
Hardness Results for Intersection

Non-Emptiness

Michael Wehar

Department of Computer Science and Engineering
University at Buffalo, Buffalo, USA

mwehar@buffalo.edu

Abstract. We carefully reexamine a construction of Karakostas, Lipton,
and Viglas (2003) to show that the intersection non-emptiness problem
for DFA’s (deterministic finite automata) characterizes the complexity
class NL. In particular, if restricted to a binary work tape alphabet, then
there exist constants c1 and c2 such that for every k intersection non-
emptiness for k DFA’s is solvable in c1k log(n) space, but is not solvable
in c2k log(n) space. We optimize the construction to show that for an
arbitrary number of DFA’s intersection non-emptiness is not solvable in
o(n

log(n) log(log(n))
) space. Furthermore, if there exists a function f(k) =

o(k) such that for every k intersection non-emptiness for k DFA’s is
solvable in nf(k) time, then P �= NL. If there does not exist a constant c
such that for every k intersection non-emptiness for k DFA’s is solvable
in nc time, then P does not contain any space complexity class larger
than NL.

1 Introduction

Let A denote a class of machines. The intersection non-emptiness problem for
A, denoted by IEA, consists of all finite lists of machines in A whose underlying
languages have a non-empty intersection. By fixing the number of machines in
the input to k, one obtains intersection non-emptiness for k machines which we
denote by k-IEA. Intersection non-emptiness problems can be motivated by the
following scenario. Consider that you are trying to construct an object x for a
particular application. You propose a finite list of conditions for x to satisfy such
that each condition can be decided by a machine in A. An algorithm that solves
intersection non-emptiness for A provides a method for checking if there exists
an object x satisfying the proposed conditions.

Let IED denote the intersection non-emptiness problem for DFA’s. One can
solve IED by checking reachability in a product machine. Given an input consist-
ing of k machines each of size at most m, the product machine has size at most
mk. Therefore, checking reachability takes at most mck time for some constant
c. IED is a well known PSPACE-complete problem [5]. In [6], it was shown that
one can pad strings in IED to obtain problems hard for smaller complexity classes
such as NSPACE(g(n) log(n)) where g is a slow growing log-space-constructible

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 354–362, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Hardness Results for Intersection Non-Emptiness 355

function such as log∗(n). In [4], it was shown that improvements to the stan-
dard algorithm imply separation results. In particular, if there exists a function

f(k) = o(k) such that IED is solvable in m1 ·mf(k)
2 time where m1 is the size of

a designated largest machine and all other machines have size at most m2, then
NL �= P.

In this paper, we carefully reexamine and optimize the construction from [4]
in order to prove new results. We show that if restricted to a binary work tape
alphabet, then there exist constants c1 and c2 such that for every k, k-IED
∈ NSPACE(c1k log(n)) and k-IED /∈ NSPACE(c2k log(n)). Then, we introduce
an optimized construction to show that IED /∈ NSPACE(o(n

log(n) log(log(n)))).

Finally, we combine these results with a diagonalization argument to show that if
there exists a function f(k) = o(k) such that for every k, k-IED ∈ DTIME(nf(k)),
then P �= NL. If there does not exist a constant c such that for every k, k-IED
∈ DTIME(nc), then NSPACE(f(n)) � P for all f(n) = ω(log(n)) such that f
is space-constructible.

2 Notation and Conventions

The input for IED is an encoding of a finite list of DFA’s. For each encoding,
n will denote the length and k will denote the number of machines that are
represented. For each natural number k, k-IED denotes a restriction of the IED
problem such that we only accept inputs that encode at most k machines.

Whenever we use the term Turing machine, we refer to a deterministic or
non-deterministic machine with a two-way read only input tape and a two-way
read/write work tape. For our purposes, we will only consider Turing machines
where the work tape alphabet is binary. A work tape over a binary alphabet
will be referred to as a binary work tape. A cell on a binary work tape will be
referred to as a bit cell.

For each k, there are acceptance problems for space and time bounded Turing
machines denoted by NS

k log and DT
nk , respectively. N

S
k log refers to the problem

where we are given an encoding of a non-deterministic Turing machine M with
a binary work tape and an input s. We accept (M, s) if and only if M accepts s
using at most k log(n) work tape bit cells where n denotes the length of s. DT

nk

is defined similarly for nk deterministic time. We denote by NSPACE2(h(n))
the set of problems solvable by a non-deterministic Turing machine using at
most h(n) work tape bit cells. Such classes are used to measure the binary space
complexity of problems [2]. We associate NS

k log with NSPACE2(k log(n)) and

DT
nk with DTIME(nk).

3 Binary Space Complexity

We introduce a function SNL(k) that measures the actual space complexities of
the NS

k log problems. In particular, SNL(k) is defined as follows:

SNL(k) := min{ d ∈ N | NS
k log ∈ NSPACE2(d log(n)) }. (1)

356 M. Wehar

In this section, we sketch how one could apply standard techniques from
the space hierarchy theorem to prove that there exist constants c1 and c2 such
that for every k sufficiently large, NS

k log ∈ NSPACE2(c1k log(n)) and NS
k log

/∈ NSPACE2(c2k log(n)). Using the function SNL(k), we express this result as
SNL(k) = Θ(k).

Proposition 1. SNL(k) = O(k).

Sketch of proof. Using the simulation found in any common proof of the space
hierarchy theorem, one shows that NS

log ∈ NL. Further, one shows SNL(k) =

O(k) by using padding to reduce NS
k log to NS

log for every k. ��
Proposition 2. SNL(k) = Ω(k).

Sketch of proof. Using the standard diagonalization argument found in any com-
mon proof of the non-deterministic space hierarchy theorem, one shows SNL(k)
= Ω(k). Notice that in order to carry out the diagonalization one needs to show
there exists c such that for all k,

NSPACE2(k log(n)) ⊆ co -NSPACE2(ck log(n)). (2)

First, one applies the result NL = co -NL to show that there exists c such
that NS

log ∈ co -NSPACE2(c log(n)). Further, one shows (2) by using padding to

reduce NS
k log to NS

log for every k. ��
Corollary 3. SNL(k) = Θ(k).

4 Reductions

We introduce a function SIE(k) that measures the actual space complexities of
the k-IED problems. In particular, SIE(k) is defined as follows:

SIE(k) := min{ d ∈ N | k-IED ∈ NSPACE2(d log(n)) }. (3)

In this section, we carefully reexamine the construction from [4] to show that
there exist constants c1 and c2 such that for every k sufficiently large, k-IED ∈
NSPACE2(c1k log(n)) and k-IED /∈ NSPACE2(c2k log(n)). Using the function
SIE(k), we can express this result as SIE(k) = Θ(SNL(k)) = Θ(k).

Proposition 4. SIE(k) = O(k).

Sketch of proof. As was previously discussed, one can solve IED by checking
reachability in a product machine. A state of the product machine can be stored
as a string of k log(n) bits. Given such a state, we can non-deterministically
guess which state comes next. There exists a path from an initial state to a final
state if and only if there exists a path from an initial state to a final state of
length at most nk. Therefore, k-IED is solvable using at most ck log(n) bits for
some constant c. ��

Hardness Results for Intersection Non-Emptiness 357

Theorem 5. SIE(k) = Ω(SNL(k)).

Proof. We will describe a reduction from NS
k log to k-IED. Then, we will discuss

encoding details to show that this is a log-space reduction.
Let a k log(n) space bounded non-deterministic Turing machine M and an

input string s of length n be given. Our first task is to construct k DFA’s,
denoted by < Di >i∈[k], each of size at most p(n) for some fixed polynomial
p such that M accepts s if and only if

⋂
i∈[k] L(Di) is non-empty. The DFA’s

will read in a string that represents a computation of M on s and verify that
the computation is valid and accepting. The work tape of M will be split into
k sections each consisting of log(n) sequential bits of memory. The ith DFA,
Di, will keep track of the ith section and verify that it is managed correctly.
In addition, all of the DFA’s will keep track of the input and work tape head
positions. We will achieve a better simulation in Theorem 7 where we split up
the management of the tape head positions to separate DFA’s. The following
two concepts are essential to our construction.

A section i configuration of M is a tuple of the form

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form

(state, input position, work position).

We say that a section i configuration r extends a forgetful configuration a if r
agrees with a on state, input position, and work position. We say that a section
i configuration r1 transitions to a section i configuration r2 on input s if either
the work position for r1 is in the ith section and r2 correctly represents how the
tape positions and the ith section could change in one step of the computation
on s, or r1 is not in the ith section and r1 and r2 agree on the ith section of the
work tape.

The states of Di are identified with section i configurations. The alphabet
characters are identified with forgetful configurations. For Di, each alphabet
character a transitions from a state r1 to a state r2 if and only if r2 extends a
and r1 transitions to r2 on input s.

We assert without proof that for every string x, x represents a valid accepting
computation of M on s if and only if x ∈ ⋂

i∈[k] L(Di). Therefore, M accepts s

if and only if
⋂

i∈[k] L(Di) is non-empty.

We show that the Di’s have size at most p(n) for some fixed polynomial p.
Each Di consists of a start state, a list of final states, and a list of transitions
where each transition consists of two states and an alphabet character. Each
state is represented by a section i configuration and each alphabet character is
represented by a forgetful configuration. Let m denote the number of states in
M. Therefore, in total there arem·n·k log(n)·2log(n) section i configurations and
m · n · k log(n) forgetful configurations. Hence, there exists a fixed two variable
polynomial q such that each Di has at most q(n, k) states. Since k is fixed, one
can blow up the degree of q to get a polynomial p such that p doesn’t depend
on k and each Di has size at most p(n).

358 M. Wehar

It should be clear from the preceding that there is a fixed polynomial t(n)
such that for every k, NS

k log is t(n)-time reducible to k-IED. However, we want

to show that there is a constant c such that for every k, NS
k log is c log(n)-space

reducible to k-IED. We accomplish this by describing how to print the string
encoding of the Di’s to an auxiliary write only output tape using at most c log(n)
space for some constant c.

We will describe how to print the transitions for each Di and leave the re-
maining encoding details to the reader. We use a bit string i to represent the
current DFA and two bit strings j1 and j2 to represent section i configurations.
We iterate through every combination of i, j1, and j2. If Di has a transition
from j1 to j2, then we print (i, j1, a, j2) where a is the forgetful configuration
such that j2 extends a. We assert that checking whether to print (i, j1, a, j2)
requires no more than d log(k) + d log(n) bits for some constant d. Therefore, in
printing the encoding of the Di’s, we use no more than c log(k) + c log(n) bits
for some constant c. For each k, when n is sufficiently large, the log(k) term goes
away. It follows that for every k, NS

k log is c log(n)-space reducible to k-IED. ��
Corollary 6. SIE(k) = Θ(SNL(k)) = Θ(k).

Proof. By Corollary 3, we have SNL(k) = Θ(k). Applying Proposition 4 and
Theorem 5, we get that SIE(k) = Θ(SNL(k)) = Θ(k). ��
Theorem 7. IED /∈ NSPACE(o(n

log(n) log(log(n)))).

Proof. By the non-deterministic space hierarchy theorem, we may choose a prob-
lem Q such that Q ∈ NSPACE(n), but Q /∈ NSPACE(o(n)). Choose c ∈ N and
a non-deterministic Turing machine M that solves Q using at most cn bit cells.
We optimize the construction from the proof of Theorem 5 to show that if IED
∈ NSPACE(o(n

log(n) log(log(n)))), then Q ∈ NSPACE(o(n)). Since we know that

Q /∈ NSPACE(o(n)), it follows that IED /∈ NSPACE(o(n
log(n) log(log(n)))).

Let an input string s for M of length n be given. Our task is to construct
(c+1) ·n DFA’s each with at most d log(n) states for some constant d such that
M accepts s if and only if the DFA’s have a non-empty intersection. The DFA’s
will read in a bit string that represents a computation of M on s and verify that
the computation is valid and accepting. In this construction, we split up the
management of the tape head positions to separate DFA’s. There are n DFA’s,
denoted by < Ii >i∈[n], that manage the input tape and there are cn DFA’s,
denoted by < Wi >i∈[cn], that manage the work tape. The following concept is
essential to our construction.

An informative configuration of M is a tuple of the form

(state, input position, current input bit, work position, current work bit).

The DFA’s will read in a sequence of informative configurations that are encoded
as bit strings. In contrast to the previous construction, the DFA’s will have a
binary input alphabet.

Hardness Results for Intersection Non-Emptiness 359

Each DFA is assigned to manage a bit position of either the input tape or
work tape. Each Ii stores the ith input tape bit and operates as follows. It reads
each informative configuration and checks if it represents the input position i.
If it does not, then it ignores the informative configuration and moves on to the
next one. However, if it does represent the input position i, then it checks that
the stored bit matches the current input bit and uses the current work bit to
check that the input position and state validly transition to the next informative
configuration. Each Wi stores the ith work tape bit and operates as follows. It
reads each informative configuration and checks if it represents the work position
i. If it does not, then it ignores the informative configuration and moves on to
the next one. However, if it does represent position i, then it checks that the
stored bit matches the current work bit and uses the current input bit to modify
the stored bit and check that the work position and state validly transition
to the next informative configuration. It’s important to remark that DFA’s for
boundary positions such as I1, In, W1, and Wcn cannot allow the input position
or work position to go outside [n] or [cn], respectively.

We assert without proof that for every bit string x, x represents a valid accept-
ing computation of M on s if and only if x ∈ ⋂

i∈[n] L(Ii) and x ∈ ⋂
i∈[cn] L(Wi).

Therefore, M accepts s if and only if there exists a string x such that x ∈⋂
i∈[n] L(Ii) and x ∈ ⋂

i∈[cn] L(Wi).

A DFA with log(cn) states can be constructed to recognize a fixed binary
number i ∈ [cn]. Since a tape position i could only transition to i − 1, i, or
i+ 1 in one step, it follows that a DFA with d log(n) states for some constant d
can be constructed to check the validity of transitioning to the next informative
configuration. Therefore, we can construct each DFA with at most d log(n) states
for some constant d.

We described how to construct (c + 1) · n DFA’s each with at most d log(n)
states for some constant d whose intersection is non-empty if and only if M
accepts s. Since the total length of the string encoding of < Ii >i∈[n] com-
bined with < Wi >i∈[cn] is at most n log(n) log(log(n)), it follows that IED ∈
NSPACE(o(n

log(n) log(log(n)))) implies Q ∈ NSPACE(o(n)). We obtain the desired

result because Q /∈ NSPACE(o(n)). ��

5 Space vs Time

We introduce functions RNL(k) and RIE(k) that measure the actual time com-
plexities of NS

k log and k-IED, respectively. In particular, RNL(k) and RIE(k) are
defined as follows:

RNL(k) := min{ d ∈ N | NS
k log ∈ DTIME(nd) } (4)

RIE(k) := min{ d ∈ N | k-IED ∈ DTIME(nd) }. (5)

In this section, we show that if there exists a function f(k) = o(k) such that
for every k, NS

k log ∈ DTIME(nf(k)), then P �= NL. Using the function RNL(k) we
can express this result as if RNL(k) = o(k), then P �= NL. Notice that by using

360 M. Wehar

the reduction from Theorem 5, we also have RIE(k) = Θ(RNL(k)). It follows
that if RIE(k) = o(k), then P �= NL.

Proposition 8. RIE(k) = Θ(RNL(k)).

Theorem 9. If RNL(k) = o(k), then NL �= P.

Proof. Suppose that NL = P. Since DT
n ∈ P, we have DT

n ∈ NL. Choose d ∈ N
such that DT

n ∈ NSPACE2(d log(n)). Further, by using padding to reduce DT
nk

to DT
n for every k, one can show that there exists d ′ such that for all k, DT

nk

∈ NSPACE2(d ′k log(n)). Choose such a constant d′ satisfying for all k, DT
nk ∈

NSPACE2(d ′k log(n)).
Suppose for sake of contradiction that RNL(k) = o(k). By Proposition 2, we

may choose c such that for all k sufficiently large

NS
k log /∈ NSPACE2(

⌊
k

c

⌋

log(n)). (6)

Since RNL(k) = o(k), for all k sufficiently large

RNL(k) <

⌊
k

cd ′

⌋

. (7)

Choose m satisfying NS
m log /∈ NSPACE2(

⌊
m
c

⌋
log(n)) and RNL(m) <

⌊
m
cd ′

⌋
.

Therefore,

NS
m log ∈ DTIME(o(n� m

cd ′ �)). (8)

Since DT
nk ∈ NSPACE2(d ′k log(n)) for all k,

DT

n� m
cd ′ � ∈ NSPACE2(d′

⌊ m

cd ′

⌋
log(n)) ⊆ NSPACE2(

⌊m

c

⌋
log(n)). (9)

Since we can trivially reduce every problem in DTIME(o(n� m
cd ′ �)) to DT

n� m
cd ′ � ,

NS
m log ∈ DTIME(o(n� m

cd ′ �)) ⊆ NSPACE2(
⌊m

c

⌋
log(n)) (10)

which is a contradiction because NS
m log /∈ NSPACE2(

⌊
m
c

⌋
log(n)). ��

Corollary 10. If RIE(k) = o(k), then NL �= P.

Next, we show that if RNL(k) is unbounded, then P does not contain any
space complexity class larger than NL. Since RIE(k) = Θ(RNL(k)), it follows
that if RIE(k) is unbounded, then P does not contain any space complexity
class larger than NL.

For every function f , let NS
f denote the acceptance problem for f(n)-space

bounded non-deterministic Turing machines. NS
f is of particular interest to us

if it is non-deterministically solvable in f(n) space.

Hardness Results for Intersection Non-Emptiness 361

Theorem 11. If RNL(k) is unbounded, then NS
f /∈ P for all functions f(n) =

ω(log(n)).

Proof. We will prove the contrapositive. Suppose that NS
f ∈ P for some function

f(n) = ω(log(n)). By assumption, we may choose c ∈ N and a deterministic
Turing machine T such that T solves NS

f in at most O(nc) time. Let k ∈ N be

given. Choose a non-deterministic Turing machine M that solves NS
k log using at

most O(log(n)) bit cells. We can deterministically solve NS
k log in at most O(nc)

time by feeding T an encoding of M and the input string. Since k is arbitrary,
NS

k log is solvable in O(nc) time for every k. It follows that RNL(k) is bounded.
��

Corollary 12. If RNL(k) is unbounded, then NSPACE(f(n)) � P for all f(n) =
ω(log(n)) such that f is space-constructible.

Proof. Suppose RNL(k) is unbounded. Let a function f(n) = ω(log(n)) such that
f is space-constructible be given. Apply the preceding theorem to get that NS

f /∈
P. Since f is space-constructible, one can use the simulation found in any com-
mon proof of the space hierarchy theorem to show that NS

f ∈ NSPACE(f(n)).

Since NS
f /∈ P and NS

f ∈ NSPACE(f(n)), it follows that NSPACE(f(n)) � P.
��

Corollary 13. If RIE(k) is unbounded, then NSPACE(f(n)) � P for all f(n) =
ω(log(n)) such that f is space-constructible.

6 Conclusion

In Section 4, we showed that SNL(k) = SIE(k) = Θ(k). Therefore, we think of
intersection non-emptiness for DFA’s as characterizing the complexity class NL.
Further, we showed that IED /∈ NSPACE(o(n

log(n) log(log(n)))). In Section 5, we

showed that if RIE(k) = o(k), then NL �= P and if RIE(k) is unbounded, then
NSPACE(f(n)) � P for all f(n) = ω(log(n)) such that f is space-constructible.
Therefore, the asymptotic complexity of RIE(k) determines the relationship be-
tween space and time complexity classes.

There are several related problems that appear to be harder than k-IED,
but easier than NS

k log. For example, consider intersection non-emptiness for k
NFA’s, non-emptiness for k-turn 2DFA’s, and intersection non-emptiness for k
DFA’s and a one-counter automaton. We can use SNL(k) = SIE(k) and RNL(k)
= RIE(k) as squeeze theorems to show that all of these problems are of “equiva-
lent” difficulty. Also, one could define a function that maps the k-IED problems
to their actual circuit complexities. The asymptotic complexity of such a func-
tion could determine the relationship between NL vs NP and P/poly vs space
complexity classes [4].

Several related intersection non-emptiness problems have been studied. There
are two such problems that we would like to mention. In [10], intersection non-
emptiness for acyclic DFA’s, which are DFA’s without directed cycles, was shown

362 M. Wehar

to be NP-complete. We assert that one could modify the construction from the
proof of Theorem 5 to reduce the acceptance problem for n-time and k log(n)-
space bounded non-deterministic Turing machines to intersection non-emptiness
for k acyclic DFA’s. Also, in [11], intersection non-emptiness for tree automata
was shown to be EXPTIME-complete. In an upcoming paper, the author and
Joseph Swernofsky introduce time complexity lower bounds for intersection non-
emptiness for tree automata.

Acknowledgments. I greatly appreciate all of the help and suggestions that I
received. In particular, I would like to thank Christos Kapoutsis for suggestions
related to the constructions, Joseph Swernofsky for proof reading and many dis-
cussions, Richard Lipton and Kenneth Regan for calling attention to my results
in an article on their blog [8], and the many anonymous referees. I would espe-
cially like to thank all those at Carnegie Mellon University who offered their help
and support for my honors thesis on the same topic. In particular, I would like
to thank my thesis advisor, Klaus Sutner, and my thesis committee members,
Manuel Blum and Richard Statman.

References

1. Blondin, M., Krebs, A., McKenzie, P.: The complexity of intersecting finite au-
tomata having few final states. In: Computational Complexity, CC (to appear,
2014)

2. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge
University Press, New York (2008)

3. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic
log space. Mathematical Systems Theory 10 (1976)

4. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite
state automata and NL versus NP. Theoretical Computer Science 302, 257–274
(2003)

5. Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Symp. on the
Foundations of Computer Science, pp. 254–266 (1977)

6. Lange, K.-J., Rossmanith, P.: The emptiness problem for intersections of regu-
lar languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 346–354. Springer, Heidelberg (1992)

7. Lipton, R.J.: On the intersection of finite automata. Gödel’s Lost Letter and P=NP
(August 2009)

8. Lipton, R.J., Regan, K.W.: The power of guessing. Gödel’s Lost Letter and P=NP
(November 2012)

9. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
(1959)

10. Rampersad, N., Shallit, J.: Detecting patterns in finite regular and context-free
languages. Information Processing Letters 110 (2010)

11. Veanes, M.: On computational complexity of basic decision problems of finite tree
automata. UPMAIL Technical Report 133 (1997)

12. Wehar, M.: Intersection emptiness for finite automata. Honors thesis, Carnegie
Mellon University (2012)

	Hardness Results for Intersection
Non-Emptiness

	1 Introduction
	2 Notation and Conventions
	3 Binary Space Complexity
	4 Reductions
	5 Space vs Time
	6 Conclusion
	References

