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Abstract. As there are a lot of available documents in the Internet,
it is impossible to manually extract their important information. In
this paper, we propose a system for extracting important information
automatically from huge volume of documents using word correlation
analysis. Our system analyzes words’ occurrence and co-occurrence fre-
quencies on several levels: sentence, paragraph, and document. And then,
it performs three different analysis steps: occurrence frequency, adjacent
correlation, and importance score analysis, to calculate the importance
score of each word. Finally, it can extract keywords and store them in
a graph structure. The benefits of using a graph structure were twofold.
We could effectively manage the keywords and their connections; and
it assisted us with the retrieval of relevant documents. Our preliminary
experiment shows that our technique can be used for analyzing large set
of documents well.

Keywords: Word correlation analysis · Large set of document · Graph
summary

1 Introduction

In this digital era, people might want to grab important information from docu-
ments quickly, but it is difficult to be done since there are too many documents
to read. This problem is often called information overload. For an instance,
in digital forensic field, investigators are facing difficulties in finding suspicious
relationships among individuals during a crime scene investigation [1] as there
are so many documents or files to be analyzed. The similar problem occurs in
a domain of online news broadcasting. Because there exist enormous amount
of rapidly updated information, consumers do not have much time to read all
of them. Thus, several online news aggregators [2–4] help consumers staying
in touch with the latest news easily. However, they ignore connections among
information.
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Fig. 1. Example of correlation analysis

Example 1. Let us describe the necessity of extracting information by an exam-
ple. Assume that there are several articles about Steve Jobs. An article A tells
much more about his childhood life, and less about his career. Another article
B tells about the time when he founded a company called Apple. The others
mention his past activities in several companies such as NeXT and Pixar which
he had founded and had worked for. After reading all of those articles one by
one, readers might discover that Steve Jobs is very related to the most successful
American Entrepreneur.

It will be great, if we can build a system that can analyze the relation-
ships among information scattered across different sources. Figure 1 illustrates
the system of graph summarization using word correlation analysis on several
articles about Steve Jobs. As we can see in the graph summary, a vertex labeled
Steve Jobs is connected to several vertices labeled as Apple, NeXT, and Pixar.
This helps us to understand why he is one of the most famous “American
Entrepreneur”.

An automatic document analysis has been an interesting topic as several
researchers conduct their work [5–7] in this field. However, to our knowledge,
none of them try to analyze a large collection of documents. Most of them only
consider how their approach can extract keywords or summarize documents well
by evaluating their approach on a small number of documents. Wartena and
Matsuo [5,6] try to extract keywords from short texts. During an extraction
process, they consider connections between words by checking a single level of
co-occurrence. However, when the size of document grows very large, analyzing
a single level of co-occurrence is not enough since there might be long distance
correlation between words. Hu [7] breaks down an input text into different types
of levels, and assigns a fixed weighting value for each of them. However, if we
analyze large set of documents, the number of sentences and paragraph within
documents may vary. This will impact the distribution of word co-occurrence
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on each level, thus we should assign a proper weighting value for each level of
documents regarding to its portion.

In this paper, we introduce a new technique for extracting meaningful rela-
tions among words to produce keywords as well as creating graph summary from
large set of documents. Our contributions are summarized as follows:

– We propose a technique to create a graph summary by analyzing word corre-
lation on three different levels: sentence, paragraph, and document.

– We assign a dynamic weighting value to every level by considering its portion.
For example, we divide the number of sentences by the total number of levels
to obtain the weighting value of sentence level. These weighting values might
also be configured based on experimental evaluation.

– We describe the usage of the resulting graph summary for storing important
information and retrieving relevant documents.

– We implement our technique in Map-Reduce framework and conduct a pre-
liminary evaluation that shows the performance of our technique in analyzing
large set of documents.

The rest of this paper is organized as follows: Sect. 2 presents the overview of
our system. Section 3 explains about how we can compute the importance score
of words using our technique. Section 4 describes about the process of storing
the analysis result into a graph structure and how we can take advantage of
the resulting graph structure in retrieving relevant documents. To evaluate the
performance of our method, we have conducted a preliminary experiment and
describe it in Sect. 5. Finally, we conclude our work in Sect. 6.

2 System Overview

In this section, we shall explain the architectural overview of our system as shown
in Fig. 2. Our system consists of five modules: a preprocessing module, three cor-
relation analysis modules implemented by using Map-Reduce framework, and a
graph construction module. We briefly explain the functionalities of five modules
here and describe the details in the next section.

– Document Preprocessor (PRE): This module takes input documents and
creates level maps by parsing them into sentences, paragraphs and documents.
It also removes stop words such as the, is, are, at, which, in, and on.

– Occurrence Frequency Analyzer (OFA): This module reads the preproce-
ssed documents and checks the occurrence frequency of each word on each
level. The output will be a list of words containing their set of frequencies.

– Adjacent Correlation Analyzer (ACA): This module analyzes the strength
of connections among words by using the preprocessed content and the level
statistics. The result of this analysis step is a list of pairs with their correlation
scores.

– Importance Score Analyzer (ISA): This module combines the result of
two previous steps to calculate the importance scores of all words. The result
of step is a list of words with their importance scores.
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Fig. 2. Architectural overview

– Graph Constructor (GRA): This module takes the analysis results and
stores them in a graph structure. The output of ISA will be stored as vertices
and the output of ACA will be stored as edges. In addition, we also perform an
entity resolution process to identify people, companies, organizations, cities,
geographic features, and other types of entities.

3 Importance Score Analysis

In this section, we shall describe the detailed steps of calculating the importance
score of all words. We divide and explain all of them in several subsections.

3.1 Document Preprocessing

As there might be a lot of meaningless words and irrelevant characters, we cannot
directly perform our analysis steps on the input documents. We should perform
several perprocessing steps to prepare the documents before being analyzed.
There are several tasks that must be done in this step:

– Extracting sentence from input documents.
– Eliminating stop words.
– Assigning document ID, paragraph ID, and sentence ID (Level Map) to each

sentence
– Checking the number of each level (Level Statistics).
– Partitioning documents into several blocks which are equal before loading into

HDFS.

The outputs of this step are level maps and statistics as well as preprocessed
documents’ content. Due to the tiny size of a single document, we concatenate
and partition the preprocessed documents into several equal-sized files to fit
HDFS block size.

Example 2. For providing a running example, we use two documents (D1 and
D2) about Steve Jobs’ biography [8,9] in which each document has four sentences
and two paragraphs. Figure 3 illustrates an example of document preprocessing.
We use an existing sentence parser [10] to extract sentences and paragraphs. For
assigning level map, we use an incremental integer number on each level. By
doing so, we can also obtain the level statistics of the input documents.
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Fig. 3. Example of document preprocessing step

3.2 Occurrence Frequency Analysis

As an initial score, we analyze words occurrence frequency on each level: sen-
tence, paragraph, and document and implement it in Map-Reduce framework.
First, mappers read the preprocessed input documents to emit word as key, and
level map as value. And then, reducers summarize the frequency of each word
regarding its occurrence location. The final output is a list of word including
its occurrence frequency on each level and the overall frequency summation.
Figure 4 shows an example output of analyzing word occurrence frequency.

3.3 Adjacent Correlation Analysis

Next, we analyze the strength of connection between two words by calculating
adjacent correlation scores. To calculate these scores, we need to check the co-
occurrence frequency and location of every pair of words. Then, we compute
the correlation scores level by level, formalized as Level-specific correlation (LC )
analysis. For performing this step, we have observed the following characteristics:

1. Important pair of words must appear at least once in the same sentence.
2. Words may not stand alone to deliver information, they must work together

to form at least a sentence.
3. After forming a sentence, words can form larger structure called paragraph

and document to deliver more complete information.

Fig. 4. Example of occurrence frequency analysis
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Table 1. Example of calculating adjacent correlation score

Pair Level-specific Correlation (LC) Adjacent
Sentence Paragraph Document correlation
(N=8) N=4 N=2

Jobs-Apple Co-occur: 4 Co-occur: 3 Co-occur: 2 0.64
LC: 4/8 = 0.50 LC: 3/4 = 0.75 LC: 2/2 = 1

Jobs-NeXT Co-occur: 1 Co-occur: 1 Co-occur: 1 0.21
LC: 1/8 = 0.125 LC: 1/4 = 0.25 LC: 1/2 = 0.50

Jobs-Pixar Co-occur: 1 Co-occur: 1 Co-occur: 1 0.21
LC: 1/8 = 0.125 LC: 1/4 = 0.25 LC: 1/2 = 0.50

Jobs-American Co-occur: 1 Co-occur: 1 Co-occur: 1 0.21
LC: 1/8 = 0.125 LC: 1/4 = 0.25 LC: 1/2 = 0.50

Example 3. Let us consider again the preprocessed content in Fig. 3. The words,
“Jobs” and “Apple”, co-occur in four sentences, and there are eight sentences
in the whole input documents. We can calculate sentence-level correlation score
as follows: 4/8 = 0.5. We perform the same operation for the upper level of
co-occurrence, until we can get three different level-specific correlation scores
(sentence, paragraph, and document).

We then summarize all level-specific correlation scores by considering the
weighting values on each level as an adjacent correlation (AC) score. The AC
score between two words (a,b) is formalized as follow:

ACa,b =
d∑

x=s

αx.LCx
a,b (1)

where LCx
a,b is the level-specific correlation of word a and b, αx is the weighting

value for each level, and x is a set of levels containing sentence(s), paragraph(p),
and document(d). To give a proper weighting value, we use the level statistics
obtained from the document preprocessing step.

Example 4. Consider again the level statistics in Fig. 3. There are 8 sentences,
4 paragraphs, and 2 documents which produces 14 total levels of our dataset.

Fig. 5. Overview of adjacent correlation analysis in map-reduce
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We will divide the number of corresponding level by the total number of levels in
the whole documents. Therefore, we can calculate sentence level weighting value
as follows: 8/14 = 0.57. And then, we can calculate the adjacent correlation score
for “Jobs-Apple”: (0.57× 0.50) + (0.29× 0.75) + (0.14× 1) = 0.64. Table 1 shows
the example of calculating adjacent correlation scores.

The higher adjacent correlation score means the stronger connections between
two words. As we can see in Table 1, the pair “Jobs-Apple” has higher score
than the pairs of “Jobs-NeXT” and “Jobs-Pixar”. Thus, we can conclude that
based on our dataset “Jobs” is more related to a company named “Apple” than
“NeXT” or “Pixar”. In addition, we can also use this value to prevent storing
irrelevant pairs.

We also have implemented this analysis step in Map-Reduce to make it scal-
able. Mappers will read the preprocessed content as well as the level map to
construct all pairs. After map task has finished, it will emit the pair of two words
(separated by comma) as key and level map as value. Reducers will retrieve the
intermediate result and check the level map to calculate word co-occurrence on
each level. To compute the adjacent correlation score, they utilize the level sta-
tistics that has been loaded into Hadoop distributed cache before the job starts.
As the result, reducers will emit the pair as key and its adjacent correlation score
as value. Figure 5 shows the processing flow to calculate the adjacent correlation
scores in Map-Reduce framework.

3.4 Importance Score Analysis

After performing occurrence frequency and adjacent correlation analysis, we can
calculate the importance score of each word. There will be two mapper classes for
reading two different data sources which are the result of the previous analysis
steps, OFA and ACA. The first mapper class will read the result of OFA, then
emit each word as key and its occurrence frequency as value with a character
‘F’ as prefix. The second mapper class will read each pair of words from ACA’s
output and split them into words. Then, it emits each word as key and emit its
adjacent correlation score as well as its co-occurring word as value.

After map tasks have finished, reducers will begin their work by collecting all
words occurrence frequencies and adjacent correlation scores. Prior to calculating
the importance score, they will perform one additional step called transitive
correlation analysis. This step is needed to measure the impact score that is
shared between two co-occurring words. The impact must be proportional to
the adjacent correlation score and the occurrence frequency difference between
them. The bigger transitive correlation score a pair has, the bigger supporting
score they share.

Example 5. Recall to the result of the two previous steps in Fig. 4 and Table 1,
we can obtain the overall frequency difference between “Jobs” and “Apple” as
follow 13 − 9 = 4, and we have also computed the adjacent correlation score
of “Jobs-Apple” which is 0.64. Thus, we can calculate the transitive correlation
score of “Jobs-Apple” as follow 4× 0.64 = 2.57.
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Fig. 6. Overview of importance score analysis in map-reduce

After calculating the transitive correlation of all pairs, reducers will calculate
the importance score by adding the overall occurrence frequency of each word
with the maximum transitive score (MAX(tra)) that it has. Figure 6 shows the
Map-Reduce processing flow to calculate the importance scores.

Example 6. Consider again the result of OFA in Fig. 4, the overall occurrence
frequency of “Jobs” is 13, and it is connected to several vertices via four different
edges representing their transitive correlation scores. Thus, we can calculate the
importance score of “Jobs” by adding its frequency to its maximum Transitive
Correlation score: 13 + MAX(2.57, 2.14, 2.14, 2.14) = 15.57.

As the result of this step, reducers will emit word as key and its importance
score as value. The higher importance score, the more likely we can regard a word
as a good candidate for keyword. To make the process easier to understand, we
describe this mechanism using a graph structure in Fig. 7.

4 Graph Structure

4.1 Graph Structure Construction

After performing all of the analysis steps, we construct a graph structure using
the analysis results. As we know, a graph mainly consists of two main compo-
nents: vertex and edge. Both vertex and edge may have several properties to
store more detailed information. Figure 8 depicts the resulting graph structure
that can be built by our system. There are 5 vertices in the graph, each of them
has several properties. For an instance, a vertex labeled “Steve Jobs” stores the
importance score, occurrence frequency and location. The edges also have several
properties to store detailed information of all pairs of words.

We use the result of ISA and ACA to construct the graph structure. First
we read all of the ISA’s output and store them as vertices. And then, we create
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Fig. 7. Example of importance score calculation

edges using the output of ACA. After all vertices and edges have been stored in
the graph, we perform an entity resolution using an existing NER library [11] to
obtain the complete term form each vertex label.

4.2 The Usability of Graph Structure

In this subsection, we will discuss about the usage of the resulting graph struc-
ture produced by our system. By using the graph structure, we can manage
all keywords and their connections well. In addition, it might also be useful for
relevant document retrieval system.

Example 7. For this occasion, we will use the example documents that we have
mentioned in Fig. 3. Suppose user wants to retrieve all documents which contain
any information about “Jobs” and “Apple”. If we represent keywords as a bag-of-
words, we might be able to return all documents which contain both “Jobs” and

Fig. 8. Example graph structure
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“Apple”. However, such kind of representation does not store the connectivity
between keywords. It will be difficult for us to rank the query answer based on
the relevance of document’s content. Finally, user must decide manually which
document to read first. Using our approach, we can tackle this issue by analyzing
the connection between “Jobs” and “Apple” in more detail. Even though they co-
occur in both documents, the co-occurrence distribution in lower level is different.
Doc.1 has more sentences mentioning about “Jobs” and “Apple” than Doc.2
does, thus we should recommend user to read Doc.1 prior to reading Doc.2.
Thus, our system can quickly answer user’s query using the following steps:

1. Locate “Jobs” vertex.
2. Find an edge that connects “Jobs” vertex with “Apple” vertex.
3. Check in which document they co-occur by analyzing the corresponding edge’s

properties.
4. Rank the result according to the number of sentence and paragraph co-

occurrence on each document.

Finally, our system will returns Doc.1 at the top of the query answer.
We may also employ indexing system on the edge structure to improve the

query performance. However such improvement approach will have a trade-off
since it will also increase the complexity of graph construction.

5 Evaluation

In this section, we present experimental result to evaluate the accuracy and the
performance of our system.

5.1 Experimental Environments

Hardware. We used two different hardware setups for evaluating our system.
First, we used a single machine (Intel Core2Quad Q6600 @2.4 GHz, 64-bit, 4 GB
RAM) running on Windows Server 2008 R2 Standard 64-bit for evaluating
the accuracy of our system. Second, we used 15 commodity machines (Intel
Core2Quad @2.66 GHz, 64-bit, 2 GB RAM, 500 GB HDD) running on Ubuntu
12.10 and configured them to work together on top of Hadoop version 1.2.1 for
evaluating the performance of our system.

Dataset. We used two data sets: (1) IEEE dataset for an accuracy test and (2)
digital books [12] for a performance test. The IEEE dataset consists of several
papers which are randomly selected from IEEE Explore website. The overall
statistics of our first dataset are as follows: 90,990 words, 20,511 sentences, 15,495
paragraphs, and 20 documents. The digital book dataset consists of 9,487,087
sentences, 2,873,700 paragraphs, and 2,620 documents. In total, the size of the
digital book dataset is 1.1 GB with the average size of 2.7 MB.
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5.2 Accuracy Test

In this evaluation, we tried to extract several important information in the form
of keywords from several scientific paper documents. We combined the author’s
keyword and manually-selected keyword as the basis of forming relevant keyword
list for each paper. Prior to this experiment, we broke down relevant keywords
into words and eliminated duplicate words. As the result, each paper has at least
5 distinct words and at most 18 distinct words, with an average of 10 distinct
words. Then, we extract keywords using our method and compute the precision-
recall average score. As we know, precision and recall formula are defined as
follows:

Precision(P ) =
CorrectWord

ExtractedWord
;Recall(R) =

CorrectWord

RelevantKeyword
(2)

For the first attempt, we want to extract as many correct keyword as possible;
thus, we select Top-25 most important words from all documents. In this case, we
manage to get a good recall score (R = 0.73), however the precision score is very
low (P = 0.29). It makes sense since there are only 10 keywords on each paper
in average. Therefore, we gradually decrease the number of extracted keyword
for each document (Top-20,15,10,5) to achieve better precision score. Finally, we
extract Top-5 most important words from all documents and we get R = 0.32
and P = 0.63. Figure 9 shows the result of our accuracy evaluation.

Fig. 9. Precision and recall result
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5.3 Performance Test

To measure the performance of our technique, we have also conducted another
experiment using the digital book dataset. We used 15 machines to process vary-
ing size of the datasets. Since the average size of a single book is only 2.7 MB, we
concatenated the books to construct 50 MB input split size before running the
Map-Reduce job. We used a single machine to preprocess the dataset, thus it
takes several minutes to completely preprocess the dataset. Figure 10(a) shows
the time needed for preprocessing the dataset(PRE) and for loading it into
HDFS(LOAD).

During the first execution, our system requires around 10 min to completely
analyze 100 MB of documents. When we gradually increase the dataset size up to
400 MB, our system requires considerably few more seconds to analyze them all.
We get a significant performance degradation, when it comes to analyze 800 MB
of documents. However, we can say that our system only requires less than a
second to analyze a single book since it can finish processing 1 GB dataset in
37 min.

As shown in Fig. 10(b), the most time consuming step is adjacent correlation
analysis (ACA). It consumes more than a half of the whole processing time.
This is due to the very large amount of pairs that needs to be processed. For an
instance, it calculates ACA score of 27 millions of pairs during the analysis of
1GB dataset. Our future works will focus on improving our technique especially
in this step. It will be much faster, if we can eliminate some irrelevant pairs prior
to this step.

(a) Preparation Time (b) Analysis Time

Fig. 10. Execution time
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6 Conclusion

In this paper, we have proposed a system for summarizing a large set of document
as a graph structure using word correlation analysis. Our system relies on the
analysis of words occurrence, and co-occurrence statistics on each level of doc-
uments. First, it performs the occurrence frequency analysis to calculate word’s
initial importance score. Second, it analyzes the strength of connection among
words by performing the adjacent correlation analysis. The adjacent correlation
score is useful for calculating the impact score that a word gives or receives dur-
ing the transitive correlation analysis. Then, our system performs importance
score analysis to calculate the final score combining the initial importance score
and the maximum transitive correlation score. Finally, a graph structure can
be constructed from the importance scores and correlation scores. We have also
described the usability of our graph structure for storing important information
and retrieving relevant documents. Experimental results have shown that our
system can give a considerably accurate result and perform well in analyzing
large amount of documents.
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