
Leveraging Enterprise Application
Characteristics to Optimize Incremental
Aggregate Maintenance in a Columnar

In-Memory Database

Stephan Müller(B), Paul Möller, and Hasso Plattner

Hasso Plattner Institute,
University of Potsdam, Potsdam, Germany

{stephan.mueller,paul.mueller,hasso.plattner}@hpi.uni-potsdam.de

Abstract. An analysis of database workloads generated by enterprise
applications revealed a mixed workload of short-running transactional
and long-running analytical queries. With the latter type of queries con-
taining many aggregate operations, we implemented an efficient aggregate
caching mechanism. But the incremental materialized view maintenance
is very costly for aggregate queries joining multiple tables. To overcome
this problem, we analyzed the characteristics of enterprise applications
with respect to the creation of business objects and their persistence in
the database layer. We evaluated how the detected patterns can be lever-
aged to reduce the join operations between the main and delta partitions
of the involved tables in a columnar in-memory database. The resulting
performance improvements are significant and close to using the caching
mechanism with a denormalized schema.

1 Introduction

Until recently, enterprise applications have been separated into online transac-
tional processing (OLTP) and online analytical processing (OLAP). The draw-
backs of this separation are complex and costly ETL processes, not up-to-date
and redundant data. Further, the analytical applications are often limited in
their flexibility due to pre-calculated data cubes with materialized aggregates.

With the rise of columnar in-memory databases (IMDB) such as SAP HANA
[1], Hyrise [2] and Hyper [3], this artificial separation is not necessary anymore as
they are capable of handling mixed workloads, with transactional and analytical
queries on a single system [4]. In fact, a modern enterprise application executes a
mixed workload with both – transactional and analytical – queries [5]. While the
transactional queries are mostly inserts or single selects, the analytical queries
are often comprised of costly data aggregations [6]. Having the possibility to run
flexible, adhoc analytical queries directly on transactional data with sub-second
response times will further lead to an increased workload of aggregate queries.

To speed up the execution of analytical queries with aggregates, materialized
views have been proposed [7]. Accessing tuples of a materialized aggregate is

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 102–116, 2014.
DOI: 10.1007/978-3-662-43984-5 8, c© Springer-Verlag Berlin Heidelberg 2014

Leveraging Enterprise Application Characteristics 103

always faster than an aggregation on the fly. The overhead of materialized view
maintenance to ensure consistency for changing base data has to be considered,
though [8]. Apart from temporary transactional inconsistencies, a downtime is
not acceptable in during materialized view maintenance in mixed workload envi-
ronments.

While existing materialized view maintenance strategies are applicable in
columnar IMDBs [9], their specific architecture is well-suited for a novel strat-
egy of caching aggregate queries and applying incremental view maintenance
techniques [10]. This is because the storage of columnar IMDBs can be sepa-
rated into a read-optimized main storage and a write-optimized delta storage.
Since the main storage is highly-compressed and not optimized for inserts, all
data changes of a table are propagated to the delta storage in order to ensure
high throughput. Periodically, the delta storage is combined with the main stor-
age in a process called merge operation [11]. The materialized aggregates do
not have to be invalidated when new records are inserted to the delta storage,
because they are only based on records from the main storage. Instead, the final,
consistent aggregate query result, is retrieved by aggregating the newly inserted
records of the delta storage on the fly and combining them – using a SQL UNION
ALL statement – with the materialized aggregate.

One challenge of the proposed aggregate caching mechanism and the involved
incremental materialized view maintenance is to handle aggregate queries that
are based on joins of multiple tables. These queries require a union of joining all
permutations of delta and main partitions of the involved tables, excluding the
already cached joins between the main partitions. For a query joining two tables,
three subjoins are required, and query joining three tables already requires seven
subjoins. This may result in very little performance gains over not caching at all
the query on the main partitions. After analyzing the characteristics of enterprise
applications, we identified several schema design and data access patterns that
can be leveraged to optimize the overall database performance. While these
business semantics could potentially be applied to several other aspects for data
processing in a columnar IMDB, this paper focuses on an approach to reduce
the incremental view maintenance by explicitly leveraging business semantics of
applications.

After discussing related work in Sect. 2, we describe the identified enterprise
applications characteristics in Sect. 3. Section 4 describes the aggregate cache and
strategies to reduce the number of joins for cached queries. We then outline in
Sect. 5 how the database engine can obtain information about application char-
acteristics. Our benchmarks in Sect. 6 support the significant speedup potential
and Sect. 7 concludes the paper with the main contributions and an outlook on
future work.

2 Related Work

A database can have different design goals depending on the application and
its characteristics. The CAP theorem is an example of how different design

104 S. Müller et al.

trade-offs have to be balanced [12]. In fact, there is an emergence of databases
that are custom-built for specific applications such as Cassandra1 or Amazon
DynamoDB2, each with its own design goals according to the characteristics of
the application.

The enterprise application characteristics identified and discussed in this
paper are used to reduce the incremental view maintenance inherent when intro-
ducing materialized views to speed-up analytical queries [8]. The maintenance
of materialized views has received significant attention in academia [13,14] and
industry [15,16], and the problem of incrementally maintaining aggregate queries
with joins has been widely identified [17,18]. However, neither of these approaches
use the characteristics of the application to reduce the maintenance effort.

3 Enterprise Application Characteristics

In this section we give an overview of identified enterprise application character-
istics, that can be utilized to speedup processing of join queries for the aggregate
cache. Two aspects are of essential relevance: what are common patterns of data-
base schema design and workloads.

3.1 Schema Design

In different domains, we identified tables with similar design patterns, namely
header, item, dimension, text, and configuration tables.

A header table describes common attributes of a single business transaction.
E.g., for a sale in a financials system it stores who made the purchase and when
the transaction took place. In materials management the header stores attributes
common to a single movement of goods like who initiated the movement and also
the time it took place.

To each header table entry, there are a number of corresponding tuples in
an item table. Item entries represent entities that are involved in a business
transaction. For instance, all products and the corresponding amount for a sale
or materials and their amount for a goods movement are stored in the items
table.

Additionally, attributes of the header and item tables refer to keys of a num-
ber of smaller tables. Based on their use case we categorize them into dimension,
text and configuration tables. Dimension tables manage the existence of entities,
such as accounts and materials. Especially companies based in multiple countries
have text tables to store strings for dimension table entities in different languages
and lengths (e.g., product names). Configuration tables enable system adoption
to customer specific needs and business processes.
1 Distributed key value store focusing on scalability and high availability, http://

cassandra.apache.org/.
2 Managed NoSQL database focusing on cost efficiency, http://aws.amazon.com/

dynamodb/.

http://cassandra.apache.org/
http://cassandra.apache.org/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/

Leveraging Enterprise Application Characteristics 105

Fig. 1. Simplified schema extract of a financials application.

Figure 1 shows a simplified extract of an example schema of a SAP finan-
cials application from an international company producing consumer goods. An
accounting header entry refers to a single business action, e.g. a sale or a pur-
chase. It includes the specific time, what kind of accounting document this is,
what system user entered the document and with whom the transaction took
place. The accounting item table lists all invoiced or billed items. The three text
tables store the real names in different languages for the involved products and
other item properties.

3.2 Workload Patterns

We also see patterns in how the previously described schemas are used. There is
a high insert load from enterprise systems persisting business transactions. Each
transaction is represented by one header and a number of item tuples. Therefore
the header and item tables have a high insert load and a large tuple count.

In many domains entire static business objects are persisted in the context
of a single transaction. Therefore the header and corresponding item tuples are
inserted at the same point in time. E.g. sales or goods movement transactions
are persisted as a whole in the database. In some domains such as sales order
management, items may be added or changed at a later point in time, e.g. when
a customer adds products to his order. As [4] analyzed a number of enterprise
systems, there is only a small amount of updates and deletes compared to inserts
and selects on the header and item tables. Looking at aggregation join queries,
we can almost always see that header entries are joined with their corresponding
item entries.

Additionally, the analytical queries extract strings from dimension or text
tables. Item tuple values are aggregated according to methods described in con-
figuration tables. The number of involved smaller tables varies between none to

106 S. Müller et al.

five. Those three table categories do have a number of properties in common.
There are rarely inserts, updates or deletes and they contain only a few entries
compared to header and item tables.

Starting in Sect. 4.2 we describe how each mentioned characteristic allows
to reduce the number of table joins necessary when processing a query with a
materialized view.

4 Optimizing Incremental Aggregate Maintenance

In this section we give a brief overview of how the aggregate cache utilizes the
main-delta architecture to handle mixed workloads as explained in [10] and how
enterprise application characteristics can be applied to improve the incremental
maintenance of aggregation queries involving a join of multiple tables.

4.1 Architecture Overview

As depicted in Fig. 2, the query processor handles reads and writes to main
and delta storage through the SQL interface from the application and delegates
aggregate queries to the aggregates caching manager. In case the cache manage-
ment table (CMT) indicates that the current query has not been cached yet, the
query is processed on the main and delta storage. The query result set from the
main is being cached and an entry in the CMT is created. Finally the unified
result sets from main and delta are delivered back to the application.

As all new inserts are stored in the delta, an already cached query only needs
to be executed on the delta storage. The final result set is obtained by unifying

Fig. 2. Aggregate cache architecture.

Leveraging Enterprise Application Characteristics 107

Fig. 3. Caching strategies for a three table join query.

the results from the delta with the cached entry that holds the content of the
main storage. Since the delta is far smaller than the main and retrieving a cached
result takes little time, the aggregate cache can speedup analytical queries by
order of magnitudes. As there are only few updates and deletes in enterprise
workloads as outlined in Sect. 3, we focus on insert only workloads in this paper.

4.2 Joins

Based on the header/item composition relationship and the use cases for the
financials (see schema in Sect. 3) and materials management systems, we focus
on inner joins, mostly with an equality operator in the join-predicate (equi-join)
[19]. We define an aggregation query joining t tables between relations R with
join conditions C as

QAgg(t) = R1 ��C1 R2 . . . ��Ct
Rt+1

Each table consists of two partitions P = {main, delta}. For a query involving
a join of two tables, the database engine internally has to process more than just
one join in order to retrieve a complete result set. The mains of both tables need
to be joined, both deltas and both main-delta combinations of the two tables.

In the following subsections we show how to handle joins with different aggre-
gate caching strategies. All variants are compared based on an example query
involving a header, item and dimension table as depicted in Fig. 3. Each number
represents a subjoin that needs to be unified with the UNION ALL SQL opera-
tor. The analytical queries of the financials application always included a join
between the large header and item tables, and a varying number of smaller
configuration and text tables.

4.3 Join Without Cache

Without caching, the database engine needs to run the join on all possible main-
delta combinations JnoCache of all involved tables to build a complete result
set:

108 S. Müller et al.

JnoCache(t) = P
t

To evaluate QAgg joining t tables, that adds up to a total of 2t subjoins to be
unified:

ResultSet (QAgg) =
⋃

(p1,p2,...,pt)∈JnoCache

(
R1p1

��C1 R2p2
. . . ��Ct

Rt+1pt+1

)

As depicted in Fig. 3, for a join query involving three tables, this would mean
unifying the result sets of eight sub joins.

Based on the size of the involved table components, the time to execute the
subjoins varies. In our example the subjoins #5 and #8 require the longest time,
since they involve matching the join condition of the mains of two large tables.

4.4 Caching Join

When using the aggregate cache, the result set from joining all main partitions
is already calculated and the total number of subjoins is reduced to 2t − 1:

JwithCache(t) = JnoCache(t) \ {main}t

For our example from Fig. 3, the subjoin #8 does not need to be rerun based
on the cached result set. Since the database does not know anything about
the semantics of the involved tables and therefore their usage characteristics, it
has to assume there could potentially be newly inserted tuples in the delta of
the dimension table, that create a new match for the join of the header-main
and item-main. Based on their size, that subjoin requires a lot of time though.
The header-main/item-main join needs to be run even more often, there more
dimension, text or configuration tables are involved. Depending on the overhead
induced by the caching mechanism (incremental update during merge, check of
cache admission policy, ...), the regular caching join may not improve perfor-
mance for analytical queries with three or more tables.

In case we have a cached query involving only a header and item table, only
the header-delta/item-delta, header-main/item-delta and header-delta/item-
main subjoins need to be computed. Since deltas get merged before they get
to large, those subjoins take little time. Therefore the caching join delivers a
speedup for analytical queries limited to joins involving only two tables.

4.5 Semantic Join

In this subsection we show which table components need to be joined, when
the database is aware of the enterprise application characteristics introduced
in Sect. 3. In Sect. 5 we explain how the database can become aware of those
characteristics.

Let us assume a query joining a header and item table with a present cached
result set representing the joined mains. As static business objects are inserted
in the context of a single transaction, the header tuple and the corresponding

Leveraging Enterprise Application Characteristics 109

item tuples are inserted together. If there was no merge yet, both tuples that
will match the join condition are both in the delta part of their table. Therefore
we only need to run the header-delta/item-delta join and unify the results with
the cached entry. The main-delta combinations of header and item table can be
avoided. Same holds true for the subjoins #2, #4, #6 and #7 of our example
from Fig. 3, since the header and item tuples that belong together are either all
in the mains or deltas.

If there has not been an insert, update or delete on the dimension table
in a long time, the delta of that table is empty. For inner joins, empty table
components do not need to be included since they will not contribute to the
result set. Therefore the subjoins #2 and #3 can be avoided. This elimination
method could also be applied if there would be a greater number of involved
dimension, text or configuration tables with empty deltas.

This only leaves the subjoin #1, between the header-delta, item-delta, and
the main of the small dimension table. Using the semantic chaching strategy, an
aggregation query

QAggHID
= H ��C1 I ��C2 D

between a header H, item I and dimension table D is reduced to process the
single subjoin

Changes(QAggHID
) = Hdelta ��C1 Idelta ��C2 Dmain

compared to

ResultSet(QAggHID
) =

⋃

(p1,p2,p3)∈P3

(Hp1 ��C1 Ip2 ��C2 Dp3)

without an aggregate caching mechanism. Since all involved table components
are small, the subjoin can be executed with little effort.

The concept of the semantic join can also be applied to extendable business
objects such as sales orders, with item tuples possibly being added to an existing
header tuple at a later point in time. In that case we additionally have to include
the subjoin matching header-main, item-delta, and the mains of the smaller
static tables.

For static business objects, the semantic join always only executes one subjoin
using the header-delta, item-delta and dimension-, text- and configuration-table-
mains. Next to the schema usage characteristics it requires a different method
of handling the merge process as outlined in the following subsection.

4.6 Merge

The incremental maintenance of the aggregate cache takes place during the
online merge process which propagates the changes of the delta storage to the
main storage. When employing a semantic join between a header and an item
table, there are two ways to merge. One way is to synchronize the merge of both
tables. This way the tuples that match the join condition will always be all in

110 S. Müller et al.

Fig. 4. Stages of the delta merge process.

the delta or main storage. Figure 4 shows the three phases of a merge process
[11]. Specifically, the prepare steps that switch inserts to run into new blank
delta storages need to happen in between the same two SQL queries. Depending
on the database architecture, this may be a challenging implementation task
without the introduction of a lock that cues transactional queries.

On the other hand, the header and item table could be merged independently
by maintaining the aggregate cache at the same time. For static business objects
the incremental update would need to process all subjoins that include the delta
that is being merged. If we merge the header-delta of our example from Fig. 3,
that would be #1. When rerunning a query after the header table has been
merged, the item tuples of the merged header would not find a join partner
using the inner join. But they also should not find a partner since they are
already considered in the cached result set. For extendable business objects,
the incremental update would only be done for merging the item table, since
the semantic join also processes the item-delta/header-main subjoin for every
analytical query.

5 Annotating Enterprise Application Characteristics

In this section we list schema usage characteristics the database requires to
process the semantic join from Sect. 4.5. For each information aspect we intro-
duce a number of ways of explicit and implicit character, how the database could
obtain that information. In this Section we limit our annotation examples to
static business objects, even though similar methods can be used to extendable
business objects.

5.1 Empty Delta

To avoid the subjoins with the deltas of dimension, text, and configuration tables,
the database engine needs to know that they are empty. That simple check should
be a trivial implementation for most database architectures.

Leveraging Enterprise Application Characteristics 111

5.2 Associations

The caching engine needs to know which table attributes are used as join condi-
tion to the key of other tables. There are three methods with different strengths
and weaknesses.

First, foreign keys could be defined on database level during the design time
of the schema [19]. They are a well established mean in many database systems.
A column is marked to match the key of another table. New inserts, updates
and deletes are checked for data integrity of defined foreign keys. The checking
mechanism may decrease transactional throughput performance.

Another way would be to use a domain specific language (DSL) to model
objects on database level. The database would create the CREATE TABLE state-
ments from the abstract data modeling language. The DSL supports syntax to
explicitly express associations between objects. Listing 1.1 shows an example
syntax similar to the CDS-DDL3 from SAP HANA [1]. An AccountingItem can,
but does not have to be associated with a Product.

en t i t y AccountingItem{
Product : a s s o c i a t i o n [0 . . 1] o f Product ;
Quantity : i n t }

en t i t y Product{
Name : s t r i n g }
Listing 1.1. DSL example to model objects and associations on DB level.

A third way would be to look at meta data repositories of present systems.
Some enterprise application landscapes keep schema information in a central
place. One example of those repositories is the SAP Data Dictionary. Each table
column has a specific domain. Such a domain can be defined by a data type, a
value range or the column of another table. The latter case indicates an associ-
ation used as join condition.

5.3 Single Transaction Inserts

As explained in Sect. 3, static business objects are inserted in the context of a
single transaction. There are two fundamentally different ways to communicate
the insert behavior to the database. The schema could be annotated at design
time or the database access could be restricted to insert entire business objects.

Design Time Annotation. During data modeling phase the designer defines
how the schema will be used. This might be a challenging programming paradigm
for environments where a large number of developers are involved. Application
programmers might not know about the restrictions implied by the data modelers
and be surprised about the errors returned by the database. The annotation
could be done in two ways.
3 Core Data Services - Data Definition Language, a DSL to model objects on SAP

HANA.

112 S. Müller et al.

The DSL for data modeling, as introduced in Sect. 5.2 could support syntax
to explicitly model a composition relationship. That relation is stronger than an
association, meaning that entity foo consist of some entities bar. The composition
relationship implies that they are inserted in the context of single transaction. In
Listing 1.2 the AccountingHeader is composed of a number of AccountingItems.

en t i t y AccountingHeader{
Fisca lYear : i n t ;
Items : composit ion [1 . . ∗] o f AccountingItem}

en t i t y AccountingItem{
Product : a s s o c i a t i o n [0 . . 1] o f Product ;
Quantity : i n t }

Listing 1.2. DSL example to model composition relationship.

Another way would be to slightly extend the in many databases already
present concept of SQL constraints. Typically they are defined on a schema
level, checked on SQL statement level and sometimes with a leaner execution
time on transaction level. The available constraint enforcement levels need to
be extended with a new transaction level, that explicitly checks for constraint
consistency within a transaction. It checks if a transaction inserting new tuples
is valid by itself. The defined foreign keys are validated among the tuples that
are inserted together.

High Level APIs for Data Manipulation. Inserts into databases are typi-
cally done by using SQL commands. The database could restrict data manipula-
tion to higher level APIs. Those commands could e.g. look like StoreAccounting
Object(), RegisterMaterialMovement() or ReleaseSalesOrder(). In that
case all information of header and item tuples would be inserted with a single
command. By restricting data manipulation to such higher level APIs, incon-
sistent data states could also be prevented, that could otherwise be caused by
improper usage of SQL commands. The application developer would access those
ORM4 like methods directly on the database.

In the context of currently available database technology, one implemen-
tation strategy would be to do all data manipulation with Stored Procedures
(SPs). The database would offer SPs to persist entire objects. The procedure
describes in detail how the object attributes are transformed into tuples for dif-
ferent tables. A SP for e.g. an invoice may store a AccountingHeader tuple and
multiple AccountingItem tuples in the corresponding tables.

Another way would be to use a DSL for business object persistence and
manipulation on database level. That DSL would also only offer high-level com-
mands as previously mentioned. One example would be the CDS-DML5 currently
in development for SAP HANA.
4 Object Relational Mapper, a framework to easy access to relational databases from

object oriented programming languages.
5 Core Data Services - Data Manipulation Language.

Leveraging Enterprise Application Characteristics 113

6 Benchmarks

In this section we evaluate the potential speedup of the semantic join (see
Sect. 4.5) compared to the join not using schema usage characteristics, the caching
mechanism used with a fully denormalized schema and using no caching mech-
anism at all.

For the evaluation we use a real customer data set of an SAP financials appli-
cation of an international-operating company producing consumer goods. The
schema – limited to the benchmark relevant tables and columns – looks similar
to the one illustrated in Fig. 1. The data set consists of 35 million Accounting-
Header tuples, 310 million AccountingItem tuples and the text tables have each
less than 2000 entries.

We modeled a mixed OLTP/OLAP workload, based on input from inter-
views with that customer. The analytical queries simulate multiple users, using
a profit and loss statement (P&L) analysis tool. The SQL statements calculate
the profitability for different dimensions like product category and subcategory
(as mentioned in Sect. 3) by aggregating debit and credit entries. Listing 1.3
shows a simplified sample query that calculates how much profit the company
made with each of its product categories. We simulate a drill down into the
(P&L) by applying a specific dimension value as filter and then grouping by
another dimension.
SELECT pc .Name AS Category , SUM(i . Pr i ce) AS Pro f i t
FROM AccountingHeader AS h ,

AccountingItem AS i ,
ProductCategory AS pc

WHERE i . AccountingHeaderID = h . AccountingHeaderID
AND i . CategoryID = pc . CategoryID
AND pc . Language = ’ENG’

GROUP BY i . CategoryID ;

Listing 1.3. Simplified benchmark sample query.

All benchmarks are run on a server with 64 Intel Xeon QPI6 enabled processor
cores and 1 TB of RAM running SansoucciDB [5], an in-memory column-oriented
research database.

6.1 Delta Size

The speed up of the aggregate caching mechanism greatly depends on the number
of records in the delta storage. The smaller the delta in respect to the main
storage, the less tuples need to be aggregated when rerunning cached queries.
How large the peak delta size is just before merging, depends on the insert rate
and how long it takes to merge the table.

Figure 5 shows the speedup factor of the different caching strategies outlined
in Sect. 4.2 compared to the caching mechanism running on a single, denormal-
ized table. For the denormalized caching, the speedup is calculated by comparing
6 Quick Patch Interconnect, a direct communication system for processor cores that

replaces the Front Side Bus (FSB).

114 S. Müller et al.

Fig. 5. Aggregation with header-item join benchmark.

Fig. 6. Benchmark for aggregation queries joining header, item, and one dimension
table.

it to the runtime on the denormalized table without caching. For this specific
benchmark we only use a two table join between the header and item table. In
that case the strategy not leveraging enterprise application characteristics also
performs better by magnitudes since it never has to do the header-main/item-
main subjoin.

The semantic join enables a speedup of greater than 200 for item deltas
smaller than 10 thousand tuples and greater than 50 with less than 100 thousand
tuples. Even for larger deltas with half a million entries, cached queries are
calculated thirteen times faster than without caching (0.12 compared to 1.58 s).

6.2 Three Tables

For an aggregation query joining three tables as illustrated in Fig. 3, the caching
mechanism has to join the large header-main and item-main (see Sect. 4.2). In
this benchmark we use deltas with 50,000 items and their corresponding header
tuples. The dimension table consists of 150 entries. Figure 6 shows the impor-
tance of utilizing schema usage characteristics once there are three or more tables
involved. The analytical queries of the analyzed customer typically involve three
to seven tables. Since the semantic caching strategy only joins rather small table

Leveraging Enterprise Application Characteristics 115

components, its execution time remains faster by an order of magnitudes, even
if more tables are involved.

7 Conclusions and Future Work

With growing requirements on data analysis, the aggregate cache enables IMDBs
to handle an even higher aggregation query throughput in enterprise system
environments with mixed workloads. However, with queries joining two or more
tables, the benefit of the aggregate cache is reduced as the needed incremental
view maintenance is very expensive.

Our analysis of enterprise applications revealed several patterns with respect
to schema design and resulting workloads. Most importantly among them, it is a
very common practice to split business objects into a header and item table and
schemas having many small rather static tables. These patterns can be leveraged
to reduce the incremental view maintenance and run more efficient aggregate
caching strategies. Especially for small delta sizes, they enable a speed-up by
order of magnitudes.

With having a clear understanding of the speedup potential of the caching
mechanism for aggregation queries joining tables, one direction of future work
is to predict the runtime improvements for a columnar IMDB with a main-
delta architecture. Based on cardinalities of main and delta partitions, unique
value count, filter selectivity, and possibly other metrics, a cost model of the
cache admission policy should decide what aggregate queries with joins are most
valuable to be cached.

References

1. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: data management for modern business applications. In: SIGMOD (2011)

2. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
Hyrise: a main memory hybrid storage engine. In: VLDB, pp. 105–116 (2010)

3. Kemper, A., Neumann, T., Informatik, F.F., München, T.U.: Hyper: a hybrid
OLTP&OLAP main memory database system based on virtual memory snapshots.
In: ICDE, D-Garching (2011)

4. Plattner, H.: A common database approach for OLTP and OLAP using an in-
memory column database. In: SIGMOD, pp. 1–2 (2009)

5. Plattner, H.: SanssouciDB: an in-memory database for processing enterprise work-
loads. In: BTW (2011)

6. Smith, J.M., Smith, D.C.P.: Database abstractions: aggregation. ACM Commun.
20, 405–413 (1977)

7. Srivastava, D., Dar, S., Jagadish, H., Levy, A.: Answering queries with aggregation
using views. In: VLDB (1996)

8. Gupta, A., Mumick, I.S.: Maintenance of materialized views: problems, techniques,
and applications. IEEE Data Eng. Bull. 18, 3–18 (1995)

9. Müller, S., Butzmann, L., Höwelmeyer, K., Klauck, S., Plattner, H.: Efficient
view maintenance for enterprise applications in columnar in-memory databases.
In: EDOC (2013)

116 S. Müller et al.

10. Müller, S., Plattner, H.: Aggregates caching in columnar in-memory databases.
In: 1st International Workshop on In-Memory Data Management and Analytics
(IMDM), in conjunction with VLDB (2013)

11. Krueger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner,
H., Dubey, P., Zeier, A.: Fast updates on read-optimized databases using multi-core
CPUs. In: VLDB (2012)

12. Brewer, E.A.: Towards robust distributed systems. In: PODC (2000)
13. Buneman, O.P., Clemons, E.K.: Efficiently monitoring relational databases. ACM

Trans. Database Syst. 4, 368–382 (1979)
14. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views.

In: SIGMOD, pp. 61–71 (1986)
15. Bello, R.G., Dias, K., Downing, A., Feenan, Jr., J.J., Finnerty, J.L., Norcott, W.D.,

Sun, H., Witkowski, A., Ziauddin, M.: Materialized views in oracle. In: VLDB, pp.
659–664 (1998)

16. Zhou, J., Larson, P.A., Elmongui, H.G.: Lazy maintenance of materialized views.
In: VLDB, pp. 231–242 (2007)

17. Gupta, H., Mumick, I.S.: Incremental maintenance of aggregate and outerjoin
expressions. Inf. Syst. 31(6), 435–464 (2006)

18. Larson, P.A., Zhou, J.: Efficient maintenance of materialized outer-join views. In:
2007 IEEE 23rd International Conference on Data Engineering, pp. 56–65. IEEE
(2007)

19. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)

	Leveraging Enterprise Application Characteristics to Optimize Incremental Aggregate Maintenance in a Columnar In-Memory Database
	1 Introduction
	2 Related Work
	3 Enterprise Application Characteristics
	3.1 Schema Design
	3.2 Workload Patterns

	4 Optimizing Incremental Aggregate Maintenance
	4.1 Architecture Overview
	4.2 Joins
	4.3 Join Without Cache
	4.4 Caching Join
	4.5 Semantic Join
	4.6 Merge

	5 Annotating Enterprise Application Characteristics
	5.1 Empty Delta
	5.2 Associations
	5.3 Single Transaction Inserts

	6 Benchmarks
	6.1 Delta Size
	6.2 Three Tables

	7 Conclusions and Future Work
	References

