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Abstract. We consider multi-player graph games with partial-observation and
parity objective. While the decision problem for three-player games with a coali-
tion of the first and second players against the third player is undecidable in gen-
eral, we present a decidability result for partial-observation games where the first
and third player are in a coalition against the second player, thus where the sec-
ond player is adversarial but weaker due to partial-observation. We establish tight
complexity bounds in the case where player 1 is less informed than player 2,
namely 2-EXPTIME-completeness for parity objectives. The symmetric case of
player 1 more informed than player 2 is much more complicated, and we show
that already in the case where player 1 has perfect observation, memory of size
non-elementary is necessary in general for reachability objectives, and the prob-
lem is decidable for safety and reachability objectives. From our results we derive
new complexity results for partial-observation stochastic games.

1 Introduction

Games on Graphs. Games played on graphs are central in several important problems
in computer science, such as reactive synthesis [21,22], verification of open systems [2],
and many others. The game is played by several players on a finite-state graph, with a
set of angelic (existential) players and a set of demonic (universal) players as follows:
the game starts at an initial state, and given the current state, the successor state is de-
termined by the choice of moves of the players. The outcome of the game is a play,
which is an infinite sequence of states in the graph. A strategy is a transducer to resolve
choices in a game for a player that given a finite prefix of the play specifies the next
move. Given an objective (the desired set of behaviors or plays), the goal of the exis-
tential players is to ensure the play belongs to the objective irrespective of the strategies
of the universal players. In verification and control of reactive systems an objective is
typically an ω-regular set of paths. The class of ω-regular languages, that extends clas-
sical regular languages to infinite strings, provides a robust specification language to
express all commonly used specifications, and parity objectives are a canonical way to
define such ω-regular specifications [27]. Thus games on graphs with parity objectives
provide a general framework for analysis of reactive systems.
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Perfect vs Partial Observation. Many results about games on graphs make the hypoth-
esis of perfect observation (i.e., players have perfect or complete observation about the
state of the game). In this setting, due to determinacy (or switching of the strategy quan-
tifiers for existential and universal players) [17], the questions expressed by an arbitrary
alternation of quantifiers reduce to a single alternation, and thus are equivalent to solv-
ing two-player games (all the existential players against all the universal players). How-
ever, the assumption of perfect observation is often not realistic in practice. For example
in the control of physical systems, digital sensors with finite precision provide partial
information to the controller about the system state [12,14]. Similarly, in a concurrent
system the modules expose partial interfaces and have access to the public variables of
the other processes, but not to their private variables [25,2]. Such situations are better
modeled in the more general framework of partial-observation games [24,25,26].

Partial-Observation Games. Since partial-observation games are not determined, un-
like the perfect-observation setting, the multi-player game problems do not reduce to the
case of two-player games. Typically, multi-player partial-observation games are stud-
ied in the following setting: a set of partial-observation existential players, against a
perfect-observation universal player, such as for distributed synthesis [21,13,23]. The
problem of deciding if the existential players can ensure a reachability (or a safety) ob-
jective is undecidable in general, even for two existential players [20,21]. However, if
the information of the existential players form a chain (i.e., existential player 1 more
informed than existential player 2, existential player 2 more informed than existential
player 3, and so on), then the problem is decidable [21,16,18].

Games with a Weak Adversary. One aspect of multi-player games that has been
largely ignored is the presence of weaker universal players that do not have perfect
observation. However, it is natural in the analysis of composite reactive systems that
some universal players represent components that do not have access to all variables of
the system. In this work we consider games where adversarial players can have partial
observation. If there are two existential (resp., two universal) players with incompara-
ble partial observation, then the undecidability results follows from [20,21]; and if the
information of the existential (resp., universal) players form a chain, then they can be
reduced to one partial-observation existential (resp., universal) player. We consider the
following case of partial-observation games: one partial-observation existential player
(player 1), one partial-observation universal player (player 2), one perfect-observation
existential player (player 3), and one perfect-observation universal player (player 4).
Roughly, having more partial-observation players in general leads to undecidability,
and having more perfect-observation players reduces to two perfect-observation play-
ers. We first present our results and then discuss two applications of the model.

Results. Our main results are as follows:
1. Player 1 less informed. We first consider the case when player 1 is less informed

than player 2. We establish the following results: (i) a 2-EXPTIME upper bound
for parity objectives and a 2-EXPTIME lower bound for reachability objectives
(i.e., we establish 2-EXPTIME-completeness); (ii) an EXPSPACE upper bound for
parity objectives when player 1 is blind (has only one observation), and EXPSPACE
lower bound for reachability objectives even when both player 1 and player 2 are
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Table 1. Complexity of qualitative analysis (almost-sure winning) for partial-observation stochas-
tic games with partial observation for player 1 with reachability and parity objectives. Player 2 has
either perfect observation or more information than player 1(new results boldfaced). For positive
winning, all entries other than the first (randomized strategies for player 1 and perfect observa-
tion for player 2) remain the same, and the complexity for the first entry for positive winning is
PTIME-complete.

Reachability Parity Parity

Player 1
Player 2 Finite- or infinite-memory strategies Infinite-memory strategies Finite-memory strategies

Perfect More informed Perfect More informed Perfect More informed
Randomized EXP-c [9] EXP-c [4] Undec. [3,8] Undec. [3,8] EXP-c [10] 2EXP
Pure EXP-c [7] 2EXP-c Undec. [3] Undec. [3] EXP-c [10] 2EXP-c

blind. In all these cases, if the objective can be ensured then the upper bound on
memory requirement of winning strategies is at most doubly exponential.

2. Player 1 more informed. We consider the case when player 1 can be more informed
as compared to player 2, and show that even when player 1 has perfect observa-
tion there is a non-elementary lower bound on the memory required by winning
strategies. This result is also in sharp contrast with distributed games, where if only
one player has partial observation then the upper bound on memory of winning
strategies is exponential.

Applications. We discuss two applications of our results: the sequential synthesis prob-
lem, and new complexity results for partial-observation stochastic games.
1. The sequential synthesis problem consists of a set of partially implemented mod-

ules, where first a set of modules needs to be refined, followed by a refinement of
some modules by an external source, and then the remaining modules are refined so
that the composite open reactive system satisfies a specification. Given the first two
refinements cannot access all private variables, we have a four-player game where
the first refinement corresponds to player 1, the second refinement to player 2, the
third refinement to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are two partial-observation players
(one existential and one universal) playing in the presence of uncertainty in the tran-
sition function (i.e., stochastic transition function). The qualitative analysis ques-
tion is to decide the existence of a strategy for the existential player to ensure the
parity objective with probability 1 (or with positive probability) against all strate-
gies of the universal player. The witness strategy can be randomized or determin-
istic (pure). While the qualitative problem is undecidable, the practically relevant
restriction to finite-memory pure strategies reduces to the four-player game prob-
lem. Moreover, for finite-memory strategies, the decision problem for randomized
strategies reduces to the pure-strategy question [7]. By the results we establish in
this paper, new decidability and complexity results are obtained for the qualitative
analysis of partial-observation stochastic games with player 2 partially informed but
more informed than player 1. The complexity results for almost-sure winning are
summarized in Table 1. Surprisingly for reachability objectives, whether player 2 is
perfectly informed or more informed than player 1 does not change the complexity
for randomized strategies, but it results in an exponential increase in the complexity
for pure strategies.
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2 Definitions

We first consider three-player (non-stochastic) games with parity objectives and we
establish new complexity results in Section 3 that we later extend to four-player games
in Section 5. We also present the related model of two-player stochastic games for
which our contribution implies new complexity results.

Three-player games. Given alphabets Ai of actions for player i (i = 1, 2, 3), a three-
player game is a tuple G = 〈Q, q0, δ〉 where:

– Q is a finite set of states with q0 ∈ Q the initial state; and
– δ : Q × A1 × A2 × A3 → Q is a deterministic transition function that, given a

current state q, and actions a1 ∈ A1, a2 ∈ A2, a3 ∈ A3 of the players, gives the
successor state q′ = δ(q, a1, a2, a3).

The games we consider are sometimes called concurrent because all three players need
to choose simultaneously an action to determine a successor state. The special class
of turn-based games corresponds to the case where in every state, one player has the
turn and his sole action determines the successor state. In our framework, a turn-based
state for player 1 is a state q ∈ Q such that δ(q, a1, a2, a3) = δ(q, a1, a

′
2, a

′
3) for all

a1 ∈ A1, a2, a′2 ∈ A2, and a3, a
′
3 ∈ A3. We define analogously turn-based states for

player 2 and player 3. A game is turn-based if every state of G is turn-based (for some
player). The class of two-player games is obtained when A3 is a singleton. In a game G,
given s ⊆ Q, a1 ∈ A1, a2 ∈ A2, let postG(s, a1, a2,−) = {q′ ∈ Q | ∃q ∈ s · ∃a3 ∈
A3 : q′ = δ(q, a1, a2, a3)}.

Observations. For i = 1, 2, 3, a set Oi ⊆ 2Q of observations (for player i) is a
partition of Q (i.e., Oi is a set of non-empty and non-overlapping subsets of Q, and
their union covers Q). Let obsi : Q → Oi be the function that assigns to each state
q ∈ Q the (unique) observation for player i that contains q, i.e. such that q ∈ obsi(q).
The functions obsi are extended to sequences ρ = q0 . . . qn of states in the natu-
ral way, namely obsi(ρ) = obsi(q0) . . . obsi(qn). We say that player i is blind if
Oi = {Q}, that is player i has only one observation; player i has perfect informa-
tion if Oi = {{q} | q ∈ Q}, that is player i can distinguish each state; and player 1 is
less informed than player 2 (we also say player 2 is more informed) if for all o2 ∈ O2,
there exists o1 ∈ O1 such that o2 ⊆ o1.

Strategies. For i = 1, 2, 3, let Σi be the set of strategies σi : O+
i → Ai of player i

that, given a sequence of past observations, give an action for player i. Equivalently,
we sometimes view a strategy of player i as a function σi : Q+ → Ai satisfying
σi(ρ) = σi(ρ

′) for all ρ, ρ′ ∈ Q+ such that obsi(ρ) = obsi(ρ
′), and say that σi is

observation-based.

Outcome. Given strategies σi ∈ Σi (i = 1, 2, 3) in G, the outcome play from a state q0
is the infinite sequence ρσ1,σ2,σ3

q0 = q0q1 . . . such that for all j ≥ 0, we have qj+1 =

δ(qj , a
j
1, a

j
2, a

j
3) where aji = σi(q0 . . . qj) (for i = 1, 2, 3).
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Objectives. An objective is a set α ⊆ Qω of infinite sequences of states. A play ρ satis-
fies the objective α if ρ ∈ α. An objective α is visible for player i if for all ρ, ρ′ ∈ Qω,
if ρ ∈ α and obsi(ρ) = obsi(ρ

′), then ρ′ ∈ α. We consider the following objectives:
– Reachability. Given a set T ⊆ Q of target states, the reachability objective
Reach(T ) requires that a state in T be visited at least once, that is, Reach(T ) =
{ρ = q0q1 · · · | ∃k ≥ 0 : qk ∈ T }.

– Safety. Given a set T ⊆ Q of target states, the safety objective Safe(T ) requires that
only states in T be visited, that is, Safe(T ) = {ρ = q0q1 · · · | ∀k ≥ 0 : qk ∈ T }.

– Parity. For a play ρ = q0q1 . . . we denote by Inf(ρ) the set of states that occur
infinitely often in ρ, that is, Inf(ρ) = {q ∈ Q | ∀k ≥ 0 · ∃n ≥ k : qn = q}. For
d ∈ N, let p : Q → {0, 1, . . . , d} be a priority function, which maps each state
to a nonnegative integer priority. The parity objective Parity(p) requires that the
minimum priority occurring infinitely often be even. Formally, Parity(p) = {ρ |
min{p(q) | q ∈ Inf(ρ)} is even}. Parity objectives are a canonical way to express
ω-regular objectives [27]. If the priority function is constant over observations of
player i, that is for all observations γ ∈ Oi we have p(q) = p(q′) for all q, q′ ∈ γ,
then the parity objective Parity(p) is visible for player i.

Decision problem. Given a game G = 〈Q, q0, δ〉 and an objective α ⊆ Qω, the three-
player decision problem is to decide if ∃σ1 ∈ Σ1 ·∀σ2 ∈ Σ2 ·∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0 ∈ α.
The results for the three-player decision problem have implications for decision

problems on partial-observation stochastic games that we formally define below.

Two-player partial-observation stochastic games. Given alphabetAi of actions, and set
Oi of observations (for player i ∈ {1, 2}), a two-player partial-observation stochastic
game (for brevity, two-player stochastic game) is a tuple G = 〈Q, q0, δ〉 where Q is
a finite set of states, q0 ∈ Q is the initial state, and δ : Q × A1 × A2 → D(Q) is
a probabilistic transition where D(Q) is the set of probability distributions κ : Q →
[0, 1] on Q, such that

∑
q∈Q κ(q) = 1. Given a current state q and actions a, b for the

players, the transition probability to a successor state q′ is δ(q, a, b)(q′). Observation-
based strategies are defined as for three-player games. An outcome play from a state
q0 under strategies σ1, σ2 is an infinite sequence ρ = q0 a0b0 q1 . . . such that ai =
σ1(q0 . . . qi), bi = σ2(q0 . . . qi), and δ(qi, ai, bi)(qi+1) > 0 for all i ≥ 0.

Qualitative analysis. Given an objective α that is Borel measurable (all Borel sets in
the Cantor topology and all objectives considered in this paper are measurable [15]), a
strategy σ1 for player 1 is almost-sure winning (resp., positive winning) for the objective
α from q0 if for all observation-based strategies σ2 for player 2, we havePrσ1,σ2

q0 (α) = 1
(resp., Prσ1,σ2

q0 (α) > 0) where Prσ1,σ2
q0 (·) is the unique probability measure induced

by the natural probability measure on finite prefixes of plays (i.e., the product of the
transition probabilities in the prefix).

3 Three-Player Games with Player 1 Less Informed

We consider the three-player (non-stochastic) games defined in Section 2. We show that
for reachability and parity objectives the three-player decision problem is decidable
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when player 1 is less informed than player 2. The problem is EXPSPACE-complete
when player 1 is blind, and 2-EXPTIME-complete in general.

Remark 1. Observe that once the strategies of the first two players are fixed we obtain a
graph, and in graphs perfect-information coincides with blind for construction of a path
(see [6, Lemma 2] that counting strategies that count the number of steps are sufficient
which can be ensured by a player with no information). Hence without loss of generality
we consider that player 3 has perfect observation, and drop the observation for player 3.

Theorem 1 (Upper Bounds). Given a three-player game G = 〈Q, q0, δ〉 with player 1
less informed than player 2 and a parity objective α, the problem of deciding whether
∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0 ∈ α can be solved in 2-EXPTIME. If
player 1 is blind, then the problem can be solved in EXPSPACE.

Proof. The proof is by a reduction of the decision problem for three-player games to
a decision problem for partial-observation two-player games with the same objective.
We present the reduction for parity objectives that are visible for player 2 (defined by
priority functions that are constant over observations of player 2). The general case
of not necessarily visible parity objectives can be solved using a reduction to visible
objectives, as in [6, Section 3].

Given a three-player game G = 〈Q, q0, δ〉 over alphabet of actions Ai (i = 1, 2, 3),
and observations O1,O2 ⊆ 2Q for player 1 and player 2, with player 1 less informed
than player 2, we construct a two-player game H = 〈QH , {q0}, δH〉 over alphabet of
actions A′

i (i = 1, 2), and observations O′
1 ⊆ 2QH and perfect observation for player 2,

where (intuitive explanations follow):
– QH = {s ∈ 2Q | s 
= ∅ ∧ ∃o2 ∈ O2 : s ⊆ o2};
– A′

1 = A1 × (2Q ×A2 → O2), and A′
2 = A2;

– O′
1 =

{
{s ∈ QH | s ⊆ o1} | o1 ∈ O1

}
, and let obs′1 : QH → O′

1 be the
corresponding observation function;

– δH(s, (a1, f), a2) = postG(s, a1, a2,−) ∩ f(s, a2).
Intuitively, the state space QH is the set of knowledges of player 2 about the current

state in G, i.e., the sets of states compatible with an observation of player 2. Along a
play in H , the knowledge of player 2 is updated to represent the set of possible current
states in which the game G can be. In H player 2 has perfect observation and the role
of player 1 in the game H is to simulate the actions of both player 1 and player 3 in
G. Since player 2 fixes his strategy before player 3 in G, the simulation should not let
player 2 know player-3’s action, but only the observation that player 2 will actually see
while playing the game. The actions of player 1 in H are pairs (a1, f) ∈ A′

1 where
a1 is a simple action of player 1 in G, and f gives the observation f(s, a2) received by
player 2 after the response of player 3 to the action a2 of player 2 when the knowledge of
player 2 is s. InH , player 1 has partial observation, as he cannot distinguish knowledges
of player 2 that belong to the same observation of player 1 in G. The transition relation
updates the knowledges of player 2 as expected. Note that |O1| = |O′

1|, and therefore
if player 1 is blind in G then he is blind in H as well.

Given a visible parity objective α = Parity(p) where p : Q → {0, 1, . . . , d} is
constant over observations of player 2, let α′ = Parity(p′) where p′(s) = p(q) for all
q ∈ s and s ∈ QH . Note that the function p′ is well defined since s is a subset of an
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observation of player 2 and thus p(q) = p(q′) for all q, q′ ∈ s. However, the parity
objective α′ = Parity(p′) may not be visible to player 1 in G. We establish that given
witness strategies in G we can construct witness strategies in H and vice-versa, and the
details of the strategy constructions are presented in [1]. �
Theorem 2 (Lower Bounds). Given a three-player game G = 〈Q, q0, δ〉 with player 1
less informed than player 2 and a reachability objective α, the problem of deciding
whether ∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0 ∈ α is 2-EXPTIME-hard. If
player 1 is blind (and even when player 2 is also blind), then the problem is EXPSPACE-
hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynomial-time reduc-
tion of the membership problem for exponential-space alternating Turing machines to
the three-player problem. The same reduction for the special case of exponential-space
nondeterministic Turing machines shows EXPSPACE-hardness when player 1 is blind
(because our reduction yields a game in which player 1 is blind when we start from
a nondeterministic Turing machine). The membership problem for Turing machines is
to decide, given a Turing machine M and a finite word w, whether M accepts w. The
membership problem is 2-EXPTIME-complete for exponential-space alternating Tur-
ing machines, and EXPSPACE-complete for exponential-space nondeterministic Tur-
ing machines [19].

An alternating Turing machine is a tuple M = 〈Q∨, Q∧, Σ, Γ,Δ, q0, qacc, qrej〉
where the state space Q = Q∨ ∪Q∧ consists of the set Q∨ of or-states, and the set Q∧
of and-states. The input alphabet is Σ, the tape alphabet is Γ = Σ∪{#} where # is the
blank symbol. The initial state is q0, the accepting state is qacc, and the rejecting state
is qrej . The transition relation is Δ ⊆ Q × Γ × Q × Γ × {−1, 1}, where a transition
(q, γ, q′, γ′, d) ∈ Δ intuitively means that, given the machine is in state q, and the
symbol under the tape head is γ, the machine can move to state q′, replace the symbol
under the tape head by γ′, and move the tape head to the neighbor cell in direction d.
A configuration c of M is a sequence c ∈ (Γ ∪ (Q× Γ ))ω with exactly one symbol in
Q×Γ , which indicates the current state of the machine and the position of the tape head.
The initial configuration of M on w = a0a1 . . . an is c0 = (q0, a0) ·a1 ·a2 · · · · ·an ·#ω .
Given the initial configuration of M on w, it is routine to define the execution trees of
M where at least one successor of each configuration in an or-state, and all successors
of the configurations in an and-state are present (and we assume that all branches reach
either qacc or qrej), and to say that M accepts w if all branches of some execution tree
reach qacc. Note that Q∧ = ∅ for nondeterministic Turing machines, and in that case
the execution tree reduces to a single path. A Turing machine M uses exponential space
if for all words w, all configurations in the execution of M on w contain at most 2O(|w|)

non-blank symbols.
We present the key steps of our reduction from alternating Turing machines. Given

a Turing machine M and a word w, we construct a three-player game with reachabil-
ity objective in which player 1 and player 2 have to simulate the execution of M on
w, and player 1 has to announce the successive configurations and transitions of the
machine along the execution. Player 1 announces configurations one symbol at a time,
thus the alphabet of player 1 is A1 = Γ ∪ (Q × Γ ) ∪ Δ. In an initialization phase,
the transition relation of the game forces player 1 to announce the initial configuration
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c0 (this can be done with O(n) states in the game, where n = |w|). Then, the game
proceeds to a loop where player 1 keeps announcing symbols of configurations. At all
times along the execution, some finite information is stored in the finite state space of
the game: a window of the last three symbols z1, z2, z3 announced by player 1, as well
as the last symbol head ∈ Q× Γ announced by player 1 (that indicates the current ma-
chine state and the position of the tape head). After the initialization phase, we should
have z1 = z2 = z3 = # and head = (q0, a0). When player 1 has announced a full
configuration, he moves to a state of the game where either player 1 or player 2 has
to announce a transition of the machine: for head = (p, a), if p ∈ Q∨, then player 1
chooses the next transition, and if p ∈ Q∧, then player 2 chooses. Note that the tran-
sitions chosen by player 2 are visible to player 1 and this is the only information that
player 1 observes. Hence player 1 is less informed than player 2, and both player 1 and
player 2 are blind when the machine is nondeterministic. If a transition (q, γ, q′, γ′, d)
is chosen by player i, and either p 
= q or a 
= γ, then player i loses (i.e., a sink state is
reached to let player 1 lose, and the target state of the reachability objective is reached
to let player 2 lose). If at some point player 1 announces a symbol (p, a) with p = qacc,
then player 1 wins the game.

The role of player 2 is to check that player 1 faithfully simulates the execution of
the Turing machine, and correctly announces the configurations. After every announce-
ment of a symbol by player 1, the game offers the possibility to player 2 to compare
this symbol with the symbol at the same position in the next configuration. We say that
player 2 checks (and whether player 2 checks or not is not visible to player 1), and
the checked symbol is stored as z2. Note that player 2 can be blind to check because
player 2 fixes his strategy after player 1. The window z1, z2, z3 stored in the state space
of the game provides enough information to update the middle cell z2 in the next con-
figuration, and it allows the game to verify the check of player 2. However, the distance
(in number of steps) between the same position in two consecutive configurations is
exponential (say 2n for simplicity), and the state space of the game is not large enough
to check that such a distance exists between the two symbols compared by player 2. We
use player 3 to check that player 2 makes a comparison at the correct position. When
player 2 decides to check, he has to count from 0 to 2n by announcing after every sym-
bol of player 1 a sequence of n bits, initially all zeros (again, this can be enforced by
the structure of the game with O(n) states). It is then the responsibility of player 3 to
check that player 2 counts correctly. To check this, player 3 can at any time choose a
bit position p ∈ {0, . . . , n − 1} and store the bit value bp announced by player 2 at
position p. The value of bp and p is not visible to player 2. While player 2 announces
the bits bp+1, . . . , bn−1 at position p+ 1, . . . , n− 1, the finite state of the game is used
to flip the value of bp if all bits bp+1, . . . , bn−1 are equal to 1, hence updating bp to the
value of the p-th bit in what should be the next announcement of player 2. In the next
bit sequence announced by player 2, the p-th bit is compared with bp. If they match,
then the game goes to a sink state (as player 2 has faithfully counted), and if they differ
then the game goes to the target state (as player 2 is caught cheating). It can be shown
that this can be enforced by the structure of the game with O(n2) states, that is O(n)
states for each value of p. As before, whether player 3 checks or not is not visible to
player 2.
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Note that the checks of player 2 and player 3 are one-shot: the game will be over
(either in a sink or target state) when the check is finished. This is enough to ensure a
faithful simulation by player 1, and a faithful counting by player 2, because (1) partial
observation allows to hide to a player the time when a check occurs, and (2) player 2
fixes his strategy after player 1 (and player 3 after player 2), thus they can decide to run
a check exactly when player 1 (or player 2) is not faithful. This ensures that player 1
does not win if he does not simulate the execution of M on w, and that player 2 does
not win if he does not count correctly.

Hence this reduction ensures that M accepts w if and only if the answer to the three-
player game problem is YES, where the reachability objective is satisfied if player 1
eventually announces that the machine has reached qacc (that is if M accepts w), or if
player 2 cheats in counting, which can be detected by player 3. �

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show that three-player games get much
more complicated (even in the special case where player 1 has perfect information). We
note that for reachability objectives, the three-player decision problem is equivalent
to the qualitative analysis of positive winning in two-player stochastic games, and we
show that the techniques developed in the analysis of two-player stochastic games can
be extended to solve the three-player decision problem with safety objectives as well.

For reachability objectives, the three-player decision problem is equivalent to the
problem of positive winning in two-player stochastic games where the third player is
replaced by a probabilistic choice over the action set with uniform probability. Intu-
itively, after player 1 and player 2 fixed their strategy, the fact that player 3 can con-
struct a (finite) path to the target set is equivalent to the fact that such a path has positive
probability when the choices of player 3 are replaced by uniform probabilistic transi-
tions. Given a three-player game G = 〈Q, q0, δ〉, let Uniform(G) = 〈Q, q0, δ

′〉 be the
two-player partial-observation stochastic game (with same state space, action sets, and

observations for player 1 and player 2) where δ′(q, a1, a2)(q′) =
|{a3|δ(q,a1,a2,a3)=q′}|

|A3|
for all a1 ∈ A1, a2 ∈ A2, and q, q′ ∈ Q. Formally, the equivalence result is presented in
Lemma 1, and the equivalence holds for all three-player games (not restricted to three-
player games where player 1 has perfect information). However, we will use Lemma 1
to establish results for three-player games where player 1 has perfect information.

Lemma 1. Given a three-player game G and a reachability objective α, the answer to
the three-player decision problem for 〈G,α〉 is YES if and only if player 1 is positive
winning for α in the two-player partial-observation stochastic game Uniform(G).

Reachability objectives. Even in the special case where player 1 has perfect informa-
tion, and for reachability objectives, non-elementary memory is necessary in general for
player 1 to win in three-player games. This result follows from Lemma 1 and from the
result of [7, Example 4.2 Journal version] showing that non-elementary memory is nec-
essary to win with positive probability in two-player stochastic games. It also follows
from Lemma 1 and the result of [7, Corollary 4.9 Journal version] that the three-player
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decision problem for reachability games is decidable. The decidability result can be
extended to safety objectives [1].

Theorem 3. When player 1 has perfect information, the three-player decision problem
is decidable for both reachability and safety games, and for reachability games memory
of size non-elementary is necessary in general for player 1.

5 Four-Player Games

We show that the results presented for three-player games extend to games with four
players (the fourth player is universal and perfectly informed). The definition of four-
player games and related notions is a straightforward extension of Section 2.

In a four-player game with player 1 less informed than player 2, and perfect infor-
mation for both player 3 and player 4, consider the four-player decision problem which
is to decide if ∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 · ∀σ4 ∈ Σ4 : ρσ1,σ2,σ3,σ4

q0 ∈ α
for a parity objective α (also see [1, Remark 2] for further discussion). Since player 3
and player 4 have perfect information, we assume without loss of generality that the
game is turn-based for them, that is there is a partition of the state space Q into two
sets Q3 and Q4 (where Q = Q3 ∪ Q4) such that the transition function is the union of
δ3 : Q3 ×A1 ×A2 ×A3 → Q and δ4 : Q4 ×A1 ×A2 ×A4 → Q. Strategies and out-
comes are defined analogously to three-player games. A strategy of player i ∈ {3, 4} is
of the form σi : Q

∗ ·Qi → Ai.
We present a polynomial reduction of the problem for four-player games to solv-

ing a three-player game with the first player less informed than the second player [1].
Hardness follows from the special case of three-player games.

Theorem 4. The four-player decision problem with player 1 less informed than
player 2, and perfect information for both player 3 and player 4 is 2-EXPTIME-
complete for parity objectives.

6 Applications

We now discuss applications of our results in the context of synthesis and qualitative
analysis of two-player partial-observation stochastic games.

Sequential Synthesis. The sequential synthesis problem consists of an open sys-
tem of partially implemented modules (with possible non-determinism or choices)
M1,M2, . . . ,Mn that need to be refined (i.e., the choices determined by strategies) such
that the composite system after refinement satisfy a specification. The system is open
in the sense that after the refinement the composite system is reactive and interact with
an environment. Consider the problem where first a set M1, . . . ,Mk of modules are re-
fined, then a set Mk+1, . . . ,M� are refined by an external implementor, and finally the
remaining set of modules are refined. In other words, the modules are refined sequen-
tially: first a set of modules whose refinement can be controlled, then a set of modules
whose refinement cannot be controlled as they are implemented externally, and finally
the remaining set of modules. If the refinements of modules M1, . . . ,M� do not have



120 K. Chatterjee and L. Doyen

access to private variables of the remaining modules we obtain a partial-observation
game with four players: the first (existential) player corresponds to the refinement of
modules M1, . . . ,Mk, the second (universal) player corresponds to the refinement of
modules Mk+1, . . . ,M�, the third (existential) player corresponds to the refinement
of the remaining modules, and the fourth (adversarial) player is the environment. If the
second player has access to all the variables visible to the first player, then player 1 is
less informed.

Two-Player Partial-observation Stochastic Games. Our results for four-player games
imply new complexity results for two-player stochastic games. For qualitative anal-
ysis (positive and almost-sure winning) under finite-memory strategies for the play-
ers the following reduction has been established in [10, Lemma 1] (see Lemma 2.1
of the arxiv version): the probabilistic transition function can be replaced by a turn-
based gadget consisting of two perfect-observation players, one angelic (existential)
and one demonic (universal). The turn-based gadget is the same as used for perfect-
observation stochastic games [5,11]. In [10], only the special case of perfect observa-
tion for player 2 was considered, and hence the problem reduced to three-player games
where only player 1 has partial observation and the other two players have perfect obser-
vation. In case where player 2 has partial observation, the reduction of [10] requires two
perfect-observation players, and gives the problem of four-player games (with perfect
observation for player 3 and player 4). Hence when player 1 is less informed, we obtain
a 2-EXPTIME upper bound from Theorem 4, and obtain a 2-EXPTIME lower bound
from Theorem 2 and Lemma 1 (see [1] for lower bound for almost-sure winning). Thus
we obtain the following result.

Theorem 5. The qualitative analysis problems (almost-sure and positive winning)
for two-player partial-observation stochastic parity games where player 1 is less in-
formed than player 2, under finite-memory strategies for both players, are 2-EXPTIME-
complete.

Remark 2. Note that the lower bounds for Theorem 5 are established for reachability
objectives. Moreover, it was shown in [7, Section 5] that for qualitative analysis of two-
player partial-observation stochastic games with reachability objectives, finite-memory
strategies suffice, i.e., if there is a strategy to ensure almost-sure (resp., positive) win-
ning, then there is a finite-memory strategy. Thus the results of Theorem 5 hold for
reachability objectives even without the restriction of finite-memory strategies, and it
extends the result of [7, Theorem 1] which showed EXPTIME-completeness for reach-
ability objectives when player 2 has perfect observation.
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11. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games. In: Baaz, M.,
Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)

12. De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect in-
formation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168.
Springer, Heidelberg (2006)

13. Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL 2010.
LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)

14. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor.
Comp. Science 221, 369–392 (1999)

15. Kechris, A.: Classical Descriptive Set Theory. Springer (1995)
16. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications.

In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
396–407. Springer, Heidelberg (2001)

17. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
18. Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan, J. (eds.)

FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)
19. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
20. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS, pp. 348–363 (1979)
21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–190.

ACM Press (1989)
22. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization 25(1), 206–230 (1987)
23. Ramanujam, R., Simon, S.: A communication based model for games of imperfect informa-

tion. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 509–523.
Springer, Heidelberg (2010)

24. Reif, J.H.: Universal games of incomplete information. In: Proc. of STOC, pp. 288–308
(1979)

25. Reif, J.H.: The complexity of two-player games of incomplete information. JCSS 29,
–301 (1984)

26. Reif, J.H., Peterson, G.L.: A dynamic logic of multiprocessing with incomplete information.
In: Proc. of POPL, pp. 193–202. ACM (1980)

27. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond
Words, vol. 3, ch. 7, pp. 389–455. Springer (1997)


	Games with a Weak Adversary
	1 Introduction
	2 Definitions
	3 Three-Player Games with Player 1 Less Informed
	4 Three-Player Games with Player 1 Perfect
	5 Four-Player Games
	6 Applications
	References




