51 ]. Immunohistochemistry of poorly dif-
ferentiated and undifferentiated carcinomas are 
denoted in the Table  26.7 .

26.3.1.1          Theranostic Application 
 In olfactory neuroblastoma, immunoreactivity 
with bcl-2 may predict response to neoadjuvant 
chemotherapy and seems to be associated with 
worse survival [ 52 ].   

26.3.2     Tumors of the Larynx, 
Nasopharynx, 
and Oropharynx 

 Squamous cell carcinoma (SCC) is the most com-
mon malignancy in the head and neck. Typically, 
head and neck SCCs are positive for cytokeratin 
cocktails, AE1/AE3, and pan- cytokeratin. Human 
papilloma virus (HPV) is detected in some SCCs 

a b

c

  Fig. 26.9    Atypical fi broxanthoma. Atypical pleomorphic cells with vesicular nuclei in the dermis ( a ,  b ) are immunos-
tained by CD10 ( c )       

   Table 26.6    Immunohistochemistry of small cell carcinomas of nasal cavity: olfactory neuroblastoma (ONB), rhabdo-
myosarcoma (RMS), Ewing sarcoma/peripheral neuroectodemal tumor (ES/PNET), and small cell neuroendocrine car-
cinoma (SNEC)   

 Tumor  ONB  Melanoma  Lymphoma  RMS  SCC  ES/PNET  SNEC 

 Immunoreactive 
markers 

 SYN  HMB45, 
S100, 
vimentin 

 LCA, 
vimentin 

 Desmin, 
Myogenin, 
vimentin 

 AE1/AE3, 
EMA, SYN 

 CD99, SYN  Cytokeratin, 
neuroendocrine 
markers 

  Refs. [ 49 ,  53 – 57 ]  
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of the oropharynx and known as a risk factor of 
head and neck SCCs [ 60 ,  61 ]. Being as a variant of 
SCC, basaloid squamous cell carcinoma (BSCC) 
is another tumor with predominance of basaloid 
components. Basaloid squamous cell carcinomas 
express p63 which is relatively specifi c but also 
found in other squamous tumors (Fig.  26.12 ). 
Neuroendocrine markers are negative in BSCC 
[ 62 ]. Spindle squamous cell carcinoma (SSCC) is 
a cytokeratin-negative SCC in which spindle cell 
component is uniformly and strongly positive for 
vimentin [ 63 ]. Undifferentiated nasopharyngeal 
carcinoma shows reactivity to EBV immunostain-
ing as well as some SCCs and BSCCs [ 64 ,  65 ].

26.3.2.1       Prognostic Marker 
 As a transcription repressor of E-cadherin, 
Snail-1 is expressed in more than half of the 
cases of SSCC but not in SCC. In addition, it 

can be a novel marker for the prediction of 
metastasis [ 66 ].   

26.3.3     Tumors of the Salivary Glands 

 Salivary glands are tubuloacinar exocrine glands 
having two-layered epithelium which comprise of 
luminal (acinar and ductal cells) and abluminal 
(myoepithelial and basal cells). Luminal cells are 
positive for low molecular cytokeratin, whereas 
myoepithelial and basal cells react with high 
molecular cytokeratin and myoepithelial markers. 
The majority of salivary gland carcinomas can be 
diagnosed by routine hematoxylin and eosin 
(H&E)-stained slides, and immunohistochemical 
(IHC) staining has only a limited role in the 
 diagnosis of salivary gland tumors [ 47 ,  67 ]. 
Figure  26.13  summarized the various components 

a b

c d

  Fig. 26.10    Undifferentiated    nasopharyngeal carcinoma 
shows infi ltration of large undifferentiated cells with 
intermixed small lymphocytes ( a ). Cytokeratin antibody 

highlights malignant cells ( b ), and intermixed lympho-
cytes react with LCA ( c ). Ki-67 antibody reacts with 
about 20 % of malignant cells ( d )       
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of the normal salivary glands with an emphasis on 
the immunohistochemistry Abs.

26.3.4        Immunohistochemistry 
of Salivary Gland Tumors 

 The most common malignant tumors of salivary 
glands consist of acinic cell carcinoma, adenoid 

cystic carcinoma (Fig.  26.14 ), basal cell adeno-
carcinoma, epithelial-myoepithelial carcinoma, 
mucoepidermoid carcinoma (Fig.  26.15 ), myo-
epithelial carcinoma, polymorphous low-grade 
adenocarcinoma, and salivary duct carcinoma. 
All tumors are cytokeratin positive; however, 

   Table 26.7    Immunohistochemistry of poorly differenti-
ated and undifferentiated carcinomas of nasal cavity: sino-
nasal undifferentiated carcinoma (SNUC), undifferentiated 
neuroendocrine carcinoma (UNEC), and undifferentiated 
nasopharyngeal carcinoma (UNPC)   

 Markers  SNUC  UNPC  UNEC (Fig.  26.11 ) 

 Cytokeratin  +  +  + 
 EBV  −  +  − 
 Neuroendocrine  −  −  + 
 CD99  −  −  +/− 
 S100  −  −  + 

  Refs. [ 49 ,  58 ,  59 ]  

  Fig. 26.12    P63 immunoreaction in basaloid squamous 
cell carcinoma       

a b

c

  Fig. 26.11    Neuroendocrine carcinoma ( a ). Tumor cells are immunostained with synaptophysin ( b ) and NSE ( c )       
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 different immunoprofi le patterns exist [ 68 ]. C-kit 
(CD117) is positive in acinic cell carcinoma and 
adenoid cystic carcinoma [ 69 ,  70 ]. Acinic cell 
tumor and mucoepidermoid carcinoma demon-
strate reactivity with membrane-bound mucin 
(MUC) [ 71 ,  72 ]. Myoepithelial carcinomas are 

positive for both epithelial and myoepithelial 
markers but do not exhibit reaction with EMA 
and CEA [ 73 ]. Malignant monophasic salivary 
gland tumors include acinic cell carcinoma, 
 myoepithelial carcinoma, mucoepidermoid car-
cinoma, and polymorphous low-grade adenocar-
cinoma. Immunophenotype profi les of 
monophasic and biphasic tumors are denoted in 
Tables  26.8  and  26.9 . Application of CK7 and 
CK20 is a useful panel in distinguishing primary 
salivary gland carcinoma (CK7 + , CK20 − ) from 
metastatic carcinoma (CK7 − , CK20 + ) [ 74 ].

26.3.4.1          Prognostic Marker 
 In mucoepidermoid carcinoma, MUC1 expres-
sion is correlated with tumor progression and 
worsened prognosis, whereas MUC4 expression 
is related to a better prognosis [ 72 ].   

Acinar cell

Markers CK7, 8, 18

CK5, 7, 14, vimentin,
p63, S100, GFAP

CK5, 14, vimentin, p63

Myoepithelial cell Basal cell

EMA, CEA,
amylase
SOX10

CK7, 8, 18
19, EMA,
CEA

MUC1,
MUC2,
MUC4,
MUC5AC

Markers

Ductal cell

  Fig. 26.13    Normal salivary gland components with 
immunohistochemistric antibodies       

a b

c

  Fig. 26.14    Adenoid cystic carcinoma with typical cribriform pattern ( a ) shows immunoreaction with EMA ( b ) and 
CEA ( c )       

 

 

26 Immunohistochemistry of Cancers



504

a b

c

  Fig. 26.15    Poorly differentiated mucoepidermoid carcinoma with polygonal atypical epidermoid cells ( a ) exhibits 
immunostaining with CK7 ( b ) and EMA ( c )       

   Table 26.8    Immunophenotype of monophasic malignant salivary gland tumors: acinic cell carcinoma (ACC), myoepi-
thelial carcinoma (MC), mucoepidermoid carcinoma (MEC), and polymorphous low-grade adenocarcinoma (PLGC)   

 Tumor  AC  MC  MEC  PLGC 

 Epithelial 
Markers 

 CAM5.2, CK7/8/18, 
EMA, CEA, MUC3 

 AE1/AE3, CAM5.2, 
CK14, 34βE12 

 CAM5.2, CK7/8/14/18/19, EMA, 
CEA, MUC1/4/5 AC, 5B 

 CAM5.2, CK7, 
14, EMA 

 Myoepithelial/ 
basal markers 

 N  p63, calponion, 
SMA, myosin 

 p63 (epidermoid component)  p63 

 Other markers  C-kit, S100  Vimentin, S100, 
GFAP 

 –  S100 

  Refs. [ 68 ,  69 ,  71 – 73 ,  75 ,  76 ]  

   Table 26.9    Immunophenotype of biphasic malignant salivary gland tumors: adenoid cystic carcinoma (ACC), basal 
cell adenocarcinoma (BCA), epithelial-myoepithelial carcinoma (EMC), and salivary duct carcinoma (SDC)   

 Tumor  ACC  BCA  EMC  SDC 

 Epithelial 
markers 

 CAM5.2, CK7/14/19, 
EMA, CEA 

 AE1/AE3, CAM5.2, 
CK7, EMA, CEA 

 AE1/AE3, CAM5.2, 
CK14 

 AE1/AE3, EMA, CEA 

 Myoepithelial/
basal markers 

 p63, calponin  p63, calponin, SMA  p63, calponin, SMA  p63 

 Other markers  C-kit, S100  C-kit, S100  S100  AR, GATA3, HER2/neu 

  Refs. [ 68 ,  69 ,  71 ,  77 – 82 ]  
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26.3.5     Tumors of Thyroid 
and Parathyroid Glands 

 The functional unit of thyroid is the follicle 
which is composed of follicular cells and C cells. 
Follicular cells exhibit reactivity with thyroglob-
ulin, TTF1, PAX8, AE1/AE3, EMA, and CK7 
and CK8/18/19, whereas C cells are positive for 
calcitonin, TTF1, CK7, synaptophysin, and chro-
mogranin. Being as a nuclear transcription fac-
tor, TTF1 is expressed on follicular and C cells. 
A follicular cell-specifi c marker is thyroglobulin 
which does not react with C cells (Fig.  26.16 ). 
As a member of the  paired box (PAX)  gene fam-
ily, PAX8 is a sensitive marker of thyroid tumors 
similar to TTF1. Among intermediate fi laments, 
CK19 is more expressed in papillary carcinoma 
than other tumors. Parathyroid hormone (PTH) 
and parafi bromin are markers of parathyroid 
tumors. Parafi bromin is uniformly expressed 

in parathyroid adenomas, whereas its expres-
sion is often reduced in parathyroid  carcinomas. 
Table  26.10  shows an immunopanel of thyroid 
and parathyroid tumors. Figure  26.17  depicts 
thyroid medullary carcinoma.

26.4           Immunohistochemistry 
of Lung Tumors 

26.4.1     Adenocarcinoma 

 The most frequent    IHC pattern observed in lung 
tumors is positivity for CK7, TTF1, and Napsin 
A, along with negative staining for CK20, CDX2, 
and MUC2. It is highly advocated to consider the 
fact that there are recently increasing reports of 
primary pulmonary adenocarcinomas with intes-
tinal differentiation which are CK7 and TTF1 
negative but CK20 positive which can be highly 

a b

c d

  Fig. 26.16    Thyroid papillary carcinoma. Papillary projections with intranuclear inclusions ( a ) and Orphan Annie 
nuclei ( b ) are highlighted by thyroglobulin in the cytoplasm ( c ) and TTF1 in the nuclei ( d )       
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misinterpreted as metastatic colorectal adenocar-
cinomas. Therefore, the importance of physical 
examination and imaging studies is highlighted. 
It should be noted that neuroendocrine markers 
including chromogranin, synaptophysin, NSE, 
and Leu7 (CD57) can be positive in lung non- 
neuroendocrine carcinomas such as adenocarci-
nomas and SCC. Recent studies have shown 
 EGFR, Her2 , and  BRAF  mutations in lung can-
cers which can increase the chance for targeted 
therapies in these cancers [ 103 – 106 ].  

26.4.2     Mesothelioma 

 Neoplasms of the pleura are very rare, and most 
tumors in this area are usually metastatic lesions. 

   Table 26.10    Immunopanel of thyroid and parathyroid 
tumors   

 First-choice 
antibody panel 

 Second-choice 
antibody panel  Consistent with 

 CK+, TTF1+, 
TGB+ 

 PAX8+, CK19+  Papillary 
carcinoma 
(Fig.  26.16 ) 

 PAX8±, VIM+  Follicular 
carcinoma 

 CK+, TTF1+, TGB−  Calcitonin+, 
SYN+, CGN+ 

 Medullary 
carcinoma 
(Fig.  26.17 ) 

 CK±, TTF1+, TGB−  p53+, VIM+, 
PAX8± 

 Anaplastic 
carcinoma 

 CK+, TTF1−, TGB−  PTH+, CGN+, 
parafi bromin± 

 Parathyroid 
tumor 

  Refs. [ 83 – 102 ] 
 Note:  CGN  chromogranin,  SYN  synaptophysin,  TGB  thy-
roglobulin,  VIM  vimentin  

a b

c

  Fig. 26.17    Thyroid medullary carcinoma. Solid nests with medium-sized atypical cells ( a ) exhibit immunoreaction 
with calcitonin ( b ) and chromogranin ( c )       
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One of the most important applications of IHC is 
to assist pathologists in differentiating mesothe-
liomas from lung adenocarcinomas [ 107 – 109 ]. 
Table  26.11  shows the most frequent markers 
stained by IHC staining in mesothelioma 
 compared with pulmonary adenocarcinoma 
(Fig.  26.18 ).

26.5          Immunohistochemistry 
of Gastrointestinal Tumors 

 Immunohistochemistry is used in gastrointestinal 
and colon cancers to particularly determine the 
tumor subtype and origin, especially for poorly 
or undifferentiated cancers for which morphol-
ogy alone cannot determine the origin. Generally, 
it should be noted that defi nite tissue diagnosis in 
clinical practice needs combination of IHC 
results and clinical information, including biopsy 

site and the patients’ clinical history [ 110 ]. 
Previous studies show that blinded use of an IHC 
panel for differential diagnosis can primarily 
identify about 83 % of tumor origins  vs . 65.6 % 
of metastasis. Several publications on IHC stud-
ies are available, and each recommends its own 
IHC panel for differential diagnosis. This makes 
it clear that there is no single IHC panel, or stan-
dard of care, for tissue determination, and pathol-
ogists have long known that tissue of origin 
identifi cation is inherently a multiplex problem 
[ 111 – 113 ]. 

 Here, the authors have briefl y tried to intro-
duce the major and common IHC markers used to 
differentiate frequent gastrointestinal tumors. It 
should be noted that the average positivity of a 
marker in a specifi c tumor differs from one study 
to another, as well as in different textbooks. In 
this chapter the most prevalent and reliable data 
are provided. 

   Table 26.11    Immunohistochemistric differentiation of pulmonary adenocarcinoma ( PAC ) and malignant mesothelioma   

 Marker  Pulmonary AC  Mesothelioma  Comment 

 Calretinin  R  Usually +  The most specifi c and reproducible positive marker in 
mesothelioma 

 CDX2  R  −  About 13 % positive, in pulmonary mucinous carcinomas 
 Cytokeratin  AE1/AE3, 

CK5/6 (R), 
CK7, 

 CK5/6 (S), CK7 
(used to 
differentiate 
mesotheliomas 
from sarcomas) 

 CK7: Most common CK in primary lung cancer (About 
100 % in AC, 40 % in small cell carcinoma, about 20 % in 
carcinoid tumor, and none of SCC arising from lung) 
 CK5+ specially in lung SCC 

 D2-40  −  +  Usually positive specially in sarcomatoid variants of 
mesothelioma 

 EMA  S (cytoplasmic)  S (membranous) 
 TTF1  +  − 
 Mesothelin  −  + 
 p63  −  −  Positive in pulmonary SCC 
 pCEA  +  − 
 S100  +  − 
 SMA  −  50–60 % 
 SP-A (surfactant 
protein A) 

 50 %  − 

 Thrombomodulin  −  + 
 Vimentin  +  − 
 WT1  −  60 % 

  Note:  pCEA  polyclonal CEA,  SMA  specifi c muscle antigen  
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26.5.1     Liver 

 The most common primary hepatic cancer is 
hepatocellular carcinoma which is well known to 
have a wide spectrum of histologic differentia-
tion and a great diversity of appearances. It 
necessitates the application of IHC as an ancil-
lary aid for better diagnosis of the lesion. It is 
important to reiterate that IHC is after all an 
ancillary aid. A signifi cant clinicopathologic cor-
relation seems mandatory for the fi nal diagnosis. 
If a defi nitive diagnosis cannot be clinched, at 

the least, certain differential diagnoses can be 
excluded [ 114 – 118 ]. Immunophenotype of 
 normal liver is summarized in Table  26.12  
(Figs.  26.19  and  26.20 ).

     Cholangiocarcinoma is a malignant tumor 
with characteristics mostly similar to other 
types of adenocarcinomas. The tumor is usually 
positive for CK7, CK19, CAM5.2, CK AE1/
AE3, pCEA, mCEA (noncanalicular pattern), 
and MOC31. MUC4, MUC5AC, and MUC6 
can also be useful not in diagnosis but in 
 classifi cation and predicting the prognosis. 

a b

c d

  Fig. 26.18    Mesothelioma. Adenomatoid type ( a ) shows immunostaining for mesothelin ( b ), and tubular type ( c ) 
shows immunoreaction for calretinin ( d )       

   Table 26.12    Immunohistochemistry of normal liver   

 Normal tissue 

 Markers 

 Hepatocellular  Adenocarcinoma  Carcinoma  Canalicular  Others 

 Hepatocytes  HepPar1, TTF1 
(cytoplasmic) 

 MOC31  CAM5.2  CD10, pCEA  B-catenin 

 Bile duct cells  –  CK7, CK19 (+/−), 
MUC6 

 CAM5.2, CKAE1/
AE3, EMA, BerEp4 

 –  B-catenin 
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Additionally, CD56 which is positive in benign 
bile ductular proliferations and negative in 
cholangiocarcinomas can be useful in differen-
tiating malignant lesions from benign prolifera-
tion. The exception for this rule is clear cell 
cholangiocarcinoma which is positive for 
CD56. Staining for CK7 and CK19 in cholan-
giocarcinoma can help to differentiate this 
tumor from HCC, which is negative for the 
mentioned markers [ 119 ,  120 ]. Table  26.13  
indicates the immunophenotypes of hepatocel-
lular carcinoma and cholangiocarcinoma.

26.5.2        Esophagus 

 The most common esophageal cancers are ade-
nocarcinomas and SCC. Adenocarcinoma of 

the esophagus is immunophenotypically simi-
lar to gastric adenocarcinomas, and there is no 
IHC panel to distinguish these two. Esophageal 
SCC is usually positive for most CK markers 
including CK AE1/AE3, CK 34bE12, CK5/6, 
CK19 (positivity increases with tumor grade 
whereas benign squamous lesions are negative 
for this marker), and p63. Additionally, most 
SCCs are negative for CK7 and CK20 which 
can be useful in distinguishing poorly differen-
tiated SCCs from poorly differentiated adeno-
carcinomas positive for these two CK markers 
[ 121 – 123 ].  

26.5.3     Stomach 

 Stomach glandular epithelium expresses CK20 
and less commonly CK7 ( CK7+, CK20+ ) and 
MUC5AC, distinguishing it from small intes-
tine and colorectal epithelium. Immunoprofile 
of normal gastrointestinal mucosa is denoted 
in Table  26.14 . Gastric adenocarcinoma has 
many histologic variants, but they have almost 
similar immunophenotyping. It should be 
mentioned that synaptophysin and chromo-
granin as neuroendocrine markers can be posi-
tive in gastric adenocarcinomas; therefore, 
positive staining with these markers is not suf-
ficient for the diagnosis of  neuroendocrine 
carcinoma [ 124 – 126 ]. Immunoprofile of gas-
tric adenocarcinoma is demonstrated in 
Table  26.15  (Fig.  26.21 ).

  Fig. 26.19    Normal liver stains with HepPar1 showing 
typical cytoplasmic coarse granules of hepatocytes       

a b

  Fig. 26.20    Hepatocellular carcinoma with huge bizzare giant nuclei making diagnosis simple as malignant ( a ) exhibits 
reactivity with HepPar1 ( b )       
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   Table 26.13    Immunohistochemistry of hepatocellular carcinoma and cholangiocarcinoma   

 Tumor 

 Markers 

 Hepatocellular  Adenocarcinoma  Carcinoma  Canalicular  Sinusoidal 

 Hepatocellular 
carcinoma 

 HepPar1, TTF1 
(cytoplasmic) 

 –  CAM5.2, 
EMA (−/+) 

 CD10, pCEA  CD34, FVIII 

 Cholangiocarcinoma  –  MOC31, CK7, 
CK19, MUC4, 
MUC5AC, MUC6 

 CAM5.2, 
CKAE1/AE3 

 pCEA, mCEA 
(noncanalicular) 

 – 

     Table 26.14    Immunoprofi le of normal gastrointestinal mucosa   

 Normal tissue 

 Simple epithelial marker  MUC 

 CDX2 
(intestinal 
marker)  CD15  CK7  CK20  AE1/AE3  CAM5.2  CEA 

 Gastric 
(MUC5AC) 

 Intestinal 
(MUC2, 
MUC4) 

 Stomach  +/−  +  +  +  +  +  −  −  + 
 Small intestine  −  +  +  −  −/+  −  +  +  + 
 Large intestine/
appendix 

 −  +  +  +  +  −  +  +  + 

  Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %)  

     Table 26.15    Immunoprofi le of gastric, small intestine, and colorectal adenocarcinoma (AC)   

 Tumor type 

 Tumor associated marker  MUC 

 CDX2 
(intestinal 
marker)  CD15 

 CK
18/19  CK7  CK20  AE1/AE3  CAM5.2  CEA 

 Gastric 
(MUC5AC) 

 Intestinal 
(MUC2, 
MUC4) 

 Gastric AC  +  +/−  −/+  +  +  +  −/+  −/+  −/+  − 
 Small intestine 
AC 

 +  +/−  +/−  +  −/+  −/+  −/+  +/−  +/−  − 

 Large intestine/
appendix AC 

 +  −  +  +  +  +  −/+  +/−  +  − 

  Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %)  

a b

  Fig. 26.21    Adenocarinoma of the stomach with atypical glands and nuclear pleomorphism ( a ) immunostained with 
CEA ( b )       
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26.5.4          Small Intestine 

 Immunophenotyping of adenocarcinoma is also 
valuable in neuroendocrine tumors (NET) [ 127 –
 129 ]. Tables  26.14  and  26.15  summarize the 
immunoprofi le of normal small intestine, its ade-
nocarcinoma, as well as their comparison with 
stomach and colon adenocarcinoma.  

26.5.5     Colon 

 In contrast to older studies which have discussed 
colon cancers generally, recent studies reveal that 
colon cancers arise from two different pathways 
(chromosomal instability of APC gene vs. mic-
rosatellite instability (MSI) pathway) with differ-
ent immunophenotypic features [ 116 ,  130 – 136 ]. 
Immunoprofi le of normal and colon adenocarci-
noma is denoted in Tables  26.14 ,  26.15 , and  26.16 .

26.5.6        Anal 

 The most frequent anal cancers are SCC and ade-
nocarcinoma. Anal SCC is almost similar to SCC 
of other origins; nonetheless, the role of HPV is 
highlighted. Adenocarcinomas of the anus are 
usually positive for CK7 and negative for CK20, 

CDX2, and CK5/6 which helps to differentiate 
them from adenocarcinomas of colon origin 
[ 135 ,  137 ,  138 ].  

26.5.7     Appendix 

 Mucinous adenocarcinomas of appendix origin 
can be distinguished from mucinous colorectal 
carcinomas with immunostaining for CK7 and 
MUC markers [ 139 – 141 ].  

26.5.8     Pancreas 

 Pancreas is composed of glandular/ductal, aci-
nal epithelium, and endocrine cells. Pancreatic 
neoplasms can be roughly divided into two 
categories of exocrine and endocrine system 
neoplasms. This part mostly discusses the exo-
crine system and mostly adenocarcinomas of 
this area. Additionally, tumor suppressor genes 
including DPC4 and SMAD4 are inactivated 
in about 50–60 % of the adenocarcinomas of 
this site [ 116 ,  142 ,  143 ]. Immunoprofi le of 
normal pancreas and some pancreatic tumors 
are summarized in Tables  26.17  and  26.18 . 
Figure  26.22  depicts solid pseudopapillary 
neoplasm.

   Table 26.16    Immunoprofi le of colon adenocarcinoma based on chromosomal instability and MSI pathways   

 Chromosomal instability pathway (80–85 %)  MSI pathway (15–20 %) 

 CK20  100 %  CK20  Can be negative in about 30 % 
 MUC2  Usually positive  MLH1  Complete absence of staining 

with a suffi cient internal 
control is needed for a positive 
result 

 MUC5AC  Usually negative (about 30 % positive, especially 
in mucinous carcinomas) 

 MSH2 

 CAM5.2  Usually positive  MSH6 
 MOC31  Usually positive  PMS2 
 CDX2  About 90 %  CDX2  Can be negative in about 20 % 

 CK7  5–10 % 
 CEA  Usually positive specially monoclonal type 
 CK8  Usually positive 
 CK18  Usually positive 
 CK19  Usually positive 
 CKAE1/AE3  Usually positive 
 MSI-related markers  These markers are usually positive in this subtype 

of colon carcinomas 
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   Table 26.18    Immunoprofi le of some pancreatic tumors: pancreatic ductal adenocarcinoma (PDAC), acinar cell carci-
noma (ACC), neuroendocrine carcinoma (NEC), and solid pseudopapillary neoplasm (SPN)   

 Marker  PDAC  ACC  NEC  SPN (Fig.  26.22 ) 

 Exocrine  Glandular/
ductal 

 Epithelial  CAM5.2, AE1/AE3, 
CK7, CK8/18/19, 
pCEA, PSCA 

 CAM5.2, AE1/
AE3, CK8/18, 
EMA 

 CAM5.2, AE1/
AE3, CK19 

 – 
 (Positive for 
β-catenin, 
vimentin, PR, 
CD10) 

 MUC  MUC1, MUC3, 
MUC4, MUC5AC, 
MUC6 (+/−) 

 –  –  – 

 ONP  CA19.9, CA125, 
B72.3, DUPAN-2, 
CECAM1 

 –  –  – 

 Acinar  –  Trypsin, 
chymotrypsin, lipase, 
amylase, elastase 

 –  α1-antitrypsin 

 Endocrine  –  CGN, SYN  CGN, SYN, NSE, 
CD56, CD57 

 CGN, SYN, 
NSE, CD56 

 – 

  Note:  CGN  chromogranin,  NSE  neuron-specifi c enolase,  ONP  oncoprotein,  PR  progesterone receptor,  SYN  synaptophysin  

a b

  Fig. 26.22    Solid pseudopapillary neoplasm. Papillary projection covered by relatively bland-looking cells supported 
by a hyalinized stroma ( a ) highlighted with vimentin ( b )       

   Table 26.17    Immunoprofi le of normal pancreas   

 Marker  Normal tissue 

 Exocrine  Glandular/ductal  Epithelial  CAM5.2, AE1/AE3, CK7, CK8/1/8/19 
 MUC  MUC1, MUC6 
 ONP  – 

 Acinar  Trypsin, chymotrypsin, lipase, amylase, elastase 

 Endocrine  CGN, SYN, NSE 
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26.5.9          Gastrointestinal 
Stromal Tumor  

 Gastrointestinal stromal tumor (GIST) is a soft 
tissue tumor of the GI wall which is in the dif-
ferential diagnosis of leiomyoma and fi broma-
tosis. Most GISTs express c-kit (>95 %), CD34, 
and CD99 (Fig.  26.23 ). Sometimes weak posi-
tivity for S100, SMA, desmin, and synaptophy-
sin (but not chromogranin) can also be found 
[ 135 ,  144 ,  145 ].

26.5.10        Neuroendocrine Carcinomas 

 Neuroendocrine tumors arise from different 
organs. Most have similar morphology and 
tumor marker expression, and the most important 

diagnostic clues are histologic features, as well 
as immunostaining for synaptophysin, chro-
mogranin, and NSE (Fig.  26.24 ). In addition to 
the mentioned markers, most of neuroendocrine 
tumors can express the tissue markers in which 
they originated which help to diagnose the ori-
gin of metastatic neuroendocrine tumors [ 143 , 
 146 – 148 ].

26.6         Immunohistochemistry 
of the Urinary Tract 

26.6.1     Kidney 

 Renal cell carcinoma (RCC) is the most 
 common tumor of the kidney with variants of 
clear renal cell carcinoma (CRCC), papillary 

a b

c

  Fig. 26.23    Gastrointestinal stromal tumor. A low-grade intestinal wall tumor shows uniform spindle cells with elon-
gated nuclei ( a ), with immunoreaction to c-kit ( b ) and CD34 ( c )       
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renal cell  carcinoma (PRCC), and chromophobe 
carcinoma (CC). Commonly used immunohis-
tochemical Abs in the urinary system are sum-
marized in Table  26.19 . Immunohistochemistry 
is an ancillary test used to distinguish variants 
of RCC as well as tumors with histopathologic 
similarities including collecting duct carcinoma 
and urothelial carcinoma of the renal pelvis. 
Carcinomas with clear cell feature include CRCC 
(Fig.  26.25 ), papillary renal cell carcinoma, and 
transitional (urothelial) cell carcinoma of the 
renal pelvis. Differential diagnoses of carci-
noma with oncocytic appearance are chromo-
phobe carcinoma, oncocytoma, and oncocytic 
papillary RCC (Fig.  26.26 )  [ 149 – 154 ]. The 
immunophenotype of collecting duct carcinoma 

is 34βE12 + , CD10 − , and AMACR − , in contrast to 
PRCC which is 34βE12 − , CD10 + , and AMACR +  
[ 150 ,  155 ]. Considering the histopathologic pat-
tern, the following immunopanels (Tables  26.20  
and  26.21 ) compare the immunohistochemical 
Abs in these tumors.

26.6.2            Bladder 

 Normal urothelium exhibits a unique pattern 
of cytokeratin expression characterized by 
coexpression of simple epithelium cytokera-
tin (CK7, CK20, and CAM5.2) and HMWCK 
(CK5/6 and 34βE12). While CK20 is expressed 
in umbrella cells of the normal urothelium, in 

a b

c

  Fig. 26.24    Neuroendocrine carcinoma composed of atypical cells with round nuclei and dusty chromatin ( a ). Tumor 
cells are immunostained with chromogranin ( b ) and synaptophysin ( c )       
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   Table 26.19    Immunohistochemical markers in urinary system tumors   

 Marker  Function  Immunoreaction in tumor 

 AE1/AE3  Pan-CK epithelial marker  RCC 
 CAIX  Carbonic anhydrase IX: maintenance of intracellular and 

extracellular pH, regulatory role in cell proliferation 
 PRCC 

 CAM5.2  Intermediate cytoskeleton fi lament  RCC, PRCC, CC, CDC 
 CD10 (CALLA)  A zinc-dependent cell membrane metalloprotein  RCC, PRCC 
 CD117 (c-kit)  Transmembrane glycoprotein receptor tyrosine kinase  CC, CDC, OC 
 CK7  LMWCK (simple epithelia)  PRCC, CC, UC, PAC (+/−) 
 CK20  LMWCH (simple epithelia)  UC (+/−), PAC (+/−) 
 34βE12  HMWCK (CK1, 5, 10, 14)  CDC, UC 
 EGFR  Receptor with tyrosine kinase activity  UC (+/−) 
 Ep-Cam  Glycosylated transmembrane cell surface epithelial protein in 

distal nephron 
 PRCC (+/−), CC, CDC 

 HMWCK  Intermediate cytokeratin fi laments of prostate basal cell  “Negative” marker in PAC 
 Ki-67 (MIB1)  Nuclear protein expressed in all phases of the active cell cycle 

(G1, S, G2, M) 
 Proliferative marker 

 Ksp-cadherin 
(kidney-specifi c) 

 Calcium-dependent cell adhesion molecule plays an important 
role in the maintenance of tissue integrity 

 CC, OC 

 p53  Tumor suppressor protein  UC 
 p63  A member of p53 family transcription factor, marker of basal 

cells 
 “Negative” marker in PAC 

 P501S (Prostein)  A 553-amino acid protein localized to the Golgi complex  PAC 
 P504S (AMACR)  Enzyme mainly localized to peroxisomal structures  PRCC, PAC 
 PAX2/PAX8  Members of the paired box (PAX) gene family expressed in the 

development of the urogenital tract 
 RCC, PRCC, CC, CDC, 
OC (+/−) 

 PSA  330-kD glycoprotein, prostate- specifi c antigen  PAC 
 PSAP  100-kD glycoprotein, prostate- specifi c antigen  PAC 
 PSMA  100-kD glycoprotein, prostate- specifi c antigen  PAC 
 RCC  200-kD glycoprotein expressed in epithelial cells lining the 

normal renal proximal tubule 
 RCC, PRCC 

 Thrombomodulin  75-kD glycoprotein, to convert thrombin from a coagulant 
protein to an anticoagulant 

 UC 

 Uroplakin III  A transmembrane protein unique to urothelium  UC 
 Vimentin  Intermediate cytoskeleton fi lament  RCC, PRCC, CDC 

  Refs. [ 150 – 184 ] 
 Note:  CC  chromophobe carcinoma,  CDC  collecting duct carcinoma,  OC  oncocytoma,  PAC  prostatic adenocarcinoma, 
 PRCC  papillary renal cell carcinoma,  UC  urothelial carcinoma  

dysplastic urothelium and carcinoma in situ, 
it is expressed in all layers of the urothelium 
[ 150 – 154 ,  168 ,  169 ]. CD44 is expressed in the 
basal layer of normal urothelium and shows 
focal staining of basal  layers of the dysplastic 
urothelium [ 170 ]. Urothelial carcinomas are 
divided into (1) noninvasive papillary carcinoma 
and (2) invasive carcinoma which can appear 
as papillary or non-papillary itself (Fig.  26.27 ). 

Immunohistochemistry can be helpful to differ-
entiate urothelial carcinoma from direct exten-
sion of an adjacent primary  carcinoma (prostate, 
colorectal, cervix, and uterine) as well as metas-
tasis and also to distinguish variants of urothe-
lial carcinoma. Common immunohistochemistry 
Abs in normal urothelium, urothelial hyperpla-
sia, urothelial dysplasia, and urothelial carci-
noma are summarized in Table  26.22 .
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26.7          Immunohistochemistry 
of Female and Male Genital 
Tumors 

26.7.1     Uterine Cervix 

 The most important and also frequent cervix 
cancers are cervix SCCs and adenocarcino-
mas. Cervix SCC markers are similar to those 
seen in SCCs of other origins. p16 is a unique 
marker expressed in tumors of the cervix which 
can help in differentiating this lesion from the 
same counterparts from uterine or other origins. 
Adenocarcinomas of the cervix also express most 
adenocarcinoma markers. One of the advantages 
of IHC is to differentiate adenocarcinomas of the 
cervix from the endometrium. Cervix adenocar-
cinomas usually express p16 and CEA, and are 

negative for vimentin and ER, whereas endome-
trium adenocarcinomas have a reverse expression 
pattern [ 176 – 181 ].  

26.7.2     Vulva and Vagina 

 As other organs, various malignancies can occur 
in these two organs, but similar to cervix, the 
most common cancer of these two sites is SCC, 
with IHC marker expression similar to cervix 
counterparts [ 182 ,  183 ].  

26.7.3     Uterine Corpus 

 Uterine tumors are of myometrium or endome-
trium origin. The myometrial tumors are usually 

a b

c

  Fig. 26.25    Renal cell carcinoma   , eosinophilic to clear cells ( a ) is immunostained with CD10 ( b ) but not with CK20 ( c )       
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sarcomas and were discussed in the sarcoma sec-
tion. The endometrium may develop various can-
cers, but the most frequent one is endometrial 
adenocarcinoma. Endometrial adenocarcinoma 
has some variants in which endometrioid adeno-
carcinoma is the most frequent one. Endometrioid 
adenocarcinoma usually expresses CK7, CA125, 
ER, PR, and vimentin but is negative for CEA, 
CK20, and p16. Some endometrial carcinomas 
express Her2/neu marker, which along with ER 
and PR markers can be used in targeted therapies 
[ 176 – 181 ,  184 – 187 ].  

26.7.4     Ovary 

 Except the intestinal type of mucinous adeno-
carcinoma, all primary ovarian carcinomas are 

CK7 positive and CK20 negative (Fig.  26.28 ). 
This can be used in differentiating primary 
ovarian carcinoma from metastatic tumors 
[ 139 – 141 ,  180 ,  188 – 191 ]. The immunopheno-
type of primary ovarian tumors is described in 
Table  26.23 .

26.7.5         Breast 

 Breast cancer is one of the most common 
malignancies with various histopathological 
types; however, adenocarcinomas and its two 
subtypes including invasive ductal (IDC) and 
lobular carcinomas (ILC) comprise the major-
ity. Most breast cancers including IDC and 
ILC are positive for mammaglobin, GCDFP15, 
ER, and PR, and some are positive for Her2/

a b

c d

  Fig. 26.26    Papillary renal cell carcinoma with oncocytic feature ( a ). Tumor cells are positive for CK7 ( b ), CD10 ( c ), 
and vimentin ( d )       
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   Table 26.20    Immunoprofi le of kidney carcinoma with clear cell appearance: clear RCC (CRCC), papillary RCC 
(PRCC), and urothelial carcinoma (UC)   

 Tumor  CK7  CK20  Vimentin  RCC  CD10  PAX2/8  AMARC  Uroplakin  p63 

 CRCC  −  −  +  +  +  +  −  −  − 
 PRCC  +  −  +  +  +  +  +  −  − 
 UC  +  +  −  −  −  −  −  +  + 

  Refs. [ 150 – 160 ]  

   Table 26.21    Immunoprofi le of kidney carcinoma with oncocytic cell appearance: oncocytic papillary RCC (OPRCC), 
chromophobe carcinoma (CC), and oncocytoma (OC)   

 Tumor  CK7  CK20 
 CAM5.2, EMA, 
AE1/AE3  Vimentin  RCC  CAIX  CD10  CD117  Ep-Cam  Ksp- cadherin  

 OPRCC  +  −  +  +  +  +  +  −  +  − 
 CC  +  −  +  −  −  −  −  −  +  + 
 OC  −  −  −  −  −  −  −  +  −  + 

  Refs. [ 163 – 167 ]  

a b

c d

  Fig. 26.27    Transitional cell carcinoma, invasive, non-papillary type ( a ). Tumor cells exhibit immunoreaction with 
CK7 ( b ), CK20 ( c ), and p63 ( d )       
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   Table 26.22    Antibody immunoprofi le in normal urothelium, urothelial hyperplasia, dysplasia, and carcinoma   

 Marker  Normal urothelium  Urothelial hyperplasia  Urothelial dysplasia  Urothelial carcinoma 

 CK7  +  +  ND  + 
 CK20  + U  +  +  + 
 34βE12  +B  ND  ND  + 
 CD44  +B  ND  −/+  ND 
 EGFR  −/+  +  +/−  +/− 
 p63  ND  ND  ND  + a  
 UPIII  + U  ND  ND  + a  
 TM  + U  ND  ND  + a  
 p53  −  −  +  + a  

  Refs. [ 168 – 175 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %).  B  basal layer,  TM  thrombomodulin,  U  umbrella cell,  UPIII  
uroplakin III 
  a Noninvasive carcinoma > invasive carcinoma  

a b

c

  Fig. 26.28    Ovarian serous carcinoma poorly differentiated ( a ) shows immunoreaction with CK7 ( b ). CA125 is high-
lighted in the luminal surface ( c )       
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neu markers. Additionally, epithelial tumor 
markers, CK (especially CK7) and EMA, are 
also positive in these tumors [ 192 – 197 ]. The 
lack of reaction with myoepithelial mark-
ers is in favor of an invasive carcinoma. Both 
normal (Fig.  26.29 ) and proliferative glands 
(Fig.  26.30 ) and ductal carcinoma in situ 
(Fig.  26.31 ) exhibit reactivity with myoepithe-
lial markers. Application of p63 and calponin 
or p63 and SMA is a good way to evaluate the 
presence of myoepithelial cells [ 192 ,  198 ]. 
Immunoprofi le of normal breast glands and 
breast cancers are summarized in Tables  26.24  
and  26.25  (Figs.  26.32  and  26.33 ).

26.7.6              Prostate 

 Prostate gland is composed of two layers, 
 epithelium and basal cell layer. Normal pros-
tate epithelium exhibits immunoreactivity with 
prostate-specifi c antigen (PSA), prostate-specifi c 
membrane antigen (PSMA), prostate-specifi c 
acid phosphatase (PSAP), prostein (P501S), and 
α-methylacyl-coenzyme-A racemase (AMACR) 
enzyme, whereas prostate basal cells display immu-
nostaining with HMWCK (34βE12), p63, and 
S100A6 (Fig.  26.34 ) [ 149 – 154 ]. Immunolabeling 
for basal cell markers is usually used in a mode 
of “negative”  diagnostic marker in order to show 

   Table 26.23    Immunophenotype of ovarian cancers   

 Epithelial tumors  Germ cell tumors 
 Stromal tumors (almost 
always negative for EMA) 

 Serous 
(Fig.  26.28 )  Mucinous  Dysgerminoma  Yolk sac 

 Embryonal 
carcinoma 

 Choriocar-
cinoma 

 Granulosa 
cell tumor 

 Sertoli-Leydig 
cell tumor 

 EMA  EMA  PLAP  PLAP  PLAP  HCG  Inhibin  CK 
 CK7  CK7  CD117 (c-kit)  AFP  Oct-4  Inhibin  CD99  CD99 
 CA125  CK20  Oct-4  CK AE1/AE3  CK AE1/AE3  CK  WT1  WT1 
 DPC4  mCEA  D2-40  Glypican-3  CD30  Calretinin 
 ER  CDX2 

MUC5A 
 CD56 

 PR 
 WT1 

a b

  Fig. 26.29    Cytokeratin ( a ) stains epithelial cells and p63 ( b ) stains myoepithelial cells of normal breast glands       
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the absence of basal cells in prostate carcinoma 
(Fig.  26.35 ). Basal cell cocktail is a mixture of basal 
cell markers (HMWCH and p63 or CK5/6 and 
p63) used to highlight the presence of basal cells in 
normal glands which differentiates benign lesions 
from prostate intraepithelial neoplasia (PIN) and 
prostate adenocarcinoma [ 201 ]. Metastatic carci-
noma of prostate origin exhibits reactivity to CK 7 
and CK20 as well as PSA (Fig.  26.36 ). Table  26.26  
summarized the immunoprofi le of normal prostate 
glands as compared with PIN and adenocarcinoma.

26.7.7           Testis 

 Testicular tumors are classifi ed into germ cell 
tumors and sex cord stromal tumors. Germ cell 

tumors are the most common type with classic 
seminoma subtype comprising the majority. The 
defi nite diagnosis of these tumors is dependent 
on proper application of the immunohistochemis-
tric markers and histopathologic evaluation of the 
biopsy (Figs.  26.37 ,  26.38 , and  26.39 ). Table  26.27  
summarized the immunophenotype of testicular 
tumors.

26.8            Immunohistochemistry 
of Lymphoma 

 Immunohistochemistry is an integrated part of 
diagnostic surgical pathology of Hodgkin 
 lymphoma (HL) and non-Hodgkin lymphoma 
(NHL). Various Ags, mostly CD markers, are the 

a b

c

  Fig. 26.30    Breast proliferative lesion ( a ). Presence of myoepithelial cells confi rmed by immunoreaction to HMWCK 
( b ) and p63 ( c ) which is indicative of a benign process       

 

26 Immunohistochemistry of Cancers



522

targets of IHC. Neoplastic lymphoid cells express 
the same CD Ags with some aberrancy in type 
and amount. Several oncogene products are also 
expressed in some lymphomas (i.e., follicular 
lymphoma). These Ags have diagnostic and 
probably prognostic value. Proliferative Ags like 
Ki-67 are also of great value. 

 Morphology is the main stem of lymphoma 
diagnosis; nonetheless, IHC seems mandatory 
for the diagnosis and typing of malignant lym-
phoma. As a general rule, panels should be used 
for immunophenotypic evaluation, and there is 
no single marker absolutely specifi c for one defi -
nite lymphoproliferative disorder. Some rou-
tinely used markers are shown in Tables  26.28 , 
 26.29 ,  26.30 ,  26.31 , and  26.32  and Figs.  26.40 , 
 26.41 ,  26.42 , and  26.43 .

26.9                Immunohistochemistry 
of Soft Tissue and Bone 
Tumors 

 Soft tissue sarcomas are a diverse family with 
different histologic origins and common histo-
pathologic features. Given similar histopathologic 
features, immunohistochemistry is an ancillary 
method in distinguishing soft tissue tumors in order 
to attain a fi nal diagnosis. As soft tissue tumor 
classifi cation is based on specifi c line tissue origin, 
immunohistochemistry study by using specifi c 
Abs can be valuable in distinguishing them. Soft 
tissue tumors are vimentin- positive and keratin-
negative tumors of a divergence family with het-
erogeneous tissue origins. Vimentin, a nonspecifi c 
marker, appears to react with all soft tissue tumors 

a b

c

  Fig. 26.31    Ductal carcinoma in situ ( a ) is immunostained with Her2neu ( b ) and CA15.3 ( c )       
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and is considered as a control marker preserved in 
the tissue [ 246 – 252 ]. Immunohistochemistry of 
normal  mesenchymal tissues with related tumors 
are summarized in Table  26.33 

26.9.1       Epithelial Markers 

 Recognized as an intermediate fi lament protein, 
keratin is a sensitive and specifi c marker in the 
diagnosis of carcinomas among malignant tumors. 
Epithelial membrane antigen (EMA), derived from 
the mammary epithelium, is another epithelial 
marker expressed in most epithelial cells except 
squamous cells. Keratin and EMA are expressed 
exceptionally in some soft tissue tumors including 
synovial sarcoma, epithelioid sarcoma, chordoma, 
and myoepithelioma/myoepithelial carcinoma 
(previously known as parachordoma) [ 253 ].  

   Table 26.24    Immunoprofi le of normal breast gland 
tissue   

 Normal epithelium  Immunoreactive antibodies 

 Luminal cells (LC)  CK8/18, CK19 
 Myoepithelial 
cells 

 CK5/6, CK14, CK17, p63, 
SMA, calponin, CD10 

 Both LC and MC  Pan-CK, AE1/AE3, CK7, S100 

   Table 26.25    Immunoprofi le of invasive ductal carcinoma 
( IDC ) and invasive lobular carcinoma ( ILC ) (Figs.  26.32  
and  26.33    )   

 Marker  IDC  ILC 

 Mammaglobin  −/+  +/− 
 ER  +/−  + 
 GCDFP15  −/+  −/+ 
 E-cadherin  +  − 
 p120  +  + 
 34βE12  −  + 

  Refs. [ 192 ,  197 – 200 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %)  

a b

c

  Fig. 26.32    Invasive ductal carcinoma ( a ) with ER ( b ) and PR ( c ) immunoreaction       
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a b

  Fig. 26.33    Infi ltrating carcinoma with Indian fi le pattern simulating lobular carcinoma ( a ), revealing immunoreaction 
with E-cadherin which is in favor of invasive ductal carcinoma ( b )       

a b

c

  Fig. 26.34    Normal    prostate tissue ( a ). The epithelium is immunostained with PSA ( b ), and basal cells are immunore-
acted with p63 ( c )       
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a b

  Fig. 26.35    Atypical prostate glands in the  top  of the picture which are highly suspicious of adenocarcinoma ( a ) show 
negative reaction to p63 ( b ). Some normal glands at the  bottom  of the picture exhibit reaction with p63       

a b

c d

  Fig. 26.36    An undifferentiated carcinoma from the pelvis with high mitotic rate ( a ) demonstrates cytoplasmic reaction 
with CK7 ( b ), CK20 ( c ), and PSA ( d ) which support the origin of this tumor as prostate       

 

 

26 Immunohistochemistry of Cancers



526

26.9.2     Myogenic Markers 

 There are some Abs which react with myo-
genic cells including desmin, actin, myoglobin, 
myo- D1, myogenin, caldesmon, and calponin. 
Desmin is an intermediate fi lament protein pres-
ent in the cytoplasm of smooth and skeletal 
muscles. The Ab against this protein reacts with 
myogenic tumors such as rhabdomyoma, leio-
myoma, rhabdomyosarcoma, and leiomyosar-
coma (Fig.  26.44 ) [ 254 ]. Similar to desmin, actin 
is another myogenic protein detected in smooth 
and skeletal muscles. In addition, smooth muscle 

actin may react with some other cells like myo-
fi broblasts and myoepithelial cells [ 255 – 257 ]. 
Myoglobin is exclusively seen in skeletal mus-
cle cytoplasm, whereas myo-D1 and myogenin 
are nuclear transcription factors which are spe-
cifi cally expressed in skeletal muscle nuclei 
[ 258 – 260 ]. Myogenin has technical advantages 
over those of MyoD1, as the latter may cross-
react with an unknown cytoplasmic Ag in non-
muscle cells and tumors [ 261 ,  262 ]. However, 
Abs against these Ags are useful in determin-
ing  rhabdomyosarcoma (Fig.  26.45 ). Calponin, 
a smooth muscle protein, is also expressed in 

   Table 26.26    Immunoprofi le of normal prostate (NP), high-grade prostate intraepithelial neoplasia (HGPIN), and pros-
tate adenocarcinoma (PAC)   

 Marker  NP  HGPIN  PAC  Application 

 PSA  +E  +  +  Weak reaction in HGPAC or metastatic carcinoma, to 
differentiate HGPAD from other undifferentiated carcinoma 
(colon, urothelium) 

 PSAP  +E  +  +  Similar to PSA 
 PSMA  +E  +  ++  Correlated with grade and stage, more intense in HGPAC 
 P501S  +E  +  +  To differentiate high-grade PAC from other high-grade 

adenocarcinomas (colon, urothelium) 
 P504S (AMACR)  −  ++  ++  Combine with basal cell markers to differentiate HGPIN and 

PAC from normal prostate 
 HMWCK (34βE12)  +B  Partial loss  −  Complete loss in PAC (“negative” marker) 
 p63  +B  Partial loss  −  More sensitive than HMWCK (“negative” marker) 
 CK5/6  +B  Partial loss  −  More sensitive than HMWCK (“negative” marker) 

  Refs. [ 201 – 209 ] 
 Note:  B  basal cell,  E  epithelium  

a b

  Fig. 26.37    Classic seminoma with polygonal cells and abundant watery cytoplasm ( a ) shows immunostaining with 
PLAP ( b )       
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a b

c d

  Fig. 26.38    Yolk sac tumor with tubuloglandular structures exhibits immunostaining with AFP ( a ,  b ) and glandular 
structures with numerous hyaline globules which are positive for AFP ( c ,  d )       

a b

  Fig. 26.39    Leydig    cell tumor. Eosinophilic polygonal cell growth in the adjacent of seminiferous tubules ( a ) show 
immunoreaction with inhibin A ( b )       
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   Table 26.28    Immunoprofi le of precursor lymphoid neoplasms (Fig.  26.40 )   

 Lymphoma  CD2  CD5  CD20  CD79a  PAX5  CD45  CD34  CD10  CD99  Tdt  CD43  CD56 

 B ALL/LBL  −  −  +/−  +  +  −/+  +  +  −  +  +  − 
 T ALL/LBL  +  +  −  −  −  −/+  +  +/−  +  +  +  + 

  Refs. [ 224 – 230 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %)  

   Table 26.27    Immunophenotype of testicular tumors: classic seminoma (CS), spermatocytic seminoma (SS), embryo-
nal carcinoma (EC), yolk sac tumor (YST), choriocarcinoma (CC), Sertoli cell tumor (SCT), and Leydig cell tumor 
(LCT)   

 Germ cell tumors (PLAP+, inhibin−)  Sex cord stromal tumors (PLAP−, inhibin+) 

 CS 
(Fig.  26.37 )  SS  EC 

 YST 
(Fig.  26.38 )  CC  SCT  LCT (Fig.  26.39 ) 

 C-kit+  C-kit+/−  C-kit+/−  C-kit+/−  Inhibin+  AE1/AE-/+CAM5.2+  AE1/AE-/+GAL-3+ 
 OCT3/4+  OCT3/4+  AE1/AE+  AE1/AE3+  Vimentin+  Vimentin+ 
 CD117+  AE1/AE3+  AFP+  Glypican-3+  SMA+  CD99+/− 
 D2-40+  AFP+/−  Glypican-3+  HCG+  SYN+ 

 CD117+  HepPar-1+  NSE+ 
 CD30+ 

  Refs. [ 154 ,  210 – 223 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %),–(<10 %)  

   Table 26.29    Immunoprofi le of small B-cell lymphomas: B-cell small lymphocytic lymphoma/chronic lymphocytic 
lymphoma (B SLL/CLL), mantle cell lymphoma (MCL), marginal zone lymphoma (MZL), mucosa-associated lym-
phoid tissue (MALT), follicular lymphoma (FL), lymphoplasmacytic lymphoma (LPL), and hairy cell leukemia (HCL)   

 Lymphoma  CD20  CD23  CD10  CD5  BCL6  MUM1  CD43  CyclinD1  AnnexinA1  BCL2 

 B SLL/CLL  + (weak)  +  −  +  −  +/−  +  −/+  −  + 
 MCL  +  −/+  −  +  −  −  +  +  −  + 
 MZL (nodal)  +  −  −  −  −/+  +  +/−  −  −  + 
 MZL (MALT)  +  −  −  −  −  +/−  +/−  −  −  + 
 MZL (splenic)  +  −  −  −  −  +/−  −  −  −  + 
 FL  +  −/+  +  −  +  −  − a   −  −  + 
 LPL  +  −/+  −/+  −  −  + b   −/+  −  −  + 
 HCL  +  −/+  −/+  −  −  NT  NT  +  +  + 

  Refs. [ 224 – 227 ,  231 – 239 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %) 
  a Maybe positive in grade 3 
  b More intense in plasmacytoid cells  

   Table 26.30    Immunoprofi le of some aggressive mature B-cell lymphomas: diffuse large B-cell lymphoma (DLBL), 
T-cell/histiocyte-rich B-cell lymphoma (TC/HRBCL), and anaplastic large cell lymphoma kinase (ALK)   

 Lymphoma  CD20  CD10  MUM1  Bcl-2  Bcl-6  CD30  Ki-67  EMA  CD45  CD138 

 DLBCL (NOS) (Fig.  26.41 )  +  + a      − b   +/−  + a   −/ a   <90 %  −  +  − 
 TC/HRBCL  +  −/+  −/+  +/−  +  −  <90 %  +  +  − 
 DLBCL plasmablastic  − a   −  +  −  −  +/−  >90 %  +  − a   + 
 DLBCL-ALK+ (Fig.  26.42 )  −  −  +/−  −  −  −  <90 %  +  + weak  + 
 Burkitt lymphoma  +  +  −  − a   +  −  >95 %  −  +  − 

  Refs. [ 224 – 227 ,  236 ,  239 – 242 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %) 
  a Some cells may be weakly positive 
  b Positive in non germinal centers (35–65%)  
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   Table 26.31    Immunoprofi le of some mature T-cell/NK-cell lymphomas: mycosis fungoides (MF), adult T-cell lym-
phoma/leukemia (ATLL), angioimmunoblastic T-cell lymphoma (AILT), anaplastic large cell lymphoma (ATCL), and 
T-cell lymphoma (TCL)   

 Lymphoma  CD3  CD5  CD4  CD8  CD30  ALK  TIA1  CD56 

 MF  +  +  +  −  + b   −  + b   − 
 ATLL  +  +  + a   − a   +/−  −  −  − 
 AILT  +  +  +  −  + b   −  −  − 
 ALCL  −/+  +  +  −  +  + (60–80 %)  +/− c   − 
 Subcutaneous 
panniculitis-like TCL 

 +  −  −  +  −  −  +  − 

    Cutaneous TCL  +  −  −  −/+  −  −  +  + 
 Hepatosplenic TCL  +  −/+  −  −/+  −  −  +  + 
 Nasal or nasal-type NK/TCL  +  −  −  +/−  −  −  +  + 

 (Cytoplasmic) 
 Enteropathy-type TCL  +  −  −  +  +/−  −  +  + d  

  Refs. [ 224 – 227 ,  243 – 245 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %) 
  a Most cases 
  b Some large cells 
  c More often ALK-positive cases 
  d Subset with monomorphic small cell morphology  

   Table 26.32    Immunophenotypic features of classic Hodgkin lymphoma (CHL) and nodular lymphocyte predominant 
Hodgkin lymphoma (NLPHL) (Fig.  26.43 )   

 Lymphoma  CD20  Pax-5  CD15  CD30  Facsin  EMA  ALK-1 

 CHL  +/−  +(weak)  +  +  +  −/+  − 
 NLPHL  +  +  −  −/+  −  +/−  − 

  Refs. [ 224 – 227 ] 
 Note: + (>90 %), +/− (>50 %), −/+ (<50 %), – (<10 %)  

a b

  Fig. 26.40    Lymphoma with starry sky feature declares a highly proliferative phase ( a ) in which antibodies to terminal 
deoxynucleotidyl transfer (TdT) marks it as a precursor lymphoid neoplasm       
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myofi broblasts and myoepithelial cells and lim-
its the usefulness of diagnostic pathology [ 45 ]. A 
relatively smooth muscle-specifi c marker being 
expressed in cytoplasm, caldesmon is a use-
ful Ab in distinguishing smooth muscle tumors 
from myofi broblastic tumors [ 263 ]. A novel Ag 
of smooth muscle differentiation, transgelin is a 
  calponin    -related protein found in smooth muscle 
showing higher sensitivity and specifi city than 
other markers [ 264 ].

26.9.3         Nerve and Schwann Cell 
Markers 

 First isolated from the central nervous system 
(CNS), S100 protein is known as a marker of 
nerve sheath tumors as well as melanocytic and 

chondrocytic tumors. S100 is expressed by a 
wide range of cell types including glial cells, 
neurons, Schwann cells, melanocytes, chondro-
cytes, lipocytes, myoepithelial cells, sustentacu-
lar cells, Langerhans histiocytes, interdigitating 
reticulum cells, and various epithelia [ 26 ]. CD56 
(neural cell adhesion molecule) and CD57 
(myelin-associated glycoprotein) are expressed 
by a variety of different cell types including tis-
sues of the peripheral nervous system (PNS) and 
CNS, as well as natural killer (NK) cells and neu-
roendocrine cells [ 265 – 267 ].  

26.9.4     Endothelial Markers 

 Von Willebrand factor (vWF) is exclusively 
expressed by endothelial cells and is principally 

a b

c

  Fig. 26.41    Diffuse large B-cell lymphoma (NOS) ( a ) weakly reacts with Bcl-6 and ( b ) indicates a high proliferative 
index by Ki-67 ( c )       
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used to distinguish vascular neoplasms from 
their morphologic mimickers. Due to low sensi-
tivity of vWF in detecting high-grade vascular 
neoplasms, other endothelial markers such as 
CD31, CD34, and FLI-1 have limited the rou-
tine use of vWF in the context of vascular 
tumors. Given similar sensitivity to CD34, 
CD31 is expressed by macrophages, being a 
more specifi c vascular marker than CD34. 
CD34 is expressed by bone marrow hematopoi-
etic precursor cells and  dendritic interstitial 
cells limiting its application in vascular tumors 
[ 268 – 271 ]. As a nuclear transcription factor, 
FLI-1 (Freund leukemia integration site) is an 
endothelial marker expressed in vascular 

tumors as well as ES/PNET and lymphoblastic 
lymphoma [ 57 ].  

26.9.5     Fibrohistiocytic Markers 

 There are some nonspecifi c markers such as 
alpha 1-antitrypsin, muramidase (lysozyme), 
alpha 1-antichymotrypsin, cathepsin B, CD68, 
CD163, factor XIIIa, and the HAM 56 Ag 
which are expressed in melanomas, carcinomas 
as well as some sarcomas like MFH [ 272 – 278 ]. 
Therefore, application of these markers is limited 
and should be considered after ruling out other 
sarcomas with specifi c line differentiation.  

a b

c

  Fig. 26.42    Diffuse large B-cell lymphoma (ALK). Large anaplastic cells intermixed with lymphoplasma cells ( a ) are 
strongly positive for ALK ( b ) and EMA ( c )       
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a b

c d

  Fig. 26.43    Hodgkin lymphoma. Typical Reed-Stenberg cell with mirror binuclear feature of “Owl’s eye” ( a ) weakly 
reacts with CD 15 ( b ) and CD30 ( c ) and strongly reacts with fascin ( d )       

   Table 26.33    Immunohistochemical antibodies of normal mesenchymal tissues and related tumors   

 Soft tissue  Markers of soft tissue  Related tumor  Immunoreactive markers 

 Chondrocyte  S100, SOX9, vimentin  Chondrosarcoma  S100, vimentin, CD57, SOX9: 
sensitive marker for 
cartilaginous differentiation 

 Endothelial cells  Vimentin, CD31, CD34, FLI-1  Angiosarcoma  CD31, CD34, FLI-1 
 D2-40 (lymphatic endothelium)  Lymphangiosarcoma  D2-40 

 Fibroblasts  Vimentin, CD10, CD99  Fibrosarcoma  Vimentin 
 Fibrohistiocyte  CD68, CD168, a1AT, cathepsin 

B, factor IIIA, HAM 56 
 Malignant fi brous 
histiocytoma 

 CD68 

 Lipocytes  Vimentin, S100 (variable), 
calretinin, MDM2, CDK4, CD-34 

 Liposarcoma  S100, MDM2, CDK4 

 Osteoblast  CD56, osteocalcin, osteonectin, 
vimentin 

 Osteosarcoma  Osteocalcin, collagen IV, CK, 
EMA, CD99, S100, desmin, 
SMA, factor 13 

 Nerve/Schwann cell  Vimentin, S100, CD56, CD57  MPNST  S100 
 Skeletal muscle  Desmin, myoglobin, CD56, GFAP  Rhabdomyosarcoma  Myogenin, myo-D1, PLAP, 

WT1 
 Smooth muscle  Desmin, NSE, SMA, MSA  Leiomyosarcoma  Desmin, SMA, MSA, 

h-caldesmon, collagen IV 
 Synovial cell  CD68, clusterin  Synovial sarcoma  CK, EMA, vimentin, CD68, 

CD99, E-cadherin, collagen IV 
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26.9.6     Lipocytic Markers 

 MDM2 (an inhibitor of p53 transcriptional acti-
vation) and CDK4 (a protein involved with cell 
cycle progression) are markers to separate dedif-
ferentiated liposarcomas from other poorly dif-
ferentiated sarcomas [ 279 ].  

26.9.7     Chondrocyte Markers 

 Chondrocytes do not display specifi c mark-
ers and show reactivity with S100 and vimen-
tin. Chondrosarcoma also exhibits reactivity 
with CD57 [ 280 ]. Being as a master regulator 
of chondrogenesis, SOX9 is a sensitive marker 
for cartilaginous differentiation distinguishing 

 mesenchymal chondrosarcoma from other small 
blue round cell tumors [ 281 ].  

26.9.8     Osteogenic Markers 

 Osteocalcin (a non-collagenous proteins) with 
approximately 70 % sensitivity is a completely 
specifi c marker for bone-forming tumors. In 
addition, osteonectin (a bone matrix glycoprotein 
participates in stromal mineralization) also has a 
sensitivity of 90 % and a specifi city of 54 % in 
the diagnosis of osteoblastic neoplasms [ 282 , 
 283 ]. These markers are rarely being used in rou-
tine diagnosis because the diagnosis of osteosar-
coma is based on the presence of osteoid in the 
H&E-stained slides.  

a b

c

  Fig. 26.44    Leiomyosarcoma. Spindle cells arranged in interlacing cross-striated fascicles ( a ) are immunostained with 
desmin ( b ) and h-caldesmon ( c )       
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26.9.9     Unknown-Origin Soft Tissue 
Tumors 

 Ewing sarcoma/peripheral nerve sheath tumor 
(ES/PNET) comprises a prototype of small round 
cell neoplasms of bone and soft tissue exhibiting 
neuroectodermal features. As a product of the 
 MIC2  gene, CD99 is a cell surface transmem-
brane glycoprotein diffusely present in nearly all 
tumors (Fig.  26.46 ) [ 284 ]. Clear cell sarcoma 
(malignant soft part melanoma) shares markers 
of malignant melanoma such as S100, MART-1, 
HMB45, and tyrosinase [ 285 ]. Alveolar soft part 
sarcoma has been evaluated by presence of myo- 
D1 and myogenin [ 286 ,  287 ]. Desmoplastic 
small round cell tumor (DSRCT) is characterized 

by the coexpression of epithelial and mesenchymal 
markers [ 288 ]. The immunohistochemistry char-
acteristics of these tumors are summarized in 
Table  26.34 .

26.10          Immunohistochemistry 
of the Nervous System 

 The brain tumors are classifi ed into two major 
groups: primary and metastatic. Primary brain 
tumors are further categorized into three major 
subtypes: neuroepithelial tumors (astrocytoma, 
oligodendroglioma, ependymoma, choroid plexus 
tumors, neuronal tumors, and pineal tumors), 
non-neuroepithelial tumors (meningioma, nerve 

a b

c

  Fig. 26.45    Alveolar rhabdomyosarcoma. Large polygonal cells with alveolar pattern ( a ) are highlighted with myo-
genin ( b ) and desmin ( c )       
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sheath tumors, lymphoma, chordoma, and 
germ cell tumors), and primitive undifferenti-
ated tumors (medulloblastoma, pineoblastoma, 

 ependymoblastoma, and PNET) [ 289 – 295 ]. 
Primary origin of metastatic carcinoma is deter-
mined by the use of immunohistochemical panel. 
Commonly used IHC Abs in primary CNS tumors 
are demonstrated in Table  26.35 .

26.10.1       Neuroepithelial Tumors 

 Glial tumors (astrocytoma, oligodendroglioma, 
and ependymoma) usually react with glial fi bril-
lary acidic protein (GFAP) [ 151 ,  152 ,  296 ]. 
Oligodendroglioma variably expresses GFAP 
and commonly reacts with Leu7 and S100 [ 297 , 
 298 ]. Moreover, GFAP is present in other mixed 
glial and neuronal-glial tumors including oligoas-
trocytoma and ganglioglioma (Fig.  26.47 ) [ 296 ]. 
Neurocytoma and pineal tumors are GFAP  negative 

a b

c

  Fig. 26.46    Small round cell tumor ( a ). Immunoreaction with MIC2 ( b ) and NSE ( c ) antibodies supports the diagnosis 
of PNET       

   Table 26.34    Immunoprofi le of unknown-origin soft tis-
sue tumors: Ewing sarcoma/peripheral neuroectodermal 
tumor (ES/PNET), clear cell sarcoma (CCS), alveolar soft 
part sarcoma (ASPS), and desmoplastic small round cell 
tumor (DSRCT)   

 Panel antibodies  ES/PNET  CCS  ASPS  DSRCT 

 CD99/FLI-1  +  −  −  − 
 S100/HMB45/
MITF/Melan-A 

 −  +  −  − 

 TFE3  −  −  +  − 
 NSE  +  −  −  + 
 Desmin  −  −  −  + 
 CK/EMA  −  −  −  + 
 WT1  −  −  −  + 

  Refs. [ 284 – 288 ]  
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and synaptophysin positive. Among neuroepithelial 
tumors, choroid plexus tumors demonstrate reac-
tivity with epithelial markers such as cytokeratin, 
CAM5.2, and EMA. Additionally, transthyretin, as 
a potential marker, and IGF-II, as a newer marker, 
are positive in choroid plexus tumors [ 299 – 301 ]. 
Pineal tumors are  GFAP−  and epithelial-negative 
tumors which exhibit reactivity with synaptophy-
sin and neurofi lament (Table  26.36 ).

26.10.2         Non-neuroepithelial Tumors 

 Among non-neuroepithelial tumors, meningiomas 
are positive for EMA which differentiates them 
from nerve sheath tumors and are negative for GFAP 
which distinguishes meningioma from gliomas. 
Schwannoma is distinct from glioma, meningioma, 
and neurofi broma by showing reaction to collagen 
type IV. Neurofi broma differs from schwannoma 

   Table 26.35    Commonly used antibodies in primary CNS tumors   

 Antibody  Normal brain  Tumor 

 EMA  Epithelial, perineural, 
meningothelial cells 

 Meningioma, chordoma, medulloblastoma 

 GFAP  Glial cells  Glial tumors except oligodendroglioma, 
medulloepithelioma, choroid plexus tumor, ganglioglioma 

 Leu7 (CD57)  Oligodendroglial cells, 
Schwann cells, 

 Oligodendroglioma, schwannoma, neurofi broma, 
oligoastrocytoma 

 Neurofi lament  Neuropil  Ganglion cell tumors, neurocytoma, pineocytoma, 
neurofi broma, medulloblastoma, PNET 

 NSE  Neuroectodermal and 
neuroendocrine cells 

 Neuroblastoma, hemangioblastoma, PNET, 
oligodendroglioma 

 S100  Glial cells, Schwann cells, dendritic 
and Langerhans cells, melanocytes, 
other mesenchymal cells 

 Gliomas, meningioma, schwannoma, neurofi broma, 
chordoma, craniopharyngioma, PNET, 
medulloblastoma, pineoblastoma, neuroblastoma, 
melanoma, chondroid tumors 

 Synaptophysin  Neuroendocrine cells, neuropil  Neurocytoma, ganglion cell tumors, pineocytoma, choroid 
plexus papilloma, medulloblastoma, pineoblastoma, 
neuroblastoma, PNET, oligodendroglioma, 
dysembryoblastic neuroepithelial tumor 

 Vimentin  Meningoendothelial cells, other 
mesenchymal cells 

 Meningioma, gliomas, chordoma, ependymoblastoma, 
hemangiopericytoma, ganglioglioma, embryonal tumors 

 Collagen IV  Ganglion cell, Schwann cell, other 
mesenchymal cells 

 Ganglion cell tumor, schwannoma, medulloblastoma/
pineoblastoma 

  Refs. [ 151 ,  152 ,  296 ]  

a b

  Fig. 26.47    Fibrillary astrocytoma with proliferation of atypical astrocytes ( a ) exhibits GFAP-positive cytoplasmic 
processes ( b )       
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by having neurofi lament- positive axons. Primary 
and secondary brain lymphomas express LCA as a 
common marker and CD3 and CD20 as differentiat-
ing markers of T-cell- and B-cell-type lymphomas, 
respectively. Arising from notochord remnants, 
chordomas are malignant tumors along the axial 
skeleton recognized by characteristic physalipho-
rous cells with large intracytoplasmic vacuoles. 

Chordoma exhibits reactivity for CK and EMA 
as well as S100, whereas chondrosarcomas lack 
these features (CK/EMA negative and S100 posi-
tive). Primary germ cell tumors are found along the 
midline in the pineal and suprasellar regions which 
demonstrate immunostaining with placental alka-
line phosphatase (PLAP), alpha- fetoprotein (AFP), 
beta-HCG, and CEA (Fig.  26.48 ) (Table  26.37 ).

   Table 26.36    Immunopanel of neuroepithelial tumors   

 First-choice antibody panel  Second- choice antibody panel  Consistent with 

 GFAP + , EMA − , CAM5.2 −   Vim + , NF + , S100 +   Astrocytoma (Fig.  26.47 ) 
 Leu7 + , NSE + , S100 +   Oligodendroglioma 

 GFAP + , EMA (R), CAM5.2 (R)  Vim + , S100 +   Ependymoma 
 GFAP (S), EMA + , CAM5.2 +   Laminin + , SPN + , S100 + , IGF-II +   Choroid plexus papilloma 
 GFAP − , EMA − , CAM5.2 −   SPN + , NF +   Central neurocytoma 

 SPN (S), NF (S), Collagen IV +   Ganglion cell tumor 
 NSE + , SPN + , NF (R)  Pineal tumor 

  Refs. [ 151 ,  152 ,  296 – 298 ,  302 – 310 ] 
 Note:  N  negative,  R  rare,  S  sometimes  

a b

c

  Fig. 26.48    Germinoma. ( a ) A tumor with relatively 
medium to large polygonal cells resembling an undiffer-
entiated tumor surrounded by reactive astrocytes ( upper 

right corner ). Tumor cells react with PLAP ( b ) and reac-
tive astrocytes stain by GFAP ( c ) (Courtesy of Dr. Taghi 
Ghiasi-Moghadam, Mashad, Iran)       
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26.10.3         Undifferentiated Tumors 

 Medulloblastoma, pineoblastoma, ependymo-
blastoma, and PNET are primitive undifferenti-
ated tumors commonly located in the posterior 
fossa, pineal gland, periventricular area, and 
anterior fossa, respectively. Medulloblastoma, 
pineoblastoma, and ependymoblastoma differen-
tiate from PNET by negative reaction for CD99. 
Ependymoblastoma can be distinguished from 
meduloblastoma/pineoblastoma/PNET by the 
absence of reactivity to synaptophysin and neuro-
fi lament (Table  26.38 ).

26.10.4        Proliferative Markers 

 MIB1 (Ki-67) is an Ab that detects proliferat-
ing cells in various phases of the cell cycle and 
is important in the grading of CNS tumors. It 
is used to predict patient outcome and distin-

guishes long and short time survivals in patients 
with glial tumors (Table  26.39  and Fig.  26.49 ). 
 p53  and  EGFR  overexpression can be defi ned 
 immunohistochemically. Overexpression of p53 
is associated with tumor progression in glioblas-
toma multiforme (GBM). EGFR overexpression 
correlates with poor prognosis in gliomas and is 
not present in low-grade gliomas. As a new thera-
peutic target, EGFR tyrosine kinase inhibitors are 
used for the treatment of GBM.

26.11          Immunohistochemistry 
of Pediatric Tumors 

 Solid pediatric tumors comprise a heterogenic 
group of variable entities with morphologies 
including small round cells, spindle cells, and 
polygonal cells. Small round cell tumors include 
neuroblastoma, rhabdomyosarcoma, Ewing sar-
coma/PNET, desmoplastic small round cell tumor, 

   Table 26.37    Immunopanel of non-neuroepithelial tumors   

 First-choice antibody panel  Second- choice antibody panel  Consistent with 

 Vimentin + , S100+  EMA +   Chordoma 
 Vimentin + , S100 (R)  EMA (S)  Meningioma 
 Vimentin − , S100 +   Leu7 + , collagen IV + , GFAP (R)  Schwannoma 

 Leu7 + , NF + , EMA +   Neurofi broma 
 Vimentin − , S100 −   LCA + , L26 +   Lymphoma 

 PLAP + , HCG + , AFP +   Germ cell tumor (Fig.  26.48 ) 

  Refs. [ 151 ,  152 ,  296 – 298 ,  311 – 316 ] 
 Note:  N  negative,  R  rare,  S  sometimes  

   Table 26.38    Immunopanel of primitive undifferentiated tumors   

 First-choice antibody 
panel 

 Second-choice 
antibody panel  Anatomic site  Consistent with 

 SYNP + , S100 +   NF (R), GFAP (R),  Posterior fossa  Medulloblastoma 
 Collagen IV + , Vim (S), CD99 −   Pineal gland  Pineoblastoma 
 NF (R), GFAP (R),  Anterior fossa  PNET 
 Collagen IV − , Vim − , CD99 (S) 

 SYNP − , S100 +   NF − , GFAP (R),  Cerebrum, cerebellum  Ependymoblastoma 
 Collagen IV − , Vim (S), CD99 −  

  Refs. [ 151 ,  152 ,  296 – 298 ,  309 ,  317 – 322 ] 
 Note:  N  negative,  R  rare,  S  sometimes  
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   Table 26.39    Proliferative factor of MIB1 in some CNS tumors and correlation with survival (Fig.  26.49 )   

 Tumor  MIB1 %  Survival 

 Astrocytoma  <2  80 % 
 >2  20 % 

 Anaplastic astrocytomas  5–10  – 
 Glioblastoma multiforme  >10  – 
 Oligodendroglioma  <5  Longer survival 

 >5  Shorter survival 
 Ependymal tumor  >5  Shorter survival 
 Choroid plexus papilloma  3.7  <6 % nonaggressive 
 Choroid plexus carcinoma  14  >6 % aggressive 
 Meningioma   Ozen study    Abramovich study    Lanzafame study  
  Benign (grade 1)  1.2  1  <1 % no recurrence 
  Anaplastic (grade 2)  2.3  5.5  >1 % recurrence 
  Malignant (grade 3)  6.7  12 
 Medulloblastoma  50 %  – 

  Refs. [ 151 ,  323 – 330 ]  

a b

c

  Fig. 26.49    Proliferating marker of Ki-67 is “nonreactive” in normal brain ( a ), 30 % reactive in astrocytoma ( b ), and 
80 % reactive in germinoma ( c )       

 

26 Immunohistochemistry of Cancers



540

Wilms tumor (Fig.  26.50 ), small cell osteosarcoma, 
lymphoma, and melanoma. Rhabdomyosarcoma, 
Wilms tumor, and melanoma also display spindle 
cell components or present as pure spindle cell 
tumor. Polygonal cell tumors of childhood com-
prise of rhabdomyosarcoma, malignant rhabdoid 
tumor, osteosarcoma, and melanoma [ 331 ,  332 ].

   Frequently confused with primitive neuroec-
todermal tumors (PNETs), neuroblastoma is the 
most common malignant tumor of the posterior 
mediastinum in pediatric patients with morphol-
ogy of small round cell tumor. Neuroblastoma 
has a predilection for adrenal glands and sym-
pathetic ganglia, whereas PNETs are choliner-
gic tumors [ 333 ,  334 ]. Expression of CD44s and 
c-kit receptor correlates with favorable prog-
nosis in a subset of neuroblastoma [ 335 ,  336 ]. 
Rhabdomyosarcoma is the most common pediat-

ric soft tissue sarcoma subclassifi ed into embryo-
nal, botryoid, alveolar, and spindle cell subtypes. 
Embryonal rhabdomyosarcoma (including botry-
oid), the most common type in childhood, usu-
ally displays small cell morphology, whereas 
the alveolar variant usually exhibits features of 
polygonal cells [ 337 – 340 ]. 

 Initially regarded as an undifferentiated sar-
coma of the bone and soft tissue, Ewing 
 sarcoma/primitive neuroectodermal tumor (ES/
PNET) is now being classifi ed as a small round 
cell tumor with varying degrees of neuroecto-
dermal differentiation with pseudorosette for-
mation [ 341 ]. Desmoplastic small round cell 
tumor is an aggressive, malignant tumor usually 
involving the abdominal or pelvic cavity of chil-
dren or young adults with the morphology of 
small round cells arranged in nests and sepa-

a b

c d

  Fig. 26.50    Wilms tumor. Epithelial component with tubuloglandular structures ( a ) showing immunoreaction with 
CKAE1/AE3 ( b ), EMA ( c ), and WT1 ( d )       
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rated by a dense collagenized and desmoplastic 
stroma [ 288 ]. 

 Wilms tumor (WT) or nephroblastoma is the 
most common pediatric neoplasm of the kidney 
derived from nephrogenic rests displaying diver-
gent differentiation. The classic histopathologic 
pattern of WT consists of triphasic elements of 
blastemal, epithelial, and stromal components. 
Blastemal component is composed of small 
round cells exhibiting reactivity with vimentin 
and desmin. Epithelial component shows stain-
ing with cytokeratin, whereas stromal compo-
nent demonstrates variable reactivity based on 
its differentiation pattern [ 342 ,  343 ]. Lacking a 
characteristic immunohistochemical profi le, the 
diagnostic feature of osteosarcoma is the pres-
ence of osteoid which can be distinguished from 
other undifferentiated small round cell tumors 
[ 344 ,  345 ]. Originally described in the kidney 
and CNS, malignant rhabdoid tumor is a highly 
aggressive neoplasm of the childhood with a 
tendency of widespread metastases. Malignant 
rhabdoid tumor is a densely cellular tumor com-
prised of cords and sheets of polygonal cells 

with abundant eosinophilic cytoplasm and large 
eccentric nuclei containing prominent eosino-
philic nucleoli [ 346 ,  347 ]. Table  26.40  displays 
an immunopanel to the diagnosis of common 
pediatric tumors.

26.12        Immunosurveillance, 
Immune Editing, Immune 
Constant of Rejection, 
Immune Contexture, and 
Immune Scoring of Cancers 

 Cancer is a complex disease involving cellular 
and molecular interactions between the tumor 
and the immune system [ 363 ]. The concept of 
 immunosurveillance , fi rst described by Lewis 
Thomas and Macfarlane Burnet, refers to the 
detection and destruction of tumor cells by the 
immune system [ 363 – 365 ]. This theory has been 
supported by the analysis of experimental and 
clinical tumor microenvironment data. The stron-
gest argument for the existence of immuno-
surveillance is that immunodefi cient hosts are 

   Table 26.40    Immunopanel of pediatric tumors   

 First-choice 
antibody panel 

 Second-choice antibody 
panel 

 Additional antibody/histopathologic 
feature  Consistent with 

 AE1/AE3 + , 
CAM5.2 + , VIM +  

 DES + , WT1 + , EMA +   SYN + , CHG + , NSE + /  Wilms tumor 
 Small round cell 
 SYN + , CHG + , NSE + /  Malignant rhabdoid 

tumor  Polygonal cell 
 SYN − , CHG − , NSE + /  Desmoplastic small 

round cell tumor  Small round cell 
 AE1/AE3 − , 
CAM5.2 − , VIM +  

 DES + , MYOG + , MyoD1 +   MSA + , CD99±, CK±/  Rhabdomyosarcoma 

 Small round/spindle/polygonal cell 
 DES − , MYOG − , MyoD1 −   CD45 + /  Lymphoma 

 Small round cell 
 CD99 + , S100 + /  Osteosarcoma 
 Small round/polygonal cell + osteoid 
 CD99 + /  ES/PNET 
 Small round cell 
 S100 + , SYN + , CHG + , NSE + /  Neuroblastoma 
 Small round cell 
 S100 + , HMB45 + , MART1 + /  Melanoma 
 Small round/polygonal cell 

  Refs. [ 55 ,  348 – 362 ]  
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associated with increased frequency of cancers. 
In addition, regression of primary and metastatic 
tumors has been attributed to immunologic 
mechanisms, but many other factors may have 
been responsible (e.g., hormonal, nutritional, or 
vascular). Tumor microenvironment is a complex 
milieu comprised of extracellular matrix and host 
cells, including mesenchymal, endothelial, and 
immune cells. During carcinogenesis process, the 
neoplastic cells constantly interact with the host 
cells, extracellular matrix, and bioactive mole-
cules, which constitute the tumor microenviron-
ment [ 366 – 368 ]. 

 The concept of  cancer immunoediting , pro-
posed by a series of mouse model publications 
that immune defi ciencies are associated with 
tumor aggressiveness, describes how the immune 
system encounters with tumor cells during 
tumorigenesis [ 369 – 372 ]. Immune cells engage 
to combat with cancer cells in three sequential 
phases: cancer elimination, cancer equilibrium, 
and cancer escape. In the elimination phase, the 
immune system clears most tumor cells; a popu-
lation of immune-resistant tumor cells appears in 
the equilibrium phase; and fi nally, in the escape 
phase, the tumor develops strategies to evade 
immune destruction. The last phase is a conse-
quence of immune exhaustion and inhibition or 
results from the emergence of tumor cell variants 
(Fig.  26.51 ).

   It is now well known that innate and adaptive 
immune systems can promote tumor develop-
ment and progression through immunosurveil-
lance. However, there are many interactions 
between the innate immune cells [macrophages, 

neutrophils, mast cells, NK cells, and immature 
dendritic cells (DC)] and the adaptive immune 
cells [mature DC, B lymphocytes, T lymphocyte, 
and regulatory T cells (Tregs)]. Initially mediated 
by innate immunity, interaction between tumor 
cells and immune system develops and the tumor 
is eliminated through adaptive immune system 
activation [ 373 ,  374 ]. The immune-mediated tis-
sue destruction process described by the concept 
of  immunologic constant of rejection  (ICR) 
includes the coordination of  interferon- stimulated 
genes (ISGs)  pathway and immune effector func-
tions (IEFs) pathway. This constant demonstrates 
the activation of ISGs, recruitment of cytotoxic 
immune cells (primarily through CXCR3/CCR5 
ligand pathways), and activation of the IEFs 
pathway (IEF genes; granzymes A/B, perforin) 
[ 375 ,  376 ]. 

 The  immune contexture  is characterized as the 
density, type, location, and functional orientation 
of adaptive immune cells within the tumor which 
is essential to accurately defi ne the impact of can-
cer prognosis [ 377 – 379 ]. Parameters of the 
immune contexture comprise of CD3 +  density, 
cytotoxic CD8 +  and memory CD45RO +  T cells, 
their location at the tumor center (CT) and inva-
sive margin (IM), combined with the quality of 
tertiary lymphoid structures (TLS) (Fig.  26.52 ). 
Evaluation of immune contexture in the clinical 
setting will provide prognostic and predictive 
benefi ts [ 377 ,  378 ].

   In human, the presence of tumor infi ltrating 
lymphocytes (TILs) has been reported as a favor-
able prognostic factor in many primary tumors. 
The high density of TILs associated with good 
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  Fig. 26.51    Cancer-immune spectrum. The immunoediting theory describes how a tumor can evade from immune 
destruction and how the immune system restrains the tumor       
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prognosis has been well documented, not only to 
various organs of cancer origin (such as breast, 
colon, lung, head and neck, kidney, bladder, ovary, 
prostate) but also to various cancer cell types (ade-
nocarcinoma, squamous cell carcinoma, large cell 
cancer, melanoma, etc.) [reviewed in  379 – 381 ] 
(Fig.  26.53 ). The quantifi cation of TILs allowed 
defi ning a novel scoring system based on the den-
sities of two lymphocyte populations (CD3 +  and 
CD8 + ), both in CT and in IM of tumors. Based on 
the immune contexture, a standardized, simple, 
powerful immune scoring system ( Immunoscore ) 
was determinate. Immune classifi cation of can-
cers provides a scoring system ranging from 
Immunoscore 0 to 4 and low to high densities of 
both lymphocyte populations in CT and IM of 
tumors (Table  26.41 ). The Immunoscore system 
has shown to have a prognostic signifi cance supe-
rior to AJCC/UICC- TNM staging systems. Thus, 
incorporating the Immunoscore into traditional 
staging systems has an essential prognostic and 
predictive value [ 382 ,  383 ].

    In 2012, an international task force was ini-
tiated to promote the Immunoscore in routine 
clinical settings as a new component of cancer 
classifi cation, designated TNM-I (TNM- Immune) 

[ 384 ]. The purpose of the Immunoscore interna-
tional task force was: (1) to validate the feasibil-
ity and reproducibility of the Immunoscore and 
(2) to validate the major prognostic and predic-
tive power of the Immunoscore in colon cancer 
patients. In order to become globally applica-
ble in routine clinical setting, evaluation of the 
Immunoscore must be pathology based, feasible 
in routine settings, simple, inexpensive, rapid, 
robust, reproducible, quantitative, standardized, 
and powerful [ 29 ,  384 ]. 

 Multiple laboratory variables infl uence the 
validity and reliability of immunoscoring in the 
clinical setting which need to coordinate with 
distinct criteria. They are included in the com-
plexity of quantitative IHC assay, variable proto-
cols across laboratories, and immune cell 
analysis accompanied by uneven region selec-
tion criteria and variable ways to quantify TILs. 
An effort for harmonization and reproducibility 
of IHC method recommends laboratories to test 
the prognostic value of Immunoscore using 
the initial guidelines [ 383 ,  384 ]. It is also 
acknowledged that additional markers may be 
used to further refi ne the prognostic value of the 
Immunoscore.  

Immune contexture

Immunoscore

- Type
- Density
- Location

- Th1
- Cytotoxicity
- Chemokine
- Adhesion

Immunologic
constant
of rejection

Functional orientation

  Fig. 26.52    The “immune contexture” at the background 
is defi ned by combination of immune variables associat-
ing the nature, density, functional orientation, and distri-

bution of immune cells within the tumor. The 
“Immunoscore” and the “immunologic constant of rejec-
tion” are overlapped by functional orientation       
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  Fig. 26.53    ( a ) Colon adenocarcinoma and ( b ) skin SCC with surrounding TILs, immunostained with CD45RO, CD3, and CD8         
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26.13    Concluding Remarks 

 Besides conventional histopathologic evaluation 
of various tissues, IHC has provided a signifi cant 
aid in diagnosis, and its role is growing not only 
in arriving diagnosis but also for targeted thera-
pies and predicting prognosis. Recently, various 
markers have been introduced which have thera-
peutic or prognostic value. Notably, it should be 
emphasized that IHC has some limitations and 
should be used in an appropriate setting by an 
experienced pathologist to avoid misdiagnosis. 
Additionally, a panel of related antibodies instead 
of single marker are needed to yield a correct and 
precise diagnosis.     
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