
Wook-Shin Han · Mong Li Lee
Agus Muliantara · Ngurah Agus Sanjaya
Bernhard Thalheim · Shuigeng Zhou (Eds.)

 123

LN
CS

 8
50

5

19th International Conference, DASFAA 2014
International Workshops: BDMA, DaMEN, SIM³, UnCrowd
Bali, Indonesia, April 21–24, 2014, Revised Selected Papers

Database Systems
for Advanced Applications

Lecture Notes in Computer Science 8505

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7409

http://www.springer.com/series/7409

Wook-Shin Han • Mong Li Lee
Agus Muliantara • Ngurah Agus Sanjaya
Bernhard Thalheim • Shuigeng Zhou (Eds.)

Database Systems
for Advanced Applications

19th International Conference, DASFAA 2014
International Workshops: BDMA,
DaMEN, SIM3, UnCrowd
Bali, Indonesia, April 21–24, 2014
Revised Selected Papers

123

Editors
Wook-Shin Han
Pohang University of Science

and Technology (POSTECH)
Pohang
Korea, Republic of (South Korea)

Mong Li Lee
National University of Singapore
Singapore
Singapore

Agus Muliantara
Ngurah Agus Sanjaya
Udayana University
Badung
Indonesia

Bernhard Thalheim
Institut für Informatik
Christian-Albrechts-Universität zu Kiel
Kiel
Germany

Shuigeng Zhou
Fudan University
Shanghai
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-662-43983-8 ISBN 978-3-662-43984-5 (eBook)
DOI 10.1007/978-3-662-43984-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934170

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to Bali and the workshops held in conjunction with the 19th International
Conference on Database Systems for Advanced Applications (DASFAA 2014).

The objective of the workshops associated with DASFAA 2014 is to give partic-
ipants the opportunity to present and discuss emerging hot topics related to database
systems and applications. For this end, we selected the following four workshops:

1. The Second International DASFAA Workshop on Big Data Management and
Analytics (BDMA 2014)

2. The Third International Workshop on Data Management for Emerging Network
Infrastructure (DaMEN 2014)

3. The Third International Workshop on Spatial Information Modeling, Management
and Mining (SIM3 2014)

4. DASFAA Workshop on Uncertain and Crowdsourced Data (UnCrowd 2014)

This proceedings contain selected workshop papers. We would like to express our
sincere thanks to the hard work of the individual workshop organizers for organizing
their workshops, handling the paper submissions, reviewing, and selecting workshop
papers to achieve a set of excellent programs.

April 2014 Wook-Shin Han
Ngurah Agus Sanjaya

Shuigeng Zhou

DASFAA 2014 Workshop Organizers

Workshop Co-chairs

Wook-Shin Han POSTECH, South Korea
Ngurah Agus Sanjaya University Udayana, Indonesia
Shuigeng Zhou Fudan University, China

Publication Co-chairs

Mong Li Lee National University of Singapore, Singapore
Agus Muliantara University Udayana, Indonesia
Bernhard Thalheim Christian-Albrechts-University, Kiel, Germany

Second International DASFAA Workshop on Big Data
Management and Analytics (BDMA)

Workshop Co-organizers

Laurent d’Orazio Blaise Pascal University, France
Bonghee Hong Pusan National University, Korea
Cyrus Shahabi University of Southern California, USA
Ge Yu Northeastern University, China

Program Committee

Mirna Adriani Universitas Indonesia, Indonesia
Hung Ngo Ba Cantho University, Vietnam
Peter Baumann Jacobs University Bremen, Germany
Yeow Wei Choong HELP University, Malaysia
Jrme Darmont Université de Lyon, France
Xiaoyong Du Renmin University, China
Hong Gao Harbin Institute of Technology, China
Le Gruenwald University of Oklahoma, USA
Wook-Shin Han KyungPook National University, Korea
Tan Hanh Posts and Telecommunications Institute of

Technology Ho Chi Minh City, Vietnam
Byeong-Soo Jeong Kyung Hee University, Korea
Seon Ho Kim University of Southern California, USA
Jinho Kim Kangwon National University, Korea
Joonho Kwon Pusan National University, Korea

Dominique Laurent University of Cergy Pontoise, France
Sang-goo Lee Seoul National University, Korea
Sangjun Lee Soongsil University, Korea
SangKeun Lee Korea University, Korea
Yoon Joon Lee KAIST, Korea
Zhanhuai Li Northwestern Polytechnical University, China
Mondher Maddouri Taibah University, Tunisia
Philippe Rigaux CNAM Paris, France
Mohan Sad Hacid Université de Lyon, France
Stefanie Scherzinger Hochschule Regensburg, Germany
Hyoseop Shin Konkuk University, Korea
Ha-Joo Song Pukyong National University, Korea
Nicolas Spyratos University of Paris-South, France
Maria Del Pilar Vilamil Universidad de Los Andes, Colombia
Guoren Wang Northeastern University, China
Jongwook Woo California State University, USA
Jae Soo Yoo Chungbuk National University, Korea
Aoying Zhou Eastern China Normal University, China

Third International Workshop on Data Management
for Emerging Network Infrastructure (DaMEN)

Workshop Co-organizers

Rui Chen Hong Kong Baptist University, Hong Kong,
SAR China

Minqi Zhou East China Normal University, China

Program Committee

Gergely Acs Inria, France
Rui Chen Hong Kong Baptist University, Hong Kong,

SAR China
Zhihong Chong Southeast University, China
Haibo Hu Hong Kong Baptist University, Hong Kong,

SAR China
Nonman Nohanmmed McGill University, Canada
Weining Qian East China Normal University, China
Kai Qin RMIT University, Australia
Hongzhi Wang Harbin Institute of Technology, China
Fang Wei China Mobile Research, China
Linhao Xu IBM China Research Lab, China
Ying Yan Microsoft Research Asia, China
Bin Yang Aarhus University, Denmark
Rong Zhang East China Normal University, China
Minqi Zhou East China Normal University, China

VIII DASFAA 2014 Workshop Organizers

Third International Workshop on Spatial Information Modeling,
Management and Mining (SIM3)

Workshop Co-organizers

Xin Wang University of Calgary, Canada
Jun Luo Huawei Noahs Ark Laboratory, Hong Kong,

SAR China
Jihong Guan Tongji University, China

Program Committee

Michela Bertolotto University College Dublin, Ireland
Elena Camossi University College Dublin, Ireland
Christophe Claramunt Naval Academy Research Institute, France
Haiquan Chen Valdosta State University, USA
Ke Deng Huawei Noah’s Ark Laboratory, Hong Kong,

SAR China
Georg Gartner Vienna University of Technology, Austria
Yan Huang University of North Texas, USA
Yoshiharu Ishikawa Nagoya University, Japan
Bin Jiang University of Gävle, Sweden
Songnian Li Ryerson University, Canada
Xiang Li East China Normal University, China
Steve Liang University of Calgary, Canada
Eleni Mangina University College Dublin, Ireland
Gavin Mcardle National University of Ireland Maynooth, Ireland
Wolfgang Reinhardt Universität der Bundeswehr Mänchen, Germany
Markus Schneider University of Florida, USA
Ruisheng Wang University of Calgary, Canada
Shuliang Wang Wuhan University, China
Ling Yin Shenzhen Institutes of Advanced Technology,

CAS, China
Qiming Zhou Hong Kong Baptist University, Hong Kong,

SAR China
Danielle Ziebeline Joseph Fourier University, France

DASFAA Workshop on Uncertain and Crowdsourced Data
(UnCrowd)

Workshop Organizer

Pierre Senellart Télécom ParisTech, France

DASFAA 2014 Workshop Organizers IX

Program Committee

Talel Abdessalem Télécom ParisTech, France
Yael Amsterdamer Tel Aviv University, Israel
Zhifeng Bao National University of Singapore, Singapore
Bogdan Cautis Université Paris-Sud, France
Reynold Cheng Hong Kong University, Hong Kong, SAR China
Valter Crescenzi Roma Tre University, Italy
Jiaheng Lu Renmin University of China, China
Zongmin Ma Northeastern University, China
Silviu Maniu Hong Kong University, Hong Kong, SAR China
Paolo Merialdo Roma Tre University, Italy
Atsuyuki Morishima University of Tsukuba, Japan
Wilfred Ng Hong Kong University of Science and

Technology, Hong Kong, SAR China
Tuyet Trinh Vu Hanoi University of Science and Technology,

Vietnam
Huayu Wu A*STAR, Singapore

X DASFAA 2014 Workshop Organizers

BDMA 2014 Workshop Organizers’ Message

The Second International DASFAA Workshop on Big Data Management and
Analytics (BDMA 2014) took place on April 21, 2014, in Bali, Indonesia, in
conjunction with DASFAA 2014, which is an annual international database
conference in the Asia-Pacific region. The objective of BDMA 2014 is to create a
dedicated forum to bring together researchers, practitioners, and others to present and
exchange ideas, experiences, and the latest research results in big data management
and analytics. BDMA 2014 provided an excellent opportunity for researchers from
academia and industry as well as practitioners to showcase the latest advances in this
area and to discuss future research directions and challenges on big data management
and analytics. The workshop’s scope includes processing, management, analytics,
visualization, integration, and modeling of big data.

We solicit technical papers and position papers (just to include problem
identifications and novel approaches to problem solving) that address all important
aspects of information technologies for processing and analyzing big data. Topics of
interest include big data analytics and visualization, big data management architec-
tures, big data placement, scheduling, and optimization, programming models for big
data processing, distributed/parallel processing for streaming big data, big data
integration and interoperable big data modeling, real-time processing of streaming big
data, and streaming big data applications and challenges. The workshop attracted 21
submissions from France, Korea, China, and the USA. All submissions were peer
reviewed by at least two Program Committee members to ensure that high-quality
papers were selected. The Program Committee selected 12 papers for inclusion in the
workshop proceedings.

The Program Committee of the workshop consisted of 32 experienced researchers
and experts. We would like to thank the valuable contribution of all the Program
Committee members during the peer-review process. We also would like to
acknowledge all the authors who submitted very interesting and impressive papers
from their work.

April 2014 Laurent d’Orazio
Cyrus Shahabi

Ge Yu
Hong Bonghee

DaMEN 2014 Workshop Organizers’ Message

The emerging network infrastructures such as P2P, mobile and sensor networks, and
cloud computing were once lab toys. Nonetheless, they show strong potential to join
the mainstream in the foreseeable future. While most network-side issues have been
addressed or resolved, the data management issues that arise from the real deployment
of these infrastructures are ever increasing. In particular, challenges associated with
acquiring, storing, processing, and analyzing large-scale data from these heteroge-
neous networks call for novel data management techniques. The inherently dynamic
nature of these networks further poses new research issues, such as privacy and
security. This workshop aims to facilitate the collaboration between researchers in
database and networking areas by presenting cutting-edge research topics and
methodologies.

The Third International Workshop on Data Management for Emerging Network
Infrastructure (DaMEN 2014) was held on April 21, 2014, in Bali, Indonesia, in
conjunction with DASFAA 2014. The overall goal of the workshop was to bring
together those in academia, researchers, and industrial practitioners from computer
science, information systems, network systems, and to provide a forum for recent
advances in the field of emerging network infrastructure, from the perspectives of data
management.

The workshop attracted 12 submissions from Bangladesh and China. All
submissions were peer reviewed by at least three Program Committee members to
ensure that high-quality papers were selected. On the basis of the reviews, the
Program Committee selected seven papers for inclusion in the workshop proceedings.
The Program Committee of the workshop consisted of 28 experienced researchers and
experts. We would like to thank the valuable contribution of all the Program
Committee members during the peer-review process. Also, we would like to
acknowledge the DASFAA 2014 workshop chairs for their great support in ensuring
the success of DaMEN 2014. Last but not least, we appreciate all the authors who
submitted very interesting and impressive papers from their recent work.

April 2014 Minqi Zhou
Rui Chen

SIM3 2014 Workshop Organizers’ Message

Nowadays, spatial data exist pervasively in various information systems and
applications. The unprecedented amount of spatial data that has been amassed and
that is being produced at an increasing speed calls for extensive research on spatial
information modeling, management, and mining. The Third International Workshop
on Spatial Information Modeling, Management and Mining (SIM3-2014) was a half-
day workshop held in conjunction with DASFAA 2014. The workshop provides a
forum for original research contributions and practical experiences of spatial
information modeling, management, and mining. The workshop received ten
submissions from Asian, North America, and Europe. Through careful review by
the Program Committee, five full papers and two short papers were selected for the
presentation and inclusion in the proceedings. The accepted papers are all of excellent
quality and cover topics in spatial data management and mining. We grouped the
seven accepted papers into two sessions. The program covered a wide range of topics
including spatial queries, location-based services and applications, spatial analysis on
collusion data and social networks, and sensor web. A successful workshop requires a
lot of effort from many people. First, we would like to thank the authors for their
contributions, and the Program Committee members for reviewing and selecting
papers. In addition, we appreciate DASFAA 2014 workshop co-chairs Drs. Shuigeng
Zhou, Wook-Shin Han, and Ngurah Agus Sanjaya for the excellent coordination.
Finally, we would like to thank the local Organizing Committee for its wonderful
arrangements.

April 2014 Xin Wang
Jun Luo

Jihong Guan

UnCrowd 2014 Workshop Organizer’ Message

Crowdsourcing systems utilize human power to perform difficult tasks, such as entity
resolution, search, filtering, image matching, or clustering. Typically, data obtained
from crowdsourcing platforms are to be considered as uncertain, because of various
levels of quality obtained by crowd workers. Modeling, reasoning on, and querying
data uncertainty is the general goal of uncertain data management, which has attracted
much attention from the research community.

The objective of UnCrowd 2014, the DASFAA Workshop on Uncertain and
Crowdsourced Data, was to explore the connections between uncertain data
management and crowdsourcing. Three research papers and three vision papers on
crowdsourcing, probabilistic data, and the connections between crowdsourcing and
uncertainty were accepted by the Program Committee, each article being reviewed by
three to four reviewers. The UnCrowd 2014 program also featured a keynote talk by
Prof. Lei Chen, from the Hong Kong University of Science and Technology, on
‘‘Crowdsourcing over Big Data, Are We There Yet?’’.

As PC chair of UnCrowd 2014, I would like to thank the Program Committee for
their contributions to the selection of the UnCrowd program, all authors of submitted
articles, as well as Lei Chen for doing us the honor of being our keynote speaker. We
are also grateful for the help of DASFAA organizers, and for the support of the French
Government, who provided a scholarship for a student to attend the workshop, under
the framework of the CCIPX Stic-Asia project.

April 2014 Pierre Senellart

Contents

Second International DASFAA Workshop on Big Data
Management and Analytics (BDMA)

Meme Media and Knowledge Federation for Exploratory Visual
Analytics of Big Data . 3

Yuzuru Tanaka

Online Data Clustering Using Variational Learning of a Hierarchical
Dirichlet Process Mixture of Dirichlet Distributions 18

Wentao Fan and Nizar Bouguila

Distributed Skyline Computation of Vertically Splitted Databases
by Using MapReduce . 33

Md. Anisuzzaman Siddique, Hao Tian, and Yasuhiko Morimoto

Short-Term Speed Prediction on Urban Highways by Ensemble Learning
with Feature Subset Selection. 46

Mohammad Arif Rasyidi and Kwang Ryel Ryu

Graph Summarization Using Word Correlation Analysis on Large Set
of Documents . 61

Putu Y. Kusmawan and Joonho Kwon

Distributed K-Distance Indexing Approach for Efficient Shortest Path
Discovery on Large Graphs . 75

Jihye Hong, Hyunwook Kim, Waqas Nawaz, Kisung Park,
Byeong-Soo Jeong, and Young-Koo Lee

Customized Information Interface with Web Applications 89
Wookey Lee, Suan Lee, and Jinho Kim

Leveraging Enterprise Application Characteristics to Optimize Incremental
Aggregate Maintenance in a Columnar In-Memory Database 102

Stephan Müller, Paul Möller, and Hasso Plattner

MaiterStore: A Hot-Aware, High-Performance Key-Value Store
for Graph Processing. 117

Dong Chang, Yanfeng Zhang, and Ge Yu

Vertical Bit-Packing: Optimizing Operations on Bit-Packed Vectors
Leveraging SIMD Instructions . 132

Martin Faust, Martin Grund, Tim Berning, David Schwalb,
and Hasso Plattner

http://dx.doi.org/10.1007/978-3-662-43984-5_1
http://dx.doi.org/10.1007/978-3-662-43984-5_1
http://dx.doi.org/10.1007/978-3-662-43984-5_2
http://dx.doi.org/10.1007/978-3-662-43984-5_2
http://dx.doi.org/10.1007/978-3-662-43984-5_3
http://dx.doi.org/10.1007/978-3-662-43984-5_3
http://dx.doi.org/10.1007/978-3-662-43984-5_4
http://dx.doi.org/10.1007/978-3-662-43984-5_4
http://dx.doi.org/10.1007/978-3-662-43984-5_5
http://dx.doi.org/10.1007/978-3-662-43984-5_5
http://dx.doi.org/10.1007/978-3-662-43984-5_6
http://dx.doi.org/10.1007/978-3-662-43984-5_6
http://dx.doi.org/10.1007/978-3-662-43984-5_7
http://dx.doi.org/10.1007/978-3-662-43984-5_8
http://dx.doi.org/10.1007/978-3-662-43984-5_8
http://dx.doi.org/10.1007/978-3-662-43984-5_9
http://dx.doi.org/10.1007/978-3-662-43984-5_9
http://dx.doi.org/10.1007/978-3-662-43984-5_10
http://dx.doi.org/10.1007/978-3-662-43984-5_10

Efficient Streaming Detection of Hidden Clusters in Big Data
Using Subspace Stream Clustering . 146

Marwan Hassani and Thomas Seidl

A Comparison of Systems to Large-Scale Data Access 161
Amin Mesmoudi and Mohand-Saïd Hacid

Third International Workshop on Data Management
for Emerging Network Infrastructure (DaMEN)

A Framework to Measure Storage Utilization in Cloud Storage Systems 179
Xiao Zhang, Wan Guo, Zhanhuai Li, Xiaonan Zhao, and Xiao Qin

Personalized Recommendation via Relevance Propagation on Social
Tagging Graph . 192

Huiming Li, Hao Li, Zimu Zhang, and Hao Wu

Optimizing Pipelined Execution for Distributed In-Memory OLAP System . . . 204
Li Wang, Lei Zhang, Chengcheng Yu, and Aoying Zhou

Hashed-Join: Approximate String Similarity Join with Hashing. 217
Peisen Yuan, Chaofeng Sha, and Yi Sun

Minimizing Explanations of Why-Not Questions . 230
Chuanyu Zong, Bin Wang, Jing Sun, and Xiaochun Yang

HadoopM: A Message-Enabled Data Processing System on Large Clusters . . . 243
Wei Pan, Zhanhuai Li, Bo Suo, and Zhuo Wang

AntiqueData: A Proxy to Maintain Computational Transparency in Cloud. . . 256
Himel Dev, Mohammed Eunus Ali, Tanmoy Sen, and Madhusudan Basak

Third International Workshop on Spatial Information Modeling,
Management and Mining (SIM3)

Monitoring Query Processing in Mobile Robot Databases 271
Kento Sugiura, Arata Hayashi, Tingting Dong, and Yoshiharu Ishikawa

Efficiently Evaluating Range-Constrained Spatial Keyword Query
on Road Networks . 283

Wengen Li, Jihong Guan, and Shuigeng Zhou

A Spatial-Temporal Analysis of Users’ Geographical Patterns
in Social Media: A Case Study on Microblogs . 296

Chao Li, Zhongying Zhao, Jun Luo, Ling Yin, and Qiming Zhou

XX Contents

http://dx.doi.org/10.1007/978-3-662-43984-5_11
http://dx.doi.org/10.1007/978-3-662-43984-5_11
http://dx.doi.org/10.1007/978-3-662-43984-5_12
http://dx.doi.org/10.1007/978-3-662-43984-5_13
http://dx.doi.org/10.1007/978-3-662-43984-5_14
http://dx.doi.org/10.1007/978-3-662-43984-5_14
http://dx.doi.org/10.1007/978-3-662-43984-5_15
http://dx.doi.org/10.1007/978-3-662-43984-5_16
http://dx.doi.org/10.1007/978-3-662-43984-5_16
http://dx.doi.org/10.1007/978-3-662-43984-5_17
http://dx.doi.org/10.1007/978-3-662-43984-5_18
http://dx.doi.org/10.1007/978-3-662-43984-5_19
http://dx.doi.org/10.1007/978-3-662-43984-5_20
http://dx.doi.org/10.1007/978-3-662-43984-5_21
http://dx.doi.org/10.1007/978-3-662-43984-5_21
http://dx.doi.org/10.1007/978-3-662-43984-5_22
http://dx.doi.org/10.1007/978-3-662-43984-5_22

Solving Multiple Bichromatic Mutual Nearest Neighbor Queries
with the GPU . 308

Marta Fort and J. Antoni Sellarès

A Kernel Density Method for Aggregating Boundary Collision Data
into Areal Units . 317

Ge Cui, Xin Wang, and Dae-Won Kwon

Integrated Indoor Positioning with Mobile Devices for Location-Based
Service Applications . 329

Bei Huang and Yang Gao

A Hybrid Scale-Out Cloud-Based Data Service for Worldwide Sensors 342
Tania Khalafbeigi, Chih-Yuan Huang, Steve Liang, and Mea Wang

DASFAA Workshop on Uncertain and Crowdsourced Data (UnCrowd)

Uncertainty in Crowd Data Sourcing Under Structural Constraints 351
Antoine Amarilli, Yael Amsterdamer, and Tova Milo

Integration of Web Sources Under Uncertainty and Dependencies
Using Probabilistic XML . 360

M. Lamine Ba, Sebastien Montenez, Ruiming Tang, and Talel Abdessalem

Skill Ontology-Based Model for Quality Assurance in Crowdsourcing 376
Kinda El Maarry, Wolf-Tilo Balke, Hyunsouk Cho, Seung-won Hwang,
and Yukino Baba

ProbKS: Keyword Search on Probabilistic Spatial Data. 388
Feng Gao, Rohit Jain, Sunil Prabhakar, and Luo Si

Towards Mobile Sensor-Aware Crowdsourcing: Architecture,
Opportunities and Challenges . 403

Jiyin He, Kai Kunze, Christoph Lofi, Sanjay K. Madria, and Stephan Sigg

Conditioning Probabilistic Relational Data with Referential Constraints 413
Ruiming Tang, Dongxu Shao, M. Lamine Ba, and Huayu Wu

Author Index . 429

Contents XXI

http://dx.doi.org/10.1007/978-3-662-43984-5_23
http://dx.doi.org/10.1007/978-3-662-43984-5_23
http://dx.doi.org/10.1007/978-3-662-43984-5_24
http://dx.doi.org/10.1007/978-3-662-43984-5_24
http://dx.doi.org/10.1007/978-3-662-43984-5_25
http://dx.doi.org/10.1007/978-3-662-43984-5_25
http://dx.doi.org/10.1007/978-3-662-43984-5_26
http://dx.doi.org/10.1007/978-3-662-43984-5_27
http://dx.doi.org/10.1007/978-3-662-43984-5_28
http://dx.doi.org/10.1007/978-3-662-43984-5_28
http://dx.doi.org/10.1007/978-3-662-43984-5_29
http://dx.doi.org/10.1007/978-3-662-43984-5_30
http://dx.doi.org/10.1007/978-3-662-43984-5_31
http://dx.doi.org/10.1007/978-3-662-43984-5_31
http://dx.doi.org/10.1007/978-3-662-43984-5_32

Second International DASFAA
Workshop on Big Data Management

and Analytics (BDMA)

Meme Media and Knowledge Federation
for Exploratory Visual Analytics of Big Data

Yuzuru Tanaka(&)

Meme Media Laboratory, Hokkaido University, Sapporo, Japan
tanaka@meme.hokudai.ac.jp

Abstract. This paper proposes the use of meme media and knowledge
federation technologies as the basis for a generic framework of exploratory
visual analytics of big data. We first propose a ‘‘coordinated multiple views’’
visualization framework, and then extend this to a ‘‘coordinated multiple
analyses’’ visualization framework for the integration of clustering tools, fre-
quent pattern mining tools, and statistical analysis tools into the framework.
The webtop meme media system Webble World works as the enabling tech-
nology to implement these frameworks. Its improvisational knowledge feder-
ation capability allows us to improvisationally federate available external tools
and services to work together in our framework. This provides our exploratory
visual analytics framework with a large library of tools and data sources open
for future extension.

Keywords: Big data analysis � Exploratory visual analytics � Coordinated
multiple views � Coordinated multiple analyses � Meme media � Clinical trial �
Social cyber-physical system

1 Introduction

One of the problems we are facing these days in big data R&Ds may be a big gap
between the core technology R&Ds and the application R&Ds. Through the
involvement both in EU FP6 and FP7 projects on the integrated IT support of clinical
trials on cancers and in Japanese government-initiative project on social cyber-
physical systems for optimizing social system services such as the snow plowing and
removing in Sapporo City, which has 1.9 million people and the average annual
snowfall of 6 m, the current author has been also facing the difficulties to fill in the gap
between varieties of available data analysis methods and the goals to find out new
meaningful personalized medicine or the optimized resource scheduling for the snow
plowing and removing.

Each clinical trial ends up with an accumulation of patient treatment data and
patient diagnosis data including DICOM images and patient genomic data. The
number of patients in each clinical trial may range from hundreds to thousands. While
the data size is not extremely large, their analysis is not so straight forward as applying
any ‘‘planned-for’’ analysis scenarios. The objective there is to find out new person-
alized medical treatments, each of which shows the best recovery rate for some
specific group of patients. We need to find out each of these specific patient groups for

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 3–17, 2014.
DOI: 10.1007/978-3-662-43984-5_1, � Springer-Verlag Berlin Heidelberg 2014

which one of the candidate treatment arms after the randomization in the master trial
plan may show the best recovery rate than the others. The analysis process there is
inherently an exploratory repetition of the hypothesis making through the segmen-
tation of some patient group and the hypothesis checking through some analysis and
visualization of the segmented patient group. The personalized medicine has become
more focused since it became obvious that the best treatment for a patient is not
necessarily the best for another patient who shows the same macroscopic properties as
the first one. This means that some macroscopic analysis of a patient group that is
segmented with respect to their macroscopic properties does not work well.

The same is true in the analysis of how snowfalls and the snow plowing and
removing may influence the traffic of each road segment. Using the average speed in
each road segment at every 5 min interval for 24 h, we can characterize each road
segment as a vector of 288 dimensions. The same clustering method classifies the
consecutive road segments along the same major route in the central Sapporo into the
same cluster for the data on the next day of the complete snow plowing and removing,
but in different clusters for the data on a day with a heavy snowfall. This indicates that
the influence of snow to the traffic is not uniform, and that we cannot apply macro
analysis methods to obtain any meaningful knowledge about winter roads.

These two examples have convinced the current author the necessity of explor-
atory visual analytics.

2 Requirements for Exploratory Visual Analytics

It is well known that exploratory visual analytics [1–4] may use the ‘‘coordinated
multiple views’’ visualization framework [5] as its basis. This framework provides
more than one view for the visualization of the same database D from different aspects
as shown in Fig. 1. Each view Vi may be a chart view, a map view, a graph repre-
sentation view, or a calendar view, and shows the evaluation result Qi (D) of some
query Qi associated with this view using its specific visualization scheme. Each view
allows users to select a set of visualized objects by directly specifying each of them or
enclosing some of them, which defines a new additional quantification condition C to
quantify the objects stored in the underlying database D. This quantification defines a
new database viewD’ defined as follows:

CREATE VIEWD’
AS
SELECT *
FROM D
WHERE C

Each view Vj including Vi itself then immediately changes its visualization from Qj

(D) to Qj (D’), or just highlights the objects in Qj (D’) in the visualization of Qj (D),
depending on the user specification of its visualization mode. Multiple visualization
views are mutually coordinated in this sense.

In exploratory visual analytics with a coordinated-multiple-views visualization
system, each user may start with the original databaseD, and repetitively try different

4 Y. Tanaka

selections of visual objects on different views for the exploration of different quan-
tifications on database objects to find out a meaningful group of database objects.
He or she may roll back the preceding visual object selection to try a different
quantification through a different visualization view. Figure 2 schematically shows
such a process of exploratory visual analytics.

Each view in coordinated-multiple-views visualization is, however, just a database
visualization view. No analysis is actually applied in such exploratory visual analytics
processes. In order to apply analysis tools to quantified sets of objects, we need to
integrate these tools together with their analysis result visualizations into coordinated
multiple view visualization. Many researchers emphasized the importance of inte-
grating various analyses and visualizations [6]. To the best of our knowledge, apart
from some statistical chart tools to show histograms, correlations, or heatmaps [7], no
other analysis tools such as clustering and frequent pattern mining tools have ever
been integrated into coordinated multiple views visualization to allow users to directly
select a cluster or some of the mined frequent patterns for further quantifying database
objects and for further analyzing those quantified database objects. Varieties of
analysis tools are rapidly increasing these days. In order to keep our visual analytics at
the current state of the art, we need to be able to make any new analysis tools available
and operational in our visual analytics.

Exploratory visual analytics requires a coordinated-multiple-views visualization
framework to which we can integrate any analysis tools so that their result visual-
izations may be also coordinated with other visualization views and analysis result

Vis1

Vis2

Visi

selection

1

Vis1

Vis2

Visn selection

2

V3

Visn

Visj

Vis1

Vis2

Visn

map

histogram

24-hour
clock

scatter graph

Fig. 2. A process of exploratory visual analytics.

Database or Semantic Web

Q2() Q3()

Q4()Q1()

map

histogram
24 hour
clock

scatter graph

Fig. 1. A coordinated-multiple-views visualization framework.

Meme Media and Knowledge Federation for Exploratory 5

views. It also requires an open library of analysis tools that can be integrated into the
framework. These requirements made us to choose meme media technologies [8] as
enabling technologies to develop such a framework.

3 A Coordinated-Multiple-Views Framework
Based on Meme Media

3.1 Quantification of Database Objects Through Each View

Each view Vi in a coordinated multiple view environment is a chart which stores its
query Qi, issues this query to the underlying database D to receive Qi(D), visualizes
this result in its visualization scheme, enables its user to directly specify some of the
visualized objects on itself, generates the corresponding quantification condition C,
and sends it to the database to modify its view to D’. Such a chart can be implemented
as a visual object that can communicate with its underlying visual object working as a
proxy object of the database as shown in Fig. 3. This underlying database proxy object
should be able to accept more than one such a chart object of different types. The chart
object and the database proxy visual object exchange the query, the generated
quantification condition, and the retrieved result through their I/O port connection.

We like to use such a coordinated-multiple-views environment in a Web portal so
that users can access the same environment from anywhere in the world. For this
purpose, we use the webtop meme media system Webble World [9] as an enabling
technology.

3.2 Meme Media and Knowledge Federation as Enabling Technologies

The history of meme media research started with an idea of the synthetic media
architecture IntelligentPad in 1987 and its implementation in Smalltalk 80 in 1989
[10]. This architecture was a component-based media architecture that exploits the
compound document architecture to enable us to embed not only multimedia contents
but also visual tools and services in documents. IntelligentPad represents both mul-
timedia contents and functional tools/services as its visual components called pads.
Each pad is a card-like visual object on a display screen, wraps some object in itself,
and provides a list of I/O ports called slots for its communication with another pad.

Data set

Qi()

selection a chart webble

V
Data set

a DB proxy webble

(query, result)

(query, result)

Fig. 3. Each view in a coordinated multiple view visualization.

6 Y. Tanaka

A pad can be pasted on another pad. The former becomes a child of the latter. A child
pad can connect one of its slots to one of the parent pad slots. If these slots represent
variables, their connection makes the child and the parent to share the same variable
for data communication between them. Each slot connection may be defined from a
pad not only to its direct parent, but also to any of its ancestors. Each pad may have
no more than one parent pad, but any number of child pads. In order to migrate any
other tool or service into an IntelligentPad environment, we first need to wrap it as
a pad.

In 1993, we reoriented our media architecture to meme media and meme pool
architectures [8, 11] so that people can publish any composite pads into a world-wide
repository, retrieve some composite pads from it, recombine their components in a
different way to compose new composite pads, and republish them to the same
repository. This architecture makes pads and their world-wide repository respectively
work as memes [12] shared by people, and a meme pool. The dissemination of Web
browsers after 1995 made us consider how to use the Web as a world-wide meme
pool. Around the same time, our collaborators in industry released commercial
versions of IntelligentPad developed in C++. Then we came across the problem of
how to wrap a Web resource like Web applications or Web services into a meme
media object. While the wrapping of a web service is always possible, the wrapping
of an application tool may not be always possible. Once being wrapped, however,
such resources can be easily combined together to interoperate with each other as
pads. We can just combine these pads using the pad pasting operation and the slot
connection operation. This idea opened a new vista of knowledge federation,
especially improvisational knowledge federation, i.e., dynamic federation of
knowledge resources over the Web [13, 14]. This idea, however, required two dif-
ferent system environments, i.e., the Web environment and a meme media system
environment. An ideal solution to avoid the use of more than one environment was
to unify these two environments, which resulted in the proposal of the Webble World
system in 2010 [9].

The current version of the Webble World is a webtop meme media system based
on Microsoft Silverlight plug-in technology, which restricts the wrapping of appli-
cations. We have already developed generic wrappers for any applications written in
R and Octave. The development of similar generic wrappers for Python and Ruby is
also possible in principle. We have also wrapped the ArcView of the ArcGIS from
ESRI into a webble using the Silverlight version of the ArcView. In order to improve
the cross-platform compatibility and to remove such restriction on the wrapping, we
have already developed a new HTML5 version Webble World system based on the
HTML 5 technology instead of the Silverlight technology. This version enables us to
wrap, for example, Google Map into a webble, and to make it interoperate with other
webbles in a Webble World environment. Webble World allows us to publish a
page with composite webbles as a Web page, and to reuse some components of such
webbles in a published Web page for constructing a new composite webble and for
publishing it on another Web page. Webble World has made Web documents and the
Web respectively work as meme media and a meme pool, i.e., a world wide repository
for publishing, reediting, and redistributing meme media objects.

Meme Media and Knowledge Federation for Exploratory 7

3.3 Composition of a Parallel Coordinate System

Figure 4 shows a single coordinate axis as a visualization view. Its stored query is as
follows, where the attribute A denotes its associated database attribute:

SELECT A
FROM D
WHERE v1 B A B v2

This view provides pairs of delimiters for its user to directly specify some intervals for
selecting visual objects in each of these intervals. In this example, we assumed that the
current selection condition is v1 B A B v2.

A parallel coordinate system [15] is an example of a coordinated-multiple-views
system, and can be used together with other coordinated views. It consists of more
than one coordinate axis, say n axes, each of which corresponds to some attribute Ai of
the database. It also shows for each record over the attribute set {A1, A2, …, An} that
is retrieved from the database, a polyline which crosses the i-th coordinate axis at the
Ai value of this record. Figure 5 shows how such a parallel coordinate system can be
composed as a composite webble. It uses n single-coordinate-axis view webbles as
shown in Fig. 4, and one polyline chart webble, both of which are connected directly
to the underlying database proxy webble. However, each single coordinate axis view
webble is put on the polyline chart webble, and defined as its child without any slot
connection between them. The polyline chart webble obtains the relative location and
the size of each coordinate-axis view webble when the latter is put on the former. The
former can read the reserved slot of the latter storing its associated database attribute
name. Using the information about these, the polyline chart webble issues the fol-
lowing query to the database, and draws a polyline for each of the retrieved records so
that it may cross the i-th coordinate axis drawn by the i-th single-coordinate-axis view
webble at the Ai attribute value of this record.

SELECT A1, A2, …, An

FROM D

3.4 TOB Based on Our Coordinated-Multiple-Views Framework

Figure 6 shows the exploratory visual analytics mode of TOB (Trial Outline Builder)
[16]. This is a webtop environment developed using Webble World. The upper

V
Data set

selection
a single coordinate axis webble

V
Data set

a DB proxy webble

(query, result)

(query, result)

Fig. 4. A single coordinate axis as a view in a coordinated multiple views visualization.

8 Y. Tanaka

window shows a master clinical trial plan. The lower window shows the visual ana-
lytics environment. The upper part in this lower window shows a parallel coordinate
visualization of patients with such coordinates as the hometown, the target organ of
radio therapy, whether the patient has metastasis, and the selected treatment arm after
the randomization. The hometown coordinate is represented by a geographical map.
Such a map is just an extension of a single-coordinate-axis view. This extension,
however, requires some extension of the composite webble architecture described in
Fig. 5, which is beyond the scope of this paper. The bottom left chart is a life table
showing the temporal decrease of the patient survival rate. The bottom right webble
shows a heatmap visualization of the patients’ gene expression data, where each row
represents a patient, and each column represents a gene. This TOB system allows us to
concurrently specify more than one selection of visual objects on each view. Visu-
alizations corresponding to different selections may use different dedicated colors for
highlighting visual objects in each view. If we separately select each of the two
different treatment arms, as well as the case without applying randomization, on the
leftmost single-coordinate-axis of the parallel coordinate system, the life table will
show three different survival rate curves in three different colors. The case without
applying randomization mainly corresponds to the case with metastasis. While we
explore different patient quantifications, we may come across some specific case in
which one of the two treatment arms show significantly a better survival rate than the
other. This implies that the better-performance arm may become a good candidate of
personalized medicine for this quantified set of patients.

3.5 Geospatial Digital Dashboard Based on Our ‘‘Coordinated Multiple
Views’’ Framework

Figure 7 shows another ‘‘coordinated multiple views’’ visualization system using the
Webble World technology.

This system called Geospatial Digital Dashboard was developed for the explor-
atory visual analytics of social cyber-physical data related to the winter road man-
agement in Sapporo City. It consists of several different views. The map view shows
average taxi speed in each direction of each road segment, and the distribution of
tweets with geotags. It allows us to specify a rectangular area to select only those road
segments in this area. The clock view at the bottom right corner shows the population
of taxis in each of the 24 h as the area of each circle around the circumference of the

…
(query, result)

(query, result)

(query, result)

a single coordinate axis webbles

a polyline chart webbles

a DB proxy webble

Fig. 5. The composition of a parallel coordinate system.

Meme Media and Knowledge Federation for Exploratory 9

clock circle. It allows us to select time intervals for selecting only those statistical
probe car data in the specified time intervals. Other views include various kinds of
charts such as correlation charts and histograms.

4 Coordinated-Multiple-Analyses Framework
Based on Meme Media

Now we need to integrate varieties of analysis tools and their result visualizations into
our coordinated-multiple-views framework. We call such an integrated framework a
coordinated-multiple-analyses framework.

Fig. 6. Trial Outline Builder as a coordinated multiple view visualization system

Fig. 7. Geospatial Digital Dashboard as a coordinated multiple views visualization system

10 Y. Tanaka

4.1 Integration with Clustering Tools and Their Result Visualizations

Let us first consider the integration of clustering tools and their result visualizations
into the coordinated-multiple-views framework. The result of any clustering applied to
objects identified by the values of some attribute A of the underlying database can be
considered as a relation Cluster (A, ClusterID), where the values of A work as the
object IDs of objects that are clustered, and ClusterID denotes the ID of each cluster.
This relation Cluster (A, ClusterID) can be visualized in one of various visualization
schemes. Each visualization needs to provide a direct manipulation operation for users
to select some objects or some clusters. Such a direct selection corresponds to a
quantification condition on the attribute A or ClusterID, which further quantifies the
underline database objects. Such a clustering tool with its result visualization can be
easily implemented as a webble. Figure 8 shows an extended Geospatial Digital
Dashboard with the integration of a clustering tool. It has two clustering visualization
views in its rightmost area. Each rectangle in each of them represents a cluster. Its size
is proportional to the cluster size, i.e., the number of different A attribute values in the
cluster. Each of these clustering result views also shows the phylogenetic tree of
clusters over these clusters. In this example, road segments are clustered in terms of
the daily change of the number of taxis and the daily change of the average taxi speed
in each road segment. These values are available for each 5 min interval. Therefore,
the changes of these values characterize each road segment as two different vectors of
288 dimensions. For each of these two vector representations of each road segment,
we clustered the road segments based on the similarity of their vector representations.

4.2 Integration with Frequent Pattern Mining Tools and Their Result
Visualizations

Let us now consider the integration of frequent pattern mining tools and their result
visualizations into the coordinated-multiple-views framework. Any frequent pattern
mining result can be represented by two relations, Mining (Pattern, Supp, Conf) and
Include (A, Pattern). The first relation lists up each frequent pattern with its support
and confidence indices. The second relation tells which objects among those identified

Fig. 8. Extended Geospatial Digital Dashboard with the integration of a clustering tool.

Meme Media and Knowledge Federation for Exploratory 11

by the attribute value of A include each of the mined frequent patterns. The first
relation can be visualized in various visualization schemes to list up mined frequent
patterns together with their support and confidence index values. Each visualization
needs to provide a direct manipulation operation for users to change the threshold
values of support and confidence indices to list up only those patterns with their
support and confidence indices higher than the thresholds, and further to directly select
some frequent patterns in the list. Using the second relation, this selection of some
patterns is converted to the corresponding quantification condition on A attribute,
which further quantifies the underlying database and changes the other coordinated
visualization views. Figure 9 shows an extension of Geospatial Digital Dashboard
with the integration of a frequent pattern mining tool as well as a clustering tool.

In the top right heatmap chart, each row represents each 5 min interval in a day,
and each column represents a road segment. The intensity of each cell represents the
average speed in the corresponding road segment during the corresponding 5 min
interval. In general, a heatmap can be defined for two nominal value attributes A1, A2,
and one numerical value attribute A3 that are arbitrarily selected out of the underlying
database attributes. Its row and column represent the domains of A1 and A2
respectively, and each cell shows the numerical value of A3 as the color intensity.
In this example, the attribute A1 is the Time attribute representing each 5 min
interval, the attribute A2 is the Road Segment ID represented by the geo-locations of
two end points of each road segment, and the attribute A3 is the Average Speed of
taxis in this road segment at this time interval.

On the left hand side of the heatmap, we have a color gradient bar showing how
different intensities are mapped to different colors. This bar allows its user to specify
more than one intensity interval. If he or she specifies k intervals, the heatmap webble
generates k items for each of its columns, and will interpret each row as a transaction,
and each column as k items. Each item in each transaction has a binary value.

We can apply item set mining and association rule mining to this set of transac-
tions. In Fig. 9, we specified only one intensity interval to focus on the average speed
lower than 10 km/h. We wanted to focus on traffic jams in road segments. Figure 9
shows only the result of applying the association rule mining to the set of transactions.

Fig. 9. Extended Geospatial Dashboard integrated with a frequent pattern mining tool.

12 Y. Tanaka

At the bottom center, this figure shows two sliders for users to specify threshold values
of the support and the confidence. This association rule mining result provides a check
box in front of each mined association rule. These check boxes are used to select some
of the mined patterns. This selection quantifies those transactions having one of these
selected patterns in the heatmap. Unselected transactions, or rows, will be dimmed in
the heatmap. The mining result webble also allows its user to select each item
appearing in each selected pattern. Since each item in this example is a road segment,
you may pick up a mined association rule to see how the traffic jam in some road
segments may propagate to other road segments on the map view.

Figure 10 shows such a traffic jam dependency we mined using the extended
Geospatial Digital Dashboard. In this example, we selected the three mined associ-
ation rules marked by arrows. These three rules indicate that a traffic jam in the road
segment labeled with ‘‘pre-condition’’ propagates along this north bound one way road
to two other road segments labeled with ‘‘post-condition’’. These road segments are
found to be consecutive. This example shows a potentiality of the exploratory visual
analytics with the Geospatial Digital Dashiboad for discovering traffic jam depen-
dency rules, and possibly for identifying those initial road segments from which traffic
jams expand.

Figure 11 shows an extension of the TOB with the integration of a heatmap
webble to visualize the patient gene expression intensity and an association-rule-
mining webble. In this heatmap, each row represents a patient, and each column
represents a gene.

Users can specify k intensity intervals of the heatmap to generate k items for each
gene. We specified only two intervals, the high gene-expression region and the low
gene-expression region. Roughly speaking, for each gene, the two items, the high-
intensity item and the low-intensity item respectively correspond to the activation and
the inhibition of this gene expression in each patient. While the TOB in Fig. 6 enables
us to analyze the clinical trial data only from the phenotype view of patients, this
extended TOB in Fig. 11 enables us to analyze both clinical trial data and patient
genomic data through repetitively changing the view between the phenotype view and
the genotype view of patients. Even if a group of patients quantified only from their
phenotype characteristics does not show any significant difference of the survival
ratio among different candidate treatment arms, the association rule mining of their

pre-condition

post-condition

Fig. 10. Traffic jam dependency we found using the association rule mining in Fig. 9.

Meme Media and Knowledge Federation for Exploratory 13

high and low gene expression may find out some association rules with their support
and confidence higher than the thresholds, and each of them may further quantify a
different subgroup of patients. If, in some of these subgroups, one candidate arm
shows a significantly better survival ratio than the others, this association rule may
work as a good biomarker to further segment patients for applying this personalized
treatment.

4.3 Integration with Statistical Analysis Tools and Their Result
Visualization

Let us now consider the integration of statistical analysis tools and their result visu-
alizations into the coordinated-multiple-views framework. Any statistical analysis
specifies the group-by attributes and, for each group of records, some aggregate
function to calculate the aggregate value. The result can be represented as a relation
Stat (GBattributes, Afunction), where the attribute GBattributes is a list of attributes
specified as group-by attributes, and the attribute Afunction is a derived attribute
whose value is obtained by applying the specified aggregate function such as average,
count, minimum, maximum, and correlation to the set of values of the specified
attribute in each group. This specified attribute is called the measure attribute. This
relation can be visualized in various visualization schemes. Each visualization needs
to provide a direct manipulation operation to quantify the GBattributes value and the
Afunction value. This quantification further quantify the values of the database
attributes in GBattributes, which modifies the underlying database view. Our taxi
probe car data are stored in a relation Taxi (Date, Time, RoadSegment, Speed,
NumberOfCars, MaxSpeed). For GBattribute = (Date, RoadSegment) and Afunction =
average (Speed 9 NumberOfCars), the attribute AFunction takes the value of the

Fig. 11. An extension of the TOB with the integration of a heatmap webble to visualize the
patient gene expression intensity and a association-rule-mining webble.

14 Y. Tanaka

average taxi traffic flow in each day. If we quantify the average taxi traffic flow to be
higher than a specified threshold, we will obtain, for each day, those road segments
satisfying this quantification. This quantification modifies the database view, and
changes the other view visualizations and analysis visualizations in the coordinated-
multiple-analyses system.

5 Similar Systems

Here we give a brief overview of other systems for visualization and exploration of
data, and point out some differences between them and our system.

SpotFire [17] is a system using coordinated multiple views for exploring and
visualizing data. It has many visualization tools and supports zooming, interactive
query modification, details on demand, and more. It was not built for data mash-up
(combining data from many sources), and it does not have components for generating
new complex data from the data.

Tioga-2 [18] (now Tioga DataSplash) uses direct manipulation to visually explore
database contents. Multiple visualizations can be coordinated. Tioga has fairly few
visualization primitives and expects a relational databases as the data source. DEVise
[19] is also a data exploration system for relational databases, and also supports
coordinated multiple views of the data. It supports many types of operations on the
data, but the user interaction with the visualization results is limited.

Snap-Together Visualization [20] (Snap) has many similarities with our system.
Visualization components can be coordinated so that e.g. selecting data using one
component is automatically reflected in other coordinated components, and further
interactions in these are also reflected in the first component. There are several dif-
ferent types of coordination, so selections in one component can select related items in
another view, and it can open up details about the selection in a third view, etc. Snap,
like our system, requires components to adhere to a small component interface and it
is possible to wrap existing software with interface wrappers (in for example Visual
Basic) to allow pre-existing software as components in the Snap system. Two dif-
ference from our system are that Snap expects the data to come from an ODBC
database and that it uses Microsoft’s COM for component (process) communication.

RapidMiner [21] is an open-source system. It is a widely used prototyping system
for knowledge discovery and data mining. RapidMiner supports very many data
mining and machine learning algorithms. Work flows are set up using a graphical
interface, and multiple views of the same data are supported. Going back and
changing something in the work flow will change the visualization results. Like our
system, RapidMiner hides the underlying data format from the data mining compo-
nents or visualization components, and changes in a work flow are reflected in all
views of this work flow. While the work flow set up process is graphical, interaction
with the visualization results is not possible.

Meme Media and Knowledge Federation for Exploratory 15

6 Conclusion

Exploratory visual analysis requires the following features.

(1) It should support the repetition of the hypothesis making through data seg-
mentation of a specific set of data and the hypothesis checking through data
analysis and visualization of the segmented data set. The analysis result may be
also used for further data segmentation.

(2) It should provide a large library of analysis and visualization tools open for the
future extension. It should be easy to improvisationally wrap external tools and
services into components and to register them into the library for their future
reuse in the visual analytics environment through the improvisational federation
of them with other tools and services..

(3) It should allow users to improvisationally bring external data sources provided as
web services into the visual analytics environment.

The first requirement made us propose a coordinated-multiple-analyses visuali-
zation framework as an extension of the coordinated-multiple-views visualization
environment. We used the webtop meme media technology as the enabling technology
for these frameworks.

Exploratory visual analytics requires various analysis tools and data sources. Its
system should be open for the future integration of new analysis tools and new data
sources to itself. Our framework is based on the webtop meme media system Webble
World, which enables us to improvisationally wrap both varieties of tools developed
in R, Octave, Python, and Ruby, and any analysis and/or data providing web services
into webbles. These webbles can be registered into the open library to increase its
variety. Users can improvisationally federate any of these wrapped tools and services
to work together. For example, in Fig. 7, the map view shows the geographical
distribution of tweets. These tweets are obtained from the twitter service. We
improvisationally wrapped the twitter service into a webble, and improvisationally
federated this webble with the map view webble to obtain this visualization.

These days we have a huge variety of related open data sources over the Web.
They can be accessed through web services. It is important for us to be able to
improvisationally federate these data sources with our visual analytics environment.
We can also find out a huge variety of open tools and services for data analysis and
visualization. The improvisational knowledge federation capability of Webble World
will allow us to improvisationally wrap a large portion of them into webbles, and to
reuse them in cooperation with other data sources, tools and services in our explor-
atory visual analytics environment.

References

1. Thomas, J., Cook, K.: Illuminating the Path: Research and Development Agenda for Visual
Analytics. IEEE-Press, Los Alamitos (2005)

2. Thomas, J., Kielman, J.: Challenges for visual analytics. Inf. Vis. J. 11, 309–314 (2009).
Special Issue: Foundations and Frontiers of Visual Analytics

16 Y. Tanaka

3. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
4. Keim, D.A., Mansmann, F., Sto_el, A., Ziegler, H.: Visual Analytics. Encyclopedia of

Database Systems. Springer (2009)
5. Roberts, J. C.: State of the art: coordinated and multiple views in exploratory visualization.

In: 5th International Conference on Coordinated and Multiple Views in Exploratory
Visualization, Zurich, pp. 61–71, July 2007

6. Keim, D.A., Mansmann, F., Thomas, J.: Visual analytics: how much visualyzation and how
much analytics. ACM SIGKDD Explor. Newsl. 11(2), 5–8 (2009)

7. Perer, A., Shneiderman, B.: Integrating statistics and visualization for exploratory power:
from long-term case studies to design guidelines. IEEE Comput. Graph. Appl. 29, 39–51
(2009)

8. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media for Editing,
Distributing, and Managing Intellectual Resources. IEEE Press and Wiley-Interscience,
New York (2003)

9. Kuwahara, M., Tanaka, Y.: Webble world – a web-based knowledge federation framework
for programmable and cutomizable Media objects. In: Proceedings of the IET International
Conference on Frontier Computing Theory, Technologies and Applications, Taichung,
Taiwan, IET inspec, pp 372–377, 4-6 August 2010

10. Tanaka, Y., Imataki, T.: IntelligentPad: a hypermedia system allowing functional
composition of active media objects through direct manipulations. In: Proceedings of the
IFIP 11th World Computer Congress, San Francisco, USA, pp. 541–546 (1989)

11. Tanaka, Y.: From augmentation to Meme Media. In: Proceedings of the ED-Media 94,
Vancouver, pp. 58–63, June 1994

12. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)
13. Itoh, K., Tanaka, Y.: A visual environment for web application composition. In:

Proceedings of the 14th ACM Conference on Hypertext and Hypermedia, Nottingham,
pp. 184–193, August 2003

14. Tanaka, Y., Fujima, J., Ohigashi, M.: Meme Media for the Knowledge Federation Over the
Web and Pervasive Computing Environments. In: Maher, M.J. (ed.) ASIAN 2004. LNCS,
vol. 3321, pp. 33–47. Springer, Heidelberg (2004)

15. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional
geometry. In: VIS’90: Proceedings of the 1st Conference on Visualization ’90, Los
Alamitos, CA, USA, pp. 361–378 (1990)

16. Sjöbergh, J., Kuwahara, M., Tanaka, Y.: Visualizing clinical trial data using pluggable
components. In: Proceedings of the 15th International Conference on Information
Visualization IV 2012, Montpelier, pp. 291–296, July 2012

17. Ahlberg, C.: Spotfire: an information exploration environment. SIGMOD Rec. 25(4),
25–29 (1996)

18. Aiken, A., Chen, J., Stonebraker, M., Woodruff, A.: Tioga-2: a direct manipulation
database visualization environment. In: Proceedings of ICDE’96, New Orleans, LA, USA,
pp. 208–217 (1996)

19. Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D., Lawande, S.,
Myllymaki, J., Wenger, K.: DEVise: integrated querying and visual exploration of large
datasets. In: Proceedings of SIGMOD’97, Tucson, AZ, USA, pp. 301–312 (1997)

20. North, C., Shneiderman, B.: Snap-together visualization: a user interface for coordinating
visualizations via relational schemata. In: Proceedings of AVI’00, Palermo, Italy,
pp. 128–135 (2000)

21. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid prototyping
for complex data mining tasks. In: KDD’06: Proceedings of the 12th ACM SIGKDD,
Philadelphia, PA, USA, pp. 935–940 (2006)

Meme Media and Knowledge Federation for Exploratory 17

Online Data Clustering Using Variational
Learning of a Hierarchical Dirichlet Process

Mixture of Dirichlet Distributions

Wentao Fan and Nizar Bouguila(B)

Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, QC, Canada

{wenta fa,nizar.bouguila}@encs.concordia.ca

Abstract. This paper proposes an online clustering approach based
on both hierarchical Dirichlet processes and Dirichlet distributions. The
deployment of hierarchical Dirichlet processes allows to resolve difficul-
ties related to model selection thanks to its nonparametric nature that
arises in the face of unknown number of mixture components. The con-
sideration of the Dirichlet distribution is justified by its high flexibil-
ity for non-Gaussian data modeling as shown in several previous works.
The resulting statistical model is learned using variational Bayes and is
evaluated via a challenging application namely images clustering. The
obtained results show the merits of the proposed statistical framework.

Keywords: Mixture models · Dirichlet distribution · Variational infer-
ence · Hierarchical Dirichlet process · Online learning · Image clustering

1 Introduction

With the ubiquity of new information technology and media, the amount of
multimedia data generated everyday has increased exponentially. Handling the
resulting massive data sets is a difficult problem [19,20,24,33]. Fortunately,
advances in statistics and computing have made available several data mod-
eling tools and approaches in many areas such as pattern recognition, computer
vision, and data mining. Among these approaches finite mixture models play
a crucial role and have become fundamental tools for data analysis [9]. The
efficient adoption of finite mixture models, however, presents itself serious chal-
lenges related mainly to the important model selection problem (i.e. automatic
determination of the model complexity without under- or over-fitting). Thus,
much recent research has been directed at data modeling using infinite mix-
tures rather than finite ones. Indeed, as we can see from advances in the are of
machine learning, Bayesian nonparametric approaches have been widely studied
and adopted recently [26,31]. This is especially true for Dirichlet process (DP)
mixtures of distributions [10,11,19,25].

DP mixtures of Gaussian distributions have been largely adopted in the past.
In a previous work, however, we have shown that DP mixtures of Dirichlet dis-
tributions could be a better alternative especially in the case of non-Gaussian

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 18–32, 2014.
DOI: 10.1007/978-3-662-43984-5 2, c© Springer-Verlag Berlin Heidelberg 2014

Online Data Clustering Using Variational Learning 19

data [4]. A DP mixture of Dirichlet distributions can be viewed as a learn-
ing machine which estimates a given probability density function as an infinite
weighted sum of Dirichlet distributions. This learning machine has been shown
to be effective in several data mining and computer vision applications and has
been proposed as an alternative to overcome the drawbacks of finite Dirichlet
mixture models [4]. In this paper, we go a step further by taking advantage of
the flexibility that hierarchical Bayesian modeling offers via the development
of a hierarchical DP process mixture of Dirichlet distributions. A hierarchical
DP [32] is actually a dependency model for multiple Dirichlet processes. It has
been shown to be an efficient nonparametric Bayesian approach to the prob-
lem of model-based clustering of grouped data with sharing clusters [8,30]. It is
an extension to the conventional DP with a Bayesian hierarchy where the base
measure for a set of Dirichlet processes is itself distributed according to a DP.
Learning technique for DP-based models are generally designed to be run over
already observed collections of objects. In several real applications, however, the
collection grows over time which makes the use of batch learning algorithms
infeasible. In this case, we should consider online learning algorithms, which
allow to update the model’s parameters each time new objects are observed, by
maintaining high-quality inference for new introduced data [7]. We develop then
an online variational algorithm for the learning of our hierarchical DP mixture of
Dirichlet distributions model. The adoption of variational Bayesian inference [1]
is motivated by the fact that it has been shown to be an efficient alternative to
purely Bayesian inference in the case of several nonparametric Bayesian models
[13] and especially in the case of Dirichlet mixture models [14].

The paper is organized as follows. In Sect. 2 we present our hierarchical non-
parametric model. In Sect. 3, an online variational approach is developed for the
learning of the proposed model. Section 4 outlines the experimental setup involv-
ing the challenging problem of images categorization and presents the obtained
results. The paper is concluded in Sect. 5.

2 Hierarchical DP Mixture of Dirichlet Distributions

In this section, we start by briefly reviewing Dirichlet processes and then we
present in details our hierarchical model.

2.1 Dirichlet Process

The DP is a stochastic process whose sample paths are probability measures
with probability one [16,21]. Given a random distribution G, it is distributed
according to a DP if its marginals follow Dirichlet distributions. More specifi-
cally, let H be a distribution over some probability space Θ and γ be a positive
real number, then G is a DP with the base distribution H and concentration
parameter γ, denoted as G ∼ DP(γ,H), if

(G(A1), . . . , G(At)) ∼ Dir(γH(A1), . . . , γH(At)) (1)

20 W. Fan and N. Bouguila

where (A1, . . . , At) is the set of the finite partitions of Θ, and Dir(γH(A1), . . . ,
γH(At)) is a finite-dimensional Dirichlet distribution with parameters (γH(A1),
. . . , γH(At)).

2.2 Hierarchical DP Mixture Model of Dirichlet Distributions

Hierarchical Dirichlet Process. A hierarchical DP is a distribution over
a set of random probability measures over a probability space Θ. Recently, it
has been shown to be an effective framework for modeling grouped data where
observations are organized into groups that are allowed to remain statistically
linked [30,32]. Assuming that we have a data set which is separated into M
groups. A hierarchical DP involves an indexed set of DPs {Gj}, one of each
group, that share a base distribution G0, which is itself distributed as a DP:

G0 ∼ DP(γ, H) Gj ∼ DP(λ, G0) for each j, j ∈ {1, . . . , M} (2)

where j is an index for each group of data. A hierarchical Dirichlet process can be
represented in a more intuitive and straightforward way using two stick-breaking
constructions [18,29] containing a base-level and a group-level construction. In
the base-level construction, since the base distribution G0 is distributed accord-
ing to the Dirichlet process DP(γ,H), it can be expressed using a stick-breaking
representation as

β∼
k ∼ Beta(1, γ) αk ∼ H βk = β∼

k

k−1∏

s=1

(1 − β∼
s) G0 =

∞∑

k=1

βkδαk (3)

where {αk} are independent random variables distributed according to H, and
where δαk

is an atom at αk. The variables {βk} are known as the stick-breaking
weights that satisfy

∑∞
k=1 βk = 1, and are obtained by recursively breaking a unit

length stick into an infinite number of pieces such that the size of each successive
piece is proportional to the rest of the stick. It is noteworthy that since G0 is
discrete and has a stick-breaking representation as in Eq. (3) according to the
property of DP, the atoms αk are shared among all Gj and differ only in weights.
In this work, we apply the stick-breaking representation [34] to construct each
group-level DP Gj :

π∼
jt ∼ Beta(1, λ) �jt ∼ G0 πjt = π∼

jt

t−1∏

s=1

(1 − π∼
js) Gj =

∞∑

t=1

πjtδ�jt (4)

where δθjt
is a group-level atom at �jt, and where {πjt} are the stick-breaking

weights which satisfy
∑∞

t=1 πjt = 1. Since �jt is distributed according to the
base distribution G0, it takes on the value αk with probability βk. We may also
represent this using a binary latent variable Cjt = (Cjt1, Cjt2, . . .) as an indicator
variable, such that Cjtk ∈ {0, 1}, Cjtk = 1 if �jt maps to the base-level atom αk

which is indexed by k; otherwise, Cjtk = 0. Accordingly, we have �jt = α
Cjtk

k .
Consequently, group-level atoms �jt do not need to be explicitly represented

Online Data Clustering Using Variational Learning 21

which further simplifies the inference process as it shall be clearer in the next
section. The indicator variable Cjt is distributed according to β:

p(C |β) =
M∏

j=1

∞∏

t=1

∞∏

k=1

β
Cjtk

k (5)

Since β is a function of β→ according to the stick-breaking construction of the
Dirichlet process as shown in Eq. (3), p(C) can then be represented in the fol-
lowing form

p(C |β∼) =
M∏

j=1

∞∏

t=1

∞∏

k=1

[β∼
k

k−1∏

s=1

(1 − β∼
s)]

Cjtk (6)

The prior of β→ is a Beta distribution according to Eq. (3):

p(β∼) =
∞∏

k=1

Beta(1, γk) =
∞∏

k=1

γk(1 − β∼
k)γk−1 (7)

One significant application of hierarchical DP is its consideration as a non-
parametric prior over the factors for grouped data. More specifically, let i indexes
the observations within each group j, we assume that each variable θji is a fac-
tor corresponding to an observation Xji, and the factors θj = (θj1, θj2, . . .) are
distributed according to Gj , for each j. Thus, we can have the likelihood in the
following form

θji|Gj ∼ Gj Xji|θji ∼ F (θji) (8)
where F (θji) denotes the distribution of the observation Xji given θji, the prior
for the factors θji is the base distribution H of G0. This setting forms the defin-
ition of a hierarchical DP mixture model, where each group is associated with a
mixture component, and the components are shared among these mixture mod-
els due to the sharing of atoms αk among all Gj . Moreover, since each factor
θji is distributed according to Gj , it takes the value �jt with probability πjt.
Next, we introduce a binary latent variable Zji = (Zji1, Zji2, . . .) as an indica-
tor variable. That is, Zjit ∈ {0, 1}, we have Zjit = 1 if θji is associated with
component t and maps to the group-level atom �jt; otherwise, Zjit = 0. Thus,
we have θji = �

Zjit

jt . Since �jt also maps to the base-level atom αk, we then

have θji = �
Zjit

jt = α
CjtkZjit

k . The indicator variable Zji is distributed according
to π as

p(Z |π) =
M∏

j=1

N∏

i=1

∞∏

t=1

π
Zjit

jt (9)

According to the stick-breaking construction of the Dirichlet process in Eq. (4),
π is a function of π→. Then, we have

p(Z |π∼) =

M∏

j=1

N∏

i=1

∞∏

t=1

[π∼
jt

t−1∏

s=1

(1 − π∼
js)]

Zjit (10)

As shown in Eq. (4), the prior distribution of π→ is a Beta:

p(π∼) =
M∏

j=1

∞∏

t=1

Beta(1, λjt) =
M∏

j=1

∞∏

t=1

λjt(1 − π∼
jt)

λjt−1 (11)

22 W. Fan and N. Bouguila

The Hierarchical Infinite Dirichlet Mixture Model. We focus on a specific
form of hierarchical DP mixture model where each observation within a group
is drawn from a mixture of Dirichlet distributions. Since DP mixture models are
often considered as infinite mixture models, we refer to the proposed model as the
hierarchical infinite Dirichlet mixture model. The consideration of Dirichlet mix-
tures is motivated by their superior performance in modeling proportional data
(i.e. normalized histograms) that are naturally generated by many applications
[3,6,14]. Although the Dirichlet distribution is a multivariate distribution which
is often used as a conjugate prior to the multinomial distribution in Bayesian
statistics, it will be considered as parent distribution to model the data directly
in this work. Furthermore, since we adopt the hierarchical DP mixture model
framework, the problem of determining the number of mixture components is
avoided by assuming that there is a countably infinite number of components.

Now let us consider a data set X containing N random vectors and sep-
arated into M groups. We suppose that each vector Xji = (Xji1, . . . , XjiD)
is represented in a D-dimensional space and is drawn from a hierarchical infi-
nite Dirichlet mixture model. Then, the corresponding likelihood function of the
proposed model with latent variables can be written as

p(X|Z , C , α) =
M∏

j=1

N∏

i=1

∞∏

t=1

∞∏

k=1

Dir(Xji|αk)ZjitCjtk (12)

=
M∏

j=1

N∏

i=1

∞∏

t=1

∞∏

k=1

[
Γ (

∑D
l=1 αkl)

∏D
l=1 Γ (αkl)

D∏

l=1

Xαkl−1
jil

]ZjitCjtk

Next, we need to place a prior distribution over the parameter α. In our case,
conjugate prior is preferred since it greatly simplifies the mathematics in the
learning process. Since α is positive and the formal conjugate prior for the
Dirichlet distribution is intractable, a Gamma distribution G(·) is adopted to
approximate the conjugate prior with an assumption that the Dirichlet parame-
ters are statistically independent [14]:

p(α) = G(α|u, v) =
∞∏

k=1

D∏

l=1

v
ukl
kl

Γ (ukl)
α

ukl−1
kl e−vklαkl (13)

where u and v are positive hyperparameters.

3 Online Variational Model Learning

First, we propose a batch variational inference method for learning the proposed
hierarchical infinite Dirichlet mixture model based on a natural gradient method.
Then, an online extension is proposed to account for large-scale or streaming
data. The consideration of Variational inference [1] is motivated by the excellent
results that it has provided when applied to finite Dirichlet mixtures [14]. In
order to simplify notations, in this section, we define Ω = (Z, Λ) as the set of
latent and unknown random variables where Λ = (C,π→,β→,α).

Online Data Clustering Using Variational Learning 23

3.1 Batch Variational Inference

The goal of variational inference is to find an appropriate approximation, in
terms of Kullback-Leibler (KL) divergence, q(Ω) for the true posterior distribu-
tion p(Ω|X). This problem can be tackled by adopting a factorization assumption
for restricting the form of q(Ω) which is known as mean field theory [1]. More-
over, we adopt a truncation technique proposed in [2] to truncate the variational
approximations of base and group levels at K and T , such that

β∼
K = 1,

K∑

k=1

βk = 1, βk = 0 when k > K (14)

π∼
jT = 1,

T∑

t=1

πjt = 1, πjt = 0 when t > T (15)

Notice that the truncation levels K and T are variational parameters which
can be freely initialized and will be optimized automatically during the learning
process. By adopting the truncated stick-breaking representation and the factor-
ization assumption, the approximated posterior distribution q(Ω) can be fully
factorized into disjoint distributions as

q(Ω) = q(Z)q(C)q(π∼)q(β∼)q(α) (16)

The approach that we consider for deriving our optimization solutions is based
on a gradient method [28] and that can be easily extended to online settings as we
shall see in the next section. The idea of the gradient-based variational inference
approach is that, since the model has conjugate priors, the functional form of the
factors in the variational posterior distribution is known. Thus, the lower bound
L(q) can be considered as a function of the parameters of these distributions by
taking their general parametric forms. The optimization of variational factors is
then obtained by maximizing the lower bound with respect to these parameters.
In our case, the functional form for each variational factor is the same as its
conjugate prior distribution, namely Discrete for Z and C, Beta for β→ and
π→, and Gamma for α. Therefore, the parametric forms for these variational
posterior distributions can be defined as the following

q(Z) =
M∏

j=1

N∏

i=1

T∏

t=1

ρ
Zjit

jit q(C) =
M∏

j=1

T∏

t=1

K∏

k=1

ϑ
Cjtk

jtk (17)

q(π∼) =
M∏

j=1

T∏

t=1

Beta(π∼
jt|ajt, bjt) q(β∼) =

K∏

k=1

Beta(β∼
k|gk, hk) (18)

q(α) =

K∏

k=1

D∏

l=1

G(αkl|u∗
kl, v

∗
kl) (19)

By Maximizing the lower bound L(q), we obtain ρjit = exp(ρ̃jit)
∑T

f=1 exp(ρ̃jif)
, where

ρ̃jit =

K∑

k=1

∪Cjtk⊕[R̃k +

D∑

l=1

(ᾱkl − 1) ln Xjil] + ∪ln π∼
jt⊕ +

t−1∑

s=1

∪ln(1 − π∼
js)⊕ (20)

24 W. Fan and N. Bouguila

R̃k = ln
Γ (
∑D

l=1 ᾱkl)∏D
l=1 Γ (ᾱkl)

+

D∑

l=1

ᾱkl

[
Ψ(

D∑

l=1

ᾱkl) − Ψ(ᾱkl)
][〈

ln αkl

〉
− ln ᾱkl

]
(21)

+
1
2

D∑

l=1

ᾱ2
kl

[
Ψ →(

D∑

l=1

ᾱkl) − Ψ →(ᾱkl)
]〈

(ln αkl − ln ᾱkl)2
〉

+
1
2

D∑

c=1

D∑

d=1
(d �=c)

αkcαkd

[

Ψ →(
D∑

l=1

ᾱkl)(
〈
ln αkc

〉 − ln ᾱkc)(
〈
ln αkd

〉 − ln ᾱkd)
]

ϑjtk =
exp(ϑ̃jtk)

∑K
f=1 exp(ϑ̃jtf)

(22)

ϑ̃jtk =
N∑

i=1

∪Zjit⊕[R̃k +
D∑

l=1

(ᾱkl − 1) ln Xjil] + ∪ln β∼
k⊕ +

k−1∑

s=1

∪ln(1 − β∼
s)⊕ (23)

ajt = 1 +

N∑

i=1

∪Zjit⊕, bjt = λjt +

N∑

i=1

T∑

s=t+1

∪Zjis⊕ (24)

gk = 1 +

K∑

j=1

T∑

t=1

∪Cjtk⊕, hk = γk +

M∑

j=1

T∑

t=1

K∑

m=k+1

∪Cjtm⊕ (25)

u∗
kl = ukl +

M∑

j=1

T∑

t=1

∪Cjtk⊕
N∑

i=1

∪Zjit⊕ᾱkl[Ψ(

D∑

s=1

ᾱks) − Ψ(ᾱkl) (26)

+
D∑

s ≺=l

ᾱksΨ
→(

D∑

s=1

ᾱks)(
〈
ln αks

〉 − ln ᾱks)]

v∗
kl = vkl −

M∑

j=1

T∑

t=1

∪Cjtk⊕
N∑

i=1

∪Zjit⊕ ln Xjil (27)

where Ψ(·) is the digamma function. The expected values in the above formulas
are defined as

ᾱkl =
u∗

kl

v∗
kl

∪Zjit⊕ = ρjit ∪Cjtk⊕ = ϑjtk

〈
ln αkl

〉
= Ψ(u∗

kl) − ln v∗
kl (28)

〈
ln π∼

jt

〉
= Ψ(ajt) − Ψ(ajt + bjt)

〈
ln(1 − π∼

jt)
〉

= Ψ(bjt) − Ψ(ajt + bjt) (29)
〈
ln β∼

k

〉
= Ψ(gk) − Ψ(gk + hk)

〈
ln(1 − β∼

k)
〉

= Ψ(hk) − Ψ(gk + hk) (30)
〈
(ln αkl − ln ᾱkl)

2
〉

= [Ψ(u∗
kl) − ln u∗

kl]
2 + Ψ ∼(u∗

kl) (31)

The batch variational inference for hierarchical infinite Dirichlet mixture model
can be considered as an EM-like algorithm and is summarized in Algorithm 1.

Online Data Clustering Using Variational Learning 25

Algorithm 1. Batch variational learning.
1: Choose the initial truncation levels K and T .
2: Initialize the values for hyperparameters λjt, γk, ukl and vkl.
3: Initialize the value of ρjit by K-Means algorithm.
4: repeat
5: The variational E-step:
6: Estimate the expected values in Eqs. (28)–(31), use the current distributions over

the model parameters.
7: The variational M-step:
8: Update the variational solutions for each factor using Eqs. (17)–(19) and the

current values of the moments.
9: until Convergence.

3.2 Online Variational Inference

Inspired from the online learning framework proposed in [28] and tested success-
fully in [34], we develop an online variational inference framework for learning our
model. In contrast with batch learning algorithms, online algorithms are more
efficient when dealing with large-scale or streaming data which are naturally
present in may real-world applications. In our case, let r denotes the amount
of observed data that we currently have. Then, the current lower bound for the
observed data can be calculated by

L(r)(q) =
N

r

r∑

i=1

∫
q(Λ)dΛ

∑

Zi

Q(Zi) ln

[
p(X i, Z i|Λ)

q(Zi)

]
+

∫
q(Λ) ln

[
p(Λ)

q(Λ)

]
dΛ (32)

where Λ = (C,π→,β→,α). The main idea of the online variational inference is to
successively maximize the current variational lower bound as in Eq. (32) with
respect to each variational factor. Consider that we have already observed a
data set {X1, . . . ,X(r−1)}. Then, after obtaining a new observation Xr, we
can maximize the current lower bound L(r)(q) with respect to q(Zr), while
other variational factors remain fixed to q(t−1)(C), q(r−1)(α), q(r−1)(π→) and
q(r−1)(β→). Therefore, we can update the variational solution to q(Zr) as

q(Zr) =
M∏

j=1

T∏

t=1

ρ
Zjtr

jtr (33)

where ρjtr = exp(ρ̃jtr)
∑T

f=1 exp(ρ̃jtr)
, and ρ̃jtr =

∑K
k=1∀C(r−1)

jtk ∩[R̃(r−1)
k +

∑D
l=1(ᾱ

(r−1)
kl −

1) ln Xjrl] + ∀ln π
→(r−1)
jt ∩ +

∑t−1
s=1∀ln(1 − π

→(r−1)
js)∩. In the following step, we max-

imize the current lower bound L(r)(q) with respect to q(r)(C), while q(Zr) is
fixed and other variational factors remain at their (r − 1)th values. Thus, the
variational factor q(r)(C) can be updated as

q(r)(C) =
M∏

j=1

T∏

t=1

K∏

k=1

(ϑ
(r)
jtk)

C
(r)
jtk (34)

26 W. Fan and N. Bouguila

where the hyperparameter ϑ
(r)
jtk is defined by

ϑ
(r)
jtk = ϑ

(r−1)
jtk + ξrΔϑ

(r)
jtk (35)

where ξr is the learning rate. In this work, we adopt a learning rate function intro-
duced in [34], such that ξr = (η0 + r)−w, subject to the constraints w ∈ (0.5, 1]
and η0 ≥ 0. In Eq. (35), Δϑ

(r)
jtk is the natural gradient of the hyperparameter ϑ

(r)
jtk.

The natural gradient of a hyperparameter is obtained by multiplying the gradi-
ent by the inverse of Riemannian metric, which cancels the coefficient matrix for
the posterior parameter distribution. Thus, we can obtain the natural gradient
Δϑ

(r)
jtk as

Δϑ
(r)
jtk = ϑ

(r)
jtk − ϑ

(r−1)
jtk =

exp(ϑ̃
(r)
jtk)

∑K
f=1 exp(ϑ̃

(r)
jtf)

− ϑ
(r−1)
jtk (36)

ϑ̃
(r)
jtk = Nρjtr[R̃(r−1)

k +

D∑

l=1

(ᾱ
(r−1)
kl − 1) ln Xjrl] + ∪ln β

∼(r−1)
k ⊕ +

k−1∑

s=1

∪ln(1 − β∼(r−1)
s)⊕

(37)
Next, the current lower bound L(r)(q) is maximized with respect to q(r)(π→),
q(r)(β→) and q(r)(α):

q(r)(π∼) =
M∏

j=1

T∏

t=1

Beta(π
∼(r)
jt |a(r)

jt , b
(r)
jt) (38)

q(r)(β∼) =

K∏

k=1

Beta(β
∼(r)
k |g(r)

k , h
(r)
k) q(r)(α) =

K∏

k=1

D∏

l=1

G(α
(r)
kl |u∗(t)

kl , v
∗(t)
kl) (39)

where the hyperparameters are given by

a
(r)
jt = a

(r−1)
jt + ξrΔa

(r)
jt , b

(r)
jt = b

(r−1)
jt + ξrΔb

(r)
jt (40)

g
(r)
k = g

(r−1)
k + ξrΔg

(r)
k , h

(r)
k = h

(r−1)
k + ξrΔh

(r)
k (41)

u
∗(r)
kl = u

∗(r−1)
kl + ξrΔu

∗(r)
kl , v

∗(r)
kl = v

∗(r−1)
kl + ξrΔv

∗(r)
kl (42)

The corresponding natural gradients can be calculated as

Δa
(r)
jt = 1 + Nρjtr − a

(r−1)
jt Δb

(r)
jt = λjt + N

T∑

s=t+1

ρjsr − b
(r−1)
jt (43)

Δg
(r)
k = 1 +

K∑

j=1

T∑

t=1

ϑ
(r)
jtk − g

(r−1)
k Δh

(r)
k = γk +

M∑

j=1

T∑

t=1

K∑

m=k+1

ϑ
(r)
jtk − h

(r−1)
k (44)

Δu
∗(t)
kl = ukl + N

M∑

j=1

T∑

t=1

ϑ
(r)
jtkρjtrᾱ

(r−1)
kl [Ψ(

D∑

s=1

ᾱ
(r−1)
ks) − Ψ(ᾱ

(r−1)
kl) (45)

+
D∑

s ≺=l

ᾱ
(r−1)
ks Ψ →(

D∑

s=1

ᾱ
(r−1)
ks)(

〈
ln α

(r−1)
ks

〉 − ln ᾱ
(r−1)
ks)] − u

∗(t−1)
kl

Online Data Clustering Using Variational Learning 27

Δv
(r)
kl = vkl − N

M∑

j=1

T∑

t=1

ϑ
(r)
jtkρjtr ln Xjrl − v

(r−1)
kl (46)

It is noteworthy that the hyperparameters of q(r)(π→), q(r)(β→) and q(r)(α) can
be updated in parallel. This online variational inference procedure is repeated
until all the variational factors are updated with respect to the current arrived
observation. The online variational inference for hierarchical infinite Dirichlet
mixture model is summarized in Algorithm 2. The proposed online learning
algorithm is much more computationally efficient than its batch counterpart.
This is because the batch algorithm updates the variational factors by using
the whole data set in each iteration, and thus its estimation quality is improved
more slowly than in the case of the online one.

Algorithm 2. Online variational learning.
1: Choose the initial truncation levels K and T .
2: Initialize the values for hyperparameters λjt, γk, ukl and vkl.
3: for r = 1 → N do
4: The variational E-step:
5: Update the variational solution to q(Zr) using Eq. (33).
6: The variational M-step:
7: Compute learning rate ξr = (η0 + r)−w.

8: Calculate the natural gradient Δϑ
(r)
jtk using Eq. (36).

9: Update the variational factor q(r)(C) as shown in Eq. (34).
10: Calculate the natural gradients of the remaining hyperparameters using

Eqs. (43)–(46).
11: Update variational factors q(r)(π∼), q(r)(β∼) and q(r)(α) through Eqs. (38)–(39).
12: Repeat the E- and M-steps until new data are observed.
13: end for

4 Experimental Results: Online Images Categorization

4.1 Experimental Design

In this section, we evaluate the effectiveness of the proposed online hierarchi-
cal infinite Dirichlet mixture (referred to as OnHIDM) model through a chal-
lenging real-world application namely online images categorization. The tackled
problem is a fundamental task in computer vision and has drawn significant
attention during the last decade [12,15,17,35]. This problem, however, remains
challenging due to the difficulty of capturing the variability of appearance and
shape of diverse objects belonging to the same class, while avoiding confus-
ing objects from different classes [23]. In our experiments, we demonstrate the
advantages of our OnHIDM model by comparing its performance with three
other mixture models involving the batch hierarchical infinite Dirichlet mixture

28 W. Fan and N. Bouguila

(BaHIDM) model, the online hierarchical infinite Gaussian mixture (OnHIGM)
model and the online finite Dirichlet mixture (OnFDM) model. To make a fair
comparison, all of these models are learned using variational inference. It is
noteworthy that our goals are mainly to demonstrate the advantages of using
online variational inference learning framework over the batch one, and using
hierarchical infinite mixture model over the finite one, as well as using Dirich-
let over the Gaussian mixture. In our experiments, the testing data are sup-
posed to arrive sequentially in an online manner except for the BaHIDM model.
We initialize the base truncation level K to 50, and the group truncation level
T to 15. The parameters w and η0 of the learning rate are set to 0.65 and
64, respectively. The hyperparameters involved in our model are initialized as
(λjt, γk, ukl, vkl) = (0.05, 0.05, 0.1, 0.01). Our simulations have supported these
specific choices.

4.2 Methodology and Results

We apply the proposed OnHIDM to the problem of online images clustering
using the following methodology. First, 128-dimensional scale-invariant feature
transform (SIFT) [22] descriptors1 are extracted from each image using the
Difference-of-Gaussians (DoG) interest point detectors and then normalized.
Next, these features are modeled using the proposed approach. Specifically, each
image Ij is considered as a “group” and is therefore associated with a Dirichlet
process mixture (infinite mixture) model Gj . Thus, each extracted SIFT feature
vector Xji from image Ij is supposed to be drawn from an infinite mixture model
Gj , in which mixture models can be viewed as a representation of “visual words”.
A global vocabulary is constructed and is shared among all groups (images)
through the introduction of the common global infinite mixture model G0. This
setting matches the desired design of a hierarchical Dirichlet process mixture
model. An important step in image categorization approaches with bag-of-visual
words representation is the construction of a visual vocabulary. The majority of
these approaches need to use a separate vector quantization algorithm (such as
K-means) to build the visual dictionary, where the vocabulary size is normally
manually selected. In our approach, the construction of the visual vocabulary is
part of the hierarchical Dirichlet process mixture framework, and the size of the
vocabulary (number of mixture components in the global level mixture model)
can be automatically inferred from the data thanks to its Bayesian nonparamet-
ric nature. Since our goal is to determine automatically the category to which a
testing image Ij should be assigned, our hierarchical Dirichlet process mixture
framework needs to be augmented by an indicator variable Bjm associated with
each image (or group). Bjm means that Ij is generated from category m and
then is drawn from an other infinite mixture model which is truncated at level J .
This means that we need to add a new hierarchy level to our hierarchical infinite
mixture model with a sharing vocabulary among all image categories. In this
1 Other state-of-the-art local visual descriptors may provide better results, however,

this is not the focus of this work.

Online Data Clustering Using Variational Learning 29

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Samples from the Dogs database. (a) Afghan hound, (b) Airedale, (c) Basenji,
(d) Chihuahua, (e) Chow, (f) Entlebucher, (g) Pekinese, (h) Pug.

experiment, we truncate J to 20 and initialize the hyperparameter of the mixing
probability of Bjm as 0.05. Finally, a testing image is affected to the category
which has the highest posterior probability according to Bayes’ decision rule.

Table 1. The average categorization accuracy rate (Acc) (%) obtained over 30 runs
using different methods. The numbers in parenthesis are the standard deviation of the
corresponding quantities.

Method OnHIDM BaHIDM OnFDM OnHIGM

Acc (%) 80.87 (1.19) 81.32 (1.02) 76.18 (1.54) 75.43 (1.31)

Fig. 2. Accuracy as a function of the number of images in the training set.

In our experiments, we consider a challenging public available database known
as the Stanford Dogs database2. This database contains 20,580 images of 120
breeds of dogs from around the world. The images are characterized by large
scale, pose and light variations. The large intra-class and the small inter-class
2 Database available at: http://vision.stanford.edu/aditya86/ImageNetDogs.

http://vision.stanford.edu/aditya86/ImageNetDogs

30 W. Fan and N. Bouguila

variabilities make this data set more challenging. In our experiments, we use
a subset of this database consisting of 8 classes of dogs: Afghan hound (239
images), Airedale (202 images), Basenji (209 images), Chihuahua (152 images),
Chow (196 images), Entlebucher (202 images), Pekinese (149 images) and Pug
(200 images). Thus, we have 1,549 images in total. Sample images from each
class are displayed in Fig. 1. We evaluated the categorization performance of the
proposed algorithm by running it 30 times. We quantified the performance of
our categorization approach using a confusion matrix as well as the rate of over-
all categorization accuracy. Each entry (i, j) of the confusion matrix denotes the
percentage of images in category i that are assigned to category j. Figure 2 shows
the confusion matrix computed by the proposed OnHIDM for our Dogs data-
base. According to this matrix, the average categorization accuracy obtained by
using OnHIDM was 80.87 % (error rate of 19.13 %). For comparison, we have also
applied three other mixture-based approaches as mentioned earlier: BaHIDM,
OnHIGM and OnFDM. The average performances of all tested approaches are
given in Table 1. According to the results shown in this table, it is clear that the
proposed OnHIDM and its batch counterpart (the BaHIDM) behave similarly
(i.e., a Students t-test shows that the difference in performance between the
BaHIDM and OnHIDM is not statistically significant: p-values between 0.1364
and 0.2237 for different runs) by providing better results than other two tested
approaches. In this case, OnHIDM is a better choice over the BaHIDM, since
OnHIDM is significantly faster, thanks to its online learning property, than the
BaHIDM. According to our results, the BaHIDM required 2 h and 32 min to
categorize all images while the OnHIDM only needed 47 min to do so on a com-
puter with Intel’s Core i7 processor 2.00 GHz. Furthermore, the advantage of
using a hierarchical infinite mixture model over a finite mixture model is clear
by observing that better performance was obtained by OnHIDM (80.87 %) than
by OnFDM (76.18 %) in terms of categorization accuracy rate. It is also worth
mentioning that, as we can see from Table 1, the proposed OnHIDM (80.87 %)
outperformed OnHIGM (75.43 %) which shows again the fact that the Dirichlet
model has better modeling capability than the Gaussian for normalized data.

5 Conclusion

Nonparametric Bayesian models have been quite popular recently in many pat-
tern recognition and computer vision problems due to their high accuracy and
potential for data modeling. The success of these techniques rests largely on good
choices of the distributions. This paper has presented and evaluated a hierar-
chical DP mixture model of Dirichlet distributions learned within a variational
framework. The approach strives to achieve a high accuracy of online data clus-
tering and has been validated through a challenging application namely images
categorization. Further efficiency improvements are possible by performing sev-
eral extensions such as introducing feature selection within the proposed model
or considering Beta-Liouville distribution that has been shown to be a good
alternative to the Dirichlet recently [5]. The consideration of the proposed model

Online Data Clustering Using Variational Learning 31

with other learning approaches such as transfer learning [27] or its application
to other challenging problems such as images annotation or objects recognition
are interesting avenues for future research, also.

Acknowledgment. The completion of this research was made possible thanks to the
Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springe, New York
(2006)

2. Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures.
Bayesian Anal. 1, 121–144 (2005)

3. Bouguila, N., Wang, J.H., Hamza, A.B.: Software modules categorization through
likelihood and bayesian analysis of finite dirichlet mixtures. J. Appl. Stat. 37(2),
235–252 (2010)

4. Bouguila, N., Ziou, D.: A dirichlet process mixture of dirichlet distributions for
classification and prediction. In: Proceedings of the IEEE Workshop on Machine
Learning for Signal Processing (MLSP), pp. 297–302. IEEE (2008)

5. Bouguila, N.: Infinite liouville mixture models with application to text and texture
categorization. Pattern Recogn. Lett. 33(2), 103–110 (2012)

6. Bouguila, N., Ziou, D.: Using unsupervised learning of a finite dirichlet mixture
model to improve pattern recognition applications. Pattern Recogn. Lett. 26(12),
1916–1925 (2005)

7. Bouguila, N., Ziou, D.: Online clustering via finite mixtures of dirichlet and mini-
mum message length. Eng. Appl. Artif. Intell. 19(4), 371–379 (2006)

8. Boyd-Graber, J.L., Blei, D.M.: Syntactic topic models. In: NIPS, pp. 185–192.
Curran Associates, Inc. (2008)

9. Bradley, P.S., Fayyad, U., Reina, C.A.: Clustering very large databases using em
mixture models. In: Proceedings of ICPR, vol. 2, pp. 76–80. IEEE (2000)

10. Carbonetto, P., Kisynski, J., de Freitas, N., Poole, D.: Nonparametric bayesian
logic. In: Proceedings of UAI, pp. 85–93 (2005)

11. Caron, F., Davy, M., Doucet, A., Duflos, E., Vanheeghe, P.: Bayesian inference for
linear dynamic models with dirichlet process mixtures. IEEE Trans. Sign. Proces.
56(1), 71–84 (2008)

12. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision,
ECCV, pp. 1–12. Springer (2004)

13. Doshi, F., Miller, K., Gael, J.V., Teh, Y.W.: Variational inference for the indian
buffet process. J. Mach. Learn. Res. Proc. Track 5, 137–144 (2009)

14. Fan, W., Bouguila, N., Ziou, D.: Variational learning for finite Dirichlet mixture
models and applications. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 762–774
(2012)

15. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental Bayesian approach tested on 101 object cate-
gories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

16. Ferguson, T.S.: Bayesian density estimation by mixtures of normal distributions.
Recent Adv. Stat. 24, 287–302 (1983)

32 W. Fan and N. Bouguila

17. Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local dis-
tance functions for shape-based image retrieval and classification. In: Proceedings
of ICCV, pp. 1–8. IEEE (2007)

18. Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J.
Am. Stat. Assoc. 96, 161–173 (2001)

19. Jin, L.C., Wan, W.G., Cui, B., Yu, X.Q.: A new multimedia classification approach:
Bayesian of inductive cognition algorithm based on dirichlet process. Imaging Sci.
J. 58(6), 331–339 (2010)

20. Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple
evidence and wordnet. In: Proceedings of the 13th ACM International Conference
on Multimedia, pp. 706–715 (2005)

21. Korwar, R.M., Hollander, M.: Contributions to the theory of Dirichlet processes.
Ann. Probab. 1, 705–711 (1973)

22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

23. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple
segmentations. In: Proceedings of BMVC, pp. 1–10 (2007)

24. Malisiewicz, T., Efros, A.A.: Recognition by association via learning per-exemplar
distances. In: Proceedings of CVPR, pp. 1–8. IEEE (2008)

25. Nott, D.J.: Predictive performance of dirichlet process shrinkage methods in linear
regression. Comput. Stat. Data Anal. 52(7), 3658–3669 (2008)

26. Opper, M., Winther, O.: Gaussian processes for classification: mean-field algo-
rithms. Neural Comput. 12(11), 2655–2684 (2000)

27. Quattoni, A., Collins, M., Darrell, T.: Transfer learning for image classification
with sparse prototype representations. In: Proceedings of CVPR, pp. 1–8. IEEE
(2008)

28. Sato, M.: Online model selection based on the variational Bayes. Neural Comput.
13, 1649–1681 (2001)

29. Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650
(1994)

30. Teh, Y.W., Jordan, M.I.: Hierarchical Bayesian nonparametric models with appli-
cations. In: Hjort, N., Holmes, C., Müller, P., Walker, S. (eds.) Bayesian Nonpara-
metrics: Principles and Practice, pp. 158–207. Cambridge University Press (2010)

31. Teh, Y.W., Görür, D., Ghahramani, Z.: Stick-breaking construction for the indian
buffet process. J. Mach. Learn. Res. Proc. Track 2, 556–563 (2007)

32. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes.
J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

33. Volkmer, T., Smith, J.R., Natsev, A.: A web-based system for collaborative anno-
tation of large image and video collections: an evaluation and user study. In: Pro-
ceedings of the 13th ACM International Conference on Multimedia, pp. 892–901
(2005)

34. Wang, C., Paisley, J.W., Blei, D.M.: Online variational inference for the hierarchical
Dirichlet process. J. Mach. Learn. Res. Proc. Track 15, 752–760 (2011)

35. Zhang, W., Yu, B., Zelinsky, G.J., Samaras, D.: Object class recognition using
multiple layer boosting with heterogeneous features. In: Proceedings of the CVPR,
pp. 323–330. IEEE (2005)

Distributed Skyline Computation of Vertically
Splitted Databases by Using MapReduce

Md. Anisuzzaman Siddique(B), Hao Tian, and Yasuhiko Morimoto

Graduate School of Engineering, Hiroshima University, 1-7-1 Kagamiyama,
Higashi-Hiroshima 739-8521, Japan

{siddique,M124671}@hiroshima-u.ac.jp
morimoto@mis.hiroshima-u.ac.jp

Abstract. Skyline query retrieve objects that are not dominated by
another object. A result of a skyline query is relatively small, does not
contain less important objects, and is useful for selecting an object. In
this paper, we consider a method for computing skyline query in MapRe-
duce framework, which is a de facto standard in big data analysis. Cur-
rently, we have to be aware of data disclosure. Therefore, we propose
a distributed computation method, in which each computer uses only
a projected database that is vertically splitted from an original data-
base, for computing skyline query. Since one computer can see only pro-
jected values, sensitive information in a database can be localized in
the proposed method in addition to the advantage of the efficiency of
MapReduce. Extensive experiments demonstrate the efficiency of pro-
posed algorithm for synthetic datasets.

Keywords: Skyline query · MapReduce · Privacy · Sensitive database

1 Introduction

Recent computing infrastructure makes a large amount of information, many of
which are stored in databases. In order to utilize the stored information, useful
and efficient information retrieval methods are necessary.

In order to extract useful and relevant information from large information
sources, the research community has invested considerable efforts into developing
tools that facilitate the exploration of data. As a result, the skyline operator [1]
and its variants such as dynamic skyline [10] and reverse skyline [11] operators
have recently attracted considerable attention due to their broad applications
including product or restaurant recommendations [12], review evaluations with
user ratings [13], querying wireless sensor networks [14] and graph analysis [15].

A skyline query retrieves a set of skyline objects so that the user can choose
objects from small number of noteworthy objects. Skyline objects in a dataset
are objects that are not dominated by any other objects in the dataset. Given a
m-attributes dataset DS, an object Oi is said to be in skyline of DS if there is
no other object Oj (i ∼= j) in DS such that Oj is better than Oi. If there exists

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 33–45, 2014.
DOI: 10.1007/978-3-662-43984-5 3, c© Springer-Verlag Berlin Heidelberg 2014

34 M.A. Siddique et al.

Fig. 1. Skyline example

such Oj , then we say that Oi is dominated by Oj or Oj dominates Oi. Figure 1
shows a typical example of skyline. The table in the figure is a list of hotels,
each of which contains two numerical attributes: distance and price, for online
booking. A user chooses a hotel from the list according to her/his preference. In
this situation, her/his choice usually comes from the hotels in skyline, i.e., one
of O1, O3, O4 (see Fig. 1 (b)).

Motivating Example

Consider four datasets DS1,DS2, DS3, and DS4 with two attributes a1 and a2 as
shown in Table 1. To compute skyline on the union of these distributed datasets,
one can follow straightforward approach in which she/he computes each local sky-
line and then compute global skyline from local skylines with any of existing con-
ventional skyline algorithms. Assume that an user wants to choose a hotel from
these distributed datasets. She/he usually chooses an object among the global
skyline {O1,1, O4,1, O3,3}. Since all other objects those are not in the global sky-
line are not better than one of the skyline objects. Here, the first suffix represents
data source ID number and second one represents object ID in the corresponding
data source. For example O4,1 is an object of DS4 and its ID in DS4 is “1”. Con-
ventional skyline algorithms are not suitable for such global skyline computation
on distributed datasets. Most of existing skyline algorithms use single computer,
which has limited scalability. In order to handle big data, some recent works utilize
distributes computers, some of which use MapReduce framework.

Table 1. Database DS

Dataset1 Dataset2 Dataset3 Dataset4
ID a1 a2 ID a1 a2 ID a1 a2 ID a1 a2

O1,1 1 9 O2,1 6 7 O3,1 5 6 O4,1 9 1
O1,2 2 10 O2,2 9 10 O3,2 4 3 O4,2 10 4
O1,3 4 8 O2,3 7 5 O3,3 3 2 O4,3 6 2

O4,4 8 3

Distributed Skyline Computation of Vertically Splitted Databases 35

In addition to the scalability, we have to be aware of privacy issues in a data-
base. All existing distributed skyline algorithms do not pay much attentions on
the privacy issue. It is always possible to pool local skyline result from all distrib-
uted datasets in one place and run global skyline computation. However, this is
exactly what we do not want to do. Data privacy issues can arise in response to
information from a wide range of sources. Some of them are: health-care records,
criminal justice investigations and proceedings, financial institutions and trans-
actions, residence and geographic records, etc. We address the problem how to
compute skyline results without pooling the actual data. In this paper, we con-
sider a distributed skyline algorithm on MapReduce framework. In our method,
source databases are vertically splitted and are distributed. Unlike other MapRe-
duce skyline algorithm, we can localize sensitive information in a database by
the vertical splitting strategy and send projected values (in this paper we called
“rank”) to compute final results.

Contributions of this paper include following three aspects:

� The skyline algorithm on distributed data using MapReduce framework is
presented.

� The proposed distributed algorithm can localize sensitive information in a
database.

� Extensive experiments are conducted to evaluate the efficiency and scalability
of propose algorithm.

The rest of this paper is organized as follows: Sect. 2 reviews related work.
Section 3 presents the notions and properties of skyline objects computation.
We provide detailed examples and analysis of our algorithms in Sect. 4. We
experimentally evaluate the proposed algorithms in Sect. 5 under a variety of
settings. Finally, Sect. 6 concludes the paper.

2 Related Work

Our work is motivated by previous studies of skyline query processing as well
as MapReduce based query processing. Those are is reviewed in the following
sections.

2.1 Skyline Query Processing

Borzsonyi et al. first introduced the skyline operator over large databases and
proposed three algorithms: Block-Nested-Loops (BNL), Divide-and-Conquer
(D&C), and B-tree-based schemes [1]. BNL compares each object of the data-
base with every other object, and reports it as a result only if any other object
does not dominate it. A window W is allocated in main memory, and the input
relation is sequentially scanned. In this way, a block of skyline objects is pro-
duced in every iteration. In case the window saturates, a temporary file is used
to store objects that cannot be placed in W . This file is used as the input to the

36 M.A. Siddique et al.

next pass. D&C divides the dataset into several partitions such that each parti-
tion can fit into memory. Skyline objects for each individual partition are then
computed by a main-memory skyline algorithm. The final skyline is obtained by
merging the skyline objects for each partition. Chomicki et al. improved BNL by
presorting, they proposed Sort-Filter-Skyline (SFS) as a variant of BNL [2].
Among index-based methods, Tan et al. proposed two progressive skyline com-
puting methods Bitmap and Index [3]. In the Bitmap approach, every dimension
value of a point is represented by a few bits. By applying bit-wise AND opera-
tion on these vectors, a given point can be checked if it is in the skyline without
referring to other points. The index method organizes a set of d-dimensional
objects into d lists such that an object O is assigned to list i if and only if its
value at attribute i is the best among all attributes of O. Each list is indexed
by a B-tree, and the skyline is computed by scanning the B-tree until an object
that dominates the remaining entries in the B-trees is found. The current most
efficient method is Branch-and-Bound Skyline (BBS), proposed by Papadias
et al., which is a progressive algorithm based on the best-first nearest neighbor
(BF-NN) algorithm [4]. Instead of searching for nearest neighbor repeatedly, it
directly prunes using the R*-tree structure.

Recently, more aspects of skyline computation have been explored. Chan
et al. proposed k-dominant skyline and developed efficient ways to compute it in
high-dimensional space [5]. Lin et al. proposed n-of-N skyline query to support
online query on data streams, i.e., to find the skyline of the set composed of
the most recent n elements. In the cases where the datasets are very large and
stored distributedly, it is impossible to handle them in a centralized fashion [6].
Balke et al. first mined skyline in a distributed environment by partitioning the
data vertically [7]. Vlachou et al. introduce the concept of extended skyline set,
which contains all data elements that are necessary to answer a skyline query
in any arbitrary subspace [8]. Tao et al. discuss skyline queries in arbitrary
subspaces [9]. More skyline variants such as dynamic skyline [10] and reverse
skyline [11] operators also have recently attracted considerable attention.

2.2 MapReduce Based Query Processing

Computing the skyline or its variants is challenging today since there is an
increasing trend of applications expected to deal with big data. For such data
intensive applications, the MapReduce [18–20] framework has recently attracted
a lot of attention. MapReduce is a programming model that allows easy devel-
opment of scalable parallel applications to process big data on large clusters
of commodity machines. Ideally, a MapReduce system should achieve a high
degree of load balancing among the participating machines, and minimize the
space uses, CPU and I/O time, and network transfer at each machine. There
exist some recent works on skyline computation using MapReduce [16,17]. All
of these works focus on efficient computation but did not give any idea how to
preserve privacy.

In MapReduce framework, the implementation of Mappers and Reducers are
completely independent of each other without communication among Mappers

Distributed Skyline Computation of Vertically Splitted Databases 37

Fig. 2. TeraSort Implementation (1)

or Reducers. When processing this type of applications on MapReduce, there are
large amount unpromising intermediate data to be transferred. These unpromis-
ing intermediate data will be finally abandoned anyhow, leading to the waste of
disk access, network bandwidth, and CPU resources. To filter unpromising data
and reduce the amount of intermediate data and the waste of time processing
the unpromising data can be mitigated by applying skyline query search first.

3 Preliminaries

Given a database DS that is defined by a set of m-attributes {a1, a2, · · · , am}.
The database is distributed into n datasets {DS1,DS2, · · · ,DSn} on different
locations. Without loss of generality, assume that each attribute has non-negative
numerical values. We also assume smaller value is preferable in each attribute. We
use Oi,j .ak to denote the k-th attribute’s value of object Oi,j where i represents
datasets ID and j represent object ID in the corresponding dataset DSi.

For objects Oi,j and O′
i,j , an object Oi,j is said to dominate another object

O′
i,j with respect to DS, denoted by Oi,j ∈ O′

i,j , if Oi,j .as ∈ O′
i,j .as for all

attributes (s = 1, · · · ,m) and Oi,j .ax < O′
i,j .ax for at least one attribute (1 ∈

x ∈ m). We call such Oi,j as dominant object and such O′
i,j as dominated object

between Oi,j and O′
i,j . If Oi,j dominate O′

i,j , then Oi,j is more preferable than
O′

i,j .

38 M.A. Siddique et al.

Fig. 3. TeraSort Implementation (2)

Definition. Skyline: An object O ∀ DS is in skyline of DS (i.e., a skyline object
in DS) if O is not dominated by any other object in DS. The skyline of DS,
denoted by Sky(DS), is the set of skyline objects in DS. For dataset DS, object
O1,1, O4,1, and O3,3 can dominate all other objects and they are not dominated
by each other. Thus skyline query for dataset DS will retrieve O1,1, O4,1, and
O3,3 as Sky(DS).

4 Distributed Skyline Using MapReduce

Proposed parallel algorithm of the skyline query on a distributed data environ-
ment consists of the following three phases.

Distributed Data Sorting Phase: We partition (map) each dataset vertically
and sort each partition by TeraSort for further processing [21].

Map and Ranking Phase: In this phase, each Map function generates (Key,
V alue) pairs, where Key is the corresponding object ID and V alue is the rank
of corresponding attribute value. The output of this phase is (ID,Rank) pairs
for each object.

Reduce and Skyline Computation Phase: Coordinator collects (ID,Rank)
pairs to reduce data access between Map and Reducer. Coordinator maintains

Distributed Skyline Computation of Vertically Splitted Databases 39

counter for each retrieves object. When counter value becomes equal to m
(attributes number), then coordinator stops (ID,Rank) pair collection. The
reduce function is invoked in this stage for skyline computation.

4.1 Distributed Data Sorting Phase

To compute skyline on MapReduce, we sort each dataset in a vertical fashion. We
use TeraSort, which is a standard map/reduce sort. TeraSort sort the dataset
using a one dimensional value as key in several computers. As a result, the
dataset has been distributed into the computers in a sorted fashion. That means
proposed approach split all of the attributes one by one. In other words, it
splits the dataset attribute wise. Assume database DS is distributed among
the machines in the MapReduce denoted by {M1,M2 · · · ,Mt}. After successful
implementation of TeraSort, all objects in Mi must precede those in Mj for any
(1 ∈ i < j ∈ t).

TeraSort

� Round 1.
Map-shuffle
Every Mi (1 ∈ i ∈ t) randomly select samples from its local storage. It sends
all the sampled objects to M1.
Reduce (only on M1)
• Let Ssamp be the set of samples received by M1, and sample size, sz =

|Ssamp|.
• Sort Ssamp and pick boundary object {b1, · · · , bt-1} where bi is the i(sz/t)-

th object in ascending order of Ssamp for (1 ∈ i ∈ t-1)).
� Round 2.

Map-shuffle (Assumption: all bi have been sent to all Mt)
Every Mi sends the objects in (bj-1, bj] from its local storage to Mj , for each
(1 ∈ j ∈ t), where b0 = ∩ and bt = ∩ are dummy boundary objects.
Reduce:
Every Mi sorts the objects received in the previous phase.

Two dimensional TeraSort is shown in Figs. 2 and 3. Figure 2 shows that
input dataset DS is distributed as DS1,DS2,DS3, and DS4. Initially, each
dataset randomly chooses some objects {O1,2, O2,1, O3,1, O4,1, O4,3} as Ssamp

and send them to Map (sample). In reduce phase, each reduce worker sorts
Ssamp dataset according to each attribute. Objects O2,1 and O3,1 are choosen
as boundary objects for each attribute. Coordinator distribute the boundary of
a1 and a2 to each M with datasets DS1,DS2,DS3, and DS4. Figure 3 shows
that every machine map its local storage according to these boundary objects.
Here {O1,1, O1,2, O1,3, O2,1, O3,1, O3,2, O3,3, O4,3} are mapped to Map (a1 ∈ 6),
{O2,2, O2,3, O4,1, O4,2, O4,4} are mapped to Map (a1 > 6), {O2,3, O3,1,
O3,2, O3,3, O4,1, O4,2, O4,3, O4,4} are mapped to Map (a2 ∈ 6), and {O1,1, O1,2,
O1,3, O2,1, O2,2} are mapped to Map (a2 > 6). Next, in the reduce phase all of
these objects are sorted.

40 M.A. Siddique et al.

4.2 Map and Ranking Phase

In this phase, each map task independently operates a non-overlapping input
dataset and calls the user-defined Map function to emit a list of Key-V alue
pairs (K,V) from its local storage in parallel. While key K is usually numeric,
the value V can contain arbitrary information. In the proposed algorithm, each
map function produces a (ID,Rank) pair according to the sorted value of each
attribute.

In this phase, TeraSort outputs are sent to map workers. Each map worker
computes rank value for each object and creates (ID, Rank) pairs. During this
step reducers with higher attributes value are removed. In Fig. 4 shows that
reducers of a1 > 6 and a2 > 6 are removed. Next each map worker assign a rank
value to an object from the ordered object sequence. In Fig. 4 we can see that
objects O1,1 and O4,1 hold the first position with rank “1”.

4.3 Reduce and Skyline Computation Phase

The coordinator retrieves an object from the ordered objects sequence of each Map
worker. The coordinator maintains counter for each retrieved object. According
to lemma 1 it will stopped when one of counter value becomes m.

In our running example at first objects O1,1 and O4,1 are send to the coordi-
nator. Coordinator increments counter value for each retrieved object. Similarly
it increments counter value for O1,2 and O3,3 in the next step. In the third step
coordinator increments counter value for O3,3. Now the counter value becomes
“2” for object O3,3 and which is equivalent to m. When the number of occurrence
for an object becomes to m, coordinator stops further data pooling. Figure 4
shows the coordinating procedure of proposed MapReduce algorithm.

Lemma 1. Object with number of occurrence or counter value equal to m is a
dominant of all of the descendant objects.

Proof. Assume a descendant object Oj was not dominated by it ancestor object
Oi. Oi has the number of occurrence or counter value equal to m. Then accord-
ing to the domination definition Oj must have smaller rank than Oi for all
attributes or at least for an attribute. Since Oi visited before Oj that means Oi

has better rank than Oj . In other words, Oj is dominated by Oi and Oj should be
pruned. Hence an object with counter value m can dominate all of its descendant
objects. �

Next the final reduce phase produce skyline only by comparing attribute
ranks of each retrieve object. Figure 4 shows that object O1,1 has better values
than object O1,2 in both attributes a1 and a2 respectively. In this example,
object O1,2 is removed because it is dominated by O1,1. No other object can
become dominant of each other. Finally, reducer retrieves {O1,1, O4,1, O3,3} as
Sky (DS) for our running example.

Distributed Skyline Computation of Vertically Splitted Databases 41

Algorithm 1. MapReduce Skyline

Input: Distributed Database DS.
Output: Skyline of DS.

Distribute Procedure
Distribute datasets into Machines {M1,M2, · · · ,Mt}.

First Map Job
Map sample dataset Ssamp into one mappers, say M1.

First Reduce Job
Sort Ssamp and pick boundary objects {b1, b2, · · · , b(t−1)}.

Second Map Job (All bi have been sent to all Mt)
Every Mi mapped objects from its local storage according to boundary.

Second Reduce Job
Every Mi sorts the received objects.

Third Map Job
Map only top reducers output sorted by each attribute.
Assign each retrieve object corresponding rank r

Coordinate Procedure
Collect top (ID,Rank) pairs from each mappers.
For each retrieve object maintain a counter.
If counter value equal to m for any object then stop.

Third Reduce Job
Receive (ID,Rank) pairs from coordinator.
Perform domination check among retrieve objects.
Return skyline result.

5 Performance Evaluation

We set up a cluster of 4 commodity PCs in a high speed Gigabit networks, each
of which has an Intel Core i7 3.4 GHz CPU, 4 GB memory and Windows 8.0
OS. The machines are connected with a 100 Mbits/S LAN connection. We com-
pile the source codes under JDK 1.6. We conduct a series of experiments with
different data distributions, dimensionalities, and data cardinalities to evaluate
the effectiveness and efficiency of our proposed methods. We compare proposed
method against SFS which is the efficient non index based skyline computation
algorithm proposed in [2]. Each experiment is repeated five times and the aver-
age result is considered for performance evaluation. Two data distributions are
considered as follows:

Anti-Correlated: an anti-correlated dataset represents an environment in
which, if an object has a small coordinate on some dimension, it tends to have
a large coordinate on at least another dimension.

42 M.A. Siddique et al.

Fig. 4. Skyline query processing

Independent: for this type of dataset, all attribute values are generated inde-
pendently using uniform distribution. Under this distribution, the total number
of non-dominating objects is between that of the correlated and the anti-correlated
datasets.

Effect of Data Distribution. We first study the effect of data distribution on
our propose method. We fix the data cardinality to 1000 k, dataset dimensionality
m to 6. Anti-correlated and independent data distribution are used for this
experiments. The runtime results for this experiment are shown in Fig. 5. Both
of the methods works well for independent data and slower for anti-correlated
data. However, performance proposed method is better than SFS for both of
the data distribution.

Effect of Dimensionality. We study the effect of dimensionality on our MapRe-
duce techniques. We fix the data cardinality to 1000 K and vary dataset dimen-
sionality n ranges from 2 to 8. The runtime results for this experiment are shown
in Fig. 6(a) and (b). The result shows that as the dimension increases the per-
formance of both methods become slower but propose method outperform on
SFS.

Effect of Cardinality. For this experiment, we fix the data domensionality to
6 and vary dataset cardinality ranges from 500 K to 1250 k. Figure 7(a) and (b)

Distributed Skyline Computation of Vertically Splitted Databases 43

Fig. 5. Performance for different data distribution

Fig. 6. Performance for different data dimension

Fig. 7. Performance for different cardinality

44 M.A. Siddique et al.

shows the performance on anti-correlated and independent datasets. Both of
the techniques are highly affected by data cardinality. If the data cardinality
increases then the performances decreases. There exist significance difference on
the performance of both methods and propose method is 2 times faster than
SFS.

6 Conclusion

This paper addresses a distributed computation algorithm skyline query com-
putation. In propose method each computer uses only a projected database that
is vertically splitted from original database. We applied popular MapReduce
architecture for large-scaled parallel computation. Propose method is able to
localize sensitive information in a database. Extensive experiments demonstrate
the efficiency of propose algorithm for synthetic datasets

It is worthy of being mentioned that this work can be expanded in a number
of directions. First, from the perspective of parallel computing, how to compute
skyline from streaming dataset. Secondly, to design an efficient index based (R-
tree/B-tree) MapReduce algorithm are promising research topics.

Acknowledgments. This work is supported by KAKENHI (23500180, 25.03040)
Japan.

References

1. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
ICDE, pp. 421–430 (2001)

2. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Pro-
ceedings of ICDE, pp. 717–719 (2003)

3. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In:
Proceedings of VLDB, pp. 301–310 (2001)

4. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in data-
base systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

5. Chan, C.Y., Jagadish, H.V., Tan, K.-L., Tung, A.-K.H., Zhang, Z.: Finding k-
Dominant skyline in high dimensional space. In: Proceedings of ACM SIGMOD,
pp. 503–514 (2006)

6. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: efficient skyline computa-
tion over sliding windows. In: Proceedings of ICDE, pp. 502–513 (2005)

7. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for
web information systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 256–273. Springer, Heidelberg (2004)

8. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: SKYPEER: efficient
subspace skyline computation over distributed data. In: Proceedings of ICDE, pp.
416–425 (2007)

9. Tao, Y., Xiao, X., Pei, J.: Subsky: efficient computation of skylines in subspaces.
In: Proceedings of ICDE, pp. 65–65 (2006)

Distributed Skyline Computation of Vertically Splitted Databases 45

10. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proceedings of SIGMOD, pp. 467–478 (2003)

11. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: Proceed-
ings of VLDB, pp. 291–302 (2007)

12. Lee, J., Hwang, S., Nie, Z., Wen, J.-R.: Navigation system for product search. In:
Proceedings of ICDE, pp. 1113–1116 (2010)

13. Lappas, T., Gunopulos, D.: Efficient confident search in large review corpora. In:
Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part
II. LNCS, vol. 6322, pp. 195–210. Springer, Heidelberg (2010)

14. Wang, G., Xin, J., Chen, L., Liu, Y.: Energy efficient reverse skyline query process-
ing over wireless sensor networks. IEEE Trans. Knowl. Data Eng. 24(7), 1259–1275
(2012)

15. Zou, L., Chen, L., Özsu, M.T., Zhao, D.: Dynamic skyline queries in large graphs.
In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS,
vol. 5982, pp. 62–78. Springer, Heidelberg (2010)

16. Tao, Y., Lin, W., Xiao, X.: Minimal MapReduce algorithm. In: Proceedings of
SIGMOD, pp. 529–540 (2013)

17. Park, Y., Min, J., Shim, K.: Parallel computation of skyline and reverse skyline
queries using MapReduce. In: Proceedings of VLDB, pp. 2002–2013 (2013)

18. Jiang, D., Tung, A.K.H., Chen, G.: MAP-JOIN-REDUCE: toward scalable and
efficient data analysis on large clusters. TKDE 23(9), 1299–1311 (2011)

19. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A com-
parison of join algorithms for log processing in MaPreduce. In: Proceedings of
SIGMOD, pp. 975–986 (2010)

20. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapRe-
duce. In: Proceedings of SIGMOD, pp. 495–506 (2010)

21. O’Malley, O.: Terabyte sort on apache hadoop. In Yahoo Technical report (2008)

Short-Term Speed Prediction on Urban
Highways by Ensemble Learning

with Feature Subset Selection

Mohammad Arif Rasyidi and Kwang Ryel Ryu(&)

Department of Electrical and Computer Engineering, Pusan National University,
2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, South Korea

{arifrasyidi,krryu}@pusan.ac.kr

Abstract. Accurate traffic speed prediction is essential in the development of
intelligent transportation systems. Even though a lot of methods have been
proposed for traffic prediction, few works pay attention to the application of
ensemble learning and feature subset selection. In this paper, we propose an
implementation of ensemble learning using combination of M5 model tree and
bagging to tackle traffic speed prediction. A method to select optimal neigh-
boring links as features for our prediction model is also introduced, and dif-
ferent feature subset selection methods are compared. Experimental results
show that the proposed ensemble with feature subset selection outperforms
both single model and nonparametric model (k-NN).

Keywords: Traffic prediction � Ensemble learning � Model tree � M5 �
Bagging � Feature subset selection

1 Introduction

Traffic prediction is the task of predicting either the futures value (forecast) of a
certain traffic variable [1–6], or some unknown or missing values from the collected
traffic data [7]. The object of prediction includes but not limited to traffic speed, flow
rate (volume rate), travel time, and road occupancy. In this work, we will focus on
predicting future traffic speed on urban highways. Traffic speed is the measurement of
average speed of all vehicles passing a link in a predefined time period. Accurate
traffic speed prediction is of vital importance in the development of Intelligent
Transportation System (ITS). While the drivers cannot be directly benefited from the
predicted traffic speed, the prediction can be used to estimate the travel times for the
drivers. Other application of traffic speed prediction includes potential traffic con-
gestion warning and fastest route suggestion.

Traffic prediction models can generally be classified into two categories: analytical
and statistical models. Analytical models (also called traffic theory based deductive
models) use a simulation model to mimic the behavior of a specific traffic system and
make prediction based on the simulation result under certain theoretical assumptions
[6, 8]. While these models are useful in foreseeing the effect of various factors (e.g.,
weather, traffic incident, road works, etc.) to the traffic system, they are computa-
tionally expensive, require a lot of time to analyze the problem, and thus difficult for

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 46–60, 2014.
DOI: 10.1007/978-3-662-43984-5_4, � Springer-Verlag Berlin Heidelberg 2014

use in real-time estimation or short-term forecasting [8]. Analytical models are also
sensitive to the simulation parameters. As a result of the complexity of simulation
models, small error in setting up the input parameters can lead to large error in the
results [9]. Statistical models (also called inductive or empirical models) on the other
hand, make prediction based on the hidden relationship or correlation found in the
collected data [6, 8]. The models therefore are data-driven and fewer (or no) theo-
retical assumptions are needed to build them. As with more and more traffic sur-
veillance systems being developed, real time traffic data can be obtained more easily,
resulting in increase of interest in data-driven models. Simple historical average
prediction model is an example of statistical models that is widely used in practice.
However, this method is prone to error since the traffic pattern often deviates from
historical pattern over time. To overcome this problem, researchers have tried dif-
ferent forecasting approaches developed to overcome the limitation of historical
average prediction. Common approaches include time series methods [3, 10], Kalman
filter [11], linear regression [4], Artificial Neural Network (ANN) [1, 5, 12], Support
Vector Machine (SVM) [5, 6, 8], and other nonparametric models such as k-Nearest
Neighbor (k-NN) [13, 14] and local linear regression [2].

In our previous work, we have implemented a k-NN algorithm for short term
traffic speed prediction [14]. While k-NN shows very good prediction accuracy
compared to linear regression and model tree, it is not scalable. With k-NN, at the time
of training we only need to select k, the best number of neighbors to be used for
prediction, and simply store all the training data. All the work is then done at the time
of prediction: finding the k nearest neighbors, combining the prediction results from
each of them, and so on. This is not a problem when we work with a small set of links.
However, when we work with a large number of links in the urban city roads, a
significant amount of computation time is needed to find k nearest neighbors from a
large volume of training data, making real time prediction not feasible.

In this study, we propose an application of ensemble learning of model trees based
on a bagging method. Ensemble learning is a type of learning in which we select a set
(ensemble) of hypotheses and combine their predictions to produce the final result for
a given query. The main advantage of ensemble learning is the improvement of
accuracy and robustness compared to the use of a single model [15]. Ensemble
learning has gained an intense interest over the years and good results have been
reported. Assaad et al. [16] use boosting-based recurrent neural networks ensemble for
improving time series forecasting. Shigei et al. [17] use bagging and AdaBoost for
vector quantization. Yu et al. [18] use multistage radial basis function (RBF) neural
network ensemble for exchange rates forecasting. However, other than the ensemble
of RBF neural network for traffic flow prediction [19], there are few results on
ensemble learning implementation for traffic prediction.

Another issue in traffic prediction is the diverse choices of features for the learning
algorithm. Features determine the performance of a model, since a model is only as
good as its features [20]. Various kinds of features have been proposed and used in the
previous works. Univariate models such as historical average, moving average, and
autoregressive integrated moving average (ARIMA) only use current and historical
data of the target link as features. Multivariate models on the other hand, often
combine historical data of the target link with some time-related features such as time

Short-Term Speed Prediction on Urban Highways 47

(hour, minute), day of week (Monday–Sunday), day type (weekday, weekend, holi-
day) [7], and other related features such as weather condition [12] and traffic incident
[13]. Other types of features that are often used are the current and historical data of
neighboring links. Generally, there are two approaches to using these types of fea-
tures: aggregated values and individual values. The aggregated approach exploits the
fact that things in contiguous regions could be related in a systematic way [21]. In this
approach, the neighboring links are typically divided into several regions or clusters.
The values of all the links in each region are then combined in a predetermined way,
e.g., by averaging or by weighted averaging. Since the values are aggregated, some
potentially important information might be lost, and thus careful consideration must
be given in categorizing the neighboring links and combining their values. Kamari-
anakis and Prastacos [3] compare the performances of univariate and multivariate
time-series predictions and propose to categorize neighboring links based on distance
and use their weighted average speed as features. Min and Wynter [10] try to improve
Kamarianakis’ method by proposing the use of travel time, instead of distance to
categorize the neighbors.

In contrast, in individual approaches, the individual values of all neighboring links
are directly fed to the learning algorithm as features. In previous works, Park and
Rilett [1] try the combination of two uplinks and two downlinks as inputs to a
multilayer feedforward neural network. Other than time-related binary features, Lee
et al. [7] also use the speed of links directly connected to the target link as the input to
a neural network model. Our previous work [14] also uses neighboring link data and
compares the performance with those of models built using only historical data of the
target link. Individual approaches typically employ more features and may preserve
link correlation better than aggregated approaches. However, if there are too many
neighboring links employed, the performance of the learned model might suffer
especially if irrelevant or redundant features are included. A careful selection of the
neighboring links as features is therefore essential in achieving a good performance of
the learned model. However, no previous works have addressed the issue of this
feature subset selection problem, i.e., the selection of the individual neighboring links
as features. The objectives of this research are therefore to apply the ensemble
learning for traffic speed prediction, compare the result to the performance of single
models and nonparametric models, and introduce a method for selecting neighboring
links as candidate features for the learning algorithm.

The rest of the paper is organized as follows. The following section provides the
formalization of traffic speed prediction problem. In Sect. 3, we discuss the proposed
method in applying ensemble learning for traffic speed prediction and selecting the
neighboring links as candidate features. Section 4 gives the experimental procedure.
Results are discussed in Sect. 5 and conclusion is given in the final section.

2 Traffic Speed Prediction Problem

The traffic condition of a target link in a near future directly depends on not only the
current and recent traffic conditions of the target link itself but also those of its
neighboring links both in the upstream and downstream. Consider the scenario where

48 M.A. Rasyidi and K.R. Ryu

an accident occurs on an upstream link. There might be fewer vehicles to pass the
target link than before, which in turn will increase the average traffic speed on the
target link. Things are similar for the downstream links. When link 7 in Fig. 1 for
example is congested, the outflow of the target link will be clogged, thus lowering the
average speed on the target link. Therefore, to make a shot-term traffic prediction of a
target link, we need to inspect the recent conditions of the target and those of the
neighboring links both in the up and downstream. As the prediction is targeted further
into the future, links farther in the up and downstream may have to be investigated.
Other factors that may affect the prediction include the historical pattern of the target
link obtained from a long-term historical traffic data, time zone of a day, day type
(weekdays or weekends), weather conditions, and so on.

Let t denote the current time and (xi,1, xi,2, …, xi,t) be the sequence of recently
observed traffic speeds on link i measured at equal time intervals up to t. Given the
current and recent speed data xi,t = (xi,(t – n), …, xi,(t – 2), xi,(t – 1), xi,t) for i [{target
and neighboring links in the upstream and downstream} and optionally a set of other
related features qt = (q1,t, q2,t, …, ql,t) measured at the current time, we want to
estimate the future speed of target link k at time (t + m) for some positive value m:
xk,(t + m) as shown in Fig. 2. Here, m is the prediction horizon specified by the user and
n is the look-back period, determining how many time steps behind we are willing to
look back to make our prediction. If we let xt denote (x1,t, x2,t, . . ., xh,t) where h is the
number of inspected links and let y(t + m) be the future speed of the target link at time
(t + m), our problem is then to find a function f that maps Xt = (xt, qt) to the future
speed y(t + m) as accurate as possible:

f � ¼ arg min
f

X

ðXt ;yðtþmÞÞ2E

LðyðtþmÞ; f ðXtÞÞ: ð1Þ

where L is a loss function and E is the set of training examples.

Upstream Links

1

2

3

4

5

6
Target Link

7 8

9

Downstream Links

Fig. 1. A sample road network showing a target link (thick line) and its upstream and
downstream neighbors. The direction of the arrows indicates the direction of the traffic

Short-Term Speed Prediction on Urban Highways 49

3 Proposed Method

3.1 Model Tree

Decision tree is widely used both for classification and numerical prediction
(regression). Decision trees for regression generally can be differentiated into two
categories: those that have constants at their leaves, also called regression trees; and
those that build a nontrivial model at each of their leaves, called model trees. A
popular algorithm for building model tree is M5 that is developed by Quinlan [22] and
improved by Wang and Witten [23]. M5 outputs model tree with multivariate linear
models at its leaves. To construct a model tree, M5 uses top-down approach, using
variance reduction as heuristics for selecting the best split (test) at each node. Splitting
or branching in M5 is terminated when the target value of all the instances that reach a
certain node only vary very slightly (e.g., when the standard deviation is less than 5 %
of the standard deviation of the original data set), or only a few instances remaining
(e.g., fewer than 4). A linear model is then built for each leaf and interior node using
training data that reach that node. The resulting linear models are then simplified to
avoid overfitting by dropping terms greedily to minimize the expected error. Once all
the linear models have been simplified, the tree is pruned back from the leaves as long
as the expected error decreases. Finally, to compensate for the discontinuity of the
adjacent linear models, at the time of prediction, the predicted value at the leaf is

Fig. 2. The relevant features for traffic speed prediction

50 M.A. Rasyidi and K.R. Ryu

filtered along the path back to the root and smoothed at each interior node. An
example of model tree is shown in Fig. 3.

The main advantages of model trees over nonparametric models are their
explanatory power and the less amount of computation time demanded for prediction.
However, their performance is often inferior to that of nonparametric models as shown
in our previous work [14]. To improve the performance of model tree, we adopt an
ensemble learning approach that combines several models to achieve better accuracy.
Our ensemble learning implementation for traffic speed prediction is explained in the
next section.

3.2 Ensemble of Model Trees for Traffic Speed Prediction

Ensemble learning generates several models and combines them together to make a
prediction. There are two popular methods in ensemble learning: bagging [24] and
boosting [25]. Boosting explicitly seeks models that complement one another by
iteratively building models, with each one encouraged to become experts for instances
handled incorrectly by earlier ones. While this approach is very powerful, it often
requires modification to the learning algorithm used. Bagging on the other hand,
exploits the instability inherent in learning algorithms to reduce the variance and help
to avoid overfitting. Bagging works by creating a set of replicate datasets, each of
which is called a bootstrap, by sampling with replacement from the original training
set. It then builds several models separately, one for each bootstrap, and weights them
equally. Bagging is simple to apply and does not require any modification to the
learning algorithm. However, it works well only when the learning scheme is unstable
[24], i.e., when small changes in the training data will result in very different
predictors.

In this study, we use bagging in combination with M5 model tree. Similar to
conventional decision trees, model tree learning is unstable. A small difference in the
training data can result in quite different model trees, making it works well when
combined with bagging. To increase the diversity of our ensemble, we try to make the
M5 algorithm as unstable as possible by turning off pruning. The learning algorithm to

Fig. 3. An example of model tree with linear models at its leaves

Short-Term Speed Prediction on Urban Highways 51

build an ensemble of model trees using bagging for our traffic speed prediction can be
described as following:

1. Given a training set E, create s bootstraps (B1, B2, …, Bs) by sampling the training
set E with replacement. Sample ratio is used to determine the size of bootstraps
(as a fraction of the training data). Its value must be greater than 0 and should be
lower than or equal to 1.

2. Train an unpruned model tree using each bootstrap Bi (i = 1, …, s) obtained from
the previous step: f1, f2, …, fs.

3. Store all the resulting models to form an ensemble.

At the time of testing, given an input query Xt = (xt, qt), the prediction y�ðtþmÞ is made

by averaging the outputs of all the model trees in the ensemble:

y�ðtþmÞ ¼
1
s

Xs

i¼1

fiðXtÞ: ð2Þ

3.3 Selecting Neighboring Links

The structure of the links of urban highways can be represented as a directed graph
where each link becomes an edge connecting a source point (head vertex) to a des-
tination (tail vertex). To select the neighboring links of a target link, we divide the
selection process into two parts: upstream selection and downstream selection. In the
upstream selection we select only the links whose tails coincide with or have directed
paths to the head of the target link. We start from the target link and continue adding
incoming links recursively until no remaining link is within a specified distance
threshold. The downstream selection is just the opposite of the upstream selection. We
select only the links whose heads coincide with or have directed paths from the tail of
the target link.

There are various distance metrics that can be used as a link selection parameter.
Typical distance metrics include the actual length, travel time, and spread/depth. With
the travel time metric, the distance of each link is estimated as its actual length divided
by the average speed on that link. When using the spread/depth metric, every link is
considered to have a unit length. The number of links selected using these metrics will
vary depending on the geometric structure of the roads. If the area around the target
link is densely connected, using the actual distance or travel time metric as a selection
parameter might result in a large set of neighboring links. In a sparse area, however,
the same metrics will result in a small set of links. The distance or travel time metric
might capture the inflow-outflow relationship better than the simpler spread/depth
metric.

Note that the number of selected neighboring links gradually (instead of drasti-
cally) increases if we increase the selection parameter carefully. To select the best set
of neighboring links, we begin with a small selection parameter (e.g., depth = 1),
evaluate the selected set of links using the targeted learning algorithm, increase the
parameter, and reevaluate it until we encounter one or more stopping criteria.
A simple way to stop this process would be to check if the selection parameter has

52 M.A. Rasyidi and K.R. Ryu

reached the allowed maximum value or if a specified time limit has passed. A more
sophisticated method would be to see if the validation error rate ceases to improve for
one or more consecutive iterations. What we want is the set of neighboring links with
the lowest validation error when tested with the targeted learning algorithm.

3.4 Feature Subset Selection

Feature subset selection refers to the task of finding a subset of features that allows the
learning algorithm to learn the best model. While model trees already have internal
feature selection schemes, it is often still advantageous to apply additional feature
subset selection scheme before building the model. The advantages of using feature
subset selection include reduced computational cost (by removing useless or redun-
dant features) and avoidance of overfitting to training data.

Feature subset selection methods can be categorized into two main approaches:
wrapper and filter methods. In wrapper method, we evaluate the subset using the
machine learning algorithm that will be employed for learning. Because we build a
model for each feature set to be evaluated, this method is computationally expensive.
However, wrapper usually gives the best performing feature set for that particular
learning algorithm. Filter method on the other hand, makes an independent assessment
of features based on general characteristics of the data. It is much faster than the
wrapper method and usually uses variable (feature) ranking as selection mechanism.
There are various filter methods that can be used for regression problems: correlation
based feature selection (CFS), Principle Component Analysis (PCA), selection with a
Support Vector Machine (SVM), and Recursive Feature Elimination (RFE) with
SVM. CFS iteratively adds the feature with the most information (correlation)
regarding the label and with the least redundancy to the already selected features. PCA
can be used as a form of feature selection/dimensionality reduction by keeping only
the best number of principal components obtained from certain data transformation
and projections. Feature selection with SVM trains a linear SVM model using all the
available training data, sorts the features based on the absolute weights, and keeps
only the top k features. When using RFE, we repeatedly train an SVM, discard
features with the lowest weights (usually specified by a ratio or fraction of the
evaluated features), and retrain until only a specified number of features remain.

In this study, we use filter method as feature subset selection method to reduce the
training time. The performance will be compared to a wrapper method to find out if
there is any significant drop in performance.

4 Experimental Procedure

4.1 Data Preparation

The historical traffic speed data are provided by the Transportation Information Ser-
vice Center of Busan Metropolitan City. The data consists of 30 day traffic speed data
from September 1 to September 30, 2013 for all the links in Busan. The speeds are
measured every 5 minutes from 00:00 to 23:59, giving 288 observations per day and

Short-Term Speed Prediction on Urban Highways 53

8640 observations for each link in the whole month. Our target link for speed pre-
diction is the one in a highway called Beonyeong-ro where the speed changes
dynamically during the day. Applying the neighboring link selection method descri-
bed in Sect. 3.3, we choose spread/depth as the selection parameter, because the
number of selected neighbors increases more slowly than when we use distance or
travel time as shown on Fig. 4. The selection limit is set to the maximum depth of 5.
We evaluate the set of neighboring links selected with depth from 1 to 5 and choose
the one with the lowest validation error to build the final model.

Other than the recent speed data of the target and neighboring links, we also
include six time-related features: day of month (1–30), day of week (1–7), hour
(0–23), minute (0–55), minute of day (0–1435), and day type (weekday, weekend,
holiday). Each dataset is split into two partitions: 70 % of the data are used for
training and the rest 30 % (roughly one week) are used for testing. Six short-term
prediction horizons are tested (1–6 steps/5–30 min ahead prediction) and look-back
period is set to 5 (i.e., we use data from the current time to 5 steps back for each link).
We also investigate the effect of increasing the range of neighboring links when
making 12-step-ahead (one hour) predictions.

4.2 Prediction Models

We compare the performance of our proposed ensemble of model trees with a single
M5 model tree and k-NN. From the results of preliminary experiments, we set the size
of ensemble to be 50 and the sample ratio 0.7. The variant of k-NN that we use is
the weighted k-NN where each neighbor is weighted by the inverse of its distance.
We use Euclidean distance for the distance measure and ten-fold cross validation to
select the optimal number of neighbors (k) for our model.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 S

el
ec

te
d

N
ei

gh
bo

ri
ng

 L
in

ks

Depth Distance (x500m) Travel Time (x30s)

Fig. 4. The number of neighboring links selected across different selection parameters

54 M.A. Rasyidi and K.R. Ryu

4.3 Feature Selection Method

There are five feature selection methods that we try: CFS, PCA, SVM, RFE, and a
wrapper. We also investigate the case of not using any feature selection method. We
select ten features for our learning algorithm using CFS, SVM and RFE. For PCA, we
keep 95 % of variance to reduce the dimensionality. In using a wrapper, we evaluate
the features with the forward selection approach: we start with an empty set of features
and, in each iteration, choose a feature that gives the best performance when added to
the current set of features, and repeat until we meet a stopping criterion. We stop the
execution of forward selection when the validation error does not improve for two
consecutive iterations. The validation error is measured using ten-fold cross
validation.

4.4 Error Measurement

To evaluate the performance of the proposed method, we measure the mean absolute
relative error (MARE) as shown in Eq. (3). Here, yi and y�i represent the actual and
predicted speed values of the target link at time i, respectively.

MARE ¼ 1
n

Xn

i¼1

yi � y�i
yi

����

���� ð3Þ

5 Results

5.1 Dataset Selection

We begin the experiment by finding the best dataset across different prediction
horizons. To evaluate each dataset, we use ten-fold cross validation and MARE as
error measure. Dataset with the lowest validation error will be chosen and used to
build the final model. In case of a tie, we will choose the smaller dataset. Below, we
use the term Dataset i to refer to the dataset obtained using the selection parameter of
depth equal to i (see Sect. 4.1). Table 1 shows the best dataset (Dataset i is indicated
simply by i) for each combination of prediction and feature selection methods. While
it clearly shows that Dataset 4 gives the best validation error in many cases, it does not
show any clear pattern describing the relationship between different prediction hori-
zons and the optimal range of neighboring links. Simple neighboring link selection as
used by Park and Rilett [1] that selects the combination of two uplinks/downlinks
(similar to Dataset 1 and 2) or by Lee et al. [7] that selects only links directly
connected to the target link (similar to Dataset 1) does not look optimal as revealed in
our experiments summarized in Table 1. Our proposed method of selecting neigh-
boring links by starting with a small selection parameter, gradually increasing it, and
reevaluating the selected dataset has proven to be a viable option to determine the best
dataset with the best range of neighboring links for our learning algorithm.

Short-Term Speed Prediction on Urban Highways 55

5.2 Comparison of Different Feature Subset Selection Methods

Using the best dataset obtained from the previous experiment, we build the final
models using different feature subset selection schemes. We then apply the models to
the test set and measure the performance. Table 2 shows the performance of our
predictors using different feature subset selection methods. Wrapper and no feature
selection are provided for comparison purposes. Among all the filter methods tried,
CFS is the clear winner for the ensemble of model trees as well as the single model
tree. CFS even outperforms the performance of wrapper in some prediction horizons
using our proposed models. k-NN, on the other hand, performs the best with SVM and
RFE as the feature subset selection methods.

A closer look to the comparison shows that our ensemble performs well enough,
even without feature selection. This is because model tree already has an internal
feature selection scheme that selects the best feature for splitting at each node.
However, the result shows that the performance can further be improved using CFS as
an extra feature subset selection method. The experiment also shows that the average
time required for training (feature subset selection and building the model) drops from
127.71 s to 27.18 s and that for testing from 2.55 s to 0.51 s when we use CFS instead
of no feature subset selection (the experiment is conducted on a personal computer
with 3.40 GHz CPU and 3 GB maximum Java heap memory).

Table 1. Best dataset for each combination of prediction and feature selection methods

Method Prediction
horizon

Feature selection

None CFS PCA SVM RFE Wrapper

Ensemble of M5 1 4 4 4 4 4 5
2 4 4 4 4 4 5
3 4 4 4 4 4 5
4 4 4 4 4 4 4
5 4 4 4 1 4 5
6 3 4 5 4 4 4

M5 1 4 4 5 4 4 4
2 4 4 4 4 4 4
3 4 3 4 4 4 4
4 4 3 4 4 4 5
5 5 4 5 5 4 4
6 3 4 4 4 4 3

k-NN 1 4 1 5 3 3 1
2 5 4 5 4 4 4
3 4 4 5 3 4 3
4 4 5 5 3 4 5
5 4 4 5 2 4 4
6 5 4 5 4 4 3

56 M.A. Rasyidi and K.R. Ryu

5.3 Performance Comparison

We compare the performance of our proposed model using CFS feature subset
selection with the performance of single M5 model tree and k-NN. Table 3 shows the
performance comparison of the proposed method with the best results of single M5
and k-NN tested with various feature subset selection filters. Our proposed method
clearly wins on all prediction horizons against both of the competitors. Even when we
include the result of the competitors obtained using wrapper feature subset selection as
shown in Table 4, our proposed method still outperforms both single M5 and k-NN on
the first four prediction horizons and only loses by a small margin to k-NN with
wrapper on prediction horizons of 5 and 6.

5.4 Longer Prediction Horizon

In the last experiment, we compare the effect of increasing the range of neighboring
links on longer prediction horizon. We test our proposed method with CFS on 1 hour
(12 steps ahead) prediction. Table 5 shows the comparison of validation and test
errors for 30 minute and 1 hour predictions. The result shows that for longer prediction
horizon, we need to examine a wider area to find the best set of neighboring links for
our prediction. While this does not seem to agree with our previous result that shows
that there is no clear pattern describing the relationship between the prediction horizon

Table 2. Performance comparison of ensemble of model trees, single model tree, and k-NN
using different feature subset selection methods. Best two values are highlighted

Algorithm Prediction
horizon

Feature selection

None CFS PCA SVM RFE Wrapper

Ensemble of M5 1 0.0286 0.0284 0.0415 0.0286 0.0287 0.0284
2 0.0417 0.0404 0.0507 0.0416 0.0413 0.0404
3 0.0517 0.0494 0.0585 0.0520 0.0516 0.0499
4 0.0517 0.0576 0.0635 0.0611 0.0597 0.0571
5 0.0672 0.0651 0.0681 0.0702 0.0680 0.0652
6 0.0720 0.0704 0.0746 0.0729 0.0765 0.0689

M5 1 0.0313 0.0294 0.0497 0.0298 0.0296 0.0294
2 0.0480 0.0418 0.0566 0.0427 0.0426 0.0423
3 0.0602 0.0554 0.0651 0.0548 0.0536 0.0524
4 0.0656 0.0616 0.0703 0.0623 0.0625 0.0587
5 0.0759 0.0690 0.0795 0.0699 0.0706 0.0688
6 0.0798 0.0758 0.0781 0.0758 0.0807 0.0701

k-NN 1 0.0457 0.0479 0.0638 0.0320 0.0326 0.0325
2 0.0524 0.0488 0.0697 0.0433 0.0438 0.0426
3 0.0584 0.0557 0.0751 0.0538 0.0527 0.0519
4 0.0638 0.0619 0.0799 0.0617 0.0610 0.0579
5 0.0691 0.0680 0.0843 0.0695 0.0679 0.0640
6 0.0736 0.0718 0.0893 0.0719 0.0759 0.0694

Short-Term Speed Prediction on Urban Highways 57

and the optimal range of neighboring links, more investigation on different target links
and prediction horizons will be needed before we reach a conclusion. Nonetheless, our
proposed approach still stands as a viable option for selecting the optimal neighbors
with appropriate stopping criterion.

Table 3. Ensemble of model trees with CFS vs. the best of single model tree and k-NN tested
with various feature subset selection filters

Prediction horizon Ensemble of M5 M5 k-NN

1 0.0284 0.0294 0.0320
2 0.0404 0.0418 0.0433
3 0.0494 0.0536 0.0527
4 0.0576 0.0616 0.0610
5 0.0651 0.0690 0.0679
6 0.0704 0.0758 0.0718

Table 4. Ensemble of model trees with CFS vs. the best of single model tree and k-NN tested
with various feature subset selection filters and a wrapper

Prediction horizon Ensemble of M5 M5 k-NN

1 0.0284 0.0294 0.0320
2 0.0404 0.0418 0.0426
3 0.0494 0.0524 0.0519
4 0.0576 0.0587 0.0579
5 0.0651 0.0688 0.0640
6 0.0704 0.0701 0.0694

Table 5. Performance comparisons of 30 minute and 1 hour prediction across different datasets

Dataset Validation Test

30 min 1 h 30 min 1 h

1 0.0949 0.1531 0.0880 0.1254
2 0.0864 0.1418 0.0774 0.1179
3 0.0860 0.1487 0.0774 0.1224
4 0.0704 0.1438 0.0704 0.1190
5 0.0704 0.1443 0.0706 0.1191
6 0.0848 0.1450 0.0768 0.1200
7 0.0847 0.1317 0.0765 0.1140
8 0.0855 0.1316 0.0751 0.1124
9 0.0853 0.1385 0.0773 0.1179

10 0.0857 0.1383 0.0774 0.1169

58 M.A. Rasyidi and K.R. Ryu

6 Conclusion

We have proposed the application of ensemble learning using combination of bang-
ging and M5 model tree for a short-term speed prediction problem and a method for
selecting optimal neighboring links as the features for our prediction model. The
experiments show that our proposed ensemble method with feature subset selection is
superior to both single model (M5) and nonparametric model (k-NN) in all the pre-
diction horizon. Even when we compare the performance of our ensemble with CFS to
M5 model tree and k-NN with wrapper, our proposed method still dominates, giving
best results on the first four prediction horizons and only loses by a small margin to k-
NN with wrapper on 25 minute and 30 minute predictions. Experiments for short-term
predictions show that there is no clear relationship between the prediction horizon and
optimal range of neighbors. However, different result is shown on 1 hour (12 steps
ahead) prediction where wider range of neighboring links results in better perfor-
mances. In future works, we will investigate this issue further on different target links
and various prediction horizons. We will also try to improve the accuracy of the
prediction by combining the output of the model with the long-term historical pattern
of the target link.

Acknowledgments. This research was supported by MSIP (Ministry of Science, ICT & Future
Planning), Korea, under the ITRC (Information Technology Research Center) support program
(NIPA-2013-(H0301-13-1012)) supervised by the NIPA (National IT Industry Promotion
Agency).

References

1. Park, D., Rilett, L.R.: Forecasting freeway link travel times with a multilayer feedforward
neural network. Comput. Civ. Infrastruct. Eng. 14, 357–367 (1999)

2. Sun, H., Liu, H.X., Xiao, H., Ran, B.: Short term traffic forecasting using the local linear
regression model. UC Irvine Cent. Traffic Simul. Stud. (2002)

3. Kamarianakis, Y., Prastacos, P.: Forecasting traffic flow conditions in an urban network:
comparison of multivariate and univariate approaches. Transp. Res. Rec. J. Transp. Res.
Board. 1857, 74–84 (2003)

4. Zhang, X., Rice, J.A.: Short-term travel time prediction using a time-varying coefficient
linear model. Transp. Res. C. 11, 187–210 (2003)

5. Vanajakshi, L., Rilett, L.R.: A comparison of the performance of artificial neural networks
and support vector machines for the prediction of traffic speed. In: 2004 IEEE Intelligent
Vehicles Symposium. pp. 194–199 (2004)

6. Wu, C.-H., Ho, J.-M., Lee, D.T.: Travel-time prediction with support vector regression.
IEEE Trans. Intell. Transp. Syst. 5, 276–281 (2004)

7. Lee, E.-M., Kim, J.-H., Yoon, W.-S.: Traffic speed prediction under weekday, time, and
neighboring links’ speed: back propagation neural network approach. In: Huang, D.-S.,
Heutte, L., and Loog, M. (eds.) Advanced Intelligent Computing Theories and Applications.
with Aspects of Theoretical and Methodological Issues SE – 62, pp. 626–635. Springer,
Heidelberg (2007)

Short-Term Speed Prediction on Urban Highways 59

8. Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on Chaos-
wavelet analysis-support vector machine theory. Transp. Res. Part C Emerg. Technol. 27,
219–232 (2013)

9. Institute of Transportation Engineers California Border Section Highway Capacity Task
Force: A report on the use of traffic simulation models in the San Diego region (2004)

10. Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations.
Transp. Res. Part C Emerg. Technol. 19, 606–616 (2011)

11. Vanajakshi, L., Subramanian, S.C., Sivanandan, R.: Travel time prediction under
heterogeneous traffic conditions using global positioning system data from buses. IET.
Intell. Transp. Syst. 3, 1–9 (2009)

12. Dunne, S., Ghosh, B.: Weather adaptive traffic prediction using neurowavelet models. IEEE
Trans. Intell. Transp. Syst. 14, 370–379 (2013)

13. Guo, F., Krishnan, R., Polak, J.W.: Short-term traffic prediction under normal and incident
conditions using singular spectrum analysis and the k-nearest neighbour method. In: IET
and ITS Conference on Road Transport Information and Control (RTIC 2012), pp. 1–6
(2012)

14. Rasyidi, M.A., Kim, J., Ryu, K.R.: Short-Term Prediction of Vehicle Speed in Main City
Roads using k-Nearest Neighbor Algorithm. In: Proceedings of 2013 Korea Intelligent
Information System Society Conference on Intelligent Technology and Data Science.,
pp 190–195. Korea Intelligent Information System Society, Seoul (2013)

15. Garcia-Pedrajas, N., Hervas-Martinez, C., Ortiz-Boyer, D.: Cooperative coevolution of
artificial neural network ensembles for pattern classification. IEEE Trans. Evol. Comput. 9,
271–302 (2005)

16. Assaad, M., Boné, R., Cardot, H.: A new boosting algorithm for improved time-series
forecasting with recurrent neural networks. Inf. Fusion 9, 41–55 (2008)

17. Shigei, N., Miyajima, H., Maeda, M., Ma, L.: Bagging and AdaBoost algorithms for vector
quantization. Neurocomputing 73, 106–114 (2009)

18. Yu, L., Lai, K.K., Wang, S.: Multistage RBF neural network ensemble learning for
exchange rates forecasting. Neurocomputing 71, 3295–3302 (2008)

19. Chen, L., Chen, C.L.P.: Ensemble learning approach for freeway short-term traffic flow
prediction. In: IEEE International Conference on System of Systems Engineering, 2007.
SoSE ’07, pp. 1–6 (2007)

20. Flach, P.: Machine Learning: the Art and Science of Algorithms That Make Sense of Data.
Cambridge University Press, New York (2012)

21. Giacomini, R., Granger, C.W.J.: Aggregation of space-time processes. J. Econom. 118,
7–26 (2004)

22. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the Australian Joint
Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

23. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. Poster
papers of the 9th European Conference on Machine Learning. Springer (1997)

24. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)
25. Schapire, R.E.: A brief introduction to boosting. In: Proceedings of the 16th International

Joint Conference on Artificial Intelligence – vol. 2, pp. 1401–1406. Morgan Kaufmann
Publishers Inc., San Francisco, (1999)

60 M.A. Rasyidi and K.R. Ryu

Graph Summarization Using Word Correlation
Analysis on Large Set of Documents

Putu Y. Kusmawan1(B) and Joonho Kwon2

1 Department of Electrical and Computer Engineering,
Pusan National University, Busan, South Korea

2 Institute of Logistic Information and Technology,
Pusan National University, Busan, South Korea

{putuyuwono,jhkwon}@pusan.ac.kr

Abstract. As there are a lot of available documents in the Internet,
it is impossible to manually extract their important information. In
this paper, we propose a system for extracting important information
automatically from huge volume of documents using word correlation
analysis. Our system analyzes words’ occurrence and co-occurrence fre-
quencies on several levels: sentence, paragraph, and document. And then,
it performs three different analysis steps: occurrence frequency, adjacent
correlation, and importance score analysis, to calculate the importance
score of each word. Finally, it can extract keywords and store them in
a graph structure. The benefits of using a graph structure were twofold.
We could effectively manage the keywords and their connections; and
it assisted us with the retrieval of relevant documents. Our preliminary
experiment shows that our technique can be used for analyzing large set
of documents well.

Keywords: Word correlation analysis · Large set of document · Graph
summary

1 Introduction

In this digital era, people might want to grab important information from docu-
ments quickly, but it is difficult to be done since there are too many documents
to read. This problem is often called information overload. For an instance,
in digital forensic field, investigators are facing difficulties in finding suspicious
relationships among individuals during a crime scene investigation [1] as there
are so many documents or files to be analyzed. The similar problem occurs in
a domain of online news broadcasting. Because there exist enormous amount
of rapidly updated information, consumers do not have much time to read all
of them. Thus, several online news aggregators [2–4] help consumers staying
in touch with the latest news easily. However, they ignore connections among
information.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 61–74, 2014.
DOI: 10.1007/978-3-662-43984-5 5, c© Springer-Verlag Berlin Heidelberg 2014

62 P.Y. Kusmawan and J. Kwon

Fig. 1. Example of correlation analysis

Example 1. Let us describe the necessity of extracting information by an exam-
ple. Assume that there are several articles about Steve Jobs. An article A tells
much more about his childhood life, and less about his career. Another article
B tells about the time when he founded a company called Apple. The others
mention his past activities in several companies such as NeXT and Pixar which
he had founded and had worked for. After reading all of those articles one by
one, readers might discover that Steve Jobs is very related to the most successful
American Entrepreneur.

It will be great, if we can build a system that can analyze the relation-
ships among information scattered across different sources. Figure 1 illustrates
the system of graph summarization using word correlation analysis on several
articles about Steve Jobs. As we can see in the graph summary, a vertex labeled
Steve Jobs is connected to several vertices labeled as Apple, NeXT, and Pixar.
This helps us to understand why he is one of the most famous “American
Entrepreneur”.

An automatic document analysis has been an interesting topic as several
researchers conduct their work [5–7] in this field. However, to our knowledge,
none of them try to analyze a large collection of documents. Most of them only
consider how their approach can extract keywords or summarize documents well
by evaluating their approach on a small number of documents. Wartena and
Matsuo [5,6] try to extract keywords from short texts. During an extraction
process, they consider connections between words by checking a single level of
co-occurrence. However, when the size of document grows very large, analyzing
a single level of co-occurrence is not enough since there might be long distance
correlation between words. Hu [7] breaks down an input text into different types
of levels, and assigns a fixed weighting value for each of them. However, if we
analyze large set of documents, the number of sentences and paragraph within
documents may vary. This will impact the distribution of word co-occurrence

Graph Summarization Using Word Correlation Analysis 63

on each level, thus we should assign a proper weighting value for each level of
documents regarding to its portion.

In this paper, we introduce a new technique for extracting meaningful rela-
tions among words to produce keywords as well as creating graph summary from
large set of documents. Our contributions are summarized as follows:

– We propose a technique to create a graph summary by analyzing word corre-
lation on three different levels: sentence, paragraph, and document.

– We assign a dynamic weighting value to every level by considering its portion.
For example, we divide the number of sentences by the total number of levels
to obtain the weighting value of sentence level. These weighting values might
also be configured based on experimental evaluation.

– We describe the usage of the resulting graph summary for storing important
information and retrieving relevant documents.

– We implement our technique in Map-Reduce framework and conduct a pre-
liminary evaluation that shows the performance of our technique in analyzing
large set of documents.

The rest of this paper is organized as follows: Sect. 2 presents the overview of
our system. Section 3 explains about how we can compute the importance score
of words using our technique. Section 4 describes about the process of storing
the analysis result into a graph structure and how we can take advantage of
the resulting graph structure in retrieving relevant documents. To evaluate the
performance of our method, we have conducted a preliminary experiment and
describe it in Sect. 5. Finally, we conclude our work in Sect. 6.

2 System Overview

In this section, we shall explain the architectural overview of our system as shown
in Fig. 2. Our system consists of five modules: a preprocessing module, three cor-
relation analysis modules implemented by using Map-Reduce framework, and a
graph construction module. We briefly explain the functionalities of five modules
here and describe the details in the next section.

– Document Preprocessor (PRE): This module takes input documents and
creates level maps by parsing them into sentences, paragraphs and documents.
It also removes stop words such as the, is, are, at, which, in, and on.

– Occurrence Frequency Analyzer (OFA): This module reads the preproce-
ssed documents and checks the occurrence frequency of each word on each
level. The output will be a list of words containing their set of frequencies.

– Adjacent Correlation Analyzer (ACA): This module analyzes the strength
of connections among words by using the preprocessed content and the level
statistics. The result of this analysis step is a list of pairs with their correlation
scores.

– Importance Score Analyzer (ISA): This module combines the result of
two previous steps to calculate the importance scores of all words. The result
of step is a list of words with their importance scores.

64 P.Y. Kusmawan and J. Kwon

Fig. 2. Architectural overview

– Graph Constructor (GRA): This module takes the analysis results and
stores them in a graph structure. The output of ISA will be stored as vertices
and the output of ACA will be stored as edges. In addition, we also perform an
entity resolution process to identify people, companies, organizations, cities,
geographic features, and other types of entities.

3 Importance Score Analysis

In this section, we shall describe the detailed steps of calculating the importance
score of all words. We divide and explain all of them in several subsections.

3.1 Document Preprocessing

As there might be a lot of meaningless words and irrelevant characters, we cannot
directly perform our analysis steps on the input documents. We should perform
several perprocessing steps to prepare the documents before being analyzed.
There are several tasks that must be done in this step:

– Extracting sentence from input documents.
– Eliminating stop words.
– Assigning document ID, paragraph ID, and sentence ID (Level Map) to each

sentence
– Checking the number of each level (Level Statistics).
– Partitioning documents into several blocks which are equal before loading into

HDFS.

The outputs of this step are level maps and statistics as well as preprocessed
documents’ content. Due to the tiny size of a single document, we concatenate
and partition the preprocessed documents into several equal-sized files to fit
HDFS block size.

Example 2. For providing a running example, we use two documents (D1 and
D2) about Steve Jobs’ biography [8,9] in which each document has four sentences
and two paragraphs. Figure 3 illustrates an example of document preprocessing.
We use an existing sentence parser [10] to extract sentences and paragraphs. For
assigning level map, we use an incremental integer number on each level. By
doing so, we can also obtain the level statistics of the input documents.

Graph Summarization Using Word Correlation Analysis 65

Fig. 3. Example of document preprocessing step

3.2 Occurrence Frequency Analysis

As an initial score, we analyze words occurrence frequency on each level: sen-
tence, paragraph, and document and implement it in Map-Reduce framework.
First, mappers read the preprocessed input documents to emit word as key, and
level map as value. And then, reducers summarize the frequency of each word
regarding its occurrence location. The final output is a list of word including
its occurrence frequency on each level and the overall frequency summation.
Figure 4 shows an example output of analyzing word occurrence frequency.

3.3 Adjacent Correlation Analysis

Next, we analyze the strength of connection between two words by calculating
adjacent correlation scores. To calculate these scores, we need to check the co-
occurrence frequency and location of every pair of words. Then, we compute
the correlation scores level by level, formalized as Level-specific correlation (LC)
analysis. For performing this step, we have observed the following characteristics:

1. Important pair of words must appear at least once in the same sentence.
2. Words may not stand alone to deliver information, they must work together

to form at least a sentence.
3. After forming a sentence, words can form larger structure called paragraph

and document to deliver more complete information.

Fig. 4. Example of occurrence frequency analysis

66 P.Y. Kusmawan and J. Kwon

Table 1. Example of calculating adjacent correlation score

Pair Level-specific Correlation (LC) Adjacent
Sentence Paragraph Document correlation
(N=8) N=4 N=2

Jobs-Apple Co-occur: 4 Co-occur: 3 Co-occur: 2 0.64
LC: 4/8 = 0.50 LC: 3/4 = 0.75 LC: 2/2 = 1

Jobs-NeXT Co-occur: 1 Co-occur: 1 Co-occur: 1 0.21
LC: 1/8 = 0.125 LC: 1/4 = 0.25 LC: 1/2 = 0.50

Jobs-Pixar Co-occur: 1 Co-occur: 1 Co-occur: 1 0.21
LC: 1/8 = 0.125 LC: 1/4 = 0.25 LC: 1/2 = 0.50

Jobs-American Co-occur: 1 Co-occur: 1 Co-occur: 1 0.21
LC: 1/8 = 0.125 LC: 1/4 = 0.25 LC: 1/2 = 0.50

Example 3. Let us consider again the preprocessed content in Fig. 3. The words,
“Jobs” and “Apple”, co-occur in four sentences, and there are eight sentences
in the whole input documents. We can calculate sentence-level correlation score
as follows: 4/8 = 0.5. We perform the same operation for the upper level of
co-occurrence, until we can get three different level-specific correlation scores
(sentence, paragraph, and document).

We then summarize all level-specific correlation scores by considering the
weighting values on each level as an adjacent correlation (AC) score. The AC
score between two words (a,b) is formalized as follow:

ACa,b =
d∑

x=s

αx.LCx
a,b (1)

where LCx
a,b is the level-specific correlation of word a and b, αx is the weighting

value for each level, and x is a set of levels containing sentence(s), paragraph(p),
and document(d). To give a proper weighting value, we use the level statistics
obtained from the document preprocessing step.

Example 4. Consider again the level statistics in Fig. 3. There are 8 sentences,
4 paragraphs, and 2 documents which produces 14 total levels of our dataset.

Fig. 5. Overview of adjacent correlation analysis in map-reduce

Graph Summarization Using Word Correlation Analysis 67

We will divide the number of corresponding level by the total number of levels in
the whole documents. Therefore, we can calculate sentence level weighting value
as follows: 8/14 = 0.57. And then, we can calculate the adjacent correlation score
for “Jobs-Apple”: (0.57× 0.50) + (0.29× 0.75) + (0.14× 1) = 0.64. Table 1 shows
the example of calculating adjacent correlation scores.

The higher adjacent correlation score means the stronger connections between
two words. As we can see in Table 1, the pair “Jobs-Apple” has higher score
than the pairs of “Jobs-NeXT” and “Jobs-Pixar”. Thus, we can conclude that
based on our dataset “Jobs” is more related to a company named “Apple” than
“NeXT” or “Pixar”. In addition, we can also use this value to prevent storing
irrelevant pairs.

We also have implemented this analysis step in Map-Reduce to make it scal-
able. Mappers will read the preprocessed content as well as the level map to
construct all pairs. After map task has finished, it will emit the pair of two words
(separated by comma) as key and level map as value. Reducers will retrieve the
intermediate result and check the level map to calculate word co-occurrence on
each level. To compute the adjacent correlation score, they utilize the level sta-
tistics that has been loaded into Hadoop distributed cache before the job starts.
As the result, reducers will emit the pair as key and its adjacent correlation score
as value. Figure 5 shows the processing flow to calculate the adjacent correlation
scores in Map-Reduce framework.

3.4 Importance Score Analysis

After performing occurrence frequency and adjacent correlation analysis, we can
calculate the importance score of each word. There will be two mapper classes for
reading two different data sources which are the result of the previous analysis
steps, OFA and ACA. The first mapper class will read the result of OFA, then
emit each word as key and its occurrence frequency as value with a character
‘F’ as prefix. The second mapper class will read each pair of words from ACA’s
output and split them into words. Then, it emits each word as key and emit its
adjacent correlation score as well as its co-occurring word as value.

After map tasks have finished, reducers will begin their work by collecting all
words occurrence frequencies and adjacent correlation scores. Prior to calculating
the importance score, they will perform one additional step called transitive
correlation analysis. This step is needed to measure the impact score that is
shared between two co-occurring words. The impact must be proportional to
the adjacent correlation score and the occurrence frequency difference between
them. The bigger transitive correlation score a pair has, the bigger supporting
score they share.

Example 5. Recall to the result of the two previous steps in Fig. 4 and Table 1,
we can obtain the overall frequency difference between “Jobs” and “Apple” as
follow 13 − 9 = 4, and we have also computed the adjacent correlation score
of “Jobs-Apple” which is 0.64. Thus, we can calculate the transitive correlation
score of “Jobs-Apple” as follow 4× 0.64 = 2.57.

68 P.Y. Kusmawan and J. Kwon

Fig. 6. Overview of importance score analysis in map-reduce

After calculating the transitive correlation of all pairs, reducers will calculate
the importance score by adding the overall occurrence frequency of each word
with the maximum transitive score (MAX(tra)) that it has. Figure 6 shows the
Map-Reduce processing flow to calculate the importance scores.

Example 6. Consider again the result of OFA in Fig. 4, the overall occurrence
frequency of “Jobs” is 13, and it is connected to several vertices via four different
edges representing their transitive correlation scores. Thus, we can calculate the
importance score of “Jobs” by adding its frequency to its maximum Transitive
Correlation score: 13 + MAX(2.57, 2.14, 2.14, 2.14) = 15.57.

As the result of this step, reducers will emit word as key and its importance
score as value. The higher importance score, the more likely we can regard a word
as a good candidate for keyword. To make the process easier to understand, we
describe this mechanism using a graph structure in Fig. 7.

4 Graph Structure

4.1 Graph Structure Construction

After performing all of the analysis steps, we construct a graph structure using
the analysis results. As we know, a graph mainly consists of two main compo-
nents: vertex and edge. Both vertex and edge may have several properties to
store more detailed information. Figure 8 depicts the resulting graph structure
that can be built by our system. There are 5 vertices in the graph, each of them
has several properties. For an instance, a vertex labeled “Steve Jobs” stores the
importance score, occurrence frequency and location. The edges also have several
properties to store detailed information of all pairs of words.

We use the result of ISA and ACA to construct the graph structure. First
we read all of the ISA’s output and store them as vertices. And then, we create

Graph Summarization Using Word Correlation Analysis 69

Fig. 7. Example of importance score calculation

edges using the output of ACA. After all vertices and edges have been stored in
the graph, we perform an entity resolution using an existing NER library [11] to
obtain the complete term form each vertex label.

4.2 The Usability of Graph Structure

In this subsection, we will discuss about the usage of the resulting graph struc-
ture produced by our system. By using the graph structure, we can manage
all keywords and their connections well. In addition, it might also be useful for
relevant document retrieval system.

Example 7. For this occasion, we will use the example documents that we have
mentioned in Fig. 3. Suppose user wants to retrieve all documents which contain
any information about “Jobs” and “Apple”. If we represent keywords as a bag-of-
words, we might be able to return all documents which contain both “Jobs” and

Fig. 8. Example graph structure

70 P.Y. Kusmawan and J. Kwon

“Apple”. However, such kind of representation does not store the connectivity
between keywords. It will be difficult for us to rank the query answer based on
the relevance of document’s content. Finally, user must decide manually which
document to read first. Using our approach, we can tackle this issue by analyzing
the connection between “Jobs” and “Apple” in more detail. Even though they co-
occur in both documents, the co-occurrence distribution in lower level is different.
Doc.1 has more sentences mentioning about “Jobs” and “Apple” than Doc.2
does, thus we should recommend user to read Doc.1 prior to reading Doc.2.
Thus, our system can quickly answer user’s query using the following steps:

1. Locate “Jobs” vertex.
2. Find an edge that connects “Jobs” vertex with “Apple” vertex.
3. Check in which document they co-occur by analyzing the corresponding edge’s

properties.
4. Rank the result according to the number of sentence and paragraph co-

occurrence on each document.

Finally, our system will returns Doc.1 at the top of the query answer.
We may also employ indexing system on the edge structure to improve the

query performance. However such improvement approach will have a trade-off
since it will also increase the complexity of graph construction.

5 Evaluation

In this section, we present experimental result to evaluate the accuracy and the
performance of our system.

5.1 Experimental Environments

Hardware. We used two different hardware setups for evaluating our system.
First, we used a single machine (Intel Core2Quad Q6600 @2.4 GHz, 64-bit, 4 GB
RAM) running on Windows Server 2008 R2 Standard 64-bit for evaluating
the accuracy of our system. Second, we used 15 commodity machines (Intel
Core2Quad @2.66 GHz, 64-bit, 2 GB RAM, 500 GB HDD) running on Ubuntu
12.10 and configured them to work together on top of Hadoop version 1.2.1 for
evaluating the performance of our system.

Dataset. We used two data sets: (1) IEEE dataset for an accuracy test and (2)
digital books [12] for a performance test. The IEEE dataset consists of several
papers which are randomly selected from IEEE Explore website. The overall
statistics of our first dataset are as follows: 90,990 words, 20,511 sentences, 15,495
paragraphs, and 20 documents. The digital book dataset consists of 9,487,087
sentences, 2,873,700 paragraphs, and 2,620 documents. In total, the size of the
digital book dataset is 1.1 GB with the average size of 2.7 MB.

Graph Summarization Using Word Correlation Analysis 71

5.2 Accuracy Test

In this evaluation, we tried to extract several important information in the form
of keywords from several scientific paper documents. We combined the author’s
keyword and manually-selected keyword as the basis of forming relevant keyword
list for each paper. Prior to this experiment, we broke down relevant keywords
into words and eliminated duplicate words. As the result, each paper has at least
5 distinct words and at most 18 distinct words, with an average of 10 distinct
words. Then, we extract keywords using our method and compute the precision-
recall average score. As we know, precision and recall formula are defined as
follows:

Precision(P) =
CorrectWord

ExtractedWord
;Recall(R) =

CorrectWord

RelevantKeyword
(2)

For the first attempt, we want to extract as many correct keyword as possible;
thus, we select Top-25 most important words from all documents. In this case, we
manage to get a good recall score (R = 0.73), however the precision score is very
low (P = 0.29). It makes sense since there are only 10 keywords on each paper
in average. Therefore, we gradually decrease the number of extracted keyword
for each document (Top-20,15,10,5) to achieve better precision score. Finally, we
extract Top-5 most important words from all documents and we get R = 0.32
and P = 0.63. Figure 9 shows the result of our accuracy evaluation.

Fig. 9. Precision and recall result

72 P.Y. Kusmawan and J. Kwon

5.3 Performance Test

To measure the performance of our technique, we have also conducted another
experiment using the digital book dataset. We used 15 machines to process vary-
ing size of the datasets. Since the average size of a single book is only 2.7 MB, we
concatenated the books to construct 50 MB input split size before running the
Map-Reduce job. We used a single machine to preprocess the dataset, thus it
takes several minutes to completely preprocess the dataset. Figure 10(a) shows
the time needed for preprocessing the dataset(PRE) and for loading it into
HDFS(LOAD).

During the first execution, our system requires around 10 min to completely
analyze 100 MB of documents. When we gradually increase the dataset size up to
400 MB, our system requires considerably few more seconds to analyze them all.
We get a significant performance degradation, when it comes to analyze 800 MB
of documents. However, we can say that our system only requires less than a
second to analyze a single book since it can finish processing 1 GB dataset in
37 min.

As shown in Fig. 10(b), the most time consuming step is adjacent correlation
analysis (ACA). It consumes more than a half of the whole processing time.
This is due to the very large amount of pairs that needs to be processed. For an
instance, it calculates ACA score of 27 millions of pairs during the analysis of
1GB dataset. Our future works will focus on improving our technique especially
in this step. It will be much faster, if we can eliminate some irrelevant pairs prior
to this step.

(a) Preparation Time (b) Analysis Time

Fig. 10. Execution time

Graph Summarization Using Word Correlation Analysis 73

6 Conclusion

In this paper, we have proposed a system for summarizing a large set of document
as a graph structure using word correlation analysis. Our system relies on the
analysis of words occurrence, and co-occurrence statistics on each level of doc-
uments. First, it performs the occurrence frequency analysis to calculate word’s
initial importance score. Second, it analyzes the strength of connection among
words by performing the adjacent correlation analysis. The adjacent correlation
score is useful for calculating the impact score that a word gives or receives dur-
ing the transitive correlation analysis. Then, our system performs importance
score analysis to calculate the final score combining the initial importance score
and the maximum transitive correlation score. Finally, a graph structure can
be constructed from the importance scores and correlation scores. We have also
described the usability of our graph structure for storing important information
and retrieving relevant documents. Experimental results have shown that our
system can give a considerably accurate result and perform well in analyzing
large amount of documents.

Acknowledgement. This research was supported by the MKE(The Ministry of Knowl-
edge Economy), Korea, under the ITRC(Information Technology Research Center)
support program (NIPA-2013-(H0301-13-1012)) supervised by the NIPA(National IT
Industry Promotion Agency).

References

1. Carrier, B.D.: Defining digital forensic examination and analysis tool Using
abstraction layers. Int. J. Digital Evidence 1(4) (2003). http://www.utica.edu/
academic/institutes/ecii/publications/articles/A04C3F91-AFBB-FC13-4A2E0F1
3203BA980.pdf, DBLP, http://dblp.uni-trier.de

2. Chowdhury, S., Landoni, M.: News aggregator services: user expectations and expe-
rience. Online Inf. Rev. 30(2), 100–115 (2006)

3. Summly: Summly news aggregator (2014). http://summly.com/
4. Inc., G.: Google news (2014). https://news.google.com/
5. Wartena, C., Brussee, R., Slakhorst, W.: Keyword extraction using word co-

occurrence. In: Proceedings of Seventh International Workshop on Text-based
Information Retrieval, Bilbao, Spain, pp. 54–58 (2010)

6. Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word
co-occurrence statistical information. Int. J. Artif. Intell. Tools 13(1), 157–169
(2004)

7. Hu, X., Wu, B.: Automatic keyword extraction using linguistic features. In: Pro-
ceedings of 6th ICDM Workshops, pp. 19–23 (2006)

8. Wikipedia: Steve jobs (2013). http://en.wikipedia.org/wiki/SteveJobs
9. Website, T.B.C.: Steve jobs (2014). http://www.biography.com/people/

steve-jobs-9354805
10. Group, T.S.N.: Stanford corenlp (2013). http://nlp.stanford.edu/software/corenlp.

shtml

http://www.utica.edu/academic/institutes/ecii/publications/articles/A04C3F91-AFBB-FC13-4A2E0F13203BA980.pdf
http://www.utica.edu/academic/institutes/ecii/publications/articles/A04C3F91-AFBB-FC13-4A2E0F13203BA980.pdf
http://www.utica.edu/academic/institutes/ecii/publications/articles/A04C3F91-AFBB-FC13-4A2E0F13203BA980.pdf
http://dblp.uni-trier.de
http://summly.com/
https://news.google.com/
http://en.wikipedia.org/wiki/SteveJobs
http://www.biography.com/people/steve-jobs-9354805
http://www.biography.com/people/steve-jobs-9354805
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml

74 P.Y. Kusmawan and J. Kwon

11. AlchemyAPI: Entity extraction api (2013). http://www.alchemyapi.com/api/
entity-extraction/

12. Project Gutenberg Organization: Free ebooks - Project Gutenberg (2013). http://
www.gutenberg.org/dirs/

http://www.alchemyapi.com/api/entity-extraction/
http://www.alchemyapi.com/api/entity-extraction/
http://www.gutenberg.org/dirs/
http://www.gutenberg.org/dirs/

Distributed K-Distance Indexing Approach
for Efficient Shortest Path Discovery

on Large Graphs

Jihye Hong, Hyunwook Kim, Waqas Nawaz, Kisung Park,
Byeong-Soo Jeong, and Young-Koo Lee(&)

Department of Computer Engineering, Kyung Hee University,
Seocheon-Dong, Giheung-Gu, Yongin-Si 449-701, Korea

{hjhh,hwook956,wicky786,kspark,jeong,yklee}@khu.ac.kr

Abstract. The emergence of large real life networks such as social networks,
web page links, and traffic networks exhibits complex graph structures with
millions of vertices and edges. Among many operations for exploiting these
graphs, the shortest path discovery is a major and expensive one. Besides the
in-memory approaches, many efficient shortest path computation methods have
been developed on top of distributed and parallel platforms. Pregel, a bulk
synchronous parallel framework, is one of them for processing large graphs.
The known shortest path computation approach with Pregel is computation
intensive and unable to target real-time services. In this paper, we propose a
Pregel based efficient k-distance index technique that allows efficient single
pair shortest path discovery. We reduce the network cost and unnecessary
operations by transmitting more information in a single superstep. The exten-
sive experiments on both real and synthetic datasets reveal the superiority of
the proposed approach.

Keywords: Shortest path discovery � Large graph � Graph indexing � Pregel

1 Introduction

Having millions of vertices and edges, real life networks such as social networks, web
page links, and traffic networks are very large. Many applications have been devel-
oped on top of these huge and complex networks. They include social network ser-
vices and navigation systems. The shortest path discovery is one of the most important
search queries to support graph services. For instance, a distance between two users
represents the closeness in social networks, and is used in a social search to find
related contents [1] or to analyze features of influential people and communities [2].
Moreover, the relevance among web pages is determined through a shortest path
distance approach to facilitate and suggest the related contents for search queries
[3, 4].

The most emerging real-time services using a graph structure, e.g. context aware
search, based on large graphs, require an efficient shortest path discovery approach. To
improve the performance of the shortest path discovery, various in memory-based
efficient algorithms are proposed such as Dijkstra’s algorithm [5] and Bi-directional

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 75–88, 2014.
DOI: 10.1007/978-3-662-43984-5_6, � Springer-Verlag Berlin Heidelberg 2014

search strategy [6] which can reduce the search space by running two directions
simultaneously. Moreover, Indexing techniques [7–11] have also been introduced to
improve the performance in running time by pre-computing the shortest paths. These
approaches are not fast enough to support real-time services on very large graphs due
to huge cost on preprocessing.

Recently, many scalable efficient techniques have been proposed for large graphs
which can be categorized into single PC based partitioning, map-reduce and vertex
centric parallel approach. Yuan et. al. [12] has introduced a disk based large graph
partitioning approach on a single PC. It partitions the graph into segments of memory
size which are sequentially processed to discover the shortest path. Map-Reduce based
distributed frameworks [13, 14] have been studied in literature to analyze big data.
However, the Map-Reduce paradigm causes expensive I/O costs for graph algorithms
due to its complex structure which requires more iterations. There are many algo-
rithms which require an iterative vertex-centric logic such as a single source shortest
path and a subgraph isomorphism. To overcome disadvantages for processing large
complex data, BSP (bulk synchronous parallel) framework [15] is proposed. Google’s
Pregel framework [16] is a representative BSP framework. Pregel’s computational
model is based on an iterative program representation with two distinct entities that
abstracts distribution related details behind a user API. Existing graph algorithms with
Pregel are still not fast enough.

A pre-computed indexing approach [17] which stores partial shortest path is well-
known approach for supporting shortest path discovery efficiently over large graphs.
However, though all-pairs shortest path (APSP) algorithm with Pregel has been
proposed, this approach is also too slow since this performs Dijkstra’s algorithm N
times, where N is the number of vertices. The complexity is close to OðN2logNÞ.
Therefore, there are no indexing techniques can process in reasonable time based on
Pregel framework for a single pair shortest path discovery until now.

In this paper, we propose a Pregel based efficient k-distance index technique for
supporting s-t shortest path discovery efficiently. Our contributions are as follows.

• Efficient k-distance index approach based on Pregel framework we reduce the
number of supersteps by passing messages including more information that repre-
sent partial paths and distances from other vertices in each superstep. Workers
should perform additional operations for synchronizing all the workers when the
superstep starts or ends. Therefore, the number of supersteps affects to the per-
formance for achieving the shortest path results. The proposed approach only
requires the maximal number of supersteps among the number of supersteps from
vertices.

• Efficient s-t shortest path discovery based on Pregel framework we propose an
indexing approach for supporting efficient s-t shortest path discovery without
modifying the input data. After merging the index with original data, we can reach
the destination vertex by expanding longer distance than the original edges in each
superstep.

76 J. Hong et al.

2 Related Work

In this section, existing methods for the shortest path computation are briefly
explained with a inherit limitation for large graphs. Shortest path discovery is fun-
damental and important in graph applications. Conventional algorithms-Dijkstra’s
algorithm [5] and a bi-directional search strategy [6], operate only on memory resident
graphs. The bi-directional approach reduces the search space by running forward and
backward searches simultaneously. The indexing techniques [7–9] also improve the
performance in running time by pre-computing the shortest path. However these
methods are not scalable for large graphs due to limited memory.

The subsequent discussion explain the recent scalable approaches for shortest path
computation on very large graphs using single PC, distributed, and parallel
frameworks.

Graph frameworks based on a single computing have been developed such as
LEDA [18] and iGraph [19]. These frameworks load the entire graphs on a memory,
or partial graph can fit into the memory through disk I/Os. In addition, a relational
database based graph processing approach is one of the well-known approaches.
HDB-SUBDUE [20] and DB-FSG [21] proposed a RDB based frequent subgraph
mining method. Gao et al. [17] proposed a generic Frontier-Expansion-Merge (FEM)
framework for graph search operations in RDB context, and implemented the shortest
path discovery on the framework. In order to improve the performance, the FEM
framework uses an index table that stores pre-computed partial paths. However, single
computing approaches are still not fast enough for supporting real-time services.

In contrast to single PC, parallel computing frameworks for processing graphs use
multi-threads or a number of processors, and improve the performance such as Parallel
BGL [22] and CGMgraph [23]. Moreover, distributed computing frameworks have
also been actively used to achieve performance gain. In particular, Map-Reduce
framework [13] that stores large graphs in the distributed file system over a cluster of
computers and processes them in parallel. However, accessing graphs is difficult
because Map-Reduce framework does not fully support schema and index mechanism
[13, 14], and incurs unnecessary disk I/Os and network costs.

Recently, vertex-centric frameworks which distribute the graph data, and perform
the jobs parallel have been developed. Google’s Pregel framework [24] is one of the
representative vertex-centric frameworks. The computations are expressed as a
sequence of iterations, where a vertex can receive messages that are sent in the
previous iterations. The vertex can send messages to other vertices, and modify its
own state on its outgoing edges or mutate graph topology. Some algorithms with
Pregel have been proposed such as a page rank, a single source shortest path algorithm
and an all-pairs shortest path (APSP) discovery algorithm [25]. However, these naïve
methods still require optimization for efficiency. For example, the all-pairs shortest
path approach performs Dijkstra’s algorithm N times, where N is the number of
vertices. Therefore, indexing mechanism can improve the performance of APSP
algorithm using pre-computed information by reducing the computation overhead.

Distributed K-distance Indexing Approach 77

3 Preliminary

3.1 Pregel Framework

Pregel is a graph processing system which supports a vertex-centric parallel function
and partitions a graph into many machines. This framework is made up of a cluster of
machines. One of these machines acts like a server called master. Master is not
assigned any portion of the graph, however coordinates activities of remaining
machines called workers.

The master maintains a list of all workers currently known to be alive, including
the worker’s unique identifier, address information and portion of the graph assigned
to each worker. Each worker maintains the state of its section of the graph, and
executes the user function on all contained vertices, and managing messages to and
from other workers.

Each worker performs a superstep that loops through all vertices and calls
Compute() function, passing it the current value, an iterator to the incoming messages,
and an iterator to the outgoing edges. Workers perform following 3-steps iteratively.

• Each vertex v processes all messages received by other vertices from previous
superstep.

• Each vertex v sends new messages to all connected vertices of the graph, or decides
to halt.

• There is a bulk synchronization process which makes sure all the messages get to
their final destination.

3.2 Single Source Shortest Path Algorithm with Pregel

The single source shortest paths problem requires finding a shortest path between a
single source vertex and every other vertex in the graph.

In the single source shortest path algorithm with Pregel, the value of all vertices is
initialized to infinite value. In each superstep, each vertex first receives messages from
its neighbor including updated potential minimum distances from the source vertex.
If the minimum of these messages is less than the value currently associated with the
vertex, then this vertex updates as minimum value and sends out messages including
potential updates to its neighbors, consisting of the weight of each outgoing edge
added to the updated minimum distance. In the first superstep, only the source vertex
will update its value from infinite value to zero, and send updates to its immediate
neighbors. These neighbors in turn will update their values and send messages. After
the value associated with each vertex denotes the minimum distance from the source
vertex to own vertex, the algorithm terminates when no more updates occur. Ter-
mination is guaranteed if all edge weights are non-negative.

3.3 Distance Based Index Table for Shortest Path

Graph searching is widely used for graph algorithms finding specific subgraphs such
as the shortest path and the graph reachability. Most of graph searching algorithms

78 J. Hong et al.

share a generic search process that iteratively extends nodes having results of query
with high possibilities.

Shortest path searching generally adopts a breadth first search (BFS) to traverse a
graph. A BFS can only reduce the search space in the case that a shortest path has a
small number of nodes. A large-scale graph must have a long shortest path. Therefore,
a BFS requires a large number of iterative expansions in for huge graphs.

For efficient implementing the generic search process, the FEM framework [17]
proposed three operators. The FEM framework also requires BFS to expand all of
edges of frontier nodes. For the efficient searching, the FEM framework pre-computes
shortest segments with their distances shorter than the given distance threshold and
stores the shortest segments into an index table called SegTable. Two kinds of index
tables are maintained such as ToutSegs and TInSegs since the FEM framework per-
forms bi-directional expansion. The index tables consist of source nodes (fid), target
nodes (tid), parent nodes of target nodes (pid), distances of the shortest segments
(cost). By expanding shortest segments in the index table, we can reduce unnecessary
re-expanding for the path segments contained in the shortest segments. Therefore, we
can meet the termination condition of the searching quickly.

Figure 1 shows an example of the index table. The index table is the relational
table containing shortest segments of out-edges from the original graph. The graph
with shortest segments is a graph representing all shortest segments as dotted-paths.
If the distance threshold lthd is set to 4, all shortest segments having distances shorter
than 4 are stored into the index table. The dotted-path a! d with cost 3 is a pre-
computed shortest segment. If we start path searching from a, d can be found in one
expansion instead of two expansions such as a! b! d.

4 K-Distance Index Table Construction with Pregel
for Efficient Shortest Path Discovery

4.1 Notations

We define the notations related to k-distance index table construction with Pregel.

Fig. 1. Example of index table

Distributed K-distance Indexing Approach 79

Definition 1. Shortest Segment. Given the shortest path p ¼ u! � � � ! v, we call
an edge eðu; vÞ a shortest segment, and the cost of edge eðu; vÞ is the distance of
shortest path p. We denote the shortest segment from vertex u to vertex v as esegðu; vÞ.

Definition 2. k-distance index graph. Given the graph G ¼ jV;Ej, we call a graph
G0 a k-distance index graph if the graph G0 has all the shortest segments which have
the distance below k. We denote the k-distance index graph as Gk ¼ jV ;E[Ekj, where
Ek is the shortest segment edge set which have the distance below k.

Definition 3. Local shortest distance message Mij s; distð Þ. Given the path
p ¼ s! � � � ! i! j, we call a message having the distance from vertex s, and
transmitted from vertex i to vertex j local shortest distance message. We denote the
local shortest distance message as Mijðs; distÞ, where s is the identifier of start vertex,
i is the sender’s identifier, j is the receiver’s identifier, and dist is the distance from
s to j.

4.2 k-Distance Index Table Construction

To search s-t shortest path, each vertex iteratively transmits messages including the
distance between start and current vertices. Since this approach move only one vertex
in every superstep, so it requires many supersteps. In worst case, the number of
superstep is equivalent as the number of vertices.

Each worker maintains the distance value from source vertex to a specific vertex
that is assigned to this worker. The distance value is decided through messages that
occurred from vertices on the shortest path. In this process, two kinds of operations are
carried out: (a) a message processing operation in each worker, (b) a message sending
among workers in the network. Each vertex first processes received messages, and
generates new messages if there exist any update. After generating new messages, the
vertex sends messages to adjacent vertices. The message passing mechanism is very
expensive in terms of network communication. Therefore, we need to reduce the
number of messages and supersteps to speed up the shortest path discovery process.

The k-distance index approach can help to reduce the search space from the source
s to the target t (s–t shortest path) by expanding longer distance at once. Since the all
pairs shortest path discovery requires large space and time, it only stores the partial
shortest path having the distance below k. Figure 2 shows the shortest path search tree
when we search the shortest path from vertex 1 to vertex 6. The depth of this tree
without the index table is 3. However, the depth of that with index decreases as 2 since
the shortest segment can reach to farther vertex than the original edge at once.

The k-distance index approach has in common features with the all pair shortest
path approach that considers a distance constraint. Therefore, we need an efficient all
pair shortest path discovery algorithm. We can construct a k-distance index by
searching all pair shortest path that have the less distance than k. However, To the best
of our knowledge, the existing all pair shortest path algorithm with Pregel is inefficient
since this approach repeats the single source shortest path algorithm N times where N
is the number of vertices.

80 J. Hong et al.

We propose a 3-step approach for generating k-distance index graph. The overall
process used to generate the index graph is shown in Fig. 3. First, we preprocess the
input graph dataset for assigning partial graphs to workers. Second, each vertex
performs a compute function that updates the distance between this vertex and
adjacent vertices. For generating the k-distance index graph, we merge the result of
compute function into the original dataset. Finally, we can perform the s-t shortest
path discovery efficiently through thek-distance index graph. To determine the shortest
distance, the compute function performs following 4-steps iteratively.

• Compare distances Compare the distance in local shortest distance message with
that in existing shortest segment.

• Update index table Update the distance of shortest segment when we find the
shorter distance in received messages.

• Send messages to adjacency vertices Send messages which include the local
shortest distance messages to adjacency vertices when the shortest segments that
have the target as own vertex has been updated as shorter distance.

• Check states of vertices The vertex state will be changed the active state into the
inactive state when any messages do not be applied to index. Compute function will
be terminated.

Fig. 2. Shortest path discovery using index table

Fig. 3. The overall process of the k-distance index table construction

Distributed K-distance Indexing Approach 81

An example showing how the messages will be transmitted according to super-
steps in Fig. 4. In the initializing step, all vertices send the messages that have direct
distance to adjacent vertices. For example, vertex 3 sends the message M32 3; 9ð Þ, a
message that haves the distance 9 from vertex 3 to vertex 2, to vertex 2 in superstep 1.
In the second superstep, we only transmit the updated messages to adjacent vertices.
For example, the local shortest distance message M31 3; 3ð Þ in vertex 1 will transmit as
M12 3; 4ð Þ to vertex 2. The distance of message can be calculated as summation of the
shortest segment distance and edge weight between vertex 1 and 2. After finishing the
superstep 2, we can get the shortest path p ¼ 3! 1! 2. The distance of this path is
4. We provide a result of searching for 6-distance index graph in Fig. 5. After ter-
minating the compute function, shortest segments will be generated such as pseg ¼
3! 1! 2 and p0seg ¼ 1! 3! 4. All the shortest segments that have the less dis-
tance than 6 are generated.

Fig. 4. An example of message passing in superstep 1, 2

Fig. 5. An example of 6-distance index

82 J. Hong et al.

We illustrate the pseudo code for searching k-distance index graph in Algorithm 1.
In the initializing step, all vertices send the weight of edge to adjacent vertices. After
completing to initialize, we check whether the received messages from adjacent
vertices should be updated or not, and send newly generated messages to adjacent
vertices. Received messages are processed as follows. First, we check whether the
distance in each message is larger than k (lines 2–3). If the minimum distance of
messages is shorter than existing distance, update the distance of shortest segment
(lines 7–10). If shortest segment that have same source identifier does not exists, insert
the new shortest segment into the k-index (lines 4–5). Transmitting the messages step
is as follows. Each vertex send messages when the summation the edge weight and
updated distance of shortest segment is less than k (lines 10–13).

Algorithm 1. Compute function for constructing k-distance index

5 Experiments

5.1 Experimental Setup

We implement all methods in Java with JDK 1.7. We use 5 nodes as our distributed
system for our experimental environment. Each machine has 7 GB of RAM. The
cluster was using Apache Hadoop 1.2.1 [26] on Ubuntu 12.04. All experiments were
conducted by Amazon EC2 [27].

We use four kinds of a real-world graph data set including the wikipedia talk
network dataset [28], Skitter dataset [29], citation of patent dataset [30] and road
network dataset [28], and five synthetic graphs generated by synthetic graph generator

Distributed K-distance Indexing Approach 83

[30]. The weights of edges in all graphs are assigned [1, 9] using uniform distribution.
Some statistics of these graphs are summarized in Table 1.

In order to show the efficiency of our method, we conduct the following experi-
ments over a commercial database system. For searching shortest paths, we use the
single directional set Dijkstra’s approach.

• Comparison of the average time cost between the proposed method (k-DIST) and a
naïve approach (k-DijkstraN) that search all the shortest segments having distance
below k.

• Analysis of the time cost of the proposed method according to the distance
threshold.

• Analysis of the time cost of the proposed method according to the size of graph.
• Comparison of the average time cost for processing SSSP between the original

graphs and a k-index graphs.
• Analysis of the computation time according to the number of tasks.

5.2 Performance Evaluation

In the first experiment, we compared the time cost of the proposed method (k-DIST)
with that of a naïve approach (k-DijkstraN) that search all the shortest segments
having less distance than k. We perform Dijkstra’s algorithm N times, where N is the
number of 1 % vertices and calculate the average cost of the single source shortest
path algorithm for one vertex due to the number of iterations and time cost increases
so much that the execution exceeds the limitations. However, we can estimate the total
cost of k-DijkstraN algorithm when we suppose the time cost of each vertices is
average. As shown in Fig. 6, the proposed approach required about 60–80 s, while the
average time cost of k-Dijkstra is similar to proposed one although the k-Dijkstra
performs single source shortest path algorithms for one vertex.

We observed that the proposed method had a high time efficiency because the less
number of supersteps are required. In the worst case scenario, the number of super-
steps in proposed approach is same as the maximal number of vertices in the graph.

In the second experiment, we execute the proposed algorithm for distance
thresholds of 5, 10, and 15 for all the datasets. We show the time cost for constructing

Table 1. Description of data sets

DataSet # Nodes # Edges Weight range

Wikipedia talk network 2,394,385 5,021,410 1
Skitter 1,696,415 11,095,298 1
Citation of patent 3,774,768 16518948 1
Road network 1,965,206 2,766,607 1
Synthetic dataset (R011) 10,000 1,000,000 [1, 9]
Synthetic dataset (R012) 10,000 2,000,000 [1, 9]
Synthetic dataset (R013) 10,000 3,000,000 [1, 9]
Synthetic dataset (R021) 20,000 1,000,000 [1, 9]
Synthetic dataset (R031) 30,000 1,000,000 [1, 9]

84 J. Hong et al.

k-index according to the distance threshold in Fig. 7. The distance threshold affects
the size of the index table. The time cost increases according to the distance threshold
in most datasets. We analyze that the average degree of vertices and the network
structure may affect the performance. For instance, the time cost of the distance 10
and 15 are similar in WikiTalk dataset. It means that the network structure of
WikiTalk dataset is clustered that have less diameter than 10. We setup the average
degree of synthetic datasets as 100, 200, and 300. We show that the time cost roughly
increases due to the number of shortest segments exponentially increases in every
superstep.

In the third experiment, we evaluate the time cost of the constructing k-index
graph according to the size of graph. We set the distance threshold to 15. When the
size of graph increases, the time cost also increases. The bigger dataset require more
time cost due to the size of graph affects the number of messages. We observe that the
number of vertices and edges increase by N times has a relative impact on 0.05–0.2
times increase in the time cost (Fig. 8).

In the fourth experiment, we evaluate the time cost of a single source shortest path
algorithm using the proposed index graph comparing with using the original graph.
We randomly select the five vertices as a start vertex in each case. Since the proposed
algorithm using the index graph can expands longer distance in each superstep, it
shows the better performance than the no index graph. In particular, the graph having
high average degree shows better performance to search SSSP. When we search the
single source shortest path without proposed index, we should check more paths that
can be shortest paths in the graph that has higher average degree. We can reduce the

Fig. 6. Comparisons of average time costs

Fig. 7. Comparisons of time costs according to the distance threshold

Distributed K-distance Indexing Approach 85

candidate paths by expanding shortest segments. Thus, our approach is more useful in
processing the dense graph (Fig. 9).

In the fifth experiment, we examine the running time of the proposed algorithms
with different numbers of workers to study the performance and scalability. For this
experiment, we conduct the experiment that constructs the k-distance index using 16

Fig. 8. Comparisons of time costs according to the size of graph

Fig. 9. Comparison of the average time cost for processing SSSP

Fig. 10. Comparison of the computation time for construction k-distance index according to the
number of tasks

86 J. Hong et al.

workers. We use the Skitter dataset and set the distance threshold to 10. We observe
that with the increase in the number of workers, the total computation time decrease
linearly. As depicted in Fig. 10, the algorithm improves in execution time with the
increase of the tasks till it reaches the 40 tasks, which is shown to be the optimal
amount of tasks.

6 Conclusion

We propose an efficient indexing approach based on Pregel framework for supporting
a s-t shortest path discovery. We reduce the number of supersteps by passing messages
including more distance information from other vertices in each superstep. We can
reach the target vertex by expanding longer distance than original edges in each
superstep using the proposed k-index graph. From the experimental results, we show
that the proposed method can efficiently maintain partial shortest paths that can help
an efficient s-t shortest path search on large graphs. We analyze the experimental
results in terms of structural features such as degree and density. Moreover, we
observe that with the increase in the number of workers, the total computation time
decrease linearly.

Acknowledgments. This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No. 2013R1A2A1A05056375).

References

1. Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., Reis, D.d.C., Ribeiro-Neto, B.:
Efficient search ranking in social networks. In: CIKM, pp. 563–572 (2007)

2. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social
network. In: KDD, pp. 137–146 (2003)

3. Ukkonen, A., Castillo, C., Donato, D., Gionis, A.: Searching the wikipedia with contextual
information. In: CIKM, pp. 1351–1352 (2008)

4. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in
large networks. In: CIKM, pp. 867–876 (2009)

5. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271
(1959)

6. Wagner, D., Willhalm, T.: Speed-up techniques for shortest-path computations. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 23–36. Springer,
Heidelberg (2007)

7. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop
labels. In: SODA, pp. 937–946 (2002)

8. Wei, F.: Tedi: efficient shortest path query answering on method for efficient shortest path
discovery graphs. In: SIGMOD, pp. 99–110 (2010)

9. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in
large networks. In: CIKM, pp. 453–470 (2009)

10. Goldberg, A., Harrelson, C.: Computing the shortest path: search meets graph theory. In:
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms SODA,
Vancouver, British Columbia, 23–25 January 2005

Distributed K-distance Indexing Approach 87

11. Wei, F.: Tedi: efficient shortest path query answering on graphs. In: Proceedings of the 29th
ACM SIGMOD International Conference on Management of Data, Indianapolis, USA,
6–11 June 2010

12. Yuan, Y., Wang, G., Wang, H., Chen, L.: Efficient subgraph search over large uncertain
graphs. PVLDB 4(11), 876–886 (2011)

13. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In:
Proceedings of the 6th Symposium on Operating Systems Design and Implementation, San
Francisco, CA, 6–8 December 2004

14. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce. In:
Proceedings of the 30th ACM SIGMOD International Conference on Management of Data,
Athens, Greece, 12–16 June 2011

15. Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33(8), 103–111
(1990)

16. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)

17. Gao, J., Jin, R., Zhou, J., Yu, J., Jiang, X., Wang, T.: Relational approach for shortest path
discovery over large graphs. PVLDB 5(4), 358–369 (2011)

18. Mehlhorn, K., Naher, S.: The LEDA Platform of Combinatorial and Geometric Computing.
Cambridge University Press, Cambridge (1999)

19. The iGraph library. http://igraph.wikidot.com/
20. Padmanabhan, S., Chakravarthy, S.: HDB-subdue: a scalable approach to graph mining. In:

Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691,
pp. 325–338. Springer, Heidelberg (2009)

21. Chakravarthy, S., Pradhan, S.: DB-FSG: an SQL-based approach for frequent subgraph
mining. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181,
pp. 684–692. Springer, Heidelberg (2008)

22. Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed graph
computations. In: Proceedings of Parallel Object-Oriented Scientific Computing POOSC
(2005)

23. Chan, A., Dehne, F.: CGMGRAPH/CGMLIB: implementing and testing CGM graph
algorithms on PC clusters and shared memory machines. Int. J. High Perform. Comput.
Appl. 19(1), 81–97 (2005)

24. Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: SIGMOD, pp. 135–46 (2010)

25. Iosup, A., Lampraki, N.P., Penders, A., Biczak, M., Guo, Y., Varbanescu, A.L.:
Parallelization and Distribution for Large Scale Graph Processing. HPD, Delft, The
Netherlands (2012)

26. Apache Hadoop. http://hadoop.apache.org/
27. Amazon EC2. http://aws.amazon.com/ec2/
28. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in

online social networks. In: WWW (2010)
29. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking

diameters and possible explanations. In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD) (2005)

30. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community structure in large
networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math.
6(1), 29–123 (2009)

31. Hang, T.L.: A Java Library of Graph Algorithms and Optimization. Taylor & Francis,
Hoboken (2007)

88 J. Hong et al.

http://igraph.wikidot.com/
http://hadoop.apache.org/
http://aws.amazon.com/ec2/

Customized Information Interface
with Web Applications

Wookey Lee1, Suan Lee2, and Jinho Kim2(&)

1 Informatics Engineering Lab, Department of IE,
Inha University, Incheon, Korea
trinity@inha.ac.kr

2 Department of Computer Science, Kangwon National University,
Chuncheon, Korea

{webdizen,jhkim}@kangwon.ac.kr

Abstract. When information is searched via internet, a browser indicates
information about web pages on a single window, but the existing browser
shows only fragments of page information to web surfing users who visit
several sites at once and in turn causes insufficiency and inconvenience to the
users. Rich Internet Application techniques, which are web application tech-
niques for the simple and easy operation and diverse and dynamic screen
composition, have received a lot of attention as a next-generation UI technique
emphasizing on users’ convenience. In this dissertation, a two-dimensional and
sequential advanced search is realized with the use of dynamic UI so users can
save and employ the customized search information for further web search.
Also, the search structure has been designed with the use of user-oriented
keyword preference to have more customizes search results than the existing
web search. Furthermore, this paper has proven a decrease in the number of
searched pages by employing the customized search administrator using RIA
techniques. Thus, it could be concluded that the customized search adminis-
trator supports users of the more efficient and flexible customize web search.

Keywords: Web browser � UI technique � Web search � Rich internet
application technique � Customized search

1 Introduction

To find the desired information from vast web data, users use various search tools and
web search engines where search engines allow users to search for information not
only by a simple keyword, but also having advanced search so that users may assign
certain search conditions including the date, region and file format, etc. The search
functionalities, however, cannot support for storing the advanced search conditions or
results by which such limitations have become an obstacle for the efficient utilization
of personalized search. Moreover, since the advanced web search setting consists
usually of text-based options, so that the user should type an additional query into the
search engine and re-search if he/she wants to exclude a certain keyword.

Recently, the recommended word automation service is to recommend a word
which is extracted by assigning a weight to each entry. The weight evaluation is

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 89–101, 2014.
DOI: 10.1007/978-3-662-43984-5_7, � Springer-Verlag Berlin Heidelberg 2014

processed with which a web can be expressed by a u-shape graph [1] and the weight in
turn reflects on a user’s query. In this method, however, the criteria for the weight
assignment are based on the analysis of the whole web search engine perspective not
on the direct evaluation of individual user. Consequently, they cannot fully support of
the personalized search.

RIA technique, a representative technique of new web technology, plays a major
role to handle multiple processes in a single interface by linking the user interface and
data API with the two dimensional expression and sequential factors of the existing
web applications. The RIA technique has been developed through some common
techniques that are dynamic and expandable [2] which includes common examples
like Ajax, Flash-based Flex, desktop-based Opera, Widget of Yahoo and Windows
Live Gadget of Microsoft. By incorporating the web application including RIA
techniques, we suggest a novel method for the advanced search which includes not
only the data of the personal local area but also the documents on the internet and the
direction for web search to find a value in line with a user’s intention and interest.

This paper is organized as the followings. The basic concepts and techniques of
the web application are reviewed in Sect. 2 and a user-oriented search structure based
on the web application techniques are suggested in Sect. 3. As for the last, it is
concluded and a future study direction is suggested in Sect. 4. Note that this paper is
an extension of our previous works [8, 10].

2 Web Application

With the rapid development of web-related techniques, developers have to understand
web applications as much as local computer-based applications [3]. The features of
the web application techniques are introduced in this chapter along with representative
RIA and AJAX core components. Then, the latest trends of the web application
techniques are introduced and evaluated.

2.1 Difference Between the Web Application and the Existing
Applications

The web application with RIA and AJAX techniques, are the representative tech-
niques of web which enables web applications to have similar features and functions
of desktop applications. Starting from the AJAX (Asynchronous JavaScript and
XML), Active X Control of MicroSoft, Java of Sun to the latest of Apollo of Mac-
romedia [4], these techniques are collectively termed as RIA, and W3C named a
working group as Rich Web Client [5] and started to activate since the middle of year
2005. Among these vast types, AJAX, supporting of openness, expandability and
standardization of web, has received the most attention since ActiveX has a limitation
on its OS compatibility and flex-based APOLP, in development, is a commercial
application not an open source. AJAX techniques do not require of the installation the
Active X for providing interactive services. It prevents security issues which may arise
by installing the unproven Active X.

90 W. Lee et al.

RIA and AJAX techniques have one thing in common that they both assure of
enhancement of UX (User eXperience) than the existing techniques [6]. As shown in
the Fig. 1, RIA and AJAX techniques are dynamic and interactive on both a server
side and a client side unlike the existing web techniques. Especially since they
interpret XLM and script, not compiled code in real-time, interaction with users can be
much closer. The most significant strength of RIA and AJAX technologies is that they
can support of web search personalization by user profiling which makes it so simple
and easy to have the advanced web search.

2.2 AJAX (Asynchronous JavaScript and XML)

AJAX, an acronym for Asynchronous JavaScript and XLM, was coined by J. Carret
[3], where the Engine can be improved the user experience by renewing only a part of
a page requested by a user through the use of JavaScript and XLM rather than
renewing by a page. The AJAX technology has cleared a boundary between desktop
applications and web applications and in turn, has built the foundation for realizing a
web application with more enhanced interfaces. Also, AJAX techniques are not bound
to specific features of operation systems and/or browsers. Via XMLHttpRequest,
AJAX could control the data communication with HTTP. This technique, first
introduced and realized by the Mozilla, was widely adopted by browsers of many
companies and then became a standardized technique [9].

2.3 FLEX and Laszlo

FLEX has been developed upon the strong integrated development environment of
Adobe as well as Flash techniques which are presumed to be standardized techniques.
FLEX makes it possible to create dynamic UI, which could not be achieved with
HTML. Despite of its strength, however, it does not get that much attention, because it
is not an open source platform unlike the library and framework of AJAX and it is a

Fig. 1. Dynamic and bilateral RIA technique

Customized Information Interface with Web Applications 91

commercial tool. On the other hand, Laszlo, another flash-based RIA and AJAX
technique, aims to be an open source platform. Laszlo deploys a XLM-based script
named as LZX and it is an object oriented, tag-based language that uses XLM and
JavaScript. Also, it allows compiling a source code into either flash code or DHTML.

2.4 Firefox and Silverlight (WPF/e)

XUL (XML User Interface Language) of Mozilla is a XML-based markup language
which can be used in browsers developed by Mozilla and it is used to write the user
interface control. Moreover, it uses the document object model (DOM) for a hierar-
chical document structure. For instance, Firefox of Mozilla is realized as one package
containing a XUL file, JavaScript and CSS (Cascading Style Sheets). On the other
hand, Microsoft developed a web presentation technique called ‘Silverlight’ under a
code name of WPF/e. Silverlight is a powerful development tool which has various
functions, rich visual and interactive implementation on multiple platforms [8]. The
core of this technique is a XAML (eXtensible Application Markup Language)-based
presentation function. XAML is a text-based XML. Therefore, it can be easily used in
a firewall environment and it can be used to write an event handler and/or allow the
interaction of contents with the use of JavaScript.

2.5 Widget and Gadget

Widgets are client applications expanded with the use of Flash or JavaScript tech-
niques, just like Plugin. The basic format of a widget is to provide a dynamic user
interface based on XLM and tit generally comes in JavaScript and CSS. In general, it
has been developed for either providing or controlling data from Open API [9–12] as
GUI. As many sites have decided to open their API recently, it has also been
developed in a format of MashUp or Web Application Hybrid. Such widgets are
currently developed by Opera and Yahoo and Microsoft has started to offer a Gadget,
which has the same functions as Widget, for Vista.

2.6 XMLHttpRequest Object

It is a technique for exchanging data between a client and a server with the use of
HTTP. Asynchronous transmission is the core of Ajax techniques. Most browsers
support the XMLHttpRequest and from version 5.0, Internet Explorer provides it in a
format of ActiveX object.

2.7 Widget-Based Web Search Application

Widgets can operate independent of a web browser but still can have free processing
in a client area. Even though there are various types of applications including Opera,
Widget of Avedesk and Gadget of MS Vista, the Widget of Yahoo seems to be a
proper application for the customized web search and evaluation since it can freely
integrate with Yahoo search API.

92 W. Lee et al.

2.8 Weakness and Limitation of AJAX

The fact that AJAX uses an open source could be a huge advantage, but also its
weakness at the same time. Open source means that everyone can easily acquire a
source code so it is hard to differentiate a site. Also, it could cause severe loads on the
server when data is requested consistently since it exchanges data in an asynchronous
fashion. Its biggest weakness lies on its security. In case of the existing methods,
business logic exists on all servers, but AJAX has business logic on a client side as
well so it cannot be safe from hackers’ attacks. For dealing with personal information,
it requires extra attention on security.

The existing yahoo widget has a search widget with a simple search function and a
selective search widget which can select a search engine with the Open API, but not a
widget which provides an advanced search function as GUI or provides and then saves
and maintains an advanced search function as GUI.

On the other hand, Google saves and manages users’ queries and links for the
search results of these queries for a certain period with a beta service called ‘search
record’, but does not reflect them on new web search of the user. This paper has
designed the customized web search structure with the widget-based web search
application utilizing RIA and AJAX techniques which can overcome limitations of the
existing advanced web search, differentiating from the existing search widget and
simple storage of searched results.

3 Search System with RIA

3.1 Search System Structure

The search system with RIA and AJAX techniques which has been suggested by this
paper is revealed in the Fig. 2.

• GUI Application Based XML
Activities of the existing techniques including Active X, NS Plug-in and Flash are

limited to be within web browsers. In turn, they are not proper enough to provide
sufficient UE. Therefore, they should be enhanced in this term. First of all, Widget, the
most actively being developed technique among RIA and AJAX techniques, Widget
was chosen to take out a web out of a browser.

Widgets can operate independent of web browsers but still maintain to be inter-
active with web browsers and also, it can renew only a page block rather than a whole
page by using an asynchronous language. Moreover, dynamic GUI can manage values
of strings of text types, URL or even file information on a different client area which
allows users to have easier access to the advanced search. It decreases a unit of page
renewal and in turn increases the application processing speed and enhances fusibility
and visual effects. Also, developers can manage errors and/or bugs in a more efficient
manner [12–16].

Customized Information Interface with Web Applications 93

• Personalized Search Manager
For the existing advanced search services, entries of users are automatically ini-

tialized back to their default values upon updating of a page rather than reapplied.
However, a personalized search administrator saves and manages users’ entries and
reflects them onto another search. Furthermore, the user profiling managed by a
personalized search administer increases a possibility for listing best-matching web
pages satisfying users’ search intention.

Thus, the administrators remember users’ preferred keywords and non-preferred
keywords through users’ search patterns and/or setting and reflect them onto filtering
of searched results.

• Data API
API, an abbreviation of Application Programming Interface, is an interface for

accessing web tools provides by operation systems and web sites and controlling data.
Since many companies including Google, Amazon and Ebay have recently disclose
their AIP sources, now anyone can create his/her own application with the RIA and
AJAX techniques and open APIs. In other words, the RIA and AJAX techniques allow
people to select APIs that they favored and create more light and expandable appli-
cations with data obtained by using open APIs.

3.2 Site Access Process

Figure 3 depicts the site access in algorithm. At first, click a button on LinkForm. Then,
test the entered URL and window number and access to a site. on_loadedLink(url) on
the first line is a function generating upon clicking the button after entering Url onto

Fig. 2. Search system with RIA techniques

94 W. Lee et al.

linkForm. On the second line, check whether the corresponding box exists or not.
If there is no window, call a return alert for the box on the line 3. The fourth line is to
check whether Url is entered into a URL box. When URL is not entered, call a return
alert on the fifth line. If URL and window number are correctly entered, check to ensure
http:// is added to the entered URL on the sixth line. On the tenth line, access the
entered URL in the selected box.

3.3 Query Process

To evaluate the system suggested by the study, its query process was designed as the
following by using an advanced search service of Yahoo Search API and Yahoo
Widget engine [14].

For processing of a query, PSMD (personalized search manager data) is created
based on values set by a user and a searchList, which is created with searchText values
that are entered by a user and search words that are set and entered by a user, as an
object.

On the second line, a search word is entered by a user, and the entered search word
is compared with a searchList to check whether then entered value is a word that has
been used and/or set previously on the third line. If there is no history for the entered
value, it is recorded onto a searchList on the fourth line, and the entered SearchText is
transmitted to API on the fifth line. As for the study, only Yahoo Open API is used.
Thus, URL is requested by just entering a SearchText into Yahoo Search API
URL [16].

1

2

3

4

5

6

7

8

function on_loadedLink(url) {

if(!dragableFloatId[selectBox()] ||

divArray[selectBox()].style.visibility=="hidden")

return alert(“No Box”)

else if(url=="" || url=="NULL") {

return alert(“Enter URL”) }

else {

if(url.substr(0,7)!="http://") {

url="http://"+url;

9

10

linkInputForm.linkURL.value="

http://"+linkInputForm.linkURL.value; }

document.getElementById(selectBox()).

innerHTML="<iframe src='"+url+"' >"

Fig. 3. Interface algorithm

Customized Information Interface with Web Applications 95

For instance, when a user enters ‘Apple’, the search word is entered into a
SearchText and then, it is compared with a SearchList to check whether the entered
search word has been previously searched or set. If there is no such history, the
entered search word is added to a SearchList and it is immediately sent to the search
API. However, if it is not, the search word is combined so the search word can be
referred by a customized search administrator.

3.4 System Realization

Yahoo Widget can be developed by using a framework and library provided by the
Widget engine. The system has been realized based on the web document search API
and search Widget provided by Yahoo. For obtaining the personalized search results
that this study aims for, additional buttons and menus are composed as shown in the
Fig. 5.

To realize the query process depicted in the Fig. 4, the existing advanced search
has been realized with GUI and it also has been designed to allow entering, modifying
and managing with various events, including typing, clicking, drag and drop and
hovering, to have more intuitive interface. Even if a searchList is written based on the
entered values, it is still possible to examine and filter out the searched results with
various limit values. To support this function, checks, scrolls and textboxs were added
for selecting the desired ranges of dates, sites, file formats and areas. Advanced search
functions and search limitation functions that are realized with GUI are saved onto a
SearchList upon setting of a user and then converted into operations of which API can
understand as in the Table 1. For the final, a customized search administrator

1 var SearchText, SearchList, PSMD
2 get(SearchText)
3 If(SearchList !=””){
4 SearchList = add SearchText
5 OpenURL(“OpenAPI URL + SearchText)
6 }
7 Else {
8 SearchList = join SearchText
9 Run Personalized_Search_Manager()
10
11

If(Searchlist.Function == “None of these word”)
 put PSMD = “%2D” + SearchText

12
13
14

 else If(Searchlist.Function == “Any of these word”)
put PSMD = “%2B” + SearchText

……
15 get(PSMD)
16 OpenURL(“OpenAPI URL + SearchText + PSMD)

17 }

Fig. 4. Query processing

96 W. Lee et al.

combines operators and values of SearchList for the corresponding functions to create
resulting values as PSMD that API can understand.

Even though Widget operates independent of internet connection and/or web
browser, it provide an intuitive UI which allows of drag of drop of a desired word to
the list even during web surfing as shown in Fig. 6.

3.5 System Evaluation

To evaluate how the structure suggested by the paper can provide sufficient UE to
users, a user scenario was prepared, and the evaluation was made based on the
scenario. The scenario is as the following.

Fig. 5. Customized search screen

Table 1. Operators of yahoo web search API

Function Operator

None of these word %2D
Any of these word %2B
Within the past 3 months &n=10&fl=0&vm=i&x=wrt&vd=m3
Within a year &n=10&fl=0&vm=i&x=wrt&vd=y
PPT file format &vst=0&vf=ppt
Excel file format &vst=0&vf=xl

Fig. 6. Drag and drop of excluding words

Customized Information Interface with Web Applications 97

Results of the general web search, advanced web search and personalized search
administrator system of which suggested by the paper were evaluated and compared.
To use the same search engine, the search results were compared with the use of the
customized search administrator using Yahoo Web Search, Yahoo Web Document
Advanced Search and Yahoo Web API and they are listed in the Table 2.

For general search, a user is required to enter only a short keyword of ‘Apple’ but
she/he has to search 5 unnecessary upper rank pages to reach to the desired page. On
the other hand, with advanced search, best matching web pages are ranked first but it
requires more entries from a user. As shown in the Table 2, when a period of time
required for setting one entry is presumed to be T, 6T is required for setting of entries
for date and file format for the advanced search. However, when a user enters a new
search word, all the previously entered entries are initialized and the user requires
entering the same entries again.

However, it becomes possible to set the search entries in a simple manner with
drag and drop with the use of an intuitive and dynamic UI when the aforementioned
customized search administrator is applied onto the advance search. It also allows
excluding of pages with titles that a user already checked and/or overlapped links by
dragging them to the customized search administrator. Furthermore, only a script that
a user changes gets re-transmitted rather than an entire page, it can be flexibly applied
onto a new search word to give back the search results that that suitable for the user’s
intention.

Another experiment was to calculate a period of time starting from a point of
calling a page to of completion with Ethreal, a network analyzer [10]. To check the
connection time of the existing web sites per data capacity, we accessed to arbitrary
web pages corresponding to data capacity of 3,202–177,414 (byte). The Table 3 is a
list of accessed sites and the Fig. 7 shows results of the measurement of webs.

The experiment of the Fig. 7 shows the connection time of web for visiting one site,
but the connection time of AJAX-based page division is for visiting multiple pages.

Table 2. Results of evaluation with the use of yahoo search engine

Page rank User’s entered value No. of searched pages Setting time

General search 6 apple 327,000,000 T*
Advanced search 2 apple, news,

IT, store
127,000,000 6T

Customized search 1 apple 91,800,000 T
* T = A period of time require for entering a single word and setting one entry for advanced search

98 W. Lee et al.

Despite of such difference, it is revealed that the AJAX method requires the less
connection time in case of the same data capacity. That is because of that even though
the size of total data shown on the page is the same, the AJAX-based page division
transmits data on the requested part of a page and it decrease the total connection time.

When AJAX-based page division is used, there is no difference in terms of a
period of time required for accessing to a single site. However, its access speed can be
kept steady regardless of accumulated data even when it access to multiple sites since
only data from the requested part of a page are transmitted.

The existing advanced searches provide various options but none of them allows
of setting a priority list of entries. Nevertheless, by using interactive RIA and AJAX

Table 3. List of accessed lists

Site URL Data capacity

www.7-eleven.co.kr 3202
www.google.com 5349
www.tnccompany.com 5429
www.fox.com/home.htm 15649
code.google.com 16794
ajax.asp.net 23991
www.kaist.ac.kr 30612
www.lge.co.kr 37708
java.sun.com 40200
www.ebay.com 66987
www.cjmall.com 94128
www.yahoo.com 107946
news.google.com 145410
www.joins.com 177414

Fig. 7. Comparison of speeds of web and AJAX-based web

Customized Information Interface with Web Applications 99

http://www.7-eleven.co.kr
http://www.google.com
http://www.tnccompany.com
http://www.fox.com/home.htm
http://code.google.com
http://ajax.asp.net
http://www.kaist.ac.kr
http://www.lge.co.kr
http://java.sun.com
http://www.ebay.com
http://www.cjmall.com
http://www.yahoo.com
http://news.google.com
http://www.joins.com

technologies, each of search entries, which are options for the advanced search, can be
integrated into a priority list for search. To evaluate it, 100 random search words were
searched with 3 advanced search options just like the aforementioned scenario. The
Fig. 8 shows the average numbers of searched pages. Comparing to the advanced
search, the number of pages searched with the use of the customized search admin-
istrator is far less.

On the other hand, the advanced search of 30 random words without a priority list
showed that the utilization of a priority list does not significantly affect the search
time, but search time is increased for the customized search as a priority list gets more
mixed.

4 Conclusion and Future Research

This paper suggests a customized search structure which employs filtering built by the
web application such as RIA and AJAX techniques where user’s keyword preference
to provide a list of best-matching web pages according to users’ intention. Since RIA
and AJAX techniques can provide dynamic UI but still perform various features
including client applications, they can be used to enhance performance of the existing
advanced search services. Moreover, it has proved that the customized search
administrator can save the preferred and non-preferred keywords by the user profiling
feature and, can filter out the searched results with the saved preferred and non-
preferred keywords, and can limit the desired file format and/or can update date range
to give back more specific search results.

For the future research, each and every search sites should save the user profiling
on its server and realize the suggested customized search in order to provide cus-
tomized services effectively for the user preferences. In other words, there is much
room for RIA and AJAX applications to be employed for server sides. Also, for more
sophisticated customized search, it would be necessary to study on how the cus-
tomized search administrator recognizes users’ patterns of search keywords, so that a
graph oriented big data pattern can be figured out effectively.

Fig. 8. Average decrease in the number of pages

100 W. Lee et al.

Acknowledgement. This research was partially supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science, and Technology (2011-0011824).

References

1. Arora, N.R., Lee, W., Leung, C.K.-S., Kim, J., Kumar, H.: Efficient fuzzy ranking for
keyword search on graphs. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.)
DEXA 2012, Part I. LNCS, vol. 7446, pp. 502–510. Springer, Heidelberg (2012)

2. Dincturk, M.E., Choudhary, S., von Bochmann, G., Jourdan, G.-V., Onut, I.V.: A statistical
approach for efficient crawling of rich internet applications. In: Brambilla, M., Tokuda, T.,
Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 362–369. Springer, Heidelberg
(2012)

3. Garrett, J.J.: The Elements of User Experience: The: User-Centered Design for the Web
and Beyond. New Riders Publishing, Thousand Oaks (2010)

4. Chambers, M.: Developer relations for apollo at adobe (2007). http://labs.adobe.com/wiki/
ind-ex.php/Apollo

5. W3C Rich Web Clients (2010). http://www.w3.org/2010/rwc/
6. Grigorik, I.: Making the web faster with HTTP 2.0. Commun. ACM 56(12), 42–49 (2013)
7. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Jourdan, G.-V., Bochmann, G.V., Onut,

I.V.: Building rich internet applications models: example of a better strategy. In: Daniel, F.,
Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 291–305. Springer, Heidelberg
(2013)

8. Lee, W., Choi, C., Yoon, S.: Synchronous web browser fragmentation for structural web
searches. JITA 6(2), 161–170 (2009)

9. Moroney, L.: Getting started with WPF/E (2013). http://msdn2.microsoft.com/en-us/
library/bb190632.aspx

10. Park, C., Lim, T., Lee, W.: RIA based personalized search with widget implementation.
J. KIISE 13, 402–406 (2007)

11. Ritter, A., Mausam, Etzioni, O., Clark, S.: Open domain event extraction from twitter. In:
KDD. pp. 1104–1112 (2012)

12. Flickr Open API. http://flickr.com/services/api/
13. Yahoo Open API. http://developer.yahoo.com/
14. Google Open API. http://code.google.com/
15. Naver Open API. http://openapi.naver.com/
16. Yahoo! Widgets. http://widget.yahoo.com/

Customized Information Interface with Web Applications 101

http://labs.adobe.com/wiki/ind-ex.php/Apollo
http://labs.adobe.com/wiki/ind-ex.php/Apollo
http://www.w3.org/2010/rwc/
http://msdn2.microsoft.com/en-us/library/bb190632.aspx
http://msdn2.microsoft.com/en-us/library/bb190632.aspx
http://flickr.com/services/api/
http://developer.yahoo.com/
http://code.google.com/
http://openapi.naver.com/
http://widget.yahoo.com/

Leveraging Enterprise Application
Characteristics to Optimize Incremental
Aggregate Maintenance in a Columnar

In-Memory Database

Stephan Müller(B), Paul Möller, and Hasso Plattner

Hasso Plattner Institute,
University of Potsdam, Potsdam, Germany

{stephan.mueller,paul.mueller,hasso.plattner}@hpi.uni-potsdam.de

Abstract. An analysis of database workloads generated by enterprise
applications revealed a mixed workload of short-running transactional
and long-running analytical queries. With the latter type of queries con-
taining many aggregate operations, we implemented an efficient aggregate
caching mechanism. But the incremental materialized view maintenance
is very costly for aggregate queries joining multiple tables. To overcome
this problem, we analyzed the characteristics of enterprise applications
with respect to the creation of business objects and their persistence in
the database layer. We evaluated how the detected patterns can be lever-
aged to reduce the join operations between the main and delta partitions
of the involved tables in a columnar in-memory database. The resulting
performance improvements are significant and close to using the caching
mechanism with a denormalized schema.

1 Introduction

Until recently, enterprise applications have been separated into online transac-
tional processing (OLTP) and online analytical processing (OLAP). The draw-
backs of this separation are complex and costly ETL processes, not up-to-date
and redundant data. Further, the analytical applications are often limited in
their flexibility due to pre-calculated data cubes with materialized aggregates.

With the rise of columnar in-memory databases (IMDB) such as SAP HANA
[1], Hyrise [2] and Hyper [3], this artificial separation is not necessary anymore as
they are capable of handling mixed workloads, with transactional and analytical
queries on a single system [4]. In fact, a modern enterprise application executes a
mixed workload with both – transactional and analytical – queries [5]. While the
transactional queries are mostly inserts or single selects, the analytical queries
are often comprised of costly data aggregations [6]. Having the possibility to run
flexible, adhoc analytical queries directly on transactional data with sub-second
response times will further lead to an increased workload of aggregate queries.

To speed up the execution of analytical queries with aggregates, materialized
views have been proposed [7]. Accessing tuples of a materialized aggregate is

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 102–116, 2014.
DOI: 10.1007/978-3-662-43984-5 8, c© Springer-Verlag Berlin Heidelberg 2014

Leveraging Enterprise Application Characteristics 103

always faster than an aggregation on the fly. The overhead of materialized view
maintenance to ensure consistency for changing base data has to be considered,
though [8]. Apart from temporary transactional inconsistencies, a downtime is
not acceptable in during materialized view maintenance in mixed workload envi-
ronments.

While existing materialized view maintenance strategies are applicable in
columnar IMDBs [9], their specific architecture is well-suited for a novel strat-
egy of caching aggregate queries and applying incremental view maintenance
techniques [10]. This is because the storage of columnar IMDBs can be sepa-
rated into a read-optimized main storage and a write-optimized delta storage.
Since the main storage is highly-compressed and not optimized for inserts, all
data changes of a table are propagated to the delta storage in order to ensure
high throughput. Periodically, the delta storage is combined with the main stor-
age in a process called merge operation [11]. The materialized aggregates do
not have to be invalidated when new records are inserted to the delta storage,
because they are only based on records from the main storage. Instead, the final,
consistent aggregate query result, is retrieved by aggregating the newly inserted
records of the delta storage on the fly and combining them – using a SQL UNION
ALL statement – with the materialized aggregate.

One challenge of the proposed aggregate caching mechanism and the involved
incremental materialized view maintenance is to handle aggregate queries that
are based on joins of multiple tables. These queries require a union of joining all
permutations of delta and main partitions of the involved tables, excluding the
already cached joins between the main partitions. For a query joining two tables,
three subjoins are required, and query joining three tables already requires seven
subjoins. This may result in very little performance gains over not caching at all
the query on the main partitions. After analyzing the characteristics of enterprise
applications, we identified several schema design and data access patterns that
can be leveraged to optimize the overall database performance. While these
business semantics could potentially be applied to several other aspects for data
processing in a columnar IMDB, this paper focuses on an approach to reduce
the incremental view maintenance by explicitly leveraging business semantics of
applications.

After discussing related work in Sect. 2, we describe the identified enterprise
applications characteristics in Sect. 3. Section 4 describes the aggregate cache and
strategies to reduce the number of joins for cached queries. We then outline in
Sect. 5 how the database engine can obtain information about application char-
acteristics. Our benchmarks in Sect. 6 support the significant speedup potential
and Sect. 7 concludes the paper with the main contributions and an outlook on
future work.

2 Related Work

A database can have different design goals depending on the application and
its characteristics. The CAP theorem is an example of how different design

104 S. Müller et al.

trade-offs have to be balanced [12]. In fact, there is an emergence of databases
that are custom-built for specific applications such as Cassandra1 or Amazon
DynamoDB2, each with its own design goals according to the characteristics of
the application.

The enterprise application characteristics identified and discussed in this
paper are used to reduce the incremental view maintenance inherent when intro-
ducing materialized views to speed-up analytical queries [8]. The maintenance
of materialized views has received significant attention in academia [13,14] and
industry [15,16], and the problem of incrementally maintaining aggregate queries
with joins has been widely identified [17,18]. However, neither of these approaches
use the characteristics of the application to reduce the maintenance effort.

3 Enterprise Application Characteristics

In this section we give an overview of identified enterprise application character-
istics, that can be utilized to speedup processing of join queries for the aggregate
cache. Two aspects are of essential relevance: what are common patterns of data-
base schema design and workloads.

3.1 Schema Design

In different domains, we identified tables with similar design patterns, namely
header, item, dimension, text, and configuration tables.

A header table describes common attributes of a single business transaction.
E.g., for a sale in a financials system it stores who made the purchase and when
the transaction took place. In materials management the header stores attributes
common to a single movement of goods like who initiated the movement and also
the time it took place.

To each header table entry, there are a number of corresponding tuples in
an item table. Item entries represent entities that are involved in a business
transaction. For instance, all products and the corresponding amount for a sale
or materials and their amount for a goods movement are stored in the items
table.

Additionally, attributes of the header and item tables refer to keys of a num-
ber of smaller tables. Based on their use case we categorize them into dimension,
text and configuration tables. Dimension tables manage the existence of entities,
such as accounts and materials. Especially companies based in multiple countries
have text tables to store strings for dimension table entities in different languages
and lengths (e.g., product names). Configuration tables enable system adoption
to customer specific needs and business processes.
1 Distributed key value store focusing on scalability and high availability, http://

cassandra.apache.org/.
2 Managed NoSQL database focusing on cost efficiency, http://aws.amazon.com/

dynamodb/.

http://cassandra.apache.org/
http://cassandra.apache.org/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/

Leveraging Enterprise Application Characteristics 105

Fig. 1. Simplified schema extract of a financials application.

Figure 1 shows a simplified extract of an example schema of a SAP finan-
cials application from an international company producing consumer goods. An
accounting header entry refers to a single business action, e.g. a sale or a pur-
chase. It includes the specific time, what kind of accounting document this is,
what system user entered the document and with whom the transaction took
place. The accounting item table lists all invoiced or billed items. The three text
tables store the real names in different languages for the involved products and
other item properties.

3.2 Workload Patterns

We also see patterns in how the previously described schemas are used. There is
a high insert load from enterprise systems persisting business transactions. Each
transaction is represented by one header and a number of item tuples. Therefore
the header and item tables have a high insert load and a large tuple count.

In many domains entire static business objects are persisted in the context
of a single transaction. Therefore the header and corresponding item tuples are
inserted at the same point in time. E.g. sales or goods movement transactions
are persisted as a whole in the database. In some domains such as sales order
management, items may be added or changed at a later point in time, e.g. when
a customer adds products to his order. As [4] analyzed a number of enterprise
systems, there is only a small amount of updates and deletes compared to inserts
and selects on the header and item tables. Looking at aggregation join queries,
we can almost always see that header entries are joined with their corresponding
item entries.

Additionally, the analytical queries extract strings from dimension or text
tables. Item tuple values are aggregated according to methods described in con-
figuration tables. The number of involved smaller tables varies between none to

106 S. Müller et al.

five. Those three table categories do have a number of properties in common.
There are rarely inserts, updates or deletes and they contain only a few entries
compared to header and item tables.

Starting in Sect. 4.2 we describe how each mentioned characteristic allows
to reduce the number of table joins necessary when processing a query with a
materialized view.

4 Optimizing Incremental Aggregate Maintenance

In this section we give a brief overview of how the aggregate cache utilizes the
main-delta architecture to handle mixed workloads as explained in [10] and how
enterprise application characteristics can be applied to improve the incremental
maintenance of aggregation queries involving a join of multiple tables.

4.1 Architecture Overview

As depicted in Fig. 2, the query processor handles reads and writes to main
and delta storage through the SQL interface from the application and delegates
aggregate queries to the aggregates caching manager. In case the cache manage-
ment table (CMT) indicates that the current query has not been cached yet, the
query is processed on the main and delta storage. The query result set from the
main is being cached and an entry in the CMT is created. Finally the unified
result sets from main and delta are delivered back to the application.

As all new inserts are stored in the delta, an already cached query only needs
to be executed on the delta storage. The final result set is obtained by unifying

Fig. 2. Aggregate cache architecture.

Leveraging Enterprise Application Characteristics 107

Fig. 3. Caching strategies for a three table join query.

the results from the delta with the cached entry that holds the content of the
main storage. Since the delta is far smaller than the main and retrieving a cached
result takes little time, the aggregate cache can speedup analytical queries by
order of magnitudes. As there are only few updates and deletes in enterprise
workloads as outlined in Sect. 3, we focus on insert only workloads in this paper.

4.2 Joins

Based on the header/item composition relationship and the use cases for the
financials (see schema in Sect. 3) and materials management systems, we focus
on inner joins, mostly with an equality operator in the join-predicate (equi-join)
[19]. We define an aggregation query joining t tables between relations R with
join conditions C as

QAgg(t) = R1 ΘγC1 R2 . . . ΘγCt
Rt+1

Each table consists of two partitions P = {main, delta}. For a query involving
a join of two tables, the database engine internally has to process more than just
one join in order to retrieve a complete result set. The mains of both tables need
to be joined, both deltas and both main-delta combinations of the two tables.

In the following subsections we show how to handle joins with different aggre-
gate caching strategies. All variants are compared based on an example query
involving a header, item and dimension table as depicted in Fig. 3. Each number
represents a subjoin that needs to be unified with the UNION ALL SQL opera-
tor. The analytical queries of the financials application always included a join
between the large header and item tables, and a varying number of smaller
configuration and text tables.

4.3 Join Without Cache

Without caching, the database engine needs to run the join on all possible main-
delta combinations JnoCache of all involved tables to build a complete result
set:

108 S. Müller et al.

JnoCache(t) = P
t

To evaluate QAgg joining t tables, that adds up to a total of 2t subjoins to be
unified:

ResultSet (QAgg) =
⋃

(p1,p2,...,pt)∞JnoCache

(
R1p1

ΘγC1 R2p2
. . . ΘγCt

Rt+1pt+1

)

As depicted in Fig. 3, for a join query involving three tables, this would mean
unifying the result sets of eight sub joins.

Based on the size of the involved table components, the time to execute the
subjoins varies. In our example the subjoins #5 and #8 require the longest time,
since they involve matching the join condition of the mains of two large tables.

4.4 Caching Join

When using the aggregate cache, the result set from joining all main partitions
is already calculated and the total number of subjoins is reduced to 2t − 1:

JwithCache(t) = JnoCache(t) \ {main}t

For our example from Fig. 3, the subjoin #8 does not need to be rerun based
on the cached result set. Since the database does not know anything about
the semantics of the involved tables and therefore their usage characteristics, it
has to assume there could potentially be newly inserted tuples in the delta of
the dimension table, that create a new match for the join of the header-main
and item-main. Based on their size, that subjoin requires a lot of time though.
The header-main/item-main join needs to be run even more often, there more
dimension, text or configuration tables are involved. Depending on the overhead
induced by the caching mechanism (incremental update during merge, check of
cache admission policy, ...), the regular caching join may not improve perfor-
mance for analytical queries with three or more tables.

In case we have a cached query involving only a header and item table, only
the header-delta/item-delta, header-main/item-delta and header-delta/item-
main subjoins need to be computed. Since deltas get merged before they get
to large, those subjoins take little time. Therefore the caching join delivers a
speedup for analytical queries limited to joins involving only two tables.

4.5 Semantic Join

In this subsection we show which table components need to be joined, when
the database is aware of the enterprise application characteristics introduced
in Sect. 3. In Sect. 5 we explain how the database can become aware of those
characteristics.

Let us assume a query joining a header and item table with a present cached
result set representing the joined mains. As static business objects are inserted
in the context of a single transaction, the header tuple and the corresponding

Leveraging Enterprise Application Characteristics 109

item tuples are inserted together. If there was no merge yet, both tuples that
will match the join condition are both in the delta part of their table. Therefore
we only need to run the header-delta/item-delta join and unify the results with
the cached entry. The main-delta combinations of header and item table can be
avoided. Same holds true for the subjoins #2, #4, #6 and #7 of our example
from Fig. 3, since the header and item tuples that belong together are either all
in the mains or deltas.

If there has not been an insert, update or delete on the dimension table
in a long time, the delta of that table is empty. For inner joins, empty table
components do not need to be included since they will not contribute to the
result set. Therefore the subjoins #2 and #3 can be avoided. This elimination
method could also be applied if there would be a greater number of involved
dimension, text or configuration tables with empty deltas.

This only leaves the subjoin #1, between the header-delta, item-delta, and
the main of the small dimension table. Using the semantic chaching strategy, an
aggregation query

QAggHID
= H ΘγC1 I ΘγC2 D

between a header H, item I and dimension table D is reduced to process the
single subjoin

Changes(QAggHID
) = Hdelta ΘγC1 Idelta ΘγC2 Dmain

compared to

ResultSet(QAggHID
) =

⋃

(p1,p2,p3)∞P3

(Hp1 ΘγC1 Ip2 ΘγC2 Dp3)

without an aggregate caching mechanism. Since all involved table components
are small, the subjoin can be executed with little effort.

The concept of the semantic join can also be applied to extendable business
objects such as sales orders, with item tuples possibly being added to an existing
header tuple at a later point in time. In that case we additionally have to include
the subjoin matching header-main, item-delta, and the mains of the smaller
static tables.

For static business objects, the semantic join always only executes one subjoin
using the header-delta, item-delta and dimension-, text- and configuration-table-
mains. Next to the schema usage characteristics it requires a different method
of handling the merge process as outlined in the following subsection.

4.6 Merge

The incremental maintenance of the aggregate cache takes place during the
online merge process which propagates the changes of the delta storage to the
main storage. When employing a semantic join between a header and an item
table, there are two ways to merge. One way is to synchronize the merge of both
tables. This way the tuples that match the join condition will always be all in

110 S. Müller et al.

Fig. 4. Stages of the delta merge process.

the delta or main storage. Figure 4 shows the three phases of a merge process
[11]. Specifically, the prepare steps that switch inserts to run into new blank
delta storages need to happen in between the same two SQL queries. Depending
on the database architecture, this may be a challenging implementation task
without the introduction of a lock that cues transactional queries.

On the other hand, the header and item table could be merged independently
by maintaining the aggregate cache at the same time. For static business objects
the incremental update would need to process all subjoins that include the delta
that is being merged. If we merge the header-delta of our example from Fig. 3,
that would be #1. When rerunning a query after the header table has been
merged, the item tuples of the merged header would not find a join partner
using the inner join. But they also should not find a partner since they are
already considered in the cached result set. For extendable business objects,
the incremental update would only be done for merging the item table, since
the semantic join also processes the item-delta/header-main subjoin for every
analytical query.

5 Annotating Enterprise Application Characteristics

In this section we list schema usage characteristics the database requires to
process the semantic join from Sect. 4.5. For each information aspect we intro-
duce a number of ways of explicit and implicit character, how the database could
obtain that information. In this Section we limit our annotation examples to
static business objects, even though similar methods can be used to extendable
business objects.

5.1 Empty Delta

To avoid the subjoins with the deltas of dimension, text, and configuration tables,
the database engine needs to know that they are empty. That simple check should
be a trivial implementation for most database architectures.

Leveraging Enterprise Application Characteristics 111

5.2 Associations

The caching engine needs to know which table attributes are used as join condi-
tion to the key of other tables. There are three methods with different strengths
and weaknesses.

First, foreign keys could be defined on database level during the design time
of the schema [19]. They are a well established mean in many database systems.
A column is marked to match the key of another table. New inserts, updates
and deletes are checked for data integrity of defined foreign keys. The checking
mechanism may decrease transactional throughput performance.

Another way would be to use a domain specific language (DSL) to model
objects on database level. The database would create the CREATE TABLE state-
ments from the abstract data modeling language. The DSL supports syntax to
explicitly express associations between objects. Listing 1.1 shows an example
syntax similar to the CDS-DDL3 from SAP HANA [1]. An AccountingItem can,
but does not have to be associated with a Product.

en t i t y AccountingItem{
Product : a s s o c i a t i o n [0 . . 1] o f Product ;
Quantity : i n t }

en t i t y Product{
Name : s t r i n g }
Listing 1.1. DSL example to model objects and associations on DB level.

A third way would be to look at meta data repositories of present systems.
Some enterprise application landscapes keep schema information in a central
place. One example of those repositories is the SAP Data Dictionary. Each table
column has a specific domain. Such a domain can be defined by a data type, a
value range or the column of another table. The latter case indicates an associ-
ation used as join condition.

5.3 Single Transaction Inserts

As explained in Sect. 3, static business objects are inserted in the context of a
single transaction. There are two fundamentally different ways to communicate
the insert behavior to the database. The schema could be annotated at design
time or the database access could be restricted to insert entire business objects.

Design Time Annotation. During data modeling phase the designer defines
how the schema will be used. This might be a challenging programming paradigm
for environments where a large number of developers are involved. Application
programmers might not know about the restrictions implied by the data modelers
and be surprised about the errors returned by the database. The annotation
could be done in two ways.
3 Core Data Services - Data Definition Language, a DSL to model objects on SAP

HANA.

112 S. Müller et al.

The DSL for data modeling, as introduced in Sect. 5.2 could support syntax
to explicitly model a composition relationship. That relation is stronger than an
association, meaning that entity foo consist of some entities bar. The composition
relationship implies that they are inserted in the context of single transaction. In
Listing 1.2 the AccountingHeader is composed of a number of AccountingItems.

en t i t y AccountingHeader{
Fisca lYear : i n t ;
Items : composit ion [1 . . →] o f AccountingItem}

en t i t y AccountingItem{
Product : a s s o c i a t i o n [0 . . 1] o f Product ;
Quantity : i n t }

Listing 1.2. DSL example to model composition relationship.

Another way would be to slightly extend the in many databases already
present concept of SQL constraints. Typically they are defined on a schema
level, checked on SQL statement level and sometimes with a leaner execution
time on transaction level. The available constraint enforcement levels need to
be extended with a new transaction level, that explicitly checks for constraint
consistency within a transaction. It checks if a transaction inserting new tuples
is valid by itself. The defined foreign keys are validated among the tuples that
are inserted together.

High Level APIs for Data Manipulation. Inserts into databases are typi-
cally done by using SQL commands. The database could restrict data manipula-
tion to higher level APIs. Those commands could e.g. look like StoreAccounting
Object(), RegisterMaterialMovement() or ReleaseSalesOrder(). In that
case all information of header and item tuples would be inserted with a single
command. By restricting data manipulation to such higher level APIs, incon-
sistent data states could also be prevented, that could otherwise be caused by
improper usage of SQL commands. The application developer would access those
ORM4 like methods directly on the database.

In the context of currently available database technology, one implemen-
tation strategy would be to do all data manipulation with Stored Procedures
(SPs). The database would offer SPs to persist entire objects. The procedure
describes in detail how the object attributes are transformed into tuples for dif-
ferent tables. A SP for e.g. an invoice may store a AccountingHeader tuple and
multiple AccountingItem tuples in the corresponding tables.

Another way would be to use a DSL for business object persistence and
manipulation on database level. That DSL would also only offer high-level com-
mands as previously mentioned. One example would be the CDS-DML5 currently
in development for SAP HANA.
4 Object Relational Mapper, a framework to easy access to relational databases from

object oriented programming languages.
5 Core Data Services - Data Manipulation Language.

Leveraging Enterprise Application Characteristics 113

6 Benchmarks

In this section we evaluate the potential speedup of the semantic join (see
Sect. 4.5) compared to the join not using schema usage characteristics, the caching
mechanism used with a fully denormalized schema and using no caching mech-
anism at all.

For the evaluation we use a real customer data set of an SAP financials appli-
cation of an international-operating company producing consumer goods. The
schema – limited to the benchmark relevant tables and columns – looks similar
to the one illustrated in Fig. 1. The data set consists of 35 million Accounting-
Header tuples, 310 million AccountingItem tuples and the text tables have each
less than 2000 entries.

We modeled a mixed OLTP/OLAP workload, based on input from inter-
views with that customer. The analytical queries simulate multiple users, using
a profit and loss statement (P&L) analysis tool. The SQL statements calculate
the profitability for different dimensions like product category and subcategory
(as mentioned in Sect. 3) by aggregating debit and credit entries. Listing 1.3
shows a simplified sample query that calculates how much profit the company
made with each of its product categories. We simulate a drill down into the
(P&L) by applying a specific dimension value as filter and then grouping by
another dimension.
SELECT pc .Name AS Category , SUM(i . Pr i ce) AS Pro f i t
FROM AccountingHeader AS h ,

AccountingItem AS i ,
ProductCategory AS pc

WHERE i . AccountingHeaderID = h . AccountingHeaderID
AND i . CategoryID = pc . CategoryID
AND pc . Language = ’ENG’

GROUP BY i . CategoryID ;

Listing 1.3. Simplified benchmark sample query.

All benchmarks are run on a server with 64 Intel Xeon QPI6 enabled processor
cores and 1 TB of RAM running SansoucciDB [5], an in-memory column-oriented
research database.

6.1 Delta Size

The speed up of the aggregate caching mechanism greatly depends on the number
of records in the delta storage. The smaller the delta in respect to the main
storage, the less tuples need to be aggregated when rerunning cached queries.
How large the peak delta size is just before merging, depends on the insert rate
and how long it takes to merge the table.

Figure 5 shows the speedup factor of the different caching strategies outlined
in Sect. 4.2 compared to the caching mechanism running on a single, denormal-
ized table. For the denormalized caching, the speedup is calculated by comparing
6 Quick Patch Interconnect, a direct communication system for processor cores that

replaces the Front Side Bus (FSB).

114 S. Müller et al.

Fig. 5. Aggregation with header-item join benchmark.

Fig. 6. Benchmark for aggregation queries joining header, item, and one dimension
table.

it to the runtime on the denormalized table without caching. For this specific
benchmark we only use a two table join between the header and item table. In
that case the strategy not leveraging enterprise application characteristics also
performs better by magnitudes since it never has to do the header-main/item-
main subjoin.

The semantic join enables a speedup of greater than 200 for item deltas
smaller than 10 thousand tuples and greater than 50 with less than 100 thousand
tuples. Even for larger deltas with half a million entries, cached queries are
calculated thirteen times faster than without caching (0.12 compared to 1.58 s).

6.2 Three Tables

For an aggregation query joining three tables as illustrated in Fig. 3, the caching
mechanism has to join the large header-main and item-main (see Sect. 4.2). In
this benchmark we use deltas with 50,000 items and their corresponding header
tuples. The dimension table consists of 150 entries. Figure 6 shows the impor-
tance of utilizing schema usage characteristics once there are three or more tables
involved. The analytical queries of the analyzed customer typically involve three
to seven tables. Since the semantic caching strategy only joins rather small table

Leveraging Enterprise Application Characteristics 115

components, its execution time remains faster by an order of magnitudes, even
if more tables are involved.

7 Conclusions and Future Work

With growing requirements on data analysis, the aggregate cache enables IMDBs
to handle an even higher aggregation query throughput in enterprise system
environments with mixed workloads. However, with queries joining two or more
tables, the benefit of the aggregate cache is reduced as the needed incremental
view maintenance is very expensive.

Our analysis of enterprise applications revealed several patterns with respect
to schema design and resulting workloads. Most importantly among them, it is a
very common practice to split business objects into a header and item table and
schemas having many small rather static tables. These patterns can be leveraged
to reduce the incremental view maintenance and run more efficient aggregate
caching strategies. Especially for small delta sizes, they enable a speed-up by
order of magnitudes.

With having a clear understanding of the speedup potential of the caching
mechanism for aggregation queries joining tables, one direction of future work
is to predict the runtime improvements for a columnar IMDB with a main-
delta architecture. Based on cardinalities of main and delta partitions, unique
value count, filter selectivity, and possibly other metrics, a cost model of the
cache admission policy should decide what aggregate queries with joins are most
valuable to be cached.

References

1. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: data management for modern business applications. In: SIGMOD (2011)

2. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
Hyrise: a main memory hybrid storage engine. In: VLDB, pp. 105–116 (2010)

3. Kemper, A., Neumann, T., Informatik, F.F., München, T.U.: Hyper: a hybrid
OLTP&OLAP main memory database system based on virtual memory snapshots.
In: ICDE, D-Garching (2011)

4. Plattner, H.: A common database approach for OLTP and OLAP using an in-
memory column database. In: SIGMOD, pp. 1–2 (2009)

5. Plattner, H.: SanssouciDB: an in-memory database for processing enterprise work-
loads. In: BTW (2011)

6. Smith, J.M., Smith, D.C.P.: Database abstractions: aggregation. ACM Commun.
20, 405–413 (1977)

7. Srivastava, D., Dar, S., Jagadish, H., Levy, A.: Answering queries with aggregation
using views. In: VLDB (1996)

8. Gupta, A., Mumick, I.S.: Maintenance of materialized views: problems, techniques,
and applications. IEEE Data Eng. Bull. 18, 3–18 (1995)

9. Müller, S., Butzmann, L., Höwelmeyer, K., Klauck, S., Plattner, H.: Efficient
view maintenance for enterprise applications in columnar in-memory databases.
In: EDOC (2013)

116 S. Müller et al.

10. Müller, S., Plattner, H.: Aggregates caching in columnar in-memory databases.
In: 1st International Workshop on In-Memory Data Management and Analytics
(IMDM), in conjunction with VLDB (2013)

11. Krueger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner,
H., Dubey, P., Zeier, A.: Fast updates on read-optimized databases using multi-core
CPUs. In: VLDB (2012)

12. Brewer, E.A.: Towards robust distributed systems. In: PODC (2000)
13. Buneman, O.P., Clemons, E.K.: Efficiently monitoring relational databases. ACM

Trans. Database Syst. 4, 368–382 (1979)
14. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views.

In: SIGMOD, pp. 61–71 (1986)
15. Bello, R.G., Dias, K., Downing, A., Feenan, Jr., J.J., Finnerty, J.L., Norcott, W.D.,

Sun, H., Witkowski, A., Ziauddin, M.: Materialized views in oracle. In: VLDB, pp.
659–664 (1998)

16. Zhou, J., Larson, P.A., Elmongui, H.G.: Lazy maintenance of materialized views.
In: VLDB, pp. 231–242 (2007)

17. Gupta, H., Mumick, I.S.: Incremental maintenance of aggregate and outerjoin
expressions. Inf. Syst. 31(6), 435–464 (2006)

18. Larson, P.A., Zhou, J.: Efficient maintenance of materialized outer-join views. In:
2007 IEEE 23rd International Conference on Data Engineering, pp. 56–65. IEEE
(2007)

19. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)

MaiterStore: A Hot-Aware, High-Performance
Key-Value Store for Graph Processing

Dong Chang(B), Yanfeng Zhang, and Ge Yu

Northeastern University, Shenyang, 110819 Liaoning, China
cdaspirin@gmail.com,

zhangyf@cc.neu.edu.cn,
yuge@mail.neu.edu.cn

Abstract. Recently, many cloud-based graph computation frameworks
are proposed, such as Pregel, GraphLab and Maiter. Most of them exploit
the in-memory storage to obtain fast random access which is required for
many graph computation. However, the exponential growth in the scale
of large graphs and the limitation of the capacity of main memory pose
great challenges to these systems on their scalability.

In this work, we present a high-performance key-value storage system,
called MaiterStore, which addresses the scalability challenge by using
solid state drives (SSDs). We treat SSDs as an extension of memory
and optimize the data structures for fast query of the large graphs on
SSDs. Furthermore, observing that hot-spot property and skewed power-
law degree distribution are widely existed in real graphs, we propose
a hot-aware caching (HAC) policy to effectively manage the hot ver-
tices (frequently accessed vertices). HAC can conduce to the substantial
acceleration of the graph iterative execution. We evaluate MaiterStore
through extensive experiments on real large graphs and validate the high
performance of our system as the graph storage.

Keywords: Graph store · Key-value store · Hot-aware cache · SSDs ·
Maiter

1 Introduction

In the era of big data, a huge amount of graph data is being collected, e.g., Twit-
ter follow graph, Amazon consumer-purchase-record bipartite graph, LinkedIn
social graph etc. A lot of state-of-the-art graph computation frameworks [9,17–
21,27,29] are proposed to process and mine these big real-world graphs. In many
graph algorithms, the computation of a graph vertex only depends on its neigh-
bors’ values. It could involve a substantial amount of non-contiguous access when

This work was partially supported by National Natural Science Foundation of
China (61300023, 61272179), Fundamental Research Funds for Central Universities
(N120416001, N120816001), China Mobil Labs Fund (MCM20122051), and MOE-
Intel Special Fund of Information Technology (MOE-INTEL-2012-06).

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 117–131, 2014.
DOI: 10.1007/978-3-662-43984-5 9, c© Springer-Verlag Berlin Heidelberg 2014

118 D. Chang et al.

accessing values of the neighbors. Therefore, most of these graph computation
frameworks [9,18,19,21] are designed to maintain the graph data in memory for
fast random access.

However, real-world graphs might be too large to fit into memory. Even
though high-end servers with high-capacity memory are available in recent years,
it may not be a typical solution for the widespread adoption of memory storage.
The steep price and relatively small capacity of DRAM will continue to be a con-
cern for a long time. On the other hand, many big data processing systems [1,2]
and several graph computation systems [20,29] utilize external storage devices
such as HDDs (hard disk drivers) to store these large graphs, but the costly I/Os
correspondingly render these systems’ performance inefficient. Thus, in graph
computation frameworks, we believe that the graph-structured data should not
be simply stored in the disk-based storage or the memory storage, but instead
be placed in the fittest storage position while exploiting both advantages of disk
and memory.

To address this challenge, we introduce MaiterStore for storing large graphs
by using the state-of-the-art solid state drives (SSDs). We observe that many
graphs are stored in in-memory key-value tables, such as Maiter [21]. The states
of the graph vertices/edges are required to update many times during the compu-
tation. On the other hand, the graph structure, e.g. adjacency list, is immutable
during the whole iterative computation. In addition, the size of graph-structured
data is usually far larger than the state data of graph. MaiterStore keeps the
frequently updated volatile graph state data in main memory for fast random
access, while store the read-only immutable graph-structured data on SSDs. This
is mainly because SSDs are capable of gaining better I/O performance than the
HDDs, and are cheaper than DRAM. Using SSDs to store the immutable graph-
structured data will bypass the I/O bottleneck of HDDs.

MaiterStore equips the graph data with key-value pairs and has an efficient
page manager to manage these key-value pairs on SSDs. In addition, consider-
ing the graph data access pattern, MaiterStore adopts a page-based prefetch-
ing buffer in memory, which prefetches the anticipating graph-structured data
from SSDs. The prefetching buffer can adapt to the access pattern changes and
exchange the prefetched SSDs pages dynamically. Specifically, the graph com-
putation usually exhibits skewed access patterns where some vertices’ edges are
accessed frequently and excessively. Based on this observation, we design a hot-
aware cache (HAC) in memory to cache the hot vertices and their edges from
SSDs intelligently. HAC can conduce to the substantial acceleration of the graph
processing.

We summarize our main contributions as follows:

– MaiterStore, a high-performancekey-value store for large-scale graphprocessing.
– HAC, a hot-aware cache for caching the hottest part of immutable graph-

structured data during the graph computation.
– Implementation of MaiterStore and evaluation of its performance with graph

applications on a local cluster as well as Amazon EC2.

MaiterStore: A Hot-Aware, High-Performance Key-Value Store 119

The rest of this paper is organized as follows. Section 2 introduces the graph
computation framework—Maiter and SSDs characteristics. Then we present the
system design of MaiterStore, and its components as well as APIs in Sect. 3. The
experimental results are shown in Sect. 4. We outline the related work in Sect. 5
and conclude the paper in Sect. 6.

2 Preliminaries

2.1 Introduction to Maiter

In this paper, we will present MaiterStore to support a recently proposed in-
memory graph processing framework Maiter [21]. Note that, although Maiter-
Store is currently designed to make Maiter memory-efficient, the techniques used
are also suitable for other graph processing systems if they maintain graph data
based on key-value tables. The APIs can be easily extended and be compatible
with other systems.

Maiter is built on the basis of a novel computation model, called delta-based
accumulative iterative computation. By exploiting this new model, Maiter shows
better performance than many of the state-of-the-art graph processing systems.
Maiter follows a master-slave architecture for distributed computation. For graph
processing, Maiter firstly splits the input graph data into multiple partitions and
sends to different workers.

On each worker, the received graph partition is loaded in an in-memory
key-value store, state table, as shown in Fig. 1. The first field represents the
id of a vertex; the 2nd, 3rd, 4th fields correspond to the vertex state, which
are updated during computation; the last one is vertex adjacency list, which is
always immutable and static but frequently accessed during the iteration. We
will explore this mutable/immutable property of graph data to design our graph
storage. In addition, Maiter exploits a priority scheduling policy, which identi-
fies the key vertices during graph processing and assigns them higher execution
priority. Consequently, these vertices with higher priority are the hot-spot of
the graph. We will design a caching mechanism to identify and cache these hot
vertices for fast access.

2.2 SSD Characteristics

SSDs have the same purpose as conventional mechanical hard drives, but there
is one crucial difference: they are electronic devices without any mechanical

Fig. 1. In-memory state table in Maiter

120 D. Chang et al.

moving parts. Unlike HDDs, SSDs do not store data on spinning platters, but
use flash memory instead. Therefore, SSDs are capable of providing fast random
access speed, and the time to access data is almost proportional to the amount
of data irrelevant for the physical locations of data in SSDs. As opposed to disk,
accessing two sequential pages is no faster than accessing two random pages.

The basic I/O unit of SSDs is a page, typically 4 KB in size. These pages
are organized into blocks which are between 256 KB or 1 MB in size. However,
when data stored in the SSDs will be updated in place, SSDs have to perform an
erase operation which cannot erase selectively on a specific data record, but on
an entire block containing the data record. This leads to redundant effort and
further slows the speed of update operation. MaiterStore is a hybrid storage sys-
tem using SSDs. Considering the erase-before-write [11] limitation, MaiterStore
is designed to bypass this limitation and optimize SSDs I/Os.

3 MaiterStore Design

In this section, we present the system architecture of MaiterStore and the related
techniques. The design of MaiterStore is driven by the Maiter’s memory-inefficient
state table.

In Maiter, gigantic graph data exhausts the limited memory of each worker.
In order to get rid of the bottleneck caused by limited memory, we ought to
destage the huge static graph-structured data to SSDs, reducing pressure on
the memory. After migration, the state table in Maiter could become relatively
smaller than before. Meanwhile, using SSDs could not lead to a sharp slowdown
of random access compared to the memory. From the fact that every vertex in
graph storage is an index to its neighboring vertex, thus we regard the vertex
and its adjacency list as static key-value pair storing the SSDs.

3.1 System Overview

Overall, MaiterStore is composed of the following key components, as shown in
Fig. 2.

Page Manager: The page manager serves to equip the static graph-structured
dataaskey-valuepairsandstore themonSSDs inunitsofpage.Meanwhile, it selects
the first key for each page as page number and constructs these page numbers as the
BST index. We will describe this in Sect. 3.2.

Prefetching Buffer: The prefetching buffer is a page-based storage structure
that is maintained in memory. It is used for fetching the to-be-accessed pages
from SSDs early enough so that they are available in the buffer when required.
More details will be described in Sect. 3.3.

Hot-aware Cache (HAC): This is a fixed-size read cache of key-value entries
that is maintained in the memory. We use a novel replacement strategy to evict
the key-values pairs when inserting items into the full HAC. We will present this
in Sect. 3.4.

MaiterStore: A Hot-Aware, High-Performance Key-Value Store 121

Fig. 2. MaiterStore architecture on each worker

For better understanding how these components work together, we describe
a simple example, a lookup operation of the adjacency list.

In this example, we divide the graph of six vertices into three equal pages.
These vertices are flash resident and paged in and out of the memory as needed.
Assume also that prefetching buffer and HAC are empty from the beginning.
When graph processing systems, such as Maiter, compute the PageRank of ver-
tex 1, requiring to query the adjacency list L for vertex 1, the HAC is consulted
first. If L is in the HAC, MaiterStore returns the cached adjacency list. If L is not
in the HAC but it is in the prefetching buffer, it is read into the HAC from the
prefetching buffer. If L is neither in the HAC nor in the prefetching buffer, the
page manager firstly finds the page number page0 via the BST index to locate
the position of the adjacency list on SSDs, and then fetches the corresponding
page into the prefetching buffer and inserts the adjacency list into the HAC. As
shown in Fig. 3. If the HAC is full when a new adjacency list is read in, the HAC
must evict an item according to its replacement policy. In the following, we will
outline the three components in detail.

Fig. 3. Example of the lookup operation on MaiterStore

122 D. Chang et al.

3.2 Page Manager

Before iterative computation, Maiter splits the input graph data into multi-
ple partitions and sends to different machines. For each worker machine, the
page manager is responsible for decomposing the graph partition into contigu-
ous equal-size pages. Then these pages are sequentially logged in SSDs. The log-
structured manner and its benefits have been reported in earlier work [12,15,30].
Typically, a page is a collection of graph vertices and their outgoing edges; in
other word, edges are indexed for their source vertices. For each page, we choose
the key of first pair as page number and the page manager saves it on the local
machine. Every key-value entry in the page is associated with this page number.
Before iterative execution, the page manager constructs these page numbers a
BST (balanced search tree) index.

BST index is a simple but efficient in-memory index. We can quickly locate
the page by binary search in logarithmic time. Also note that the BST index is a
sparse and memory-efficient data structure since we only maintain the first key
of the page.

Since the key-value pairs on SSDs are maintained implicitly in a sorted order,
we can easily obtain the page number via the BST index and locate the retrieved
page. For example, the request of a key-value pair (k, v) is sent to the page
manager, the page manager can readily map the key k into the page number
via BST index. And then, the page manager can quickly find the corresponding
page on SSDs according to the page number.

The page in our key-value system is the basic unit that can be read or written.
Generally, the page size must be an integral multiple of the SSDs default page size
4 KB to keep I/O aligned. The page size is set as 8 KB by default in MaiterStore.
We will further study the effect of page size on performance in Sect. 4.2.3.

For page management, the page manager adopts a write-once-read-many [7]
model. This model could not only enable high throughput of data access but
also potentially avoid SSDs write pitfalls.

3.3 Prefetching Buffer

Prefetching is aimed at making data available in the memory before it is requested,
thereby hiding the effect of latency resulting from poor reference locality. How-
ever, prefetching is not cost-free and it has to manage the prefetched data. If the
prefetched data is not subsequently used, it obviously reduces the efficiency of sys-
tem. To maximize the performance of system, the prefetching technique needs to
predict the access pattern, minimizing the number of useless prefetches.

In Maiter, all local vertices stored in state table are processed iteratively
round by round. In each iteration, the vertices are processed in the order that
they are stored in the state table. Further, these vertices’ edges are stored in
SSD pages. We may pin a set of pages to memory for prefetching buffer.

In MaiterStore implementation, we adopt the following prefetching method:
when the read of the key-value pair is not present in memory, the page manager
requests the page containing the key-value entry and several pages adjacent to

MaiterStore: A Hot-Aware, High-Performance Key-Value Store 123

that page with multi-threads in advance. In general, the number of prefetch-
ing pages and prefetching buffer size are application configurable by users in
MaiterStore.

The prefetching buffer can be managed in many way. Finding the locality of
graphs is still a big challenge [31], so the prefetching buffer has no information
about which page will be reused if it remains in the prefetching buffer. For
simplicity, we use FIFO (First In First Out) policy to evict the pages when
inserting new pages into full prefetching buffer in current implementation.

In our experiment, it is also shown that prefetching technique can reduce
excessive I/Os efficiently and hide its latency effect.

3.4 Hot-Aware Caching Policy

Typically, workloads of many graph computation systems exhibit excessive access
skew. This is mainly because most real-world graphs obey the power law distribu-
tion [28]. For example, the social network can naturally be abstracted as a graph,
where pages correspond to vertices and hyperlinks correspond to directed edges.
In such real-world graph, most vertices have a relatively small degree but some
outliers, such as celebrities in a social network, are much larger. This is impor-
tant, because computation converges slower on these important vertices than
others, and it is desirable to focus computation on them. For graph processing,
the vertices with high degree are hot and accessed frequently, but others with
small degree are cold and accessed infrequently. Obviously, it would make sense
to reside such hot and high-degree vertices in memory. Cold vertices should be
migrated to external memory such as flash to mitigate the memory pressure.

Additionally, updating a part of the important vertices selectively [20] rather
than entire vertices can lead to more efficient graph computation, because not
every element in the intermediate result changes at each iteration. To this end,
we should focus on the hot vertices and keep such performance-critical vertices
in memory.

HAC attempts to take into account the hotness of graph vertices based on
the priority-based iterative execution of Maiter [21], which could avoid loading
inactive vertices from SSDs. The hotness of the vertex is normally set to the
priority field in Maiter state table. In the graph computation framework, Zhang
et al. [20] proved priority scheduling: given an execution priority to vertices can
potentially accelerate the convergence, because some of vertices play a decisive
role in determining the final converged outcome. Under these conditions, we
should keep these decisive vertices in cache. Our hot-aware cache occupies small
available portions of memory, but holds the top hot key-value pairs and does
not incur high penalties to main memory. Figure 4(a) shows the hot-aware cache
with the triple(hotness, vid, adjacency list).

Conventional LRU (Least Recently Used) replacement strategy evicts the
objects in cache that have not been accessed for the long time, and it only
considers the time of the last access to objects. Unlike LRU, HAC can perform
hot-aware policy to cache key-value pairs with higher hotness. Therefore, the

124 D. Chang et al.

Fig. 4. (a) hot-aware cache. (b) evict the pair with lowest hotness and insert new pair
with higher hotness (35, vid6, adjlist6) when miss. (c) update the hotness of the pair
(80, vid4, adjlist4) when hit

relatively small memory can cache more valuable key-value pairs, which can
make a big difference when Maiter executes iterative computation.

Looking-up operation with a key and a hotness value h in MaiterStore needs
to read the cache. Upon a miss, the current key-value pair read from prefetching
buffer or SSDs will be inserted into cache after evicting another key-value pair(if
cache is already full). To decide which key-value pair to evict when cache is
full, HAC firstly finds the key-value pair whose hotness is lowest, say hlowest. If
h > hlowest, HAC evicts the key-value pair with lowest hotness to make room for
the current key-value pair in Fig. 4(b). If the key-value pair is already in cache,
HAC needs to only find the pair and update the hotness as shown Fig. 4(c). With
the in-memory hash table, HAC achieves O(1) time for hit and eviction.

3.5 API in MaiterStore

MaiterStore is implemented in circa 1800 lines of C++ code using boost library. It
currently provides Maiter with graph storage, though it could later be expanded to
supportother in-memorygraphprocessing frameworks.Basicoperations inMaiter-
Store are as follows:

virtual void parseKV(s t r i n g l i n e , K∗ vid , V∗ ad jL i s t) = 0 ;
V get (const K vid) ;
void put (const K vid , const V ad jL i s t) ;

where K and V are the type of key and value respectively. The interface parseKV
is a user-defined function for converting string record to users’ data structure and
implemented by developers. The function get and put are two basic operations in
MaiterStore. Both of them are invoked by the upper graph processing frameworks
when obtaining or storing graph adjacency lists.

4 Performance Evaluation

In this section, we evaluate our system with extensive experiments. MaiterStore
is equipped to Maiter to show the performance in the context of two typical
applications PageRank and Connected Components.

MaiterStore: A Hot-Aware, High-Performance Key-Value Store 125

4.1 Environment Setting

The experiments are conducted on a cluster of local machines consisting of 4
commodity machines, as well as on Amazon EC2 Cloud [3]. Each machine in
the local cluster has Intel Core i3-2120 3.3 GHz CPU, 3 GB of RAM, Seagate
Barracuda 500 GB hard drive and Samsung 840 Series SSD [6]. It is running
Ubuntu 13.04 with the Linux kernel 3.8.8 and Ext4 file system with default
configuration. The Amazon EC2 cluster involves 30 m3.xlarge nodes. Each node
has 15 GB of memory, and 80 GB of SSD.

We evaluate MaiterStore using three datasets: Web-Google [5], Web-BerkStan
[5] and Web Graph [4]. The dataset statistics are presented in Table 1.

Table 1. Statistics of datasets

Dataset Nodes Edges

Web-Google (55MB) 916,428 6,078,254
Web-BerkStan (62MB) 685,230 7,600,595
Web Graph (11GB) 50,000,000 686,231,717

4.2 Experimental Results

In this section, we present our experimental results. Without loss of generality,
we fetch a page into the prefetching buffer and set buffer size as 2 page.

4.2.1 Performance of MaiterStore
To study the effects of different techniques used in MaiterStore, we evaluate
MaiterStore with different configurations on the local cluster. For comparison,
we also configure Maiter to store graph data in memory only and in disk file
only. There are totally seven settings considered for comparison: (1) in memory
only(S1); (2) in SSD + Prefetching Buffer + HAC, i.e., MaiterStore(S2); (3) in
HDD + Prefetching Buffer + HAC(S3); (4) in SSD + Prefetching Buffer(S4);
(5) in HDD + Prefetching Buffer(S5); (6) in SSD only; (7) in HDD only. Figure 5
shows the running time of different configurations on PageRank and connected
components. Due to long running time in the final two settings, we do not plot
them in Fig. 5. In this experiment, we use Web-Google dataset. By comparing
S1 with S2 or S3 in Fig. 5, although S1 outperforms S2 or S3, our dataset is
much smaller than the capacity of memory. S1 is not scalable for processing
huge amounts of the graph data in real applications with limited memory.

Interestingly S2 and S3 have the same running time approximately. This is
not surprising, since MaiterStore is not read-intensive for SSD or HDD and most
of read operations are cached in the prefetching buffer or the HAC, which causes
the read operations concentrating on the hot vertices and hides the high I/O
cost. In Sect. 4.2.4, we show that the reads for SSD or HDD are rather few in
number. In addition, in such setting most or all of the hot vertices of dataset fit
into the HAC, and there is no need to read data from SSD or HDD.

126 D. Chang et al.

Fig. 5. Comparison of running time under different settings.

S4 or S5, by contrast, only caches the neighboring vertices and may not cache
the hot vertices, and this causes miss ratio increased. We will study the effect of
HAC further in Sect. 4.2.4.

In SSD or HDD only settings, we first locate the page and read it from the
SSD or HDD, and then find the corresponding key-value without caching and
buffering. In PageRank, the running time in SSD only setting is more than 13
times greater than MaiterStore (SSD + Prefetching Buffer + HAC) and the
running time in HDD only setting is more than 17 times. This also shows the
performance of MaiterStore is affected by the prefetching buffer and hot-aware
cache closely.

Based on the above experiments, we can validate that, although the perfor-
mance of MaiterStore has a certain gap compared with in-memory only, Maiter-
Store can process much bigger graphs, as it is not limited by the capacity of
DRAM. It also shows that MaiterStore performs well on both SSD and HDD.

4.2.2 Scalability of MaiterStore
To show the scalability of MaiterStore under large-scale distributed environment,
we conduct connected components on dataset Web Graph using EC2 cluster.
Figure 6 shows the running time of MaiterStore when the number of workers is

Fig. 6. Connected components: varying number of workers on EC2 cluster

MaiterStore: A Hot-Aware, High-Performance Key-Value Store 127

Fig. 7. Effect of page size on performance

varied. We can see that, the drop from 23.32 to 6.86 min using 6 times as many
workers represents a speedup of about 4. It demonstrates that for MaiterStore
the runtime decreases linearly in the worker size.

4.2.3 Effect of the Page Size
Page size is a vital parameter in MaiterStore. The setting of page size deter-
mines the granularity of buffer unit, which has effect on prefetching advantage.
A large page size is desirable for reducing index size. On the other hand, a small
page size can effectively eliminate reading unnecessary key-value pairs, since the
page may contain both hot and cold key-value pairs. To specify the page size,
the page size must be an integral multiple of the 4 KB, the default page size of
the SSD.

We compare performance of different page sizes in stand-alone environment,
including the Web-Google dataset and Web-BerkStan dataset in Fig. 7. We only
cache 10 % vertices in HAC. We get the results with various page sizes and show
the execution time normalized to that of running on the memory-only setting.
We can see that with the large page size, the running time increases significantly,
because both hot and cold vertices may co-exist in a page, whereas sometimes
we need the hot data only, which causes the unnecessary reads and prolongs
the runtime. For the small page size (4 KB), the running time is larger than
that with page size (8 KB). This is mainly because sometimes Maiter requires to
compute a wide set of vertices on different pages, whereas small page contains
less vertices than large page, thus causing the miss rate to increase.

The experiment also illustrates that choosing a proper page size can optimize
performance. In MaiterStore, we use a page size of 8 KB in default.

4.2.4 Comparison with the HAC VS. FIFO VS. LRU
In this section, we compare the effect of different caching techniques in stand-
alone environment using the Web-Google dataset. LRU and FIFO could not
cache any vertices without any settings, because they are prone to the recently
accessed objects. In the experiment, we filter the vertices with smaller hotness in

128 D. Chang et al.

Fig. 8. Effect of cache size under HAC, FIFO and LRU

FIFO and LRU. That is, if the hotness of vertex exceeds a predefined threshold,
we cache such the vertex. However, in HAC, we have no such setting.

Figure 8 shows the experimental results while varying the cache size. Even
though all the cache policies exhibit better performance as the cache size increases,
the HAC is more sensitive to the size of cache than the others. On the other hand,
the hit ratio of HAC is more than threefold as high as the two other cache policies.
In addition, the hit ratio of buffer is 97.2 % when cache is zero, and when cache has
10 % vertices size, the total hit ratio exceeds 99.97 %. It shows that below 0.03 %
retrieving data is obtained by accessing SSDs.

4.2.5 Effect of the HAC and Prefetching Buffer
Finally, we evaluate the effect of buffer and cache in stand-alone environment
using the Web-Google dataset. The results are shown in Fig. 9. The X axis shows
the time interval of execution time, and the Y axis shows the hit times during
the corresponding time interval. As iteration goes on, the hit times are increased
significantly and our HAC plays an increasing important role. The hit times in
the last time interval are declined because the execution is terminated during
this time interval and corresponding the running time is less than 60 s. It shows
HAC is gradually caching the hot and performance-critical vertices.

Fig. 9. Impact of prefetching buffer and HAC

MaiterStore: A Hot-Aware, High-Performance Key-Value Store 129

5 Related Work

Recently, several key-value storage systems have sprung up in conjunction with
flash storage such as BufferHash [22], SILT [24], FlashStore [23] and FAWN
[12] etc. FAWN [12] is a power-efficient cluster architecture for data-intensive
computing and uses SSDs as a replacement for HDDs. BufferHash [22] builds
a content addressable memory system using flash for networking applications.
It keeps the key-value pairs in the hash table and flushes the key-value pairs to
flash when buffer is full. FlashStore [23] is a persistent key-value store using flash
as a non-volatile cache between RAM and HDDs. SILT [24] is a memory-efficient
key-value store by using partial-key cuckoo hashing and entropy-coded tries to
reduce the per-key memory consumption. These key-value storage libraries are
considered inserting SSD as another layer in the storage hierarchy to improve
existing application performance. In contrast, MaiterStore treats the SSDs as an
extension of the memory and pushes the SSDs upward in the memory hierarchy.
Thus, using MaiterStore, existing shared-memory graph computation framework
can easily and transparently enlarge the memory capacity to hundreds of giga-
bytes. Furthermore, by adopting the write-once-read-many model, we can easily
eliminate many challenges associated with designing and implementing high-
performance key-value store.

Apache Hadoop [1] is an open-source reincarnation of Google’s MapReduce
[26]. It mainly consists of two components: Hadoop Distributed File System
(HDFS) [7] and MapReduce framework. Yet HDFS is inappropriate for storing
the structured graph data in its current implementation, and MapReduce is
inefficient for processing graph iterative computation. In contrast, MaiterStore
can be used as the structured graph storage for efficiently supporting the Maiter
graph processing. Moreover, MaiterStore has faster access speed than HDFS,
because almost all the data are accessed in memory.

GraphChi [27] is a disk-based system on a single machine that can efficiently
perform advanced computation on billion-node graphs. However, if there exists
excessive iterations, GraphChi may involve a high number of I/O operations
when updated edges are flushed to disk at each iteration. Whereas, Maiter-
Store aims to mitigate the memory pressure with a simple design by separating
huge graph data from memory. Furthermore, we need not worry about high
I/O latency, because the graph data on SSDs is non-volatile and read-only, and
MaiterStore performs a minimal portion of data reads on SSDs.

Spark [18], Piccolo [25] and GraphLab [9,16] are the graph iterative com-
putation frameworks and they keep graph data in memory to achieve high
computation speed. However, for huge graphs that do not fit in memory, such
share-memory approach is constrained. Unlike these in-memory frameworks,
MaiterStore separates the static graph-structured data from the memory, and
mitigates the memory pressure. We need not worry about the Maiter perfor-
mance of a sharp slowdown after using MaiterStore as the graph storage, because
in MaiterStore the times of accessing SSDs count a surprisingly small percentage
of all the data access.

130 D. Chang et al.

6 Conclusion

This paper presents the design and evaluation of MaiterStore. MaiterStore is
specialized for large-scale graph processing framework in the cloud. For efficiently
managing the graph data, we separate the immutable key-value pairs from the
in-memory state table in Maiter and store them on SSDs. In order to reduce the
number of the SSD read operations and accelerate the graph algorithm execution,
we adopt the page-based prefetching technique for buffering the to-be-queried
data, and propose a hot-aware cache (HAC) for caching the hot and performance-
critical data on SSDs. Our results show that MaiterStore is able to support graph
processing more efficiently. Our ongoing work aims at extending MaiterStore
with a more general I/O model and expects to apply MaiterStore to other in-
memory graph processing frameworks beyond Maiter.

References

1. Hadoop. http://hadoop.apache.org
2. Hama. http://hama.apache.org
3. Amazon EC2. http://aws.amazon.com/ec2/
4. Web Graph. http://lemurproject.org/clueweb09/
5. Stanford dataset collection. http://snap.stanford.edu/data
6. Samsung SSD. http://www.samsung.com/cn/business/business-products/

ssd-card
7. HDFS. http://hadoop.apache.org/core/docs/r0.16.4/hdfsdesign.html
8. Chen, F., Koufaty, D., Zhang, X.: Hystor: making the best use of solid state drives

in high performance storage systems. In: Proceedings of ICS, pp. 22–32 (2011)
9. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:

Distributed graphlab: a framework for machine learning in the cloud. PVLDB
5(8), 716–727 (2012)

10. Hu, Y., Jiang, H., Feng, D., Tian, L., Luo, H., Zhang, S.: Performance impact and
interplay of SSD parallelism through advanced commands, allocation strategy and
data granularity. In: Proceedings of ICS, pp. 96–107 (2011)

11. Lee, S.W., Moon, B., Park, C., Kim, J.M., Kim, S.W.: A case for flash memory SSD
in enterprise database applications. In: Proceedings of SIGMOD, pp. 1075–1086
(2008)

12. Andersen, D., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., Vasudevan,
V.: FAWN: a fast array of wimpy nodes. In: Proceedings of SOSP, pp. 1–14 (2009)

13. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

14. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: Proceedings of OSDI, pp. 205–218 (2006)

15. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-
structured file system. ACM Trans. Comput. Syst. 10(1), 26–51 (1992)

16. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Graphlab: a new framework for parallel machine learning. In: Proceedings of UAI,
pp. 340–349 (2010)

http://hadoop.apache.org
http://hama.apache.org
http://aws.amazon.com/ec2/
http://lemurproject.org/clueweb09/
http://snap.stanford.edu/data
http://www.samsung.com/cn/business/business-products/ssd-card
http://www.samsung.com/cn/business/business-products/ssd-card
http://hadoop.apache.org/core/docs/r0.16.4/hdfsdesign.html

MaiterStore: A Hot-Aware, High-Performance Key-Value Store 131

17. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings
of SIGMOD, pp. 135–146 (2010)

18. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: HotCloud (2010)

19. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud.
In: Proceedings of SIGMOD, pp. 505–516 (2013)

20. Zhang, Y., Gao, Q., Gao, L., Wang, C.: PrIter: a distributed framework for prior-
itized iterative computations. In: Proceedings of SOCC, pp. 1–14 (2011)

21. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Maiter: an asynchronous graph processing
framework for delta-based accumulative iterative computation. In: IEEE Computer
Society (2013)

22. Anand, A., Muthukrishnan, C., Kappes, S., Akella, A., Nath, S.: Cheap and large
CAMs for high performance data-intensive networked systems. In: Proceedings of
NSDI, pp. 433–448 (2010)

23. Debnath, B., Sengupta, S., Li, J.: FlashStore: high throughput persistent key-value
store. In: Proceedings of VLDB, pp. 1414–1425 (2010)

24. Lim, H., Fan, B., Andersen, D.G., Kaminsky, M.: SILT: a memory-efficient, high-
performance key-value store. In: Proceedings of SOSP, pp. 1–13 (2011)

25. Power, R., Li, J.: Piccolo: building fast, distributed programs with partitioned
tables. In: Proceedings of OSDI, pp. 1–14 (2010)

26. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of OSDI, pp. 137–150 (2004)

27. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: large-scale graph computation on
just a PC. In: Proceedings of OSDI, pp. 31–46 (2012)

28. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. Comp. Comm. Rev. 29, 251–262 (1999)

29. Kang, U., Tong, H., Sun, J., Lin, C.Y., Faloutsos, C.: Gbase: a scalable and general
graph management system. In: Proceedings of KDD, pp. 1091–1099 (2011)

30. Chen, S.: Flashlogging: exploiting flash devices for synchronous logging perfor-
mance. In: Proceedings of SIGMOD, pp. 77–86 (2009)

31. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community structure in large
networks: natural cluster sizes and the absence of large well-defined clusters. Inter-
net Math. 6, 29–123 (2009)

Vertical Bit-Packing:
Optimizing Operations on Bit-Packed Vectors

Leveraging SIMD Instructions

Martin Faust1, Martin Grund2, Tim Berning1,
David Schwalb1(B), and Hasso Plattner1

1 Hasso Plattner Institute, Potsdam, Germany
{martin.faust,tim.berning,david.schwalb,

hasso.plattner}@hpi.uni-potsdam.de
2 University of Fribourg, Fribourg, Switzerland

grund@exascale.info

Abstract. Today’s in-memory column stores make heavy use of bit-
packed data structures in order to reduce the required amount of main-
memory and to improve the performance of memory-bound algorithms
by trading more CPU cycles for less data that needs to be transferred
over the memory-bus.

In this paper, we propose vertical bit-packing as a slightly modified
alternative compared to classic bit-packing approaches, compressing an
array of integer values with a known and finite value set so that each
value is stored using the minimal required amount of bits. Vertical bit-
packing aims to fully exploit the data parallelism provided by the existing
on-chip vector processing units of modern x86-64 CPUs as they provide
speedup potentials at no additional hardware cost.

In particular, we propose Vertical Bit-Packing and Aligned Vertical
Bit-Packing as an alternative to the classic approach called Horizontal
Bit-Packing. We show that the proposed techniques can save between
one and two instructions per decompressed value block, outperforming
the classic approach in some bit-cases with up to 12 %.

1 Introduction

Research and development over the past decades has led to an ongoing improve-
ment and evolution of computer technology in regards to architecture and per-
formance of processors, memory and storage components. Simultaneously, both
the ability to and the demand for storing vast amounts of data has been increas-
ing, entailing the necessity to manage and analyze the information in a fast and
efficient way. With the price of main memory declining, allowing for systems
equipped with large amounts of RAM at relatively low cost, database systems
have started to migrate from disk-based operation to keeping all data in memory
at all times.

However, compared to the vast amounts of persistent memory such as disks
available at hardly any cost, main memory is however still a scarce and critical

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 132–145, 2014.
DOI: 10.1007/978-3-662-43984-5 10, c© Springer-Verlag Berlin Heidelberg 2014

Vertical Bit-Packing: Optimizing Operations 133

resource. Keeping all data in memory therefore becomes a task of intelligent data
management and compression in order to minimize the memory footprint.

As a means of reducing memory consumption, in-memory database engines
such as SAP Hana [4] and Hyrise [5] facilitate light-weight compression methods
like dictionary compression and bit-packing. While conserving space is important
due to the aforementioned reasons, another important aspect is the divergence
of processor and memory speeds. With the rate of improvements in processor
speed having outpaced advances in main memory latency, memory accesses are
becoming the new bottleneck [11].

Consequently, research has been targeted at optimizing data structures and
algorithms in order to mitigate the effects of low latency and make efficient use
of the available bandwidth [10]. But the limited bandwidth combined with main
memory latency, especially in high load scenarios, requires optimization of the
data structures.

A common approach to this problem is further compressing the data in order
to reduce memory accesses. In-memory column-oriented databases using dictio-
nary compression [8] make heavy use of so called bit-packing techniques [14].
Using dictionary compression, each unique value is stored in a per-column dic-
tionary and assigned a value ID, which then is stored in the actual column vector
instead of the value.

Especially enterprise data has proven to have little distinct values in most
columns, such as for instance a column containing countries or even just boolean
values [6]. Assuming a four byte integer being used as a value ID, this also means
that only a subset of the value range representable in 4 bytes is actually needed.
Bit-packing exploits that fact by storing multiple values inside the four byte
block. Bit-packing thus increases the information content per byte, allowing for
a reduction of memory transfers and mitigating the effects of main memory as
a bottleneck. Since the packed values cannot be processed by the CPU directly
and require prior unpacking, bit-packing imposes computational overhead as a
downside to the reduced memory footprint.

However, with the ever-increasing performance of modern multi-core CPUs
and slow improvement of memory latency, operations on packed data are
becoming less costly and the utilization of better compression techniques shifts
operations from being I/O-bound back to being CPU-bound. While exploiting
multi-core architectures to increase database operation performance is a common
approach, using a single core’s on-chip vector processing units to fully exploit
existing data parallelism becomes essential when striving for optimal perfor-
mance on modern architectures.

The SIMD-Scan as presented in [14] provides a fast and efficient way of
performing common database operations such as the full table scan and predicate
evaluation on bit-packed column data using commodity CPUs’ SIMD units.

In this paper, we propose Vertical Bit-Packing (VBP) and Aligned Vertical
Bit-Packing (AVBP) as alternatives to the classic approach of Horizontal Bit-
Packing (HBP). Both proposed approaches make slight modifications to the data
layout compared to the classic approach as described in Sect. 3, with the goal of

134 M. Faust et al.

reducing the number of required CPU instructions for decompressing the stored
data and further improving the performance of operations on bit-packed data.

2 Related Work

Techniques for efficient bit compression and decompression of integer arrays are
discussed by Lemire and Boytsov [7], Schlegel et al. [12] and Wilhalm et al. [14]
among others. They present various compression schemes such as null suppres-
sion or Elias encoding and present approaches using SIMD implementations such
as Intel SSE to improve compression, as well as decompression rates. Test results
show in all cases the potential of SIMD supported parallelization. Chhugani
et al. [3] present an Merge Sort algorithm that heavily utilizes SIMD to achieve
notable speedup over the scalar version.

The potential of using the CPU’s built-in vector processing units to increase
the performance of compressed data access is discussed in [14]. The authors are
focusing on dictionary compressed column data and apply fixed length com-
pression to further reduce the space required for storage. In order to perform
scans on the compressed column vector, they introduce a SIMD approach, which
decompresses 4 values in a 128 bit block of compressed data at a time. In their
performance evaluation, this approach revealed an average speedup of factor 2
over a highly optimized, scalar vector implementation. In [13], the authors extend
their approach to support vectorized table scans even for complex predicates.

Li and Patel [9] follow a different approach. They, too, operate on fixed-
length compressed value IDs of an in-memory database column vector. In con-
trast to [14] however, they do not focus on efficient decompression of the data
but instead provide a system for efficient, in-place predicate evaluation on the
compressed data. Even without SIMD support they achieve higher scan speeds
than [14]. Their two approaches come at costs each, however. Their horizontal
methods require an additional storage bit for each value, doubling the space for
a boolean vector, which only requires one bit per value. The vertical approach
requires expensive reads, potentially crossing cache-line boundaries to retrieve
single values.

3 Concepts of Bit-Packing

The concept of the VBP and AVPB are based on the techniques proposed by
Lemire and Boytsov [7] and Wilhalm et al. [14] and represents an alteration of the
original approach with the goal of performance optimization. This is achieved
through a change in the storage layout of the compressed values in memory,
followed by a modification to the decompression algorithm. The combination of
storage layout and decompression algorithm is referred to as bit-packing in this
paper. In this section, we first describe the classic approach of HBP followed by
a description of the proposed VBP and AVBP algorithms.

Vertical Bit-Packing: Optimizing Operations 135

Fig. 1. Storage layouts for HBP, VBP and AVBP for bit-case k = 9.

3.1 Horizontal Bit-Packing

The SIMD Scan from [14] operates on fixed-length bit compressed values, which
are stored in a contiguous block of memory in a consecutive fashion. This storage
layout is referred to as Horizontal Bit Packing (HBP) for the sake of discussion.
Analogous to the paper, an array of 64-bit integers is assumed as the storage
block. Given a vector of n values {v1, v2, ..., vn}, each vi being k bits in width, v1
is encoded in the first k bits of the first array element, v2 occupies the following
k bits and so on. Depending on k, a single value can span across Quad-Word
(QW) boundaries, potentially requiring an additional element at the end which
is not entirely filled. For 64-bit integers that means in order to store n values,
the required space SHBP (n) is calculated as follows:

SHBP (n) =
⌈
n ∼ k

64

⌉

· 8 bytes (1)

For example, with k = 9 values v1 through v14 can be fully packed into two
QWs, while only 128 − (14 ∼ 9) = 2 bits of v15 can be fitted. The remainder
overlaps into the next QW.

The HBP vectorized decompression algorithm extracts four 32-bit integer
values simultaneously from the compressed block. In order to do so, several
steps are necessary. Reference [14] describes the steps in detail and we will only
summarize the steps here. In addition, Fig. 2 illustrates the basic steps.

1. One 128-bit block of compressed data is loaded into a 128-bit SIMD register
using a single load instruction.

2. If a value spans across the boundaries of two consecutive 128-bit blocks,
instead of step 1 a 256-bit load instruction is necessary in order to load the

Fig. 2. Example of vectorized decompression for HBP with bit-case k = 9.

136 M. Faust et al.

next block as well, followed by a shift operation to align the spanning value,
thus requiring two operations for loading the data. Alternatively, more recent
SIMD implementations also support unaligned access at no additional cost,
which can make this step obsolete.

3. Next, four compressed values (or rather their corresponding bytes in the
register) need to be copied to four separate Double-Words (DWs) in a sec-
ond SIMD register. Modern SIMD implementations typically provide such
an operation to perform the so called shuffle operation on all four values
simultaneously.

4. If a compressed value spans across DW boundaries as for example the case
with k = 27, an additional selective shift instruction might be necessary to
correct the error.

5. Using a single SIMD shift instruction with variable offsets, the four values
are positioned at the beginning of their respective DWs.

6. As a last sanitizing step a 128-bit SIMD AND instruction with an appropriate
bit mask is used to mask out the remaining 32−k bits in the four DWs, which
were copied over by the shuffle operation.

Not including writing the decompressed values back into memory or performing
further operations on them, the algorithm requires at least four and up to six
operations for the extraction of values. All these steps are necessary for the
extraction due to the horizontal storage layout.

3.2 Vertical Bit Packing

Instead of storing compressed values consecutively in a contiguous block of mem-
ory, VBP places a group of four values in four subsequent DW blocks of one
128-bit block of memory as this allows for a simplified decompression. Again, an
n-element vector v = {v1, v2, ..., vn} with k bits used for each value is assumed.
The first 128-bit memory block will then contain {v1, v5, v9, ..., v2, v6, v10, ..., v3,
v7, v11, ..., v4, v8, v12, ...} with v1, v2, v3 and v4 marking the beginnings of the 32-
bit sub blocks. This will store ∈ 32

k ∀ full values in the first block, leaving p = 32
mod k bits at the end of each DW block. If p < k, the next value can only
partially be fit. The remaining bits are then carried on to the corresponding DW
sub block in the next 128-bit block.

Figure 1 shows how for k = 9 only the first 5 bits of v13, v14, v15 and v16
can be fitted into the first block with the rest overlapping into the next block.
Similar to HBP, the values are tightly packed, resulting in roughly the same
storage space necessary.

Based on the vertical storage layout, the decompression algorithm from [14]
summarized in Sect. 3.1 can now be altered to take advantage of this structural
change. As mentioned above, compressed values can still span across 128-bit
block boundaries. Thus, loading the next block into a register might be necessary
as well. Thanks to the vertical layout with four subsequent values stored in four
separate DW blocks, the shuffle operation from step 3 becomes obsolete. The
problems arising from shuffling values wider than 27 bits as described in step 4 is

Vertical Bit-Packing: Optimizing Operations 137

Algorithm 1. VBP Vectorized Decompression
i ← 0
while i < n do

block ← ((i/4) ∗ k)/32
R1 ← load128(input[block])
offset ← ((i/4) ∗ k) mod 32
while offset < 32 do

R2 ← pRShift(R1, offset)
R2 ← pAnd(R2, maskk)
if 32 − offset < k then γ overlap?

R1 ← load128(input[block + 1])
R3 ← pLShift(R1, k − (32 − offset))
R2 ← pOr(R2,pAnd(R3, maskk))

end if
store128(R2, output[i])
offset ← offset + k
i ← i + 4

end while
end while

subsequently eliminated as well, by default the values are effectively positioned
as they would in the horizontal decompression process after step 4. Skipping
these steps, now the remainder of the algorithm is unchanged. All four values
are shifted and masked, leading to four decompressed 32-bit integer values per
DW block.

Algorithm 1 explains the vectorized decompression for VBP more precisely.
n denotes the number of packed values in the compressed vector input, k the bits
used per value and output a regular 32-bit array buffer for the unpacked values to
be stored in, maskk a 128-bit bit mask with the lower k bits of each 32-bit block
set to 1 and the Ri represent 128-bit SIMD registers. The functions load128
and store128 load and store 16-byte blocks from and back to main memory.
pRShift, pLShift, pAnd and pOr are parallel SIMD methods operating on
four 32-bit values in a register simultaneously. Most variables in the algorithm
are constant or can be predetermined with only block and offset depending on i.
Due to the optimized storage layout, the VBP decompression algorithm reduces
the total number of operations for block decompression from 4–6 instructions
per block down to 3–4 instructions per block.

3.3 Aligned Vertical Bit Packing

A slight variation of VBP is the AVBP approach. A further modification to the
storage layout allows for a more simple decompression algorithm as outlined
below. However due to the inserted padding, more space is required to store the
values.

AVBP places a group of four values in four subsequent DW blocks of one 128-
bit block of memory. However, as opposed to VBP, compressed values are stored

138 M. Faust et al.

DW aligned. Again, an n-element vector v = {v1, v2, ..., vn} with k bits used
for each value is assumed. The first 128-bit memory block will then contain {v1,
v5, v9, ..., v2, v6, v10, ..., v3, v7, v11, ..., v4, v8, v12, ...} with v1, v2, v3 and v4 marking
the beginnings of the 32-bit sub blocks. Since the beginning of each DW contains
a value, there must not be values spanning across DW boundaries.

Thus, only ∈ 32
k ∀ values can be stored per DW and the other bits remain

unused. The worst case scenario for 0 < k ∩ 32 is k = 17, in which case only one
value can be stored per DW and 15 bits are wasted. As a result, all 16 < k ∩ 32
will require the same amount of space and are effectively equivalent to a 32-bit
integer array. Since 32-bit integers are assumed to be available on the system,
this renders bit compression irrelevant as far as VBP is concerned. The required
amount of bytes for storing n values, denoted as SAVBP (n) can be calculated
as:

SAV BP (n) =
⌈

n
⌊
32
k

⌋ · 4

⌉

· 16 bytes (2)

Figure 1 visualizes the storage layout for AVBP for k = 9. This bitcase demon-
strates the padding at the end of each 4 byte block, leading to decreased storage
capacity. In contrast to HBP and VBP, packing over 14 values into the 128-bit
block, AVBP can only store 12 values in this particular case.

The AVBP storage layout allows to simplify the HBP decompression algo-
rithm even more, as outlined in Fig. 3. Potential misalignment needs to be taken
care of with both the HBP and VBP storage layout. AVBP in contrast guaran-
tees by design that no overlapping values will occur due to the DW alignment.
AVBP stores every four consecutive values in four consecutive DWs, resulting
in a 128-bit block that is loaded into the SIMD register, thus eliminating the
necessity for additional DW alignment and the loading of a second block. From
this point on, the decompression process is the same for both VBP and AVBP.

In conclusion, the aligned vertical storage layout allows for at least the shuf-
fle operation to be skipped in the decompression process and never requires
additional data loads or alignment of spanning values, reducing the number of
operations to a fix three. All other aspects of the SIMD-Scan algorithm are not
affected by this change, suggesting a likely performance improvement as far as
computational costs are concerned. However, it comes at the cost of potentially
increased storage requirements, which may slow down the algorithm depending
on k.

Fig. 3. Example of vectorized decompression for AVBP with bit-case k = 9.

Vertical Bit-Packing: Optimizing Operations 139

3.4 Vectorized Predicate Evaluation

Now with the values decompressed, they can be written back into memory as
a 128-bit block using a single SIMD store operation. There, they can be used
for lookups in the column specific dictionary in order to materialize the values.
However, simply materializing the entirety of all packed values is hardly ever
necessary. Instead, a full scan of the column vector will usually only be performed
in order to evaluate predicates on it and generate a position vector of values
matching the specified condition. As described in [14], predicate evaluations can
be performed using SIMD instructions inside the decompression process without
writing the decompressed data back into memory.

Assuming four values decompressed and placed into their respective DWs in
a 128-bit SIMD register, a single SIMD instruction can be used to compare all
four values against a reference value in a single step. This is performed loading
the latter as a 32-bit value into a second register, replicated so that each DW
contains the reference value. The compare operation then sets the bits of another
register accordingly, meaning that if the comparison evaluates to true, all bits
in that DW are set to 1, otherwise 0. This is visualized in Fig. 4, register R2
still contains the four decompressed values v5, v6, v7 and v8 from Fig. 3 and
the comparison value comp is loaded into register R3, replicated over all DW
blocks. The result is then stored in another register R4, in this case both v5 and
v7 match the predicate specified through the comparison value comp and the
specific compare instruction. Algorithm 2 shows the process integrated into the
AVBP decompression process, which however can be included into both HBP
and VBP as well.

With the addition of a one-time load of the comparison value comp and
the addition of a single instruction pCompare, which represents a parallel
SIMD comparison operation on four 32-bit values, the decompression algorithm
is adjusted to include predicate evaluation. The result vector from R4 can now
be written back to memory for further operations. The vectorized predicate eval-
uation process is the same for HBP, VBP and AVBP.

Considering the result vector’s format of a set of 32-bit values with all bits
set to either 0 or 1, the use cases without modification are limited. In order
to generate a position list of matching entries in the vector, the result vector
must be parsed again for elements unequal to zero and their position noted. In
many cases though, predicate evaluation will consist of multiple conditions to be

Fig. 4. Example of vectorized predicate evaluation for HBP with bit-case k = 9.

140 M. Faust et al.

Algorithm 2. AVBP Predicate Evaluation
i ← 0
R3 ← load128(comp) γ Comparison Value
while i < n do

block ← i/(128/k)
R1 ← load128(input[block])
offset ← 0
while offset < 32 do

R2 ← pRShift(R1, offset)
R2 ← pAnd(R2, maskk)
R4 ← pCompare(R2, R3) γ Predicate Evaluation
store128(R4, output[i])
offset ← offset + k
i ← i + 4

end while
end while

tested, for instance when searching for values between two constants. Lacking
a corresponding SIMD instruction, the latter would be implemented using a
greater than and a less than comparison operation. Here the result vector of
the first operation can be reused in the second without modification. Keeping in
mind the all zero or all one structure, a simple AND operation on the respective
parts of the existing result vector and the result of the current operation produce
an intersection of both result vectors with minimal overhead. This even holds
true for operations on different column vectors, provided they use the same result
vector format.

The predicate evaluation could also be adjusted to support pipelined operator
execution by having the algorithm always process a chunk of values at a time. The
resulting partial vector can then already be used within another scan operator,
as it will not be written to again. Once a chunk has been processed, the next
operator can process the same value range with little overhead, potentially just
overwriting the vector through in-place AND-operations. With a small enough
chunk size and the result vector still in cache, multiple operators can be executed
with little overhead compared to execution of a single operator.

4 Implementation

We implemented prototypical versions of the algorithms for HBP, VBP and
AVBP. Analogous to [14], Intel SSE [1] was used. The intrinsics programming
method was used for seamless integration of the optimizations into the code.

The decompression steps explained in Sect. 3 for all three concepts map
directly onto single SSE instructions. A single instruction loads one 128-bit block
of memory into an SSE register. The 4-byte alignment step necessary for HBP is
executed using an 8-bit shuffle instruction with an appropriate bit mask to move
four consecutive values into separate 32-byte blocks in a second register. In order

Vertical Bit-Packing: Optimizing Operations 141

to avoid spanning value issues during the shuffle step, the HBV implementation
will default to 32-bit for k > 26.

In order to shift all four values to the beginnings of their 32-bit blocks, VBP
and AVBP use a regular 32-bit shift instruction. The vertical storage layout
makes sure, that the offsets into the blocks are always the same for all four values.
This is different for the horizontal method. Here, shift offsets can be different
depending on k. Shifting a value by n bit however is the same as multiplying it by
2n. Thus, variable shifting can be realized as a 32-bit multiplication instruction
with different factors, essentially performing the desired shift.

The final masking step is again the same for HBP, VBP and AVBP. Using
a bit mask with only the first k bits of each 32-bit block set to 1 and a 128-bit
AND instruction, all remaining 32 − k bits are set to 0 and the decompression
is finished and the values can be written back to memory with a 128-bit store
instruction.

All bit-packing algorithms feature two means of value access, a single value
get method and a range access mget, which uses the SIMD decompression tech-
nique. Both expect the index of a value to be extracted as a parameter. While
get will only extract the specified value, mget is designed for full scans of the
vector. Therefore it will always extract a range of 128 values, starting with the
first value in the 128-bit block in which the specified value resides. Since HBV
and VBV can have spanning values, extracting 128 values at a time ensures that
the compressed values will always align at 128-bit boundaries, no matter how
many bits per value are used. Stopping before the end of a block would require
the same block to be loaded again for the next range of values.

VBP and AVBP also implement a comparison method, which allows for scan-
ning a vector for values equal to a passed in value. The first part of the compari-
son algorithm requires the values to be decompressed and therefore follows above
steps. After the last masking step, before the values are written back to mem-
ory, the comparison is performed. The 32-bit value cmp to be checked against
needs to be loaded once and stored replicated in a separate 128-bit register as
{cmp, cmp, cmp, cmp}. It can then be used for the scan over the entire vector.
The Intel SSE2 instruction set provides a set of comparison operations for 32-bit
operands, covering basic comparison tests. This set of instructions checks four
32-bit values in a register against their counterpart in another register and sets
all bits of the respective 32-bit block in another 128-bit register to either one or
zero, indicating whether the comparison returned true or false. With the negligi-
ble one-time load of the comparison value, these instructions can now be used to
perform predicate evaluation on the unpacked values using only one additional
instruction. Now, instead of writing the decompressed values back to memory,
the comparison result vector is written back with no additional overhead.

5 Evaluation

The evaluation of the three bit-packing approached HBP, VBP and AVBP was
performed on a server with two Intel Xeon E5450 processors (3.0 GHz) and

142 M. Faust et al.

12 MB last level cache each. The system was equipped with 64 GB of DDR2-ECC
main memory and running Ubuntu Server version 11.10. All benchmarks were
compiled using the GNU gcc version 4.8.1 with the highest level of optimization.
Performance measurements were performed using the PAPI library [2].

5.1 Decompression Performance

Figure 5a shows the decompression performance of HBP, VBP and AVBP nor-
malized as CPU cycles per element for all bit-cases from 1 to 32. For this bench-
mark, an instance of each vector type was created for each bit-case and filled
with 200 million values. Therefore, even if only one bit per value is used, the
vector will exceed the processor’s last level cache, to benchmark memory access
effects. In the benchmark, all values are decompressed using the respective mget
methods of the bit-packing algorithms and stored in a result buffer. The graph
shows clearly how decompression speed generally decreases with more bits being
used to encode values. While all vectors contained the same number of elements
and thus the number of decompression steps necessary did not change, more
bits per value increases the overall vector size and requires more load instruc-
tions. This has a notable impact on the decompression performance for all three
variants. The graph furthermore shows the consistent decompression speeds of
AVBP starting at 17 bits per value and HBP starting at 27, both of which default
to their 32-bit variant in these cases. Depending on the bit-case, the vectors also
greatly diverge in their performance.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
PU

 c
yc

le
s

pe
r

el
em

en
t

Bits per Value

HBP
VBP

AVBP

(a) Decompressing 200 million values on a system with slow DDR2 memory.

 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
im

e
in

 m
s

Bits per Value

HBP
VBP

AVBP

(b) Decompressing 200 million values on a system with faster DDR3 memory.

Fig. 5. Block-wise decompression performance for HBP, VBP and AVBP.

Vertical Bit-Packing: Optimizing Operations 143

Figure 6a and b quantify the performance gain or loss of VBP and AVBP
respectively over HBP. VBP shows great improvements over a wide range of
bit-cases, most notably for 1, 11, 22 and 23 bits per value. Interestingly, there
is hardly any speedup in bit-cases that are a power of two. AVBP shows similar
speedup for 1 bit per value and decreased performance in the range of 2 to 4
bits as compared with VBP. In all other cases, the speedup is comparably low
at under 2.5 % over the HBP and generally inferior to VBP. This behavior is
explained by the increased memory consumption due to the 32-bit alignment.
Despite the lower computational overhead as detailed in Sect. 3.3, the increase
in storage necessary renders the latter irrelevant.

To demonstrate this aspect more clearly, the same benchmark was compiled
and run on a different system with one Intel R≥ CoreTM i7-2820QM processor
with 8 MB last level cache and running Mac OS X 10.8.4. This system was
equipped with 8 GB DDR3 memory running at 1600 MHz, whereas the server’s
memory used in the previous experiments were older DDR modules running at
lower speeds. Despite the CPU’s memory controller’s lower memory bandwidth,
the decreased access latency of the DDR3 memory modules resulted in a lower
penalty for the AVBP as can be seen in Fig. 5b. With the effects of memory
latency reduced, the differences in the bit-cases among HBP and VBP become
more apparent.

Overall it can be noted though, that VBP decompression speed outperforms
the horizontal version in most cases. The differences between the vertical versions
however make it necessary to take the desired bits per value into account when

-0.15

-0.1

-0.05

 0

 0.05

 0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

du
p

Fa
ct

or

Bits per Value

Performance Benefits Vertical Bitvector

VBV

(a) Direct comparison for VBP and HBP.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

du
p

Fa
ct

or

Bits per Value

Performance Benefits Aligned Vertical Bitvector

AVBV

(b) Direct comparison for AVBP and HBP.

Fig. 6. Direct decompression speedup comparisons.

144 M. Faust et al.

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
PU

 c
yc

le
s

pe
r

el
em

en
t

Bits per Value

HBP
VBP

AVBP

Fig. 7. Performance of single value extraction at 0.1 % Selectivity.

choosing between them. The AVBP generally provides less performance gain,
but does in a few cases such as 8, 16 and 32 bits per value beat both HBP and
VBP.

5.2 Single Value Access

While all three bit-packing variants are optimized for SIMD supported range
access, single value lookups are necessary for tuple reconstruction. The value
lookup is implemented differently in all vectors as it needs to comply with the
underlying storage model. Figure 7 shows the vectors’ performance when select-
ing 0.1 % random values out of 200 million compressed values.

Power of two bit-cases allow for easy extraction in all cases and show simi-
lar performance among the three vector types. While HBP achieves the lowest
extraction speeds up until 9 bits per value, AVBP takes over starting at 10 bits
per value and for the remaining bit-cases allows much faster single value access
of up to a factor of 4 in case of 26 bits per value. Again, the graph shows roughly
constant performance of HBP after bit-case 26 and AVBP after bit-case 16. The
regular vertical method shows the slowest access speed in essentially all cases.
This is due to the nature of the VBP storage layout, due to which a higher num-
ber of spanning values occur as values need to be aligned at 32-bit boundaries.
While HBP encounters spanning values as well, only the next data block of for
example 64 bits must be loaded. VBP requires the corresponding 32-bit block
in the next 128-bit block, leading to more stride accesses and higher potential
for cache misses. However, single value extraction is hardly ever performed on a
larger scale but only to retrieve specific values determined by a scan.

6 Conclusion

In-memory column-stores strive to conserve space as a still scarce resource and
rely heavily on the compression of data. In order to maintain access speeds sim-
ilar to operations on uncompressed data, several techniques such as the SIMD-
Scan [14] have been proposed, utilizing available on-chip vector processing units
to improve performance.

This paper presents two new vertical storage layouts with according algo-
rithms called Vertical Bit-Packing (VBP) and Aligned Vertical Bit-Packing

Vertical Bit-Packing: Optimizing Operations 145

(AVBP), targeted at further improving the performance of the SIMD-Scan app-
roach. The experiments carried out demonstrate the performance gain of VBP
of up to 12 % over the classic Horizontal Bit-Packing (HBP) approach in over
half of the analyzed bit-cases, whilst maintaining the same memory footprint.

AVBP only offers minimal performance improvements in some bit-cases and is
generally inferior to HBP. It thus nicely demonstrates that despite computational
simplification the increase in storage space needed has a major impact on the
performance. In some bit-cases however, HBP still offers the best performance.
The optimal choice therefore depends on the necessary bits per value as to be
determined from the column vector’s value range.

References

1. Abel, J., Balasubramanian, K., Bargeron, M., Craver, T., Phlipot, M.: Applications
tuning for streaming SIMD extensions. Intel Technol. J. Q2, 1–13 (1999)

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14, 189–204 (2000)

3. Chhugani, J., Nguyen, A.D., Lee, V.W., Macy, W., Hagog, M., Chen, Y.-K.,
Baransi, A., Kumar, S., Dubey, P.: Efficient implementation of sorting on multi-
core SIMD CPU architecture. In: VLDB (2008)

4. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: data management for modern business applications. In: SIGMOD (2012)

5. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
HYRISE: a main memory hybrid storage engine. In: VLDB (2010)

6. Krüger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner,
H., Dubey, P., Zeier, A.: Fast updates on read-optimized databases using multi-core
CPUs. In: VLDB (2011)

7. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. In: CoRR (2012)

8. Lemke, C., Sattler, K.-U., Faerber, F., Zeier, A.: Speeding up queries in column
stores. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010.
LNCS, vol. 6263, pp. 117–129. Springer, Heidelberg (2010)

9. Li, Y., Patel, J.M.: BitWeaving: fast scans for main memory data processing. In:
SIGMOD (2013)

10. Manegold, S., Boncz, P.A., Kersten, M.L.: Optimizing database architecture for
the new bottleneck: memory access. In: VLDB (2000)

11. Plattner, H., Zeier, A.: In-Memory Data Management: An Inflection Point for
Enterprise Applications. Springer, New York (2011)

12. Schlegel, B., Gemulla, R., Lehner, W.: Fast integer compression using SIMD
instructions. In: Proceedings of the Sixth International Workshop on Data Man-
agement on New Hardware, pp. 34–40. ACM (2010)

13. Willhalm, T., Oukid, I., Mueller, I., Faerber, F.: Vectorizing database column scans
with complex predicates. In: AMDS (2013)

14. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.:
SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units.
Proc. VLDB Endow. 2(1), 385–394 (2009)

Efficient Streaming Detection of Hidden
Clusters in Big Data Using Subspace

Stream Clustering

Marwan Hassani(B) and Thomas Seidl

Data Management and Data Exploration Group, RWTH Aachen University,
Aachen, Germany

{hassani,seidl}@cs.rwth-aachen.de

Abstract. Recently, many data mining techniques were revisited to
cope with the new big data challenges. Nearly all of these algorithms
considered the efficiency of the mining algorithm to survive the increas-
ing size of the data. However, as the dimensionality of the data increases,
not only the efficiency but also the effectiveness of traditional mining
algorithms is compromised. For instance, clusters hidden in some sub-
spaces are hard to be detected using traditional clustering algorithms,
as the dimensionality of the data increases. In this paper, we consider
both the huge size, and the high dimensionality of big data by providing
a novel solution that presents a three-phase model for subspace stream
clustering algorithms. Our novel model, overcomes the huge size of the
big data in its first phase, by continuously applying a streaming concept
over the huge data objects, and summarizing them into micro-clusters.
Then, after each certain batch of data, or after upon a user request, the
second phase is applied over the data summarized in micro-clusters, to
reconstruct the current distribution of the data out of the current sum-
maries. In the third phase, a subspace clustering algorithm is applied to
overcome the high dimensionality of the data, and to find hidden clus-
ters within some subspace. An extensive evaluation study over different
scenarios that follow our model over a big data set is performed.

Keywords: Subspace stream clustering · Streaming big data ·Real-time
streaming analysis of big data

1 Introduction

The continuously-increasing sizes and dimensionality of available data is a fact
that is appearing in a lot of domains nowadays. Actually, it is very hard to find a
data producing area where the output does not easily become big, with respect
to the size, the dimensionality, or both. Recently, many data mining techniques
were revisited to cope with the emerging big data challenges. Almost all of
these algorithms considered the efficiency of the mining algorithm to survive the
increasing size of the data. However, as the dimensionality of the data increases,

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 146–160, 2014.
DOI: 10.1007/978-3-662-43984-5 11, c© Springer-Verlag Berlin Heidelberg 2014

Efficient Streaming Detection of Hidden Clusters in Big Data 147

not only the efficiency, but also the effectiveness of traditional mining algorithms
is compromised. In this paper, we present an algorithmic model that considers
both the big size and the high dimensionality of the data using the subspace
stream clustering concept. We shortly define the related concepts in Sects. 1.1
and 1.2, then we present the motivation with a paper structure in Sect. 1.3.

1.1 Subspace Clustering

Clustering is an example of a data mining algorithm that aim at grouping similar
objects in the data set in the same group or cluster, and dissimilar objects
in different groups or clusters. The definition of similarity here is introduced
according to some distance function. Thus, far objects are dissimilar, and vice
versa. However, for big data, as the dimensionality of the objects increases, the
distances between objects in higher subspaces increases exponentially, making
it very hard to find “similar” objects, and all objects of the data set appear as
outliers. This problem was termed “curse of dimensionality” [5] where traditional
distance functions are no more applicable.

In recent applications like network intrusion detection, objects (connections)
are described using many dimensions. For example, each connection in the
famous Network Intrusion Dataset [1] has 42 dimensions. Recent research intro-
duced subspace clustering which aims at locally detecting relevant dimensions
per cluster. If objects in a certain cluster are densely close to each other on some
subgroup of dimension (also called subspace), then this subgroup of dimensions
is relevant to that cluster. Otherwise, if they are scattered over other dimensions
then those dimensions are irrelevant to that cluster. Thus, for each cluster, rel-
evant dimensions are locally determined and irrelevant dimensions are ignored.

Figure 1 gives an example of applying a full-space clustering of objects with
only two dimensions, for illustrative purposes. Cluster 1 represents the only full
space cluster (here 2-dimensional cluster) as both dimensions are relevant. All
other points are considered outliers, since they are not forming a dense area in the
full space. However, as we see in Fig. 2, for the same dataset, although the purple
objects are categorized as outliers by full-space clustering in Fig. 1, they form a
dense cluster when projecting them over Dim 2. Objects of Cluster 2 are highly
scattered in Dim 1 making Dim 1 irrelevant for Cluster 2. Subspace/Projected
clustering algorithms try to find all clusters hidden in any subspace, and not
only in the full space, in addition, to the full space clusters.

The same discussion applies to the projections of Cluster 1 over Dim 1 and
Dim 2.

1.2 Stream Mining

Streaming data on the other hand, is available in increasingly many applications.
In modern IT-systems, there is a constant stream of data sprouting out of log and
maintenance files. The number of attributes in these files still rises, together with
the frequency of output generation. The same applies to connection protocols

148 M. Hassani and T. Seidl

Dim 1

D
im

 2

Cluster 1

Fig. 1. An example of full-space clustering

Fig. 2. An example of subspace clustering

of different user groups, be it phone-calls or TCP-connections, as well as mon-
itoring user behavior of a software in a live environment. There are thousands
of examples about sensors measuring different sorts of attributes like pollution,
micro waves, humidity, heart beats, body temperature, acceleration, speed, loca-
tion etc. In all of the above examples, there is constant stream of information
which has to be processed in a timely manner. Apparently, it is impossible to
save every bit of information getting caught in major telescopes, the same goes
for large-scale physical experiments where saving all incoming data might not
be possible or would delay the next experiment by a large margin.

Efficient Streaming Detection of Hidden Clusters in Big Data 149

All these applications have one thing in common: To further get a grasp of
the information contained deep in the data, we have to handle a constant flood
of data. Sometimes it is not applicable to save the data stream due to memory
restrictions or it might be of massive importance to mine information as soon as
they occur. In all these cases, we somehow have to work with streaming, volatile
data and use procedures to maximize the information gain we can get along
while paying attention to occupy just enough space to make it happen.

1.3 Motivation

The streaming model of mining data online was a suitable concept to be adopted
when mining big static data. The idea of online processing of the data with the
expectation of different speeds is very suitable for processing data over batches.
Although, such solution might reduce the quality of the mining algorithm due
to its possibility of real time processing and management of the data, the ability
to handle huge data sizes batch-wise made them appealing for the big data
community.

To handle the challenge of increasing dimensionality in big data, we will
consider also the usage of subspace clustering to find hidden clusters of data
within some subspace. Available subspace clustering algorithms (cf. Sect. 2) are
known to be heavy-weighted when talking about scanning the whole data. This
feature contradicts the stream mining requirements of having a light-weighted
version of any algorithm, that is capable of processing the data online.

In this paper, we will consider both the huge size, and the high dimensionality
of the big data by providing a novel solution that presents a model for subspace
stream clustering algorithms. Our novel model, overcomes the huge size of the
big data by continuously applying a streaming concept over the huge data, and
summarizing them into micro-clusters. Then, after each certain batch of data,
or after a user request, the data is reconstructed out of the micro-clusters sum-
maries and forwarded to one subspace clustering algorithm, to overcome the high
dimensionality of the data, and to be able to find hidden clusters within some
subspace.

The remainder of this paper is organized as follows: Sect. 2 lists some of the
related work in the areas of stream clustering and static subspace clustering.
Section 3 introduces our model and brings a running example to explain it step-
by-step. Section 4 presents a thorough evaluation that compares the running time
and the clustering quality of different scenarios of our given model and compares
them to one static model. Then we conclude this paper in Sect. 5 by giving also
an outlook.

2 Related Work

The first grid based subspace clustering algorithm introduced was CLIQUE [4].
It works with a grid-based approach to identify subspace clusters in a bottom-
up fashion using so called dense grid cells which contain more points than a

150 M. Hassani and T. Seidl

certain threshold. This is done with using the apriori method. To speed up the
computation, monotonicity laws are used to prune the possible dense-regions.
This idea is picked up by MAFIA [10] but instead of using a static grid, the
grid is now adaptive and pruning is dropped in favor of heavy parallel opti-
mization. Projected clustering uses a special distance function in conjunction
with a common clustering algorithm. PROCLUS [3] is a three-phase algorithm,
and this is the one we use in this paper as a running example. First we guess
medoid candidates from objects spread over the data set. Then we improve
these medoids and compute dimensions for each. In the last phase, we use an
algorithm similar to k-medoid to refine the clusters. P3C [15] starts with one-
dimensional intervals which might be approximate higher dimensional subspace
clusters. Merging these in an a-priori bottom-up method nets high-dimensional
subspace clusters. These maximal-dimensional clusters are used as cluster-cores
for a refinement step using expectation-maximization-like algorithm. SubClu [14]
uses the DBSCAN model [9] of connected sets in an apriori style. By applying
DBSCAN over each subspace, SubClu requires a high runtime.

Our algorithmic model presented in this paper differs from the above algo-
rithms by applying the subspace clustering algorithm over streaming data. Due
to their huge complexity, a straight-forward utilization of the above algorithms
over big datasets as in the streaming cases faces serious memory issues (cf.
Sect. 4). Our algorithmic model gives a smooth way of applying subspace clus-
tering algorithms in the streaming scenario.

There is a rich body of literature on stream clustering. Approaches can be
categorized from different perspectives, e.g. whether convex or arbitrary shapes
are found, whether data is processed in chunks or one at a time, or whether it is
a single algorithm or it uses an online component to maintain data summaries
and an offline component for the final clustering (as most of stream clustering
algorithms). Convex stream clustering approaches are based on a k-center clus-
tering [2,13]. Detecting clusters of arbitrary shapes in streaming data has been
proposed using density based clustering [7,8]. Another line of research considers
the anytime clustering with the existence of outliers [12].

The model we present in this paper follows a three-phase model that differs
from the two-phase one which appears in most of the above stream clustering
algorithms. This is done to be able to deal with big data requirements as well
as the subspace clustering algorithms requirements.

3 Algorithmic Model

In this section we will present the model we are using for applying subspace
stream clustering algorithms to efficiently and effectively find subspace clusters
in big data. We will use one scenario of the combination: CluStream+SUBCLU
as a running example, while the same will apply for other scenarios. In the
experimental part, we will show a comparison between most scenarios in details.

The idea of stream subspace clustering is intuitive: We cluster the incoming
data “live” and save features of the clustering for a defined period of time. We can

Efficient Streaming Detection of Hidden Clusters in Big Data 151

Y-
d

im
en

si
on

X-dimension

A

B

C

D

Y-
d

im
en

si
on

X-dimension

C

Microclusters

CFA

CFB

CFC

CFD

Fig. 3. The whole process of our model for stream subspace clustering for big data.
The blue arrows represent the online phase while the green arrow represents the recon-
struction and the offline phases (Color figure online).

then approximately reconstruct the data for a given time frame, the more recent
the more accurate, and use a classic subspace algorithm to determine a clustering
of this frame.

Going a bit more into detail, we use a three-stop approach in this paper: an
online phase, a regeneration phase and then an offline phase. The data stream
gets processed by CluStream [2] (or DenStream [7]) in the online phase, which
produces micro clusters for the current input data (cf. Sect. 3.1). These clusters
are then saved as cluster feature vectors as seen in Fig. 3. Then, upon some
request from the user for a final clustering or after a certain amount of time,
we regenerate the points out of the summaries in the regeneration phase (cf.
Sect. 3.2). The regenerated data is then forwarded to the final subspace clustering
algorithm which produces the final clusters (cf. Sect. 3.3).

3.1 Online Phase: A Stream Clustering Algorithm

In the online phase of our model, a summarization of the data stream points is
performed and the resulting microclusters is given by sets of cluster features:

CFA = (N,LSi, SSi)

which represent the number of points within that microcluster A, their linear sum
and their squared sum, respectively. One of the two online algorithms (CluStream
or DenStream)is responsible for forming these microclusters, deleting older ones
or continuously maintaining the updated ones.

3.2 Regeneration Phase: Gaussian Out of Online Summaries

After reaching a predefined time threshold, we call it here (window size), we
compute Gaussian distributed objects out of the statistics we got from the cluster
features of the microclusters (green arrow Fig. 3).

152 M. Hassani and T. Seidl

This step is called the offline phase, where the clustering features are used
to reconstruct an approximation to the original N points, for each microcluster,
using Gaussian functions to reconstruct points over each dimension i.

ci =
LSi

N

with a radius:

r =

√
SS

N
− (

LS

N
)2

where:

SS =
1
d

d∑

i=1

SSi

and

LS =
1
d

d∑

i=1

LSi

The generated NA points for each microcluster will be now normally distrib-
uted. Thus, they will look a little bit differently distributed than the original
distribution (compare the points in Fig. 3 Right with Left). Actually, this is the
only approximation that we have in our model.

3.3 Offline Phase: A Subspace Clustering Algorithm

The generated N points are forwarded to one of the four subspace clustering
algorithms. These are SubClu [14], ProClus [3], Clique [4] and P3C [15]. This
results with 8 different combinations of algorithms that can be tested. These
algorithms are applied to the streaming cases. Other than static data that do
not vary over time, stream data are given in different rate and pattern changing
dynamically, which makes it challenging to analyze its evolving structure and
behavior. In streaming scenarios, we also often face limitations on processing
time and storage, since a vast amount of continuous data are coming rapidly.

The offline part of our model uses a subspace clustering algorithm to deliver
the final clusters. In our running example we use the subspace clustering algo-
rithm: SUBCLU [14] over the regenerated points. The aim of SUBCLU is to find
all clusters in all subspaces of the data in a greedy, bottom-up way. The rough
work-flow of the algorithm is that we start in the 1-dimensional subspaces and
find clusters using DBSCAN. Then we recursively compute a set of candidate
subspaces with the dimensionality k + 1, prune these and test each candidate if
there are still clusters left in the subspace. As there are a lot of range queries
necessary for DBSCAN which make up the bulk of computation time needed in
SUBCLU, the implementation introduced in [14] uses an efficient index support
for range queries of single attributes in logarithmic time. In case of range queries
on more than one attribute, the range query for each attribute is used on its
own and the intersection of all intermediate results is computed as final result.

Efficient Streaming Detection of Hidden Clusters in Big Data 153

4 Experiments

4.1 Example

We test this combination of CluStream and SUBCLU on a very large dataset
containing connection information. Each of these objects contains 41 different
attributes from which we will try to cluster information. 4.8 million objects
in total are included in this data set, To compare SUBCLU and other offline-
algorithms, we will test a variety of other macro algorithms in regard of accuracy
and performance. This will be done using the Subspace MOA framework [11], as
it gives the possibility to work with a GUI and all common offline-algorithms,
such as CLIQUE, PROCLU and P3C. All calculations were done on a AMD FX
8-core clocked at 4 GHz with 8 GB RAM.

4.2 Dataset

The real data set used in this experiment is the KDD CUP’99 Network Intrusion
Detection data set [1] which has been used to evaluate several stream clustering
algorithms [2] and [7]. The MIT Lincoln Labs recorded the traffic of a LAN
network for two weeks. Each connection is labeled as either normal, or as an
attack. There are 22 different types of attacks, which fall into the following four
main categories:

1. DOS: denial-of-service
2. R2L: unauthorized access to a remote machine
3. U2R: unauthorized access to local root privileges
4. Probing: surveillance and other probing.

The data set consists of 494021 TCP connections where most of them are
normal connections. Each connection has 42 attributes. These attributes can be
discrete or continuous. As in [2] and [7], all the 34 continuous attributes for the
clustering task are used. Table 1 gives a detailed view of the different attacks
appearing within a horizon H = 5 and stream speed = 1000 of this dataset.

4.3 Framework

The software used as part of this paper is the java based Subspace MOA. Intro-
duced in [11], this software uses the interface of the MOA framework [6] style
and contains an additional tab which is solely for subspace clustering. As data
input Subspace MOA supports a synthetic random RBF (subspace) generator
or the option to read an external ARFF file as input stream. As for one-stop
algorithms, seven total different algorithms can be chosen, for the three-phase
method, three different online- as well as five common offline algorithms are
available.

154 M. Hassani and T. Seidl

Table 1. Table of stream of Network Intrusion Data set within the horizon H = 5,
stream speed =1000

Normal or attack type Objects within horizon H = 5 at time unit
150 350 373 400

Normal 4004 4097 892 406
Satan 380 0 0 0
Buffer overflow 7 1 2 0
Teardrop 99 99 383 0
Smurf 143 0 819 2988
Ipsweep 52 182 0 0
Loadmodule 6 0 0 1
Rootkit 1 0 0 1
Warezclient 307 0 0 0
Multihop 0 0 0 0
Neptune 0 618 2688 1603
Pod 0 1 99 0
Portsweep 0 1 117 1
Land 0 1 0 0
Sum 5000 5000 5000 5000

CluStream is based on snapshots, saved as extended cluster feature vectors
which contain information about characteristics of the discovered micro clusters.
Contained information be contained are the sum of data values and time stamps
amongst others. The total amount of micro clusters is always maintained, as
such new objects are inserted in the closest already existing micro cluster (MC)
or a new micro cluster containing this object is created. As the amount of micro
clusters has to be constant, a not-relevant micro cluster is then deleted or the
two closest cluster are merged. Using a pyramidal time frame to store snapshots
allows us to halt the computation at any given point and produce the input for
SUBCLU.

For this part, we have to specify the time-horizon h. For this horizon, CluS-
tream produces points for each micro cluster which are computed according to
the variance and mean of the saved micro cluster information using a Gaussian
distribution. This set of points is then passed to SUBCLU.

SUBCLU then produces the actual clustering using the input provided by
CluStream. Since only the snapshot of the recent data is passed over, we will
most likely not find all possible subset clusters in any given snapshot.

In the following, we will take a closer look what the used implementation
of CluStream in conjunction with SUBCLU in the SubspaceMOA framework
can accomplish. In the first section we will compare SUBCLU against CLIQUE,
PROCLUS and P3C and get a first glimpse of accuracy between those. In the
following section, we will compare different settings of SUBCLU in regards to
three measurement methods.

Efficient Streaming Detection of Hidden Clusters in Big Data 155

1

10

100

1000

10000

2000 3334 5000 10000

Ti
m

e
in

 S
ec

on
ds

Window Size

Clique Subclu Proclus P3C

Fig. 4. The performance of the four offline algorithms after using CluStream in the
online phase when changing the window size (the batch size).

4.4 Running Time Results

To evaluate the performance we will have a set micro algorithm, CluStream
with a maximum of 30 micro clusters, and compare four different window sizes
of 2000–10000 for four different macro clustering algorithms while keeping the
number of overall processed objects at a steady 10000. CLIQUE with default
settings in SubspaceMOA which are Θ = 10 and γ = 0.01, SUBCLU with α =
0.002 and m = 5, PROCLUS with c = 5, d = 2 and P3C with p = 10, δ2 = 0.001
which also are default settings.

Note that in Fig. 4 the scale of the runtime in s is logarithmic. CLIQUE is
too slow to have all values in one figure if using metric scale.

SUBCLUs predecessor CLIQUE is in every aspect the slowest algorithm going
over this benchmark. At even the best case, it is slower than any other algorithm
in this set. It also needs even more time to process all 10000 objects when using
a larger window size peaking at a stunning 27 min needed for one run when using
the whole 10000 objects as one window.

SUBCLU is vastly more efficient. Between 80 s and just over 5 min are the
values for the different window sizes. Interestingly, a window size of 2000, and
thus doing 5 computations of each, yields the worst results while two computa-
tion circles of 5000 objects each are still good runtime-wise.

PROCLUS and P3C are both extremely fast when compared to SUBCLU,
peaking at 35 s tops for a worst-case window. PROCLUS shows the same prefer-
ence for a 5000 object window as SUBCLU does, P3C prefers smaller windows.

To observe the huge improvement our model brings when compared to the
static subspace clustering algorithms, we tried to apply the KDD CUP ‘99
dataset over the static PROCLUS algorithm. We have tried first to run the PRO-
CLUS over the whole dataset size with 1 G memory allocated for the algorithms’
heap. As it was crashing, we decided to try smaller versions of the dataset, by
getting the first ones as they appear in the dataset. As shown in Fig. 5, the expo-
nential increase of the runtime is obvious as the size of the dataset increases. The
algorithms started to crash when trying a sub-datset of size 200 K. Additionally,

156 M. Hassani and T. Seidl

Fig. 5. The runtime performance of a static subspace clustering algorithm: PROCLUS.
Beginning from a sub-dataset size of 200K objects, the algorithm failed to successfully
finish the running.

the runtime improvement that our algorithmic model causes over PROCLUS is
obvious when trying any window size (cf. Fig. 4).

4.5 Accuracy Results

A total of three different evaluation measures are used in this section: The F1
measure, which gives a overview how well hidden clusters are represented by the
output of the algorithm, RNIA [16], which measures how well hidden subobjects
are covered by already found objects, and CE [16], which works similar to RNIA
but also evaluates if a cluster is split up into several smaller clusters. From
now on, when talking about RNIA or CE measures, we mean 1 − CE and 1 −
RNIA, so the nearer the measure to 1, the better, just as it is the case for
the F1 measure. For the previous settings of the performance evaluation, we
averaged for each algorithm the three accuracy evaluation measures. Figure 6
depicts the gained results as the batch size (window size) changes. As expected,
the accuracy of almost all algorithms increases when the window size increases,
with one exception with SubClu which is fluctuating a bit. The reason of this
improvement of the accuracy is the fact that considering more data at a time,
gives each algorithm more possibility to find even more hidden clusters. Another
observation, is that nearly all of the algorithms who performed well w.r.t. the
running time, are also accurate. While the slow ones are also delivering bad
results. This makes P3C a winner algorithm when considering the running time
and accuracy.

Going over the different settings of CluSream and SUBCLU, we first check
for different α to get a feel of how this parameter affects the performance. Just
as in the performance section, we use 30 as maximum number of micro clusters
for CluStream, 2000 as window size and m = 5 for SUBCLU.

Efficient Streaming Detection of Hidden Clusters in Big Data 157

0

0,2

0,4

0,6

0,8

1

2000 3334 5000 10000

M
ea
n
A
cc
ur
ac
y

Window Size

Clique Subclu Proclus P3C

Fig. 6. The averaged accuracy of the four offline algorithms when using CluStream in
the online phase when changing the window size (the batch size).

0

0,2

0,4

0,6

0,8

0,
4

0,
3

0,
2

0,
1

0,
07

5
0,
05

0,
02

5
0,
01

0,
00

75
0,
00

5
0,
00

25
0,
00

2
0,
00

15
0,
00

1
0,
00

07
5

0,
00

05
0,
00

01
0,
00

00
75

0,
00

00
5

0,
00

00
25

0,
00

00
1

Epsilon

F1 1.0-CE 1.0-RNIA

Fig. 7. Different accuracy measures of the SUBCLU algorithm after using CluStream
in the online phase when changing γ (the neighborhood parameter).

Presented in Fig. 7, the F1 measures start to drop after α = 0.002. Prior
to this value, smaller settings meant that there are more but smaller clusters
holding the balance between precision and recall. After this, a bit of precision
is lost, resulting in the 0.1 worse measure. Starting from a smaller α = 0.0015,
both RNIA and CE have a maximum with RNIA falling a bit after α = 0.0001. It
seems like the algorithm did not find too many objects after this part, however
the found ones are clustered with little excessive clusters. Another parameter to
check is the minimum points m, found in Fig. 8. For this benchmark, α = 0.001
was used. m = 9 seems to be an interesting point, resulting in a spike from both
F1 and RNIA in opposite directions. We could assume this was a threshold for
adding “bad” objects to a cluster without enabling DBSCAN to connect the
cluster to an existing “good” one.

Overall, this setting seems to have lower impact on the accuracy of SUBCLU
than the α parameter. As these settings are mainly used for DBSCAN this is not
unsurprising but still nice to confirm.

158 M. Hassani and T. Seidl

0

0,2

0,4

0,6

0,8

3 4 5 6 7 8 9 10 11 12 13 14 15 20 25

MIN_PTS

F1 1.0-CE 1.0 -RNIA

Fig. 8. Different accuracy measures of the SUBCLU algorithm after using CluStream
in the online phase when changing m (the minimum number of points needed in the
γ-neighborhood for an object to become core [14]).

0

0,2

0,4

0,6

0,8

5 10 20 30 40 50 60 70 80
MICROCLUSTER MAX

F1 1.0-CE 1.0-RNIA

Fig. 9. Different accuracy measures of the SUBCLU algorithm after using CluStream
in the online phase when changing the maximum allowed number of microclusters
within CluStream.

In this last part of this accuracy evaluation we will take a short look to see
how varying different the maximum amount of micro clusters within CluStream
affects the quality of the results. Figure 9 depicts the results, as expected, a
certain minimum amount of micro clusters has to be present to achieve good
results. After this threshold, which seems to be around 20, the results do not
change too much but steadily go worse. This holds true especially for the RNIA
measure. Probably 23 is a good number because there are a total of 23 different
connection types present in the data set.

5 Conclusion and Outlook

In this paper, we considered both the huge size, and the high dimensionality
of big data by providing a novel solution that presents a three-phase model for
subspace stream clustering algorithms. Our novel model, proved to overcome the

Efficient Streaming Detection of Hidden Clusters in Big Data 159

huge size of the big data in its first phase, by continuously applying a streaming
concept over the huge data objects, and summarizing them into micro-clusters.
Then, after each certain batch of data, the second phase is applied over the
data summarized in micro-clusters, to reconstruct them by assuming a Gaussian
distribution within the relatively small sized micro-clusters. Using a subspace
clustering algorithm in the third phase, to overcome the high dimensionality
of the data, we make the heavy subspace clustering feasible in finding hidden
clusters within some subspace of big datasets.

In more details, we took a look at the density-based subspace clustering algo-
rithm SUBCLU as a running example. We used important observations about
monotonicity to develop the idea of a bottom-up greedy algorithm which could
detect arbitrary shaped clusters hidden in subspaces. We then used this algo-
rithm to process a high-dimensional data stream of connection information, using
CluStream as micro algorithm in conjunction with SUBCLU as macro algorithm.
Comparing SUBCLU to CLIQUE, PROCLUS and P3C, we observed the run-
time requirements depending on different window sizes of the micro clustering.
After that, we observed how different parameter settings played a large role in
producing good results and finished in evaluating the current implementation in
Subspace MOA. We have also shown that a direct application of huge datasets
over static subspace clustering algorithms will face serious memory issues. Cur-
rently, an algorithm such as P3C is fast and accurate. The only problem is
inherited from the density-based subspace clustering: the dependency on input
parameters done by the user. This lead to a trial and error-style preparation
before achieving good results.

One good future direction could be discussing two main ideas. First: how to
minimize the effect of the input parameters by optimizing the selection of the
density parameters such that they fit the distribution in the current batch of the
data. Second: how to minimize the effect of the ordering of the data, such that
we can read the big data in any streaming order without a dramatic change of
the overall accuracy or performance.

Acknowledgments. This work has been supported by the UMIC Research Centre,
RWTH Aachen University, Germany.

References

1. KDD Cup 1999 Dataset. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html. Accessed 22 Nov 2013

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: VLDB ’03, pp. 81–92 (2013)

3. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for
projected clustering. In: ACM SIGMOD Record, vol. 28, pp. 61–72 (1999)

4. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: SIGMOD ’98, vol.
27, pp. 94–105 (1998)

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

160 M. Hassani and T. Seidl

5. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor
meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 99, 1601–1604 (2010)

7. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM’ 06, pp. 328–339 (2006)

8. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: KDD ’07,
pp. 133–142 (2007)

9. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: KDD ’96, vol. 96, pp.
226–231 (1996)

10. Goil, S., Nagesh, H., Choudhary, A.: MAFIA: efficient and scalable subspace clus-
tering for very large data sets. In: KDD ’99, pp. 443–452 (1999)

11. Hassani, M., Kim, Y., Seidl, T.: Subspace MOA: subspace stream clustering eval-
uation using the MOA framework. In: DASFAA’ 13, pp. 446–449 (2013)

12. Hassani, M., Kranen, P., Seidl, T.: Precise anytime clustering of noisy sensor data
with logarithmic complexity. In: SensorKDD ’11 Workshop in conj. with KDD ’11,
pp. 52–60 (2011)

13. Hassani, M., Müller, E., Seidl, T.: EDISKCO: energy efficient distributed in-sensor-
network k-center clustering with outliers. In: SensorKDD ’09 Workshop in conj.
with KDD ’09, pp. 39–48 (2009)

14. Kailing, K., Kriegel, H.-P., Kröger, P.: Density-connected subspace clustering for
high-dimensional data. In: SDM’04, pp. 246–257 (2004)

15. Moise, G., Sander, J., Ester, M.: P3c: a robust projected clustering algorithm. In:
ICDM ’06, pp. 414–425 (2006)

16. Patrikainen, A., Meila, M.: Comparing subspace clusterings. TKDE 18(7), 902–916
(2006)

A Comparison of Systems to Large-Scale
Data Access

Amin Mesmoudi(B) and Mohand-Säıd Hacid

CNRS, Université de Lyon, Université Lyon 1, LIRIS, UMR5205,
69622 Lyon, France

{amin.mesmoudi,mshacid}@liris.cnrs.fr

Abstract. With the amount of data produced in several application
domains, it is increasingly difficult to manage and query related large
data repositories (https://www.lsstcorp.org/sciencewiki/images/DC
Handbook v1.1.pdf). Within the PetaSky project, we focus on the
problem of managing scientific data in the field of cosmology. The data we
consider are those of the LSST project. The overall expected size of the
database that will be produced will exceed 60 PB. This paper presents
preliminary results of experiments conducted on PT1.1 (http://lsst1.
ncsa.uiuc.edu/schema/index.php?sVer=PT1 1 (with a size of 90 GB.))
and PT1.2 (http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1 1
(with a size of 145GB.)) data sets in order to compare the performances
of both centralized and distributed database management systems. As
for centralized systems, we have deployed three different DBMSs: Mysql,
Postgresql and DBMS-X (a commercial relational database). Regarding
distributed systems, we have deployed HadoopDB and Hive. The goal of
these experiments is to report on the ability of these systems to support
large scale declarative queries. We mainly investigate the impact of data
partitioning, indexing and compression on query execution performances.

Keywords: DBMS · Benchmark · Distributed systems · Centralized
systems

1 Introduction and Context

Today, because the amount of data produced in several application domains
has been exploding, DBMS vendors1 are working towards design of advanced
tools that could scale when it comes to manage and query very large data repos-
itories. Some domains, like social networks, astronomy and Web ask for new
approaches. For instance, Google provided the basis of Map/Reduce framework
[3] which was designed basically to efficiently manage Web data. New technolo-
gies are influenced, not only by new applications, but also by the intensive use

This work is partially supported by Centre National de la Recherche Scientifique-
CNRS. Under the project Petasky-Mastodons (http://com.isima.fr/Petasky).

1 http://www.adeptia.com/products/Gartner-Cool-Vendors-in-Integration-2010.pdf

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 161–175, 2014.
DOI: 10.1007/978-3-662-43984-5 12, c© Springer-Verlag Berlin Heidelberg 2014

https://www.lsstcorp.org/sciencewiki/images/DC_Handbook_v1.1.pdf
https://www.lsstcorp.org/sciencewiki/images/DC_Handbook_v1.1.pdf
http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1_1
http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1_1
http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1_1
http://com.isima.fr/Petasky
http://www.adeptia.com/products/Gartner-Cool-Vendors-in-Integration-2010.pdf

162 A. Mesmoudi and M.-S. Hacid

of some kinds of material architectures. One of these architectures is the shared
nothing2 clusters which is used to deploy many applications that need intensive
storage and computation resources.

In many scientific fields, such as physics, astronomy, biology or environmental
science, the rapid evolution of data acquisition tools (e.g., sensors, satellites,
cameras, telescopes) as well as the extensive use of computer simulations have led
in recent years to an important production of data. Modern scientific applications
are then facing with new problems that are primarily related to the storage and
use of these data. In addition to the growing volume of data to handle, their
complex nature (e.g., images, uncertain data, multi scale, ...), the heterogeneity
of their formats and the various processing to which they are subject are the main
sources of difficulties. The problems are such that scientific data management is
now recognized as a real bottleneck3,4 which at some extent slows down scientific
research since it relies more and more on the analysis of massive data. In this
context, the role of the computer as a direct way to improve the discovery process
in science5,6,7 is important. This has led scientists from different disciplines
to work together towards the design and testing of new approaches, tools and
techniques for managing and analyzing large data repositories of the order of
petabytes.8 The work presented in this paper focuses on the problem of managing
scientific data in the field of cosmology.

In this paper, we report on these experiments. We mainly analyzed issues
related to:

1. Performance: The time required to get all the answers to a query.
2. Speed up [4]: if we have more material dedicated to solve the same task,

less time of processing is needed. We analyze speed up according to several
configurations. For example, with a machine equipped with a main hard disk
of 1 TB of storage space and 113 MB/s of transfer rate, the scan of 30 GB
takes 5 min. Replicating data on 2 disks allows to accomplish the scan in less
than 5 min.

3. Fault tolerance: The use of more equipments triggers more failures. Indeed,
it often happens that a machine does not respond (software problems) or a
disk crash (material problems). A task that requires a long processing time
may never be finished if whenever a fault occurs, it is necessary to reset the
task [5].

4. Latency: It stands for the time required to get the first answer to a query.
A guaranty for a fault tolerance impacts latency. This is due, for example, to
the requirement that all subtasks should be successfully completed [1].

2 http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf
3 http://www.eecs.berkeley.edu/∼culler/courses/cs252-s05/papers/DeepData.pdf
4 http://www.cse.buffalo.edu/faculty/tkosar/papers/jnrl philtrans 2011.pdf
5 http://research.microsoft.com/en-us/um/cambridge/projects/towards2020science/
6 http://www.nitrd.gov/pubs/200311 grand challenges.pdf
7 http://www.cs.purdue.edu/homes/ake/pub/CommunityCyberInfrastructure

EnabledDiscovery.pdf
8 XLDB (Extremely Large Data Bases, http://www.xldb.org) and SciDB (Scientific

Data Bases, http://www.scidb.org/).

http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf
http://www.eecs.berkeley.edu/~culler/courses/cs252-s05/papers/DeepData.pdf
http://www.cse.buffalo.edu/faculty/tkosar/papers/jnrl_philtrans_2011.pdf
http://research.microsoft.com/en-us/um/cambridge/projects/towards2020science/
http://www.nitrd.gov/pubs/200311_grand_challenges.pdf
http://www.cs.purdue.edu/homes/ake/pub/CommunityCyberInfrastructureEnabledDiscovery.pdf
http://www.cs.purdue.edu/homes/ake/pub/CommunityCyberInfrastructureEnabledDiscovery.pdf
http://www.xldb.org
http://www.scidb.org/

A Comparison of Systems to Large-Scale Data Access 163

The rest of this paper is organized as follows: In Sect. 2 we provide some
details regarding material and resources that are used in our experiments. Exper-
imental results and their interpretation are presented in Sect. 3. We discuss our
results in Sect. 4. We conclude in Sect. 5.

2 Experimental Environment

Our experiments have targeted two types of architectures:

– A centralized architecture, with 14 GB of RAM, 4 cores and 3 disks with a
total storage capacity of 2.5 TB.

– A distributed architecture: We used three clusters composed of 3, 6 and 12
machines, respectively. Each machine has 4 GB of RAM, 660 GB of storage
capacity and 2 cores. Network rate between machines can reach 1 GB/s.

According to hdparm9, the hard disks deliver 113 MB/s for buffered reads.
As for the centralized architecture, we deployed three different DBMS: Mysql,

Postgresql and DBMS-X (a commercial relational database). The goal is to report
on the ability of these systems to support declarative queries in the one hand
and to support LSST requirements10 in the other hand.

Regarding the distributed architecture, we deployed Hive11[6] and
HadoopDB [2].

2.1 Hadoop

For our experiments, we used two versions of Hadoop: 0.19.1 and 1.1.1. Due to
the incompatibility of HadoopDB with recent versions of Hadoop, HadoopDB is
coupled with Hadoop 0.19.1, whereas Hive is coupled with Hadoop 1.1.1. The
both versions run on Java 1.7. We deployed the system using the configuration
mentioned in HadoopDB original paper.12 Data in HDFS (Hadoop Distributed
File System) is stored using 256 MB data blocks instead of the default 64 MB.
Each Map/Reduce job executor runs with a maximum heap size of 1024 MB.
Two Map instances and a single Reduce instance are allowed to be executed con-
currently on each node. Buffer space for file read/write operations and the sort
buffer are set to 132 MB and 200 MB respectively with 100 concurrent streams
for merging.

2.2 Hive

Hive is based on Hadoop13 open source framework. It proposes HiveQL, a SQL-
like language, to specify analysis tasks. Data is stored using HDFS. From a
SQl-like query, a set of Map/Reduce tasks are generated. Hive also schedules the
execution of generated tasks.
9 A tool that gives the average disc speeds (http://en.wikipedia.org/wiki/Hdparm).

10 http://www.lsst.org/files/docs/SRD.pdf
11 http://hive.apache.org/
12 The same configuration is used in [5], the popular Hadoop benchmark paper by Pavlo

et al.
13 http://hadoop.apache.org/

http://en.wikipedia.org/wiki/Hdparm
http://www.lsst.org/files/docs/SRD.pdf
http://hive.apache.org/
http://hadoop.apache.org/

164 A. Mesmoudi and M.-S. Hacid

2.3 HadoopDB

HadoopDB is based on Hive and uses HiveQL. Existing DBMS are used to store
data in cluster nodes. The execution plan, generated by Hive, is processed to push
more complex tasks (not only data scan) to nodes in the Map phase. HadoopDB
uses an XML file14 to store access information to data. Essentially, informa-
tion about chunks and sub-chunks, related to each table, is stored in this file.
HadoopDB processes queries as follows. First, HadoopDB parses the query by
resorting to Hive’s mechanisms. Second, the catalog is parsed and the query is
reformulated with respect to chunks and sub chunks information in the catalog.
With respect to queries a set of Map/Reduce jobs are generated with a prede-
fined execution order. After the execution of the job, Map and Reduce phases,
HadoopDB checks if there is another job to be executed. If any, partial results
are stored in HDFS. Otherwise, responses are transferred to the node with an
Hive client. In the Map phase of HadoopDB job, a query is sent to the DBMS
and responses are formatted in a <key, value> format. In our work, HadoopDB
is coupled with PostgresQL in each node of the cluster. HadoopDB also offers
a partitioning tool. This tool is used to minimize intermediate results of jobs
generated by Hive. The use of existing DBMS for data storage and access layer
allows to exploit exiting technologies such as indexing and compression.

2.4 Data Sets

Our experiments use PT1.115 and PT1.216 data sets. The data sets are organized
as follows:

1. PT1.1: This data set contains two tables stored as “CSV” files. The Source
table that has 92 attributes17 and contains 165 million tuples (for a total size
of 85 GB). The Object table that has 227 attributes18 and contains 5 million
tuples (for a total size of 5 GB).

2. PT1.2: This data set contains 22 tables stored as “CSV” files with a total size
of 220 GB. For this stage of experiments, we make use of only 2 tables: The
Source table that has 107 attributes and contains 180 million tuples (for a
total size of 139 GB). The Object table that has 229 attributes and contains
5 million tuples (for a total size of 7 GB).

Data can be compressed during the final storage within the DBMS. For
example, with DBMS-X and the PT1.1 data set, only 30 GB are used to store
the data of the Source table. Table 1 summarizes the features of PT1.1 and PT1.2
data sets (first part of the table) and the features of the expected19 final Source

14 Called Catalog.
15 http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1 1
16 http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1 2
17 Note that the expected final Source table will have 125 attributes.
18 Note that the expected final Object table will have 470 attributes.
19 http://www.icis.anl.gov/programs/file.php?id=303&obj=MultiFile&field=

filename&attachment=yes

http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1_1
http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1_2
http://www.icis.anl.gov/programs/file.php?id=303&obj=MultiFile&field=filename&attachment=yes
http://www.icis.anl.gov/programs/file.php?id=303&obj=MultiFile&field=filename&attachment=yes

A Comparison of Systems to Large-Scale Data Access 165

Table 1. Data set description

Table �attributes �records Size �indexes Expected Expected Expected
size �attributes �records

PT1.1
Object

227 5 million 5GB 2 109 TB 470 38 Billion

PT1.1
Source

92 165 million 85GB 7 3.6 PB 125 5 Trillion

PT1.2
Object

229 5 million 7GB 2 109 TB 470 38 Billion

PT1.2
Source

107 180 million 139GB 7 3.6 PB 125 5 Trillion

Table 2. Selected queries

Q Object Source Selection Projection Join Group by Order by

�1 yes 1 (indexed) 92
�2 yes 2 (indexed) 2
�3 yes 1 (indexed) 2
�4 yes 1 (indexed) 3
�5 yes 2 (range) 227
�6 yes 1 (range) 1
�7 yes 4 (range) 227
�8 yes 1, count yes
�9 yes yes 1 (indexed) 319 yes
�10 yes 2 yes

and Object tables (the second part of the table). Some indexes are suggested
for LSST20 data sets. The source table has 7 indexes and the object table has 2
indexes.

2.5 Queries

Our query sample derives from LSST catalog of queries21 with a slight adapta-
tion to comply with the schema22 of PT1.1 and PT1.2 data sets. Also, in the
experimental phase, we left out the queries with Scisql functions.23 Table 2 sum-
marizes our set of (ten) queries. The complete specification of queries can be
found in the project Website.24

20 https://dev.lsstcorp.org/trac
21 https://dev.lsstcorp.org/trac/wiki/db/queries
22 http://lsst1.ncsa.uiuc.edu/schema/index.php
23 These functions need to be implemented. Such queries will be considered in another

test campaign. We already verified that all the functions can be implemented within
Hive and HadoopDB.

24 http://com.isima.fr/Petasky/groups/sous-groupe1/queries-1/at download/file

https://dev.lsstcorp.org/trac
https://dev.lsstcorp.org/trac/wiki/db/queries
http://lsst1.ncsa.uiuc.edu/schema/index.php
http://com.isima.fr/Petasky/groups/sous-groupe1/queries-1/at_download/file

166 A. Mesmoudi and M.-S. Hacid

“yes” in the column Object (resp. Source) means that the query targets
the Object (resp. Source) table. The column selection indicates the number
of attributes involved in the WHERE clause of the query (together with the
types: index or not). The column projection gives the number of attributes in
the SELECT clause of the query. Query Θ9 performs a join. Query Θ8 has a
GROUP BY and query Θ10 has an ORDER BY.

3 Experiments

We start by comparing performances of the selected tools using different con-
figurations. Then, we analyze latency, speed up and fault tolerance of the
distributed systems, namely Hive and HadoopDB.

3.1 Performances

The protocol of our experiments relies on three phases:

1. Distributed systems: In the first phase, we consider only distributed systems.
We do not resort to secondary index and the partitioning schema is based on
the primary keys of the two tables: Source id (resp. Object id) for the Source
table (resp. Object table).

2. Optimization within distributed systems: in this phase, we change the parti-
tioning attribute for the Source table. Both tables are partitioned using the
object id25. Also, all the suggested indexes for LSST data are considered. The
objective of this phase is to analyze the ability of distributed systems to rely
on traditional optimization techniques.

3. Distributed and centralized systems: In this phase, we compared the perfor-
mances of centralized DBMS and distributed ones.

Distributed systems. Our objective is to analyze the behavior of such systems
with regards to performance, speed Up, latency and fault tolerance. We start by
comparing two systems that can be deployed in a cluster environment. Hive is
a Map/Reduce based system and HadoopDB which is a hybrid system based
on Map/Reduce technology in one hand and classical DBMS technologies in the
other hand. We are interested in the response time for our set of queries. The
results reveal which properties can be guaranteed by each system. At this stage,
we do not resort to indexing.

Preprocessing

– Hive: The tables are loaded from the local disk to HDFS directly and they are
stored as text files. This task took 25 min for the tables of the PT1.1 data set
and 1 h 30 min for the tables of the PT1.2 data set. This task is constrained by
the local disk speed which reflects the same time needed for the three clusters.

25 This attribute is the primary key in the Object table and a foreign key in the Source
table.

A Comparison of Systems to Large-Scale Data Access 167

(a) 3 machines (b) 6 machines

(c) 12 machines

Fig. 1. Data load time for phase 1

– HadoopDB: The designers suggest to use two hash functions for partitioning
raw data. In the first part of partitioning, we have partitioned raw data into
three big chunks. We get for each table three parts. For HadoopDB, the rec-
ommendation is to use chunks with a size that could fit in the buffer.26 We
then did not perform a partitioning using the second function, that is, the
Object table. However, for the source table, we used the second function to
partition the obtained chunks. Each chunk is partitioned into sub-chunks of
1 GB. This task is done using the second hash function. Hash is done using the
first attribute (the primary key) for each table. For example, for the cluster of
three machines, the source table of PT1.1 is first partitioned into big chunks
of 28 GB. By using the second hash function (local hash), each chunk is parti-
tioned into 28 sub-chunks. Figure 1 shows the time needed to load PT1.1 and
PT1.2 in the three clusters of 3, 6 and 12 machines respectively.

The first hash takes 37 %–54 % of the total loading time, while the second
(local) hash takes 6 %–16 % of the total loading time. This task (second hash)
can be triggered, in parallel, in all the machines of a given cluster. Loading
data into DBMS takes 10 %–21 % of the total loading time, this task also can
be performed in parallel. The choice of partitioning is done before making the

26 http://hadoopdb.sourceforge.net/guide/

http://hadoopdb.sourceforge.net/guide/

168 A. Mesmoudi and M.-S. Hacid

(a) 3 machines (b) 6 machines

(c) 12 machines

Fig. 2. Execution time for phase 1

decision about queries to be executed. HadoopDB needs between 120 % and
640 % of the loading time needed for Hive.

Analysis of the results. Execution time is shown in Fig. 2. Indeed, one can see
that for the queries Θ1, Θ2, Θ3, Θ4, Θ5 and Θ7, HadoopDB outperforms Hive for
all the clusters and for the both data sets. These queries express a selection
with few results (the size of results does not exceed a few megabytes). Hive
outperforms HadoopDB for the query Θ10 for all the clusters and for both data
sets. In this query, an ORDER BY operation is used which will be performed in
the Reduce phase of a Map/Reduce job. But, in the Map phase, HadoopDB does
not apply the projection and prefers to transfer all data to reducers for applying
the sort and projection. This decision induces a very high communication cost,
which requires almost 2/3 of data (56 GB for PT1.1) to be transferred over the
network. For the Query Θ6, Hive outperforms HadoopDB except for the PT1.2
data set and the cluster with 12 machines. Indeed, in this case, the size of the
results is 100 GB which is saved in HDFS. Due to the use of Virtualization
environment, the concurrent write access implies that HadoopDB outperforms
Hive in this case. HadoopDB generates less writing processes than Hive. For
the Queries Θ8 and Θ9, HadoopDB outperforms Hive for the PT1.2 data set,
whereas Hive outperforms HadoopDB for the PT1.1. For the Query Θ8, HadoopDB
performs a partial GROUP BY in the Map phase, which, in the case of PT1.2,
is very useful to minimize execution time. This technique can be useful if data is
stored using the attribute used in the GROUP BY. The same technique is used

A Comparison of Systems to Large-Scale Data Access 169

in the Query Θ9. Indeed, a partial sort is performed in the Map phase, which
implies less work for the reducers.

The execution time varies between 26 s27 and 12000 s28.

Optimization within distributed DBMS. In this phase, we consider all
indexes suggested by LSST.29 Also, we consider another partitioning schema for
HadoopDB. Indeed, we compare the execution time for old and new configura-
tions for the same queries.

Preprocessing

– Hive: We use the data already available in HDFS. The index is successfully
created for small data samples (1000 records). However, for some millions of
tuples of the Source table, this task cannot be accomplished correctly. Indeed,
Hive loads the created index to the memory of each node. The size of the index
is so important that it cannot fit in memory of one node. So, we decided to
execute the queries without resorting to any index.

– HadoopDB: We partitioned raw data with respect to the primary key of the
Object table. This task requires the same execution time as the first phase.
All indexes are created in each table of the cluster. This operation is paral-
lelized for all machines. The task took between 12 % and 30 % of the total
time needed to load data.

HadoopDB requires between 130 % and 720 % of the loading time needed for
Hive. For HadoopDB and in relation to the previous phase, we can see an increase
of 3 %–10 % of the time needed to loading data.

Analysis of the results. Execution time is shown in Fig. 3. The queries Θ1, Θ2, Θ3
and Θ4 take advantage of the indexes. Indeed, these queries express selections on
attributes serving as indexes and the selection predicate returns a few tuples.
For the queries Θ8, a join operation is expressed on an indexed attribute. So,
in this case, the Map phase generated for this query became faster, whereas we
kept the same Reduce phase. For the queries Θ5 and Θ7, we obtain the same
execution time, as reported in the previous phase. Indeed, these queries express
a selection on attributes not serving as indexes. For the query Θ10, the use of
an index has led to a small slowdown, because we make use of all tuples of the
Source table. The use of the index requires more latency. So in this case the best
operation that can handle the Map phase is the full-scan operation. In classical
DBMSs, the index is used to perform a sorting of data. But, in the Map/Reduce
framework, this task will be done mandatory in the Shuffle phase. The partial
GROUP BY done using an attribute serving as an index had a positive impact
on the execution time of this query.

Centralized and distributed systems. In this phase, we compared classical
(centralized) DBMS with distributed systems.

27 Query �7 is the less expensive one for HadoopDB.
28 Query �6 is the most expensive one for Hive.
29 https://dev.lsstcorp.org/trac

https://dev.lsstcorp.org/trac

170 A. Mesmoudi and M.-S. Hacid

(a) 3 machines (b) 6 machines

(c) 12 machines

Fig. 3. Execution time: Hive vs HadoopDB by accommodating indexing and
partitioning

Preprocessing. We used the configurations of Hive and HadoopDB from the second
phase with the cluster of three machines and PT1.1 data set. For classical DBMS,
we created all indexes and we loaded data in each node. For the DBMS-X, the
creation of indexes took 2 h. With mysql, it took 15 h to load data and to create
all indexes. With postgresql it took 15 h to perform data loading and indexing.

Fig. 4. Execution time: centralized vs distributed systems

A Comparison of Systems to Large-Scale Data Access 171

Analysis of the results. Execution time is shown in Fig. 4. Classical DBMS are
optimized to use disks directly, so no communication cost is induced and no fault
tolerance mechanism is considered. This explains the low execution time needed
for queries Θ1, Θ2, Θ3 and Θ4. The use of indexes leads to the manipulation of few
disk pages in the memory.

For queries Θ5 and Θ6, two costs are considered: (1) communication and (2)
disk access for distributed systems. Even if disk access cost is three times lower
than disk access required for centralized systems, communication cost affects
the total execution time for HadoopDB. The communication cost considered for
these queries is the time needed for transferring data from the two machines
where Hive was not installed to the node hosting Hive. For query Θ6, 95 million
(32 GB) tuples are transferred. The additional time needed for HadoopDB in the
case of queries Θ1, Θ2, Θ3, Θ4, Θ5 and Θ6 is due to the generation of Hadoop jobs,
JDBC calls, transformation of partial results to <key, value> tuples and catalog
parsing.

Queries Θ7 and Θ8 require a complete scan of Object and Source tables.
HadoopDB outperforms centralized DBMS. For query Θ7, communication cost
is dominated by disk access cost where only a few tuples (48) are returned as
an answer to the query. In the case of query Θ8, GROUP BY is performed by
three machines. Even with the use of network, communication cost for distrib-
uted systems is less than disk access cost needed for centralized systems. For the
query Θ9, even with the change of partitioning (Hash attribute) schema and the
creation of an additional index, execution time remains high. In this case (join)
the communication cost is inevitable to guarantee the completeness of query
evaluation. For the query Θ10, the bad performances of HadoopDB are due to
the use of a bad strategy. Indeed, HadoopDB does not perform the projection in
the Map phase, this operation is performed in the Reduce phase which induces
a very high communication cost.

3.2 Speed Up

To measure the speed up of distributed systems, we consider three configurations:
HadoopDB without index, HadoopDB with index and Hive. In each configuration,
we change the number of machines in the cluster and we compare execution time
of queries. Figure 5 shows the change in execution time of queries by changing,
for every data set and every query, the number of machines to host data and
process the query.

By analyzing the results of experiments, two facts can be revealed:

1. More data means more processing time: which can be seen when we execute
one query, on a fixed cluster, on the both data sets PT1.1 and PT1.2. In both
cases, with or without indexing, more time is needed to process more data,
and this is the case for all queries. Without indexing, we need more time for
data scan, whereas with indexing we need more latency to access to indexes.

2. More machines means less processing time: More disk means faster scanning
and more machines means less workload for each machine. In the case of

172 A. Mesmoudi and M.-S. Hacid

(a) HadoopDB without index (b) HadoopDB with indexes

(c) Hive

Fig. 5. Speed up

indexing, less latency is required to access the index. For HadoopDB, indexes
are created separately for each chunk. For example, if we have 28 chunks and
we need four indexes, 112 indexes will be created.

3.3 Fault Tolerance

For Hive and HadoopDB, fault tolerance is managed in Hadoop framework. In
our case, we noticed 60 faults during our experiments. We analyzed the tasks
with faults and we found that (1) if a task needs an important execution time,
then it is subject to more occurrences of faults, and (2) more sub-tasks one has
for a query, more faults occur. In average we had 2 faults per hour. For example,
query Θ6 needs 339 sub-tasks to scan the Source table. The induced time was
22 min and 8 s and 2 tasks have failed.

3.4 Latency

To measure the latency of HadoopDB, we executed the queries Θ1, Θ2, Θ3, Θ4, Θ5
and Θ7. The results are shown Fig. 6. One can see that low latency is granted by
classical DBMS for queries Θ1, Θ2, Θ3, Θ4 and Θ5. For the query Θ7, one can see that
HadoopDB has the lowest latency. Indeed, HadoopDB outperforms centralized
DBMS if the computation time (needed for Map/Reduce tasks) exceeds the time
needed to set Map/Reduce jobs.

A Comparison of Systems to Large-Scale Data Access 173

Fig. 6. Latency for HadoopDB

4 Discussion

In this paper we presented some preliminary results of experiments conducted
to evaluate the ability of some data management systems to support specific
queries in the area of corpuscular physics and cosmology. We deployed two
categories of systems: centralized systems and distributed systems. The goal of
these experiments is to report on the ability of these systems to support LSST
requirements30 from data management perspective. We compared the response
time of queries by considering several configurations. In particular, we used two
data sets: PT1.1 and PT1.2. We used three clusters of 3, 6 and 12 machines,
respectively, and a set of 10 declarative queries. For each data set and each clus-
ter, we first executed the 10 queries on non-indexed data sets, then on indexed
data sets. Starting with comparing the performance of two distributed tools,
namely Hive and HadoopDB on non-indexes data, we found that HadoopDB
requires between 120 % and 640 % of the loading time required for Hive. Indeed,
HadoopDB requires a preprocessing step devoted to the storage of data available
on HDFS in a dedicated DBMS for each node. By comparing the execution time
we noticed that: (1) for queries with a few results, HadoopDB outperforms Hive.
Indeed, this is due to the use of conventional DBMS techniques such as buffering
and compressing. Postgresql is configured to use 1 GB of RAM as a buffer, which
is compatible with the size of the memory used by the Map/Reduce steps. This
configuration allows HadoopDB to display a best latency. For Hive, the chunk
size is set to 256 MB, which does not allow Hive to take advantage of the max-
imum size of memory devoted to the Map/Reduce steps. (2) When it comes to
sort data, Hive outperforms HadoopDB. Indeed, sorting algorithms used by Hive
are designed specifically for Hadoop. In this case, Hive takes advantages of the
Shuffle step. (3) In all other cases, the performances of tools depend on the state
(sorted, partitioned, ...) of data.

30 http://www.lsst.org/files/docs/SRD.pdf

http://www.lsst.org/files/docs/SRD.pdf

174 A. Mesmoudi and M.-S. Hacid

For our second step, namely the execution of queries on indexed data sets,
we tried to use both Hive and HadoopDB. We noticed that Hive is not ready
yet to make use of indexing in order to evaluate queries. Indeed, with a size of
an index greater than the size of the memory devoted to Map/Reduce phases,
Hive cannot use indexes to evaluate queries. On the other side, as HadoopDB
is based on traditional DBMS, indexes can be used locally (each database in
each node uses its own indexes). The index creation time varies between 12 %
and 30 % of the total time required to load the data. Compared to the previous
configuration, we noticed an increase between 3 % and 10 % of the time needed
to load data. Additionally, we compared performances of HadoopDB by consid-
ering two types of data, namely indexed and non-indexed data. We noticed an
improvement in terms of execution time for queries with selections on attributes
serving as indexes. For the other queries, we noticed a slowdown due to the
use of indexes. Indeed, there is an incompatibility between the query evaluation
strategy adopted by the DBMS when an index exists and Map/Reduce process-
ing within the Hadoop framework. A typical DBMS optimizer can be used to
detect the best execution plan for a query. So, local optimization does not always
guarantee better performances. It can even lead to poor performances, especially
for execution plans that are not compatible with the Map/Reduce framework.
In this phase, we noticed the importance of classical optimization techniques
(index, partitioning, compression) and the necessity to integrate global optimiz-
ers, which are compatible with Hadoop. By comparing performances of conven-
tional DBMSs with those of distributed systems, we noticed that, for queries
with a few tuples to handle, traditional DBMS outperforms distributed ones.
For queries that require a large number of tuples, it will be necessary to consider
other architectures. For distributed architectures, the cost of transferring data
from one machine to another is very important if one wants to estimate the cost
of a query. Then, we analyzed the impact of resources by providing more equip-
ments (machines, disk and RAM). We found that all queries take advantage of
additional resources. By increasing the number of machines we decreased their
workload.

The most important property guaranteed by classical DBMSs and not yet
guaranteed by the distributed ones is latency. Indeed, fault tolerance mechanism
built within the Hadoop framework does not allow Hadoop-based systems to
guarantee low latency for queries.

5 Conclusion

In this paper we presented some preliminary results of experiments conducted
to evaluate the ability of some data management systems to support specific
queries in the area of corpuscular physics and cosmology. We deployed two
categories of systems: centralized systems and distributed systems. The goal of
these experiments is to report on the ability of these systems to support LSST
requirements from data management perspective. We reported on the impact of
data partitioning, indexing and compression on query evaluation performances.
We also highlighted the need for new techniques to optimize emerging systems.

A Comparison of Systems to Large-Scale Data Access 175

We are refining our experiments by considering new data sizes. Indeed, we
are experimenting with datasets of sizes 500 GB, 1 TB and 2 TB. We are also
setting up an experimental environment (virtual machines) with 10 nodes, 25
nodes, 50 nodes and 100 nodes. The impact of parameters of hadoop as bloc size,
memory used by Map/Reduce tasks and the number of Map tasks per node will
be studied. We will include the support of queries with user defined functions
since they are very relevant in the framework of LSST.31 After this experiential
campaign, we will move to Grid500032 for a large scale experiments with 300
machines.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design: cap
is only part of the story. Computer 45(2), 37–42 (2012)

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.:
Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for analyt-
ical workloads. Proc. VLDB Endow. 2(1), 922–933 (2009)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

4. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35(6), 85–98 (1992)

5. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S.,
Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: SIG-
MOD, pp. 165–178. ACM (2009)

6. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,
H., Murthy, R.: Hive-a petabyte scale data warehouse using hadoop. In: ICDE, pp.
996–1005. IEEE (2010)

31 https://dev.lsstcorp.org/trac/wiki/db/queries, e.g., Q007, Q008, Q013
32 https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

https://dev.lsstcorp.org/trac/wiki/db/queries
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

Third International Workshop on Data
Management for Emerging Network

Infrastructure (DaMEN)

A Framework to Measure Storage Utilization
in Cloud Storage Systems

Xiao Zhang1(B), Wan Guo1, Zhanhuai Li1, Xiaonan Zhao1, and Xiao Qin2

1 School of Computer Science Northwestern Polytechnical University,
Xi’an 710129, Shaanxi, China

zhangxiao@nwpu.edu.cn
2 Department of Computer Science and Software Engineering Auburn University,

Auburn, USA

Abstract. Cloud storage systems aim to offer cost-effective storage
services. The key is sharing resources between multiple users by vir-
tualization technologies. Storage resources in cloud systems can not be
reclaimed even when users do not access their data for a long time. Stor-
age resources must be shared through space sharing rather than time
sharing. Existing technologies improve storage utilization at various lay-
ers and data sets, making it difficult to analyze the efficiency of a cloud
storage in a holistic way. To address this problem, we propose an evalua-
tion framework to study the impacts of a wide variety of I/O techniques
on an enterprise-scale cloud storage. The framework offers storage uti-
lization evaluation from both the users and the vendors’ perspective.

1 Introduction

The growth rate in the volume of data has been sped up by the Internet and
high resolution digital media. This is popularly known as information explosion.
Martin estimates that the world’s information storage capacity grew at a com-
pound annual growth rate of 25 % per year between 1986 and 2007 [1]. McKinsey
Global Institute estimates that nearly all sectors in the US economy had at least
an average of 200 terabytes of stored data by 2009. In total, the study estimates
that 7.4 exabytes of new data were stored by enterprises and 6.8 exabytes by
consumers in 2010 [2].

Building on an “Allocate on Demand” mantra, cloud storage is changing
the paradigm of storage economics by offering a high dependability storage ser-
vice at a much cheaper price with small capacities. Apart from traditional online
storage services such as SugarSync and Mozy, new deep-pocketed players in the
area including Microsoft, Apple, and Google are forcing Dropbox to face the
heat. Microsoft with Azure, Apple with iCloud, and Google with its Drive seem
to offer more than Dropbox in terms of price-to-value ratio. The price per GB
of Google cloud storage is $0.0851, and the price per GB of Amazon is $0.0952.
1 https://developers.google.com/storage/docs/pricingandterms
2 http://aws.amazon.com/s3/#pricing

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 179–191, 2014.
DOI: 10.1007/978-3-662-43984-5 13, c© Springer-Verlag Berlin Heidelberg 2014

https://developers.google.com/storage/docs/pricingandterms
http://aws.amazon.com/s3/#pricing

180 X. Zhang et al.

Building a data center to provide cloud service represents a significant investment
and ongoing costs. This reveals the importance of optimizing resource utilization
per dollar. Unfortunately, past researchers focus on CPU and network utilization
optimizing; seldom studies focus on utilization of storage system, which are full
of fragmentation and replicas.

Cloud computing systems aim to provide low cost service. When a VM (short
for virtual machine) is closed, all allocated resources (e.g., CPU, memory) will
be released and can be re-used by new VMs. Computing resources are shared
both in the space and time. These resources are typical pay-as-you-go resources.
But in a cloud storage system, the storage resource cannot be released even if
users do not access them in a long time. Comparison between local storage and
cloud storage shows that it is economic only when the data stored in primary
storage is less than 7 TB [3].

In this paper, we present a framework to analyze the utilization of cloud
storage systems. Our main contributions are:

– We define a framework to evaluate the storage utilization from vendors’ and
users’ perspectives.

– The broader perspective of cloud storage and a detailed analysis of its layers
provide a clearer path toward an optimized cloud storage. This can be used
to determine whether a technology will be applied. And it also can be used to
analyze the effect for given data sets.

– We illustrate how to use our framework to evaluate the system scale storage
utilization. We give an example to evaluate the efficiency of a given technology
with various policies and data sets.

The rest of this paper is organized as follows. Section 2 reviews the related
works about utilization. Section 3 analyzes the character of a cloud storage sys-
tem. Section 4 divides the cloud storage into three layers, and it defines terms
for each of the layers. Section 5 presents the framework to analyze storage uti-
lization. We define eight ratios to describe the utilization of each of the layers.
There are two overall metrics defined to measure the total storage utilization.
Section 6 illustrates how the technologies and policies affect storage utilization.
Section 7 gives some examples of how to analyze a whole cloud storage system.

2 Related Works

Cloud computing is tightly coupled with low cost. Many studies try to find an
effective approach to manage the cost of cloud computing. Li et al. present a
method and tool to analyze the cost of cloud computing [4]. Twinstrata et al.
compare the cost of a private data center and public cloud storage for primary
storage and disaster site. The results show that cloud storage appears consider-
ably less expensive than local under small capacities (<1 TB) [3].

Albert et al. point out that the cost breakdown reveals the importance of
optimizing work. But the resources inside the data centers often operate at low
utilization due to resource stranding and fragmentation [5]. Many methods try

A Framework to Measure Storage Utilization in Cloud Storage Systems 181

to shut down unused disks or concentrate data together to reduce the cost, such
as MAID [6] and PDC [7]. EEVFS try to manage disk placement to improve
energy efficiency [8].

Provisioning and placement issues in enterprise storage servers have been
studied in the past [9,10]. Compression improves the efficiency of network band-
width and disk space. Cao et al. proposed data compression in order to increase
the I/O performance of Hadoop [11]. Chen et al. analyze how compression can
improve performance and energy efficiency for MapReduce workloads. For read-
heavy text data, compression provides 35 % to 60 % of energy savings. Mark
presented a stream de-duplication for large scale storage systems by breaking up
an incoming stream into relatively large segments and de-duplicating each seg-
ment [12]. Most of these technologies analyze the effect of the technology itself;
there is no previous paper working on how to analyze the utilization of storage
resources in the data center scale.

3 Analysis of Cloud Storage Systems

It is important to make the system work more efficiently to reduce the cost. Users
cannot share persistent storage resource at different times. Many technologies
have been developed to improve the utilization of storage systems. All of these
optimization technologies fall into three categories: share “free resource”, share
“used space”, and save efficiently.

The first class shares “free resource”. Virtualization technology makes the free
devices a resource pool. The resource can be dynamically added when needed in
the future. Thin provisioning is the act of using virtualization technology to give
the appearance of having more physical resources than are actually available. So
free physical resource can be reserved for several logical file systems; this delays
the request of adding disks. Another example is quota mechanism in file systems.
In the file system shared by multiple users, the sum of quotas of all users may
be greater than the available space of the file system.

The second class shares “used space”. Data de-duplication is a specialized
data compression technique for eliminating duplicate copies of repeating data.
Related and somewhat synonymous terms are intelligent data compression and
single-instance data storage. It identifies the same files and blocks and only
saves once. Some people like to save pop music and public documents in their
own space. In these conditions, if the file has been saved by other people before,
a link to the existing file will be created to represent sharing between different
users. An interesting thing is that the utilization of a storage system with de-
duplication can exceed 100 %.

The third class tries to save data more effectively. Data compression can
decrease the space requirement for files, especially files in text format. Meta-
data refers to data about data. It saves the file name, size, and block positions
on disks. It is important but needs extra space besides user data. Different file
systems have different storage efficiency.

On the other hand, there are also technologies that decrease the utilization
which are designed for high dependability andperformance purposes.RAID is used

182 X. Zhang et al.

(a) Traditional Storage (b) Cloud Storage

Fig. 1. Contrast between traditional and cloud storage

to protect data from disk failure, but it decreases the utilization by 20 %−50 %.
CDN (context delivery network) is used to deliver data quickly via the Internet;
the decrease rate of the technology depends on the number of replicas. Replicas
are also created to prevent data from being unusable when the server is down. All
of these technologies are mixed together, and this makes it difficult to analyze the
utilization of storage systems.

These technologies take effect on different layers and data sets, which makes
it difficult to analyze the efficiency of the whole system. There is no available
method to analyze the utilization of cloud storage systems. This paper presents
our efforts towards filling in the gap. In this paper, we discuss the concept of
storage utilization and related metrics. The storage utilization can be described
by ratios among these metrics. We split the cloud into the physical, logical, and
user layers, and we develop measurable metrics for each layer.

Enterprise-scale cloud storage systems contain thousands of servers and stor-
age devices and up to tens of thousands of disks, which are difficult to expand.
Traditional design methods usually lead to solutions that are grossly over-
provisioned. Cloud storage transfers the costs of over-provisioning and the risks
of under-provisioning to cloud providers. In a traditional storage system, the
IT manager buys disk arrays and servers before they save data in it (Fig.1(a)).
The IT manager must buy more devices for future use. While in a cloud stor-
age system, although the IT manager declares how much space every user owns
(Declared space), they will add device capacity (Physical Space) while the size of
user data reaches the capacity of the current systems (Fig.1(b)). Meanwhile, it
uses compression and de-duplication technologies to store user files (User Infor-
mation) in an effective way. In traditional storage system, declared space equals
to physical space and user information equals to user data.

4 Storage Utilization Terms and Metrics

Before storage utilization can be measured, basic terms and metrics must be
defined first. We divided the storage system into three layers. Physical layer refers
to hardware devices such as disk array and tape library. Logical layer refers to
software parts such as the file system and other data management technologies.

A Framework to Measure Storage Utilization in Cloud Storage Systems 183

Fig. 2. Terms and layers of cloud storage

User layer refers to user space and user data, it represents the space announced to
the user. The following nomenclature will be used to describe storage utilization
metrics of the three layers (Fig. 2).

4.1 User Layer

User Usable – The amount of storage the user purchased from vendors. When
the user tries to save files exceeding the quota, the user will receive an error. The
quota system automatically monitors the disk usage for users on a file system
by a file system basis. Many modern file systems support quotas for individuals.
The NTFS (New Technology File System) allows administrators to control the
amount of data that each user can store on the file system.

User Used – The amount of data of users. All cloud storage providers count
the used space for user. DropBox sums up the size of regular files and shared
files together as the used space. It also gives the used ratio by percentage. An
interesting thing is that files shared with friends will be counted several times in
Dropbox.

User Data – The space needed for storing original data from users. In most con-
ditions, this is smaller than User Used. Sharing, compression and de-duplication
technologies make it possible to save large data in smaller space. Files shared
between different users only need to be stored one time. Compression file sys-
tems (e.g., NTFS, ZFS) support compression of some files to save space. De-
duplication technology can find the same files between different users and store
them only once. It is more efficient especially when users store pop music and
movie files in their space.

4.2 Logical Layer

Logical Used – The amount of data stored in file systems. Besides user files,
it also includes metadata and replicas. Metadata refers to data about content;

184 X. Zhang et al.

it records file position and other properties in the file system. Some metadata are
created when we format the file system; the size can be calculated by capacity of
the file system. The size of metadata associated with the file grows incrementally
in pace with the number of files.

Logical Usable – The amount of space available after being organized by a file
system and other protection technologies. Elasticity is an important character of
cloud storage. Users may require more storage capacity whenever they want. So
scalability is an important feature when we deploy a file system. If a file system is
constructed over thin provisioning technology, it only needs to add physical disks
when needed. For systems without thin provisioning, there are some tools that
can resize the file system such as resize2fs in Linux. After increasing volume
space by LVM (Logical Volume Manager), these tools can extend the usable
capacity of a file system.

Logical Raw – The amount of storage that the file system server can see. Thin
provisioning technology can ‘cheat’ a file system into appearing to have enough
physical disks. In this condition, the logical raw is the size thin provisioning
reported.

4.3 Physical Layer

Physical Claimed – The capacity of storage claimed to file system or database.
For example, if a hard disk has a capacity of 2 Terabyte, then its Physical
Claimed is 2 Terabyte.

Physical Allocated – The amount of storage allocated to a certain volume
manager. Storage virtualization makes it possible to access without regards to
physical storage or heterogeneous structure. LVM on Linux can resize volume
groups online by absorbing new physical volumes (PV) or ejecting existing ones.
So the available space can be reserved for any of the servers which can access it.

Physical Available – The amount of storage available after protection over-
head. Space available after constructing RAID and spare disks. IT managers can
allocate Logical Units from these spaces. This value can be collected by array
management tools.

Physical Raw – The total physical space of all physical disks in the disk array
and tapes in the tape library. It is the sum of the sizes of all installed disks. If we
set the price as the weight of each media, we can get the cost of Physical Raw.

5 Storage Utilization Metrics

Utilization can be described by the ratios of standard metrics of different layers.
We illustrate the key storage utilization ratios in Fig. 3. These ratios can indicate
the effect of different data management technologies and policies.

A Framework to Measure Storage Utilization in Cloud Storage Systems 185

Fig. 3. Utilization metrics of cloud storage

The utilization ratios can be obtained by comparing one metric with another
to obtain a percentage. These metrics are measured in capacities. The percent-
age may be greater than 100 % for systems with virtualization. The cumulative
effect of these utilization results in two overall utilization metrics. User utiliza-
tion can be used to calculate the cost of each user or all users. Vendor utilization
represents the cost of storage vendors. The difference between user utilization
and vendor utilization is the profit of cloud storage vendors. The most com-
mon feature of a storage system is capacity. These metrics are defined by ratios
between the different layers. These metrics also can be expressed in dollars if we
add the price as weight of capacity.

5.1 Physical Layer Metrics

Physical Overhead – Physical Overhead is the percentage of installed storage
capacity that is not usable. Overhead is usually due to the desired level of data
protection and performance (e.g. RAID, mirroring, spare disks). A high level of
data protection (e.g., RAID1, spare disks) results in high protection overhead.
Having too many spare disks in the system also results in high overhead.

Reserve Ratio – Comparison between the Physical Claimed space taken by a
file system and the Physical Allocated space. Virtualization technology treats
all the allocated logical disks as a resource pool. The ratio reflects the resource
pool level. When a file system needs more space, reserved space can be added
to the file system by volume managers like LVM (Logical Volume Manager)
dynamically. It depends on how fast the size of the file system increases and the
policy of how much space should be reserved for future use.

Virtualization Ratio – Comparison between claimed space and the space actu-
ally allocated. Thin provisioning is used to give the appearance of having more
physical resources than are actually available.

186 X. Zhang et al.

5.2 Logical Layer Metrics

Block store efficiency – Comparison between available space to store data and
the space of raw volumes. File systems use some special blocks, so called super
blocks, to store meta-data, allocation bitmap, and log files. An analysis shows
that the ext3 file system can only use 98.4 % of the space of a 1 TB volume3. This
metric depends on the volume size and file system format; it varies enormously
between file systems.

File system Utilization – Comparison between the actual space taken by user
data and the total space. Elasticity refers to the ability to quickly scale up or
down one’s available storage capacity. This is an important economic benefit of
cloud storage as it transfers the costs of resource over-provisioning and the risks
of under-provisioning to cloud providers.

5.3 User Layer Metrics

File Store Efficiency – Comparison between the User Raw and Logical
Used. Compression can use a small space to save files. The compression rate
depends on the file format and the contents. To protect data or for perfor-
mance purposes, some cluster file systems create replicas on different nodes.
GFS (Google File System) divided files into chunks; each chunks is replicated at
least once on another server, and the default is three copies of every chunk. If
the file system creates two replicas for every file, the redundancy rate should be
50 %. On another hand, de-duplication technology eliminates duplicate copies of
repeated data. If several users store the same video files in their own space, it is
more efficient to save one file and create several links to the file.

User Utilization – For an individual user, comparison between User Used
and User Usable. Storage providers show this metric to users as a reminder
of how much available space is left. Some storage providers count the space of
shared files between users for each user.

5.4 Overall Metrics

Overall User Utilization – Comparison between summation of all user usable
space and the sum of physical space. It represents the price of cloud storage. From
this metric, we can decide how much a user should pay for the storage capacity.
Pricing is complex in the real-world. Most cloud storage vendors provide 2-6GB
of free storage service. Dropbox hit 100 million users in November 2012, but
96 % of the customers are only using free services.4

Overall Vendor Utilization – Comparison between summation of logical used
and the sum of physical disks. This metric reflects the cost of vendors. There are
3 http://www.lisnichenko.com/articles/ext3-file-system-overhead-disclosed-part-2.

html
4 http://www.forbes.com/sites/victoriabarret/2012/11/13/

dropbox-hits-100-million-users-says-drew-houston/

http://www.lisnichenko.com/articles/ext3-file-system-overhead-disclosed-part-2.html
http://www.lisnichenko.com/articles/ext3-file-system-overhead-disclosed-part-2.html
http://www.forbes.com/sites/victoriabarret/2012/11/13/dropbox-hits-100-million-users-says-drew-houston/
http://www.forbes.com/sites/victoriabarret/2012/11/13/dropbox-hits-100-million-users-says-drew-houston/

A Framework to Measure Storage Utilization in Cloud Storage Systems 187

Fig. 4. Storage utilization analyze framework

not too many ways to decrease the overhead of a storage associate with speci-
fied dependability. In some conditions, the protection is being handled by a file
system on the logical layer, such as Google GFS.

6 Storage Utilization Analytical Framework

In this section, we present the framework to analyze the storage utilization as a
whole solution. Different vendors select different technologies and policies accord-
ing to the file types, user SLA (Service Level Agreement). When users store files
in the cloud storage system, multiple technologies are applied before these files
begin to be saved on the disks finally. All of these technologies in one cloud
storage system can be shown in a workflow chart as Fig. 4. Some manage files
and replicas, such as de-duplication and CDN. Some map files to block devices,
such as RAID and block level de-duplication.

There are three characteristics that affect storage utilization–user data char-
acters, policies, and technologies. Cloud storage system vendors decide which
technologies and policies should be used in their system. But it receives a differ-
ent efficiency for different user data characters. Vendors need to provide service
under certain SLA (Service Layer Agreement). They need to make a decision
for dependability or performance purpose, such as how many replicas should be
created in different servers.

Characterizing and understanding file system content and workloads is imper-
ative for the design and implementation of effective storage systems [13]. There
have been numerous studies over the past years of file system characteristics.
Wallace collects the meta-data of EMC Data Domain systems, and statistical

188 X. Zhang et al.

analysis considers information such as file age, size, counts, de-duplication effec-
tiveness, compressibility, and other metrics.

When we calculate the efficiency of a given technology, we need address the
right position of the technology in the workflow chart. According to the input
and output of a given technology, it will be addressed in the corresponding layer.
If there are more than one technologies used in the same layer, they should
be placed side by side if they handle different conditions, or they should be
placed like a pipeline if process data one by one. The data characters impact
the efficiency of each technology. When we analyze the efficiency of a given
technology, we use data characters of the upper layer instead of raw user data
characters.

We illustrate how to analyze three technologies used to map user raw file to
cluster file system: file level de-duplicate, compression, and replicas on different
site (CDN). These technologies are located on the same layer between User raw
and Logical used. The sequence for applying these technologies is compression,
de-duplication, and create replicas. The de-duplication ratio can be calculated
by Formula 1, where N represents the number of the same files. We assume the
metadata size is 255 bytes, file size is 1024 bytes, and there are 100 same files.
The de-duplication ratio is 97.63 %. But if the files were compressed before de-
duplication and the compression ratio is 10 %, then the de-duplication ratio is
80.44 %. File store efficiency should be mixed results of these technologies.

Dedupratio =
N × (filesize + metadatasize)
filesize + N × metadatasize

(1)

7 Case Study

We illustrate how to use the framework to analyze a cloud storage system used
on a campus. Teachers and students store lecture, video, pop songs and home-
work in the system. It is a private cloud system, so the character is easier than
commercial cloud system. We use the framework to predict how many storage
devices will be enough. The method also helps IT managers choose technologies
and configurations. Cost of each users also can be calculated by it.

7.1 How Many Storage Devices are Enough

The task of a cloud storage manager is to allocate storage resources when users
request. It means that they must ensure that the Logical Usable Space is bigger
than User Data at any time. The amount of user data depends on user num-
ber, user data size, and overall vendor utilization. If we adopt a conservative
estimation of the maximum size, the growth rate of the new user data can be
estimated by the current user data. We use α to represent the growth rate of
the current user data, β to represent the growth rate of users. Then the growth
rate of user data can be estimated by (1 + α + β) × Scur userdata. Methods of
adding more storage resources for a system fall into two broad categories: scale

A Framework to Measure Storage Utilization in Cloud Storage Systems 189

(a) Add Storage at Constant Capacity (b) Add Storage at Constant Interval

Fig. 5. Available space and user data over time

out and scale up. It takes different times to make the resource available by
different methods. Thin-provisioning technology can make the file system use
newly added physical disks transparently. Logical Usable Space is a step func-
tion of time. According to when and which method is taken, logical usable space
increases after scaling takes effect. If we assume the current user number is 15
thousand, data size is 200 TB. The growth rate of user data and user number are
2 % and 5 % per month. We can get the increasing curve of user data in Fig. 5(a).
From the figure, we can find that the growth rate of user data increases over
time. Figure 5(a) shows that if we extend the same capacity when needed, the
interval of extension become shorter over time. Figure 5(b) shows that if we
extend the amount of necessary capacity for the next 5 months, the capacity of
extension grows over time.

7.2 Selection and Configuration of Technology

There are many data management technologies that can be applied in the system.
We illustrate how to choose the technology and the best configuration. The
first step is to address the technology in the process network shown in Sect. 6.
Secondly we need to analyze the characteristics of the files to be handled by
the technology. Then we can analyze the effect of the technology with a different
configuration. At last, we need to analyze the impact of other technologies under
it.

Most students save their lecture in the system. We assume there are 100
students in one class. The file size is 10 MB, and the metadata size is 512 bytes.
It needs (10M + 512K) × 100 = 1050M to store these files. We assume that
the compression ratio is 50 %; this means the compressed file size is 5 MB. If
we apply compression alone, it needs (5M + 512K) × 100 = 550M. If we apply
de-duplication alone, it needs 10M + 512K × 100 = 60M. If we apply both
compression and de-duplication together, it will need 5M+512K× 100 = 55M.
In this case, compression has little effect on the overall optimization as shown
in Fig. 6. We can find it is enough to use file deduplication in the system.

190 X. Zhang et al.

Fig. 6. Optimization results of different technologies

8 Conclusion

This study was motivated by the lack of a holistic way of evaluating the perfor-
mance of various I/O techniques applied at multiple layers of a storage cloud. We
proposed a novel evaluation framework, which aims at investigating the impacts
of a wide range of policies and mechanisms on large-scale storage clouds. At the
center of our framework is an array of evaluation metrics for the multiple storage
layers.

We develop empirical models to quantitatively measure our proposed new
metrics. To illustrate the correctness of the models as well as the usage of our
framework, we conduct a case study to demonstrate how to apply our framework
to evaluate storage utilization of cloud systems. We show that the framework
can be deployed to investigate impacts of I/O policies, mechanisms, and data
sets. Our experiments show that the framework provides both users and vendors
with storage utilization evaluation from various perspectives.

There exist a few opening issues in this study. The current version of the
framework can evaluate static storage utilization; however, we are unable to
apply the framework to evaluate I/O activities. We intend to extend our frame-
work to evaluate dynamic I/O workload conditions so it can be used to ana-
lyze utilization of hierarchical storage. Many data management techniques to
promote utilization that have been proposed in the past decades. We plan
to incorporate some modules into the framework to acquire the impact of each
technique in the whole storage system.

Acknowledgment. This work was supported by the National High-tech R&D Pro-
gram of China (863 Program) under Grant No. 2013AA01A215 and No. 2012AA011004;
the NFS of China under Grant No. 61033007; the NFS of China under Grant No.
61272123 and No. 61303037.

References

1. Hilbert, M., López, P.: The worlds technological capacity to store, communicate,
and compute information. Science 332(6025), 60–65 (2011)

2. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C.,
Byers, A.H.: Big data: The next frontier for innovation, competition, and pro-
ductivity. McKinsey Global Institute, pp. 1–137 (2011)

A Framework to Measure Storage Utilization in Cloud Storage Systems 191

3. Twinstrata: Economics of public cloud storage. http://pt.slideshare.net/
rinfantino/the-economics-of-public-cloud-storage

4. Li, X., Li, Y., Liu, T., Qiu, J., Wang, F.: The method and tool of cost analysis
for cloud computing. In: IEEE International Conference on Cloud Computing,
CLOUD’09, pp. 93–100. IEEE (2009)

5. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research
problems in data center networks. ACM SIGCOMM Comput. Commun. Rev.
39(1), 68–73 (2008)

6. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In:
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pp. 1–11.
IEEE Computer Society Press (2002)

7. Pinheiro, E., Bianchini, R.: Energy conservation techniques for disk array-based
servers. In: International Conference on Supercomputing: Proceedings of the 18th
Annual International Conference on Supercomputing, vol. 26, pp. 68–78 (2004)

8. Manzanares, A., Ruan, X., Yin, S., Xie, J., Ding, Z., Tian, Y., Majors, J., Qin, X.:
Energy efficient prefetching with buffer disks for cluster file systems. In: 2010 39th
International Conference on Parallel Processing (ICPP), pp. 404–413. IEEE (2010)

9. Alvarez, G.A., Borowsky, E., Go, S., Romer, T.H., Becker-Szendy, R., Golding,
R., Merchant, A., Spasojevic, M., Veitch, A., Wilkes, J.: Minerva: an automated
resource provisioning tool for large-scale storage systems. ACM Trans. Comput.
Syst. (TOCS) 19(4), 483–518 (2001)

10. Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., Veitch, A.: Hip-
podrome: running circles around storage administration. In: Proceedings of the
Conference on File and Storage Technologies, pp. 175–188 (2002)

11. Cao, Y., Chen, C., Guo, F., Jiang, D., Lin, Y., Ooi, B.C., Vo, H.T., Wu, S., Xu,
Q.: A cloud data storage system for supporting both oltp and olap. In: IEEE 27th
International Conference on Data Engineering (ICDE), pp. 291–302. IEEE (2011)

12. Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., Camble, P.:
Sparse indexing: large scale, inline deduplication using sampling and locality. In:
Proccedings of the 7th Conference on File and Storage Technologies, pp. 111–123
(2009)

13. Wallace, G., Douglis, F., Qian, H., Shilane, P., Smaldone, S., Chamness, M., Hsu,
W.: Characteristics of backup workloads in production systems. In: Proceedings of
the Tenth USENIX Conference on File and Storage Technologies (FAST12) (2012)

http://pt.slideshare.net/rinfantino/the-economics-of-public-cloud-storage
http://pt.slideshare.net/rinfantino/the-economics-of-public-cloud-storage

Personalized Recommendation via Relevance
Propagation on Social Tagging Graph

Huiming Li, Hao Li, Zimu Zhang, and Hao Wu(B)

School of Information Science and Engineering, Yunnan University,
No.2, North Green Lake Road, Kunming 650091,

People’s Republic of China
haowu@ynu.edu.cn

Abstract. This paper presents a novel random walk based relevance
propagation model for personalized recommendation in social tagging
systems. In the model, the tags are used to express the profiles of both
users and resources, and then candidates of resources are recommended
to the users based on the profile relevance between them. In particular,
how the users to find the resources of interest is modeled as a random
walk by which the relevance spreads in User-Resource-Tag relation graph.
Experimental results on two real datasets collected from social media
systems show the merits of the proposed approach.

1 Introduction

Collaborative tagging systems [1], such as Delicious, Flickr, Youtube, Lastfm,
Connotea, CiteUlike and MovieLens, have become a kind of booming business on
the Internet. These systems provide a wealth of information, where any persons
can freely find, annotate, organize various resources of interest and share their
findings (this practice is coined as Folksonomy by Thomas Vander Wal). As an
information carrier, the tags play a key role in such systems. Since they cannot
only express the main features of the resources, but also cover relationships of
users-resources/items(we use them alternatively) and items-items.

The size and complexity of folksonomy-based systems can unfortunately lead
to information overload and reduced utility for users. Too many resources can
make users helpless in their process of finding useful contents. Consequentially,
the increasing need for recommender services from users has arisen. For these
reasons, researchers have sought to apply the techniques of recommender systems
to deliver personalized views. The current researches of personalization in such
systems can be classified into tag recommendation and item/resource recommen-
dation. Given a user and a resource, the former predicts what and how tags will
be adopted by the user to explain the resource, whereas the latter emphasizes
suggesting unseen items of interest to the user. Compared to tag-oriented rec-
ommendation research, how to develop tag-aware personalized recommendation
technologies to come forward with the application needs remains many issues
[2]. To this end, this paper presents a novel random walk based relevance propa-
gation model for personalized recommendation in social tagging systems. In the

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 192–203, 2014.
DOI: 10.1007/978-3-662-43984-5 14, c© Springer-Verlag Berlin Heidelberg 2014

Personalized Recommendation via Relevance Propagation 193

model, the tags are used to express the profiles of both users and resources, and
then candidates of resources are recommended to the users based on the profile
relevance between them. In particular, how the users to find the resources of
interest is modeled as a random walk by which the relevance spreads in User-
Resource-Tag relation graph. Experimental results on two real datasets collected
from social media systems, show that our model can improve the accuracy of
resource discovery, and thus enhance the personalized recommendation in social
tagging systems.

The rest of paper is organized as follows. Section 2 presents our models
in detail. How to assess the relevance of user-user and user-resource, how to
extract and build neighborhood-based social tagging graph and how the rele-
vance spreads with a random walk on extracted graph are proposed. Next, in
Sect. 3, the solid experiments are conducted to watch the effectiveness of our
method. Then, we review some works most akin to us, and make some discus-
sions. Finally, we conclude the works and point to future directions.

2 Methods

2.1 Neighborhood-Based Social Tagging Graph

One of the most commonly used algorithms in personalized recommendation
is a neighborhood based approach [3], which works by first computing similarities
between all pairs of users, and then to predict by integrating ratings of neighbors.
Here, we follow this common idea to create a neighborhood-based tripartite
graph GURT for personal resource recommendation in social tagging systems.

Given a random user ui, we first define a user profile as: ui = (ri,1 : wi,1, ri,k :
wi,k, ..., ri,n : wi,|R|), where ri,k is the k-th resource collected by ui, |R| is the
cardinality of resource collection, wi,k is the preference degree of ui on resource
ri,k. Then, we estimate the pairwise relevances of users using the cosine similarity
(Eq. 1),

R(u, ui) = cosine(u,ui) =
∑|R|

k=1 wk × wi,k
√

∑|R|
k=1 wk

2

√
∑|R|

k=1 wi,k
2

(1)

Both wk and wi,k in user profile u and ui can be obtained by TF-IUF(Term
Frequency-Inverse User Frequency) as followings,

wi,k = tfi,k · log
|U |

ufi,k
(2)

where, tfi,k is the normalized occurrence frequency of the k-th resource in the
user profile ui, |U | is the cardinality of user collection, ufi,k is the total number
of the user profiles in which the k-th resource occurred.

In the same way, we can represent a profile of the resource as a tag-aware
vector, and estimate the relevance R(u, r) between a user u and a resource r.

Given a target user u, the top-n users most similar to u are firstly found using
metric (Eq. 1), these users together with u forms a virtual community C(u). C(u)

194 H. Li et al.

is added to GURT . Then, the resources and the tags used by C(u) to annotate them
are added to GURT . Finally, the User-Resource-Tag relations are created according
to social annotation traces. Built on the tripartite graph, if we want to automati-
cally point a user to the most interested resources, we should imagine how the user
searches resources of interest as he/she gradually surfs on a social tagging system.
For simplicity, we present two independent and repeated surfing processes. In the
first case, we assume that users preferably consult with community members as
they search resources:

– At any time: (a) randomly visit a resource, or just pick a random community
member;

– After consulting with a community member: (a) pick a resource tagged by
this member, or (b) consult with another member recommended by current
member;

– After visiting a resource: (a) consult with a community member who tagged
this resource, or (b) visit another resource linked to this resource.

In the second case, we assume that users search resources by prefer to exploit
tags:

– At any time: (a) randomly visit a resource, or just pick a random tag;
– After viewing a tag, pick a resource annotated by this tag;
– After visiting a resource, pick an interested tag to further view.

To model resource gathering process as well as to reduce the complexity of
our proposed model, we separate the tripartite graph GURT into two bipartite
subgraphs as User-Resource graph GUR and Resource-Tag graph GRT (shown
in Fig. 1), to respectively address the two surfing processes. And then, in our
method described further, we try to overcome the limitations of the state-of-the-
art works by modeling resources search as two infinite random walks on these
two graphs. The results of these two processes are finally integrated to reach the
original purpose of our model, as exploiting rich semantics within GURT as far
as possible to recommend resources to users.

Fig. 1. An example of social tagging graph.

Personalized Recommendation via Relevance Propagation 195

2.2 Relevance Propagation Based on Random Walk

We suppose that the walk in finding resources for a current user u is a non-stop
process. That is, u visits the nodes in User-Resource graph or Resource-Tag
graph over and over again. During this infinite walk (also, a discrete Markov
process), the resources visited more often are considered more beneficial for u.
However, the stationary distribution of such a random walk does not depend
on the state of the initial probability distribution. To assure the existence of a
stationary distribution, also retain the importance of a candidate resource to
stay close to relevant tags or users, the jump transition need to be added to the
graph nodes.

We first introduce the possibility to return regularly to the resource nodes
from any node of the bipartite graph and to start the walk through mutual
resource-user or tag-resource links again. The likelihood of jumping to the specific
resource PJ(rj) (shown as Eq. 3) is considered to equal its normalized probability
to be relevant to the current user u. This assumption makes candidates situated
closer to u, and the more likely that the candidate is known to u, the more it
can be selected for a random jump.

PJ(rj) =
R(u, rj)∑

rk∞C(u) R(u, rk)
(3)

Then, the probability to jump to a user PJ(ui)(in GUR) and a tag PJ(ti)(in
GRT) is added, respectively. We consider that the taste of a community member
uj ∈ C(u) is more close to the current user, or a tag ti is more popular in the
community, it is visited more often by the current user during consecutive walk
steps. So, we make PJ(ui) equal to the normalized similarity of ui to u, and let
PJ(ti) equal to the probability to find the tag ti in the community. These two
measures of jump transitions are shown as followings,

PJ(ui) =
R(u, ui)∑

uk∞C(u) R(u, uk)
PJ(ti) =

cf(ti)∑
tk∞C(u) cf(tk)

(4)

where, cf(ti) is the occurrence frequency of the tag ti in the community, R(u, ui)
and R(u, rj) are same to the above-mentioned definition. For relevance propa-
gation on User-Resource graph, the following HITS-like equations are used for
iterations until convergence:

Pn(ui) = dPJ(ui) + (1 − d)
∑

rj

P (ui|rj)Pn−1(rj) (5)

Pn(rj) = dPJ(rj) + (1 − d)
∑

ui

P (rj |ui)Pn−1(ui) (6)

For relevance propagation on Resource-Tag graph, the following equations are
used for iterations until convergence:

Pn(ti) = dPJ(ti) + (1 − d)
∑

rj

P (ti|rj)Pn−1(rj) (7)

196 H. Li et al.

Pn(rj) = dPJ(rj) + (1 − d)
∑

ti

P (rj |ti)Pn−1(ti) (8)

where d is the probability that at any step the user decides to make a jump and
not to follow outgoing links anymore. According to our test, setting d ∈ [0.1, 0.2]
is a good choice for the most cases. The convergence condition of iteration is
given by |Pn(·) − Pn−1(·)| ≤ Θ. The described Markov process is aperiodic and
irreducible, and hence has a stationary distribution. Consequently, we consider
to integrate the two stationary probabilities PUR(rj) and PRT (rj) (shown as
Eq. 9) as the final relevance of the resource rj to the target user u.

R(u, rj) = γPUR(rj) + (1 − γ)PRT (rj) (9)

Algorithm 1. RPRW:Relevance Propagation with Random Walk
Require. A target user u, three parameters k, d and γ, convergence threshold λ.
Ensure. A ranked list of resource set I.

for each ui ∈ U do
estimate the relevance R(u, ui);

end for
retrieve the top-k similar neighbors of u;
create C(u), and poll all resources in C(u) as the candidate set I;
create bipartite graphs GUT and GRT based on C(u) and I;
for each rj ∈ I do

estimate the relevance R(u, rj);
end for
normalize R(u, ui) and R(u, rj);
repeat

update P (ui) and P (rj) with d on GUT according to Eq. 5 and Eq. 6;
until converged
repeat

update P (ti) and P (rj) with d on GRT according to Eq. 7 and Eq. 8;
until converged
get the final relevance R(u, rj) between u and rj , using Eq. 9;
return A ranked list of I;

The whole process of our proposed method is explained as Algorithm 1. A
main part of the algorithm is to calculate the relevance R(u, ui) and R(u, rj),
however, such a computational overhead can be controlled in an acceptable range
by pre-clustering users. Another main part of the algorithm is concerning the
relevance propagation with random walk. In each iteration, the random walk
probability is updated from the neighbor nodes of u, so the complexity of the
algorithm is O(f(k)), where f(k) marks the scale of nodes surrounding to u.
Also, in experiments, the calculation converges fast (after 20–40 iterations) by
assigning ideal setting to d and Θ. Therefore, the whole time cost for each rec-
ommendation is acceptable in realtime scenario.

Personalized Recommendation via Relevance Propagation 197

3 Experiments

3.1 Datasets

For experiments, we use the actual datasets collected from two well-known social
media systems-Lastfm and Movielens. Lastfm1 is the world’s largest online music
catalogue, and allows user tagging music tracks and artists. In this dataset,
we take artists as resources. MovieLens2 is a recommender system and virtual
community website that recommends films for its users to watch, based on their
film preferences and using collaborative filtering. The website is kept by the lab
of GroupLens Research. The collaborative tagging function had been included
in the website, thus researchers can gather tag-aware data for research purpose.
For these three systems, we use their data collections released in the framework
of the 2nd International Workshop on Information Heterogeneity and Fusion in
Recommender Systems [4] to make an evaluation. Statistics of datasets are listed
in Table 1, and more detailed descriptions of these datasets can be found in [5].

Table 1. The basic statistics of the datasets.

Dataset Users Resources Tags Tas(UR) Density(RT) Density(u) Training(u) Test(u)

Lastfm 1,892 12,523 9,749 186,479 3.0 → 10−3 2.2 → 10−3 1,821 337
MovieLens 2,113 5,908 9,079 47,957 9.0 → 10−4 7.0 → 10−4 1,598 135

To test the algorithmic performance, the Lastfm dataset is divided into two
parts according to the tag assignment(tas) timestamp: the training set contains
90 % past entries and the remaining 10 % future entries make up the testing
set. Because test cases for the Movielens dataset are relatively small, we sep-
arate this dataset by the ratio of 80 %:20 %. This policy follows the universal
observation as known information used for recommending, while no information
in the testing set is allowed to be used for recommending. Also, it meets the
online operation principle of recommender systems, that is, the recommender
periodically provides active users with resources of interest, at a certain point of
time, using the historical data of the systems. Note that, since we do not con-
centrate on the cold-start problem in this paper, new users and new resources
are eliminated from the testing dataset. The finally selected test cases are also
presented in Table 1. Also, when generating the recommendation candidate list
for a specified user, the resources already collected by the user are excluded from
the list.

3.2 Evaluation Metrics and Baseline Methods

To give solid and comprehensive evaluation of the proposed algorithm, we employ
three well-known metrics: Precision at top-K(P@K), Recall at top-K(R@K),

1 http://www.lastfm.com
2 http://www.imdb.com, http://www.rottentomatoes.com

http://www.lastfm.com
http://www.imdb.com
http://www.rottentomatoes.com

198 H. Li et al.

and their harmonic mean-F1 metric at top-K(F1@K), to characterize the accu-
racy of recommendations. In addition, Hamming Distance is selected to measure
the diversity of recommendation. It examines the uniqueness of recommendation
lists to separate users. Given two users i and j, the hamming distance between
their recommendation lists can be calculated by Eq. 10.

HDij(k) = 1 − overlapij(k)
k

(10)

where overlapij(k) is the number of shared items in the top-k places of the
two recommendation lists. Averaging over all pairs of users, we can obtain the
aggregate diversity of the system. Clearly, higher diversity means higher per-
sonalization of users’ recommendation lists, HD(k) = 1 points to the fact that
every user receives his/her own unique top-k items.

As far as the baseline method concerned, the approaches that recommend
tags or use explicit ratings or other kinds of implicit information to make rec-
ommendations are not listed, considering that we focus on recommending items
based on tag information.

ProbS [6]: similar to our work, a hybrid mass diffusion based algorithm using
both User-Item graph and Item-Tag graph was proposed to fulfill personalized
recommendation. Although mass diffusion can also work in multi-steps, we use
the default two-steps diffusion in our experiments.

UserCF [7]: In this approach, the tag-based profiles were used to represent
users’ topic preferences as Eq. 1. The recommendation rec(u, rj) for a certain
item rj aggregates the votes of all neighbors of u using a similarity-weighting
approach as Eq. 11,

rec(u, rj) =

∑
ui∞C(u) vi(rj)R(u, ui)

|C(u)| (11)

where, vi(rj) is the normalized ’vote’ of ui to rj . The neighborhood C(u) for u
and R(u, ui) are same as our above-mentioned definition.

Random Walk with Restart (RWR): RWR has recently attracted much atten-
tions in various recommendation scenarios [8,9]. Here, we perform the RWR
model on neighborhood-based tripartite graph, and set the personalized vector
of the PageRank to bias the node representing the current user.

3.3 Experimental Results

We implemented our model and baseline methods using Java on a computer
set to 4 GB memory and 3.1 GHz processors. We run tests extensively to find
the optimal parameter settings for two datasets. The settings of the main para-
meters are shown in Table 2. Also, we set the convergence thresholds of iterative
computation as a unified value Θ < 0.001, and perform experiments to investi-
gate the computational efficiency of the proposed method (RPRW). Depending
on Table 2, it takes only 20–40 iterations or several hundred milliseconds for
our method to make a recommendation. This suggests our model can meet the

Personalized Recommendation via Relevance Propagation 199

Table 2. The parameter settings for two datasets and the corresponding computational
costs, where |C(u)| is the community size to the user u, Iter4UR and Iter4RT are
respectively the iteration times of RPRW on GUR and GRT .

Dataset |C(u)| d γ Iter4UR Iter4RT TimeCost (ms)

Lastfm 20 0.15 [0.6,0.9] 19 33 150
MovieLens 20 0.15 [0.5,0.7] 21 39 30

demands of real-time application. In addition, we find that the best setting of
γ in our model is consistent with the ProbS model, since they share the basic
principle as combing the relevance score of rj to u both on GUR and GRT .

We first compare our RPRW model with the baseline methods against the
Lastfm dataset. According to Fig. 2, the ProbS performs best from the first posi-
tion to the 15th position of recommendation list in all performance indicators,
however, the RPRW model basically ranks in the first class after the 15th posi-
tion in term of accuracy. In particular, the RPRW model outperforms all baseline
methods in the F1 measure, where it improves the baseline methods by around
7% from F1@15 to F1@30. We next study the recommendation performance of
selected methods based on the Movielens dataset. Similar to the recommenda-
tion results achieved on the Lastfm dataset, our RPRW model does best after

0 10 20 30 40 50
0.02

0.03

0.04

0.05

0.06

0.07

0.08
Lastfm

Top−K

P
re

ci
si

on

ProbS

RPRW

UserCF

RWR

0 10 20 30 40 50
0

0.05

0.1

0.15

Lastfm

Top−K

R
ec

al
l

ProbS

RPRW

UserCF

RWR

0 10 20 30 40 50
0.015

0.02

0.025

0.03

0.035

0.04
Lastfm

Top−K

F
1

m
ea

su
re

ProbS

RPRW

UserCF

RWR

0 10 20 30 40 50
0.88

0.9

0.92

0.94

0.96

0.98

1
Lastfm

Top−K

D
iv

er
si

ty

ProbS

RPRW

UserCF

RWR

Fig. 2. Performance of recommendation based on the Lastfm dataset.

200 H. Li et al.

0 10 20 30 40 50
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Movielens

Top−K

P
re

ci
si

on

ProbS

RPRW

UserCF

RWR

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

Movielens

Top−K

R
ec

al
l

ProbS

RPRW

UserCF

RWR

0 10 20 30 40 50
0

0.005

0.01

0.015

Movielens

Top−K

F
1

m
ea

su
re

ProbS

RPRW

UserCF

RWR

0 10 20 30 40 50
0.88

0.9

0.92

0.94

0.96

0.98

1
Movielens

Top−K

D
iv

er
si

ty

ProbS

RPRW

UserCF

RWR

Fig. 3. Performance of recommendation based on the MovieLens dataset.

the 15th position in the recommendation list by accuracy metrics (see Fig. 3).
Particularly, it significantly improves the F1 metric compared to all baseline
methods. Different from the preceding experimental results where the ProbS
achieves superior performance in P@10 and F1@10, instead, the RWR does best
in P@10 and F1@10. By both Figs. 2 and 3, the UserCF performs best in the
recall while slightly better than the RPRW model.

When examining the diversity of recommendation, the ProbS outperforms
all other methods on both datasets. Both the RWR and the RPRW rank at
the second place. A major reason caused this is that our model favors to pop-
ular items in the user community, i.e., the infinite random walk preferred to
those nodes with higher degrees in social tagging graph. Such a situation is
always observed in the classic random walk models, such as PageRank [10] and
HITS [11]. Recommending commonly popular resources to users can obviously
improve the accuracy while degrade the diversity. It is also a presentation of the
well-known diversity-accuracy dilemma [9]. However, the RPRW model can still
outperform some baseline methods by either the accuracy metric or the diversity
metric, and achieve a better balance between the accuracy and the diversity of
recommendation. This points to that the RPRW model has its own merits in
recommendation situations. To further improve the diversification of recommen-
dation results, the RPRW model can make use of a simple method to discount
the popularity of resources [9].

Personalized Recommendation via Relevance Propagation 201

4 Related Works and Discussion

There have been many technical advances in collaborative filtering models [3],
topic-based models, and tensor-based models [6] for personalized recommenda-
tion. However, these models are distinctly different from our method, so we do
not repeat them here. Instead, we concentrate some typical studies in applying
random walks on personalized recommendation.

Hotho et al. proposed the FolkRank algorithm [12], an adaptation of the
PageRank algorithm to the folksonomy structure. FolkRank performs a weight-
spreading ranking scheme on folksonomies. It transforms the hypergraph between
the sets of users, tags and resources into an undirected, weighted, tripartite
graph. On this graph, it applies a version of PageRank that takes into account
the obtained edge weights. Among applications, FolkRank provides a popularity
measure of a document that seems to be better than PageRank, as it exploits the
user produced folksonomy, rather than the Web links. FolkRank performs well
in tag recommendation, however, it does not do well as other models on resource
recommendation(for this, we omit the experimental results with respect to the
FolkRank). ItemRank [13] proposed by Marco and Augusto, is used to rank
products according to expected user preferences. It employs the naive PageRank
on item-based graph to rank the item node. Then the PageRank and the prefer-
ence to the expected user are integrated together to propose products. Similar to
ItemRank, Yildirim and Krishnamoorthy [14] proposed a novel recommendation
algorithm which performs random walks on a graph that stands for similarity
measures between items. They evaluate their system using data from MovieLens.
Although, the use of the random walk model performs well for recommendation,
their use of an Item-Item similarity matrix raises some issues on the ability of the
system to extend when other similarities are introduced based on social tagging.
Konstas et al. [8] consider both the social annotation and the friendships inher-
ent in the social graph established among users, items and tags. They adopt the
generic framework of the RWR to provide with a more natural and efficient way
to represent social networks. Their method is experimented with a self-collected
Lastfm dataset and significantly outperforms the collaborative filtering method.
However, their method utilizes all the training information to predict resources
of interest, and seriously differs with our neighborhood-based training method.
Hybrid ProbS [6] is recently introduced to item recommendation using tagging
information. It applies respectively two mass diffusions in a user-resource and a
resource-tag network to make recommendations. An item’s preference is defined
as a linear combination (similar to us) of its ranks in the two graphs. However,
our approach can outperform this method by trustworthy experiments.

Regardless of the fact that these studies are close to our approach, we create
a unique model, in which neighborhood-based method is first used to extract a
dense social tagging subgraph, and then user-item preferences are propagated
through infinite random walk. This strategy makes our model scalable even fac-
ing a huge amount of tagging data. Besides, our model has a better extendability:
– Advanced user/resource profiling methods (e.g. [15]) can be employed to

strengthen relevance estimation;

202 H. Li et al.

– Explicit relations, such as friendships among users and inter-resources links,
can be added to enrich the semantics;

– Tag-aware personalized search ([16]) can also be built on our model by making
a neighborhood-based subgraph with an adhoc retrieval model.

5 Conclusion and Future Works

We have presented a relevance propagation model with random walk for a tag-
aware personalized recommendation. According to solid experiments, our model
performs effectively and efficiently in personalized recommendation, and achieves
a better balance between accuracy and diversity metric. In future, we would
consider developing advanced profiling methods to further strengthen relevance
estimation in our model. Also, extending the model to cope with the cold start
problem or tag-aware personalized search would also be interested.

Acknowledgments. This work is supported by the Applied Basic Research Project
of Yunnan Province(2013FB009).

References

1. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J.
Inf. Sci. 32(2), 198–208 (2006)

2. Gupta, M., Li, R., Yin, Z., Han, J.: Survey on social tagging techniques. ACM
SIGKDD Explor. 12(1), 58–72 (2010)

3. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. 2009(4), 1–1 (2009)

4. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogene-
ity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th
ACM Conference on Recommender Systems. RecSys 2011, New York, NY, USA,
ACM (2011)

5. Bellogin, A., Cantador, I., Castells, P.: A comparative study of heterogeneous item
recommendations in social systems. Inf. Sci. 221(1), 142–169 (2013)

6. Zhang, Z.K., Zhou, T., Zhang, Y.C.: Tag-aware recommender systems: a state-of-
the-art survey. J. Comput. Sci. Technol. 26, 767–777 (2011)

7. Diederich, J., Iofciu, T.: Finding communities of practice from user profiles based
on folksonomies. In: Tomadaki, E., Scott, P. (eds.) EC-TEL 2006 Workshops Pro-
ceedings Innovative Approaches for Learning and Knowledge Sharing, pp. 288–297
(2006)

8. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative
recommendation. In: Proceedings of the 32nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 195–202.
ACM (2009)

9. Wu, H., Cui, X., He, J., Li, B., Pei, Y.: On improving aggregate recommendation
diversity and novelty in folksonomy-based social systems. Submission to Personal
and Ubiquitous Computing (2014).

10. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

Personalized Recommendation via Relevance Propagation 203

11. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5), 604–632 (1999)

12. Hotho, A., Jäschke, R., Schmitz, Ch., Stumme, G.: Information retrieval in folk-
sonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

13. Gori, M., Pucci, A.: Itemrank: a random-walk based scoring algorithm for rec-
ommender engines. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 2766–2771 (2007)

14. Yildirim, H., Krishnamoorthy, M.S.: A random walk method for alleviating the
sparsity problem in collaborative filtering. In: Proceedings of the 2008 ACM Con-
ference on Recommender Systems, pp. 131–138. ACM (2008)

15. Liang, H., Xu, Y., Li, Y., Nayak, R.: Connecting users and items with weighted tags
for personalized item recommendations. In: Proceedings of 21st ACM Conference
on HyperText and Hyper-Media, Toronto, pp. 51–60. ACM (2010)

16. Xie, H.R., Li, Q., Cai, Y.: Community-aware resource profiling for personalized
search in folksonomy. J. Comput. Sci. Technol. 27(3), 599–610 (2012)

Optimizing Pipelined Execution for Distributed
In-Memory OLAP System

Li Wang(B), Lei Zhang, Chengcheng Yu, and Aoying Zhou

Software Engineering Institute, East China Normal University, Shanghai, China
{wangli1426,zhangleicasa,yuchengcheng.ycc}@gmail.com,

ayzhou@sei.ecnu.edu.cn

Abstract. In the coming big data era, the demand for data analysis
capability in real applications is growing at amazing pace. The memory’s
increasing capacity and decreasing price make it possible and attrac-
tive for the distributed OLAP system to load all the data into mem-
ory and thus significantly improve the data processing performance. In
this paper, we model the performance of pipelined execution in distrib-
uted in-memory OLAP system and figure out that the data communica-
tion among the computation nodes, which is achieved by data exchange
operator, is the performance bottleneck. Consequently, we explore the
pipelined data exchange in depth and give a novel solution that is
efficient, scalable, and skew-resilient. Experimental results show the effec-
tiveness of our proposals by comparing with state-of-art techniques.

1 Introduction

The data volume that people collect is growing rapidly in the big data era.
However, the real problem we are actually facing is not to collect and store the
data with extremely large size as we have successfully done decades ago but to
make valuable analytics on the huge amount of data within the time allowed
[3]. Thanks to the development of hardware manufacturing, it is attractive for
the distributed OLAP system to be equipped with large memory capacity (e.g.,
100 GB per node) and benefit from efficient in-memory data processing.

The well known pipelined execution, which was proposed in Volcano [8],
is very suitable for the distributed in-memory OLAP system, because it can
effectively reduce the communication cost among operators, has good scalability,
and avoids materializing intermediate result.

In this paper, we discuss the pipelined query execution in distributed in-
memory OLAP system. More specifically, given a physical execution plan, our
goal is to execute it as efficiently as possible. To do this, we introduce a general
performance model for the pipelined execution on distributed in-memory OLAP
system, which could figure out the performance bottleneck that lies on some
part of the pipelined execution plan. The model also implies that in distrib-
uted in-memory OLAP system, the data exchange, which involves in network
transmission, is very likely to be the bottleneck. Thus, we analyze the factors

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 204–216, 2014.
DOI: 10.1007/978-3-662-43984-5 15, c© Springer-Verlag Berlin Heidelberg 2014

Optimizing Pipelined Execution for Distributed In-Memory OLAP System 205

accounting to the inefficiency of pipelined data exchange and propose a novel
data exchange method that is efficient, scalable and skew-resilient. Finally, the
experimental results show the effectiveness and efficiency of our proposals.

In the rest of the paper, Sect. 2 formally defines the pipelined data process-
ing and shows the motivation of this paper. Section 3 gives theoretical analysis
of the performance of pipelined data processing and proposes a general perfor-
mance model. In Sect. 4, we discusses the challenges of pipelined data exchange
and proposes an efficient, scalable, and skew-aware data exchange strategy. We
evaluate our proposals in details and shows the results in Sect. 5. The related
works are introduced in Sect. 6. Finally, we summarize in Sect. 7.

2 Preliminary

2.1 System Overall

This paper focus on the distributed in-memory OLAP system, which is running
on a set of share-nothing servers (nodes) that are inter-connected through the
network (e.g., 1 Gbps network router). The data is partitioned and distributed
among these nodes and resides in the main-memory. The system accepts query
in declare language (e.g., SQL), optimizes the received query into physical plan,
and executes the plan in pipelined fashion, which will be described formally soon.

2.2 Pipelined Data Processing

Pipelined data processing was first proposed in Volcano [8]. In the pipelined exe-
cution, all the operators within a query are piped. Each operator consumes the
data flow generated by its input operator(s) and produces processed data flow
to its output operator(s) such that the data flow is continuously passing through
the operators and the data processing are pipelined. The most promising advan-
tage of such pipelined data processing is that the intermediate results produced
by each operator is (if possible) immediately sent to the output operator(s).

A Pipelined Execution plan can be modeled as a direct acyclic graph g =<
O,F >, where O = {O1, O2, ..., On} is a set of operators and F = {f1, f2, ..., fm}
= {< Oi, Oj > |Oi, Oj ∼ O} is the data flows among these operators. The
operators define how the data is processed and the data flows describe how the
data is transmitted among these operators. Figure 1(a) is an example of pipelined
execution with four operators, where Oc and Od read data from the input source
file and pass the data flow to the hash join operator Ob, which passes the join
result to Oa.

2.3 Parallelism and Data Exchange

Parallelism can be easily achieved vertically and horizontally by running opera-
tors in different nodes. One possible parallelism of the pipelined execution plan
shown in Fig. 1(a) is demonstrated in Fig. 1(b), where the operators running on
a same parallel instance are in the same dark rectangle.

206 L. Wang et al.

To transmit the data between the nodes in a desirable fashion, a control
operator, namely data exchange, is introduced. An data exchange operator can
be defined as E =< S,R, p(t) >, where S =< S1, ..., Sm > is the list of senders
for sending the data and R =< R1, ..., Rn > is the list of receiver for receiving
data. P (t) : t ∈ RE ∞, RE ∞ ∀ RE is a function defining the destination receiver(s)
for each tuple t. In other words, P (t) defines how the data are transmit (hash
partition, range partition, or, broadcasting, etc.) . Each sender s ∼ S is running
a node and sends the data flow to a subset of R donated by R(s) = {Rs

1, ..., R
s
m}

through network. Each receiver r∼R is running on different node and receives
the data flow from a subset of S donated by S(r) = {Sr

1 , ..., S
r
n}. All the senders

and the receivers are logically viewed as an exchange operator.
In this paper, we explore the efficient execution for a given pipelined execution

plan. For a given query, there may be a large number of possible execution plans,
each of which results in different executing cost. There are extensive works on
converting a query to the optimal execution plan, and it is out of the scope of
this paper. We assume that the system has obtained the best execution plan and
our goal is to execute the optimized execution plan as efficiently as possible.

3 Optimization Decomposition

3.1 Maximum Concurrently Executing Plan

There are two kinds of operator in a pipelined execution plan: pipelined operators
and synchronized operators. An pipelined operator, such as filter, predicate, can
immediately produces the output data flow to their successor(s) as soon as a
piece of the input data flow arrives. In contrast, synchronized operators, such

Fig. 1. The demonstration of pipelined execution.

Optimizing Pipelined Execution for Distributed In-Memory OLAP System 207

as hash join, aggregation, sort, etc., refer to the operators which cannot produce
any data to its successor(s) before the complete view of the input data flow.

Definition 1. An execution plan is a Maximum Concurrently Executing
Plan (MCEP) if all the operators in the plan are pipelined operators.

Definition 2. A execution plan is a Partially Pipelined Execution Plan
(PPEP) if it contains at least one synchronized operator.

In PPEP, the data flow will be blocked at the synchronized operators waiting for
the complete view of the input data flow. Consequently, only part of operators
in such case are processing the data at a given time.

Theorem 1. A PPEP can be converted into one or more MCEPs by cutting at
the synchronized operators.

For instance, the execution plan in Fig. 1(a) is divided into two MCEPs by
cutting at hash join operator as shown in Fig. 1(c).

3.2 MCEP Execution Optimization

Definition 3. For any MCEP M where there are k − 1 exchange operators E1,
E2, ..., Ek−1, M can be divided into a list of stages denoted as stage(M) =<
s1, s2, ..., sk > by cutting any Ei between R and S.

All the operators within any stage si is running on the same node and the data
flow is transmit through the efficient memory share. We denote θI(si) to be the
throughput at which si receives data flow from its predecessor stage (through
network) or input source file, denote θP (si) to be the throughput of all the
operators in si, and denote θO(si) to be the throughput at which si could send
the data flow to its successor. And let amplification rate, denoted as ri, be the
ratio of the data volume si produces when si consumes a piece of data flow
of unit volume. For instance, if si could produce 1 KB output data flow when
consuming every 4 KB, then ri = 0.25. Amplification rate is very important in
bridging θI(si) and θO(si). Now we have the following theorem.

Theorem 2. Let θM be the memory access throughput. For any MCEP M,
which has k stages s1,...,sk, the throughput at which M produces data flow is
θ(M) = min{rkθ(sk−1), θP (sk), θM}, where

θ(si) =

{
min{θM , θP (si), θO(si)} if i = 1
min{riθ(si−1), θP (si), θO(si)} if 2 ∩ i ∩ k − 1

Proof. For sk, it reads data from sk−1, processes the data, and write the pro-
duced data into the memory buffer of the synchronized operator. As this process
is pipelined and sk could produce rk unit data volume when consuming every
1 unit data volume, the throughput of data flow that sk produces is limited by
the minimum of rkθ(sk−1), θP (sk) and θM . For any si other than s1 and sk,

208 L. Wang et al.

the data flow it produces is transmit through the network at the throughput of
θO(si), and hence the throughput of si is limited by the minimum of riθ(si−1),
θP (si), and θO(si). Finally, for s1, it consumes data flow from the input data
source or the memory buffer of a synchronized operator, and consequently the
throughput is limited by the minimum of θM , θP (si), and θO(si). �

Theorem 2 implies that the performance bottleneck in a MCEP is either the
memory access, or data processing, or the data exchange. The memory band-
width and the in-memory data processing is several orders of magnitude faster
than that of network. Besides, there are extensive in-memory database opti-
mization techniques, such as the work in MonetDB/X100 [4], HANA [10], etc.
The in-memory processing throughput can be dramatically improved by lever-
aging the multi-core data processing techniques, such as [2] for sort-merge join,
[6] for aggregation, etc. Hence, in this paper, it is reasonable to assume that
θP (si), θM ≥ θO(si). Consequently, the efficiency of exchange operator is key to
the throughput of a MCEP. In the next section, we will discuss the optimization
to the exchange operator in depth.

4 Optimizing Data Exchange Operator

In this section, we first analyze the performance issues in pipelined exchange
operator, then propose our novel method. For convenience, we hereby define the
status of the senders and the receivers in an exchange operator.

Busy status. For any ri ∼ R or si ∼ S, it is under the busy status if the
data transmission throughput reaches the capacity of currently available network
bandwidth.

Starvation status. For any r ∼ R, it is under the starvation problem if it cannot
obtain data fast enough compared with the available network bandwidth.

Blocking status. For any s ∼ S, it is under the blocking status if any receiving
sub-operation r ∼ R(s) is in starvation problem but si cannot sending any data
to r due to some reasons.

Starvation status and block status mean that the network bandwidth is
wasted. A typical case that introduces starvation and block status is that there
are two receivers r1 and r2 and two sender s1 and s2 in an exchange operator.
At a time, when s1 is sending the data flow to r1 at the maximum network
bandwidth such that s1 and r1 are in busy status, s2 will be in blocked status
and r2 will be in starvation status if the tuple that s2 is sending is for r1.

4.1 Data Pushing Rather than Data Pulling

Data pulling is typically used in the materialized data exchange, such as the shuf-
fling in Hadoop [11] and Spark [12]. However, data pulling fashion is impractical
in the pipelined data exchange. Firstly, as the data sending is on the fly, the

Optimizing Pipelined Execution for Distributed In-Memory OLAP System 209

receivers do not know whether the data is available to be fetched in their corre-
sponding senders. As a result, the receivers have to blindly ask the senders for
data and will fall in starvation status if the ask fails. Furthermore, on the sender
side, whether to immediately send the data to the receiver which is asking for
data is hard decided.

In the rest of this section, we will show how our novel data exchange extends
data push fashion in terms of efficiency, scalability, and skew-resilience.

4.2 Sending Buffer Diversification Strategy

Definition 4. For any sender s and its buffer B(s), the diversity of B(s) is
defined as D(B(s)) = |R(B(s))|

|Rs| , where Rs is the set of receivers of s, B(s,Rs
i)

is the set of blocks in B(s) corresponding to Rs
i , and R(B(S)) = {r|r ∼ Rs,

|B(s, r)| > 0}.
The range of diversity is [0, 1] and is proportional to the size of R(B(S). The
larger R(B(S)) is, the more options we have to choose the receivers to send data
and hence smaller probability of being blocked status. To keep the diversity, we
propose a novel Sending Buffer Diversification (SBD) strategy which picks the
blocks in the buffer according to the following probability:

p(Rs
i) =

|B(s,Rs
i)|

|B(s)| (1)

According to Eq. 1, the receivers corresponding to more blocks in the buffer
have higher probability to be chosen as the receivers and vice versa. Conse-
quently, Eq. 1 could not only keep the diversity of the sending buffer but also
tend to keep a balanced number of blocks for each receiver.

4.3 Receiver Status Awareness

Now, we ameliorate SBD such that the information on the receiving sides (e.g.,
whether the receivers are busy or not) can be used. Being aware of the receiver
situation is very important to avoid the blocked status and busy status. Consider
that the buffer are skewed to a few receivers such that these receivers have much
larger probability to be chosen as the sending target. If all of these receivers are
busy, the sender will repeatedly try to send the data to these busy receivers and
always fail, resulting in blocked status of the sender and the starvation status of
other receivers. To solve this problem, we propose Sender Buffer Diversification
with Weighted Penalty (SBD-WP) strategy as shown in Eq. 2, which adapts
Eq. 1 by giving a penalty to the currently busy receivers.

p(Rs
i) = α

|B(s,Rs
i)|

|B(s)| − (1 − α)
fail(Rs

i , k)
k

(2)

In Eq. 2, fail(Rs
i , k) denotes the number of sending failures related to Rs

i

since the last k attempts. Compared with Eqs. 1 and 2 will reduce the probability

210 L. Wang et al.

of a receiver for a while if the receiver fails to accept the data block from the
senders, and the penalty is released after the next k attempts. We will show in the
experimental section that this penalty has great contribution to the performance
of data exchange, especially in the case of skewed data distribution.

4.4 Skew-Resilient Strategy

The imbalance workload of data exchange refers to that one or a few receivers
(senders) have more data volume to be received (sent).

The motivation of our skew-aware strategy is as following. For a data exchange,
the total execution time is decided by the sender/receiver which finished last.
Hence, the total execution time can be effectively reduced if the senders/receivers
which have large workload than others are assigned higher priority when send-
ing/receiving.

Although such strategy sounds attractive and simple, it encounters with non-
trivial challenges. For a pipelined MCEP, it is very difficult or impossible to pred-
icate the accurate data volume and hence the exchange does not know how much
data volume remains during the execution, especially for the MCEP containing
deep stages. To avoid the expensive and error-prone prediction, we design an
skew-resilient exchange strategy based on the watermark rather than the actual
data volume.

When a MCEP is being executed, every operator maintains a watermark,
which is a value between range from [0, 1] indicating the ratio of the consumed
data volume to the total data volume. For instance, if the watermark is 0.4, it
means 40 % of the input data flow has been consumed. For the operators at the
bottom of an MCEP, they either consume data from the original data source
file or from an buffer (e.g., hash table, etc.) in a synchronized operator. As the
actual size of the data file or the buffer is known beforehand, the watermark is
easy to obtain. Every time when the current watermark has increased by a given
report threshold Δ (e.g., Δ = 0.02), the operator will report the new watermark
to its successor operator, which will continue to propagate the new watermark in
the same fashion. For each receiver of the data exchange operator, it keeps track
of the watermark received from each sender, and report the smallest among the
received watermark to its successor. The value of Δ is the tradeoff between the
report frequency and the accuracy.

The details of skew-resilient exchange strategy for any receiver R is shown
in Algorithm 1. The watermark for sender s is denoted as W (s). S(R)ordered

is a list of senders which are currently trying to send data blocks to R, and is
sorted on the watermark in increasing order. The watermark is transmit along
with block. The algorithm gives higher priority to receive the data from the
sender whose watermark is smaller than others. Every time when a block is
received from a sender, it will check whether the block has the end-of-file (EOF)
identifier. If it does, the algorithm will record that a sender is exhausted. Also,
the algorithm will check whether the block containing a new watermark. If it
does, the corresponding watermark will be updated and S(R)ordered will be

Optimizing Pipelined Execution for Distributed In-Memory OLAP System 211

Algorithm 1. Skew-resilient Load balancing
exhausted senders = 0;1

while exhausted senders < |S(r)| do2

foreach s in S(R)ordered do3

while there is any available block b in s do4

read b from s;5

if b is EOF then6

remove s from S(R)ordered;7

exhausted senders + +;8

GOTO 2;9

if b contains new watermark then10

update W (s);11

if S(R)ordered is out of order then12

reorder S(R)ordered;13

GOTO 3;14

reordered if it is out of order. The algorithm finishes when all the sending are
exhausted.

5 Experiments

5.1 Setup

Our experiment is running on 12 nodes, each of which is a HP DL360 server with
192 GB RAM and two four-core CPUs. The nodes are connected by gigabyte
switch. The operating system is Linux Redhat 6.3.

The evaluations are based on our distributed in-memory OLAP prototype
system. We use both real dataset and synthetic dataset of TPC-H. The real
dataset comes from transaction data from shanghai exchange. Without otherwise
clarification, all the table are in column store and are resident in main memory.
We use the following query1.

SELECT T1.b, T2.c
FROM T1, T2
WHERE T1.a=T2.a AND T1.c>x

5.2 Pipelined Data Exchange

Buffer Size. The size of sending buffer is very important for the performance of
data exchange, as it can effectively avoid the blocked status of the senders and
1 Other queries are also evaluated in our experiment and result in similar results. Due

to space limitation, these results are omitted.

212 L. Wang et al.

 0

 20

 40

 60

 80

 100

 120

20 80 200 400 800 1600 20 80 200 400 800 1600

T
im

e
pe

rc
en

ta
ge

s
(%

)

Buffer size (tuple/receiver)

Busy status(sender)
Blocked status(sender)

Busy status(receiver)
Starvation status(receiver)

ReceiversSenders

Fig. 2. The percentages of busy status to blocked/starvation status.

the starvation status of the receivers. To evaluate the benefit of sending buffer,
we ran a 5-5 data exchange with different sending buffer size, and keep track
of the throughput of the senders and the receivers during the execution. The
execution time is divided into many short slices (e.g., 1 ms per slice). A time
slice is in busy status, if the sending/receiving throughput is more than 90 % of
the theoretical maximal network bandwidth. Otherwise, a sender/receiver is in
blocked/starvation status. The percentages of the time slices in busy status to
the time slices in blocked/starvation status is shown in Fig. 2. When the sending
buffer is small, the senders are very likely to be blocked as the buffer is easy
to be full. When the buffer size increases, the percentage of blocked status is
decreasing accordingly, resulting more time in busy status and more sending
throughput. Similarly, the receivers suffer from starvation status a lot when the
buffer size is small, as the sending in blocked status cannot produce new data
to send. The benefit gain diminishes when the buffer size exceeds 400 tuples for
each receiver, and hence we set the buffer size to be 400 tuples/receiver in the
following experiments.

Sending Buffer Diversification and Weighted Penalty. To evaluate the
effect of SBD strategy and SBD-WP strategy, we run 5-5 data exchange in the
randomly sending strategy, SBD strategy, and SBD-WP strategy, respectively.
The implementation of randomly sending strategy is according to the openly
available codes of pipelined shuffling in [7]. To better evaluate the differences
between these strategies, we generated the data in globally uniformly distributed
but with local skewness. Such data can be viewed as a sequence of windows with
equal size w (in number of tuples). The data within a window is in zipf (α = 0.5)
distribution, but the distribution of each window is independent and hence the
data is roughly uniformly distributed in the global view. When w = 1, the data
is in standard uniform distribution. The more w is, the more skewed that a
piece of data will be, and consequently the more difficult it is for the senders to
handle such local skewness. Figure 3 shows the sender throughput in the three
strategies, when w varies. When w = 0, all the strategies could fully leverage
network bandwidth and there is no obvious throughput difference among them.
When w increases (more local skewness), the performance of randomly sending
strategy is obviously reduced. That’s because the randomly sending strategy fails

Optimizing Pipelined Execution for Distributed In-Memory OLAP System 213

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600
D

at
a

ex
ch

an
ge

 th
ro

ug
hp

ut
 (

M
by

te
s/

s)
Local skewness (w)

Randomly sending strategy
SBD strategy

SBD-WP strategy

Fig. 3. The performance of the data exchange when local skewness varies.

to reserve the diversity of the sending buffer, which will make the sending more
likely to suffer from the blocked status. In contrast, benefit from keeping the
diversity of the sending buffer, SBD strategy is much better than the randomly
sending strategy. By reducing the probability to send the data to the recently
busy receiver, SBD-WP strategy can further avoid the time wasted on repeatedly
sending data to the receiver that will reject the sending attempt immediately, and
the performance of SBD-WP almost retains the same with more local skewness.

Skew-Resilience. To evaluate the performance of skew-resilient strategy, we
generated 12 GB data in uniform distributed and partitioned the data among the
nodes of the senders in an imbalanced way such that the data volume for a few
senders is much more than others. Figure 4 shows how SBD-WP strategy without
skew-awareness performs. Figure 5(a) demonstrates that at the beginning, each
sender works at the same network bandwidth and the remaining data volume
at each sender is degrading at the same pace. After 20 s, all the sends except S1
and S2 finished the work, and hence S1 and S2 occupied all the sending network
bandwidth.

As shown in Fig. 4, at the beginning phase, the remaining data volume at
each sender is degrading at the same speed, because without skew-awareness

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45 50

R
em

ai
ni

ng
 d

at
a

vo
lu

m
e

(M
b)

Execution time (second)

E 1#
E 2#
E 3#
E 4#
E 5#
E 6#
E 7#

(a) Remaining data volume

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Sender ID

Working
Idle

(b) Working time and idle time

Fig. 4. Data exchange without skew-resilience.

214 L. Wang et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50

R
em

ai
ni

ng
 d

at
a

vo
lu

m
e

(M
b)

Execution time (second)

E 1#
E 2#
E 3#
E 4#
E 5#
E 6#
E 7#

(a) Remaining data volume

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Sender ID

Working
Idle

(b) Working time and idle time

Fig. 5. Data exchange with skew-resilience

the aggregated network bandwidth of the receivers are equally divided into each
sender. After 20 s, all the senders except S1 and S2 finished the work, and hence
S1 and S2 work at their maximal network bandwidth. S1 and S2 finished their
work at 28 s and 45 s, respectively. Figure 5 shows the performance of skew-
resilient strategy. Benefit from the watermark, each receiver could know the
progress of each sender and is able to allocate more bandwidth to the senders
that fall behind in progress. Consequently, S1 and S2, which have much data
volume to send than other senders, have higher priority to occupy the network
bandwidth. Thus, the total execution time is significantly reduced.

5.3 Overall Query Evaluation

In this subsection, we show the contributions of our data exchange method to the
overall query performance. To do this, we compare the query performance run-
ning on our execution engine with naive data exchange implementation and our
exchange method, respectively. The query is running on the synthetic datasets
following in Zipf distribution with various skewness factor. The results are shown
in Fig. 6. The performance of execution with naive exchange implementation is
much lower compared with ours, as the naive exchange cannot fully leverage
the network resource and sending/receiving information. Further, due to the
absence of skewness handling capability, the performance reduces significantly
with increasing the data skewness. In contrast, the execution engine adopting
our data exchange method is much efficient. Moreover, the performance does not
reduce greatly in case of data skewness. In other perspective, the results confirm
our claims in Sect. 3 that the network transmission is very likely to be the per-
formance bottleneck and efficient data exchange method is key to improve query
performance.

6 Related Work

Volcano [8] is an early parallel execution engine, which follows the well-known
pipelined execution that has good scalability and is widely employed by the

Optimizing Pipelined Execution for Distributed In-Memory OLAP System 215

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(in

 s
ec

on
ds

)
Skew factor

With naive data exchange
With our data exchange

Fig. 6. Overall query time with various skewness factor.

following DBMS system. MonetDB/X100 [4] improve pipelined execution for
in-memory data by modifying the pipelined fashion from tuple-at-a-time to
block-at-a-time to facilitate the compiler’s automatic optimization, vector-wise
computation, and column-wise data compression. However, MonetDB/X100 is
a centralized database. Condie et al. [7] tries to pipeline the data shuffling in
Hadoop [5] to improve the response time of the MapReduce job. However, our
work is different from [7] in that our work focuses on the improving the query
throughput by identifying and solving the performance bottleneck rather than
applying the pipelined fashion to the MapReduce framework. Kumar et al. [9]
tries to maximize the network usage for the data exchange of real applications by
configuring the network parameters and scheduling the data exchange. However,
it fails to handle the data skewness and leverage the information on the sending
sides and the receiver sides.

There are extensive work in in-memory databases. When the data is shifted
into main memory, the disk I/O bottleneck is removed accordingly and new
bottleneck is the relatively slow memory access speed compared with fast CPU
processing capability, which is called the memory wall. Boncz et al. propose radix
partition algorithm to break the memory in hash partition. The light weight com-
pression has been explored in [1,10], which can increase the effective bandwidth
by transmitting the compressed data.

7 Summary

In this paper, we discussed the pipelined execution in the distributed in-memory
OLAP system. We first give a general performance model which could help to
identify the bottleneck for a given pipelined execution plan. The model also
implies that the efficiency of data exchange is key to the query performance.
Thus, we discuss challenges of pipelined data exchange, and propose our novel
data exchange operator. Finally, massive experiments prove that pipelined data
exchange could dramatically improve the query throughput in the in-memory
setting, and shows the efficiency and effectiveness of our proposals.

216 L. Wang et al.

References

1. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in
column-oriented database systems. In: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pp. 671–682. ACM (2006)

2. Albutiu, M.-C., Kemper, A., Neumann, T.: Massively parallel sort-merge joins in
main memory multi-core database systems. Proc. VLDB Endow. 5(10), 1064–1075
(2012)

3. Barlow, M.: Real-Time Big Data Analytics: Emerging Architecture. O’Reilly Media
Inc., Sebastopol (2013)

4. Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: hyper-pipelining query exe-
cution. CIDR 5, 225–237 (2005)

5. Borthakur, D.: The hadoop distributed file system: architecture and design (2007)
6. Cieslewicz, J., Ross, K.A.: Adaptive aggregation on chip multiprocessors. In: Pro-

ceedings of the 33rd International Conference on Very Large Data Bases, pp. 339–
350. VLDB Endowment (2007)

7. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.:
Mapreduce online. In: NSDI, vol. 10, pp. 20 (2010)

8. Graefe, G.: Volcano-an extensible and parallel query evaluation system. IEEE
Trans. Knowl. Data Eng. 6(1), 120–135 (1994)

9. Kumar, V.S., Tucek, J., Wylie, J.J., Krevat, E., Ganger, G.R.: Application-level
flow scheduling for efficient collective data transfers (2012)

10. Plattner, H.: A common database approach for oltp and olap using an in-memory
column database. In: Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data, pp. 1–2. ACM (2009)

11. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file sys-
tem. In: 2010 IEEE 26th Symposium on Proceedings of the Mass Storage Systems
and Technologies (MSST), pp. 1–10. IEEE (2010)

12. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the NSDI, p. 2. USENIX
Association (2012)

Hashed-Join: Approximate String Similarity
Join with Hashing

Peisen Yuan1(B), Chaofeng Sha2, and Yi Sun2

1 College of Information Science and Technology, Nanjing Agricultural University,
Nanjing 210095, China

2 School of Computer Science, Fudan University, Shanghai 200433, China
{peiseny,cfsha,ysun}@fudan.edu.cn

Abstract. The string similarity join, which finds similar string pairs
from string sets, has received extensive attention in database and infor-
mation retrieval fields. To this problem, the filter-and-refine framework
is usually adopted by the existing research work, and various filtering
methods have been proposed. Recently, tree based index techniques with
the edit distance constraint are effectively employed for evaluating the
string similarity join. However, they do not scale well with large dis-
tance threshold. In this paper, we propose an approach for approximate
string similarity join based on Min-Hashing locality sensitive hashing and
trie-based index techniques. Our approach is flexible between trading
the efficiency and performance. Empirical study using the real datasets
demonstrates that our framework is more efficient and scales better.

1 Introduction

String is one of the most important data types in modern data processing sys-
tems. One of the important researches on string is the similarity join, i.e., finding
all the similarity string pairs from the two string sets, which is a key operation
in many real-world applications, such as data integration [1], data cleaning [2],
duplicate detection [3] and so on. The similarity join has been received exten-
sive attention from the database and information retrieval fields and there are
extensive literatures for addressing this problem [3–5].

For measuring the string similarity, the string edit distance is used by most
previous studies. However, the time and space complexity of evaluating string
edit distance between two strings s1 and s2 is O(|s1||s2|) [6], where |s| denoted
the length of the string. Therefore, most existing work mainly focus on the filter-
and-refine framework. According to this framework, strings are firstly filtered by
some filtering techniques in a heuristic way, and the edit distance evaluation is
applied on remaining candidate string set subsequently.

In term of string similarity join with edit distance constraint, recent researches
[4,7] explore the tree index techniques. J. Wang et al. propose the Trie-Join
[4] for string similarity join using a trie tree, which processes string similarity
join efficiently and the space cost of the trie indexing structure is much smaller

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 217–229, 2014.
DOI: 10.1007/978-3-662-43984-5 16, c© Springer-Verlag Berlin Heidelberg 2014

218 P. Yuan et al.

Fig. 1. Processing procedure

than existing work. However, the performance of the Trie-Join degrades for long
strings and when the string edit distance threshold increases.

In this paper, we take the locality sensitive hashing (LSH for short) [8] and
trie join techniques into account and propose a framework Hashed-Join for
approximate string similarity join under edit distance constraint. The processing
procedure is shown in Fig. 1, which can be divided into four steps.

In Fig. 1, the q-grams of each string in the string set are extracted in the
first place. Then the binary vectors of the strings are built based on the their
corresponding q-grams set. In the third step, the Min-Hashing based LSH tech-
nique is employed, which hashes the similar strings into the same bucket, i.e., the
string sharing q-grams. After that, a trie structure index is built in each collision
bucket and the trie join technique is applied. The similar string pairs in each
bucket are merged together and the final result for the string sets is returned
finally.

To summarize, the main contributions of this paper are briefly outlined as
follows:

1. The framework using hashing for the approximate string similarity join prob-
lem is proposed.

2. Relationship of approximate similarity join with the parameters and the string
features are studied.

3. Extensive experiments on real datasets are conducted to demonstrate the
effectiveness and efficiency of our approach.

2 Preliminaries

2.1 Problem Statement

Given two strings s1 and s2 and a proposition formula F , which is defined in
the form of sim(s1, s2) ≥ Θ, where sim(s1, s2) is the similarity metric for strings
s1 and s2. The task of string similarity join is retrieving the similar string pairs
between two string sets that satisfying the proposition formula F . The formal
definition is presented as follows.

Definition 1. String Similarity Join
Given two string sets S1, S2 and proposition formula F , the similarity join

between S1 and S2 is denoted as S1 γαF S2. The result of the join is denoted as
S1 γαF S2 = {< s1, s2 > |s1 ∈ S1 and s2 ∈ S2,F(< s1, s2 >) is true}, where
< s1, s2 > is the similar pair that satisfying the proposition formula F .

Hashed-Join: Approximate String Similarity Join with Hashing 219

For example, given two string sets S1 = {“microsoft”, “applies”, “informix”,
“tree”} and S2 = {“apple”, “infromix”, “google”, “trie”, “mcrosoft”}, and the
proposition formula F is defined as the string edit distance defined in Sect. 2.3,
disted(s1, s2) ≤ 1. The similarity join result on the two string sets is S1 γαF S2 =
{<“microsoft”, “mcrosoft”>, <“trie”, “tree”>}.

2.2 q-gram

Given a string s and an integer q, its q-grams can be obtained by a sliding window
on s with length q, contiguously splitting the string into a group of substrings.
For a given string s, its q-gram may occur multiple times, we treat the duplicate
q-grams as new ones by inserting an integer representing the occurrence order
[3]. In this way, a string s can generate L∞ = |s| − q + 1 q-grams.

Example 1. Consider the string s = “mathematics”, let q = 2, the set of 2-
grams of s, δ2(s) = {“ma”, “at”, “th”, “he”, “em”, “ma2”, “at2”, “ti”, “ic”,
“cs”}. The q-gram such as “ma”reoccurs later is appended with the order of the
occurrence number to differentiate it. The length of δ2(s), i.e., |δ2(s)| is 10.

Given a string set S, for each string s ∈ S, we extract its q-grams and denoted
as δq(s). Let U be the universal of the q-grams of S, i.e., U =

⋃|S|
i=1 δq(si) =

{g1, · · · , g|U|}, where i = 1, · · · , |S|. Then for a string s, it can be represented
by a binary vector vs

b with the vector length |U|, where vs
b[j] = 1, if gj ∈ δq(s);

otherwise vs
b[j] = 0, for j = 1, · · · , |U|. In this paper, the string is taken as the

binary vector of its q-gram and they are used interchangeably if not confused.

2.3 Similarity Metrics

There are many similarity metrics that can be used for measuring string similar-
ity, such as string edit distance, Jaccard similarity etc. In this paper, string edit
distance and Jaccard similarity are used and introduced in the following section.

Jaccard Similarity. Given two sets A and B, their Jaccard similarity is
defined as

simjacc(A,B) =
|A ∩ B|
|A ∪ B| (1)

In many applications, the Jaccard distance is usually used as the distance mea-
sure for set similarity, which is defined as Eq. 2.

distjacc(A,B) = 1 − simjacc(A,B). (2)

String Edit Distance. The string edit distance is also called as the Leven-
shtein distance [9], which is a metric used for measuring the differences between

220 P. Yuan et al.

two strings. The evaluation of string edit distance is based on three primitive
operations: insertion, deletion and substitution, which are denoted as opi, opd
and ops. The definition is defined as follows.

Definition 2. String Edit Distance
Given two strings s1 and s2, the edit distance between s1 and s2 is defined

as the minimum number of the three primitive operations needed to transform s1
to s2, which is denoted as disted(s1, s2) = min

∑
(ci ∗ opi + cd ∗ opd + cs ∗ ops),

where ci, cd and cs are the cost of the operation respectively.

In this paper, the cost of each operation is set to 1. Considering two strings
si and sj , their q-gram sets are denoted as δq(si) and δq(sj) respectively. If
disted(si, sj) ≤ β , then the common q-grams that si and sj share should satisfy
the formula |δq(si) ∩ δq(sj)| ≥ max{|si|, |sj |} − q + 1 − q · β [10]. This property
often used for filtering non-similar strings under the edit distance constraint.

2.4 Min-Hashing

The Min-Hashing is used for approximately set similarity evaluation [11]. It has
the property that the probability of two sets have the same value of Min-Hashing
is equal to their Jaccard similarity, and the formal definition is given as follows.

Given a random hash function h : S → I, where S is the domain of the string
set, and I is an integer set. For a string s ∈ S, which is represented with the
binary vector v, the Min-Hashing function is defined as mh(v) = arg min{h(vi)
| v ∈ V b, V b is binary vectors for all the strings, vi is the i-th index of v if
v[i] = 1, for 0 ≤ i ≤ |v| − 1}.

According to the property of Min-Hashing, for two strings s1 and s2 and their
q-gram sets δq(s1) and δq(s2), the binary vectors of them are represented by vs1

b

and vs2
b respectively. Their Jaccard similarity can be approximately computed

by Eq. 3.
simjacc(δq(s1), δq(s2)) = Pr[mh(vs1

b) = mh(vs2
b)]. (3)

To reduce the probability of false positive retrieval, a random hash family
H : D → I is usually used. Given a hash family H, n Min-Hashing signatures are
computed for each string. Thus the binary vector vs

b of the string s is transformed
into g(vs

b) and represented as Eq. 4.

g(vs
b) =< mh1(v

s
b),mh2(v

s
b), · · · ,mhn

(vs
b) >,mhi

∈ H, (4)

for i = 1, · · · , n.

2.5 Locality Sensitive Hashing

The concept of locality sensitive hashing (LSH) is introduced in [8] and widely
used for approximate nearest neighbor search of high dimensional data etc., the
definition can be formalized as follow.

Hashed-Join: Approximate String Similarity Join with Hashing 221

Definition 3. Let O be the domain of the objects, o1, o2 ∈ O, and d1 < d2 be
two distances according to the distance metric dist(o1, o2). A function family H
is said to be (d1, d2, p1, p2)-sensitive, if each h ∈ H satisfies the following two
conditions:

� If dist(o1, o2) ≤ d1, then PrH[h(o1) = h(o2)] ≥ p1;
� If dist(o1, o2) ≥ d2, then PrH[h(o1) = h(o2)] ≤ p2, where p1 > p2 ∈ [0, 1].

The LSH index is a data structure using a family of LSH functions H, which
is constructed in the following two steps [12]:

1. Given an integer r, define a function family G = {g : O → Ir}, and for g ∈ G,
g(o) = < h1(o), . . . , hr(o) >, where hi ∈ H for 1 ≤ i ≤ r.

2. For an integer b, randomly choose g1, . . . , gb from G. Construct a hash table
for each gi, for 1 ≤ i ≤ b.

In order to construct a Min-Hashing based LSH index, the signature matrix is
divided into b bands with r Min-Hashing signatures in each band, i.e., n = b ∗ r.
If Jaccard distance is used as the distance metric defined in Eq. 2, then Min-
Hashing LSH is (d1, d2, 1 − (1 − pr1)

b, 1 − (1 − pr2)
b)-sensitive [13].

The parameter r control the filtering effectiveness and b controls the approx-
imation factor. Given the Jaccard similarity of two objects is Θ, the probability
that they can be retrieved with Min-hashing LSH is equal to Eq. 5.

p = 1 − (1 − Θr)b. (5)

3 Trie Join and Observations

3.1 Trie Join

Trie Join [4] using a trie tree for string join, which is a tree structure and used
for indexing the strings. Figure 3 demonstrates a trie tree of the running example

Fig. 2. Strings of the running
example

Fig. 3. Trie with τ = 1 on running
string set

222 P. Yuan et al.

strings in Fig. 2. The numbers in the tree indicate the node ID. For example,
node 11 in Fig. 3 denotes substring “goo”.

Given a string s, node n in the trie tree is called an active node of s if
disted(s, n) ≤ β [4]. The active node set of s is denoted as A(s) and n ∈ A(s)
if n is an active node of s. In Fig. 3, the node set enclosed by the {} is the
active node set of the corresponding node nearby with the string edit distance
threshold β = 1. For example, the trie node 10 represents the substring “go”and
the active node set of which is {9, 10, 11}. The active nodes 9, 10, 11 represent
the substrings “g”,“go”and “goo”respectively. Their string edit distance with
“go”is not bigger than 1.

To evaluate the active node set for each node in the trie, the active node of
the root is computed firstly. Then for each internal node in the trie, its active
node set can be evaluated using its parent’s one.

After obtaining the active node set for each node in the trie, the similar pairs
can be evaluated with the active node sets. For each leaf node nl in the trie, the
active node a→ ∈ A(nl) is verified whether a→ is a leaf. If a→ is a leaf node, then
< nl, a

→ > is a similar pair.

3.2 Problems of Trie Join

According to the evaluation procedure of the Trie-Join [4], we observe that divid-
ing the string set into groups can reduce the computation overhead, especially
with the increasing of the edit distance threshold β . This can be illustrated by
Fig. 4. According to Trie-Join, the trie nodes in the trie tree with the length β
in the first branch will be the active nodes of the other branches with the length
no large than β , and the nodes in other branches will be the active nodes of
other branches as well. However, lots of the nodes in the active node set do not
contribute to the finally result, thus it wastes much computation.

Take Fig. 3 as an example, the active nodes of the trie branches in Fig. 3
are shown in Fig. 5. The total active node number of Fig. 3 is 82, nevertheless,
the total active node number of the three branches is

∑
(29, 24, 25) = 78, which

is less than the former. When β is 2, the active nodes of the three branches is∑
(45, 38, 37) = 120, less than the total number of the trie tree 142 in Fig. 3,

Fig. 4. Illustration of Trie-Join
with edit distance

Fig. 5. Active node of the Trie tree
branches with τ = 1

Hashed-Join: Approximate String Similarity Join with Hashing 223

which indicates that dividing the similar string set into groups previously can
reduce the size of the active node set.

4 Processing Algorithms

4.1 String Binary Vector Building

In this algorithm, the q-grams of each string are extracted and the binary vector
for each string is constructed.

Algorithm 1. String Binary Vectors Building
Input: String Set S; Integer q.
Output: Compressed Binary Vectors.

1 Vector V = ∅;
2 foreach s ∈ S do
3 Φq(s) = qgramGen(s);

4 U = ∪|S|
i=1Φq(si);

5 foreach Φq(s) do
6 Vector v = new Vector();
7 foreach g ∈ U do
8 if g ∈ Φq(s) then
9 v.add(1);

10 else
11 v.add(0);

12 vc = V ectorCompressor(v);
13 V = ∪vc;

14 return V ;

In Algorithm 1, the q-grams of each string in the string set are extracted
firstly (lines 2–3). After generating the q-grams, the binary vector for string s is
generated based on the q-gram universal U of the string set and the q-gram set
δq(s) of string s (lines 4–11).

Due to the high dimensionality of the binary vectors, for reducing the storage
overhead, binary vector is divided with length L, where L ≤ 64 and L ≤ |U|. In
each group, the binary vector is transformed into an integer (line 12). Finally,
the compressed binary vectors are returned (line 14).

4.2 Approximate Similarity Join Algorithm

The approximate join algorithm is outlined in Algorithm2. The input of the
algorithm includes compressed binary vectors, string set list SL and edit distance
threshold β . The output of the algorithm is the similar string pairs. In this paper,

224 P. Yuan et al.

Algorithm 2. Approximate Similarity Join Algorithm
Input: Compressed String Binary Vectors V ; String Set List SL; Edit Distance

Threshold τ .
Output: Similar String Pairs within Threshold τ .

1 MinHashClass minHash = new MinHashClass();
2 V ′ = decompress(V); /* Decompress the binary vectors*/;
3 LSHIndex = minHash(V ′); /*Generate the Min-Hashing LSH index for the

string set*/;
4 foreach band b ∈ LSHIndex do
5 bandNo = getBandNo(b);
6 foreach bucket buc ∈ b do
7 bucketNo = getBucketNo(bandNo);
8 S∼ = getString(bandNo ⊕ bucketNo, SL); /*Get the subset S∼ of the

string set S from the collision bucket */;
9 if (|S∼| == 1) then

10 sp = null; /*similarity pair */;

11 else
12 trie = buildTrieTree(S∼); /*Build a trie tree index for S∼*/;
13 sp = trie.GenerateSimiPair(trie, τ);

14 SP = MergeSimilarPairs(sp); /*Similarity Pair Set */;

15 return SP ;

we only take self-join into account, i.e., S γαF S. The join between two different
string sets can be can be easily extended.

In this algorithm, the Min-Hashing values of each string are divided into b
bands, each with r hash values. Within each band, the r Min-hashing values of
a string are concatenated as the key, i.e., for string s, key(s) = mh1(s) ⊕ · · · ⊕
mhr

(s); and the string is hashed to one of the M different buckets based on the
concatenated key. After hashing, a trie tree is built for the strings in the same
bucket.

The algorithm can be divided into four steps. First, the Min-Hashing based
LSH index is constructed for the string set (line 3), which decompresses the
binary vectors from the integers.

Secondly, strings in the same bucket are obtained with the band number and
the bucket number of the LSH index (lines 4–7). If there is only one string in
the bucket, then this bucket can be skipped for it cannot make up pairs (lines
8–10). One key problem in this step is that the strings within the string edit
distance threshold β can be fall into the same bucket in at least one band with
high probability by tuning the proper parameter of b and r.

Thirdly, A trie structure is built for the strings in each bucket in the third
step (line 12), and the similar string pairs within the threshold β are evaluated
on the strings falling into the bucket by the Trie-Traversal algorithms proposed
in [4] (line 13).

Hashed-Join: Approximate String Similarity Join with Hashing 225

Table 1. Statistics of the sampled datasets

Dataset |S| Max len Min len Avg len

DBLP Title 5885 163 3 58.14
DBLP TA 7040 284 8 81.89
UniProt 2578 1882 5 367.70

Finally, the similarity pairs in the buckets of each band are merged together
and returned (lines 14–15).

5 Experiments

5.1 Experiment Setup

Algorithms are implemented in Java SDK1.6, and the computer is configured
with Intel duo core E6550 2.33GHz CPU, 4G main memory and Ubuntu 10.04.

In our implementation, filtering and pruning techniques proposed in [4] are
not take into consideration in our implementation. The default of q is set to 2
and b and r is set to 1 and 3 respectively, and the default bucket number M is
20. Datasets used for the experimental evaluation are described in the following.

DBLP1 is widely used in computer science fields as the benchmark. We
extract the dataset into two: one is consisted of the paper titles, denoted as
DBLP Title; the other includes the title and the author names of the paper,
denoted as DBLP TA.

UniProt2 is a protein sequence database, which is widely used for sequence
alignments, retrieval et al. We sampled the string sets randomly, the length
distribution and the statistical information of the sampled dataset is shown in
Table 1.

5.2 Efficiency

In this section, the Trie-Traversal algorithm [4] and All-Pair-Ed [14] are used for
the performance comparison. Figure 6 illustrates the performance comparison
with Trie-Join and All-Pair-Ed with different Min-Hashing parameters for the
string edit distance threshold β varying from 1 to 3.

The performance comparison in Fig. 6 shows that, with the increasing of the
threshold β , the time cost of Trie-Join increases much faster. When β is 3, our
approach just takes about 50 %–70 % time of Trie-Join. With the increase of the
hash function number in each band, the performance increases a little, because
with the increasing of r, the probability of the strings hashed into the same
bucket decreases. From the comparison result, we can see that both Trie-Join
and our approach outperform the All-Pair-Ed on the datasets except the UniProt
dataset. This is because that Trie-Join excels at short strings and the length of
the UniProt dataset is 367, which is much longer.
1 http://www.informatik.uni-trier.de/∞ley/db/
2 http://www.uniprot.org/

http://www.informatik.uni-trier.de/~ley/db/
http://www.uniprot.org/

226 P. Yuan et al.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1 2 3

T
im

e(
s)

*1
03

τ

Trie-Join
b=1,r=3
b=1,r=2

All-Pair-ED

(a) DBLP TA Dataset

 0

 10

 20

 30

 40

 50

 1 2 3

T
im

e(
s)

*1
03

τ

Trie-Join
b=1,r=3
b=1,r=2

All-Pair-ED

(b) UniProt Dataset

 0
 0.3
 0.6
 0.9
 1.2
 1.5
 1.8
 2.1

 1 2 3

T
im

e(
s)

*1
03

τ

Trie-Join
b=1,r=3
b=1,r=2

All-Pair-ED

(c) DBLP Title Dataset

Fig. 6. Performance comparison

Table 2. Number of similar pairs with different τ

Dataset τ = 1 τ = 2 τ = 3

DBLP Title 1 3 7
DBLP TA 3 6 9
UniProt 1 252 402

From the above performance comparison experiment, conclusions can be
drawn that: (1) performance improvement against Trie-Join with the increasing
of the edit distance threshold; (2) As the Min-Hashing parameter r increases, the
efficiency of our approach also increases. However, the join quality will decrease,
because the bigger of r, the less of the candidates in the collision bucket; (3)
All-Pair-Ed is more effective for long string set, which is illustrated by Fig. 6(b).

5.3 Quality

The similarity join quality results are reported in this section. Within each
bucket, the recall measure is used and is defined as recall = |retrieved⋂ relevant|

|relevant| ,

where the relevant refer to the string pairs in the datasets that satisfying the
string edit distance threshold, i.e., relevant = {< si, sj > |si, sj ∈ S, i <
j, disted(si, sj) ≤ β}; and the retrieved represents the retrieved result using
our approach.

Table 2 summarizes the similar string pairs with different string edit distance
β varying from 1 to 3. The recall ratio is demonstrated in Fig. 7.

Figure 7 reveals the results of join quality with recall ratio metric. These
results demonstrate that (1) with the increasing of the edit distance threshold
β , the recall ratio may reduce slightly. The reason is that strings within the edit
distance threshold may be fallen into different buckets; (2) with the increase
of the parameter r of Min-Hashing, the recall ratio may decrease, the Fig. 7(c)
shows this obviously. The reason of recall ratio dropping is that with the increase
of the parameters r, the false negative may increase, thus the similar string pair
may be filtered with the LSH.

However, the join quality in Fig. 7(c) looks different with others when r = 3.
The reason is that in DBLP Title dataset, there is only 1 similar string pair

Hashed-Join: Approximate String Similarity Join with Hashing 227

 0.8

 0.9

 1

 1.1

 1.2

 1 2 3

R
ec

al
l R

at
io

τ

b=1,r=3
b=1,r=2

(a) DBLP TA Dataset

 0.8

 0.9

 1

 1.1

 1 2 3

R
ec

al
l R

at
io

τ

b=1,r=3
b=1,r=2

(b) UniProt Dataset

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 3

R
ec

al
l R

at
io

τ

b=1,r=3
b=1,r=2

(c) DBLP Title Dataset

Fig. 7. Join quality with r on datasets

Table 3. Statics of the sampling datasets for scalability

Dataset |S| Max len Min len Avg len

TA1 2321 238 10 66.233
TA2 4666 284 8 79.924
TA3 7035 284 8 81.892
TA4 14287 320 7 84.911
TA5 24314 432 7 84.076

in the dataset when threshold β is 1, which is illustrate in Table 2. In addition,
when r = 3, it may be missed with high probability, as a result, the recall ration
is 0 if the similar pair missed. When the string edit distance threshold β is equal
to 2 and 3, there are 3 and 7 similar string pairs respectively in the dataset, and
the recall can be increased in the experimental result. In consequence, the recall
ratio looks different with Fig. 7(b).

Of course, the quality increases by reducing the parameter r. Nevertheless,
reducing the parameter r can increase the probability of non-similar strings as
well, i.e., increasing the false positive. When the string edit distance threshold β
increases, by reducing the parameter r and increasing b, the result quality can
be tuned.

5.4 Scalability

For the scalability, the default parameters of Min-Hashing LSH b, r and bucket
number M are set to 1, 3 and 100 respectively, and 5 groups of datasets are
sampled randomly from DBLP with title and author, which are denoted as TAi,
i = 1, . . . , 5. Table 3 outlines the statistical information of the 5 sampled datasets.

Figure 8(a) demonstrates the scalability on the datasets with different string
numbers. Experimental result show that, with the increasing of the size of the
dataset, our approach scales well. Figure 8(b) indicates that our approach scales
better, especially when the string edit distance threshold becomes larger. For
example, when β = 5, it takes less than 20 % time cost of Trie-Join.

228 P. Yuan et al.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3

T
im

e(
s)

*1
02

τ

TA1
TA2
TA3
TA4
TA5

(a) Scalability Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5

T
im

e(
s)

*1
02

τ

Trie-Join
Hashed-Join

(b) Scalability Comparison

Fig. 8. Scalability evaluation

6 Related Work

String similarity join has been studied extensively in database fields [2,10]. S.
Chaudhuri et al. [2] introduce the similarity join for data cleaning and imple-
ment it as a primitive operator SSJoin in the relation database and the k-prefix
filter based on the pigeon hole principle is proposed. Ed-Join [15] explores the
mismatching q-gram for the edit distance constraint: content mismatching and
location mismatching. All-Pair-Ed [14] is following filter-and-refine framework,
which is based on the prefix filtering and follows an inverted list nested join
style for the string similarity join. For each string, the first q ∗ β + 1 q-grams are
selected as the prefix, strings share q-gram with the prefix are verified by string
edit distance evaluation. Hash-based filter-and-refine framework is employed in
Spatio-Temporal indoor data tracking [16]. String similarity joins with synonyms
is proposed [17], which is based on the term expansion framework.

Based the limitation of prefix filtering methods, [18] propose a cost model
for selecting prefix. Top-k string similarity search with edit-distance constraints
is proposed [19], which improves the pruning effective by using pivotal entries.

Recently, tree index based are proposed for string similarity join [4]. Z. Zhang
et al. [20] propose the Bed-tree with the edit distance constraint for string search.
The Trie-Join [4] introduces the trie structure for prefix pruning, which benefits
the string similarity join with edit distance constraint on short strings.

7 Conclusion and Future Work

In this paper, an approximate string similarity join using the Min-Hashing based
LSH and the Trie-Join techniques is studied. Empirical study on real datasets
indicates that our approach can effectively processing string join with high
quality and better performance. As a future work, parallel evaluating will be
considered.

Acknowledgments. This work was supported by the 973 project(No. 2010CB328106),
NSFC grant (No. 61033007 and 61170085).

Hashed-Join: Approximate String Similarity Join with Hashing 229

References

1. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity extraction
with edit distance constraints. In: SIGMOD, pp. 759–770 (2009)

2. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: ICDE, p. 5 (2006)

3. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate
detection. In: WWW, pp. 131–140 (2008)

4. Wang, J., Feng, J., Li, G.: Trie-join: efficient trie-based string similarity joins with
edit distance constraints. VLDB 1(1), 933–944 (2010)

5. Siragusa, E., Weese, D., Knut R.: Scalable string similarity search/join with
approximate seeds and multiple backtracking. In: EDBT/ICDT, pp. 370–374. ACM
(2013)

6. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. JACM 21(1),
168–173 (1974)

7. Gouda, K., Rashad, M.: Prejoin: an efficient trie-based string similarity join algo-
rithm. In: INFOS, pp. DE–37. IEEE (2012)

8. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC, pp. 604–613 (1998)

9. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10, 707–710 (1966)

10. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S.,
Srivastava, D.: Approximate string joins in a database (almost) for free. In: VLDB,
pp. 491–500 (2001)

11. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of Compression and Complexity of Sequences, pp. 21–29 (1997)

12. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In: VLDB, pp. 950–961 (2007)

13. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, New York (2013)

14. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW,
pp. 131–140 (2007)

15. Xiao, C., Wang, W., Lin, X.: Ed-Join: an efficient algorithm for similarity joins
with edit distance constraints. VLDB 1(1), 933–944 (2008)

16. Lu, H., Yang, B., Jensen, C.S.: Spatio-temporal joins on symbolic indoor tracking
data. In: ICDE, pp. 816–827 (2011)

17. Lu, J., Lin, C., Wang, W., Li, C., Wang, H.: String similarity measures and joins
with synonyms. In: SIGMOD (2013)

18. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering? an adaptive framework
for similarity join and search. In: SIGMOD, pp. 85–96 (2012)

19. Deng, D., Li, G., Feng, J., Li, W.-S.: Top-k string similarity search with edit-
distance constraints. In: ICDE, pp. 925–936. ICDE (2013)

20. Zhang, Z., Hadjieleftheriou, M., Ooi, B.C., Srivastava, D.: Bed-tree: an all-purpose
index structure for string similarity search based on edit distance. In: SIGMOD,
pp. 915–926 (2010)

Minimizing Explanations of Why-Not Questions

Chuanyu Zong(B), Bin Wang, Jing Sun, and Xiaochun Yang

College of Information Science and Engineering,
Northeastern University, Shenyang, China

{zongchuanyu,sunjing}@research.neu.edu.cn,
{yangxc,binwang}@mail.neu.edu.cn

Abstract. The problem of minimizing explanations of why-not ques-
tions exists in many scenarios such as query understanding and debug-
ging. Several explaining techniques have been developed to minimize
explanations of why-not questions, however, these techniques returned
lots of bad explanations, including unreasonable explanations, incorrect
explanations. Moreover, some of them returned all the possible expla-
nations which waste time and space. To address this problem better,
we propose a novel explaining approach to avoid such unexpected expla-
nations and we guarantee that the generated explanations are correct and
minimum. We propose one algorithm to address two situations: one for
query statement contains a relation copy, and the other for query state-
ment contains a query cycle. Experimental results demonstrate that our
approach can efficiently get minimum explanations of why-not questions.

Keywords: Why-not questions · Minimum explanations · Data quality

1 Introduction

With the development of information extraction (IE) [2], why-not questions have
received a growing attention in the hope of improving the usability of extracted
database. Although IE can help users to find required information data quickly,
data uncertainty is brought at the same time. Many users may ask why the
answer they expected is not in the query results which called “why-not” [3] ques-
tion, and we also call the why-not answer as missing answer. Therefore, it is
becoming more and more important to answer why-not questions for users. Data
provenance [1,4] records the origins and the evolution history of data. Many
provenance technologies can explain why the answers are in the query results.
But they cannot answer why the answers are not in the query results.

Motivation. To explain why-not questions, literature [10] has proposed a min-
imize explaining model based on value-modification. However, such technique
has some disadvantages as illustrated by the example below.

The work is partially supported by the National Basic Research Program of China
(973 Program) (No. 2012CB316201), the National Natural Science Foundation of
China (Nos. 61322208, 61272178, 61129002), and the Doctoral Fund of Ministry of
Education of China (No. 20110042110028).

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 230–242, 2014.
DOI: 10.1007/978-3-662-43984-5 17, c© Springer-Verlag Berlin Heidelberg 2014

Minimizing Explanations of Why-Not Questions 231

Fig. 1. Extracted examples of different relations.

Example 1. Suppose that an IE application extracts partial IT company infor-
mation for employees, work groups, and projects. And four extracted relations
are shown in Fig. 1. Figure 1(a) shows a relation storing the names and ages of
the employees and groups they belong to Fig. 1(b) shows a relation storing the
names of the groups and projects they take part in Fig. 1(c) shows a relation stor-
ing the names and project managers of the projects. Figure 1(d) shows a relation
that records the number of employees who belong to the same group. The value
of Count.GNUM aggregately depends on attribute Employee.GID. And the attributes
Employee.EID, Group.GID, Group.GNAME, Group.PID, Project.PID, Project.PNAME,
and Count.GID are chosen as trusted attributes, whose values cannot be modified
in the explanation.

By executing the following query Q, the IE application can extract the names
of employees who are doing the project “similarity join.”

Select e.ENAME from Employee e, Group g, Project p

Where p.PNAME=‘Similarity Join’ and g.PID=p.PID and e.GID=g.GID.

The answer to Q is James. The user may be confused that why answer
Gordana does not appear in the query results, who belongs to the same work
group with James.

Table 1 shows two explanations. Using explaining approach in [7], we can get
explanation ex1, which modifies James in tuple e2 to Gordana, then Gordana will
appear in the query results. However, this explanation is unreasonable and incor-
rect, because the modification misses the existed answer James. Using explaining
model in [10], we get explanation ex2, which modifies G4 to G2 in tuple e4, and
does cascade modification from 1 to 0 in tuple c4, and from 1 to 2 in tuple c2.
The explaining model in [10] can explain this why-not question based on the
query Q, however, it does not work for the following two queries Q1 and Q2.

Consider query Q1 that a user wants to find the names of the employees who
are doing the project managed by “James.”

Select e1.ENAME from Employee e, Employee e1, Group g, Project p

Where e.ENAME=‘James’ and p.EID=e.EID and g.PID=p.PID and e1.GID=g.GID.

Table 1. Possible explanations for Gordana.

EID ENAME AGE GID GID GNAME PID PID PNAME EID GID GNUM

ex1 E2 James → Gordana 29 G2 G2 Sales P2 P2 Similarity Join E2 G4 1 → 0

ex2 E4 Gordana 27 G4 → G2 G2 Sales P2 P2 Similarity Join E2 G2 1 → 2

232 C. Zong et al.

We can get query results James and Gordana by executing Q1. The user
may be confused that why Adballah does not appear in the query result. How-
ever, this query statement contains one relation copy of the relation Employee.
We cannot use existed approaches explain why-not Adballah.

Moreover, by executing query Q2, one can know the age of “James” who is
a project manager to lead a certain project, and the group he belongs to is also
doing the same project.

Select distinct e.Age from Employee e, Group g, Project p

Where e.ENAME=‘James’ and p.EID=e.EID and g.PID=p.PID and e.GID=g.GID.

Query Q2 returns 29 but the user may want to know why 28 does not appear
in the result. Checking Q2, the query predicates p.EID=e.EID, g.PID=p.PID
and e.GID=g.GID constitute a cycle. Using existed explaining approaches cannot
explain this why-not question with cycle join.

Challenges and Contributions. In this work, one challenge is to guarantee
that the minimum explanations are correct. Moreover, the other challenge is to
quickly get minimum explanations of why-not questions when query statement
contains a relation copy or a query cycle.

We propose a novel technique for minimizing explanations of why-not ques-
tions. Our contributions can be summarized as follows. (i) We present a new
approach to return correct and minimum explanations. (ii) We overcome those
disadvantages of existed explaining models. (iii) We propose one algorithm to get
minimum explanations for why-not questions when query statement contains a
relation copy or a query cycle. (iv) We evaluate our algorithm using experiments
in real world data set and synthetic data set.

The rest of the paper is organized as follows. We formally defines our problem
and presents some related definitions in Sect. 2. In Sect. 3, we present our mini-
mizing explanation algorithm when query statement contains a relation copy or a
query cycle. We evaluate our explaining approach in Sect. 4. Section 5 concludes
the paper.

Related Work. There have already existed some approaches for explaining
why-not questions. For example, [7] explains why-not questions by telling users
how to modify the original data, which related to our work. However, our work
will return correct and minimum explanations for why-not questions. Literature
[3] explains why-not questions by identifying the “culprit” operations which
exclude the why-not answer in the query statement. Artemis [6] presents users
what kinds of tuples should be inserted into the original database to explain why-
not questions. This model and our work are both modifying the original database.
But it bring up new data, while we only modify those values which already
existed in the original database. Literature [5,8,9] explains why-not questions
based on query refinement. They generates a refined query to make the new
query results include both the original query answers and the why-not answers.
Literature [5] addresses top-k queries, and [8] addresses reverse skyline queries.
In [10] we propose a minimum explaining model to explain why-not questions

Minimizing Explanations of Why-Not Questions 233

that also require to find the minimum explanations. However, we do not consider
the issue that a query statement might contain a relation copy or a query cycle.

2 Preliminaries

We use the same explanation model in [10], if an attribute is a trusted attribute,
the value of this attribute cannot be modified to explain why-not questions.

We continue to separate the original cell (we call a attribute value as a cell)
from the modified cell by using an arrow (e.g. v→v∞). We only consider the equi-
join between two relations T1 and T2 like T1.a1 = T2.a2, and the attributes a1

and a2 should satisfy referential integrity constraint.
Given an explanation ex, if some modifications in ex violate an aggregation

constraint α or a functional dependency f , the other cells involved in α or f must
be modified. We call those modifications cascade modifications. For example,
consider explanation ex2 in Table 1 and relations in Fig. 1, we modify G4 to G2
in tuple e4 that would trigger two cascade modifications modifying the value of
Count.GNUM to 0 in tuple c4 and to 2 in tuple c2. Cascade modifications can help to
improve the quality of minimizing explanations of why-not questions. We need
to attach those cascade modified tuples to the end of the involved explanation
to get minimum explanations.

Problem Definition. Given an extracted database, a query Q, and why-not
w, the problem of minimizing explanations of why-not w is to find explanations
such that the number of modified cells in the explanation is minimum among all
the explanations for w.

For example, the number of modified cells in the explanation ex2 is 3 as
shown Table 1. The problem of minimizing explanations of why-not questions is
to quickly find the minimum explanation ex2 of why-not Gordana.

3 A Minimizing Explanations Algorithm

To get minimum explanations of why-not questions, we need to construct a
why-not query template Q∞ such that based on Q∞, its corresponding results only
consists of answer to the user specified query Q and the why-not questions.

3.1 Why-Not Query Templates

According to the observation in [10], query predicates and why-not questions
can be used as constraints to formalize the why-not query template.

Definition 1. Given a user specified query Q and a why-not question v, a query
template is a virtual tuple R(o1, o2, . . . , on), where R is the relation in Q and
each oi stands for a attribute value of the i-th attribute in R. Value oi could be
a predicate value in Q, the why-not question v, a variable, or a special variable
satisfying a boolean expression.

234 C. Zong et al.

Table 2. Query templates specified by both Q and why-not questions.

Query template

qt1 Employee(X1, Gordana, X2, J1)
qt2 Group(J1, X3, J2)
qt3 Project(J2, Similarity Join, X4)

Consider query Q in Example 1 and the why-not question Gordana, its corre-
sponding query templates are shown in Table 2. Gordana is the why-not question,
Similarity Join is the predicate value in Q, variable J1 and J2 represents join
attribute value in Q, and variables Xi represents other attribute values in the
answers to the query template.

In order to get the answers to the query template, we need to modify tuples
in underlying relations and map modified tuples to the query template. Then we
get a minimum explanation by finding a mapping that the number of modified
attribute values is minimum.

For example, consider query Q in Example 1 and why-not question Gordana.
We can map the tuple Project(P2, Similarity Join, E2) to the query template
Project(J2, Similarity Join, X4) and map the tuple Group(G2, Sales, P2) to the
query template Group(J1, X3, J2). In order to get an explanation (an answer to
the query templates in Table 2), we need to modify a tuple e4 in Employee (see
Fig. 1) and map the modified tuple to the query template Employee(X1, Gordana,
X2, J1). So the modified tuple is Employee(E2, Gordana, 27, G4→G2).

In our work, we define tuple dissimilarity as the number of different cells
between one tuple in one relation and modified tuple matching to the query
template of this tuple. For example, if J1 equals to G2 and J2 equals to P2,
the tuple dissimilarity of e4 is 3 including two cascade modifications, the tuple
dissimilarity of g2 is 0, and the tuple dissimilarity of p2 is 0.

To avoid missing the existed query results and improve the quality of mini-
mizing explanations, we have to confirm those tuples in the relations which can
be used to generate the explanations of why-not questions.

Consider a tuple t contributes to the query result. If the tuple dissimilarity
of t is not equal to 0, when we use t to explain the why-not questions, the cells
in t which are different from their corresponding values in their query template
must be modified to the same. However, modifying those different cells will result
in missing existed answer. Therefore, t cannot be used to explain the why-not
questions.

For example, consider query Q and why-not Gordana, tuple e2 is contributes
to generate query result James. The tuple dissimilarity of e2 is greater than or
equal to 1 no matter what join attribute value that J1 can be determined. If we
want to use e2 to generate explanations for Gordana, we need to modify James
in e2 to Gordana. However, this modification would lead to miss existed query
result James.

Consider a trusted attribute ta, if the corresponding value of ta in the query
template is a constant cons, the value of ta which is not equivalent to cons

Minimizing Explanations of Why-Not Questions 235

cannot be modified to cons to explain the why-not questions. Therefore we can
only use the tuples whose value of ta are equivalent to cons to explain the why-
not questions.

In our work, we call those tuples whose tuple dissimilarity is the smallest
as the smTuples of the relation. Consider query Q and why-not Gordana, when
confirm J2 as P2 and J1 as G2, the smTuples in Employee discarding a2 (which is
contribute to existed query result), in Group and in Project are e4, g2, and p2,
respectively. Obviously the smTuples of one relation is constantly change with
the changing of its query template when the query template contains variables.

3.2 Minimum Explanation for Queries with Relation Copy

In this section, we discuss how to get the minimum explanations of why-not
questions when the query statement contains a relation copy.

Given two relations R1 and R2, if one attributes in R1 references to one
attributes in R2, the reference link of R1 and R2 is defined as R1 references to
R2, and the reference order between R1 and R2 is defined as R1 ≺ R2.

Considering query Q1 in Example 1, there exist one relation copy of relation
Employee. We need to rename this copy to distinguish between them because
they have different query templates, and we call this copy as CEmployee. We can
get the query templates for relations Employee, Group, Project, and CEmployee as
(J1, James, X1, X2), (J3, X3, J2), (J2, X4, J1), and (X5, Adballah, X6, J3),
respectively, according to Q1 and why-not Adballah. These query templates
contain variables, so we need to determine one relation’s query template firstly,
then we can determine the other relations’ query templates in terms of equi-join.

Because the reference links between these relations constitute a cycle and Q1

contains a relation copy, we cannot use the reference links to get an reference
order for confirming those variables in the query templates. However, we can get
an joining order according to the query statement.

We canfind relation Employee in terms of the query predicate e.ENAME=‘James’
firstly, then we can find Project, Group, and CEmployee orderly in terms of the query
predicates p.EID=e.EID, g.PID=p.PID, and e1.GID=g.GID.

We can determine those query templates according to the order (Employee,
Project, Group, CEmployee). If we determine the query template of Employee as
(E2, James, X1, X2), we can confirm the query templates of Project, Group, and
CEmployee as (P2, X4, E2), (G2, X3, P2), and (X5, Adballah, X6, G2), respectively.
While if we confirm the query template of Employee as (E5, James, X1, X2), we
can confirm the query templates of Project, Group, and CEmployee as (P4, X4,
E5), (G4, X3, P4), and (X5, Adballah, X6, G4), respectively.

To get the correct explanations for Adballah, the tuples in Employee and
CEmployee which are used to explain why-not Adballah should not be the same
tuples. The reason is that we could modify Adballah to James in tuple e3 and
join with tuple e3 in the process of explaining why-not Adballah, but this joining
is unreasonable which would generate incorrect explanation like mex1 as shown
in Table 3.

236 C. Zong et al.

Table 3. The minimum explanations for why-not question Adballah.

EID ENAME AGE GID GID GNAME PID PID PNAME EID EID ENAME AGE GID

mex1 E3 Adballah → James 30 G3 G3 Project P3 P3 Data Quality E3 E3 Adballah 30 G3

mex2 E2 James 29 G2 G3 Project P3 P3 Data Quality E3 → E2 E3 Adballah 30 G3

mex3 E5 James 28 G2 G3 Project P3 P3 Data Quality E3 → E5 E3 Adballah 30 G3

After confirming those variables in query templates, we can get smTuples
in relations Employee, Project, Group, and CEmployee to generate the minimum
explanations for Adballah like mex2 and mex3 as shown in Table 3.

3.3 Minimum Explanation for Queries with Cycle Join

In this section, we will address the problem of minimizing explanations of why-
not questions when the query statement contains a query cycle.

Wrong Cycle. For the same question that what are the names of employees
who are doing the project managed by James. Maybe someone answering this
question by executing the follow query Q1w :

Select e.ENAME From Employee e, Group g, Project p

where e.ENAME=‘James’ And p.EID=e.EID And g.PID=p.PID And e.GID=g.GID.

Checking the query Q1w , we can see that query predicates p.EID=e.EID,
g.PID=p.PID, and e.GID=g.GID constitute a cycle. However, this cycle is a wrong
cycle, because it makes the query only return the query answer James, but
missing the query answer Adballah. We need to use a relation copy to replace
this wrong cycle to meet the user’s query request, that is to say, we need to use
query Q1 to answer the user’s question mentioned in Example 1.

Necessary Cycle. According to the query Q2 and why-not 28, we can get the
query templates of Employee, Group, and Project as (J1, James, 28, J3), (J3, X1,
J2), and (J2, X2, J1), respectively. We cannot get an order to determine those
variables in query templates by using traditional approaches. This is because
their reference links constitute a cycle and the query statement also contains a
cycle, we cannot get a start relation.

We can delete one reference link to get one reference order, which can also be
used to as an joining order. Those variables can be confirmed based on the order,
and partial confirming results are shown in Table 4. Then the minimum expla-
nations for why-not question Adballah can be generated as shown in Table 5.
However, we can see that the minimum explanations generated based on different
orders are the same. The reason is that all the possible tuple joining combina-
tions are need to be considered no matter based on which order. They are just
different in the joining orders, but the overall joining operations are the same
for the same why-not question. Therefore, we only need to explain the why-not
questions based on one joining order.

Minimizing Explanations of Why-Not Questions 237

Table 4. Confirm those variables in query templates for Q2.

Delete reference link Reference order Query templates

Employee Group Project

Group to Employee Employee≺Project≺Group (E5, James, 28, G3) (G3, X1, P4) (P4, X2, E5)

Employee to Project Project≺Group≺Employee (E1, James, 28, G1) (G1, X1, P1) (P1, X2, E1)

(E5, James, 28, G4) (G4, X1, P4) (P4, X2, E5)

Project to Group Group≺Employee≺Project (E1, James, 28, G1) (G1, X1, P1 (P1, X2, E1)

(E5, James, 28, G3) (G3, X1, P3) (P3, X2, E5)

(E5, James, 28, G4) (G4, X1, P4) (P4, X2, E5)

Table 5. The minimizing explanations for why-not question 28.

Reference order EID ENAME AGE GID GID GNAME PID PID PNAME EID

Employee≺Project≺Group E1 Kehard → James 28 G1 G1 R*D P1 P1 Provenance E1

E5 James 28 G3 G3 Project P3 P3 Data Quality E3 → E5

Project≺Group≺Employee E1 Kehard → James 28 G1 G1 R*D P1 P1 Provenance E1

E5 James 28 G3 G3 Project P3 P3 Data Quality E3 → E5

Group≺Employee≺Project E1 Kehard → James 28 G1 G1 R*D P1 P1 Provenance E1

E5 James 28 G3 G3 Project P3 P3 Data Quality E3 → E5

The biggest difference is that a certain relation need to be joined twice
between this situation with the tradition query operation. For example, following
the query statement and query semantic, the relation Employee need to be joined
twice. We can get relation Employee firstly, then make a joining with Project and
Group orderly. At last, make a joining with Employee again. One joining order
can be got as Employee, Project, Group, Employee.

Algorithm 1: MinEx-CopyCycle
Input: The query Q, database D, why-not w and trusted attributes
Output: A minimizing explanation set E

1 Generate the query template for each query relation R;
2 Rset ← process contributing tuples and trusted attributes in R;
3 OSet ← get one joining order for the query relations;
4 while OSet is not empty do
5 Qtset ← get a relation R and generate all the possible query templates of R;
6 if R is in Pset then
7 Rset ← get the smTuples of R from Eset

8 while Qtset is not empty do
9 Emp ← get one query template and generate the smTuples from Rset ;

10 Emp ← modify smTuples according to the query template;
11 Emp ← attach cascade modifications tuples to Emp ;

12 Add Emp to Eset and add R to Pset ;

13 Exset ← make joins between smTuples in Eset;
14 E ← process Exset to generate the minimal explanations ;
15 return E;

In a word, Algorithm 1 can get minimum explanations when the query state-
ment contains a relation copy or a query cycle.

Algorithm 1 generates the query template for each query relation R firstly
(line 1). Then generates Rset by processing the contributing tuples to existed
answers and trusted attributes in R (line 2). OSet is generated by getting one
joining order for relations in Q (line 3). We continuously get one relation in OSet

238 C. Zong et al.

and generate Qtset by getting all the possible query templates based on equi-join
(line 5). We get all the smTuples in Rset and modify them based on the query
template in Qtset, if R has been manipulated, the Rset should be got from Eset,
and we process cascade modifications and attach them to involved smTuples at
the same time (lines 7-11). We add modified smTuples to Eset and manipulated
relation to Pset (line 12). We do the join operations between smTuples of each
relation in Eset (line 13). Finally, we compare the number of modified cells in
each tuple in Exset to generate the minimum explanation set E (line 14).

In the process of getting the smTuples of relations in terms of the joining
order, if R is the first relation, we need to consider all the tuples in R as its
smTuples. If R is neither the first nor the last relation, R need to join with
two relations. To improve efficiency, for the same left joining attribute value and
right joining attribute value in one tuple of R, we only get the tuples whose
tuple dissimilarity is the smallest as its smTuples. If R is the last relation, for
the same right joining attributes value, we only need to get those tuples whose
tuple dissimilarity is the smallest as its smTuples.

At the same time, we record the tuple dissimilarity of every smTuples of
relations. When we finish a joining between relations to generate a explanation,
we sum the accumulative tuple dissimilarity as the number of modified cells in
this explanation. Finally, we can get the minimum explanations.

4 Experiments

Experiment Setup. We conducted the experiments on two data sets, including
Synthetic data and DBLP data (see Table 6).

• Synthetic: We used an extension of the relations shown in Fig. 1, which included
2500 Employee tuples, 10 Group tuples, 10 Project tuples, and 10 Count tuples,
respectively. We designed 3 queries Q1s − Q3s and 3 corresponding why-not
questions.

• DBLP: The DBLP data was extracted from DBLP Bibliography. It contains
three relations Author, Paper, and Cooperation, including 2500 Author, Paper

tuples, and 50 Cooperation tuples, respectively. We designed 3 queries Q1d −
Q3d and 3 corresponding why-not questions.

The algorithm was implemented using Java 1.7. Eclipse 4.3 was used as our
Java IDE tool. The experiments were run on a PC with an Intel 3.10 GHz Quad
Core CPU i5 and 8 GB memory with a 1 TB disk, running on a Windows 7 64-bit
operating system. And we use MySQL 5.6 as our DBMS.

As shown in Table 6, queries Q1s and Q1d are common queries, queries Q2s

and Q3s contain query cycles, and queries Q2d and Q3d contain relation copies.
Author2 is a copy of Author.

Comparison of explaining results with different data size. Table 7 shows
the number of modified cells and the quantity of minimizing explanations for
different queries when varying the number of tuples for Employee and Author

Minimizing Explanations of Why-Not Questions 239

Table 6. Different queries on synthetic data set and DBLP data set.

Data sets Qid Queries Why-not Questions

Synthetic Q1s γENAME(λPNAME=Similarity Join(Project) Fabrice Daumard
βα Group βα Employee)

Q3s γAge(λENAME=SamirPokhrel(Employee) 28
βα Group βα Employee)

Q3s γAge(λENAME=E.F.Codd(Employee) 25
βα Group βα Employee)

DBLP Q1d γANAME(λY EAR=1974(Paper) Markus Tresch
βα Cooperation βα Author)

Q2d γAuthor2.ANAME(λANAME=Rita Ley(Author) Linna Dong
βα Cooperation βα Author2)

Q3d γAuthor2.ANAME(λANAME=Kristina V uckovic Sara Librenjak
(Author) βα Cooperation βα Author2)

Table 7. Comparison of explanations for different queries.

Datasets #tuples Q1x Q2x Q3x
#modified cells quantity #modified cells quantity # modified cells quantity

Synthetic data 500 3 1 2 53 2 54

1000 3 1 2 105 2 91

1500 3 1 1 1 1 1

2000 3 1 1 1 1 1

2500 3 1 1 1 1 1

DBLP data 500 2 90 2 48 2 25

1000 2 90 2 48 2 25

1500 2 90 2 48 2 25

2000 2 90 2 48 2 50

2500 2 90 2 48 2 50

from 500 to 2500. Taking queries Q1s as instance, the explaining results are the
same with the increasing of the number of relation tuples. The reason is that
the increased tuples does not contains corresponding values equal to why-not
answers. For example, the tuple whose value of attribute Employee.ENAME equal to
Fabrice Daumard has been existed and be used to generate a minimizing expla-
nation of Fabrice Daumard. None of the values of attribute Employee.ENAME in
increased tuples equal to Fabrice Daumard. Therefore, the minimizing explain-
ing results have no changes. However, for the queries Q2s and Q3d , the quantity
of minimizing explanations are growing with the increasing of the number of
relation tuples. The reason is that the tuples which can be used to generate
minimizing explanations is growing. The number of modified cells and quantity
may also decrease when the increased tuples contain corresponding values equal
to why-not answers like Q2s and Q3s , the details can be seen in Table 7.

Figure 2 shows the performance of our algorithm for different queries when
increasing the number of tuples. Figure 2(a) shows the running time is very
different for different queries. One reason is that the joining orders are different,
which result in the number of tuple joining operations need to be finished is

240 C. Zong et al.

10

102

103

104

105

500 1000 1500 2000 2500
R

un
ni

ng
 ti

m
e

(m
s)

Number of Employee tuples

Q1s
Q2s
Q3s

(a) Synthetic Data.

10

102

103

104

105

106

500 1000 1500 2000 2500

R
un

ni
ng

 ti
m

e
(m

s)

Number of Author tuples

Q1d
Q2d
Q3d

(b) DBLP Data.

Fig. 2. Comparison of running time under different settings.

 1

 2

 3

 4

 5

Q1s Q2s Q3s

M
-v

al
ue

Different queries

Normal
Ttust E.ENAME

 1

 2

 3

 4

 5

Q1s Q2s Q3s

M
-v

al
ue

Different queries

Trust P.EID
NotTrust G.PID

(a) The number of modified cells.

 0

 1

 2

Q1s Q2s Q3s

N
um

be
r o

f e
xp

la
na

tio
ns

Different Queries

Normal
Trust E.ENAME

 0

 1

 2

Q1s Q2s Q3s

N
um

be
r o

f e
xp

la
na

tio
ns

Different Queries

Trust P.EID
NotTrust G.PID

(b) The number of explanations.

10

102

103

104

105

106

Q1s Q2s Q3s

R
un

ni
ng

 T
im

es
 (m

s)

Different queries

Normal
Trust E.ENAME

10

102

103

104

105

106

Q1s Q2s Q3s

R
un

ni
ng

 T
im

es
 (m

s)

Different queries

Trust P.EID
NotTrust G.PID

(c) Running time.

Fig. 3. Explanations under different trusted attributes for synthetic data.

Fig. 4. Explanations under different trusted attributes for DBLP data.

different. However, for the similar queries, the changes of running time is similar
such as queries Q2s and Q3s .

Figure 2(a) shows the running time for queries Q1s -Q3s is growing slowly
with the increasing of relation tuples. As shown in Fig. 2(b), compare to the
change of the running time for query Q1d , the running time for query Q2d and
Q3d change significantly, the principle reason is that they contain a relation copy
of the growing relation tuples, which equal to two relation tuples are growing.

Effect of different trust attributes. The minimizing explanations of why-not
questions are also affected by choosing different trusted attributes.

For the Synthetic data, the trusted attributes are chosen as the same with
Example 1. For the DBLP data, we chose the attributes Author.AID and Paper.PID

as the trusted attributes.
In Figs. 3 and 4, we use P, E, G, C, and A to express Project, Employee,

Group, Cooperation, and Author, respectively. In Fig. 3, the number of modified
cells for Q1s is 3 when we no more trusting any attributes or trust Employee.ENAME
or trust Project.EID. And we can get the number of modified cells is 1 when we no
longer trusting Group.PID, which means the number of modified cells is 1 modify
the values of Group.PID. As shown in Fig. 3(b), the number of explanations has
no change for query Q1s . The running time is decreasing when we trust more

Minimizing Explanations of Why-Not Questions 241

attributes, but increasing when we no longer trusting some attributes as shown
Fig. 3(c).

For query Q2s which contains a query cycle, we cannot get any explanations
for 28 when we trust Project.EID as shown in Fig. 3(a) and (b). They are also
show that we can only modify the values of Project.EID to explain why-not
28. Figure 3(c) shows the running time changes obvious when we trusting dif-
ferent attributes for query Q2s and Q3s . The principle reason is that the more
attributes we trust, the less the tuples can be used to explain why-not ques-
tions. Therefore, the higher the quality of extracted data, the faster the speed
of getting minimizing explanations of why-not questions.

For query Q3d which contains a relation copy, we cannot get any explanations
when we trusting Author.ANAME as shown in Fig. 4(a), and the number of explana-
tions is decreasing when we trust Cooperation.AID1 as shown in Fig. 4(b). This is
because the minimizing explanations modify both the values of Author.ANAME and
Cooperation.AID1 which involved in query predicates. The explanation results
changes nothing when we trust Cooperation.AID2 because the minimizing expla-
nations don’t modify the values of Cooperation.AID2. As the same reason with
query Q2s , the running time changes obvious when we choose to trust different
quantity of attributes as shown in Fig. 4(c).

5 Conclusion

We propose an algorithm for explaining why-not questions when its related query
contains relation copies or query cycles. Our experiments show that our approach
can effectively return correct minimum explanations for the why-not questions.
As parts of future work, we plan to study minimizing explanations of why-not
questions, including a faster and effective explaining algorithms.

References

1. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: a characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
p. 316. Springer, Heidelberg (2000)

2. Chang, C., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. In: TKDE, pp. 1411–1428 (2006)

3. Chapman, A., Jagadish, H.: Why not ’?’. In: SIGMOD, pp. 523–534 (2009)
4. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how and

where. In: Foundations and Trends in Databases, pp. 379–474 (2009)
5. He, Z., Lo, E.: Answering why-not questions on top-k queris. In: ICDE, pp. 750–761

(2012)
6. Herschel, M., Hernández, M.A.: Explaining missing answers to spjua queries. In:

PVLDB, pp. 185–196 (2010)
7. Huang, J., Chen, T., Doan, A., Naughton, J.F.: On the provenance of non-answers

to queries over extracted data. In: PVLDB, pp. 736–747 (2008)
8. Islam, M.S., Zhou, R., Liu, C.: On answering why-not questions in reverse skyline

queries. In: ICDE, pp. 973–984 (2013)

242 C. Zong et al.

9. Tran, Q.T., Chan, C.Y.: How to conquer why-not questions. In: SIGMOD, pp.
15–26 (2010)

10. Zong, C., Yang, X., Wang, B., Zhang, J.: Minimizing explanations for missing
answers to queries on databases. In: Meng, W., Feng, L., Bressan, S., Winiwarter,
W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 254–268. Springer,
Heidelberg (2013)

HadoopM: A Message-Enabled Data
Processing System on Large Clusters

Wei Pan1,2(B), Zhanhuai Li1,2, Bo Suo1,2, and Zhuo Wang1,2

1 School of Computer Science and Technology,
Northwestern Polytechnical University, Xi’an 710072, China

2 Guangdong Key Laboratory of Popular High Performance Computers,
Shenzhen Key Laboratory of Service Computing and Applications,

Shen’zhen 518060, China
panwei1002@nwpu.edu.cn

Abstract. MapReduce as a popular platform for solving embarrassingly
parallel problems has been extensively used on large commodity clusters.
However constrained by embarrassingly parallel assumption, some com-
putation patterns are not easy to express in MapReduce, and in some
cases performance and efficiency can not be achieved without communi-
cation between tasks, such as iteration and map phase filtration from a
holistic perspective. This paper presents HadoopM, a message-enhanced
version of Hadoop MapReduce architecture that it breaks the key embar-
rassingly parallel assumption and can execute the MR jobs in a more
efficient and elegant way. HadoopM allows user-defined message to be
passed between mappers or reducers by two message passing mecha-
nisms: lightweight and heavyweight, and asynchronous and synchronous
message passing are both supported by system. HadoopM retains the
scalability and fault-tolerance of Hadoop and is binary compatible with
Hadoop Mapreduce. Our experimental results demonstrate the superi-
ority of modified version over original Hadoop MapReduce on a range
of algorithms. In some cases, such as PageRank and Skyline, HadoopM
significantly boosts the job performance up to 50 %.

1 Introduction

As one of the most representative distributed parallel computing paradigm ini-
tially proposed by Google, MapReduce [4] is powerful “hammer” for efficiently
processing very large amounts of data, but would every problem looks like a
nail? As a matter of fact, parallelism can be expressed in a variety of ways, each
of which is applicable to only a subset of programs. Like any other parallel pro-
gramming models, MapReduce can be applied for a specific range of issues which
is known as embarrassingly parallel problem. Embarrassingly parallel problem

This work is sponsored by the National Basic Research Program (973 program)
of China (No. 2012CB316203), the National Natural Science Foundation of China
(Nos. 61033007, 61303037, 61332006), the National High Technology Research and
Development Program (863 Program) of China (No. 2012AA011004).

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 243–255, 2014.
DOI: 10.1007/978-3-662-43984-5 18, c© Springer-Verlag Berlin Heidelberg 2014

244 W. Pan et al.

is one for which little or no communication of results is required to separate the
job into a number of parallel tasks, as map tasks or reduce tasks in MapRe-
duce. As is well known, WordCount is one of such problem that can be broken
down into smaller independent sub-problems whose results can be aggregated to
produce the answer to the large or complex problem. The assumption of inde-
pendent tasks allows MapReduce to flexibly partition the inputs, determine the
execution order arbitrarily, and safely reschedule them in case of failures. View
from another angle, this key assumption limits MapReduce’s applicability and
efficiency to handle more diverse set of parallel applications. Because some com-
putation patterns are not easy to express in MapReduce without built-in support
for communication between map tasks or reducer tasks. Here are some typical
examples that aim to reveal the potential performance gain of job processing,
if MapReduce could take advantage of communication mechanism in map or
reduce inner-phase.

– Iteration is a common design pattern that can be seen in many data analy-
sis applications, including PageRank, clustering, and community discovery in
social network, in which data are processed repeated until the stopping criteria
are satisfied. If there dose exist the channel for intermediate results exchange
between the map tasks, the small quantities of loop-varying data between iter-
ations can be synced among map tasks, and a large amount of data that may
be unchanged during iterations will not have to be shuffled and re-loaded. As
a result, an unnecessarily high costs of I/O, network bandwidth, and CPU
resources can be avoided.

– Map-side pre-aggregation could help reduce the amount of intermediate results
that have to be shuffled from map task to reduce task, as we know Combiner
can fulfill this role in MapReduce. But without communication mechanism
among map tasks, the current MapReduce can only carries out local filtering
based on local view from individual map task. Thus, the data that can be
decreased in global view but not in local view will have to be transfered to
downstream. Obviously it is a time-wasting for reduce task to process these
data. If there is existing communication mechanism between map tasks, a uni-
versal context of all map tasks could be gained, and then the data that obvi-
ously do not match the requirements could be eliminated for query processing,
such as skyline, top-k and kNN.

The examples above indicates that inter-task message-passing is a new option
for improving performance of MapReduce and extending the applicability of
the model. Based on the insights from these examples, This paper presents a
modified MapReduce architecture (Sect. 3.1) in which a small amount of meta-
data (loop-varying data, aggregate results at local level, etc.) can be passed
between map tasks, as well as reduce tasks, and while preserving the program-
ming interfaces and fault tolerance models of native MapReduce frameworks. To
validate this design, we developed the HadoopM prototype, a message-enabled
version of Hadoop. Flexible message interface (Sect. 3.2) is provided for HadoopM
to process arbitrary user-defined messages. Meanwhile, lightweight and heavy-
weight message passing mechanisms (Sects. 3.3 and 3.4) are proposed to support

HadoopM: A Message-Enabled Data Processing System on Large Clusters 245

efficient implementation of algorithms. Furthermore, both synchronous and asyn-
chronous message passing models (Sect. 4) are provided. We evaluated our sys-
tem on two typical scenarios (Sect. 5) where performance benefit can be gained
by using message. The experimental results demonstrate that communication
mechanism can reduce job completion times by up to 50 % in some scenarios.

2 Background

In this section, we review the MapReduce programming model based on the
concept of embarrassingly parallel. The definition of embarrassingly parallel is
given as follow:

Definition 1 (Embarrassingly parallel). In parallel computing, suppose we
are given a job J which can be executed by a number of parallel tasks T , input
workload W, and the communication cost C between those parallel tasks. For
any partition P = {p1, p2, ..., pm} of W, where pi ∼ pj = ∈ and ∀ipi = W,
C(T (pi), T (pj)) = 0, i ∩= j. The job J can be expressed as: J =

⋃m
i=1 T (pi).

Here we use the above formalized definition of embarrassingly parallel to
provide an in-depth analysis of existing MapReduce framework. From Fig. 1 we
can see that the MapReduce execution schema consists mainly of two stages
(map phase and reduce phase), each of which can be processed in pure parallel
without any communications.

In the map phase the input dataset is divided into several disjoint equally-
sized subsets called splits (Split0 ∼ Splitm), and then a corresponding number of
map tasks (Map0 ∼ Mapm) should be created based on the amount of the splits
with no interactive processing. Such an independent map task is hereinafter also
referred to as mapper, which solely outputs new key-value pairs based on its own
split. Thus map phase meets the definition of embarrassingly parallel.

Next take a look at reduce phase, the intermediate map-outputs are grouped
to disjoint partitions (Part0 ∼ Partn) by hashing, then the corresponding reduce
tasks (Reduce0 ∼ Reducen) are launched to run independently and each takes
one partition as input. Such an independent reduce task is hereinafter referred
to as reducer. As map phase, reduce phase constituted by solely reducers also
conforms to embarrassingly parallel definition.

Reduce

Map

Map0 Map1 Map2 Mapm

Reduce Reduce Reduce

Synchronization & Communication

Final outputs

Split Split Split Split

Part Part Part

Fig. 1. Parallel programming model

246 W. Pan et al.

Actually, as is illustrated in the picture, there is a implicit communication
and synchronization which is transparent to user between map phase and reduce
phase. And this is the only channel of data exchange during the execution of one
MR job, the one-way data flow from upstream mapper to downstream reducer
is known as shuffle, as each reducer is fed by many mappers.

By definition many applications can fit into this category, some prominent
examples are counting words in documents, distributed search, inverted index
and so on. And thus these problems are well-suited for solving by MapReduce.
However, there are other categories of problems where there exist inevitable
communication and dependency between parallel tasks. Without communication
within mappers or reducers, we can only make use of shuffle to exchange data,
which will incurred a lot of unnecessary overhead to write intermediate data to
disk and transfer them on network. For example, the naive way to express PageR-
ank algorithm on MapReduce is to chain multiple MapReduce jobs together for
iterative processing. Besides loop-varying data, the unchanged data which is a
significant fraction of the all data have to be shuffled and re-loaded at each iter-
ation, and additional costs will be incurred to start multiple MapReduce jobs
for one problem.

The above further analysis reveals the potential opportunity for improving
the performance by using inter-mapper or inter-reducer communication and more
flexible parallel model, as well be seen in Sect. 4.2, BSP model is adopted by
HadoopM.

3 A New Message-Enabled Platform

Based on the insights from our analysis in before sections, we next propose a
new data analysis platform-HadoopM that enable user-defined messages to be
transferred either in map phase or reduce phase. In this section we introduce
HadoopM’s architecture, message format, lightweight and heavyweight message
delivery modes.

3.1 Architecture

Our HadoopM prototype modifies the internals (TaskTracker, JobTracker, etc.)
of Hadoop by adding several key message components to support message pass-
ing, which are shaded blocks in Fig. 2. Thereinto, Message Transmitter &
Receiver is responsible for submitting, forwarding and receiving message among
nodes in cluster, in addition, message serialization/de-serialization and message
assembly are also managed by this new component. When the node receives the
user-defined message, Message Handler component will be invoked to resolve
this message. By separating the fixed format messages header (Sect. 3.2) from
message, Message Handler will re-organize these messages from different nodes
according different application requirements, then buffer and combine them into
Message Cache. For communication-intensive application or large-size mes-
sage, HadoopM could place message collections into a persistent storage, such

HadoopM: A Message-Enabled Data Processing System on Large Clusters 247

JobTracker

MsgTracker

TaskTracker

TaskTracker
. . .

TaskTracker
. . .

. . .

TaskTracker
. . .

Master Slavers

...
...

H
D

F
S F

ile System

Message
Transmitter&

Receiver

Message
Cache

Message
Handler

Message
Transmitter&

Receiver

Message
Cache

Message
Handler

Message
Transmitter&

Receiver

Message
Cache

Message
Handler

L
ocal F

ile System

Storage

Fig. 2. The HadoopM framework

JobID TaskID TaskAttemptID

ApplicationType TimeStamp

User-defined Message

StepID

Fig. 3. Message format

as local file system or HDFS when available main memory can not afford too
many messages. More details are discussed in later sections.

On the different message passing mechanisms the changes involved are differ-
entiated, the lightweight message delivery mode in shade of green, and
the heavyweight mode in shade of red as shown in Fig. 2. The lightweight message
delivery mode trying to make full use of existing communication architecture
of Hadoop for communication-sparse application or size-constrained message.
And for communication-intensive application or large-size message, a new mas-
ter node named MsgTracker will be in charge of all messages, which can work
with JobTracker as well as independently. Before introducing the two message
delivery modes, we first take a look at the new message interface.

3.2 Message Format

Figure 3 shows the new message format which consists of two basic parts: mes-
sage header and message body. In HadoopM, message should be assigned to a
unique identifier which refers to message header, composed of JobID, TaskID,
TaskAttemptID, ApplicationType, StepID and TimeStamp. JobID, TaskID and
TaskAttemptID were designed to uniquely identify job, task and speculative
execution or re-execution of task respectively. ApplicationType can be used to
indicate how to use message and what kind of transfer mode (synchronous or
asynchronous mode) should be used in message-passing. Specifically in the case
of synchronous mode, StepID is used to distinguish the super step that message
attached to. Finally, added with message timestamp, the unique message header
can be generated, which be refered to as message-identifier. Throughout the
HadoopM, this unique message-identifier can be used for message identification
and management.

248 W. Pan et al.

Child Child

Task
Tracker

Task
Tracker

Child Child

. . .

Msg
Tracker

Job
Tracker

Child Child

Task
Tracker

Task
Tracker

Child Child

. . .

MMsg
Tracker

Job
Tracker

Fig. 4. Two message delivery modes

Message body is the content of the user-defined message represented by a
implementation of MPIMessage- a new message interface, which is defined in
HadoopM. And to support message passing and persistence, serializability of
the user-defined message body is mandatory.

3.3 Lightweight Message Delivery Mode

The lightweight message delivery mode relies mainly on existing communication
architecture, and serval important changes should be made on original Hadoop
framework. Implementation details are illustrated in Figs. 2 and 4, the main
components are involved in lightweight mode including JobTracker, TaskTracker
and Child, The message delivery procedure can be divided into two phases, the
push phase and the pull phase.

In the push phase, each Child applies message-enabled map (or reduce) func-
tion to submit the user-defined message to TaskTracker when communication
is needed. And message component is responsible for creating message header
and assembling integrated message. TaskTracker uses Message Transmitter &
Receiver to forward message that received from Child to JobTracker, accom-
panying with redundant message detection and cleaning. And then Message
Transmitter & Receiver resident in JobTracker to be invoked upon incoming
message. Based on the analysis of the message header carried out by message
receiver, the message will be inserted at the right place into Message Cache, a
efficient multi-branch tree used to maintenance entire cluster message topology.
From the above several steps, JobTracker may aggregate user-defined messages
from different execution nodes, and the aggregation of messages can form global
view from Message Cache.

In the pull phase, we adopted receiver-pull model to let Child pull the
combined message via TaskTracker from JobTracker. Receiver-pull model takes
advantage of the fact that receivers (TaskTracker or Child) have more knowl-
edge of what message they want to receive. Act as receiver, TaskTracker and

HadoopM: A Message-Enabled Data Processing System on Large Clusters 249

Child initiate the combined message transfer by exploiting periodic heartbeat
and ping.

To support message-passing, Meanwhile, HadoopM modified and added some
communication protocols. Ping and heartbeat are adjusted to allow for bring
combined message back, moreover the new protocols, send and repeater, are
responsible for submitting message to upper message acquisition node at any
time, shown here in red line.

Lightweight message delivery mode is a straightforward and effective app-
roach for less frequent communication and small-size message, But there are
some potential problems that can not be ignored. In lightweight mode, Job-
Tracker should need to coordinate jobs run on cluster as well as user-defined
messages. As the sole master node, JobTracker could easily become the bottle-
neck, and message receiving delay inherent with periodical ping and heartbeat
could become more longer with increases of the cluster size. So we need a dedi-
cated mode which can separate message handling from JobTracker, here comes
the Heavyweight message delivery mode.

3.4 Heavyweight Message Delivery Mode

The heavyweight message delivery mode designed for solving the above problem
provides a new daemon named MsgTracker (Message Tracker) that can run on
a separate node in cluster, as shown in Fig. 4. The new daemon can turn on and
off along with Hadoop Cluster, as well as open and close separately.

MsgTracker can take charge of message management in complete coordina-
tion with core components in Hadoop. The way of collaboration between Msg-
Tracker and existing components described as follows.

In MsgTracker, an RPC server is created in response to receive user-defined
messages send by Childs and some initial status informations about jobs and
TaskTrackers maintained in JobTracker. After RPC server resident in JobTracker
starts, MsgTracker has the JobTracker’s RPC client make an RPC call to a
function on the JobTracker named query, where the JobTracker will gather
information that MsgTracker needed into return value of query function. After
completing initialization with return value, the standalone MsgTracker server can
handle processing for all messages in whole cluster. During operation, JobTracker
can use MsgTracker’s RPC client to update the status of jobs to MsgTracker
actively. As shown in the graph, new function of communication protocol named
synchronize can be invoked in response to RPC call. In this way, HadoopM can
keep status information in sync between JobTracker and MsgTracker. Child has
the MsgTracker’s RPC client make an RPC call to two functions on the Msg-
Tracker named send and check. The send function guarantee real-time message
transmission, and the message processing results can be got by using periodicity
check. Either in MsgTracker or Child, each job or task has a memory buffer that
stores messages. When the buffer reaches the cap, message will be spilled to disk,
either local file system or HDFS. Especially for large-size message, Child is just
sent metadata of user-define message to MsgTracker in order to reduce network
overheads. In the implementation, the real message body will be spill to local

250 W. Pan et al.

file system of Child, and message body will replace with output locations. The
end-consumer for message could fetch message entity from location specified in
message body.

Currently, as can be seen from Fig. 4, inter-Child and inter-TaskTracker have
no direct communication. Since with Hadoop assumption-“hardware failure is
the normal rather than the exception”, making direct communication between
inter-TaskTracker and inter-Child will increase coupling degree between these
components, excessive coupling and potential node failure will make cluster com-
munication difficult to maintain. In the current design, all messages come from
each node will converge to JobTracker or MsgTracker, which will in charge of
coordinating and managing all message transfered over MapReduce cluster based
on the entire jobs execution view.

4 Transmission Synchronization

4.1 Asynchronous Message Passing

Asynchronous communication mode is straightforward and free-lock, HadoopM
provides the in-build support for this mode based on original MapReduce com-
puting framework. Asynchronous message passing between tasks enables a task
to post some metadata (such as local aggregation) about their current state
and see state of all other tasks, and then they can get an aggregate view of
multi-tasks from message server (TaskTracker or MsgTracker) to make globally
coordinated optimization decisions without waiting.

Then we use top-k (i.e. k = 3) query to illustrate how to use asynchronous
mode to optimize performance. Pretend there are three parallel mappers, one
of which (mapper1) processes its own split (3, 7, 21, 28, 33, 62) and generates its
local filter value (28), and then sends it to the message server. After receives
the filter values (such as 28, 35, 19) of all mappers that submitted by messages,
message server can generate a global filter value and chooses the most optimal
one as the global filter value (35). Then mapper filter its intermediate data using
the global filter value from the message server. For mapper1, only 62 meets
requirement, meanwhile, all output produced by mapper that send 19 as a local
filter value can be filtered, So less reduce input than original MapReduce can
improve performance.

The reasons for using asynchronous communication mode mainly in the fol-
lowing two areas. Firstly the correctness of one job processing result is not
affected by message, the tasks only use the message to fulfill job optimization
needs. Secondly MR job can have many waves of tasks in large cluster containing
sufficient free slots, after each task completes, it sends its filter value to the mes-
sage server and seek to receive a global filter value simultaneously. Even if the
global filter value is null, the task can processes its split normally. Otherwise, the
task can prune its intermediate results with the global filter value. So waiting
is not required, the tasks that start on the successive rounds will surely get the
more optimal global filter value to reduce the unpromising intermediate data.

HadoopM: A Message-Enabled Data Processing System on Large Clusters 251

4.2 Synchronous Message Passing

In some case, data carried by message is not just for optimization stated before,
which have directly influence on the validity of execution result. Before moving
forward to the next step each task needs to wait for all messages to be sub-
mitted by other tasks and accepted by message server. Because only when all
messages have been collected the correctness of the result can be guaranteed, so
synchronization techniques must be used.

To accommodate such demand, we modified the existing computing frame-
work inspired by the BSP (Bulk Synchronous Parallel) [14], to support synchro-
nous message passing in HadoopM. BSP computation consists of a sequence
of supersteps where three ordered stages are involved:concurrent computation,
communication and barrier synchronization. Thereinto, barrier is a mechanism
for synchronizing tasks executing in parallel. We note that in the Fig. 5, The
map and reduce phase were split into several supersteps by barriers, and in each
superstep, mapper and reducer is further divided into two phases: the active
phase and the wait (inactive) phase. Active mapper executes its code until it
reaches a barrier, then it enters wait state until all other mappers have also
reached the same barrier. Owing to various reasons, including input data distri-
bution or hardware variations, mappers may execute the same code at different
speeds and enter the barrier at different times. As shown in Fig. 5, Map2 is the
last map task arrived at the barrier, until this, all other mappers has entered
inactive state. When all mappers have arrived at the same barrier, all of them
will be woken up and can continue to run into next superstep with the new data
gathered from other mappers.

We also note that in the Fig. 5 where three types of barriers exist: Mapper-
Barrier, MR-Barrier and Reducer-Barrier. MR-Barrier is original implicit
barrier be used between the map and reduce stages in current MapReduce frame-
work. In HadoopM, Mapper-Barrier and Reducer-Barrier are the newly added

Fig. 5. Barriers in HadoopM

252 W. Pan et al.

explicit barriers for providing the synchronization mechanisms based on message
passing. They ensures that all relevant messages exchanged are ready to the next
round of task.

This extended programming model used by HadoopM can cover more com-
plex applications in one-round MR job to replace multi-round MR jobs where
data can be exchanged between mappers or reducers with synchronous message
passing. PageRank is a classic example that can benefit from this model, in
which each superstep corresponds to one iteration. Within a superstep, task can
evaluate PR (PageRank) value for each vertex contained in its split, and then at
inter-superstep PR value can be passed by message in synchronous mode. After
the Mapper-Barrier was released, all tasks can evaluate new PR value repeatedly
with original split and loop-varying PR value until the stopping criterion or a
convergence is satisfied. In such way, PageRank can achieve by using one-round
map-only job and performance can be improved.

5 Experiments

In this section, two typical types of application, Skyline and PageRank are taken
as examples to evaluate the job processing performance of our HadoopM frame-
work.

5.1 Experimental Environment

For this evaluation, we used a cluster of 11 nodes with 4 Core 2.66 GHZ CPU,
4 GB memory and Ubuntu 9.10 each. We implemented HadoopM on Hadoop
0.20.2 and use the message-enabled version to run all benchmarks We used the
following two datasets and increased their sizes as needed, One is soc-LiveJournal
1 G from Stanford Large Network Dataset Collection for PageRank and increas-
ing the data size from 5 G to 45 G without changing the graph topology (only
added some description to vertex and edge). Another is a synthetically generated
dataset for Skyline where the default number of data records is 1000 K, ranging
from 200 K to 1000 K and the number of data dimensions of skyline query is 4. we
compare HadoopM with Hadoop through running skyline query and PageRank.
The main experimental benchmarks is the running time of job processing.

5.2 Experiments of PageRank

Figure 6 represents the overall running time of entire job, the result indicates that
HadoopM performs significantly better than Hadoop, reducing the average run-
ning time to 50 % due to using inter-mappers communication to exchange loop-
varied PR value. We also can see from Fig. 6(a), the more numerous iterations,
the more reward from communication. As we described in Sect. 4.2, HadoopM
adopting multi-round supersteps within one job to replace multi-round jobs, is
able to reduce the expensive I/O cost for re-loading and shuffling unchanged
data in subsequent iterations, the startup overhead for multi-round job and etc.,

HadoopM: A Message-Enabled Data Processing System on Large Clusters 253

(a) PageRank (b) PageRank

Fig. 6. Running time of PageRank

(a) Independent Distribution (b) Anti-related Distribution

Fig. 7. Running time of Skyline

in other words, HadoopM use the cheaper network communication cost (includ-
ing synchronous cost) to replace the expensive IO cost of static graph shuffling.
Moreover Fig. 6(b) also shows that HadoopM has linear scalability on the number
of iterations. To examine the scalability of the HadoopM’s synchronous behav-
ior for workload size to PageRank, we perform exactly the same experiment on
different data size from 15 G to 45 G. From Fig. 6(b), experimental results show
that HadoopM also has linear scalability on the size of workload.

5.3 Experiments of Skyline Query

As it well known, the performance of Skyline query is closely related to the
dataset distribution. During the experiments, the skyline query is evaluated in
independent distribution and anti-related distribution. Figure 7 shows the per-
formance of changing the data size of skyline query. As the data size increases,
the running time increase dramatically. HadooM is more optimal to Hadoop
under different data distributions. In Fig. 7(b), although the data objects skew
to the final results and the computation cost increases accordingly, the perfor-
mance of HadoopM is still optimal to Hadoop. Because HadoopM can filter the
unpromising data objects with synchronous message passing mechanisms, so the
number of input records fetched by reducer of HadoopM is fewer than Hadoop.
The detailed reason have been outlined in Sect. 4.1.

254 W. Pan et al.

6 Related Work

Google’s MapReduce, a popular framework for performing data intensive com-
putation on a large cluster, has gained a lot of attention in academia [3,6,9–11]
in recent years. Through these research efforts, the framework has been extended
for diverse application requirements. But the above studies are still based on the
assumption of embarrassingly parallel. There are some mapreduce-like system
that have been developed by using different parallel model, such as Pregel [12]
and HAMA [13]. Their studies about BSP model inspires our work on iterative
processing data. Especially for iterative processing, a number of studies, such
as HaLoop [1], have putted their efforts to improve the MapReduce framework
for such computation pattern [2,7,8,16]. Also, serval skyline query algorithms
based on MapReduce are also developed, which can be seen in the literature
[5,15]. Though non-adaptive, these techniques are complimentary to our app-
roach, HadoopM adopts efficient communication mechanisms to solve problems
which require data exchanging via inter-task in more elegant way.

7 Conclusions

This paper demonstrated that MapReduce framework with inter-task commu-
nication are feasible, and they can result in significant performance benefits.
We present the architecture, implementation, and evaluation of HadoopM, a
revised message-enabled Hadoop system, which is aimed to improve perfor-
mance and expressive ability by building the communication channel either in
inter-mapper or inter-reducer, build-in lightweight/heavyweight communication
mechanism, message interface, and asynchronous/synchronous communication
mode can support a variety of communication needs for different applications.
We evaluated our HadoopM prototype on PageRank and Skyline query, The
experimental results shows that HadoopM can significantly improve the progress
of job.

References

1. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data
processing on large clusters. PVLDB 3(1), 285–296 (2010)

2. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.:
Map-reduce for machine learning on multicore. In: NIPS’06, pp. 281–288. MIT
Press (2006)

3. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M.: Mapreduce online. In:
NSDI’10, pp. 21–21 (2010)

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI’04, pp. 137–150 (2004)

5. Ding, L.-L., Xin, J., Wang, G., Huang, S.: Efficient skyline query processing of
massive data based on map-reduce. Chin. J. Comput. 10, 1785–1796 (2011)

6. Dittrich, J., Quian-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V., Schad, J.:
Hadoop++: making a yellow elephant run like a cheetah (without it even noticing).
PVLDB 3(1), 518–529 (2010)

HadoopM: A Message-Enabled Data Processing System on Large Clusters 255

7. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.:
Twister: a runtime for iterative MapReduce. In: HPDC’10, pp. 810–818. ACM
(2010)

8. Elnikety, E., Elsayed, T., Ramadan, H.E.: iHadoop: asynchronous iterations for
MapReduce. In: CloudCom’11, pp. 81–90. IEEE (2011)

9. Floratou, A., Patel, J.M., Shekita, E.J., Tata, S.: Column-oriented storage tech-
niques for MapReduce. PVLDB 4(7), 419–429 (2011)

10. Jahani, E., Cafarella, M.J., Ré, C.: Automatic optimization for MapReduce pro-
grams. PVLDB 4(6), 385–396 (2011)

11. Li, B., Mazur, E., Diao, Y., McGregor, A., Shenoy, P.J.: A platform for scalable
one-pass analytics using MapReduce. In: SIGMOD’11, pp. 985–996 (2011)

12. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD’10,
pp. 135–146 (2010)

13. Seo, S., Yoon, E.J., Kim, J., Jin, S., Kim, J.-S., Maeng, S.: Hama: an efficient
matrix computation with the MapReduce framework. In: CloudCom’10, pp. 721–
726 (2010)

14. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33,
103–111 (1990)

15. Zhang, B., Zhou, S., Guan, J.: Adapting skyline computation to the MapReduce
framework: algorithms and experiments. In: Xu, J., Yu, G., Zhou, S., Unland, R.
(eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp. 403–414. Springer, Heidel-
berg (2011)

16. Zhang, Y., Gao, Q., Gao, L., Wang, C.: iMapReduce: a distributed computing
framework for iterative computation. In: IPDPS Workshops’11, pp. 1112–1121.
IEEE (2011)

AntiqueData: A Proxy to Maintain
Computational Transparency in Cloud

Himel Dev(B), Mohammed Eunus Ali, Tanmoy Sen, and Madhusudan Basak

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
{himeldev,mohammed.eunus.ali,sen.buet,madhusudan.buet}@gmail.com

Abstract. Cloud computing offers computing and software services to
users on an on-demand basis. It facilitates users to use computing
resources as utility with pay-per-usage billing, which allows users to
acquire computational resources with low or no initial cost. Due to this
greater level of flexibility, the cloud has become the breeding ground of
a new generation of products and services. Since more and more people
rely on the cloud with their data and computing, ensuring the trustwor-
thiness of cloud services has become a major issue for both the users and
cloud providers. Due to the black box nature of cloud, there has been
a lack of trust among providers and users, which has become a major
barrier to the widespread growth of cloud computing. One of the trust
concerns of cloud is lack of computational transparency. In particular, in
current cloud architecture a provider controls all the logging and audit-
ing records corresponding to computation and users do not have access
to these records. This is a big concern for many clients of cloud. In this
paper, we first identify the risks associated with lack of transparency in
cloud and propose a middleware service that eliminates these risks.

1 Introduction

Cloud computing offers heterogenous services such as storage, computation, and
applications to users an on-demand basis. It is a form of utility computing that
facilitates users with pay-per-usage billing, which requires low or no initial cost
to acquire computational resources as resources are essentially rented from the
cloud service providers. Tech giants such as Amazon, Google, Microsoft are pro-
viding cloud services of various forms. Amazon Elastic Compute Cloud (EC2),
Simple Queue Service (SQS), Simple Storage Service (S3), Google App Engine
(GAE), Windows Azure, SQL Azure, and Windows Intune are some of these
services.

Since the emergence of cloud computing as a prominent medium of acquiring
high performance e.g., mass storage, high processing power at a low cost, there
have been numerous discussions on its trustworthiness [1]. There has been a lack
of trust among users and providers of cloud. Eliminating this lack of trust and
creating a trustworthy platform of resource management is one of the greatest
challenges of cloud computing.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 256–267, 2014.
DOI: 10.1007/978-3-662-43984-5 19, c© Springer-Verlag Berlin Heidelberg 2014

AntiqueData: A Proxy to Maintain Computational Transparency in Cloud 257

To discuss the issue, let us consider an example scenario where a company
Titans is using cloud services provided by a company Hydra. Now, a malicious
employee Hera from Titans has done something illegal (e.g., Denial-of-Service
(DoS) attack on a site or mining sensitive unauthorized data) using the resources
provided by Hydra. When the victim charges Hydra and Hydra in turn charges
Titans, Hera denies the charges. Moreover, she accuses another member Hyer-
cules of Titans. Hyercules has no way to prove his innocence as both Hera and
Hyercules were using the resources at the same time and no one knows who was
doing what. Moreover, if Hydra somehow collaborates with Hera, Hyercules will
have no way to escape. This raises a serious trust issue within the users of the
cloud.

The trust issue discussed above arises from the fact that users of cloud do
not have access to the logging and auditing records of tasks performed by them
in cloud. The associated mechanisms are fully controlled by the cloud providers.
Hence, users cannot verify their tasks. Again, some applications such as eScience
and healthcare needs to store records corresponding to computational tasks [2].
These records are used to analyze experimental results and other uses. The
absence of computational records is a major barrier to the widespread growth
of these applications in cloud computing platform. Another fact to consider is,
in current cloud model, users can not be certain about different resource usages.
In particular, a user cannot confirm that (i) the billing statements accurately
reflect real use of resources, (ii) the deployed resources were up and running
all the time, (iii) there is any security breaches or malfunctions affecting the
outsourced resources [1]. As a consequence, a mistrust may build-up among
users and providers.

Substantial work has been done to establish the trust among users and
providers of cloud. But most of these works tend to establish trust in the storage
context by maintaining the provenance of data objects [1]. However, ensuring
trust in the context of processing (i.e., when users use virtual machines or appli-
cations provided by cloud) is still an open issue. Now-a-days many are proposing
sophisticated cloud based applications such as software testing using cloud [3],
cloud based malicious site detection [4,5], cloud based data mining [6], using
cloud to conceal IP [7] etc. But these applications can be a massive security
threat if not monitored properly. For example, some user may use multiple VMs
to perform denial-of-service (DoS) attack on a site. Similarly, some may mine
unauthorized data to misuse it. In a nutshell, a malicious user may perform ille-
gal activities using cloud and accuse another user for it. The situation becomes
more complicated if the cloud provider joins the malicious user. Again, a mali-
cious provider may apply excessive charges on its clients. To eliminate such
catastrophe and to establish the trust within users and also among users and
providers, computational transparency is required.

In this paper, we present a middleware service, AntiqueData proxy that will
establish trust among users and providers by introducing computational trans-
parency.The systemworks by collecting information fromusers andproviders after
every session of data processing and storing these information as computational

258 H. Dev et al.

provenance records. Session in this context refers to the lapse of time a user passes
using a set of cloud resources. The records stored by AntiqueData proxy are ses-
sion specific and are used to maintain transparency. These records are accessible
to cloudproviders andusers in ahierarchically restrictedway.Theproxy also allows
users to check their resource usage and thus ensure proper billing.

2 Background and Related Work

With the increase of popularity of cloud as a storage and computation medium,
the demand for a trusted cloud structure increased simultaneously. So, the idea
of provenance emerged in the field of cloud computing. Provenance generally
refers to the information that helps to determine the derivation history of a data
product, starting from its original sources [8]. Numerous techniques have been
proposed for provenance in the cloud system. Among the proposed techniques,
Provenance-Aware Storage System (PASS) [9] is considered a pioneer. Reddy
et al. discussed the requirements of adding the provenance data to the cloud
storage and four properties to make the provenance system truly useful. They
proposed three protocols that monitor the client system call and stores both the
provenance and data to AWS S3 storage. These three protocols use AWS S3, Sim-
pleDB and SQS service hierarchically to ensure the properties like provenance
data coupling, efficient query, and causal ordering, respectively [10,11]. Zhang
recently proposed an approach named dataPROVE [2] that maintains prove-
nance data depending on the resource granularities [12]. Reilly and Naughton
have proposed extending the Condor batch execution system [13] to capture
data in execution environments, machine identities, log files, and file permis-
sions. While there are significant new challenges on a cloud infrastructure, the
Provenance-Aware Condor system certainly collects the right kind of provenance
data. Abbadi et al. [14,15] proposed use of middleware at different layers of cloud
structure to maintain required provenance data.

Most of the approaches mentioned above deals with provenance associated
with data storage in cloud. Again, almost all of the proposals involve storing
object based provenance [1] data which are fully deployed and controlled by
cloud providers and are not reasonably protected. This in turn questions the
credibility of provenance data in the cloud. As a result, it affects the integrity of
cloud built upon client and provider’s mutual trust.

Recently Park et al. [16] introduced a new system RAMP for capturing and
tracing provenance in MapReduce workflows. RAMP (Reduce And Map Prove-
nance) is an extension to Hadoop that supports provenance capture and tracing
for workflows of MapReduce jobs. Akoush et al. [17] introduced HadoopProv, a
modified version of Hadoop that implements provenance capture and analysis
in MapReduce jobs but with reduced provenance capture overhead. Whereas all
these systems focus on debugging the Mapreduce workflows, they rely on data
provenance to serve the purpose.

AntiqueData: A Proxy to Maintain Computational Transparency in Cloud 259

3 Threat Model

Numerous applications of heterogenous diversity are being developed on cloud
computing platform. Butler et al. [7] proposed masking all network traffic via IP
concealment with OpenVPN relaying to EC2 (MANTICORE). Such masking of
network traffic using cloud may exploit malicious activities (e.g., cyber crimi-
nals may use such applications to remain anonymous and attempt to hide their
IP address). Ferguson et al. [5] proposed using cloud infrastructure to obfus-
cate phishing scam analysis. Such applications allow blacklisted users to access
sites without being detected and fetch contents. Zhang et al. [3] proposed design
and implementation of cloud-based performance testing system for web services.
Performance testing applications involve testing number of requests that can
be served per second. A malicious user may use such applications to perform
Denial-of-Service (DoS) attack on sites by saturating the target machine with
external communications requests. Data mining using cloud computing platform
is another popular concept with security issues [18–20]. According to the sur-
vey done by Rexer Analytics, 7 % data miners use cloud to analyze data [21].
Malicious miners may use raw computing power provided by cloud to analyze
sensitive unauthorized data and thus cause privacy violation. In a nutshell, the
increasing growth of cloud computing is leading towards development of appli-
cations with higher complexity and credibility. If not monitored properly, these
applications may exploit cyber crime using cloud computing platform.

Again, the cloud still remains a black box to its users. The providers control
all records related to processing and users do not have access to these records. As
a result, users cannot be certain about billing, malfunctioning of resources, etc.
In a 2010 survey by Fujitsu Research Institute on potential cloud customers, it
was found that 88 % of potential cloud consumers are worried about who has
access to their data, and demanded more awareness of what goes on in the back-
end physical server (i.e., virtual and physical machines). This is an obstacle in
the widespread growth of cloud computing [22].

Figure 1 shows an Ishikawa diagram representing some major issues (causes)
that may build mistrust among users and cloud providers. These issues include

Fig. 1. Ishikawa diagram representing some trust issues in cloud

260 H. Dev et al.

Fig. 2. System architecture

increasing use of sophisticated applications violating privacy, faultiness of virtual
machines, Security Through Obscurity principle adopted by provider, malicious
user etc.

4 AntiqueData Proxy

Our proposed system that introduces transparency among users and providers of
cloud during computation or processing is shown at Fig. 2. The major component
of our system is AntiqueData proxy, a proxy implemented at a third party server
that acts as a middleware to ensure transparency. The proxy collects session-wise
data from users and providers and stores it in a third party database. To use
a particular resource for computational purposes, a user needs to be connected
to the proxy and the proxy in turn connects to a cloud provider. Thus a user
gets access to a cloud resource. That is, users can not attach themselves to
cloud providers directly rather via AntiqueData proxy. To serve its purpose the
proxy maintains information regarding providers and users. These information
are maintained using three database tables dedicated to providers, clients and
their relationship.

Cloud Provider Table: Each entry of the Cloud Provider Table contains infor-
mation regarding a particular cloud provider. The information include the cloud
provider’s name, its reliability expressed in terms of reliability levels, parame-
ters and methods associated with pricing i.e., the cost model, its transparency
expressed in terms of transparency levels etc. (Table 1). Reliability level ensures
that a cloud provider meets the reliability demand of a client. Cost model is used
to validate billing. Expression of transparency is given at Sect. 6.

Client Table: The entries of the Client Table correspond to information regard-
ing all the users listed under specific clients. Client in this context refers to an

AntiqueData: A Proxy to Maintain Computational Transparency in Cloud 261

Table 1. Cloud Provider Table Sample (Partial)

Cloud provider Reliability level Transparency level

CP1 4 3
CP2 3 4

Table 2. Client Table Sample (Partial)

Client Transparency level (Virtual ID, Hierarchical level, Pass)

CL1 3 (vid1, 3, 98pX)
(vid2, 0, m98r)
....

CL2 2 (vid1, 3, cv67)
(vid2, 1, H7y5)
....

Table 3. Relationship Table Sample (Partial)

Cloud provider Client Transparency level # of sessions Session ID list

CP1 CL2 2 1627 {1234, ...}
CP2 CL1 3 2304 {2197, ...}

organization or a company and users refer to the members of the organization or
employees of the company. The Client Table information include client’s identity,
transparency level, list of triples combining a virtual ID, a hierarchy level and a
password for each user belonging to the client etc. (Table 2). The hierarchy level
is used for controlling access to the computational provenance records.

Relationship Table: Each entry of the Relationship Table maintains infor-
mation regarding the relationship between a particular cloud provider and a
particular client. The information include the cloud provider’s name, the client’s
identity, the transparency level corresponding to the pair i.e., pairwise trans-
parency level, number of sessions, list of session IDs etc. (Table 3).

The primary task of the AntiqueData proxy is to collect varieties of informa-
tion from users and providers for each session. These information are required to
perform continuous monitoring of tasks performed by users in the cloud and also
to ensure proper billing by monitoring resource usage by user. The information
include session id (i), virtual user id (Ui), login time (Ti), duration of the session
(T d

i), the location of the user (Li), work description (Wi), system information
(Si), log of user task (Lt

i) and usage of resources by the user (Ri). A record is
generated using the information collected from user and provider. This record is
AntiqueData record which is represented by ∼i, Ui, Ti, T

d
i , Li,Wi, Si, L

t
i, Ri∈. The

components of AntiqueData record are described below:

262 H. Dev et al.

Session ID (i): i represents a unique session number associated with each
session of computation.

Virtual User ID (Ui): Ui does not represent the real identity of a user, rather it
is used to distinguish among different users within a client. This
anonymization of user identity helps users to maintain their privacy. The map-
ping from real users within a client to their virtual identities are maintained by
the client.

Login Time (Ti): Ti represents the beginning of a session. It is the unix
timestamp at which a user logs into the AntiqueData proxy to perform processing
tasks using cloud resources.

Duration of the Session (T d
i): T d

i represents the duration of a session. It
is the lapse of time a user passes using a set of cloud resources for processing
purpose.

Location of the User (Li): Li represents the location information of the user.
This location information is collected using geolocation of IP [23] belonging to
the user. The location information may include country, region/state, city, metro
code/zip code, organization etc. Location information is required to solve dispute
(e.g., a user to justify that his account has been compromised) among users in
case of unauthorized access using user account.

Work Description (Wi): Wi represents information regarding the work done
by the user using cloud resources. These information are provided by user. The
information includes several fields such as type of the work (e.g., billing, mining,
auditing), priority (represents the significance of the work), brief details etc.

System Information (Si): Si represents system information such as virtual
resource status, kernel version, operating system, modules loaded, library con-
figurations, the amount of main memory available, the memory allocated to the
address space, file path of an object on the VM etc. The information about what
(file operation), where (both PM and VM), and at what time a file is accessed,
duplicated or transferred (which are captured within the cloud provider) are also
maintained.

Task Log (Lt
i): Lt

i represents a log containing information regarding tasks (a
work done by user is considered as a task sequence in this regard). The primary
information is a complete workflow for the tasks done within the provider, such
as complexity of tasks, whether network access is involved in a task, which blocks
of a file have been modified or which records in a database table were changed
or what processes and applications are run in a single machine for performing a
particular task. Monitoring report of the movement of packets corresponding to
a single file regarding a definite task in the network is also added to the log.

Resource Usage (Ri): Ri represents the usage of different resources by a user
during a particular session. This information is required to ensure transparency
regarding billing.

AntiqueData: A Proxy to Maintain Computational Transparency in Cloud 263

The AntiqueData records can be stored either in the third party server (where the
proxy resides) or in the cloud. In both the cases, the records need to be encrypted
before storing. This is done to ensure privacy of records. These records can be
accessed by both cloud providers and users. But there are some hierarchical
access control restrictions. A user can access any record corresponding to his
own work or corresponding to work done by users of lower hierarchy. That is
a user can not access works done by users of same (except his own) or higher
hierarchy. Hierarchy here refers to the hierarchy level defined at the Client Table.
Similarly, a cloud provider can only access his own records. The AntiqueData
records are provided to users or providers using xml of following form.

<?xml version=“1.0”encoding=“utf-8”? >
<SessionID>1234< /SessionID>
<UserID>vid1< /UserID>
<LogInTime>1376760597< /LogInTime>
...
<TaskLog>
<NoOfApplications>6< /NoOfApplications>
...
< /TaskLog>
...

5 Communication Between Proxy and Cloud Provider

One of the biggest challenges of AntiqueData proxy is to collect information
such as system information, task log, resource usage from providers. To do this,
an entity (software, plugin, tool) needs to be present at all the virtual machines
corresponding to the provider. The entity needs to serve two purposes: logging
virtual machine to collect {Si, L

t
i, Ri} and communication with AntiqueData

proxy.
The first purpose of the entity can be served either by implementing a logger

with features such as process monitoring, resource monitoring etc. or extending
existing data-centric logging mechanisms such as Flogger. Flogger [24] is a dis-
tributed file-centric VM/PM logger which monitors file operations and transfers

Fig. 3. Communication between proxy and provider

264 H. Dev et al.

within the cloud. The second purpose of the entity can be served by using com-
munication API provided by AntiqueData proxy. The API passes information
to proxy using POST method (Fig. 3).

There are several issues to consider regarding the entity. The first issue to
consider is the cloud provider authorization. The cloud provider may not be
interested in using an API/software provided by third party. In that case, it
can implement its own module that will serve the logging and communication
purpose. The second issue to consider is all providers may not be interested in
providing the required information. This issue is related to transparency and
discussed in the next section.

6 Transparency

Transparency in cloud computing context refers to openness in communication
between provider and client. It is a dual key lock that requires approval of
both parties. Without cooperation of any of the parties (client or provider),
the concept of transparency may fail in cloud context. We define two separate
transparency parameters α and β for provider and client respectively.

The transparency parameter α for a cloud provider indicates the provider’s
consent in providing information. It can be defined as:

α =
∑n

i=1 Di ∀ Wi∑n
i=1 Wi

Here, Di is a boolean value which indicates the presence/absence of a par-
ticular information component (e.g., file path of object in VM, resource status
etc.) according to the consent of cloud provider, Wi is a real value which repre-
sents the significance (weight) of the corresponding component in terms of trust
establishment and n represents total number of information components. The
transparency level TL of a cloud provider is defined using the value of α as:
TL = ∩lα≥. The l transparency levels (TL1, ..., l) represent l ranges of α’s value.

Similarly, the transparency parameter β for a client indicates the client’s
consent in allowing provider to monitor tasks in virtual machine. The formulation
of β is similar to α except Di here is determined by the consent of client. The
transparency level of a client is determined using the value of β as: TL = ∩lβ≥.

The pairwise transparency parameter γ represents transparency for a pair
combining a provider and a client. The formulation of γ is similar to α and β
except Di here is determined by the consent of both provider and client.

7 Evaluation

The goal of our evaluation is to (i) understand the storage and data trans-
fer cost associated with provenance data, (ii) measure computational overhead
introduced by the system and (iii) load test the system.

AntiqueData: A Proxy to Maintain Computational Transparency in Cloud 265

Fig. 4. Number of users vs user response time

A single session of computation generates 15 KB (maximum) provenance
data. This is the upper bound for both storage and data transfer. So, the storage
cost and data transfer cost introduced by the system is a modest one.

We have implemented a logger (similar to the one described in Sect. 5) using
Java. In a PC having 2.5 GHz Intel Core i-5 processor with 2.88 GB usable mem-
ory running Windows 7 operating system, the logger on average uses 12458 KB
memory and 5 % of CPU.

We have implemented a prototype of proxy using PHP. We have tested the
consistency of the proxy and have monitored its performance in terms of user
response time. The results are shown in Fig. 4. We can see that with the increase
in number of users, the average response time also increases drastically. To elim-
inate this bottleneck multiple proxies can be introduced.

8 Limitations

The proposed system establishes trust among users and providers by introducing
transparency. This transparency is reflected by pairwise transparency parameter
γ. If the value of γ is low for majority of the pairs (of provider and client) due to
Security Through Obscurity principle adopted by provider or client, the availed
transparency will not be as expected. As a result, the system will fail to serve
its purpose of establishing trust. One of the elements of provenance record, Wi

involves work description of the user. Hasty users may provide insufficient details
in case of such information.

9 Future Work

In future, we would like to incorporate X.509 certificates to (i) prove a user
is indeed bona fide, (ii) maintain authenticity of provenance records. A simi-
lar concept is found in grid computing. The Globus [25] security model uses
X.509 certificates. We would also like to implement multiple proxy system that
will eliminate the bottlenecks associated with single proxy (e.g., single point of
failure).

266 H. Dev et al.

10 Conclusion

Establishing trust among the users and cloud providers is a challenging task.
Users now-a-days run varieties of complex applications on cloud computing plat-
form. These applications are not only sophisticated in nature but they also
exploit the vulnerabilities of cyber crime using cloud platform. Hence, proper
monitoring of processing tasks in cloud has become a key concern. To ensure
proper monitoring of computational tasks (to prevent malicious activities) and
establish trust among users and providers (by introducing transparency), com-
putational provenance records are required. In this paper, we present a middle-
ware service AntiqueData proxy that serves the above purposes by maintaining
computational provenance records.

References

1. Abbadi, I.M., Lyle, J.: Challenges for provenance in cloud computing. In: TaPP
2011: Proceedings of the Third USENIX Workshop on the Theory and Practice of
Provenance (2011)

2. Zhang, O.Q., Kirchberg, M., Ko, R.K., Lee, B.S.: How to track your data: the
case for cloud computing provenance. In: IEEE International Conference on Cloud
Computing Technology and Science, pp. 446–453 (2011)

3. Zhang, L., Chen, Y., Tang, F., Ao, X.: Design and implementation of cloud-based
performance testing system for web services. In: Proceedings of the 2011 6th Inter-
national ICST Conference on Communications and Networking in China, CHINA-
COM ’11, pp. 875–880. IEEE Computer Society, Washington, DC (2011)

4. Lee, J., Cho, J., Seo, J., Shon, T., Won, D.: A novel approach to analyzing for
detecting malicious network activity using a cloud computing testbed. Mob. Net-
works Appl. 18(1), 122–128 (2013)

5. Ferguson, E., Weber, J., Hasan, R.: Cloud based content fetching: using cloud
infrastructure to obfuscate phishing scam analysis. In: SERVICES, pp. 255–261
(2012)

6. Grossman, R., Gu, Y.: Data mining using high performance data clouds: experi-
mental studies using sector and sphere. In: Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’08, pp.
920–927. ACM, New York (2008)

7. Butler, P., Rhodes, A., Hasan, R.: Manticore: masking all network traffic via IP
concealment with OpenVPN relaying to EC2. In: IEEE CLOUD, pp. 487–493
(2012)

8. Lyle, J., Martin, A.: Trusted computing and provenance: better together. In: TaPP
’10: 2nd Workshop on the Theory and Practice of Provenance (2010)

9. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Making a cloud provenance-
aware. In: First Workshop on Theory and Practice of Provenance, TAPP’09, pp.
12:1–12:10. USENIX Association, Berkeley (2009)

10. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Provenance for the cloud. In:
Proceedings of the 8th USENIX Conference on File and Storage Technologies,
FAST’10, pp. 15–14. USENIX Association, Berkeley (2010)

11. Muniswamy-Reddy, K.K., Seltzer, M.: Provenance as first class cloud data.
SIGOPS Oper. Syst. Rev. 43(4), 11–16 (2010)

AntiqueData: A Proxy to Maintain Computational Transparency in Cloud 267

12. Ko, R.K.L., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M.,
Liang, Q., Lee, B.S.: Trustcloud: a framework for accountability and trust in cloud
computing. In: SERVICES, pp. 584–588. IEEE Computer Society (2011)

13. Reilly, C.F., Naughton, J.F.: Transparently gathering provenance with provenance
aware condor. In: First Workshop on Theory and Practice of Provenance, TAPP’09,
pp. 13:1–13:10. USENIX Association, Berkeley (2009)

14. Abbadi, I.M.: Middleware services at cloud virtual layer. In: DSOC 2011: Pro-
ceedings of the 2nd International Workshop on Dependable Service-Oriented and
Cloud computing, August 2011. IEEE Computer Society (2011)

15. Abbadi, I.M., Martin, A.: Trust in the cloud. Inf. Secur. Tech. Rep. 16(3–4),
108–114 (2011)

16. Park, H., Ikeda, R., Widom, J.: RAMP: a system for capturing and tracing prove-
nance in MapReduce workflows. PVLDB 4(12), 1351–1354 (2011)

17. Akoush, S., Sohan, R., Hopper, A.: Hadoopprov: towards provenance as a first
class citizen in MapReduce. In: Proceedings of the 5th USENIX Workshop on the
Theory and Practice of Provenance, TaPP ’13, pp. 11:1–11:4. USENIX Association,
Berkeley (2013)

18. Li, L., Zhang, M.: The strategy of mining association rule based on cloud comput-
ing. In: IEEE Computer Society, pp. 475–478 (2011)

19. Wang, J., Wan, J., Liu, Z., Wang, P.: Data mining of mass storage based on cloud
computing. In: IEEE Computer Society, pp. 426–431 (2010)

20. Dev, H., Sen, T., Basak, M., Ali, M.E.: An approach to protect the privacy of cloud
data from data mining based attacks. In: Proceedings of the 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, SCC ’12, pp.
1106–1115. IEEE Computer Society, Washington, DC (2012)

21. Karl Rexer, P.: 2010 data miner survey highlights the views of 735 data miners
(2010)

22. Institute, F.R.: Personal data in the cloud: a global survey of consumer attitudes
(2010)

23. Wang, Y., Burgener, D., Flores, M., Kuzmanovic, A., Huang, C.: Towards street-
level client-independent IP geolocation. In: Proceeding NSDI’11 Proceedings of
the 8th USENIX Conference on Networked Systems Design and Implementation,
NSDI’11, pp. 27–40. USENIX Association, Berkeley (2011)

24. Ryan, K.L., Ko, P.J., Lee, B.S.: Flogger: a file-centric logger for monitoring file
access and transfers within cloud computing environments. Technical report, HP
Cloud and Security Lab Singapore (2011)

25. Globus. http://www.globus.org

http://www.globus.org

Third International Workshop
on Spatial Information Modeling,
Management and Mining (SIM3)

Monitoring Query Processing
in Mobile Robot Databases

Kento Sugiura1(B), Arata Hayashi1,2,P, Tingting Dong1,
and Yoshiharu Ishikawa1

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
{sugiura,dongtt}@db.ss.is.nagoya-u.ac.jp,

ishikawa@is.nagoya-u.ac.jp
2 Hitachi, Ltd., Chiyoda, Japan

Abstract. In this paper, we propose methods for monitoring query
processing in mobile robot databases. We assume that a mobile robot
can move based on the specified movement plan and perform sensing
(e.g., temperature measurements) at the specified points. The purpose
of our query processing is to reduce the total travel and measurement
time while ensuring the given sensing quality requirements. We develop
a framework based on an existing approach in sensor databases. Since
features of mobile robots are different from those of sensor networks, we
extend the former approach considering our context. We propose four
algorithms for planning robot movements and compare these methods in
simulation-based experiments.

1 Introduction

In recent years, research on mobile robots progressed greatly [1]. Such progress
has brought about practical applications of mobile robots. For example, auto-
matic vacuum cleaner are widely used at home and automatic driving of vehicles
is advancing. Moreover, mobile robots will be widely used for indoor/outdoor
environmental monitoring. Compared with sensor networks that are widely used
for environmental monitoring, the use of mobile robots has some advantages:

– We can reduce the number of sensors for the monitoring. If we use a sensor
network, it is necessary to deploy a sensor in each measurement point. On the
other hand, a mobile robot can cover the given environment.

– We can easily change observation points. In contrast, some cost is required
for restructuring a sensor network.

– We can dynamically change a monitoring plan. A mobile robot can update a
plan anytime, anywhere.

Since environmental monitoring using mobile robots is promising due to the
reasons above, we propose a framework to support environmental monitoring
by mobile robots. Especially, we realize the framework as a database – it can
receive a monitoring request as a query and perform robot-based monitoring as
query processing. We call such a database a mobile robot database. There are
two reasons to process a monitoring request using a mobile robot databases:

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 271–282, 2014.
DOI: 10.1007/978-3-662-43984-5 20, c© Springer-Verlag Berlin Heidelberg 2014

272 K. Sugiura et al.

0

1

2 3

5

4

6

8

12

9

11

107

15

14

13

Fig. 1. Monitoring environment for a mobile robot in our laboratory

– A user can easily specify his or her monitoring request as a declarative query.
– We can optimize a monitoring plan considering the information about the

sensing environment and the requirements specified in the query.

It is important for a mobile robot database to provide an effective monitor-
ing plan because a monitoring plan affects the travel distance of the robot and
time to answer the query. Figure 1 is an example of temperature monitoring in
our laboratory room. Note that we use a graph to express a monitoring envi-
ronment. A node indicates a point that the user is requesting the sensor value
(e.g., temperature). An edge indicates that a robot can move between the nodes
and we use their distance as the weight of the edge. Suppose a user wants to
know the temperature of node 13 and a robot is now located at node 8. We can
reduce the travel time and distance of the robot if we can estimate the temper-
ature of node 13 using the measurement of temperature of node 10 because it is
assumed that their temperatures have correlation. Such an estimating method
was proposed in the context of sensor databases [2,3]. In this paper, we develop
our framework by extending their proposals and propose methods for monitoring
query processing in mobile robot databases.

The rest of the paper is organized as follows. First, we explain our framework,
which is an extension of the existing research. Section 2 describes a summary of
the existing research [2] and Sect. 3 explains the outline of query processing.
In Sect. 4, we introduce four methods for selecting observation plans. Section 5
describes the settings and the results of the experiments and Sect. 6 concludes
the paper.

2 Query Processing Based on Probabilistic Inference
in Sensor Databases

In this section, we give an overview of the framework for processing monitor-
ing queries, which is the basis of our proposals in this paper [2]. The approach
is called model-based sensor data acquisition [3]. In a sensor network, a user
gives a query that specifies a user’s interest (e.g., temperatures of nodes), then
the system answers the query by using sensors or predicting the sensor values.
The main idea is to use correlations among the measurements of sensor nodes.

Monitoring Query Processing in Mobile Robot Databases 273

(a) (b)

Fig. 2. Probabilistic inference on gaussian distributions

Such correlations are represented by a probabilistic model based on the Gaussian
distribution. The number of sensor measurements is reduced using probabilistic
inference on Gaussian distributions. For example, we construct a 16-dimensional
Gaussian distribution for the case of Fig. 1 based on the measurements performed
beforehand. Figure 2 illustrates an example of probabilistic inference between the
temperature of node 10 and 13 in Fig. 1. X10 and X13 are random variables of
node 10 and 13, respectively. Figure 2(a) shows an image of the two-dimensional
Gaussian distribution obtained by projecting the 16-dimensional Gaussian dis-
tribution into two variables X10 and X13, and (b) shows the one-dimensional
Gaussian distribution of node 13. The black arrow in Fig. 2 illustrates the vari-
ance of the marginal distribution of X13. Now suppose we get information that
the temperature of node 10 is 26 degrees. The orange arrow corresponds to the
variance of the posterior distribution of X13 after knowing the information. It
means that we can predict the value of X13 is about 26 degrees by measur-
ing the current value of X10. In other words, we may not need to measure the
temperature of node 13 if we know the temperature of node 10.

In [2], an observation plan P specifies the sensors that are the targets of
actual measurements. Observation plan P describes how monitoring is executed
in a sensor network, and consists of a set of tuples; each tuple is a pair of the
target node ID and the type of the used sensor. For example, if we want to know
the temperature of node 0 and the humidity of node 5 in Fig. 1, the corresponding
plan is [0, temperature], [5, humidity]. To simplify the discussion, we assume that
only one type of sensor is used for monitoring. In this case, an observation plan
can be represented as a set of node IDs. The efficiency of an observation plan
P is evaluated by two factors: cost and benefit. The cost C(P) represents the
energy for the monitoring using the target sensors. The benefit B(P) is accuracy
of prediction after executing the observation plan P .

The purpose of query processing is to select the best observation plan in
terms of cost C(P) and benefit B(P). Such an efficient observation plan has the
least cost under the constraint that the benefit is larger than the threshold Θ
defined by the user. The optimization problem can be formalized as follows:

min C(P)
such that B(P) ∼ Θ

(1)

274 K. Sugiura et al.

Since exhaustive search of the optimal plan is costly, [2] uses a greedy algorithm
to select a suboptimal plan.

A summary of the query processing is as follows. Suppose a user is interested
in a temperature of node 13 and a sink node is located at node 8 in Fig. 1. In
order to reduce the cost, the system selects the best observation plan according
to Eq. (1). Suppose a plan {10, 11} is selected. It means that the system probably
predicts the accurate temperature of node 13 by using measurements of nodes
10 and 11, and the cost of {10, 11} is less than that of measuring the actual
temperature of node 13. Therefore, the system can predict the temperature of
node 13.

We develop a framework by extending this approach. Since features and
requirements of mobile robots are different from those of sensor networks, we
need to extend their approach for our context.

3 Query Processing Based on Probabilistic Inference
in Mobile Robot Databases

In this section, we give an overview of our approach to processing monitoring
queries based on probabilistic inference. Since our approach is based on [2],
we explain only the extended part for mobile robot databases. First, we define
two types of queries. Second, we define cost C(P) in the context of mobile
robot databases, and propose four algorithms for selecting efficient observation
plans. Finally, we consider dynamic change of an observation plan to improve
the accuracy of answers.

3.1 Query Definition

We define two types of queries in mobile robot databases following [2]. A value
query is used to obtain the sensor value of the specified node.

Definition 1 (Value Query). Given a node ID id, a threshold of confidence Θ,
and an acceptable error γ to a mobile robot database, a value query V Q(id, Θ, γ)
returns a tuple (id, temp, conf) which consists of the node ID, the sensor value,
and the confidence score.

A range query is used to confirm whether the sensor value of the specified
node is within the given range.

Definition 2 (Range Query). Given a node ID id, a threshold of confidence Θ,
and a sensor value range α to a mobile robot database, a range query RQ(id, Θ, α)
returns a tuple (id, conf) which consists of the node ID and the confidence.
The confidence conf means the probability that temperature of node id is within
range.

Monitoring Query Processing in Mobile Robot Databases 275

3.2 Cost of an Observation Plan

In [2], energy consumption and the accuracy of prediction are used for planning.
In mobile robot databases, energy consumption is not an important cost factor in
general, whereas query processing time is large because a trip of a mobile robot
takes much time. Therefore, we use the total execution time as the cost of an
observation plan.

Total execution time of an observation plan is the time for answering the
query, and consists of the travel time of a mobile robot and the observation time
required to obtain sensor values in the sensing points. In this paper, we suppose
that a robot waits at the initial point specified the user, so that the travel time
Cm(P) means the time of visiting all the nodes in the observation plan and
finally returning at the initial point.

Since deciding the order of traveling between nodes in an observation plan
corresponds to the traveling salesman problem, we use the suboptimal solution
generated by the nearest neighbor heuristics and the 2-opt heuristics [4].

The observation time To at each sensing point is obtained from the config-
uration of the sensing environment because it depends on the response time of
the sensor used. Equation (2) shows the total cost C(P) in our context, where
Num(P) is the number of nodes in the observation plan P .

C(P) = Cm(P) + To × Num(P) (2)

Reference [2] only uses a greedy algorithm to select an efficient observation
plan. Since we consider that an observation plan is important to reduce the query
execution time, we propose four algorithms for selecting an efficient observation
plan: the apriori-based method, the bidirectional method, the greedy method,
and the skyline-based method. In Sect. 4, we explain these methods in detail.

3.3 Dynamic Change of an Observation Plan

In [2], since an observation plan is generated by only the sink node in a sensor
network, dynamic change of an observation plan is not considered. In contrast,
a mobile robot can change the plan whenever it is required. We may be able to
obtain a more accurate answer if we can change the plan dynamically. Therefore,
we also propose a dynamic change scheme of an observation plan.

We take the simple approach that a robot selects a new observation plan
when a sensor measurement is performed. Figure 3 illustrates an example. In
the following, we denote the measured temperature value of node i by tempi.
Suppose a mobile robot is located at node 8 and a query RQ(13, Θ, α) is given
by a user, and suppose that an observation plan {10, 11} is selected based on
the algorithms described in Sect. 4. Now consider that the robot first visit node
11 based on the heuristics described in Sect. 3.2, and assume that the measured
temperature temp11 is an irregular value. In this case, it may be possible that we
cannot estimate the temperature of node 13 accurately even if the temperature
of node 10 is measured. In such a case, the mobile robot database changes the
observation plan to improve reliability. Figure 3 illustrates the case that the old
plan {10} is updated to the new plan {13}.

276 K. Sugiura et al.

0

1

2 3

5

4

6

8

9

107

12

15

14

13

11

Fig. 3. Dynamic change of an observation plan

4 Algorithms for Selecting Observation Plan

In this section, we explain four algorithms for selecting an efficient observation
plan: the apriori-based method (apriori), the bidirectional method (bidirec-
tional), the greedy method (greedy), and the skyline-based method (skyline).
Apriori and bidirectional can derive optimal observation plans. On the other
hand, greedy and skyline select suboptimal plans.

The problem of selecting an observation plan is defined as Eq. (1). An exhaus-
tive search over possible observation plans is impractical due to the exponential
computation time. In order to select an observation plan effectively, we prune
the candidate plans using the notion of monotonicity. In following subsections,
we describe how each proposed method prunes the candidates and how to select
a suboptimal solution in greedy and skyline.

4.1 Apriori-Based Method

The apriori-based method (apriori for short) is based on the apriori algorithm
in association rule mining [5]. Apriori consists of the join step (generates all
possible candidates) and the prune step (removes non-qualified candidates). As
the join step is similar to that of the apriori algorithm, we describe how to prune
the candidates in the prune step.

In order to prune the candidates, we use the monotonicity relationships of
an observation plan. The monotonicity relationships of an observation plan P ,
which is a set of sensor IDs, is expressed as Eq. (3), where Psup is a proper
superset of P .

C(Psup) > C(P) (3)

We use observation plans {10} and {14} for Fig. 1 to explain how to prune
candidates using Eq. (3). Suppose a robot is located at node 8 and a user gives
a value query V Q(13, Θ, γ) to the mobile robot database. If the benefit of the
observation plan {10} is larger than Θ, the plan {14} is not an optimal plan
because the cost of {14} is larger than that of {10}. In addition to {14}, the cost

Monitoring Query Processing in Mobile Robot Databases 277

of supersets of {14} is larger than that of {10} according to Eq. (3). Therefore,
we can prune the plan {14} and the supersets of {14} from the candidates
immediately. Apriori can reduce a number of candidates because supersets of
a pruned plan are not generated in the join step [5].

In apriori, we first initialize an optimal plan Popt as the sensors specified in
the query because such the plan gives an accurate answer obviously. The join
step generates candidates of the optimal solution according to [5]. In the prune
step, the candidate plan P is pruned when the cost of P is larger than that
of Popt. Apriori searches the remaining candidates to find an optimal solution
after the prune step. When the benefit of P is larger than Θ and the cost of P
is less than that of Popt, the plan P is the new optimal solution. For example,
suppose a robot is located at node 8 and a user gives a value query V Q(12, Θ, γ)
for Fig. 1. Apriori initialize an optimal plan Popt as a plan {12}, and the join
step generates candidates {{0}, {1}, ...,{15}}. In the prune step, the candidates
{{0}, {1}, {2}, {13}, {14}, {15}} are pruned because their cost is larger than
the cost of {12} (i.e., the distances from node 8 to those nodes are larger than
that of node 12). The join step generates new candidates (e.g., {3, 4}, {4, 5},
etc.) after apriori searches the remaining candidates to find an optimal solution.
This process is repeated until a new candidate is not generated.

4.2 Bidirectional Method

When the threshold Θ and the cost of Popt is large, the computation time of apri-
ori becomes larger because we cannot prune the candidates effectively. Therefore,
we propose the bidirectional method (bidirectional for short) that uses Eq. (3)
in addition to Eq. (4) to improve this problem.

B(Psup) ∼ B(P) (4)

Equation (4) shows that we can prune the subsets P when the benefit of Psup is
less than the threshold Θ. In contrast to the cost-based pruning used in apriori,
this cost-and-benefit-based pruning effectively prunes candidates when Θ is large.

Bidirectional searches the candidates combining top-down and bottom-up
approaches. In this paper, we use the bottom-up search from the empty set
and the top-down search from the set containing all node IDs. The bottom-up
search prunes candidates using the cost of Popt as in apriori, and the top-down
search prunes candidates using Θ. Note that we can calculate the number of the
remaining candidates using the number of nodes in an observation plan and the
information of pruned plans. Therefore, bidirectional can select the direction
that has a smaller number of candidates, and efficiently search the candidates.

For example, suppose a graph has only four nodes. Figure 4 shows candidates
of an observation plan, however ∈ and {1, 2, 3, 4} is omitted. Bidirectional
selects the bottom-up search (i.e., initial targets are {1}, {2}, {3}, and {4})
because the numbers of candidates of the bottom-up and the top-down are the
same. Assume that the cost of plan 1 is larger than the cost of Popt (initially
Popt is the sensors specified in the query). In this case, {1} and supersets are

278 K. Sugiura et al.

Fig. 4. An example of bidirectional

pruned according to Eq. (3). After the pruning, as the number of candidates of
the top-down (i.e., {{2, 3, 4}}) is less than that of the bottom-up (i.e., {{2, 3},
{2, 4}, {3, 4}}), bidirectional next selects the top-down search. Bidirectional
repeats this process until all the candidates are searched.

4.3 Greedy Method

The greedy method (greedy for short) finds a suboptimal observation plan by
selecting a partial solution in a heuristic manner. Although the query processing
method in [2] is based on a similar greedy-based idea, greedy in this paper is
different due to the use of the monotonicity relationships. The way of pruning
is similar to that of apriori, so that we omit the detail in this section.

In greedy, we first initialize a partial solution P as an empty set and a
suboptimal solution Popt as the sensors specified in the query. Then we add each
node ID i ∀∩ P to the partial solution P and compute the benefit and the cost of
the plan P ≥ i respectively. When B(P ≥ i) is larger than Θ and C(P ≥ i) is less
than C(Popt), the plan P ≥ i is the new suboptimal solution. In each iteration
step, we select a new partial solution from candidates P ≥ i based on the
effectiveness of the prediction. In this paper, the effectiveness of the prediction
is defined by B(P)/C(P). We repeat this process until new candidates are not
generated.

4.4 Skyline-Based Method

Skyline queries select a set of objects that are not dominated by the others in a
database [6]. In this paper, we apply the notion of skyline query to our context.
A plan belongs to the skyline if it is not dominated by any other plans in terms
of cost and benefit.

The skyline-based method (skyline for short) constructs a skyline for partial
solutions. We repeatedly add a node to the plan in the skyline to generate a new
candidate from the skyline objects. For example, suppose the current skyline (a
set of partial solutions) is {∈, {1}}. If we add node 2 to the skyline, we get new
candidates {∈, {1}, {2}, {1, 2}}. Suppose the benefit of {1} is less than that of
{2} and the cost of {1} is larger than that of {2}. In this case, skyline prunes the
plan {1} because {1} is dominated by {2}. We repeat this process until all nodes
are added to the skyline. As in apriori, skyline can also reduce computation
time using the monotonicity relationships.

Monitoring Query Processing in Mobile Robot Databases 279

5 Experiments

5.1 Setup of Experiments

In this section, we perform experiments for evaluating the proposed methods
based on simulations. We prepare two simulation environments. The first sim-
ulation environment is for measuring plan computation time. We utilize five
graphs with d = 10, 20, 30, 40, and 50 nodes, respectively. We arrange nodes
in a grid form and link between the neighboring nodes. We set the travel time
between each edge to three seconds. We construct a probabilistic model repre-
sented as a d-dimensional Gaussian distribution, however the parameters of the
Gaussian distribution are set manually. The second simulation environment is
for measuring the efficiency of observation plans. We use Fig. 1 as the underlying
graph structure. Travel time between two seconds to three seconds is assigned
to each edge depending on the real distance. We constructed a 16-dimensional
Gaussian distribution from the actual temperature measurements in our labora-
tory room. In the first and second simulation environment, the observation time
at each observation point is set to one second.

5.2 Evaluation of Algorithms

Computation Time. First, we evaluate the four algorithms using the first
simulation environment. We only show the results of value queries because there
is not much difference in the tendency between the results of value queries and
those of range queries. Figure 5 shows the computation time of each algorithm.
Note that we omitted some points in Fig. 5 if their computation times are larger
than one second. In Fig. 5(a)–(c) correspond to the case of (Θ = 0.9, γ = 0.5),
(Θ = 0.95, γ = 0.3), and (Θ = 0.99, γ = 0.1), respectively.

Apriori can reduce the computation time in Fig. 5(a) because the use of the
monotonicity relationship can prune candidates efficiently. In Fig. 5(b) and (c),
however, the computation time of apriori is large. The reason is that the use of
the cost-based pruning cannot prune candidates effectively when Θ is large or γ
is small. On the other hand, bidirectional can reduce the computation time in

(a) (c)(b)

Fig. 5. Computation time of proposed algorithms

280 K. Sugiura et al.

(a) (b)

Fig. 6. Comparison of execution time and percentage of correct answers

Fig. 5(c) by using the cost-and-benefit-based pruning. However, its computation
time is large in Fig. 5(b). This result means that pruning by the monotonicity
relationship is not always effective. In contrast, since greedy and skyline can
prune candidates by selecting partial solutions, they can reduce the computation
time in all the cases. In addition, they can reduce the computation time further
if the cost-based pruning is effective as shown in Fig. 5(a).

Quality of Observation Plans. Next, we evaluate the efficiency and the qual-
ity of the observation plan selected by each algorithm in the second simulation
environment. Since both of apriori and bidirectional select the optimal solu-
tion, we unify them and represent as optimum. We only show the results of
value queries V Q(id, Θ, 0.2) because there is not much difference in other results
including the range queries. Figure 6 shows (a) the execution time of each obser-
vation plan and (b) the percentage of correct answers. We treat a predicted value
as a correct answer if the predicted value is within the acceptable error range γ
from the real value. Note that the percentage of correct answers does not reach
100% because the algorithms consider the threshold Θ given by the user — the
algorithms terminate the search process when the user’s requirement is satisfied.

Figure 6 shows that the result of each algorithm is almost similar. There are
two reasons. First, we used relatively small and simple graphs in the experiments.
Since it is easy to derive an optimal solution when a graph is small and simple,
greedy and skyline can easily generate effective observation plans. Second,
we consider simple query types such as value queries and range queries. Since
the queries considered in this paper are for predicting the result for only one
node, it is not difficult to process them in contrast to complex queries.

5.3 Analysis of each Type of Queries

In this subsection, we show the experimental results only for greedy since it
performs well among the four methods in the current experimental settings.
Figure 7 shows the experimental result for value queries: (a) presents the execu-
tion time of observation plans, and (b) shows the percentages of correct answers.
For a comparison, we show the execution time of the naive method as a black

Monitoring Query Processing in Mobile Robot Databases 281

(a) (b)

Fig. 7. Analysis of value queries

(c) (d)

(b)(a)

Fig. 8. Analysis of range queries without/with dynamic plan change

line in Fig. 7(a). In the naive method, a robot always moves to the specified
observation point and measures a temperature. In Fig. 7(a), the cost is small
when the threshold Θ is small or the acceptable error γ is large. In other words,
this result demonstrates that a mobile robot database can reduce the cost of
query processing when the user does not need an accurate answer. Figure 7(b)
shows that the user’s accuracy requirement (denoted by the black line) is always
satisfied in this experiment. Therefore, we can say that our approach can answer
queries efficiently and accurately.

Next, we evaluate the effectiveness of dynamic change of an observation plan.
Figure 8 shows the execution time and the percentages of correct answers in
for range queries. Figure 8(a) and (c) are for the case without change, while
(b) and (d) are for the case with dynamic change. In Fig. 8(a) and (b), it is
shown that dynamic change increases of the cost of observation plans. The reason
is that a new observation plan requires additional observations. However, the

282 K. Sugiura et al.

additional cost is not large. From Fig. 8(c) and (d), we can observe that dynamic
change improves accuracy of answers. In particular, note that we can improve
the accuracy when the threshold Θ is large.

6 Conclusions

In this paper, we proposed query processing methods for mobile robot-based
sensing. Extending the idea of an existing method in sensor databases, we devel-
oped adaptive methods in the context of mobile robot databases. We focused
on the selection methods of observation plans, which were not elaborated in the
former work, and we proposed four selection methods, apriori, bidirectional,
greedy, and skyline. The proposed four selection methods are evaluated based
on the experiments. Our future work includes refinement and re-evaluation of
the selection methods of observation plans, support of various observation tasks,
update of probabilistic models, coping with uncertainty of sensor values and
robot movements, handling error and outliers, and implementation and evalua-
tion using a moving robot in real environments.

Acknowledgment. This research is supported by the FIRST program, Japan,
KAKENHI (25280039, 23650047), and MEXT COI STREAM Project.

References

1. Lenchner, J., Isci, C., Kephart, J.O., Mansley, C., Connell, J., McIntosh, S.: Towards
data center self-diagnosis using a mobile robot. In: Proceedings of International
Conference on Autonomic Computing (ICAC), pp. 81–90. ACM (2011)

2. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-
based approximate querying in sensor networks. VLDB J. 14(4), 417–443 (2005)

3. Sathe, S., Papaioannou, T.G., Jeung, H., Aberer, K.: A survey of model-based sensor
data acquisition and management. In: Aggarwal, C.C. (ed.) Managing and Mining
Sensor Data, pp. 9–50. Springer, New York (2013)

4. Yamamoto, Y., Kubo, M.: Invitation to the Traveling Salesman Problem (in
Japanese). Asakura Publishing, Tokyo (1997)

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large data-
bases. In: Proceedings of VLDB, pp. 487–499 (1994)

6. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
ICDE, pp. 421–430 (2001)

Efficiently Evaluating Range-Constrained
Spatial Keyword Query on Road Networks

Wengen Li1, Jihong Guan1(B), and Shuigeng Zhou2

1 Department of Computer Science and Technology,
Tongji University, Shanghai, China

lwengen@gmail.com, jhguan@tongji.edu.cn
2 School of Computer Science, Fudan University, Shanghai, China

sgzhou@fudan.edu.cn

Abstract. With the rapid development of geo-positioning technologies,
spatial information retrieval plays an important role in a wide spectrum
of applications, e.g., online maps and location-based services. Specifically,
spatial keyword query (SK query), considering both spatial proximity to
the query location and textual relevance to the query keywords, is now a
hot research topic in database community. This paper addresses a specific
type of SK query, termed range constrained spatial keyword query (RC-
SK query), which searches for all the POIs (points of interest) whose
textual description is relevant to the query keywords within a specified
area. Though RC-SK query has received extensive studies in Euclidean
space, little is done to deal with it on road networks. In this paper,
alternative approaches with different indexing strategies are proposed to
solve this problem. Extensive empirical studies on multiple real datasets
demonstrate the efficiency of these proposed approaches.

Keywords: Range-constrained spatial keyword query · Road networks ·
Hierarchy indexing

1 Introduction

The rapid development of techniques for both geo-positioning and mobile com-
munication has made location aware query a necessary part in many applications.
In this paper, we consider a specific type of such query called range constrained
spatial keyword query, RC-SK query for short, on road networks. Concretely, a
RC-SK query, specified with a spatial location and a set of query keywords, is
targeted for finding all the POIs whose textual relevance to the query keywords
is larger than a specified threshold and location is within a specified distance
to the query location. For instance, a visitor poses a query to search for all the
banks offering exchange service within 2 km from his or her current location.
Here, a bank is a POI with a spatial location (e.g., longitude and latitude) and
a piece of textual description about the services it offers.

Actually, there have been some works on RC-SK query in Euclidean space. In
reality, however, people’s trajectories are usually constrained by road networks.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 283–295, 2014.
DOI: 10.1007/978-3-662-43984-5 21, c© Springer-Verlag Berlin Heidelberg 2014

284 W. Li et al.

v1

bank

Mail Box

Industrial
Bank

Shijia
Hotel

East
Asia Art

Nestle Café

Art
Boutique

q

o2 o6o4

o7

o8

o9
o1

o10

o12

o11

o3

o5

v2

v3

v5

v6

v4
v7 v9 v10

v8

v11

v13

v12

v14

Mail Box

Development
Bank

Chinese
Restaurant

Industrial
Bank

Hilton
Hotel

Mail
Box

12

1.5

1.5

1.5

1.5
2

1.5

1.51.5
1.5

1.5

1.5

2

1.5

1.5

1 11

1
1

Fig. 1. An example of RC-SK query. Here, dis(q, o2) = 2.5.

Figure 1 illustrates an example of RC-SK query on a small road network which
has 14 vertices vi(i = 1, . . . , 14) and 12 POIs oj(j = 1, . . . , 12) denoted as
black grids and circles, respectively. Each edge is labeled with its length. The
query q, illustrated by a grey filled circle, searches for all the banks within 2 km.
In Euclidean space, both o2 and o4 will be returned as the result. However, we
cannot reach o2 within 2 km along the road network. Hence, it is more practicable
to conduct RC-SK query based on network distance than Euclidean distance.

However, conducting RC-SK query on road networks is much more challeng-
ing than that in Euclidean space because the shortest path between query loca-
tion and any candidate POI should be computed. Especially for a larger query
range, we need to enumerate many POIs and compute their shortest distances
to the query location.

In this paper, three approaches are proposed to deal with RC-SK query on
road networks. The first one is expansion-based approach (EA), a baseline app-
roach, which traverses the road network from the query location with the same
flavor as Dijkstra’s algorithm. The second approach is Euclidean heuristic app-
roach (EHA) which is an improvement of EA approach and employs Euclidean
heuristic to accelerate query processing. As both EA and EHA have to traverse
the road network vertex by vertex, they are inefficient for a large query range.
To solve this problem, the third approach called Rnet Hierarchy [1] based app-
roach (RHA) is proposed. RHA partitions the whole road network into a group
of interconnected subnets and organizes them in a hierarchy structure, which
greatly improves the query efficiency.

The remainder of this paper is organized as follows. Section 2 reviews the
related work and Sect. 3 formally defines the problem. Sections 4–6 elaborate
EA, EHA and RHA, respectively. Section 7 empirically evaluates the proposed
approaches and Sect. 8 concludes the paper.

2 Related Work

Generally, there are two types of widely used spatial keyword queries [7], i.e., top-
k spatial keyword query (top-k SK query) [13,14], searching for the k best POIs
based on both spatial proximity and textual relevance, and range-constrained
spatial keyword query (RC-SK query) [8,16], searching for all the POIs satisfying
the required textual relevance within a specified area.

Efficiently Evaluating RC-SK Query on Road Networks 285

Table 1. Hybrid indices.

References Hybrid index Spatial index Textual index

[15] IR2-tree R-tree Signature file
[11] IR-tree R-tree Inverted file
[8,16] KR*-tree R*-tree Inverted file
[18] bR*-tree R*-tree Bitmap

During the past decade, RC-SK query has received extensive studies in
Euclidean space. The original solution [8] to RC-SK query retrieves all the POIs
within the query range area and conducts a detailed examination on these POIs
based on their textual relevance, which is inefficient for large-size datasets. To
solve this problem, previous works try to embed traditional textual indices, such
as inverted file and signature file [12] into an R-tree [9], a widely-used index
structure for multi-dimensional data, or its variants. Table 1 shows major hybrid
schemes that merge text index and spatial index.

Almost all the proposed approaches for RC-SK query in Euclidean space are
based on these hybrid indices. During query processing, spatial proximity and
textual relevance are computed simultaneously, which make it efficient to prune
irrelevant branches as soon as possible. However, all these index structures and
processing algorithms are devised for spatial keyword queries in Euclidean space
and cannot be directly used for RC-SK query on road networks.

In addition, Rocha-Junior et al. [10] proposed several efficient approaches to
address top-k SK query on road networks, which is the most related work to
ours. The framework of their overlay approach is similar to that of our RHA.
However, both the partition strategy and index structure of RHA are different
from those of the overlay approach. More importantly, we aim at evaluating
RC-SK query instead of top-k SK query on road networks.

3 Problem Statement

Formally, a road network is represented as an undirected graph G = (V,E),
where V and E are the sets of vertices and edges, respectively. Each vertex
v ∼ V represents a road intersection or a road endpoint; each edge ei,j ∼ E(i ∈= j)
represents the road segment connecting vi and vj and its length is denoted as
|ei,j |. The distance between two vertices u and v, dis(u, v), is the length of the
shortest path between them.

A POI o is represented as o = (l, e, d,K), where o.l is the spatial location
consisting of longitude and latitude, o.e is the edge on which o resides, o.d is the
distance from o.l to the beginning vertex of o.e, and o.K is a set of keywords
which describe the details of o.

A RC-SK query q over G is defined as q = (l,K, τ, r), where q.l is the query
location, q.K is a set of query keywords, q.τ ∼ (0, 1] is a predefined textual

286 W. Li et al.

relevance threshold and q.r specifies the query range. The answers to q are the
set of POIs on G such that each of them satisfies

dis(o.l, q.l) ∀ q.r ∩ θ(o.K, q.K) ≥ q.τ

where dis(o.l, q.l) is the distance between o.l and q.l, θ(o.K, q.K) is the textual
relevance between o.K and q.K and defined as follows [3].

θ(o.K, q.K) =

∑
k∞q.K wk,o.K · wk,q.K

√∑
k∞o.K (wk,o.K)2 · ∑

k∞q.K (wk,q.K)2
(1)

where wk,o.K = 1+ln(fk,o.K), fk,o.K is the occurrences of query keyword k ∼ q.K

in o.K; wk,q.K = ln(1 + |P |
dfk

), where |P | is the number of POIs on G, dfk is the
number of POIs containing k.

Although the definition above and the following approaches are based on
undirected road networks, they can be extended to directed road networks with
only a little modification.

4 The Expansion-Based Approach

This baseline approach processes RC-SK query in an expansion fashion like
Dijkstra’s algorithm.

4.1 Index Structure

An R*-tree [2] is employed to index all edges in E as illustrated in Fig. 2 where
each edge is represented as a minimum bounding rectangle that totally encloses
it. With the help of the R*-tree, the edge on which q.l resides can be quickly
determined with a spatial point query.

R*-tree

……

e1 e2 en-1 en……

Fig. 2. R*-tree for edges.

(vx, Inv(vx), Padj)

…
…

 vi ex,i |ex,i| Inv(ex,i)

……

……

……

B+-tree vj ex,j |ex,j| Inv(ex,j)

Fig. 3. Index for road networks.

Meanwhile, a B+-tree is used to index the modified adjacent lists as shown
in Fig. 3 which keeps the connectivity of G. Each entry in leaf node is a triple

Efficiently Evaluating RC-SK Query on Road Networks 287

(vx, Inv(vx), Padj), where vx is a vertex, Inv(vx) is a pointer to the inverted
file [3] (called vertex inverted file) which covers all the POIs on vx’s adjacent
edges. Padj is another pointer pointing to the adjacent list of vx. Each entry in
the adjacent list is a quadruple (vi, ex,i, |ex,i| , Inv(ex,i)), where vi is a neighbor
vertex of vx, ex,i is the edge between vx and vi with length |ex,i|, and Inv(ex,i) is
a pointer to the inverted file (called edge inverted file) covering all POIs on ex,i.

4.2 Query Processing

Initially, a priority queue U is created to store visited vertices during expansion
based on their network distances to q.l. Meanwhile, a list L is created to store
query results. First, the edge ei,j on which q.l resides is located by using the R*-
tree built for edges. Then a verification is conducted on ei,j to check whether it
contains any POI whose textual relevance to q.K is larger than q.τ . Next, both vi
and vj are inserted into U with their distances to q.l. By obtaining vertices from
U and checking their adjacent edges, we can traverse all edges within q.r from
q.l and verify them in the same way as we do for ei,j . During the verification,
POIs satisfying the textual relevance threshold are added to L.

Consider the query q over the road network in Fig. 1, where q.l is the filled
circle, q.K = “bank”, q.r = 2. For presentation simplicity, we ignore q.τ and only
require that each returned POI contains q.K. First, we find that q.l is located
on e1,5 which has no desirable POIs. Then, v1 and v5 are inserted into U with
(v5, 0.5) and (v1, 1.5), respectively. Here, we assume |q.l, v1| = 1.5 and |q.l, v5| =
0.5. Next, we get (v5, 0.5) from U . By checking the inverted file Inv(v5) for v5,
we find that e5,4 contains query keyword “bank”. Then Inv(e5,4) is checked and
o4 is inserted into L. As the distance from q.l to v4 is 2, we do not search beyond
v4, which is same for v6 and v7. Following that, we get (v1, 1.5) from U and
its adjacent edges e1,2 and e1,3 are checked, and no POIs (assume |o2, v1| = 1,
we have dis(q.l, o2) = 2.5 > 2) are inserted into L. Now U is empty and the
algorithm terminates. Finally, we get the query result L = ⊂o4∨.

5 The Euclidean Heuristic Approach

EA is efficient enough for RC-SK queries with a small q.r. However, if q.r is very
large and numerous edges and POIs are covered, EA will incur a considerable
overhead to obtain all desirable POIs because it has to verify the inverted files of
all relevant edges (containing any query keyword). In general, however, a large
portion of keywords cover only a small number of POIs. In such a situation, to
check the inverted files for all relevant edges is unnecessary. To overcome this
drawback, we propose the Euclidean heuristic approach (EHA).

Intuitively, Euclidean distance between any two vertices on a road network is
always smaller, if not equal to, than the network distance between them. There-
fore, if a POI belongs to the query result based on network distance, then it must
be in the query result based on Euclidean distance. Based on this observation,
we propose the EHA to first retrieve all the candidate POIs according to any

288 W. Li et al.

state-of-the-art Euclidean distance based approach. Here we employ IR-tree [11]
which augments each node of the R-tree with an inverted file. The set of edges
having candidate POIs (satisfying textual relevance threshold) is recorded as Eq.
During the expansion process, we avoid verifying the inverted file of a particu-
lar edge by checking whether it is contained in Eq. Thus, edges containing no
desirable POIs are filtered. EHA is implemented based on EA by adding a SK
query on the IR-tree at the beginning and an edge set check during expansion.
We omit the detail here due to space limit.

6 The Rnet Hierarchy-Based Approach

Essentially, both EA and EHA expand from one vertex to another on G within
q.r, which makes it very expensive to evaluate RC-SK queries with a large q.r. To
solve this problem, we introduce the Rnet Hierarchy [1] to index road networks
and further propose Rnet Hierarchy-based approach, RHA for short.

6.1 Indexing Structure

Rnet Hierarchy partitions a road network into connected subnets called Rnets
(regional nets) and organizes them in a hierarchy structure as depicted in Fig. 4.
An Rnet R is defined as (VR, ER, BR) where VR, ER, and BR are the sets of
vertices, edges and border vertices of R, respectively. BR are the vertices shared
by two or more Rnets (e.g., v5). In Fig. 4, there are four Rnets R11, R12, R21

and R22 at level 1 and two larger Rnets R1 and R2 at level 2. R1 encloses R11

and R12, and R2 encloses R21 and R22. Level 0 is the original road network.
Therefore, a road network is organized as a group of connected Rnets at each
level.

In order to skip over Rnets, shortcut is introduced. A shortcut is the shortest
path between two border vertices of an Rnet, e.g., SP (v5, v9). With the help of
shortcuts on different levels, a search expands quickly with different step sizes.
Here, a challenge is how to partition a road network into a group of Rnets with
a minimum number of border vertices. In this paper, we first consider the equal-
size partition [1], which adopts the geometric approach [4] and KL algorithm
[5], to partition the whole road network into Rnets of the similar size. Equal-size

v1

v2
v3

v5

v6

v4

v7
v9

v10

v8

v11

v13

v12

v14

1

1.5

1.5

2
1.5 1.5

1
1

1.5

1.5

1
2 1.5

1.5

1

1.5
2

1.5

1.5

R11 R12 R21 R22

R1 R2

Level 0

Level 1

Level 2

1

2.5

Fig. 4. An example of Rnet Hierarchy of a road network.

Efficiently Evaluating RC-SK Query on Road Networks 289

partition first partitions the whole road network into two parts with almost the
same number of edges, and then tunes them by exchanging edges to reduce the
border vertices. By doing this recursively, G is partitioned into a set of Rnets
with almost the same size.

However, the partition method above ignores the road network’s semantics.
In reality, POIs on road networks are often clustered [6] in some hot areas like
commercial centers. For example, area around v5 in Fig. 1 has more POIs than
areas around other vertices (e.g., v13). Figures 5 and 6 display the POI distrib-
ution on the road network of London. Obviously, most vertices have less than
5 POIs (POIs residing on the edges adjacent to the vertex). Accordingly, we
consider partitioning a road network based on the distribution of POIs, i.e.,
distribution-aware partition and aim to partition as many as POIs into the same
Rnet. To this end, we first collect all the vertices with more POIs than a specified
parameter (e.g., 10) and then merge these vertices to form larger areas based on
their spatial proximity until a Rnet is generated. Meanwhile, the other areas are
partitioned by using the equal-size partition.

Fig. 5. POI distribution of London

0 5 10 15 20 25
-500

0

500

1000

1500

2000

2500

3000

3500

#V
er

te
x

#Associated Objects

Fig. 6. POI distribution statistics

Rnet Hierarchy is organized using a B+-tree as illustrated in Fig. 7. The B+-
tree indexes all vertices based on their identifiers and each entry in a leaf node
points to an adjacent list or a hierarchy tree. Concretely, if a vertex vi (e.g., v2)
is not a border vertex, the entry for vi has a pointer pointing to an adjacent list
just as EA. Otherwise, the entry for vi has a pointer pointing to a hierarchy tree
which records the organization of all the Rnets associated with vi at different
levels. For example, v5 is a border vertex of R11 and R12, and it has a hierarchy
tree Tv5 . The root node of Tv5 contains two entries ER11 (for R11) and ER12

(for R12) and a pointer pointing to the inverted file for them. In a hierarchy
tree, each entry in the intermediate nodes also stores all the shortcuts within the
corresponding Rnet while each entry in the leaf nodes points to the adjacent list
of the border vertex.

In addition, to utilize Euclidean heuristic to quickly find out those Rnets
that contain desirable POIs, we also try to organize all Rnets at different levels
into a variant IR-tree as illustrated in Fig. 8.

290 W. Li et al.

Fig. 7. Index for the Rnet Hierarchy

ER1 ER2

ER11 ER12 ER21 ER22

IR-tree
Inv

InvInv

Fig. 8. IR-tree for Rnets

6.2 Query Processing

Given a query q, RHA searches for POIs in an expanding fashion as detailed in
Algorithm 1. If a vertex vi is not a border vertex, it proceeds in the same way
as EA. Otherwise, the hierarchy tree Tvi

of vi is checked. First, we examine the
inverted file for the root node of Tvi

to check whether it contains desirable POIs.
If not, we skip over the entire Rnet through the shortcuts without checking its
inner edges. Otherwise, we check its child nodes to further retrieve desirable
POIs.

Algorithm 1. The Rnet Hierarchy based Approach
Input: G = (V, E), q = (q.l, q.K, q.τ, q.r)
Output: Any POI o such that dis(o.l, q.l) ≤ q.r ∧ θ(o.K, q.K) ≥ q.τ
1: U=newPriorityQueue(); // used to store visited vertices during processing
2: L=newList(); // used to store final result
3: eq=locateEdge(q.l);
4: U .enqueue(eq.v1, |q.l, eq.v1|);
5: U .enqueue(eq.v2, |q.l, eq.v2|);
6: checkEdge(eq); // check Inv(eq)
7: while not U .isEmpty() do
8: v=U .Dequeue();
9: if not v.isBorderVertex() // v is not a border vertex

10: for each adjacent edge e of v
11: if e contains q.K
12: checkEdge(e);
13: if(v.currentDistance+e.length< q.r)
14: U .enqueue(e.anotherVertex);
15: else // v is a border vertex
16: check v.HierarcyTree;
17: return L;

Efficiently Evaluating RC-SK Query on Road Networks 291

Table 2. Statistics of datasets.

Attributes Dublin London Australia BritishIsles

#vertices 62,975 209,406 1,223,171 3,760,213
#edges 82,730 282,267 1,682,182 4,865,094
#POIs 5,297 34,341 70,064 300,891
#keywords 15,216 97,824 193,106 842,369
#distinct keywords 3,563 12,522 18,789 60,558

Table 3. Parameters in experiments.

Parameters Values

q.r 1, 3, 5, 7, 9 (km)
q.τ 0.3, 0.5, 0.7, 0.9, Boolean
|q.K| 1, 2, 3, 4, 5
Datasets Dublin, London, Australia, British Isles
Partition strategy Equal-size partition , Distribution-aware partition

For example, we consider the same query in Fig. 1 with a larger q.r = 3.
First, we verify the edge e1,5 on which q.l resides. Then, (v5, 0.5) and (v1, 1.5)
are inserted into U . Next, we obtain (v5, 0.5) from U . As v5 is a border vertex,
we evaluate R11 and R12. R11 contains bank and a detailed examination is con-
ducted. Then e5,4 is checked and o4 is added to L. Meanwhile, (v4, 2) is inserted
into U . R12 contains no desirable POIs and its shortcuts from v5 to v8 and v9
go beyond the query range. Then, we get (v1, 1.5) and (v4, 2) in order, and no
more POIs are added to L. Finally, the result L = ⊂o4∨ is returned.

As an expected improvement, we employ the IR-tree in Fig. 8 to accelerate
query processing by getting all Rnets containing desirable POIs in advance,
which avoids checking the inverted file for each Rnet.

7 Experimental Evaluation

7.1 Setup

The performance of proposed approaches is evaluated on four real datasets1

which are road networks of Dublin, London, Australia, and British Isles, respec-
tively. Table 2 displays some statistics of the four datasets. For each dataset, we
randomly generate 500 locations within the road network area as query loca-
tions and 500 sets of keywords of size 1, 2, 3, 4, and 5, separately. Table 3 lists
the parameters used in the experiments and marks their default values in bold.
Experiments run on a PC with a 3.1 GHz Intel processor and a 4 GB RAM. The
index structures of the three approaches are disk-resident and the buffer is set
at 4 MB.

1 http://www.idi.ntnu.no/∼joao/publications/EDBT2012/

http://www.idi.ntnu.no/~joao/publications/EDBT2012/

292 W. Li et al.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

R
es

po
ns

e
Ti

m
e

(S
ec

)

Query Range (km)

EA
EHA
RHA

(a) Vary q.r

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Textual Relevance

EA EHA RHA

(b) Vary q.τ

1 2 3 4 5
1

2

3

4

5

6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Number of Keywords

EA EHA RHA

(c) Vary |q.K|

Fig. 9. Response time while varying q.r, q.τ , and |q.K|

7.2 Experimental Results

Varying q.r. Figure 9(a) illustrates the response time while varying q.r. EA
performs well for queries with a small q.r. With the increase of q.r, however,
the response time increases rapidly because EA has to expand all the edges
within q.r from q.l. Compared to EA, EHA performs better because it avoids
checking the inverted file for every edge that contains any query keyword. This
differs from the conclusion in [17] that network expansion algorithms performs
better than Euclidean distance heuristic based algorithms, because EHA just
uses Euclidean heuristic to avoid unnecessary edge examination. However, both
EA and EHA expand vertex by vertex, which inevitably incurs a high overhead.
RHA performs much better than EA and EHA because it bypasses the Rnets
containing no desirable POIs and avoids a detailed examination on their inner
edges. Additionally, with the help of different layers and different size of Rnets,
RHA works well with different q.r.

Varying q.τ . Figure 9(b) shows the response time while varying the textual
relevance q.τ . A smaller q.τ covers more POIs and it consumes more time to
evaluate these POIs. Both EA and EHA cost more than 3 s to evaluate a RC-SK
query while varying q.τ from 0.3 to 0.9. As for RHA, only about one second is
required. Because no textual relevance is computed, Boolean query (q.τ = 1)2

takes less time than other queries.

Varying|q.K |. Figure 9(c) presents the response time while varying the number
of query keywords |q.K|. With the increase of |q.K|, both EA and EHA have
to verify more POIs relevant to q.K, which leads to an increase in query time.
Although RHA also needs more time to evaluates RC-SK queries with more
keywords, the increase of response time is very slow because RHA computes the
textual relevance between an Rnet and q.K, and there is no detailed examination
if the relevance is less than q.τ . Therefore, increasing query keywords affects only
a small portion of Rnets and the other Rnets are still skipped through shortcuts.

2 This value is just a label for Boolean query instead of a textual relevance value.

Efficiently Evaluating RC-SK Query on Road Networks 293

Dublin London Australia British
0

1

2

3

4

5

6

7
R

es
po

ns
e

Ti
m

e
(S

ec
)

Datasets

EA EHA RHA

(a) Response time

Dublin London Australia British
0

3000

6000

9000

12000

15000

18000

Ex
pa

nd
ed

 E
dg

es

Datasets

EA&EHA RHA

(b) Expanded edges

Dublin London Australia British
0

200

400

600

800

1000

1200

In
de

x
Si

ze
 (M

B
)

Datasets

EA EHA RHA

(c) Index size

Fig. 10. Response time, expanded edges and index size for different datasets

Dublin London Australia British
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Datasets

RHA ERHA

(a) ERHA

Dublin London Australia British
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
es

po
ns

e
Ti

m
e

(S
ec

)

Datasets

RHA-E RHA-D

(b) Response time

Dublin London Australia British
0

1000

2000

3000

4000

5000

Ex
pa

nd
ed

 E
dg

es

Datasets

RHA-E EHA-D

(c) Expanded edges

Fig. 11. Response time using ERHA, response time and expanded edges while varying
partition strategies

Different Datasets. Figure 10(a) shows the response time for different datasets.
RHA evaluates RC-SK queries on the four datasets of different size in about one
second. We can find that the response time on Australia network is smaller than
that on London network. This is because the London network is denser than
Australia network. In general, given the same query range, London network usu-
ally has more POIs and edges than Australia network. This can also be seen
from Fig. 10(b), which illustrates the number of edges expanded during query
processing.

Index Size. Figure 10(c) shows the index size of the three approaches on dif-
ferent datasets. EHA has a larger index size than EA because it constructs an
IR-tree for all POIs on the road network. RHA and EHA have all most the same
index size.

Euclidean Heuristic Based RHA. Figure 11(a) presents the response time
of the Euclidean heuristic based RHA (ERHA) that indexes all Rnets with an
IR-tree as illustrated in Fig. 8. As RHA indexes a road network in a hierarchy
and is already able to prune unrelated Rnets, RHA and ERHA have no much
difference in response time.

294 W. Li et al.

Partition Strategy. Figure 11(b) and (c) illustrate the response time and
number of expanded edges while distribution-aware partition (called RHA-D)
is adopted. Compared to RHA using equal-size partition (RHA-E), RHA-D has
a better performance. By partitioning a road network based on POI distribu-
tion, some Rnets have more POIs than others and accordingly have more key-
words. Besides, areas containing few POIs can be partitioned into Rnets of larger
granularity. Hence, this partition strategy makes RHA-D more advantageous in
pruning unrelated Rnets than RHA-E.

8 Conclusion

In this paper, we define the RC-SK query on road networks and devise three
approaches, i.e., EA, EHA and RHA, to deal with this problem. Both EA and
EHA are suitable for RC-SK queries with a small query range while RHA also
works excellently for RC-SK queries with a large query range.

In the future, we will consider some temporal spatial keyword queries over
road networks because it is quite important for a city with heavy traffic.

Acknowledgement. This work was supported by National Natural Science Foun-
dation (NSFC) under grant No. 61373036 and the Research Innovation Program of
Shanghai Municipal Education Foundation under grant No. 13ZZ003.

References

1. Lee, K.C.K., Lee, W.-C., Zheng, B.: Fast object search on road network. In: Pro-
ceedings of EDBT, pp. 1018–1029 (2009)

2. Beckman, N., Kriegel, H.-P., Scheider, R., Seeger, B.: The R*-tree: an efficient and
robust access method for points and rectangles. In: Proceedings of SIGMOD, pp.
322–331 (1990)

3. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv.
38(2), 1–56 (2006)

4. Huang, Y.-W., Jing, N., Rundensteiner, E.A.: Effective graph clustering for path
queries in digital map. In: proceedings of CIKM, pp. 215–222 (1996)

5. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell
Syst. Tech. J. 49(2), 291–308 (1970)

6. Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: Proceedings
of SIGMOD, pp. 443–454 (2004)

7. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D.,
Yiu, M.L.: Spatial keyword querying. In: Atzeni, P., Cheung, D., Ram, S. (eds.)
ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 16–29. Springer, Heidelberg
(2012)

8. Zhou, Y., Xie, X., Wang C., Gong, Y., Ma, W.: Hybrid index structures for
location-based web search. In: Proceedings of CIKM, pp. 155–162 (2005)

9. Guttman, A.: R-trees: a dynamic index structures for spatial searching. In: Pro-
ceedings of SIGMOD, pp. 47–57 (1984)

10. Rocha-Junior, J.B., Norvag, K.: Top-k spatial keyword queries on road networks.
In: Proceedings of EDBT, pp. 168–179 (2012)

Efficiently Evaluating RC-SK Query on Road Networks 295

11. Li, Z., Lee, K.C.K., Zheng, B., Lee, W.-C., Lee, D.L., Wang, X.: IR-tree: an efficient
index for geographic document search. IEEE TKDE 23(4), 585–599 (2011)

12. Faloutsos, C., Christodoulakis, S.: Signature files: an access method for documents
and its analytical performance evaluation. ACM TODS 2(4), 267–288 (1984)

13. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørv̊ag, K.: Efficient processing of
top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento,
M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp.
205–222. Springer, Heidelberg (2011)

14. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. In: Proceedings of SIGMOD, pp. 337–348 (2009)

15. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
Proceedings of ICDE, pp. 656–665 (2008)

16. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (SK)
queries in geographic information retrieval (GIR) systems. In: Proceedings of
SSDBM, pp. 1–10 (2007)

17. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: Proceedings of VLDB, pp. 802–813 (2003)

18. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword
search in spatial databases: towards searching by document. In: Proceedings of
ICDE, pp. 688–699, (2009)

A Spatial-Temporal Analysis of Users’
Geographical Patterns in Social Media:

A Case Study on Microblogs

Chao Li1,2, Zhongying Zhao1,3(B), Jun Luo1,4, Ling Yin1, and Qiming Zhou1,5

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Beijing, China

2 Graduate University of the Chinese Academy of Sciences, Beijing, China
3 College of Information Science and Engineering,

Shandong University of Science and Technology, Qingdao, China
4 Huawei Noah’s Ark Laboratory, Hong Kong, China

5 Department of Geography, Hong Kong Baptist University, Hong Kong, China
{chao.li1,zy.zhao,jun.luo,yinling}@siat.ac.cn

qiming@hkbu.edu.hk

Abstract. With the development of information technologies, Social
Media platforms have become popular and accumulated numerous data
about individuals’ behavior. It offers a promising opportunity of discov-
ering usable knowledge about the individuals’ movement behavior, which
fosters novel applications and services. In this paper, in order to study
the relations between communities and location clusters, we propose the
index of location entropy to measure the degree of dispersion of the loca-
tions in each community, and the index of community entropy to measure
the degree of dispersion of the communities in each location cluster. At
last, we analyze users’ trajectories and define four Trajectory Patterns.
An algorithm is also proposed to extract those patterns from microblog
data. We implement the algorithm and find some interesting and useful
results for the intelligent recommender systems.

1 Introduction

Social Media is increasingly becoming one of the key platforms for people’s
interactions over the internet. The potential of these services lies in that they
can gather large amount of data about individual’s social behaviors as well as
his/her personal information such as age, gender, home location, workplace, etc.
At the same time, many users are now willing to share information about their
locations, allowing for the study of the role of geographic distance in social ties.

This research was supported by International Science and Technology Cooperation
Program of China (Grant No. 2010DFA92720-24), National Natural Science Foun-
dation of China (NSFC) under Grant No. 61303167 and 11271351, and partially sup-
ported by Basic Research Program of Shenzhen (Grant No. JCYJ20130401170306838
and JC201105190934A).

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 296–307, 2014.
DOI: 10.1007/978-3-662-43984-5 22, c© Springer-Verlag Berlin Heidelberg 2014

A Spatial-Temporal Analysis of Users’ Geographical Patterns 297

Mining and analyzing those data has a great potential value for business. It offers
an opportunity of discovering usable knowledge about the individual’s behavior,
which fosters novel applications and services.

The existing work on social media or social networks can be classified into
community detection [1,2] information propagation [3], influence analysis [4],
etc. However, few studies have taken individual’s locations into consideration.
One of the initial attempts to analyze how interactions on Social Media are
affected by spatial distance is presented in [5], where the authors show that the
probability of friendship decreases not only with distance but more precisely with
the number of closer people. Li et al. [6] has proposed an information spreading
model based on the location and community structure, but they did not give a
definition about the main location of an individual as people might travel around
and stay at several locations due to their business or entertainment. Some studies
have investigated the structural properties of a location-based social network and
how social and geographic distance influences the creation of new connections
among its users [7]. Yet, they did not conduct a macroscopic statistical analysis
about the recorded locations over the social media, neither did they study the
relationships between online communities and geographical location clusters. In
fact, users often change their geographical locations due to there work or travel,
which results in different trajectories. However, scarce work has been devoted to
identify the patterns behind those trajectories.

In this paper, we aim to study the spatial-temporal patterns by analyzing
the Tencent microblogging users. Our contributions include:

1. We investigate the location clusters involved in each communities, and pro-
pose an index ‘Location Entropy’ to measure the degree of location dispersion
in each community. It can potentially help measure the influential power for
a topic community.

2. We also investigate the communities involved in each location cluster, and
propose the index ‘Community Entropy’ to measure the mixing degree of
the communities in each location cluster. It can potentially help monitor the
active degree of people’s online social behavior in a location cluster.

3. At last, we define four ‘Trajectory Patterns’ to describe individuals’ moving
behavior. And then propose an algorithm to detect Trajectory Patterns from
large scale microblogging data. Some results gained from those patterns are
useful to the intelligent recommender system.

The remainder of the paper is organized as follows. Section 2 introduces the
related work. In Sect. 3, we analyze the relationship between users’ locations and
communities. In Sect. 4, we define individuals’ Trajectory Patterns, identify and
analyze those patterns based on Microblog data. Finally, we conclude this study
in Sect. 5.

298 C. Li et al.

2 Related Work

In the recent years massive online social networks such as Facebook, MySpace,
LinkedIn, Flickr and Twitter [8] have become increasingly popular, gathering
millions of users and engaging them in the production, sharing and consump-
tion of information over social links. Moreover, they are increasingly becoming
location-aware: they offer an opportunity to share geographic locations in order
to generate location-tagged information and to search for it. Therefore, a large
number of studies have been done based on social interactions and locations.

The effect of geography over complex networks has been studied mainly in
communication and transportation networks [2]. For instance, it has been found
that the spatial properties of the Internet topology are mainly determined by
both preferential attachment and linear distance dependence [8], whereas Inter-
net traffic is spatially bound to a spanning network which connects the most
important centers around the globe [9]. However, these studies do not investi-
gate online social networks, which rarely have spatial constraints. One of the first
attempts to analyze how interactions on online social networks are affected by
spatial distance is presented in [5], where the authors show that the probability
of friendship decreases not only with distance but more precisely with the num-
ber of closer people. Some studies have investigated the structural properties of
a location-based online social network and how social and geographic distance
influences the creation of new connections among its users.

The basic frequent sequential pattern (FSP) problem, originally introduced
in [10], is defined over a database of sequences D, where each element of each
sequence is a timestamped set of items, i.e., an itemset. Timestamps determine
the order of elements in the sequence. Then, the FSP problem consists in finding
all the sequences that are frequent in D, i.e., appear as subsequences of a large
percentage of sequences of D. Therefore, many algorithms for sequential patterns
have been proposed, from the earliest in [10], to the more recent PrefixSpan
[11] and SPADE [12]. There are some studies about the trajectory patterns.
The work in [13] considers patterns that are in the form of trajectory segments
and searches approximate instances in the data; on the opposite, the work in
[14] provides a clustering-based perspective, and considers patterns in the form
of moving regions within time intervals, such as spatiotemporal cylinders or
tubes and counts as occurrences all trajectory segments partially contained in
the moving regions. Finally, a similar goal, but focused on cyclic patterns, is
pursued in [15]: the authors propose an effective and fast mining algorithm for
retrieving maximal periodic patterns, treating time as discrete, yet dealing with
continuous spatial locations that are discredited dynamically through density
based clustering.

3 Spatial Analysis: Location Clusters and Communities

In this section, we first give the description about the Microblog data. Then we
analyze the degree of location dispersion in each community, and explore the
mixing degree of the communities in each location cluster.

A Spatial-Temporal Analysis of Users’ Geographical Patterns 299

Table 1. The description of the three scales of networks.

Scale of the data sets #nodes #edges

Small 11221 108729
Medium 15912 171756
Large 36364 532444

3.1 Description About the Microblog Data

Tencent-Microblog offers an Application Programming Interface (API) for users
to crawl and collect data, such as an user’s ID, an user’s microblogs’ contents, and
the geographical location of a microblog post at a city level. In order to study the
geographical locations and social behaviors of the users, we crawled data of three
months (2011.4–2011.6), which contains 41713 users, 3119942 microblog posts,
and 331 different locations of posts. We choose three scale levels of networks:
small, medium, and large network. And we then identify a social network at
each scale. The details of the three scales of social networks data are described
in Table 1. We only built one edge between two nodes which follow each other.

In order to study the interplay of online communities and location clusters,
we need to identify online communities and discover location clusters. We first
use the Main Location for each user based on [17], and then find the location
clusters based on the province level in China. Meanwhile, we use the modularity
method [16] to detect communities based on users’ interactions: follow and be
followed. As a result, we identify some online communities and geographical
location clusters in the whole social network.

3.2 Analyzing Location Components for Each Community

To evaluate the degree of the location dispersion in community, we define the
index of Location Entropy as follows.

Definition 1. We define the location entropy for the community Ci as E(Ci):

E(Ci) = −
n∑

j=1

plij ∼ log2 plij (1)

Where plij represents the percentage of the users of the Main Location lj in
community Ci

Figure 1 illustrates the distributions of the location entropy (E(Ci)) for each
scale of networks. From Fig. 1, we can see that, for the smaller community which
contains fewer users, the entropy is differs from 1.5 to 4. While for the larger
community, the value of location entropy is very stable, this keeps in the neigh-
borhoods of 4. It can potentially help measure the influential power for a topic
community.

300 C. Li et al.

Fig. 1. The distributions of the location entropies in three scales of social networks

3.3 Analyzing Community Components for Each Location Cluster

In this section, we aim to analyze the community components for each location
cluster. Similar to Sect. 3.2, we propose the definition of community entropy
to describe the disordering degree of online communities within each location
cluster. The definition of community entropy is given as follows.

Definition 2. We define the community entropy for location cluster Lm as
E(Lm):

E(Lm) = −
n∑

i=1

pci ∼ log2 pci (2)

Where pci represents the percent of the users who belong to community ci at
location cluster Lm

Figure 2 shows the distributions of community entropy of three scales of net-
works. It indicates a weak relationship between the number of individuals at a
location and the community entropy. But it can potentially help monitor the
active degree of people’s online social behavior in a location cluster.

A Spatial-Temporal Analysis of Users’ Geographical Patterns 301

Fig. 2. The distributions of the community entropy in three kinds of networks

4 Spatial-Temporal Analysis: Trajectory Pattern Analysis

In this section, we define four typical Trajectory Patterns, and propose a Trajec-
tory Pattern detection algorithm. At last we show some interesting results from
the implemented algorithm on the Mircoblog data.

4.1 Trajectory Pattern

There are often some regular Trajectory Patterns (T-Patterns) behind users
moving behavior. In this section, we define four T-Patterns to describe some
typical individuals’ moving behavior.

Definition 3. Stable Trajectory (STr)

STr(u) = {At1 , At2 , · · ·Atn−1 , Atn} (3)

where:

– STr(u) represents the individual u’s Stable Trajectory Pattern
– A denotes the Main Location of user u
– Ati denotes the location of user u at the time of ti
– {t1 < t2 < · · · tn−1 < tn}

According to the above definition, the Stable Trajectory reflects the situation
that a user often stays in a certain location and rarely go to other places. Figure 3
illustrates an example of this pattern.

302 C. Li et al.

Fig. 3. Stable Trajectory (STr)

Fig. 4. Migrating Trajectory (MTr)

Definition 4. Migrating Trajectory (MTr)

MTr(u) = {At1 , At2 , · · ·Ati , Bti+1 , Bti+2 , · · · , Btn−1 , Btn} (4)

where:

– MTr(u) represents the user u’s Migrating Trajectory pattern
– A and B denote two locations of user u
– Ati denotes the location of user u at the time of ti
– Bti denotes the location of user u at the time of ti and B ∈= A
– {t1 < t2 < · · · < ti < ti+1 < · · · < tn−1 < tn}

According to the above definition, the Migrating Trajectory reflects the situ-
ation that a user moves from the location A to another new location B and does
not return. Figure 4 gives an example of this pattern.

Definition 5. Visiting Trajectory (V Tr)

V Tr(u) = {At1 , At2 , · · ·Ati , Bti+1 , Bti+2 , · · · , Bti+m
, Ati+m+1 , · · ·Atj , Ctj+1 , · · · ,

Ctj+k
, Atj+k+1 · · ·Atl ,Dtl+1 , · · · ,Dtl+d+1 , · · · , Atn−1 , Atn}

(5)
where:

– V Tr(u) represents the user u’s Visiting Trajectory Pattern.
– A denotes the Main Location of user u
– B,C,D, ... denote the visiting locations of user u
– Bti ,Cti ,Dti ,... denote the location of user u at the time of ti
– {t1 < t2 < · · · < ti < ti+1 < · · · < tn−1 < tn}

According to the above definition, the Visiting Trajectory reflects the situa-
tion that a user often visits different places but still has a Main Location. Figure 5
illustrates two examples of this pattern. Figure 5(a) means that the user visits
one place and then returns to his/her Main Location. While Fig. 5(b) means that
the user visits more than one place and then returns to his/her Main Location.

Definition 6. Flickering Trajectory (FTr)

FTr(u) = {At1 , At2 , · · ·Ati , Bti+1 , Bti+2 , · · · , Bti+m
, Ati+m+1 , · · ·Atj , Btj+1 , · · · ,

Btj+k
, Atj+k+1 · · ·Atl , Btl+1 , · · · , Btl+d+1 , · · · , Atn−1 , Atn}

(6)
where:

A Spatial-Temporal Analysis of Users’ Geographical Patterns 303

(b)

(a)

Fig. 5. Examples of Visiting Trajectory (V Tr)

Fig. 6. Flickering Trajectory (FTr)

– FTr(u) represents user u’s Flickering Trajectory Pattern.
– A,B denote different locations of user u.
– Ati ,Bti denote the locations of user u at the time of ti
– {t1 < t2 < · · · < ti < · · · < ti+m < · · · < tj < · · · < tl < · · · < tl+d}

According to the above definition, the Flickering Trajectory reflects the sit-
uation that a user changes his location between A and B. Figure 6 is such an
example of this pattern.

An algorithm for extracting the above four Trajectory Patterns is presented
in Algorithm 1. The algorithm iteratively considers all the spatial-temporal data
and calculates the probability of different trajectory for each individual. At last,
the individual is assigned to the Trajectory Pattern with the highest probability
value.

4.2 Trajectory Analysis on Tencent Microblogs

In order to study the trajectories and find some meaningful results, we have
developed software to crawl data from Tencent microblogs. We implement algo-
rithm 1 to detect four different Trajectory Patterns for each individual and then
analyze those trajectories and cities involved. We also find some hot cities, hot
pairs of cities and hot star cities.

From the our results, we find that more than half of people’s moving behavior
are characterized as Visiting Trajectory and few of them belong to the pattern
of Migrating Trajectory. We also consider the cities that appear in trajectories

304 C. Li et al.

Algorithm 1. Trajectory Pattern discovery algorithm
Require: The list of user’s locations with timestamps

Data{User1, Location, T imestamp}
Ensure: The pattern label for each user and his/her trajectories

Formulate user’s trajectory(UT (user, trajectory)) based on locations and
timestamps.
Create some rules to detect trajectory patterns according to Eq. 3,4,5,6
Get the Trajectory Pattern list {Patternname, Patternlabel, Patternrule}.
for User u in the list UT (user, trajectory) do

Match the trajectory(u) with the rule of detecting trajectory pattern.
Calculate the probability for each Trajectory Pattern.
Assign the pattern label with the highest probability value to each individual.

end for
return {user,patternlabel,trajectory}

Table 2. Hot City Top 20.

City #Users City #Users City #Users City #Users

BeiJing 1256 GuangZhou 365 ZhengZhou 228 HangZhou 172
ShangHai 842 TianJin 297 Xi’An 220 QuanZhou 166
ShenZhen 683 ChongQing 284 ChangChun 194 TaiYuan 159
ChengDu 611 ShenYang 274 ShiJiaZhuang 189 NanNing 157
WuHan 557 Ha’ErBin 230 JiNan 174 ChangSha 150

Fig. 7. The distribution of hot cities

frequently. Here we call them ‘hot cities’. Table 2 shows the top 20 hot cities
which are ranked in order of the number of users involved. We find that not all
of the cities are capitals (e.g. Shenzhen). The distribution of those hot cities are
illustrated in Fig. 7.

A Spatial-Temporal Analysis of Users’ Geographical Patterns 305

Fig. 8. The distribution of hot city-pairs

Table 3. Hot City-pairs Top 20.

City pair #Users City pair #Users City pair #Users

GuangZhou–ShenZhen 1131 ChengDu–ChongQing 242 BeiJing–ShangHai 168

BeiJing–ChongQing 569 Ma’AnShan–HeFei 233 ShenZhen–DongGuan 154

JiNan–QingDao 497 LeShan–ChengDu 206 ShiJiaZhuang–BaoDing 124

ShangHai–ShenZhen 348 ChongQing–GuangZhou 198 ShiJiaZhuang–ChengDe 106

ShenYang–DaLian 294 HangZhou–NingBo 194 BeiJing–BaoDing 103

BeiJing–TianJin 255 Xi’An–NanJing 188 AnYang–ZhengZhou 100

QuanZhou–FuZhou 255 HangZhou–WenZhou 169 – –

The last but not least, hot city-pairs are also detected from users’ trajectories.
We calculate the number of the co-occurrence of two cities in all the users’
trajectories and then select those pairs with higher frequency. Here, we call them
hot city-pairs. Figure 8 illustrates the distribution of the hot city-pairs which are
detected from from users’ microblogging trajectories. Table 3 shows the top 20
hot city-pairs.

Table 3 shows that lots of people like to travel between Shenzhen and
Guangzhou, Qingdao and Jinan etc. On the one hand, the hot city-pairs mined
from users’ trajectories are useful for the traffic or flight planning. For exam-
ple, with the knowledge of hot city-pair of ‘Beijing-Chongqing’, the correspond-
ing department may consider to arrange more flights or trains between them.
Therefore, the results can offer some supporting knowledge for the decision of
governments. On the other hand, the hot city-pairs that we detected also reflect
the current traffic situation. For example, there are 135 trains from between
Shenzhen and Guangzhou. More than 46 trains are planned between Qingdao
and Jinan. More than 94 flights are scheduled between Beijing and Chongqing.
Therefore, our results are indeed consistent with the real transports. It will play
a very important role in analyzing and planning transporting system between
different cities.

306 C. Li et al.

Fig. 9. The distribution of hot city-star

With users’ microblogging trajectories, we also find some star structures.
That is, many cities are connected closely with a certain city, which results in a
star-structure. Some examples are shown in Fig. 9. According to Fig. 9, we can
see that Beijing co-appears with many other cities and they form a star structure.
And Beiijng is in the center of a huge star-structure. Here, we consider it as a
Beijing-centered star. Such examples include Shanghai-centered star, Wuhan-
centered star, and Shenzhen-centered star. Comparatively, the city like Dalian,
Xi’an, and Qingdao is connected with less cities. But they also form the star
structure.

Furthermore, we find some hot routes, such as Shenzhen-Guangzhou-
Chongqing, or Qingdao-Jinan-Beijing etc. from the above results. Those results
can be referred by the tourism to make intelligent recommendations for people
who are planning to travel.

5 Conclusion

In this paper, we make a spatial-temporal analysis on people’s geographical pat-
terns in a case study of Tencent-Microblog. We first study the relations between
communities and location clusters, we propose the index of location entropy to
measure the degree of dispersion of the locations in each community, and the
index of community entropy to measure the degree of dispersion of the communi-
ties in each location cluster. More importantly those two indexes can potentially
help measure the influential power for the topic community and monitor the
active degree of people’s online social behavior in a location cluster. At last, we
analyze user’s trajectory and define four Trajectory Patterns. An algorithm is
also proposed to extract those patterns from microblog data. Finally, we demon-
strate the effectiveness of the algorithm to find some interesting and useful results
for intelligent recommender systems.

A Spatial-Temporal Analysis of Users’ Geographical Patterns 307

References

1. Zhao, Z., Feng, S., Wang, Q., Huang, J.Z., Williams, G.J., Fan, J.: Topic oriented
community detection through social objects and link analysis in social networks.
Knowl. Based Syst. 26, 164–173 (2012)

2. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 70(6), 066111 (2004)

3. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of informa-
tion propagation in the flickr social network. In: Proceedings of the 18th Interna-
tional Conference on World Wide Web, pp. 721–730. ACM (2009)

4. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 199–208. ACM (2009)

5. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. Proc. Natl. Acad. Sci. U.S.A. 102(33), 11623–11628
(2005)

6. Li, C., Zhao, Z., Luo, J., Fan, J.: Info-cluster based regional influence analysis in
social networks. In: Advances in Knowledge Discovery and Data Mining, pp. 87–98
(2011)

7. Humphreys, L.: Mobile social networks and social practice: a case study of dodge-
ball. J. Comput. Mediated Commun. 13(1), 341–360 (2007)

8. Yook, S.-H., Jeong, H., Barabási, A.-L.: Modeling the internet’s large-scale topol-
ogy. Proc. Natl. Acad. Sci. 99(21), 13382–13386 (2002)

9. Barthelemy, M., Gondran, B., Guichard, E.: Spatial structure of the internet traffic.
Physica A: Stat. Mech. Appl. 319, 633–642 (2003)

10. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, pp. 3–14. IEEE (1995)

11. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: mining sequential patterns efficiently by prefix-projected pattern growth.
In: ICDE, pp. 215–224, April 2001

12. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1), 31–60 (2001)

13. Cao, H., Mamoulis, N., Cheung, D.W.: Mining frequent spatio-temporal sequential
patterns. In: Fifth IEEE International Conference on Data Mining, pp. 82–89.
IEEE (2005)

14. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Advances in Spatial and Temporal Databases, pp. 923–923
(2005)

15. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.:
Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 236–245. ACM (2004)

16. Gastner, M.T., Newman, M.E.: The spatial structure of networks. The Eur. Phys.
J. B-Condens. Matter Complex Syst. 49(2), 247–252 (2006)

17. Li, C., Zhao, Z., Liu, S., Yin, L., Luo, J.: Relationships between geographical cluster
and cyberspace community: a case study on microblog. In: 2012 20th International
Conference on Geoinformatics (GEOINFORMATICS), pp. 1–5. IEEE (2012)

Solving Multiple Bichromatic Mutual Nearest
Neighbor Queries with the GPU

Marta Fort and J. Antoni Sellarès(B)

Dept. Informàtica, Matemàtica Aplicada i Estad́ıstica,
Universitat de Girona, Girona, Spain
{mfort,sellares}@imae.udg.edu

Abstract. In this paper we propose and solve multiple bichromatic
mutual nearest neighbor queries in the plane considering multiplicative
weighted Euclidean distances. These multiple queries are related to the
mutual influence of two sets of facilities of different type, in which facili-
ties of the first type cooperates with facilities of the second type in order
to obtain reciprocal benefits. The studied problems find applications, for
example, in collaborative marketing. We present a parallel algorithm, to
be run on a Graphics Processing Unit, for solving multiple bichromatic
mutual nearest neighbor queries. We also present the complexity analysis
of the algorithm, and provide and discuss experimental results that show
the scalability of our approach.

1 Introduction

In this paper we study a problem related to the mutual influence of two sets
of facilities of different type, in which facilities of the first type cooperate with
facilities of the second type in order to obtain reciprocal benefits. The two main
elements of the problem are facilities and locations. Facilities provide goods or
services (hotels, warehouses, hospitals) and locations are spatial positions where
facilities are located. Throughout the paper we represent locations by points on
two-dimensional space and use interchangeably the terms facility and location
of the facility. To take into account the different importance of the facilities, we
assign a weight to each facility. In practice, experts take available information
of the facilities(prestige, magnitude, services, etc.) and then aggregate these fac-
tors to obtain weights [8,9]. To reflect that influence between facilities depends
on distance and importance, we assign to each facility a multiplicative weighted
distance that is the product of the Euclidean distance and the inverse of the
facility weight. From now on, we assume that proximity and neighborhood influ-
ence between facilities is measured by using multiplicative weighted Euclidean
distances.

Although the proximity, represented by distance measures, of a facility to
other facilities is an indicator of its potential impact, we also need to know the

Work partially supported by the Spanish Ministerio de Economı́a y Competitividad
under grant TIN2010-20590-C02-02.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 308–316, 2014.
DOI: 10.1007/978-3-662-43984-5 23, c© Springer-Verlag Berlin Heidelberg 2014

Solving Multiple Bichromatic Mutual Nearest Neighbor Queries 309

capacity that a facility has to influence and to be influenced for other facilities
with which it interfaces. Mutual nearest neighbor queries model, in a natural way,
how a facility influences and it is influenced for its neighboring facilities. Given
two data sets of facilities of different type and a query point of the first set, a
bichromatic (k, k′)-mutual nearest-neighbor query finds the points in the second
set whose k-nearest neighbors on the first set include the given query point and
meanwhile have the query point as one of the k′-nearest neighbors of the result-
ing points in the second set. Mutual nearest-neighbor queries are more suitable,
compared with nearest-neighbor queries, for those applications involving sym-
metric nearest-neighbor relationships, including among others: data clustering
[2,13], outlier detection [2,18], decision making [11,16,22], and pattern recog-
nition [14]. Given two sets of facilities of different type, a multiple bichromatic
(k, k′)-mutual nearest-neighbor query associates each query point of the first set
with its bichromatic (k, k′)-mutual nearest-neighbors from the second set. To the
best of our knowledge, multiple bichromatic mutual nearest neighbor queries con-
sidering multiplicative weighted Euclidean distances have not received attention
so far, although they have practical applications as we will see in the example
that follows.

Nowadays, it has become difficult for firms to stay competitive without ally-
ing themselves with other firms. Thus, there is an increasing interest in inter-firm
relationships with the objective of building successful collaborative strategies
that can provide competitive advantages to the firms involved. Collaborative
marketing is accomplished by companies working together in cooperative activi-
ties, such as product promotion or marketing communication, in order to create
synergies and achieve a superior market position for their products and services.

Example. Consider the set of hotels of a given region together a subset of these
hotels, for example the hotels of a chain or having some characteristics, and the
set of cultural, recreational and sport centers (museum, theater, zoo, thematic
park, football or basketball stadium) of the same given region. An advertisement
agency can use the results of a multiple bichromatic mutual nearest neighbor
query for the subset of hotels and the cultural, recreational and sport centers,
to make directly collaborative advertisements; e.g., hotels offer 5 % discount for
people going to one of the cultural, recreational or sport centers and these centers
offer 10 % discount to hotel customers who visit them.

Since the multiplicative weighted Euclidean distance does not obey the tri-
angle inequality, we cannot use an index structure, that usually is associated
with a partition of the plane heavily relying on the triangle inequality, to filter
out irrelevant facilities during the search of multiple bichromatic mutual near-
est neighbors. This has motivated us, in working towards practical solutions, to
design a GPU-parallel approach, under CUDA architecture, for solving multiple
bichromatic mutual nearest neighbor queries. We provide the complexity analy-
sis of our algorithm and discuss some preliminary experimental results that show
the scalability of our approach.

310 M. Fort and J.A. Sellarès

1.1 Related Work

In recent years, in the context of spatial datasets, k-nearest neighbor queries,
bichromatic reverse k-nearest neighbor queries, and bichromatic mutual nearest
neighbor queries have attracted considerable attention.

Most of the existing k-nearest neighbor query algorithms use index structures
and are based on either depth-first [6] or best-first [17] traversal paradigm. Algo-
rithms to solve all k-nearest neighbor queries are provided in [7,24,25]. The con-
cept of reverse k-nearest neighbor was first introduced in [19]. There exist many
papers on the bichromatic reverse k-nearest neighbor query [1,21,23]. Almost
all the proposed solutions basically focus on using the Voronoi diagram, exact
or approximated, and then find the region that corresponds to the query point.
Wong et al. [22] introduced the concept of bichromatic mutual nearest neigh-
bor query and employed it to deal with spatial matchings. Gao et al. [11,15,16]
explored (monochromatic) mutual nearest neighbor queries involving spatial and
trajectory databases.

Basic brute force k-nearest neighbor search on the GPU is much faster than it
is on the CPU, and even compares favorably to CPU implementations that uses
an index structure [5]. There exist many works about using GPUs to accelerate
the brute force k-nearest neighbor search. Most of them are based on: index
structures [3–5], sort algorithms with some modification or customization [12],
or maintaining only the k-nearest neighbors during the search [20]. In [20] it is
also solved the all k-nearest neighbors problem. A GPU-parallel approach for
approximately solving reverse k-influential location problems is provided in [10].

2 Multiple Bichromatic Mutual Nearest Neighbor
Queries

Let P be a set of n points within a bounded domain D of the Euclidean plane.
Each p ∼ P is associated with a positive real weight wp > 0. The multiplicative
weighted distance dp(q) from the location p ∼ P to an arbitrary point q ∼ D is
defined as dp(q) = (1/wp) d(p, q), where d(p, q) denotes the Euclidean distance
among p and q. Note that, the multiplicative weighted Euclidean distances is
non-metric, it is not symmetric and the triangle inequality does not hold because
the weights change for each point.

k-nearest neighbor queries
For any point q ∼ D\P , denote by dk(P, q) the weighted distance from q to its

k-th nearest point in P , i.e. the weighted distance dp(q) to the point of p ∼ P that
ranks number k in the ordering of the points by increasing weighted distance
from q. Observe that several points of P can share the same k-th weighted
distance value.

A k -nearest neighbor query for a point q ∼ D\P , finds the subset NNk(P, q)
of k-nearest points of P to the query point q:

NNk(P, q) = {p ∼ P | 0 < dp(q) ∈ dk(P, q)} .

Solving Multiple Bichromatic Mutual Nearest Neighbor Queries 311

For a given q, the k-nearest neighbors of q may not have q as one of their
own k-nearest neighbors. The points of NNk(P, q) are the points that have the
highest influence on q. The nearest neighbor relation is not symmetric.

Bichromatic reverse k-nearest neighbor queries
Let R and S be disjoint weighted sets of n and m points within a bounded

domain D of the Euclidean plane.
A bichromatic reversek-nearest neighbor query for a point r ∼ R seeks to

determine the set BRNNk(R,S, r) of points s ∼ S for which r is a k-nearest
neighbor in R:

BRNNk(R,S, r) = {s ∼ S | r ∼ NNk(R, s)} = {s ∼ S | 0 < dr(s) ∈ dk(R, s)} .
The number of bichromatic reverse k-nearest neighbors of a query point

varies between 0 and m. The points of BRNNk(R,S, r) are the most highly
influenced by r.

Conventional k-nearest neighbor queries are asymmetric. Many practical
applications require a symmetric neighborhood relationship. We introduce (k, k′)-
mutual nearest neighbor queries, that are symmetric and moreover define a
tighter neighborhood relation than the usual k-nearest neighbor queries.

Bichromatic mutual(k, k′)-nearest neighbor queries
A bichromatic mutual(k, k′)-nearest neighbor query for the point r ∼ R deter-

mines the subset BMNNk,k′(R,S, r) of points s ∼ S in the k-nearest neighbor
of r in S which have the query point r in their k′-nearest neighbors in R:

BMNNk,k′(R,S, r) = {s ∼ S | s ∼ NNk(S, r) ∀ BRNNk′(R,S, r)} =

= {s ∼ S | s ∼ NNk(S, r) ∩ r ∼ NNk′(R, s)} =

= {s ∼ S | 0 < ds(r) ∈ dk(S, r) ∩ 0 < dr(s) ∈ dk′(R, s)} .
The number of bichromatic mutual (k, k′)-nearest neighbors of a query point

varies between 0 and k. Points s ∼ BMNNk,k′(R,S, r), are the points of S that
have the highest influence on r and the most highly influenced by r.

Fig. 1. Bichromatic mutual (2, 2)-nearest neighbor for: (a) Euclidean distances; (b)
multiplicative weighted Euclidean distances.

312 M. Fort and J.A. Sellarès

In Fig. 1(a), where Euclidean distances are considered, we have
NN2(S, r1) = {s3, s2}, BRNN2(R,S, r1) = {s2}, consequently it is BMNN(2,2)

(R,S, r1) = {s2}. In Fig. 1(b), we consider distances with weights wr1 = 2, and
wr2 = wr3 = wr4 = 1, and ws1 = 4, ws2 = 2 and ws3 = 1, and we have
NN2(S, r1) = {s1, s2}, BRNN2(R,S, r1) = {s1, s2, s3}, thus BMNN(2,2)

(R,S, r1) = {s1, s2}.

Multiple bichromatic mutual(k, k′)-nearest neighbor queries
In many applications, a query does not consist of a single point but a whole

set of points, for each of which a query has to be performed. To the best of our
knowledge, this multiple operation has not received attention in the context of
bichromatic mutual nearest neighbor queries.

Given two non-empty subsets R′ ≥ R and S′ ≥ S, a multiple bichromatic
mutual (k, k′)-nearest neighbor query computes for each point r ∼ R′ the subset
of BMNNk,k′(R,S, r) of its bichromatic mutual (k, k′)-nearest neighbors in S′.

Notice that, even though the subsets R′ and S′ are used, the multiple bichro-
matic mutual (k, k′)-nearest neighbor queries are always referred to R and S.

3 Solving Multiple Bichromatic Mutual Nearest
Neighbor Queries with the GPU

Given two disjoint weighted sets R and S within a bounded domain D of the
Euclidean plane, and two non-empty subsets R′ ⊂ R and S′ ⊂ S, a way to solve
a multiple bichromatic mutual (k, k′)-nearest-neighbor query is to sequentially
compute for each point r ∼ R′ the set NNk(S, r) ∀ S′, and then verify whether
each point s in NNk(S, r) ∀ S′ has r as one of its k′-nearest neighbors in R. We
adapt this solution, that is highly parallelizable, to solve the multiple mutual
nearest neighbor queries efficiently in the GPU.

From now on we will denote n = |R|, m = |S|, n′ = |R′| and m′ = |S′|.

Step 1. Computing the k-nearest neighbors in S of the points of R′.
Since the multiplicative weighted distance does not obey the triangle inequal-
ity we cannot take advantaged of any usually used index structure to find the
k-nearest neighbors to filter out irrelevant facilities during the search. Hence, we
compute the k-nearest neighbors in S of each r ∼ R′ by processing all the points
of R′ in parallel. A kernel executed by one thread per point r ∼ R′ is used. Each
thread considers its corresponding point r ∼ R′ and finds the k-nearest neigh-
bors in S of que query point, and its kth-nearest distance to S, dk(S, r). Thus,
the points of S and R′ are transferred from the CPU to the GPU, and then the
threads in a block cooperate to transfer S to shared memory. The indices of the
k-nearest neighbors of each point r ∼ R′ to S are stored in a global memory
array nSk

of size kn′.
Note that, for the subsequent steps we are not interested in all the k-nearest

neighbors of each r ∼ R′ but in those contained in S′. As well as, we are only

Solving Multiple Bichromatic Mutual Nearest Neighbor Queries 313

interested in the significant points of S′, which are those points s ∼ S′ that are
k-nearest neighbors of at least one point r ∼ R′.
Step 2. Finding the significant points of S′. This step is performed in two
different kernels. In the same kernel of Step 1, each thread, after having obtained
the k-nearest neighbors of its corresponding r ∼ R′, checks whether they belong
to S′. With this aim, an integer array sp of size m initialized so that sp[i] = 0 if
si /∼ S′ and 1 otherwise, is used. Thus, each thread considers the indices, j, of
the obtained k-nearest neighbors, and if sp[j] = 0 instead of storing the index j
we store a −1. Meanwhile, if sp[j] ∨= 0, we label sp[j] as a significant point by
setting it to 2. When all the points r ∼ R′ have been processed, the significant
point of S have been labeled in sp with a 2, and nSk

contains either indices of
the k-nearest neighbors of the points of R′ that belong to S′ or −1s.

Finally, by using another kernel we count and store in consecutive positions
of a new array, ssig, the indices of the significant points of S′, by using a kernel
executed by m threads. The thread idx checks wether sp[idx] = 2. If it is so,
it increments a global counter by one with an atomic operation, and stores its
index idx in the first empty position of ssig.

The following steps 3 and 4 are only processed if there are significant points.

Step 3. Computing the k′-nearest neighbor distance in R of the points
of Ssig. Now, we compute the k′-nearest neighbor distance in R of each signifi-
cant point Ssig by using the strategy explained in the first step using one thread
per point in Ssig. Now, the points of R are transferred first to global memory,
and then to shared memory. Now, we only store the k′-nearest neighbor distance,
dk′(R, s), of each significant point s ∼ Ssig to R, in an array dRk′ .

Step 4. Obtaining the mutual (k, k′)-nearest neighbors. To find the mutual
(k, k′)-nearest neighbors, we check, for each pair (ri, sl) with ri ∼ R′ and l =
nSk

[ki + j] > 0 with 0 ∈ j < k, whether they are actual mutual (k, k′)-
nearest neighbors. This is done by using kn′ threads, the thread idx considers
l = nSk

[idx] and analyzes the corresponding pair or does nothing if l = −1. To
determine whether a pair (ri, sl) is a mutual (k, k′)-nearest neighbor pair, the
thread checks whether dri(sl) ∈ dRk′ [l]. If the inequality is fulfilled, it increments
by one nM , a counter initialized to zero, and stores the pair (i, l) in the first two
consecutive empty positions of an integer array mk,k′ of size 2kn′. At the end of
the process, the number T stored in nM is the number of mutual pairs, and the
pairs are stored in the first 2T positions of mk,k′ .

To obtain the solution in the CPU we transfer T , which is stored in nM , from
the GPU to the CPU and the first 2T integer values of mk,k′ .

3.1 Complexity Analysis

In this section we analyze the amount of work performed by each thread and
the worst case total work by studying each kernel separately. Finally, the total
work done by the whole algorithm is provided.

314 M. Fort and J.A. Sellarès

In the first kernel, corresponding to the obtention of the k-nearest neighbors
of R′ of Step 1 and the labeling part of Step 2, O(kn′m) total work is done by
using n′ threads doing at most O(km) work each. Each thread analyzes the m
points of S and stores the k-nearest neighbors and distances in a sorted way,
by doing O(km) work in the worst case. The work done in the second kernel,
which extracts the significant points Ssig in Step 2, is O(m) and is done by m
threads doing O(1) work each. In this kernel O(m′′), with m′′ = |Ssig|, atomic
operations are done in the global counter. The third kernel, which corresponds
to Step 3, does O(m′′nk′) total work by using m′′ threads doing O(nk′) work
each. Finally the fourth kernel, which determines the real mutual (k, k′)-nearest
neighbors in Step 4, requires O(n′k) total work executed by n′k threads doing
O(1) work each and preforms T atomic operations.

By summing up all, solving the multiple bichromatic mutual (k, k′)-nearest
neighbor problem requires O(kn′m + k′nm′′) total work.

4 Experimental Results

In this section we present preliminary experimental results obtained with the
implementation of the provided algorithm. We used CUDA C, and the executions
are done using a i7-3610 2.30 GHz 8 GB of memory and a Nvidia GTX 660 M.
The sets R and S, that are used in the experiments, contain points uniformly
distributed on a squared domain, and the subsets R′ and S′ are obtained by
randomly choosing points of R and S. The experiments investigate the influence
of parameters k, k′, n, m, n′ and m′. For k and k′ values, which in real cases
would be chosen by experts, we consider 15 and 30. Parameters n and m vary
between 100 and 1000000, n′ between 50 and 1000, and m′ between 5 and 1000.

In Table 1, the running times needed and the number of significant points Ssig

obtained when solving several multiple mutual (k, k′)-nearest neighbor queries
are presented. The running times, measured in seconds, include the transferring
times from CPU to GPU and all the time needed to solve the problem. From
them we can see how the presented algorithms are scalable. For example, sets
with n = m = 10.000 and subsets of n′ = m′ = 1000 can be handled for

Table 1. Running times and number of significant points.

Running times (s) m′′

n = m n = m

k = k′ n′ m′ 100 1000 10000 100000 1000000 100 1000 10000 100000 1000000

15 50 5 0.003 0.006 0.009 0.050 0.210 39 3 0 1 0

100 50 0.003 0.008 0.014 0.030 0.212 49 33 10 2 0

100 100 0.003 0.007 0.013 0.050 0.212 94 56 10 1 0

1000 1000 - 0.010 0.021 0.060 0.440 - 896 601 128 19

30 50 5 0.006 0.014 0.026 0.048 0.239 5 4 1 0 0

100 50 0.007 0.016 0.030 0.072 0.245 48 37 12 2 0

100 100 0.008 0.016 0.030 0.072 0.442 96 71 29 3 1

1000 1000 - 0.026 0.048 0.108 0.508 - 946 731 225 23

Solving Multiple Bichromatic Mutual Nearest Neighbor Queries 315

k = k′ = 30 with at most 0.048(s). Note that, as the theoretical complexity
analysis predicts, the running times increase with k, k′, n,m, n′ and also, but in
least measure, with m′′ = |Ssig|.

5 Conclusions and Future Work

In this paper we presented a parallel algorithm, to be run on a Graphics Process-
ing Unit, for solving multiple bichromatic mutual nearest neighbor queries in the
plane considering multiplicative weighted Euclidean distances. We provided the
complexity analysis of our algorithm, together with some initial experimental
results that show the scalability of our approach.

References

1. Achtert, E., Böhm, C., Kroger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient
reverse k-nearest neighbor search in arbitrary metric spaces. SIGMOD (2006)

2. Brito, M.R., Chavez, E.L., Quiroz, A.J., Yukich, J.E.: Connectivity of the mutual
k-nearest neighbor graph in clustering and outlier detection. Stat. Probab. Lett.
35(1), 33–42 (1997)

3. Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: kNN query
processing in metric spaces using GPUs. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 380–392. Springer, Heidelberg
(2011)

4. Brown, S., Snoeyink, J.: Gpu nearest neighbors using a minimal kd-tree, In: Second
Workshop on Massive Data Algorithmics, (MASSIVE) (2010)

5. Cayton, L.: A nearest neighbor data structure for Graphics Hardware. VLDB-
ADMS pp. 1–6 (2010)

6. Cheung, K.L., Fu, A.W.-C.: Enhanced nearest neighbour search on the R-tree.
SIGMOD 27(3), 16–21 (1998)

7. Chen, Y., Patel, J.: Efficient evaluation of all-nearest-neighbor queries. ICDE pp.
1056–1065 (2007)

8. Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness,
and market share: an interactive model. J. Retail. 70(1), 49–64 (1994)

9. Drezner, T., Drezner, Z.: Validating the Gravity-Based Competitive Location
Model Using Inferred Attractiveness. Annals OR 111(1–4), 227–237 (2002)

10. Fort, M., Sellarès, J.A.: Finding influential location regions based on reverse k-
neighbor queries. Knowl.Based Syst. 47, 35–52 (2013)

11. Gao, Y., Chen, G., Li, Q., Zheng, B., Li, C.: Processing mutual nearest neighbor
queries for moving object trajectories. In: Proc. 9th Int. Conf. on Mobile Data
Management, pp. 116–123 (2008)

12. Garcia, V., Debreuve, E., Nielsen, F., Barlaud, M.: k-nearest neighbor search: fast
GPU-based implementation and application to high-dimensional feature matching.
In: Proceedings IEEE 17th Int. Conf. on Image Processing (ICIP) pp. 3757–3760
(2010)

13. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual
nearest neighborhood. Pattern Recog. 10(2), 105–112 (1978)

14. Gowda, K.C., Krishna, G.: The condensed nearest neighbor rule using the concept
of mutual nearest neighborhood. IEEE Trans. Inf. Theory 25(4), 488–490 (1979)

316 M. Fort and J.A. Sellarès

15. Gao, Y., Zheng, B., Chen, G., Li, Q., Chen, C., Chen, G.: Efficient mutual nearest
neighbor query processing for moving object trajectories, Information Sciences,
180(11), pp. 2176–2195 (2010)

16. Gao, Y., Zheng, B., Chen, G., Li, Q.: On efficient mutual nearest neighbor query
processing in spatial databases. Data Knowl. Eng. 68(8), 705–727 (2009)

17. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans.
Database Syst. 24(2), 265–318 (1999)

18. Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking Outliers Using Symmetric
Neighborhood Relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K.
(eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg
(2006)

19. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. SIGMOD (2000)

20. Miranda, N., Chávez, E., Piccoli, M.F., Reyes, N.: (Very) Fast (All) k -Nearest
Neighbors in Metric and Non Metric Spaces without Indexing. In: Brisaboa, N.,
Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 300–311. Springer,
Heidelberg (2013)

21. Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of influence sets in
frequently updated databases. In: Proceedings 27th Int. Conf. on Very Large Data
Bases (VLDB) pp. 99–108 (2001)

22. Wong, R.C.-W., Tao, Y., Fu, A.W.C., Xiao, X.: On efficient spatial matching. In:
Proceedings 33rd International Conference on Very Large Data Base, pp. 579–590
(2007)

23. Wu, W., Yang, F., Chan, C.Y., Tan, K.: FINCH: evaluating reverse k-Nearest-
Neighbor queries on location data. In Proceedings of VLDB 1(1), pp. 1056–1067
(2008)

24. Yao, B., Li, F., Kumar, P.: K-nearest neighbor queries and knn-joins in large rela-
tional databases (almost) for free. In Proceedings of ICDE 2010, pp. 4–15 (2010)

25. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in
spatial databases. In: Proceedings of 16th International Conference on Scientific
and Statistical Database Management (SSDBM). pp. 297–306 (2004)

A Kernel Density Method for Aggregating
Boundary Collision Data into Areal Units

Ge Cui1(&), Xin Wang1, and Dae-Won Kwon2

1 Department of Geomatics Engineering, University of Calgary,
Calgary, Canada

{cuig,xcwang}@ucalgary.ca
2 Office of Traffic Safety, City of Edmonton, Edmonton, Canada

dae-won.kwon@edmonton.ca

Abstract. Boundary collisions are motor accidents which occur on the
boundaries of areal units. In some areas, boundary collisions may account for a
large proportion of the total collisions. Generally, it is a critical step to aggregate
boundary collisions into areal units before collision analysis. Exaggerated or
underestimated aggregation results may hamper traffic safety analysis and
management. In this paper, we propose a boundary collision aggregation
approach based on the collision density ratio. The proposed method is compared
with two other boundary collision aggregation methods. Two regions (down-
town region and south region) in City of Edmonton are selected as the study
area. The assessment result shows that the proposed method outperforms the
other two methods.

Keywords: Boundary data aggregation � Collision density ratio � Boundary
zone size

1 Introduction

Transportation collisions are the leading cause of death in Canada. Transportation
collision threatens many people’s life, resulting in a lot of injuries and even fatality.
For example, in the City of Edmonton, there were 23,442 collisions in 2011 and
23,237 collisions in 2012 [5]. For requirements of traffic analysis or traffic manage-
ment, collision data are often aggregated into area units, such as neighborhoods.
Therefore, aggregating collisions into areal units has a large impact on traffic analysis
and management.

Boundary collisions are motor accidents which occur on the boundaries of areal
units. As boundaries of neighborhoods are generally main roads where most collisions
happen, boundary collisions usually account for a large proportion of the total colli-
sions. Hence, traffic analysis and management would be remarkably affected by these
boundary data, which is called the boundary effect.

Boundary effect is often determined by the following factors: (1) the accuracy of
reported spatial boundary collisions; (2) the method of aggregating boundary data into
adjacent areal units. The first factor is related to the data collection process, which is
not considered in this study. As for the second factor, some study has been conducted.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 317–328, 2014.
DOI: 10.1007/978-3-662-43984-5_24, � Springer-Verlag Berlin Heidelberg 2014

Some researches suggest that boundary effect have little influence on traffic
analysis. Ladron de Guevara et al. and Khondokar et al. examined the issue when they
developed macro-level collision models of Tucson, Arizona, USA and Greater Van-
couver, Canada successively. They found that the number of collisions involved on
traffic analysis zones (TAZs) boundaries was about 5 %, which did not significantly
impacts their collision models results [2, 3].

Nonetheless, other studies indicate that boundary effect might affect traffic anal-
ysis. Fotheringham and Wegner observed that spatial data located near zone bound-
aries might have an inter-zonal influence [1]. Lovegrove aggregated the boundary data
in an automatic geo-spatial precision way in developing a macro-level collision dis-
tribution model for the Great Vancouver Regional District, Canada and supposed a
potential boundary effect in aggregating geo-coded data [4]. Feng made used of 5
boundary data aggregation approaches for geo-coded data on TAZ boundaries and
built 8 groups of collision prediction models (CPMs), concluding that the different
aggregation methods for boundary data impact the CPM results significantly [7].

In this paper, it aims to conduct a preliminary study to identify whether collisions
around boundaries play a significant role, in terms of quantity, in road safety in
Edmonton. We propose a collision density ratio method to aggregate boundary data
into areal units.

2 Problem Statement

Currently, it can be often observed that boundaries are on conspicuous natural or
artificial ground objects, such as rivers, roads, rails and trails. For neighborhoods,
roads are often adopted as their boundaries. Hence, boundary collisions are actually
those taking place in the roads which are taken as boundaries of neighborhoods.
However, boundary collisions might be difficult to identify after digitalization
because, (a) boundaries may not be coincide with the corresponding roads, which
leads to boundary collisions are not located on the boundary lines; (b) representing
real world features into features in a GIS (e.g. 10 m width roadways are often rep-
resented single lines in GIS), may result in that collisions deviate from the roads.
Problems (a) and (b) are shown in Fig. 1, where roads are solid lines, boundaries are
dash lines and collisions are black points.

To deal with the problem, boundary zone, a buffer centering at the boundaries of
neighborhoods, is proposed. Collisions, located within the boundary zone, are
assumed as boundary collisions. One issue of boundary zone is how to determine its
size (buffer size). It is obvious that some non-boundary collisions will be contained
mistakenly if the boundary zone size is set too large. These non-boundary collisions
are usually not far from the boundary but they occur on the roads which should not be
used as the neighborhood boundary. Therefore, it requires a criterion for setting a
proper boundary zone size to guarantee most boundary collisions and least non-
boundary collisions are contained in the buffer.

After identifying boundary collisions, it needs to aggregate them into neighborhoods
around. One-to-One ratio method and Half-to-Half ratio method are two commonly used
aggregation methods proposed in [7]. Nonetheless, it seems that these methods fail to

318 G. Cui et al.

deal with the aggregation very well. One-to-One ratio method counts the boundary
collisions once for every neighborhood adjacent to the boundary areas. If a collision (four
neighborhoods around it) is located at a four-way intersection, the collision will be
counted four times. Apparently this method will exaggerate the collision number in total.
Half-to-Half ratio method works in a similar way as One-to-One ratio method, but it just
counts a collision once and assigns the collision value to the neighborhoods by average.
The weakness of this method lies at that it treats all neighborhoods evenly when con-
sidering the impact of neighborhoods on boundary collisions. However, after scrutinizing
the distribution of collisions around the boundary, there exists a very common collision
distribution pattern around the boundary (as shown in Fig. 2), which shows the variation
of impact of neighborhoods on boundary collisions.

In Fig. 2, it could be observed that many collisions are located around the
boundary in the north neighborhood, while almost no collisions occur around the
boundary in the south neighborhood. One possibility is that the driving conditions
(such as road surface, street lamp and etc.) of north neighborhood are poorer than that
of south neighborhood. Furthermore, it means driving conditions of neighborhoods
may have different degrees of impact on a boundary collision.

3 Methodology

3.1 Boundary Zone Size Determination

In this section, we aim to determine a suitable boundary zone size to maintain correct
boundary data. Firstly, it needs to exclude the non-boundary collisions. We assume
that the distance Dc;b between a non-boundary collision location and the boundary of

Fig. 1. Boundary collisions are difficult to identify after digitalization.

A Kernel Density Method for Aggregating Boundary Collision Data 319

the neighborhood is greater than the distance Dc;r between its location and its nearest
road. Therefore, the collisions whose Dc;b [Dc;r will be classified to non-boundary
collisions, which will be ignored in our study. Secondly, there are some outliers which
are non-boundary collisions but still satisfy the condition Dc;b\Dc;r (as shown Fig. 3).
These outliers should be excluded as well.

To remove the outliers and determine the boundary zone size, a histogram will be
created to represent the distribution of Dc;b of collisions in the buffer zones. The
horizontal axis is the distance interval between collisions and neighborhood bound-
aries, and the vertical axis is the frequency of collisions falling into the interval. As
most non-boundary collisions have been filtered, the frequency of outliers is quite low.
Therefore, there is a drastic drop of collision frequency when the distance reaches a
threshold which is selected as the boundary zone size.

3.2 Collision Density Ratio Method

In this paper, a collision density ratio method is proposed to aggregate boundary data.
This method considers the interactions of proximate collisions. It assumes the fact that
collisions have a specific density distribution pattern due to the different driving
conditions of the surroundings. For some spots with poor driving conditions, the
collision density may be higher relatively. Furthermore, every areal unit has a

Fig. 2. Collisions are concentrated on one side of the boundary

320 G. Cui et al.

collision density distribution. As a boundary collision could be taken as one part for
all adjacent neighborhoods, it has distinct density value from the collision density
distributions of different neighborhoods. If a collision location gets a high density
value from a neighborhood, it means the neighborhood has a large influence on the
collision occurrence at this spot. Therefore, a collision is assigned to the neighbor-
hoods by the ratio of their impacts on this collision.

Collision density distribution is extended from kernel density estimation approach.
The kernel function is based on the quartic approximation of a true Gaussian kernel
function [6]. For density distribution of each collision, the density value obey
Gaussian distribution, rising to the peak at the location of the collision and decreasing
with growing distance from the collision point, reaching zero at the search radius
distance from the collision point. A continuous smooth surface is fitted over each
collision. For every neighborhood, its collision density distribution could be deemed
to be the mutual contribution of inner zone and boundary zone as shown in Fig. 4. In
this figure, there are two adjacent neighborhoods A and B. The orange line stands for
the common boundary, and the region within red edge is the boundary zone. The
inner zone is the rest part of neighborhood by removing boundary zone. The collision
density distribution of neighborhood A and B will be established based on black
collisions and red collisions, respectively.

The aggregation principle of the collision located in the boundary zone is as
follows: for any collision in the boundary zones of neighborhoods, the assigned

Fig. 3. The outlier of the boundary collisions

A Kernel Density Method for Aggregating Boundary Collision Data 321

collision value into the corresponding neighborhood is based on the ratio of the
collision density:

VNi ¼
Dðx; yjNiÞPm
i¼1 Dðx; yjNiÞ

ð1Þ

where VNi is the assigned value of the collision to the neighborhood Ni; x; y is the
coordinate of the collision; Dðx; yjNiÞ is the collision density of the location ðx; yÞ
estimated from neighborhood Ni.

3.3 Evaluation Method

It is very important to validate the effectiveness of boundary collisions aggregation
methods. The common way is that the accuracy of collision prediction models (CPMs)
established on aggregation results could reflect their effectiveness. In this research, we
provide an alternative statistical hypothesis test method. As a critical criterion for
collision aggregation is that the number of collisions aggregated into neighborhoods
should not be exaggerated or underestimated too much, the two sample paired t-test
could be applied to evaluate whether the average difference between before and after
aggregation is greater than zero or not. The number of collisions in each neighborhood
before aggregation could be obtained by counting the collisions within the boundary
line.

It is a two-tailed test since we are trying to prove that there is a difference between
the number of collisions before and after aggregation. As the number of samples is
larger than 30, it could be assumed that a t-distribution that approaches a normal curve
with n - 1 degrees of freedom where n is the number of the observations. A a ¼ 0:05
confidence level is used.

Fig. 4. The structure of a neighborhood: boundary zone and inner zone (color figure online)

322 G. Cui et al.

4 Experiment

4.1 Data Description

The study areas are selected from Edmonton (the capital city of Alberta), consisting of
two regions: downtown region and south region. These two regions are covered by
dense road network and collision accidents take place frequently there.

(1) Downtown region. Neighborhoods include: McCauley, Queen Mary Park,
Central McDougall, Westmount, Downtown, Oliver, and Boyle Street.

(2) South region. Neighborhoods include: Parsons Industrial, Calgary Trail South,
Rideau Park, Duggan, Strathcona Industrial Park, Steinhauer, and Ermineskin.

As it aims to study the boundary data of the study areas, the neighborhoods around
the study areas should be utilized in the experiment either. Hence, there are 21
neighborhoods in downtown region, and 25 neighborhoods in south region (Fig. 5).

The collision data of Edmonton from year 2006 to year 2012 are utilized in the
experiment.

4.2 Data Analysis

Table 1 illustrates the distribution of the distances between collisions and boundaries.
It could be observed that there are a large amount of collisions which are located near
the boundaries. There are 25 % collisions for which the distances to boundaries are
less than 1.006 m in downtown area, and 2.079 m in south area. The boxplots (as
shown in Fig. 6) show that lots of collisions are densely distributed around the
boundary. Therefore, the conclusion could be drawn that boundary collisions could
take account for a large proportion of total collisions in the study areas.

Fig. 5. The experiment regions: downtown region and south region

A Kernel Density Method for Aggregating Boundary Collision Data 323

4.3 Boundary Zone Size

With the criterion Dc;b\Dc;r that the distance between boundary collision and
boundary should be less than the distance between boundary collision and its nearest
road, most non-boundary data are removed. The histograms as shown in Figs. 7 and 8
present the distribution of the distances of boundary collisions and boundaries. The
horizontal axis represents the distance interval and the vertical axis represents the
collision frequency which Dc;b falling into the intervals. The unit of the distance
interval is set as 1 m.

There are clear thresholds for the two histograms. For downtown region, the
optimum buffer distance is 5 m; for south region, the buffer distance is around 8 m.
For the two figures above, the majorities of boundary collisions are densely con-
centrated within 1 m distance from the boundary. The number of collisions declines
with the increase of the distance to boundary. Beyond a certain threshold of distance,
the boundary data turns very rare, and they could be taken as outliers. Boundary
collisions in downtown region (Dc;b \ 5 m) occupy the percentage of 30.80 % and in
south region (Dc;b \ 8 m) take the percentage 44.40 %.

4.4 Boundary Collision Assignment Results

In this paper, three boundary collision aggregation methods (collision density ratio
method, One-to-One ratio method and Half-to-Half ratio method) are utilized and their
results are compared. As downtown region and south region contains 7 neighborhoods
respectively from 2006 to 2012, there are 49 observations in total for every region.
Figure 9 gives an example of the aggregation result in QUEEN MARY PARK,
downtown region.

In Fig. 9, ‘‘Original’’ represents the collision number in the neighborhood before
applying the aggregation method. The results of three aggregation methods are
showed in the figure as ‘‘Collision density ratio’’, ‘‘Half-to-Half ratio’’ and ‘‘One-to-
One ratio’’ respectively.

Table 1. Statistics of distances (m) between collisions and boundaries in downtown region and
south region

Downtown area South area

Min. 1st quar. Medium 3rd quar. Max. Min. 1st quar. Medium 3rd quar. Max.

2006 0 0.964 89.803 217.16 608.89 0 2.079 10.536 65.159 737.46
2007 0 0.921 83.086 215.04 608.42 0 2.079 13.800 75.388 737.46
2008 0 1.208 90.673 227.99 610.37 0 2.079 13.771 65.825 737.46
2009 0 1.496 95.806 232.89 606.96 0 2.101 14.078 83.707 737.46
2010 0 1.087 83.086 216.91 608.89 0 2.101 22.085 86.565 737.46
2011 0 0.923 76.115 214.89 606.96 0 1.708 12.766 73.517 737.46
2012 0 1.017 83.086 216.71 608.42 0 2.049 12.766 68.482 737.46
Total 0 1.006 87.700 220.64 610.37 0 2.079 13.164 73.656 737.46

324 G. Cui et al.

4.5 Evaluation Results

The results of two samples paired t-test for downtown area and south area are shown
in the Tables 2 and 3, respectively. For neighborhoods in each region, the numbers of
collisions before and after using aggregation method are compared. In downtown
region, the p-value is far less than the significance level 0.05 with Half-to-Half ratio
method and One-to-One ratio method, so the null hypothesis could be rejected safely
and there is a significant change of the number of collisions after applying the two
aggregation methods. For collision density method, as the p-value is larger than 0.05,
we cannot say there is a large variance of collision number with this method. In south
region, it shows there is a significant change of collision number with One-to-One
ratio method and seems slight variance after using collision density ratio method and
Half-to-Half ratio method.

Fig. 6. The boxplot of downtown region (left, 1) and south region (right, 2)

Fig. 7. Downtown region: the histogram about the distribution of collision frequency

A Kernel Density Method for Aggregating Boundary Collision Data 325

Fig. 8. South region: the histogram about the distribution of collision frequency

Fig. 9. The aggregation results of QUEEN MARY PARK in downtown region with 5 m buffer

Table 2. Two samples paired t test of collision number before and after aggregation for
downtown region, 5 m buffer

Mean of
differences

Std. of
differences

Degree of
freedom

Test
statistic

P-value

Collision density
ratio

1.080 8.118 48 0.930 0.357

Half-to-half ratio 9.721 18.108 48 3.758 0.000
One-to-one ratio 89.010 57.202 48 10.892 0.000

326 G. Cui et al.

5 Conclusion and Discussion

For the two study areas in Edmonton, downtown region and south region, the dis-
tribution of distances between neighborhoods’ boundary and collisions shows that
more than one quarter of the total collisions occur around the neighborhoods’
boundary. Therefore, to process boundary collisions is quite significant for traffic
safety analysis in the study areas of Edmonton.

As boundary collisions happen on the roads which are adopted as the neighbor-
hoods’ boundary, generally non-boundary data can be filtered out by comparing the
distance to its nearest road and the distance to the boundary. With a histogram of
boundary collision distribution, the boundary zone size is set as 5 m for downtown
region and 8 m for south region. The possible explanation for the different buffer
distances may result from the fact that the widths of the roads in these two regions are
different. In most situations, roads in downtown region are a bit narrower than the
roads in other regions. Therefore the boundary zone size in downtown region is
smaller than that in south region correspondingly.

The two samples paired t-test is used to evaluate the effectiveness of three boundary
collision aggregation methods. For One-to-One ratio method, it is very clear that p-value
for both downtown area and south area approximates to zero, and this method actually
exaggerates the number of collisions for every neighborhood, which is the deficiency of
this method. Half-to-Half ratio method is not stable enough. For neighborhoods of
downtown region, the small p-value indicates there is a large variance between the
collision number after aggregation and the true value, which means the method would
cause inaccuracy; while it has a p-value exceeding the significance level 0.05 and
achieves a great performance in south region. For collision density ratio method, the
p-value for both downtown region and south region is larger than 0.05, and therefore,
there is little variance of collision number compared with true value by using this
method. On the other hand, the higher the t-value is, the more likely it is that the two
means are different. Out of the three methods, collision density ratio method gets the
lowest t-value, which means this method would less likely to exaggerate or underes-
timate the number of collisions in neighborhood compared with the two other methods.

6 Future Work

In this paper, the boundary buffer size is selected when there is a drastic drop of
collision frequency in the histogram. In future research, we will try to provide a

Table 3. Two samples paired t test of collision number before and after aggregation for south
region, 8 m buffer

Mean of
differences

Std. of
differences

Degree of
freedom

Test
statistic

P-value

Collision density
ratio

2.807 13.997 48 1.404 0.167

Half-to-half ratio 4.806 23.645 48 1.422 0.161
One-to-one ratio 95.541 65.513 48 10.315 0.000

A Kernel Density Method for Aggregating Boundary Collision Data 327

quantitative criterion to determine the buffer size. Besides, in addition to the statistical
method used in this paper, we will use macro-level CPMs to give a solid evaluation
about the effectiveness of the aggregation method.

References

1. Fotheringham, A.S., Wegener, M.: Spatial Models and GIS: New Potential and New Models.
Taylor & Francis, London (2000)

2. Khondakar, B., Sayed, T., Lovegrove, G.: Transferability of community-based collision
prediction models for use in road safety planning applications. J. Transp. Eng. 136(10),
871–880 (2010)

3. Ladron de Guevara, F., Washington, S.P., Jutaek, O.: Forecasting crashes at the planning
level: simultaneous negative binomial crash model applied in Tucson, Arizona. Transp. Res.
Rec. 1897, 191–199 (2004)

4. Lovegrove, G.: Road Safety Planning: New Tools for Sustainable Road Safety and Com-
munity Development. Verlag Dr. Müller, Germany (2007)

5. OTS. Motor vehicle collisions (2012). http://www.edmonton.ca/transportation/traffic_safety/
motor-vehicle-collisions.aspx

6. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall,
London (1986)

7. Wei, F.: Boundary effects in developing macro-level CPMs: a case study of city of Ottawa.
Civil Engineering, University of British Columbia, Okanagan (2010)

328 G. Cui et al.

http://www.edmonton.ca/transportation/traffic_safety/motor-vehicle-collisions.aspx
http://www.edmonton.ca/transportation/traffic_safety/motor-vehicle-collisions.aspx

Integrated Indoor Positioning with Mobile
Devices for Location-Based

Service Applications

Bei Huang and Yang Gao(&)

Department of Geomatics Engineering, Schulich School of Engineeting,
University of Calgary, 2500 University Dr. N.W. Calgary,

AB T2N 1N4, Canada
{huanb,ygao}@ucalgary.ca

Abstract. Location information in both outdoor to indoor environments is
essential for location-based service applications from critical services such as
E911 and emergency fleet management to daily activities such as personal
navigation and social networking. This paper describes recent technology
advances and limitations for indoor positioning and the need for integrated
solution for improved accuracy and availability. An integrated system based on
Wi-Fi, camera image and floor plan database is proposed for indoor positioning
and the test results demonstrate significantly improved system performance.

Keywords: Indoor positioning � Location-based service � GPS � Wi-Fi �
Camera image � Floor plan

1 Introduction

The concept of location-based services (LBS) originates from E911 project decades
ago, which were applied for dispatching, tracking and managing emergency resources.
As the most popular and reliable positioning system, GPS serves E911 by finding
accurate location information in real-time. Driven by continuous efforts on the min-
iaturization of GPS receivers, very small chipsets and OEM boards are becoming
increasingly available to meet the design constraints of mobile devices including
smart phones. In the past decade, GPS started to find wide use in people’s daily life
with handset LBS applications. For mobile GPS/GIS handhelds with good quality of
antenna, high precision positioning at dm to cm is also feasible today using the latest
precise point positioning (PPP) technologies. The impact on GIS applications is
significant since precise GIS data acquisition can be carried out in real-time which
improves the sharing and collaboration between the field and the office and has made
mobile GPS/GIS applications one of the fastest growing markets using satellite
navigation technology. To extend their applicability into more challenging environ-
ments such as forest and urban canopy and even indoor environments, the GPS
chipsets on mobile devices are all implemented with high-sensitivity GPS signal
acquisition technologies. But high sensitivity GPS does not work in all indoor envi-
ronments because GPS signals can be heavily attenuated by the building materials or

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 329–341, 2014.
DOI: 10.1007/978-3-662-43984-5_25, � Springer-Verlag Berlin Heidelberg 2014

reflected as in multipath, which will make a viable position solution impossible. In
recent years, mobile devices are also increasingly installed with various enabling
sensors such as barometer, gyroscope, compass, accelerometers, digital camera which
can be applied to derive location information at indoor environments when no GPS
signals are available.

In addition to positioning based on various navigation sensors, wireless commu-
nication networks have been widely used to provide location information at indoor
environments. Currently, the most popular indoor positioning system is Wi-Fi due to
the system’s dense hot spots. Although the accuracy of Wi-Fi is not yet satisfactory,
the great indoor availability of Wi-Fi provides great potential to further improve Wi-Fi
positioning accuracy by adding other enabling sensors and database. A fusion of data
from all available sensors in mobile devices and integrated with wireless networks
presents a promising solution for seamless indoor/outdoor positioning in the future.

In this paper, an integrated system based on Wi-Fi, floor plan and digital camera is
proposed for indoor positioning. The integrated system first uses Wi-Fi position as the
initial location which is usually not precise, and the system then uses the camera
image and floor plan database to provide refined positioning solutions. An iOS App
has been developed and implemented into iPhone and iPad to demonstrate the
applicability for practical applications. The positioning accuracy by the integrated
system can be improved from tens of meters with Wi-Fi to about 5 m, which can
satisfy most indoor LBS application requirements.

2 LBS Applications and Positioning Methodologies

While LBS mobile Apps have been around for years, big brands including Facebook,
Foursqure etc. all catch up with market demand to introduce their reward programs
with new LBS features. The major chipset manufactures such as Qualcomm, Marvell
and CSR, delivering Wi-Fi, GPS and communication chipsets to most smart devices
on market, are also adding integrated positioning algorithms as the built-in feature to
provide versatile interface and seamless positioning solution for LBS developers.
Some top pick LBS Apps voted by millions of users have redefined people’s lifestyle
and boosted local market: Yelp is the original LBS App that featured for its com-
prehensive database for local business including restaurant, bar, apparel, saloon,
grocery etc., which is tagged with geodetic locations, customer reviews, photo gallery
and contact information. Best direction is also suggested to place immediate con-
nection between customers and stores. Point Inside, a small but thriving LBS com-
pany, focuses on Wal-Mart alike for their giant grocery markets, which push out
discount voucher notifications and accurately lead customers to find individual item
out of huge product inventories. Besides these practical E-business LBS Apps, the rise
of geosocial networking gives the idea of sharing user’s location and activity to
friends network. The traditional social networking platforms like Facebook and
Twitter recently join the LBS campaign by enabling geo-tagged posts. The most
trendy lifestyle and fitness Apps such as Fitbit, Jawbone, MotoActv by Motorola and
FuelBand by Nike have innovated personal activity tracker Apps for smart phone, as
well as creating a brand new personal portable devices market for intelligent watch

330 B. Huang and Y. Gao

and wristband. In another word, user locations recorded by smart devices exhibits
certain structural patterns of customer behavior, distribution, preference and other
valuable information for LBS Apps. Eunjoon et al. [1] has studied the users’ mobility
and network through Wi-Fi and cellular based locations which provides practical
model for LBS Apps to promote popularity. An accurate positioning and navigation
engine is the premise of delivering qualified location-based services in above-men-
tioned Apps. Considering the fact that the most user active areas are GPS-denied
environments such as indoor and urban canyon, Wi-Fi positioning has become the
most popular technology that most LBS Apps are relying on to provide position
information with excellent availability. Wi-Fi positioning is especially applicable on
low-cost handheld platform because of low power consumption and large coverage of
hot spots. Wi-Fi positioning is based on the finger printing technology, in which a
database of highly dense Wi-Fi hot spots with geodetic positions is employed. The
Wi-Fi signals scanned by user devices are considered as a unique map of the local Wi-
Fi hot spot distribution and are compared to the Wi-Fi database to derive user location.
However, due to the complexity of indoor structures and uneven distributions of the
Wi-Fi hot spots, the finger print quality could be significantly degraded because of
multipath and signal attenuation etc.

To improve Wi-Fi’s accuracy, researchers have attempted to integrate other sen-
sors requiring no Radio Frequency (RF) signals to enhance indoor performance. One
widely applied is inertial measurement unit (IMU). With the fast development of
Micro-Electro-Mechanical Systems (MEMS) technology, MEMS-based IMU sensors
such as accelerometer and gyroscopes nowadays are also integrated into smart devices
as chipsets. These sensors, originally designed to provide motion measurements for
gaming applications, are now implemented to assist pedestrian indoor navigation. For
example, the above-mentioned Point Inside has adopted GPS/Cellular/Wi-Fi and
MEMS IMU integrated algorithm to achieve satisfactory indoor positioning perfor-
mance. When users search their product inventory, Point Inside retrieves the item
location from database and plans the best route from user location. In order to lead
user to the correct item, MEMS IMU provides continuous and extra-smooth solution
on the basis of Wi-Fi positioning. But in order to avoid accuracy degradation due to
attenuated Wi-Fi signal and noisy IMU measurements, Point Inside suggests business
partners to install their indoor signal anchors to improve accuracy.

More methods have been developed to improve the performance of using IMU to
measure user motion. Melania [2] developed a pedestrian gait estimation method, in
which the inertial measurements are used to estimate the pedestrian gait frequency and
lengths of strides. Moreover, with special focus on providing context of unpredictable
human movements encountered by most LBS Apps, [3] introduced an algorithm based
on IMU to be aware of different scenarios such as walking, reading, stationary, in
pocket etc. But these systems suffer from accumulative sensor bias and drift especially
when using the embedded low-cost MEMS sensors in pedestrian devices which would
result in positioning errors at tens of meters in less than five minutes run. As LBS
applications demand indoor location accuracy at room-level or aisle-level, it is still a
significant challenge to apply Wi-Fi and motion sensors to meet this requirement.

Given the limitations indicated above with the Wi-Fi and motion sensors, vision
navigation technology developed for robotic intelligence applications provides

Integrated Indoor Positioning with Mobile Devices 331

potential to improve indoor positioning accuracy [4]. Various researches have applied
digital cameras, which are available in mobile devices, to aid navigation because it
brings not only enhancement to user experience but also positioning accuracy [5, 6].
Geo-reference database has been frequently combined with vision measurements to
assist retrieving user location in near real-time. A geo-tagged photo database is
employed with a single camera to easily derive user location by matching a snapshot
to the database. Huang and Gao [7] has employed an indoor robotic vehicle mounted
with stereo cameras, tactical grade IMU, Wi-Fi and GPS receiver to go through an
experiment area to collect indoor photos tagged with the ego-motion of the robotic
vehicle. When users visit this area and take a snapshot with their smart phone, this
photo is uploaded and compared with the geo-tagged photos in database to derive the
user position and orientation. Another good example of geo-tagged photo database is
the Google Street View, which uses survey vehicle equipped with GPS, laser scanner,
camera and IMU to drive through streets and collect geo-tagged photos. This program
has extended their database to other places which uses survey backpack, trolley, bike
and even snowmobile. Google also encourages individuals and organizations to
contribute geo-tagged photos to their database by lending them survey products for
free. The aim is to collect the global database in a collaborative manner to dramati-
cally increase data coverage while reducing collection time. With a comprehensive
geo-tagged photo database, the traditional map is revolutionarily substituted by
stitching the real photos to form the real 3D view. However, the investment on
collecting indoor geo-tagged photo database is enormous, which requires high-end
sensors to generate accurate geo-tags. As a result, few practical application of indoor
geo-tagged photo database can be found and new methods are required for indoor
positioning with improved accuracy.

3 An Integrated Indoor Positioning System

3.1 Generation of Floor Plan Database

Floor plan is a scaled drawing that depicts the indoor arrangement of rooms, hallways
and other indoor objects. The scale of a floor plan comes from real world measure-
ments of lengths, angles and geodetic coordinates collected by survey equipment and
the accuracy of measurements is typically at decimeter level. As for construction and
facility maintenance, every building has stored a floor plan in online server. So
comparing with other geo-reference database such as geo-tagged photos, using floor
plan database saves the labor, time and cost of survey tasks since it can be generated
from existing resources. Furthermore, wireless connection through Wi-Fi and 3G
networks enables user download floor plan as an indoor map to supplement the
insufficiency of traditional outdoor maps like Google Map. Again, taking the Point
Inside as a commercial LBS example, they have been delivering reliable and accurate
indoor navigation solutions for years with worldwide coverage of floor plans in major
shopping malls and airports as shown in Fig. 1. The enrolled business partners who
want to subscribe this innovative indoor LBS service are required to upload their floor
plans. With this successful commercialized example of indoor navigation, building a

332 B. Huang and Y. Gao

floor plan database to support considerable area of interest has great feasibility in
practice.

Although lots of commercials provide floor plans for customers as indoor map,
these floor plans are not survey-level floor plans and do not contain much geo-
reference information. As a result, most of such indoor maps merely serve as pictures
of indoor structure, which cannot be used to improve the indoor positioning accuracy.
In order to develop a ubiquitous system no matter if the commercials have survey-
level floor plan database or not, the procedures to generate geo-reference information
for a newly added floor plan and updating an old floor plan database should be easily
implemented in practice. The example of the Google Floor Plan project launched by
Google Maps team has provided a standard paradigm for generating floor plan
database. The Google Floor Plan project is a milestone for traditional outdoor Google
Maps, which aims to realize its outstanding outdoor map and service for the indoor
floor plans. The procedure of generating a customized floor plan and geo-reference
information includes five steps:

– Step 1: Search the target building on Google Maps and select the floor layer to add a
floor plan;

– Step 2: Upload the floor plan picture, which is widely available for download in
most commercials such as shopping mall, airport, library, hospital etc.;

– Step 3: Fix several landmarks on the floor plan picture, and these landmarks should
be visible on the framework of the building, for example, the wall corners;

– Step 4: Stretch the landmarks to coincide with the common points on the outdoor
Google Maps, to align the floor plan with the outdoor map as shown in Fig. 2;

– Step 5: Image processing is applied to improve the alignment between the floor plan
picture and the outdoor Google Maps, and a customized floor plan with geo-ref-
erence information is then generated.

The above mentioned procedure for generating a floor plan database required in our
developed system has addressed at least 3 limitations suffered by the database col-
lection for other popular LBS Apps: (1) No field survey is required, which saves the

Fig. 1. Floor plan database worldwide coverage of the LBS App, Point Inside (source: http://
www.pointinside.com/solutions/mapped-locations/)

Integrated Indoor Positioning with Mobile Devices 333

http://www.pointinside.com/solutions/mapped-locations/
http://www.pointinside.com/solutions/mapped-locations/

investments of expensive survey equipment and labors. (2) To combine the existing
Google Map and service subscriber’s floor plan, the procedure consists of manually
adjustments and image processing, which significantly shorten the processing time
required by the field survey based database collection. (3) Updating database
according to business partner’s renovation is immediate that merely requires their
provision of new floor plans used in the constructions. However, to achieve the
improved accuracy of our system, several aspects are investigated:

– Accuracy of the Google Map: The Google Map data source comes from their
survey vehicle equipped with high-quality GPS antenna, tactical grade IMU and
panoramic cameras. Typical open sky accuracy of the data source is at centimeter
level when GPS signal is continuously visible. However, in urban canyon envi-
ronments where GPS visibility is badly affected, the average accuracy could still be
as good as the decimeter level while the maximum error is close to 5 m. In this
paper, a decimeter level accuracy is required for the Google Map although the areas
with large errors will encounter outlier or even failure.

– Accuracy of floor plan picture: The uploaded floor plan picture is expected to be
accurately proportional to the reality. The scaled-up floor plan picture is required to
have a decimeter level accuracy, otherwise outlier or even failure will occur.

– Accuracy of the overlaying: To reduce the probability of human error, the process
to overlay the floor plan with the Google Map subjects to manual adjustment and
image processing should be repeated by randomly choosing landmarks (see
description in Step 3), and average the overlaying results.

3.2 Geo-Reference Information of Floor Plan and Indoor Hallway Features

From the abovementioned paradigm of how Google Maps add floor plans to outdoor
maps, there is some important geo-reference information available in the generated
floor plan database. Using the geo-reference information summarized in the following,
a floor plan frame can be established as shown in Fig. 3:

Fig. 2. Google Maps floor plan program example to add floor plan to traditional outdoor
Google Maps

334 B. Huang and Y. Gao

– Real scale of floor plan: Fixing three landmarks on floor plan picture to coincide
with corresponding points on Google Maps produces the geodetic positions of these
landmarks. Stretching the floor plan picture to align with Google Maps gives the
range of latitude and longitude in the region covered by floor plan. Transforming
the range of the spherical geodetic positions to the East-North-Up frame, the real
scale of the floor plan picture can then be obtained, and the accuracy of the
real scale of floor plan is typically good at a decimeter level. As shown in Fig. 3, the
scale of its axes is determined by the real scale of floor plan;

– Geodetic position and heading of floor plan: An origin is selected on floor plan,
shown as the red dot in Fig. 3, and its geodetic position is available by referring to
the Google Maps. Furthermore, once the axes of the floor plan frame are deter-
mined, the heading of the floor plan is also available. In the example shown in
Fig. 3, the heading angle is the angle between the x-axis and the true North, which
is 90 degree. With the local origin and heading, the coordinates transformation
between the floor plan frame and the geodetic coordinates is determined.

– Floor plan features: the indoor features and their positions in the floor plan frame
are added to the floor plan database, e.g. rooms, paths, turnings and gates, shown as
the green dots in Fig. 3. These floor plan features can be extracted by applying
imaging processing methods on the floor plan pictures. In this paper, these features
are manually selected. Referring to the real scale of the floor plan, pixel locations of
indoor features are transformed to their positions in the floor plan frame.

3.3 Correspondences of Camera Image and Floor Plan Database

The system integrates the geo-reference information in the floor plan database with
camera image to derive the camera position and orientation. When user takes an image
of the indoor environment, the same scene is contained in the floor plan database with
the floor plan features and their geo-reference information. By finding correct and
reliable correspondences between the image feature and the floor plan feature, the

Fig. 3. Floor plan frame and geo-reference information

Integrated Indoor Positioning with Mobile Devices 335

geo-tag of the floor plan feature can be used to derive accurate camera position and
orientation. However, in an indoor image, many objects such as trash bin, bulletin
board, lights are easily detected, which are not considered as reliable features. In this
paper, only the features exist in both the camera image and the floor plan database are
of interest, such as the corner of doorway and walls, namely, the indoor hallway
features. The reason of choosing these indoor hallway features are based on two
considerations: first, these indoor hallway features will remain static all the times but
the arrangement of other objects like trash bins and furniture can be frequently moved
or changed. Therefore indoor hallway features are much more reliable which reflect
the indoor structure and arrangement; second, unlike the furniture plan or other
detailed plan, the floor plan only depicts the abstract interior view while ignoring
detailed objects and appliances, therefore only indoor hallway features can be found
with correspondences in the floor plan. Figure 4 shows a picture of a hallway which is
a very common indoor scene. A few indoor objects are noticeable such as door, wall,
furniture and lights. The red dots are indoor hallway features and the green lines
connect pairs of image-to-floor plan feature correspondences.

3.4 System Framework

Definition of frames
All coordinates are expressed in three types of frames, the floor plan frame, the

camera frame and the image frame, which are defined as below:

– Floor plan frame: a three-dimensional frame with a local origin selected on the floor
plan, x-axis pointing along the hallway, z-axis pointing up and y-axis orthogonal
with both; the generation of the geo-reference information of the floor plan frame
has been introduced in previous section;

– Camera frame: a three-dimensional frame with origin at the camera perspective
center, x-axis pointing right, y-axis pointing up, z-axis orthogonal to the imaging
plane;

– Image frame: a two-dimensional frame of the camera imaging plane. It departs from
the camera perspective center with a distance of the focal length.

Fig. 4. Indoor hallway features in camera image and floor plan

336 B. Huang and Y. Gao

System Components
The system consists of six major components and their functions are described in

the following:

– Initial position and accuracy: The first component is to collect initial indoor posi-
tion. Since GPS signal is totally unavailable in most deep indoor environments, the
initial position relies on the Wi-Fi network and its accuracy is typically at tens of
meters;

– Floor plan database: The second component is to download the floor plan geo-
reference information from the database, and this is completed with the geo-fencing
function. When a user sends request message to server including the initial position
and its accuracy, the areas of interest are determined. A feedback message is sent to
the user device which includes the floor plan pictures and geo-reference data of the
indoor hallway features in the areas of interest;

– Photo of indoor scenario: The third component requires user to take a picture of the
indoor scenario containing as many indoor hallway features as possible (usually 15
features are sufficient to derive reliable camera position and orientation) and touch
on screen to specify indoor hallway features;

– Image feature detection: The fourth component is to search the user-touched areas
to detect image features. Usually there are more than one feature detected but only
the most intensive feature is selected.

– Robust feature matching: The fifth component is to identify the image-to-floor plan
correspondences between the floor plan features and the image features.

– Navigation algorithm: The sixth component is to derive camera position and ori-
entation. It includes two steps: first it takes the image-to-floor plan correspondences
as inputs to derive the features’ three-dimensional positions in the camera frame;
then it takes the image features’ 3D positions in the camera frame and the floor plan
feature 3D positions in the floor plan frame as the inputs to derive the camera
position and orientation in the floor plan frame.

4 Test Results and Analysis

4.1 Development of iOS App

An iOS App has been developed to implement the Wi-Fi/camera image/floor plan
integrated system on the iPhone and iPad platforms. The software structure and the
objective-C frameworks being used in software development are illustrated in Fig. 5.
The initial indoor location is collected by using the CoreLocation framework, which
outputs user’s current latitude, longitude, and accuracy in unit of meter. The Core-
Location framework output is by default the combined results from GPS, cellular
network and Wi-Fi fingerprinting; downloading floor plan data requires the commu-
nication with server through Wi-Fi connection, and the remote server is simulated
with the Application Programming Interface (API) of a cloud storage Dropbox. The
floor plan database is stored in Dropbox, and all necessary communication methods
like sending request to server and receiving feedback to user are supported by API
functions; once the user takes a picture of the indoor scenario, the feature detection

Integrated Indoor Positioning with Mobile Devices 337

implements the image processing library OpenCV, which provides the FAST corner
detection function; the navigation algorithm and RANSAC matching involve lots of
matrix manipulations and a linear algebra library LAPACK is employed.

4.2 Test Description

To evaluate the performance of the integrated indoor positioning system, online
interactive maps and manually collected geo-reference floor plan database are used. In
order to verify the accuracy of the geo-reference information, the distances of the
feature positions in the floor plan frame are compared with the length measurements
collected in the Engineering Building at The University of Calgary. The accuracy of
the floor plan feature positions is at decimeter level. This database currently only
covers the first level of Engineering Building A, B, C, D and E Block. An iPad without
3G cellular module was adopted for indoor tests in the Engineering Complex, where
GPS signal is totally unavailable. Therefore, the initial positions during the indoor
tests were only Wi-Fi network based position solutions whose accuracy is on average
at tens of meters.

The structure of the indoor environments can be extremely irregular and complex,
and it is necessary to demonstrate the integrated system can work in general scenarios.
In order to verify the performance in various indoor environments, the test areas are
categorized into the following three scenarios:

– Standard Scenario such as D, C and B Blocks which have parallel hallways with
recognizable indoor features;

Fig. 5. iOS app and software structure

338 B. Huang and Y. Gao

– Irregular Scenario such as E Block which has irregular hallways;
– Open Scenario such as A Block which does not have hallways.

Ten landmarks are selected in each test area, with a total of 50 landmarks. The
App was run 10 times at each landmark, with a total of 500 indoor tests conducted.
The test results are used to assess the positioning accuracy using the system.

4.3 Positioning Accuracy Improvement

In order to analyze the repeatability and positioning accuracy, both the Wi-Fi posi-
tions and the results derived by the integrated system are compared with the landmark
reference positions. The 50 indoor landmarks are marked with color dots on the floor
plan picture as shown in Figs. 6 and 7. From the 10 times of repeatability tests at each
landmark, the mean and STD position error of both the integrated system and Wi-Fi
positions are calculated. The radius of the dots indicates the mean position errors. The
color scales indicate the STD position errors, from cold color representing small STD
error to warm color representing large STD error.

The STD errors are first compared in the following to assess the repeatability of
the positioning solutions.

– STD errors of Wi-Fi position solutions: The overall STD errors vary from 1.28 m to
8.17 m, which is very typical Wi-Fi positioning performance. There are significant
performance degradations in some areas. For example, the dots in END, ENE and
ENA blocks are with relatively warm colors but the most dots in ENB and ENC
blocks are blue. The reasons causing the inconsistent STD position errors of Wi-Fi

Fig. 6. Mean and STD errors of Wi-Fi positions

Integrated Indoor Positioning with Mobile Devices 339

positions are attributed the quality of the Wi-Fi AP database and the received signal
strengths of Wi-Fi APs.

– STD errors of integrated position solutions: Two significant improvements are
noticed compared to Wi-Fi solutions: first, the overall color of dots in Fig. 7 is
cooler than Fig. 6. Especially in the areas of ENA, END and ENE where the Wi-Fi
position repeatability is poor, the STD errors of the integrated position solutions are
significantly reduced; second, the consistency of the colors in Fig. 7 is much better
than Fig. 6.

The positioning errors with respect to the reference landmark positions are ana-
lyzed in the following.

– Mean errors of Wi-Fi position solutions: In Fig. 6, the dots in ENC block are on
average smaller than the dots in other blocks. It means the mean position errors in
ENC block are smaller than other blocks. A reasonable explanation to this phe-
nomenon is attributed to uneven density of Apple’s Wi-Fi AP database. The
database probably has stored highly dense APs in ENC area but relatively sparse
APs in other blocks.

– Mean errors of integrated position solutions: Comparing with Figs. 6 and 7 has
shown great reduction in mean position errors. On the one hand, in ENC block
where the Wi-Fi positioning accuracy is good, the dot sizes in Fig. 7 are as small as
those in Fig. 6. On the other hand, in the areas of ENB, END, ENE and ENA where
the mean errors of Wi-Fi positioning are large, the dot sizes are much smaller for
the integrated position solutions. The integrated system works well not only in the
typical indoor scenarios with parallel hallways such as ENB, ENC and END blocks,
but also perform well in irregular scenarios like ENE block.

Fig. 7. Mean and STD errors of integrated solutions

340 B. Huang and Y. Gao

Table 1 summarizes the position RMS error in each test area. It further demon-
strates three contributions of the integrated system: first, the integrated system can
bring position accuracy improvement to Wi-Fi positions; second, in the area where
Wi-Fi performance is good, comparable accuracy is achieved by the integrated sys-
tem; third, unlike the inconsistent performance of Wi-Fi positioning, the accuracy of
the integrated system have shown great consistency in different blocks.

5 Conclusions

An integrated indoor positioning system based on integration of Wi-Fi, camera image
and floor plan database has been described. Camera image is integrated with a
ubiquitous database of building floor plan to derive 3D camera position and orien-
tation with Wi-Fi position as the initial solution. An iOS App has been developed and
tested with iPad in different indoor environments. The performance of the integrated
system has been assessed by comparing to the Wi-Fi based positioning solutions. The
test results have indicated significant improvement in terms of positioning accuracy
and reliability in indoor environments using the integrated system.

Acknowledgement. The research is supported by Canada NSERC Discovery Grant.

References

1. Eunjoon, C., Seth, A.M., Jure, L.: Friendship and mobility: user movement in location-based
social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, USA, pp. 1082–1090 (2011)

2. Melania, S.: Gait analysis for pedestrain navigation using MEMS handheld devices. M.Sc.
Thesis, Geomatics Engineeirng, University of Calgary, UCGE Report 20359 (2012)

3. Yohan, C., Hojung, C.: LifeMap: a smartphone-based context provider for location-based
services. IEEE Pervasive Comput. 10(2), 58–67 (2011)

4. Hide, C., Botterill, T., Andreotti, M.: Vision-aided IMU for handheld pedestrian navigation.
In: Proceedings of ION GNSS 2010, Portland, Oregon, USA, pp. 534–541 (2010)

5. Laura, R.: Visual gyroscope and odometer for pedestrian indoor navigation with a smart-
phone. In: Proceedings of ION GNSS 2012, Nashville, Tennessee, USA (2012)

6. Yuan, Z., Li, X., Wang, J., Yuan, Q., Xu, D., Diao, J.: Methods of 3D map storage based
on geo-referenced image database. Trans. Nonferrous Met. Soc. China 21(3), 654–659
(2011)

7. Huang, B., Gao, Y.: Indoor navigation with iPhone/iPad: floor plan-based monocular vision
navigation. In: Proceedings of ION GNSS 2012, Portland, Oregon, USA (2012)

Table 1. Position RMS errors in different test areas

RMS (m) END ENC ENB ENE ENA

Wi-Fi positions 6.74 5.60 11.47 19.02 24.60
Integrated positions 4.56 6.63 7.20 3.24 5.99

Integrated Indoor Positioning with Mobile Devices 341

A Hybrid Scale-Out Cloud-Based Data Service
for Worldwide Sensors

Tania Khalafbeigi1(&), Chih-Yuan Huang1, Steve Liang1,
and Mea Wang2

1 Geomatics Engineering, University of Calgary, Calgary, Canada
{tkhalafb,huangcy,steve.liang}@ucalgary.ca
2 Computer Science, University of Calgary, Calgary, Canada

meawang@ucalgary.ca

Abstract. We are living in a sensor-rich world. However, managing, access-
ing and analyzing the collective worldwide sensors’ spatio-temporal observa-
tions in a coherent manner is very challenging. That is because the large
number of sensors are distributed all over the world and each sensor provides
large volume of continuous observations over the time. Our objective in this
paper is to construct a scalable data service for gathering and accessing the
worldwide sensors’ collective observations. Our proposed solution has a hybrid
architecture consisting of local services and a Cloud storage. In our solution,
we combine a cloud-based scale out geospatial data stream architecture with
the LOST-tree indexing structure. Our initial experiment shows that such
hybrid structure is scalable and efficient for sensor data write, local search and
global historical search.

1 Introduction

Cisco estimated that there will be more than 50 billions Internet-connected sensors by
2020 [6]. With the growth of the number of sensors all over the world, managing the
information from the worldwide sensors will become an issue because of the very
large volume of data they create over time. For example, the volume of sensor data is
predicted to cross the volume of social media data before 2015 [5].

In this paper, we design a sensor data service to handle the following three
functionalities. First the system needs to be able to accommodate the collective sensor
observations from the worldwide sensors. In order to make the observations useful,
each observation must have a temporal attribute (time) and a spatial attribute (space).
We named this operation as sensor check-in. The second functionality of our pro-
posed system is the ability to answer queries about the most recent sensor observations
around a specific location. It is a common operation in location-based systems and
often called nearby search [2, 7, 8]. We called this operation local live query. The
third functionality of our proposed data service is the ability to answer queries about
sensor observations in a specific large area during a specific time period. We call this
operation global historical query.

Our proposed solution consists of two major parts: a local data service and a Cloud
storage. The responsibility of the local service is to gather the observations from

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 342–348, 2014.
DOI: 10.1007/978-3-662-43984-5_26, � Springer-Verlag Berlin Heidelberg 2014

sensors, and index them in a spatiotemporal indexing data structure. To prevent the
unlimited growth of the local service’s storage, the observations stay in the local
service for a limited amount of time and then the local service publishes them to a
Cloud storage for global accesses (hence the scale out design).

Our proposed hybrid architecture has the following advantages. First of all, our
hybrid architecture strategically distributes the computational and storage loads to
different components. Our Cloud storage provides an easily manageable and scalable
central storage for worldwide sensor observations. The distributed local services
remove the performance bottleneck of the continuous check-ins submitted by the
worldwide sensors. Secondly, as the system grows, additional local services can be
easily added into the system according to the spatial density of the sensors. At the
meantime, the complexity of the system architecture does not increase because all
sensor observations are still stored in the central Cloud storage. In addition, as the load
is shared between the local services and Cloud storage, the proposed architecture
doesn’t require server-class machine. Instead, a PC-class machine is sufficient and as a
result, this hybrid architecture is cost-effective and economically scalable. Another
key advantage of our hybrid architecture is that we can use a simple key-value Cloud
storage (e.g., the Amazon S3) instead of a compute Cloud (e.g., running a relational
database in the Cloud) that has the following advantages. First, it has a very short
response time as it does not perform complex queries. Second, It is also very scalable
because the hash-table-like structure allowing it to scale. Third, simple key-value
Cloud storage is very cost-effective comparing to a compute Cloud.

2 Related Work

Wang et al. [4] proposed a method for retrieving and indexing spatial data in the
Cloud computing environment. Their main contribution in spatial data services is
using Well-Known Text (WKT) and Well-Known Binary (WKB) for handling spatial
data. However, in our solution we want to store and retrieve the spatial data itself,
because transforming spatial data to WKT and WKB and vice versa add computa-
tional overhead to the data service. Li et al. [3] proposed an architecture for pro-
cessing intensive floating car data. They used a temporal indexing method and a
spatial indexing method two parts of their system. However, their system is different
from our domain in the case that they spatial index is almost static and doesn’t change
and their structure is specifically designed for analytics. In our system the locations of
sensors in our system are dynamic and also we focus on sensor data service common
operations rather than analytics. Lee et al. [2] proposed a Cloud-based geolocation
data service for mobile applications named Geopot. Our purposed solution is
extending the Geopot architecture by adding the global historical query operation.
Moreover, Geopot’s focus was mainly on spatial data. However, we want our system
to support spatio-temporal queries by using a spatio-temporal indexing structure.
Huang et al. [1] proposed a spatio-temporal structure for efficient sensor data loading
in a sensor web browser named Loading Spatio-Temporal tree (LOST-tree). LOST-
tree spatio-temporal indexing structure can be useful for our purpose.

A Hybrid Scale-Out Cloud-Based Data Service for Worldwide Sensors 343

3 A Hybrid Scale-Out Cloud-Based Data Service
for Worldwide Sensors

Our proposed hybrid architecture contains a number of local services and a Cloud
storage. Local services handle users’ requests while the Cloud storage contains the
whole spatio-temporal data derived from the worldwide sensors over time. A R-tree
index is created over the data storage to facilitate retrieving observations and
answering the queries. In addition, the local data storages periodically publish the
historical data to the Cloud storage. An additional attribute, that summarizes the to-be-
published data, will also be submitted to the Cloud storage along with the data. Our
proposed service provides three basic functionalities: check-in, local live query, and
global historical query as defined in Sect. 1.

3.1 The Proposed Approach that Distributes the Local Services

Servers for the local services (i.e., local servers) should spread all over the world to
manage observations from sensors in the different geographical areas. We assign a
unique identifier to each of these local servers as references in the central Cloud
storage. We need an identifier generation strategy so that the identifiers can represent
the geographical area covered by the local services. There are different strategies to
achieve the goal, such as the space-driven spatial indexing methods and the data
driven indexing methods [8]. In this paper we decide to use the space-driven indexing
methods because they are simple and do not require the system to rebuild local service
topology when the system grows. We use quad-tree and z-ordering [8] on the world
map to distribute our local servers. Quad-tree sub-divides the geographical area to four
equal-size regions recursively. Using z-ordering traversing over quad-tree, each quad-
cell is assigned a unique quad-key. To distribute our local servers, we use a pre-
defined quad-tree structure configured with a specific depth. Then we put a local
server in each quad-cell. Local servers are responsible for all queries from their
corresponding quad-cell region. The quad-key of each cell is used as an identifier for a
local server. This quad-key not only gives each local server a unique and informative
identifier, but also the id represents a geographical area.

3.2 Local Service and Cloud Storage Architecture

Local services are responsible for interacting with the users, i.e., receiving incoming
requests and replying responses. As shown in Fig. 1a, each local server has its own
key-value based data storage. When a sensor wants to check in its observation, it sends
a check-in request, containing a sensor observation with its spatial (location), to the
corresponding local server. In the local server, the observation is added to the data
storage and its R-tree index based on the location. In order to save bandwidth and
unnecessary processing overhead, we assume that the time of check-in is the same as
observation time, sending sensor observation with only its spatial attribute is
sufficient.

344 T. Khalafbeigi et al.

After a specified amount of time period, e.g., one hour or one day, the local service
uploads its data to the Cloud storage. A time tag will be created based on the time
period such as YYYYMMDD for a day or YYYYMMDDHH for an hour. The
combination of the time tag and the quad-key identifier of the local server creates a
unique key for uploading the data to the Cloud storage. The aggregate attribute of
interest also needs to be calculated by local server and upload with the data to the
Cloud storage. After uploading the data to the Cloud storage, the data can be deleted
from the local server data storage to protect the local server from out of memory issue.

For the local live query, a user sends a request to the local service containing the
location and the radius of interest. Based on the user location, the local server searches
its R-tree and retrieves the result data from its data storage. Using the R-tree in our
architecture improves the performance of local live query as demonstrated in Sect. 4.
For the global historical query, the user sends a request to the local service containing
time period and area of interest. Local server calculates the time tags and the quad-
keys overlapping with the time period and area of interest respectively and fetches the
data from the Cloud storage. Depend on users’ desired granularity of the result, the
Cloud storage returns the raw data or the aggregate attribute of the data. The result
contains a series of region-time/observations that can be displayed on the map.

Our proposed architecture for the Cloud storage, as shown in Fig. 1b, is a simple
key-value table contains the collective raw data submitted from all the local servers. In
addition to the local data from local servers, aggregate attributes are also stored in the
Cloud storage key-value table that facilitates answering the global historical queries.
We believe that by combining our hybrid structure with the indexing structure, our
service is scalable and efficient for sensor check-ins, local live queries and global
historical queries.

4 Evaluation Results

For evaluating our proposed sensor data service, we simulated the local server and
connected it to the cost-effective Amazon Simple Storage Service (S3)1. We used
random, linearly distributed, simulated data for evaluating our implementation. Our
implementation consists of a local server that is implemented with Java programming

Fig. 1. (a) Local service architecture, (b) Cloud storage architecture

1 http://aws.amazon.com/s3

A Hybrid Scale-Out Cloud-Based Data Service for Worldwide Sensors 345

http://aws.amazon.com/s3

language. We used Jersey2 library to provide HTTP access to our local service and
Tomcat6 hosts our service. The service resides on an Intel Core i5 PC with 1 TB disc
and 6 GB memory running Windows 7 Professional. We also used Redis3, an open
source advanced key-value store, for local data storage. In addition, we used the
deegree R-tree library4 for our R-tree implementation in local service. Using our local
service is as simple as sending HTTP requests. Check-in operation is done with HTTP
POST requests and local live queries and global historical queries are done with HTTP
GET request. In our implementation data of the local service is uploaded to the
Amazon S3 using Amazon AWS Java SDK every hour.

4.1 Experiments

Check-in Response Time. Our first experiment for evaluating scalability is check-in
response time (Fig. 2a). X axis shows index of the check-in request, means the ith

check-in request comes to the service, and the Y axis shows the time in nanoseconds.
The experiment is evaluated using ten ms check-in requests. This experiment shows
that the overall response time of check-in is less than 5 ms and is not changed with
more check-ins. However, when a node in the R-Tree index splits, the check-in
response time is higher and this is the reason that some of the points in the diagram
have different response time with the overall response time.

Local Live Query Response Time. The other experiment for evaluating scalability is
testing local live queries response time with the change of the number of stored
checked-in data (Fig. 2b) We did this experiment with ten million data records stored
in the local service. We see that the response time for the local live queries change
linearly (with a very low coefficient) with the number of checked-in data. As we see
the response time is reasonable for ten million data and is less than 4 ms.

Fig. 2. (a) Response time for check-ins based on the index of check-ins, (b) Response time for
local live queries based on number of checked-in data

2 https://jersey.java.net/
3 http://redis.io
4 http://download.deegree.org/deegree2.5/api/org/deegree/io/rtree/RTree.html

346 T. Khalafbeigi et al.

https://jersey.java.net/
http://redis.io
http://download.deegree.org/deegree2.5/api/org/deegree/io/rtree/RTree.html

Global Historical Query Response Time. The global historical query performance
depends on the Amazon S3 reading time and also the size of the desired bounding box
and length of the desired time period in the query. We tested Amazon S3 reading time.
The average reading time from Amazon S3 with the 1Gbps network bandwidth of
University of Calgary is 113.3 ms. The aggregate attribute that we store in the Cloud
storage helps improving the performance of global historical query significantly.
Because instead of fetching the whole data for the desired area and time period, only
the aggregate attributes need to be fetched from Amazon S3 that save the bandwidth
and improve the performance.

Local Server Distribution. The number of the local servers depends on a specified
quad-tree depth. There are trade-offs for choosing this depth. First of all this level
affects the performance of the global historical query. For each quad-cell and for each
time period we have a data in the Cloud storage. And that means the deeper the depth
of quad-tree is, the worse the performance of the global historical query will be.
However, a deeper level of quad-tree also means a better estimation of sensor
observations, since the aggregate attribute summarizes the data for a finer grained area
and time period. A similar situation occurs when choosing the time period (i.e., time
tag) for submitting data to the Cloud storage.

5 Conclusion and Future Works

In this paper we proposed a hybrid scalable architecture for designing the worldwide
sensor data service. The experimental results showed that our proposed data service is
scalable and also performs well. Moreover, we believe that our proposed data service
is cost-effective due to use Cloud storage and PC-class machines for local servers. Our
future works include a number of improvements for our data service design. Using
static quad-tree for distributing local services may cause unbalanced workload
between local services. One of the solutions to address this problem is using dynamic
quad-tree instead of the static one. In addition, our current data service is designed for
one sensor type. The support of multiple sensor types can be simply added by either
adding a sensor registry or encode the sensor types in the local server’s unique
identifiers.

References

1. Huang, C.-Y., Liang, S.H.L.: Lost-tree: a spatio-temporal structure for efficient sensor data
loading in a sensor web browser. Int. J. Geogr. Inf. Sci. 27(6), 1190–1209 (2013)

2. Lee, D.W., Liang, S.H.L.: Geopot: a cloud-based geolocation data service for mobile
applications. Int. J. Geogr. Inf. Sci. 25(8), 1283–1301 (2011)

3. Li, Q., Zhang, T., Yu, Y.: Using cloud computing to process intensive floating car data for
urban traffic surveillance. Int. J. Geogr. Inf. Sci. 25(8), 1303–1322 (2011)

4. Wang, Y., Wang, S., Zhou, D.: Retrieving and indexing spatial data in the cloud computing
environment. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol.
5931, pp. 322–331. Springer, Heidelberg (2009)

A Hybrid Scale-Out Cloud-Based Data Service for Worldwide Sensors 347

5. Liang, S.H.L., Huang, C.Y.: Geospatial Cyberinfrastructure for Addressing the Big Data
Challenges on the Worldwide Sensor Web. Big Data: Techniques and Technologies in
Geoinformatics. CRC Press, Boca Raton (2014)

6. Evans, D.: The internet of things: How the next evolution of the internet is changing
everything. CISCO white paper (2011)

7. Zheng, Y.: Tutorial on location-based social networks. In: WWW 2012, (2012)
8. Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases: with Application to GIS. Morgan

Kaufmann, Burlington (2001)

348 T. Khalafbeigi et al.

DASFAA Workshop on Uncertain
and Crowdsourced Data (UnCrowd)

Uncertainty in Crowd Data Sourcing Under
Structural Constraints

Antoine Amarilli1(B), Yael Amsterdamer2, and Tova Milo2

1 Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI, Paris, France
antoine.amarilli@telecom-paristech.fr

2 Tel Aviv University, Tel Aviv, Israel

Abstract. Applications extracting data from crowdsourcing platforms
must deal with the uncertainty of crowd answers in two different ways:
first, by deriving estimates of the correct value from the answers; second,
by choosing crowd questions whose answers are expected to minimize this
uncertainty relative to the overall data collection goal. Such problems
are already challenging when we assume that questions are unrelated
and answers are independent, but they are even more complicated when
we assume that the unknown values follow hard structural constraints
(such as monotonicity).

In this vision paper, we examine how to formally address this issue
with an approach inspired by [2]. We describe a generalized setting
where we model constraints as linear inequalities, and use them to guide
the choice of crowd questions and the processing of answers. We present
the main challenges arising in this setting, and propose directions to solve
them.

1 Introduction

Crowd data sourcing leverages human knowledge to obtain information which
does not exist in conventional databases. This may be done by posing targeted
questions to crowd users, through conventional crowdsourcing platforms such
as Amazon Mechanical Turk [6]. Contrary to many works that use the crowd
as a means to perform different tasks, here the crowd serves as a source of
information.

Many challenges arise when using the crowd as a data source. First, human
answers have a high latency and are usually provided against some (monetary)
compensation, so we must minimize the number of posed questions. Second,
answers collected from the crowd may be erroneous and noisy, so we must control
and improve answer quality, e.g., pose the same question to multiple workers.

A vast body of research has tackled these issues for various data procurement
tasks (e.g., [1,2,7,8,11,12]). For example, [7] studied the number of answers
that must be obtained to reach sufficient confidence in the final answer of a
given Boolean question, and mentions the problem of deciding, when there are
several questions to answer, which is the next best question to ask the crowd. In
different situations [2,12], this selection of questions is performed by comparing

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 351–359, 2014.
DOI: 10.1007/978-3-662-43984-5 27, c© Springer-Verlag Berlin Heidelberg 2014

352 A. Amarilli et al.

the expected contribution of the answers to some data acquisition goal. However,
in such situations, the answers to the various questions are independent, so that
we can choose the next best question by looking at each question in isolation.

In this paper, we study the problem of collecting numerical values from the
crowd under hard a-priori constraints on the final answers, caused by inherent
data dependencies.

For instance, suppose that we have devised a lossy compression algorithm
for e.g. music files, and that we wish to estimate the average quality rating of
different compression ratios in a user population. We can ask a few random crowd
workers to evaluate the quality q1, . . . , qn for each of n compression ratios of
increasing lossiness. The quality ratings of any given person are not independent:
we can assume that every person will consider q1 (the quality of the least lossy
compression) to be at least as high as q2, and so on. Consequently, the average
q1 in the entire population is higher than q2, and so on. However, the quality
q1 for some people might be lower than q2 for others; hence, by asking random
workers we may obtain an estimation of the quality ratings that is not perfectly
monotone. This use case will be our running example throughout the paper.

As another example, consider the estimation of the price that people are
willing to pay for varying combined deals. In fields such as auction study in
game theory [9], it is customary to assume that the price function for each user
is monotone, i.e., adding products cannot decrease the deal price. For instance,
we know that in the entire population, the average value of a flight and hotel
cannot be lower than that of the flight alone. But again, if we sample different
users for each deal, we may obtain a non-monotone estimation for the average
price.

A similar problem occurs in [2], where the crowd is used to estimate the
frequency of patterns in user habits. While these frequencies are dependent for
patterns with overlapping activities (e.g., if someone never swims, they also never
swim and dive), such dependencies are not accounted for in [2]. In general, exist-
ing work on crowd data sourcing has mostly ignored the problem of uncertainty
when dealing with dependent questions [1,8]. There are works that deal in a non-
trivial way with the interaction between uncertainty and dependency [4,10], but
they assume that the individual outcomes observed are Boolean and not numeric
like in the present paper.

We consider here two important problems that arise in the context of depen-
dent crowd questions. First, can we improve the variable estimation by taking
dependencies into account? For instance, in our running example, if we esti-
mate that the quality q1 is lower than q2 (which contradicts our monotonicity
assumption), we may attempt to correct our estimation by increasing q1 and/or
decreasing q2; or, to begin with, we can only consider estimations that com-
ply with our monotonicity requirement. What is the right way to enforce this
monotonicity, and how does it increase the quality of our estimation?

Second, we use the dependencies to reduce the number of questions posed to
the crowd. For instance, if we estimate that the average quality rating q1 and q4
of the compression ratios 1 and 4 are both 6 out of 10, we do not need to ask

Uncertainty in Crowd Data Sourcing Under Structural Constraints 353

people about q2 and q3. Or, as another example, if we wish to find the lossiest
compression with rating at least 6 out of 10, and we estimate that q5 and q10
are 8 and 3 respectively, we can interpolate q6, . . . , q9 (using monotonicity) and
estimate that the rating with value closest to 6 is most likely q7.

Paper structure. We first give a formal definition of the considered problem in
Sect. 2. We next present in Sect. 3 a general scheme to solve the problem in
the absence of dependencies, and turn in Sect. 4 to how dependencies should be
handled. For numerous dependent variables, interpolating samples is crucial: we
discuss this in Sect. 5. Last, we conclude in Sect. 6.

2 Problem Statement

We wish to learn n numerical values μ = (μ1, . . . , μn) from the crowd. We model
the distribution of crowd answers to questions about these values using n random
variables X1, . . . , Xn. We assume that the mean of Xi is μi for every i.1

We further assume that μ satisfies a certain known set of linear inequalities,
represented as a matrix E of reals such that E · μ ≤ (0), where (0) is the zero
vector and · denotes the product of matrix E and vector μ. We assume that the
inequalities E are feasible, namely, that there is some vector e satisfying E.

Example 1. In our running example, the random variables Q1, . . . , Qn, with
unknown means q1, . . . , qn, denote the ratings obtained for the compression
ratios. The inequalities represent a decreasing order: q2 − q1 ≤ 0, q3 − q2 ≤ 0,
etc.

We consider a known loss function Lµ which associates to a prediction v for the
unknown values μ some nonnegative value Lµ(v). We assume that Lµ can be
written as the sum of nonnegative functions Li

μi
, that is, the error function for

all values is the sum of the errors of individual values. We require that for all i,
Li

μi
(μi) = 0 and Li

μi
(x) ≤ Li

μi
(y) for all μi ≤ x ≤ y and y ≤ x ≤ μi. (In other

words, the loss is 0 for the correct value, and increases with the absolute error.)

Example 2. The loss function depends on the target application. For compression
ratios, if our task is to find which is the lossiest compression with rating at least
6, a reasonable loss function for all variables is the threshold loss Lμ,τ with
τ = 6. The value Lμ,τ (x) is defined to be 1 if the x and μ are miscategorized
with respect to threshold τ (formally, μ < τ < x or x < τ < μ) and 0 otherwise.
The overall loss function is the sum of the Lqi,τ which counts the number of
ratios that are miscategorized with respect to the threshold τ = 6.

For any i, we can obtain a sample of variable Xi (we say that we sample Xi or
draw Xi) by asking the corresponding question to a random crowd worker; we

1 This assumption holds when we are interested in the average crowd answer, e.g., the
average rating for a compression quality; and in the many cases where the errors of
worker answers tend to cancel out so that the average is close to the truth [2].

354 A. Amarilli et al.

assume that all draws are independent both between variables and between two
draws of the same variable. Our goal is to choose draws carefully and, based on
the obtained samples, try to provide a prediction v which minimizes Lµ(v): we
phrase this in a fixed-budget formulation, namely minimize Lµ(v) in expectation
after a fixed number of samples.

Example 3. In the running example, sampling the variable Qi is achieved by
providing a random crowd user with a sound sample compressed with ratio i
and asking for a rating for this sample. The overall objective is to choose the
right ratios for which to request more ratings, in order to minimize the number
of average quality ratings that are miscategorized with respect to τ = 6.

We next review the problem of minimizing the loss by choosing the “right”
questions. We first study an approach for a simplified setting where there are no
order constraints on the estimated values, before we consider the general case.

3 Without Order Constraints

Let us present a general scheme inspired by [2] for the case with no order con-
straints, before we extend it to order constraints in the next section.

With no constraints, as the variables are independent and the loss is the sum
of the individual losses of variables, our goal is to find which one of the variables
is such that one more sample for it would yield the largest loss reduction. Hence,
we first focus on an individual variable Xi to describe how we predict its mean
value vi from the samples Si observed for this variable, and how we estimate the
loss reduction that we may achieve by taking one more sample.

Estimating the parameter. Our approach for a variable X given a set S of samples
of this variable is to fit a model for X from the family of normal distributions,
as they are a simple and general way to represent real-life data. Denote by Θ =
R×R+ the parameter space, such that every θ ∈ Θ, with θ = (μ, σ2), represents
the normal distribution N (μ, σ2) with mean μ and variance σ2. Denote by Prθ

the probability density function of this distribution.
As the samples S of X are assumed to be independent, we can define the

probability of S according to N (θ) as the product of Prθ(si) for all si ∈ S. The
likelihood function LS : Θ → [0, 1] is then simply defined as LS(θ) = Prθ(S): it
describes, as a function of θ, the probability2 of the sample under θ.

Our way to fit a normal distribution to the random variable X is then the
standard method of choosing the maximum likelihood estimator (MLE):

θ̂ = arg max
θ∞Θ

LS(θ)

In the case of normal distributions, it is easily checked that we have θ̂ = (μ̂, σ̂2),
where μ̂ and σ̂2 are the sample mean and sample variance defined by:

μ̂ =
1

|S|
∑

i

si σ̂2 =
1

|S|
∑

i

(si − μ̂)2

2 Note that likelihood cannot, however, be seen as a probability distribution on Θ.

Uncertainty in Crowd Data Sourcing Under Structural Constraints 355

Hence, we take v = μ̂ as our current guess of the mean of variable X.

Example 4. Assume that we ask 3 users to evaluate sound samples compressed
with ratio 3, and obtain the grades 3, 5, and 7. This means that our sample
mean and variance for variable Q3 are respectively μ̂3 = 5 and σ̂3

2 = 8/3.

Estimating the error. How to estimate the loss of our prediction μ̂? Because the
true value is unknown, we estimate the loss by assuming that our current guess θ̂
is correct, and finding out what its expected error is. We do this by examining the
range of samples that could have been obtained instead of S under the assumed
distribution and computing the loss of the MLE obtained from them.

By the central limit theorem, the distribution of the mean of N samples of
N (μ̂, σ̂2) can be approximated by N (μ̂, σ̂2/N). Hence, under the assumption
that θ̂ is correct, we can define the average error obtained through the MLE
method from |S| samples, as follows:

E(θ̂, |S|) =
∫

x∞R

Pr(μ̂,σ̂2/|S|)(x)Lμ̂(x) dx

This integral can be numerically approximated by sampling.

Example 5. The estimated error for Q3 under the samples S3 of the previ-
ous example is the probability that the sample mean, distributed according to
N (5, (8/3) · (1/3)), is above threshold τ = 6 (as the loss is then 1, and is 0 other-
wise, relative to our estimate μ̂3 = 5). Numerically we have E(θ̂3, |S3|) = 0.144.

Estimating the error decrease. Now that we can estimate the parameter of a
distribution from the samples, and the expected error according to this parame-
ter, we can easily devise an estimation of how this error may decrease when an
additional sample is requested from variable X.

Let us assume that we obtain a new sample of X with value x, and call S→ the
|S| + 1 samples obtained by adding x to S. Call θ̂→ the MLE obtained by maxi-
mizing LS′ , and define the error decrease as D(S, x) = E(θ̂, |S|)−E(θ̂→, |S|+ 1).
This gives us an estimation of how error decreases for one more sample with
value x. Of course, we cannot know if we would indeed obtain value x, but we can
compute its probability according to our current hypothesis for the underlying
distribution, namely N (μ̂, σ̂2). We therefore define the expected error decrease:

D(S) =
∫

x

Pr
̂θ(x)D(S, x)dx

This is our estimate of the expected loss reduction when sampling this variable.

Example 6. If we obtain one additional sample of 5 for Q3 (yielding S→
3), the

estimated mean μ̂3 = 5 is unchanged, but the estimated variance decreases to 2
so the estimated error under the new MLE θ̂→

3 becomes E(θ̂→
3, |S→

3|) = 0.079. We
estimate the expected error decrease by averaging the decrease under possible
additional samples drawn from our estimated distribution N (θ̂3) for Q3.

356 A. Amarilli et al.

Multiple variables. With the above method, we can compute the expected error
decrease of each variable, and sample the one whose expected error decrease is
highest. It is easy to see that this greedy approach is optimal in terms of reducing
the expected error over any fixed number of requests, as samples for one variable
do not change the estimated parameter or expected error of other variables.

4 With Order Constraints

Under order constraints, the problem is more challenging. Though the loss func-
tion remains a sum of loss functions over individual parameters, it is not possible
anymore to manage variables separately, because information obtained for one
variable gives us additional information about the other variables. Reconsidering
our running example, under the objective of identifying the lossiest compression
ratio with average quality at least τ , it makes little sense to consider the results
of every variable independently, and we should examine the results globally to
locate where the decreasing sequence of qualities intersects the threshold τ . The
challenge is how to formalize such a global strategy, under general constraints.

To this end, we propose a greedy strategy inspired by that of the previous
section, but integrating the order constraints and considering the variables glob-
ally rather than in isolation. Because additional samples on one variable give us
information about other variables, such a greedy approach is no longer guaran-
teed to be optimal over multiple draws. Because of space constraints, we only
sketch the principles of our initial approach; we plan to study this further and
examine possible alternative approaches in future work.

We consider the parameter space Θ = (R × R+)n, covering all parameters
of all random variables simultaneously, and we define the likelihood of θ ∈ Θ
(with θi = (μi, σ

2
i)) as a function of S = (S1, . . . , Sn), the set of all samples

for all variables, using the fact that all draws are still independent. We exclude
parameters which violate order constraints by defining the likelihood as follows:

LS(θ) =
{∏

i

∏
s∞Si

Prθi
(s) if E · θ ≤ (0)

0 otherwise

The main problem is now to determine the maximum likelihood estimator
for θ by maximizing this expression. We next propose a possible approach to
the problem, and the challenges yet to be resolved.

Estimating the means. We propose to maximize the expression as a function of
the means μ, while making the assumption that the variances are the sample
variances σ̂ for every individual variable. Under this approximation, the maxi-
mization problem can be rewritten as maximizing a quadratic expression with a
positive definite matrix under the inequalities E. Such a problem is tractable [5],
so we can solve it and obtain a set of candidate means v for the underlying dis-
tributions. Technical details are omitted for lack of space.

Example 7. Assume that we have obtained the same number of samples for Q1,
Q2 and Q3, that their sample variances are equal (σ̂1 = σ̂2 = σ̂3), and that the

Uncertainty in Crowd Data Sourcing Under Structural Constraints 357

sample means are μ̂1 = 9, μ̂2 = 7, and μ̂3 = 8. Observe that we have μ̂2 < μ̂3

even though we know that q3 ≤ q2. In this specific setting, our estimation of
the means is the solution v of a quadratic programming problem amounting
to minimizing the sum of squares

∑
i(vi − μ̂i)2 subject to the inequalities: its

solution is v1 = 9, v2 = 7.5, and v3 = 7.5.

Estimating the variances. We have computed the MLE estimator for the means of
the distributions subject to the inequality constraints, up to the approximation
of substituting the individual sample variances instead of integrating them in
the maximization problem. Since the estimations of the means and variances are
inter-dependent, we may now need to reestimate the variances.

Example 8. Assume that we have samples S2 = {0.1, 0.2} for Q2, and numerous
samples for Q1 and Q3 which convince us that v1 = 9 and v3 = 8.5 are very
good estimates for q1 and q3. We know that we must have 8.5 ≤ v2 ≤ 9 (we will
probably choose v2 = 8.5 given S2), but then our estimation of the variance of
Q2 should be much higher than the sample variance σ̂2

2 of S2 in isolation.

We estimate the variance of each Xi under the computed means v (and thus
estimate the complete parameter θ) as the sample variance relative to the com-
puted mean vi of Xi (instead of relative to the sample mean). The solution
thus obtained may not be optimal, as we have fixed and optimized the means
and variances separately rather than simultaneously. Estimating how much this
approach deviates from the true solution is a challenge for future work.

Estimating the error and error decrease. The overall method now follows Sect. 3
except that we follow the above3 to fit a family of distributions to the variables.

5 Interpolation

In some real-life scenarios, we may have a very large number of questions to
ask the crowd; for instance, the number of possible compression ratios may be
very high, almost continuous. In such cases, we may have many variables Xi

with no samples at all: those variables thus do not appear in the optimization
problem, so that we know nothing about them (except that they satisfy the
order constraints). However, we could then perform interpolation to estimate
more precisely a large proportion of the variables with a limited number of
questions to the crowd.

In the general case where E is an arbitrary set of inequalities, it is hard to
define how to interpolate a value for a variable with no samples. We leave this
general question to future work, and only focus on the case where E expresses
the total order μ1 ≥ · · · ≥ μn. For simplicity, up to renumbering indices, we
assume that we have a model for X1 and Xn, namely (μ1, σ

2
1) and (μn, σ2

n), and
that we wish to derive a model for Xk, 1 ≤ k ≤ n, for which we have no samples.
3 Note that this also changes the way of fitting distributions when computing the error

decrease under possible additional samples.

358 A. Amarilli et al.

Example 9. If we estimate v1 = 8 and v5 = 4, our best guess for q3 in the absence
of samples should be v3 = 6. Likewise, our best guess for q4 should be v4 = 5.

Interpolating the mean. We interpolate the mean μk by a linear interpolation
between μ1 and μn according to the rank k, as presented in Example 9

Interpolating the variance. We want to interpolate σ2
k by combining both the

variances of X1 and Xn, and the uncertainty arising from the interpolation
itself: the further away k is from 1 and n, the least certain we are about μk.

To do so, we consider that μk has been chosen by picking n − 2 random
uniform values between μ1 and μn (the means μ2, . . . , μn−1), sorting them, and
choosing the (k −1)-th value to be μk. Now, this means that μk is the (k −1)-th
order statistic of n−2 uniform and independent random variables in [μ1, μn], so
that it follows a beta distribution [3] whose variance has a closed form.

Example 10. Pursuing Example 9, for μ5 = 8 and μ9 = 4, we estimate the vari-
ance on μ7 to be 4/5 for this outcome (that of the adequate beta distribution).

We can thus estimate a variance for Xk for fixed values μ1 and μn: those values
are unknown, but can be sampled according to our model for X1 and Xn to
yield an overall variance for Xk. We omit details for lack of space, and leave to
future work the study of other possible interpolation methods for variance.

6 Conclusion and Perspectives

In this paper, we have studied the problem of learning numerical values from the
crowd, leveraging ordering constraints on those values to mitigate the uncertainty
on crowd answers. We have presented an abstract framework inspired by [2]
ignoring the order constraints, and presented an approximate method to take
those constraints into account, along with a way to interpolate values for yet
unsampled variables. We have identified further challenges to be explored.

Our main direction for future work is to study more carefully the approxima-
tions and design choices that we made, noting that our overall generic approach
could be adapted to other probability distribution families than normal distri-
butions; and to implement our approach to evaluate its effectiveness. We plan
to evaluate, over various datasets and objectives, the importance of accounting
for order constraints and performing interpolation, and compare our approach
to round-robin or random baselines, as well as ad-hoc strategies for specific sce-
narios such as total orders.

Acknowledgements. This work has been partially funded by the European Research
Council under the FP7, ERC grant MoDaS, agreement 291071, and by the Israel Min-
istry of Science.

Uncertainty in Crowd Data Sourcing Under Structural Constraints 359

References

1. Amarilli, A., Amsterdamer, Y., Milo, T.: On the complexity of mining itemsets
from the crowd using taxonomies. In: Proceedings of ICDT (to appear), Athens
(2014)

2. Amsterdamer, Y., Grossman, Y., Milo, T., Senellart, P.: Crowd mining. In: Pro-
ceedings of SIGMOD, New York, USA, pp. 241–252 (2013)

3. David, H.A., Nagaraja, H.N.: Order Statistics, Chapter 2, p. 14. Wiley, New York
(2013)

4. Karp, R.M., Kleinberg, R.: Noisy binary search and its applications. In: Proceed-
ings of 18th ACM-SIAM Symposium on Discrete Algorithms (2007)

5. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex
quadratic programming. USSR Comp. Math. Math. Phys. 20(5), 223–228 (1980)

6. Amazon Mechanical Turk. https://www.mturk.com/
7. Parameswaran, A., Garcia-Molina, H., Park, H., Polyzotis, N., Ramesh, A.,

Widom, J.: Crowdscreen: Algorithms for filtering data with humans. In: Proceed-
ings of SIGMOD (2012)

8. Parameswaran, A., Sarma, A., Garcia-Molina, H., Polyzotis, N., Widom, J.:
Human-assisted graph search: it’s okay to ask questions. Proc. VLDB 4(5), 267–278
(2011)

9. Parkes, D.C., Ungar, L.H.: Iterative combinatorial auctions: theory and practice.
In: Proceedings of AAAI/IAAI (2000)

10. Triantaphyllou, E.: Data Mining and Knowledge Discovery by Logic-Based Meth-
ods, Chapter 10. Springer, New York (2010)

11. Trushkowsky, B., Kraska, T., Franklin, M.J., Sarkar, P.: Crowdsourced enumera-
tion queries. In: Proceedings of ICDE (2013)

12. Yang, X., Cheng, R., Mo, L., Kao, B., Cheung, D.: On incentive-based tagging. In:
Proceedings of ICDE (2013)

https://www.mturk.com/

Integration of Web Sources Under Uncertainty
and Dependencies Using Probabilistic XML

M. Lamine Ba1(B), Sebastien Montenez1, Ruiming Tang2,
and Talel Abdessalem1

1 Institut Mines-Télécom, Télécom-ParisTech, LTCI, Paris, France
{mouhamadou.ba,sebastien.montenez,

talel.abdessalem}@telecom-paristech.fr
2 National University of Singapore, Singapore, Singapore

tangruiming@nus.edu.sg

Abstract. We study in this vision paper the problem of integrating sev-
eral web data sources under uncertainty and dependencies. We present
a concrete application with web sources about objects in the maritime
domain where uncertainties and dependencies are omnipresent. Uncer-
tainties are mainly caused by imprecise information trackers and imper-
fect human knowledge. Dependencies come from the recurrent copying
relationships occurring among the sources. We answer the issue of data
integration in such a setting by reformulating it as the merge of sev-
eral uncertain versions of the same global XML document. As an initial
result, we put forward a probabilistic XML data integration model by
getting some intuitions from the versioning model with uncertain data we
proposed in [5]. We explain how this model can be used for materializing
the integration outcome.

1 Introduction

Uncertain Data Integration. Data integration with uncertainty, in the form
of a probabilistic mediated schema [3,7,8] or probabilistic reconciled databases
[2,17], was previously dealt in both relational and XML settings. Probabilistic
mappings [7,8], yielding a probabilistic mediated schema, specify the different
possible ways of matching the attributes in multiple relational schemas with
respect to their semantics. Query views in [2] through containment constraints
are used to define the mappings between a set of uncertain sources and a prob-
abilistic mediated database having a fixed schema. Probabilistic trees in [17]
with possibility and probability nodes enable to synchronize several uncertain
XML documents by enumerating the different alternatives in data values. Used
mappings, query views and reconciliation methods do not care about possible
dependencies between sources during the integration process, and thereby they
may fail in modeling the set of possibilities and probabilities on the presence of
dependencies. One reason is they only assume, in general, that sources describe
information about the same real-world objects in an independent manner.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 360–375, 2014.
DOI: 10.1007/978-3-662-43984-5 28, c© Springer-Verlag Berlin Heidelberg 2014

Integration of Web Sources Under Uncertainty and Dependencies 361

Studied Problem. We consider in this paper the problem of integrating several
web data sources under uncertainty and dependencies. On the web, many systems
collect and keep up-to-date as much as possible a vast amount of information
covering various real-life areas. Uncertainty in web data sources is a well-known
issue, on the one hand. On the other hand, the existence of sources that copy (or
crawl) data from some others is also a reality. The latter observation translates,
as shown in [9,10,13], dependencies among the sources in terms of (independent)
providers and copiers. Uncertainty and dependencies are two issues particularly
true in web sources for objects in the maritime domain as we will detail in the
next.

A large amount of information related to objects in the maritime domain
can be found and extracted from numerous web sources with different nature.
Web platforms such as marinetraffic.com, grosstonnage.com and shippingex-
plorer.net maintain specifications of ships (or boats) and monitor in real-time
their locations and routes. Wikipedia, the most popular and successful collab-
orative content-based web editing platform, contains basic information about
some kinds of ships. It harnesses for this the power of the crowd, i.e., its con-
tributors around the world. Last but not least, we have also social networks
like Twitter and Flickr that inform their followers (who are interested) about
the ship routes with user posts and tweets. Through the aforementioned source
examples, we can easily see that there is enormous knowledge on the web which
might be valuable for maritime actors, especially for monitoring the traffic. In
order to take advantage of all this knowledge, users within such a context may
probably want to be able to transparently query and visualize the integration of
information from these sources. Unfortunately, uncertainties and dependencies
are omnipresent when talking about web data sources in the maritime domain.
Uncertainties are mainly caused by (a) imprecise trackers, also known as auto-
matic identification systems (abbr. AIS), which send at constant time intervals
ship data like their positions and; (b) unreliable users sharing information about
ships in a collaborative or social manner. Dependencies correspond to the copying
relationships between sources as we illustrate in Sect. 2. Setting up the outcome
of the integration of these sources requires thus to deal with uncertainty and
dependencies.

Consider as a running example three sources S1, S2 and S3 sharing a sub-
set of objects in the maritime domain. Let us focus on values they give for the
draft and the actual port for a particular ship named “Costa Serena”. The first
source S1 independently reports that the draft of this ship is 8.2 m and it is
currently located at the port of “Hamburg”. The second source S2 which relies
on S1 revises the data it copies by updating the draft and the current location to
8.3 m and “Marseille”, respectively. Finally, the third source S3 independently
sets the draft to 8.3 m while being not aware about the location. Observe that
S3, taken separately, retains incomplete information about the considered ship.
Now, assume that one issues a query Q requesting the draft and the current

362 M.L. Ba et al.

port of this ship based on the three sources. A deterministic data integration
system will fail (or eventually it will make an arbitrary choice) by trying to
merge the set of answers obtained from sources because there are contradictions
resulting from two possible values for the draft and the port name. Eventually,
one may prefer to know the set of all possible answers together with their prob-
abilities. Indeed, the user may trust some specific sources and based on this he
(or she) may filter the result. Observe that, the user may specify its preferences
beforehand with the query. Filtering can also be done according to probabilities.
A probabilistic approach for data integration eases this interaction while enabling
to capture contradictions, corroborations and incompleteness. Modeling contra-
dictions and corroborations, and thereby the correct probability values, need
to take into account dependencies between the sources. Considering again our
example, information about this ship can be obtained independently from S1

and S3 whereas requesting some piece of data from S2 require to use S1. On the
other hand, according to dependencies S2 disagrees with S1 while being corrob-
orated by S3 for the draft. Both scenarios call for being able to maintain the
history of the evolution of each piece of information about shared objects during
the integration process and according to source dependencies.

Envisioned Approach. Source dependencies, in terms of copying relation-
ships, enquire about the history of the evolution of data items about shared
objects (copiers may revise collected data as shown in our running example).
This setting is very similar to a versioning process on the web implying a set of
shared objects with uncertainty. Consequently, the problem of integrating web
sources under uncertainty and dependencies can be answered by reformulating
it as merging several uncertain versions of the same data. We proposed in [5] an
uncertain version control model for tree-structured documents with uncertainty
that computes the set of possible versions together with their probabilities by
modeling data incompleteness, contradictions and corroborations with respect
to the derivation links between data versions. As an enumeration of the set of
all possible versions can be unfeasible at a certain limit, our model also includes
an efficient compact way to reconcile as a whole all these possible versions.

In this vision paper, we present initial ideas towards a probabilistic XML
approach for integrating web data sources under uncertainty and (determin-
istic) dependencies by getting some intuitions from our uncertain versioning
model in [5]. As a data model, we choose XML because the tree-like structure
of web data can be easily described with this format. We envision a probabilis-
tic integration model able to represent and to assess the amount of uncertainty
in both data and sources by modeling possible dependencies between sources.
Those dependencies might enable (a) to properly detect data provenance, con-
tradictions, correlations, etc. and based on this; (b) to trace the history of the
evolution of each piece of information about shared objects. To do so, we asso-
ciate event variables to uncertain sources in order to manage the amount of
uncertainty in their own data (its really provided data) and their reliabilities.
We adopt a reconciled data integration approach which abstracts the result of

Integration of Web Sources Under Uncertainty and Dependencies 363

Fig. 1. Probabilistic XML encoding of the integration of shared (uncertain) objects

the integration of several web data sources under uncertainty and dependen-
cies as a set of possible XML documents corresponding to sets of valid events.
These sets of events can be used to estimate the probability values of these
possible integration results given a probability distribution over the event vari-
ables. Concretely, we define the outcome of the integration, i.e., all possible XML
integration trees, together with their mapping event sets, as a PrXMLfie prob-
abilistic XML document (see Sect. 3 about its definition) similarly to [5]: nodes
in this special tree are annotated by proportional formulas over event variables
which track possible integration results and their probabilities with respect to
dependency constraints. Figure 1 is the PrXMLfie probabilistic XML encoding
of the result of the integration of sources S1, S2 and S3 of our running example
with e1, e2 and e3 their respective associated events.

Outline. The rest of this paper is organized as follows. Section 2 motivates more
the problem investigated in this paper by giving concrete examples from the mar-
itime domain. Section 3 revisits some definitions pertaining for the modeling of
web semi-structured data, semi-structured uncertain data and multi-version web
data with uncertainty. Section 4 presents initial ideas towards a probabilistic XML
approach for integrating uncertain tree-structured data sources under dependency
constraints. Section 5 concludes the paper and presents some further work.

2 Motivating Application

Our motivating application is the integration of web sources providing infor-
mation about objects (e.g., ships or ports) in the maritime domain. As we shall
show, web sources in the maritime domain are various, uncertain and dependent.
Therefore, users may want to simultaneously query or navigate through all these
sources via a unique access point (or global reconciled view); to get answers from
its trusted sources and; to know the real provenance of data.

364 M.L. Ba et al.

Fig. 2. Example of web sources about objects in the maritime domain

2.1 Numerous Web Sources

We found that there are a lot of potential web sources by searching informa-
tion about ships. Figure 2 shows a sample list of those sources1. The sources in
Fig. 2(a) consist of the social networks Flickr and Twitter, and the
content-based collaborative platform Wikipedia. In Flickr and Twitter, users
1 All the screen-shots given in Fig. 2 were captured January 8th, 2014 from

http://www.flickr.com/search/?q=CostaSerena,
http://en.wikipedia.org/wiki/Costa Serena,
http://www.shippingexplorer.net/en/vessels/view/14429-costa-serena,
http://www.marinetraffic.com/ais/details/ships/247187600, and
http://www.grosstonnage.com/.

http://www.flickr.com/search/?q=CostaSerena
http://en.wikipedia.org/wiki/Costa_Serena
http://www.shippingexplorer.net/en/vessels/view/14429-costa-serena
http://www.marinetraffic.com/ais/details/ships/247187600
http://www.grosstonnage.com/

Integration of Web Sources Under Uncertainty and Dependencies 365

share photos about ships and some useful information such as their names
and their current locations in the form, for instance, of a tweet. In Wikipedia,
users collaborate in order to collect the maximum amount of information about
the general description of some particular boats. The sources in Fig. 2(b) are
ShippingExplorer, MarineTraffic and GrossTonnage. These sources are mainly
dedicated to the monitoring in real-time of the current locations and itineraries
of ships even though they also give specifications of these latter. Current loca-
tions and itineraries can be known based on data transmitted by AIS systems on
ships, for example. There are different levels of heterogeneity between the exam-
ple sources, notably at schema level – fortunately, we can observe an homogeneity
at object level because sources used in general same unique identifers (e.g., IMO
or MMSI) for objects such as ships. In the rest of the paper, we will assume that
heterogeneity at schema and value levels is manually resolved with a certain
amount of uncertainty.

2.2 Uncertain Web Data Sources

For the maritime domain, web sources are mostly uncertain due to imprecise and
imperfect used data extraction methods. The AIS systems are inherently impre-
cise (e.g., they may transmit incomplete information) whereas human knowledge
is imperfect. Other important features in sources revealing the presence of uncer-
tainties are contradictions and incompleteness. Let us analyze the examples in

(a)

(b)

Fig. 3. Uncertain web sources: discrepancies and incompleteness

366 M.L. Ba et al.

Figs. 3(a) and (b) which respectively give the company (owner and manager)
and the dimensions (length, width and draft) of the same ship from ShippingEx-
plorer, Wikipedia and ShipSpotting. Obviously, we can observe that Shipping-
Explorer and Wikipedia agree on the owner of this ship (even though Wikipedia
seems to be more precise) whereas ShipSpotting gives a different owner. In con-
trast, all three sources agree on the manager for which the information from
ShipSpotting is more complete. As for the dimensions of the ship, it also appears
some contradictions between the values given by the sources. For instance, Ship-
pingExplorer and ShipSpotting provide 42 m for the width while Wikipedia indi-
cates 35.5 m. On another side, Wikipedia and ShipSpotting provide 8.3 m for
the draft whereas ShippingExplorer indicates 8.2 m. For the draft, one may con-
sider that the difference between the indicated values is not very important, and
choose the value given by the majority of sources. Unfortunately, determining
the correct values for the owner and the width seems to be a more complicated
task. A rigorous way to manage contradictions is to keep all the possible values
by estimating their correctness according to the reliability of the sources.

2.3 Dependent Web Sources via Copying Links

We observed based on the example in Fig. 4 that dependent web sources in
the maritime domain is a reality. Indeed, there are some sources that collect
their information from other ones by copying their data, or by aggregation in
the case of several sources simultaneously involved. Such a copying relationship
can be explicitly mentioned by the copier, for instance as in Fig. 4 (sketched
screen-shot was captured January 8th, 2014 from http://www.shipspotting.com/
gallery/photo.php?lid=1825000). However, in practice the copiers are not all
known beforehand. Therefore, sometimes we are constrained to compute these
dependencies (see [9,10] for details about the detection of copying relationships

Fig. 4. Example of dependence between Shipspotting, AirNavShipTrax and
GrossTonnage

http://www.shipspotting.com/gallery/photo.php?lid=1825000
http://www.shipspotting.com/gallery/photo.php?lid=1825000

Integration of Web Sources Under Uncertainty and Dependencies 367

between multiple web sources). Since copiers may revise the collected data based
on their own knowledge about the shared real-word objects, having the set of
dependencies may help to find the real provenance of each data item and detect
more easily contradictions, correlations etc. The detection of copying relation-
ships between a set of web sources is beyond the scope of this paper. We consider
in the following that the dependencies are given.

3 Data Model

We briefly present in this section some definitions pertaining for the modeling
of web semi-structured data, semi-structured uncertain data and multi-version
web data with uncertainty. We start by introducing unordered XML trees and
a specific model of probabilistic XML trees we use in our integration system.

3.1 Unordered XML and p-Documents Based on Random Events

We model web data as unordered XML trees for convenience of the exposition.
The consideration of an order between data items is left to future work.

Unordered XML. Let us consider a finite set L of strings (i.e., labels or text
data) and a finite set I of identifiers such that their intersection is empty. We
assume also given a labeling function Φ and a identifying function α.

Definition 1. An unordered XML document is an unordered, unranked, labeled
tree T of identifiers in I. The functions α and Φ map each node x ∼ T respectively
to a unique identifier α(x) ∼ I and to a string Φ(x) ∼ L. In trees, nodes having at
least one child refer to internal nodes, whereas nodes without children are leave
with data values.

For modeling reasons, we use a same node (same label, same identifier) as root
of all XML trees referring to the similar object. We omit node identifiers in tree
examples for simplicity.

p-Documents Based on Random Events. A probabilistic XML document
(abbr. p-document) is a compact way of representing a probability distribution
over a set of possible unordered XML trees; in the case of interest here, this
distribution is finite. A p-document is usually denoted by P̂ and must be dis-
tinguished with a regular XML document as we will see next.

Definition 2. A probabilistic XML distribution space over a set of uncertain
XML trees is a pair (D , p) where D is a nonempty finite set of possible documents
and p : D ∈ (0, 1] is a probability function mapping each document d in D to a
rational number, i.e., its probability, p(d) ∼ (0, 1] with

∑
d∞D p(d) = 1.

368 M.L. Ba et al.

We draw our attention on the most expressive and succinct family of p-documents
from [11], namely PrXMLfie model with fie standing for formula of indepen-
dent events. For a complete insight about existing probabilistic XML models,
see [1,12]. Let B be a set of independent random Boolean variables (abbr. event
variables) b1 . . . bm. The truth of each event variable bi is given by its probability
value Pr(bi) of being valid. We revisit below the syntax and the semantics of
the encoding of a probability distribution using a p-document of the PrXMLfie

family.

Definition 3. A p-document P̂ based on independent random variables is an
unordered, unranked, and labeled XML tree in which (i) the root is always certain
and;(ii) all other node x may be annotated with a propositional formula fie(x) of
events b1 . . . bm.

A proportional formula represents and estimates the amount of uncertainty in
its attached node. Some distinct formulas may be correlated by sharing common
events. At last, the number of event variables in the formulas is not necessarily
the same. The set of all possible XML trees obtainable from P̂ defines its possible
worlds. Those possible worlds are produced in function of the different possible
ways of valuating the event variables. A valuation ν of variables b1 . . . bm is a
mapping of each bi to true or false. This valuation generates, when it is evaluated
over P̂, one particular XML tree ν(P̂) consisting only of nodes from P̂ whose
formulas are valuated at true with ν. We denote the possible worlds of P̂ by
D(P̂). Let ∼[ν] be the set of all possible valuations over variables b1 . . . bm. The
probability of a possible world d ∼ D(P̂) is given hereafter.

Pr(d | d ∼ D(P̂)) =
∑

ν′ ∞�(ν)

ν′(̂P)=d

Pr(
∧

bi ∞B
ν′(bi)=true

bi ∀
∧

bj ∞B

ν′(bj)=false

¬bj). (1)

Definition 4. The semantics [[P̂]] of a p-document P̂ in the probabilistic XML
model based only on formula of independent random variables is the distribution
(D , p) defined in such that (a) D = D(P̂) and (b) for all d ∼ D, p(d) = Pr(d|d ∼
D(P̂)).

3.2 Semi-structured Multi-version Data with Uncertainty

In a XML setting, a semi-structured multi-version data with uncertainty (typ-
ically, shared web data in our context) is defined in [5] as evolving through
uncertain updates and leading to uncertain versions. We summarize here this
model which describes such a multi-version data with the help of two compo-
nents: the derivation graph between the data versions (or version space) and a
probability distribution over a set of possible XML tree versions. For more details
about the model and its original context of use, we refer to [4,5].

We suppose a set of complex event variables e1 . . . en, each representing a
conjunction of atomic event variables b1 . . . bm. Considered events model the

Integration of Web Sources Under Uncertainty and Dependencies 369

different uncertain states of the multi-version document. As a result, an event
has also contextual information about a given version, in particular the edit
script δi (i.e., a sequence of insertions and deletions) leading to it.

Definition 5. A multi-version XML document with uncertainty is a pair (G, ω)
where G is a directed acyclic graph (DAG) of events {e0}∩{e1 . . . en} representing
the derivation graph of the tree versions, and ω is a probability distribution over
the set of possible document versions.

The special event e0 is the root of G and maps to the initial state of the multi-
version document. A version is an unordered XML tree mapping to a set of events
in G whose edit scripts together made this version happen. Given the infinite set
D of all unordered XML trees, we have ω : 2{e1...en} ∈ D with (a) ω({}) a root-
only XML tree and; (b) for all i, for all F ≥ 2{e1...en}\{ei}, ω({ei}∩F) = [ω(F)]δi
([ω(F)]δi results from applying δi on [ω(F)]). This mapping corresponds to a
probability distribution, compactly encoded in [5] as P̂, over a set of possible
trees versions.

Definition 6. A compact representation system of a multi-version XML with
uncertainty is a pair (G, P̂) where (a) G is the DAG of events e0 . . . en and; (b)
P̂ is a PrXMLfie p-document with random variables b1 . . . bm encoding compactly
all the possible tree versions and their mapping event sets.

In this compact representation, the formula fie(x) of a given node x ∼ P̂ is of
the form fie(x) ⊂ ei | fie(x) ∨ ei | fie(x) ∀ ¬ei for a certain event ei. In this
formula, corroborations and contradictions are captured as follows.

– If ei |= fie(x), then there is a corroboration of the presence (or validity) of x
at this event ei.

– If ei ⊕|= fie(x), then the event ei contradicts the existence of x (or invalid x).

4 Heterogeneous Web Data Integration Using
Probabilistic XML

We design in this section our probabilistic XML model dealing with the integra-
tion of web data sources under uncertainty and dependencies. We first present
some challenges underlying the set up of the intended model. We then put for-
ward a model and explain how it can be used for materializing the integration
in the scenario where the dependencies between sources are deterministic.

Consider a set S of n web sources S1, . . . , Sn under uncertainty and depen-
dencies. For the convenience of the exposition, we assume that (a) all considered
sources retain data about real-world objects in the same domain; (b) objects are
distinguished each other by a unique identifier and; (c) each local source Si pro-
vides data about its subset of tracked objects in the form of a global unordered
XML tree that we denote also Si. Moreover, we assume that, first, a dependency
relationship involving two sources, if it occurs, is directed and there is no cycle;
second, each dependency relationship is deterministic, that is, it is known with
certainty.

370 M.L. Ba et al.

4.1 Main Challenges

Three main requirements underlie the design of our intended data integration
model for uncertain web data sources with dependencies.

1. At first, since we have uncertainties on the sources and on the data, we need
a way to represent and to evaluate these uncertainties during the integra-
tion. The used model must be flexible enough to enable (a) correlating the
uncertainty about the sources and the provided information; (b) tracking the
provenance of each data item. Obviously, for instance, one may trust a given
source but considers that its data are invalid. As a result, the model must
enable explanation and understanding of obtained probability values.

2. Second, we have to introduce a technique for finding and representing the
dependency relationships between sources; in this work we suppose that these
dependencies are known beforehand.

3. Finally, the integration approach, formalizing the result of the integration and
its semantics mapping with the local sources (or partial views of these latter),
must be defined by focusing especially on the uncertain nature of our setting
and the dependencies (a given source first copies other ones, and then it may
revise the copied data with new knowledge). Therefore, the used model must
enable the modeling of contradictions and corroborations in the integration
outcome.

4.2 Probabilistic XML Integration System

Here we give a first attempt for formalizing our intended probabilistic XML
integration framework. We go further on each requirement aforementioned by
transposing the version control model with uncertainty, we designed in [5] (see
Sect. 3 for a summary), in our data integration setting. We start by formalizing
the problem.

A system with a set S1, . . . , Sn of uncertain web sources with dependencies
matches well with an uncertain versioning setting (G, ω) where ω covers all
possible unordered XML trees over S1, . . . , Sn with respect to the dependency
graph G. As a result, we can reformulate the problem of data integration in this
system as the integration of all the possible unordered trees defined by ω. In
other terms, it will require a clear definition of the mapping between S1, . . . , Sn

and each possible unordered tree in ω together with its probability. Then, a
materialization of the overall integration result. As we shall see in the next,
we come up to materialize this integration using a PrXMLfie p-document P̂
according to the dependency graph G.

Modeling Uncertainties. Similarly to [5], we use random event variables in
order to deal with uncertainties. Consider again B as a set of independent random
Boolean variables b1 . . . bm and their probability values Pr(b1) . . . Pr(bm) of being
true as well. We restrict B to two types of disjoint sets of variables which we
denote Br and Bs. We use variables in Br to manage the uncertainty in the

Integration of Web Sources Under Uncertainty and Dependencies 371

content really provided by each source: the data it does not copy from others
sources (its contribution in a certain sense). Variables in Bs are used to model
the trust one can have on sources or simply the source reputation. Given a
source Si, we refer to the uncertainty on its content and its reliability level with
br,i and bs,i respectively. We consider now the set of events e1, . . . , en. In order
to represent and evaluate the overall amount of uncertainty in each source Si

from S, an event ei = br,i ∀ bs,i with br,i ∼ Br and bs,i ∼ Bs is associated to
it. Intuitively, ei is true when it produces a correct content on a reliable source.
The probability associated to it is obtained by computing the probability of the
corresponding conjunction. It estimates numerically its correctness.

Modeling Dependencies. As shown in [9,10], the dependencies between a
set of web sources follow a DAG structure G. For our case, we consider here a
DAG of events (representing implicitly sources) as nodes. Given the set of events
e1, . . . , en associated to the sources S1, . . . , Sn, formally we consider the directed
acyclic graph G = (V,E) where V is the set {e0} ∩ {e1, . . . , en} of nodes and;
E ≥ V×V is the set of edges maintaining (implicitly) the dependencies between
sources.

Materializing the Integration Outcome. As some previous work on uncer-
tain tree-structured data integration, such as the paper of Van Keulen et al. [17],
we build our system on a probabilistic model in a reconciled fashion. For this pur-
pose, we introduce the notion of a probabilistic XML global view (PrGView) M

which is a set of possible integrated XML trees m1, . . . ,mk having probabilities
Pr(m1), . . . ,Pr(mk). An integrated XML tree mi is defined as a deterministic
unordered XML tree in D resulting from the integration of changes from multiple
XML tree versions. There is not only one possible way to integrate these tree
versions, especially in the presence of uncertainty, but several describing, first,
the views on the trust one may have on the given sources and the data; second,
the different way to deal with contradictions and incompleteness of the data.
We show later that PrGView enables to capture all such possible results of this
integration.

Definition 7. Let S1, . . . , Sn be a set of uncertain sources with a dependency
graph G. A PrGView M of an integration process over {S1, . . . , Sn} is a set
{(m1,Pr(m1)), . . . , (mk, Pr(mk))} where (i) for each 1 ≤ i ≤ k, mi is a pos-
sible integrated XML tree over S1, . . . , Sn constrained by dependencies; (ii) 0 <

Pr(mi) ≤ 1 with
∑k

i=1 Pr(mi) = 1.

We need to define how we obtain M based on the set of input sources. We will
focus more on the representation of the set of possible worlds than on their
probabilities. We start by defining the contribution of a given source within our
integration setting.

Definition 8. Let S1, . . . , Sn be a set of uncertain sources with a dependency
graph G. The contribution of any given source Si w.r.t G corresponds to the real

372 M.L. Ba et al.

content provided by this source. We encode the contribution δi of the source Si

in the form of a sequence of edit operations over some initial data.

Given any source Si, let G|→ei
be the set of sources on which Si depends w.r.t

G. That is, for each 1 ≤ l ≤ n with i ⊕= l, Sl ∼ G|→ei
when the relation (el, ei)

holds in G. Algorithm 1 computes the contribution of Si giving its dependent
sources and their documents; diff in the algorithm is a differencing function
(see [6,14,15] for more details) computing the difference between two unordered
XML tree versions. Its output is a sequence of edit operations over XML nodes.

Input: G|→ei

Output: δi
Set S0 ← root-only tree in D;1

if G|→ei == ∅ then2

Set δi ← diff(S0, Si);3

else4

foreach Sl in G|→ei do5

Set each δl,i ← diff(Sl, Si);6

Insert all insertions shared by δl,i’s in δi;7

Insert all deletions in each δl,i in δi;8

return (δi);9

Algorithm 1. Computation of the contribution of a source

Additionally to variables, we trace the contributions δ1, . . . , δn of the differ-
ent sources S1, . . . , Sn using their associated events e1 . . . en, respectively. By
doing so, the events are enough to fully describe the sources because they con-
tain the information about both the amount of uncertainty and the data of the
considered sources. In the rest, by events, we will also mean the sources. We
introduce a mapping ω between possible integrated XML trees in M and the
sources S1, . . . , Sn by following a construction similar to the one given in [5]. Let
D

≺ ≥ D such that D

≺ includes {m1, . . . ,mk} in addition to a root-only tree.

Definition 9. Assume a set of uncertain sources S1, . . . , Sn with a dependency
graph G. Let M be the PrGView of the integration of these sources. We consider
the mapping ω : D

≺ ∈ 2{e1,...,en} as specifying the possible integrated unordered
XML trees in PrGView in terms of data contained in the sources such that
ω({}) corresponds to the root-only tree in D

≺ and; for each F ≥ 2{e1,...,en}\{ei},
ω(F ∩ {ei}) = [ω(F)]δi , i.e., integration of data originated uniquely from sources
F ∩ {Si}. Let us assume that mk = ω(F) for a fixed 1 ≤ k ≤ m. The probability
of mk is estimated as follows.

Pr(mk) =
∑

F∗{e1,...,en}
ω(F)=mk

∏

1≤i≤n
ei∞F

Pr(ei) ×
∏

1≤i≤n
ei �∞F

1 − Pr(ei). (2)

Integration of Web Sources Under Uncertainty and Dependencies 373

The set of unordered trees specified with ω mapping can be reconciled as a
PrXMLfie p-document P̂, according to [5]. The ω mapping corresponds to the
definition of PrGView.

Definition 10. Assume a set of uncertain sources S1, . . . , Sn with a dependency
graph G. We introduce the PrXMLfie p-document P̂ as a reconciliation in a
global tree of the set of possible trees in the PrGView which defines the integra-
tion of S1, . . . , Sn w.r.t G. This reconciled p-document is built w.r.t probabilistic
encoding algorithm proposed in [5],

We conclude by first summarizing the formal model, and then showing through
an example how it can be used in practice.

We abstract a probabilistic XML integration model over a set of sources
S1, . . . , Sn under uncertainty and dependencies with the help of a triple (G, M, ω)
where (i) G is a DAG of {e0}∩{e1, . . . , en} in which each node ei, for 1 ≤ i ≤ n,
is associated to a source Si in order to manage its overall amount of uncertainty
and its contribution; (ii) M is the PrGView of the integration of S1, . . . , Sn

and; (iii) ω is a mapping between the set of possible integrated trees in M and
the sources S1, . . . , Sn through their associated events e1, . . . , en. A reconciled
representation system of this integration is a pair (G, P̂) where (a) G remains

Fig. 5. Probabilistic XML integration over XML corpus with uncertainty and depen-
dencies

374 M.L. Ba et al.

the same DAG of events e0, . . . , en and; (b)P̂ is the PrXMLfie reconciling based
on events e1, . . . , en and contributions δi, . . . , δn the set of all possible integrated
XML trees in M.

Example 1. Figure 5 illustrates the probabilistic XML integration over our run-
ning example. Figure 5(a) shows XML corpus of the three sources S1, S2 and
S3 where S2 is a copier of S1. Figure 5(b) gives the dependency graph of the
sources and their contributions δ1 δ2, δ3 which can be estimated with Algo-
rithm 1. Figure 5(c) depicts two examples of possible integrated XML trees by
reasoning on the validity or not of each event. The first integrated XML tree is
obtained by only considering as valid e1 and e3, thus corresponds, for instance,
to the case where a user requests data from only the two independent uncertain
sources S1 and S3. The integrated version is obtained by evaluating δ1 and δ3 on
ω({}) and ω({e1}), successively – the evaluation of scripts follows the order in
which events are given. We can generate all the possible XML integrated trees
over the three given uncertain XML corpus under dependencies by following the
same process.

5 Conclusion and Further Work

In this vision paper, we have exposed initial directions towards a probabilistic
XML approach for integrating Web sources under uncertainty and dependencies.
We first provided a concrete application of such a model. Then, we set up a first
abstraction of our integration model by translating the problem in an uncertain
version control setting. Besides a study of the effect of uncertain dependencies
in the modeling of the set of possible worlds and a comparison of our approach
against the literature (e.g., the probabilistic XML tree model in [17]), further
work could explore the following issues.

– Integration w.r.t. query views: It could be also of interest to investigate
the definition of the probabilistic XML global view in terms of query views,
that is, defining the integration result w.r.t the type of queries issued over data.
Such an approach is more suitable in the case for a virtual data integration
where data reside in sources.

– Uncertain integration and new knowledge: Knowledge rules and user
feedback can help to resolve a portion of uncertainties in the integration by
refining the set of possible worlds (Cf. [16]). Relying on domain experts, e.g.,
opinions from maritime experts regarding our application domain, is a reliable
way for obtaining such types of knowledge.

Acknowledgements. We are grateful to Pierre Senellart and Stephane Bressan for
their precious remarks and suggestions. This work was partially funded by the NOR-
MATIS project, and the French government under the STIC-Asia program, CCIPX
project.

Integration of Web Sources Under Uncertainty and Dependencies 375

References

1. Abiteboul, S., Kimelfeld, B., Sagiv, Y., Senellart, P.: On the expressiveness of
probabilistic XML models. VLDB J. 18, 1041–1064 (2009)

2. Agrawal, P., Sarma, A.D., Ullman, J., Widom, J.: Foundations of uncertain-data
integration. Proc. VLDB Endow. 3, 1080–1090 (2010)

3. Ayat, N., Afsarmanesh, H., Akbarinia, R., Valduriez, P.: An uncertain data inte-
gration system. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol.
7566, pp. 825–842. Springer, Heidelberg (2012)

4. Ba, M.L., Abdessalem, T., Senellart, P.: Merging uncertain multi-version XML
documents. In: Proceedings of DChanges, Florence, Italy (2013)

5. Ba, M.L., Abdessalem, T., Senellart, P.: Uncertain version control in open collab-
orative editing of tree-structured documents. In: Proceedings of Document Engi-
neering (2013)

6. Cobena, G., Abdessalem, T., Hinnach, Y.: A comparative study for XML change
detection. In: BDA (2002)

7. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration
systems. In: Proceedings of SIGMOD (2008)

8. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proceedings
of VLDB (2007)

9. Dong, X.L., Berti-Equille, L., Hu, Y., Srivastava, D.: Global detection of complex
copying relationships between sources. Proc. VLDB Endow. 3, 1358–1369 (2010)

10. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: the role
of source dependence. Proc. VLDB Endow. 2, 550–561 (2009)

11. Kharlamov, E., Nutt, W., Senellart, P.: Updating probabilistic xml. In: Proceedings
of EDBT/ICDT Workshops (2010)

12. Kimelfeld, B., Senellart, P.: Probabilistic XML: models and complexity. In: Ma,
Z., Yan, L. (eds.) Advances in Probabilistic Databases for Uncertain Information
Management. Springer, Heidelberg (2013)

13. Li, X., Dong, X.L., Lyons, K., Meng, W., Srivastava, D.: Truth finding on the deep
Web: is the problem solved? In: Proceedings of VLDB, Sept 2013

14. Lindholm, T., Kangasharju, J., Tarkoma, S.: Fast and simple XML tree differencing
by sequence alignment. In: Proceedings on Document Engineering (2006)

15. Peters, L.: Change detection in XML trees: a survey. In: TSIT Conference (2005)
16. van Keulen, M., de Keijzer, A.: Qualitative effects of knowledge rules and user

feedback in probabilistic data integration. VLDB J. 18, 1191–1217 (2009)
17. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data

integration. In: Proceedings of ICDE (2005)

Skill Ontology-Based Model for Quality
Assurance in Crowdsourcing

Kinda El Maarry1(&), Wolf-Tilo Balke1, Hyunsouk Cho2,
Seung-won Hwang2, and Yukino Baba3

1 Institut für Informationssysteme, TU Braunschweig, Brunswick, Germany
{elmaarry,balke}@ifis.cs.tu-bs.de

2 Department of Computer Science and Engineering, POSTECH,
Pohang-si, Korea

{prory,swhwang}@postech.ac.kr
3 The University of Tokyo, Tokyo, Japan

yukino_baba@mist.i.u-tokyo.ac.jp

Abstract. Crowdsourcing continues to gain more momentum as its potential
becomes more recognized. Nevertheless, the associated quality aspect remains a
valid concern, which introduces uncertainty in the results obtained from the
crowd. We identify the different aspects that dynamically affect the overall quality
of a crowdsourcing task. Accordingly, we propose a skill ontology-based model
that caters for these aspects, as a management technique to be adopted by
crowdsourcing platforms. The model maintains a dynamically evolving ontology
of skills, with libraries of standardized and personalized assessments for awarding
workers skills. Aligning a worker’s set of skills to that required by a task, boosts
the ultimate resulting quality. We visualize the model’s components and work-
flow, and consider how to guard it against malicious or unqualified workers,
whose responses introduce this uncertainty and degrade the overall quality.

Keywords: Crowdsourcing � Quality assurance � Skill ontology � Uncertain
data

1 Introduction

The hope of being able to somehow benefit from ‘‘the wisdom of the crowd’’ [1] is the
main driver for the rising popularity of crowdsourcing [2], coupled with the infor-
mation flood and the flexible and relatively cheap solution that today’s crowdsourcing
platforms offer. Thus, more and more companies and organizations are turning to
crowdsourcing. Some notable names include: NASA, Threadless, iStockphoto, Inno-
Centive, etc. [3]. Yet, the question of automatically assuring the returned quality of
results [4] and the uncertainty that is associated with it, remains an unsolved question
[5]. This is because checking every single submitted response is costly, time con-
suming and threatens to invalidate most of the crowdsourcing gains. This in turn
encourages unethical workers to submit low quality results.

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 376–387, 2014.
DOI: 10.1007/978-3-662-43984-5_29, � Springer-Verlag Berlin Heidelberg 2014

Most requestors end up relying on redundancy or repeated labeling as means of
verification of user performance. A common approach tests the reliability of users by
blending a set of questions for which the answers are known, so-called gold questions,
into the workload. This instantly raises the question of how many gold questions
should be included [6]. Another possibility is the assignment of multiple workers to
the same task and then aggregating their responses. While both approaches pose
problems for tasks where the comparison between individual workers’ results is dif-
ficult (see [7] for a detailed discussion), the redundancy approach usually incurs
monetary costs and places the costs for quality control at the task provider’s doorstep.
Moreover, popular techniques for aggregation like e.g., majority voting, have been
shown to suffer from severe limitations [8].

To correctly tackle the issue of uncertainty, various factors affecting the quality of
the responses were investigated [9]. While results show monetary incentives having an
effect on quality in contrast to the experimental results in [10], it’s still rather tricky;
low paid jobs yield sloppy work, and highly paid jobs attract unethical workers.
Another investigated factor was workers’ qualification, where not only was it shown
that qualified workers produce better quality and strive to maintain their qualification
level, but in a setup that relies on qualifications for task assignments, unqualified
workers are pushed to diligently work on improving their own qualifications.

To that end, we investigate a skill ontology-based model to be adopted by
crowdsourcing platforms, which aims at identifying those qualified workers and
assigning them to the tasks they’re eligible to. This can be realized through identifying
the skills required to adequately work on a task, and aligning it to the skills a certain
worker has. Consequently, by excluding non-qualified workers or non-ethical workers
who falsely try to build up their qualifications, the model would be practically
excluding the sources of uncertainty introduced to the data altogether.

The rest of the paper is organized as follows. We start off by reviewing the current
related work. Next, we define what quality stands for in a crowdsourcing setup and
identify the different types of quality that our model needs to realize. Section 4
presents in details the proposed skill-ontology model. This is followed in Sect. 5 by an
overview of the model’s workflow. Finally, in the last section, we provide a summary
and an outlook on future work.

2 Related Work

In recent years, many web-based collaboration platforms and marketplaces are relying
on that same ‘‘wisdom of the crowd’’ ideolody, where anonymous users’ contributions
are in some way combined to provide innovative and diverse services. Threadless
(online t-shirt design contest) [11] and istockPhoto, are two prominent examples
exploiting that ideology. PodCastle [12] presents an audio document retrieval service
‘‘Pod-Castle’’, which collects anonymous transcriptions of podcast speech data to train
an acoustic model. This was followed two years later by an alternative crowdsourcing-
based approach [13]. These examples support the main argument in [14], i.e. that the
way people collaborate and interact on the web has been so far poorly leveraged
through the existing service-oriented computing architectures.

Skill Ontology-Based Model for Quality Assurance 377

So instead, a mixed service-oriented system i.e. service-oriented crowdsourcing, is
desirable, enabling a more seamless approach, which would also exploit the on-demand
allocation of flexible workforces. This steers the trend ever more towards crowd-
sourcing, which is now being offered by many platforms: Amazon Mechanical Turk,
Samasource, Crowdflower, etc. However, every chance needs to overcome challenges,
and the main challenge here is that crowdsourcing results are often questionable in
terms of their quality, and the associated uncertainty introduced in aggregated results
becomes an issue.

This is actually very similar to the missing confidence in third-party services
which posed serious issues in the web services community, see e.g., [15]. One solution
here was to adopt credentials proving the eligibility of each discovered service.
Simply put, a service is eligible if it meets certain quality requirements (in func-
tionality, as well as typical QoS parameters like availability or response time). When
composing complex workflows out of individual services these quality requirements
can be interpreted as mutual agreements. Such agreements can be expressed for
example by Web Service Level Agreement Language (WSLA) [16], or Web Service
Management Language (WSML) [17]. In our context, a service provider is none other
than a worker who has some skills and a task provider’s confidence in results would be
based upon the worker’s credentialed skills. These credentials can be attained by
passing a standardized test or a personalized test that the provider designs for that
particular task. An agreement is reached, when a worker’s credentialed skills matches
those listed by the task provider (requestor) as the exact skills required for the cor-
responding task.

A lot of work in crowdsourcing literature has already been devoted to mitigate
such quality concerns. The solution of redundancy and repeated labeling was first
expanded by Dawid and Skene [18], who took into consideration the response’s
quality based on the workers. Through applying an expectation maximization algo-
rithm, the overall error rate for each worker can be computed. Other approaches that
estimate these error rates includes: a Bayesian version of the expectation maximiza-
tion algorithm approach [19] and a probabilistic approach that takes into account both
the worker’s skill and the difficulty of the task at hand [20]. A further step was taken in
[21] with an algorithm separating the unrecoverable error rates from recoverable bias.

Here, rather than looking at the worker’s error rates, we aim at identifying the
workers who are a good match for the corresponding task. Each worker has a skill
profile, and every skill in the ontology is associated with a library of assessments.
These assessments validate whether a worker indeed possesses the necessary skill or
not. Both can be viewed analogously to the competence profiles provided by learning
objects – entities that are used for task-focused training or learning in the IEEE
1484.12.1–2002 Standard for Learning Object Metadata.

These skills can be managed and referred to in a skill ontology. This fortunately
leads us to a rich literature to derive and adapt from, which has been devoted to
building competencies models, see [22] and [23]. Competency covers: knowledge,
experience, skill and willingness to achieve a task. Such models have been used for
quite a long time in organizations to help identify and attract suitable workers, as well
as to help the workers acquire the needed skills. In order to identify the skills required
for a task, skill gap analysis can be used to create the task’s corresponding

378 K.E. Maarry et al.

competency map [24]. Workers having the corresponding skills in a task’s compe-
tency map could be then identified through competency matching. [25] Formalizes
another approach that focuses on Ontology-based semantic matchmaking between
demanded skills (skills required by a task in our case) and supply (the workers
possessing that skill). However, competency models still have their own challenges.
Given their complexity, competencies have to be precisely defined within the different
specific domains. Moreover, developing assessments that can truly capture one
worker’s competency level is unfortunately very often underestimated [26].

But of course, assigning the right worker for a task involves much more than just
choosing the workers based on their skills. A worker maybe be highly competent
relative to the task he’s assigned to, yet his work ethics may earn him a bad reputation
This might simply boil down to wanting to finish a task as fast as possible and with the
least effort incurred. So the overall quality is in fact affected by both the workers’ skills
and reputation. This elicits the need for deploying quality control measures, whether in
design time, run time or both, see [27] for a more comprehensive list of these measures.
Computing workers’ reputations poses a real challenge, and many reputation approa-
ches have been investigated whether it’s based on a reputation model [28], on feedback
and overall satisfaction [29], or on deterministic approaches [30], etc.

3 Types of Quality

Upon addressing the data uncertainty that arise with crowdsourcing tasks, different
aspects of quality can be identified. This breakdown allows us to identify the corre-
sponding quality assurance mechanisms, which needs to be addressed by the proposed
model. A detailed description of each of those quality aspects follows next.

3.1 Result’s Quality

Comes first to mind, and covers both the requester’s expectations and the usefulness of
the results. In terms of requestor’s expectations, the structure of the returned results
will be heavily influenced by what the requester wants and expects. Accordingly, the
crowdsourcing task should be designed in a way that elicit that specific structure in the
returned results (factual correctness in the form of a yes/no answer, consensus, opinion
diversity, opinion quality, etc.). In terms of usefulness, requestors may also measure
the quality in terms of how the results are consistent or abiding to the task description,
or whether they are transparent and traceable .i.e. there exists a logical pattern the
worker followed to give that response.

3.2 Platform’s Quality

Refers to the usability of the platform, where a platform’s interface and offered tools
should equally support both workers and requesters. For workers, the platform should
promote a fair working environment. Fairness encompasses: (1) guaranteed payments,
(2) nondiscriminatory conduct, (3) payments matching the corresponding load of
work. For the requesters, the platform should offer an adequate set of tools to easily

Skill Ontology-Based Model for Quality Assurance 379

and efficiently: (1) upload data and download results, (2) design tasks, (3) automati-
cally assign qualified workers, (4) block spammers, (5) train workers.

3.3 Task’s Quality

At a lower granularity, the quality of the task directly affects the results’ quality. A
requestor should: (1) identify the set of skills required to accomplish a task, (2)
describe the task clearly, (3) define the expected effort in terms of complexity or time
required to finish, (4) design the task’s interface to support an easier workflow for the
worker.

3.4 Worker’s Quality

Refers to how fit a work is for the task at hand. Namely, how qualified and prepared
they are to do the task. On one hand, qualified can be mapped to skill levels and how
relevant these skills are to the task. On the other hand, prepared can be translated into
willingness to complete the task to the best of ones skills. Other contributing factors
are: (1) workers’ availability, (2) flexibility of working hours (Both can be easily
monitored through activity logs), (3) workers’ reputation. (Can be based on history
and average satisfaction score attained upon the completion of a task).

These different aspects will often in reality be interleaved. For instance, the clarity
of a task is not only related to a task’s quality, but might also fall under the platform’s
quality, where a platform ensures that the workers get clear task description that helps
them avoid getting penalized if they do the task incorrectly due to vague guidelines.

4 Skill Ontology-Based Model

Following the quality aspects we identified in Sect. 3, we propose a skill ontology-
based model to be adopted by crowdsourcing platforms. The model aims to capture
the different aspects of quality that helps diminish the resulting uncertainty by
eliminating one of its major sources: unqualified workers. The skill ontology-based
model roughly comprises of: (1) skill ontology, (2) ontology merger (3) skill’s library
of assessments, (3) Skill aligner, (4) reputation system and a (5) task assigner.

4.1 Basic and Temporary Skill Ontologies

At the model’s core lies the skill ontology. The model maintains a dynamic ontology,
which evolves with the crowdsourcing platform’s demands. While some skills will be
often required for many tasks e.g. language skills for translating tasks, other skills will
be highly specific and tailored for a specific task e.g. identifying the family, genus and
species a fish belongs to. Accordingly, two ontologies are maintained: a basic and a
temporary one. The basic skill ontology retains those skills that are highly demanded
by many tasks. The temporary skill ontology retains newly added skills. Later on, only

380 K.E. Maarry et al.

those skills that were frequently required by many tasks are transferred from the
temporary ontology to the basic one.

A requestor is always presented with a single consolidated ontology (or an
automatically generated taxonomy as presented in Subsect. 4.4), in which he can
browse the skills required for the task he’s designing. When the required skill isn’t
available in the ontology, the requestor can define a new skill.

4.2 Ontology Merger

A new skill, which has been newly defined by a requestor is initially added to the
temporary skill ontology. Every defined skill must be associated with at least one
assessment. The new skill resides in the temporary ontology until it: (1) has proven to
be popular (2) has been verified. Popular skills are skills that were required not only
by many tasks, but also by many different requestors. Verified skills are skills that are
associated with at least one verified assessment as will be further explained next.

4.3 Skill’s Library of Assessments

Identifying whether a worker has a certain skill or not, can be ascertained through an
assessment. A skill’s library of assessments may comprise two types of assessments:
standardized and personalized assessments. For standardized assessments like:
TOEFL for the English language, or MOOC (Massive Open Online Course) certifi-
cates, most requestors will approve and conclusively trust them. However, when a
requestor doesn’t, or when there is simply no standardized test for the required skill,
the requestor can create a personalized assessment. We assume here that requestors,
whóre requiring more specific skills or whóre not satisfied with the available
assessments, are willing to invest time to enforce higher quality as per their own
standards.

Standardized assessments are inherently verified, since their legitimacy are already
proven. On the other hand, personalized assessments, require further investigation for
verification. Consider the following scenario: A worker posing as a requestor, creates
a new personalized assessment and uploads it for the skill he\she wants to attain.
Providing the perfect answers for these personalized assessments becomes then trivial,
and the worker can accumulate endless skills in this manner. Assessments’ verification
can be done manually or automatically (platform-wise or crowd-wise).

1. Manual verification: entails hiring an expert to look over the assessment, this
however costs both time and money. Accordingly, as a rule of thumb, this should
be limited to cases where a popular skill has only one personalized assessment or
multiple personalized assessments from the same requestor.

2. Automatic verification: serves as an alternative to manual verification, when the
skill has: at least one verified personalized assessment, or one standardized
assessment.

Skill Ontology-Based Model for Quality Assurance 381

• Automatic platform-wise verification: The platform creates a new personalized
assessment, merging the original questions with those from different verified
assessments available in the corresponding skill’s library of assessments. If
workers can also answer the newly merged questions, the assessment is verified
and can be later on used on its own.

• Automatic crowd-wise verification: Workers who have the corresponding skill in
their skill profile, can verify the assessment and earn a higher reputation. Note
that, extra measures need to be taken, to avoid workers who maliciously aim at
boosting their reputation by creating spam assessments and reporting them later
as spam. Accordingly, unlike the task assignment, the workers are automatically
assigned a random assessment, rather than choosing one.

Until a personalized assessment is verified, workers are allowed to take. If the
workers suspect the assessment to be a spam, they must report it. If not, they may take
it and acquire a pending-verification skill in their profile upon passing the assessment.
When the assessment is verified, all the corresponding pending-verifications skills are
updated. If the assessment was merely spam, workers’ who failed to report the
assessment as such are penalized, and the corresponding pending-verification skill is
revoked.

4.4 Skill Aligner

Upon creating a task with a set of prerequisite skills, a requestor can choose to either
use one of the available skills in the ontology or define a new one. Choosing one of the
skills in the ontology can be a tiresome job, especially since the ontology grows with
the needs of the crowdsourcing platform. Ideally, a requestor should be able to quickly
see whether the required skill is available in the ontology or not. To that end, a
taxonomy can be maintained on top of the ontology, which the requester can quickly
traverse. This taxonomy can be automatically built from the skill description and
keywords the requestor inputs upon adding the new skill [31], and validated by the
crowd. Given the set of prerequisite skills that the requester specifies, the skill aligner
should be able align those skills to the similar available skills in the taxonomy and
present those to the requestor. This could be based on matching the skill keywords and
descriptions.

4.5 Reputation System

To ensure high quality, only qualified workers should be assigned to the corre-
sponding task. Qualified workers are those workers who: (1) have the required skills,
(2) are willing and motivated to complete the tasks, (3) are available, and (4) are
highly reputable. Each of those can be respectively measured as follows.

1. Skill profile: The skill profile holds the worker’s list of skills. The profile acts as a
primary filter, where only those workers having a task’s prerequisite set of skills
are considered. A Skill profile can hold two types of skills: (1) verified skills, (2)

382 K.E. Maarry et al.

pending-verification skills. For every skill in the worker’s profile, a list of all the
tasks that the worker utilized the corresponding skill in are compiled. Further-
more, an accompanying score is attached, reflecting this experience. This score
can be derived from the compiled lists of tasks. Only completed tasks with a
positive feedback are listed i.e. requestor was satisfied with the worker. Com-
pleted tasks with a negative feedback, are only reflected in the skill’s score. This
gives a chance for the worker to improve his skill, without having a permanent
black spot in their skill profile.

2. Willingness: A worker’s willingness can be captured from his crowdsourcing
platform activity, the following can be observed: (1) time needed to finish a job
versus that set by the requestor as the optimal processing time for the task to be
done, (2) ratio of completed to aborted tasks.

3. Availability: A worker’s availability can also be captured from the worker’s
activity log on the crowdsourcing platform, by specifically noting the number of
hours the worker logs per day or month. The time zone a worker is in plays an
important role, for urgent tasks i.e. assigning workers with different time zones to
the requestor’s saves time, where requested tasks can be simply finished
overnight.

4. Reputation: A worker’s reputation can be derived from the average requestor’s
satisfaction. Moreover, the worker’s reputation is penalized, when a pending-
verification skill proved to be spam. In addition to such a penalizing system, a
reward system can also be in place e.g. Workers contributing in the automatic
crowd-wise verification of assessments. To promote fairness and protect the
workers from malicious requestors, a similar reputation could be built for the
requestors, even if it́s spanning only over one job. A malicious requestor will tend
to be malicious in general, which can be easily tracked. In such a case, the
requestoŕs feedback can be ignored.

4.6 Task Assigner

Initially only those workers with the required skills are considered for a task.
A ranking based on the combination of the willingness, availability and reputation
measures is then provided. The three measures are by default equally weighted. The
requestor can however choose to give higher weight for any of those measures. E.g.
availability is more critical than willingness. A requestor may also choose to com-
pletely disregard any of the measures e.g. availability is of no importance. Ultimately,
workers exceeding the quality threshold defined by the requestor are assigned to the
task. Furthermore, responses of workers with higher ranking are given a higher
weight.

5 Workflow of the Skill-Ontology Based Model

The skill-ontology based model’s workflow can be functionally broken down into:
requestor-side, platform-side and worker-side for ease of illustration as follows.

Skill Ontology-Based Model for Quality Assurance 383

Figure 1 gives a graphical overview of the various components of the model as well as
the system’s interactions.

1. Requestor-side: After the requestor designs the task according to his needs, the
list of skills required for that task has to be specified. To that end, the requestor
checks the taxonomy of skills provided by the platform. When the required skill is
found, the requestor simply adds it in the task’s list of required skills. Checking
the skill’s library of assessments, the requestor chooses the assessments he
approves and deems eligible for the task’s requirements. If no such assessment is
found, the requestor is free to design an assessment of his own, which is then
added to the skill’s library of assessments as an unverified assessment. On the
other hand, if the requestor never finds the required skill from the start, he can add
a new one along with at least one assessment. The new skill is initially added to
the temporary Ontology. If the defined assessment is a standard assessment, no
verification is needed, otherwise it’s added as an unverified assessment. In
addition to the list of required skills, the requestor defines a threshold for the
worker’s quality to be employed, as well as the measures of quality (willingness,

Fig. 1. Skill-Ontology based model workflow

384 K.E. Maarry et al.

availability, reputation) he wants to consider and their corresponding weights of
importance.

2. Platform-side: The platform maintains at the back-end two ontologies: Tempo-
rary and Basic ontology. On the requestor’s front end, a view that combines both
ontologies is provided. The front-end ontology may or may not reflect the basic
ontology at a given time, and may include both verified and unverified skills.
Popular unverified skills that are in the temporary ontology are merged with the
basic ontology upon verification. Every skill is associated with a library of
assessments that holds either standardized assessments and/or personalized
assessments. Furthermore, the platform maintains a database of workers, asso-
ciating each work with a profile of skills (verified, pending verification) along
with their computed measures of quality.

3. Worker-side: A worker is free to choose the tasks he wants to be considered for.
Only when his skill profile contains the required skills for the corresponding task
is he considered for the task. A worker can at any time expand his skill profile, by
sitting assessments and attaining new skills. Workers may also boost their rep-
utation by: (1) verifying personalized assessments (2) validating the platform’s
generated skill taxonomy.

6 Summary and Outlook

Uncertainty is inevitable when dealing with crowdsourcing results. We defined dif-
ferent aspects of quality to identify the corresponding quality assurance measures that
should be present. Next, we proposed a skill ontology-based model to be adopted by
crowdsourcing platform as a management technique. At its core, the model diminishes
the existing uncertainty by eliminating unqualified workers. This is attained by
maintaining a dynamically evolving ontology of skills, with libraries of standardized
and personalized assessments for awarding credentialed skills. After aligning a
worker’s set of skills to that required by a task, the resulting quality is improved,
where only qualified workers are assigned to the task. Furthermore, in such a setup,
qualified workers strive to maintain their qualification level, and unqualified workers
are pushed to diligently work on improving their own qualifications. We investigated
the model and its workflow on a top level, however, the feasibility of maintaining such
a model needs to be further investigated. As examined in the related work section, our
model is closely related to web services, reputation-based systems and competency
models. Further literature needs to be thoroughly examined, and accordingly adapted
to leverage the current model. Furthermore, the proposed workers’ quality measures
that’s to be computed should be formally defined.

Acknowledgments. We’d like to thank the organizers of NII Shonan 2013 meeting for
Intelligent Information Processing - Chances of Crowdsourcing, which spurred this work. We’d
also like to thank the reviewers for their careful examination and insightful comments and
remarks, which we tried to adopt for improvements.

Skill Ontology-Based Model for Quality Assurance 385

References

1. Surowiecki, J.: The Wisdom of Crowds, p. 336. Anchor, New York (2005)
2. Howe, J.: The rise of crowdsourcing. North 14(14), 1–5 (2006)
3. Brabham, D.C.: Crowdsourcing as a model for problem solving: an introduction and cases.

Convergence Int J. Res. New Media Technol. 14(1), 75–90 (2008)
4. Kamps, J., Geva, S., Peters, C., Sakai, T., Trotman, A., Voorhees, E.: Report on the SIGIR

2009 workshop on the future of IR evaluation. ACM SIGIR Forum 43(2), 13 (2009)
5. Zhu, D., Carterette, B.: An analysis of assessor behavior in crowdsourced preference

judgments. In: SIGIR 2010 Workshop on Crowdsourcing for Search Evaluation, no. Cse,
pp. 17–20 (2010)

6. Scoring Workers in Crowdsourcing: How Many Control Questions are Enough?.pdf, 2013
7. Lofi, C., Selke, J., Balke, W.-T.: Information extraction meets crowdsourcing: a promising

couple. Datenbank-Spektrum 12(1), 109–120 (2012)
8. Kuncheva, L.I., Whitaker, C.J., Shipp, C.A., Duin, R.P.W.: Limits on the majority vote

accuracy in classifier fusion. Pattern Anal. Appl. 6(1), 22–31 (2003)
9. Kazai, G.: In search of quality in crowdsourcing for search engine evaluation. SIGIR Forum

44(2), 165–176 (2011)
10. Mason, W., Watts, D.J.: Financial incentives and the ‘performance of crowds’. ACM

SIGKDD Explor. Newslett. 11(2), 100 (2010)
11. Brabham, D.C.: Moving the crowd at threadless. Inf. Commun. Soc. 13(8), 1122–1145

(2010)
12. PodCastle: Collaborative training of acoustic models on the basis of wisdom of crowds for

podcast transcription, (2009). https://staff.aist.go.jp/m.goto/PAPER/INTERSPEECH
2009ogata.pdf

13. Goto, M., Ogata, J.: Podcastle: recent advances of a spoken document retrieval service
improved by anonymous user contributions. In: Proceedings of the 12th Annual Conference
of the International Speech Communication Association (Interspeech 2011), pp. 3073–3076
(2011)

14. Schall, D.: Service-Oriented Crowdsourcing: Architecture, Protocols and Algorithms,
p. 105. Springer, New York (2012)

15. Lai, C.: Endorsements, licensing, and insurance for distributed system services. J. Electron.
Publishing 2(1) (1996)

16. Ludwig, H., Keller, A., Dan, A., King, R.: A service level agreement language for dynamic
electronic services. In: Proceedings of 4th IEEE International Workshop on Advanced
Issues of E-Commerce and Web-Based Information Systems (WECWIS 2002) (2002)

17. Sahai, A., Machiraju, V., Anna, D.: Towards automated SLA management for web services
(2002). http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf

18. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using
the EM algorithm. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 20–28 (1979)

19. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.: Learning
from crowds. J. Mach. Learn. Res. 11, 1297–1322 (2010)

20. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose vote should count more:
optimal integration of labels from labelers of unknown expertise. Adv. Neural Inf. Process.
Syst. 22(1), 1–9 (2009)

21. Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on amazon mechanical turk. In:
Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 64–67. ACM,
New York (2010)

386 K.E. Maarry et al.

https://staff.aist.go.jp/m.goto/PAPER/INTERSPEECH2009ogata.pdf
https://staff.aist.go.jp/m.goto/PAPER/INTERSPEECH2009ogata.pdf
http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf

22. Campion, M.A., Fink, A.A., Ruggeberg, B.J., Carr, L., Phillips, G.M., Odman, R.B.: Doing
competencies well: best practices in competency modeling. Pers. Psychol. 64(1), 225–262
(2011)

23. Shippmann, J.S., Ash, R.A., Battista, M., Carr, L., Eyde, L.D., Hesketh, B., Kehoe, J.,
Pearlman, K., Prien, E.P., Sanchez, J.I.: The practice of competency modeling. Pers.
Psychol. 53, 703–740 (2000)

24. De Coi, J.L., Herder, E., Koesling, A., Lofi, C., Olmedilla, D., Papapetrou, O., Siberski, W.:
A model for competence gap analysis. In: WEBIST 2007: Proceedings of the 3rd
International Conference on Web Information Systems and Technologies, pp. 304–312
(2007)

25. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M., Mottola, M.: A
formal approach to ontology-based semantic match of skills descriptions. J. Univ. Comput.
Sci. 9(12), 1437–1454 (2003)

26. Koeppen, K., Hartig, J., Klieme, E., Leutner, D.: Current issues in competence modeling
and assessment. Zeitschrift für Psychologie/J. Psychol. 216(2), 61–73 (2008)

27. Allahbakhsh, M., Benatallah, B., Ignjatovic, A., Motahari-Nezhad, H.R., Bertino, E.,
Dustdar, S.: Quality control in crowdsourcing systems: issues and directions. IEEE Internet
Comput. 17(2), 76–81 (2013)

28. Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Foo, N., Beheshti, S.M.R., Bertino, E.:
Reputation management in crowdsourcing systems (2012)

29. Ignjatovic, A., Foo, N., Lee, C.T.: An analytic approach to reputation ranking of
participants in online transactions. In: IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, vol. 1 (2008)

30. Noorian, Z., Ulieru, M.: The state of the art in trust and reputation systems: a framework for
comparison. J. Theor. Appl. Electron. Commer. Res. 5(2), 97–117 (2010)

31. Liu, X., Song, Y., Liu, S., Wang, H.: Automatic taxonomy construction from keywords. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, pp. 1433–1441 (2012)

Skill Ontology-Based Model for Quality Assurance 387

ProbKS: Keyword Search on Probabilistic
Spatial Data

Feng Gao1,2,P, Rohit Jain1(B), Sunil Prabhakar1, and Luo Si1

1 Department of Computer Sciences, Purdue University, West Lafayette, IN, USA
{gao141,jain29,sunil,lsi}@cs.purdue.edu

2 Fudan University, Shanghai, China

Abstract. Many applications, like Twitter, Yelp, or Facebook, pro-
duce documents that are tagged with geolocations. For example, when a
user tweets using Twitter, the tweets are tagged with the user’s location
(inferred using the user’s IP address, or mobile GPS). These locations,
however, are computed with inherent uncertainty. In such scenarios, it
is desired to support search queries that take into account both text rel-
evancy and location proximity. In this paper, we study the problem of
text retrieval queries on probabilistic spatial data. We consider top-(c, k)
queries to capture semantics of both textual relevance and probabilistic
location proximity. A top-(c, k) query returns k tuples which have the
highest probability of being in the top-c query results under the possible
world semantics. We propose a framework to answer such queries. Our
framework integrates two components: scoring textual similarity based
on the query text; and the document text and calculating top-c confi-
dence based on the probability of the document falling within the query
region. We develop an IRTree-based Incremental Scoring Approach (ISA)
that returns an iterator over tuples in decreasing order of text similarity.
Our parameterized probabilistic ranking algorithm PRankc, consumes
the output of ISA interactively and calculates top-c confidence of these
tuples in linear time. We also provide a heuristic optimization to ter-
minate the PRankc algorithm earlier without compromising on result
quality. We conduct experiments on real data to show the efficiency of
this framework.

1 Introduction

As location-aware devices get widely used, many applications such as Twitter,
allow users to produce data that are tagged with the geo-location of the user.
Much work has been done on spatial keyword queries [2,5,7] for retrieving infor-
mation from such spatial textual data. These works assume that the geolocations
of the documents were computed with certainty. However, in many scenarios, the
geographic location does not refer to a unique place, but an uncertain region.
For example, when a user tweets on Twitter using a computer (which is not
location aware), the user location is inferred using the IP address. However, this
location cannot be computed with certainty resulting in a probabilistic spatial

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 388–402, 2014.
DOI: 10.1007/978-3-662-43984-5 30, c© Springer-Verlag Berlin Heidelberg 2014

ProbKS: Keyword Search on Probabilistic Spatial Data 389

Table 1. Twitter sample data

ID Name Tweet Locations

t1 Steve Kobe Bryant, Obama of the NBA game {l1: .3, l2: .5, l3: .2}
t2 Chris Kobe game-typing 3 pointer in the 2004 NBA Finals {l4: .5, l5: .3, l7: .2}
t3 Mark Kobe signs some autographs after the game {l5: .9, l6: .1}
t4 Ben Go to Chicago and watch NBA {l7: .7, l8: .3}
t5 Judy Kobe 1st NBA game highlights from ESPN {l9: .2, l10: .8}
t6 Ricky I’m here for NBA game {l11: .2, l12: .8}

database. Similarly, automatic identification of geolocation [12,18] tags a web
page to a suitable region with a certain confidence, or a footprint [3] represented
by a minimal bounding box.

In such applications, spatial keyword queries Q, consisting of a textual part
(Qt) and a spatial part (Qs), are often natural and useful in retrieving informa-
tion from such probabilistic spatial data, for example to provide local search. In
such queries, users want to retrieve tuples that match their information needs
(high text relevance, and high location proximity) and high confidence level
(higher ranked).

Example 1. Consider a simple Twitter sample data shown in Table 1. Each tuple
in this database has both textual data (Tweet column) and probabilistic spatial
data (Location column), indicating possible places where the tweet was origi-
nated and the corresponding probabilities. For example, Mark produced t3 from
location l5 or l6 with probabilities 0.9 and 0.1 respectively. A spatial keyword
query Q(“Kobe Bryant NBA game”, MBR({l3, l5, l7, l8})) would return tweets
which were originated in the given Minimal Bounding Box (MBR), in this case
MBR containing {l3, l5, l7, l8} and talks about NBA player Kobe’s game. Each
probabilistic spatial tuple is represented by a Minimal Bounding Box (MBR)
so that each possible location is inside the MBR. These tuples are indexed by
an R-Tree, as shown in Fig. 1. A solid lined box represents the query region
Qs = MBR({l3, l5, l7, l8}).

Fig. 1. R-Tree index for the Twitter sample in Table 1.

390 F. Gao et al.

Example 1 demonstrates the type of probabilistic spatial data and the type of
queries that will be studied in this paper. In order to answer such queries, we have
to calculate two types of scores for each tuple (say t) (shown in Table 4), textual
relevancy score tScore(Qt, t) (RawTF column in Table 4) and spatial confidence
cScore(Qs, t) (the last column in Table 4) which computes the probability of
tuple t being in the query region Qs. For simplicity, we use RawTF scoring
function in our running example to measure the textual similarity between query
text (Qt) and the tuple, although it could be any kind of scoring function such
as OKAPI and TFIDF (see Sect. 5). To explain these scores, consider t1 as
an example. Since all four terms of Qt are in the tweet, tScore(Qt, t1) = 4.
Also, since t1’s location falls in the query region Qs when it takes value l3, the
probability of t1 satisfying Qs is 0.2, i.e., cScore(Qs, t1) = 0.2. A spatial keyword
query tries to report tuples that are both textually relevant (high tScore) and
spatially reliable (high cScore).

In recent years, some studies have been conducted on indexing spatial text
data, such as grid-based structures [3,18], RTree-based structures [5,10], answer-
ing particular types of spatial keyword queries including nearest neighbor [5],
reverse nearest neighbor [10] and collective query [2]. However, none of them
consider the uncertainty in the spatial text data which poses three challenges.

– Semantics of keyword query on probabilistic spatial data: The spatial attribute
of a textual object is modeled as a distribution (or partial distribution) over
multiple, mutually exclusive locations. The confidence that an object lies in
the query range, cScore(Qs, t), or qualification probability, indicates reliability
of an object for a query and should be carefully defined.

– Tradeoff between textual similarity and spatial confidence: Since the tuples can
be ranked using two different scores, textual similarity and distance proximity,
a suitable approach that integrates the two ranking factors is necessary in
order to retrieve relevant tuples. The trade off between the two scores should
be carefully defined.

– Both efficiency and effectivity: Although a spatial text index can speed up
spatial keyword queries, queries over probabilistic data are typically time-
consuming [6] and uncertainty in the data renders it difficult to achieve good
efficiency. The tradeoff between the two scores can lead to bad precision and
should be dealt with.

In this paper, we follow an interactive two-step framework for processing
keyword queries on probabilistic spatial data. Our contributions are as follows.

– We introduce an Incremental Scoring Approach (ISA) based upon the IRTree
index [5], which report tuples in the query region one by one in decreasing
order of textual similarity (namely tScore(Qt, t)).

– We propose a parameterized probabilistic ranking approach PRankc for eval-
uating top-(c, k) query. Based on possible world semantics, it ranks tuples by
their confidence of being ranked in top-c answers (Top-C Confidence or TCC)
and return k tuples with the highest TCC values.

ProbKS: Keyword Search on Probabilistic Spatial Data 391

Table 2. Notations

Notation Description

Dp Probabilistic spatial dataset
n Size of dataset Dp

k Number of tuples a query returns
c Ranking parameter
ti.t Textual attribute of ti
ti.s Probabilistic spatial attribute of ti
ti.mbr Minimal bounding rectangle of ti
Qs Spatial part of the query
Qt Textual part of the query
Q Spatial keyword query
TQs Tuples that has non-zero cScore(Qs, t)
TQt Tuples that has non-zero tScore(Qt, t)
tScore(Qt, ti) Textual score of Qt and ti.t
cScore(Qs, ti) confidence of ti.s intersecting with Qs

TCC(ti) Probability of ti being part of top-c query result
Pr(Li, j) Probability that the size of {t1 . . . ti} is j
Pr(Ri, j) Probability that ti is ranked j
SPL(i, l) Probability that the size of {t1 . . . ti} is in [0, l]

– We propose a heuristic optimization rule that helps the query terminate ear-
lier.

– To demonstrate the efficiency of the proposed framework, we implement our
framework and present an empirical study.

The rest of the paper is organized as follows. We formulate the problem of
top-(c, k) query and give the general description of our framework of processing
spatial text query in Sect. 2. In Sect. 3, we describe incremental scoring approach,
which provides a mechanism to index tuples so that tuples with high textual
relevance could be found. In Sect. 4, we introduce our algorithm to compute the
top-c confidence of the tuples and optimization rules to improve the performance.
We present an empirical study of our approach in Sect. 5. We summarize some
related work in Sect. 6 and finally conclude the paper in Sect. 7.

2 Problem Statement

Let Dp = {t1, t2, . . . , tn} be a probabilistic spatial text dataset, where each
tuple ti has a textual attribute ti.t and probabilistic spatial attribute ti.s (a set
of possible locations of ti along with probabilities). A spatial keyword query Q,
consisting of a set of keywords Qt, a query region Qs, and a number k, returns
k tuples that are both textually relevant and spatially reliable. Notations used
in this paper are listed in Table 2.

To answer a spatial keyword query, we need to first calculate two types of
scores for all tuples and then rank them in terms of these two scores. It is nat-
ural to adopt a two-step framework as described in Table 3. In the first step,

392 F. Gao et al.

Table 3. Two-step framework

Step 1 Scoring each tuple’s textual relevance tScore(Q, t) and spatial
confidence cScore(Q, t)

Step 2 Ranking tuples by combining above two factors

the textual relevance scores and the location scores are computed using vari-
ous textual, spatial and hybrid indexes to speed up these two scoring processes,
which could be done separately [19] or in combination [5]. In the second step,
in order to report tuples that are both textually relevant and have spatial confi-
dences, tradeoff must be made between the two factors. We examine two existing
approaches to balance these two factors and discuss their drawbacks.

The simplest approach is Linear Combination (LC). It balances two factors
using a parameter β and the final score is defined as follows.

LC(t,Q;β) = β × tScore(Qt, t) + (1 − β) × cScore(Qs, t) (1)

When β is 1, it reduces to a traditional IR task and ignores spatial confidence.
On the other extreme, when β is 0, it equals to ranking only based on spatial
qualification. LC, even though straightforward, is semantically unreliable. For
example, in Example 1 tuple t5 should not be part of the query result as it has
no chance of being within the query region (cScore(Qs, t5) = 0). However, it will
be ranked higher than t3 for large values of β even though t3 is a better answer
than t5. A similar problem will arise for high value of β. Choosing a reasonable
value for parameter β to address this problem can be tricky.

The second approach is Confidence Threshold (CT). It ranks those tuples
whose cScore exceeds the predefined threshold Π. Ranking is done using their
tScore. The final score is defined as follow.

CT (t,Q;Π) =
{

tScore(Qt, t) if cScore(Qs, t) > Π
0 otherwise

(2)

Parameter Π controls the reliability of results. A large Π will prune most tuples
even with high spatial confidence and will less more preference to the tScore,
while a small Π will allow more spatial irrelevant tuples but very textually
relevant tuples to become answers. The choice of a reasonable Π depends on
the query Q. In particular, it is better to choose a large Π for a query Q if TQs

contains a large part of tuples with high qualification probability. A reasonable
value of Π is vital to produce consistent good performance for any query.

Considering the drawbacks of the previous approaches, we choose top-(c,
k) semantics to answer the uncertain spatial keyword queries. Considering the
Possible World Semantics, a naive approach to evaluate a query over a proba-
bilistic database Dp would be to first expand the database into a set of possible
worlds PW (Dp). The query would be executed over each possible world w in
PW (Dp) and then the set of results would be collapsed into a final result. We use

ProbKS: Keyword Search on Probabilistic Spatial Data 393

Table 4. Scores for sample data

ID RawTF cScore

t1 4 0.2
t2 3 0.5
t3 2 0.9
t4 1 1.0
t5 3 0.0
t6 2 0.0

Table 5. TCC based ranking

c Tuple and TCC

1 (t2, 0.4) (t3, 0.36) (t1, 0.2) (t4, 0.04)
2 (t3, 0.81) (t2, 0.5) (t4, 0.45) (t1, 0.2)
3 (t4, 0.91) (t3, 0.9) (t2, 0.5) (t1, 0.2)
4 (t4, 1) (t3, 0.9) (t2, 0.5) (t1, 0.2)

IRRank(ti, w) to denote ti’s rank in the possible world w using the chosen tex-
tual similarity scoring function. The top-c confidence (TCC) of tuple ti captures
its probability of being in the top-c result based on possible world semantics.

Definition 1. For query Q and tuple ti, top-c confidence of ti, denoted by
TCC(ti), is defined as the chance of ti being in the top-c result, namely the
sum of probabilities of possible worlds where ti is in the top-c result. Formally,

TCC(ti) =
∑

w∞PW (Dp)

p(w) × ξ(ti, w) (3)

where indicator ξ(ti, w) equals 1 when IRRank(ti, w) ≤ c, otherwise 0.

Proposition 1. Assume that tuple ti is ranked at the vi-th position using tScore,
function TCC(ti) grows monotonically with value of c, and reaches its maximum
value, namely cScore(Q, ti), at c = vi.

A top-(c, k) query returns k tuples which have the highest probability of
being in the top-c query results. Top-(c, k) queries consider both tScore and
cScore in order to compute the top-c confidence. With a low tScore value a
tuple will not be in the top-c results in many possible worlds leading to a low
top-c confidence. On the other hand, a low cScore will reduce its probability of
being in many possible worlds leading to a low top-c confidence.

In Example 1, four tuples {t1, t2, t3, t4} will have a non-zero tScore. For a
given value of c, these tuples will be ranked according to their TCC values. For
now, let us assume c = 1. To compute TCC(t1), we need to find the probability
with which t1 will have the hightest tScore. If we ignore the cScore, t1 has the
highest rank. However, with (1 − cScore) probability, the tuple does not satisfy
the spatial conditions. Thus, the top-c confidence of t1 is its cScore, i.e. 0.2. The
tuple with the next best tScore (t2) has a chance to be in the top-c results if t1
doesn’t exist and t2 exists, i.e. TCC(t2) = (1 − cScore(Q, t1)) ∗ cScore(Q, t2) =
0.4. Table 5 shows the top-c confidence values for these tuples for different values
of c. When c = 1 and k = 1, the query result is {t2}.

For the step 1 of our framework, we propose a IRTree-based incremental
scoring approach (ISA). ISA exploits the IRTree structure to index the tuples so
that textually relevant tuples could be iterated over in the decreasing order of

394 F. Gao et al.

Table 6. Inverted index of each node

Posting list
Terms R4 R1 R2 R3

Kobe {(R1, 1),(R2, 1)} {(t1, 1),(t2, 1),(t3, 1)} {(t5, 1)} Φ
Bryant {(R1, 1),(R2, 1)} {(t1, 1)} Φ Φ
NBA {(R1, 1),(R2, 1),(R3, 1)} {(t1, 1),(t2, 1)} {(t4, 1),(t5,1)} {(t6, 1)}
Game {(R1, 1),(R2, 1),(R3, 1)} {(t1, 1),(t2, 1),(t3, 1)} {(t5, 1)} {(t6, 1)}

their tScore. Then, we propose a parameterized probabilistic ranking approach,
named PRankc. It (1) uses ISA to iterate over the tuples sorted in decreas-
ing order of tScore, and (2) estimates the top-c confidence of the tuples using a
statistical model (see Sect. 5). In the following sections, we describe these compo-
nents, ISA and PRankc, and propose optimizations to improve the performance
(Table 6).

3 Icremental Scoring Approach

As the first step of the framework, we index the tuples using an IRTree hybrid
index similar to the one proposed in [5]. Each node is augmented with a pseudo
document. The weight of each term t in the pseudo document is the maximum
weight of the term in the documents contained in its subtree. The concept of
pseudo document enables us to estimate an upper bound for text relevancy
between query text Qt and any document contained in the subtree rooted at a
specific node N . Thus, we have the following inequality:

∀e ∈ N, tScore(Qt, N) ≥ tScore(Qt, e) (4)

See Theorem 3.1 in [5] for details.
For a given query, incremental scoring algorithm visits each node N (starting

from the root) that shares locations with the query region in decreasing order of
maximum possible textual similarity tScore(Qt, N), and prune non-intersecting
nodes. The ISA algorithm is described below.

In Example 1, ISA starts with pushing root R4 onto a priority queue PriQue
and then executes steps as shown in Table 7. In the scoring process, all tuples that
have overlapping locations with the query region would be visited, in decreasing
order of tScore. The tuples will be reported in the order t1, t2, t3, and t4 according
to their tScore values. ISA ignores nodes that do not intersect with query region
(for example R3). Similarly, tuples that do not share any location with the query
region are not reported either (for example t5).

Using ISA, the query results can be iterated over in the decreasing order of
their tScore. This is used later on by the Step 2 of the framework to finally
calculate the TCC value of the tuples.

ProbKS: Keyword Search on Probabilistic Spatial Data 395

Algorithm 1. ISA(Q, root)
Input: Query Q and the IRTree root
Output: Tuples with non-zero cScore in decreasing order of tScore
Initialize a max priority queue PriQue
Push entry (root, tScore(Qt, root)) in PriQue
while PriQue not empty do

entry ← PriQue.pop() //pop max tScore entry
if entry is an object then

Report entry
else

if entry is a leaf node then
for each object in entry do

if object shares points in Qt then
Push (object, tScore(Qt, object)) in PriQue

end if
end for

else
for each node in entry do

if node.mbr ⊂ Qs = Φ then
Push (node, tScore(Qt, node)) in PriQue

end if
end for

end if
end if

end while

Table 7. ISA processing steps

Step Pop Operation PriQue

1 R4 Push R1, R2 (R1, 4), (R2, 3)
2 R1 Push t1, t2, t3 (t1, 4), (t2, 3), (R2, 3), (t3, 2)
3 t1 Report t1 (t2, 3), (R2, 3), (t3, 2)
4 t2 Report t2 (R2, 3), (t3, 2)
5 R2 Push t4, t5 (t5, 3), (t3, 2), (t4, 1)
6 t5 Discard t5 (t3, 2), (t4, 1)
7 t3 Report t3 (t4, 1)
8 t4 Report t4 Φ

4 Probabilistic Ranking

For a query Q and dataset Dp , ISA returns results in the form (tupleid, tScore,
cScore). These results are accessed from an iterator (DocSeq) in decreasing
order of tScore. In the following sections, we describe a PRankc algorithm for
effectively ranking these relevant tuples based on their top-c confidences.

396 F. Gao et al.

4.1 Basic Algorithm

In Example 1, DocSeq would return {(t1, 4, 0.4), (t2, 3, 0.5)} as the first two
tuples as their have the hightest tScore. Since these tuples are probabilistic in
nature, in a possible world, some of them may not exist. Lets Pr(Li, j) represent
the probability that out of the i tuples from DocSeq, the actual size of the output
is j. Pr(Li, j) can be computed as follows:

Pr(Li, j) =

⎧
⎪⎪⎨

⎪⎪⎩

Pr(Li−1, j − 1) × pi + Pr(Li−1, j) × (1 − pi) if i > 0, j ∈ [1, i]
Πk∈[1,i](1 − pk) if i > 0, j = 0
1 if i = 0, j = 0
0 if j > i

(5)

Similarly, the rank of ti is a random variable Ri ranging from 1 to i. For
example, among the first two tuples, t2 can have rank 2 when both t1 and t2
exist, while its rank would be 1 if t1 does not exist. In general, the event of ti
being ranked at the jth position (Ri, j) is equivalent to the event that the size
of the preceding i tuples in DocSeq is j − 1, i.e.,

Pr(Ri, j) = Pr(Li−1, j − 1) × pi (6)

Using Proposition 1, top-c confidence (TCC) of a tuple can be computed as
following:

TCC(ti) =
∑

j∞[1,c]

Pr(Ri, j) (7)

Notice that tScore(Q, ti−1) > tScore(Q, ti) as DocSeq returns tuples in the
decreasing order of tScore.

PRankc algorithm starts with i = 0 and processes each tuple from DocSeq
sequentially. For tuple ti, it calculates Pr(Li, j) and Pr(Ri, j), and then its
top-c confidence. After processing all tuples, k tuples with the highest TCC are
reported. Algorithm 2 shows PRankc in detail.

Algorithm 2. PRankc Algorithm
Input: DocSeq, a sequence of tuples in decreasing order of their IR scores,
Output: PriQue, a priority queue of size k
Initialize Pr(L0, 0) = 1 and Pr(L0, j) = 0 for j ∈ [1, c]
while DocSeq not empty do

ti ← DocSeq.pop() //Pop the ith doc
Calculate probabilities, Pr(Li, j), j ∈ [0, c]
Calculate probabilities, Pr(Ri, j), j ∈ [1, c]
Calculate TCC(ti) =

∑
j∈[1,c] Pr(Ri, j)

Push (ti, TCC(ti)) in priority queue PriQue
end while
return PriQue

ProbKS: Keyword Search on Probabilistic Spatial Data 397

For each of n tuples in DocSeq, 2c + 1 values need to be calculated while
sorting within priority queue requires nlog(k) time, so time complexity is O(n(c+
log(k))). We need O(c) space for storing Pr(Li, j) for ti+1 in next loop and O(k)
space for the resulting PriQue, requiring in total O(c + k) space.

4.2 Early Termination of PRankc

PRankc algorithm uses ISA to compute top-c confidence for each tuple that has
a non-zero tScore and a non-zero cScore. In this subsection, we propose a mech-
anism to identify when processing futher tuples is not required. By using this
optimization, we do not have to process all tuples which will improve efficiency.

For a fixed value l, let SPL(i, l) =
∑

j∞[0,l] Pr(Li, j). Then, the following
theorem gives us an upper bound on TCC in terms of SPL.

Theorem 1. For any tuple ti, its top-c confidence is upper bounded by SPL(i−
1, c − 1).

Proof.

TCC(ti+1) =
c∑

j=1

Pr(Ri+1, j)

=
c∑

j=1

Pr(Li, j − 1) × pi

≤
c∑

j=1

Pr(Li, j − 1)

=
c−1∑

j=0

Pr(Li, j)

= SPL(i, c − 1)

�

Using Theorem 1, we can optimize our PRankc algorithm so that it termi-
nates early. Algorithm 3 shows the updated algorithm. For a top-(c, k) query,
we keep track of the kth largest TCC value and store it in variable τ . From the
above analysis, we know that if SPL(i, c − 1) < τ , all tuples after ti+1 will not
be part of the top-(c, k) answers, so PRankc algorithm can stop.

5 Experiments

To evaluate the efficiency of the proposed framework, we implement our solutions
using Python. We now present the results of our experiments. The experiments
were run on an Intel Xeon 2.4 GHz machine with 12 GB RAM and a 7200 RPM
disk with a transfer rate of 3 Gb/s, running Linux.

398 F. Gao et al.

Algorithm 3. PRankc-OPT Algorithm
Input: DocSeq, a sequence of tuples in decreasing order of their IR scores,
Output: PriQue, a priority queue of size k
Initialize Pr(L0, 0) = 1 and Pr(L0, j) = 0 for j ∈ [1, c]
while DocSeq not empty do

ti ← DocSeq.pop() //Pop the ith doc
Calculate probabilities, Pr(Li, j), j ∈ [0, c]
Calculate probabilities, Pr(Ri, j), j ∈ [1, c]
Calculate TCC(ti) =

∑
j∈[1,c] Pr(Ri, j)

Push (ti, TCC(ti)) in priority queue PriQue
Calculate SPL(i − 1, c − 1) and threshold τ
Stop, if SPL(i − 1, c − 1) is less than τ

end while
return PriQue

Dataset: We collected Twitter data using the Twitter API. The data consists of
tweets which are geotagged. For each tweet, the location of the two previous and
two future tweets of the user are collected as well. These locations are used to
form a probability distribution function, which is assigned as the MBR for the
tweet. For our experiments, we populate our database with 200,000 tweets.

Scoring Function: For the experiments, we use LogTFIDF (Eq. 9) as the scoring
function to compute the textual revelance. However, other scoring functions such
as OKAPI would work too.

RawTF (Qt, d) =
∑

t∞Qt

TF (t, d) × TF (t,Qt) (8)

LogTFIDF (Qt, d) =
∑

t∞Qt

TF (t, d) × log(
#Docs

#Docs(t) + 1
) × TF (t,Qt) (9)

Naive approach: As a base case for comparison, we compare the performance of
our solutions with a naive approach described as follows. In the naive approach,
for each tuple in the database, tScore and cScore are computed. The tuples
are sorted using the tScore values. After this, we run the PRankc algorithm to
compute the top-c probabilities of these tuples and then returns the top-(c, k)
results.

5.1 Results

We now present the results of our experiments. To reduce the error, all exper-
iments were conducted three times. In each experiment, time is reported in
seconds. In the graphs, “Basic” represents the naive approach. “PRankc” rep-
resents our solution which uses ISA and PRankc algorithms. “PRankcOPT”
represents our solution with uses ISA, PRankc and the proposed optimization.

ProbKS: Keyword Search on Probabilistic Spatial Data 399

(a) Effect of k on Time. (b) Effect of c on Time.

Fig. 2. Effect of query parameters (c, k)

To understand the efficiency of our solutions in terms of query processing
time, we conduct two experiments. The experiments evaluate the performance
of our solutions as the value of c and k changes. In the first experiment, we
keep c = k, and change their values together. Figure 2(a) shows the results. Our
solution using the ISA and PRankc algorithms perform multiple fold better
than the base algorithm. The proposed optimization in PRankc improves the
performance further by almost twice. Similar results are shown when c is varied
without changing k. Figure 2(b) shows the results. In this experiment, we keep
k at a constant value of 50 and vary the value of c. In this experiment as well,
our optimized PRankc algorithm performs multiple fold better.

To understand the effect of optimization further, we conduct another set of
experiments in which we vary the amount of qualified tuples, i.e., tuples which
have non-zero tScore and non-zero cScore. This is done by increasing the query
range. Figure 3(a) shows the effect of increasing the qualified tuples on the exe-
cution time. As shown in the figure, our PRankc algorithm performs better than
the base algorithm. Our optimized PRankc algorithm is not affected significantly
by the increase in the qualified tuples. This is because of early termination. Even

(a) Effect of result count on time. (b) Pruning effect

Fig. 3. Effect of optimization

400 F. Gao et al.

though the number of qualified tuples is increased, our optimization keeps track
of an upper bound on the top-c confidence, and once the upper bound is reached,
the algorithm stops according to Theorem 1. To understand it further, we con-
duct another experiment to find how many qualified tuples are processed by
the algorithms before returning the results. Figure 3(b) shows the results. Obvi-
ously, the tuples processed by the base algorithm and the PRankc algorithm
are the same as they both process all tuples which has non-zero tScore and
non-zero cScore. However, our optimized PRankc algorithm terminates much
earlier, leading to reduced processing time as well.

Overall, we observe that our proposed solutions perform much better than the
base algorithm. Our optimized PRankc leads to very early termination improv-
ing the performance by multiple folds.

6 Related Work

Related work in this domain can be mainly categorized in three groups, geotag-
ging documents, keyword search on spatial databases, and query processing in
probabilistic databases. In this section, we present some work in these areas.

Geotagging documents. With the popularity of location based services, there is an
increasing demand to compute geotags for web content. Several studies have been
done to infer geotags from the textual information of the documents. McCurley
et al. [12], Amitay et al. [1] and Markowetz et al. [11] investigate how to recognize
geographical contexts, such as postal codes, addresses, telephone numbers and
proper names of geographic entities, in the web using heuristic methods or simple
scoring algorithm and relate a web page to a set of geographical locations. Zhou
et al. [19] further map these geographical locations to unique coordinates and
represent a web page location as an MBR and also develop a hybrid index where
an R→-tree and inverted file index are loosely coupled to speed up the spatial
and textual retrieval process seperately. With the rapid development of statistical
machine learning, the geographical scope of a web page or geographical entities
mentioned in a document tend to be recognized based on statistical approaches
[15,18] which typically associate multiple possible locations with a web page.
These possible locations are represented as a probability distribution.

Keyword query on spatial databases. With the popularity of low-cost GPS chips
and electronic maps, geo-tagged documents have become prevalent on the Inter-
net. Various types of spatial keyword queries have been studied. In [5], Cong
et al. propose an IR-Tree index where an inverted file index and an R-Tree are
closely coupled for retrieving the most relevant web objects based on a scoring
function that takes into account both text relevancy and location proximity. In
[10], Lu et al. design a branch-and-bound algorithm to answer reverse spatial
textual k nearest neighbor queries based on an intersection-union R-Tree index.
In [2], Cao et al. study collective spatial keyword queries to retrieve a group
of spatial objects that have the lowest interobject distance and cover all query
keywords.

ProbKS: Keyword Search on Probabilistic Spatial Data 401

Probabilistic database. Much work has been done to provide database support for
managing probabilistic data [6,16]. Probabilistic queries are typically evaluated
based on possible world semantics [6]. Due to the exponential number of possible
worlds, and probabilitic query output, threshold queries [8,13] and top-k queries
are more relevant for information retrieval from probabilistic databases. Soliman
et al. [17] investigate two types of uncertain ranking criteria, U-Topk and U-
kRanks, to find most probable top-k tuple vectors as a whole and most probable
tuples appearing at top-k ranks. Lian and Chen [9] developed the spatial and
probabilistic pruning techniques for U-kRanks queries. Hua et al. [8] propose a
probabilistic threshold approach that rank tuples by their confidence of being
qualified results. Probabilistic spatial queries have also attracted much attention
[4,14], though these works do not consider textual retrieval.

7 Conclusions and Future Work

In this paper, we introduced the problem of spatial keyword queries on prob-
abilisitic spatial databases. We proposed a general framework to process these
queries. First, we developed an incremental search algorithm that leverages the
IR-Tree to report qualified tuples one by one in the decreasing order of textual
similarity. Second, we proposed a parameterized probabilistic ranking algorithm
that computes the top-c confidence of the qualified tuples in a linear time. An
effective early stop method is also provided to optimize the algorithm. We eval-
uate our approach on a real dataset collected from Twitter. Experiments show
that our solutions are efficient. An important part of top-(c, k) queries is to pick
the parameter c so that the precision of the query results is high. We leave that
for the future work.

Acknowledgements. The work in this paper was supported by National Science
Foundation grants IIS-1017990 and IIS-09168724.

References

1. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content.
In: Proceedings of the Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (2004)

2. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In:
Proceedings of ACM Special Interest Group on Management of Data (SIGMOD)
(2011)

3. Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web
search engines. In: Proceedings of ACM Special Interest Group on Management of
Data (SIGMOD) (2006)

4. Cheng, R., Chen, L., Chen, J., Xie, X.: Evaluating probability threshold k-nearest-
neighbor queries over uncertain data. In: Proceedings of the International Confer-
ence on Extending Database Technology (EDBT) (2009)

402 F. Gao et al.

5. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. In: Proceedings of the International Conference on Very Large Data
Bases (VLDB) (2009)

6. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB) (2007)

7. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
Proceedings of the International Conference on Data Engineering (ICDE) (2008)

8. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a prob-
abilistic threshold approach. In: Proceedings of ACM Special Interest Group on
Management Of Data (SIGMOD) (2008)

9. Lian, X., Chen, L.: Probabilistic ranked queries in uncertain databases. In: Proceed-
ings of the International Conference on Extending Database Technology (EDBT)
(2008)

10. Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual k nearest neighbor search. In:
Proceedings of ACM Special Interest Group on Management Of Data (SIGMOD)
(2011)

11. Markowetz, A., Chen, Y.Y., Suel, T.: Design and implementation of a geographic
search engine. In: International Workshop on the Web and Databases (WebDB)
(2005)

12. McCurley, K.S.: Geospatial mapping and navigation of the web. In: Proceedings
of the International Conference on World Wide Web (WWW) (2001)

13. Qi, Y., Jain, R., Singh, S., Prabhakar, S.: Threshold query optimization for uncer-
tain data. In: Proceedings of ACM Special Interest Group on Management Of Data
(SIGMOD) (2010)

14. Qi, Y., Singh, S., Shah, R., Prabhakar, S.: Indexing probabilistic nearest-neighbor
threshold queries. In: Workshop on Management of Uncertain Data (2008)

15. Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377
(2008)

16. Singh, S., Mayfield, C., Shah, R., Prabhakar, S., Hambrusch, S.E., Neville, J.,
Cheng, R.: Database support for probabilistic attributes and tuples. In: Proceed-
ings of the International Conference on Data Engineering (ICDE) (2008)

17. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain
databases. In: Proceedings of the International Conference on Data Engineering
(ICDE), April 2007

18. Wing, B.P., Baldridge, J.: Simple supervised document geolocation with geodesic
grids. In: Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies - Volume 1 (2011)

19. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.-Y.: Hybrid index structures for
location-based web search. In: ACM International Conference on Information and
Knowledge Management (2005)

Towards Mobile Sensor-Aware Crowdsourcing:
Architecture, Opportunities and Challenges

Jiyin He1, Kai Kunze2, Christoph Lofi3, Sanjay K. Madria4(B),
and Stephan Sigg5

1 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
jiyinhe@gmail.com

2 Osaka Prefecture University, Osaka, Japan
kai.kunze@gmail.com

3 National Institute of Informatics, Tokyo, Japan
lofi@nii.ac.jp

4 Missouri University of Science and Technology, Rolla, USA
madrias@mst.edu

5 Georg-August University Goettingen, Goettingen, Germany
ssigg@gwdg.de

Abstract. The recent success of general purpose crowdsourcing plat-
forms like Amazon Mechanical Turk paved the way for a plethora of
crowd-enabled applications and workflows. However, the variety of tasks
which can be approached via such crowdsourcing platforms is limited by
constraints of the web-based interface. In this paper, we propose mobile
user interface clients. Switching to mobile clients has the potential to
radically change the way crowdsourcing is performed, and allows for a
new breed of crowdsourcing tasks. Here, especially the ability to tap into
the wealth of precision sensors embedded in modern mobile hardware is a
game changer. In this paper, we will discuss opportunities and challenges
resulting from such a platform, and discuss a reference architecture.

Keywords: Mobile platforms · Sensor-enabled crowdsourcing · Location-
aware crowdsourcing

1 Introduction

Crowdsourcing has become a popular approach to many problems that cannot
be easily addressed by automated methods and algorithms, or problems that
explicitly require significant amount of human intelligence or human feedback.
Crowdsourcing can often be found in knowledge processing tasks such as data
or media classification [8], data acquisition tasks such as data completion [6] or
information extraction [16], as well as in providing training data for machine-
learning-based approaches [20]. Furthermore, crowdsourcing has proven to be
useful to the research community for performing large-scale user studies for
evaluating new prototype implementations [11], or performing surveys with a

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 403–412, 2014.
DOI: 10.1007/978-3-662-43984-5 31, c© Springer-Verlag Berlin Heidelberg 2014

404 J. He et al.

large and diverse number of participants for investigating general human behav-
ior or preferences [1]. Instead of laboriously growing own custom crowdsourcing
platforms, these tasks mostly rely on general purpose crowdsourcing platforms
such as Amazon Mechanical Turk, CrowdFlower, or ClickWorker. These plat-
forms allow a complex task to be executed by dividing it into many smaller and
simpler sub-tasks, i.e., HITs (Human Intelligence Tasks) – the smallest unit of
crowdsourceable work, which are the distributed to a human worker pool. Work-
ers are recruited and retained with payment. Hence, in theory such platforms
can be used to perform any dividable tasks that require human intelligence.
However, most of these services only offer a web-based interface for workers, and
therefore tasks are limited to those that can be displayed and solved within a
web browser.

In this paper, we propose an alternative architecture for a general-purpose
crowd-sourcing platform based on mobile as well as PC devices to interact
with the worker pool, referred to as “hybrid crowdsourcing platform”. This
will increase not only the ease of use and acceptance of workers in an ever
more mobile society, but also the utility and the range of possible crowdsourcing
tasks for research applications as well as practical application. In particular, the
access to GPS locations and mobile sensors will allow novel crowd-based appli-
cations that have not been possible before. Our contributions in this paper are
as follows:

– We motivate and discuss need and benefits of mobile sensor-enabled crowd-
sourcing platforms.

– We highlight use cases of our platform, especially in the area of locality-
sensitive services and ubiquitous computing.

– We present the design space and the generic architecture of such a plat-
form, and discuss the impact of certain decisions on the system features and
usability.

2 Background

Crowdsourcing can lead to significant cost savings [9,15,25], product quality
improvements [2] and acceleration of time to market [3,4].

However, crowdsourcing also has the potential to mitigate regional differences
in the distribution of labor and human resources. Therefore, most previous work
on mobile crowdsourcing platforms focused on societal aspects of crowdsourcing
[5,7,18]. These approaches have been tailored for developing countries as an
alternative source of labor and income. In developing countries, the spread of
personal computers and wired internet connectivity is low. However, still many
may have access to mobile phones or even mobile internet service. Therefore, the
core challenge discussed in these works is how crowdsourcing can be adapted to
the low-end hardware commonly available in developing countries, and how gaps
in internet connectivity could be covered using SMS or alternative messaging
methods.

Towards Mobile Sensor-Aware Crowdsourcing 405

In contrast, mobile crowdsourcing as discussed in this paper especially focused
on exploiting the capabilities of modern, powerful mobile hardware to offer new
functionality to crowdsourcing services. Especially the ability to tap into the
user’s geo-location or access to high-quality sensor data allows for completely
new applications.

3 General Design

We envision a crowdsourcing platform that can be used in a stationary as well
as mobile setting. The various instances in the private devices of users are inter-
connected through a server in the cloud that takes care of the aggregation of
responses, ranking, evaluation and source-selection for a given request. For this
purpose, the server stores locations, end user profiles and source profiles among
other information (cf. Fig. 1).

Manual labels and judgements can be harvested as well as sensor data on
mobile devices. The requester is likewise part of the crowd as any user or service
may issue a query for input of users, services or sensors.

By the combination of mobile, pervasive and crowdsourcing concepts, we
will be able to provide crowdsourcing for the masses: A more democratic crowd-
sourcing usage pattern in which everybody can be crowdsourced or equally state
own queries. Mobile crowdsourcing will be seamlessly integrated into daily life
with constantly up-to-date, personalised queries that can be completed anytime,

Fig. 1. A proposal of a mobile crowdsourcing platform

406 J. He et al.

anywhere. Instead of playing pointless mobile games to bridge waiting times,
people can instead solve interesting queries and even earn money by completing
these tasks. Through the integration of context sources in addition to human
sources for content provisioning, queries can be highly personalized (e.g. loca-
tion, environment, condition [19]) and in addition be automatically evaluated for
their quality (e.g. fatigue [14]). Such a platform can be exploited to collect huge
amounts of labelled sensor data (by asking users to perform certain tasks while
being recorded by sensors on the mobile device [23]) from a tightly controlled
target population. In addition, it might change the nature of crowdsourcing by
empowering ordinary people to set up simple queries that might even reach into
their real world (ask people to buy/bring something somewhere). Furthermore,
a such a platform might replace traditional data-bases in applications that rely
on data which is changing at a high pace. For instance, imagine a dating service,
in which a query for a potential partner is not stated to a database of registered
users but instead towards the crowd.

4 Opportunities and Challenges

State-of-the-art crowdsourcing platforms are implemented through web-based
services by international players such as Amazon. These platforms require
explicit input and reach a maximally diverse population of possible content
providers regardless of their location, gender, age, condition or further pref-
erences. However, the result of a request is typically of medium or low quality
and requires significant effort to filter out meaningful and quality responses [10].
The integration of crowdsourcing principles with mobile and Pervasive Comput-
ing has the potential to disruptively extend the possibilities underlying current
crowdsourcing towards, among others, new applications, new classes of data and
new possibilities to automatically evaluate quality of responses. We envision a
platform with access to implicit information on, for instance, location, condition
or further preferences that could restrict a given query to the most intended
audience and also utilise sensor information (e.g. fatigue, crowd, loudness level)
during the completion of a query in order to automatically estimate the quality
of a response. In addition, with sufficient data at hand, prediction techniques
might be applied in order to further boost the confidence on a result reached [22].
Figure 2 illustrates this concept.

Expected advantages of a hybrid mobile sensor-aware crowdsourcing para-
digm include: (1) improved task performance and efficiency; (2) enabling new
crowdsourcing process; and (3) enabling new types of applications. Below, we
discuss these aspects, as well as the challenges involved in realising the proposed
platform.

4.1 Improved Task Performance and Efficiency

Improved personalisation of request allocation and response aggre-
gation. Hybrid mobile sensor-aware crowdsourcing would enable personalised

Towards Mobile Sensor-Aware Crowdsourcing 407

Fig. 2. Concept of mobile crowdsourcing

requests filtered by preferences set on mobile devices as well as by dynamic
contextual parameters such as location, situation or condition.

Specifically, by maintaining worker profiles including a history of the tasks
they have participated, their task performance, as well as the sensor inputs
accompanied with this profile, e.g., their location and environment, the system
can learn to predict the expertise of the worker, and under which conditions a
task may be suitable for that particular worker. For instance, a worker may be
able to accomplish a translation task with high quality in the morning when tran-
siting from home to work, while this performance may decrease in the evening
when he/she transits from work to home since she is exhausted after a long day
already. Using such information, the system can (1) selectively recommend tasks
to target workers, and (2) selectively return or aggregate worker response to the
requester.

Crowdsourcing spontaneous feedback. With a mobile-based platform, both
requesters and workers will have less constraints in terms of working locations.
This may greatly reduce the time from stating a query to the reception of
responses. As a result, responses can be very up-to-date and may include real-
time assistance, for instance, in searching/recommendation for point-of-interest
locations/navigation or spontaneous translation of foreign sentences (e.g. while
ordering a menu at a restaurant).

New quality control mechanisms. With sensor data available alongside user
input, this data may be utilised to estimate the quality of the provided input. For
instance, by analysing the eye-gaze-movement, the platform can estimate fatigue
or, reasoning from the loudness level [21] or amount of other people around [24],
which can be used to judge whether the user is impaired in answering questions
that require considerable concentration.

408 J. He et al.

Information about situational impacts on cognitive performance. By
utilising contextual information, a requester can gain knowledge about the per-
formance of users in various environmental conditions. For instance, by stating a
request to several groups of users in various contextual situations, the requester
may learn about impacts on cognitive performance. Similarly, by controlling also
the situational impacts for a series of queries to several sets of users, the requester
can exclude side-effects on the result of a query.

4.2 New Crowdsourcing Processes

Crowdsourcing for the masses. A crowdsourcing platform on a mobile
device, available anytime and anywhere at the convenience of users will change
the principle nature of crowdsourcing. Constantly updated, up-to-date and per-
sonalised queries can be completed on-demand, interrupted and continued seam-
lessly. Another aspect is that mobile-based crowdsourcing mitigates hierarchies.
Requester and source fall together to the same person as everybody is in the
position to state a query. Consequently, quantity of queries will increase while
their complexity will fall.

Weakening the strong correlation between labour and human resources.
There is a strong relation between the physical location of labour and human
resources. While crowdsourcing in general is capable of weakening this correla-
tion, mobile crowdsourcing will further foster this development. In particular,
since queries can be more personalised, companies are capable of stating more
complex queries also for well-educated workers. This will open new possibilities
for workers to offer their workforce without the necessity to relocate.

Participatory Sensing. The envisaged crowdsourcing platform provides access
not only to manual input provided by users completing tasks, but also to sen-
sors attached to the mobile platform (Gyroscope, Camera, GPS, Magnetometer,
etc.) [17]. This might enable, for instance, quick requests for survey purposes
even without manual user intervention. Devices and services might extend their
contextual perception by harvesting (via automatically answered queries) for
sensor information from devices in proximity. Similarly, a mobile crowdsourcing
platform may be utilised to acquire labelled sensor data by requesting users to
perform specific actions which are then recorded. For example, researchers can
survey the relation between exercises and people’s ability of solving math prob-
lems by requesting workers to solve a math problem before and after performing
certain exercises. This process can be monitored and measures can be taken from
both user input and sensor input from the mobile devices. This type of tasks are
not feasible with traditional Web-based crowdsourcing platforms.

4.3 New Applications

Mobile crowdsourcing enables new applications for crowdsourcing. For instance,
crowdsourcing can replace a database when sensor-based or non-time critical
manual feedback is required. There are new challenges introduced by this

Towards Mobile Sensor-Aware Crowdsourcing 409

paradigm as data might then fluctuate in quality and quantity. In addition,
crowdsourcing may partly leave the virtual space through a mobile platform.
We envision, for instance, an event-hosting company that crowdsources actual
manpower on demand. Also, crowdsourcing for educational purposes may serve
the need of companies completing actual business-related tasks as well as the
need of learners. For instance, a company active in language translations may
provide users with text to be translated and later, after collection of all responses,
with the corrected aggregated results for educational purposes.

Crowdsourcing as an anonymised customer information system. Mobile
crowdsourcing can lower the burden and improve security and privacy in cus-
tomer information systems. Instead of collecting and maintaining customer-
related information for personalised interaction and product design, companies
can reach a desired sub-set of customers on demand through mobile crowd-
sourcing platforms. This will significantly reduce cost and release companies
from the burden to maintain huge databases of privacy-critical customer-related
information.

Enabling technology for smart cities. A city is defined as smart when invest-
ments fuel sustainable economic growth in the respective aspects ‘economy’,
‘mobility’, ‘environment’, ‘people’, ‘living’ and ‘governance’ [12,13].
A hyrid crowdsourcing platform connects people, government, industry and the
environment as all can state queries or provide input to requests stated. Mobile
crowdsourcing can therefore serve as an interaction principle in such environ-
ments and constitute the backbone of a smart city, interconnecting all major
entities.

Mobile crowdsourcing for energy management and smart buildings.
Mobile crowdsourcing platform integrates environmental sensors and services.
Humans and services acquire maintenance information from infrastructure and
surrounding sensors via queries limited by proximity or belonging to a specific
entity (building, room, etc.). In addition, services can serve as actuators, com-
pleting queries designed to control smart buildings and automation. In particu-
lar, the controlled entity might change relative to the location of the requester.

Mobile crowdsourcing as a chance for ubiquitous computing research.
Currently, there is a trend to ubiquitous and smart computing, which especially
includes wearable computing devices which transparently integrate into a user’s
life. Often, these devices need to detect the user’s current activity and context
in order to offer an appropriate service. However, detecting context and activity
is an ongoing research challenge, and many approaches heavily rely on machine-
learned models for this task. These, however, require exhaustive training data
of users in clearly defined contexts performing a given activity in order to train
those models. This training data is very hard to obtain efficiently and with the
high diversity required for creating rich detection models (for example, sensor
data of people riding a bicycle, or cooking in the kitchen, etc.). Therefore, mobile
crowdsourcing can provide a significant boost to this line of research by allowing
to acquire such training data quickly and cheaply.

410 J. He et al.

4.4 Challenges

High performance data processing and analysis mechanism. With a
mobile sensor-enabled crowdsourcing platform, we need to be able to process the
vast amounts continuously generated explicit user inputs (requests and responses)
as well as implicit sensor inputs in real time, e.g., in order to realise the above men-
tioned personalised request allocation and response aggregation. This requires
high performance computational power as well as sophisticated data mining and
machine learning algorithms that can scale to this type of data and give sponta-
neous responses. Further, sensor data as well as user inputs may be noisy. It is
non-trivial to extract meaningful features from the raw sensor data as input for
machine learning algorithms, or to derive human interpretable results.

Limitations of mobile devices. While mobile devices provide great flexibility
for people to perform tasks, there are also limitations. These include: the small
screen, the limitation of battery life, and the limited types of interactions allowed.
For instance, it is less convenient for people to type long sentences in a mobile
device compared to that on a PC. With these limitations in mind, dedicated
user experience studies need to be carried out while designing and implementing
mobile based HITs.

Data security and privacy issues. The proposed platform involves collecting
data such as a user’s location, activities, as well as other personal information
measured by the sensors. A major concern is therefore data security and privacy
issues. These personal information and mobile users’ activities may be disclosed
or abused by malicious users, which will threaten all other users. This problem
has to be approached by several angels, including well-designed policies restrict-
ing the flow of data and information, and also by carefully considering which
data needs to be anonymised, and which can be encrypted.

5 Conclusion

In this vision paper, we have discussed a mobile crowdsourcing paradigm which
can augment the current web-based crowdsourcing platforms to provide real-
time location based query response using mobile devices. Towards this goal, we
have provided a hybrid-crowdsourcing architecture and discussed several facets
to realize this vision. This mobile crowdsourcing approaches can filter and target
workers who more closely matches not only the queries, but also the location
and context requirements. In addition, some of the processing can be done in
the centralized web-based part of the proposed architecture, which reduces the
burden of processing queries on the mobile devices. This allows several new
application of crowdsourcing, especially in the areas of crowd-sensing, ubiquitous
computing, and smart cities.

Towards Mobile Sensor-Aware Crowdsourcing 411

References

1. Behrend, T.S., Sharek, D.J., Meade, A.W., Wiebe, E.N.: The viability of crowd-
sourcing for survey research. Behav. Res. Meth. 43(3), 800–813 (2011)

2. Bonabeau, E.: Decisions 2.0: the power of collective intelligence. MIT Sloan.
Manag. Rev. 50, 45–52 (2009)

3. Borst, I.: Understanding crowdsourcing - effects of motivation and rewards on
participation and performance in vountary online activities. Ph.D. thesis, Erasmus
research institute of Management, Rotterdam School of Management, Erasmus
School of Economics, Erasmus University Rotterdam (2010)

4. den Ende, J.V., Villarroel, A., Tucci, C.: Strategic crowdsourcing, orchestrating
innovation through the cream of the crowd. In: Panel Symposium, Academy of
Management Conference (2009)

5. Eagle, N.: txteagle: mobile crowdsourcing. In: Aykin, Nuray (ed.) IDGD 2009.
LNCS, vol. 5623, pp. 447–456. Springer, Heidelberg (2009)

6. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: Crowddb: answer-
ing queries with crowdsourcing. In: Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 61–72. ACM (2011)

7. Gupta, A., Thies, W., Cutrell, E., Balakrishnan, R.: mclerk: Enabling mobile
crowdsourcing in developing regions. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’12, pp. 1843–1852. ACM (2012)

8. He, J., van Ossenbruggen, J., de Vries, A.P.: Do you need experts in the crowd?:
a case study in image annotation for marine biology. In: Proceedings of the 10th
Conference on Open Research Areas in Information Retrieval, pp. 57–60 (2013)

9. Howe, J.: The rise of crowdsourcing 14(6) (2009). http://www.wired.com/wired/
archive/14.06/crowds.html

10. Jouret, G.: Inside cisco’s search for the next big idea. Harvard Bus. Rev. 87, 43–45
(2009)

11. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical turk. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 453–456. ACM (2008)

12. Komninos, N.: Intelligent Cities: Innovation, Knowledge Systems and Digital
Spaces. Spon Press, London (2002)

13. Komninos, N.: Intelligent cities: towards interactive and global innovation environ-
ments. Int. J. Innovation Reg. Dev. 1(4), 337–355 (2009)

14. Kunze, K., Kawaichi, H., Yoshimura, K., Kise, K.: Towards inferring language
expertise using eye tracking. In: CHI’13 Extended Abstracts on Human Factors in
Computing Systems, pp. 217–222. ACM (2013)

15. Lampel, J., Bhalla, A.: The role of status seeking in online communities: giving
the gift of experience. J. Comput. Mediated Commun. 122 (2007). http://jcmc.
indiana.edu/vol12/issue2/lampel.html

16. Lofi, C., Selke, J., Balke, W.-T.: Information extraction meets crowdsourcing: a
promising couple. Datenbank-Spektrum 12(2), 109–120 (2012)

17. Lukowicz, P., Pentland, A., Ferscha, A.: From context awareness to socially aware
computing. IEEE Pervasive Comput. 11(1), 32–41 (2012)

18. Narula, P., Gutheim, P., Rolnitzky, D., Kulkarni, A., Hartmann, B.: Mobileworks:
a mobile crowdsourcing platform for workers at the bottom of the pyramid. In:
Human Computation (2011)

19. Schuermann, D., Sigg, S.: Secure communication based on ambient audio. IEEE
Trans. Mob. Comput. 12(2), 358–370 (2013)

http://www.wired.com/wired/archive/14.06/crowds.html
http://www.wired.com/wired/archive/14.06/crowds.html
http://jcmc.indiana.edu/vol12/issue2/lampel.html
http://jcmc.indiana.edu/vol12/issue2/lampel.html

412 J. He et al.

20. Selke, J., Lofi, C., Balke, W.-T.: Pushing the boundaries of crowd-enabled data-
bases with query-driven schema expansion. Proc. VLDB Endowment 5(6), 538–549
(2012)

21. Sigg, S., Schuermann, D., Ji, Y.: Pintext: a framework for secure communication
based on context. In: Proceedings of the Eighth Annual International ICST Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous 2011) (2011)

22. Sigg, S., Gordon, D., von Zengen, G., Beigl, M., Haseloff, S., David, K.: Investiga-
tion of context prediction accuracy for different context abstraction levels. IEEE
Trans. Mob. Comput. 11(6), 1047–1059 (2012)

23. Sigg, S., Scholz, M., Shi, S., Ji, Y., Beigl, M.: Rf-sensing of activities from non-
cooperative subjects in device-free recognition systems using ambient and local sig-
nals. IEEE Trans. Mob. Comput. 13(4) (2013). doi http://doi.ieeecomputersociety.
org/10.1109/TMC.2013.28

24. Sigg, S., Blanke, U., Troester, G.: The telepathic phone: frictionless activity recog-
nition from wifi-rssi. In: IEEE International Conference on Pervasive Computing
and Communications (PerCom), PerCom ’14 (2014)

25. Wu, C., Gerlach, J., Young, C.: An empirical analysis of open source software devel-
opers motivations and continuance intentions. Inf. Manage. 44, 253–262 (2007)

http://doi.ieeecomputersociety.org/10.1109/TMC.2013.28
http://doi.ieeecomputersociety.org/10.1109/TMC.2013.28

Conditioning Probabilistic Relational Data
with Referential Constraints

Ruiming Tang1(B), Dongxu Shao1, M. Lamine Ba2, and Huayu Wu3

1 National University of Singapore, Singapore, Singapore
{tangruiming,dcsshaod}@nus.edu.sg

2 Institut Mines–Télécom, Télécom ParisTech; LTCI, Paris, France
mouhamadou.ba@telecom-paristech.fr

3 Institute for Infocomm Research, Singapore, Singapore
huwu@i2r.a-star.edu.sg

Abstract. A probabilistic relational database is a compact form of a
set of deterministic relational databases (namely, possible worlds), each
of which has a probability. In our framework, the existence of tuples is
determined by associated Boolean formulae based on elementary events.
An estimation, within such a setting, of the probabilities of possible
worlds uses a prior probability distribution specified over the elemen-
tary events. Direct observations and general knowledge, in the form of
constraints, help refining these probabilities, possibly ruling out some
possible worlds. More precisely, new constraints can translate the obser-
vation of the existence or non-existence of a tuple, the knowledge of
a well-defined rule, such as primary key constraint, foreign key con-
straint, referential constraint, etc. Informally, the process of enforcing
knowledge on a probabilistic database, which consists of computing a
new subset of valid possible worlds together with their new (conditional)
probabilities, is called conditioning. In this paper, we are interested in
finding a new probabilistic relational database after conditioning with
referential constraints involved. In the most general case, conditioning is
intractable. As a result, we restricted our study to probabilistic relational
databases in which formulae of tuples are independent events in order to
achieve some tractability results. We devise and present polynomial algo-
rithms for conditioning probabilistic relational databases with referential
constraints.

1 Introduction

Uncertainty of data naturally arises from such applications as information extrac-
tion [6], information integration [9,18] and version control [3], for instance.

Probabilistic databases address the problem of the management and of the
representation of uncertain data by means of probabilities. A good probabilistic
database model offers a representation of uncertain data that is generally com-
pact and easy to be managed. In a probabilistic database, an instance denotes
a set of possible deterministic database instances called possible worlds, each
of which has a probability that can be initially estimated according to limited

W.-S. Han et al. (Eds.): DASFAA 2014, LNCS 8505, pp. 413–427, 2014.
DOI: 10.1007/978-3-662-43984-5 32, c© Springer-Verlag Berlin Heidelberg 2014

414 R. Tang et al.

prior knowledge of data. Probabilistic relational databases [2,4,5,8,10–12,15,16]
represent uncertainties at attribute or tuple level, while schema is constrained.

Direct observations and general knowledge, in the form of constraints (such
as the existence or non-existence of a tuple, primary key constraint, foreign key
constraint, referential constraint, etc.), can be enforced into the database dur-
ing a data cleaning process, for instance. These constraints help refining the
probabilities of the possible worlds, possibly ruling out some of them. Enforcing
such constraints to the set of possible worlds with their probabilities is called
conditioning the probabilistic database. The core problem in probabilistic data-
base conditioning is to find a new probabilistic database instance that denotes
the subset of possible worlds with their new probabilities corresponding to the
conditional probabilities.

The conditioning problem in probabilistic relational databases has been stud-
ied in [14,17], respectively. Koch and Olteanu [14] show that relational condi-
tioning is NP-Hard. In our previous work [17], we identify tractable scenarios
for which we devise polynomial time algorithms. In [17], we focus on the special
case in which tuples are independent, and the kinds of constraints considered in
the tractable cases studied are observation constraints (i.e. existence constraints)
and X-tuple constraints (i.e. primary key constraints).

In this paper, we continue studying the problem of conditioning proba-
bilistic relational data. We adopt the data model in [17] and also focus on
the special class of probabilistic relational databases in which the formulae
attached to the tuples are independent events. We investigate a different kind
of constraints, namely referential constraints (also called inclusion dependency
[1]), from the ones we studied in [17]. A referential constraint is in the form
R[r1 . . . rm] ∼ S[s1 . . . sn], where R,S are (possibly identical) relation names,
r1 . . . rm is a subset of distinct attribute names of R and s1 . . . sn is a subset of
distinct attribute names of S [1]. This referential constraint is a foreign key con-
straint if s1 . . . sn is the primary key of S. A referential constraint in a real-life
example is presented in Example 1.

Example 1. There are two relations: Movies (Table 1) and Showings (Table 2).
Movies stores a set of movies with movies’ title, director and actors. Showings
stores locations (theater and hall) where movies are showed. Each tuple is associ-
ated with an independent event, representing the probability of this tuple being
actual. There is a referential constraint saying that all the showed movies must
be produced first, i.e. Showings[title] ∼ Movies[title]. ∈∀

The rest of this paper is structured as follows. We start by reviewing state-of-
the-art probabilistic relational models and conditioning probabilistic relational
databases in Sect. 2. Then, we present in Sect. 3 the probabilistic relational
data model we consider in this paper. We describe how a referential constraint
can be transformed to independent implication constraints and present three
classes of implication constraints in Sect. 4. Tractable algorithms are presented
for individual classes of implication constraints in Sects. 5, 6 and 7 respectively.
The class of constraints in Sect. 7 covers the first two classes in Sects. 5, 6 and it

Conditioning Probabilistic Relational Data with Referential Constraints 415

Table 1. Movies

Title Director Actor Event

Hobbit 2 Peter Jackson Martin Freeman e(b,1)
Hobbit 2 Peter Jackson Ian McKellen e(b,2)
Hunger Game 2 Francis Lawrence Jennifer Lawrence e(b,3)
Hunger Game 2 Francis Lawrence Liam Hemsworth e(b,4)
Fast & Furious 7 James Wan Vin Diesel e(b,5)
Fast & Furious 7 James Wan Paul Walker e(b,6)

Table 2. Showings

Theater Hall Title Event

Golden Village Hall 1 Hunger Game 2 e(a,1)
Golden Village Hall 2 Hunger Game 2 e(a,2)
Golden Village Hall 3 Hobbit 2 e(a,3)
Golden Village Hall 4 Hobbit 2 e(a,4)

actually is the class of general referential constraints. We conclude and present
future work in Sect. 8.

2 Related Work

We briefly review hereafter state-of-the-art probabilistic relational data models
and conditioning algorithms.

2.1 Probabilistic Relational Models

Probabilistic relational data models can be separated into two groups: tuple-level
models and attribute-level models. Granularity of uncertainty differs between the
two groups of models.

One simple idea to define a probabilistic relational model is the tuple-mutually-
exclusive model [5]. In this model, a probabilistic database is an ordinary data-
base where each tuple is associated with a probability of being actual. Each tuple
is mutually exclusive to any other tuple in the same probabilistic relation. The
sum of probabilities of all the tuples in a probabilistic relation is 1. In the tuple-
independent model [7], a probabilistic database is an ordinary database where
each tuple is associated with a probability of being actual, independent from any
other tuple. Mixing previous two models is the block-independent-disjoint model
[2,8,15]: tuples within a block are mutually-exclusive, while tuples across different
blocks are independent.

The expressiveness of block-independent-disjoint model is stronger than
tuple-independent model and tuple-mutually-exclusive model. However, it is not
expressive enough in some cases, when relationships between tuples, other than
independence and mutually exclusion, are needed.

416 R. Tang et al.

The most expressive model is probabilistic c−table (e.g. [11–13]). In this
model, each tuple is associated with a formula constructed from Boolean event
using operators ∩,≥,¬. Boolean events are independent and associated with
probabilities of being true. A tuple is actual if its associated formula is evaluated
to be true.

We adopt the probabilistic relational data model from [17]. It is a tuple-level
model with additional constraints integrated as first class citizens, i.e., extended
probabilistic c−table. The model caters for constraints rather than treating them
as add-ons, as other tuple-level models can be adapted to.

2.2 Conditioning

Koch and Olteanu [14] show that relational conditioning is NP-Hard, since the
probability computation problem of an arbitrary Boolean expression is hard.
They present a general but exponential time algorithm as well as efficient heuris-
tics and decomposition methods.

In [17], we identify tractable scenarios for which we devise polynomial time
algorithms. We focus on the special case in which tuples are independent and
the tractable cases studied are observation constraints (i.e. existence constraints)
and X-tuple constraints (i.e. primary key constraints).

In this paper, we also focus on the special case in which tuples are indepen-
dent, but we study a different set of constraints, namely referential constraints,
from the ones studied in [17].

3 Data Model

In [17], we introduced a framework for conditioning probabilistic relational data.
In this section, we briefly review the conditioning framework in [17]. In the end
of this section, we present two theorems which are not studied in [17].

Let E be a set of symbols called events (e). A complex event (ce) is a well
formed formula of propositional logic in which events are propositions. C(E) is
the set of complex events formed with the events in E. An interpretation of a
complex event is a function from E to {true, false}.

Definition 1. (Probabilistic Relational Database). A probabilistic relational
database D is a quintuple ⊂D,E, f, C, p∨: D is a traditional database instance,
E is a set of events, f is a function from D to C(E), C is a subset of C(E), and
p is a function from E to [0, 1].

The probability of a complex event c, noted p(c), is

p(c) =
∑

I∞M(c)

((
∏

I(e)=true

p(e)) × (
∏

I(e)=false

(1 − p(e))))

where M(c) is the set of models of c.

Conditioning Probabilistic Relational Data with Referential Constraints 417

Informally and in short, a possible world is a traditional relational database
such that the complex events associated with the tuples in the possible world
are true, the complex events associated with the tuples not in the possible world
are false, and the constraints in C are true. The probability of a possible world is
the probability to find such a model given the probabilities of individual events,
under the condition that the constraints are held.

Definition 2. (Possible Worlds). Let D = ⊂D,E, f, C, p∨ be a probabilistic rela-
tional database. D→ is a possible world of D if and only if there exists a model
of the following formula F with a non zero probability.

F = (
∧

ti∞D′
f(ti)) ∩ (

∧

ti /∞D′
¬f(ti)) ∩ (

∧

c∞C

c) and p(F) ⊕= 0

We call pD(D→) the probability, p(F |C), of the possible world D→ in the prob-
abilistic relational database D. We call P(D) the set of possible worlds of D.

D is consistent (resp. inconsistent) if and only if there exists at least one
possible world (resp. there does not exist a possible world) of D, i.e. P(D) ⊕= ∅
(resp. P(D) = ∅). D is inconsistent iff C is always evaluated to be false. Note
that we define the concept of “consistent” only for defining the conditioning
problem.

We defined an equivalent relationship on probabilistic relational databases.
Two probabilistic relational databases are world-equivalent if they have the same
possible worlds with the same probabilities, i.e. D1 ≡w D2 if and only if:

∀D→ ∼ D ((D→ ∈ P(D1)) ↔ (D→ ∈ P(D2))) and

∀D→ ∈ P(D1)(pD1(D
→) = pD2(D

→))

We showed in [17] that for any consistent probabilistic relational database
D1 then there exists a probabilistic relational database D2 = ⊂D,E2, f2, ∅, p2∨
such that D2 ≡w D1.

Conditioning a probabilistic relational database consists in adding con-
straints. The conditioning problem consists in finding a world-equivalent
probabilistic relational database with no constraint, given one probabilistic rela-
tional database with constraints.

We prove below two propositions which are not studied in [17].

Proposition 1. Let D1 = ⊂D,E1, f1, C, p1∨ be a consistent probabilistic rela-
tional database. Let D2 = ⊂D,E2, f2, ∅, p2∨ be a probabilistic relational database
such that D1 ≡w D2. For a tuple t ∈ D, if f1(t) is independent of C, it is possible
to condition so that p1(f1(t)) = p2(f2(t)) and it is possible to have f2(t) = f1(t).

Proof.

p2(f2(t)) = p1(f1(t)|C) =
p1(f1(t) ∩ C)

p1(C)
=

p1(f1(t)) · p1(C)
p1(C)

= p1(f1(t))

418 R. Tang et al.

Since the formula of t is independent of C, it is possible to keep it unchanged.
For the other tuples in D (whose associated formulae are dependent on C),

their formula have to be updated and the probabilities of new created events
have to be defined. ∈∀

In this paper, we consider a special class of probabilistic relational databases,
namely probabilistic relational databases with independent events as the input of
the conditioning problem.

Proposition 2. Let D =< D,E1, f1, C, p1 > be a consistent probabilistic rela-
tional database with independent events. For a tuple t ∈ D, if f1(t) is indepen-
dent of C, it is possible to condition so that its formula f2(t) is also an unique
independent event and p1(f1(t)) = p2(f2(t)).

Proposition 2 is a direct consequence of Proposition 1.

4 Referential Constraints

In this section, we first present how a referential constraint can be transformed to
a set of independent implication constraints and we introduce the three kinds of
implication constraints for which we will then present algorithms in the following
sections. We then introduce one particular technical tool which relates to the
relevant part of a probabilistic relational database for a given constraint. We
also present the notion of possible worlds according to the relevant part of a
probabilistic relational database for a constraint.

4.1 Transforming Referential Constraints to Implication
Constraints

We start this section by defining the implication constraints.

Definition 3. (Implication Constraints). An implication constraint is a well
formed formula of propositional logic whose format is

m∨

i=1

e(a,i) ⇒
n∨

i=1

e(b,i)

A referential constraint can be transformed to a set of independent implica-
tion constraints. We illustrate this remark by using the example below.

Example 2. Consider the referential constraint in Example 1, i.e., all the showed
movies must be produced first, i.e. Showings[title] ∼ Movies[title]. In this
example, the referential constraint is transformed to two independent implication
constraints. If “Hobbit 2” is showed, then it must be produced, i.e. (e(a,3) ≥
e(a,4)) ⇒ (e(b,1)≥e(b,2)). If “Hunger Game 2” is showed, then it must be produced,
i.e. (e(a,1) ≥ e(a,2)) ⇒ (e(b,3) ≥ e(b,4)). Note that this result in only under the
probabilistic relational model with independent events. ∈∀

Conditioning Probabilistic Relational Data with Referential Constraints 419

In the next section, we will prove that conditioning two independent con-
straints yields the same result as conditioning them separately (Theorem 2),
therefore we consider conditioning a single implication constraint in the
rest of the paper. Note that when there are multiple referential constraints or
there are multiple dependent implication constraints, our algorithms (which will
be presented later) cannot be applied to solve the conditioning problem, because
tuples affected by the constraints may have complicated formulae to make our
algorithm fail to work.

Given a referential constraint R[r1, r2, ..., rm] ∼ S[s1, s2, ..., sn], we present
below three classes of implication constraints (in the form of

∨m
i=1 f1(t(a,i)) ⇒∨n

i=1 f1(t(b,i))). In the rest of this paper, we use A to represent the set of tuples
{t(a,1), ..., t(a,m)} and we use B to present the set of tuples {t(b,1), ..., t(b,n)}.

– when r1, r2, ..., rm is the primary key of R and s1, s2, ..., sn is the primary
key of S, we have A = {t(a,1)}, B = {t(b,1)}. We refer to this class as FKPK
constraints. This class of constraints is realistic when relation R is a subclass
of relation S.

– when s1, s2, ..., sn is the primary key of S, we have A = {t(a,1), ..., t(a,m)}, B =
{t(b,1)}. This is the class of foreign key constraints, and we refer to this class
as FK constraints.

– for a general referential constraint, we have A = {t(a,1), ..., t(a,m)}, B = {t(b,1),
..., t(b,n)}. This is the most general class of referential constraints and
we refer to this class as REF constraints.

4.2 Local Database and Local Possible Worlds

Corollary 1. Let D = ⊂D,E1, f1, C, p1∨ be a consistent probabilistic relational
database with independent events and C be an implication constraint. After con-
ditioning, (1) the formulae of all the tuples in A and B must be updated and the
probabilities of new events must be defined; (2) for the other tuples, the formulae
and probabilities are unmodified.

This corollary can be deduced from Proposition 2, because if t /∈ A∪B, then
f1(t) is independent of C.

Definition 4. (Local Database). Let D = ⊂D,E1, f1, C, p1∨ be a consistent prob-
abilistic relational database with independent events and C be an implication
constraint over two sets of tuples1 A,B. The local database, that we denote by
LD(C,D) of D with respect to C is A ∪ B.

Theorem 1. Let D1 = ⊂D,E1, f1, C, p1∨ be a consistent probabilistic relational
database with independent events and D2 = ⊂D,E2, f2, ∅, p2∨ be a probabilistic
relational database. C is an implication constraint. We claim that D1 ≡w D2 iff
⊂LD(C,D), E1, f1, C, p1∨ ≡w ⊂LD(C,D), E2, f2, ∅, p2∨.
1 We do not distinguish tuples and their associated events because we study the

probabilistic relational model with independent events.

420 R. Tang et al.

Theorem 2. Let D1 = ⊂D,E1, f1, {C1, C2}, p1∨ be a consistent probabilistic
relational database with independent events, where C1, C2 are two independent
implication constraints. D2 = ⊂D,E2, f2, ∅, p2∨ is a probabilistic relational data-
base. We claim that D2 ≡w D1 iff ⊂LD(C1,D), E1, f1, C1, p1∨ ≡w ⊂LD(C1,D), E2,
f2, ∅, p2∨ and ⊂LD(C2,D), E1, f1, C2, p1∨ ≡w ⊂LD(C2,D), E2, f2, ∅, p2∨.
Proof. Since C1, C2 are independent, and the events of tuples are also indepen-
dent, we deduce that LD(C1,D) ∩ LD(C2,D) = ∅. Moreover, due to Proposition
2, the formulae of tuples in LD(C1,D) are not updated by enforcing C2, and
conversely the formulae of tuples in LD(C2,D) are not changed by enforcing C1.
Therefore we can enforce C1, C2 separately without affecting each other. Based
on Theorem 1, we can prove the desired claim. ∈∀
Definition 5. (Local Possible Worlds). The local possible worlds of D1 =
⊂D,E1, f1, C, p1∨ correspond to the possible worlds of ⊂LD(C,D), E1, f1, C, p1∨.

If the number of local possible worlds is polynomial to the size of the local
database, a P-TIME conditioning algorithm is trivial to devise by enumerating all
the local possible worlds. While the number of local possible worlds is exponential
to the size of the local database, finding a P-TIME conditioning algorithm is a
challenge. Therefore, before going to study conditioning algorithms, we show the
numbers of local possible worlds for different classes of implication constraints.

For an FKPK constraint, the number of local possible worlds is 3: (1) 1 local
possible worlds when t(a,1), t(b,1) exist; (2) 1 local possible worlds when t(a,1) does
not exist and t(b,1) exists; (3) 1 local possible worlds when neither of t(a,1), t(b,1)
exist.

For an FK constraint, the number of local possible worlds is 2m + 1, which is
exponential to the number of tuples in the local database: (1) when at least one
of {t(a,1), ..., t(a,m)} exists and t(b,1) exists, there are 2m−1 local possible worlds;
(2) when {t(a,1), ..., t(a,m)} does not exist and t(b,1) exists, there is 1 local possible
worlds; (3) when {t(a,1), ..., t(a,m)} does not exist and t(b,1) does not exist, there
is 1 local possible worlds.

For a REF constraint, the number of local possible worlds is 2n+(2m−1)(2n−
1), which is exponential to the number of tuples in the local database: (1) when
at least one of {t(a,1), ..., t(a,m)} exists and at least one of {t(b,1), ..., t(b,n)} exists,
there are (2m − 1)(2n − 1) local possible worlds; (2) when {t(a,1), ..., t(a,m)} does
not exist and at least one of {t(b,1), ..., t(b,n)} exists, there are 2n−1 local possible
worlds; (3) when {t(a,1), ..., t(a,m)} does not exist and {t(b,1), ..., t(b,n)} does not
exist as well, there is 1 local possible world.

5 Conditioning Algorithm for FKPK Constraints

In this section, we present a conditioning algorithm for FKPK constraints. In an
FKPK constraint, A = {ti} and B = {tj}. Assume f1(ti) = ei and f1(tj) = ej .
The local database is LD(C,D) = {ti, tj}.

Conditioning Probabilistic Relational Data with Referential Constraints 421

Algorithm 1. Conditioning algorithm for FKPK implication constraints
Data: ∼LD(C, D), E1, f1, C, p1∈
Result: A world equivalent ∼LD(C, D), E2, f2, ∪, p2∈

1 f2(ti) ⊕ xi, f2(tj) ⊕ xi → xj ;

2 p2(xi) =
p1(ei)p1(ej)

p1(C)
, p2(xj) = p1(ej);

The implication constraint is formulated as ei ⇒ ej . Its probability is com-
puted as

p1(C) = p1(¬ei ≥ ej) = p1(ej) + (1 − p1(ei))(1 − p1(ej))

The probability of such a constraint can be computed in linear time. Algo-
rithm 1 presents the conditioning algorithm for FKPK constraints. It introduces
2 events for the tuples. The time complexity of Algorithm 1 is linear to the size
of the local database.

Theorem 3. Algorithm 1 is correct and performs in linear time.

Proof. There are three possible worlds of ⊂LD(C,D), E1, f1, C, p1∨: in K1, neither
of ti and tj exists; in K2, only tj exists; in K3, both of ti and tj exist. After
conditioning, ⊂LD(C,D), E2, f2, ∅, p2∨ has the same three possible worlds. We are
going to prove that for each possible world, its probability after conditioning is
the same as before conditioning.

– For K1,

p2(K1) = p2(¬xi ∩ ¬xj) = (1 − p2(xi))(1 − p2(xj))

=
p1(C) − p1(ei)p1(ej)

p1(C)
(1 − p1(ej)) =

(1 − p1(ei))(1 − p1(ej))
p1(C)

= p1(K1)

– For K2,

p2(K2) = p2(¬xi ∩ xj) = (1 − p2(xi))p2(xj)

=
p1(C) − p1(ei)p1(ej)

p1(C)
p1(ej) =

(1 − p1(ei))p1(ej)
p1(C)

= p1(K2)

– For K3,

p2(K3) = p2(xi) =
p1(ei)p1(ej)

p1(C)
= p1(K3)

Algorithm 1 performs in linear time since it introduces two events and their
probabilities can be computed in constant time. ∈∀

422 R. Tang et al.

Algorithm 2. Conditioning algorithm for FK implication constraints
Data: ∼LD(C, D), E1, f1, C, p1∈
Result: A world equivalent ∼LD(C, D), E2, f2, ∪, p2∈

1 foreach i ∈ [1, m] do
2 f2(t(a,i)) ⊕ η ∧ xi;
3 f2(t(b,1)) ⊕ (η ∧∨m

i=1 xi) → λ
4 foreach i ∈ [1, m] do
5 p2(xi) = p1(e(a,i));

6 p2(λ) = p1(e(b,1)), p2(η) =
p1(e(b,1))

p1(C)
;

6 Conditioning Algorithm for FK Constraints

In this section, we present a conditioning algorithm for FK constraints. In an
FK constraint, A = {t(a,1), ..., t(a,m)} and B = {t(b,1)}. Assume f1(ti) = ei. The
local database is LD(C,D) = {t(a,1), ..., t(a,m), t(b,1)}.

The constraint is formulated as
∨m

i=1 e(a,i) ⇒ e(b,1). Its probability is com-
puted as

p1(C) = p1(¬
m∨

i=1

e(a,i) ≥ e(b,1)) = p1(
m∧

i=1

¬e(a,i) ≥ e(b,1))

= p1(
m∧

i=1

¬e(a,i)) + p1(e(b,1)) − p1(
m∧

i=1

¬e(a,i) ∩ e(b,1))

=
m∏

i=1

(1 − p1(e(a,i))) + p1(e(b,1)) −
m∏

i=1

(1 − p1(e(a,i)))p1(e(b,1))

= p1(e(b,1)) + (1 − p1(e(b,1)))
m∏

i=1

(1 − p1(e(a,i)))

The probability of such a constraint can be computed in linear time. Algo-
rithm 2 presents the conditioning algorithm for FK constraints. It introduces
m + 2 events. The time complexity of Algorithm 2 is linear to the size of the
local database.

Theorem 4. Algorithm 2 is correct and performs in linear time to size of the
local database.

Proof. There are 2m+1 possible worlds of ⊂LD(C,D), E1, f1, C, p1∨: in K1, there
is no tuple; in K2, there is only t(b,1) exists; in the other 2m − 1 possible
worlds, t(b,1) exists and at least one of t(a,1), ..., t(a,m) exists. After condition-
ing, ⊂LD(C,D), E2, f2, ∅, p2∨ has the same possible worlds. We are going to prove
that for each possible world, its probability after conditioning is the same as
before conditioning.

Conditioning Probabilistic Relational Data with Referential Constraints 423

– For K1,

p2(K1) = p2(¬λ ∧ (¬η ∨ η ∧
m∧

i=1

¬xi)) = (1 − p2(λ))(1 − p2(η) + p2(η)

m∏

i=1

(1 − p2(xi)))

= (1 − p1(e(b,1)))(1 − p1(e(b,1))

p1(C)
+

p1(e(b,1))

p1(C)

m∏

i=1

(1 − p1(e(a,i))))

=
1 − p1(e(b,1))

p1(C)
(p1(C) − p1(e(b,1)) + p1(e(b,1))

m∏

i=1

(1 − p1(e(a,i))))

=
1 − p1(e(b,1))

p1(C)

m∏

i=1

(1 − p1(e(a,i))) = p1(K1)

– For K2, the proof is similar to K1, except that λ is true in K2.
– For the other 2m − 1 possible worlds, their proofs are similar, therefore we

only show one of them. Consider the possible world K that t(b,1) exists, t(a,k)
exists and all the others do not.

p2(K) = p2(η ∩ xk ∩
m∧

i=1,i ≺=k

¬xi) = p2(η)p2(xk)
m∏

i=1,i ≺=k

(1 − p2(xi))

=
p1(e(b,1))

p1(C)
p1(e(a,k))

m∏

i=1,i ≺=k

(1 − p1(e(a,i))) = p1(K)

Algorithm 2 performs in linear time since it introduces m + 2 events and their
probabilities can be computed in constant time. �

We illustrate Algorithm 2 by an example.

Example 3. A = {t(a,1), t(a,2), t(a,3)} and B = {t(b,1)}. f1(t(a,1)) = e(a,1),
f1(t(a,2)) = e(a,2), f1(t(a,3)) = e(a,3), f1(t(b,1)) = e(b,1). The FK implication con-
straint is (e(a,1) ≥ ea,2 ≥ ea,3) ⇒ e(b,1).

After conditioning, f2(t(a,1)) = η ∩ x1, f2(t(a,2)) = η ∩ x2, f2(t(a,3)) = η ∩
x3, f2(t(b,1)) = (η∩(x1≥x2≥x3))≥λ. The probabilities of new events are p2(x1) =
p1(e(a,1)), p2(x2) = p1(e(a,2)), p2(x3) = p1(e(a,3)), p2(λ) = p1(e(b,1)), p2(η) =
p1(e(b,1))

p1(C) . ∈∀

7 Conditioning Algorithm for REF Constraints

In this section, we present conditioning algorithms for REF constraints.

7.1 Simplified Case

To understand the conditioning algorithm for REF constraints better, we con-
sider a simplified version of REF constraint first. In this case, A = {t(a,1)} and
B = {t(b,1), ..., t(b,n)}. Assume f1(ti) = ei. The local database is LD(C,D) =

424 R. Tang et al.

Algorithm 3. Conditioning algorithm for simplified REF implication con-
straints
Data: ∼LD(C, D), E1, f1, C, p1∈
Result: A world equivalent ∼LD(C, D), E2, f2, ∪, p2∈

1 f2(t(a,1)) ⊕ λ
2 f2(t(b,1)) ⊕ (λ ∧ x1) → y1

3 foreach i ∈ [2, n − 1] do

4 f2(t(b,i)) ⊕ (λ ∧∧i−1
j=1(¬xj ∧ ¬yj) ∧ xi) → yi;

5 f2(t(b,n)) ⊕ (λ ∧∧n−1
j=1 (¬xj ∧ ¬yj)) → yn;

6 foreach i ∈ [1, n] do
7 p2(yi) = p1(e(b,i));
8 foreach i ∈ [1, n − 1] do

9 p2(xi → yi) =
p1(e(b,i))

p1(
∨n

j=i e(b,j))
;

10 p2(λ) =
p1(e(a,1))p1(

∨n
i=1 e(b,i))

p1(C)
;

{t(a,1), t(b,1), ..., t(b,n)}. The constraint is formulated as e(a,1) ⇒ ∨n
i=1 e(b,i). Its

probability is computed as

p1(C) = p1(¬e(a,1) ≥
n∨

i=1

e(b,i)) = 1 − p1(e(a,1)) + p1(e(a,1))p(
n∨

i=1

e(b,i))

The probability of such a constraint can be computed in linear time, since the
probability of a disjunction of independent events can be computed associatively.
Algorithm 3 presents the conditioning algorithm for simplified REF constraints.
It introduces 2n events. The time complexity of Algorithm 3 is linear to the size
of the local database.

Theorem 5. Algorithm 3 is correct and performs in linear time to size of the
local database.

We omit the proof since it is similar to the proof of previous theorems. The
basic idea of the proof is to prove for every possible world, its probability is
the same after conditioning as before. Moreover, we have to make sure all the
probability values are valid, i.e,

– p2(xi ≥ yi) ∈ [0, 1].
It is true, because p1(e(b,i)) ≤ p1(

∨n
j=i e(b,j)) and from line 9 of Algorithm 3

we know that p2(xi ≥ yi) ∈ [0, 1].
– p2(xi ≥ yi) ≥ p2(yi).

It is true, because p1(
∨n

j=i e(b,j)) ≤ 1, and from line 7, 9 of Algorithm 3 we
know that p2(xi ≥ yi) ≥ p2(yi).

– p2(λ) ∈ [0, 1].
It is true, because p1(e(a,1))p1(

∨n
i=1 e(b,i)) ≤ p1(C) (from the formulae of C)

and from line 10 of Algorithm 3 we know that p2(λ) ∈ [0, 1].

We illustrate Algorithm 3 by the example below.

Conditioning Probabilistic Relational Data with Referential Constraints 425

Example 4. A = {t(a,1)} and B = {t(b,1), t(b,2), t(b,3)}. f1(t(a,1)) = e(a,1), f1(t(b,1))
= e(b,1), f1(t(b,2)) = e(b,2), f1(t(b,3)) = e(b,3). The simplified REF implication con-
straint is e(a,1) ⇒ (e(b,1) ≥ eb,2 ≥ eb,3).

After conditioning, f2(t(a,1)) = λ, f2(t(b,1)) = (λ ∩ x1) ≥ y1, f2(t(b,2)) =
(λ ∩ ¬x1 ∩ ¬y1 ∩ x2) ≥ y2, f2(t(b,3)) = (λ ∩ ¬x1 ∩ ¬y1 ∩ ¬x2 ∩ ¬y2) ≥ y3. The
probabilities of new events are p2(y1) = p1(e(b,1)), p2(y2) = p1(e(b,2)), p2(y3) =

p1(e(b,3)), p2(x1 ≥y1) = p1(e(b,1))

p1(e(b,1)∗e(b,2)∗e(b,3))
, p2(x2 ≥y2) = p1(e(b,2))

p1(e(b,2)∗e(b,3))
, p2(λ) =

p1(e(a,1))p1(e(b,1)∗e(b,2)∗e(b,3))

p1(C) . ∈∀

7.2 General Case

In a REF constraint, A = {t(a,1), ..., t(a,m)} and B = {t(b,1), ..., t(b,n)}. Assume
f1(ti) = ei. The local database is LD(C,D) = {t(a,1), ..., t(a,m), t(b,1), ..., t(b,n)}.

The constraint is formulated as
∨m

i=1 e(a,i) ⇒ ∨n
i=1 e(b,i). Its probability is

computed as

p1(C) = p1(¬
m∨

i=1

e(a,i) ≥
n∨

i=1

e(b,i)) = p1(
m∧

i=1

¬e(a,i) ≥
n∨

i=1

e(b,i))

=
m∏

i=1

(1 − p1(e(a,i))) + p1(
n∨

i=1

e(b,i))p1(
m∨

i=1

e(a,i))

The probability of such a constraint can be computed in linear time, since the
probability of a disjunction of independent events can be computed associatively.
Algorithm 4 presents the conditioning algorithm for simplified REF constraints.
It introduces m+2n events. The time complexity of Algorithm 4 is linear to the
size of the local database.

Theorem 6. Algorithm 4 is correct and performs in linear time to size of the
local database.

We omit the proof since it is similar to the proof of previous theorems. The
basic idea of the proof is to prove for every possible world, its probability is
the same after conditioning as before. Moreover, we have to make sure all the
probability values are valid, i.e,

– p2(xi ≥ yi) ∈ [0, 1].
It is true for the same reason as the previous section.

– p2(xi ≥ yi) ≥ p2(yi).
It is true for the same reason as the previous section.

– p2(λ) ∈ [0, 1].
It is true, because we can deduce p1(

∨n
i=1 e(b,i)) ≤ p1(C) from

p1(C) = p1(
n∨

i=1

e(b,i)) +
m∏

i=1

(1 − p1(e(a,i)))
n∏

i=1

(1 − p1(e(b,i)))

426 R. Tang et al.

Algorithm 4. Conditioning algorithm for REF implication constraints
Data: ∼LD(C, D), E1, f1, C, p1∈
Result: A world equivalent ∼LD(C, D), E2, f2, ∪, p2∈

1 foreach i ∈ [1, m] do
2 f2(t(a,i)) ⊕ λ ∧ ai

3 f2(t(b,1)) ⊕ (λ ∧∨m
j=1 aj ∧ x1) → y1

4 foreach i ∈ [2, n − 1] do

5 f2(t(b,i)) ⊕ (λ ∧∨m
j=1 aj ∧∧i−1

j=1(¬xj ∧ ¬yj) ∧ xi) → yi;

6 f2(t(b,n)) ⊕ (λ ∧∨m
j=1 aj ∧∧n−1

j=1 (¬xj ∧ ¬yj)) → yn;

7 foreach i ∈ [1, m] do
8 p2(ai) = p1(e(a,i));
9 foreach i ∈ [1, n] do

10 p2(yi) = p1(e(b,i));
11 foreach i ∈ [1, n − 1] do

12 p2(xi → yi) =
p1(e(b,i))

p1(
∨n

j=i e(b,j))
;

13 p2(λ) =
p1(
∨n

i=1 e(b,i))

p1(C)
;

We illustrate Algorithm 4 using the example below.

Example 5. A = {t(a,1), t(a,2)} and B = {t(b,1), t(b,2)}. f1(t(a,1)) = e(a,1),
f1(t(a,2)) = e(a,2), f1(t(b,1)) = e(b,1), f1(t(b,2)) = e(b,2). The REF implication con-
straint is (e(a,1) ≥ e(a,2)) ⇒ (e(b,1) ≥ eb,2).

After conditioning, f2(t(a,1)) = λ∩a1, f2(t(a,2)) = λ∩a2, f2(t(b,1)) = (λ∩(a1≥
a2)∩x1)≥y1, f2(t(b,2)) = (λ∩(a1≥a2)∩¬x1∩¬y1)≥y2. The probabilities of new
events are p2(y1) = p1(e(b,1)), p2(y2) = p1(e(b,2)), p2(a1) = p1(e(a,1)), p2(a2) =

p1(e(a,2)), p2(x1 ≥ y1) = p1(e(b,1))

p1(e(b,1)∗e(b,2))
, p2(λ) = p1(e(b,1)∗e(b,2))

p1(C) . ∈∀

8 Conclusion and Future Work

In this paper, we have studied the problem of conditioning probabilistic relational
data with referential constraints. We focus on the special case of probabilistic
relational databases with independent events. We present and devise tractable
algorithms for three classes of implication constraints, namely FKPK, FK and
REF. REF is the class of general referential constraints and covers FKPK and FK
constraints.

A probabilistic relational model captures only the uncertainty of data value,
while probabilistic XML, as a hierarchical data model, captures the uncertainty
of both value and structure. The uncertainty of the structure of data introduces
new challenges for the conditioning problem. The implication constraints are
also practical in probabilistic XML data, i.e., existence of a set of nodes implies
existence of another set of nodes. We are now studying conditioning probabilistic
XML data with implication constraints.

Conditioning Probabilistic Relational Data with Referential Constraints 427

Acknowledgments. This paper is partially supported by the French government
under the STIC-Asia program, CCIPX project. The work by Huayu Wu is supported
by the A*STAR SERC Grant No. 1224200004.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, Addison-Wesley,
Boston (1995)

2. Agarwal, P., Bemjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,
Widom, J.: Trio: a system for data, uncertainty, and lineage. In: VLDB (2006)

3. Ba, M.L.., Abdessalem, T., Senellart, P.: Uncertain version control in open collab-
orative editing of tree-structured documents. In: Proceedings of Document Engi-
neering, Florence, Italy (2013)

4. Barbará, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data.
IEEE Trans. Knowl. Data Eng. 4(5), 482–507 (1992)

5. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: Proceedings
of VLDB (1987)

6. Chang, C.-H., Kayed, H., Girgis, M.R., Shaalan, K.F.: A survey of Web information
extraction systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)

7. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(4), 523–544 (2007)

8. Dey, D., Sarkar, S.: Psql: a query language for probabilistic relational data. Data
Knowl. Eng. 28(1), 107–120 (1998)

9. Dong, X.L., Halevy, A., Yu, C.: Data integration with uncertainty. VLDB J. 18(2),
469–500 (2009)

10. Eiter, T., Lukasiewicz, T., Walter, M.: A data model and algebra for probabilistic
complex values. Proc. Ann. Math. Artif. Intell. 33, 205–252 (2001)

11. Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in
probabilistic databases. In: ICDE, pp. 315–326 (2011)

12. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of infor-
mation retrieval and database systems. ACM Trans. Inf. Syst. 15(1), 32–66 (1997)

13. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information. In:
Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S.,
Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006.
LNCS, vol. 4254, pp. 278–296. Springer, Heidelberg (2006)

14. Koch, C., Olteanu, D.: Conditioning probabilistic databases. In: Proceedings of
PVLDB (2008)

15. Re, C., Suciu, D.: Materialized views in probabilistic databases for information
exchange and query optimization. In: Proceedings of VLDB, pp. 51–62 (2007)

16. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Clay-
pool, San Rafael (2011)

17. Tang, R., Cheng, R., Wu, H., Bressan, S.: A framework for conditioning uncertain
relational data. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA
2012, Part II. LNCS, vol. 7447, pp. 71–87. Springer, Heidelberg (2012)

18. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data
integration. In: Proceedings of ICDE (2005)

Author Index

Abdessalem, Talel 360
Ali, Mohammed Eunus 256
Amarilli, Antoine 351
Amsterdamer, Yael 351

Ba, M. Lamine 360, 413
Baba, Yukino 376
Balke, Wolf-Tilo 376
Basak, Madhusudan 256
Berning, Tim 132
Bouguila, Nizar 18

Chang, Dong 117
Cho, Hyunsouk 376
Cui, Ge 317

Dev, Himel 256
Dong, Tingting 271

Fan, Wentao 18
Faust, Martin 132
Fort, Marta 308

Gao, Feng 388
Gao, Yang 329
Grund, Martin 132
Guan, Jihong 283
Guo, Wan 179

Hacid, Mohand-Saïd 161
Hassani, Marwan 146
Hayashi, Arata 271
He, Jiyin 403
Hong, Jihye 75
Huang, Bei 329
Huang, Chih-Yuan 342
Hwang, Seung-won 376

Ishikawa, Yoshiharu 271

Jain, Rohit 388
Jeong, Byeong-Soo 75

Khalafbeigi, Tania 342
Kim, Hyunwook 75
Kim, Jinho 89
Kunze, Kai 403

Kusmawan Putu, Y. 61
Kwon, Dae-Won 317
Kwon, Joonho 61

Lee, Suan 89
Lee, Wookey 89
Lee, Young-Koo 75
Li, Chao 296
Li, Hao 192
Li, Huiming 192
Li, Wengen 283
Li, Zhanhuai 179, 243
Liang, Steve 342
Lofi, Christoph 403
Luo, Jun 296

Maarry, Kinda El 376
Madria, Sanjay K. 403
Mesmoudi, Amin 161
Milo, Tova 351
Möller, Paul 102
Montenez, Sebastien 360
Morimoto, Yasuhiko 33
Müller, Stephan 102

Nawaz, Waqas 75

Pan, Wei 243
Park, Kisung 75
Plattner, Hasso 102, 132
Prabhakar, Sunil 388

Qin, Xiao 179

Rasyidi, Mohammad Arif 46
Ryu, Kwang Ryel 46

Schwalb, David 132
Seidl, Thomas 146
Sellarès, J. Antoni 308
Sen, Tanmoy 256
Sha, Chaofeng 217
Shao, Dongxu 413
Si, Luo 388
Siddique, Md. Anisuzzaman 33
Sigg, Stephan 403

Sugiura, Kento 271
Sun, Jing 230
Sun, Yi 217
Suo, Bo 243

Tanaka, Yuzuru 3
Tang, Ruiming 360, 413
Tian, Hao 33

Wang, Bin 230
Wang, Li 204
Wang, Mea 342
Wang, Xin 317
Wang, Zhuo 243
Wu, Hao 192
Wu, Huayu 413

Yang, Xiaochun 230
Yin, Ling 296
Yu, Chengcheng 204
Yu, Ge 117
Yuan, Peisen 217

Zhang, Lei 204
Zhang, Xiao 179
Zhang, Yanfeng 117
Zhang, Zimu 192
Zhao, Xiaonan 179
Zhao, Zhongying 296
Zhou, Aoying 204
Zhou, Qiming 296
Zhou, Shuigeng 283
Zong, Chuanyu 230

430 Author Index

	Preface
	DASFAA 2014 Workshop Organizers
	BDMA 2014 Workshop Organizers’ Message
	DaMEN 2014 Workshop Organizers’ Message
	SIM3 2014 Workshop Organizers’ Message
	UnCrowd 2014 Workshop Organizer’ Message
	Contents
	Second International DASFAAWorkshop on Big Data Managementand Analytics (BDMA)
	Meme Media and Knowledge Federation for Exploratory Visual Analytics of Big Data
	Abstract
	1 Introduction
	2 Requirements for Exploratory Visual Analytics
	3 A Coordinated-Multiple-Views Framework Based on Meme Media
	3.1 Quantification of Database Objects Through Each View
	3.2 Meme Media and Knowledge Federation as Enabling Technologies
	3.3 Composition of a Parallel Coordinate System
	3.4 TOB Based on Our Coordinated-Multiple-Views Framework
	3.5 Geospatial Digital Dashboard Based on Our ‘‘Coordinated Multiple Views’’ Framework

	4 Coordinated-Multiple-Analyses Framework Based on Meme Media
	4.1 Integration with Clustering Tools and Their Result Visualizations
	4.2 Integration with Frequent Pattern Mining Tools and Their Result Visualizations
	4.3 Integration with Statistical Analysis Tools and Their Result Visualization

	5 Similar Systems
	6 Conclusion
	References

	Online Data Clustering Using Variational Learning of a Hierarchical Dirichlet Process Mixture of Dirichlet Distributions
	1 Introduction
	2 Hierarchical DP Mixture of Dirichlet Distributions
	2.1 Dirichlet Process
	2.2 Hierarchical DP Mixture Model of Dirichlet Distributions

	3 Online Variational Model Learning
	3.1 Batch Variational Inference
	3.2 Online Variational Inference

	4 Experimental Results: Online Images Categorization
	4.1 Experimental Design
	4.2 Methodology and Results

	5 Conclusion
	References

	Distributed Skyline Computation of Vertically Splitted Databases by Using MapReduce
	1 Introduction
	2 Related Work
	2.1 Skyline Query Processing
	2.2 MapReduce Based Query Processing

	3 Preliminaries
	4 Distributed Skyline Using MapReduce
	4.1 Distributed Data Sorting Phase
	4.2 Map and Ranking Phase
	4.3 Reduce and Skyline Computation Phase

	5 Performance Evaluation
	6 Conclusion
	References

	Short-Term Speed Prediction on Urban Highways by Ensemble Learning with Feature Subset Selection
	Abstract
	1 Introduction
	2 Traffic Speed Prediction Problem
	3 Proposed Method
	3.1 Model Tree
	3.2 Ensemble of Model Trees for Traffic Speed Prediction
	3.3 Selecting Neighboring Links
	3.4 Feature Subset Selection

	4 Experimental Procedure
	4.1 Data Preparation
	4.2 Prediction Models
	4.3 Feature Selection Method
	4.4 Error Measurement

	5 Results
	5.1 Dataset Selection
	5.2 Comparison of Different Feature Subset Selection Methods
	5.3 Performance Comparison
	5.4 Longer Prediction Horizon

	6 Conclusion
	Acknowledgments
	References

	Graph Summarization Using Word Correlation Analysis on Large Set of Documents
	1 Introduction
	2 System Overview
	3 Importance Score Analysis
	3.1 Document Preprocessing
	3.2 Occurrence Frequency Analysis
	3.3 Adjacent Correlation Analysis
	3.4 Importance Score Analysis

	4 Graph Structure
	4.1 Graph Structure Construction
	4.2 The Usability of Graph Structure

	5 Evaluation
	5.1 Experimental Environments
	5.2 Accuracy Test
	5.3 Performance Test

	6 Conclusion
	References

	Distributed K-Distance Indexing Approach for Efficient Shortest Path Discovery on Large Graphs
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Pregel Framework
	3.2 Single Source Shortest Path Algorithm with Pregel
	3.3 Distance Based Index Table for Shortest Path

	4 K-Distance Index Table Construction with Pregel for Efficient Shortest Path Discovery
	4.1 Notations
	4.2 {\varvec k} -Distance Index Table Construction

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Evaluation

	6 Conclusion
	Acknowledgments
	References

	Customized Information Interface with Web Applications
	Abstract
	1 Introduction
	2 Web Application
	2.1 Difference Between the Web Application and the Existing Applications
	2.2 AJAX (Asynchronous JavaScript and XML)
	2.3 FLEX and Laszlo
	2.4 Firefox and Silverlight (WPF/e)
	2.5 Widget and Gadget
	2.6 XMLHttpRequest Object
	2.7 Widget-Based Web Search Application
	2.8 Weakness and Limitation of AJAX

	3 Search System with RIA
	3.1 Search System Structure
	3.2 Site Access Process
	3.3 Query Process
	3.4 System Realization
	3.5 System Evaluation

	4 Conclusion and Future Research
	Acknowledgement
	References

	Leveraging Enterprise Application Characteristics to Optimize Incremental Aggregate Maintenance in a Columnar In-Memory Database
	1 Introduction
	2 Related Work
	3 Enterprise Application Characteristics
	3.1 Schema Design
	3.2 Workload Patterns

	4 Optimizing Incremental Aggregate Maintenance
	4.1 Architecture Overview
	4.2 Joins
	4.3 Join Without Cache
	4.4 Caching Join
	4.5 Semantic Join
	4.6 Merge

	5 Annotating Enterprise Application Characteristics
	5.1 Empty Delta
	5.2 Associations
	5.3 Single Transaction Inserts

	6 Benchmarks
	6.1 Delta Size
	6.2 Three Tables

	7 Conclusions and Future Work
	References

	MaiterStore: A Hot-Aware, High-Performance Key-Value Store for Graph Processing
	1 Introduction
	2 Preliminaries
	2.1 Introduction to Maiter
	2.2 SSD Characteristics

	3 MaiterStore Design
	3.1 System Overview
	3.2 Page Manager
	3.3 Prefetching Buffer
	3.4 Hot-Aware Caching Policy
	3.5 API in MaiterStore

	4 Performance Evaluation
	4.1 Environment Setting
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Vertical Bit-Packing: Optimizing Operations on Bit-Packed Vectors Leveraging SIMD Instructions
	1 Introduction
	2 Related Work
	3 Concepts of Bit-Packing
	3.1 Horizontal Bit-Packing
	3.2 Vertical Bit Packing
	3.3 Aligned Vertical Bit Packing
	3.4 Vectorized Predicate Evaluation

	4 Implementation
	5 Evaluation
	5.1 Decompression Performance
	5.2 Single Value Access

	6 Conclusion
	References

	Efficient Streaming Detection of Hidden Clusters in Big Data Using Subspace Stream Clustering
	1 Introduction
	1.1 Subspace Clustering
	1.2 Stream Mining
	1.3 Motivation

	2 Related Work
	3 Algorithmic Model
	3.1 Online Phase: A Stream Clustering Algorithm
	3.2 Regeneration Phase: Gaussian Out of Online Summaries
	3.3 Offline Phase: A Subspace Clustering Algorithm

	4 Experiments
	4.1 Example
	4.2 Dataset
	4.3 Framework
	4.4 Running Time Results
	4.5 Accuracy Results

	5 Conclusion and Outlook
	References

	A Comparison of Systems to Large-Scale Data Access
	1 Introduction and Context
	2 Experimental Environment
	2.1 Hadoop
	2.2 Hive
	2.3 HadoopDB
	2.4 Data Sets
	2.5 Queries

	3 Experiments
	3.1 Performances
	3.2 Speed Up
	3.3 Fault Tolerance
	3.4 Latency

	4 Discussion
	5 Conclusion
	References

	Third International Workshop on DataManagement for Emerging NetworkInfrastructure (DaMEN)
	A Framework to Measure Storage Utilization in Cloud Storage Systems
	1 Introduction
	2 Related Works
	3 Analysis of Cloud Storage Systems
	4 Storage Utilization Terms and Metrics
	4.1 User Layer
	4.2 Logical Layer
	4.3 Physical Layer

	5 Storage Utilization Metrics
	5.1 Physical Layer Metrics
	5.2 Logical Layer Metrics
	5.3 User Layer Metrics
	5.4 Overall Metrics

	6 Storage Utilization Analytical Framework
	7 Case Study
	7.1 How Many Storage Devices are Enough
	7.2 Selection and Configuration of Technology

	8 Conclusion
	References

	Personalized Recommendation via Relevance Propagation on Social Tagging Graph
	1 Introduction
	2 Methods
	2.1 Neighborhood-Based Social Tagging Graph
	2.2 Relevance Propagation Based on Random Walk

	3 Experiments
	3.1 Datasets
	3.2 Evaluation Metrics and Baseline Methods
	3.3 Experimental Results

	4 Related Works and Discussion
	5 Conclusion and Future Works
	References

	Optimizing Pipelined Execution for Distributed In-Memory OLAP System
	1 Introduction
	2 Preliminary
	2.1 System Overall
	2.2 Pipelined Data Processing
	2.3 Parallelism and Data Exchange

	3 Optimization Decomposition
	3.1 Maximum Concurrently Executing Plan
	3.2 MCEP Execution Optimization

	4 Optimizing Data Exchange Operator
	4.1 Data Pushing Rather than Data Pulling
	4.2 Sending Buffer Diversification Strategy
	4.3 Receiver Status Awareness
	4.4 Skew-Resilient Strategy

	5 Experiments
	5.1 Setup
	5.2 Pipelined Data Exchange
	5.3 Overall Query Evaluation

	6 Related Work
	7 Summary
	References

	Hashed-Join: Approximate String Similarity Join with Hashing
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 q-gram
	2.3 Similarity Metrics
	2.4 Min-Hashing
	2.5 Locality Sensitive Hashing

	3 Trie Join and Observations
	3.1 Trie Join
	3.2 Problems of Trie Join

	4 Processing Algorithms
	4.1 String Binary Vector Building
	4.2 Approximate Similarity Join Algorithm

	5 Experiments
	5.1 Experiment Setup
	5.2 Efficiency
	5.3 Quality
	5.4 Scalability

	6 Related Work
	7 Conclusion and Future Work
	References

	Minimizing Explanations of Why-Not Questions
	1 Introduction
	2 Preliminaries
	3 A Minimizing Explanations Algorithm
	3.1 Why-Not Query Templates
	3.2 Minimum Explanation for Queries with Relation Copy
	3.3 Minimum Explanation for Queries with Cycle Join

	4 Experiments
	5 Conclusion
	References

	HadoopM: A Message-Enabled Data Processing System on Large Clusters
	1 Introduction
	2 Background
	3 A New Message-Enabled Platform
	3.1 Architecture
	3.2 Message Format
	3.3 Lightweight Message Delivery Mode
	3.4 Heavyweight Message Delivery Mode

	4 Transmission Synchronization
	4.1 Asynchronous Message Passing
	4.2 Synchronous Message Passing

	5 Experiments
	5.1 Experimental Environment
	5.2 Experiments of PageRank
	5.3 Experiments of Skyline Query

	6 Related Work
	7 Conclusions
	References

	AntiqueData: A Proxy to Maintain Computational Transparency in Cloud
	1 Introduction
	2 Background and Related Work
	3 Threat Model
	4 AntiqueData Proxy
	5 Communication Between Proxy and Cloud Provider
	6 Transparency
	7 Evaluation
	8 Limitations
	9 Future Work
	10 Conclusion
	References

	Third International Workshopon Spatial Information Modeling,Management and Mining (SIM3)
	Monitoring Query Processing in Mobile Robot Databases
	1 Introduction
	2 Query Processing Based on Probabilistic Inference in Sensor Databases
	3 Query Processing Based on Probabilistic Inference in Mobile Robot Databases
	3.1 Query Definition
	3.2 Cost of an Observation Plan
	3.3 Dynamic Change of an Observation Plan

	4 Algorithms for Selecting Observation Plan
	4.1 Apriori-Based Method
	4.2 Bidirectional Method
	4.3 Greedy Method
	4.4 Skyline-Based Method

	5 Experiments
	5.1 Setup of Experiments
	5.2 Evaluation of Algorithms
	5.3 Analysis of each Type of Queries

	6 Conclusions
	References

	Efficiently Evaluating Range-Constrained Spatial Keyword Query on Road Networks
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 The Expansion-Based Approach
	4.1 Index Structure
	4.2 Query Processing

	5 The Euclidean Heuristic Approach
	6 The Rnet Hierarchy-Based Approach
	6.1 Indexing Structure
	6.2 Query Processing

	7 Experimental Evaluation
	7.1 Setup
	7.2 Experimental Results

	8 Conclusion
	References

	A Spatial-Temporal Analysis of Users' Geographical Patterns in Social Media: A Case Study on Microblogs
	1 Introduction
	2 Related Work
	3 Spatial Analysis: Location Clusters and Communities
	3.1 Description About the Microblog Data
	3.2 Analyzing Location Components for Each Community
	3.3 Analyzing Community Components for Each Location Cluster

	4 Spatial-Temporal Analysis: Trajectory Pattern Analysis
	4.1 Trajectory Pattern
	4.2 Trajectory Analysis on Tencent Microblogs

	5 Conclusion
	References

	Solving Multiple Bichromatic Mutual Nearest Neighbor Queries with the GPU
	1 Introduction
	1.1 Related Work

	2 Multiple Bichromatic Mutual Nearest Neighbor Queries
	3 Solving Multiple Bichromatic Mutual Nearest Neighbor Queries with the GPU
	3.1 Complexity Analysis

	4 Experimental Results
	5 Conclusions and Future Work
	References

	A Kernel Density Method for Aggregating Boundary Collision Data into Areal Units
	Abstract
	1 Introduction
	2 Problem Statement
	3 Methodology
	3.1 Boundary Zone Size Determination
	3.2 Collision Density Ratio Method
	3.3 Evaluation Method

	4 Experiment
	4.1 Data Description
	4.2 Data Analysis
	4.3 Boundary Zone Size
	4.4 Boundary Collision Assignment Results
	4.5 Evaluation Results

	5 Conclusion and Discussion
	6 Future Work
	References

	Integrated Indoor Positioning with Mobile Devices for Location-Based Service Applications
	Abstract
	1 Introduction
	2 LBS Applications and Positioning Methodologies
	3 An Integrated Indoor Positioning System
	3.1 Generation of Floor Plan Database
	3.2 Geo-Reference Information of Floor Plan and Indoor Hallway Features
	3.3 Correspondences of Camera Image and Floor Plan Database
	3.4 System Framework

	4 Test Results and Analysis
	4.1 Development of iOS App
	4.2 Test Description
	4.3 Positioning Accuracy Improvement

	5 Conclusions
	Acknowledgement
	References

	A Hybrid Scale-Out Cloud-Based Data Service for Worldwide Sensors
	Abstract
	1 Introduction
	2 Related Work
	3 A Hybrid Scale-Out Cloud-Based Data Service for Worldwide Sensors
	3.1 The Proposed Approach that Distributes the Local Services
	3.2 Local Service and Cloud Storage Architecture

	4 Evaluation Results
	4.1 Experiments

	5 Conclusion and Future Works
	References

	DASFAA Workshop on Uncertainand Crowdsourced Data (UnCrowd)
	Uncertainty in Crowd Data Sourcing Under Structural Constraints
	1 Introduction
	2 Problem Statement
	3 Without Order Constraints
	4 With Order Constraints
	5 Interpolation
	6 Conclusion and Perspectives
	References

	Integration of Web Sources Under Uncertainty and Dependencies Using Probabilistic XML
	1 Introduction
	2 Motivating Application
	2.1 Numerous Web Sources
	2.2 Uncertain Web Data Sources
	2.3 Dependent Web Sources via Copying Links

	3 Data Model
	3.1 Unordered XML and p-Documents Based on Random Events
	3.2 Semi-structured Multi-version Data with Uncertainty

	4 Heterogeneous Web Data Integration Using Probabilistic XML
	4.1 Main Challenges
	4.2 Probabilistic XML Integration System

	5 Conclusion and Further Work
	References

	Skill Ontology-Based Model for Quality Assurance in Crowdsourcing
	Abstract
	1 Introduction
	2 Related Work
	3 Types of Quality
	3.1 Result’s Quality
	3.2 Platform’s Quality
	3.3 Task’s Quality
	3.4 Worker’s Quality

	4 Skill Ontology-Based Model
	4.1 Basic and Temporary Skill Ontologies
	4.2 Ontology Merger
	4.3 Skill’s Library of Assessments
	4.4 Skill Aligner
	4.5 Reputation System
	4.6 Task Assigner

	5 Workflow of the Skill-Ontology Based Model
	6 Summary and Outlook
	Acknowledgments
	References

	ProbKS: Keyword Search on Probabilistic Spatial Data
	1 Introduction
	2 Problem Statement
	3 Icremental Scoring Approach
	4 Probabilistic Ranking
	4.1 Basic Algorithm
	4.2 Early Termination of PRankc

	5 Experiments
	5.1 Results

	6 Related Work
	7 Conclusions and Future Work
	References

	Towards Mobile Sensor-Aware Crowdsourcing: Architecture, Opportunities and Challenges
	1 Introduction
	2 Background
	3 General Design
	4 Opportunities and Challenges
	4.1 Improved Task Performance and Efficiency
	4.2 New Crowdsourcing Processes
	4.3 New Applications
	4.4 Challenges

	5 Conclusion
	References

	Conditioning Probabilistic Relational Data with Referential Constraints
	1 Introduction
	2 Related Work
	2.1 Probabilistic Relational Models
	2.2 Conditioning

	3 Data Model
	4 Referential Constraints
	4.1 Transforming Referential Constraints to Implication Constraints
	4.2 Local Database and Local Possible Worlds

	5 Conditioning Algorithm for FKPK Constraints
	6 Conditioning Algorithm for FK Constraints
	7 Conditioning Algorithm for REF Constraints
	7.1 Simplified Case
	7.2 General Case

	8 Conclusion and Future Work
	References

	Author Index

