On Topological Data Mining

Andreas Holzinger!+?

! Research Unit Human-Computer Interaction, Institute for Medical Informatics,
Statistics & Documentation, Medical University Graz, Austria
a.holzinger@hci4all.at
2 Institute for Information Systems and Computer Media, Graz University of
Technology, Austria
a.holzingerQtugraz.at

Abstract. Humans are very good at pattern recognition in dimensions
of < 3. However, most of data, e.g. in the biomedical domain, is in di-
mensions much higher than 3, which makes manual analyses awkward,
sometimes practically impossible. Actually, mapping higher dimensional
data into lower dimensions is a major task in Human—Computer Interac-
tion and Interactive Data Visualization, and a concerted effort including
recent advances in computational topology may contribute to make sense
of such data. Topology has its roots in the works of Euler and Gauss,
however, for a long time was part of theoretical mathematics. Within
the last ten years computational topology rapidly gains much interest
amongst computer scientists. Topology is basically the study of abstract
shapes and spaces and mappings between them. It originated from the
study of geometry and set theory. Topological methods can be applied
to data represented by point clouds, that is, finite subsets of the n-
dimensional Euclidean space. We can think of the input as a sample of
some unknown space which one wishes to reconstruct and understand,
and we must distinguish between the ambient (embedding) dimension
n, and the intrinsic dimension of the data. Whilst n is usually high, the
intrinsic dimension, being of primary interest, is typically small. There-
fore, knowing the intrinsic dimensionality of data can be seen as one first
step towards understanding its structure. Consequently, applying topo-
logical techniques to data mining and knowledge discovery is a hot and
promising future research area.

Keywords: Computational Topology, Data Mining, Topological Data
Mining, Topological Text Mining, Graph-based Text Mining.

1 Introduction and Motivation

Medicine, Biology and health care of today is challenged with complex, high-
dimensional, heterogenous, noisy, and weakly structured data sets from various
sources [1]. Within such data, relevant structural patterns and/or temporal pat-
terns (“knowledge”) are often hidden, difficult to extract, hence not accessible
to a biomedical expert.
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Consequently, a grand challenge is to interactively discover unknown patterns
within such large data sets. Computational geometry and algebraic topology
may be of great help here [2] embedded in understanding large and complex
data sets. Vin de Silva (2004) [3] in his research statement brought the basic
idea straight to the point: Let M be a topological space, known as the hidden
parameter space; let R” be an Euclidean space, defined as observation space,
and let f : M — RP be a continuous embedding; X C M, be a finite set of data
points, and Y = f(X) C RP be the image of these points under the mapping
f. Consequently, we may refer to X as the hidden data, and Y as the observed
data. The central question then is: Suppose M , f and X are unknown, but Y’
is known: can we identify M7

This paper of course can only be a scratch on the sheer endless surface, how-
ever, the main intention is in motivation and stimulation of further research and
to provide a rough guide to the concepts of topology for the non-mathematician,
with open eyes on applicability in knowledge discovery and data mining. The
paper is organized as follows: In section 2 some key terms are explained to en-
sure a common and mutual understanding. It is always good to know a bit
about who was working in the past in these areas and who are the current
leading researchers, consequently in section 3 a very short look on the past is
given, followed by section 4 with a brief look on the present. Section 5 provides
a nutshell-like overview on the basics of topology, introducing the concepts of
point clouds and spaces, manifolds, simplicial complexes and the alpha complex.
In chapter 6 a short view on the state-of-the-art in topological data mining,
and topological data analysis, respectively, is given; followed by topological text
mining in chapter 7. A few software packages are listed in chapter 8, and a few
open problems are described in chapter 9. The paper finishes with a section on
future challenges and a conclusion with a one-sentence outlook into the future.

2 Glossary and Key Terms

Algebraic Topology: the older name was combinatorial topology, is the field of
algebra concerned with computations of homologies and homotopies and other
algebraic models in topological spaces [4]. Note: Geometric topology is the study
of manifolds and embeddings of manifolds.

Alpha Shapes: is a family of piecewise linear simple curves in the Euclidean
plane associated with the shape of a finite set of points [5]; i.e. a-shapes are a
generalization of the convex hull of a point set: Let S be a finite set in R? and « a
real number 0 < « < oo; the u-shape of S is a polytope that is neither necessar-
ily convex nor necessarily connected. For o — oo the a-shape is identical to the
convex hull of S [6]. a-shapes are important e.g. in the study of protein-related
interactions [7].

Betti Number: can be used to distinguish topological spaces based on the connec-
tivity of n-dimensional simplicial complexes: In dimension k, the rank of the k-th
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homology group is denoted S, useful e.g. in content-based image retrieval in the
presence of noisy shapes, because Betti numbers can be used as shape descriptor
admitting dissimilarity distances stable under continuous shape deformations [8].

Computational geometry: A field concerned with algorithms that can be de-
fined in terms of geometry (line segments, polyhedra, etc.) [9].

Contour: ia a connected component of a level set h — 1(c) of a Morse func-
tion h : M — R defined on a manifold M.

Delaunay triangulation: Given a set of points in a plane P = p1, ..., pn, a De-
launay triangulation separates the set into triangles with p’s € P as their corners,
such that no circumcircle of any triangle contains any other point in its interior [10].

Euler characteristic x: is an integer associated to a manifold, e.g. x of a surface
is given by the number of faces minus edges plus vertices [11].

Gromov-Norm: is an invariant associated with the homology of a topological
space that measures how many simplices are needed to represent a given homol-
ogy class.

Hausdorff-Space: is a topologically separated space. Let x and y be two dis-
tinct points in a topological space X. Let U be the neighbourhood of x and V'
be the neighborhood of y. z and y are said to be separable if UNV = (). Then X
is a Hausdorff-Space if every possible pair of points x, y it contains are separable.
A Hausdorff space is defined by the property that every two distinct points have
disjoint neighborhoods.

Homomorphism: is a function that preserve the operators associated with the
specified structure.

Homological algebra: is the study of homology and cohomology of manifolds.
Homological algebra is a grand generalization of linear algebra.

Homotopy: Given two maps f,g : X — Y of topological spaces, f and g are
homotopic, f ~ g, if there is a continuous map H : X x [0,1] — Y so that
H(z,0) = f(z) and H(z,1) = g(z) for all x € X [12].

Homology: Homology and cohomology are algebraic objects associated to a man-
ifold, which give one measure of the number of holes of the object. Computation
of the homology groups of topological spaces is a central topic in classic algebraic
topology [13]; if the simplicial complex is small, the homology group computa-
tions can be done manually; to solve such problems generally a classic algorithm
exists, see: [14].
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Isometry: is a mapping of metric spaces which preserves the metric.

Metric space: A space in which a distance measure between pairs of elements
(points) exists. Note: a metric is a distance function on a space or set; an as-
signment of distance to every unordered pair of points that satisfies the triangle
inequality.

Manifold: is a fundamental mathematical object which locally resembles a line,
a plane, or space.

Persistent Homology: Persistent homology is an algebraic tool for measuring
topological features of shapes and functions. It casts the multi-scale organiza-
tion we frequently observe in nature into a mathematical formalism. Here we
give a record of the short history of persistent homology and present its basic
concepts. Besides the mathematics we focus on algorithms and mention the var-
ious connections to applications, including to biomolecules, biological networks,
data analysis, and geometric modeling [15]. The concept of persistence emerged
independently in the work of Frosini, Ferri et al., and in the thesis of Robins
at Boulder, Colorado, and within the biogeometry project of Edelsbrunner at
Duke, North Carolina.

Point clouds: are finite sets equipped with a family of proximity (or similarity
measure) functions simg: S9T1 — [0, 1], which measure how “close” or “similar”
(g + 1)-tuples of elements of S are (a value of 0 means totally different objects,
while 1 corresponds to essentially equivalent items).

Reeb graph: is a graph that captures the connectivity of contours; when not
having cycles, it is called a contour tree [16]. The Reeb graph is a useful tool in
visualizing real-valued data obtained from computational simulations of physical
processes [17], [18].

Simplex: is an n-dimensional generalization of the triangle and the tetrahedron:
a polytope in n dimensions with n + 1 vertices.

Simplicial Complez: is made up of simplices, e.g. a simplicial polytope has sim-
plices as faces and a simplicial complex is a collection of simplices pasted together
in any reasonable vertex-to-vertex and edge-to-edge arrangement. A graph is a
1-dim simplicial complex.

Space: is generally a set of points a € S which satisfy some geometric postulate.

Sphere: is any manifold equivalent (homeomorphic) to the usual round hollow
shell in some dimension: a sphere in n + 1-dimension is called an n-sphere.
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Topological Space: is a pair (X, T) with § € T, X € T and a collection of sub-
spaces, so that the union and intersections of subspaces are also in T, in other
words, it is a set of points, along with a set of neighbourhoods for each point,
that satisfy a set of axioms relating points and neighbourhoods. The definition
of a topological space relies only upon set theory and is the most general no-
tion of a mathematical space that allows for the definition of concepts such as
continuity, connectedness, and convergence. Other spaces, such as manifolds and
metric spaces, are specializations of topological spaces with extra structures or
constraints.

Voronoi region: Given a set of points in a plane p1, ..., p,, a Voronoi diagram
erects regions around a point p; such that all points ¢ within its region are closer
to p; (with regard to some distance measure) than to any other point p;.

Knowledge Discovery: Exploratory analysis and modeling of data and the or-
ganized process of identifying valid, novel, useful and understandable patterns
from these data sets.

Minimum Spanning Tree: Given a graph G = (V, E,w) with V being the set
of vertices, F being the set of edges and w being the sets of edge weights, a
Minimum Spanning tree is the connected acyclic subgraph defined by the sub-
set B’ C E reaching all vertices v € V with the minimal sum of edge weights
possible.

weak/weakly: in mathematics an object is called weak if it is of a generalized
kind with fewer properties, and a property holds weakly if it holds in a lesser
sense; e.g. a weak solution to an equation might be a discontinuous solution if a
straightforward interpretation implies continuity.

3 Topology - The Past

If we want to look into the future, we always should at first look into the past.
Topology has its roots in the work on graph theory by Leonhard Euler (1707-
1783) [19]. The first book on topology titled “Vorstudien zur Topologie” was
published 1848 by Johann Benedict Listing (1808-1882), who emphasized that
the term “analysis geometria situs” used by Gottfried Wilhelm Leibniz (1646
1716) was a different geometric concept, hence topology did not start before the
time of Euler [20]. Listing was very advanced at his time, which can be seen in his
1862 work (see Fig. 1) “Census racumlicher Complexe” [21]. Significant contri-
butions were made by Carl Friedrich Gauss (1777-1855) and August Ferdinand
Moebius (1790-1868), who started with the first steps in set theoretic topology
with his 1863 work “Theorie der elementaren Verwandtschaft” [22]. However,
topology was not established as own discipline before the formal introduction
of set theory by Georg Cantor (1845-1918) and Richard Dedekind (1831-1916),
the latter was the last student of Gauss.
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Fig. 1. From the book of Listing (1862)[21]; the image is already in the public domain

Consequently, actual pioneers of (combinatorial, the later algebraic) topology
include Henri Poincare (1854-1912), but also Felix Klein (1849-1925), Enrico
Betti (1823-1892), Bernhard Riemann (1826-1866) and last but not least Emmi
Noether (1882-1935). After these pioneering years the field did not gain much
interest, until the discovery of the concept of a topological space in 1914 by
Felix Hausdorff (1868-1942). In the period after world war I, a collective of
mainly French mathematicians pursued these topics amongst others, and they
published from 1935 on under a pseudonym called Nicolas Bourbaki. The topics
were continued by many meanwhile famous mathematicians, to mention only
a few of the “big names”: Edwin Evariste Moise (1918-1998), Georges Henri
Reeb (1920-1993), Boris Nikolaevich Delaunay (1890-1980), Pavel Sergeyevich
Alexandrov (1896-1982) to mention only a few.

According to Blackmore & Peters (2007) [23] the term “computational topol-
ogy” occurred first in the dissertation of Maentylae in 1983, but there is a journal
paper by Tourlakis & Mylopoulus called “Some results in Computational Topol-
ogy” from 1973 [24] preceded by a conference paper.

4 Computational Topology - The Present

As it is important to look at the past, it is even more important to know some
current experts in the field (in alphabetical order, list not complete - please
forgive shortness and missing names):

Peter Bubenik from the department of mathematics at the Cleveland State Uni-
versity is combining ideas from topology and statistics [25].
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Benjamin A Burton from the School of Mathematics and Physics at the Uni-
versity of Queensland, Brisbane, Australia, is the developer of Regina, which is
a suite of mathematical software for 3-manifold topologists [26].

Gunnar Carlsson from the Stanford Topology Group, USA, is working in this
area for a long time and got famous with his work on “topology and data” and
“data has shape” [27].

Tamal K. Dey at the Ohio State University, Columbus, is together with Edels-
brunner and Guha one of the early promoters of computational topology [28].

Nathan Dunfield at the University of Illinois at Urbana-Champaign is working
on Topology and geometry of 3-manifolds and related topics and maintaining
the CompuTop.org Software Archive (see chapter software) [29].

Herbert Edelsbrunner born in Graz, long time at Duke, North Carolina, is one
of the early pioneers in the field and currently at the Institute of Science and
Technology Austria in Maria Gugging (near Vienna) [2].

Massimo Ferri , University of Bologna, Italy, was contributing to the concept of
persistence, which emerged independently in the work of Cerri, Frosini et al. in
Bologna, in the doctoral work of Robins at Boulder, Colorado, and within the
biogeometry project of Edelsbrunner at Duke, North Carolina [30].

Robert W. Ghrist at the department of mathematics of the University of Penn-
sylvania, is particulary working on applied topology in sensor networks [31].

John L. Harer Duke University, Durham, North Carolina, USA, worked a long
time together with Edelsbrunner at Duke [2].

Dmitriy Morozov at the Visualization group of the Lawrence Berkeley National
Lab, is working on persistent homology [32].

Marian Mrozek is mathematician at the Computer Science Department, Jagiel-
lonian University, Krakw, Poland [33].

Valerio Pascucci at the Center for Extreme Data Analysis and Visualization,
University of Utah, applies topological methods to Visualization [34].

Vanessa Robins from the Applied Mathematics department at the Australian
National University [35].

Vin de Silva worked with Tenenbaum and Carlsson and is now at Pomona
College [36].
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Joshua B. Tenenbaum from the Department of Brain and Cognitive Sciences,
MIT, Cambridge, Massachusetts, gained much popularity (7097 citations in
Google Scholar as of April,18,2014) with the paper in Science on “A Global
Geometric Framework for Nonlinear Dimensionality Reduction” [36].

Afra Zomorodian currently working with the D.E. Shaw Group, New York, USA,
formerly Department of Computer Science at Dartmouth College, Hanover, New
Hamsphire is author of the book “Topology for Computing” [37].

5 Topology in a Nutshell

5.1 Benefits of Topology

Let us start with a thought on our human visual system: We do not see in
three spatial dimensions directly, but rather via sequences of planar projections
integrated in a manner that is sensed if not comprehended. A newborn does not
know what “Google” is, well this is a very abstract example, but the newborn
does also not know what an “apple” is. We spend a significant portion of the
first decade of our life to learn how to infer three-dimensional spatial data from
paired planar projections. Years of practice have tuned a remarkable ability
to extract global structure from representations in a strictly lower dimension.
Ghrist (2007) [31] starts in the beginning of his paper with summarizing three
benefits of topology:

1. It is beneficial to replace a set of data points with a family of simplicial
complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

2. It is beneficial to view these topological complexes through the lens of alge-
braic topology - specifically, via the theory of persistent homology adapted
to parameterized families.

3. Tt is beneficial to encode the persistent homology of a data set in the form
of a parameterized version of a Betti number: a barcode.

Algebra and Topology are axiomatic fields, hence would need many definitions,
which is impossible to present here, however, before continuing with the main
part of this paper, topological data mining, it is necessary to briefly present
two fundamental concepts: manifolds and simplicial complexes. Even before, we
introduce the primitives of topology: point sets.

5.2 Primitives of Topology: Point Cloud Data Sets

Point cloud data sets (PCD) are the primitives of topology. Consequently, the
first question is: “How to get point sets?”, or “How to get a graph structure?”.
Apart from “naturally available” point clouds as discussed below, the answer to
this question is not trivial; for some solutions see [38]. In Fig. 2 we see point sets
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in the plane, resulting from a continuous handwriting input signal given by an
input device as
X (t) = (2(8), y(t), p(t)" (1)

It contains the coordinates z(t) and y(t) as well as the pressure p(t) of the
stylus. After the digitalization process, X (¢) is considered as a discrete time
series sampled at different points t € T over time. Let the sampling times be
to,t1, ..., ty, satisfying 0 < tg < t; < ... < t,. If the time points are equally
spaced (i.e., |tiy1 —t;] =7 for alli =0,1,..,n — 1, 7 > 0 some constant), we
call the input signal regularly sampled.

1

2
Let d(X (1), X (1)) = ((@(tis) = 2(t))* + (9(tier) = y(t:))?) e the Eu-
clidian distance with respect to the coordinates x(¢) and y(t). A sampling of the
handwriting trajectory satisfying d(X (¢;), X (t;+1)) = ¢, for some constant § > 0
and ¢ = 0,1,...,m — 1, is referred as the equidistant re-sampling of the time
series X (t). We also notice that t,,, < t, holds and in general the equidistant

re-sampling is not regular (see Fig. 2 on the right).

coocggeo®®”

Fig. 2. Point Cloud in R? from an handwriting example [39]

Another “natural” source for such point cloud data sets are 3-D Laser scan-
ners (for example the Kinect device). Medical images in nuclear medicine are
usually represented in 3D, where a point cloud is a set of points in R3, whose
vertices are characterized by their position and intensity. In dimensions higher
than three, point clouds (feature vectors) can be found in the representation of
high-dimensional manifolds (see next chapter), where it is usual to work directly
with this type of data [40], resulting from protein structures or protein interac-
tion networks [41]. Also in the representation of text data, point clouds appear:
Based on the vector space model, which is a standard tool in text mining for a
long time [42], a collection of text documents (corpus) can be mapped into a set
of points (vectors) in R™. Each word can also be mapped into vectors, resulting
in a very high dimensional vector space. These vectors are the so-called term
vectors, with each vector representing a single word. If there, for example, are
n keywords extracted from all the documents then each document is mapped to
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a point (term vector) in R™ with coordinates corresponding to the weights. In
this way the whole corpus can be transformed into a point cloud set. Usually,
instead of the Euclidean metric, using a specialized similarity (proximity) mea-
sure is more convenient. The cosine similarity measure is one example which is
now a standard tool in text mining, see for example [43]. The cosine of the angle
between two vectors (points in the cloud) reflects how “similar” the underlying
weighted combinations of keywords are [44].

A set of such primitive points forms a space (see Fig. 3a), and if we have finite
sets equipped with proximity or similarity measure functions simg,: S9T1 —
[0, 1], which measure how “close” or “similar” (g+ 1)-tuples of elements of S are
we have a topological space (see Fig. 3b). A value of 0 means totally different
objects, while 1 corresponds to essentially equivalent items. In Fig. 2 we see a
good example of a direct source for point clouds in an space which we can easily
perceive in R2. A metric space (see Fig. 3c) has an associated metric (see Fig. 3d
the Euclidean distance), enabling to measure distances between points in that
space and to define their neighborhoods. Consequently, a metric provides a space
with a topology, and a metric space is a topological space.
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Fig. 3. From left to right: (a) point clouds, (b) point clouds equipped with proximity
in a graph structure, (c) points in a metric space R, this is practical because we can
(d) measure in this space with the Euclidean distance

5.3 Manifolds

A manifold is a topological space, which is locally homeomorphic (has a con-
tinuous function with an inverse function) to a real n-dimensional space (e.g.
Euclidean space as in Fig. 3). In other words: X is a d-manifold if every point
of X has a neighborhood homeomorphic to B¢; with boundary if every point
has a neighborhood homeomorphic to B or ]B%i, in other words it is a topological
space which is locally homeomorphic (has a continuous function with an inverse
function) to a real n-dimensional space (e.g. Euclidean space) [45].

A topological space may be viewed as an abstraction of a metric space,
and similarly, manifolds generalize the connectivity of d-dimensional Euclidean
spaces B¢ by being locally similar, but globally different. A d-dimensional chart
at p € X is a homeomorphism ¢ : U — R? onto an open subset of R?, where
U is a neighborhood of p and open is defined using the metric. A d-dimensional
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manifold (d-manifold) is a topological space X with a d-dimensional chart at
every point z € X.

The circle or 1-sphere S! in Fig. 4(a) is a 1-manifold as every point has a
neighborhood homeomorphic to an open interval in R!. All neighborhoods on
the 2-sphere S? in Fig. 4(b) are homeomorphic to open disks, so S? is a 2-
manifold, also called a surface. The boundary X of a d-manifold X is the set of
points in X with neighborhoods homeomorphic to H¢ = x € R?¥|z; > 0. If the
boundary is nonempty, we say X is a manifold with boundary. The boundary
of a d-manifold with boundary is always a (d — 1)-manifold without boundary.
Figure 4(c) displays a torus with boundary, the boundary being two circles [46].

O Q@& «{ ||

Fig. 4. Manifolds. From left to right: (a) a circle S is a 1-manifold; (b) The sphere S?
is a 2-manifold; (c) The torus is also a 2-manifold with boundaries; (d) A Boys surface
is a geometric immersion of the projective plane P2, thus a non-orientable 2-manifold;
(e) The famous Klein bottle is a non-orientable 2-manifold [46].

5.4 Simplicial Complexes

Simplicial complexes are spaces described in a very particular way, the basis is in
Homology. The reason is that it is not possible to represent surfaces precisely in
a computer system due to limited computational storage. Consequently, surfaces
are sampled and represented with triangulations. Such a triangulation is called
a simplicial complex, and is a combinatorial space that can represent a space.
With such simplicial complexes, the topology of a space from its geometry can
be separated, and Zomorodian compares it with the separation of syntax and
semantics in logic [46].

Carlsson emphasizes that not every space can be described as a simplicial
complex and that each space can be described as a simplicial complex in many
different ways and that calculations of homology for simplicial complexes remains
the best method for explicit calculation. Because most spaces of interest are
either explicitly simplicial complexes or homotopy equivalent to such, it turns
out that simplicial calculation is sufficient for most situations.

Let S = {x0,Z1,...,Z,} denote a subset of a Euclidean space R¥. We say
S is in general position if it is not contained in any affine hyperplane of R*
of dimension less than n. When S is in general position, we define the simplex
spanned by S to be the convex hull ¢ = o(S) of S in R*. The points x; are called
vertices, and the simplices o(T') spanned by non-empty subsets of T' C S are
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called faces of o By a (finite) simplicial complex, we will mean a finite collection
X of simplices in a Euclidean space so that the following conditions hold.

1. For any simplex o of X, all faces of ¢ are also contained in X
2. For any two simplices o and 7 of X', the intersection N7 is a simplex, which
is a face of both o and 7 .

Definition 1. By an abstract simplicial complex X, we will mean a pair X =
(V(X), X(X)), where V(X) is a finite set called the vertices of X, and where
X(X) is a subset (called the simplices) of the collection of all non-empty subsets
of V(X), satisfying the conditions that if o € X(X), and O # 7 C o, then
7 € X(X). Simplices consisting of exactly two vertices are called edges.

Figure 5 shows some examples; for more details and background please refer to
the excellent recent notes of Carlsson (2013) [47], and to the books of Zomorodian
(2009) [46] and the book of Edelsbrunner & Harer (2010) [2].

v,

vy

Fig. 5. Oriented k-simplices, 0 < k < 3. An oriented simplex induces orientation on
its faces, as shown for the edges of the triangle and two faces of the tetrahedron [46].

Topological techniques originated in pure mathematics, but have been adapted
to the study and analysis of data during the past two decades. The two most
popular topological techniques in the study of data are homology and persistence.
The connectivity of a space is determined by its cycles of different dimensions.
These cycles are organized into groups, called homology groups. Given a rea-
sonably explicit description of a space, the homology groups can be computed
with linear algebra. Homology groups have a relatively strong discriminative
power and a clear meaning, while having low computational cost. In the study
of persistent homology the invariants are in the form of persistence diagrams or
barcodes [48].

Carlsson [47] defines the persistence vector space as follows:

Definition 2. Let k be any field. Then by a persistence vector space over k, we
will mean a family of k-vector spaces {V;},c(o,400), together with linear trans-
formations Ly (r,r") : V. = Vv whenever r < ', so that Ly (r',r") - Ly (r,r") =
Ly (r,r") for all r < 7' < r”. A linear transformation f of persistence vec-
tor spaces over k from {V,} to {W.} is a family of linear transformations
fr Ve = Wy, so that for all r <1’ all the diagrams
W LV(r,r>) :
f7' f'r'/

Vo Lw(re") Y
WT > r!
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commute in the sense that
fr’ o LV(Tv T/) = LW(Tv T/) © fr

A linear transformation is an isomorphism if it admits a two sided inverse. A
sub-persistence vector space of {V,.} is a choice of k-subspaces U, C V,., for all
r € [0,400), so that Ly (r,v")(Uy) C Uy for all v < ' If f : {V,.} — {W,}
is a linear transformation, then the image of f, denoted by im(f), is the sub-
persistence vector space {im(f,)}.

In data mining it is important to extract significant features, and exactly
for this, topological methods are useful, since they provide robust and general
feature definitions with emphasis on global information.

5.5 Alpha complex

A very important concept which should be mentioned is the so-called a-complex:
This construction is performed on a metric space X which is a subspace of a met-
ric space Y. Typically Y is a Euclidean space R, and most often N is small,
i.e. = 2, 3, or 4. For any point x € X, we define the Voronoi cell of x, denoted
by V(z), by

V(z) ={y € Yl|d(z,y) <d(2',y) for all 2’ € X}

The collection of all Voronoi cells for a finite subset of Euclidean space is called
its Voronoi diagram (see Fig. 6).

Fig. 6. A picture of part of a Voronoi diagram in R? [47], for more details on Voronoi
please refer to [49]

For each € X, we also denote by B.(x) the set {y € Y|d(z,y) < €}. By
the a-cell of z € V(x) with scale parameter ¢, we will mean the set A.(z) =
B.(x) NV (z). The a-complex with scale parameter € of a subset x € X, denoted
by a.(X) will be the abstract simplicial complex with vertex set X, and where
the set {zg,...,xr} spans a k-simplex iff

k
m As(xi) 7é 0

=0

An example might look as shown in Figure 7.
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Fig. 7. A typical alpha complex [47], for more details please refer to [6]

6 Topological Data Mining - State-of-the-Art

The term “topological data mining” is still rarely used to date: A Google search
as of 30.03.2014 returned only 18 hits in total, a Google Scholar search only
13 hits and a Web of Science search returned none. A better known term is
“Topological Data Analysis (TDA)”, which returns many hits on Google - but
on Google Scholar still only 23 results and on the Web of Science 5 hits, how-
ever, only three of them are relevant: 1) The editorial on a 2011 special issue
in the journal “Inverse Problems” [50] where the editors Charles Epstein, Gun-
nar Carlsson and Herbert Edelsbrunner emphasize the importance of persistent
homology for data analysis;

2) An overview chapter by Afra Zomorodian (2012) [51] in the book “Algo-
rithms and Theory of Computation Handbook, Second Edition, Volume 2: Spe-
cial Topics and Techniques” by Attalah & Blanton, where he provides on 31 pages
a concise overview on Topological Spaces (manifolds, data structures), Topologi-
cal Invariants (Euler Characteristic, Homotopy), Simplicial Homology, Persistent
Homology (and he provides an Algorithm), Morse Theory (Reeb Graph, Morse-
Smale Complex), Structures for Point Sets (Geometric Complexes, Persistent
Homology);

3) A paper by Blumberg & Mandell (2013) [52] where the authors lay the
foundations for an approach to apply the ideas of Michail Gromov on quan-
titative topology to data analysis. For this purpose they introduce a so-called
“contiguity complex”, which is a simplicial complex of maps between simplicial
complexes defined in terms of the combinatorial notion of contiguity. Moreover,
they generalize the Simplicial Approximation Theorem in order to show that
the contiguity complex approximates the homotopy type of the mapping space
as they subdivide the domain; consequently the authors describe algorithms for
approximating the rate of growth of the components of the contiguity complex
under subdivision of the domain, which allows to computationally distinguish
spaces with isomorphic homology but different homotopy types.

A search with title = “computational topology” resulted also in only 22
hits, the most recent paper, indeed a very good hit: Computational Topology
with Regina: Algorithms, Heuristics and Implementations by Burton (2013) [26],
where the author documents for the first time in the literature some of the key
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algorithms, heuristics and implementations that are central to the performance of
his software called REGINA; including the simplification heuristics, key choices
of data structures and algorithms to alleviate bottlenecks in normal surface enu-
meration, modern implementations of 3-sphere recognition and connected sum
decomposition. The oldest paper is from Tourlaki & Mylopoul (1973) [53], where
the authors study topological properties of finite graphs that can be embedded
in the n-dimensional integral lattice; they show that two different methods of ap-
proximating an n-dimensional closed manifold with boundary by a graph of the
type studied in this paper lead to graphs whose corresponding homology groups
are isomorphic. This is at the same time the paper with the highest citations,
however only 17 (as of April, 18, 2014). A highly cited paper (504 times in the
web of science, 1008 in Google Scholar (as of April, 18, 2014) is a survey paper
by Kong & Rosenfeld (1989) [54], Digital Topology: Introduction and Survey,
however, this is dealing with topological properties of digital images, which is
the study of image arrays, not the study of algebraic topology; this must not be
mixed up.

7 Topological Text Mining - State-of-the-Art

Maybe the first work on the application of computational topology in text min-
ing was presented at the Computational Topology in Image Context conference
(CTIC 2012) by [44]. The background is in the vector space model, which is
a standard tool in text mining [42]. A collection of text documents (corpus) is
mapped into points (=vectors) in R™. And each word can also be mapped into
vectors, resulting in a very high dimensional vector space. These vectors are the
so-called term vectors, each vector is representing e.g. a single word. If there are
n keywords extracted from all the documents then each document is mapped to
a point (term vector) in R* with coordinates corresponding to the weights. In
this way the whole corpus can be transformed into a point cloud set. Usually,
instead of the Euclidean metric, using a specialized similarity (proximity) mea-
sure is more convenient. The cosine similarity measure is one example which is
now a standard tool in text mining, see e.g. [43]. Namely, the cosine of the angle
between two vectors (points in the cloud) reflects how “similar” the underlying
weighted combinations of keywords are. Amongst the many different text min-
ing methods (for a recent overview refer to [55]), a topological approach is very
promising, but needs a lot of further research; let us first look on graph-based
approaches.

7.1 Graph-Based Approaches for Text Mining

Graph-theoretical approaches for Text Mining emerged from the combination
of the fields of data mining and topology, especially graph theory [56]. Graphs
are intuitively more informative as example words/phrase representations [57].
Moreover graphs are the best studied data structure in computer science and
mathematics and they also have a strong relation with logical languages [56].
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Its structure of data is suitable for various fields like biology, chemistry, mate-
rial science and communication networking [56]. Furthermore, graphs are often
used for representing text information in natural language processing [57]. De-
pendency graphs have been proposed as a representation of syntactic relations
between lexical constituents of a sentence. This structure is argued to more
closely capture the underlying semantic relationships, such as subject or object
of a verb, among those constituents [58].

The beginning of graph-theoretical approaches in the field of data mining
was in the middle of the 1990’s [56] and there are some pioneering studies such
as [59,60,61]. According to [56] there are five theoretical bases of graph-based
data mining approaches such as (1) subgraph categories, (2) subgraph isomor-
phism, (3) graph invariants, (4) mining measures and (5) solution methods. Fur-
thermore, there are five groups of different graph-theoretical approaches for data
mining such as (1) greedy search based approach, (2) inductive logic program-
ming based approach, (3) inductive database based approach, (4) mathematical
graph theory based approach and (5) kernel function based approach [56].

There remain many unsolved questions about the graph characteristics and
the isomorphism complexity [56]. Moreover the main disadvantage of graph-
theoretical text mining is the computational complexity of the graph represen-
tation. The goal of future research in the field of graph-theoretical approaches
for text mining is to develop efficient graph mining algorithms which implement
effective search strategies and data structures [57].

Examples in the Biomedical Domain: Graph-based approaches in text min-
ing have many applications from biology and chemistry to internet applications
[62]. According to Morales et al [63] graph-based text mining approach combined
with an ontology (e.g. the Unified Medical Language System - UMLS) can lead
to better automatic summarization results. In [64] a graph-based data mining ap-
proach was used to systematically identify frequent co-expression gene clusters.
A graph-based approach was used to disambiguate word sense in biomedical doc-
uments in Agirre et al. [65]. Liu [66] proposed a supervised learning method for
extraction of biomedical events and relations, based directly on subgraph isomor-
phism of syntactic dependency graphs. The method extended earlier work [67]
that required sentence subgraphs to exactly match a training example, and intro-
duced a strategy to enable approximate subgraph matching. These method have
resulted in high-precision extraction of biomedical events from the literature.

Discussion: While graph-based approaches have the disadvantage of being com-
putationally expensive, they have the following advantages:

— It offers a far more expressive document encoding than other methods [57].
— Data which is graph structured widely occurs in different fields such as bi-
ology, chemistry, material science and communication networking [56].
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7.2 Topological Text Data Mining

Very closely related to graph-based methods are topological data mining meth-
ods, due to the fact that for both we need point cloud data sets as input, which
can e.g. be achieved by the vector space model, where the tips of the vectors in
an arbitrarily high dimensional space can be seen as point data sets [38].

Due to finding meaningful topological patterns greater information depth can
be achieved from the same data input [44]. However, with increasing complexity
of the data to process also the need to find a scalable shape characteristic is
greater [68]. Therefore methods of the mathematical field of topology are used
for complex data areas like the biomedical field [68], [48]. Topology as the math-
ematical study of shapes and spaces that are not rigid [68], pose a lot of possi-
bilities for the application in knowledge discovery and data mining, as topology
is the study of connectivity information and it deals with qualitative geometric
properties [69].

Functionality: One of the main tasks of applied topology is to find and anal-
yse higher dimensional topological structures in lower dimensional spaces (e.g.
point cloud from vector space model [44]). A common way to describe topologi-
cal spaces is to first create simplicial complexes. A simplicial complex structure
on a topological space is an expression of the space as a union of simplices
such as points, intervals, triangles, and higher dimensional analogues. Simpli-
cial complexes provide an easy combinatorial way to define certain topological
spaces [69]. A simplical complex K is defined as a finite collection of simplices
such that ¢ € K and 7, which is a face of o, implies 7 € K, and 0,0’ € K
implies o N ¢’ can either be a face of both ¢ and ¢’ or empty[70]. One way to
create a simplical complex is to examine all subsets of points, and if any sub-
sets of points are close enough, a p-simplex (e.g. line) is added to the complex
with those points as vertices. For instance, a Vietoris-Rips complex of diameter
€ is defined as VR(e) = o|diam(o) < €, where diam(e) is defined as the largest
distance between two points in o [70]. Figure 8 shows the Vietoris-Rips com-
plex with varying e for four points with coordinates (0,0), (0,1), (2,1), (2,0). A
common way a analyse the topological structure is to use persistent homology,
which identifies cluster, holes and voids therein. It is assumed that more robust
topological structures are the one which persist with increasing e. For detailed
information about persistent homology, it is referred to [70].

VR (2) VR (V5)

Fig. 8. Vietoris-Rips complex of four points with varying e [70]

VR (1)
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Examples in the Biomedical Domain: In [71] a graph-theoretical approach
for Text Mining is used to extract relation information between terms in free-
text electronic health care records that are semantically or syntactically related.
Another field of application is the text analysis of web and social media for
detecting influenza-like illnesses [72].

Moreover there can be content-rich relationship networks among biological
concepts, genes, proteins and drugs developed with topological text data mining
like shown in [73]. According to [74] network medicine describes the clinical
application field of topological text mining due to adressing the complexity of
human diseases with molecular and phenotypic network maps.

Discussion: A clear advantage of topological text mining is that here can be
greater information depth achieved through understanding the global structure
of the data [44]. The disadvantages include

— The Complexity of the graph representation itself is a problem [57].
— There is a performance limitation in handling large datasets in high dimen-
sions [44].

8 Computational Topology: Software

Maybe the most famous algorithm is the one by Delfinado & Edelsbrunner (1995)
[75], where the authors present an incremental method for computing the Betti
numbers of a topological space represented by a simplicial complex. The al-
gorithm, which has been presented two years earlier at the 9th symposium on
computational geometry [76], is an good example of how algorithmic graph tech-
niques can be applied and extended to complexes of dimension higher than one,
which was an important step in raising interest for algebraic topology.

Besides from available geometry software, whole software packages in compu-
tational topology are rare to date. A good starting point is the CompuTop.org
Software Archive maintained by Nathan Dunfield, enlisting prominent packages
for computing the homology and cohomology of simplicial complexes and groups;
another good source is the CompTop page from Stanford.

Computational Homology Project (CHomP): provides a set of tools for comput-
ing the homology of a collection of n-dimensional cubes, with a view towards
applied applications in dynamical systems, chaos theory, and pattern character-
ization, developed by Pawel Pilarczyk and supported by Konsantin Mischaikow,
Hiroshi Kokubu, Marian Mrozek, Thomas Gedeon, Jean-Philippe Lessard and
Marcio Gameiro.

Dionysus: is a C++ library developed by Dmitriy Morozov for computing per-
sistent homology, distributed together with thin Python bindings. It currently
implements persistent homology, vineyards, persistent cohomology, zigzag, alpha
shapes, Vietoris-Rips complexes, Cech complexes, circle valued coordinatization,
and piecewise linear vineyards.
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Homological Algebra Programming (HAP): is a homological algebra library (cur-
rent version 1.10.15 from November,21, 2013), also for use with GAP with initial
focus on computations related to the cohomology of finite and infinite groups [77].

Linboz: is a C++ library with GAP and Maple interfaces for exact, high-
performance linear algebra computation with dense, sparse, and structured matri-
ces over the integers and over finite fields [78]. (GAP is a system for computational
discrete algebra, with particular emphasis on Computational Group Theory, the
current version GAP 4.7.4 released on February, 20, 2014; Maple is the well-known
computer algebra system, version 18 released in March 2014).

Mapper: is a software (cf. Patent US20100313157A1) developed by the Stanford
Carlsson group (Sexton, Singh, Memoli) [79] for extracting simple descriptions
of high dimensional data sets in the form of simplicial complexes, and is based
on the idea of partial clustering of the data guided by a set of functions defined
on the data. Mapper is the basis of Ayasdi, the company offering the so-called
Insight Discovery Platform using Topological Data Analysis (TDA) to allow
people to discover insights in data.

Persistent Homology in R (PHOM): is a package by Andrew P Tausz, who grad-
uated in 2013 from the Carlsson Group in Stanford, who also developed JavaPlex.
PHPOM is an R package [80] that computes the persistent homology of geometric
data sets, to make persistent homology available to the statistics community.

Persistent homology computations (JavaPlex): is a library that implements per-
sistent homology and related techniques from computational and applied topol-
ogy, enabling extensions for further research projects and approaches. It was
developed in 2010/11 by the Stanford CompTop Group to improve JPlex, which
is a package for computing persistent homology of finite simplicial complexes,
often generated from point cloud data [81].

Regina: is a suite of software for 3-manifold topologists. It focuses on the study
of 3-manifold triangulations and normal surfaces. Other highlights of Regina
include angle structures, census enumeration, combinatorial recognition of tri-
angulations, and high-level tasks such as 3-sphere recognition and connected sum
decomposition. Regina comes with a full graphical user interface, and also offers
Python bindings and a low-level C++ programming interface [26].

9 Open Problems

There are many topological algorithms having exponential time complexity and
the quest for developing efficient algorithms has started only recently and most
of the problems in computational topology still wait for efficient solutions [82].
Some unsolved problems include, for example:
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Problem 1. Point cloud data sets or at least distances are the primitives for
the application of topological approaches, so unless you do not have direct point
data input (e.g. from scanners) the first problem to be solved is in preprocessing,
i.e. in transforming data, e.g. natural images into point cloud data sets, which
is not a trivial task and poses a lot of problems [38].

Problem 2. Volodin, Kuznetsov and Fomenko (1974) [83] stated the problem
of discriminating algorithmically the standard three-dimensional sphere, so an
algorithm would be sought that determines whether a simplicial 3-manifold is
topological equivalent to S, this is a hard problem.

Problem 3. A further open problem is in the design of an algorithm that com-
putes all minimal triangulations for a surface of genus g, or the determination
of the minimal size of a triangulation for a triangulable d-manifold; here Vegter
provides some pointers to Brehm and Khnel (1987) [84] and Sarkaria (1987) [85].

Problem 4. To date none of our known methods, algorithms and tools scale to
the massive amount and dimensionalities of data we are confronted in practice;
we need much more research efforts towards making computational topology
successful as a general method for data mining and knowledge discovery [46].

Problem 5. A big problem is to compute Reeb graphs for spaces of dimension
higher than 3, which would be necessary for knowledge discovery from high-
dimensional data [18].

Whilst computational topology has much potential for the analysis of arbi-
trarily high-dimensional data sets, humans are very good at pattern recognition
in dimensions of < 3, this immediately suggests a combination of the “best of the
two worlds” towards integrated and interactive solutions [1],[86]. Scientifically,
this can be addressed by the HCI-KDD approach: while Human—Computer Inter-
action (HCT) puts its emphasis on human issues, including perception, cognition,
interaction and human intelligence and is tightly connected with Visualization
and Interactive Visual Analytics, Knowledge Discovery &Data Mining (KDD)
is dealing with computational methodologies, methods, algorithms and tools to
discover new, previously insights into data, hence we may speak of supporting
human learning with machine learning [87]; the HCI-KDD network of excellence
(see www.hcidall.at) is proactively supporting this approach in bringing together
people with diverse background but sharing a common goal.

Suppose we were given a million points in 100 dimensions and we wish to
recover the topology of the space from which these points were sampled. Cur-
rently, none of our tools either scale to these many points or extend to this high
a dimension. Yet, we are currently inundated with massive data sets from acqui-
sition devices and computer simulations. Computational topology could provide
powerful tools for understanding the structure of this data. However, we need
both theoretical results as well as practical algorithms tailored to massive data
sets for computational topology to become successful as a general method for
data analysis.
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10 Conclusion and Future Outlook

Topology is basically the study of shapes, in particular of properties that are
preserved when a shape is deformed. Topological techniques originated in pure
mathematics in the last 200+ years, and for quite a time it was the playing field
of some quirky mathematicians interested in differences between a donut and a
dumpling. Meanwhile, topology as mathematical study of shapes and spaces is
a mature and established mathematical field, and in the past two decades the
principles of topology have been adapted and applied to the study and analysis
of data sets, emerging into a very young discipline: computational topology. A
very popular topological technique related to the study of data sets is homology.
The connectivity of a space is determined by its cycles of different dimensions,
and these cycles can be organized into groups, so-called homology groups. Given
a reasonably description of a space, these homology groups can be computed e.g.
by help of linear algebra. Homology groups have a relatively strong discriminative
power and a clear meaning at relatively low computational effort. In the study
of persistent homology the invariants are in the form of persistence diagrams or
so-called barcodes [48].

For knowledge discovery and data mining it is important to visualize and com-
prehend complex data sets, i.e. to find and extract significant features. Exactly
for this reason, topological methods are very useful, since they provide robust
and general feature definitions. They emphasize a ” global information” | although
this can lead to problems during parallelization [88]. Rieck et al. (2012) [89]
presented a novel method for exploring high-dimensional data sets by coupling
topologically-based clustering algorithms with the calculation of topological sig-
natures. Future challenges are in achieving better localization (i.e. assigning a
geometrical meaning) of features when using topological signatures. Rieck et al.
also suggested that in future research the different ways of creating simplicial
complexes should be examined and several metrics for the Rips graph (or neigh-
bourhood graph) should be further investigated. Recently, Morozov (2013) [88]
presented a parallel algorithm for merging two trees. They realized that new ideas
in this domain will be necessary. Future architectures will have many more cores
with non-uniform memory access, hence, an important future research direction
is developing data structures that explicitly take asymmetry into account.

A large area of future research is in graph-theoretical approaches for text
mining, in particular to develop efficient graph mining algorithms which imple-
ment robust and efficient search strategies and data structures [57]. However,
there remain much unsolved questions about the graph characteristics and the
isomorphism complexity [56], so there are plenty of interesting research lines in
the future.

The grand challenge is in the integration of methods, algorithms and tools from
computational topology into useable and useful solutions for interactive knowl-
edge discovery and data mining in high-dimensional and complex data sets.
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