
Branching Bisimilarity Checking for PRS

Qiang Yin, Yuxi Fu, Chaodong He, Mingzhang Huang, and Xiuting Tao

BASICS, Department of Computer Science, Shanghai Jiao Tong University

Abstract. Recent studies reveal that branching bisimilarity is decidable
for both nBPP (normed Basic Parallel Processes) and nBPA (normed Ba-
sic Process Algebras). These results lead to the question if there are any
other models in the hierarchy of PRS (Process Rewrite Systems) whose
branching bisimilarity is decidable. It is shown in this paper that the
branching bisimilarity for both nOCN (normed One Counter Nets) and
nPA (normed Process Algebras) is undecidable. These results essentially
imply that the question has a negative answer.

1 Introduction

Verification on infinite-state systems has been intensively studied for the past
two decades [2,12]. One major concern in these studies is equivalence checking.
Given a specification S of an intended behaviour and a claimed implementation
I of S, one is supposed to demonstrate that I is correct with respect to S.
A standard interpretation of correctness is that an implementation should be
behaviourally equivalent to its specification. Among all the behavioural equalities
studied so far, bisimilarity stands out as the most abstract and the most tractable
one. Two well known bisimilarities are the strong bisimilarity and the weak
bisimilarity due to Park [16] and Milner [15]. Considerable amount of effort
has been made to investigate the decidability and the algorithmic aspect of the
two bisimilarities on various models of infinite state system [18]. These models
include pushdown automata, process algebras, Petri nets and their restricted
and extended variations. An instructive classification of the models in terms of
PRS (Process Rewrite Systems) is given by Mayr [13].

The strong bisimilarity checking problem has been well studied for PRS hi-
erarchy. Influential decidability results include for example [1,4,3,21,8]. On the
negative side, Jančar attained in [9] the undecidable result of strong bisimilarity
on nPN (normed Petri Nets). The proof makes use of a powerful technique now
known as Defender’s Forcing [11], which remains a predominant tool to establish
negative results about equivalence checking.

In the weak case the picture is less clear. It is widely believed that weak
bisimilarity is decidable for both nBPA (normed Basic Process Algebras) and
nBPP (normed Basic Parallel Processes). The problem has been open for a long
time. Srba [17] showed that weak bisimilarity on nPDA (normed Pushdown
Automata) is undecidable by a reduction from the halting problem of Minsky
Machine. The undecidability was soon extended to nOCN (normed One Counter
Nets), a submodel of both nPDA and nPN, by Mayr [14]. Srba also showed that

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 363–374, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

364 Q. Yin et al.

nBPA nBPP nPDA nPA nPN

Strong Bisimilarity �[1] �[3] �[21] �[8] ×[9]

Branching Bisimilarity �[7] �[5] ×[this paper] ×[this paper] ×[9]

Weak Bisimilarity ? ? ×[14] ×[this paper] ×[9]

Fig. 1. Decidability of Branching Bisimilarity for Normed PRS

the weak bisimilarity on PA (Process Algebras) is undecidable [19]. Later several
highly undecidable results were established by Jančar and Srba [20,10,11] for the
weak bisimilarity checking problem on PN, PDA and PA.

The decidability of the weak bisimilarity on nBPA and nBPP has been open for
well over twenty years. Encouraging progress has been made recently. Czerwiński,
Hofman and Lasota proved that branching bisimilarity, a standard refinement of
the weak bisimilarity, is decidable on nBPP [5]. The novelty of their approach is
the discovery of some kind of normal form for nBPP. Using a quite different tech-
nique Fu showed that the branching bisimilarity is also decidable on nBPA [7]. In
retrospect one cannot help thinking that more attention should have been paid
to the branching bisimilarity. Going back to the original motivation to equiva-
lence checking, one would agree that a specification S normally contains no silent
actions because silent actions are about how-to-do. Consequently all the silent
actions introduced in an implementation must be bisimulated vacuously by the
specification. It follows that S is weakly bisimilar to an implementation I if and
only if S is branching bisimilar to I. What this observation tells us is that as far
as verification is concerned the branching bisimilarity ought to play a role no less
than the weak bisimilarity.

The above discussion suggests to address the following question: Is there any
other model in the PRS hierarchy whose branching bisimilarity is decidable? The
purpose of this paper is to resolve this issue. Our contributions are as follows:

– We establish the fact that on both nOCN and nPA every relation between
the branching bisimilarity and the weak bisimilarity is undecidable. These
are improvement of Mayr’s result about the undecidability of the weak
bisimilarity on nOCN [14] and Srba’s result [19] about the undecidability of
the weak bisimilarity on PA. These new results together with the previous
(un)decidability results about the normed models in PRS are summarized in
Fig. 1, where a tick is for ‘decidable’ and a cross for ‘undecidable’.

– We showcase the subtlety of Defender’s Forcing technique usable in branch-
ing bisimulation game. It is pointed out that the technique must be of a
semantic nature for it to be applicable to the branching bisimilarity.

The two negative results imply that in the PRS hierarchy the branching bisimi-
larity on every normed model above either nBPA or nBPP is undecidable.

The rest of the paper is organized as follows. Section 2 introduces the nec-
essary preliminaries. Section 3 establishes the undecidability result for nOCN
and demonstrates Defender’s Forcing technique for branching bisimulation game.
Section 4 proves the undecidability result about nPA. Section 5 concludes.

Branching Bisimilarity Checking for PRS 365

2 Preliminaries

A process algebra P is a triple (C,A, Δ), where C is a finite set of process con-
stants, A is a finite set of actions ranged over by �, and Δ is a finite set of transi-
tion rules. The processes defined by P are generated by the following grammar:

P ::= ε | X | PP ′ | P ‖P ′.

The grammar equality is denoted by =. We assume that the sequential composi-
tion PP ′ is associative up to = and the parallel composition P ‖P ′ is associative
and commutative up to =. We also assume that εP = Pε = ε ‖P = P ‖ ε = P .
There is a special symbol τ in A for silent transition. The set A \ {τ} is ranged

over by a, b, c, d. The transition rules inΔ are of the formX
�−→ P . The following

labeled transition rules define the operational semantics of the processes.

X
�−→ P ∈ Δ

X
�−→ P

P
�−→ P ′

PQ
�−→ P ′Q

P
�−→ P ′

P ‖Q �−→ P ′ ‖Q
Q

�−→ Q′

P ‖Q �−→ P ‖Q′

The operational semantics is structural, meaning that PQ
�−→ P ′Q, P ‖Q �−→

P ′ ‖Q and Q ‖P �−→ Q ‖P ′ whenever P �−→ P ′. We write =⇒ for the reflexive

transitive closure of
τ−→, and

̂�
=⇒ for =⇒ �−→=⇒ if � �= τ and for =⇒ otherwise.

A one counter net M is a 4-tuple (Q, X,A, Δ), where Q is a finite set of states
ranged over by p, q, r, s, X represents a place, A is a finite set of actions as in a
process algebra, and Δ is a finite set of transition rules. A process defined by M
is of the form pXn, where n indicates the number of tokens in X . A transition

rule in Δ is of the form pX i �−→ qXj with i < 2. The semantics is structural in

the sense that pX i+k �−→ qXj+k whenever pX i �−→ qXj . A process P defined

in P , respectively M, is normed if ∃�1, . . . , �n.P �1−→ . . .
�n−→ ε, respectively

∃�1, . . . , �n, p.(P �1−→ . . .
�n−→ p)∧∀�,Q.¬(p �−→ Q). We say that P/M is normed

if only normed processes are definable in it. We write (n)PA for the (normed)
Process algebras and (n)OCN for the (normed) One Counter Nets.

In the presence of silent actions two well known process equalities are the
weak bisimilarity [15] and the branching bisimilarity [24].

Definition 1. A relation R is a weak bisimulation if the following are valid:

1. Whenever PRQ and P
�−→ P ′, then Q

̂�
=⇒ Q′ and P ′RQ′ for some Q′.

2. Whenever PRQ and Q
�−→ Q′, then P

̂�
=⇒ P ′ and P ′RQ′ for some P ′.

The weak bisimilarity ≈ is the largest weak bisimulation.

Definition 2. A relation R is a branching bisimulation if the following hold:

1. Whenever PRQ and P
�−→ P ′, then either (i) Q =⇒ Q′′ �−→ Q′ and P ′RQ′

and PRQ′′ for some Q′, Q′′ or (ii) � = τ and P ′RQ.

2. Whenever PRQ and Q
�−→ Q′, then either (i) P =⇒ P ′′ �−→ P ′ and P ′RQ′

and P ′′RQ for some P ′, P ′′ or (ii) � = τ and PRQ′.
The branching bisimilarity � is the largest branching bisimulation.

366 Q. Yin et al.

The following lemma, first noticed by van Glabbeek and Weijland [24], plays
a fundamental role in the study of branching bisimilarity.

Lemma 1. If P =⇒ P ′ =⇒ P ′′ � P then P ′ � P .

Let � be a process equivalence. A silent action P
τ−→ P ′ is state preserving

with regards to �, notation P → P ′, if P ′
� P ; it is change-of-state with regards

to �, notation P
ι−→ P ′, if P ′ �� P . The reflexive and transitive closure of → is

denoted by →∗. Branching bisimilarity strictly refines weak bisimilarity in the
sense that only state preserving silent actions can be ignored; a change-of-state

must be explicitly bisimulated. Suppose that P � Q and P
�−→ P ′ is matched by

the transition sequence Q
τ−→ · · · τ−→ Qi

τ−→ · · · τ−→ Q′′ �−→ Q′. By definition
one has P � Q′′. It follows from Lemma 1 that P � Qi, meaning that all silent
actions in Q =⇒ Q′′ are necessarily state preserving. This property fails for the
weak bisimilarity as the following example demonstrates.

Example 1. Consider the transition system {P b−→ ε, P
τ−→ P ′ a−→ ε, P

a−→
ε; Q

b−→ ε, Q
τ−→ Q′ a−→ ε}. One has P ≈ Q. However P �� Q since Q �� Q′.

A game theoretic characterization of bisimilarity is by bisimulation game [22].
Suppose that a pair of processes P,Q, called a configuration, are defined in say a
process algebra (C,A, Δ). A branching bisimulation game for the configuration
(P,Q) is played between Attacker and Defender. The game is played in rounds.
A new configuration is chosen after each round. Every round consists of three
steps defined as follows, assuming (P0, P1) is the current configuration:

1. Attacker chooses i ∈ {0, 1}, � ∈ A and some process P ′
i such that Pi

�−→ P ′
i .

2. Defender may respond in either of the following manner:

– Choose some P ′
1−i, P

′′
1−i such that P1−i =⇒ P ′′

1−i
�−→ P ′

1−i.
– Do nothing in the case that � = τ .

3. Attacker decides which of (Pi, P
′′
1−i), (P

′
i , P

′
1−i) is the new configuration if

Defender has played. Otherwise the new configuration must be (P ′
i , P1−i).

In a weak bisimulation game a round consists of two steps. The first step is
the same as above. In the second step Defender chooses some P ′

1−i and some

transition sequence P1−i

̂�
=⇒ P ′

1−i. The game then continues with (P ′
i , P

′
1−i).

Defender wins a game if it never gets stuck; otherwise Attacker wins. We say
that Defender/Attacker has a winning strategy if it can always win no matter
how the opponent plays. The following lemma is well known, a clever use of
which often simplifies bisimulation argument considerably.

Lemma 2. Defender has a winning strategy in the branching, respectively weak,
bisimulation game starting from the configuration (P,Q) if and only if P � Q,
respectively P ≈ Q.

Attacker has a winning strategy for the branching bisimulation game of the
pair P,Q defined in Example 1. It simply chooses P

a−→ ε. If Defender chooses
Q

τ−→ Q′ a−→ ε, Attacker chooses the configuration (P,Q′) and wins. Defender
can win the weak bisimulation game of (P,Q) though.

Branching Bisimilarity Checking for PRS 367

3 Defender’s Forcing with Delayed Justification

A powerful technique for proving lower bounds for bisimilarity checking problem
is Defender’s Forcing described by Jančar and Srba in [11]. The basic idea is to
force Attacker to make a particular choice in a bisimulation game by introducing
enough copycat rules. An application of the technique to weak bisimulation game
should be careful since both Attacker and Defender can take advantage of silent
transitions. The design of a branching bisimulation game is even more subtle. In
such a game a sequence of silent transitions used by Defender, except possibly
the last one, must all be state preserving. A useful technique, motivated by
Lemma 1, is to make use of generating processes. The process G defined by
the rules G

τ−→ GX and GX
τ−→ G is generating due to the fact that every

process that G may evolve into, say GXn, is branching bisimilar to G. The
presence of other transition rules for G and X would not change the fact that
G � GXn for all n. This technique has already been used in the design of
weak bisimulation games [11,14]. The relations these games give rise to are not
branching bisimulation because a state-preserving transition may be simulated
by a change-of-state silent transition. In what follows we use a small example to
expose the subtlety of branching bisimulation game and the technique to apply
Defender’s Forcing in such a game.

Mayr proved in [14] a general result that the weak bisimilarity is undecidable
for any model that subsumes nOCN. The lower bound is achieved by reducing
from the halting problem of Minsky machine. A Minsky machine M with two
counters c1, c2 is a program of the form 1 : I1; 2 : I2; . . . ; m−1 : Im−1; m : halt,
where for each i ∈ {1, . . . ,m− 1} the instruction Ii is in either of the following
forms, assuming j, k ∈ {1, . . . ,m− 1} and e ∈ {1, 2},
– ce := ce + 1 and then goto j.
– if ce = 0 then goto j; otherwise ce := ce − 1 and then goto k.

By encoding a pair of numbers (n1, n2) by Gödel number of the form 2n13n2 ,
Mayr implemented the increment and decrement operations on the counters by
multiplying and dividing by 2 and 3 respectively. The central part of Mayr’s proof
is to show that it is possible to encode these operations and test for divisibility
by constant into weak bisimulation games on nOCN. We shall show that Mayr’s
reduction can be strengthened to produce reductions to branching bisimulation
games on nOCN. For every instruction “i : Ii” of a Minsky machine M a pair
of states pi, p

′
i are introduced. Suppose “i : c2 := c2 + 1; goto j” is the i-th

instruction of M. The instruction is translated to the rules given in Fig. 2. The
model defined in Fig. 2 is open-ended. Transition rules associated to pj and p′j
are not given. We have however the following interesting property.

Lemma 3. Let n = 2n13n2 for some n1, n2. Defender of the branching bisimu-
lation game of (pjX

3n, p′jX
3n) has a winning strategy if and only if Defender of

the branching bisimulation game of (piX
n, p′iX

n) has a winning strategy.

Proof. The crucial point here is that the copycat rules pi
τ−→ G′ and p′i

τ−→ G′,
which syntactically identify what piX

n and p′iX
n may reach in one silent step,

368 Q. Yin et al.

pi
τ−→ G′ p′i

τ−→ G′

pi
a−→ q1 G′ a−→ q′1, G′ τ−→ G′X, G′X τ−→ G′

q1
a−→ q2 q′1

a−→ q′2
q1

t−→ t3 q′1
t−→ t1

q2
τ−→ G q′2

τ−→ G

G
τ−→ GX, GX

τ−→ G, G
a−→ q3 q′2

a−→ q′3
q3

a−→ pj q′3
a−→ p′j

q3
t−→ t1 q′3

t−→ t1

t3X
c−→ t′′X, t′′X c−→ t′X, t′X c−→ t3 t1X

c−→ t1

Fig. 2. Multiplication Operation on Counter in OCN

do not automatically create a Defender’s Forcing situation. The reason is that
although p′iX

n → G′Xn, since p′iX
n τ−→ G′Xn is the only action of p′iX

n,

it might well be that piX
n ι−→ G′Xn. For branching bisimulation syntactical

Defender’s Forcing is insufficient. One needs Defender’s Forcing that works at
semantic level. Let’s take a look at the development of the game in some detail.

1. If Attacker plays piX
n τ−→ G′Xn, Defender plays p′iX

n τ−→ G′Xn. By
Lemma 1 this response is equivalent to any other response from Defender.

2. If Attacker chooses the action piX
n a−→ q1X

n, Defender responds with
p′iX

n → G′Xn →∗ G′X3n a−→ q′1X
3n, making use of Lemma 1. Attacker’s

optimal move is to choose (q1X
n, q′1X

3n) to be the next configuration.
3. Now Attacker would not do a t action since t3X

n � t1X
3n. It chooses the

action a and the new configuration (q2X
n, q′2X

3n).
4. Then we come to another semantic Defender’s Forcing. If Attacker plays

q2X
n τ−→ GXn, Defender plays q′2X

n τ−→ GX3n; and vice versa.
5. If Attacker chooses the transition q′2X

3n a−→ q′3X
3n, Defender’s response is

q2X
n τ−→ GXn =⇒ GX3n a−→ q3X

3n, exploiting again Lemma 1. Attacker’s
nontrivial choice of the new configuration is (q3X

3n, q′3X
3n).

6. Finally Attacker would not choose a t1 action since t1X
3n � t1X

3n. So after
an a action, the configuration becomes (qjX

3n, q′jX
3n).

It is easy to see that the configuration (qjX
3n, q′jX

3n) is optimal for both At-

tacker and Defender. If qjX
3n � q′jX

3n then Defender’s Forcing described above

is justified. If qjX
3n �� q′jX

3n the forcing is ineffective since Attacker can choose

to play piX
n τ−→ G′Xn and wins. �

The main result of the section follows easily from Lemma 3 and its proof.

Theorem 1. On nOCN every relation R satisfying � ⊆ R ⊆ ≈ is undecidable.

Proof. Dividing a number by a constant can be encoded in similar fashion. The
rest of Mayr’s reduction does not refer to any silent transitions. It follows that
we can construct a reduction witnessing that “M halts iff p1X �� p′1X”. As
a matter of fact the reduction supports the stronger correspondence stated as
follows: “M halts iff p1X �≈ p′1X”. �

Branching Bisimilarity Checking for PRS 369

4 Undecidability of nPA

Following [19], our main undecidability result is proved by reducing PCP (Post’s
Correspondence Problem) to the branching bisimilarity checking problem on
nPA. Suppose Σ is a finite set of symbols and Σ+ is the set of nonempty finite
strings over Σ. The size of Σ is at least two. PCP is defined as follows.

Post’s Correspondence Problem
Input: {(u1, v1), (u2, v2) . . . (un, vn) | ui, vi ∈ Σ+}.

Problem: Are there i1, i2, . . . im ∈ {1, 2, . . . , n} with m ≥ 1
such that ui1ui2 . . . uim = vi1vi2 . . . vim?

We will fix a PCP instance INST={(u1, v1), (u2, v2) . . . (un, vn) | ui, vi ∈ Σ+}
in this section. Our task is to construct a normed process algebra G=(C,A, Δ)
containing two process constantsX,Y that render true the following equivalence.

“INST has a solution” iff X � Y iff X ≈ Y. (1)

We will prove (1) by validating the following statements:

– “If INST has a solution then X � Y ”. This is Lemma 6 of Section 4.4.
– “If INST has no solution then X �≈ Y ”. This is Lemma 7 of Section 4.4.

As X � Y implies X ≈ Y , the main theorem of the paper follows from (1).

Theorem 2. On nPA every relation R satisfying � ⊆ R ⊆ ≈ is undecidable.

In the rest of the section, we firstly define G, and then argue in several steps
how the game based on G works in Defender’s favour if INST has a solution.

4.1 The nPA Game

The construction of G = (C,A, Δ) from INST is based on Srba’s reduction [19].
Substantial amount of redesigning effort is necessary to make it work for the
branching bisimilarity on the normed PA. The set A of actions is defined by

A = Λ ∪N ∪Σ ∪ {τ},
where Λ = {λU , λV , λD, λI , λS , λZ}, N = {1, . . . , n} and Σ,n are from INST.
The set C of process constants is defined by

C = {X,Y, Z, I, S, C,C′, D,G,G′, Gu, Gv, G
′
v} ∪ U ∪ V ∪W ,

U = {Ui | i ∈ N},
V = {Vi | i ∈ N},
W = {W (ω, i),W (ω, 0) | ω ∈ (SF(ui) ∪ SF(vi)) and i ∈ N},

where for each ω ∈ Σ∗, the notation SF(ω) stands for the set of suffixes of ω.
The set of transition rules is given in Fig. 3. It is clear from these rules that G
is indeed normed. In particular P =⇒ ε for all P ∈ U ∪ V ∪W .

We write Pu, respectively Pv, for a sequential composition of members of U ,
respectively V . Similarly we write P, respectively Q, for a sequential composition
of members of U ∪ V , respectively U ∪ V ∪ W . If for example the sequence u is
empty, Pu is understood to denote ε.

370 Q. Yin et al.

X
λU−→ D ‖Gv, X

τ−→ D; Y
τ−→ D; D

τ−→ D ‖Gu, D
λD−→ C;

Gu
τ−→ GuUi, Gu

λU−→ GvUi; Gu
τ−→ G′

v, G′
v

τ−→ G′
vVi, G′

v
τ−→ Z;

Gv
τ−→ GvVi, Gv

τ−→ ε, Gv
λV−→ Z; Z

τ−→ ε, Z
λZ−→ ε;

C
λI−→ I , C

λS−→ S, C
τ−→ C ‖G, C

τ−→ C ‖Gv;

G
τ−→ GUi, G

τ−→ GVi, G
τ−→ ε;

I
λI−→ C′, I

i−→ I ; S
λS−→ C′, S

a−→ S; C′ τ−→ C′ ‖G′, C′ τ−→ ε;

G′ τ−→ G′Ui, G′ τ−→ G′Vi, G′ τ−→ G′W , G′ τ−→ Gv, G′ τ−→ Z;

Ui
τ−→ W (ui, i), Vi

τ−→ W (vi, i);

W (aω, i)
a−→ W (ω, i), W (aω,0)

a−→ W (ω, 0), W (ω, i)
i−→ W (ω, 0),

W (aω, i)
τ−→ W (ω, i), W (aω,0)

τ−→ W (ω,0), W (ω, i)
τ−→ W (ω, 0), W (ε, 0)

τ−→ ε.

In the above rules, i ranges over {1, . . . , n}, a ranges over Σ, and W ranges over W.

Fig. 3. Transition Rules for the nPA Game

4.2 Defender’s Generator

To explain how the reduction works we start with the generators introduced by
the process algebra. A generator should be able to not only produce what is
necessary but also do away with what has been produced. The process D for
instance can induce circular silent transition sequence of the form

D
τ−→ D ‖Gu =⇒ D ‖GuPu

τ−→ D ‖G′
vPu =⇒ D ‖G′

vPvPu =⇒ D.

By Lemma 1 all the processes appearing in the above sequence are branching
bisimilar. Notice that the only reason the process constant G′

v is introduced is
to make available the above circular sequence. The constant G′

v is necessary
because Gu cannot reach Gv via silent moves. Similar circular silent transition
sequences are also available for C and C′.

Lemma 4. Suppose P ∈ {D,C,C′} and P =⇒ P ‖Q. Then P ‖Q =⇒ P .

Corollary 1. The following equalities are valid for all Pu,Pv,P,Q.

1. D � D ‖GuPu � D ‖G′
vPvPu � D ‖ZPvPu � D ‖PvPu � D ‖WPvPu;

2. C � C ‖GP � C ‖P � C ‖WP � C ‖GvPv;
3. C′ � C′ ‖G′

Q � C′ ‖GvQ � C′ ‖ZQ � C′ ‖Q.

It has been observed that generating transitions are the most tricky ones
in decidability proofs [23,5,7]. Here they are used to Defender’s advantage. A
generator can start everything all over again from scratch. This gives Defender
the ability to copy Attacker if the latter does not make a particular move.

The bisimulation game of (X,Y) is played in two phases. The generating
phase comes first. During this phase Defender tries to produce a pair Pu,Pv, via
Defender’s Forcing using the generators, that encode a solution to INST. Next
comes the checking phase in which Attacker tries to reject the pair Pu,Pv. In
the light of the delayed effect of Defender’s Forcing in branching bisimulation
games, we will look at the two phases in reverse order.

Branching Bisimilarity Checking for PRS 371

4.3 Checking Phase

The processes Ui, Vi play two roles. One is to announce ui, respectively vi; the
other is to reveal the index i. The first role can be suppressed by composing Ui,
respectively Vi, with S while the second can be discharged by composing with
I [19]. Since I, S are normed, Attacker can choose to remove I, respectively S. In

our game the removal can be done by playing I
λI−→ C′, respectively S

λS−→ C′.
According to (3) of Corollary 1 however Attacker would lose immediately if it

plays I
λI−→ C′, respectively S

λS−→ C′, in a branching bisimulation game starting
from (I ‖Q, I ‖Q′), respectively (S ‖Q, S ‖Q′). Notice that it is important for
a process constant W to ignore the string/index information by doing silent
transitions. Otherwise the interleaving between actions in Σ and actions in N
would defeat Defender’s attempt to prove string/index equality.

Lemma 5. Suppose U = Ui1Ui2 . . . Uil , V = Vj1Vj2 . . . Vjr and B ∈ {ε, Z,Gv}.
The following statements are valid, where � ∈ {�,≈}.
1. I ‖BPU � I ‖BPV if and only if ui1ui2 . . . uil = vj1vj2 . . . vjr .
2. S ‖BPU � S ‖BPV if and only if i1i2 . . . il = j1j2 . . . jr.

Proof. Suppose I ‖BPU � I ‖BPV and w.l.o.g. |ui1ui2 . . . uil | ≥ |vj1vj2 . . . vjr |.
An action sequence from I ‖BPU to I ‖U must be simulated essentially by an
action sequence from I ‖BPV to I ‖V. But then ui1ui2 . . . uil = vj1vj2 . . . vjr
can be derived from I ‖U � I ‖V. The converse implication follows from the
discussion in the above. The second equivalence can be proved similarly. �

The following proposition, in which � ∈ {�,≈}, says that the constant C can
be used to check both string equality and index equality by Attacker’s forcing.

Proposition 1. If U = Ui1Ui2 . . . Uil and V = Vj1Vj2 . . . Vjr , then for all P,
C ‖ZPU � C ‖ZPV iff i1i2 . . . il = j1j2 . . . jr and ui1ui2 . . . uil = vj1vj2 . . . vjr .

Proof. In one direction we prove that C ‖ZPU ≈ C ‖ZPV implies i1i2 . . . il =
j1j2 . . . jr and ui1ui2 . . . uil = vj1vj2 . . . vjr . If i1i2 . . . il �= j1j2 . . . jr, then At-

tacker chooses C ‖ZPU
λS−→ S ‖ZPU. Defender cannot invoke the action Z

τ−→ ε
for otherwise an λZ action cannot be performed before an λV action. The process
constant Z is introduced precisely for this blocking effect. Defender’s play must

be of the form C ‖ZPV =⇒ C ‖Q ‖ZPV
λS−→ S ‖Q ‖ZPV =⇒ S ‖Q′ ‖ZPV. If

Q′ can perform any one of {λV , λZ} ∪ N , Attacker wins since S can do none of
those. If Q′ can do none of those actions, then S � S ‖Q′. By Lemma 5 Attacker
has a winning strategy for the weak bisimulation game (S ‖ZPU, S ‖Q′ ‖ZPV).
If ui1ui2 . . . uil �= vj1vj2 . . . vjr , the argument is similar.

Conversely we prove that i1i2 . . . il = j1j2 . . . jr ∧ ui1ui2 . . . uil = vj1vj2 . . . vjr
implies C ‖ZPU � C ‖ZPV. This is done by showing that the relation{

(C ‖Q ‖ZPU, C ‖Q ‖ZPV)

∣∣∣∣ i1i2 . . . il = j1j2 . . . jr
ui1ui2 . . . uil = vj1vj2 . . . vjr .

}
∪ �

is a branching bisimulation. �

372 Q. Yin et al.

4.4 Generating Phase

Suppose that INST has a solution i1, i2, . . . , ik. Fix the following abbreviations:
U

− = Ui2 . . . Uik , U = Ui1U
− and V = Vi1Vi2 . . . Vik . We will argue that Defender

has a winning strategy in the branching bisimulation game of (X,Y). Defender’s
basic idea is to produce the pair U,V by forcing. Its strategy and Attacker’s
counter strategy are described below.

(i) By Defender’s Forcing Attacker plays X
λU−→ D ‖Gv. Defender proposes U

via the transitions Y
τ−→ D

τ−→ D ‖Gu =⇒ D ‖GuU
− λU−→ D ‖GvU. The

use of an explicit action λU guarantees that U is nonempty. Now Attacker
has a number of configurations to choose from. But by (1) of Corollary 1,
it all boils down to choosing (D ‖Gv, D ‖GvU).

(ii) Due to (1) of Corollary 1 Attacker would not removeGv using eitherGv
τ−→

ε orGv
λV−→ Z. It can generate an element of V using Gv. It can do an action

induced by D or a descendant of D. Defender simply copycats Attacker’s
actions. The configuration stays in the form (D ‖Q ‖GvPv, D ‖Q ‖GvPvU).

(iii) To have any chance to win, Attacker must try the action λD. Defender does
the same action. The configuration becomes (C ‖Q ‖GvPv, C ‖Q ‖GvPvU).
At this point if Attacker plays a harmless action, Defender can copycat the
action; and the configuration stays in the same shape.

(iv) An important observation is that if Attacker plays C ‖Q ‖GvPv
�−→ P1,

Defender can play C ‖Q ‖GvPvU =⇒ C ‖Q =⇒ C ‖Q ‖GvPv
�−→ P1

and wins. Here C ‖Q � C ‖Q ‖GvPv by (2) of Corollary 1. To see that
the assumptions i1i2 . . . il = j1j2 . . . jr and ui1ui2 . . . uil = vj1vj2 . . . vjr
imply C ‖Q ‖GvPvU � C ‖Q, notice that C ‖Q ‖GvPvU =⇒ C ‖Q =⇒
C ‖Q ‖GvPvV and that C ‖Q ‖GvPvU � C ‖Q ‖GvPvV is a corollary of
Proposition 1. Thus Attacker would choose C ‖Q ‖GvPvU to continue.

(v) Attacker would not play C ‖Q ‖GvPvU
τ−→ C ‖Q ‖PvU because it would

lose right away according to (2) of Corollary 1.
(vi) By Lemma 5 Attacker would not do a λI action or a λS action. It stands

the best chance to play C ‖Q ‖GvPvU
λV−→ C ‖Q ‖ZPvU. The counter play

from Defender is C ‖Q ‖GvPv =⇒ C ‖Q ‖GvPvV
λV−→ C ‖Q ‖ZPvV.

The last configuration (C ‖Q ‖ZPvV, C ‖Q ‖ZPvU) is optimal for Attacker. By
Proposition 1 Defender has a winning strategy for the branching bisimulation
game of (C ‖Q ‖ZPvV, C ‖Q ‖ZPvU). Hence the following lemma.

Lemma 6. If INST has a solution then X � Y .

The converse of Lemma 6 also holds. In fact a stronger result is obtainable. In
the weak bisimulation game of (X,Y), Attacker has a strategy to force the game
to reach a configuration that is essentially of the form (C ‖ZP

′
v, C ‖ZPvPu),

where Pu �= ε. If there is no solution to INST, Proposition 1 implies C ‖ZP
′
v �≈

C ‖ZPvPu. It follows that Attacker has a winning strategy for the weak bisim-
ulation game of (X,Y).

Lemma 7. If INST has no solution then X �≈ Y .

Branching Bisimilarity Checking for PRS 373

nBPA nBPP

nOCN

nOCA

nPA

nPDA nPN

Fig. 4. Decidability Border for Branching Bisimilarity on Normed PRS

5 Conclusion

Putting together the results derived in this paper, we see that there is a decidabil-
ity border in the normed PRS hierarchy, see Fig. 4. The branching bisimilarity

1. is undecidable on all normed models above either nBPA or nBPP, and
2. is decidable for both nBPP and nBPA [5,7].

We have confirmed that the first statement is valid for the weak bisimilarity,
which slightly strengthens the results obtained in [12]. In fact the statement is
valid for every relation between the branching bisimilarity and the weak bisim-
ilarity. It has been conjectured that the second statement is also true for the
weak bisimilarity. The answers however have remained a secret for us up to now.

Tighter complexity bounds, or even completeness characterizations, would be
very welcome. Another avenue for further study is based on the observation that
although the undecidability results of both the present paper and the paper of
Jančar and Srba [11] are about the same models, the degrees of undecidability
are most likely to be different. In [11] it is pointed out that by constraining the
silent actions of nPDA, say to ε-popping or ε-pushing silent moves, the degree
of undecidability of the weak bisimilarity goes from the analytic hierarchy down
to the arithmetic hierarchy. It is therefore a reasonable hope that the same
restriction may lead to decidable results for the branching bisimilarity on some
PRS models. Further studies are called for.

Complete proofs of the results stated in this extended abstract can be found
in the full paper [25].

Acknowledgement. We gratefully acknowledge the support of the National Sci-
ence Foundation of China (61033002, ANR 61261130589, 91318301). We thank
the anonymous referees and Patrick Totzke for their constructive suggestions.

References

1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of Bisimulation Equiv-
alence for Processes Generating Context-free Languages. In: de Bakker, J.W.,
Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 94–111.
Springer, Heidelberg (1987)

2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on Infinite Structures.
In: Handbook of Process Algebra. Elsevier Science (2001)

3. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation Equivalence is Decidable
for Basic Parallel Processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 143–157. Springer, Heidelberg (1993)

374 Q. Yin et al.

4. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation Equivalence is Decidable
for all Context-free Processes. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS,
vol. 630, pp. 138–147. Springer, Heidelberg (1992)

5. Czerwiński, W., Hofman, P., Lasota, S.: Decidability of Branching Bisimulation on
Normed Commutative Context-free Processes. In: Katoen, J.-P., König, B. (eds.)
CONCUR 2011. LNCS, vol. 6901, pp. 528–542. Springer, Heidelberg (2011)

6. De Nicola, R., Montanari, U., Vaandrager, F.: Back and Forth Bisimulations. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165.
Springer, Heidelberg (1990)

7. Fu, Y.: Checking Equality and Regularity for Normed BPA with Silent Moves. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
II. LNCS, vol. 7966, pp. 238–249. Springer, Heidelberg (2013)

8. Hirshfeld, Y., Jerrum, M.: Bisimulation Equivanlence is Decidable for Normed
Process Algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

9. Jančar, P.: Undecidability of Bisimilarity for Petri Nets and Some Related Prob-
lems. Theoretical Computer Science 148, 281–301 (1995)

10. Jančar, P., Brics, J.S.: Highly Undecidable Questions for Process Algebras. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IFIP, vol. 155, pp. 507–520.
Springer, Boston (2004)

11. Jančar, P., Srba, J.: Undecidability of Bisimilarity by Defender’s Forcing. Journal
of the ACM 55, 1–26 (2008)

12. Kučera, A., Jančar, P.: Equivalence-Checking on Infinite-State Systems: Tech-
niques and Results. Theory and Practice of Logic Programming 6, 227–264 (2006)

13. Mayr, R.: Process Rewrite Systems. Information and Computation 156, 264–286
(2000)

14. Mayr, R.: Undecidability of Weak Bisimulation Equivalence for 1-Counter Pro-
cesses. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 570–583. Springer, Heidelberg (2003)

15. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
16. Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
17. Srba, J.: Undecidability of Weak Bisimilarity for Pushdown Processes. In: Brim,

L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 579–594. Springer, Heidelberg (2002)

18. Srba, J.: Roadmap of Infinite Results. EATCS 78, 163–175 (2002)
19. Srba, J.: Undecidability of Weak Bisimilarity for PA-Processes. In: Ito, M., Toyama,

M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 197–208. Springer, Heidelberg (2003)
20. Srba, J.: Completeness Results for Undecidable Bisimilarity Problems. Electronic

Notes in Computer Science 98, 5–19 (2004)
21. Stirling, C.: Decidability of Bisimulation Equivalence for Normed Pushdown Pro-

cesses. Theoretical Computer Science 195, 113–131 (1998)
22. Stirling, C.: The Joys of Bisimulation. In: Brim, L., Gruska, J., Zlatuška, J. (eds.)

MFCS 1998. LNCS, vol. 1450, pp. 142–151. Springer, Heidelberg (1998)
23. Stirling, C.: Decidability of Weak Bisimilarity for a Subset of Basic Parallel Pro-

cesses. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030,
pp. 379–393. Springer, Heidelberg (2001)

24. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of ACM 43, 555–600 (1996)

25. Yin, Q., Fu, Y., He, C., Huang, M., Tao, X.: Branching Bisimilarity Checking for
PRS (2014), http://arxiv.org/abs/1402.0050

http://arxiv.org/abs/1402.0050

	Branching Bisimilarity Checking for PRS
	1 Introduction
	2 Preliminaries
	3 Defender’s Forcing with Delayed Justification
	4 Undecidability of nPA
	4.1 The nPA Game
	4.2 Defender’s Generator
	4.3 Checking Phase
	4.4 Generating Phase

	5 Conclusion
	References

