
Efficiently Evaluating Range-Constrained
Spatial Keyword Query on Road Networks

Wengen Li1, Jihong Guan1(B), and Shuigeng Zhou2

1 Department of Computer Science and Technology,
Tongji University, Shanghai, China

lwengen@gmail.com, jhguan@tongji.edu.cn
2 School of Computer Science, Fudan University, Shanghai, China

sgzhou@fudan.edu.cn

Abstract. With the rapid development of geo-positioning technologies,
spatial information retrieval plays an important role in a wide spectrum
of applications, e.g., online maps and location-based services. Specifically,
spatial keyword query (SK query), considering both spatial proximity to
the query location and textual relevance to the query keywords, is now a
hot research topic in database community. This paper addresses a specific
type of SK query, termed range constrained spatial keyword query (RC-
SK query), which searches for all the POIs (points of interest) whose
textual description is relevant to the query keywords within a specified
area. Though RC-SK query has received extensive studies in Euclidean
space, little is done to deal with it on road networks. In this paper,
alternative approaches with different indexing strategies are proposed to
solve this problem. Extensive empirical studies on multiple real datasets
demonstrate the efficiency of these proposed approaches.

Keywords: Range-constrained spatial keyword query · Road networks ·
Hierarchy indexing

1 Introduction

The rapid development of techniques for both geo-positioning and mobile com-
munication has made location aware query a necessary part in many applications.
In this paper, we consider a specific type of such query called range constrained
spatial keyword query, RC-SK query for short, on road networks. Concretely, a
RC-SK query, specified with a spatial location and a set of query keywords, is
targeted for finding all the POIs whose textual relevance to the query keywords
is larger than a specified threshold and location is within a specified distance
to the query location. For instance, a visitor poses a query to search for all the
banks offering exchange service within 2 km from his or her current location.
Here, a bank is a POI with a spatial location (e.g., longitude and latitude) and
a piece of textual description about the services it offers.

Actually, there have been some works on RC-SK query in Euclidean space. In
reality, however, people’s trajectories are usually constrained by road networks.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 283–295, 2014.
DOI: 10.1007/978-3-662-43984-5 21, c© Springer-Verlag Berlin Heidelberg 2014

284 W. Li et al.

v1

bank

Mail Box

Industrial
Bank

Shijia
Hotel

East
Asia Art

Nestle Café

Art
Boutique

q

o2 o6o4

o7

o8

o9
o1

o10

o12

o11

o3

o5

v2

v3

v5

v6

v4
v7 v9 v10

v8

v11

v13

v12

v14

Mail Box

Development
Bank

Chinese
Restaurant

Industrial
Bank

Hilton
Hotel

Mail
Box

12

1.5

1.5

1.5

1.5
2

1.5

1.51.5
1.5

1.5

1.5

2

1.5

1.5

1 11

1
1

Fig. 1. An example of RC-SK query. Here, dis(q, o2) = 2.5.

Figure 1 illustrates an example of RC-SK query on a small road network which
has 14 vertices vi(i = 1, . . . , 14) and 12 POIs oj(j = 1, . . . , 12) denoted as
black grids and circles, respectively. Each edge is labeled with its length. The
query q, illustrated by a grey filled circle, searches for all the banks within 2 km.
In Euclidean space, both o2 and o4 will be returned as the result. However, we
cannot reach o2 within 2 km along the road network. Hence, it is more practicable
to conduct RC-SK query based on network distance than Euclidean distance.

However, conducting RC-SK query on road networks is much more challeng-
ing than that in Euclidean space because the shortest path between query loca-
tion and any candidate POI should be computed. Especially for a larger query
range, we need to enumerate many POIs and compute their shortest distances
to the query location.

In this paper, three approaches are proposed to deal with RC-SK query on
road networks. The first one is expansion-based approach (EA), a baseline app-
roach, which traverses the road network from the query location with the same
flavor as Dijkstra’s algorithm. The second approach is Euclidean heuristic app-
roach (EHA) which is an improvement of EA approach and employs Euclidean
heuristic to accelerate query processing. As both EA and EHA have to traverse
the road network vertex by vertex, they are inefficient for a large query range.
To solve this problem, the third approach called Rnet Hierarchy [1] based app-
roach (RHA) is proposed. RHA partitions the whole road network into a group
of interconnected subnets and organizes them in a hierarchy structure, which
greatly improves the query efficiency.

The remainder of this paper is organized as follows. Section 2 reviews the
related work and Sect. 3 formally defines the problem. Sections 4–6 elaborate
EA, EHA and RHA, respectively. Section 7 empirically evaluates the proposed
approaches and Sect. 8 concludes the paper.

2 Related Work

Generally, there are two types of widely used spatial keyword queries [7], i.e., top-
k spatial keyword query (top-k SK query) [13,14], searching for the k best POIs
based on both spatial proximity and textual relevance, and range-constrained
spatial keyword query (RC-SK query) [8,16], searching for all the POIs satisfying
the required textual relevance within a specified area.

Efficiently Evaluating RC-SK Query on Road Networks 285

Table 1. Hybrid indices.

References Hybrid index Spatial index Textual index

[15] IR2-tree R-tree Signature file
[11] IR-tree R-tree Inverted file
[8,16] KR*-tree R*-tree Inverted file
[18] bR*-tree R*-tree Bitmap

During the past decade, RC-SK query has received extensive studies in
Euclidean space. The original solution [8] to RC-SK query retrieves all the POIs
within the query range area and conducts a detailed examination on these POIs
based on their textual relevance, which is inefficient for large-size datasets. To
solve this problem, previous works try to embed traditional textual indices, such
as inverted file and signature file [12] into an R-tree [9], a widely-used index
structure for multi-dimensional data, or its variants. Table 1 shows major hybrid
schemes that merge text index and spatial index.

Almost all the proposed approaches for RC-SK query in Euclidean space are
based on these hybrid indices. During query processing, spatial proximity and
textual relevance are computed simultaneously, which make it efficient to prune
irrelevant branches as soon as possible. However, all these index structures and
processing algorithms are devised for spatial keyword queries in Euclidean space
and cannot be directly used for RC-SK query on road networks.

In addition, Rocha-Junior et al. [10] proposed several efficient approaches to
address top-k SK query on road networks, which is the most related work to
ours. The framework of their overlay approach is similar to that of our RHA.
However, both the partition strategy and index structure of RHA are different
from those of the overlay approach. More importantly, we aim at evaluating
RC-SK query instead of top-k SK query on road networks.

3 Problem Statement

Formally, a road network is represented as an undirected graph G = (V,E),
where V and E are the sets of vertices and edges, respectively. Each vertex
v ∈ V represents a road intersection or a road endpoint; each edge ei,j ∈ E(i �= j)
represents the road segment connecting vi and vj and its length is denoted as
|ei,j |. The distance between two vertices u and v, dis(u, v), is the length of the
shortest path between them.

A POI o is represented as o = (l, e, d,K), where o.l is the spatial location
consisting of longitude and latitude, o.e is the edge on which o resides, o.d is the
distance from o.l to the beginning vertex of o.e, and o.K is a set of keywords
which describe the details of o.

A RC-SK query q over G is defined as q = (l,K, τ, r), where q.l is the query
location, q.K is a set of query keywords, q.τ ∈ (0, 1] is a predefined textual

286 W. Li et al.

relevance threshold and q.r specifies the query range. The answers to q are the
set of POIs on G such that each of them satisfies

dis(o.l, q.l) ≤ q.r ∧ θ(o.K, q.K) ≥ q.τ

where dis(o.l, q.l) is the distance between o.l and q.l, θ(o.K, q.K) is the textual
relevance between o.K and q.K and defined as follows [3].

θ(o.K, q.K) =

∑
k∈q.K wk,o.K · wk,q.K

√∑
k∈o.K (wk,o.K)2 · ∑

k∈q.K (wk,q.K)2
(1)

where wk,o.K = 1+ln(fk,o.K), fk,o.K is the occurrences of query keyword k ∈ q.K

in o.K; wk,q.K = ln(1 + |P |
dfk

), where |P | is the number of POIs on G, dfk is the
number of POIs containing k.

Although the definition above and the following approaches are based on
undirected road networks, they can be extended to directed road networks with
only a little modification.

4 The Expansion-Based Approach

This baseline approach processes RC-SK query in an expansion fashion like
Dijkstra’s algorithm.

4.1 Index Structure

An R*-tree [2] is employed to index all edges in E as illustrated in Fig. 2 where
each edge is represented as a minimum bounding rectangle that totally encloses
it. With the help of the R*-tree, the edge on which q.l resides can be quickly
determined with a spatial point query.

R*-tree

……

e1 e2 en-1 en……

Fig. 2. R*-tree for edges.

(vx, Inv(vx), Padj)

…
…

 vi ex,i |ex,i| Inv(ex,i)

……

……

……

B+-tree vj ex,j |ex,j| Inv(ex,j)

Fig. 3. Index for road networks.

Meanwhile, a B+-tree is used to index the modified adjacent lists as shown
in Fig. 3 which keeps the connectivity of G. Each entry in leaf node is a triple

Efficiently Evaluating RC-SK Query on Road Networks 287

(vx, Inv(vx), Padj), where vx is a vertex, Inv(vx) is a pointer to the inverted
file [3] (called vertex inverted file) which covers all the POIs on vx’s adjacent
edges. Padj is another pointer pointing to the adjacent list of vx. Each entry in
the adjacent list is a quadruple (vi, ex,i, |ex,i| , Inv(ex,i)), where vi is a neighbor
vertex of vx, ex,i is the edge between vx and vi with length |ex,i|, and Inv(ex,i) is
a pointer to the inverted file (called edge inverted file) covering all POIs on ex,i.

4.2 Query Processing

Initially, a priority queue U is created to store visited vertices during expansion
based on their network distances to q.l. Meanwhile, a list L is created to store
query results. First, the edge ei,j on which q.l resides is located by using the R*-
tree built for edges. Then a verification is conducted on ei,j to check whether it
contains any POI whose textual relevance to q.K is larger than q.τ . Next, both vi
and vj are inserted into U with their distances to q.l. By obtaining vertices from
U and checking their adjacent edges, we can traverse all edges within q.r from
q.l and verify them in the same way as we do for ei,j . During the verification,
POIs satisfying the textual relevance threshold are added to L.

Consider the query q over the road network in Fig. 1, where q.l is the filled
circle, q.K = “bank”, q.r = 2. For presentation simplicity, we ignore q.τ and only
require that each returned POI contains q.K. First, we find that q.l is located
on e1,5 which has no desirable POIs. Then, v1 and v5 are inserted into U with
(v5, 0.5) and (v1, 1.5), respectively. Here, we assume |q.l, v1| = 1.5 and |q.l, v5| =
0.5. Next, we get (v5, 0.5) from U . By checking the inverted file Inv(v5) for v5,
we find that e5,4 contains query keyword “bank”. Then Inv(e5,4) is checked and
o4 is inserted into L. As the distance from q.l to v4 is 2, we do not search beyond
v4, which is same for v6 and v7. Following that, we get (v1, 1.5) from U and
its adjacent edges e1,2 and e1,3 are checked, and no POIs (assume |o2, v1| = 1,
we have dis(q.l, o2) = 2.5 > 2) are inserted into L. Now U is empty and the
algorithm terminates. Finally, we get the query result L = 〈o4〉.

5 The Euclidean Heuristic Approach

EA is efficient enough for RC-SK queries with a small q.r. However, if q.r is very
large and numerous edges and POIs are covered, EA will incur a considerable
overhead to obtain all desirable POIs because it has to verify the inverted files of
all relevant edges (containing any query keyword). In general, however, a large
portion of keywords cover only a small number of POIs. In such a situation, to
check the inverted files for all relevant edges is unnecessary. To overcome this
drawback, we propose the Euclidean heuristic approach (EHA).

Intuitively, Euclidean distance between any two vertices on a road network is
always smaller, if not equal to, than the network distance between them. There-
fore, if a POI belongs to the query result based on network distance, then it must
be in the query result based on Euclidean distance. Based on this observation,
we propose the EHA to first retrieve all the candidate POIs according to any

288 W. Li et al.

state-of-the-art Euclidean distance based approach. Here we employ IR-tree [11]
which augments each node of the R-tree with an inverted file. The set of edges
having candidate POIs (satisfying textual relevance threshold) is recorded as Eq.
During the expansion process, we avoid verifying the inverted file of a particu-
lar edge by checking whether it is contained in Eq. Thus, edges containing no
desirable POIs are filtered. EHA is implemented based on EA by adding a SK
query on the IR-tree at the beginning and an edge set check during expansion.
We omit the detail here due to space limit.

6 The Rnet Hierarchy-Based Approach

Essentially, both EA and EHA expand from one vertex to another on G within
q.r, which makes it very expensive to evaluate RC-SK queries with a large q.r. To
solve this problem, we introduce the Rnet Hierarchy [1] to index road networks
and further propose Rnet Hierarchy-based approach, RHA for short.

6.1 Indexing Structure

Rnet Hierarchy partitions a road network into connected subnets called Rnets
(regional nets) and organizes them in a hierarchy structure as depicted in Fig. 4.
An Rnet R is defined as (VR, ER, BR) where VR, ER, and BR are the sets of
vertices, edges and border vertices of R, respectively. BR are the vertices shared
by two or more Rnets (e.g., v5). In Fig. 4, there are four Rnets R11, R12, R21

and R22 at level 1 and two larger Rnets R1 and R2 at level 2. R1 encloses R11

and R12, and R2 encloses R21 and R22. Level 0 is the original road network.
Therefore, a road network is organized as a group of connected Rnets at each
level.

In order to skip over Rnets, shortcut is introduced. A shortcut is the shortest
path between two border vertices of an Rnet, e.g., SP (v5, v9). With the help of
shortcuts on different levels, a search expands quickly with different step sizes.
Here, a challenge is how to partition a road network into a group of Rnets with
a minimum number of border vertices. In this paper, we first consider the equal-
size partition [1], which adopts the geometric approach [4] and KL algorithm
[5], to partition the whole road network into Rnets of the similar size. Equal-size

v1

v2
v3

v5

v6

v4

v7
v9

v10

v8

v11

v13

v12

v14

1

1.5

1.5

2
1.5 1.5

1
1

1.5

1.5

1
2 1.5

1.5

1

1.5
2

1.5

1.5

R11 R12 R21 R22

R1 R2

Level 0

Level 1

Level 2

1

2.5

Fig. 4. An example of Rnet Hierarchy of a road network.

Efficiently Evaluating RC-SK Query on Road Networks 289

partition first partitions the whole road network into two parts with almost the
same number of edges, and then tunes them by exchanging edges to reduce the
border vertices. By doing this recursively, G is partitioned into a set of Rnets
with almost the same size.

However, the partition method above ignores the road network’s semantics.
In reality, POIs on road networks are often clustered [6] in some hot areas like
commercial centers. For example, area around v5 in Fig. 1 has more POIs than
areas around other vertices (e.g., v13). Figures 5 and 6 display the POI distrib-
ution on the road network of London. Obviously, most vertices have less than
5 POIs (POIs residing on the edges adjacent to the vertex). Accordingly, we
consider partitioning a road network based on the distribution of POIs, i.e.,
distribution-aware partition and aim to partition as many as POIs into the same
Rnet. To this end, we first collect all the vertices with more POIs than a specified
parameter (e.g., 10) and then merge these vertices to form larger areas based on
their spatial proximity until a Rnet is generated. Meanwhile, the other areas are
partitioned by using the equal-size partition.

Fig. 5. POI distribution of London

0 5 10 15 20 25
-500

0

500

1000

1500

2000

2500

3000

3500

#V
er

te
x

#Associated Objects

Fig. 6. POI distribution statistics

Rnet Hierarchy is organized using a B+-tree as illustrated in Fig. 7. The B+-
tree indexes all vertices based on their identifiers and each entry in a leaf node
points to an adjacent list or a hierarchy tree. Concretely, if a vertex vi (e.g., v2)
is not a border vertex, the entry for vi has a pointer pointing to an adjacent list
just as EA. Otherwise, the entry for vi has a pointer pointing to a hierarchy tree
which records the organization of all the Rnets associated with vi at different
levels. For example, v5 is a border vertex of R11 and R12, and it has a hierarchy
tree Tv5 . The root node of Tv5 contains two entries ER11 (for R11) and ER12

(for R12) and a pointer pointing to the inverted file for them. In a hierarchy
tree, each entry in the intermediate nodes also stores all the shortcuts within the
corresponding Rnet while each entry in the leaf nodes points to the adjacent list
of the border vertex.

In addition, to utilize Euclidean heuristic to quickly find out those Rnets
that contain desirable POIs, we also try to organize all Rnets at different levels
into a variant IR-tree as illustrated in Fig. 8.

290 W. Li et al.

Fig. 7. Index for the Rnet Hierarchy

ER1 ER2

ER11 ER12 ER21 ER22

IR-tree
Inv

InvInv

Fig. 8. IR-tree for Rnets

6.2 Query Processing

Given a query q, RHA searches for POIs in an expanding fashion as detailed in
Algorithm 1. If a vertex vi is not a border vertex, it proceeds in the same way
as EA. Otherwise, the hierarchy tree Tvi

of vi is checked. First, we examine the
inverted file for the root node of Tvi

to check whether it contains desirable POIs.
If not, we skip over the entire Rnet through the shortcuts without checking its
inner edges. Otherwise, we check its child nodes to further retrieve desirable
POIs.

Algorithm 1. The Rnet Hierarchy based Approach
Input: G = (V, E), q = (q.l, q.K, q.τ, q.r)
Output: Any POI o such that dis(o.l, q.l) ≤ q.r ∧ θ(o.K, q.K) ≥ q.τ
1: U=newPriorityQueue(); // used to store visited vertices during processing
2: L=newList(); // used to store final result
3: eq=locateEdge(q.l);
4: U .enqueue(eq.v1, |q.l, eq.v1|);
5: U .enqueue(eq.v2, |q.l, eq.v2|);
6: checkEdge(eq); // check Inv(eq)
7: while not U .isEmpty() do
8: v=U .Dequeue();
9: if not v.isBorderVertex() // v is not a border vertex

10: for each adjacent edge e of v
11: if e contains q.K
12: checkEdge(e);
13: if(v.currentDistance+e.length< q.r)
14: U .enqueue(e.anotherVertex);
15: else // v is a border vertex
16: check v.HierarcyTree;
17: return L;

Efficiently Evaluating RC-SK Query on Road Networks 291

Table 2. Statistics of datasets.

Attributes Dublin London Australia BritishIsles

#vertices 62,975 209,406 1,223,171 3,760,213
#edges 82,730 282,267 1,682,182 4,865,094
#POIs 5,297 34,341 70,064 300,891
#keywords 15,216 97,824 193,106 842,369
#distinct keywords 3,563 12,522 18,789 60,558

Table 3. Parameters in experiments.

Parameters Values

q.r 1, 3, 5, 7, 9 (km)
q.τ 0.3, 0.5, 0.7, 0.9, Boolean
|q.K| 1, 2, 3, 4, 5
Datasets Dublin, London, Australia, British Isles
Partition strategy Equal-size partition , Distribution-aware partition

For example, we consider the same query in Fig. 1 with a larger q.r = 3.
First, we verify the edge e1,5 on which q.l resides. Then, (v5, 0.5) and (v1, 1.5)
are inserted into U . Next, we obtain (v5, 0.5) from U . As v5 is a border vertex,
we evaluate R11 and R12. R11 contains bank and a detailed examination is con-
ducted. Then e5,4 is checked and o4 is added to L. Meanwhile, (v4, 2) is inserted
into U . R12 contains no desirable POIs and its shortcuts from v5 to v8 and v9
go beyond the query range. Then, we get (v1, 1.5) and (v4, 2) in order, and no
more POIs are added to L. Finally, the result L = 〈o4〉 is returned.

As an expected improvement, we employ the IR-tree in Fig. 8 to accelerate
query processing by getting all Rnets containing desirable POIs in advance,
which avoids checking the inverted file for each Rnet.

7 Experimental Evaluation

7.1 Setup

The performance of proposed approaches is evaluated on four real datasets1

which are road networks of Dublin, London, Australia, and British Isles, respec-
tively. Table 2 displays some statistics of the four datasets. For each dataset, we
randomly generate 500 locations within the road network area as query loca-
tions and 500 sets of keywords of size 1, 2, 3, 4, and 5, separately. Table 3 lists
the parameters used in the experiments and marks their default values in bold.
Experiments run on a PC with a 3.1 GHz Intel processor and a 4 GB RAM. The
index structures of the three approaches are disk-resident and the buffer is set
at 4 MB.

1 http://www.idi.ntnu.no/∼joao/publications/EDBT2012/

http://www.idi.ntnu.no/~joao/publications/EDBT2012/

292 W. Li et al.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

R
es

po
ns

e
Ti

m
e

(S
ec

)

Query Range (km)

EA
EHA
RHA

(a) Vary q.r

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Textual Relevance

EA EHA RHA

(b) Vary q.τ

1 2 3 4 5
1

2

3

4

5

6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Number of Keywords

EA EHA RHA

(c) Vary |q.K|

Fig. 9. Response time while varying q.r, q.τ , and |q.K|

7.2 Experimental Results

Varying q.r. Figure 9(a) illustrates the response time while varying q.r. EA
performs well for queries with a small q.r. With the increase of q.r, however,
the response time increases rapidly because EA has to expand all the edges
within q.r from q.l. Compared to EA, EHA performs better because it avoids
checking the inverted file for every edge that contains any query keyword. This
differs from the conclusion in [17] that network expansion algorithms performs
better than Euclidean distance heuristic based algorithms, because EHA just
uses Euclidean heuristic to avoid unnecessary edge examination. However, both
EA and EHA expand vertex by vertex, which inevitably incurs a high overhead.
RHA performs much better than EA and EHA because it bypasses the Rnets
containing no desirable POIs and avoids a detailed examination on their inner
edges. Additionally, with the help of different layers and different size of Rnets,
RHA works well with different q.r.

Varying q.τ . Figure 9(b) shows the response time while varying the textual
relevance q.τ . A smaller q.τ covers more POIs and it consumes more time to
evaluate these POIs. Both EA and EHA cost more than 3 s to evaluate a RC-SK
query while varying q.τ from 0.3 to 0.9. As for RHA, only about one second is
required. Because no textual relevance is computed, Boolean query (q.τ = 1)2

takes less time than other queries.

Varying|q.K |. Figure 9(c) presents the response time while varying the number
of query keywords |q.K|. With the increase of |q.K|, both EA and EHA have
to verify more POIs relevant to q.K, which leads to an increase in query time.
Although RHA also needs more time to evaluates RC-SK queries with more
keywords, the increase of response time is very slow because RHA computes the
textual relevance between an Rnet and q.K, and there is no detailed examination
if the relevance is less than q.τ . Therefore, increasing query keywords affects only
a small portion of Rnets and the other Rnets are still skipped through shortcuts.

2 This value is just a label for Boolean query instead of a textual relevance value.

Efficiently Evaluating RC-SK Query on Road Networks 293

Dublin London Australia British
0

1

2

3

4

5

6

7
R

es
po

ns
e

Ti
m

e
(S

ec
)

Datasets

EA EHA RHA

(a) Response time

Dublin London Australia British
0

3000

6000

9000

12000

15000

18000

Ex
pa

nd
ed

 E
dg

es

Datasets

EA&EHA RHA

(b) Expanded edges

Dublin London Australia British
0

200

400

600

800

1000

1200

In
de

x
Si

ze
 (M

B
)

Datasets

EA EHA RHA

(c) Index size

Fig. 10. Response time, expanded edges and index size for different datasets

Dublin London Australia British
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Datasets

RHA ERHA

(a) ERHA

Dublin London Australia British
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Datasets

RHA-E RHA-D

(b) Response time

Dublin London Australia British
0

1000

2000

3000

4000

5000

Ex
pa

nd
ed

 E
dg

es

Datasets

RHA-E EHA-D

(c) Expanded edges

Fig. 11. Response time using ERHA, response time and expanded edges while varying
partition strategies

Different Datasets. Figure 10(a) shows the response time for different datasets.
RHA evaluates RC-SK queries on the four datasets of different size in about one
second. We can find that the response time on Australia network is smaller than
that on London network. This is because the London network is denser than
Australia network. In general, given the same query range, London network usu-
ally has more POIs and edges than Australia network. This can also be seen
from Fig. 10(b), which illustrates the number of edges expanded during query
processing.

Index Size. Figure 10(c) shows the index size of the three approaches on dif-
ferent datasets. EHA has a larger index size than EA because it constructs an
IR-tree for all POIs on the road network. RHA and EHA have all most the same
index size.

Euclidean Heuristic Based RHA. Figure 11(a) presents the response time
of the Euclidean heuristic based RHA (ERHA) that indexes all Rnets with an
IR-tree as illustrated in Fig. 8. As RHA indexes a road network in a hierarchy
and is already able to prune unrelated Rnets, RHA and ERHA have no much
difference in response time.

294 W. Li et al.

Partition Strategy. Figure 11(b) and (c) illustrate the response time and
number of expanded edges while distribution-aware partition (called RHA-D)
is adopted. Compared to RHA using equal-size partition (RHA-E), RHA-D has
a better performance. By partitioning a road network based on POI distribu-
tion, some Rnets have more POIs than others and accordingly have more key-
words. Besides, areas containing few POIs can be partitioned into Rnets of larger
granularity. Hence, this partition strategy makes RHA-D more advantageous in
pruning unrelated Rnets than RHA-E.

8 Conclusion

In this paper, we define the RC-SK query on road networks and devise three
approaches, i.e., EA, EHA and RHA, to deal with this problem. Both EA and
EHA are suitable for RC-SK queries with a small query range while RHA also
works excellently for RC-SK queries with a large query range.

In the future, we will consider some temporal spatial keyword queries over
road networks because it is quite important for a city with heavy traffic.

Acknowledgement. This work was supported by National Natural Science Foun-
dation (NSFC) under grant No. 61373036 and the Research Innovation Program of
Shanghai Municipal Education Foundation under grant No. 13ZZ003.

References

1. Lee, K.C.K., Lee, W.-C., Zheng, B.: Fast object search on road network. In: Pro-
ceedings of EDBT, pp. 1018–1029 (2009)

2. Beckman, N., Kriegel, H.-P., Scheider, R., Seeger, B.: The R*-tree: an efficient and
robust access method for points and rectangles. In: Proceedings of SIGMOD, pp.
322–331 (1990)

3. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv.
38(2), 1–56 (2006)

4. Huang, Y.-W., Jing, N., Rundensteiner, E.A.: Effective graph clustering for path
queries in digital map. In: proceedings of CIKM, pp. 215–222 (1996)

5. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell
Syst. Tech. J. 49(2), 291–308 (1970)

6. Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: Proceedings
of SIGMOD, pp. 443–454 (2004)

7. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D.,
Yiu, M.L.: Spatial keyword querying. In: Atzeni, P., Cheung, D., Ram, S. (eds.)
ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 16–29. Springer, Heidelberg
(2012)

8. Zhou, Y., Xie, X., Wang C., Gong, Y., Ma, W.: Hybrid index structures for
location-based web search. In: Proceedings of CIKM, pp. 155–162 (2005)

9. Guttman, A.: R-trees: a dynamic index structures for spatial searching. In: Pro-
ceedings of SIGMOD, pp. 47–57 (1984)

10. Rocha-Junior, J.B., Norvag, K.: Top-k spatial keyword queries on road networks.
In: Proceedings of EDBT, pp. 168–179 (2012)

Efficiently Evaluating RC-SK Query on Road Networks 295

11. Li, Z., Lee, K.C.K., Zheng, B., Lee, W.-C., Lee, D.L., Wang, X.: IR-tree: an efficient
index for geographic document search. IEEE TKDE 23(4), 585–599 (2011)

12. Faloutsos, C., Christodoulakis, S.: Signature files: an access method for documents
and its analytical performance evaluation. ACM TODS 2(4), 267–288 (1984)

13. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørv̊ag, K.: Efficient processing of
top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento,
M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp.
205–222. Springer, Heidelberg (2011)

14. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. In: Proceedings of SIGMOD, pp. 337–348 (2009)

15. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
Proceedings of ICDE, pp. 656–665 (2008)

16. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (SK)
queries in geographic information retrieval (GIR) systems. In: Proceedings of
SSDBM, pp. 1–10 (2007)

17. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: Proceedings of VLDB, pp. 802–813 (2003)

18. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword
search in spatial databases: towards searching by document. In: Proceedings of
ICDE, pp. 688–699, (2009)

	Efficiently Evaluating Range-Constrained Spatial Keyword Query on Road Networks
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 The Expansion-Based Approach
	4.1 Index Structure
	4.2 Query Processing

	5 The Euclidean Heuristic Approach
	6 The Rnet Hierarchy-Based Approach
	6.1 Indexing Structure
	6.2 Query Processing

	7 Experimental Evaluation
	7.1 Setup
	7.2 Experimental Results

	8 Conclusion
	References

