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Abstract. Most decidability results concerning well-structured transi-
tion systems apply to the finitely branching variant. Yet some models
(inserting automata, ω-Petri nets, ...) are naturally infinitely branching.
Here we develop tools to handle infinitely branching WSTS by exploiting
the crucial property that in the (ideal) completion of a well-quasi-ordered
set, downward-closed sets are finite unions of ideals. Then, using these
tools, we derive decidability results and we delineate the undecidability
frontier in the case of the termination, the control-state maintainability
and the coverability problems. Coverability and boundedness under new
effectivity conditions are shown decidable.

1 Introduction

Well-structured transition systems (WSTS) [12,11,2] as a general class of infinite-
state systems have spawned decidability results for important problems such as
termination, boundedness, control-state maintainability and coverability. WSTS
consist of a (usually infinite) well ordered set of states, together with a monotone
transition relation. WSTS have found multiple uses : in settling the decidability
status of reachability and coverability for graph transformation systems [4,22],
in the forward analysis of depth-bounded processes [26,27], in the verification of
parameterized protocols [10] and the verification of multi-threaded asynchronous
software [21]. WSTS remain under development and are actively being investi-
gated [13,14,18,25,5,24].

Most existing decidability results for WSTS apply to the finitely branching
variant. However, WSTS such as inserting FIFO automata [7], inserting au-
tomata [6] and ω-Petri nets [17], that can arbitrarily increase some values, are
intrinsically infinitely branching, and any finitely branching WSTS parameter-
ized with an infinite set of initial states (such as broadcast protocols [10]) also
inherits an infinitely branching state. For instance, Geeraerts, Heußner, Praveen
and Raskin argue in [17] that parametric concurrent systems with dynamic
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J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 13–25, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



14 M. Blondin, A. Finkel, and P. McKenzie

thread creation can naturally be modelled by some classes of infinitely branch-
ing systems, like ω-Petri nets, i.e. Petri net with arcs that can consume/create
arbitrarily many tokens.

An outcome of our work is that the finite tree construction technique can be
recovered, even in the infinitely branching case, for the purpose of deciding the
boundedness problem for example.

The primary motivation for this paper is to explore the decidability status
of the termination, boundedness, control-state maintainability and coverability
problems for infinitely branching (general) WSTS. For the coverability problem,
known to be decidable for WSTS fulfilling the so-called prebasis computability
hypothesis [2], we wish to draw from the recent algebra-theoretic characteriza-
tions of downward-closed sets [13] and conceive of a post-oriented computability
hypothesis suitable for the design of a forward algorithm. (Indeed, forward algo-
rithms are arguably more intuitive than backward algorithms and post-oriented
computability more easily verified than prebasis computability, where prebasis
computability means computability of a finite basis of the upward closure of the
set of immediate predecessors, the testing of which is provably undecidable in
some WSTS.) Our contributions are the following:

1. As technical tools, we simplify and extend the analysis of the completion of
a general WSTS and we relate the behavior of a WSTS to that of its com-
pletion. In particular, we provide a general presentation of the completion
that is much less daunting than the presentations currently available in the
literature. This sets the stage for exploiting the main property of the com-
pletion of a WSTS, namely, the expressibility of any downward-closed set as
a (unique, as shown here) finite union of ideals, in the design of algorithms.

2. We uncover a new termination property (called strong termination) that
is computationally equivalent to the usual termination property for finitely
branching WSTS but that subtly differs from it in the presence of infinite
branching. Indeed, we exhibit WSTS for which strong termination is decid-
able yet the usual termination is undecidable. A similar subtle issue arises
as well in our generalization of the maintainability problem to infinitely
branching.

3. We generalize most decidability results mentioned for finitely branching
WSTS earlier to the infinitely branching case. This requires carefully tracking
the effectiveness and the monotonicity conditions which support decidability.
When possible, we delineate the frontier between decidability for a problem
and the undecidabilty that results from dropping one of these conditions.
The new decidability results for (strong) termination and (strong) maintain-
ability exploit the completion. The new algorithm for coverability uses a
forward strategy coupled with a post-oriented computability hypothesis.

Our work further highlights the naturalness of the class of ω2-WSTS. Indeed
our decidability results apply in one blow to known classes of infinitely branching
WSTS like inserting FIFO automata [7], inserting automata [6], ω-Petri nets [17]
and broadcast protocols [10].
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Section 2 below introduces notation and preliminaries. Section 3 surveys
known decidabilities and exhibits some undecidabilities. Section 4 develops our
tools to handle infinite branching. Section 5 contains the bulk of our decidability
results for infinitely branching WSTS. Section 6 summarizes our contribution
and suggests future work.

2 WSTS

Let X be a set and ≤ a quasi-ordering on X (≤ reflexive and transitive), then ≤
is a well-quasi-ordering (wqo) if for every infinite sequence x0, x1, . . . of elements
xn ∈ X , there exist i < j such that xi ≤ xj . It is well-known that N

d is well-
quasi-ordered under (x1, . . . , xd) ≤Nd (x′

1, . . . , x
′
d) where the latter means that

∀i xi ≤ x′
i (Dickson’s Lemma). We extend N to Nω by adding an element ω

verifying ω ≥Nω x for all x ∈ Nω. The set N
d
ω is also well-quasi-ordered. We

simply write ≤ for ≤N and ≤Nω when there is no ambiguity.
Recall that a WSTS is an ordered transition system S = (X,−→S ,≤) such that

≤ is a well-quasi-ordering on X , and the relation −→S ⊆ X ×X is monotone (or
compatible) with ≤ meaning that for all x, y, x′ such that x −→S y and x ≤ x′,
there exists a state y′ such that x′ ∗−→S y′ and y ≤ y′. WSTS thus satisfy a
general monotony by definition. There exist other variations of monotony:

strong: x −→S y ∧ x′ ≥ x =⇒ x′ −→S y′ ≥ y,

stuttering: x −→S y ∧ x′ ≥ x =⇒ x′ = x′
0 −→S . . . −→S x′

k −→S y′ ≥ y, ∀i x′
i ≥ x,

transitive: x −→S y ∧ x′ ≥ x =⇒ x′ +−→S y′ ≥ y,

strict: x −→S y ∧ x′ > x =⇒ x′ ∗−→S y′ > y.

Strong monotony implies stuttering monotony which implies transitive monotony.
We denote, as usual, PreS(x) = {y : y −→S x}, PostS(x) = {y : x −→S y},

PreS(T ) =
⋃

x∈T PreS(x) and PostS(T ) =
⋃

x∈T PostS(x).
Throughout this paper, WSTS will be assumed effective in the following sense:

(1) the set of statesX is r.e. (which suffices to compute PostS(x) when |PostS(x)|
is known and finite); (2) the transition relation is decidable, i.e., the WSTS comes
equipped with an algorithm that can decide, given x, y ∈ X , whether x −→S y
or equivalently whether y ∈ PostS(x); (3) the quasi-ordering ≤ is decidable,
i.e., the WSTS also comes equipped with an algorithm that can decide, given
x, y ∈ X , whether x ≤ y. Forward analysis techniques for (finitely branching)
WSTS typically compute the finite set PostS(x), which is made possible by
assuming PostS computable. Because our new setting allows PostS(x) to be
infinite, we need to adapt this assumption. Our “post-effectivity” notion mildly
weakens the usual hypothesis of “being able to compute PostS”:

Definition 2.1. A transition system S = (X,−→S) is post-effective if S is ef-
fective and f : X → N ∪ {“infinite”} given by f(x) = |PostS(x)| is computable.

Transition systems defined by a finite set of recursive functions are typical
examples of finitely branching systems and they will be called functional. Let Fd
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denote the set of WSTS whose transitions relation is prescribed by finitely many
increasing functions f from N

d to N
d (i.e. x ≤ y =⇒ f(x) ≤ f(y)) which are

also recursive (i.e., given by halting Turing machines); these WSTS are finitely
branching and post-effective. Inserting FIFO automata [7], inserting automata
[6] and ω-Petri nets [17] are post-effective infinitely branching WSTS.

Recall that an effective ordered transition system is said essentially finite
branching [2] if the subset maxpost(x) of maximal elements of PostS(x) is non
empty, finite and computable. Some WSTS, e.g. ω-Petri nets, are post-effective
but are not essentially finite branching and conversely, we can exhibit essentially
finite branching WSTS that are not post-effective.

Post-effectivity (Definition 2.1) is a weaker notion than “having a finite and
computable PostS”. The weaker notion does imply “computable PostS” for ef-
fective WSTS that are finitely branching. Hence it is natural to ask whether the
finitely branching property is decidable for post-effective WSTS. It is not:

Proposition 2.2. Testing, given a post-effective WSTS S and x0 ∈ X, whether
there exists an execution x0

∗−→S x such that PostS(x) is infinite is undecidable.

Let ↑T and ↓T stand respectively for the set of states that are ≥ and ≤
some state in T . A set T is upward closed if T = ↑T and downward closed if
T = ↓T . An upward basis of a set T is a set B such that T = ↑B. An ideal I
is a downward closed set that is also directed, i.e., ∀a, b ∈ I, ∃c ∈ I such that
a ≤ c and b ≤ c. We note Ideals(X) the set of ideals of an ordered set X . A
directed complete partial ordering (dcpo) is an ordered set (X,≤) such that every
directed set D ⊆ X has a least upper bound (lub) in X : for instance, (N,≤),
with the usual notations, is not a dcpo since the directed set N has no lub in
N; if we add the lub ω to N, then (Nω,≤) is a dcpo. There is a way to add all
lubs to any ordered set (X,≤), that is called the ideal completion, since each
element x ∈ X can be identified with ↓ x ∈ Ideals(X) and since it is well-known
that (Ideals(X),⊆) is a dcpo [3,13]. We will consider the following problems for
WSTS, where the input to each problem is an effective WSTS S = (X,−→S ,≤)
and a state x0 ∈ X , together with an x ∈ X in the case of coverability, and a
set t1, . . . , tn ∈ X in the case of the maintainability problem:

– Coverability: ∃ execution x0 −→S x1 −→S . . . −→S xk ≥ x?
– Boundedness: Post∗S(x0) is infinite?
– Termination: � infinite execution x0 −→S x1 −→S . . .?
– Strong termination: ∃k ∈ N s.t. x0 −→S x1 −→S . . . −→S xm =⇒ m ≤ k?
– Control-state maintainability:∃ computation (i.e. an infinite execution x0−→S

x1 −→S . . . or a finite execution x0 −→S x1 −→S . . . −→S xk that cannot be
further extended) such that ∀i xi ∈ ↑ {t1, . . . , tn}?

– Strong control-state maintainability: ∀k ∈ N, ∃ execution x0 −→S x1 −→S

. . . −→S xm such that m ≥ k and ∀i xi ∈ ↑ {t1, . . . , tn}?

3 Decidability for WSTS

Recall that a WSTS S = (X,−→S ,≤) has a computable prebasis [11,2] if the
WSTS comes equipped with a computable function that maps each x ∈ X to
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some finite basis of the upward closed set ↑PreS(↑x). We summarize the four
main decidability results known about (essentially) finite branching WSTS:

Theorem 3.1 ([12,11,2]).

– Termination is decidable for post-effective finitely branching WSTS with
transitive monotony [12], and for essentially finite branching effective WSTS
with strong monotony [2].

– Boundedness is decidable for post-effective finitely branching WSTS with
strict transitive monotony and well partial ordering [11].

– Control-state maintainability is decidable for post-effective finitely branching
WSTS with stuttering monotony [11], and for essentially finite branching
effective WSTS with strong monotony [2].

– Coverability is decidable for effective WSTS with prebasis computability [11,2].

Theorem 3.1 states results exactly as they appear in the literature, but it
would not be difficult to unify some of the hypotheses made here. For instance,
termination can be shown decidable for essentially finite branching effective
WSTS with transitive monotony. We defer a systematic treatment of this unifi-
cation to a future version of the present paper.

Our goals in this paper are to extend the decidability of termination, bound-
edness and maintainability given by Theorem 3.1 to the more general case of
infinitely branching WSTS. Our goal for the coverability problem is to investi-
gate alternative effectivity hypotheses. We first note:

Theorem 3.2. Termination is undecidable for post-effective WSTS with tran-
sitive (and even strong and strict) monotony.

In Sect. 5, we prove boundedness decidable for post-effective infinitely branch-
ing WSTS with strict monotony and well partial ordering. By contrast, as exem-
plified by Petri nets with Reset [8], boundedness is well known to be undecidable
for post-effective finitely branching WSTS with non-strict yet transitive (even
strong) monotony and with well partial ordering. Concerning maintainability,

Theorem 3.3. Control-state maintainability is undecidable for post-effective
WSTS with stuttering (and even strong and strict) monotony.

We now turn to coverability. Existing proofs that coverability is decidable
need the prebasis hypothesis: Abdulla et al. use a backward algorithm [11,1]
that computes a finite basis of ↑Pre∗(↑ x) and Geeraerts et al. use a forward
algorithm [18] that requires further hypotheses (i.e. restriction to an adequate
domain of limits, a mathematical hypothesis subsequently shown superfluous
[16,13]). Note that coverability for post-effective (even finitely branching) WSTS
becomes undecidable without the prebasis hypothesis, as is the case for instance
for WSTS in F2 (recall definition from Sect 2, i.e., WSTS composed of recursive
increasing functions from N

2 to N
2) [15].

Prebasis computability is sufficient to ensure decidability of coverability. How-
ever, as we show in Prop. 3.4 below, prebasis computability is not necessary:
there is a class of WSTS, namely F1, for which coverability is decidable yet no
prebasis function is computable.
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Proposition 3.4. Coverability for F1 is decidable, but no algorithm that takes
as input S ∈ F1 and x ∈ N can systematically output a finite basis of ↑PreS(↑ x).

4 Handling Infinite Branching Finitely

In this section we prepare the ground for developping decision procedures ca-
pable of handling, under natural hypotheses, infinitely branching systems. First
we would like the ability to compute finite representations of each term in the
sequence ↓ x, ↓PostS(↓ x), ↓PostS(↓PostS(↓ x)), . . .. This requires finitely repre-
senting downward closed sets, which is possible for wqo. This section describes
how this is done and presents effective tools for doing it.

4.1 Downward Closed Sets and Ideals

It has long been known that in a wqo, any upward closed set has a finite basis;
this is Dickson’s lemma in (Nk,≤) and it is Higman’s lemma in (Σ∗,≤) when ≤
is the subword relation. It has recently been discovered that a similar situation
occurs for downward closed sets in wqo.

Theorem 4.1. [13] Any downward closed subset in a wqo X is a finite union
of ideals.

The original proof of Theorem 4.1 needs a technical bridge between topological
completions and ordering completions of a set. A short and self-contained proof
of Theorem 4.1 was given by Goubault-Larrecq [19].

Theorem 4.3 below slightly refines Theorem 4.1. It shows that any downward
closed set uniquely decomposes as a certain finite union of ideals. This requires:

Proposition 4.2. Any ideal contained in a finite union of ideals is contained in
one of these ideals. In particular, testing the inclusion of an ideal I in a union
J1 ∪J2 ∪ ...∪Jk of ideals is equivalent to testing whether I ⊆ Jj for some j such
that 1 ≤ j ≤ k.

A finite union D =
⋃m

i=1 Ii of ideals will be said to canonically decompose D if
the Ii’s are pairwise incomparable under inclusion. This terminology is justified:

Theorem 4.3. Any downward closed subset in a wqo X admits a unique decom-
position as a finite union of pairwise incomparable ideals. Therefore, a downward
closed subset decomposes canonically as the union of its maximal ideals.

Ideals in a wqo cannot necessarily be manipulated effectively. For instance,
there exist some ordered countable sets X such that Ideals(X) is not countable.
Consider X = Σ∗, with the prefix ordering. Then Ideals(X) is isomorphic to
Σ∗ ∪Σω and is not countable when Σ contains at least two letters. However:

Proposition 4.4. A wqo X is countable iff Ideals(X) is countable.

Fortunately, inclusion between ideals is decidable for well-quasi-ordered sets
obtained by closing finite sets and closing naturals numbers under finite prod-
ucts, disjoint sums, multiset operator and Kleene star (respectively with their
natural associated orderings) [13]. Therefore inclusion of ideals of Nd and inclu-
sion of ideals of Σ∗ are decidable.
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4.2 Completion of WSTS

Recall that for a functional WSTS S = (X,
F−→,≤) where F is a finite set of

increasing recursive functions f : X → X , the functional completion [14] is

defined by S = (X,
F−→,⊆) where X = Ideals(X) and F is the set of functions

f : Ideals(X) → Ideals(X) defined by f(I)
def
= ↓ f(I) for every f ∈ F . We note

that f(I) is an ideal if I is an ideal. Here we extend the completion process to
any (infinitely) branching WSTS:

Definition 4.5. The completion Ŝ of a WSTS S = (X,−→S ,≤) is the ordered

transition system Ŝ = (X̂,−→
̂S ,⊆) where X̂ = Ideals(X), and I −→

̂S J if J
appears in the canonical decomposition of ↓Post(I).

Let S = (X,
F−→,≤) be a functional WSTS, then the following relation holds

between S, Ŝ and S for every ideal I ∈ Ideals(X):

PostS(I) =
⋃

f∈F

f(I) =
⋃

f∈F

↓ f(I) =
⋃

J∈Post
̂S(I)

J = ↓PostS(I).

Another good news is that:

Proposition 4.6. The completion Ŝ of any WSTS S is finitely branching.

Moreover the completion computes exactly the downward closure of the reach-
ability set of its original system.

Proposition 4.7. Let S = (X,−→S ,≤) be a WSTS and Post∗
̂S
(↓x) = {J1, . . . ,

Jn}. We have ↓Post∗S(x) = J1 ∪ . . . ∪ Jn.

A natural question that arises is whether the completion of a WSTS is also a
WSTS. It does indeed have monotony:

Proposition 4.8. Let S = (X,−→S ,≤) then Ŝ has strong monotony.

However, (Ideals(X),⊆) is not always a wqo and therefore the completion is
not always a WSTS. In fact, it is known to be a wqo iff (X,≤) is a so-called
ω2-wqo, a notion we will not define here. In general, a wqo is not necessarily a
ω2-wqo and the typical counter-example is the Rado ordering [20]. Now, a result
from Jancar [20] simplifies the characterization of ω2-wqos as follows: a wqo ≤
is a ω2-wqo iff ≤# is a wqo, where ≤# is the Hoare ordering defined by A ≤# B
iff ↑ B ⊆↑ A.

Extending the terminology to WSTS, we obtain the following result general-
izing the known result for functional WSTS [14]:

Theorem 4.9. Let S be a WSTS, then Ŝ is a WSTS iff S is a ω2-WSTS.

We end this section with the observations that a WSTS inherits the strict
monotony of its completion but not conversely, and that post-effectivity of a
WSTS is independent from the post-effectivity of its completion.
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Proposition 4.10. Let (X,−→S ,≤) be a WSTS. If Ŝ has strict monotony, then

so does S. However, if S has strict monotony then Ŝ doesn’t necessarily have it.

Proposition 4.11. There exists a post-effective WSTS whose completion is not
post-effective. Conversely, there exists a non post-effective WSTS whose comple-
tion is post-effective.

4.3 Post-effectiveness of Completions in Concrete Examples

An affine net S is a WSTS in Fd in which the recursive functions are affine
and a Petri net can be seen as an affine net where all matrices are the identity.
An ω-Petri net [17] is an (extended) Petri net in which arcs can be labelled by
positive integers or by ω. The completions of affine nets, ω-Petri nets and Lossy
Channel Systems can be shown post-effective.

5 Decidability in Infinitely Branching Post-effective
WSTS

5.1 (Strong) Termination

We are able to strengthen the hypotheses of Theorem 3.2 and to obtain: ter-
mination is undecidable, even for post-effective ω2-WSTS with strong and strict
monotony, and with post-effective completion by reducing from structural ter-
mination for Transfer Petri nets [9].

When a WSTS is infinitely branching, its termination problem differs in a
subtle way from its strong termination problem. We show the latter decidable
under suitable hypotheses:

Theorem 5.1. Strong termination is decidable for ω2-WSTS with transitive
monotony and post-effective completion.

Proving Theorem 5.1 requires comparing executions in a system with execu-
tions in its completion:

Proposition 5.2. Let S = (X,−→S ,≤) be a WSTS, and I, J ∈ X̂. If I
k−→

̂S J ,
then for every xJ ∈ J there exists xI ∈ I, y ∈ ↑xJ and k′ ∈ N such that

xI
k′−→S y. Moreover, if S has transitive monotony then k′ ≥ k; if S has strong

monotony then k′ = k.

Proposition 5.3. Let S = (X,−→S ,≤) be a WSTS and x, y ∈ X. If x
k−→S y,

then for every ideal I ⊇ ↓x there exists an ideal J ⊇ ↓ y such that I
k−→

̂S J .

Proof sketch of Theorem 5.1. Consider a ω2-WSTS S = (X,−→S ,≤) such that Ŝ
is post-effective. Finkel and Schnoebelen [11, Theorem 4.6] show that termina-
tion, and thus strong termination, is decidable for post-effective WSTS having
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transitive monotony. By hypothesis, Ŝ is a WSTS and Ŝ has strong (and tran-

sitive) monotony by Prop. 4.8. Therefore, strong termination for Ŝ is decidable.
From Prop. 5.2 and Prop. 5.3, no bound on the length of executions from x0

exists in S iff no bound on the length of executions from ↓ x0 exists in Ŝ. Hence
decidability of strong termination from x0 in S follows from being able to decide
strong termination from ↓x0 in Ŝ. Note that we have implicitly assumed that a
representation of ↓ x0 can be effectively computed. ��

5.2 Boundedness

Drawing from [8], we know that boundedness is undecidable, even for finitely
branching post-effective ω2-WSTS with strong (but not strict) monotony and
post-effective completion. Petri net with reset arcs are such a class.

It is known that for finitely branching post-effective WSTS with strict tran-
sitive monotony and a well partial ordering (wpo), the boundedness problem is
decidable [11]. We generalize this result to (possibly) infinitely branching WSTS
and we note that the hypothesis of transitive monotony was not necessary in the
proof of [11]. The proof follows [11] by building a finite reachability tree, with
the extra step of testing whether PostS(x) is infinite for each new node.

Theorem 5.4. Boundedness is decidable for post-effective WSTS with strict
monotony and with well partial ordering.

5.3 (Strong) Control-State Maintainability

By a reduction from the termination problem, the hypotheses of Theorem 3.3
can be strengthened: control-state maintainability is undecidable, even for post-
effective ω2-WSTS with strong and strict monotony, and with post-effective com-
pletion. By contrast, the strong variant of the problem introduced in this paper
is decidable, under suitable hypotheses, for infinitely branching WSTS:

Theorem 5.5. Strong control-state maintainability is decidable for ω2-WSTS
with strong monotony and a post-effective completion.

Before proving Theorem 5.5, we need Prop. 5.6 and Prop. 5.7 to relate covering
executions in a WSTS to covering executions in its completion.

Proposition 5.6. Let S = (X,−→S ,≤) be a WSTS with strong monotony and
{t1, . . . , tn} ⊆ X. Let I0 −→

̂S I1 −→
̂S . . . −→

̂S Ik be an execution such that for all
0 ≤ j ≤ k we have Ij ∈ ↑

̂X {↓ t1, . . . , ↓ tn}. Then for every y ∈ Ik there exists
an execution x0 −→S x1 −→S . . . −→S xk such that x0 ∈ I0, xk ∈ ↑ y and for all
0 ≤ j ≤ k we have xj ∈ ↑ {t1, . . . , tn}.

Proof. Let I0 be an execution of length 0 in Ŝ as described in the proposition,
and let y ∈ I0. By hypothesis, there exists ti such that ↓ ti ⊆ I0 and thus ti ∈ I0.
Since I0 is an ideal, there exists x0 ∈ I0 such that x0 ≥ y and x0 ≥ ti. Therefore
the execution x0 of length 0 in S meets all requirements.
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Let I0 −→
̂S I1 −→

̂S . . . −→
̂S Ik be an execution of length k > 0 in Ŝ as described

in the proposition. By induction, for every y ∈ Ik there exists an execution
x1 −→S x2 −→S . . . −→S xk such that x1 ∈ I1, xk ∈ ↑ y and for all 1 ≤ j ≤ k we
have xj ∈ ↑ {t1, . . . , tn}.

Since x1 ∈ I1 ⊆ ↓PostS(I0), there exists x0 ∈ I0 and y′ ∈ ↑x1 such that
x0 −→S y′. By hypothesis, there exists ti such that ↓ ti ⊆ I0 and thus ti ∈ I0.
Since I0 is an ideal, there exists x′

0 ∈ I0 such that x′
0 ≥ x0 and x0 ≥ ti. By

strong monotony, there exists x′
1 ≥ y′ such that x′

0 −→S x′
1.

Moreover, applying strong monotony to x1 −→S x2 −→S . . . −→S xk with x′
1 ≥

x1, we obtain an execution x′
1 −→S x′

2 −→S . . . −→S x′
k such that for all 1 ≤ j ≤ k

we have x′
j ≥ xj . Therefore, x

′
0 −→S x′

1 −→S . . . −→S x′
k, x

′
0 ∈ I0, x

′
k ∈ ↑ y and for

all 0 ≤ j ≤ k we have x′
j ∈ ↑ {t1, . . . , tn}. ��

Proposition 5.7. Let S = (X,−→S ,≤) be a WSTS and {t1, . . . , tn} ⊆ X. Let
x0 −→S x1 −→S . . . −→S xk be an execution such that for all 0 ≤ j ≤ k we have
xi ∈ ↑ {t1, . . . , tn}. Then for every ideal I0 ⊇ ↓x0 there exists an execution
I0 −→

̂S I1 −→
̂S . . . −→

̂S Ik such that Ik ⊇ ↓xk and for all 0 ≤ j ≤ k we have
Ij ∈ ↑

̂X {↓ t1, . . . , ↓ tn}.

Proof of Theorem 5.5. By Prop. 5.6 and Prop. 5.7 there exists an execution
x0 −→S x1 −→S . . . −→S xk such that for all 0 ≤ j ≤ k we have xj ∈ ↑ {t1, . . . , tn}
iff there exists an execution I0 −→

̂S I1 −→
̂S . . . −→

̂S Ik such that for all 0 ≤ i ≤ k

we have Ij ∈ ↑
̂X {↓ t1, . . . , ↓ tn}. Therefore, it suffices to solve the problem in Ŝ

with ↓x0 and {↓ t1, . . . , ↓ tn}.
The algorithm from [11] solving the control-state maintainability problem

for finitely branching post-effective WSTS with stuttering monotony can easily
be adapted to solve strong control-state maintainability for finitely branching
WSTS. Since Ŝ is a post-effective WSTS by hypothesis and has strong (and
stuttering) monotony by Prop. 4.8, we obtain an algorithm.

More specifically, it suffices to build the finite reachability tree of Ŝ and verify
that it contains a maximal path labelled I0, I1, . . . , Ik with Ij ∈ ↑

̂X {↓ t1, . . . , ↓ tn}
for every 0 ≤ j ≤ k and Ij ⊆ Ik for some 0 ≤ j < k. ��

5.4 Coverability

Some classes of WSTS admit both post-effective completions and prebasis com-
putability, e.g., WSTS from Fd where the recursive increasing functions have
computable limits (called ω-well-structured nets in [15]). Therefore, coverabil-
ity was already known to be decidable for these classes. However, the following
Theorem 5.8 yields an algorithm that relies on evaluating PostS on ideals rather
than PreS on upward closed sets. Often this is more efficient, e.g., it is easier to
evaluate affine functions in N

d
ω than inverting them.

Theorem 5.8. Coverability is decidable for WSTS having a post-effective com-
pletion.
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Proof. Let S = (X,−→S ,≤) be a post-effective WSTS and x0 ∈ X .
Coverability is semi-decidable by iteratively building larger portions of the

reachability tree looking for a path with some state x′ ≥ x.
We note that x is coverable from x0 in S iff there exists an ideal I ⊇ ↓x

reachable from↓x0 in Ŝ. To prove that non-coverability is semi-decidable, one
enumerates all the downward closed sets Di (as finite unions of ideals) that are
inductive invariants, i.e., such that x0 ∈ Di and ↓PostS(Di) ⊆ Di. If x is not
coverable, a downward closed set Di such that x �∈ Di will inevitably be found.

The inclusion ↓PostS(Di) ⊆ Di is decidable for WSTS whose completion is
post-effective since there is an algorithm, which runs Post

̂S on Di (expressed as
the union J1∪. . .∪Jm of ideals) to obtain ideals I1, . . . , In such that ↓PostS(Di) =
∪1≤i≤m ∪I∈Post

̂S(Ji) ↓ I = I1 ∪ . . . ∪ In. Now Prop. 4.2 says that this inclusion
I1 ∪ I2 ∪ . . . ∪ In ⊆ J1 ∪ J2 ∪ . . . ∪ Jm is decidable. ��

The technique of enumerating inductive invariants, used in our coverabil-
ity algorithm, was already used by Pachl in 1982 to provide a witness of non-
reachability for finite automata communicating through fifo channels, having
recognizable reachability sets (Corollary 9.6 in [23]). More recently, Raskin et
al. [18,16] also used enumeration of inductive invariants to provide forward al-
gorithms for deciding coverability of WSTS. Note that their forward algorithms
use the prebasis hypothesis while we appeal to post-effective completion.

6 Conclusion and Further Work

Here we have continued the development of tools to manipulate completions of
wqos and we have applied these tools together with new ideas to deduce the fol-
lowing decidabilities: strong termination for ω2-WSTS with transitive monotony
and post-effective completion, boundedness for post-effective WSTS with strict
transitive monotony and with well partial ordering, strong control-state main-
tainability for ω2-WSTS with strong monotony and a post-effective completion
and finally, coverability for WSTS having a post-effective completion.

Future work should apply these decidabilities to parameterized WSTS and
should investigate algorithmic aspects of these decidabilities, including a com-
parison of the relative efficiencies of backward and forward strategies.

Acknowledgements. We thank the referees for helpful comments and pointers.
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